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mass of component defined by Equation III-3 
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P pressure 
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R, bond resistance factor b 
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defined by Equation IV-51 

T, dry bulb temperature 

T , dew point temperature 

T wet bulb temperature 
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T, average heat input temperature 

T cooling water temperature leaving cooling system-
recooled water temperature 
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T average cooling water temperature in condenser 



XI 

T.. average heat rejection temperature 

ATn the difference between T and T.. 1 oav lav 

AT cooling water cooling range 

AT true temperature difference 

TTD terminal temperature difference 

T.. hot fluid inlet temperature 
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t, cold fluid inlet temperature 

t2 cold fluid outlet temperature 

U overall heat transfer coefficient 

u air velocity in a cooling tower 

v specific volume 

V height of packing 

W work output of a thermal cycle or cooling water total 
flow rate 

w work per unit mass 

X steam quality or air absolute humidity 

Y unknown temperature of cooling water 

z potential height 

Greek Notation 

p air density 

a Merkel's cooling factor or a factor defined by 
Equation 111-44 

X latent- heat of steam or a constant for a given 
packing defined by Equation IV-16 

\i viscosity or Gibb's free energy 
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Prefix Notation 

A the change of value between conditions 1 and 2 

d differentiation 

d partial differentiation 

Superscript Notation 

c creation 
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Subscript Notation 
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c condenser 

e exit 
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SUMMARY 

The objective of this thesis is to present an investi­

gation comparing the wet type and dry type cooling tower by 

energy availability methods. The current various cooling 

systems for power plants are discussed. A suitable equation, 

via energy availability methods, is developed to clearly 

reflect the effect of cooling water temperature on the power 

production rate. In order to facilitate the comparison, a 

10 00 MW modern power plant is considered using both the wet 

type and dry type cooling tower for rejecting its waste heat. 

Successful comparisons are made by using the derived equation 

to evaluate and compare the performances of each type of 

cooling tower under different weather conditions. 



CHAPTER I 

INTRODUCTION 

During the past several decades, electric power loads 

have approximately doubled every ten years in the United 

States and they are expected to continue increasing at this 

rate through 1990. At present, more than 80 percent of the 

electric energy produced in the United States is generated 

in steam-electric plants. Favorable sites for new hydro­

electric developments are comparatively limited, and other 

noncondensing types of generating plants now in use are not 

likely to account for a substantial portion of future energy 

requirements. Thus, even considering the results of research 

under way to develop new means of energy conversion, it 

appears likely that for the foreseeable future the bulk of 

electric generation will be produced by steam-electric plants, 

either nuclear or fossil fuel. Figure 1 shows the projected 

corresponding generation to 1990 [1]. 

Unit: 1012KWH 
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Figure 1. Electricity Demand Through 19 90 
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In the operation of a steam electric plant, steam is 

produced at high temperature and pressure in the boiler or 

reactor, then flows through the turbine giving up energy 

which drives the generator to produce electricity. At the 

exhaust of the turbine, steam is condensed so as to maximize 

the energy conversion. A large amount of heat is given up 

to the cooling water in the condensing process. The amount 

of heat discharged to the condenser is related to the plant 

efficiency. Normally stating, current thermal efficiency 

of 33 to 40 percent for modern steam power plants results in 

a mistaken notion that the efficiency is extremely low. This 

occurs because any thermal cycle is subject to the unbreakable 

second law of thermodynamics, in other words, heat rejection 

is an inherent byproduct of all heat machines [2]. The amount 

of heat is inversely proportional to the cycle efficiency. 

Thus, an increasing demand for the electric energy means an 

increasing amount of heat to be rejected to the surroundings. 

Figure 2 illustrates the total estimated waste heat to be 

Unit: 1015BTU 
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28.4 
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12.8 
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Figure 2. Amount of Heat to be Rejected Through 1990 
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discharged by the fossil and nuclear steam plants projected 

for operation to 1990. For comparative purposes, it may be 

noted that the total estimated waste heat for 1990 is 40 per-

15 

cent greater than the 20 x 10 BTU equivalent of the elec­

tricity generation in that year by all types of generation 

plants. Some even have forecast the electrical generation 

waste heat from steam power plants will amount to 55 x 10 BTU 

in the year of 2000 [3]. 

Attendant upon such a large amount of heat to be 

rejected, there arise two problems which interest power plant 

engineers most: (1) How to dispose of this vast amount of 

waste heat without adversely affecting the environment, and 

(2) How to choose heat rejection systems taking in consideration 

the capital investment and the thermal efficiency of the 

power plant. 

In summary, the power industry faces the problem of 

meeting the growing demand for electrical energy and at the 

same time controlling thermal pollution with the view of 

thermal efficiency and capital investments. The contents of 

this thesis will focus on the discussion of the thermal 

efficiency based on each different heat rejection system. 
T -T 

The Carnot thermal efficiency n = —= tells us that 
h 

for any thermal cycle, the heat input temperature T. should 

be as high as possible while the heat rejection temperature 

T. should be as low as possible. These two requirements must 

be fulfilled when trying to increase thermal efficiencies of 
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power cycles. The heat input temperature T depends on the 

type of heat source. Generally speaking, a fossil-fired 

boiler can produce higher temperature and pressure steam than 

a nuclear reactor. Therefore, in real practice an efficiency 

of almost 40 percent is attainable for a fossil-fired power 

plant, while an efficiency of only 33 percent is obtained by 

nuclear power plants. The heat rejection temperature T, of 

a power plant is referred to the steam exhaust temperature 

from turbines. T, is determined by the temperature of cooling 

water in the condensers, or further by the cooling systems. 

The steam exhaust pressure P.. is fixed also since the steam 

is condensed along the steam saturation line as shown on 

Figure 1-3. It is apparent that a lower cooling water 

temperature will reduce the steam exhaust temperature and 

pressure and vice versa. Therefore, the thermal efficiency 

of a power plant is intimately related to the performance of 

its heat rejection system [4], 

There are several typical heat rejection systems avail­

able now. As they are superimposed on Figure 3, the cooling 

systems can roughly be divided into three types according to 

that heat transfer mechanism: (1) Once-through cooling range, 

(2) Wet-tower cooling range, and (3) Dry-tower cooling range. 

There is considerable current interest in comparing the 

relative merits of these methods. Much of this interest has 

recently centered upon a comparison of evaporative versus dry 

cooling towers. Some previous work comparing the recooled 
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Figure 3. Cooling System Temperatures Determine Turbine 
Exhaust Temperature and Pressure Along the Steam 
Condensing Line. (Ranges of exhaust pressures 
are indicated for basic types of cooling systems 
according to heat transfer mechanism employed.) 

water temperatures of these two types of cooling towers has 

been done by H. Heeren and L. Holly [27].. However, no one 

has as yet compared the effects of the recooled water temper­

atures of these two cooling systems on the thermal effic­

iencies of power plants. Such a special comparison can easily 

be done if we have certain analytical procedures to evaluate 

how the performance of a power plant varies with the cooling 

water temperature, i.e., the performances of the cooling 

systems being evaluated by the performances of its power 
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plant. 

The purpose of this thesis is to use energy availability 

methods to demonstrate a direct means of comparison which will 

reflect clearly the comparative effects of recooled water 

temperature on power production rates from modern power 

plants—an essential step in making comprehensive decisions 

regarding the design and use of cooling systems. 

In order to facilitate the comparison, a power plant 

of 1000 MW employing a supercritical thermal cycle is consid­

ered for the design of both the dry.and wet type of cooling 

towers to dispose of its waste heat. A more comprehensive 

comparison of their recooled water temperatures than that of 

Heeren and Holly is obtained. Finally, the efficiencies of 

the power plant, calculated by an equation derived from 

energy availability methods, are also compared by plotting 

against different dry bulb temperatures. 
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CHAPTER II 

TECHNICAL DISCUSSION 

Before entering the main subject of this thesis, a 

brief discussion on the recent techniques of discharging 

waste heat from a power plant is in order. As was mentioned 

in the previous chapter, many electric utilities have been 

confronted with the problem of how to reject waste heat from 

future electric generating steam power plants. Several heat 

rejection systems have been devised and are now being used 

for the purpose of fitting the special situations of differ­

ent plant sites. As a consequence of their employing 

different heat transfer mechanisms, each type has some 

advantages and disadvantages, respectively. A literature 

survey of conventional and modern heat rejection systems is 

presented in this chapter, together with a comparative analysis 

of their merits and demerits. 

Classification of Heat Rejection Systems 

The cooling systems can be divided into four systems 

according to their devices [4]: 

(1) Once-through cooling system 
(2) Cooling lake system 
(3) Spray pond cooling system 
(4) Cooling tower cooling system 

The cooling tower system can further be separated into 
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several types: 

r Evaporative 
Cooling Towers 

Natural Draft { 
L Mechanical Draft 

Cross Flow 

Counter Flow 

Forced i r Counter Flow |~ Forced i r 

*- Induced I L Induced ' L Cross Flow 

Dry Cooling Towers -\ 

r Direct 

{Mechanical Draft 

Natural Draft 

L Evaporative/Dry Cooling Towers { 
Series Types 

Parallel Types 

Each cooling system will be discussed separately in 

the following sections [5]. 

(1) Once-through cooling system 

Turbine 

Boiler 

Generator 

] 
I Condenser 

River 

Figure 4. Once-through Cooling System 
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Once-through cooling takes water from a lake or river 

at temperatures about 70°F and heats it about 20 to 25° F 

in the condenser, and then discharges it at a point downstream 

from the plant. With such a cooling system, the cooling 

water doesn't form a closed cycle. Therefore, the once-

through cooling systems provide the lowest naturally occurring 

condensing temperature available to the steam turbine, i.e., 

provide the most efficient utilization of turbine heat input, 

since the steam can expand to a low exhaust pressure and 

produce more useful work. Recently, because of the widespread 

adoption of federal and state thermal pollution control 

regulations, there are fewer and fewer new applications of 

this conventional cooling system. 

Advantages: 

1. The simplest and most economical method. 
2. Minimum water consumption. 

Disadvantages: 

1. Limited availability of large supplies of cooling 
water. 

2. May violate water quality standards. 

(2) Cooling lake system 

Figure 5. Cooling Lake System 



10 

This system resembles the once-through system, with 

the exception that the cooling water is recirculated. The 

water surface temperature will be closely identical with a 

once-through cooling system, if the lake size is large 

enough. However, many cooling lakes are much smaller, and 

therefore operate at much higher surface water temperature 

and, likewise, higher turbine exhaust pressure. An approxi­

mate estimate indicates that the minimum area required for a 

cooling lake is 2 acre/MW for a fossil plant, or 3 acre/MW 

for a nuclear power plant. At such rates, the cooling lake 

will perform as well as a once-through system. 

Advantages: 

1. Reasonable construction costs where soil conditions 
permit. 

2. Can possibly operate over a long period of time 
without make-up water. 

3. May be beneficial for other purposes—sailing. 

Disadvantages: 

1. Requires large land area. 
2. The basin soil of low permeability is seriously 

required. 
3. Possibility of fogging and icing. 
4. Concentrate dissolved solid. 

(3) Spray-pond cooling system 

I \\>,\w/ \ , £± ± Jjfc=5 
Water 

In 

Figure 6. Spray-pond Cooling System 
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A spray-pond cooling system is shown in Figure 6. The 

spray nozzles atomize the droplets into fine sprays, thereby 

increasing the heat transfer per unit area of land. Heat is 

rejected by direct contact of ambient air with the water 

sprays direct from condenser. A nominal water loading rate 

2 
of 500 lbm/hr-ft of pond area, and wind speeds of 6 miles/hr 

would be typical design parameters for such a cooling system. 

Advantages: 

1. Reduces required area compared to cooling lake. 
2. Relatively simple and economic compared to cooling 

lakes. 

Disadvantages: 

1. Increased water losses due to drift. 
2. Performance strongly depends on wind speed and 

direction. 
3. May cause localized icing and fogging. 

(4) Wet or evaporative cooling towers 

There are two basic classes of evaporative cooling 

towers: 

(a) Mechanical draft type — a fan is used to produce 
air draft through the 
tower. 

(b) Natural draft type -- the air draft is produced 
by the "chimney effect" of 
the tower height. 

For both types, heat transfer takes place within the 

cooling tower by direct contact of cooling water with air. 

Most of the heat is dissipated by evaporating a portion of 

the circulating water, while the remaining heat is lost by 

sensible heat transferring to the air. 



12 

Air Out 
A " 

A A 

Fan 

Ai r In 
^C=l [± l 
5 t=J 
^•IZH CH 

_/ 
-J 

J 

Packing 

L 

L en 
3 • 

Air In 
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Figure 8. Natural Draft Wet Type Cooling Tower 
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The towers are also divided into two types according 

to the flow direction of air in the tower relative to the 

flow direction of water. 

1. Counter-flow — The air flow direction is just the 
opposite of that of cooling water. Such 
an arrangement provides the most efficient 
means of heat transfer. 

2. Cross-flow — The air flow is perpendicular to the 
water flow. 

Advantages of mechanical wet type cooling tower: 

1. Positive control over air supply. 
2. Pumping head is low. 
3. Close control of cold water temperature. 
4. A minimum effect on performance by relative 

humidity. 
5. Lower capital cost than natural draft tower. 

Disadvantages of mechanical wet type cooling tower: 

1. Subject to mechanical failure. 
2. Subject to recirculation of the humid exhaust air. 
3. Operation and maintenance costs are higher than 

natural-draft tower. 
4. Exhaust air may cause icing and fogging. 

Advantages of natural wet type cooling tower: 

1. No mechanical or electrical components. 
2. Low maintenance costs. 
3. Large water loading capacity. 
4. Use comparatively small ground area. 
5. Local icing and fogging may be eliminated by high 

level plume discharge. 
Disadvantages of natural wet type cooling tower: 

1. Internal resistance to air flow must be kept to a 
minimum. 

2. Great tower height is necessary to produce draft, 
thus capital investment is higher than for 
mechanical type. 

3. Exact control of outlet temperature is difficult. 
4. Blow down disposal problem. 
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(5) Dry type cooling towers 

The shape of dry type cooling towers are very similar 

to that of wet type towers except the internal construction. 

A dry type cooling system operates on the same principles 

as an automobile radiator. Thus, there are no evaporative 

losses. Heat is rejected through a fin-tube exchanger. 

Another type of dry cooling system, known as an air-cooled 

condenser, will condense steam directly inside the finned 

tubes. The flow of cooling air, in either dry cooling design 

could be promoted by fans or a natural draft stack. 

Advantages: 

1. Eliminate fogging, mist, icing. 
2. Eliminate water problems, such as availability of 

water, evaporative losses, blow down and thermal 
pollution. 

Disadvantages: 

1. High construction costs. 
2. High maintenance costs. 
3. Large volume of air flow is needed. 
4. Turbine output is limited by high cooling temper­

ature. 
5. Larger land area is required than for wet tower. 

(6) Wet/dry type cooling tower 

The vapor-plume emissions or large water consumption 

rate of wet type cooling towers and the high condensing 

temperature of dry cooling towers are undesirable to power 

plant cooling-systems. A newly proposed method, known as a 

wet/dry cooling tower, provides great flexibility in plant 

design and siting because of its ability to reduce or even to 

eliminate visible plumes. It can also reduce annual water 



15 

consumption to perhaps 2 0% of the conventional wet type tower 

value, without increasing the economic penalties associated 

with dry cooling systems. Figure 9 illustrates the 

construction of one of this type of cooling towers. The 

upper part of the tower is of dry type and the lower part is 

of wet type. 
Air Out 

A A A 

Dry 
Cooling 

Section 

I I I I I 
• M I N I 
H I I I I I 
il I I I I I 

Wet 
Cool 

Sec 

Air In Air In 

Figure 9. Wet/Dry Type Cooling Towers 

There are several basic configurations for wet/dry 

tower design. Parallel flow designs have separate air 

passages through convective and evaporative sections and rely 

on the fan to mix the warm dry air with the warm saturated 

air. In series design, the dry cooling section can be 

located either behind or ahead of the wet cooling sections [6] 
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The theoretical analysis of a wet/dry cooling tower as 

compared with a wet type tower can easily be done on a 

psychrometric chart. The conventional wet type cooling 

processes result in warm-saturated exhaust air, which becomes 

supersaturated as it mixes with the cooler ambient air. 

Supersaturated air is a mixture of the moist air and water 

droplets that have condensed to form visible plumes. These 

processes can be shown on a psychrometric chart. As for the 

wet/dry type towers, the air never becomes saturated. The 

air exhausts from the tower in a warm but unsaturated 

condition. As it mixes with the cooler ambient air, the 

mixture follows line 3-1 (Figure 10), never becomes super­

saturated and never forms a visible vapor plume. 

0.6 

2*0.4-

Z02 
3 

Wet Type Cooling 

_ Saturat ion 
Line 

0.6 

0.4 

0.2-

Wet /Dry T y p e Cooling 

Saturation 
Line 

•X, 
20 40 100 20 40 60 80 100 120 

Figure 10. Psychrometr ic Chart for Wet Cooling Towers 
•and Wet/Dry Type Cooling Towers 

Summary: 

Four principal types of cooling systems have been 
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devised. Owing to the recent widespread adoption of federal 

and state thermal pollution regulations, fewer and fewer 

conventional once-through condenser cooling systems are 

being installed. This has resulted in an increasing trend 

toward using supplementary methods to reject waste heat at 

future plant sites. Man-made cooling lakes, spray ponds, 

wet type cooling towers, dry type cooling towers and wet/dry 

cooling towers appear to be popular and satisfactory devices 

for some specific purposes. As a consequence of their 

employing different modes of heat transfer, each cooling 

system has its own advantages and disadvantages, respectively. 
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CHAPTER III 

THEORY OF ENERGY AVAILABILITY METHODS 

As we pointed out in Chapter I, it is well known that 

the cooling water temperature is one of the factors which 

affect the output of turbines. Before building a new power 

plant, a method which will reflect directly the effect of 

cooling water temperature on the power production rate is 

quite necessary for making a comparative analysis on the 

cooling systems available. In this chapter, we are going to 

develop such a method using availability methods which employ 

the concepts of available energy and then derive an equation 

containing all the pertinent parameters. 

Discussion on energy availability 

There are two forms of energy to be considered—heat 

and work [7]. The first law of thermodynamics shows a 

balance between them. However, the second law of thermody­

namics marks the distinction between them. The concepts of 

energy availability are derived from a combination of these 

two laws of thermodynamics. Since the time of Carnot (1824) , 

the concept of potential work--in the sense of the maximum 

work which can be produced by a system or process--has been 

of concern to engineers dealing with power systems. The 

concept was inherent in the free energy and available energy 
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functions of von Helmholtz and Gibbs (1873). In 1941, 

Keenan formulated the following measure of the maximum work 

of closed systems—a measure which he called "Availability": 

A = E+P V-T S-(E +P V -T S ) ( I I I - l ' ) 
o o o o o o o 

The subscript "o" denotes the closed system when it is in 

equilibrium with the surrounding medium so that the quanti­

ties P , T and (E +P V -T S ) are constants. Since A is 

o o o o o o o 

thus a function of the system properties E, V, and S, it may 

be regarded as being a property of the system for any given 

surrounding medium. Keenan refers to the property A as 

being "the maximum work which can be delivered to things 

other than the system and medium by the two unaided by any 

change in external things." The availability A is a measure 

of the potential work of systems. In regard to the potential 

work of processes, Keenan pointed out that the steady flow 

availability derived earlier by Darrieus and Keenan is given 

simply by: 

A = (E+PV-T S)~ (E +P V -T S ) (III-2') 
process o o o o o o 

In 1958, Tribus suggested that the potential work of 

processes should be given by a balance of availability rather 

than by a balance equation for the term E+P V-T S, since 

E+P V-T S is not a general measure of the potential work of 
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open systems. Dr. R. B. Evans, the advisor of this thesis, 

carried out the generalization by replacing the term 

(E +P V -T S ) in availability by the term Zy N ; where y 
o o o o o •* c c 

is Gibb's free energy and N is the quantity of mass [36], 

A , . ... = E+P V-T S-Ey N (III-3') 
generalization o o Mco c 

c 

Equation III-l' and Equation III-27 are special cases 

of Equation III-3'. This is a brief history of available 

energy. Evans also proved that Equation III-3 is the only 

consistent measure of potential work for a very large class 

of systems [36]. Tribus and Mclrvine [35] have recently 

displayed the relationship between this function and 

statistical thermodynamics and information theory closely 

related to the energy availability is effectiveness. A 

further discussion on energy availability and effectiveness 

is given in Appendix I. 

Availability analysis of a Rankine cycle 

The available energy in a steady flow system may be 

defined as b = h-T s by neglecting the term Zy N = E +P V -T S 
o * y ^ co c o o o o o 

c 

which cancels out of steady flow processes. There is an 

inherent decrease in energy availability when heat transfers 

across a definite temperature difference or when a fluid 

flows through a pipe with friction. Both processes cause 

increases in entropy [9]. 
Any Rankine power cycle will consist of the following 
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four main processes: 

1. Heat input in the boiler or superheater. 
2. Work output from the turbines. 
3. Heat rejection in the condenser. 
4. Work input in the pumps. 

Processes 1 and 3 concern the heat transfer across 

a temperature difference. Processes 2 and 4 include some 

friction work. All of these four processes will cause a 

change in the energy availability of the working fluid. Thus, 

when analyzing thermal power cycles, two theoretical analyses 

can be made, i.e., the first law analysis and the second law 

analysis. An example is given here: 

wr 

i - Boiler 

D Pump Turbine 

Condenser 

W, 

> s 

Figure 11. Simple Power Cycle Analysis 

The following states are given 

P, = 1 psia 

P~ = 600 psia 

n. = n =0.8 t p 

T = 70°F o 

T3 = 800°F 
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From steam tables 

h1 = 69.7 BTU/lbm s1 = 0.1326 BTU/lbm-F 

bn = hn-T sn = 69.7-530 x 0.1326 = 0 1 1 o 1 

The pumping work 

w = v dp = o.ol614 (600-1) x 144/778 =1.8 BTU/lbm 

w = w /n = 1.8/0.8 = 2.2 5 BTU/lbm p sp P 

h2 = hx+w = 69.7 + 2.25 = 71.95 BTU/lbm 

From steam table h = 71.95, P = 600 psia, we find that 

s2 = o.l34 BTU/lbm-F 

b2 = h 2 " T S2 = 7 1- 9 5- 5 3 0 x 0-134 = 1.03 BTU/lbm 

From steam table P = 600 psia, T = 800°F 

h3 = 1407.7 BTU/lbm s3 = 1.6343 BTU/lbm-F 

b 0 = h^-T s0 = 1407.7 - 530 x 1.6343 = 541.52 BTU/lbm 3 3 o 3 

The entropy of state 4' can be calculated by 

S4 = S3 = S4f + X4 sfg4 
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1.6343 = 0.1326 + X| x 1.8456 X^ = 0.8135 

h4 = h4f + X4hf 4 =
 6 9- 7 + 0.8135 x 1036.3 = 913.3 BTU/lbm 

The isentropic work is thus; 

w s t = h3-h^ = 1407.3 - 913.3 = 494.4 BTU/lbm 

The actual work is 

w. = w x n = 494.4x0.8= 395.5 BTU/lbm 
t. S t L 

The enthalpy of state 4 can be calculated 

h4 = h3 - w t = 1407.7 - 395.5 = 1012.2 BTU/lbm 

The quality of state 4 

h4 = h4f + X4 x hf 4 1012.2 = 69.7 + x4 x 1036.3 

X4 = 0.9095 

The entropy of state 4 is 

S4 = Sf4 + X4 x sf 4 = °-1326 + 0.9095 x 1.8456 = 1.6785 BTU/lbm-F 

b4 = h4 - T Qs 4 = 1012.2 - 530 x 1.6785 = 121.6 BTU/lbm 
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Summaries are given as follows: 

state h BTU/lbm b BTU/lbm 

69.7 

71.95 

1407.7 

1012.2 

0 

1.03 

541.52 

121.6 

(1) The First Law Analysis 

Energy in BTU/lbm 

Feedpump 2.25 

Boiler 1335.75 

Total 1338 

percentage 

0.168% 

99.832% 

100 % 

Energy out 

turbines 

condenser 

Total 

BTU/lbm 

395.5 

942.5 

1338 

Overall thermal efficiency = 395.5/1335.75 

(2) The Second Law Analysis 

Availability gain BTU/lbm 

feed pump 1.0 3 

boiler 540.49 

Total 541.52 

percentage 

29.5 % 

70.5 % 

100 % 

0.296 

percentage 

0.19 % 

99.81 % 

100 % 
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Availability loss BTU/lbm percentage 

turbine 419.92 77.3% 

condenser 121.6 22.7% 

Total 541.52 100 % 

Overall thermal effectiveness = 395.5/540.49 = 0.731 

A more complicated example is presented in Thermodynamics— 

Keenan [8]. 

It is obvious that the second law analysis provides 

much more detailed information than the simple first law 

analysis because several ideas are suggested as follows: 

(1) The ambient temperature T , which can be taken 

to be the cooling water temperature leaving the cooling 

system before entering the condenser, enters the whole 

calculation as a variable parameter. This is a special 

merit of 2nd law analysis that the 1st law analysis doesn't 

reveal. 

(2) The effect of cooling water temperature on the 

power output rate can be investigated by applying the 

effectiveness of the power plant. The definition of the 

effectiveness of a power plant is 

work output ,___ , * 
e := — r-̂  t . •• . , : T (Ill-l) 

energy availability input 

We know that both the work output and the availability energy 

input increase as T decreases and vice versa. Thus, if we 

can find an equation of effectiveness as a function of T , 
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namely, 

e = f(To) 

Then the work output rate can be calculated by 

W . = e x availability input 

Wnet = f (1V x a v a i l a b i l i t y input (III-2) 

Letting the energy availability input = heat input x g(T ) 

and substituting into Equation III-2 yields, 

W = heat input x g(T ) x f (T ) 

= heat input x k(T ) (III-3) 

Such an equation will reflect directly the effect of cooling 

water on the power output rate. 

(3) The second law analysis also suggests some detailed 

improvements since the various irreversibilities may readily 

be .isolated and their importance compared. We find that the 

most serious availability loss occurs in the boiler due to the 

very large temperature difference between the heat source and 

steam. In practice, the availability loss is reduced by 

incorporating superheaters which abstract some heat from the 

furnace gases before the boiler, and economizers which preheat 
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the feed water and abstract heat from the furnace gases after 

the boiler [10]. 

(4) Considering the effect of cooling water tempera­

ture on the power cycle and repeating the same calculation, 

we find that, with respect to T , the effectiveness of a 

power cycle is more stable than its efficiency. The state­

ment can be proved by considering a simple power cycle in 

which heat is supplied to the steam in a boiler. The energy 

availability gained by the steam is 

B. = m{h -T s )-(h.-T s.) in e o e I o i' 

= m(h -h.)-T (s -s. ) e I o e i' 

(III-4) 

where the subscripts e and i refer to the inlet and exit 

of the boiler. Since 

• • 
d Qh Qh 

m(h -h.) = Qh; m(s -s.,) = / -^2. = ^ - (III-5) 
hav 

Substituting Equation III-5 into Equation III-4 yields: 

*in " V 1 " f^2-' <IJI-6 

hav 

where the Q, is the heat absorbed by steam and the T. is 

the average temperature of the steam in the boiler. 

Substituting Equation III-6 into Equation III-l we get 
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W , 
e = n ^ - ^ (III-7) 

V 1 -TT2-) hav 

Since W ,/Q, = n n , thus net h power cycle 

e = "power cycle (T h **- T >
 ( I I I" 8 ) 

hav o 

It is clear from Equation III-8 that when T increases, 
^ o 

the efficiency of the power plant tends to decrease, mean­

while, the denominator T, - T also tends to decrease. 
hav o 

Thus, we can conclude that the effectiveness of a power cycle 

is more stable, with respect to T , than its efficiency. The 

efficiency may be equal to the effectiveness only when T 

is equal to absolute zero. It is impossible to reach such a 

low temperature. Therefore, the effectiveness is always 

larger than the efficiency of a power cycle. Also, as 

pointed out by Kreith [34], the effectiveness tends to be a 

constant, as will be demonstrated in this thesis. 

The previous four statements are all derived from a 

comparison of the first and second law analysis and will be 

quite useful later on. 

Derivation of Equation e = fjTj 

Figure 12 illustrates the typical arrangement of a 

simplified power plant. The subscripts h and 1 refer to 

boiler and condenser. The output of the turbine is equal to 

the isentropic work minus the lost work and the pumping work 
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' Wr 

Combustion Gas 

Pump 

'hav 

T lav — 

Cooling Water 

System Boundary 

Turbine 
W. 

T0+ ATC 

Figure 12. The Typical Simplified Power Plant 

plus the pumping loss: 

'h W = m / vt(dp) - m h l Q s s t = ntm / v t(dp) s (III-9) 

P h W = m / v (dp) + m h, 
p p c s lo 

m / hv (dp) (111-10) 
ss p n p s 

c pump p., c 

The net work of the output is thus 

W = W -W 
net t p 

(III-ll) 

W 
• • , P h P h 

ne t
 = ntm /

 v
t (

d P ) s " ! / %
 m f v (dp) 

P — s 
(111-12) 
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The energy availability supplied to the boiler is, 

c #c c c 
B. = W + T mfS,. ,. +S , + S .. +S . ) + mb in net o turbine pump condenser pipe out 

(111-13) 

where the superscript c denotes entropy creation {35]. 

Repeating the effectiveness of the power cycle, 

e = W ,/B. (111-14) 
net in 

Substituting Equation 111-12 and 111-13 into Equation 111-14, 

yields 

• Ph 1 Ph 
n. i_ • m/ v, (dp) - — — m/ v (dp) 
'turbine p± tv ^'s ^pump P1 P s 

p • 
m / p t V C d p ) -mAh1 ,+T m ( s J + s C + s C + s C . ) + m b . - — / P h v (dp) 

^1 t ^ s loss t o t p c pi out n p, p ^ s 

(111-15) 

The enthalpy loss can be related to the entropy 

increase in a turbine. Since most of the turbines try to 

expand the steam to a low pressure, i.e.,-the state of 

exhaust steam is normally in the two phase region or near the 

saturation line on a Mollier diagram. In these regions, 

there are two special advantages that we have: (1) In two 

phase region, the constant pressure lines are straight 

lines and in the region near saturation line, the constant 

pressure lines bend upward a little bit; and (2) In the two 

phase region, the constant pressure and constant temperature 
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lines overlap, and nearly overlap in the region near the 

saturation line. Figure 13 shows such a diagram duplicated 

from a Mollier diagram [11,12]. The enthalpy loss is 

h., , » h.-h' loss t 1 1 (111-16) 

From the thermodynamic basic relationships [13] 

dh = T ds + v dp = (§)pds + (§)sdp (111-17) 

thus 

*3s'p 
(111-18) 

Since the constant pressure lines are constant temperature 

lines in the two phase regions, thus 

Constant Pressure Line 

Straight Line 

Constant Temperature 
Line 

Figure 13. h-s Diagram 
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Ah, 
sC = _i2ss_b (iu-19) 
sturbine T u ± 1 ± y j 

or 

Ah.. . * T1 x s^ , . (111-20) 
loss t 1 turbine 

These two equations are exactly valid for the exhaust 

steam in the two phase region. In the superheated region 

near the saturation line, it still holds approximately well. 

Here a real example is checked. 

Ph = 3000 psia s£ = sh = 1.7163 BTU/lbm-F 

T h = 1600°F h-j' = 959.47 BTU/lbm 

sh = 1.7163 BTU/lbm-F s} = 2.144 BTU/lbm-F 

nt = 0.7 h1 - 1217.6 BTU/lbm 

P' = 1 psia p, = 1 psia 

T^ = 101.74°F T1 = 350°F 

The theoretical entropy increase is As^ = s0-s, = 0.4277. 
a. Z ± 

The entropy increase calculated by our method is 

hu . hi-h-
K lOSS t 1 1 r\ AS-
Asb = — s = —^T- = 0.46 

mu * 0.46-0.4277 - -
The percentage of error = — Q 4277—— = 
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If we check the point of h = 1217.6 BTU/lbm and s = 2.144 

BTU/lbm-F on a Mollier diagram, we find that the point is 

not near the saturation line, however, the error is limited 

to 7.5%. Thus, we can surely conclude that our method holds 

pretty well for a turbine which exhausts steam in the super­

heat region near the saturation line. 

I also have to point out that the entropy increase 

As, calculated by Equation 111-19 is always larger than the 

real entropy increase Ab because the constant pressure line 
a 

in the superheated region is an upward bended curve relative 

to the straight line lengthened from the same pressure line 

in the two-phase region. This fact has enabled our method 

of calculating the entropy increase to closely approximate 

to the real entropy increase. 

Now we return to the derivation of our equation. 

Substituting Equation 111-19 into Equation 111-15 and 

rearranging s ? - yields 

n t i A vt(dp)g - 1 / V m p m/V(dp) s 

e = 
m/p* v t ( d p ) s + ( V T r ) m s ; ; u r + T o m ( s C + s ^ 

(111-21) 

Again, 

(1-n ) m/ h v, (dp) 
mAh., P-i 

• C l O S S ^ 1 / X T T T > \ 
m S t u r - - T ^ = ¥[ ( I H - 2 2 ) 
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Substituting Equation 111-22 into Equation 111-21, yields 

V p^V^V^V'p^p^s 
. ph nr-n t) . "K ; ~ ~ ~ ; 
mf V ( d p ) +(T -TJ—pj^-^-m/ V (dp) +T m(sc+sc+s .)+mb . p1 t ^ s o 1 T.. p_ t L s o p c pi out 

p (111-23) 
mf n v (dp) . . . 

n Dn p 
p u m p * i • 

• ph 
Dividing Equation 111-23 by mf v.(dp) yields 

Pj_ t s 

Ph 
C"v,Jdp) 

n 
P1 P s 

tur p h 

Vp/t^ 1 

e = 
T -Tn T (sC+sc+sG.)+b . l,Ph ,, v 

i + ( -^ - i ) ( i - n ) +-s P c P 1 QUt - r̂VV p) 

T- P K P •*• ; D v t ( d p ) s P h 
Pl t S / V (dp) 

pl z s (111-24) 

For simplification, we neglect some insignificant 

terms in the above equation. 

(1) The entropy increase in the pipe and pump are 

almost negligible in comparison with the entropy increase in 

the condenser. 

(2) The ratio of isentropic pumping work to isetropic 

turbine work tends to be a very small number and for a 

given cycle, the variation in this ratio is almost negligible 

that for a given power cycle, it can be treated as a constant 
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without causing too much error. 

Let 

Ph 
/ v (dp) 

VPlV*>« 
= K (111-25) 

Neglecting the insignificant terms and substituting 

Equation 111-25 into 111-24 results in 

e = 
turbine - K 

T -T T s +b 
, . , o 1, n \, o condenser out ! + ( _ _ ) ( i - n t ) + _ _ ^ - K 

/ lV (dp) 
Px t

v ^'s 
p 

(111-26) 

The entropy creation for a heat exchanger 

T and T, are the average temperature of cooling 

water and heated water [14]. 

Figure 14. Heat Exchanger 
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T -T, AT , 
Sc = T + T Q ("f^ ) = Q (T~f^ (HI-27) 

a b a b a b 

Therefore, the entropy increase in the condenser is 

AT 
Sc = ql(T — r — > (111-28) 

lav oav 

The availability energy leaving the condenser is 

T +AT T 
bout = * 1 - V m °dq1/T= q ^ l - ^ ) (111-29) 

T oav 
o 

Substituting Equation 111-29 and 111-28 into 111-26 yields 

nturbine kp ... (111-30) 
e ^ ^ _ - -

, 1 o oav- Ov 
rp _ m "l"] *m m T 

1 + / _ o lv n v , lav oav oav _ 
l+(—r—) (1 \ u r

, + " " p7 Kp 
1 / V.(dp) 

p, t * s 
From the first law of thermodynamics 

• • Ph 
Q = Q,-nm/ v,_ (dp) + W (111-31) 
wl h t p, t ^ s pump 

In this case, we can neglect the pumping work because it is 

so small in comparison with the heat input Q, . Thus, 

dividing by the mass flow rate m 
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*1 = qh " V p H ( d p ) s (IH-32) 

Dividing Equation 111-32 by the isentropic work yields 

ql qh 
- n. (111-33) 

Ph Ph * 
;PlVt(dp)s 'pJV^s 

Pn From Equation III-6 with b. = / v. (dp) and T replaced by ^ in p, t c s o * J 

Tlav' w e h a v e' 

D T -T 

/ V(dP)
 hav lav 

D, t x r S 

T, 
(111-34) 

P 1 

Substituting Equation 111-33 and 111-34 into Equation 

111-30 yields 

n. - k t p  
e T -T T AT T T -T 

,./0 l\/n \,// hav x * , 1 o v . / oav ox x ! 
1+ (—5—) (l-nt) + ((, _T ) -nt) ( 5 — ^ >+ < — > > -kp 

1 hav lav lav oav oav r 

(111-35) 

To get a good approximation T = T + ^ AT ; 

T -T AT 
OaV O O t-rTT i £ \ 

— = 2T +AT (IH-36) 
oav o o 
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Substituting Equation 111-36 into Equation 111-35 yields 

e = 2±SL 
T -T, T. AT T AT 

1+ (-Y^) d-nt) + ((Ti _ ^ -0 -nt)) ((T-i V } + (2TTTAT-) } ~ k
P 

hav lav lav oav o o 

(111-37) 

n < ^ > 
1 + correction term 

(111-38) 

The correction term represents the sum of the corresponding 

terms in Equation 111-37. 

It is obvious from Equation 111-37 that the efficiency 

of a turbine is an important factor in the effectiveness of 

a power plant. For a given turbine and inlet steam, the 

efficiency is a function of the back pressure. Figure 15 

illustrates how the steam turbine efficiency varies as the 

back pressure increases in a 400 MW power plant [15]. 

Absolute Temperature in Condenser — 

519 539 560 575 51 

- R ° 

J5 593 
10 

/ 
8 

\ / ^ 

y 
r 

u 
, / 

4 s 
p 

s y 
• / 

S_ 1 °C 0.5 1 2 j 1 4 5 

Absolute Pressure in Condenser—— Inch Hg 

Figure 15. Loss in Turbine Efficiency with Drop in 
Back Pressure Vacuum 



39 

An example will be given here to check Equation 111-37. 

The given conditions are listed as follows. 

1. The efficiency at the design point is 0.9 and 

decreases according to Figures 3-5 with increase in back 

pressure. 

2. In most cases, the condensers now being used have 

a typical range of 20°F, and temperature across the condenser 

is 15°F. 

AT, = 15°F AT = 20°F 
1 o 

When the efficiency of the turbine changes, then 

ATT and AT also change, however, the amount of variation 
JJ C 

is so small in comparison with T.. or T . Thus, AT and 

AT, are taken to be constant. 
3. T. is selected to be 1000°R. 

hav 
4. K is selected to be a typical value of 0.02. 

p ** 

The results are tabulated in Table 1. The effective­

nesses are plotted against the cooling temperature T on 

Figure 16. 

Figure 16 clearly shows that the effectiveness of a 

power plant is almost a constant if the working range is 

limited to some range around the design point of its turbine 

and this is the significant range of interest for evaluation. 

Thus, we can conclude that the significant effectiveness 

of a power plant is almost a constant, a principle which may 



Table 1. Effectivenesses of a Power Plant 

ntur Tl AT1 AT 
o 

T 
o T oav hav Corr K 

P 
e 

0.897 500 15 20 475 485 1000 0.05000 0.02 0.835238 
(impossible) 

0.900 519 15 20 494 504 1000 0.05205 0.02 0.836462 

0.895 539 15 20 514 524 1000 0.05423 0.02 0.830000 

0.875 560 15 20 535 545 1000 0.05686 0.02 0.809000 

0.855 575 15 20 550 560 1000 0.05882 0.02 0.788613 

0.833 585 15 20 560 570 1000 0.06024 0.02 0.766808 

0.812 593 15 20 568 578 1000 0.06143 0.02 0.746163 

* 

T must be greater than the freezing temperature (492 R°). 
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Figure 16. Effectiveness of a Power Plant as a Function 
of Cooling Water Temperature T 

be called the principle of constant effectiveness. 

Figure 16 applies to a given plant with a fixed 

design point. For design purposes, it would be better to 

have a plot of effectiveness versus T as an envelope of 

optimum design points as shown in Figure 16a. Since 

optimization curves generally tend to be rather flat, the 

principle of constant effectiveness will still apply, as 

Figure 16a will indicate. 

When designing a power plant, a comparison of capital 

costs of each type of cooling system is definitely needed. 
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To 

Figure 16a. Effectiveness as a Function of Cooling Water 
Temperature for Optimum Design Points 

Such a comparison includes [33]: 

1. Investment cost comparison—cost for the cooling 

tower and its equipment, land cost, etc. 

2. Operating cost comparison—cost for pumping water, 

makeup water, steam generation rate, maintenance, etc. 

The principle of constant effectiveness is quite useful in 

selecting the optimum cooling water temperature T in relation 

to the above cost. The optimization is carried out by 

letting the profits of a power plant P be 

P = C W -r e 
K 

T ,-T " Ch Qh"Cr o' r 
(111-39) 

where 
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Ce W is the profit of the power output. 

jr 

T _ is the cost of the cooling towers including 
o r 
construction and operation. T is a fixed wet-bulb 

temperature and K is a constant for this simplified 

analysis, while T = surrounding temperature. 

C,Qh is the cost of fuel consumption, C, is a 

constant, ft is the remaining plant cost. 

From Equation III-7 

uh " e(l-T /T, )' o/ hav 

Substituting Equation III-7 into 111-39 yields 

Pr = Ce ft - ̂ - - e ( l . V ^ a v ) - Cr (III-40, 

BY applying the principle of constant effectiveness 

e can be treated as a constant as discussed previously. The 

optimum cooling water temperature T under the condition of 

constant power output is thus (noting that Ce, W, and Cr will be 

constant with respect to T ) 

9P • T, C, W r K hav h 
9To (T -T ) 2 e (T. -T ) 2 

o r hav o 
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Rearranging the above equation yields 

T C W 

T + ( hav h -W2 T
r 

(T ) = h a v _ e _ J (111-41) 
< V o p t i m u m T h a v C h W / 2 < I J I 4 1> 

1 e K j 

Equation 111-41 is valid only under the given assumptions, so 

that a cooling tower will be used only if K is small enough 

so that (T ) L. < Surrounding Temperature. 
o optimum - 3 * 

Equation 111-37 is only valid for simple power cycles. 

In real cases, the regenerative, topping, and reheat processes 

may be added to simple cycles. Therefore, it is necessary 

that Equation 111-37 be extended to apply in general, so that 

the principle of constant effectiveness can be used in 

general too. The complete analytical work is suggested for 

further research. Only a brief investigation is presented 

here. 

1. Regenerative cycles. Assuming that the steam mass 

for regenerative processes is m.. and for the original cycle 

is nu, the overall effectiveness of the whole cycle will be 

iru m9 

en + — = — e0 (111-43) 
'overall mi + m2 •*• mi + m2 2 

Where e, and e? can be approached by the same analytical 

processes as discussed in previous sections, so that e, and 

en will tend to be constant as before. Hence, e ^ ^ ,-, will 2 overall 
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tend to be constant. The principle of constant effectiveness 

remains valid for regeneration. 

2. Topping cycles. The topping cycles may be 

composed of two, three or more cycles in general. Thus, 

w1 
e l - bx 

- W2 
6 2 " b 2 

w3 

6 3 " b3 

Where e,, e^, and e_ will be similar to Equation 111-37. 

There will be certain factors which relate b. , h~ and b.. as 

follows: 

b« = b, x a 

b-. = b„ x 3 = b, x a3 

Therefore, the overall effectiveness will' be 

w.. +w9+w-
e 
'overall b. 

(111-44) 

= e, + e-a = e~a| 

The effectiveness values e., e2 and e~ will be virtually 

constant as before. Thus, for given values of a and B, the 
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effectiveness e will be constant, so the principle of constant 

effectiveness remains valid for topping processes. 

3. Reheat cycles. The reheat cycles consist of 

several stages of reheat and turbine. Therefore, the effec­

tiveness equation will not be identical to Equation 111-37. 

Basic procedures are suggested here. 

E . w. 
(111-45) 

? b i 
1 

w. 

i . i 
I 

b. w. 
Let a. = TTT-̂ - and noting that r— is the effectiveness e. of l Zb. r b. l 

l l 
l 

the i'th reheat stage, then we have 

e T , = I a . e . overall . i l 
l 

The effectiveness values e. each remain virtually constant 

as before. Thus for given values of a., #e ,, will remain 

virtually constant. Similar results will, of course, occur 

if we consider systems which combine regeneration, reheat and 

topping. We may thus conclude that the principle of constant 

effectiveness.applies to steam power plants in general. 
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CHAPTER IV 

THE PERFORMANCE OF NATURAL-DRAUGHT WET AND DRY 

COOLING TOWERS 

Among the heat rejection systems that we presented 

in Chapter II, natural draught wet cooling towers recently 

have interested power engineers the most, owing to the 

following several reasons: 

1. Reasonable costs 
2. Easy maintenance 
3. Large capacity for heat rejection 
4. Eliminating thermal pollution 

In this chapter, such two types of cooling towers are 

designed to dispose a 1000 MW power plant waste heat. The 

performances of each type of cooling tower are then investi­

gated and compared by our methods of energy availability. 

Part A: Natural Draught Wet Type Cooling Towers 

The design of wet type cooling towers requires a 

knowledge of psychrometry, which is a study of moisture 

content of air. Air is composed mainly of oxygen, nitrogen, 

rare gases, and water vapor in varying quantities depending 

on its temperature and humidity. 

Total Heat of Air 

The total heat of air is the arithmetical sum of 

sensible heats of air and water vapor, plus the latent heat 
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of vaporization of the water [16]. For saturated air: 

h' = X'. T, + X1. A + 0.24T. (IV-1) 
air d air d v ' 

For unsaturated air: 

h = X T.. + X . X- + 0.45X . (T..-T-. ) + 0.24T- (IV-2) air dp air dp air d dp d 

Where the subscripts d and dp refer to dry bulb temperature 

and dew point temperature. 0.45 and 0.24 are the specific 

heats of vapor and air, respectively, from 0°F to 120°F. 

The total heat of air calculated by Equation IV-1 and IV-2 

can be measured from a fixed-datum such as 0°F or 32°F. 

Table A-l in the appendix shows total heat of saturated air 

taking 32°F as datum. 

The properties of air and water vapor mixtures can be 

represented graphically on a single chart referred to as the 

Psychrometric chart. On this chart, absolute humidities are 

plotted against dry bulb temperatures and' lines of constant 

relative humidity and wet bulb temperatures are added [17] 

(Figure A-l). 

Heat Transfer in the Cooling Tower 

Consider a droplet of water falling through the 

cooling tower. Heat is transferred in four ways, namely, 

conduction, convection, radiation, and evaporation. Quanti­

tative treatment of cooling tower performances by dealing 
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with mass and heat transfer separately is very laborious. 

Therefore, Merkel's total heat theory has been almost uni­

versally adopted for the calculation of cooling tower heat 

transfer. Briefly, Merkel*s theory states that all the heat 

transfer taking place at any position in the cooling tower 

is proportional to the difference between the total heat of 

air and the total heat of saturated air at the temperature 

of water at that point in the tower. 

Q = K • S(H -H ) (IV-3) 
* w g 

Adapting this equation to the cooling tower yields [18] 

dq = K-a(h'-h)dV = Ka(h'-h)dV (IV-4) 

where 

K Merkel's heat transfer coefficient 

a Mean area of water-air interface per cubic 
foot of packed volume 

V Height of the packing 

h' Saturated air enthalpy at water temperature 

h Ambient air enthalpy 

K and a are generally combined together to form Ka. 

Another basic equation for heat transfer in a wet 

cooling tower can be derived simply by considering a total 

heat diagram, Figure 17. Cooling water is cooled along the 
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> T 

Figure 17. Total Heat Diagram 

saturation line, while the air is heated through the tower [19] 

The total heat decrease of water must be equal to the total 

heat increase of air. Thus, 

dQ - dLCT = G dh (IV-5) 

(C = 1 BTU/lbm-F for water). The gas loading G remains 

constant throughout the tower because it is based on bone-

dry gas only. The liquid loading L is not quite constant, 

owing to the evaporation of water into bone-dry air. The 

saturation line loss from water to air amounts to 2% of 

water circulated over the tower and may be considered 

constant without causing serious error [16]. 

dq = LC dT = G dh (IV-6) 
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Mean Driving Force 

Merkel's theory of heat transfer refers only to a 

single point in the tower whereas water and air conditions 

vary throughout the tower. It is, therefore, necessary to 

use the mean value of the enthalpy difference. The "mean 

position" is that position at which the water temperature 

is the arithmetic mean of inlet and outlet water tempera­

ture. A chart has been prepared which indicates the value 

of a factor f by two parameters Ah /Ah, and Ah /Ah2. Such 

a chart is devised by W. L. Stevens and is presented in [17] 

and [20] (Figure A-2). The mean driving force is thus 

h , = Ah x f (IV-7) 
md m v ' 

Required Height of Packing. Combining Equations IV-4 and 

IV-6 yields 

dq = LC dt = G dh = K (h'-h)dV (IV-8) 
a 

Integrating Equation IV-8 gives 

q = LCAT = Ka h ..V (IV-9) 
md 

Thus, the required height is 

v = KUTT ( IV"10) 

md 
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Merkel's Cooling Factor. From Equation IV-8 we have 

V V n O JL 

"I / dv = ' E^K ^v-iD 
h 

By in tegra t ing Equation IV-11 we get 

^ - ^ - 4 ^ - (IV-12) 
G h ' - h u v Ll) 

m m 

Substituting h m = h1+l/2Ah, dividing by G and letting 

G h = LAT yields 

h m " h l L 1 
"AT = Ka~17 + 2~G (IV-13) 

Merkel's cooling factor is defined as 

h'-h., T . 

" = TT— = KiV + 2~G <IV-14) 

From the definition of Merkel's cooling factor, it is 

obvious that a depends on cooling range AT, h1 and h.. . Wood 

and Betts have prepared charts expressing Merkel's cooling 

factor in terms of wet-bulb temperature, cooling range, and 

recooled water temperature. Such a figure is shown on [21] 

(Figure A-3). 

Volume-Transfer Coefficient Ka. The experiments of a 

given cooling tower packing show that Ka depends only on the 
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design of the packing itself and air and water loading. It 

is practically independent of water temperature. Thus, 

KaaLm Gn (IV-15) 

Combining with its height V results in 

KaV = XLm Gn (IV-16) 

Substituting Equation IV-16 into IV-14 yields 

a = T^tE + 2§ (IV"17> 
Alt o 

Since L/2G is dimensionless, L/L G must be also dimension-

less. Thus, 

1 - m - n = 0 (IV-18) 

or 

1 - m = n (IV-19) 

Substituting Equation IV-19 into Equation IV-16 yields 

£ ^ = A(£)"n (IV-20) 
Li (J 
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The transfer characteristics of a packing may there­

fore be defined by the two factors m and n. Table A-2 shows 

some basic forms of packing tested and their experimental 

data [22], 

Air Flow Equation. The draught of natural draught 

cooling tower is due to the difference of air density between 

inside space and outside space of the tower and may be 

equated to the pressure difference necessary to maintain a 

flow of air through the tower. If the resistance of the 

tower to air flow can be regarded as being predominantly 

due to inertia losses occasioned by solid system, as distinct 

from friction loss and the drag of the falling water [21], 

HAp = Sgf. (IV-21) 

N U& p2"2 (IV-22) 
2g 

N V Q 2 (IV-23) 
2g 

Several further steps have been carried out and result in 

G3N = 8210 H LAT(^ + 0.3124) (IV-24) 

The derivation of this equation is shown in Appendix II. Let 

AT 

F(T-,,T ) = 8210 <££- + 0.3124) (IV-25) 
d' w Ah 
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F(T.,T ) depends on AT and Ah only, i.e., it is a function of 

dry bulb and wet bulb temperature only. Figure A-4 indicates 

the value of F(Td,T ) against wet bulb temperature and the 

difference between dry and wet bulb temperature. Substituting 

Equation IV-25 into Equation IV-24 and taking its cubic 

root result in 

G N 1 / 3 = 3/H LAT~"F(Td,Tw) (IV-26) 

Dividing water loading L by Equation IV-26 yields 

L L (IV-27) 

G N 1 / 3 3/H LAT F(TD,TW) 

From Equation IV-27, r- N1 >n can be evaluated simply by 

calculating the right side of the equation. 

Chilton Performance Coefficient. The Chilton 

coefficient is defined as 

c = % (IV-28) 
(~T73) 
GN^7 

By substituting Merkel's cooling factor into Equation IV-28, 

we have 

c , _M^L(_4 ,«-l + M^! (IV-29) 
(-4TT> G N 1 / 3 2 

GNX/ 
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The Chilton coefficient of a cooling tower has been 

investigated and the results show that for a given cooling 

tower, the Chilton coefficient tends to remain constant 

under all different working conditions such as dry and wet 

bulb temperature, water load, cooling range, wind speed, or 

wind direction. This fact can reasonably be regarded as a 

strong indication, though not as a conclusive proof, that 

1/3 there is a linear correlation between a and L/GN ' , i.e., 

a constant Chilton coefficient for a given tower. This 

concept will provide a valid basis for the comparison of 

different tests on the same tower [21]. 

Some of the experimental data on Chilton coefficients 

are tabulated on Table A-3 which will be quite useful when 

designing a new tower. 

Duty Coefficient [23]. Substituting Equation IV-27 

into Equation IV-28 and then replacing L by W/A yields, 

3/aAT F(T, ,T ) a w 
^273^173 w2/3 

Duty coefficient is defined as 

(IV-30) 

D = A(Hjl/2 = W (IV-31) 
C C a/a AT F(Td,Tw) 

This equation can be used to evaluate the dimension of a 
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tower for a given water load W. The Chilton coefficient can 

be estimated from the previous experimental data that is 

tabulated in Table A-3. The required dimension of a cooling 

tower is thus, 

A ( H )l/2 = C(C)1/2 (IV-32) 

ct/aAT F(T, ,T ) d w 

The Number of Towers. Currently, the ratio of height 

of a cooling tower to its base diameter is usually taken to 

be 3:2 or 5:4 and the height of the natural draught cooling 

tower is limited to 120m or 390 ft by commerical availability 

If the ratio of 3:2 is employed 

A ( H )l/2 = HD H = n(2H}2(H)l/2 = 0 # 3 4 9 1 R2.5 ( I V_ 3 3 ) 

1/2 The maximum of A(H) is thus determined if H = 390 ft. 
max 

Thus, 

A(H) 1/ 2 = 1.05 x 106 (IV-34) 
max 

The minimum number of cooling towers required is 

N , . = ——2_(C)__W ( i v - 3 5 ) 
c t mm 1 > Q 5 x 1 Q f c > a ( a A T F ( T T ))±/z 

a w 

Other factors that affect the performance of a wet 
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type cooling tower: Several other factors may affect the 

performance of a natural draught cooling tower, namely, 

wind velocity, barometric pressure, concentration or compo­

sition of dissolved or suspended solids in the circulating 

water, dynamic stability of the atmosphere and type of water 

spray. 

Among these factors, the wind speed is the most 

significant [24]. Experiments show that strong wind has an 

adverse effect on wet cooling towers. This effect is 

attributed mainly to the disturbance of the air velocity 

distribution caused by the wind. This nonuniformity reduces 

the heat transfer and at the same time increases the effec­

tive resistance of the cooling stack and eliminator. Wind 

is also known to cause a small increase of draught but experi 

mental evidence suggests that the beneficial effect is more 

than offset by the disturbance of the air velocity distri­

bution [25] . 

The above analysis of designing a wet type cooling 

tower will be applied to design wet cooling towers for a 

1000 MW power plant. 

A supercritical steam power plant has a maximum steam 

pressure of 4000 psia and a temperature of 1000°F. Steam is 

expanded 115°F or 1.483 psia. The overall efficiency of 

turbines (several turbines are installed in series) is 0.9. 

The pump efficiency is taken to be 0.6. The output rate is 

1000 MW. 
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Power cycle analysis: 

h 1 =82.9 3 BTU/lbm 

w =11.97 BTU/lbm 

w =19.95 BTU/lbm 
P 

h2 =102.88 BTU/lbm 

h3 = 1406.8 BTU/lbm 

s, = 1.4482 BTU/lbm-F q . = 800.87 3 ^rej 

X^ = 0.722 

h^ = 825.65 

w 
s = 581.15 

w = 523.05 

h4 = 883.8 

X4 = 0.778 

w = 503.71 

The steam flow rate is 

m 
power output rate 

steam w 
net 

= 6.776 x 106 lbm/hr 

The waste heat rejection rate is thus 

Q . = m , x q . = 5.4267 x 109 BTU/hr rej steam ^rej ' 

The heat rejection rate of this cycle at different steam 

exhaust temperatures is plotted in Figure 18. 

Design Conditions: The design conditions of the heat 

rejection system are listed below: 

Terminal temperature difference 5°F 
Range 20°F 
Approach 20 °F 
Cooling water inlet temperature 110°F 
Cooling water outlet temperature 90°F 
Dry bulb temperature 80°F 
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Steam Exhaust Temperature °p 

Figure 18. The Heat Rejection Rate of a Supercritical 
Cycle 4000 psia, 1000°F at Different Steam 
Exhaust Temperatures 
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Wet bulb temperature 70°F 
Packing (Table A-2 No. 21) 

Q 
Cooling water flow rate Wa = ~~p- = 2.713 x 10

8 lbm/hr. 
o 

Merkel's cooling factor is decided by T - 70°F, AT = 20°F, 

recooled temperature T = 90°F and Figure A-2. 

a = 1.9 

F ( T , ,T ) = 5700 (From F i g u r e A-4) a w 

W 
D = *• -T-ry = 3 .068 x 1 0 5 = £ ( £ ) 1 / 2 

a ( a A T Q F ( T d , T w ) ) 1 / 2 C C 

The Chilton coefficient C can be expected to be around 5.5 

by Table A-3, No. F if the packing is about 3.5 ft in height. 

Thus, 

A(H) 1 / 2 = 3.957 x 106 

a 

Thus, from Equation IV-35 the minimum number of towers is 4 

by commercial availability. Let the number of towers be 8. 
W n 

a / 
The water flow rate for each tower is - — = 3.391 x 10 lbm/hr 

1/2 A ( H ) F 2 ct 5 and A(H) / for each tower is —^- = 4.946 x 10 . 
ct 

Letting the height and base diameter ratio be 3:2 yields, 

H = 288.755 ft A = 2.910 x 104 ft2 
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From Table A-2 No. 21 A = 0.21 and n = 0.69 and we assume 

that the height of packing is 4 ft. Substituting X = 0.21, 

n = 0.69 and V = 4 into Equation IV-17 and IV-20 results in 

T q = L_ /LN0.69 L__ 

4 x 0.21 V 2G 

L/G is found to be 1.16. We have to check the height of 

packing that we assumed. From a psychrometric chart we 

find that h , = 26.4 BTU/lbm and h 2 = h ± + LAT/G = 4 9.6 
TpmT-t 

BTU/lbm. Thus h m = 38.15 ~^-
 F*°™ Table A-l h ± = 4 8.6, 

h 0 = 8 5 . 5 a n d h = 6 7 . 0 5 BTU/lbm w2 wm 

Ah- = 22.2 Ah = 28.9 Ah„ = 35.9 1 m 2 

and 

Ah Ah 
TJT— = 1.30 YT^ = 0.805 Ah, Ah2 

From Figure A-2 we have f = 0.9 82. Thus, the mean driving 

force h _ = 0.982 x 28.9 = 28.4 BTU/lbm. The required height 

is calculated by Equation IV-10 V = 3.72 ft. The calculated 

height is very close to the assumed height. The Chilton 

coefficient that we assumed to be 5.5 has to be checked also. 

We know that L = | = 1165 lbm/ft2-hr, A T Q = 20°F, F(Td,Tw) = 

5700 and H = 288.75. 
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G3N = H x L x AT x F ( T . , T ) = 38 .35 x 10 9 

o a w 

Thus GN l y / 3 = 3 .3722 x 1 0 3 . S u b s t i t u t i n g L, and GN1 / / 3 i n t o 

E q u a t i o n IV-2 8 y i e l d s 

C = 5 .499 

This also proves that our previous assumption of the Chilton 

coefficient is correct. 

Part B: Natural Draught Dry Type Cooling Tower 

There are two alternative systems, as we discussed in 

Chapter II, for dry type cooling towers [26,27]: 

1. Direct system—the steam exhausted from the 

turbine is made to condense in air-cooled extended-surface 

condensers. The condensate is then pumped back into the 

boiler feed circuit (GEA concept). 

2. Indirect system—the steam leaving the turbine 

is condensed by mixing with water in a direct-contact or 

spray condenser. A proportion of the condensate water 

equivalent to the exhaust steam condensed is returned into 

the boiler feed circuit, while the balance, which is the 

greater amount representing the spray water quantity, is 

circulated through an air cooled heat exchanger. The cooled 

water is then sprayed into the condenser again. There is no 

need for any make-up water {Heller concept). 
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A brief comparison is made here: 

a. The capital investment is lower for a direct 

system than an indirect system. 

b. Large-bore exhaust piping may prove difficult 

to accommodate to a direct system. 

c. The extensive vacuum system is more susceptible 

to air leakage for direct type. 

d. When starting up, the direct system has a large 

space to be evacuated. 

e. The direct system is generally of mechanical 

draught type and the cooling elements have to be located 

close to the turbine, usually installed on the roof of the 

turbine house, in order to limit the pressure drop in the 

exhaust piping. Such a requirement also limits the appli­

cation of direct systems to a maximum rejecting load of 200 

MW power plants currently. 

Owing to the reasons that we listed above, our 

discussion of designing a dry cooling tower for a 1000 MW 

power plant will be based on indirect systems. 

Heat transfer in dry cooling towers. The heat transfer 

in a dry cooling tower is by conduction and convection of 

heat to air only. However, the low specific heat of air 

makes it inferior to water as a cooling medium so much that 

an air mass flow four times that of water is needed for the 

same cooling load. Hence, the performances of indirect system 

cooling elements, which reject heat from water through tube 
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wall to the air, are governed by the air-side heat transfer 

coefficient which is much lower than the water-side heat 

transfer coefficient. For the purposes of increasing air-

side heat transfer amount, several extended surface finned 

tubes of various types have been developed. 

Types of Finned Tubes 

There are four types of finned tubes now prevailing. 

1. The Heller-Forgo tube. Both the tube and fin 

are made of aluminum. Special characteristics are a large 

secondary surface, high performance with low air velocity 

and low pressure drop [28], 

2. Integral finned tubes. Integral finned tubes are 

made by rolling an endless aluminum band onto a steel or 

copper tube for the finning. 

3. Extended finned tubes. Extended finned tubes 

have aluminum fins expanded from a tube which are bonded or 

embedded onto the central tubes. 

4. Elliptical finned tubes. Elliptical finned tubes 

are made of an elliptical central tube and extended square 

fins provided with turbulators for intensifying the heat 

transfer. This type of finned tube is an improvement of 

circular finned tubes with less pressure drop and more heat 

transfer duty.[29]. 

The arrangement of finned tubes. The arrangements of 

finned tubes also influence the heat transfer of finned tubes. 

There are two types of arrangements commonly used [29]. 
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1. In-line arrangement 
2. Staggered arrangement 

The two types of arrangement, when applied to the same finned 

tubes, will not affect the heat transfer but the pressure drop 

increases significantly for in-line arrangements. 

Layout of Dry Cooling Tower 

There are also two types of layout of dry cooling 

towers. 

1. Vertical element arrangement. The vertical 

element design has individual cooling elements arranged 

around the periphery at the bottom of the tower. 

2. Horizontal element arrangement. The horizontal 

element design has the individual cooling elements arranged 

in a horizontal plane at the bottom of the tower. 

The horizontal arrangement has proved to be superior 

to the vertical arrangement owing to the following two facts 

[26] : 

a. The vertical arrangement causes an adverse 

negative pressure by the wind at the lee side of the tower 

which interfers with the up-current through the tower. 

b. The air all over the tower base of a horizontal 

arrangement is heated approximately uniformly and thus avoids 

the occurrence of cool air core. Further, the substantial 

horizontal tubes are also self-compensating in avoiding air 

flow maldistribution [30] , 

Finned Tubes Dimensional Analysis [31] 

The heat transfer and pressure drop of an air-finned 
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tube is dependent on the tubing dimension such as the space 

of air fins and its thickness, height, and materials. 

Table A-4 presents the dimensional data of a tube of type 2. 

Air-Side Heat Transfer and Pressure Drop 

The experimental data of air-side heat transfer and 

pressure drop of tubes (Table A-4) are shown on Figure A-5 

and Figure A-6. These figures employ several parameters. 

Air-Side Heat Transfer 

1. Equivalent diameter D . 

_. 2 (total outside surface) ,_„ _,.» 
D = T r r T r r — (IV-JoJ 

e IT (projected perimeter) 

2. Reynolds number Re. 

D G 
R e = _^_J]1 (IV-37) 

3. Heat transfer factor j. 

j = C g - ( ^ ) 2 / 3 •• (IV-38) 
m 

where G is the mass velocity through the minimum cross-m J .-a 

sectional flow area in the section. The fin efficiency is 

shown on Figure A-7. 

Air-Side Pressure Drop 

1. Volumetric diameter. 
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D = 4(net free volume) 
v total surface 

2. Rev» 

D G 
Rev - -X-H (IV-40) 

3. Fin-side friction factor f. 

2 AP g p 
f = .— c- (IV-41) 

4 G N m 

where N is the number of rows. 

Tube-Side Heat Transfer 

The heat transfer of a tube when fluid flowing through 

it can be divided into three regions [32]: 

1. Laminar flow region 
2. Transition flow region 
3. Turbulent flow region 

The corresponding heat transfer equations are shown below: 

1. Laminar flow, Reynolds number < 2100. 

t^> =1.86 t&Q) £> ) V 3 <r»4 ° • " (IV-46) 
W 

2. Transition flow, Reynolds number 2100 < Re < 1000. 

( 4 — ) = 0.116(((2^)-125) (%1/3(y/y )°'14(l+(£)2/3)) (iv-47) 
JK U K W L 
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3. Turbulent flow Reyno1ds number > 10Q0Q 

(!!£, = o.023(^)°-8(^)1/3(^)0-14 
(IV-48) 

DG 
These three equations are plotted on Figure A-8 by (vs) 

-i - f V \ /£y%l/3, P.-0.14 3h K K M K' Vw; 

Total thermal resistance of finned tubes. It is 

important that all the thermal resistances of the air finned 

tube be properly corrected and added. 

1. Tube-side heat transfer coefficient 

1 OD 
R l = K7<IDT> 

1 1 

2 . T u b e - s i d e f o u l i n g f a c t o r 

OD 
R2 = R d i ( I D T ) 

J_i 

3. Liner resistance 

L.. OD 
R = 1( r 

3 KT
 lIDT 
L L mean 

4. Bond resistance 

OD 
R4 = % ^ 

r 

5. Root tube resistance 

L OD 
R5 = K"(ID~) 

r r 

h. tube-side heat transfer 
coefficient 

ID_ inner diameter of liner 
Lt 

IDT mean of ID and OD of 
Li n . liner 

ID inner diameter of root r 
tube 

ID mean of ID and 
r 8Ba8f root tube 

K • thermal conductivity 
of liner 

K thermal conductivity 
of root tube 

LT liner thickness 

L root tube thickness r 

R-. tube-side fouling factor 

R, bond resistance 
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The total thermal resistance R 

Rfc = Rx + R2 + R3 + R4 + R5 (IV-49) 

The air side fouling factor is usually neglected because it 

is small compared with the air heat transfer resistance. 

Overall heat transfer coefficient. The overall heat 

transfer coefficient U can be calculated since the air side 

heat transfer coefficient and the thermal resistances of 

the tube are known 

U = -Y-* (IV-50) 

<K> + Rt 

True temperature difference in cross flow arrangement. 

When air passes the finned tubes, the flow pattern is one 

of cross flow. Cross flow dictates a temperature difference 

distribution different from that of counter flow or parallel 

flow of which the heat transfer is governed by 

q = U S (LMTD) (IV-51) 

where LMTD is the log mean temperature difference. This is 

due to that, for a cross flow pattern, the temperature differ­

ence between the tube and air varies from row to rowfe 

section to section. 

A method has been suggested to relate the true 
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temperature difference of cross flow with the LMTD of counter 

flow. 

T = F(t) LMTD (IV-52) 

F(t) is plotted against two parameters B and e where 

T -T 
1 ? 

B = T
L-T^ (IV-53) 
^2 ^1 

t2"tl 
e = j^rr- (IV-54) 

1 ^1 

The results are plotted on Figure A-9. The total heat 

transferred can then be written as 

Q = U SATt = U S F(t) LMTD 

= m . c . AT . >_-. cc. 
air p air air (IV-55) 

= m c AT 
water p water water 

Number of rows of air-finned tubes. When air flows 

across the finned tubes, it is found that the pressure drop 

and heat transfer coefficient vary considerably at the first 

few rows. Since air is compressible and water essentially 

is not, only a small pressure drop can be expanded for air 

circulating across the finned tubes lest the cost of the air 
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compression work become prohibitive. In most applications, 

only 3 or 4 rows are used for each element since more rows 

of finned tubes will cause a poor performance in heat 

transfer and an increase in pressure drop. 

Height of tower. The height of dry cooling tower 

can be calculated by 

2 2 
v G' G* 

H x Ap = aY g + AP = ~~- + AP (IV-56) 
gpav 

where G' is the average air mass flow rate of total area 
m 

including finned tube projected area and spacing area. 

Air density difference Ap. The density of air with 

60% relative humidity at different temperatures is tabulated 

on Table A-5. The air temperature difference must be 

carefully evaluated. 

The above analysis of designing a dry type cooling 

tower will be applied to design a dry tower for a 1000 MW 

power plant. 

The power plant employs the same power cycle except 

the following design conditions: 

Dry-bulb temperature 95°F 
Relative humidity 60% 
Approach 25°F 
Range " 20°F 
Terminal temperature difference 5°F 

The steam exhaust temperature is thus 145°F. 

Power cycle analysis: 
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h± = 87.92 BTU/lbm h4 = 918.1 BTU/lbm 

w = 2 0 BTU/lbm w =488.66 BTU/lbm 

h2 = 107.92 BTU/lbm w n e t = 468.66 BTU/lbm 

h3 = 1406.8 BTU/lbm q . = 830.18 BTU/lbm 

• 
The steam flow rate m , w = =^-— = 7.2 82 x 10 lbm/hr. 

steam w . net 

The waste heat rejection rate Q = m q . = 6.044 x 
J steam ^rej 

9 
10 BTU/hr. The required cooling water flow rate m = /-v water 
c ^

3 = 3.022 x 108 lbm/hr 3.022 x 108 lbm/hr of water is to 
o 

be cooled from 140°F to 120°F by air on a summer day 

T-, = 95°F. Properties of water at T = 130°F are a c mean 

C = 1 BTU/lbm-hr 

u = 1.26 lbm/ft-hr 

K = 0.373 BTU/hr-ft-F 

The dimensional data to be used are tabulated in Table A-4 

with Bond resistance 0.00067 ft-hr-F/BTU and fouling factor 

0.002. The arrangement of finned tubes will be in a 

staggered arrangement with 2.125 inch equal triangular pitch 

The number of finned tube rows is 4. 

Tube-side heat transfer coefficient. The flow area 

2 2 
per tube is 0.594 in or 0.00412 ft and the water mass flow 

5 2 rate is taken to be 3.4 8 x 10 lbm/ft -hr. The tube-side 
DG 

Reynolds number is thus —-^ = 20000. From Figure A-8, it is 
M 

found that j, = 70. The tube side heat transfer coefficient Jh 
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K T 

h± = " 5 - ^ ( ^ )
1 / 3 ( y / y w )

0 , 1 4 = 444 BTU/ft2-hr-F 

where y/y is taken to be 1. 

Total resistance of finned tubes. Substituting 

h., R J W JV and the data in Table A-4 into Equation IV-49 

gives 

R. = 0.00634 t 

Air side heat transfer coefficient. The properties 

of air at 100°F and 1 atm 

p = 0.070 lbm/ft3 

y = 0.045 lbm/ft-hr 

C . =0.24 BTU/lbm-F 
air 

Thus, 

Cair X M 2/3 (-£±§—~) Z / 6 = 0.795 
i\ 

_, . n ,. . _ 2(total outside surface) 
Equivalent diameter D = —7 s 7-—3 : - *—-
n' e TT (projected perimeter) 

2 
From Table A-4, the total surface per ft of tube is 3.59 ft 

The projected perimeter per ft of tube 2 + 9 x 12 x (2-1.08) 

x 2/12 = 16.56 ft/ft. 
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Thus, D =0.14. Net free volume per ft of tube = 

12(|(2.125)2cos 30° - |{|) (1.08)2 - |(9)|-( ( (2 . 00) 2-(1. 08) 2) 

(0.019)))) = 15.62 in3/ft. 

m1 -, -,. , ^ 4 (net free volume) 
The volumetric diameter D = ;•_ • 5 v^mucy 

v (total surface) 

The total surface of free volume contacting with the tube = 

i(3.59) = 1.795 ft2/ft. Thus, 

Dv = * x 15.62^1/1728 = ^ ^ f t 

The flow area per ft of fin tube: 

S-. = projected fin area per 1 ft of tube length 

= (fin thickness)(0D£. -OD , , )(no. of fin 
fin root tube 

per ft) 

= 0.019 x (2-1.08) x 9 x 12 x 1/144 

= 0.0131 ft2/ft 

S , = projected area of root tube per ft 

= OD , x tube length root tube ^ 

= 1.08 x 1/12 x 1 = 0.09 ft2/ft of tube 

The total projected area per ft of finned tube: 

Sft = Sf + St" = 0* 0 1 3 1 + °-09 = °- 1 0 3 1 ft2/ft of tube length 

The number finned tube per ft of pitch length: 
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N, := —nr-rr ~ ~~^—T^r - 5 .65 t u b e s t p i t c h 2 .125 

2 
Total projected area of finned tube per ft = 0.1031 x 5.65 

= 0.583 ft2 

Total air flow area per ft2 = 1 - 0.583 = 0.417 ft2 

2 
Assume that the air flow rate G =4500 lbm/ft -hr. From 

m ' 
F i g u r e A - 5 , j = 0 . 0 0 7 1 , 

j C G 
h = — %V? = 9 .78 

(Cy/Kr / J 

The fin efficiency is estimated to be 0.9. 

h' = h x 0.9 - 8.8 

The overall heat transfer coefficient: 

U = - — A — =8.31 
£ T + R4. h' t 

2 Con,tact area between finned tube and air per ft of projected 

2 2 area = 3.59 x 5.65 x 4 = 81.12 ft /ft of projected area. 

The total amount of heat transferred will be 

q = U At<81.12)AT 

= G C . AT . A.(0.417) m air air t 
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We get 

AT 

WT = X'496 air 

By trial and error, 

140 Y 

120 95 

Y is found to be 124°F. This is checked as follows 

140 124 16 

120 95 25 

LMTD = 2 5 ^ 6 = 20.2 , 25 
lnl6 

B = || = 0.69 e = || = 0.645 

From Figure A-9d, F(t) is found to be 0.96, thus, 

ATfc = LMTD x F(t) = 20.2 x 0.96 = 19.38°F. The ratio 

AT . /AT, = 29/19.38 = 1.496. Substituting AT, = 19.38°F 
air t u 

back into heat transfer equation gives 

6.044 x 109 = 8.31 x 81.12 x 19.38 x A^ 
t 
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At the beginning, we let the water mass flow rate to be 

5 2 
3.48 x 10 lbm/ft -hr and we know that the required water 

o 

flow rate is 3.022 x 10 lbm/hr. The required cross-
Q 

n * .u i~ 3.022 x 10 0 _ ^2^.2 m u sectional area of tube — — — — - = — = 8.7 x 10 ft . The 
3.48 x 10^ 

2 
cross-sectional area per tube is 0.00412 ft and the number 

of tubes per ft is 5.65. Thus, the cross-sectional area 

per ft is 0.00412 x 5.65 = 0.02325 ft2/ft. Two rows of the 

four rows per section are for cooling water entry. Thus, 
total cross-sectional area of root tube per foot = 0.02325 

2 
x 2 = 0.0465 ft /ft. Required cross-sectional area length 

L = 8 ' Q *4*Q = 1.87 x 104 ft. Required tube length 

A 5 
1 = _JE = 4-63 x X0 = 2 4 > 8 ft> L e t t h Q d i m e n s i o n 

cross-section 1.87 x 10 

of each cooling unit be 25 ft in length and 17.7 ft in 
cross-section length, i.e., 100 tubes per row. The total 

1.87 x 104 ,.An units required are -. 7 7 = 1100 units. 
1/* ' D G 

The height of cooling tower. • • • = 2020 and from 
r* 

Figure A-6 we find f = 0.33. The pressure drop across the 

cooling element (from Equation IV-41) 

AP = 2 x 0.33 jc (4.5)2 x^O 6 x 4 m ± ^ 3 p s ± a 

4.18 x 10° x 0.07 

From Table A-5 

T. = 95°F p = 0.07060 lbm/ft3 a 

Td = 124°F p = 0.06594 lbm/ft3 
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The density difference is = 0.004 6 lbm/ft and the average 

density is 0.06827 lbm/ft . The average air mass flow rate 

G! = G x 0.417 = 2623 lbm/ft2-hr. Substituting , G' and 
m m 3 av m 
P into Equation IV-56 yields 

H = 27.23 + 398 - 425.23 ft 

Let the required number of tower be 8. Base area for each 

tower -| = 5.7875 x 104 ft2. 

Summary Wet Type Dry Type 

Power output 1000 MW 1000 MW 

Steam exhaust temperature 115°F 145°F 

Heat rejection 5.4267 x 1 0 9 — ^ 6.044 x 109^r 

TTD 5°F 5°F 

Range 20°F 25°F 

Approach 20°F 20°F 

Cooling Water inlet temperature 110°F 140°F 

Cooling water outlet temperature 90°F 120°F 

Dry bulb temperature 80°F - 95°F 

Wet bulb temperature 70°F 80°F 

Number of towers 8 8 

Tower base area 2.910 x 104ft2 5.7875 x 104ft' 

Tower height . 289 ft 425 ft 
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CHAPTER V 

A COMPARISON OF WET AND DRY TYPE COOLING TOWERS 

In this chapter, the performances of wet and dry 

type cooling towers, designed in Chapter IV for a 1000 MW 

power plant, will be investigated by applying the principle 

of constant effectiveness theory derived in Chapter III 

with changing dry bulb temperature while the following 

conditions derived in the previous chapter are held constant: 

Wet Type Dry Type 

Power output 1000 MW 1000 MW 

Turbine efficiency 0.9 0.9 

Terminal Temperature 5°F 5°F 
difference 

Humidity 60% 60% 
g 8 

Cooling water flow rate 2.713x10 lbm/hr 3.022x10 lbm/hr 

Number of towers 8 8 

Tower base area 2.910xl04 '5.7875xl04ft2 

Height of tower 289 ft 425 ft 

Part A: Wet Type Cooling Tower 

The performance of a wet type cooling tower can be 

investigated by assuming that the Chilton coefficient is 

constant. This assumption is based on experience, not 

theoretical proof. The procedures of calculating the 



81 

recooled temperature are illustrated in Table 2. The same 

procedures are repeated for different dry bulb temperatures 

and the results are tabulated in Table 3. 

Part B: Dry Type Cooling Tower 

The procedures of calculating the recooled tempera­

tures of a dry type cooling tower are much more complicated 

than that of wet type cooling tower. Trial and error is 

applied to solve some unknown factors. Again, the procedures 

are shown here and repeated for different dry bulb tempera­

tures. The results are tabulated in Table 4. 

Let the dry bulb temperature be 85°F and relative 

humidity 60%. From Table A-5, we have the air-vapor mixture 
3 

density p = 0.07215 lbm/ft . Assuming that the outlet 

temperature of air is 113.5°F, p = 0.06780 lbm/ft3, the 

density difference is thus Ap = 0.00435 lbm/ft . Substi­

tuting Ap, H, and Equation IV-41 into IV-56 gives 

2xfxG2x4 0.4172xG2 

425.23 x 0.00435 = _ __ __ _ T- _ _ 

4.18x10 xO.070 2x32.2x3600 xO.070 

By using Figure A-6 and trial and error we get 

f. = 0.334 G = 4.39 x 103 lbm/ft2-hr 
m 

The total heat rejected will be Q = G xC xT . xA x0.417 = 
m p air "C 

5.8 x 109, since G = 4.39 x 103 lbm/ft2-hr, R a. = 12100 
m e air 



Table 2. Procedures of Calculating the Recooled Temperature of 
Wet Type Cooling Towers 

Design Conditions Calculating Conditions Step 

Assumed steam exhaust temp. 

Heat rejection rate 
per tower 

Water flow rate per tower 

Base area 

Water load 

AT 
o 

T„ 

w 
T-.-T 
d w 

F(T,,T ) d' w 
Height of tower 

H x L x AT x F (T,,T ) 
1/3 ° d w 

a G N 1 / / 3 / L = C 

a 

T 
o 

T +AT 
o o 
Estimated steam exhaust temp 

115°F 

8 

110°F 

8 
6.783 x 10 BTU/hr 6.70 x 10 BTU/hr 

3.391 x 107 lbm/hr 3.391 x 107 lbm/hr 

2.9106 x 104 ft2 2. 9106 x 104 ft 

1165 lbm/ft2-•hr 1165 lbm/ft -hr 

20°F 19.85°F 

80°F 70°F 

70°F 60°F 

10°F 10°F 

5700 7100 

288.75 ft 288.75 ft 

38.34955 x 1C ) 9 47 .41 x 109 

0.3454 0.32188 

5.499 5.499 

1.9 1.770 

90°F 84°F 

110°F 103.5°F 

115°F 108.5°F 

5 

6 

7 

8 

9 

10 

11 
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From Figure A-5, j = 0.007 3 and then substituting j into 

Equation IV-38 yields h = 9.75. Assume fin efficiency = 

0.9, h* = h x 0.9 = 8.78. Substituting h1 and R. into 

Equation IV-50 gives U = 8.31 BTU/ft-F-hr. Substituting 

Q = 5.8 x 109 BTU/hr, U = 8.31, S = 4.63 x 105 x 81.12 ft2 

into Equation IV-55 yields 

AT - 18.6°F 

Assuming F(t) = 0.96, hence LMTD = 19.4°F. Substituting 

Q, m into Equation IV-55 results in AT = 19.2°F 

We have the following conditions to estimate the recooled 

temperature of cooling water: 

Cooling Water Cooling Air 

Y 1 113.5 Y± ~ Y2 = 19.2°F 

Y2 85 LMTD = 19.4°F 

By trial and error, we get 

Y± = 129.2°F Y2 = 109°F 

Our assumption of F(t) = 0.96 has to be checked. 

LMTD = 19.4°F B = ||^| = 0.674 e = | | ~ = 0.645 
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From Figure A~9d, F(t) = 0.96. The result is consistent 

with our previous assumption. 

At the very beginning, we also assumed that the out­

let temperature of air was 113.5°F and thus has to be checked 

The outlet water temperature is 129.2°F. The terminal 

temperature difference is 5°F. The estimated steam exhaust 

temperature is 129.2 + 5 = 134.2°F. From Figure IV-2, the 

9 rejected waste heat is 5.8 x 10 BTU/hr. Substituting 

Q = 5.8 x 109 BTU/hr, G = 4.39 x 103 lbm/ft2-hr, S = 4.63 x 

105 x 0.417 ft2 into Equation IV-55 gives AT . = 28.5°F. 
air 

The outlet temperature of air is thus 85 + 28.5 = 113.5°F. 

Thus, our previous assumption is correct. The same proced­

ures have been repeated and the results are tabulated in 

Table 4. 

The data tabulated on Tables 3 and 4 are plotted on 

Figure 19. It is clear that the dry type cooling curve has 

a larger slope than that of wet type cooling curves. Thus, 

on a cold day the dry type towers seem to be superior to 

wet type towers. 

Very fruitful results can be obtained by using the 

effectiveness of power plants to evaluate the performances 

of such two types of cooling towers. 

T 
W /T O * 
g- = e(l - ^r—) 
uh hav 
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Table 3. The Calculated Recooled Temperatures of Wet Type 
Cooling Towers at Different Dry Bulb Temperatures 

Dry Bulb Temperature Recooled Water Temperature 

90°F 95°F 
80°F 90°F 

70°F 84°F 

60°F 78°F 

50°F 72°F 

40°F 66°F 

Table 4. The Calculated Recooled Temperatures of Dry Type 
Cooling Towers at Different Dry Bulb Temperatures 

Dry Bulb Temperature Recooled Water Temperature 

95°F 120°F 

85°F 109°F 

75°F 99°F 

65°F 89°F 

55°F 78°F 

45°F 66°F 

35°F «56°F 
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n Recooled Water Temperature °F 

30 40 50 60 7o 80 90 100 

Dry Bulb Temperature —- F 

Figure 19. The Recooled Temperatures of Wet Type and 
Dry Type Cooling Tower at Different Dry 
Bulb Temperatures (Relative Humidity 60%) 
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where the effectiveness e can be calculated by using 

Equation 111-37. Tables 5 and 6 show the calculated effec­

tiveness of the 1000 MW power plant using the dry and wet 

type cooling towers respectively. Also, the efficiency of 

the power plant is calculated and the results are plotted on 

Figure 20 against dry bulb temperatures. 

It is apparent from Figure 20 that the dry type 

cooling tower will make the efficiency of a power plant vary 

more than the wet type tower does. This is an important 

fact that has to be taken into consideration when designing 

a power plant. 



Table 5. The Effectiveness of a 1000 MW Power Plant 
Using Wet Type Cooling Towers at Various 
Dry Bulb Temperatures 

T (°p) 
dry bulbv ; T Q(°F) effectiveness e 

T 

hav 

90 95 0.82075 0.38120 

80 90 0.82152 0.38576 

70 84 0.82218 0.39059 

60 78 0.82301 0.39575 

50 72 0.82379 0.40090 

40 G6 0.82464 0.40609 

Note: T h a v = 1037°R; K = 0.034 

Table 6. The Effectiveness of a 1000 MW Power Plant 
Using Dry Type Cooling Towers at Various 
Dry Bulb Temperatures 

Tdrybulb(°F) V ° F ) effectiveness e e(l -
hav 

95 120 0.82075 0.36192 

85 109 0.82079 0.37086 

75 99 0.82264 0.37961 

65 89 0.82345 0.38793 

55 78 0.82667 0.39820 

45 66 0.82792 0.40838 

35 56 0.82945 0.41712 
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T 
o Power Plant Efficiency = e(l - --—) 
hav 

Dry Type Cooling Tower 

Wet Type Cooling Tower 

3o 4o 50 6 0 70 80 9o loo 

Dry Bulb Temperature — F 

Figure 20. The Power Plant Efficiency Corresponding to 
Figure 19 
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CHAPTER VI 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS 

The heat rejection of a power plant is an inheritant 

byproduct of its thermal cycle. Many heat rejection systems 

have been devised. 

1. Once-through cooling system 
2. Cooling lake system 
3. Cooling pond system 
4. Wet type cooling tower 
5. Dry type cooling tower 
6. Wet-dry type cooling tower 

Owing to the recent wide-spread adoption of federal and 

state thermal pollution regulations, there is an increasing 

interest in the application of dry and wet type cooling 

towers. The different modes of heat transfer being employed 

by these two types of cooling towers have resulted in 

different performances for each type. The recooled water 

temperature is one of the most significant factors to the 

power plant itself, since the steam exhaust temperature is 

dependent on that temperature. A lower cooling water temper­

ature means that the steam can be expanded to a lower 

pressure, hence, more work is converted from enthalpy. In 

this thesis, a procedure is developed which reflects the 

comparative effects of cooling water temperature on the 

power production rate; in other words, which evaluates the 

cooling tower by the performance of the power plant itself. 
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Energy availability methods are used to derive the following 

equations which relate the heat input, work output, cooling 

water temperature and other power plant factors: 

T 
w = e Q(l - ¥-^-\ 

hav 

where 

e = 
turbine p 

rn .̂'"p rp rn rn 

1+ ( o l ) (l-nturbine) + ( < T ^ T 7 > ^turbine1 ( (TT JT7 ) + 

1 hav 1 hav 1 

ATo 
+ (2T + T ) ) " K p " 

See Equation 111-37 on page 38. 

It is found that the effectiveness of a power plant 

remains almost constant when working conditions are limited 

to some range of the design point of the steam turbine. We 

have thereby established a principle of constant effectiveness 

Such a statement is very helpful when trying to optimize the 

cooling water temperature. As shown on page 44, the effec­

tiveness equation may be extended to apply to regeneration, 

reheat and topping and the effectiveness will still remain 

virtually constant over a wide range of design conditions. 

Thus, the principle of constant effectiveness may be applied 

in general. The complete generalization is left for further 

study. 
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A power plant of 1000 MW employing a supercritical 

thermal cycle is considered using both wet and dry type 

cooling towers. The recooled temperatures of these two 

types of cooling towers are investigated respectively and 

tabulated in Tables 3 and 4. Finally, the above effectiveness 

equation is used to calculate the effectivenesses and 

efficiencies of the power plant. The results are plotted 

on Figure 20 against dry bulb temperatures. A complete 

comparison for the purpose of design requires a consid­

eration of capital cost as discussed at the end of Chapter 

III. As shown there, the principle of constant effectiveness 

which resulted from energy availability methods greatly 

facilitate the determination of optimum parameters. This 

principle may also obviously be used for comparing cooling 

towers against the other heat rejection systems listed on 

the preceding pages. The results could then be weighed 

against the relative advantages and disadvantages which are 

listed on pages 11-14 . These comparisons are left for further 

study. 

Suggestion for Further Study 

1. We have shown via energy availability methods that 

the principle of constant effectiveness may be applied to 

the simple Rankine cycle shown on page 41. (The deviation 

from this principle being shown in Figure 16 on page 41.) 

We have also indicated that the principle may be applied to 
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more general Rankine cycles including regenerative, reheat, 

and topping cycles, but the deviation fi5om the principle has 

not been worked out in detail. For accurate design work 

Equation 111-37 should be extended to include the effect of 

regeneration, reheat, and topping, resulting in a more 

general correction curve of the type shown on Figure 16. 

2. The use of the principle of constant effectiveness 

in the selection of such cooling tower parameters as 

geometry (height, shape, etc.), packing, flow-rate, etc. 

For this purpose, our studies indicate that it will be 

better to take the equilibrium temperature T to be exit 

temperature of the surface condenser, rather than the entrance 

temperature as was done in this thesis. This will result in 

a still more constant value of the effectiveness. 

3. Application of the principle of constant effec­

tiveness in comparing other heat rejection systems (once-

through cooling system, cooling lake cooling system, cooling 

pond cooling system, wet-dry cooling system). 

4. Application of these methods of energy availa­

bility to derive the principle of constant effectiveness for 

other thermal cycles (Brayton, Stirling, and Ericson) for 

comparisons and design of the corresponding systems (gas 

turbine, Stirling engine, etc.). 

5. Extension of these comparisons to more general, 

dimensionless comparison, making use of the principles of 

modeling and scaling. For example, division of certain of 
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the dry tower equations by corresponding wet tower equations 

will yield relevant dimensionless parameters. 
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APPENDIX I 

DISCUSSION OF ENERGY AVAILABILITY 

The 1st law and 2nd law of thermodynamics determine 

the relationship between heat and work. The 1st law tells 

us how much change in stored energy results when the system 

goes from one state to another. The 2nd law, however, marks 

the distinction between work and heat by stating that heat 

is limited to convert into work by any continuous operating 

device while work can always be converted into heat completely 

and continuously. These facts go to prove that there is a 

maximum amount of work which can be obtained when a system 

changes from one state to another state while exchanging 

heat only with its surroundings. 

The maximum work delivered by a steady flow system is 

the sum of that delivered by the system and that produced 

by a reversible heat engine as heat exchanging between the 

system and the surroundings. Figure 1-1 illustrates the 

arrangement. 

max shaft engine 

2 
V, V^ 

6W.af. = dm(h-, + ^-±. + -2 z ) - dm(h9 + ^~- + -2 z ) - Q shaft 1 2gc gc 1 2 2gc gc 2 
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rev. engine 

> m. 

Figure 1-1. Composite Control-Volume-Surroundings Producing 
Maximum Work 

T 
5Wnn . n a = Q-Qo = Q-Q(-£) = Q-T (2) = Q-T S engine o T o T o 

Substituting W , _. and W . into W gives ' shaft engine max r 

2 2 
v i <3Z^ v ? 

5W = dm(h1 + ^ - + — - - T s1 ) - dm(h 0 + zr-=- + -2- z 0 - T s 0 ) 
max 1 2g g o 1 2 2g g 2 o 2 

:^c 3 C 
29c 5 C 

For simplicity, we neglect the kinetic and potential energy 

max 1 o 1 2 o 2 

Let b = h-T s, thus, o 

6W 
max 

dm(b1-b2) 
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Energy Availability Loss due to Heat Transfer 

Figure 1-2 illustrates the heat exchange of a boiler 

From the 1st law of thermodynamics, we have the following 

heat balance: 

m - xAh , , = m , xAh product product steam steam 

hence 

m , Ah product _ steam 
m . Ah , steam product 

The availability loss is thus 

AB = m , . ((h -h,)-T (s -s, ))-m , ( (hn-h> )-T (s~-sn)) product a b o a b steam 2 1 o 2 1 

(m ., , x T As , .-m , x T As ) product o product steam o steam 

•T (m - , x As , -m . xAs ) o product product steam steam 

m = _T m _((_E£odu£t) x As As 
o steam m steam product steam ) ) 

L. - * 

Combustion Products 

y ' \ r > ' > r - i ' 

neatec i otea n 

Figure 1-2. Heat Exchange of a Boiler 
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The Energy Availability Loss Due to Friction 

For an open system, the entropy change can be 

expressed as 

dS = ^ + dm(s,-s~) o T 1 2 

Introducing the concept of lost work by friction, Q = Q +LW 

dQ +dLW 
dSo = ~ ° T ~ + dm(s±-s

2) 

For a steady flow system, dS =0. 

dLW = T dmis.-s, )-dQ 2 1' ~o 

Since the lost work is in a form of work not heat before 

the process, the decrease in lost work is equal to the lost 

energy availability. 

dB = dLW = T dm(s0-sn)-dQ 
2 1 o 

The lost work can be applied to any frictional flow such as 

steam flowing through a turbine or a pipe. 
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APPENDIX II 

DERIVATION OF APPROXIMATE AIR FLOW EQUATION 

From Equation IV-23 

2 
-H Ap = — 2 g — 1 

2 Since G is expressed in lbm/hr but g is in ft/sec 

-H Ap = — i L X ^ 
2 x 32.2 x 3600 2 

Taking the value of v as that of saturated air at 60°F, 

v = 13.53 ft /lbm. The last equation becomes 

-H Ap = 1.639 x 10" 8 N G 2 (2) 

The air density difference must be carefully evaluated, since 

it changes very little. A method for evaluating Ap is 

presented here. Consider 1 lbm of air at 60°F and 1000 

millibars total pressure (29.53 inch H ) , the volume is 13.29 

ft , containing z lbm of vapor. The total volume is there­

fore 

1 3- 2 9 x < * + 07S22> f t 3 
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where 0.622 is the ratio of specific volume of vapor to air 

M M 
at the same temperature H 2 ^ a"*~r = 0*622. Assuming that 

air-vapor is an ideal gas, the specific volume of the 

mixture at any temperature T is 

V = 1 3 - 2 9 X (1 + 0 7 S 2 2 ) ( i i ^ <3> 

Let 9 = (T-60/520). 

v « 13.29 x (1 + Q-^-^) x (1+9) (4) 

The density of the mixture is 

P = 1373? (1 + 0 ^ 2 2 » " 1 ( 1 + 8 ) _ 1 (5) 

Expanding by the binomial theorem, multiplying and collecting 

terms, and neglecting higher order than the first in z and 

p = X3T29 d- 9" 0- 6 0 8 x) (6) 

The total heat of mixture per Ibm of air is 

h = 0.241 (T-32) + Ah (7) 
s 

where h is the total heat of 1 lbm of water vapor at 
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temperature T. From the steam tables it is found that the 

following formula gives an excellent approximation to h 
s 

between 32°F and 100°F. 

h = 1061.2 + 0.44 T (8) 
s 

S u b s t i t u t i n g Equat ion 8 i n t o 7 g ives 

h = 0.241(1-32) + M1061.2 + 0.44 T) (9) 

By substituting for T for 6 and neglecting higher order than 

the first in q and 0, it is found that 

h = 6.75 + 125.39 + 1087.6X (10) 

or 

Ah = 125.3A0 + 1087.6AA (11) 

Hence 

A, Ah - 125.3A9 n 0N 
AA 1087.6 (12) 

From Equation 6 
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M = §0 Ap " 13729 (A6 + 0-" 8"' 

Substituting the above two equations into Equation 12 

-S AT 
-Ap = 13.465 x 10 Ah<!£ + 0.3124) (13) 

Substituting Equation 13 into Equation 2 gives 

1.639 x 10~8 | G2 = 1.3465 x 10~ 4Ah(^ + 0.3124) (14) 

Since GAh = LAT o 

1.639 x 10 8 | G2 = 1 .3465 x 1 0 " 4 & AT (££ + 0 .3124) H G o Ah 

o r 

•̂  A T 

GJN = 8210 H L A T Q ( | i ) + 0 .3124) (15) 

This is the equation that we need in Chapter IV. 
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Table A-l. Enthalpy of Moist Saturated Air British Units, 
32F Datum 

Total Pressure: 1 atm.abs (Btu/lb of dry air) 

T e m p 
( * ! • ' ) 

0 . 0 0 .1 0 . 2 o-3 0 . 4 o-5 0 . 6 0 . 7 o.S 0 . 9 

3 2 ~ ~ 4 ~ 2 ~ 4 - 2 ~ 4-3 4-3 4-3 4-4 4 4 4-5 
33 4-5 4 - 7 4 . 6 4-6 4-7 4-7 4.8 4 - S 4-9 4-9 
34 4 9 5° 5 . 0 5.8 5.1 5-2 5-2 5 .2 5-3 5-3 
35 54 5-4 5-5 5-5 5-5 5-6 <;.6 5-7 5-7 5-7 
3^ 5.8 S.8 5-9 5-9 6 . 0 6 . 0 6 .1 6 .1 6 . 2 6 . 2 

37 6.3 6.3 6-3 6.4 6.4 65 6.5 6 . 6 6.6 6-7 
} 8 6.7 6.7 6.7 6.8 6.9 6.9 7 . 0 7 . 0 7-1 7-i 
39 7 .2 7 . 2 7 . 2 7-3 7-3 7-4 7-4 7-5 7-5 7-6 
4 0 7-6 7-7 7-7 7.8 7.8 7.8 7-9 7-9 8 .0 8 . 0 

4 1 S.i S.i 8 . 2 8 .2 8.3 8.3 8.4 8.4 8-5 8-5 
4 2 S.6 8.6 8-7 8.7 8.8 8.8 8-9 8.9 9 . 0 9 . 0 

43 9-i 9 1 9 . 2 9 . 2 9-3 9-3 9-3 9-4 9-4 9-5 
4 4 9 - 5 9 . 6 9 . 6 9 -7 9-7 9-S 9 -9 9 - 9 1 0 . 0 JO.O 

45 1 0 . 1 1 0 . 1 1 0 . 2 1 0 . 2 1 0 . 3 1 0 . 3 1 0 . 4 1 0 . 4 10.5 1 0 . 5 

46 1 0 . 6 1 0 . 6 1 0 . 7 I O . 7 1 0 . 8 1 0 . 8 1 0 . 9 1 0 . 9 u . 0 1 1 . 0 

47 1 1 . 1 U . I r i . 2 1 1 - 3 1 1 . 3 1 1 . 4 1 1 . 4 1 1 . 5 11.5 1 1 . 6 

48 1 1 . 6 u . 7 11.7 1 1 . 8 1 1 . 8 1 1 . 9 1 1 . 9 1 2 . 0 1 2 . 1 1 2 . 1 

49 1 2 . 2 12 .2 12.3 1 2 . 3 1 2 . 4 1 2 . 4 1 2 . 5 1 2 . 6 1 2 . 6 1 2 . 7 

5° 1 2 . 7 1 2 . 8 12.8 1 2 . 9 1 2 . 9 1 3 . 0 1 3 . 1 13 .1 1 3 . 2 n . 2 

55 1 3 - 3 »33 13 .4 13-5 1 3 - 5 1 3 . 6 1 3 . 6 ^3-7 1 3 . 7 1 3 . S 

52 1 3 - 9 1 3 - 9 1 4 . 0 1 4 . 0 14 .1 1 4 . 2 1 4 . 2 1 4 . 3 1 4 . 3 1 4 . 4 

53 1 4 4 1 4 . 5 1 4 . 6 1 4 . 6 1 4 . 7 1 4 . 7 1 4 . 8 1 4 . 9 1 4 . 9 1 5 . 0 

.54 1 5 . 1 1 5 . 1 1 5 . 2 1 5 . 2 1 5 - 3 1 5 . 4 1 5 . 4 l 5 o 15-5 1 5 . 6 

55 1 5 - 7 J 5 - 7 1 5 . 8 1 5 - 9 1 5 . 9 1 6 . 0 1 6 . 0 1 6 . 1 1 6 . 2 1 6 . 2 

56 1 6 . 3 1 6 . 3 1 6 . 4 1 6 . 5 1 6 . 5 1 6 . 6 1 6 . 7 1 6 . 7 16.8 1 6 . 9 

57 1 6 . 9 17.0 1 7 . 1 1 7 . 1 1 7 . 2 1 7 . 3 1 7 . 4 1 7 4 17-5 ns 
58 1 7 . 6 17-7 17-7 1 7 . 8 17-S 1 7 . 9 1 S . 0 1 8 . 0 1 S.i 1 8 . 2 

59 1 8 . 2 18.3 iS.4 1S.4 1S .5 1 S . 6 1S .7 1 8 . 7 iS.S 1 8 . 9 

6 0 1 S . 9 J 9.0 1 9 . 1 19 .1 1 9 . 2 1 9 . 3 19 -3 1 9 . 4 19-5 19 -5 
6 1 1 9 . 6 19.7 1 9 . 8 1 9 . 8 1 9 . 9 2 0 . 0 2 0 . 0 2 0 . 1 2 0 . 2 2 0 . 3 

6 2 2 0 . 3 20..5 2 0 . 5 2 0 . 6 2 0 . 6 2 0 . 7 2 0 . S 2 0 . 8 2 0 . 9 2 1 . 0 

63 2 1 . 1 2 1 . 1 2 1 . 2 2 1 . 3 2 1 . 4 2 1 . 4 2 1 . 5 2 1 . 6 2 1 . 6 2 1 . 7 

64 2 1 . S 2 1 . y 2 1 . 9 2 2 . 0 2 2 . 1 2 2 . 2 2 2 . 3 2 2 . 3 2 2 . 4 2 2 . 5 

6«j 2 2 . 6 2 2 . 6 2 2 . 7 2 2 . S 2 2 . 9 2 2 . 9 2 3 . 0 2 3 . 1 2 3 . 2 2 3 . 2 

66 2 3 3 2 3 . 4 2 3 - 5 2 3 6 23 .C 2 3 - 7 2 3 . 8 -23-9 2 4 . 0 2 4 . 0 

67 2 4 . I 2 . ' . 2 2 4 - 3 2 4 . 4 2 4 - 4 . 2 4 . 5 2 4 . 6 2 4 . 7 2 4 8 2 4 . 9 

6'; 24 9 2S .O 2 5 . 1 2 5 . 2 2 5 . 3 2 5 . 4 2 5 . 4 2 5 - 5 2 5 . 6 2 5 - 7 
6y 2 v S 2 5 . 9 2 5 . 9 2 6 . 0 2 6 . 1 2 6 . 2 2 6 . 3 2 6 . 4 2 6 . 4 2 6 . 5 

7 0 26Y, 2 6 . 7 2 6 . 8 2 6 . 9 2 7 . 0 2 7 . 0 2 7 . 1 2 7 . 2 2 7 . 3 2 7 . 4 
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T a b l e A — 1 C o n t i n u e d 

71 27-5 27 .6 27.7 27.7 27-8 27-9 28.0 28.1 28.2 28.3 
72 28.4 2S.5 28.6 28.7 2S.7 28.S 28.9 29.0 29.1 29.2 

73 29-3 29.4 29.5 29 .6 29.7 29.7 29.8 29.9 30.0 30.1 

74 30 .2 30.2 30.4 30.5 30 .6 3^-7 30.8 30.9 31.0 31.1 

75 31 .2 3 i - 3 31.4 3* 5 31 .6 31-7 31-7 31.8 3 1 9 32.0 
76 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 3 2 9 33-0 
77 '33-i 33 2 33-3 33 3 33-5 33-6 3 3 8 33 9 34.0 34.1 
78 34-2 34-3 34-4 34 5 34.6 34-7 34-8 34 9 3 5 0 35-i 
79 35-2 35-3 35-4 35-5 35.6 35-8 35-9 36.0 36.1 36.2 
80 36.3 36.4 36.5 36 .6 36.7 36-9 37 .0 37-i 37.2 37-3 
81 37-4 37-5 37-6 37-7 37.8 38.0 38.1 38.2 38.3 38.4 
82 38 .5 3S.6 38 .7 38 .9 39.0 39 -i 39-2 39-3 39-5 39.6 

83 39-7 39-8 39-9 40 .0 40.1 40.3 40.4 40.5 40.6 40.7 
84 40.S 40.9 41.1 41.2 4 i - 3 41.5 41.6 41.7 41.8 42.0 

85 42.1 42.2 42 .3 42.5 42 .6 42.7 42.8 42.9 43 1 43-2 
86 43-3 43-4 4 3 - 6 43-7 43-8 44-0 44.1 44.2 44-3 4-1-5 
87 44 .6 44 7 44 V 45.0 45- i 45-3 45-4 45-5 45.6 45-8 
88 45-9 46.0 46.2 46.3 46.4 46.6 46 .7 46.8 47.0 47-1 
89 47-3 47-4 47-5 47-7 47-8 47-9 48.1 48.2 4S.3 48.5 
90 48 .6 48.7 48 .9 4 9 0 49.2 49-3 49-5 49.6 49.8 4v-9 
91 50.1 50.2 50.3 50.5 50.6 50.8 50.9 5 1 . 1 51.2 51.4 

92 5*-5 51-7 51 .8 52.0 52.1 52.3 52.4 52.6 52.7 52-9 
93 53 .0 53.2 53-3 53 5 53-6 53-8 5-3-9 54.1 54-2 54-4 
94 54-5 5-1-7 54 .8 55-0 55-1 55-3 55-5 55-fi 55-K 55-{J 

95 56.1 56.3 56.4 S6.6 56.7 56.9 5 7 1 57-2 57--: 57-5 
96 57-7 57-9 5S.0 58.2 5S.4 58.5 5S.7 58.9 5 9 0 59 -2 
97 59-4 59-5 59 7 59.S 60.0 60.2 60.3 60.5 60. ? 60.8 
98 61 .0 61.2 61.4 61.5 61.7 61.9 62.1 62.2 62..J 62.6 

99 62.S 62.9 63.1 63 .3 63-5 63.6 63.S 64.0 6 ; .2 6 4 3 
1 0 0 64.5 64.7 64 .9 65.1 65-3 65.5 65 .6 65. S 66.0 66.2 
101 66.4 66.6 66 .8 67 .0 67.2 67-4 67.5 67.7 67.9 6S.1 
1 0 2 68.3 68.5 6S.7 6S.9 69.1 69.3 69.5 69.7 69.9 TO. I 
103 70.3 70..1 70 .6 70.S 71.0 71.2 71.4 71.6 71 . S "2 .0 
104 72.2 72.4 72.6 72.S 73-1 73-3 73-5 73-7 73-9 74-1 
105 74-3 74-5 74-8 75.0 75-2 75-4 75 -6 75.S 76.0 "6-2 
106 76.5 76.7 76.9 77-1 77-3 77-5 77-7 77-9 78.2 78.4-
107 7S.6 7S.8 79.0 79.2 79-4 79.6 79-9 So. 1 So.3 80. > 
108 80.7 80.9 • S i . 2 S i . 4 S i . 7 81.9 S2.1 S2.4 82.6 82.9 
109 83.1 S3-3 S3.6 83.8 84.1 S 4 3 S4.5 84.8 S>.o S 5 3 
1 1 0 Ss..S S v 7 86 .0 86.2 8,'i. 5 So. 7 S6.9 S7.2 S7.4 S--7 
111 S7.9 88.1 88.4 88.6 88 .9 S9.1 89.3 S9.6 S9.S 90. i 
1 1 2 90.3 90 .6 90.8 91 .9 91.4 91.6 91 .9 92 .2 92.4 92.7 

>*3 93-0 9 3 2 93-5 93 7 94.0 94-3 94-5 94-8 95.1 95-3 
114 95-6 95-9 96.1 96 .4 96.7 96.9 97-2 97-5 97-7 98 .0 

1 i s 98 .2 9S.5 98 .8 99-0 9 9 3 99 .6 99-8 too.1 100.4 [00 .6 
116 100.9 fOI.2 101.5 101.S 102.1 102.4 0 2 . 7 ] 03 .0 03 .3 03 .6 
1 I"? 103.9 04 .2 [04.5 104.S 105.1 105.4 105.7 ' 06 .0 06 .3 c 6 . 6 
I l 8 106.9 [07 . I 107.4 107.7 10S.0 108.3 10S.6 [0S.9 109.2 109.5 
119 109.S I 10.0 [ 10.4 110.7 111.0 i n . 3 i n . 6 i n . 9 112.2 [12.5 
1 2 0 11.2.8 1 1 3 1 113-5 113.S 114.1 U 4 - 5 114.S 115.1 15-5 [15.S 
121 116.2 116.5 116.S 117.2 117-5 1.17-8 11S.2 [1S.5 11S.8 [19.7 
1 2 2 119.5 119.8 ; 20. 2 120.5 120.8 1 2 1 . 2 121.5 1 2 1 . S 2 2 . 2 22.5 
123 • 122.9 12}.2 I23.S 123.9 124.2 124.5 24.9 1 2 5 . 2 25-5 125-9 
124 126.2 126.6 [27.O 127.3 127-7 128.1 2S.5 28.S ] 2 9 . 2 ] 29 .6 
125 130.0 3O.3 I3O.7 131.1 131.5 131.8 i 32.2 J 32.6 ] 33 .0 i 33-3 
126 133-7 34. I 134-5 134.S 135.2 135.6 36 .0 36.3 36-7 J 37- i 
127 137-5 37-8 138.2 138.6 139.0 139-3 39-7 ' 40.1 ] 40.5 ] 40.8 
128 141.2 [41.6 [42.1 142.5 142.9 143.3 ^ 43.8 ] 44 .2 44 .6 ] 45 .0 
129 M5-5 145-9 [46.3 14 6.8 147.2 147.6 ] 48 .0 ] 4S.5 ] 4S.9 149-3 
13° 149.8 150.2 [ 50.6 151.0 151.5 151-9 52.3 52.7 53.2 53.6 

13^ IS.J.O ' 54 -5 154-9 155.3 15 s. 7 156.2 56.6 57.0 '57-4 157-9 
132 I'-sS 3 >S.S 159.3 1 s;.>.7 1 6 0 . : 1 '.>•? " 6 1 . 2 61.7 62.2 [ 6 2 . 6 

^33 I 63 . I ih.o 164.1 164.6 If. 5.1 165.5 66.0 [66.5 [67 .0 0 7 • > 

134 iCS.;- 168.4 168.9 10 9.4 I6y ., i~->4 1-0. S 1 7 1 - 3 171.S 1 7 2 . 3 

135 172.8 1 7 3 • 3 •73-7 p i » 
1 / T - i ?4 -7 1 7 5.2 175-7 176.2 176.6 177-1 



Table A-2. Basic Forms of Packing [22] 
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Table A-2 (continued) Cooling Tower Packing Transfer Number 

r« : ' i r J De»crJ??ion of Fi$\mt 

Di<non»>e<i» T,o* • for 1 

r« : ' i r J De»crJ??ion of Fi$\mt 

»:<>. Peeking No. *o v O H Vf s . 
(Inch..) ( J / K - h d •' (Inches) (in:h«») ( inches ) n 

7 TrinntTJi'? 
Splash Bar 

2 ( a ) 6 9 3 0.C9 0 .30 

S •« •1 6 6 3 0.094 0.30 
9 •# I t 6 5 A 13 

Alter. 
bately 

3 0.006 0.45 

K tt I f 6 12 3 0.075 0.42 
11 » 

• 1 
«Vt 

18 2*4 0.072 0.«.7 
14 Fla t Asbes tos 

Sheets 
• 2 ( c ) IV, 0.038 0 .70 

IS • i " IV, an 0.72 
16 n •• l'/4 0.12 0.76 
17 • t 

»» . 1 0.14 0.73 
19 Triangylar As P i th B .irs 6 9 . .3 0.004 0.49 

Spl.-^h Bar 2 ( a ) Upside Down 1 

21 Corrup.ilcu 
/Vsbf^tos Sheets 

2 ( d ) 2V, sV4 Ifc 0.21 0.69 

22 " • • 2V. i% IV. 0.22 0.61 
23 >• " 2Vf sac 2'/< 0.18 0 .68 
24 t i 2 ( c ) h 6 = 2% " » - sV« l'/< 0.11 0 .65 
2S •• 2( f ) *V, sV« 1 0.17 0 .58 
26 Triangulsr 

Splash Bar 
2 ( b ) 4 8 0 0.074 0.52 

2T " • • . 4 8 2 0.0S7 0.55 
2H i f i i 4 10 2 0.079 0.5C 
29 •• i i 4 10 0 0.072 0.54 
30 •• I I 4 % 2 0.095 0.53 
31 I I • i 4 6 2 0.C93 0.54 
32 " n S &• 2V, O.C03 0.45 
o7 M " 2 6 1 0.137 0.65 
38 Asbes tos L c a v r - s 2 ( g ) 1 5^ • 1 I<*S 0.203 0.70 

. 39 M " 1 sV, 1 «v, o.:r.7 0.68 
40 " • • 1 tfi 1 20V. 0.118 0.C9 

*; " " 1 s'/ t 1 is1/. 0.15-J 0.67 
42 Triangular 

Splftsh Bar 
2 ( b ) S ft 2V, 0.095 0.49 

43 " 
i f 6 ' 15, 3 0.039 0.47 

^5 Asbes tos Louvres M 5 ) IV, 5V. 1 «K C.351 0.66 
47 " IV, s'4 IV, # 0.247 0.66 
48 • i 1* IV, 5V. IV, is'/. 0.169 0.65 
49 • • 

• f iv, m IV, 20V, 0.101 0.63 

SO ixrow.isular 
SolnsK U.ir 

2 ( h ) 8 9 2 C.0.% 0.52 

51 " 
i< a 12 2 o.on 0.53 

" 
i< 

c«*>«« iT-H Counse l :on» 

2 o.on 

Hori E. Vert 

Co:rur,atc) 2 0) 
^ V C _K "b 

0.186 55 Co:rur,atc) 2 0) 2s.-; £ . 2'/. 5$. 0.186 0.73 

Asl>cst«s Sheet* 
57 • • »• I V . n iv„ 2*4 0.308 0.P0 

i t " »*• * • " '1 sV. 0.207 0.79 

50 •' I I n>. 

- '>! 
«5 lV 2!< 0.248 0.70 

61 •• •' * ' 1 
7 - 1 • 

* '» 
7 o.i r,3 0.71 

r>: " • • It. - ' i fr'. - -14 0 .U3 0.72 



Table A-3. Experimental Data of Chilton Coefficient [21] 

Dc«.i»:n ilata Range of variables 

Tower 

Heir-Jit 
Internal 

Km-
diameter 

Numlier 
of Ic .n 

Mean 
per­

formance 
cocltnicnt 

Type < f packing Tower 

Heir-Jit 
Internal 

Km-
diameter 

Dep th 
of 

peeking 

• Wei-hiilb 
tempera­

ture 

Dry-bulb 
tempera­

ture 

Water 
lo.uline. 

Cooling 
range 

Numlier 
of Ic .n 

Mean 
per­

formance 
cocltnicnt 

Type < f packing 

ft ft , • • . : 

<F Ib/li-ft! »r. 

A 290 194-75 22-5 40-72 42-5 7S2 12-75 9 5 05 / / / / / / Upper 
to 

52-96 
to 

59-4 
to 

840 
to 

16-23 
/ / / / / / 
/ / / / / / 

packing 

B 140 92 23 32-53 37-1 1 160 . 8 0 16 4-79 

/ / / / / / 
/ / / / / / 

packing 

to lo to to 
• 

58-5 74-1 1 780 22-5 • » - yp~ p * -

p * - $*- ^ ~ 

^ **- » * -

Lower 
p.icking 

C ns 95 20 36 0 
to 

3vS-7 
lo 

56-4 
to 

8-3 
to 

in 5-49 

• » - yp~ p * -

p * - $*- ^ ~ 

^ **- » * -

Lower 
p.icking 

70-5 7 7 0 I 156 2 0 0 
- - - - - -

D 175 119 18 32-53 37-1 740 8-8 26 5-41 
- - - - - -

Square 
to to to to • * • packing 

66-34 84-6 ! OSS 20-2 

5-46 

• < $ » * • 
-< -v "v Triangular E 175 119 13 32-53 37-1 742 7-5 19 5-46 

• < $ » * • 
-< -v "v Triangular 

to to to to •vr -v "v 'V packing 
56-43 64-2 1 090 20 0 v -v v 

F 125 95 3-5 42-2 46-2 960 9-3 62 5-69 
)))»)») 

Corrugated 
asbestos 

to 
65-9 

to 
73-7 

to 
1030 

to 
14-2 » > > 

sheets 



Table A-4. Integral Aluminum High Finned Tubing [31] 

j Minimum 
Thii kness fin tube Ratio Maximum 

Type of oj liner Liner OI) (root. M illinium Fin OD of Mean fin Fins Outside outside to recommended 
finned lube OIK rube OD), fin tube height, ftm, rhicktios, per surface, inside tneted 

tube, in. material in. \ lili G 
i i 

in. in. \\ull, in. in. in. in in. f'-lf surface temperature, I 

Alumi­ Alloy 1 0.02S . 22 1 1.0S 0.04 \ 2 0.019 9 3.59 14.5S 400 600 
num copper ! 0.035 ! 20 

| 0.042 ; 19 
j 0.049 j 18 

14.78 
14.98 
15.2S 

0.065 j 16 
0.0S3 14 
0.095 j 13 

i 

• J5.7S 
' 16.58 

16.9S 

file:////ull
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Table A-5. Air Density at 60% Relative Humidity 
and Different Dry Bulb Temperatures 

p (lbm/ft3) 

35 0.080048 

40 0.07922 

45 0.07840 

50 0.07760 

55 0.07680 

60 0.07602 

65 0.07523 

70 0.07445 

75 0.07369 

80 0.07291 

85 0.07215 

90 0.07138 

95 0.07'060 

100 0.06983 

105 0.06905 

110 0.06825 

115 0.06745 

120 0.06663 

125 0.06581 

T (°F) 
dry bulb 
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Figure A-1. Psychrometrie Chart [17] 
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Figure A-2. Chart for Determination of Mean Driving Force [17] 
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Figure A-3. Cooling Tower Performances Nomogram Based 
on Merkel's Approximate Integration [21] 
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Figure A-4. Values of F ( t , , t ) [21] 
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Figure A-6. Fin-Side Friction Factor [31] 
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