
 

Optical Properties of the Square Superlattice Photonic 

Crystal Structure and Optical Invisibility Cloaking 

 

 

 

 

 

 

A Thesis 
Presented to 

The Academic Faculty 
 

by 

John L. Blair 

 

 

In Partial Fulfillment 
 of the Requirements for the Degree of 

Doctor of Philosophy in the 
School of Material Science Engineering 

 
 
 
 
 
 

Georgia Institute of Technology 
December 2010 



ii 
 

 

Optical Properties of the Square Superlattice Photonic 

Crystal Structure and Optical Invisibility Cloaking 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by: 
 
Dr. Christopher J. Summers, Advisor   Dr. Wounjhang Park 
School of Materials Science and   Department of Electrical and 
Engineering      Computer Engineering 
Georgia Institute of Technology   University of Colorado at Boulder 
 
Dr. W. Brent Carter     Dr. Brent K. Wagner 
School of Materials Science and   Electro-Optical Systems Laboratory 
Engineering      Georgia Tech Research Institute 
Georgia Institute of Technology 
 
Dr. Rosario Gerhardt    
School of Materials Science and    
Engineering       
Georgia Institute of Technology 
 
       Date Approved: August 23, 2010 



iii 
 

  
    
 
 

DEDICATION 
 
 
 
 
 

Dedicated to my husband, Michael J. Lowery, who managed to keep me sane through 
this trying and expensive process, in spite of the innumerable setbacks and dramas that 

occurred during the process of its completion. 
 
 



iv 
 

ACKNOWLEDGEMENTS 
 
 
Foremost I would like to thank Dr. Chris Summers.  When I felt that everyone else on the 

planet had given up on me (including myself), he provided encouragement, motivation, 

and latitude which made this work successful.  I would also like to thank Dr. Won Park 

for the opportunity to participate in exciting research, and for all his help with numerical 

simulations and presentations.  Additional thanks go to Devin Brown and the cleanroom 

staff at GT that helped support my nano-fabrication work.  Lastly, I am thankful for all 

the support I received from family and friends during this process.  Everyone was rooting 

for me to complete my thesis, and it was valuable to have the extra kindness when I ran 

into difficulties.   

  



v 
 

Table of Contents 
DEDICATION ............................................................................................................................................ III 

ACKNOWLEDGEMENTS ....................................................................................................................... IV 

LIST OF TABLES ........................................................................................................................................VII 

LIST OF FIGURES .................................................................................................................................... VIII 

SUMMARY .................................................................................................................................................. XV 

1 INTRODUCTION TO PHOTONIC CRYSTALS ........................................................................... 1 
1.1 PHOTONIC CRYSTALS DEFINED......................................................................................................... 1 
1.2 HISTORY OF PHOTONIC CRYSTALS ................................................................................................... 2 
1.3 PROPERTIES OF INTEREST IN PHOTONIC CRYSTALS .......................................................................... 8 

1.3.1 Giant Refraction (Superprism Effect) ....................................................................................12 
1.3.2 Supercollimation Effects .......................................................................................................13 

1.4 GOAL OF THIS WORK ........................................................................................................................14 

2 BACKGROUND ................................................................................................................................16 
2.1 MAXWELL’S EQUATIONS AS AN EIGENVALUE PROBLEM .................................................................16 
2.2 SOLID-STATE ELECTROMAGNETISM IN PHOTONIC CRYSTALS .........................................................20 
2.3 DISPERSION CONTOURS ...................................................................................................................24 
2.4 NUMERICAL ANALYSIS BACKGROUND ............................................................................................26 

2.4.1 Plane-Wave Expansion Simulations ......................................................................................27 
2.4.2 Finite-Difference Time Domain Simulations ........................................................................29 

2.5 ATOMIC LAYER DEPOSITION (ALD) TECHNOLOGY .........................................................................35 

3 THE SQUARE SUPERLATTICE PHOTONIC CRYSTAL STRUCTURE ...............................39 
3.1 INTRODUCTION TO THE SUPERLATTICE PHOTONIC CRYSTAL STRUCTURE .......................................39 
3.2 GOALS OF THE SQUARE SUPERLATTICE RESEARCH .........................................................................41 
3.3 REAL SPACE AND RECIPROCAL SPACE REPRESENTATIONS OF PHOTONIC CRYSTAL LATTICES ........42 

3.3.1 The triangular lattice ..............................................................................................................42 
3.3.2 The triangular static superlattice ............................................................................................46 
3.3.3 The square lattice ...................................................................................................................51 
3.3.4 The square static superlattice photonic crystal ......................................................................54 

3.4 FOLDING EFFECTS IN BRILLOUIN ZONE DISPERSION CONTOURS .....................................................59 
3.5 FOLDING EFFECTS IN BRILLOUIN ZONE BAND DIAGRAMS ...............................................................62 

4 PHOTONIC BAND PROPERTIES OF THE STATIC SQUARE SUPERLATTICE 
PHOTONIC CRYSTAL .............................................................................................................................68 

4.1 THE SUPERLATTICE STRENGTH ........................................................................................................68 
4.2 PHOTONIC BAND STRUCTURE OF AN IDEAL SQUARE SUPERLATTICE ...............................................69 
4.3 PHOTONIC BANDS OF A 3D SLAB WAVEGUIDE SQUARE SUPERLATTICE STRUCTURE ......................90 
4.4 THE EFFECTIVE INDEX METHOD ......................................................................................................91 

5 REFRACTION EFFECTS IN THE SQUARE SUPERLATTICE ..............................................106 
5.1 CALCULATION OF PC DISPERSION SURFACES AND REFRACTION CURVES BY WAVEVECTOR 
ANALYSIS ................................................................................................................................................108 
5.2 DISPERSION CONTOURS FOR IDEAL SQUARE AND TRIANGULAR SUPERLATTICE ............................112 
5.3 DISPERSION CONTOURS OF THE OF SLAB WAVEGUIDE SQUARE SUPERLATTICE ............................120 
5.4 REFRACTION PROPERTIES OF THE SQUARE SUPERLATTICE 3P BAND .............................................122 
5.5 STATIC TUNING OF THE REFRACTION PROPERTIES OF THE SQUARE SUPERLATTICE 3P BAND 
UTILIZING ALD .......................................................................................................................................126 
5.6 DYNAMIC TUNING OF THE SQUARE SUPERLATTICE USING LIQUID CRYSTAL MATERIALS.............139 
5.7 DYNAMIC TUNING OF THE SQUARE SUPERLATTICE USING ELECTRO-OPTIC MATERIALS ..............146 



vi 
 

5.8 CONCLUSIONS AND FUTURE WORK ON THE SQUARE SUPERLATTICE PC STRUCTURE ...................147 

6 THE OPTICAL INVISIBILITY CLOAK .....................................................................................151 
6.1 INTRODUCTION TO ELECTROMAGNETIC CLOAKING .......................................................................151 
6.2 GOALS OF THE OPTICAL CLOAKING RESEARCH .............................................................................156 
6.3 DESIGN AND NUMERICAL ANALYSIS OF THE OPTICAL CLOAK ......................................................156 
6.4 FABRICATION METHODS ................................................................................................................166 
6.5 FABRICATION RESULTS AND DISCUSSION ......................................................................................174 
6.6 MEASUREMENT RESULTS AND DISCUSSION: ..................................................................................187 
6.7 STATIC TUNING OF THE OPTICAL CLOAK UTILIZING ALD.............................................................190 

6.7.1 Coarse Tuning of the Optical Cloak Utilizing ALD Applied TiO2 ......................................192 
6.7.2 Fine Tuning of the Optical Cloak Utilizing ALD Applied Al2O3 ........................................201 

6.8 CONCLUSIONS AND FUTURE WORK ON OPTICAL CLOAKING .........................................................207 

APPENDIX ..................................................................................................................................................210 

APPENDIX A:  SAMPLE MPB CODE FOR GENERATING DISPERSION CONTOUR DATA .................211 

APPENDIX B:  SAMPLE MEEP CODE TO GENERATE AN EFFECTIVE 3D INDEX ..............................213 

APPENDIX C:  MATLAB CODE FOR PRODUCING DISPERSION CONTOURS AND REFRACTION 
PLOTS .........................................................................................................................................................214 

REFERENCES .............................................................................................................................................218 

 
  



vii 
 

List of Tables 
 

Table 1:  Effective index and effective thickness calculations for the our slab waveguide 
structure.  ............................................................................................................................ 94
Table 2:  Calculated lattice constant a and effective slab thickness 0.5a for various source 
frequencies centered around the 3s and 3p bands.   ............................................................ 95
Table 3:  Tabulation of the TM effective indexes obtained from matching the a-e line 
intersection with the 3D slab waveguide effective index curve.   .................................... 102
Table 4:  Conversion of the actual thickness of ALD deposited TiO2 to a normalized 
value that is used in the 3D effective index slab waveguide simulations.   ...................... 128
Table 5:  Tabulation of the effective index values obtained through the 3D simulations for 
various thicknesses of ALD deposited TiO2.   .................................................................. 129
Table 6:  Tabulation of the real hole and normalized hole radii used in the 2D coated slab 
waveguide calculations.   .................................................................................................. 132
  



viii 
 

List of Figures 
 
Figure 1-1:  Coupled-resonator structure realized by coupling individual defect cavities 
together in a 2D photonic crystal [11].   ............................................................................... 3
Figure 1-2:  Scanning electron microscope image of the end of a photonic crystal fiber, 
showing the central core where a hole has been omitted. The pitch L is 2.3 mm, and the 
fiber is 40 mm across [12].   ................................................................................................. 4
Figure 1-3:  Inverse opal structure showing the (100) sample edge, revealing the structure 
to be f.c.c. [16].   ................................................................................................................... 5
Figure 1-4:  Example of a square chiral photonic crystal structure created by the glancing-
angle deposition method  [23].  ............................................................................................ 5
Figure 1-5:  The green colour of Parides sesostris butterfly is created by a photonic 
crystal.  a, b, SEMs of the exposed photonic crystal after the superficial ridging has been 
removed. c, a TEM showing a 50 nm section through the scale shown in a; the ridging is 
intact whereas the neighbouring but differently oriented domains of identical 3D structure 
are distinguished by contrasting 2D patterns (here, the darkly contrasted material is 
cuticle)  [27].   ....................................................................................................................... 7
Figure 1-6:  A comparison of ordinary (incoherent) scattering and (coherent) scattering in 
photonic crystals [36].   ....................................................................................................... 10
Figure 1-7:  (a) 2D square PC lattice geometry, (b) first Brillouin zone of the square 
lattice [37].   ........................................................................................................................ 11
Figure 1-8:  TE band structure and DOS for the square lattice PC [37].   .......................... 11
Figure 1-9:  Schematic illustration of refraction at the surface of a photonic crystal [37].

 ........................................................................................................................................... 13
Figure 1-10:  Allowed wave vector contours for the first band of the square lattice of 
pillars PC [38].   .................................................................................................................. 14
Figure 2-1:  Band diagram for a plane of glass in air with thickness a and ε = 11.4.  Blue 
lines correspond to guided modes in the glass, while the shaded blue region is the 
continuum of states that extend both into the glass and the surrounding air.  The red line 
is the light line.  Bands are given for a single polarization of the H field [41].   ................ 21
Figure 2-2:  Diagram showing a flat interface between two dielectric regions 𝜺𝟏 and 𝜺𝟐, 
with the light ray having an incident angle of 𝜽𝟏 and a refracted angle of 𝜽𝟐.  For 
𝜺𝟐 < 𝜺𝟏, there is no solution for Snell’s Law, and the light undergoes total internal 
reflection.  In all cases 𝒌 ∥ is conserved [41].   .................................................................. 22
Figure 2-3:  Yee cell configuration indicating the position of the field components in the 
FDTD calculation.  ............................................................................................................. 34
Figure 2-4:  SEM image of an ALD coating of 300nm of Al2O3 on Si [43].   ................... 35
Figure 2-5:  Growth cycle of TiO2 on an oxide coated Si surface.   ................................... 36
Figure 3-1:  Structure of the interdigital biased superlattice structure consisting of 
modulating the refractive index of alternating [1 0] rows of a 2D triangular lattice 
photonic crystal.   ................................................................................................................ 40
Figure 3-2:  Structure of the triangular static superlattice photonic crystal.  Modulation in 
the refractive index of the device is accomplished by modifying the hole radius in 
alternating [1 0] rows of the triangular lattice photonic crystal.   ....................................... 40
Figure 3-3:  Diagram of the real space representation of the triangular lattice photonic 
crystal   ................................................................................................................................ 43



ix 
 

Figure 3-4:  Diagram of the reciprocal space representation of the triangular lattice 
photonic crystal   ................................................................................................................. 44
Figure 3-5:  The real space representation of the triangular static superlattice, showing the 
defining parameters.   .......................................................................................................... 48
Figure 3-6:  Schematic showing the reciprocal lattice representation of the triangular 
static superlattice.  The red circles indicate the reciprocal lattice points for the underlying 
triangular lattice basis and the green circle are new reciprocal lattice points created by the 
introduction of the superlattice structure.   ......................................................................... 49
Figure 3-7:  The geometry of the square photonic crystal lattice in real space   ................ 52
Figure 3-8:  Diagram of the reciprocal space representation of the square lattice.  The 
irreducible BZ is a triangle with three high symmetry points.   ......................................... 53
Figure 3-9:  Diagram of the real-space representation of the static square superlattice with 
applicable parameters.  ....................................................................................................... 55
Figure 3-10:  Reciprocal space of the square static superlattice.  The red circles come 
from the underlying square lattice basis, and the green circles are new reciprocal lattice 
points arising from the addition of the superlattice structure.   .......................................... 57
Figure 3-11:  Example of a dispersion contour of the triangular superlattice created from 
the folding of the bands from the underlying triangular lattice basis [39].   ....................... 61
Figure 3-12:  Triangular superlattice dispersion contour detailing folding effects at the 
edges of the BZ [39].   ........................................................................................................ 61
Figure 3-13:  Band diagrams showing the folding of the Γ-M band in the triangular lattice 
creating the Γ-Y band in the triangular superlattice [39].   ................................................. 63
Figure 3-14:  Band diagrams showing the folding of the Γ-K-M band in the triangular 
lattice creating the Γ-X band in the triangular superlattice [39].   ...................................... 64
Figure 3-15:  Band diagrams showing the folding of the Γ-X band in the square lattice 
creating the Γ-Y band in the square superlattice.   .............................................................. 65
Figure 3-16:  Band diagrams showing the Γ-M band in the square lattice and the new Γ-K 
band in the square superlattice.   ......................................................................................... 66
Figure 4-1:  Diagram of the 2D square superlattice crystal structure with a superlattice 
strength of r2/r1 = 0.30a/0.35a = 0.857.  This unit cell geometry is repeatedly used in 
many MPB simulations.   .................................................................................................... 71
Figure 4-2:   Photonic band structure plot for TE polarization condition for the case 
where r2/r1 = 0.35a/0.35a = 1.0.   ........................................................................................ 73
Figure 4-3:   Photonic band structure plot for TE polarization condition for the case 
where r2/r1 = 0.35a/0.30a = 0.857.   .................................................................................... 74
Figure 4-4:   Photonic band structure plot for TE polarization condition for the case 
where r2/r1 = 0.35a/0.20a = 0.571.   .................................................................................... 75
Figure 4-5:   Photonic band structure plot for TM polarization condition for the case 
where r2/r1 = 0.35a/0.35a = 1.0.   ........................................................................................ 76
Figure 4-6:   Photonic band structure plot for TM polarization condition for the case 
where r2/r1 = 0.35a/0.30a = 0.857.   .................................................................................... 77
Figure 4-7:   Photonic band structure plot for TM polarization condition for the case 
where r2/r1 = 0.35a/0.35a = 0.571.   .................................................................................... 78
Figure 4-8:  Plot detailing the effect of the square superlattice strength on the width of the 
first full TE PBG for r1 = 0.4 and 0.35.   ............................................................................ 83



x 
 

Figure 4-9:  Plot detailing the effect of the square superlattice strength on the width of the 
second full TE PBG for r1 = 0.4 and 0.35.   ....................................................................... 83
Figure 4-10:   Detailed plots of the TE square superlattice band structure for the 3s and 3p 
bands for superlattice strengths of (a) 1.0, (b) 0.857,  and (c) 0.571, illustrating the band 
splitting effect.   .................................................................................................................. 84
Figure 4-11:  Detailed plots of the TM square superlattice band structure for the 3s and 3p 
bands for superlattice strengths of (a) 1.0, (b) 0.857,  and (c) 0.571, illustrating the band 
splitting effect.   .................................................................................................................. 85
Figure 4-12:  Variation of the frequency gap between the 3s (band 3) and 3p (band 4) 
bands at the K point with square superlattice strength for r1 = 0.4, 0.35, and 0.3 for TE 
polarization.   ...................................................................................................................... 86
Figure 4-13:  Variation of the frequency gap between the 3s (band 3) and 3p (band 4) 
bands at the K point with square superlattice strength for r1 = 0.4, 0.35, and 0.3 for TM 
polarization.   ...................................................................................................................... 87
Figure 4-14:  Field profiles of the square lattice photonic crystal structure for bands 3 (a) 
and 4 (b) for a 1x1 unit cell with TE polarization conditions, showing the Hz field 
component.  After changing to a 1x2 unit cell to simulate square superlattice conditions, 
the field profiles for bands 3 (c) and 4(d) are modified significantly.   .............................. 88
Figure 4-15:  Field profiles of the square superlattice lattice photonic crystal structure for 
bands 3 (a) and 4 (b) for a 1x2 unit cell with TE polarization conditions and a superlattice 
strength of 0.857, showing the Hz field component.  Similar profiles are shown for a 
superlattice strength of 0.571 for bands 3 (c) and 4(d).   .................................................... 89
Figure 4-16:  3D slab waveguide stackup   ......................................................................... 98
Figure 4-17:  3D FDTD TM band diagram for a square superlattice strength of r2/r1 = 
0.30a/0.35a = 0.857.   .......................................................................................................... 99
Figure 4-18:  Comparison of the ideal 2D PWE and 3D FDTD computed band points.  
The 3s and 3p bands for each simulation are indicated for clarity.   ................................ 100
Figure 4-19:  Normalized frequency versus k-value for the TM modes of a 3D FDTD slab 
waveguide stackup.   ......................................................................................................... 101
Figure 4-20:  TM effective index versus effective thickness of the slab structure.  Table 2 
references the a values for the a-d values of effective index.   ......................................... 102
Figure 4-21:  Four 2D simulations for the 3s band matched against the 3D slab 
waveguide 3s band.   ......................................................................................................... 103
Figure 4-22:  Close up view of the area around the K-point for the 3s band match.   ...... 104
Figure 4-23:  Four 2D simulations for the 3p band matched against the 3D slab 
waveguide 3s band.   ......................................................................................................... 104
Figure 4-24:  Close up view of the area around the K-point for the 3p band match.   ..... 105
Figure 5-1:  Diagram showing the use of wavevector methods to calculate the refraction 
of a plane wave at the interface of two different isotropic homogeneous materials.   ...... 110
Figure 5-2:  Diagram showing the use of wavevector methods to calculate the refraction 
of a plane wave at the interface between an isotropic homogeneous material and a 
complex dispersion surface similar to that of a PC.   ........................................................ 111
Figure 5-3:  Contour maps of the dispersion surfaces inside the first Brillouin zone for the 
first four TE bands of a triangular superlattice.  The superlattice strength is 0.857, with n 
= 3.464 for the Si structure and n = 1 for the air filling the holes.  Curves are shown for 
(a) band 1, (b) band 2, (c) band 3s, and (d) band 3p [39].   .............................................. 115



xi 
 

Figure 5-4:  Dispersion contours of the triangular superlattice 3s band for a superlattice 
strength of 0.857, centered around the M-point.   ............................................................. 116
Figure 5-5:  Dispersion contours of the triangular superlattice 3s band for a superlattice 
strength of 0.857, centered around the M-point.   ............................................................. 117
Figure 5-6:  Contour maps of the dispersion surface in the first BZ for band 1 of an ideal 
2D  square superlattice having a strength of 0.857.   ........................................................ 118
Figure 5-7:  Contour maps of the dispersion surface in the first BZ for band 2 of an ideal 
2D square superlattice having a strength of 0.857.   ......................................................... 119
Figure 5-8:  Contour maps of the dispersion surface in the first BZ for band 3 (3s) of an 
ideal 2D square superlattice having a strength of 0.857.   ................................................ 119
Figure 5-9:  Contour maps of the dispersion surface in the first BZ for band 4 (3p) of an 
ideal 2D square superlattice having a strength of 0.857.   ................................................ 120
Figure 5-10:  Contour maps of the dispersion surface in the first BZ for band 4 (3p) of an 
slab waveguide effective index modeled 2D square superlattice having a strength of 
0.857.  ............................................................................................................................... 122
Figure 5-11:  Rotated dispersion contours around the K-point for a square superlattice 
slab waveguide structure 3p band with TE polarization and 0.857 superlattice strength.

 ......................................................................................................................................... 123
Figure 5-12:  Refraction plots for the 3p band of the square superlattice slab waveguide 
structure, showing both the forward and backward propagating response for a superlattice 
strength of 0.857.   ............................................................................................................ 124
Figure 5-13:  Refraction plots for the 3p band of the square superlattice slab waveguide 
structure, showing only the forward and propagating response for a superlattice strength 
of 0.857.   .......................................................................................................................... 125
Figure 5-14:  Diagram illustrating the effect of coating a superlattice structure with 
multiple ALD thin-film layers of TiO2.   .......................................................................... 127
Figure 5-15:  Diagram for the slab effective index slab waveguide model for two different 
TiO2 coating thicknesses that was used in the 3D FDTD simulation   ............................. 128
Figure 5-16:  Plot of the effective index values for various thickness of ALD deposited 
TiO2 given in Table 5.   ..................................................................................................... 130
Figure 5-17:  Diagram illustrating the filling of the holes in a triangular superlattice 
through the use of TiO2 ALD coatings.  This is the model that was incorporated into the 
3D effective index values to create an accurate 2D model of the material infiltration.   . 131
Figure 5-18:  Band diagram for the 3p band of the square superlattice with strength 0.857, 
showing all the ALD coating thicknesses effects on the downward shifting of the bands.

 ......................................................................................................................................... 133
Figure 5-19:  Band diagram of the 0.857 square superlattice effective index slab 
waveguide model for 0nm of TiO2.   ................................................................................ 134
Figure 5-20:  Band diagram of the 0.857 square superlattice effective index slab 
waveguide model for 200nm of TiO2.   ............................................................................ 134
Figure 5-21:  Rotated dispersion contours of a 0.857 square superlattice for 30, 40 and 
50nm of ALD TiO2 coating.   ........................................................................................... 136
Figure 5-22:  Refraction curves of a 0.857 square superlattice for 30, 40 and 50nm of 
ALD TiO2 coating.   .......................................................................................................... 136
Figure 5-23:  Rotated dispersion contours of a 0.857 square superlattice for 60 – 150nm 
of ALD TiO2 coating.   ..................................................................................................... 138



xii 
 

Figure 5-24:  Refraction curves of a 0.857 square superlattice for 60 – 150nm of ALD 
TiO2 coating.   ................................................................................................................... 138
Figure 5-25:  A design for a LC tunable beam steerable device.   .................................... 140
Figure 5-26:  Top viewpoint of a design for a LC tunable beam steerable device.   ........ 141
Figure 5-27:  3D effective index slab waveguide model, modified to include LC cells on 
the top and bottom of the slab.   ........................................................................................ 142
Figure 5-28:  Refraction curves for the 3p band of a 0.857 square superlattice for both the 
on and off bias condition of the LC cells.   ....................................................................... 143
Figure 5-29:  Refraction curves for the 3s band of a 0.857 triangular superlattice for both 
the on and off bias condition of the LC cells.   ................................................................. 144
Figure 5-30:  Refraction curves for the 3p band of a 0.857 triangular superlattice for both 
the on and off bias condition of the LC cells.   ................................................................. 145
Figure 5-31:  Refraction curves for the 3p band of a 0.857 square superlattice for both the 
on and off bias condition of the PLZT.   ........................................................................... 147
Figure 5-32:  SEM image of a fabricated square superlattice PC with dielectric strength k 
= r1 / r2 = 0.587   ................................................................................................................ 149
Figure 6-1:  Illustration of the warping of dielectric space by a mathematical transform 
operation.   ........................................................................................................................ 151
Figure 6-2:  Simulated ray diagrams for electromagnetic radiation flowing around a (A) 
2D circular cloaked region and (B) a 3D spherical cloaked region [65].   ....................... 152
Figure 6-3:  Experimental cloak consisting of split ring resonators produced by Shurig et 
al. [67]   ............................................................................................................................. 154
Figure 6-4:  Simulated (A) and measured (C) electromagnetic cloaking performance for 
the structure developed by Schurig et. al. [67]   ............................................................... 154
Figure 6-5:  Physical and virtual systems for the ground-plane cloak design.  Shaded 
regions are the ground planes.  The physical system is perceived by the observer as the 
virtual system with a flat ground plane [40].   .................................................................. 157
Figure 6-6:  Plots of the transformed grid in a physical space with a ground plane cloak 
boundary described by Equation (96).  Grid (a) is for a transfinite grid and (b) is the 
quasiconformal grid.  The color map shows the values of 𝒏𝟐.   ...................................... 161
Figure 6-7:  (a)  Electric field pattern for the ground-plane cloaking structure with an 
incident Gaussian beam launched into the index mapped dielectric material at a 45 degree 
angle.  (b)  Electric field pattern when the cloaked area is reflective and index mapping is 
removed from the background material [40].   ................................................................. 164
Figure 6-8:  FDTD simulation showing the performance of the silicon nanorod array 
cloak. The frequency was set to ωa/2πc = 0.1 which corresponds to a = 150 nm for an 
operating wavelength of λ = 1500 nm [71].   .................................................................... 165
Figure 6-9:  FDTD simulation for the all silicon reference sample cloak, showing 
multiple reflections off the cloaking area.   ...................................................................... 166
Figure 6-10:  Overview of the Design A cloaking structure AutoCAD file.   .................. 169
Figure 6-11:  Detail of the Design A cloaking structure AutoCAD file in the vicinity of 
the bumped cloaking area.   .............................................................................................. 170
Figure 6-12:  Diagram of the nanorod structure in the cloak, showing the areas of smaller 
lattice spacing (PC1) and larger lattice spacing (PC2).   .................................................. 175
Figure 6-13:  Block diagram of the Design A nanorod optical cloaking structure.   ........ 176
Figure 6-14:  SEM of the Design A fabricated cloaking nanorod device.   ...................... 178



xiii 
 

Figure 6-15:  Higher magnification image of the Si pillars around the cloaking area in 
Design A.   ........................................................................................................................ 179
Figure 6-16:  High magnification SEM image of the largest nanorods in the cloaking area 
of the device in Design A.  Note the clear separation between nanorods at the smallest 
gap point of ~40nm at the center of the structure.   .......................................................... 179
Figure 6-17:  Side view of one of the larger nanorods in Device A, showing the non-
uniformity obtained in the sidewall thickness as an effect of the etch process.   ............. 180
Figure 6-18:  Side view of one of the larger nanorods in Device A, showing the non-
uniformity obtained in the sidewall thickness as an effect of the etch process.   ............. 180
Figure 6-19:  Block diagram of the Design B nanorod optical cloaking structure.   ........ 182
Figure 6-20:  Close-up of the reduced cloaking area in Design B, damage to several 
pillars caused during the measurement phase of the device.   .......................................... 182
Figure 6-21:  Block diagram of the Design C nanorod optical cloaking structure.   ........ 184
Figure 6-22:  SEM illustrating the overexposure of the central nanorods (causing 
bridging) and underexposure of the side nanorods (causing missing structures) in the 
cloaking section of the Design C cloak when only forward proximity scattering correction 
is used.  ............................................................................................................................. 186
Figure 6-23:  SEM image of the cloaking area in Design C, showing both the cloak and 
PC bandgap pillar structures.  A small amount of bridging in the central cloak area can be 
seen, but the smallest side nanorods have been correctly patterned using both forward and 
back scattering proximity corrections.   ............................................................................ 186
Figure 6-24:  NSOM image for 1500nm laser light propagating off the Design A cloaking 
structure area.   .................................................................................................................. 189
Figure 6-25:   NSOM image for 1460nm laser light propagating off the cloaking area in 
Design B.  ......................................................................................................................... 189
Figure 6-26:   NSOM image for 1420nm laser light propagating off the cloaking area in 
Design C.  ......................................................................................................................... 190
Figure 6-27:  SEM image 1 of Cloak F with no ALD coating, showing the dimensions of 
the larger nanorods closest to cloaking area.   .................................................................. 193
Figure 6-28:  SEM image 2 of Cloak F with no ALD coating, showing the dimensions of 
the medium size nanorods further in from from the cloaking area.   ................................ 194
Figure 6-29:  SEM image 3 of Cloak F with no ALD coating, showing the dimensions of 
the smallest nanorods near the edge of the cloaking area and the PBG nanorods.   ......... 194
Figure 6-30:  SEM image 1 of Cloak G with no ALD coating, showing the dimensions of 
the larger nanorods closest to cloaking area.   .................................................................. 195
Figure 6-31:  SEM image 2 of Cloak G with no ALD coating, showing the dimensions of 
the medium size nanorods further in from from the cloaking area.   ................................ 195
Figure 6-32:  SEM image 3 of Cloak G with no ALD coating, showing the dimensions of 
the smallest nanorods near the edge of the cloaking area and the PBG nanorods.   ......... 196
Figure 6-33:  SEM image 1 of Cloak F with 10nm TiO2 ALD coating, showing the 
dimensions of the larger nanorods closest to cloaking area.  With the thicker coating, 
some bridging is evident between these nanorods.   ......................................................... 197
Figure 6-34:  SEM image 2 of Cloak F with 10nm TiO2 ALD coating, showing the 
dimensions of the medium sized nanorods closest to cloaking area.   .............................. 198



xiv 
 

Figure 6-35:  SEM image 3 of Cloak F with 10nm TiO2 ALD coating, showing the 
dimensions of the smallest nanorods near the edge of the cloaking area and the PBG 
nanorods.   ......................................................................................................................... 198
Figure 6-36:  SEM image 1 of Cloak G with 5nm TiO2 ALD coating, showing the 
dimensions of the larger nanorods closest to cloaking area.   ........................................... 199
Figure 6-37:  SEM image 2 of Cloak G with 5nm TiO2 ALD coating, showing the 
dimensions of the medium sized nanorods closest to cloaking area.  Note that there is 
more bridging present in this sample due to the application of the thin film coating.  .... 199
Figure 6-38:  SEM image 3 of Cloak G with 5nm TiO2 ALD coating, showing the 
dimensions of the smallest nanorods near the edge of the cloaking area and the PBG 
nanorods.   ......................................................................................................................... 200
Figure 6-39:  NSOM scanning image of Sample F with 10nm TiO2 coating for an 
operating wavelength of 1572nm.  ................................................................................... 201
Figure 6-40: SEM image 1 of Cloak F with 20nm Al2O3 ALD coating, showing the 
dimensions of the larger nanorods closest to cloaking area.  The pillars are bridging 
enough to cause them to obtain a square nanorod shape.   ............................................... 203
Figure 6-41:  SEM image 2 of Cloak F with 20nm Al2O3 ALD coating, showing the 
dimensions of the medium sized nanorods closest to cloaking area.  Note that there is 
more bridging present in this sample due to the application of the thin film coating.  .... 204
Figure 6-42:  SEM image 3 of Cloak F with 20nm Al2O3 ALD coating, showing the 
dimensions of the smallest nanorods near the edge of the cloaking area and the PBG 
nanorods.   ......................................................................................................................... 204
Figure 6-43:  SEM image 1 of Cloak G with 40nm Al2O3 ALD coating, showing the 
dimensions of the larger nanorods closest to cloaking area.  The pillars are bridging 
enough to cause them to obtain a square nanorod shape.   ............................................... 205
Figure 6-44:  SEM image 2 of Cloak G with 40nm Al2O3 ALD coating, showing the 
dimensions of the medium sized nanorods closest to cloaking area.  Note that there is 
more bridging present in this sample due to the application of the thin film coating.  .... 205
Figure 6-45:  SEM image 3 of Cloak G with 40nm Al2O3 ALD coating, showing the 
dimensions of the smallest nanorods near the edge of the cloaking area and the PBG 
nanorods.   ......................................................................................................................... 206
 

 

 

  



xv 
 

Summary 
 

Two-dimensional (2D) and three dimensional (3D) photonic crystal (PC) 

structures are becoming increasingly important for creating the next generation of optical 

telecommunications and computing devices.  Photonic crystals are periodic structures 

which are found in nature, and which can also be recreated through various material 

science growth and fabrication processes.  The optical performance of photonic crystals 

is typically controlled by manipulation of the photonic band structure of the devices.  The 

photonic band structure can be used to control the refraction, collimation, dispersion, and 

many other optical performance parameters.  Operation of PC devices at visible or 

infrared-red communications wavelengths of 1.3um or 1.55um is desirable for their use in 

industry and military applications.   

The first part of this research investigates the optical properties and design of a 

square superlattice photonic crystal.  Previous research in our group has involved a 

variation of this structure known as a triangular superlattice, and showed that this 

structure has novel refraction properties due to the folding of bands.  This work builds on 

that research by investigating a square lattice variation of that structure to determine its 

optical properties and performance.  Also, the properties resulting from both static tuning 

using atomic-layer deposition (ALD) and active tuning of these structures have been 

investigated and their application to novel devices is presented. 

The second part of this research details the design and development of a new 

optical invisibility cloaking structure.  The cloak is a metamaterial ground-plane structure 

that enables light incident on a raised bump or feature to be reflected as if the area was a 

flat surface, rendering objects placed behind the bump invisible to incoming light.  This is 
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one of the first demonstrations of cloaking behavior at optical frequencies, as opposed to 

previous work done primarily in the microwave regime.  The investigation consists of 

design, fabrication, and characterization of the several variants of the structure to 

determine its optical properties and performance.  Also, the ALD technique of static 

tuning will be applied to the cloaking structure and the changes in performance will be 

examined in detail. 
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1 INTRODUCTION TO PHOTONIC CRYSTALS 

1.1 Photonic Crystals Defined 

 Photonic crystals are the optical analogy of an electronic crystal lattice.  A 

crystalline lattice consists of a set of small basic building blocks of atoms or molecules 

that are repeated in space.  The crystal structure presents a periodic potential to an 

electron propagating through it, and the conduction properties of the crystal are therefore 

dependent upon the geometry.  In general, the lattice introduces bandgaps into the energy 

structure of the crystal.  Due to Bragg-like diffraction from planes of atoms, electrons are 

forbidden to propagate within certain energy ranges in particular directions.  For a lattice 

potential that is strong enough, the gap may extend in all possible directions, resulting in 

a complete three-dimensional band gap.  An example of this is a semiconductor, which 

has a complete band gap between the valence and conduction bands.  In a photonic 

crystal the periodic “potential” is due to a periodic repetition of macroscopic dielectric 

media of different dielectric constants instead of atoms.  If the dielectric constants are 

sufficiently different to provide a strong contrast (a refractive dielectric contrast of at 

least two for 2D structures and three or greater for 3D structures), and there are minimal 

losses in the material, the scattering at the interfaces can produce many of the same 

phenomena for photons (or light modes) as the atomic potential does for electrons.  Thus, 

if it is possible to design and construct photonic crystals with specific photonic band gaps 

(PBGs), it is possible to control and manipulate light by preventing it from propagating in 

certain directions at specified energies.  A photonic crystal that prevents light modes from 
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propagating at a particular frequency for any polarization or angle is said to have a 

complete photonic band gap (PBG). 

 

1.2 History of Photonic Crystals 
 
 Photonic crystal structures were first introduced in 1987 by the work of 

Yablonovitch and John [1-2].  They proposed the possibility of photon confinement and 

light emission suppression by using an optical material whose dielectric constant was 

periodically modulated in three-dimensions.  In 1990, Ho et al. [3] theoretically predicted 

a structure that would have a full PBG.  This structure consisted of a diamond lattice of 

dielectric spheres in an air background that could also be inverted.  In 1991 Yablonovitch 

et al. [4] reported that a full PBG could also be formed in a face-centered cubic (fcc) 

lattice.  The structure was created by drilling dielectrics to form a three-dimensional 

lattice called “Yablonovite”, which exhibited a full PBG at microwave frequencies.  They 

also introduced a technique to perform band calculation on these structures by a method 

known as the “supercell method”  [5].  Shortly after Pendry et al. [6] in 1992 developed a 

transfer matrix method that used a combination of finite element analysis and multilayer 

analysis to analyze the transmission characteristics in PCs. 

 In the early 1990’s it was very difficult to produce nano-periodic structures 

operating at optical frequencies due to the limits of fabrication and computing 

technology.  The field began to grow with the discovery of new PBG structures and 

progress in computational modeling techniques.  Also, improvements in fabrication 

technologies helped to overcoming the challenges of developing crystals that could 

operate at optical frequencies.  Another area of research that furthered discoveries in the 
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field was the study of metal photonic crystal structures that could operate in the 

microwave range.  It was not until 1998 and later that the field began to mature, due 

primarily to progress in the semiconductor industry and improvements in 

nanotechnology.   

Many different 2D and 3D synthetic PC structures are now being investigated 

with the expectation that practical optical devices will be developed from the research.  

Some of the most promising 2D structures are the 2D slab (due to ease of fabrication 

using standard cleanroom materials and processes) and the PC-cladded fiber (one of the 

first practical industrial applications of 2D PCs).  The first demonstrated 2D slab 

structures consisted of a thin film semiconductor hole structure sandwiched between 

materials with a low refractive index to obtain confinement of laser light [7-8].  Other 

demonstrations of 2D PC slab devices are line defect waveguides [9-10] and a point-

defect coupled cavity waveguide [11] shown in Figure 1-1.   

 

Figure 1-1:  Coupled-resonator structure realized by coupling individual defect cavities together in a 2D 
photonic crystal [11]. 

 

The PC optical fiber waveguide structure was recently created to use PBG properties to 

help confine light to a silica core, instead of only relying on total internal reflection 
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confinement [12-13].  These fibers are able to achieve single-mode propagation over an 

extremely wide wavelength range, with a small spot size and large structural dispersion.  

Current manufactured fibers are exhibiting losses on the order of <1dB/km, competitive 

with that of standard optical fibers.  An example of a PC fiber is shown in Figure 1-2.   

 

Figure 1-2:  Scanning electron microscope image of the end of a photonic crystal fiber, showing the central core 
where a hole has been omitted. The pitch L is 2.3 mm, and the fiber is 40 mm across [12]. 

 

3D PCs have yet to find an industrial application and are very demanding to fabricate.  

However, structures such as the opal / inverse opal, spiral / chiral, and FCC-holographic 

are showing promise.  Opal crystals have been under investigation for a relatively long 

time by many groups [14-18], and are inverted [19] by infiltration of high refractive 

index material into an opal structure, which enabled a full PBG to be obtained more 

consistently and at lower refractive index values.  An inverted opal structure is shown in 

Figure 1-3.  The exposure of polymer PCs to scanning lasers enabled the first holographic 
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PCs to be developed [20-22].   The chiral 3D PCs shown in Figure 1-4 consist of a 

periodic array of square spiral posts in a tetragonal lattice and have been demonstrated to 

provide a large, full 3D PBG [23].  The PBG performance of all of these 3D PCs is 

strongly dependent upon the structural dielectric index contrast. 

 

Figure 1-3:  Inverse opal structure showing the (100) sample edge, revealing the structure to be f.c.c. [16]. 

 

Figure 1-4:  Example of a square chiral photonic crystal structure created by the glancing-angle deposition 
method  [23]. 

 
Another emerging area of PC research involves novel biologically-inspired 

structures.  The PC nature of butterfly scales as shown in Figure 1-5 have been 
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researched by a number of groups [24-27], with findings indicating that the reflective 

colors in some butterfly wings are due to 2D and 3D PBG effects.  The iridescence 

observed from beetles [28] and dragonfly wings [29] have also been found to have a PC 

explanation.  Natural PC structures have also been found in diatoms [30], bird feathers 

[26], flowers [31-32], insect eyes [33], jellyfish [34], and even teeth [35].  The thrust of 

much of the current work is to determine how these structures are able to exhibit the 

properties of photonic crystals, and how similar structures can be created and simulated.  

Another approach to analysis of these natural PCs could be through an organic to 

inorganic material replication of the structure, followed by characterization.  Replication 

of natural PC structures thorough ALD will be another focus of the proposed research.  
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Figure 1-5:  The green colour of Parides sesostris butterfly is created by a photonic crystal.  a, b, SEMs of the 
exposed photonic crystal after the superficial ridging has been removed. c, a TEM showing a 50 nm section 
through the scale shown in a; the ridging is intact whereas the neighbouring but differently oriented domains of 
identical 3D structure are distinguished by contrasting 2D patterns (here, the darkly contrasted material is 
cuticle)  [27].  
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1.3 Properties of Interest in Photonic Crystals 

In order to fully understand and describe the properties of photonic crystals, we use 

and combine the principles of solid state physics and electromagnetics to characterize the 

structures.  The dispersion relation of a radiation field: 

 𝜔 = 𝑐𝑘 (1)  

 

relates the relationship between the angular frequency 𝜔, the speed of light 𝑐, and the 

wave number 𝑘: 

 𝑘 =
2𝜋
𝜆0

 (2)  

where 𝜆0 is the free space wavelength.  If the radiation field is in a uniform material with 

refractive index n, the dispersion relation in the material can be obtained by replacing 𝑐 

with an expression for the velocity of light in the material 𝑣: 

 𝜈 =
𝑐
𝑛

 (3)  

and the free space wavelength λ0 by the wavelength in the material: 

 𝜆 =
𝜆0
𝑛

 (4)  

In a photonic band-gap material that has periodic dielectric modulation in one to three 

dimensions, we can calculate which radiation modes exist in the material, per frequency 

range in k-space for a given polarization.  The density of states (DOS) gives this 

information by relating the group velocity of a wave packet dω/dk (that can be obtained 

from the dispersion relation) to the allowed modes.  For a given polarization the DOS is 

given by based on Equations (2)-(4): 
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 𝐷(𝜔) =
𝑉𝑘2

2𝜋2
𝑑𝑘
𝑑𝜔

=
𝑉𝜔2

2𝜋2𝜈3
 (5)  

The key property of photonic crystals is that the DOS can be exploited to control the 

modes allowed to propagate in the material structure.  In certain cases the structure can be 

designed so the DOS goes to zero for a range of photon energies and polarization.  This 

phenomenon gives rise to the PBG where specific modes are not allowed to propagate 

throughout the structure. 

 The optical properties of a PC can be characterized by a photonic band diagram, 

analogous to the electronic band structure used to characterize the electrical and optical 

properties of a semiconductor.  The band structure is typically plotted as the normalized 

allowed photon frequencies, ωn, vs. the photon wave vector, k.  The band structure 

calculations are an eigenvalue problem that consists of solving the macroscopic 

Maxwell’s equations in a PC periodic dielectric medium.  Symmetries within the 

structure allow the problem to be reduced to a smaller computational area called the 

Brillouin zone (BZ).  We can confine characterization directions along the boundaries of 

the irreducible Brillouin zone.  The complexity of the BZ is dependent upon the 

symmetries inherent in the periodic unit cell structure.  For 3D PCs the light can be 

confined without regard to polarization conditions if a PBG is created at the same 

frequency range in all directions.  Thus, the focus of the study on 3D PCs is on the 

creation and manipulation of 3D PBGs.  The third dimension adds considerable 

complexity, however.  For 2D PCs, the lack of a third dimension allows only transverse-

electric (TE) and transverse-magnetic (TM) modes to couple into the structure.  These 

two polarizations result in two groups of eigenmode solutions to the eigenvalue problem.  

Since the modes are now polarization dependent, it becomes more difficult to obtain a 
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PBG in the same frequency range due to the overlapping of modes.  Hence 2D PC 

structures are not exploited for their PBG properties, but they can have many novel 

properties of interest such as superprism and supercollimation effects, which are easier to 

manipulate than in 3D PCs.  A schematic of these phenomena is shown in Figure 1-6, 

comparing the properties of a random dielectric configuration to an ordered PC dielectric 

configuration.   

Removing the third propagation direction allows simplification of the band 

structure and analysis.  In a 2D PC the dispersion surfaces (analogous to Fermi surfaces 

in electronic crystals) can be represented by a plot of the in-plane k vector vs. the 

normalized frequency ω = a /λ.  Also, 2D PCs reduce the complexity of the numerical 

simulation requirements by shrinking the size of the unit cell and from the application of 

the periodic Bloch conditions. 

 

 
 
Figure 1-6:  A comparison of ordinary (incoherent) scattering and (coherent) scattering in photonic crystals [36]. 

 
 An example of a photonic crystal structure illustrating the above concepts is a 2D 

square lattice of dielectric pillars in an air medium.  This structure illustrates the basic 
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concepts of the density of states and the photonic band gap.  In real-space the square 

lattice structure is defined by the lattice constant a (spacing between holes), the hole 

radius ra, and the dielectric constants of the holes εa (Si) and surrounding medium εb (air) 

as shown in Figure 1-7(a).  A conversion to reciprocal space reveals the first irreducible 

Brillouin zone shown in Figure 1-7(b).  The band structure for the TE polarization is 

shown in Figure 1-8, along with the calculated density of states.  Note that although the 

structure shows three bandgaps, they are not complete gaps since TE eigenmodes and 

those modes with off-plane wave vectors have eigenfrequencies inside these gaps. 

 

 
Figure 1-7:  (a) 2D square PC lattice geometry, (b) first Brillouin zone of the square lattice [37]. 

 
Figure 1-8:  TE band structure and DOS for the square lattice PC [37]. 
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1.3.1 Giant Refraction (Superprism Effect) 

2D PCs exhibit novel properties due to their non-spherical wave vector contours 

(a.k.a. equi-frequency contours or dispersion surfaces).  This representation is obtained 

by taking the surface contour of one band in k-space and slicing it to create equal 

frequency curves.  The allowed propagating wave vector can be determined by drawing a 

vector perpendicular to the interface that intersects the allowed wave vector curve in the 

material.  In an isotropic material, the equi-frequency contours are circular or elliptical, 

leading to normal refractive behavior.  In PCs, the periodic dielectric structure leads to 

contours that have a varying curvature.  One example of the effect of contour curvature is 

the ability of PCs to produce negative refraction and giant refraction (also called 

superprism) effects on light entering the crystal structure.  An illustration of this effect is 

shown in Figure 1-9.  As an example consider refraction from a prism of glass.  In an 

ordinary prism 0.1º of the dispersion angle corresponds to a 1% difference in wavelength.  

Contrast this to a PC, where it is possible to obtain greater than 50º of dispersion angle 

for the same 1% difference in wavelength, an increase of 500 times that of the prism.  

The effect is that the angular deviation of light in a PC is large for small changes in 

incident angle.  This phenomenon is called the superprism effect.  Figure 1-10 shows a 

typical dispersion curve for a PC, and illustrates the effect.  For the smaller incident angle 

in (b), a larger reflection angle of the refracted light is obtained compared to figure (a), all 

due to the shape of the dispersion curve.   
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Figure 1-9:  Schematic illustration of refraction at the surface of a photonic crystal [37]. 

 
 

1.3.2 Supercollimation Effects 

 If the incident angle in Figure 1-9 is positioned for a PC dispersion contour with a 

particular curvature, the beam can be made to self-collimate as if the material is acting as 

a lens. Depending on the shape of the equi-energy surfaces, the PC can act as a convex 

(focus), flat (self-collimation) or concave (defocus) lens.  Light propagation in a 

supercollimator has similar characteristics to the confinement of light in fiber optics.  The 

propagation direction can be maintained even under conditions of changing positions and 

incident angles by several degrees.  Such an ideal fiber-like light collimator cannot occur 

in ordinary linear crystals where nonlinearity effects like self-focusing are not produced. 

 Supercollimation and focusing effects can be illustrated by the equi-frequency 

contours for the first band in the square lattice of pillars PC structure in Figure 1-10. Near 

the center the frequency is the lowest, corresponding to wavelengths of light that are 

much larger than the periodicity of the lattice.  In this regime, the wave sees an average 

dielectric constant, and the allowed wave vector is circular as in an isotropic material.  As 

the wave vector reaches a value that is near the edge of the BZ along the Γ −𝑀 direction 



14 
 

in reciprocal space, the shape gradually changes from a circle to a shape resembling a 

square.  Near the top of the first band, near the M point, the allowed wave vector shifts 

once again towards a circle, but now the center is located on the M point rather than on 

the Γ point. That is, there is a reverse in the curvature near the M point.  The dispersion 

contour at the M point now acts like a convex lens, and can be used to produce negative 

index and supercollimation effects.  

 

 
Figure 1-10:  Allowed wave vector contours for the first band of the square lattice of pillars PC [38]. 

 

1.4 Goal of this work 
 
 The first goal of this work is to investigate the optical behavior and propagation 

effects in an entirely new superlattice photonic crystal structure, the square superlattice.  

Previous work on the triangular superlattice [39] showed that the structure exhibited 

novel propagation effects that could be exploited in the device with a static structure 

design.  Furthermore, an investigation into the tuning of both superlattice structures will 

be conducted to determine how the optical properties of the device can be altered by 

infiltration of optical materials.  The infiltration of medium index TiO2 (𝑛 = 2.31) and 

low index Al2O3 (𝑛 = 1.8) will be investigated in Chapter 5 as a way to statically tune 

the square superlattice properties.  In addition, further research on infiltration and device 
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construction using nonlinear and electro-optic materials will help to provide an 

understanding of how superlattice structures can enable dynamic tuning of the PC 

properties of interest.  This work will include accurate modeling and simulation of the 

structures using a systematic approach.   

The second main goal of the research is to prove that the mathematical optical 

frequency ground-plane cloaking concept proposed by Li and Pendry [40] could be 

fabricated into an actual device and measured, thereby proving that the real-world device 

performance would match that predicted by theory.  This was accomplished by first 

converting the mathematical model of the structure into an actual device structure that 

can be modeled.  The structure will then be numerically simulated to determine its 

performance at optical frequencies.  The challenge lies in the experimental portion of the 

research, in which the nano-scale cloaking device is fabricated and its performance 

measured to determine if the real-world device performance matches that predicted 

numerically. 
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2 BACKGROUND 

The analysis of the operation of photonic crystals requires the use of the 

electromagnetic, solid state physics, and optical theory.  While the behavior of photons in 

the dielectric medium of a photonic crystal can be described by the use of Maxwell’s 

equations, the periodicity of the structure requires the application of solid state physics 

theory to the behavioral description as well.  In addition, the use of wavevector diagrams 

and analysis of the refractive properties of photonic crystal devices requires the use of 

several principles of optics theory.   

This chapter provides a mathematical and theory background for further analysis of 

the triangular and square superlattice photonic crystal structures in the proceeding 

chapters.  First, the formulation of Maxwell’s equations into eigenvalue equations that 

enable solutions to the band structure of the square superlattice will be presented.  The 

solutions to this equation will then be discussed, and an example on the application of 

propagating electromagnetic modes in a slab of glass material covered.  Next, two 

numerical computational methods will be discussed that are used to solve for the mode 

structures in photonic crystals, namely the plane-wave expansion method (PWE) and the 

finite-difference time-domain methods (FDTD).  

 

2.1 Maxwell’s Equations as an Eigenvalue Problem 
 

Maxwell’s equations are well known for describing the properties of macroscopic 

electromagnetism in a concise mathematical formulation.  The equations are given by: 

 ∇ ∙ 𝐵�⃑ = 0 (6)  
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∇ × 𝐸�⃑ +
𝜕𝐵�⃑
𝜕𝑡

= 0 

∇ ∙ 𝐷��⃑ = 𝜌 

∇ × 𝐻��⃑ −
𝜕𝐷��⃑
𝜕𝑡

= 𝐽 

 

Here we will use the equations to describe the propagation of light in a photonic 

crystal structure.  For the purpose of the work in this thesis we will constrain the analysis 

to a mixed dielectric medium that consists of regions of homogeneous dielectric material 

that is invariant in time (no free charges or currents) but not in space.  The relative 

positions of the regions of dielectric material can be described by their position vector 𝑟.  

We will also consider the material to be isotropic, non-magnetic and lossless, i.e. a linear 

material with a real and positive permittivity, and unity permeability that is not dependent 

upon the frequency of radiation.    The constitutive relations for 𝐷��⃑  and 𝐵�⃑  are then given 

by: 

 
𝐷��⃑ (𝑟) = 𝜖0𝜖(𝑟)𝐸�⃑ (𝑟) 

𝐵�⃑ (𝑟) = 𝜇0𝜇(𝑟)𝐻��⃑ (𝑟) ≈ 𝜇0𝐻��⃑ (𝑟) 
(7)  

Combining these with Maxwell’s equations yields: 

 

∇ ∙ 𝐻��⃑ (𝑟, 𝑡) = 0 

∇ ∙ (𝜖(𝑟)𝐸�⃑ (𝑟, 𝑡)) = 0 

∇ × 𝐸�⃑ (𝑟, 𝑡) + 𝜇0
𝜕𝐻��⃑ (𝑟, 𝑡)
𝜕𝑡

 

∇ × 𝐻��⃑ (𝑟, 𝑡) − 𝜖0𝜖(𝑟)
𝜕𝐸�⃑ (𝑟, 𝑡)
𝜕𝑡

= 0 

(8)  
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Since these equations are linear, the spatial dependence can be separated from the time 

dependence by treating 𝐻��⃑  and 𝐸�⃑  as harmonic plane waves.  The real part of this complex-

valued field is the actual physical field. 

 
𝐻��⃑ (𝑟, 𝑡) = 𝐻��⃑ (𝑟)𝑒−𝑖𝜔𝑡 

𝐸�⃑ (𝑟, 𝑡) = 𝐸�⃑ (𝑟)𝑒−𝑖𝜔𝑡 
(9)  

Here 𝐻(𝑟) and 𝐸(𝑟) are the plane wave parts of the equations, with 𝐻��⃑ 0and 𝐸�⃑ 0 being 

constant vectors: 

 
𝐻��⃑ (𝑟) = 𝐻��⃑ 0𝑒𝑖𝑘

�⃑ ∙𝑟 

𝐸�⃑ (𝑟) = 𝐸�⃑ 0𝑒𝑖𝑘
�⃑ ∙𝑟 

(10)  

These equations are now substituted into the equations in (8) yielding: 

 

∇ ∙ 𝐻��⃑ (𝑟) = 0 

∇ ∙ (𝜖(𝑟)𝐸�⃑ (𝑟)) = 0 

∇ × 𝐸�⃑ (𝑟) − 𝑖𝜔𝜇0𝐻��⃑ (𝑟) = 0 

∇ × 𝐻��⃑ (𝑟) + 𝑖𝜔𝜖0𝜖(𝑟)𝐸�⃑ (𝑟) = 0 

(11)  

The divergence equations specify that the fields consist of electromagnetic waves that are 

traverse.  Mathematically, this gives the condition that both the electric and magnetic 

fields are transverse to the direction of propagation, i.e. 𝐻��⃑ ∙ 𝑘�⃑   and 𝐸�⃑ ∙ 𝑘�⃑  must equal zero. 

The curl equations can be decoupled from each other by a division and curl 

operation to remove the dependence on 𝐸�⃑ (𝑟).  Performing these operations and 

substituting the relation 𝑐 = 1
�𝜖0𝜇0

 yields a single master equation that is dependent upon  

𝐻��⃑ (𝑟) only: 
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 ∇ × �
1

𝜖(𝑟)∇ × 𝐻��⃑ (𝑟)� = �
𝜔
𝑐
�
2
𝐻��⃑ (𝑟) (12)  

This is an eigenvalue equation, where operations on the eigenfunction yield the function 

itself multiplied by a constant known as the eigenvalue.  After solving for the magnetic 

field, the electric field value can be recovered by solving: 

 𝐸�⃑ (𝑟) =
𝑖

𝜔𝜖0𝜖(𝑟)
∇ × 𝐻��⃑ (𝑟) (13)  

The master eigenvalue equation is similar to the time-independent Schrödinger 

eigenvalue equation in that both problems can be solved through the use of Hermitian 

operators and plane wave solutions.  There are several differences however, between the 

solutions of the two equations which should be addressed.  The first difference is that in 

quantum mechanics the potential function is scalar, and often times seperable, leading to 

simpler single direction solutions.  The potential in the Maxwell equation is different in 

that it is a vector, making analytical solutions more difficult to obtain and require the use 

of numerical analysis simulations.  Another major difference lies in the scalability of the 

two different equations.  In the case of quantum mechanics, the fundamental length scale 

of the Bohr radius limits the scalar potential solutions to a particular microscopic size 

range.  The macroscopic Maxwell equations are unconstrained by such a length scale, 

and are usually normalized to the lattice constant length described by the variable a.  This 

fact allows the Maxwell equation solutions to be easily scaled, up or down, in both length 

scale and frequency of operation without changing the properties of interest, making 

them much more flexible in the analysis of various electromagnetic structures. 
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2.2 Solid-State Electromagnetism in Photonic Crystals 
 

Photonic crystals have discrete transitional symmetry, similar to atoms or molecules in a 

crystal.  Thus, their analysis can be treated in terms of solid state physic principles.  In the 

case of an atomic structure, the symmetry translates in all dimensions and is said to be 

continuous.  We will consider the band structure of continuous symmetry structure first 

for analysis.  The solutions, or modes, are plane waves classified by the wave vector 𝑘 

and an integer band number, n.  These plane waves are solutions of the master equation 

(12) having eignevalues of: 

 �
𝜔
𝑐
�
2

=
|𝑘�⃑ |2

𝜖
 (14)  

Solving for 𝜔 gives the dispersion relation: 

 𝜔 =
𝑐|𝑘�⃑ |
√𝜖

 (15)  

This equation is also called the light line, and will be described in the following example.  

Consider the modes of a continuous plane of glass having thickness 𝑎 and dielectric 

constant 𝜖 = 11.4 as shown in Figure 2-1.  The band diagram showing the 

electromagnetic modes propagating in the structure is created by plotting the normalized 

radiation frequency 𝜔𝑎/2𝜋𝑐 versus the normalized parallel wave vector 𝑘∥ given by 

𝑘𝑎/2𝜋.  The band structure is computed by solving the master equation (12) numerically.  

The modes that are not confined to the glass, extending into the air and out to infinity, 

must resemble a superposition of free-space plane waves having frequencies of: 

 𝜔 = 𝑐|𝑘| = �𝑘∥2 + 𝑘⊥2  (16)  
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Figure 2-1:  Band diagram for a plane of glass in air with thickness a and ε = 11.4.  Blue lines correspond to 
guided modes in the glass, while the shaded blue region is the continuum of states that extend both into the glass 
and the surrounding air.  The red line is the light line.  Bands are given for a single polarization of the H field 
[41]. 

In this case 𝑘⊥ is real and can take any value.  If 𝑘∥ is fixed, there are an infinite number 

of modes above the light line 𝑤 = 𝑐𝑘∥, due to the fact that the structure has continuous 

symmetry, that is, the structure is considered to be one dimensional since there is no 

change to the structure over both the x and y directions.  The band structure region above 

𝑤 > 𝑐𝑘∥ is called the light cone, where the modes are solutions of Snell’s law: 

 𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 (17)  

Solutions in this region require sin𝜃2 > 1 where there are no real solutions, thus the light 

rays are totally reflected.  This is known as the critical angle: 

 𝜃𝑐 = sin−1 �
𝑛2
𝑛1
� (18)  

 

Light 
Cone 
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Figure 2-2:  Diagram showing a flat interface between two dielectric regions 𝜺𝟏 and 𝜺𝟐, with the light ray having 
an incident angle of 𝜽𝟏 and a refracted angle of 𝜽𝟐.  For 𝜺𝟐 < 𝜺𝟏, there is no solution for Snell’s Law, and the 
light undergoes total internal reflection.  In all cases 𝒌∥ is conserved [41]. 

 
 
Solutions exist only for 𝑛2 > 𝑛1, indicating that total internal reflection occurs only 

within the medium with the higher index.  The continuous band of modes above the light 

cone are called the unguided modes, because they are not contained within the slab 

structure but instead propagate outside the guiding medium of the glass. 

 The plane of glass introduces new solutions below the light line for 𝑤 < 𝑐𝑘∥ due 

to the fact that referactive index of glass 𝑛2 is larger than that of the surrounding air 

medium.  In this region the only solutions are those with an imaginary 𝑘⊥: 

 𝑘⊥ = ±𝑖�𝑘∥2 −
𝜔2

𝑐2
 (19)  

These are modes that decay exponentially (evanescent waves) away from the glass, and 

are localized inside the slab.  These modes are called the guided or index-guided modes, 

that form a discrete set of bands for a given 𝑘∥.  As |𝑘∥| increases, the number of guided 



23 
 

bands increases until the ray optics limit of the critical angle is obtained, leading to totally 

internally reflected rays. 

 In the case of a photonic crystal structure with discrete transitional symmetry, the 

structure is described by unit cell geometry.  The unit cell is a basic unit with repeating 

geometry within the larger photonic crystal structure and is defined by the normalized 

length unit 𝑎.  The band diagram is constructed as before by solving Equation (12) 

numerically.  The eigenfunction solutions are again plane waves, however the repeating 

geometry of the structure makes the solutions invariant over multiples of 2π/a, creating a 

degenerate set of solutions.  This difference allows the solutions to be obtained through 

the use of reciprocal lattice vectors given notated as 𝑏�⃑  vectors, the computation of which 

will be described more completely in the next chapter.  Any linear combination of 

degenerate eigenfunctions can be combined into a single eigenfunction with the inclusion 

of a periodic modulation function 𝑢�⃑ 𝑘�⃑ (𝑟) that describes the transitional geometry of the 

structure.  The plane wave solutions now take the form: 

 𝐻��⃑ 𝑘�⃑ (𝑟) = 𝑒𝑖𝑘�⃑ ∙𝑟𝑢�⃑ 𝑘�⃑ (𝑟) (20)  

This result is known as Bloch’s theorem [42].  Here 𝑘�⃑  is called the Bloch wave vector 

and is given by: 

 𝑘�⃑ = 𝑘1𝑏�⃑ 1 + 𝑘2𝑏�⃑ 2 + 𝑘3𝑏�⃑ 3 (21)  

The invariance of the plane wave solutions over multiples of 2π/a limits the set of non-

redundant solutions to a region known as the Brillouin zone in reciprocal space.  This is a 

consequence of the combination of three primitive lattice vectors (𝑎⃑1, 𝑎⃑2, 𝑎⃑3) spanning 

the real space, and can be described by a repeating vector 𝑅�⃑ = 𝑙𝑎1 + 𝑚𝑎2 + 𝑛𝑎3, where 

𝑙,𝑚, 𝑛 are integers.  These real primitive lattice vectors give rise to three primitive 
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reciprocal lattice vectors given by (𝑏�⃑ 1,𝑏�⃑ 2, 𝑏�⃑ 3) that span the reciprocal lattice and form the 

basis for the irreducible Brillouin zone.  As a consequence, 𝑢�⃑ 𝑘�⃑ (𝑟) is also invariant over 

𝑅�⃑ , creating the set of Bloch plane wave solutions: 

 𝑢�⃑ 𝑘�⃑ (𝑟) = 𝑢�⃑ 𝑘�⃑ (𝑟 + 𝑅�⃑ ) (22)  

As in the case of continuous transitional symmetry, there is conservation of the wave 

vector 𝑘�⃑ , but in the case of the discrete transitional symmetry of a photonic crystal the 

conservation is periodic.  The addition of the reciprocal lattice vector does not change the 

eigenstates of the system or the propagation direction of the electromagnetic wave.  One 

difference occurs in the band diagram of the photonic crystal over a continuous symmetry 

crystal however.  The modes above the light line are now no longer continuous, but form 

a discrete set of bands similar to those modes below the light line. 

A more detailed reciprocal space analysis of our system of interest, the square 

superlattice, as well as a band diagram analysis will follow in the proceeding chapters. 

 

2.3 Dispersion Contours 
 

The band diagram for a photonic crystal is actually a multi-dimensional surface 

that can be “sliced” to create dispersion contours.  This is an analogy of the Fermi surface 

in solid state physics.  A two-dimensional photonic crystal is actually a three dimensional 

structure, having symmetry in the two in-plane 𝑘 vectors.  The band structure for a two-

dimensional photonic crystal is described by these two 𝑘 vectors and the frequency 𝜔, 

forming a three-dimensional band contour surface.  By intersecting a fixed 𝜔 frequency 

plane with the band contour, a dispersion surface, also known as a dispersion contour, is 
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created.  Multiple equi-frequency contour plots can be created by this method, creating a 

diagram that indicates the allowable wavevectors in the photonic crystal medium.  These 

dispersion contours allow wave vector propagation refraction information to be obtained 

through the use of 𝑘-vector line constructions. 

In the case of a isotropic homogeneous medium, the contours are congruent 

circles, due to the fact that the dispersion relation is linear in this case and is given by 

𝑤 = 𝑐𝑘/√𝜀.  Thus the circle radii can be related to the refractive index of the medium 

given by 𝑘 = 𝑤𝑛/𝑐, since the dispersion curve forms an inverted cone surface.  These 

contour surfaces are similar in an anisotropic birefringent medium, but in this case the 

birefringency between the opposite optical axis directions gives rise to two different 

refractive indexes, causing the equi-frequency dispersion contours to be ellipses rather 

than circles.  For a photonic crystal structure, the anisotropy in 𝜀(𝑟) is transitionally 

periodic, leading to more complicated dispersion curves that cannot be described by 

simple conic sections.  Regardless of the shape of the curve, the electromagnetic group 

velocity and refraction propagation effects can be determined by solving for the gradient 

at a specific point on the dispersion contour: 

 𝑣𝑔 = ∇kω(k) =
∂ω
∂k

 (23)  

Here 𝑤(𝑘) is a point on the contour and 𝑣𝑔 is the normal to the tangent of the dispersion 

contour, pointing in the direction of increasing 𝜔 and making an angle 𝜃𝑟 with the 

construction line. 

 More details on the derivations and the refraction response of our photonic crystal 

of interest, the square superlattice, will be discussed in Chapters 3-5. 
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2.4 Numerical Analysis Background 
 

There are several numerical simulation methods that are available to solve the 

eigenvalue formulation of Maxwells equation given by equation (12) used to compute the 

band structure of photonic crystals.  Some methods involve solving of the equation 

directly, but most involve iterative techniques as the typical geometry of a photonic 

structure is not easily mathematically reduced.  The two main classes of numerical 

simulation methods are based on either frequency-domain or time-domain solution 

methods.  As with all numerical methods, there are advantages and disadvantages to each 

technique, one of the most important being the complexity of the formulation and the 

time required to solve equation (12) for a particular photonic crystal geometry.  

Frequency-domain methods typically offer a simulation speed advantage over time-

domain methods, but this is dependent upon the size of the computational domain.  

Frequency-domain methods such as plane-wave expansion (PWE) scale exponentially 

with the size of the computation domain, while time-domain methods such as finite-

difference time-domain (FDTD) calculations scale linearly.  Therefore, the size of the 

computation domain is important in determining which method is best for quickly solving 

for a particular photonic crystal geometry. 

Since solving for the photonic crystal band structure is similar to calculations used 

to solve for electronic crystal band structures in solid state physics, many of the same 

techniques can be used for both types of simulations.  Unlike solid state physics 

calculations which rely on specific algorithms, the calculations for the photonic crystal 

structure are considered exact.  This is due to the fact that photons are non-interacting 

boson particles, while electrons used to describe solid state physics structures are 
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fermions that interact with each other.  The accuracy of the numerical calculation is then 

only a direct function of the dielectric function 𝜖(𝑟) that is used to directly describe the 

particular photonic crystal geometry. 

In this research, we primarily utilize the PWE and FDTD simulation methods for 

specific numerical calculations, depending on which is much advantageous for the data 

we wish to extract.  We will describe both methods briefly in the following sections, 

including the advantage and disadvantages of each. 

 

2.4.1 Plane-Wave Expansion Simulations 
 

To solve an eigenvalue equation using the plane-wave expansion (PWE) method, the 

magnetic field 𝐻��⃑  in equation (12) is expanded into plane waves utilizing Bloch’s 

theorem: 

 𝐻��⃑ (𝑟) = ��ℎ𝐺⃑,𝜆𝑒̂𝜆

2

𝜆=1𝐺⃑

𝑒𝑖(𝑘�⃑ +𝐺⃑)∙𝑟 (24)  

Here 𝑘�⃑  is the a Brilloiun zone (BZ) wavevector, 𝐺⃑ is a reciprocal lattice vector in the BZ, 

and 𝑒̂1, 𝑒̂2 are unit vectors perpendicular to (𝑘�⃑ + 𝐺⃑) that satisfy the tranversality 

requirement that ∇ ∙ 𝐻��⃑ = 0.  This Bloch formulation is possible because in the case of 

photonic crystals, 𝜖(𝑟) is a periodic function that describes the crystal’s geometry.  The 

eigenvalue equation (12) can now be converted into a matrix equation that can be solved: 

 �𝐻𝐺⃑,𝐺⃑`
𝜆,𝜆`

𝐺`���⃑ ,𝜆`

ℎ𝐺⃑`,𝜆` = �
𝜔
𝑐
�
2
ℎ𝐺⃑,𝜆 

(25)  

Here 𝐻𝐺⃑,𝐺⃑`
𝜆,𝜆`  is given by: 
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 𝐻𝐺⃑,𝐺⃑` = �𝑘�⃑ + 𝐺⃑��𝑘�⃑ + 𝐺⃑`�𝜖𝐺⃑,𝐺⃑`
−1 � 𝑒̂2 ∙ 𝑒̂2` −𝑒̂2 ∙ 𝑒̂1`

−𝑒̂1 ∙ 𝑒̂2` 𝑒̂1 ∙ 𝑒̂1`
� (26)  

In this formula, 𝜖𝐺⃑,𝐺⃑`
−1  is the Forier transform of the dielectric function 𝜖(𝑟).  Equation (25) 

can now be solved by using matrix diagonalization methods, which gives the mode 

coefficients and frequencies for the dispersion relation of the photonic crystal under 

analysis. 

 Shortcomings to this method are that the PWE method is not a time dependent 

method, therefore it cannot show the time evolution of a field propagating through the 

structure.  Calculation of reflection and transmission requires extra steps in this method.  

The biggest shortcoming to this method is that PWE does not work well with three 

dimensional structures that have finite dimension, or do not have periodicity in all 

directions, such as the slab waveguide structure we will explore later.  For a non-periodic 

structure, the boundary conditions are also non-periodic, which makes the plane wave 

method not applicable to the calculation.  A work-around is to use a supercell that 

contains a large area of free space surrounding the repeating photonic crystal dielectric 

structure 𝜖(𝑟).  This extra free space provides a buffer between each cell when the 

dielectric structure is repeated in space.  Adding the extra free space comes at a 

computational cost since the unit cell is now much larger, as well as a loss of accuracy for 

specific frequencies that can be contained within the supercell dimensions.  For real-

world type photonic crystal devices, such as slab structures, time-domain methods are  

needed to get better accuracy for both the guided and unguided modes in the photonic 

crystal structure.  The method we turn to for solving these complex 3D structures in the 

FDTD method. 
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2.4.2 Finite-Difference Time Domain Simulations 
 

One of the strengths of FDTD is the large amount of boundary conditions available when 

performing electromagnetic calculations, making them ideal for the simulation of three-

dimensional structures.  These type of calculations were originally used for devices that 

operated in the radio and microwave regime, such as antennas and waveguiding 

structures.  Since Maxwells equations scale linearly with frequency, the application to 

optical frequencies was easily possible.  The FDTD method was first adapted for 

photonic crystals by Chan in 1995. 

 The technique for simulating a three-dimensional repeating cell structure consists 

of discretizing the single cell 𝜖(𝑟) dielectric function into a mesh of electromagnetic field 

calculation points.  At each calculation point, the electric field 𝐸�⃑  and magnetic field 𝐻��⃑  are 

calculated, given the set of initial field and boundary conditions.  These calculation points 

can be written in Cartesian coordinates, and consist of six coupled equations: 

 
𝜕𝐻𝑥
𝜕𝑡

=
1
𝜇
�
𝜕𝐸𝑦
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑦

� (27)  

 
𝜕𝐻𝑦
𝜕𝑡

=
1
𝜇
�
𝜕𝐸𝑧
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑧

� (28)  

 
𝜕𝐻𝑧
𝜕𝑡

=
1
𝜇
�
𝜕𝐸𝑥
𝜕𝑦

−
𝜕𝐸𝑦
𝜕𝑥

� (29)  

 
𝜕𝐸𝑥
𝜕𝑡

=
1
𝜖
�
𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦
𝜕𝑧

− 𝜎𝐸𝑥� (30)  

 
𝜕𝐸𝑦
𝜕𝑡

=
1
𝜖
�
𝜕𝐻𝑥
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑥

− 𝜎𝐸𝑦� (31)  
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𝜕𝐸𝑧
𝜕𝑡

=
1
𝜖
�
𝜕𝐻𝑦
𝜕𝑥

−
𝜕𝐻𝑥
𝜕𝑦

− 𝜎𝐸𝑧� (32)  

Given these equations, Yee in 1996 calculated the derivatives numerically to second-

order accuracy spatially (spread through the computation space) and temporally (over a 

given time increment) [43].  Following Yee’s notation we can describe each mesh 

calculation point given by Cartesian coordinates (𝑖, 𝑗,𝑘) as: 

 (𝑖, 𝑗,𝑘) = (𝑖Δ𝑥, 𝑗Δ𝑦,𝑘Δ𝑧) (33)  

 

Temporal functions with time designated as the fourth variable are formulated as: 

 𝐹𝑛(𝑖, 𝑗,𝑘) = 𝐹(𝑖Δx, jΔy, kΔx, nΔt) (34)  

Here Δ𝑥,Δ𝑦, and Δ𝑧 are the spatial increments in Cartesian coordinates, Δ𝑡 is the time 

increment, and 𝑛 is used to designate the time point in the calculation.  The function 𝐹𝑛 is 

either the electric field 𝐸�⃑  or magnetic field 𝐻��⃑  we wish to solve for.  Maxwell’s equations 

are linear in our formulation, so we can use a Taylor series expansion of 𝐹 by specifying 

a fixed time interval 𝑡𝑛 = 𝑛Δ𝑡 and then expand around the spatial point 𝑥𝑖 to obtain the 

spatial derivative for the field values: 

 𝜕𝐹𝑛(𝑖, 𝑗,𝑘)
𝜕𝑥

=
𝐹𝑛 �𝑖 + 1

2 , 𝑗,𝑘� − 𝐹𝑛 �𝑖 − 1
2 , 𝑗,𝑘�

Δ𝑥
+ 𝑂|(Δ𝑥)2| (35)  

This formula expresses the time steps as increments of ± 1
2
∆𝑥, with 𝑂|(Δ𝑥)2| being the 

remainder term, approaching zero as the square value of the increment.  Given this time 

increment, we now fix the computation point in space at (𝑖, 𝑗,𝑘) and take the first 

derivative of this expression with respect to time:   
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 𝜕𝐹𝑛(𝑖, 𝑗,𝑘)
𝜕𝑡

=
𝐹𝑛+

1
2(𝑖, 𝑗, 𝑘) − 𝐹𝑛−

1
2(𝑖, 𝑗, 𝑘)

Δ𝑡
+ 𝑂|(Δ𝑡)2| (36)  

We now substitute Equations (35) and (36) into our Maxwell equation formulations (27)-

(32).  To get more spatial accuracy in our calculation, we shift the 𝐻��⃑  and 𝐸�⃑  field 

calculation points around in our mesh space in a Yee cell configuration, shown in.  This 

configuration will help reduce the remainder term in Equation (35) as we evaluate the 

field over our ± 1
2
∆𝑡 time steps.  Upon substitution we obtain the following equations for 

the fields at each time step: 

 

𝐻𝑥
𝑛+12 �𝑖, 𝑗 +

1
2

,𝑘 +
1
2
�

= 𝐻𝑥
𝑛−12 �𝑖, 𝑗 +

1
2

,𝑘 +
1
2
�

+
∆𝑡

𝜇 �𝑖, 𝑗 + 1
2 ,𝑘 + 1

2� ∆𝑥
∙ [𝐸𝑦𝑛 �𝑖, 𝑗 +

1
2

, 𝑘 +
1
2
�

− 𝐸𝑦𝑛 �𝑖, 𝑗 +
1
2

,𝑘� + 𝐸𝑧𝑛 �𝑖, 𝑗,𝑘 +
1
2
�

− 𝐸𝑧𝑛 �𝑖, 𝑗 + 1,𝑘 +
1
2
�] 

 

(37)  



32 
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1
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2 , 𝑗,𝑘� ∆𝑡
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1
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(38)  

The simulation progresses in time by calculating each successive time step point based on 

the value from a previous field calculation point, alternating between the electric and 

magnetic field values.  Given a set of initial condition for the fields, the time steps are 

incremented until a siunsiodal steady state condition is arrived at for each mesh 

calculation point. 

 The stability and accuracy of the FDTD simulations is a function of the chosen 

time and space increments, thus for accurate results the space increment must be a small 

fraction of the minimum wavelength of the fields or spatial geometry.  This is to ensure 

that the field values do not change abruptly which can lead to error point calculations.  

The coarseness of the dielectric function is important, as large changes in the dielectric 

function 𝜖(𝑟) between the mesh calculation points will also lead to errors.  The stability 

of time step algorithm is given by a ∆𝑡 for a maximum phase velocity 𝑣𝑚𝑎𝑥 which 

satisfies the following equation: 
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 𝑣𝑚𝑎𝑥∆𝑡 ≤ �
1
∆𝑥2

+
1
∆𝑦2

+
1
∆𝑧2

�
−12

 (39)  

For simplicity in PC calculations, all values are typically normalized by the lattice 

constant 𝑎 and the speed of light 𝑐 since Maxwells equations scale linearly with 

frequency.  In this case 𝑣𝑚𝑎𝑥 becomes equal to 1, also simplifying the calculation. 

 The calculation starts at spatial points that are randomly distributed in the mesh.  

As the simulation proceeds, the field values at each of these points are stored.  When the 

system has reached sinusoidal steady state conditions at all field points, two operations 

can be performed.  The first operation is to take the data directly at this point and use it 

for viewing the evolution of the field components over time.  The second operation is to 

obtain the resonant frequency points which require additional steps.  First, an integration 

operation over time is performed on the fields.  The fields are then Fourier transformed to 

yield the resonant frequencies in the spectrum.  In the case of PCs, the resonant 

frequencies denote the band points of the structure, and can used to calculate the 

dispersion contours of the device.  The use of the FDTD method will be further detailed 

in the calculations used in Chapter 4 and 5 for the superlattice structures being 

investigated. 
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Figure 2-3:  Yee cell configuration indicating the position of the field components in the FDTD calculation [43]. 
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2.5 Atomic Layer Deposition (ALD) Technology 
 

 Atomic layer deposition (ALD) is a chemical gas phase thin film deposition 

method based on alternate saturative surface reactions.  The difference from other 

chemical vapor deposition (CVD) techniques is that in ALD the source vapors are pulsed 

into the reactor alternately, one at a time, separated by purging or evacuation periods.  

The effect is that each precursor exposure step saturates the surface of the sample with a 

single molecular layer of the exposed precursor.  This process results in self-limiting film 

growth that has excellent conformality and uniformity.  The thickness of the film can be 

accurately controlled through the number of cycles and the hold and purge times.  A SEM 

image of an ALD coating of 300nm of Al2O3 on Si is given in Figure 2-4, showing the 

conformality and trenching ability that can be obtained by the ALD process. 

 

Figure 2-4:  SEM image of an ALD coating of 300nm of Al2O3 on Si [44]. 
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 An flow chart diagram and surface chemistry reaction of the ALD growth process 

for TiO2 is shown in Figure 2-5.  The process is a self-limiting growth cycle of Ti 

attaching to the hydroxyl groups on an oxide surface, forming HCl gas as a by-product.  

The temperature range for this process is quite wide and from low temperature at 94C to 

higher temperatures of 600C, making it useful for infiltration into a number of materials 

such as polymers, that are temperature sensitive.  

 

 

Figure 2-5:  Growth cycle of TiO2 on an oxide coated Si surface. 

 

 There are many benefits to using ALD over conventional CVD techniques.  The 

self-limiting growth mechanism ensures that the precursor fluxes do not need to be 

uniform over the substrate.  The flux only needs to be large enough so that the 

chemisorption layer becomes saturated.  The excess precursor is purged out of the system 

after each step, avoiding the uneven buildup of material over time.  This process provides 
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excellent conformality, reproducibility, and trench filling capability.  Films can be 

deposited in monolayers using ALD, providing nanometer control over thickness.  Also, 

many ALD process can be performed over a relatively wide temperature range, making it 

easier to find common growth temperatures for a number of different materials.  There is 

one primary disadvantage to ALD however - the film deposition process is significantly 

slower than CVD methods.  Fortunately the current technology trend is towards 

nanoscale film thicknesses, so the slow growth rate is not as significant when weighed 

against the benefits of ALD. 

 ALD processes may be performed in many kinds of reactors over a wide pressure 

and temperature range.  The main parts of an ALD reactor are:  1) transport gas supply, 

2) sources of precursor in gas, liquid, or the solid phase, 3) flow and sequencing control 

of the sources, 4) reaction chamber, 5) temperature control for heated sources and the 

reaction chamber, and 6) vacuum pump and exhaust equipment.  The focus of work is to 

perform ALD runs at relatively low temperatures (<150 °C) and medium vacuum (25 to 

1x10-3 Torr) conditions.  Two reactors are available for the growth of optical materials.  

One system is for the growth of titania (TiO2) and alumina (Al2O3), the other for growth 

of gallium phosphate (GaP), gallium nitride (GaN), and zirconium nitride (Zr3N4). 

 Most of the PC structures under investigation consist of Si (effective index of 

n=3.45 for crystalline Si) structures over a SiO2 (n=1.45) substrate.  The ALD films 

selected for use are compatible with these materials and have specific optical and 

mechanical properties that can be exploited.  We are specifically interested in working in 

the optical (380-740nm) and near infrared (740nm-2um) wavelength regimes.  Titania 

was selected as an ALD growth material due its medium index (n=2.31), and its ability to 
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withstand high temperatures and acids.  Titania can also be converted into other phases 

such as anatase and rutile which have higher indices of refraction.  Alumina has a lower 

index (n=1.6) and can also withstand high temperatures.  Gallium phosphate is a high 

index material (n=3.3) that has electro-optical and photoluminescent properties.  It can 

also be doped with nitrogen to create a phosphor that emits in the green.  Zirconium 

nitride is also high index (n=3.3) and is transparent into the orange range.  Gallium 

nitride has an index lower than GaP (n=2.3-2.6), but is more conformal and transparent at 

optical frequencies.  Other optical materials that can be deposited by ALD may also be 

investigated at a later time.   
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3 THE SQUARE SUPERLATTICE PHOTONIC CRYSTAL 
STRUCTURE 

 

3.1 Introduction to the Superlattice Photonic Crystal Structure 
 

The inspiration for the design of both the triangular (also called hexagonal) 

superlattice and the square superlattice is derived from the work of Park and Summers in 

2002 [45].  In this work a dynamically tunable PC structure was designed that increased 

the tunability of the optical properties of a 2D triangular lattice PC.  In this scheme, an 

alternating bias was placed on adjacent [1 0] rows of the triangular lattice whose holes 

were filled with an electro-optic material such as a liquid crystal.  When the bias is 

applied, the effective index of alternating rows of holes creates a periodic modulation in 

the refractive index of the structure.  Figure 3-1 shows the interdigital biasing scheme of 

the device, where the different colors indicate different biases.  This structure became 

known as a superlattice photonic crystal structure (SL-PC), based on the fact that the 

periodicity of the different indices of refraction enables the optical response properties of 

the device to be altered through the reduction in symmetry. 

An alternative approach to creating a superlattice structure through the infiltration 

of electro-optic material in the holes is to change the size of the holes themselves.  This 

changes the effective index of alternating rows similar to the biased structure, but in this 

case the hole sizes are static or fixed, removing the ability to dynamically change the 

refractive index and therefore the optical properties of the device.  This type of structure 

is known as a static superlattice photonic crystal structure (SSL-PC), and it can be used to 

demonstrate optical refraction effects similar to the biased structure.  An advantage of the 
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SSL structure is that it is much simpler to fabricate and operate, while still providing the 

interesting refractive behavior of the original biased device. 

 
 
Figure 3-1:  Structure of the interdigital biased superlattice structure consisting of modulating the refractive 
index of alternating [1 0] rows of a 2D triangular lattice photonic crystal. 

 
 
Figure 3-2:  Structure of the triangular static superlattice photonic crystal.  Modulation in the refractive index 
of the device is accomplished by modifying the hole radius in alternating [1 0] rows of the triangular lattice 
photonic crystal. 
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The first static superlattice photonic crystal design as shown in Figure 3-2 was 

based on a triangular photonic crystal lattice of holes [39], in which alternating rows of 

holes were changed in radius to control the optical properties of the device.  The details 

of this structure are covered in the next two sections as a prelude to introducing a new 

superlattice structure and its properties, the square superlattice.  The square superlattice is 

similar to the triangular superlattice in that the radius of holes in alternating rows are 

altered, but in this case the underlying lattice is square rather than a triangular lattice.  In 

addition, both the triangular and square lattice will be used later in the thesis research to 

investigate their properties when different configurations of active optical materials are 

added, so the basic properties of both will be covered in this section. 

 

3.2 Goals of the Square Superlattice Research 
 
  

The first goal of this work is to investigate the optical behavior and propagation 

effects in an entirely new superlattice photonic crystal structure, the square superlattice.  

Previous work on the triangular superlattice [39] showed that the structure exhibited 

novel propagation effects that could be exploited in the device with a static structure 

design.  Furthermore, an investigation into the tuning of both superlattice structures will 

be conducted to determine how the optical properties of the device can be altered by 

infiltration of optical materials.  The infiltration of medium index TiO2 and low index 

Al2O3 will be investigated in Chapter 5 as a way to statically tune the square superlattice 

properties.  In addition, further research on infiltration and device construction using 

nonlinear and electro-optic materials will help to provide an understanding of how 

superlattice structures can enable dynamic tuning of the PC properties of interest.  This 
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work will include accurate modeling and simulation of the structures using a systematic 

approach.   

 

3.3 Real Space and Reciprocal Space Representations of Photonic Crystal 
Lattices 

 

3.3.1 The triangular lattice 

The analysis of the triangular lattice and the triangular superlattice is presented as 

a basis for discussing further structures.  The real space and reciprocal space 

representations of the triangular lattice are shown in Figure 3-3.  In real space the circles 

are typically cylinders of air in a background medium of higher dielectric constant, but 

the structure can also be reversed to a set of pillar structures in air.  In this research the 

focus will be on investigating the former configuration, a structure of holes in a dielectric 

medium.  The lattice structure is described by two basis vectors 𝑎1����⃑  and 𝑎2����⃑  making an 

angle of 120 degrees: 
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Figure 3-3:  Diagram of the real space representation of the triangular lattice photonic crystal 
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Figure 3-4:  Diagram of the reciprocal space representation of the triangular lattice photonic crystal 
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 𝑎1����⃑ = 𝑎 �
1
2

,
√3
2
� 

(40)  

 𝑎2����⃑ = 𝑎(1,0) (41)  

The reciprocal lattice vectors of the real space structure are calculated from the 

following equations [46-47]: 

 𝑏1���⃑ = 2𝜋
𝑎2����⃑ × 𝑎3����⃑

𝑎1����⃑ ∙ (𝑎2����⃑ × 𝑎3����⃑ )
 

(42)  

 𝑏2����⃑ = 2𝜋
𝑎3����⃑ × 𝑎1����⃑

𝑎1����⃑ ∙ (𝑎2����⃑ × 𝑎3����⃑ )
 

(43)  

 𝑏3����⃑ = 2𝜋
𝑎1����⃑ × 𝑎2����⃑

𝑎1����⃑ ∙ (𝑎2����⃑ × 𝑎3����⃑ )
 

(44)  

For a 2D structure 𝑎3����⃑ = (0,0,1), and equations (8)-(10) reduce to simpler forms: 

 𝑏1���⃑ =
2𝜋

(𝑎1,𝑥𝑎2,𝑦 + 𝑎1,𝑦𝑎2,𝑥)
(𝑎2,𝑦 ,−𝑎2,𝑥) 

(45)  

 𝑏2����⃑ =
2𝜋

(𝑎1,𝑥𝑎2,𝑦 + 𝑎1,𝑦𝑎2,𝑥)
(−𝑎1,𝑦 ,𝑎1,𝑥) 

(46)  

Here 𝑎𝑗,𝑥 and 𝑎𝑗,𝑦 are the x and y coordinates of the 𝑗 = 1,2 point.  Using the above 

equations to calculate the reciprocal lattice vectors of the triangular lattice yields: 

 𝑏1���⃑ =
2𝜋
𝑎
�0,

2√3
3
� 

(47)  

 𝑏2����⃑ =
2𝜋
𝑎
�1,−

√3
3
� 

(48)  

The reciprocal lattice of the triangular photonic crystal is a triangular subsection of the 

hexagonal first Brillouin zone (BZ) as indicated by the shaded light blue area in Figure 

3-4.  This region is obtained by creating a bisecting line construction that effectively 

halves the distance between adjacent reciprocal lattice points.  The irreducible BZ is 
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represented by the dark blue triangle and is a consequence of the symmetry of the 

reciprocal lattice points.  This region represents all the eigenmodes of the structure, the 

other areas in the first BZ are simply folded versions of this zone.  The high symmetry 

directions of the irreducible BZ sides are typically labeled as Γ, M, and K and are shown 

on the figure. 

 

3.3.2 The triangular static superlattice 
 
The triangular photonic crystal lattice is now modified to reduce the size the adjacent 

rows of holes, the larger having a radius r1 in row i and a smaller radius of r2 in row j.  

The schematic of this triangular superlattice structure is shown in Figure 3-5.  This results 

in one hole of the triangle lattice formed by the basis vectors being smaller than the other 

two, resulting in the relations: 

 
𝑟2
𝑟1
≤ 1 (49)  

 ∆𝑟 = 𝑟2 − 𝑟1 (50)  

The introduction of the smaller row of holes changes the periodicity of the lattice in the 

y-direction, which in turn requires a change in the real space unit basis vectors: 

 𝑎1����⃑ = 𝑎(0,√3) (51)  

 𝑎2����⃑ = 𝑎(1,0) (52)  

The basis vectors now define a rectangular unit cell indicated by the dashed rectangle.  

Inserting the components of these unit vectors into the 2D reciprocal lattice vector 

equations yields new reciprocal lattice vectors: 
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 𝑏1���⃑ =
2𝜋
𝑎
�0,

√3
3
� 

(53)  

 𝑏1���⃑ =
2𝜋
𝑎

(1,0) 
(54)  

The new reciprocal lattice is rectangular in shape similar to the real space basis lattice as 

shown in Figure 3-6.  Again, the light blue shaded region indicates the first BZ and the 

dark blue shaded region the irreducible BZ.  In order to verify that the rectangular 

reciprocal lattice structure is valid, we need to verify that there exists Bragg reflections at 

the reciprocal lattice points which is only true as long as the holes in rows i and j have 

different properties such as different radii or ε.  This validation is performed by 

calculating the geometrical structure factor, 𝑆𝐾��⃑  given by solid state physics [47]: 

 𝑆𝐾��⃑ = �𝑓𝑗

𝑛

𝑗=1

(𝐾��⃑ )𝑒𝑖𝐾��⃑ ∙𝑑⃑𝑗 
(55)  

Here 𝐾��⃑  is the reciprocal lattice vector, 𝑓𝑗 is the form factor, and 𝑑𝑗 is the real-space 

coordinate of the 𝑗𝑡ℎ holes.  In this case there are two different hole radii 𝑛 = 2, which 

gives us two different form factors 𝑓1(𝐾��⃑ ) and 𝑓2(𝐾��⃑ ).  The reciprocal lattice vector can be 

expressed as a linear combination of the primitive lattice vectors 𝑏1���⃑  and 𝑏2����⃑  each 

multiplied by an integer 𝑛1 and 𝑛2, yielding a general expression for 𝐾��⃑ : 

 𝐾��⃑ = 𝑛1𝑏1���⃑ + 𝑛2𝑏2����⃑  (56)  

For the two different hole radii 𝑟1 and 𝑟2, one hole is chosen as the origin for simplicity: 

 𝑑1����⃑ = 𝑎(0,0) (57)  

 𝑑2����⃑ =
𝑎
2

(1,√3) (58)  
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Figure 3-5:  The real space representation of the triangular static superlattice, showing the defining parameters.  
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Figure 3-6:  Schematic showing the reciprocal lattice representation of the triangular static superlattice.  The 
red circles indicate the reciprocal lattice points for the underlying triangular lattice basis and the green circle 
are new reciprocal lattice points created by the introduction of the superlattice structure.  
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Solving for the geometrical structure factor: 

 

𝑆𝐾��⃑ = 𝑓1�𝐾��⃑ �𝑒𝑖�𝑛1𝑏1
����⃑ +𝑛2𝑏2����⃑ �∙𝑑1�����⃑ + 𝑓2�𝐾��⃑ �𝑒𝑖�𝑛1𝑏1

����⃑ +𝑛2𝑏2����⃑ �∙𝑑2�����⃑  

= 𝑓1�𝐾��⃑ � + 𝑓2�𝐾��⃑ �𝑒𝑖(𝜋𝑛1+𝜋𝑛2) 

= 𝑓1�𝐾��⃑ � + (−1)(𝑛1+𝑛2)𝑓2�𝐾��⃑ � 

(59)  

To check that the reciprocal space model is correct, we set 𝑟1 = 𝑟2, in which case 

𝑓1�𝐾��⃑ � = 𝑓2�𝐾��⃑ � = 𝑓(𝐾��⃑ ): 

 

𝑆𝐾��⃑ = 𝑓�𝐾��⃑ �(1 + (−1)(𝑛1+𝑛2)) 

= �  𝑓�𝐾��⃑ �,   𝑖𝑓 (𝑛1 + 𝑛2) 𝑖𝑠 𝑒𝑣𝑒𝑛 
0,          𝑖𝑓 (𝑛1 + 𝑛2) 𝑖𝑠 𝑜𝑑𝑑

� 

(60)  

In the reciprocal lattice diagram for the triangular superlattice the red colored 

circles represent reciprocal lattice points for which (𝑛1 + 𝑛2) is even, and the larger 

green circles represent the points where (𝑛1 + 𝑛2) is odd.  In the case where the radii of 

the holes are equal, we can see that the green circle lattice points vanish, reducing the 

structure back to a triangular lattice reciprocal space consistent with the derivation above. 

 The addition of the row of reduced radii holes into the triangular lattice changes 

the symmetry of the real-space lattice from six-fold to two-fold.  This reduction in 

symmetry is reflected in the change of first BZ from a hexagonal to a rectangular unit 

cell.  The irreducible BZ becomes a one-quarter subset of the first BZ and is indicated by 

the darker shaded region lying inside it.  The corner points Γ, M, X, and Y are the high 

symmetry points of the irreducible BZ.  While the Γ point is equivalent in both the 

triangular and triangular superlattice reciprocal space, only four of the six M points are 

shared between the two.  Both the Y and the X symmetry points are not present in the 

triangular lattice and have to be introduced.  The X symmetry point lies along two of the 
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six Γ-K directions parallel to the 𝑏1���⃑  lattice vector in the triangular superlattice reciprocal 

space.  The X point is located slightly inward from the K point, in between the two 

endpoints.  The Y point lies along the two of the six Γ-M directions and is again between 

the two endpoints.  In the final BZ analysis there are two equivalent Y and X points, four 

equivalent M points and a single Γ located within the first BZ area. 

 The analysis of the triangular and triangular superlattice photonic crystal 

structures provides a basis for analyzing the square and square superlattice photonic 

crystal structures.  The mathematical analysis will follow a similar path, starting with the 

square lattice basis, then examining the changes to the structure as the square superlattice 

modification is added to it.   

 

3.3.3 The square lattice 
 
 The square lattice consists of holes that are spaced evenly both horizontally and 

vertically with their centers forming a square as shown in Figure 3-7.  The unit cell lines 

are drawn from the radii of four adjacent holes with the following base vectors: 

 𝑎1����⃑ = 𝑎(0,1) (61)  

 𝑎2����⃑ = 𝑎(1,0) (62)  

Using the reciprocal lattice equations to solve for the base reciprocal lattice vectors 

yields: 

 𝑏1���⃑ =
2𝜋
𝑎

(0,1) 
(63)  
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Figure 3-7:  The geometry of the square photonic crystal lattice in real space 
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Figure 3-8:  Diagram of the reciprocal space representation of the square lattice.  The irreducible BZ is a 
triangle with three high symmetry points. 
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 𝑏2����⃑ =
2𝜋
𝑎

(1,0) 
(64)  

The base reciprocal lattice vectors are in the same direction as the real space lattice 

vectors, however they are scaled by a factor of 2𝜋/𝑎2.  The first BZ construction is 

shown in Figure 3-8.  The four-fold symmetry of the square reciprocal lattice creates a 

triangular shaped irreducible BZ that is bounded by the high symmetry points Γ, X, and 

M.  There are eight irreducible BZs contained in the first BZ of the square lattice, 

creating four identical X and M points for a given Γ. 

 

3.3.4 The square static superlattice photonic crystal 
 
The square photonic crystal lattice is now modified to reduce the size of the adjacent 

rows of holes as was previously done with the triangular lattice previously.  Again, the 

larger holes have radius r1 in row i and the smaller radius r2 in row j.  The schematic of 

this square superlattice structure is shown in Figure 3-9.  In this case two holes of the 

square lattice formed by the basis vectors are smaller than the other two as before: 

 
𝑟2
𝑟1
≤ 1 (65)  

 ∆𝑟 = 𝑟2 − 𝑟1 (66)  

The introduction of the smaller row of holes again changes the periodicity of the lattice in 

the y-direction, which in turn requires changing the real space unit basis vectors: 

 𝑎1����⃑ = 𝑎(0,2) (67)  

 𝑎2����⃑ = 𝑎(1,0) (68)  
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Figure 3-9:  Diagram of the real-space representation of the static square superlattice with applicable 
parameters. 
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The basis vectors now define a rectangular unit cell similar to the triangular static 

superlattice as indicated by the dashed rectangle.  In this case there are two smaller holes 

on either side of the unit cell, as opposed to the triangular superlattice where there is a 

single smaller hole in the middle.  Inserting the components of these unit vectors into the 

2D reciprocal lattice vector equations yields new reciprocal lattice vectors: 

 𝑏1���⃑ =
2𝜋
𝑎
�0,

1
2
� 

(69)  

 𝑏1���⃑ =
2𝜋
𝑎

(1,0) 
(70)  

The new reciprocal lattice is rectangular in shape, similar to the real space basis square 

lattice as shown in Figure 3-10.  Again, the light blue shaded region indicates the first BZ 

and the dark blue shaded region the irreducible BZ.  In this case the irreducible BZ is 

changed from a triangle to smaller rectangle.  In order to verify that the rectangular 

reciprocal lattice structure is valid, the geometrical structure factor and reciprocal lattice 

vector, 𝑆𝐾��⃑  and 𝐾��⃑ , were calculated: 

 𝑆𝐾��⃑ = �𝑓𝑗

𝑛

𝑗=1

(𝐾��⃑ )𝑒𝑖𝐾��⃑ ∙𝑑⃑𝑗 
(71)  

 𝐾��⃑ = 𝑛1𝑏1���⃑ + 𝑛2𝑏2����⃑  (72)  

For the two different hole radii 𝑟1 and 𝑟2, one hole is chosen at the origin for simplicity as 

before.  Note that now the position vectors are parallel to each other: 

 𝑑1����⃑ = 𝑎(0,0) (73)  

 𝑑2����⃑ = 𝑎(0,1) (74)  

Solving for the geometrical structure factor: 
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Figure 3-10:  Reciprocal space of the square static superlattice.  The red circles come from the underlying 
square lattice basis, and the green circles are new reciprocal lattice points arising from the addition of the 
superlattice structure.  
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𝑆𝐾��⃑ = 𝑓1�𝐾��⃑ �𝑒𝑖�𝑛1𝑏1
����⃑ +𝑛2𝑏2����⃑ �∙𝑑1�����⃑ + 𝑓2�𝐾��⃑ �𝑒𝑖�𝑛1𝑏1

����⃑ +𝑛2𝑏2����⃑ �∙𝑑2�����⃑  

= 𝑓1�𝐾��⃑ � + 𝑓2�𝐾��⃑ �𝑒𝑖(𝜋𝑛1) 

= 𝑓1�𝐾��⃑ � + (−1)(𝑛1)𝑓2�𝐾��⃑ � 

(75)  

In the case of the square static superlattice, the 𝑛2 term drops out, indicating that there is 

no 𝑘𝑥 dependence on the structure factor.  A check is performed as in the case of the 

triangular superlattice photonic crystal to verify that the reciprocal space model is correct 

by setting 𝑟1 = 𝑟2, in which case 𝑓1�𝐾��⃑ � = 𝑓2�𝐾��⃑ � = 𝑓(𝐾��⃑ ): 

 

𝑆𝐾��⃑ = 𝑓�𝐾��⃑ �(1 + (−1)(𝑛1)) 

= �  𝑓�𝐾��⃑ �,   𝑖𝑓 𝑛1 𝑖𝑠 𝑒𝑣𝑒𝑛 
0,          𝑖𝑓 𝑛1 𝑖𝑠 𝑜𝑑𝑑

� 

(76)  

This result is different from the triangular superlattice photonic crystal because 

here the structure factor is dependent upon only one index, a multiple of the basis vector 

in the reciprocal space 𝑘𝑦 direction.  As seen in the square superlattice reciprocal lattice 

diagram, the odd numbered indexes refers to the green circles found in alternating rows 

halfway between the red circles which are the reciprocal lattice points from the 

underlying square lattice basis.  The addition of superlattice points shrinks the first BZ, 

shaded in light blue, to an area half the size in 𝑘𝑦.  When these additional lattice points 

are removed, we are left with the original square lattice reciprocal space and the first BZ 

returns back to a square area, consistent with the derivation. 

 As in the case of the triangular superlattice, there is a reduction in symmetry when 

the alternating rows of smaller holes are added.  The superlattice addition reduces the 

symmetry of the square lattice structure from four-fold to two fold, changing the 

irreducible BZ from a triangular cell to a smaller rectangular cell.  There are four 
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irreducible BZs within the larger first BZ area, similar again to the triangular lattice.  

However, there are some differences with regard to high symmetry points.  In this case 

only two of the four X points remain equivalent.  In the 𝑘𝑦 direction the reduction in the 

size of the BZ gives a new symmetry point located between Γ and X, which is designated  

Y in keeping with the triangular superlattice designation.  Moreover, the M point from 

the square lattice is no longer a part of the irreducible BZ as the corner is shifted halfway 

down to a new point which is designated by the new letter K.  Since the Γ-K vector runs 

along a different direction than the original Γ-M direction, the band structure along it is 

expected to be changed.  Based on the new symmetry designations, there are now four 

equivalent K directions and two equivalent Y directions located within the first BZ.  The 

Γ point remains unchanged as in the case of the triangular superlattice. 

  

3.4 Folding Effects in Brillouin Zone Dispersion Contours 

The reduction in symmetry introduced as a result of the new primitive lattice 

vectors in both the square and triangular lattice leads to an effect known as BZ folding.  

Since all k-points inside the BZ are defined as an integer multiple of 𝑏1���⃑  and 𝑏2����⃑  as defined 

by the Bloch theorem, the points now lying outside of the new smaller BZ have to be 

translated inward.  In the case of the triangular superlattice, k-points from the hexagonal 

first BZ of the triangular lattice are folded into the smaller rectangular first BZ in both 

reciprocal lattice vector directions.  This effect is shown in Figure 3-11 for a single 

normalized frequency dispersion contour of the second band in a triangular lattice PC.  

The blue lines represent the original triangular lattice band, while the dotted red lines 

represent the new triangular superlattice band structure that has been folded.  The regions 
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of the original band that fall in both zones remain un-translated.  The full dispersion 

contour becomes a combination of the two curves and is shown in Figure 3-12.  The 

folding effect leads to higher curvature  contours at the BZ edges, the exact shape of the 

contour being dependent on the superlattice strength, i.e. the Δ𝑟 between the larger and 

smaller holes in the structure. 

In the case of square superlattice the degree of folding is reduced because the 

reduction in symmetry is different.  In the case of the triangular superlattice there is a 

reduction from six-fold to two-fold symmetry, leading to BZ folding in both reciprocal 

lattice directions.  In the square superlattice there a change from four-fold symmetry to 

two-fold symmetry – the consequence of the reduced original square lattice symmetry is 

that the BZ folding is now restricted to a single reciprocal lattice direction 𝑏1���⃑ .  This leads 

to a similar dispersion contour folding as shown in the triangular superlattice, except in 

this case the folding is restricted to the Γ-Y direction.  Another difference between the 

superlattices is that in the case of the triangular lattice all the irreducible BZ directions 

point to an original symmetry point of the underlying triangular lattice.  In the square 

superlattice, the smaller BZ results in a completely new lattice direction Γ-K which has 

different properties than the Γ-M direction. 

The purpose of researching these structures is to exploit the folding effects of the 

BZ dispersion contours to obtain new and enhanced refractive effects not seen in the 

underlying basis lattices.  A more detailed analysis of the dispersion contours and the 

effects of their folding will be explored in the next chapter. 
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Figure 3-11:  Example of a dispersion contour of the triangular superlattice created from the folding of the 
bands from the underlying triangular lattice basis [39]. 

 

 
Figure 3-12:  Triangular superlattice dispersion contour detailing folding effects at the edges of the BZ [39]. 
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3.5 Folding Effects in Brillouin Zone Band Diagrams 

 The dispersion contours are obtained directly from the band structures of lattices 

under investigation by creating equi-frequency surfaces.  More insight can be gained into 

how these contours are created by examining the folding that occurs directly from the 

band structure of the superlattices.  In the triangular superlattice there are two folding 

direction to examine.  The first direction is the Γ-Y band and is shown in Figure 3-13.  

The Γ-Y band structure is created by the folding of k-points running from the Y to M 

points in the triangular lattice BZ.  Numerical PWE simulations were run for the TE 

bands using MPB with the parameters of 𝜖𝑏 = 12.0 and 𝜖𝑐 = 1.0 (silicon with air holes), 

and normalized hole radii 𝑟1 = 0.30𝑎 and 𝑟2 = 0.35𝑎.  For the Γ-Y direction, the Γ-M 

band structure is first plotted, then folded into the band structure around the midpoint Y 

to obtain the triangular superlattice band structure.  This folding of the bands creates a 

more complicated band structure in which each band follows a path from Γ to Y and back 

to Γ with increasing frequency.  A similar band folding effect in the Γ-X direction is 

shown in Figure 3-14, only in this case the folding passes through the X-K and K-M 

points, creating folding centered around the midpoint X.  

 For the square superlattice, folding occurs only in the Γ-Y direction but follows a 

similar construction as in the case of the triangular lattice.  The result of the folding the 

bands around the Y point is shown in  

Figure 3-15.  The folding of the underlying square lattice band structure again leads to a 

new set of folded bands that are more complicated in shape, which will lead to different 

device refractive properties.   
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Figure 3-13:  Band diagrams showing the folding of the Γ-M band in the triangular lattice creating the Γ-Y band 
in the triangular superlattice [39]. 
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Figure 3-14:  Band diagrams showing the folding of the Γ-K-M band in the triangular lattice creating the Γ-X 
band in the triangular superlattice [39]. 
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Figure 3-15:  Band diagrams showing the folding of the Γ-X band in the square lattice creating the Γ-Y band in 
the square superlattice. 
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Figure 3-16:  Band diagrams showing the Γ-M band in the square lattice and the new Γ-K band in the square 
superlattice. 
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In the case of the Γ-K direction, there is no folding, only a different band structure due to 

change in from direction from the Γ-M vector.  Both band structures are shown in Figure 

3-16, and have different shapes and different normalized k-vector lengths. 

 The changes in band structure due multiple crossings, anti-crossings (band 

repulsion effects), and the splitting of degenerate states in the superlattice structures lead 

to complicated device dispersion properties that will be investigated in the Chapters 4 and 

5.   
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4 Photonic Band Properties of the Static Square Superlattice 
Photonic Crystal 

 

4.1 The Superlattice Strength 
 

Photonic crystals (PCs) possess a k-space dispersion surface, analogous to the Fermi 

surface, which is dramatically different from an isotropic material, opening up the 

possibility of giant refraction effects, huge dispersion (the superprism effect), and large 

modifications of the photon group velocity [48-53].  In a typical PC, these light 

propagation effects are passive since they depend upon refractive index, lattice period, 

and feature size.  In our research, a simple modification to the square and triangular 

lattice PC enables these effects to be modified significantly from both a static and 

dynamic tunability aspect. 

 The concept of superlattice strength [45, 54-55] was first introduced in the work 

of Park and Summers [45] in a conference proceeding.  In this work, a triangular lattice 

of holes with identical radii was index modulated by changing the refractive indexes of 

alternating rows of holes through the addition of electo-optic material inside them.  In 

this case the change in refractive index ∆𝑛 between rows of adjacent holes is dynamic 

when a bias is placed across them.  Superlattice effects are observed in this structure 

when the structure factor is non-zero, indicating that the holes in rows i and j have 

different properties.  In the case of the dynamic superlattice, the difference in properties 

between adjacent rows is the effective dielectric constant, which can be modified in real 

time by adjusting the level of bias that is placed on them dynamically.  The figures 

included in Section 3.1 provide a reference for this structure.  
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For the static triangular and square superlattices, tuning can be initiated by using 

electro-optic material as the slab or hole in the device.  The property difference between 

rows is the hole radius Δr.  While the static superlattice refractive index properties cannot 

be changed in real time, the difference in hole sizes still leads to the observation of the 

superlattice effect, that is, a change in ∆𝑛 between opposite rows of holes. The index 

difference becomes a function of the size of the smaller r2 hole area or volume due to the 

addition of the higher index background material compared to the r1 holes.  The 

difference in hole radii Δr = r1 - r2 is referred to as the static superlattice strength and is 

designated by the ratio of r2/r1.  The superlattice strength increases as the ratio of r2/r1 

decreases.  To provide a basis for comparison between the refractive effects of the 

triangular and square superlattice in this work, r1 was held constant at 0.35a, while r2 

varied from 0.35a to 0.15a.  The main body of work focuses on two different superlattice 

strengths:   r2/r1 = 0.30a/0.35a = 0.857 and r2/r1 = 0.20a/0.35a = 0.571. 

This chapter will focus primarily upon the analysis of the square superlattice 

structure band diagrams and dispersion contours for the superlattice strengths mentioned 

above to provide a basis for understanding static and active structure tuning analysis.  

The difference between ∆𝑛 values obtained in a static superlattice versus an active 

superlattice structure will be discussed in more detail in the refractive index effects 

chapter.   

 

4.2 Photonic Band Structure of an Ideal Square Superlattice 
 
 We begin our analysis of the photonic band structure of the square superlattice 

photonic crystal by considering the analysis of the structure by 2D models.  This 
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approach allows the use of PWE methods that greatly reduce the band structure 

computation time while giving a concise model of the frequency behavior for a square or 

other superlattice device.  The primary simulation tool used for the 2D analysis was MPB 

(MIT-Photonic-Bands).   These simulations were initially computed using idealized 

material indexes to understand the general band structure of the device. 

The 2D simulations are then repeated in the following sections using a more 

realistic material index stackup.  Using a technique known as the effective index method, 

3D FDTD simulations were run to obtain an approximate average index for the structure 

for a specific frequency range of interest.  This index value is then substituted into the 2D 

PWE simulation to simulate the stackup, which in this case is the slab waveguide 

structure.  The 3D FDTD simulations were computed using the FDTD method provided 

by the MEEP (MIT) program.   Graphs are included for both the 2D and 3D simulations 

for comparison.  Since the calculation time for the PWE simulations is shorter and has 

less stray points for nearly identical results over the frequency bands of interest, this was 

the main method used for band analysis. 

 The idealized 2D model consists of a unit cell structure of air holes (ε=1) in a high 

index Si background material (ε =12.0).  The x and y dimensions of the cell are 1a by 2a, 

with the air hole r1 located at (0,0) and the air hole r2 at (0,1).  Infinite boundry conditions 

are placed in the plane to simulate the overall device.  As mentioned above, r1 was held 

constant at 0.35a, while r2 was varied from 0.35a to 0.15a.  For identical holes sizes r1 = 

r2 = 0.35a, we obtain a double-sized version of the unit cell of a basic square lattice, 

which will show folding effects in this case since the BZ directions overlap.  We are 

primarily interested in computing the bands for the square superlattice BZ direction as 
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described in Chapter 3.  The superlattice effect we are interested in is exhibited as we 

reduce the size, and therefore the effective index, of the r2 holes.  The analysis of the 

band structure focuses on two different r2 radius changes, creating two different 

superlattice strengths:   r2/r1 = 0.30a/0.35a = 0.857 and r2/r1 = 0.20a/0.35a = 0.571.  

Figure 4-1 shows the geometry of the unit cell structure for square superlattice photonic 

crystal with a superlattice strength of 0.857. 

 

 

Figure 4-1:  Diagram of the 2D square superlattice crystal structure with a superlattice strength of r2/r1 = 
0.30a/0.35a = 0.857.  This unit cell geometry is repeatedly used in many MPB simulations. 

 

 The first ten bands of the square superlattice for TE polarization and TM 

polarization were computed and are shown in the following six figures.  In the case of the 

TE polarization, the electric field is parallel to the 2D plane of the device, normal to the 

magnetic field vector Hz following the normal photonic crystal convention. The TM 
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polarization conditions are simply the reverse of the TE vector directions, the magnetic 

field being parallel to the 2D plane of the device, normal to Ez.   The TE polarization 

band diagrams are shown in Figure 4-2 for r2/r1 = 0.35a/0.35a = 1.0, Figure 4-3 for r2/r1 = 

0.30a/0.35a = 0.857, and Figure 4-4 for r2/r1 = 0.20a/0.35a = 0.571.  The TM polarization 

band diagrams are shown in Figure 4-5 for r2/r1 = 0.35a/0.35a = 1.0, Figure 4-6 for r2/r1 = 

0.30a/0.35a = 0.857, and Figure 4-7 for r2/r1 = 0.20a/0.35a = 0.571. 

 As a general observation, we can note that the band structure for the r2/r1 = 1.0 in 

both polarizations is identical to the basic square lattice band structure, the difference 

being that the diagram shows folding effects due to the reduced BZ that is utilized in the 

analysis of superlattice band structure.  In addition, as with the basic square lattice band 

diagram behavior, there are two full band gaps rather than a single full band gap that was 

seen in a basic triangular lattice band diagram [39].  The fact that there is no full TM 

band gap, only what will be referred to as a pseudo-band gap that covers a specific set of 

BZ directions, is indicative of the behavior of the basic square lattice where a full band 

gap exists for only one polarization.  In the case of a lattice of air holes, full band gap 

behavior is exhibited only in the TE polarization condition.  If the structure were reversed 

to create a square lattice of pillars in air, the situation would be reversed and the full band 

gap would occur only under TM polarization conditions. 

Several observations regarding the superlattice influence on the band behavior of 

the structure can be made.  First, the width of the both the first and second full PBG for 

the TE polarization bands decreases rapidly as the superlattice strength is increased.  By 

the time the superlattice strength reaches approximately 0.85, the gap running from Γ-X-

K closes completely.  At this point the full TE PBGs reduce to pseudo-bandgaps covering 
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only the first section of the band diagram.  Further increasing the superlattice strength 

results in a reduction in the width of the remaining pseudo-PBGs.  In the case of the TM 

band structure, there are no full PBGs, thus the effect of increasing the superlattice 

strength only reduces the width of the pseudo-PBGs.  This effect is similar to that seen in 

the TE polarization bands when the full PBGs close and the structure is reduced to 

pseudo-PBGs.  We can examine the rate of decrease in the width of the TE PBGs as  

 

Figure 4-2:   Photonic band structure plot for TE polarization condition for the case where r2/r1 = 0.35a/0.35a = 
1.0.  
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Figure 4-3:   Photonic band structure plot for TE polarization condition for the case where r2/r1 = 0.35a/0.30a = 
0.857. 
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Figure 4-4:   Photonic band structure plot for TE polarization condition for the case where r2/r1 = 0.35a/0.20a = 
0.571. 
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Figure 4-5:   Photonic band structure plot for TM polarization condition for the case where r2/r1 = 0.35a/0.35a = 
1.0. 
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Figure 4-6:   Photonic band structure plot for TM polarization condition for the case where r2/r1 = 0.35a/0.30a = 
0.857. 
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Figure 4-7:   Photonic band structure plot for TM polarization condition for the case where r2/r1 = 0.35a/0.35a = 
0.571. 

 

 

 

 

 

 

 



79 
 

function of superlattice strength.  In this case we look at the normalized frequency 

difference between the lower band limit at the Γ point and the upper band limit at the X 

point, which are the upper and lower boundaries that determine the width of the PBGs.  

Figure 4-8 plots the width change of the first full PBG for TE polarization as a function 

of increasing superlattice strength.  Similarly, Figure 4-9 shows the same width change 

for TE polarization of the second full PBG as a function of increasing superlattice 

strength.  The plots are shown for three different initial superlattice strengths of r1 = 0.4 

and 0.35, where r2 is varied.  No full PBGs exist for r1 = 0.3.  As shown in the graphs, the 

width of both PBGs decreases rapidly as the superlattice strength is increased.  For a 

superlattice strength change of 1 to 0.857 and a given r1 = 0.4, the width of the first PBG 

decreases by 57.7%, while that for the second PBG decreases by 61.1%.  Increasing the 

superlattice strength to 0.571 completely eliminates the first and second full PBG for r1 = 

0.4, so the effect of further increasing the superlattice strength reduces the full PBGs to 

pseudo-PBGs.  

Another observation of the square superlattice band behavior is that several of the 

upper bands split inside the BZ.  This behavior can be found in bands for both TE and 

TM polarizations.  Of special interest are bands three and four, which split apart as the 

superlattice strength is increased at the K-point.  In keeping with work done on the 

triangular superlattice [39], the third band is designated as the 3s band and the fourth 

band as the 3p band.  This nomenclature was chosen because the field patterns for these 

bands resemble atomic orbitals, as we will see shortly. 

This band splitting is detailed in Figure 4-10 that shows both bands for TE 

polarization, and in Figure 4-11 for the TM polarization condition.  The dashed ellipse 
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highlights the area of interest, showing that for a superlattice strength of unity the bands 

are joined at the K-point, but gradually separate as the square superlattice strength is 

increased. 

We analyze the amount of band splitting as the superlattice strength is increased 

at the K-point by a method similar to the PBG width analysis.  By holding r1 fixed at r1 = 

0.4, 0.35, and 0.3, and varying r2, plots of the splitting variation were obtained as a 

function of superlattice strength.  This is illustrated in Figure 4-12 for the 3s-3p TE bands 

in Figure 4-13 for the 3s-3p TM bands.  As evidenced in the graphs, the magnitude of 

splitting is proportional to the relative difference between the hole sizes r1 and r2.  All the 

curves show a similar trend towards a greater degree of band splitting as the superlattice 

strength is increased. 

To further investigate the underlying basis for band splitting behavior in square 

superlattice photonic crystal, we turn to the field patterns of the device to investigate the 

electromagnetic energy distribution.  We start by analyzing the Hz field component of 

square lattice photonic crystal structure under TE polarization conditions to serve as a 

basis for this investigation.  The Hz component of the TE field was chosen for 

visualization because it is normal to the 2D plane of the structure, yielding views of the 

Ex and Ey fields in the crystal.   

Field patterns plots of photonic bands 3 and 4 for a standard dimensioned 1a x 1a 

unit cell square lattice are shown in Figure 4-14(a) and Figure 4-14(b), respectively.  The 

air holes are referenced by black circle outlines in the figures, labeled rows i and j, in 

keeping with the superlattice crystal structure convention.  Regions of positive field 

amplitude are shown in red and marked with ‘+’ signs, while those of negative field 
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amplitude are shown in blue and marked with ‘-‘ signs.  Zero crossings, or nodes,  are 

indicated by white values, indicating zero field amplitude at these points.  In these plots, 

the harmonic field pattern has phase fronts that are normal to the Γ – K direction.  The 

fields are primarily concentrated in the dielectric region surrounding the holes, with 

nodes inside the holes indicating little field energy present in the air regions.  When 

transversing across a single i or j row of holes in a horizontal direction, the field oscillates 

between positive and negative amplitudes between each hole.  Also, oscillation occurs in 

the horizontal direction. 

By changing the square lattice unit cell to a 1a x 2a dimension, a square 

superlattice photonic crystal structure is effectively created with a superlattice strength of 

1.0.  The energy distributions are shown in Figure 4-14 (c) for band 3, the 3s band, and 

Figure 4-14 (d) for band 4, or the 3p band.  When these fields are summed, the field 

pattern matches that of band 3 in the 1x1 square lattice shown in Figure 4-14 (a).  It has 

been proven that the summed energy density of the 3s and 3p field in the triangular 

superlattice are equal to the energy density of band 3 of the original triangular lattice in 

work conducted by C. Neff [39].  Although the same calculation has not been performed 

here, in the case of the square superlattice the results appear nearly identical in 

comparison to the earlier work.  The summed energy density match provides evidence 

that the 3s and 3p bands are degenerate.  This degeneracy is manifested by the fact that 

the two field patterns are identical under transitional symmetry. 

 We now investigate the effect of the superlattice strength on the field distribution 

in the square superlattice photonic crystal structure.  Figure 4-15 (a) and (b) show the 

field patterns for a superlattice strength of 0.857.  As the dielectric area around the 
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smaller holes in row j is increased, the field intensities are redistributed within the high 

dielectric constant of Si to take up the additional space available to support the 

degenerate modes.  This reshaping is a consequence of the Variational Theorum in 

electromagnetics, which infers that high-frequency modes will remain and are carried in 

areas of high dielectric constant.  In this case the modes take on a more rectangular shape 

as the r2 hole size is reduced.  Further reduction of the superlattice strength to 0.571 

increases the rectangularity of the modes, as illustrated in Figure 4-15 (c) and (d).  These 

rectangular mode shapes are not similar to the orbital shapes found in the triangular 

superlattice work, but the 3s and 3p orbital notation will continue to be used for 

consistency with the previous work. 

While the 2D PWE is completely accurate for bands under the light line, i.e. the 

guided modes, it is not as accurate for the unguided modes above the light line.  Since we 

are primarily interested in the guided modes of the 3s and 3p bands of our structure for 

refractive purposes in a real-world device, the PWE simulation will suffice for modeling 

purposes.  However, we require a more realistic model of the device to accurately 

simulate device behavior for a series of fabricated devices.  To accomplish this we have 

used a comprehensive series of 3D FDTD simulations and the effective index method in 

the next section.  The effective index method enables us to take into account the finite 

thickness of a fabricated device by providing an average index that accurately and 

effectively models an actual 3D device.  
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Figure 4-8:  Plot detailing the effect of the square superlattice strength on the width of the first full TE PBG for 
r1 = 0.4 and 0.35. 

 

Figure 4-9:  Plot detailing the effect of the square superlattice strength on the width of the second full TE PBG 
for r1 = 0.4 and 0.35.  
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Figure 4-10:   Detailed plots of the TE square superlattice band structure for the 3s and 3p bands for 
superlattice strengths of (a) 1.0, (b) 0.857,  and (c) 0.571, illustrating the band splitting effect. 
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Figure 4-11:  Detailed plots of the TM square superlattice band structure for the 3s and 3p bands for 
superlattice strengths of (a) 1.0, (b) 0.857,  and (c) 0.571, illustrating the band splitting effect. 
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Figure 4-12:  Variation of the frequency gap between the 3s (band 3) and 3p (band 4) bands at the K point with 
square superlattice strength for r1 = 0.4, 0.35, and 0.3 for TE polarization. 
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Figure 4-13:  Variation of the frequency gap between the 3s (band 3) and 3p (band 4) bands at the K point with 
square superlattice strength for r1 = 0.4, 0.35, and 0.3 for TM polarization. 
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Figure 4-14:  Field profiles of the square lattice photonic crystal structure for bands 3 (a) and 4 (b) for a 1x1 unit 
cell with TE polarization conditions, showing the Hz field component.  After changing to a 1x2 unit cell to 
simulate square superlattice conditions, the field profiles for bands 3 (c) and 4(d) are modified significantly. 
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Figure 4-15:  Field profiles of the square superlattice lattice photonic crystal structure for bands 3 (a) and 4 (b) 
for a 1x2 unit cell with TE polarization conditions and a superlattice strength of 0.857, showing the Hz field 
component.  Similar profiles are shown for a superlattice strength of 0.571 for bands 3 (c) and 4(d). 
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4.3 Photonic Bands of a 3D Slab Waveguide Square Superlattice Structure 
 

We now focus on a more realistic 3D model of the square superlattice device that 

better matches an actual fabricated device, known as the slab waveguide stackup.  This 

stackup is illustrated in Figure 4-16.  It consists of a slab of Si with a height of h = 0.5a 

and an index of n = 3.464 (ε = 12.0) surrounded top and bottom by 2a air layers (n = 1.0).  

No holes are present in this simulation as we are only interested in getting the effective, 

or average index, of the layered structure that the device will be fabricated on.  Holes will 

be incorporated in the 2D simulated structure once we have the effective index of this 

stackup.  This layered structure is similar to the SOI (silicon-on-insulator) stackup that is 

used to fabricate the device, the only difference being that the bottom layer is SiO2 (n = 

1.5) rather than air.  The difference between the two layered stackups, in terms of average 

index, is fairly small so the simpler slab waveguide stackup is adequate for 3D modeling 

purposes.   This particular stackup will provide the basis for refractive index calculations 

in the following chapter, to provide better accuracy in computing the refractive properties 

of an actual fabricated square superlattice device. 

In the 3D model infinite boundary conditions are used in the plane of the slab, and 

PML (perfectly-matched-layers) are used in z-axis of the device.  The PML layers 

provide absorption for unguided electromagnetic energy that may reflect off the upper 

and lower boundaries of the unit cell.  To further simplify the band analysis, we place the 

source at z = 0, which results in only the odd-symmetry TM bands being captured. 

A plot of the FDTD solutions for the TM bands is shown in Figure 4-17 for a 

superlattice strength of r2/r1 = 0.30a/0.35a = 0.857.  A comparison of both the idealized 

2D PWE solution and the 3D FDTD solution for the same geometry is shown in Figure 
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4-18.  It becomes more difficult to understand how the bands separate in the 3D FDTD 

simulation due the scattered nature of the solutions compared to the 2D PWE simulation 

where the solutions are categorized by band number.  The solutions in the FDTD method 

are scattered because they are computed by performing a Fourier transform (FT) on 

single k-points, resulting in erroneous points due to insufficient filtering in the spectral 

analysis.  Note that the solutions are not identical, especially for the bands above the light 

line.  In the case of the 3D simulation, the bands shift upwards as compared to the 2D 

simulation.  This is due to the fact that the average index of the structure, as “seen” by the 

source, is lower than that of pure Si due to the inclusion of the air layers.  Also note that 

splitting (less degeneracy) between the 3s and 3p bands increses in the 3D simulation 

which more accurately reflects the behavior of an slab waveguide device. 

The 3D model is accurate for both the guided and unguided modes, unlike the 2D 

PWE method, but is much more computationally intensive.  Another drawback to the 3D 

simulation is the band data is scattered due to computation of stray solution points.  Some 

of these stray points are actually light line solutions, but most are errant points that are 

especially evident in the computation of the upper bands.  We need to keep the band data 

categorized according to the band number as in the 2D PWE simulations, while 

combining this with the band data accuracy of the 3D FDTD band computations.  This is 

accomplished by use of the effective index method described in the next section. 

 

4.4 The Effective Index Method 
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It is necessary to accurately match the 3s and 3p band guided modes between the two 

simulations in order to precisely perform device refractive behavior analysis.  In order to 

effectively shift the 2D bands upwards to match the 3D solution in the frequency range of 

these two bands, we must calculate the average index of the 3D slab waveguide structure.   

This was performed by an effective index analysis using the exact same 3D geometry, but 

removing the holes to create a bare slab structure.  A 3D simulation of the bare structure 

was then performed from which the average index of entire stackup can be calculated.  In 

the 3D effective index simulation we are only interested in the lowest band, which is the 

longest wavelength solution that effectively “sees” the stackup as an average effective 

index.  To accurately perform this we extended the Γ – K direction out in BZ space so as 

to have enough points to calculate a straight line index change versus k.  A calculation of 

the TM bands for the slab waveguide structure for the three repeated BZs is shown in 

Figure 4-19.  The path of the lowest band is traced out using lines and is shown.  Then we 

took each k-point on this lowest band line and created a table with its corresponding 

normalized frequency value ω.  The effective index at each point was then calculated 

from: 

 𝑛 =
𝑘
𝜔

 (77)  

The effective slab thickness for each index was then calculated based on the operating 

wavelength of interest for the device.  Here we choose an operating wavelength of λ = 

1500nm which is commonly used in telecommunications devices, and is compatible with 

optical fiber operating frequencies.  The normalized slab thickness in our case is 0.5a, 

thus the effective index can be calculated by: 
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𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑛𝑚) 

=  𝜆 ∗ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (0.5) ∗ 𝜔 

 

(78)  

This calculation is shown in Table 1: 
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Table 1:  Effective index and effective thickness calculations for the our slab waveguide structure. 

k (norm) ω (norm) effective n (= k/ω) effective ε (= n^2) 

thickness based on 
fixed wavelength of 
1500nm (= 1500nm 
* norm. slab 
thickness (0.5) * 
norm. ω) 

0 
    0.044118 
    0.088235 0.087532 1.008036512 1.01613761 65.64888254 

0.132353 0.126354 1.047481356 1.09721719 94.76512909 
0.176471 0.166409 1.060462112 1.124579892 124.8068551 
0.220588 0.201082 1.097007002 1.203424363 150.8114134 
0.264706 0.224874 1.177129078 1.385632866 168.6556007 
0.308824 0.243557 1.26797028 1.607748631 182.668041 
0.352941 0.257747 1.369329619 1.875063607 193.310565 
0.397059 0.269517 1.473225086 2.170392155 202.1375555 
0.441176 0.279875 1.576333717 2.484827986 209.9062841 
0.485294 0.289444 1.676644909 2.81113815 217.0826908 
0.529412 0.298577 1.773117076 3.143944164 223.9326602 
0.573529 0.307485 1.8652265 3.479069896 230.6138471 
0.617647 0.316302 1.952710094 3.813076713 237.2268651 
0.661765 0.325332 2.034118773 4.137639184 243.9992865 
0.705882 0.333965 2.113643522 4.467488937 250.473535 
0.75 0.342895 2.187258749 4.784100834 257.1712196 
0.794118 0.351923 2.256507665 5.091826844 263.9424826 
0.838235 0.361062 2.321581843 5.389742255 270.7966003 
0.882353 0.370316 2.382703544 5.677276176 277.7369042 
0.926471 0.379688 2.440086158 5.95402046 284.7657403 
0.970588 0.389178 2.493946079 6.219767043 291.883286 
1.014706 0.398782 2.544513188 6.474547363 299.0864482 
1.058824 0.408499 2.59198616 6.718392256 306.3741849 
1.102941 0.418322 2.636583342 6.951571719 313.7416023 
1.147059 0.429474 2.670847272 7.133425149 322.1053209 
1.191176 0.438268 2.717915731 7.38706592 328.7012702 
1.235294 0.448381 2.755007932 7.590068706 336.2859967 
1.279412 0.458579 2.789947736 7.78380837 343.9343365 
1.323529 0.4708 2.811237719 7.90305751 353.0996515 
1.367647 0.47921 2.853963019 8.145104916 359.4073529 
1.411765 0.489632 2.883315869 8.313510402 367.2242576 
1.455882 0.495074 2.940737404 8.647936477 371.3054295 
1.5 0.504 2.976190476 8.857709751 378 
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Now that we have the table of effective index values versus their effective thickness, we 

can select the frequency range of the 2D PWE bands of interest that we wish to match.  In 

this case we are interested in index matching the 3s and 3p bands in the 3D simulation 

which lie in the normalized frequency range of ω = 0.35 to ω = 0.45.  Note that the 

effective index value obtained is frequency specific and only valid around the point 

±0.5ω, outside of which the accuracy of the band match is degraded.  We choose the best 

operating frequency that in turn provides the best 2D band match around this frequency 

range.  This is done by calculating the lattice constant a for the several different source 

frequency values: 

 𝑎 =  𝜆 ∗ 𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (79)  

The effective slab thicknesses are then calculated by multiplying this by 0.5, the 

normalized thickness value chosen in our simulation.  Table 2 shows the results of this 

calculation: 

Table 2:  Calculated lattice constant a and effective slab thickness 0.5a for various source frequencies centered 
around the 3s and 3p bands. 

ref. λ (nm) 
source frequency f 
(normalized) a = λ*f (nm) 

0.5a 
(nm) 

     a 1500 0.35 525 262.5 
b 1500 0.375 562.5 281.25 
c 1500 0.4 600 300 
d 1500 0.45 675 337.5 

 
We can now calculate the effective index given the effective 0.5a slab thickness 

values. This calculation is performed by plotting the effective index curve versus the 

effective thickness from the 3D FDTD calculations in Table 1.  This is shown in Figure 

4-20, and is labeled by the reference number for each source frequency point.  The 
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intersection between the TM effective index curve at lines a - d provides the effective 

index values for each 3D source frequency.  A list of the effective index values we obtain 

is shown in Table 3.  The resulting values were obtained from linear interpolation 

between points in Table 1. 

These effective index values, are then substituted for the index of Si in the 2D 

MPB simulations.  Four 2D simulations were run using the values of effective index for 

points a - d in Table 2, in order to find the index that best matches both the 3s and 3p 

bands in the guided region around the BZ K-point.  A plot of the band matches in the 

guided region around K-point are shown in Figure 4-21 - Figure 4-22 for the 3s band, and 

Figure 4-23 - Figure 4-24 for the 3p band.  Note that for the 3s band the best match 

between the 2D and 3D solutions is at a source frequency of 0.35 (point b).  However, the 

match for the 3p band is not as good at this point and is better matched at source 

frequency 0.4 (point d).  To obtain the best match for both bands, 0.375 source frequency 

effective index was chosen.  This match gives a -4.215% frequency error for the 3s band 

and a +4.076% error for the 3p band, within acceptable computational error. 

 The parameters for our 3D waveguide slab effective index calculation will now 

provide the best approximation for the 3s and 3p curves in our 2D simulation.  The best 

effective index was obtained for a lattice constant of a = 562.5nm based on a center 

source frequency f = 0.375. The next step is to use these simulation parameters to 

investigate the refractive properties of the square superlattice for a variety of different 

slab stackups.  For each slab stackup, a 3D effective index simulation will be run using a 

center Gaussian source frequency of f = 0.375, then matching the effective index curve 

we obtain with the a = 562.5nm line.   It is not necessary to run the simulations at f = 
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0.375 since we are using a Gaussian source with a large bandwidth that will cover a wide 

frequency range, but for consistency we choose to use this as convention.  Now the 2D 

PWE simulations can be run very efficiently and with high accuracy for the 3s and 3p 

bands for many different waveguide slab configurations.  The focus of the next chapter is 

to use the 2D band simulation data we obtained to compute the refractive behavior of the 

square superlattice photonic crystal structure.     
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Figure 4-16:  3D slab waveguide stackup 
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Figure 4-17:  3D FDTD TM band diagram for a square superlattice strength of r2/r1 = 0.30a/0.35a = 0.857. 
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Figure 4-18:  Comparison of the ideal 2D PWE and 3D FDTD computed band points.  The 3s and 3p bands for 
each simulation are indicated for clarity. 
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Figure 4-19:  Normalized frequency versus k-value for the TM modes of a 3D FDTD slab waveguide stackup. 
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Figure 4-20:  TM effective index versus effective thickness of the slab structure.  Table 2 references the a values 
for the a-d values of effective index. 

 
 

 

 

Table 3:  Tabulation of the TM effective indexes obtained from matching the a-e line intersection with the 3D 
slab waveguide effective index curve. 

 

ref. 0.5a (nm) 
source frequency 
f (norm.) 

calculated 
effective η from 
Table 1 

calculated 
effective ε 
from Table 1 

     a 262.5 0.35 2.236854239 5.003516887 
b 281.25 0.375 2.411554739 5.815596258 
c 300 0.4 2.550506509 6.505083453 
d 337.5 0.45 2.762876405 7.633486028 
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Figure 4-21:  Four 2D simulations for the 3s band matched against the 3D slab waveguide 3s band. 

 



104 
 

 
 
Figure 4-22:  Close up view of the area around the K-point for the 3s band match. 

 

 
 
Figure 4-23:  Four 2D simulations for the 3p band matched against the 3D slab waveguide 3s band. 
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Figure 4-24:  Close up view of the area around the K-point for the 3p band match.  
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5 Refraction Effects in the Square Superlattice 
 

 

Having obtained the model parameters for correctly simulating our structures, we 

investigate how the square and triangular superlattice can be applied and exploited as 

optical refraction controlling devices.  To do this, we first need to investigate the 

dispersion contours for these structures.  Up to this point, we have investigated the 

photonic band structure of the square superlattice, however this does not give a full 

picture of how light propagates through the structure.  The photonic band structure is a 

simplified view of the dispersion properties of the device, in that it only plots the 

dispersion relation along the boundaries of the BZ.  In reality, the dispersion relation for a 

photonic crystal structure is a three dimensional surface in k-space, having kx and ky 

vector components in the plane of the device.  The dispersion surface is in effect a 

contour plot of this three dimensional band structure, and is created by taking “slices” 

through the three dimensional band surface for a particular frequency of interest ωn, 

representing the frequency of the light source travelling through the device.  For ease of 

graphical analysis, the contour maps are plotted in surface relief graphs in two-

dimensional form.   The refraction response of the device can then be extracted from this 

information using wavevector analysis, which will be detailed in the following section. 

To create the dispersion contour plots for the triangular and square superlattice, a 

two-dimensional PWE simulation method was used, as described in Chapter 4.  The PWE 

analysis provides solutions that are automatically categorized by band number, reducing 

the number of spurious solutions that can lead to calculation errors as in the FDTD 

approach.  Initially, the dispersion contours for the idealized square superlattice, with a 
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superlattice strength of 0.857, will be examined to obtain an overall picture of the 

features of interest.   Mainly, we are interested in examining the degenerate 3s and 3p 

contour curvatures of the square superlattice to determine which bands have the 

opportunity to provide the most interesting dispersion contour shapes that in turn provide 

interesting device refractive properties.  The curvature of these dispersion contours have 

the most interesting refractive effects, forming closed boundaries that allow for both 

positive and negative refraction.   

After this initial analysis, the model will be modified to more faithfully represent a 

“real-world” slab waveguide device to more accurately assess how they would work 

when fabricated.  To this end, the effective index model of a slab waveguide device we 

developed in Chapter 4 will be applied; i.e. an index change in the simulation, to more 

accurately describe the dispersion contours.  Using this data, which more accurately 

describes actual device behavior, the dispersion contours of interest can be recalculated 

for the square superlattice.  Using these improved accuracy contours, the refraction 

characteristics of the square structures will be calculated, focusing on a few contours of 

interest that illustrated the refractive behavior of the device 

After modifying the dispersion contour model to represent the slab waveguide 

structure, an investigation into static tuning of the square superlattice will be 

demonstrated.  Static tuning of the lattice is accomplished by the use of ALD technology, 

in which the structure is conformally coated with an optical material.  In this case we 

have selected TiO2, a dielectric with a medium range index (n = 2.31) as compared to the 

index of Si (n = 3.46).  This ALD coating work has been performed for the triangular 

superlattice [56] – here we will focus on ALD modification to the square superlattice.  
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The changes to the dispersion contours and refraction behavior of the device will be 

investigated as the lattice is coated with 0 – 200nm of TiO2. 

The final analysis of the square and also the triangular superlattice will be for 

dynamic tunability configurations.  Two different configurations will be investigated.  

The first configuration consists of placing sealed liquid crystal (LC) cells over both the 

top and bottom of the waveguide.  In this case the cells will modify the effective index of 

the structure depending on whether they are biased on (higher index) or biased off (lower 

index).  Changes to the dispersion contours and refractive behavior of both the square and 

triangular superlattice are examined.  Finally, a configuration in which the entire lattice is 

made of electro-optic material, known as lead lanthanum zironcate titanate (PLZT) will 

be investigated.  In this case, biasing of the entire structure will affect the overall 

effective index of the device and lead to changes in the dispersion contours and refraction 

properties.   Previous work has been done for the triangular superlattice, the focus here 

will be the square superlattice only. 

Conclusions will be drawn on the usefulness of controlling the dispersion contours 

both statically and dynamically following the analysis. 

 

5.1 Calculation of PC Dispersion Surfaces and Refraction Curves by 
Wavevector Analysis 

 

Wavevector analysis is performed through the use of wavevector diagrams.  These 

wavevector diagrams have been applied to optical structures in order to determine 

refraction behavior at an interface between two materials.  First, consider an interface 

between two isotropic, homogeneous materials, which will be called Region 1 and 
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Region 2.  An infinite plane wave with angular frequency ω in Region 1 is incident at an 

angle θ1 = θi at the interface to Region 2.  In k-space the wavevectors in the respective 

regions are given by: 

 𝑘1 =
𝑛1𝜔
𝑐

 (80)  

 

 𝑘2 =
𝑛2𝜔
𝑐

 (81)  

If the assumption is made that n1 > n2, the interface can be considered to be in the kx 

direction and the normal interface in the ky direction.  Due to the transitional symmetry of 

the interface, the wavevector components of the incident, reflected and refracted waves 

parallel to the interface must be conserved.  The conservation condition can be shown by 

creating a construction line drawn normal to the kx axis at the endpoint of the  

𝑘1∥ vector.  The refracted vector k2 is then created by adding a construction line upward 

to the vector endpoint from the origin making an angle θ2 = θr, the refraction angle.  

Since the material is homogeneous and isotropic, the contour that is created for various 

incident angles becomes a circle.  For a family of different ω values, a set of contours can 

be created which creates the dispersion contour plot for refraction within Region 2.  If we 

set the parallel components of the wavevectors equal, 𝑘1∥ =  𝑘2∥, as the conservation law 

requires, we obtain: 

 

 
𝑛1𝜔
𝑐

sin𝜃𝑖 =
𝑛2𝜔
𝑐

sin 𝜃𝑟 (82)  

 

which reduces to: 
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 𝑛1 sin𝜃𝑖 = 𝑛2 sin𝜃𝑟 (83)  

 

In the case two isotropic, homogeneous optical materials, the equation reduces to Snell’s 

Law.  The group velocity 𝑣𝑔 of the propagating wave in Region 2 is given by the gradient 

of the dispersion contour at a particular ω and is given by: 

 𝑣𝑔 = ∇𝜔�𝑘�⃑ � =
𝜕𝜔
𝜕𝑘

 (84)  

In the case of uniform circular dispersion contours, k2 and 𝑣𝑔 are coincident.  A diagram 

illustrating these wavevectors and the associated dispersion contour is shown in Figure 

5-1. 

 

Figure 5-1:  Diagram showing the use of wavevector methods to calculate the refraction of a plane wave at the 
interface of two different isotropic homogeneous materials. 

 

 If the material is no longer considered isotropic and homogeneous, as in the case 

of a PC where the material is patterned creating areas of different optical indexes, the 
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dispersion contour 𝜔�𝑘�⃑ � can be of any shape.  Wavevector methods, as applied to multi-

dimensional PC structures, was first introduced by Russel et.al. in 1996.  The 

conservation condition still holds in the case of PC refraction, although in this case k2 and 

𝑣𝑔 are not coincident.  Figure 5-2 shows the wavevector diagram for an arbitrary 

dispersion contour.  Note that in this case, the direction of  𝑣𝑔 is highly dependent upon 

the incident angle of the incoming radiation in the case where the contours contain sharp 

curvature points.  

 

Figure 5-2:  Diagram showing the use of wavevector methods to calculate the refraction of a plane wave at the 
interface between an isotropic homogeneous material and a complex dispersion surface similar to that of a PC. 

 

 Given a calculated dispersion contour surface, 𝜔�𝑘�⃑ �, the refraction properties of 

the device can be calculated by plotting θi , the incident wave angle, vs θr, the reflected 

wave angle.  These values are computed from the conserved wavevector component 𝑘1∥ 

and the derivative of the kx and ky components of the contour at a particular point, 
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specifically the slope of the tangent line at that point on the contour.  The respective 

formulas are: 

 𝜃𝑖 =
𝑛1 ∙ sin−1(𝑘1∥)

𝜔
 (85)  

 

 𝜃𝑟 = tan−1 �
𝑑𝑘𝑦
𝑑𝑘𝑥

� (86)  

Details of how dispersion contours for the square superlattice PC are calculated 

numerically are contained in the Section 5.2.  In Section 5.3, refraction plot construction 

will be covered, where the slab waveguide structure of the square superlattice PC is 

modeled and examined in more detail.  

  
   
 

5.2 Dispersion Contours for Ideal Square and Triangular Superlattice 
  

The initial analysis starts by examining the dispersion contours for ideal 2D square 

and triangular superlattices.  In this case, the 2D structure consists of air holes (n = 1) in a 

2D medium of ideal index Si (n = 3.464).  Creating the dispersion contours is a complex 

process that is based on an MPB PWE simulation of the superlattice unit cell band 

structures across the entire first BZ of the structure.  Because the dispersion contours can 

be of any shape, it is important to compute as many band points as possible in both the kx 

and ky directions, to avoid gaps in the curves - especially at high curvature points that can 

be missed in a particular direction.  Missed points in the curves can cause large spaces 
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between points, and since the refraction curves rely on accurate slopes, the refraction 

plots will be reduced in accuracy.     

Once the family of bands is generated in both k-directions, the intersection between 

the bands and the particular contour frequency of interest is computed using MATLAB 

code.  A sub-program that finds the intersection points was utilized inside the main body 

of code to generate the intersection point matrix.  These points are then plotted in k-space 

to create the dispersion contours for the full BZ.  The BZ is then repeated and folded to 

create a larger repeated BZ, also known in solid state physics as the repeated zone 

scheme, so that the curves join at the BZ edges.  In this case we are interested primarily 

in the 3s (band 3) and 3p (band 4) dispersion curves.  The curves that have the most 

curvature, and therefore the biggest refraction response, will be those curves near the 

center of the K-point (or the M-point in the triangular superlattice) that form closed 

contours.  The focus of both the static and dynamic tuning of these closed contours forms 

the basis for the refraction characterization of the devices. 

The  dispersion contours for the ideal 2D triangular superlattice have been 

documented in previous research work [39].  These dispersion contours were computed 

for a superlattice strength of 0.857 and TE source polarization.  The plots were centered 

around the Γ point and are shown in Figure 5-3 for all four bands.  The frequency values 

for several curves is included on the plot for topology reference.   
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Figure 5-3:  Contour maps of the dispersion surfaces inside the first Brillouin zone for the first four TE bands of 
a triangular superlattice.  The superlattice strength is 0.857, with n = 3.464 for the Si structure and n = 1 for the 
air filling the holes.  Curves are shown for (a) band 1, (b) band 2, (c) band 3s, and (d) band 3p [39]. 

 

To compute the triangular lattice refraction curves for light propagating along the 

Γ-M direction, the dispersion contours must be oriented around the M point instead, to 

obtain the correct orientation.  There are two reasons this particular direction is primarily 

being investigated.  First, the anisotropy of the curves at the M-point are larger than other 

BZ directions where the curves tend to be symmetric across the zone. The anisotropy also 

introduces interesting refraction behavior, such as the exhibiting both positive and 

negative refraction for a single frequency curve.  Second, the curves around the M-point 

are typically within the guiding regime of the slab waveguide structure, i.e. below the 

light line in the band structure.  Other higher frequency bands that have interesting 

dispersion contours tend to operate above the light line, thus they are unguided and will 

decay as extended states outside of the slab structure.  There may be contours in other 

directions under the light line that exhibit interesting refractive properties. However, 

these contours are left for future investigations. 
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Once the curves are shifted to the repeated zone scheme around the M-point, the 

triangular lattice shows closed curves around the M point for both the 3s and 3p bands, 

the 3s being more “square”-like and the 3p being more “elliptical”-like.  These dispersion 

contours are shown in Figure 5-4 for the 3s band and Figure 5-5 for the 3p band.  We will 

revisit the refraction response of the triangular superlattice in the active tuning section of 

the research, specifically the LC wave-guided configuration. 

 

 

Figure 5-4:  Dispersion contours of the triangular superlattice 3s band for a superlattice strength of 0.857, 
centered around the M-point. 
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Figure 5-5:  Dispersion contours of the triangular superlattice 3s band for a superlattice strength of 0.857, 
centered around the M-point. 

 

 We now turn to the dispersion contours for the ideal 2D square superlattice.  The 

dispersion contours for the ideal 2D model (again, air holes (n = 1) in a 2D medium of 

ideal index Si (n = 3.464) are shown in Figure 5-6 - Figure 5-9 for bands 1, 2, 3 (3s), and 

4 (4p) for a TE source polarization condition.  In this case, the band 1 and band 2 

dispersion contours are similar to those obtained from the triangular lattice.  The band 3 

(3s) contours shows a marked difference however, in that there are no closed contours 

around the K-point.  A closed contour could be created around the Y-point as in the case 

of the triangular superlattice, however, this contour would be in the unguided region of 

the device and thus will not be considered since we are only interested in slab guided 

modes.  Also, another closed contour could be created around the X-point, creating an 

elliptically shaped contour.  This particular closed contour could be considered to be in 

the guided regime of the device.  Unfortunately, it is small in size which limits the 
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frequency range over which it will provide significant refractive properties, thus it was 

not investigated in this work.  Band 4 (3p) shows a closed contour around the K-point in 

the guided regime and is much larger, thus it is suitable for refraction calculations.  The 

shape is somewhat elliptical, but has flat edges on the sides.  Therefore, the band 4 (3p) 

dispersion surfaces, and the refractive properties of these surfaces are of interest. 

 

 

Figure 5-6:  Contour maps of the dispersion surface in the first BZ for band 1 of an ideal 2D  square superlattice 
having a strength of 0.857. 
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Figure 5-7:  Contour maps of the dispersion surface in the first BZ for band 2 of an ideal 2D square superlattice 
having a strength of 0.857. 

 

 

Figure 5-8:  Contour maps of the dispersion surface in the first BZ for band 3 (3s) of an ideal 2D square 
superlattice having a strength of 0.857. 
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Figure 5-9:  Contour maps of the dispersion surface in the first BZ for band 4 (3p) of an ideal 2D square 
superlattice having a strength of 0.857. 

 

5.3 Dispersion Contours of the of Slab Waveguide Square Superlattice 
 

 Having obtained the ideal response for the square superlattice, we now focus on a 

more realistic 3D model of the device that more exactly matches an actual fabricated 

device, known as the slab waveguide stackup.  It consists of a slab of Si with a height of 

h = 0.5a and an index of n = 3.464 (ε = 12.0) surrounded top and bottom by 2a air layers 

(n = 1.0) as shown previously in Figure 4-16.  No holes are present in this simulation as 

we are only interested in calculating the effective, or average index, of the layered device 

structure.  Holes will be incorporated in the 2D simulated structure once we have the 

effective index of the stackup.  This layered structure is similar to the SOI (silicon-on-

insulator) stackup that is used to fabricate the device, the only difference being that the 

bottom layer is SiO2 (n = 1.5) rather than air.  The difference between the two layered 
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stackups, in terms of average index, is fairly small so the simpler slab waveguide stackup 

is adequate for 3D modeling purposes.   This particular stackup will provide the basis for 

refractive index calculations, to provide higher accuracy in computing the refractive 

properties of an actual fabricated square superlattice device. 

The effective index simulation were run using a TE polarized source and a center 

Gaussian source frequency of ω = 0.375.  The effective index curve obtained using the 

lattice constant a = 562.5nm line was then utilized.  An effective index of n = 3.01 was 

obtained for the TE polarized source, compared to n = 2.41 for the TM case.   The 2D 

structure now consists of air holes (n = 1) in a 2D medium of effective index TE 

polarization mode compensated Si (n = 3.01).  Lowering the index to account for the 

finite thickness of the slab waveguide structure causes the bands to move upwards as 

expected, and also to closely match the expected 3D band structure of the device.  The 

inner dispersion curves of the device now center around ω = 0.276 – 0.282 as shown in 

Figure 5-10, as opposed to the lower frequencies of ω = 0.242 – 0.248 in the ideal 2D 

model case shown in Figure 5-9.  Note that in the slab waveguide model, the K-point 

dispersion curves become more rounded, as opposed to the ideal case.  Using these new 

frequency adjusted dispersion curves, we are now ready to compute the refraction 

response of the 3p square superlattice device in the next section. 
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Figure 5-10:  Contour maps of the dispersion surface in the first BZ for band 4 (3p) of an slab waveguide 
effective index modeled 2D square superlattice having a strength of 0.857. 

 

5.4 Refraction Properties of the Square Superlattice 3p Band 
 

The refraction properties of the 3p band for the central dispersion contours can now 

be computed using the accurate slab waveguide model of the square superlattice.  The 

first step is to fold the dispersion contour from a single BZ into the repeated zone scheme 

to create a closed contour.  This is accomplished by first sorting the curve points in 

sequential order in a single BZ quadrant, then using rotation functions in Matlab to create 

the other three quadrants of the curve.  Once the closed curve is created with all the k-

points arranged in sequential order, a final rotation of the entire curve is necessary to 

make the Γ-K direction normal to the surface.  In the case of the square superlattice, the 

BZ rotation angle was 63.435°, as opposed to the triangular lattice where the rotation 
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angle was 60°.  This rotation places the θi angle at 0 degrees, parallel to the Γ-K 

direction.  The set of four inner 3p contours obtained from the slab waveguide model of 

the square superlattice shown in their rotated state in Figure 5-11.     

 

Figure 5-11:  Rotated dispersion contours around the K-point for a square superlattice slab waveguide structure 
3p band with TE polarization and 0.857 superlattice strength. 

 

 As illustrated in the rotated contour diagram, there can be both forward and 

backward propagation, based on the direction that 𝑣𝑔 takes.  The direction of 𝑣𝑔 depends 

on the incident angle of the incoming light as it is effectively swept around the contour.  

Using the equations for θi and θr from the previous section, a plot of the incident angle of 

light versus the refracted angle of light can be constructed.  In this case we are varying 

the frequency of the incoming light to make contact with each of the separate dispersion 

contours.  Figure 5-12 shows the refraction plot for these four dispersion curves as the 

incident angle is changed.   
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Figure 5-12:  Refraction plots for the 3p band of the square superlattice slab waveguide structure, showing both 
the forward and backward propagating response for a superlattice strength of 0.857. 

 

Note that by displaying the entire dispersion surface we obtain curves indicating 

both the forward and backward propagation in the device.  In reality, the only useful 

refraction is for the forward propagating light.  In order to modify the refraction curves, 

we use the top half of the rotated contour and perform the same calculations to generate 

the plot.  In this way, only the forward propagating refraction response of the square 

superlattice 3p band is computed.  Figure 5-13 shows the forward propagating response 

for two of the 3p dispersion contours.  Based on the given contours, a maximum Δθr = 

80.71 – (-11.35) = 92.06° at an incident angle of θi = 13.3° was found.  The refraction in 

this case changes from negative to positive and the frequency of light is changed from ω 
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= 0.282 to ω = 0.276.  In an experimental measurement of the device, the frequency of 

the light source requires adjustment to observe the shown refraction change.  We can now 

examine how to tune these structures to design different refraction responses.  The first 

investigation into tuning the square superlattice device starts with static tuning using thin-

film ALD coating applications to the structure. 

 

Figure 5-13:  Refraction plots for the 3p band of the square superlattice slab waveguide structure, showing only 
the forward and propagating response for a superlattice strength of 0.857. 

 

 Now that we have a clear picture of what the refraction response is for the 3p 

band elliptical dispersion contours centered around the K-point, we can examine how we 

can tune these structures to get different refraction responses.  The first investigation into 

tuning the square superlattice device starts with static tuning using thin-film ALD coating 

applications to the structure. 
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5.5 Static Tuning of the Refraction Properties of the Square Superlattice 
3p Band Utilizing ALD 

 
 

The goal of static tuning the square superlattice device is to understand how the 

refraction properties of the device are changed with the application of optical material to 

the structure.  Previous work of this nature has been performed on the triangular 

superlattice [56].  In this set of simulations a superlattice strength of 0.857 was used for 

TE polarization conditions.  A medium index material of TiO2 (n = 2.31) was selected as 

it has a high enough index to make the tuning changes more observable.  ALD is a 

conformal coating process, thus we start with a 5nm thickness simulation, increasing to a 

200nm thickness.  To make the simulation as accurate as possible, an understanding of 

how the structure changes as it is coated is needed.  Figure 5-14 shows a side view of the  

gradual application of ALD layers to a photonic crystal structure.  Note for a conformal 

coating, as the coating thickness increases the small holes fill in first, followed by the 

larger holes.  In addition, a layer of material is also deposited on the surface of the device.  
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Figure 5-14:  Diagram illustrating the effect of coating a superlattice structure with multiple ALD thin-film 
layers of TiO2. 

 

Creating this 3D structure in a 2D simulation requires two steps.  First, the 

effective index model of slab waveguide is modified by adding a thickness of TiO2 over 

the top of the slab.  Two examples of the simulation stackup are shown in Figure 5-15 for 

two different thickness of TiO2.  This step required many 3D FDTD simulations using TE 

polarization conditions to be run with various thicknesses of coating.  The effective index 

change is then calculated for each thickness.  Table 4 relates the applied coating thickness 

to the normalized thickness that was used in the 3D simulations. 
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Figure 5-15:  Diagram for the slab effective index slab waveguide model for two different TiO2 coating 
thicknesses that was used in the 3D FDTD simulation. 

 
Table 4:  Conversion of the actual thickness of ALD deposited TiO2 to a normalized value that is used in the 3D 
effective index slab waveguide simulations. 

TiO2 
thickness  

TiO2 
thickness  

(nm) (normalized) 
0 0 
5 0.008888889 

10 0.017777778 
20 0.035555556 
30 0.053333333 
40 0.071111111 
50 0.088888889 
60 0.106666667 
70 0.124444444 
80 0.142222222 
90 0.16 

100 0.177777778 
110 0.195555556 
120 0.213333333 
130 0.231111111 
140 0.248888889 
150 0.266666667 
160 0.284444444 
170 0.302222222 
180 0.32 
190 0.337777778 
200 0.355555556 
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 Each 3D TE simulation produced a new effective index that takes into 

account the thickness of the top layer of TiO2 material being added to the device.  Table 

5 shows the effective index that was calculated for each of the coating thicknesses.  This 

data can also be graphed and is shown in Figure 5-16.  The curve has an interesting 

shape, starting out with large effective index changes for small thickness ALD layers; 

then gradually decreases to smaller and smaller index changes for larger thicknesses.  

This is expected as the ratio of the thicknesses of Si and TiO2 becomes larger, the 

effective index of the structure tends to blend together into a single material, as the 

effective index change with each successive layer is reduced. 

Table 5:  Tabulation of the effective index values obtained through the 3D simulations for various thicknesses of 
ALD deposited TiO2. 

TiO2 thickness TE effective index 
(nm) 

 0 3.010370541 
5 3.014709326 

10 3.019309286 
20 3.026156459 
30 3.031499208 
40 3.037206168 
50 3.04097723 
60 3.044349657 
70 3.048038255 
80 3.049910267 
90 3.051989535 

100 3.053983111 
110 3.055253177 
120 3.056556285 
130 3.057711063 
140 3.058483836 
150 3.059299521 
160 3.05993933 
170 3.060415874 
180 3.060945859 
190 3.061282337 
200 3.061609775 
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Figure 5-16:  Plot of the effective index values for various thickness of ALD deposited TiO2 given in Table 5. 

 

The second step in creating an accurate model is to fill the holes with TiO2 

material along with using the effective index of the coating on top of the slab.  Filling in 

the holes will take into account the additional thin film material that is added conformally 

inside them during the ALD process.  Figure 5-17 shows the filling in of holes in a 2D 

triangular superlattice structure.  To use the various hole filling layer thicknesses in the 

2D model, they must be normalized.  A table of the normalized values of the hole size 

where air (n = 1) is present is shown in Table 6.  In the MPB simulation, the hole index is 

first changed to TiO2, then overwritten by the air cylinders using the normalized values in 

the table, creating the annual TiO2 structure around the outside of the holes.  Another 

observation is that the small holes will be completely filled with TiO2 at a coating 

thickness of 170nm, while the larger holes will fill at the full coating thickness of 200nm. 
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Figure 5-17:  Diagram illustrating the filling of the holes in a triangular superlattice through the use of TiO2 
ALD coatings.  This is the model that was incorporated into the 3D effective index values to create an accurate 
2D model of the material infiltration. 
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Table 6:  Tabulation of the real hole and normalized hole radii used in the 2D coated slab waveguide 
calculations. 

TiO2 
thickness 

Normalized r1 
radius Actual r1 radius 

Normalized r2 
radius Actual r2 radius 

(nm) (normalized) (nm) (normalized) (nm) 
0 0.35 196.875 0.3 168.75 
5 0.341111111 191.875 0.291111111 163.75 

10 0.332222222 186.875 0.282222222 158.75 
20 0.314444444 176.875 0.264444444 148.75 
30 0.296666667 166.875 0.246666667 138.75 
40 0.278888889 156.875 0.228888889 128.75 
50 0.261111111 146.875 0.211111111 118.75 
60 0.243333333 136.875 0.193333333 108.75 
70 0.225555556 126.875 0.175555556 98.75 
80 0.207777778 116.875 0.157777778 88.75 
90 0.19 106.875 0.14 78.75 

100 0.172222222 96.875 0.122222222 68.75 
110 0.154444444 86.875 0.104444444 58.75 
120 0.136666667 76.875 0.086666667 48.75 
130 0.118888889 66.875 0.068888889 38.75 
140 0.101111111 56.875 0.051111111 28.75 
150 0.083333333 46.875 0.033333333 18.75 
160 0.065555556 36.875 0.015555556 8.75 
170 0.047777778 26.875 0 0 
180 0.03 16.875 0 0 
190 0.012222222 6.875 0 0 
200 0 0 0 0 

 
 
 

Using the combination of the effective index of the TiO2 coating on top of the 

slab, and the changing the hole sizes in the 2D simulation, a full set of 3p band diagrams 

and dispersion contours was created for each coating thickness.  We can now investigate 

the 3p band diagram for the various thickness of applied TiO2 to determine how the TE 

bands move downwards as the coating is applied.  As shown in Figure 5-18, the bands all 

have approximately the same shape.  The spacing between bands follows the same trend 

as the effective index curve, showing larger downward shifts for the thinner coatings, and 
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then gradually showing less and less shifting for larger coating thickness where the 

effective index curve plateaus. 

 

 
 

Figure 5-18:  Band diagram for the 3p band of the square superlattice with strength 0.857, showing all the ALD 
coating thicknesses effects on the downward shifting of the bands. 

 
We can also look at the TE band 2 and 3s bands for 0nm TiO2 vs. 200nm TiO2 to 

see how the bandgap is affected by the addition of the coatings.  There is only a pseudo 

PBG1 for the slab 0nm coated device.  As illustrated in the graph, the bandgap is 

completely closes at 200nm as a consequence of the upper band moving down faster than 

the lower bands.  This band movement is a consequence of the effective index change as 

the various coating thickness are added.  The band diagram for 0nm of TiO2 is shown in 

Figure 5-19, while that for 200nm of TiO2 is shown in Figure 5-20. 
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Figure 5-19:  Band diagram of the 0.857 square superlattice effective index slab waveguide model for 0nm of 
TiO2. 

 

 
 
Figure 5-20:  Band diagram of the 0.857 square superlattice effective index slab waveguide model for 200nm of 
TiO2. 
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Using the graph of the various 3p bands for different coating thicknesses, we can 

choose a point where multiple dispersion contours cross at a single frequency.  This is 

different from the uncoated slab waveguide where instead of varying the frequency 

source value, we now keep the frequency source fixed and adjust the refraction curves by 

the addition of the ALD layers.  The dispersion contours were constructed for two sets of 

a single frequency but combining curves with different coating thicknesses.  Refraction 

curves were then computed to determine the dependence on coating thicknesses. 

 Figure 5-21 shows the dispersion contours for three small coating thicknesses 

ranging from 30nm to 50nm at a fixed frequency of ω = 0.259.  Note that the sides of the 

dispersion curves are now flatter compared to the uncoated slab case.  Based on the band 

diagram, these bands show some of the largest changes in frequency with each additional 

10nm of coating.  This is a direct consequence of the larger effective index changes at 

thin coating thicknesses.  The forward refraction curves are computed for these three 

contours and are shown in Figure 5-22.  Again, the curves show a similar trend in their 

areas of positive and negative refraction.  An example of the refraction change that could 

be produced by the addition of these coatings are Δθr = 80.55 - (-8.08) = 88.63° at an 

incident angle of θi = 16.9°, between the coating thicknesses of 30nm and 50nm.  

Between 40nm and 50nm at θi = 29.7°, a change in refraction angle of Δθr = 86.84 - (-

3.00) = 89.64° is observed.  Since these devices are tuned statically after manufacture, the 

TiO2 coatings could be used as a refraction angle adjustment to the final device.  This 

could be useful when a specific desired refraction angle is needed for a particular 

application. 
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Figure 5-21:  Rotated dispersion contours of a 0.857 square superlattice for 30, 40 and 50nm of ALD TiO2 
coating. 

 
 
Figure 5-22:  Refraction curves of a 0.857 square superlattice for 30, 40 and 50nm of ALD TiO2 coating. 
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 Figure 5-23 shows the dispersion contours for a series of nine coating thicknesses 

ranging from 60nm to 150nm at a fixed frequency of ω = 0.246.  The contours for thicker 

coatings almost overlap, due to the progressively smaller index changes involved.  

According to the band diagram, these bands show smaller changes in frequency with each 

additional 10nm of coating.  The forward refraction curves computed for the nine 

contours are shown in Figure 5-24.  The curves show a similar trend in their areas of 

positive and negative refraction, but now they are spaced much closer together.  The area 

of negative refraction are reduced in size with the addition of thicker layers of TiO2 

material.  Since the curves are spaced closer together, the refraction change between them 

is also reduced.  For the 60nm and 70nm coatings and θi = 17.05°, a refraction change of 

Δθr = 81.58 - (9.66) = 71.92° is computed, which is less than that for the thinner coatings.  

For thicker coatings between 120nm and 150nm at θi = 44.47°, a refraction change of Δθr 

= 82.61 - (27.45) = 55.16° is calculated.  These thicker coatings can be used to fine tune 

the refraction angle since the change between them, in terms of refraction, is very small.   

 Statically tuning the devices after manufacture may be a useful manipulation to 

change the direction of light output to a fixed position, and has the benefit that regardless 

of the nano-feature mis-sizing, the device can be tuned after manufacture.  Currently, 

from an industry standpoint, most of the interest in PC devices today is for beam 

steerable and switchable applications.  Following this analysis, the next investigations 

focused on two active tunable square superlattice configurations, one using a liquid 

crystal slab sandwich configuration, the other converting the entire structure to a non-

linear optical material such as PLZT. 
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Figure 5-23:  Rotated dispersion contours of a 0.857 square superlattice for 60 – 150nm of ALD TiO2 coating. 

 

 
 
Figure 5-24:  Refraction curves of a 0.857 square superlattice for 60 – 150nm of ALD TiO2 coating. 
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5.6 Dynamic Tuning of the Square Superlattice Using Liquid Crystal 
Materials 

 

The refractive index of PC structures can be modified through the use of electro-optic 

(EO) or nonlinear materials (NL) [53, 57-62] or mechanical deformation can modify the 

lattice period [63-64]. Experimentally, Leonard et al. [65] found that infiltrating a 2D 

triangular lattice of air pores in silicon with a liquid crystal (LC) allowed temperature 

dependent tunability of the air band edge frequency. However, the maximum theoretical 

tuning of the air band edge was not achieved because pinning of the LC molecules 

limited the alignment of the director to an escaped-radial configuration, which reduced 

the refractive index tuning to below the maximum Δn of 0.2.  In the current work, we 

present several new lattice structures with dynamic refractive index tuning that offer 

significant tunability improvements over the square and triangular lattice PCs.  The 

superlattice structures more sensitive to changes in refractive index and therefore can 

provide greater tuning options than the basic PC structures alone. 

We first consider a tunable configuration of the square superlattice slab waveguide 

structure using liquid crystal materials.  In this configuration, the slab waveguide 

structure is surrounded on top and bottom by two filled LC cells.  These cells could be 

self contained structures with ITO glass providing the method of actively changing their 

index by applying a bias across the plates.  For these LC cells, the index can be varied 

from n = 1.5 for the “off” condition (no bias) to n = 2.2 for the “on” condition (biased).  

The index change is a result of the LC molecules aligning themselves under applied bias, 

effectively increasing the optical index of the material.   
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The idea for implementing this structure results from the work by a startup 

company.  They designed a beam steering waveguiding structure, originally conceived 

for a military hardware replacement application that was bulky.  Figure 5-25 and Figure 

5-26 show two pictures of the device the company was designing.  In this case, there is 

only a liquid crystal cell on the top of the device.  The waveguide core is not a photonic 

crystal but simply a guiding structure.  In this configuration, the output light can be 

steered by affecting an index change on the Gaussian input beam.  Here the tail of the 

beam is affected by the index change causing it to refract slightly from its input direction.  

In this design, the beam steering ratio is quite small, only 30° at a maximum. 

Our design consists of using two LC cells to change the average index of the 

structure further than the one cell approach, while also adding the patterned square 

superlattice PC to the waveguiding structure.  The addition of the square superlattice PC 

has been investigated to see if output beam steering could be increased to a value of over 

60°, making it more useful for its intended application. 

 
 

 
 
Figure 5-25:  A design for a LC tunable beam steerable device. 
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Figure 5-26:  Top viewpoint of a design for a LC tunable beam steerable device. 

 

 Figure 5-27 shows the slab waveguide model modification by adding the LC cells 

on top and bottom.  The effective index of the overall structure was calculated for both 

the “on” and “off” states of the LC cells to provide input for the 2D simulation of the 

structure.  The square superlattice device was then simulated using a superlattice strength 

of 0.857 with TE source polarization conditions.  Two effective index values were 

generated from the 3D FDTD simulations – for the off condition the effective index is n = 

3.034 and for the on condition the effective index is n = 3.093.  This results in a very 

small index change of only Δn = 0.059.  Even though the index change is relatively 

small, using the square superlattice 3p refraction response  increases the beam steering 

angle.  This refraction plot is shown in Figure 5-28.  For an input source frequency of ω = 

0.274, at the θi angle of 13.05°, an active steerable beam of Δθr = 81.09 - (-7.51) = 88.60° 
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could be obtained even with this small index change for the square superlattice 3p band.  

This is a large potential refractive angle change and could be quite useful in this device 

application. 

   

 
 

Figure 5-27:  3D effective index slab waveguide model, modified to include LC cells on the top and bottom of the 
slab. 
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Figure 5-28:  Refraction curves for the 3p band of a 0.857 square superlattice for both the on and off bias 
condition of the LC cells. 

 
 

Using the same effective index slab model, we can also compute the refraction 

changes for the triangular superlattice in this configuration.  In the case of the triangular 

superlattice, both the 3s and 3p contours can be examined as both have closed contours 

around the M-point.  Previous work has been done on this structure using LC infiltrated 

holes rather than cells on the top and bottom.  The issue of filling the nanoscale holes 

with LC is that the index change biased vs. unbiased in reality is quite small.  This is due 

to the fact that the LC molecules are fairly large compared to the hole size, and as 

mentioned previously they tend to pin to the walls, thus significantly reducing the overall 

index change.  Also, there is difficulty in infiltrating such small holes from a fabrication 
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perspective.  Using the new scheme of placing sealed LC cells on the device, refraction 

calculations were run for both bands to determine if they exhibited a large refractive 

angle change similar to the square superlattice 3p band. 

 Figure 5-29 shows the refraction diagram for the 3s band of the triangular 

superlattice at a fixed frequency of ω = 0.33.  As illustrated in the graph, the curves are 

very close together using the same effective index values as the square superlattice.  In 

this case a maximum change of Δθr = 59.31 – (21.41) = 37.90° at θi = 17.75°.  This is 

significantly less than that of the 3p band of the square superlattice.  The 3p band of the 

triangular superlattice is similar to the square version so a larger refraction response is 

expected. 

 
 
Figure 5-29:  Refraction curves for the 3s band of a 0.857 triangular superlattice for both the on and off bias 
condition of the LC cells. 
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Figure 5-30:  Refraction curves for the 3p band of a 0.857 triangular superlattice for both the on and off bias 
condition of the LC cells. 

 
 

From the 3p contours of the triangular superlattice in Figure 5-30, it can be 

observed that these curves are also quite close together.  it can be observed that these 

curves are also quite close together.  The largest tunable refraction that can be obtained 

for this band is Δθr = 88.15 – (22.14) = 66.01° at θi = 18.06°.  This value is greater than 

that for the 3s band for the triangular superlattice, but still less than the 3p band refraction 

in the square superlattice.  The difference between the two is Δθr = 88.60 – 66.01 = 

22.59°, showing that the 3p band of the square superlattice provides about 34.2% more 

refraction for the same change in index.  The large refraction change makes this structure 
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potentially useful for improving  refraction in the proposed LC beam steerable waveguide 

application. 

 

5.7 Dynamic Tuning of the Square Superlattice Using Electro-Optic 
Materials 

 
 

As a final active tuning investigation of the square superlattice 3p band, the entire 

structure can be constructed in a non-linear optical material such as PLZT (lead 

lanthanum zirconate titanate).  This material changes index upon the application of a bias 

across the material.  For the “off” case with no bias, the index is approximately n = 2.49, 

while for the “on” case the index is n = 2.61, yielding a Δn of approximately 0.12.  For a 

more realistic model, we substitute these values into the 3D slab waveguide model to 

obtain an accurate effective index for the entire structure.  The effective index 

simulations yield n = 2.009 for the off case and n = 2.117 for the on case, resulting in a 

Δn change of 0.108 for the structure.  This is a larger refractive index change than the Δn 

= 0.059 that was found for the LC slab waveguide structure.  

 The simulation was run for TE source polarization with 0.857 superlatttice 

strength as before.  Figure 5-31 shows the curves for both PLZT bias conditions.  The 

maximum refraction angle in this case is Δθr = 86.77 – (-2.87) = 89.64° at θi = 10.51°;  

similar in magnitude to that for LC slab waveguide configuration.  Previous work on the 

3p band of the triangular superlattice gave only a Δn of 55.2°, so the square superlattice 

3p band improves this refraction response by 62.3%, which is significant. 

 



147 
 

 
 
 
 
 
 
 

 
 
Figure 5-31:  Refraction curves for the 3p band of a 0.857 square superlattice for both the on and off bias 
condition of the PLZT. 

 
 
 

5.8 Conclusions and Future Work on the Square Superlattice PC Structure 
 

Through this work we have identified that the square superlattice, specifically the 3p 

band, shows great potential to produce large refraction values.  It has been demonstrated 

that refraction can be controlled statically and dynamically through the introduction of 
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various linear and non-linear optical materials into the structure.  Several points need to 

be made regarding the degree of refraction that can be obtained in real fabricated devices 

that are subjected to real source and measurement conditions. 

First, an actual real-world light source has a finite excitation beam size, rather than 

the infinite plane wave source that was used in the numerical simulations.  Since the 

beam is incident on points that are near the BZ boundary, the finite beam size will cause 

the k-values to be spread over this region of curvature.  The large curvature of the 

contour surface will typically lead to a large dispersion, where the actual excitation will 

spread rapidly and decay within the square superlattice structure.  To counter this effect, 

either the source excitation beam and device must be made wider, or a different contour 

chosen to obtain the desired tunable refraction effects.  These effects need to be examined 

closer in measurements of a fabricated square superlattice to determine how they could 

be minimized. 

Second, the PLZT version of the device presents a fabrication challenge.  PLZT is 

currently not compatible with cleanroom processes therefore, it could not be fabricated 

using these technologies, such as electron beam lithography and plasma etching.  A way 

to mold the device using some kind of material injection or inversion technique, or 

making the holes with focused ion beam (FIB) technology may be possible.  This 

fabrication work is left for future research, as the structure shows good tunability and 

potential applications, and would be valuable to investigate further. 

In spite of these challenges, the square superlattice looks promising as a way to 

produce and control large refractions in a device.  Work is underway to measure and 

characterize the refraction in these fabricated devices.  An SOI version of the lattice was 
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recently produced using cleanroom technologies – the SEM image is shown in Figure 

5-32.  Unfortunately, the measurement facilities available to our group are limited to 

reflectivity characterizations of the device only at this time.  Reflectivity measurements 

only allow probing of the non-guided modes of the structure, which are not valuable in 

determining the refractive properties of the device.  In order to fully probe the refraction 

effects in the square superlattice, we require a transmission measurement setup.  We are 

currently investigating setting up such a system, or utilizing equipment from another 

group.  Further investigations and publication should follow from this additional planned 

measurement work. 

 

Figure 5-32:  SEM image of a fabricated square superlattice PC with dielectric strength k = r1 / r2 = 0.587 

 

In the square superlattice research work, we have primarily focused on the higher 

frequency bands, where the shorter operating wavelength of light in the structure is on the 

same scale as the Si and air dielectric features.  This operating regime produces the 
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irregularly shaped dispersion contours that were the focus of the work.  For the optical 

invisibility cloaking structure examined in the next section, we will primarily be focusing 

on the lower bands, where the operating wavelength of light in the structure is much 

larger than the Si and air dielectric features.  In this case the light sees an average index 

between the two materials, creating a spatially varying index across the device.  We will 

now turn to this new optical invisibility cloaking structure, where the index averaging 

method will be discussed in more detail.    
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6 The Optical Invisibility Cloak 
 
 

6.1 Introduction to Electromagnetic Cloaking 
 
 

The idea behind invisibility cloaking was originally published by Pendry et al. in 

2006 [66].  The concept involves creating a closed space from which electromagnetic 

radiation is excluded.  To create the cloaked area, the radiation must be steered around it.  

Since electromagnetic waves are constrained to travel in straight lines away from their 

point of origin according to Fermat’s principle, a way to steer the beams around the space 

without violating this law must be found.  This steering can be accomplished by use of 

mathematical transformation on the original space that creates a warped lattice as shown 

in Figure 6-1.  Consider the original space to consist of a uniform dielectric material.  The 

concealment space then distorts the dielectric function of the material in such a way that 

the electromagnetic radiation travels around the cloaking area or is reflected off the area 

in a uniform way.  Simulated ray diagrams illustrating how the electromagnetic radiation 

would flow around the cloaked area are shown in Figure 6-2 (A) for a 2D circular 

cloaking region and in Figure 6-2 (B) for a 3D spherical cloaking region. 

    

Figure 6-1:  Illustration of the warping of dielectric space by a mathematical transform operation. 
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Figure 6-2:  Simulated ray diagrams for electromagnetic radiation flowing around a (A) 2D circular cloaked 
region and (B) a 3D spherical cloaked region [66]. 

 

To accomplish this transformation, we must determine how Maxwell’s equations are 

affected by the distortion of the dielectric space function, and therefore how the 

electromagnetic wave propagation is affected around the cloaked area.  It turns out the 

Maxwell’s equations have the same form, but the dielectric and magnetic constants 

around the space are scaled by different factors. Therefore, a transformation of the 

properties of a material surrounding the concealment region is equivalent to distorting the 

original space.  The material or metamaterial that is placed around the distorted region is 

now the actual cloaking structure, and provides the transformation required for 

electromagnetic radiation to move around the cloaking region uninterrupted.  These 

transformation techniques as applied to cloaking structures that operate at optical 

frequencies are considered to be part of a emerging field known as transformation optics. 

 The original work by Pendry et. al. [66-67] was mainly devoted to the 

conceptualization of the mathematical transformations, i.e. transformation optics, that 
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enable the computation of the material properties required to create the cloaking 

structure.  The determination of whether the cloaking device can work at broadband 

frequencies or is confined to a single operating frequency is dependent upon the laws of 

physics.  Although the phase velocity in the cloak material surrounding the void can and 

must be greater than the phase velocity of light in a vacuum to create the cloaking effect, 

it is not possible for the group velocity of the radiation in the material to exceed that of 

light.  This requires the presence of dispersion in the cloaking material to obtain different 

phase and group velocities.  However, all materials have dispersion properties that 

change with frequency,  thus efficient cloaking is currently limited to a single frequency 

until sufficiently broadband metamaterials can be developed. 

 After the publication of this work indicating that an invisibility cloaking structure 

was mathematically and theoretically possible, work by other groups commenced to 

obtain a practical realization of cloaking structures.  The first real-world cloak 

construction was developed by Schurig et al. [68] in 2006.  The cloaking structure 

consisted of structured metamaterials that contained split ring resonators.  The cloak 

works for an narrowband incident TE wave (here using the Ez electrical engineering 

notation), and its functionality is dependent only upon 𝜇𝑟 , 𝜇𝜑, and 𝜀𝑧.  Simplification of 

the electromagnetic parameter requirements was realized by assuming 𝜇𝜑=1, making the 

system of design equations spatially homogeneous and eliminating the need for any 

infinite parameter values, which are hard to realize experimentally.  The simplifications 

reduced the effectiveness of the cloak somewhat, but good reduced scattering behavior 

was exhibited.   
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Figure 6-3:  Experimental cloak consisting of split ring resonators produced by Shurig et al. [68] 

 

Figure 6-4:  Simulated (A) and measured (C) electromagnetic cloaking performance for the structure developed 
by Schurig et. al. [68] 
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 The main difficulty in creating devices that exhibit cloaking behavior lies in the 

fact the they require extreme values of permittivity and permeability necessary for correct 

device operation [69-70].  While the design of these structures for operation in the 

microwave frequency range requires the use of resonating metal elements [68], this 

strategy and material will not work for structures cloaking in the optical regime.  This is 

due to the fact that metal materials are unable to maintain low-loss performance 

characteristics at higher frequencies of operation. 

Recently, a new cloaking design has been theoretically proposed that reduces the 

required range of material property values for higher frequency device operation [40]. 

This design, the ‘carpet’ cloak, compresses a curved reflective surface into a flat 

reflective surface, effectively shielding objects behind the curve from view with respect 

to the incoming radiation source.  In this case the electromagnetic energy reflects off the 

cloaked area, rather that travelling around it in space.  The quasi-conformal mapping is 

performed such that transformed cells of the structure reduce the overall anisotropy of the 

device to a smaller range of isotropic medium indices.  Thereby, this approach eliminates 

the need for absorptive metallic resonant elements, and thus can be fabricated using only 

dielectric materials.  A figure for this index mapping will be shown in the next section 

covering the numerical theory of this cloak design.  This cloaking structure was recently 

demonstrated to work in the microwave [71] and optical regimes [72-74].  Our goal was 

to adapt this design for operation at optical frequencies by scaling the device dimensions 

down to nanoscale dimensions.  For device operation in the near infrared wavelength 

spectrum, features in range of 5 - 50nm need to be created within high precision 

tolerances to prevent undesirable shifts in the frequency of operation of the cloak. 
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6.2 Goals of the Optical Cloaking Research 
 

The main goal of the research was to prove that the mathematical optical 

frequency ground-plane cloaking concept proposed by Li and Pendry [40] could be 

fabricated into an actual device and measured, proving that the real-world device 

performance would match that predicted by theory.  This will be accomplished by first 

converting the mathematical model of the structure into an actual device structure that 

can be modeled.  The structure will then be numerically simulated to determine its 

performance at optical frequencies.  The challenge lies in the experimental portion of the 

research, in which the nano-scale cloaking device will be fabricated and its performance 

measured to determine if the real-world device performance matches that predicted 

numerically. 

The second main goal of the research was to investigate the tunability of the 

structure through the use of ALD coatings and electro-optic materials to modify the 

operating wavelength of the structure were to be pursued.  Initially these investigations 

were conducted numerically to test the device operation and tuning as the coatings were 

added to the structure.  The rest of the research focuses coating the fabricated samples 

with ALD coatings such as TiO2 and comparing the experimental and measurement 

results. 

 

 

6.3 Design and Numerical Analysis of the Optical Cloak 
 

Before the work could be begin on constructing this ground plane cloak 

experimentally, numerical simulation of the cloaking structure was required to determine 
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the index values required for the material that would make up the structure.  Since the 

material we desire to work in is Si, we require a conformal mapping that gives us an 

index range of 𝜀 ≤ 12.0, the maximum optical index of Si at a 1.55μm operating 

wavelength.  Once we have the conformal index map that adheres to our index limits, the 

cloak can be constructed by area or volume averaging a Si / air structure that can be 

fabricated using microelectronics processing technology. 

The mathematical background used to created the index map starts by converting a 

physical index mapped coordinate system, mapping it into a virtual index mapped 

coordinate system that contains the cloaking area.  The two systems are shown below in 

Figure 6-5. 

 

Figure 6-5:  Physical and virtual systems for the ground-plane cloak design.  Shaded regions are the ground 
planes.  The physical system is perceived by the observer as the virtual system with a flat ground plane [40]. 

 

The physical system has coordinates (x,y) or (x1, x2), while the virtual coordinate system 

has coordinate labels of (𝜉, 𝜂) or (𝜉1, 𝜉2).  The transform starts with the introduction of a 

Jacobian matrix Λ: 

 Λ𝑖′
𝑖 =

𝜕𝑥𝑖

𝜕𝜉𝑖′
 (87)  

The covariant metric is described by 𝑔: 
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 𝑔𝑖′,𝑗′ = 𝜉𝑖′ ∙ 𝜉𝑗′  (88)  

Or incorporating the Λ formula: 

 𝑔 = Λ𝑇Λ (89)  

To create the cloaking effect, the observer must see the physical system as an isotropic 

homogeneous medium having permittivity 𝜀𝑟𝑒𝑓 and unit permeability (i.e. structure is 

non-magnetic).  The electromagnetic parameters of the physical medium that are now 

created by the coordinate transform given by: 

 𝜀 = 𝜀𝑟𝑒𝑓/�det (𝑔) (90)  

 �𝜇𝑖 𝑗� = ΛΛ𝑇/�det (𝑔) (91)  

The principal values of the permeability tensor 𝜇𝑇 and 𝜇𝐿 in the physical medium, i.e. the 

cloaking material, can written in terms of refractive indices: 

 𝑛𝑇 = �𝜇𝐿𝜀 (92)  

 𝑛𝐿 = �𝜇𝑇𝜀 (93)  

These index values are for the two planes waves travelling along the principal axes.  The 

anisotropy of the material can be described by the anisotropy factor α: 

 𝛼 = max �
𝜂𝑇
𝜂𝐿

,
𝜂𝐿
𝜂𝑇
� (94)  

Using equations (81) - (84), the formula becomes: 

 𝛼 +
1
𝛼

=
𝑇𝑟(𝑔)
�det (𝑔)

 
(95)  

where 

 𝜇𝐿𝜇𝑇 = 1 (96)  
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We can now define an averaged refractive index 𝑛 that puts the describes the system in 

terms of 𝛼 and 𝑛 instead of the electromagnetic parameters 𝜀 and 𝜇𝑖𝑗: 

 𝑛2 =
𝜀
𝜀𝑟𝑒𝑓

=
1

�det (𝑔)
 

(97)  

In a cloaking structure, the compression of space in the physical domain makes the cloak 

anisotropic.  We wish to minimize the anisotropy by choosing a suitable coordinate 

transform.  If the transform reduces the anisotropy enough, we can drop the factor by 

assigning 𝛼 = 1.  In this way, we reduce the terms and only keep the average refractive 

index term 𝑛.  This reduces the physical medium to a simple dielectric profile with unit 

magnetic permeability.  Reducing the anisotropy factor requires minimizing the 

Modified-Liao functional: 

 Φ =
1
ℎ𝑤

� 𝑑𝜉
𝑤

0
� 𝑑𝜂

𝑇𝑟(𝑔)2

det (𝑔)

ℎ

𝑜
 (98)  

Without going into further technical proof, this functional minimizes the average and the 

maximum value of  𝑇𝑟(𝑔)/�det (𝑔) in the physical domain.  That is, the anisotropy in 

the physical domain is now minimized.  The unit cells in the transformed grid  are now 

rectangles with a constant aspect ratio of 𝑀:𝑚, where 𝑀 is a conformal module of the 

physical domain, i.e. a geometric property of the physical domain with four defined 

boundaries).  The function 𝑚 = 𝑤/ℎ is now a conformal module of the virtual domain 

and is described by: 

 
|𝜉1|
|𝜉2| =

𝑀
𝑚

 (99)  

 �det (𝑔) = |𝜉1||𝜉2| (100)  

If we now substitute equations (92) – (93) into equation (88) we obtain: 
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𝑇𝑟(𝑔)
�det (𝑔)

=
𝑀
𝑚

+
𝑚
𝑀

 
(101)  

Which can also be expressed as: 

 𝛼 = max �
𝑀
𝑚

,
𝑚
𝑀
� (102)  

These equations are now independent of position .  It can be proven that in the limit of 

𝑀 = 𝑚, the quasiconformal map approaches the conformal map.  The quasiconformal 

map is required to keep the topology of the physical space unchanged without creating 

errant singular points in the coordinate transformation. 

 For an example, consider the mapping of a rectangle bounded by 0 ≤ 𝜉1 ≤ 4, 

0 ≤ 𝜉2 ≤ 1.5 in the virtual domain, to the same rectangle in the physical domain with a 

bottom boundary specified by: 

 𝑦𝑏𝑜𝑡𝑡𝑜𝑚(𝑥) = �0.2 cos �
𝜋𝑥
2
�
2

    1 ≤ 𝑥 ≤ 3 

0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (103)  

This equation describes the “bump” area on the ground plane of the physical space that 

defines the cloaking area, behind which the object to be hidden is placed.   

Applying the mathematical transform to this physical system results in the index 

map shown in Figure 6-6 (a)-(b).  Figure 6-6 (a) is the transfinite grid transformation, in 

the case that interpolation is used for a regular 40 x 15 grid.  Note that in this case there is 

only a linear compression of the index value in the 𝑦 direction.  Here the anisotropy 

factor 𝛼 ranges from 1.0 to 1.385, while 𝑛2 ranges from 1.0 to 1.153.  For device design 

purposes, we would like to have a fixed anisotropy, eliminating the need for a material 

with a more complex dielectric profile.  Thus, the preferred cloak construction method is 

to use the quasiconformal mapped grid shown in Figure 6-6(b).  In this case, the grid 
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lines are orthogonal to the cloaking area.  This quasiconformal mapping changes the 

aspect ratio of each cell so that the anisotropy factor 𝛼 becomes a constant of 1.042.  The 

index value range 𝑛2 is increased in this case to a range of 0.68 to 1.96.  While we have 

increased the index range for the sake of minimizing the anisotropy in the structure, both 

𝑛 and 𝜀 remain finite without approaching zero or infinity, unlike the case for the original 

design where the radiation flow around the cloaking area [66].  The quasiconformal 

mapping in this case effective crushes the object into a plane rather than a line.  The 

choice of Equation 96 to describe the inner boundary was chosen to achieve a smaller 

value of 𝑛, rather than using a boundary with sharp corners that could results in 

singularities in the solution. 

 

Figure 6-6:  Plots of the transformed grid in a physical space with a ground plane cloak boundary described by 
Equation (96).  Grid (a) is for a transfinite grid and (b) is the quasiconformal grid.  The color map shows the 
values of 𝒏𝟐. 

 
Now that the index values for the quasiconformal mapped cloak have been 

computed, the physical design of the cloak can be constructed.  The small anisotropy and 
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finite range of 𝑛 from the quasiconformal map calculations make the physical realization 

possible using only silicon and air as dielectric materials.  For device operation in the 

near infrared wavelength spectrum, features in range of 5 - 50nm need to be created 

within high precision tolerances to prevent undesirable shifts in the frequency of 

operation of the cloak.  To accommodate the small feature size and range in the nanoscale 

regime, specific design choices were made in the creation of this cloaking device to 

maximize performance and minimize the complexity of fabrication.  The basic design 

strategy is to use deep sub-wavelength scale silicon nanostructures to produce a 

metamaterial structure with desired effective refractive index values at different points 

within the device. When the features are much smaller than the wavelength of light, the 

effective index of a composite structure is determined by properly averaging the indexes 

of the constituent materials. In our design, we chose our unit cell to be 150nm which 

corresponds to λ/10 for operation at λ = 1500nm. Each unit cell may contain an air hole 

or a silicon nanorod. Since the effective index of a given unit cell is given by the volume 

average of the indexes of silicon (ε = 12.0) and air (ε = 1.0) within the unit cell, we can 

simply change the size of the air hole or silicon nanorod to realize a range of effective 

index values required to implement the cloak structure. For a given unit cell size, air 

holes with varying diameters were found to provide a smaller range of effective indexes 

compared to nanorods. We thus chose to use silicon nanorods of various diameters to 

implement the all-dielectric cloak structure.  The size of the nanorods were then 

determined using the effective medium theory.  We first calculated the effective 

permittivity for the fundamental transverse-magnetic (TM, electric field perpendicular to 

the device layer) mode for the air-silicon-oxide slab waveguide, which was found to be 
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εSOI-TM = 7.55 at λο = 1500 nm. If the nanorods are small, the effective permittivity of the 

nanorod array is given by the simple volume average of the silicon slab and air, εeff = 

AεSOI-TM + (1 – A)εair where A is the total cross-sectional area encompassed by nanorods 

and εair = 1.  The range of permittivity values required for the cloak can now be realized 

by progressively  varying the nanorod diameter throughout the structure. The validity of 

this simple averaging rule was confirmed by performing rigorous 3D photonic band 

structure calculations as verification of the method.  

 Simulation results for the ground-plane cloaking structure utilizing the finite-

element method are provided in the original paper by Pendry et. al. [40].  In these 

simulations the index profile is created directly through the use of a dielectric matrix.  

Here a Gaussian beam with a 750nm wavelength is launched into the profile at an angle 

of 45 degrees.  The real part of the total electric field pattern is shown in Figure 6-7(a), 

and reflects off the cloaked area as if it was a flat ground plane.  Contrast this field 

pattern with Figure 6-7(b) in which there is only a single dielectric constant for cloak.  

This field pattern clearly shows the presence of the cloaking structure, splitting the 

incident beam into two different angles of 38 and 53 degrees. 
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Figure 6-7:  (a)  Electric field pattern for the ground-plane cloaking structure with an incident Gaussian beam 
launched into the index mapped dielectric material at a 45 degree angle.  (b)  Electric field pattern when the 
cloaked area is reflective and index mapping is removed from the background material [40]. 

 

 The performance of our nanorod cloak design was investigated by similar 

methods, here utilizing the FDTD simulation method.  Instead of using a dielectric matrix 

as in the previous work, the structure was created as a matrix of Si nanorods in air, 

creating the original matrix profile as a discrete effective index profile.  The results are 

shown in  Figure 6-8 showing a well-defined beam analogous to the specular reflection 

that would be obtained from a flat mirror ground plane.  This result, when compared to 

the simulation in the original work, shows good agreement.  In this case, scattering is 

present due to the discrete nature of the effective index dielectric matrix.  The amount of 

scattering in the field pattern is directly proportional to the size of the nanorod structures 

used in the simulation.  Initially larger nanorods were used due to fabrication constraints 
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(to be discussed in the next section).  Decreasing the size and periodicity of the nanorods 

reduces the scattering significantly in the simulation, due to the fact that the index profile 

is now more precise, especially in the area of the cloaked region.  Some light leakage is 

present around the reflecting interface due to the less than 100% reflectivity at this point. 

 

Figure 6-8:  FDTD simulation showing the performance of the silicon nanorod array cloak. The frequency was 
set to ωa/2πc = 0.1 which corresponds to a = 150 nm for an operating wavelength of λ = 1500 nm [72]. 

 

 FDTD simulations were also performed on a reference device constructed entirely 

of silicon.  This was done to not only confirm the original work, but to provide a field 

pattern reference for an actual calibration device that was to be created and measured 

later.  The index pattern that was used was identical in size to the nanorod cloak device in 

Figure 6-8.  Figure 6-9 shows reference device field pattern, which exhibits the same 

multiple reflection behavior as in the original finite element simulation.  The two bright 
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areas at the top provide a reference point for reflection angle calculation and calibration 

of the incident light source into an actual measured device. 

 

 

Figure 6-9:  FDTD simulation for the all silicon reference sample cloak, showing multiple reflections off the 
cloaking area. 

 

6.4 Fabrication Methods 
 
To accommodate the small feature size and range in the nanoscale regime, 

specific design choices were made in the creation of this cloaking device to maximize 

performance and minimize the complexity of fabrication [72-73].  The basic design 

strategy is to use deep sub-wavelength scale silicon nanostructures to produce a 

metamaterial structure with desired effective refractive index values at different points 

within the device.  

Three different cloak designs were created, the first two having less challenging 

electron beam lithography requirements to provide a design baseline for the third more 
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difficult to fabricate structure. All three designs required permittivity values inside the 

cloak ranging from 1.5 to 4.4, created using the volume averaging index method as 

described above. In the base design for all the cloaks, the smallest nanorods are on the 

order of 50nm in diameter, while the largest nanorods required very small gaps between 

them of approximately 20nm. As a comparison, the Si device layer is approximately 17 

times the thickness of the smallest gap size. Producing these small size features in a small 

device area significantly increases the difficulty in fabricating these devices using current 

electron-beam technologies. 

The cloak structures under investigation were designed specifically to be 

fabricated on a SOI (silicon-on-insulator) substrate in a microelectronics facility using 

readily available cleanroom technologies.  This strategy was used because of the existing 

knowledge and experience available in microelectronics fabrication is extensive, so the 

risks involved in making these new devices to correct specifications with minimal 

iterations was reduced.  Reducing the number of iterations required to successfully 

fabricate the devices was crucial to obtaining a successful outcome, and also in 

minimizing the device fabrication costs.  The challenge of producing nanorod arrays that 

exhibit cloaking behavior at optical frequencies is that the feature size begins to approach 

the limits of modern cleanroom processing and patterning techniques for high aspect ratio 

structures.  For example, this particular design required narrow gaps between nanorod 

structures that are difficult to keep from bridging in the fabrication process.  In order to 

pattern the nano-scale devices successfully, state-of-the-art electron beam lithography 

(EBL) techniques have been used.  The choice of resist used to pattern the device was 

another consideration, as the electron beam dose and other processing parameters are 
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critically dependent on obtaining a high contrast pattern.  An additional challenge to 

successful device fabrication involves obtaining vertical sidewalls on nano-scale device 

features to reduce scattering.  Meeting this challenge involved the optimization of 

plasma-etching techniques and etch recipes, working within the limits of the processing 

capabilities of the equipment.  

Several approaches to the design were investigated with the goal of obtaining a 

reasonable tradeoff between ease of device fabrication and final performance.  The 

choice of using nanorods over holes allows a more advantageous choice of electron beam 

resist, specifically the use of a negative resist with a higher selectivity ratio.  The higher 

selectivity ratio enables deeper etching while keeping the mask intact, thereby allowing 

more vertical sidewalls to be fabricated during the plasma etching process.  Also, the use 

of a negative resist allows for a faster write time as the size of the resist mask areas is 

significantly reduced.  Another advantage of the design is that the entire structure can be 

patterned using the EBL system without the need for additional steps such as focused ion 

beam (FIB) milling and metallization [75].  In addition, since isotropy within the device 

is directly controlled by the nanorod pillar size and spacing, adjustments can easily be 

made to reduce the minimum size write requirements of the EBL patterning process, 

allowing for more reliable and consistent fabrication results.  

The process flow for fabrication starts with the entry of the design structure into a 

CAD file format, followed by a conversion of the file into a .v30 format readable by the 

EBL system.  Due to the complexity of drawing approximately 13,200 different sized 

circles using a manual command-line interface, the process was automated through the 

use of Excel spreadsheets and AutoCAD scripting functions.  The surrounding 
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background photonic crystal design was then added through the use of array functions, 

and the entire structure rotated by 45 degrees to obtain the correct orientation for adding 

the waveguides.  An image of the AutoCAD file for the overall device is shown in Figure 

6-10, and a close-up detailed image of the structures contained in the file in the vicinity 

of the cloaking area is shown in Figure 6-11. 

 

Figure 6-10:  Overview of the Design A cloaking structure AutoCAD file. 
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Figure 6-11:  Detail of the Design A cloaking structure AutoCAD file in the vicinity of the bumped cloaking area. 

 

Once the structure design was entered into the CAD system and converted to a 

.dxf format, a second conversion step was performed to convert the design to a .v30 file 

format through the use of proximity correction software.  Proximity correction was 

necessary during the file conversion process to allow for dose adjustments due to the 

Gaussian nature of the electron beam during exposure of the structure, most importantly 

at the device edges and near the large waveguide areas.  The proximity correction 

software divides the structure into 64 different dose adjustment areas, each area being a 

varying percentage of the base dose to compensate for the Gaussian nature of the electron 

beam exposure process.  The dose structure output data was then placed into the EBL 

system control file to enable proximity corrected dose adjustments during the device 

patterning.  However, the current version of proximity correction software does not take 
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into account the structure size and shape when calculating dose adjustments, and even an 

updated version is only able compensate for some adjustments to rectangular features.  

Since this design utilizes circular structures, manual adjustments were made to the 

proximity correction parameters during file conversion.  The exact proximity correction 

parameters for the different designs are discussed further in the Fabrication Results 

section. 

The SOI stack used was a 340nm thick Si layer over a 1um SiO2 layer, which 

provides an adequate guiding thickness for light propagation in the 1400 - 1600nm range.  

A six-percent solution of hydrogen silsesquioxane (HSQ) was then applied to the surface 

through a spin-coating process.  HSQ is a polymer-like negative-tone resist material that 

undergoes a transition to a more SiO2-like material upon ebeam exposure, and has a 

demonstrated high resolution masking capability.  For the high aspect ratio process, the 

spin coater was set to 5000rpm, 2500rpm/s spin up, followed by a wafer bake at 80C for 

four minutes to cure the resist and obtain a 100 - 110nm layer thickness.  Significant care 

was taken to keep the wafer clean and free from contaminants prior to the application of 

the resist, as these could lead to defects in the final devices. The wafer was then manually 

cleaved into smaller pieces for processing. 

Electron-beam resist patterning was performed using a JEOL JBX-9300FA EBL 

system running at an acceleration voltage of 100kV with a 5nm spot pitch size.  A piece 

cassette was selected to allow for multiple device runs using a single SOI wafer.  In the 

design the input and output waveguide line lengths were set to 3mm to allow enough 

room for manual line cleaving after the devices had been fabricated.   
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Extensive experimentation was required to determine the correct electron beam 

base exposure dose that would give the best feature size match without either over-

exposing or underexposing parts of the device pattern.  Several runs of test cloaking 

devices were done initially in order to optimize the ebeam dose on Si test wafers.  The 

first set of runs was done using shorter 100um input and output lines to reduce e-beam 

exposure time (and thus expense).  The shorter lines still provide the proximity effects 

that would be seen in the device with longer lines.  Initial dose range was 8000µC/cm2 - 

20000µC/cm2 for the first five devices.  It was quickly determined that the initial doses 

were all too high for test range and the devices were overexposed creating L-shaped 

patterns missing fine features.  Run time was about 45 min with some added calibration 

steps between devices. 

The next set of five devices had a dose range of 1000µC/cm2 - 8000µC/cm2.  Some 

calibration routines were bypassed to reduce the run time to 30 min.  The best exposure 

dose appeared to be 2500µC/cm2 which had showed no bridging between pillars, with the 

next best being 3000µC/cm2 showing a slight bridging.  The size of the fabricated pillars 

was compare to the design sizes, and it was found that the upper dose range of 

3000µC/cm2  had a closer match.   

After many more test runs on Si, a final dose range was determined for the actual SOI 

run.  The best electron beam dose for all three device designs was found to be in the 

range of 2400µC/cm2 - 3000 µC/cm2 after the proximity correction adjustments had been 

made.  The CAD file was then modified to include the 3mm input and output waveguides 

to enable the device to be cleaved after fabrication.  The ebeam write time per device was 
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longer, about 30-40 minutes per device, due to the longer waveguides requiring more 

write time.   

In all of the ebeam exposure runs the device pattern was developed using a 25% 

solution of N-tetramethyl ammonium hydroxide (TMAH) heated to 80°C.  The wafer 

piece was developed for 30s followed by a de-ionized water rinse for approximately 2 

minutes and sample drying using N2 gas.  A visual inspection was then performed to 

make sure the development had been completed, and that there were no residues or 

contaminants left on the wafer.  Before etching the device, measurement of the height of 

resist patterns were made using a Tencor Alpha-Step Profilometer to provide a reference 

point for calculating resist etch rates.  The resist height patterns were identical to the 

original thickness of the resist layer (100-110nm) after development indicating that no 

resist material had been removed in the process. 

Etching of the devices was performed using a STS Standard Oxide Etcher (SOE) 

using Cl2 as the enchant gas.  The chlorine gas flow was set to 20sccm and the plasma 

bias voltage set to 700V.  The objective was to etch completely through the 340nm layer 

of Si without undercutting into the SiO2 layer, which would destabilize the pillar 

structures.  The etch rate of Si using this recipe was determined to be 2.6nm/s, while that 

of the HSQ was 0.55nm/s, resulting in a selectivity of approximately 4.75 : 1.  Note that 

no BOE (buffered oxide etch) process was used to remove the remaining HSQ resist as 

this would remove the pillars as well as the resist, because the acid also attacks the 

underlying SiO2 layer.  The 30nm of HSQ remaining on the surface of the device was not 

removed due to the negligible effect it would have on the device performance due to its 

low index over the expected frequencies of operation.   
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After etching, the ends of both the input and output waveguides were cleaved to 

provide a clean edge for butt-coupling the laser light source to the wafer for device 

testing.  The butt-couple allows for introduction of laser light into the device, allowing 

the near field pattern of the cloaking structure to be examined in detail through 

measurements.    

 

6.5 Fabrication Results and Discussion 
 

The first cloak structure, which will be referred to as Design A, was designed for 

a background index of 1.5.  This index was chosen to test how a matched index between 

the underlying silicon dioxide substrate and overlying cloaking structure would affect 

light scattering in the device.  For this design, the cloak requires the nanorod diameters to 

vary from 0.35a to 0.87a or 52nm to 130nm for a unit cell size a = 150nm.  This section 

of the cloak will be labeled as the PC1 area.  In Design A, a small portion of the cloak 

structure nanorod array was replaced with larger pillar structures that have an increased 

lattice constant of a = 300nm. In this sub-array, which will be notated as PC2, all feature 

sizes were doubled and therefore the smallest gap was increased to ~40nm, which is well 

within the range of e-beam fabrication capabilities.   details the cloaking area for this 

design showing both the PC1 and PC2 arrays. 



175 
 

 

Figure 6-12:  Diagram of the nanorod structure in the cloak, showing the areas of smaller lattice spacing (PC1) 
and larger lattice spacing (PC2). 

 

An example block diagram figure for the Design A optical cloaking structure is 

shown in Figure 6-13.  The device region consists of two combined areas of silicon rods 

in a 39.6µm x 39.6µm area, connected by a 10µm wide input and a 36.9µm wide output 

Si waveguide.  The size of the output Si waveguide was reduced in follow-on designs to 

reduce the fabrication expense of the device.  The 32µm x 12µm cloaking region contains 

the main array of 150nm spaced pillars with diameters ranging from 90.75nm to 

52.18nm, and the secondary array of 300nm spaced pillars with larger diameters in the 

range of 184.05nm to 256.18nm.  The modified spacing of the center pillars in the 

secondary region increased the minimum gap between adjacent structures to around 

40nm, which reduced the spacing requirements and therefore the difficulties in producing 

the rods accurately during fabrication. 
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Figure 6-13:  Block diagram of the Design A nanorod optical cloaking structure. 

 
 
The pillar diameters were arranged such that the average refractive index creates 

the quasi-conformal dielectric index mapping required for the device to exhibit cloaking 

behavior. The uniform background nanorod array was a square lattice turned 45° to the Γ 

- M direction to provide a well-matched interface to the cloak structure, so as to minimize 

the scattering at the interface.  The input waveguide width is standard for the wavelength 

of operation, while the output waveguide was made wider to allow some room to observe 

the direction of the output light, in case the reflected beam was not at the predicted 

angular deviation. 
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For Design A, the standard default forward scattering and back scattering 

correction for Si devices was used as a starting point.  The Alpha parameter describes the 

forward (short range) scattering range of the electrons and is important when the aspect 

ratio of the device features is small.  The Beta parameter describes the backward (long 

range) scattering of the electrons, which describes the distance the electrons travel into 

the substrate material.  Both the Alpha and Beta parameters are set to values that are 

dependent upon the substrate and photoresist material that is used.  The Eta parameter 

describes the ratio of the Beta Gaussian against the Alpha Gaussian based on their stored 

energies, and determines the ratio of forward to backward scattering.  The reduced 

spacing requirements in the large pillar sub-array was expected to allow the smaller side 

nanorods to be reproduced with the correct dimensions using the default proximity 

correction parameters for a Si substrate.  These parameters were originally determined 

from Monte Carlo simulations and extensive experimental runs of Si devices through 

characterization work conducted over many batches of different structures.  The values 

that were used were Alpha = 0.05, Beta = 33.3, and Eta = 0.61.  

Scanning electron microscope images were taken of the fabricated Device A 

structure to check their quality and final dimensions.  For Design A, Figure 6-14 shows 

the overall fabricated device, Figure 6-15 shows a close up of the cloaking area, and 

Figure 6-16 is a high magnification image of the largest nanorods in the cloaking area.  

The nanorod diameter matched the original design within ±5% experimental tolerances 

once the best dose value was obtained.  While the pillars were nearly perfectly vertical, 

some non-uniformity in top and bottom diameters was observed in the sidewalls of the 

nanorods especially those near the device edges, where the bottom diameter was 
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somewhat larger than the top.  Close-up images of these non-uniformities are shown in 

Figure 6-17 for a larger nanorod (about an 8% difference) and Figure 6-18 (a larger 24% 

difference) for a smaller nanorod.  This effect could be attributed to non-uniformities in 

the photoresist mask covering the nanorods, which caused sloping sidewalls due to the 

edges of the mask being thinner, and therefore more susceptible to removal during the 

etch process.  Overall, the standard parameters for the proximity correction of the device 

during EBL exposure worked well for this structure fabrication. 

 
 

 
 
Figure 6-14:  SEM of the Design A fabricated cloaking nanorod device. 
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Figure 6-15:  Higher magnification image of the Si pillars around the cloaking area in Design A. 

 
 

 
 
Figure 6-16:  High magnification SEM image of the largest nanorods in the cloaking area of the device in Design 
A.  Note the clear separation between nanorods at the smallest gap point of ~40nm at the center of the structure. 
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Figure 6-17:  Side view of one of the larger nanorods in Device A, showing the non-uniformity obtained in the 
sidewall thickness as an effect of the etch process. 

 

 
 
Figure 6-18:  Side view of one of the larger nanorods in Device A, showing the non-uniformity obtained in the 
sidewall thickness as an effect of the etch process. 
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The second cloak structure, named Design B, is similar to Design A but reduced 

in size.  In an effort to reduce the scattering losses in the device, the Design B cloak 

reduced the number of pillars, and therefore the number of scattering sources for the 

incoming light beam.  The smaller cloak consists of a 143 x 53 nanorod array that 

reduces the device size to a 26.4µm x 26.4µm area. The cloaking area size was also 

reduced to 21.45µm x 7.95µm, with an identical Design A pillar spacing of a = 300nm. 

Design B is identical to the Design A layout except for the reduction in cloak and 

background nanorod array areas.  A block diagram for Design B is shown in Figure 6-19.  

Using the same proximity correction and fabrication parameters as Design A, these 

cloaks had similar non-uniformities to the Design A devices due to the identical etch 

parameters being used.  Figure 6-20 shows the smaller cloaking area in Device B post-

measurement, with the damage in the outer pillars having been caused during the 

measurement characterization work. 
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Figure 6-19:  Block diagram of the Design B nanorod optical cloaking structure. 

 
 
Figure 6-20:  Close-up of the reduced cloaking area in Design B, damage to several pillars caused during the 
measurement phase of the device. 
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For the third design, called Design C, the background index was changed to 

implement 1.55 and 1.6 index structures, to see if changing the device match to the 

underlying silicon dioxide layer would also reduce scattering, thereby improving the 

device performance.  This index match change required slight adjustments in the pillar 

sizes throughout the device.  In this designs, the lattice constant was kept at a = 150nm 

for the cloaking section, re-creating the original design for a smaller 20nm pillar gap.  

The change in background index also resulted in slightly smaller nanorod diameters 

ranging from 0.35a to 0.84a or 52nm to 125nm.  In addition, a simple square lattice 

photonic bandgap (PBG) structure was added in Design C to help minimize light leakage 

at the back of the cloaking area.  The PBG structure consisted of a 62 x 10 array of 

520nm spaced nanorods, each having a diameter of 312nm.  This structure helps to 

enhance reflection of stray light that may inadvertently pass through the cloaking area by 

providing a PBG in the 1500nm wavelength range.  The PBG in the band structure for 

this square lattice photonic crystal is standard for this type of structure and is detailed in 

other work [41].  A block diagram for Design C is shown in Figure 6-21. 
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Figure 6-21:  Block diagram of the Design C nanorod optical cloaking structure. 

 

The proximity correction required for the fabrication for Design C proved more 

challenging to adjust to due smaller gaps between nanorods as compared to Design A.  

Initially, only the default forward scattering correction parameters were used as in Design 

A to fabricate the device.  In this case, the central cloaking area nanorods are slightly 

overexposed resulting in over-sized structures leading to rod bridging in the central cloak 

area, while the side area nanorods were underexposed leading to missing and defective 

rod structures.  This result is shown in Figure 6-22. 
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In order to correct for the electron beam proximity effects in Design C, both 

forward and back scattering corrections were required (adjustments to the Alpha and Beta 

values), as well as a process blur adjustment.  Both the Alpha and Beta parameters were 

adjusted to 0.08 and 38.9, respectively, to compensate for the smaller feature sizes and 

gaps between nanorods.  The process blur parameter Gamma1 describes the mid range 

scattering range of the electrons and was used to compensate for process related effects.  

The Neu1 parameter describes the ratio of the mid range Gaussian against the Alpha 

Gaussian, based on their stored energy. This correction required the process blur 

parameter Gamma1 to be set to 60nm and given a weight Nue1 of 0.20 or 20% to 

compensate for the additional scattering correction.  Figure 6-23 shows the results of 

adding this additional proximity correction.  Some bridging is evident in the largest pillar 

structures where the gap was designed to be 20nm, but this was found to be unavoidable 

due to the higher dose required to correctly expose the smaller cloak edge pillars.  This 

bridging was expected to shift the operating frequency of the device slightly in the 

measurements. 
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Figure 6-22:  SEM illustrating the overexposure of the central nanorods (causing bridging) and underexposure 
of the side nanorods (causing missing structures) in the cloaking section of the Design C cloak when only 
forward proximity scattering correction is used. 

 

 
 
Figure 6-23:  SEM image of the cloaking area in Design C, showing both the cloak and PC bandgap pillar 
structures.  A small amount of bridging in the central cloak area can be seen, but the smallest side nanorods 
have been correctly patterned using both forward and back scattering proximity corrections.   
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6.6 Measurement Results and Discussion: 
 
 
The fabricated cloak structures were investigated by near-field scanning optical 

microscopy (NSOM).  For optical characterizations, three fiber-coupled lasers tunable 

between 1400nm -1602nm were used as light source. A polarization control paddle was 

used to set the correct polarization of the laser and the light output from the fiber was 

butt-coupled into the silicon input waveguide. The light that comes out of the fiber within 

the critical angle was captured by the input waveguide and fed into the nanorod array. 

The light propagation through the nanorod structure was then directly visualized by the 

near-field scanning optical microscopy (NSOM).  Figure 6-24 shows an NSOM image 

for a Device A cloaking structure at a wavelength of 1500nm. A well-defined input beam 

was observed propagating vertically from the bottom of the figure into the cloaking 

structure, producing a spot of intense scattering visible at the reflecting interface.  The 

out-of-plane scattering at the reflecting interface significantly reduces the reflected beam 

intensity, but is unavoidable in a 2D implementation, in which the guiding condition is 

compromised due to the abrupt interface. Despite losses at the reflecting interface, a 

clearly defined reflected beam was observed at a reflection angle of 45o with respect to 

the reflecting interface.  The reflected light beam does not reach the output waveguide, 

however, due to the propagation loss within the nanorod array and also because of 

scattering losses at the reflecting interface.  

Similar behavior was observed at an operating wavelength of 1460nm in the 

Device B cloak as shown in Figure 6-25.  The off-tuning of this device could be 

attributed to the non-uniform pillar profiles, as well as a slight change in index due to 

pillars being off in exact design dimensions within experimental tolerances.  This 
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operating wavelength shift could also be attributed to the index matching of the design, 

which is close to the index of the SiO2 underneath the Si guiding layer. The reduction in 

scattering due to the reduction of the background nanorod array area improved the 

strength of reflected beam at the same measurement wavelength as compared to the 

original Design A cloak.  The output beam strength was again subject to propagation and 

scattering losses, but in this case they have been reduced significantly. 

Figure 6-26 shows the results of an NSOM measurement on a Device C large 

cloak sample taken at a wavelength of 1420nm, showing a clearly defined output beam 

reflecting from the cloaking surface. The reduction of the spacing in the pillars in the 

cloaking area reduced the reflection from incoming light significantly, resulting in a more 

uniform output beam.  The shift in operating wavelength may be due to the unavoidable 

bridging of some of the larger pillars that leads to a large index change than expected in 

that area.  The strength and clarity of the output beam is much improved over Designs A 

and B however.  The change in index match of the structure may also have helped 

improve the output, although it is hard to determine the exact effect based on the 

evidence from the experimental measurements. 

All three cloak design structures are created from of non-resonant dielectric 

elements and are expected to operate well over a broad range of frequencies. Due to the 

high scattering of the output beam, far-field effects such as the coupling of the light into 

the output waveguide were not able to be observed.  The performance of the devices 

could be improved through further reduction in the background PC size, as well as 

correcting for bridging pillars and non-uniform pillar etching which increases the index 

average of the cloak in the large pillar areas, shifting the operating wavelength of the 
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device.  The change in background index of the cloak did not appear to have a noticeable 

effect on the device performance, although further investigation is required for a 

complete conclusion.  

 

 
 
Figure 6-24:  NSOM image for 1500nm laser light propagating off the Design A cloaking structure area. 

 

 
 
Figure 6-25:   NSOM image for 1460nm laser light propagating off the cloaking area in Design B. 
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Figure 6-26:   NSOM image for 1420nm laser light propagating off the cloaking area in Design C. 

 

6.7 Static Tuning of the Optical Cloak Utilizing ALD 
 

 

Based on the measurement results from the fabricated cloaks, Designs B and C 

were proven to have the best optical performance in terms of scattering losses and clearly 

defined output beam.  However, the wavelength of laser light that provided the best 

optical response was not at the expected 1.55μm design wavelength.  This shifting of the 

frequency response of the device could be attributed to a number of factors, such as the  

size uniformity in the background PC, as well as shifting errors due bridging pillars and 

non-uniform pillar etching which increases the index average of the cloak in the large 

pillar areas as mentioned in the previous section.  These factors are inherent to the device 

fabrication process and are electron beam dose dependent.  Simply changing the device 

dose during the electron beam patterning step does not provide a quick solution to correct 

the nanorod sizes across the device.  The doses given in the proximity correction file and 

the structure sizes across the device are interdependent as shown in the previous chapter, 

so further optimization is difficult without a large deal of time and expense 

experimenting with changing the proximity correction software parameters manually.  

There are inherent technology limitations in the electron beam patterning and resist 



191 
 

exposure process accuracy inherent to this type of device fabrication, providing limits to 

how closely the nanorod structures can be sized to the original design specification.  In 

addition, non-uniformities in the etch process will almost always be present due to the 

limits of uniformity that can be obtained by the particular recipe used to create the Si 

nanorods. 

 Since there are limitations on the accuracy of device fabrication with respect to 

obtaining the correct structure sizes, and thus the correct optical device tuning, we desire 

to find a method that will enable static tuning (i.e. tuning that cannot be electro-optically 

controlled) after fabrication.  To this end, we have investigated the application of optical 

materials to the fabricated devices by use of atomic layer deposition (ALD) to 

accomplish this tuning.  As discussed in the Introduction, ALD provides a method to 

apply atomic layer thickness films of optical material on various substrates.  In this work 

to optically tune fabricated ground plane tuning devices, we will focus on two different 

optical materials we have available on our groups ALD system.  Both of these materials 

are oxides, which makes them ideal for deposition on Si, and the native SiO2 oxide layer 

present on them.  The first material investigated for tuning purposes is titanium dioxide 

(TiO2).  This material is of medium optical index at the wavelength of operation, λ = 

1500nm.  TiO2 has an index of n = 2.31, which is relatively lower compared to the higher 

index of Si at n = 3.46.  This material is expected to provide course optical tuning of our 

cloaking devices when applied in small layer thicknesses.  The second material that has 

been investigated is aluminum oxide (Al2O3), that provides a lower optical index than 

TiO2.  The index of Al2O3 is approximately n = 1.8, which is close to the index of SiO2 at 
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n = 1.5 than that of Si.  This optical material can be used for finer optical tuning than 

TiO2 due to its lower index, again when applied in small layer thicknesses. 

 Due to the expense involved with fabricating multiple cloaking structures and the 

fact that the best optical cloaking behavior was obtained with the Design C samples, the 

ALD tuning work has been limited to two working fabricated samples of Design C.  This 

work begins with an investigation of optically tuning the structures using thin layers of 

TiO2 to examine if coarse tuning is possible.  The following set of research investigates 

applying a second coating of Al2O3 to fine tune the structures to the desired 1500nm 

wavelength.  In both cases, the process starts with ALD coating the samples, followed by 

an SEM measurement of the coating thickness, and concludes with an optical 

measurement of the device to determine how the optical tuning has been adjusted through 

the application of these thin films. 

 

6.7.1 Coarse Tuning of the Optical Cloak Utilizing ALD Applied TiO2 
 

The first fabricated sample of Design C, which will be designated as Sample F, was 

designed for a background index of 1.55, using an electron beam dose of 2400 µC/cm2 in 

the lithography process.  The other Design C sample was designed for a background 

index of 1.6, with a lower base dose of 2600µC/cm2, which will be called Sample G.  The 

higher base dose lead to the slightly larger nanorod sizes in Sample G compared to 

Sample F.  Figure 6-26 shows the previous NSOM image of a measurement that was 

taken of Sample G, showing that the device tuning was optimal at 1420nm.  The goal is 

to use a TiO2 ALD coating to shift this operating wavelength coarsely, that is by a large 
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amount, in both devices closer to the desired 1500nm operating wavelength.  SEM 

images were taken of the devices before the application of the coating and are shown 

Figure 6-27 - Figure 6-29 for Sample F, and Figure 6-30 - Figure 6-32 for Sample G.  

Note that there is more nanorod bridging in the Sample G structure due to the higher 

electron beam dose used in its fabrication. 

 

 

Figure 6-27:  SEM image 1 of Cloak F with no ALD coating, showing the dimensions of the larger nanorods 
closest to cloaking area. 
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Figure 6-28:  SEM image 2 of Cloak F with no ALD coating, showing the dimensions of the medium size 
nanorods further in from from the cloaking area.  

 

 

Figure 6-29:  SEM image 3 of Cloak F with no ALD coating, showing the dimensions of the smallest nanorods 
near the edge of the cloaking area and the PBG nanorods.   
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Figure 6-30:  SEM image 1 of Cloak G with no ALD coating, showing the dimensions of the larger nanorods 
closest to cloaking area. 

 

 
 
Figure 6-31:  SEM image 2 of Cloak G with no ALD coating, showing the dimensions of the medium size 
nanorods further in from from the cloaking area. 
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Figure 6-32:  SEM image 3 of Cloak G with no ALD coating, showing the dimensions of the smallest nanorods 
near the edge of the cloaking area and the PBG nanorods.   

 
 

 The next step in the coarse static tuning of the devices was to apply the TiO2 

material directly to the structures using the ALD system.  Through simulation work, it 

was determined that the coating thickness should be at least 5nm to provide a thick 

enough coating to see an operating wavelength shift in the device.  It was decided that 

Sample F would receive a 10nm TiO2 coating, while Samples G would only receive a 

5nm coating.  Caution was taken to make sure that the coating was not too thick, as TiO2 

has a medium optical index at index of n = 2.31 compared to n = 3.46 for Si.  The 

operating wavelength of the measurement laser and output detector that the NSOM can 

operate at and measure is between 1400nm- 1600nm, so a large film thickness may tune 

the device outside the wavelength range, removing the capability of getting good 

measurement performance images.  The two precursors that are used for this deposition 

are titanium chloride (TiCl4) and water (H2O).  Each ALD cycle consists of four steps:  1) 

8s pulse of the TiCl4 precursor into the reaction chamber, 2) 20s purge of the TiCl4 
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precursor out of the reaction chamber, 3) 8s pulse of H2O into the reaction chamber, and 

4) 20s purge of H2O from the reaction chamber.  Each cycle results in 0.075nm of growth 

of TiO2 on the sample per four step cycle.  Thus for a 5nm TiO2 coating thickness, 67 

ALD cycles were required. 

 After applying the TiO2 ALD coating, SEMS were taken to examine the 

thickness, conformality, and smoothness of the deposited film on the two cloaks. As can 

be seen by the SEM images, the coating looked clean and conformal.  Exact 

measurements of the coating thickness is difficult due to some coating creating bridging 

around the nanorods, however it appears 5nm and 10nm of TiO2 were deposited at the 

correct thickness and film quality.  SEM images of both devices were taken after the 

application of the thin film TiO2 coating, and are shown in Figure 6-33 - Figure 6-35 for 

Sample F and Figure 6-36 - Figure 6-39 for Sample G. 

 

 

Figure 6-33:  SEM image 1 of Cloak F with 10nm TiO2 ALD coating, showing the dimensions of the larger 
nanorods closest to cloaking area.  With the thicker coating, some bridging is evident between these nanorods. 
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Figure 6-34:  SEM image 2 of Cloak F with 10nm TiO2 ALD coating, showing the dimensions of the medium 
sized nanorods closest to cloaking area.   

 

Figure 6-35:  SEM image 3 of Cloak F with 10nm TiO2 ALD coating, showing the dimensions of the smallest 
nanorods near the edge of the cloaking area and the PBG nanorods.   
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Figure 6-36:  SEM image 1 of Cloak G with 5nm TiO2 ALD coating, showing the dimensions of the larger 
nanorods closest to cloaking area. 

 

Figure 6-37:  SEM image 2 of Cloak G with 5nm TiO2 ALD coating, showing the dimensions of the medium 
sized nanorods closest to cloaking area.  Note that there is more bridging present in this sample due to the 
application of the thin film coating.   
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Figure 6-38:  SEM image 3 of Cloak G with 5nm TiO2 ALD coating, showing the dimensions of the smallest 
nanorods near the edge of the cloaking area and the PBG nanorods.   

 

 NSOM measurements we repeated on all cloaks to determine the amount of 

operating wavelength shift in the devices.  Also, it was unknown whether that application 

of the coating would also increase scattering in the devices which would affect the 

strength of the output beam.  Measurements on Cloak F with the thicker 10nm TiO2 

coating had a noticeable tuning effect.  The NSOM scan at 1572nm using 10mW of laser 

power revealed that the best cloaking performance at 1572nm.  This is a significant shift 

from the original 1460nm operating wavelength obtained from the uncoated sample.  A 

NSOM image showing the output fields at the new 1572nm operating frequency is shown 

in Figure 6-39.  Unfortunately, Samples G that had only 5nm TiO2 did not show an 

appreciable shift in operating wavelength compared to Sample F.  It is believed that a 

thicker coating, perhaps another 5 – 10nm of TiO2 would allow the device to exhibit 

improved cloaking behavior at higher wavelengths.  Rather than coat these samples with 
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additional TiO2, it was decided to continue the experiment by coating Samples F and G 

with an additional layer of Al2O3 to see if a wavelength shift could be observed.  This 

work in continued in the next section. 

 

 

Figure 6-39:  NSOM scanning image of Sample F with 10nm TiO2 coating for an operating wavelength of 
1572nm. 

 

6.7.2 Fine Tuning of the Optical Cloak Utilizing ALD Applied Al2O3 
 

After the successful demonstration of obtaining a coarse operating wavelength shift in the 

cloaks using ALD applied TiO2, a follow on experiment was done to see if the operating 

wavelength could be tuned further using coatings of low optical index Al2O3.  This 

optical material has an index of n = 1.8 in the 1500nm wavelength range and should 

provide less shift in operating wavelength as compare to an identical thin layer film 

thickness application of TiO2.  Through repeated simulation work, it was determined that 

the coating thickness should be at least 10nm to provide a thick enough coating to see an 

operating wavelength shift in the device.  It was decided to try 10nm of coating on 

Sample F and 20nm of coating on Sample G to provide some experimental spread in the 

data.  Again, too thick of a coating of  Al2O3 may shift the operating wavelength out of 
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the range that the NSOM can operate at and measure, so caution was taken to not make 

the coatings too thick  The two precursors that are used for Al2O3 deposition are trimethyl 

aluminum (TMA) and water (H2O).  Each ALD cycle consists of four steps, similar to 

that of TiO2:  1) 4s pulse of the TMA precursor into the reaction chamber, 2) 40s purge of 

the TMA precursor out of the reaction chamber, 3) 4s pulse of H2O into the reaction 

chamber, and 4) 40s purge of H2O from the reaction chamber.  Each cycle results in 

0.14nm of growth of Al2O3 on the sample per four step cycle.  Thus for a 10nm Al2O3 

coating thickness, 72 ALD cycles were required, while for a 20nm coating doubling the 

number cycles to 144 was sufficient. 

 After applying the Al2O3 ALD coating, SEMS were taken to examine the 

thickness, conformality, and smoothness of the deposited film on both cloaks. In this case  

the TiO2 coating was still present on the samples, thus it provided a surface oxide 

material for the Al2O3 growth to start from.  As can be seen by the SEM images of , the 

coating again looked clean and conformal.  However, the growth thickness of the Al2O3 

was grossly off.  Instead of growths of 10nm and 20nm, we obtained growths of 20nm 

and 40nm repectively.  This was not expected, and could possibly be attributed to the 

TiO2 material providing a faster growth reaction at the surface compared to the Si/SiO2 

material that the original TiO2 was grown on.  In addition, the ALD system had been 

extensively renovated prior to the runs, and although many tests were run on Si to test the 

growth thickness of Al2O3, there may have still been problems with the system that 

caused the growth thickness to be off.  Exact measurements of the coating thickness was 

now even more difficult due to more coating creating bridging around the nanorods.  

 SEM images of the coatings were taken after adding the additional 20nm and 
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40nm of Al2O3 to Samples G and H respectively.  Note that the 5nm TiO2 film coating 

remained underneath the new coating, so the nanorod sizes were compared to these 

images to determine the film thickness.  It was now much more difficult to get exact 

nanorod diameters due to the fact that bridging between structures changed them from 

cylindrical to square shaped nanorod pillars.  A best estimate was made based on the 

diameters of the PBG and smaller nanorod structures in both devices, as these remained 

cylindrical enough for an accurate measurement.  SEMs of the two Al2O3 coated devices 

are shown in Figure 6-40 - Figure 6-42 for Sample F and Figure 6-43 - Figure 6-45 for 

Sample G. 

 

 

Figure 6-40: SEM image 1 of Cloak F with 20nm Al2O3 ALD coating, showing the dimensions of the larger 
nanorods closest to cloaking area.  The pillars are bridging enough to cause them to obtain a square nanorod 
shape. 
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Figure 6-41:  SEM image 2 of Cloak F with 20nm Al2O3 ALD coating, showing the dimensions of the medium 
sized nanorods closest to cloaking area.  Note that there is more bridging present in this sample due to the 
application of the thin film coating.   

 

Figure 6-42:  SEM image 3 of Cloak F with 20nm Al2O3 ALD coating, showing the dimensions of the smallest 
nanorods near the edge of the cloaking area and the PBG nanorods.   
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Figure 6-43:  SEM image 1 of Cloak G with 40nm Al2O3 ALD coating, showing the dimensions of the larger 
nanorods closest to cloaking area.  The pillars are bridging enough to cause them to obtain a square nanorod 
shape. 

 

Figure 6-44:  SEM image 2 of Cloak G with 40nm Al2O3 ALD coating, showing the dimensions of the medium 
sized nanorods closest to cloaking area.  Note that there is more bridging present in this sample due to the 
application of the thin film coating.   
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Figure 6-45:  SEM image 3 of Cloak G with 40nm Al2O3 ALD coating, showing the dimensions of the smallest 
nanorods near the edge of the cloaking area and the PBG nanorods.   

 

 Unfortunately, at the time of this writing, the NSOM measurements were not 

available to determine the wavelength shift due to the equipment being out of service.  

However, it is expected that the sample would show a significant shift in operating 

wavelength.  This research work is in progress and should be completed within the next 

month.  The follow-on research to this work will start be fabricating a new set of 

fabricated Design C devices that are all identical.  From this new set of devices, a varying 

coating thicknesses of materials will be applied to structures in a more methodical 

fashion.  In this way, plots showing clear wavelength shifts versus the various coating 

types and thicknesses can be produced.  This work will be used in a future publication 

based on the quality of results and conclusions drawn. 
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6.8 Conclusions and Future Work on Optical Cloaking 
 
  
 In conclusion, successful fabrication and characterization of an optical cloaking 

photonic crystal structure consisting of nanorods has been demonstrated using an in-

house developed cleanroom process.  Several fabrication parameters were key in 

fabricating the nano-size device features correctly.  The selection of the best high-

contrast resist exposure and development process for the electron-beam lithography step 

was critical in patterning the nanorod structures successfully. The adjustment of 

proximity correction parameters through multiple exposure runs was also key in 

replicating the difficult to fabricate nanorod structures, especially with each rod having a 

different size in this particular cloak design.  Careful consideration of both forward 

(Alpha) and backward (Beta) scattering processes based on the feature size and spacing 

have to be taken into consideration when determining the optimum proximity correction 

parameters.  In addition, further refinements to the mid range scattering processes using 

Gamma1 and Nue1 are necessary to compensate for additional features sizes and process 

dependent corrections.  The choice of the plasma etch recipe is also critical in order to 

reduce scattering in the final device performance. Allowing for the creation of near-

vertical rod side walls while maintaining a high selectivity ratio with the respect to the 

resist is important to successful cloaking behavior in the device. 

Some refinements could be made to this set of processes to improve the device 

fabrication quality.  Optimization of the plasma etch recipe to obtain more vertical side 

walls is one area for improvement, as the nanorods in the current process show some 

sidewall irregularities.  Further adjustments to the proximity correction dose pattern and 

scattering correction may allow for improvement in the problem between 
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overdevelopment and underdevelopment of the various sized nanorods in the cloak 

arrays.  For example, reducing the dose in the area of the largest nanorods by manually 

changing the proximity correction dose pattern may allow the bridging in this area to be 

eliminated. 

This two-dimensional nanorod cloak design represents a first step in an exciting 

and innovative field of study that will have a significant impact on the field of 

transformation optics.  While three dimensional carpet cloak has recently been 

demonstrated [76], 2D waveguide based transformation optical devices will continue to 

remain an important class of devices.  As has been demonstrated in the carpet cloak, 

several slight different fabrication approaches have been employed. The e-beam 

lithography based approach presented in this paper provides precision control over the 

nanoscale geometries while at the same time capable of fabricating large area devices. 

We therefore believe it is one of the most efficient ways for manufacturing this new and 

exciting class of devices. Further work will explore adding passive and active tunability 

properties to the device by use of optical and electro-optical coatings and materials. 

 The static method of tuning the optical cloak wavelength utilizing the ALD 

coating technique has shown promise in provide a way to tune these devices after 

fabrication.  Further work need to be taken in a more controlled fashion to correlate the 

tuning shift with the coating type and thickness.  This work is under way and should be 

publishable within the next six months upon completion of this thesis. 

This two-dimensional nanorod cloak design represents a first step in an exciting 

and innovative field of study that will have a significant impact on the field of 
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transformation optics.  Further work will explore adding passive and active tunability 

properties to the device by use of optical and electro-optical coatings and materials. 
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Appendix A:  Sample MPB Code for Generating Dispersion Contour 
Data 
 
% x-direction band contours 
 
(set! num-bands 4) 
 
(set! geometry-lattice (make lattice (size 1 2 no-size))) 
 
(define-param kz 0) 
(define-param k-mesh 150) 
(set! k-mesh 150) 
(set! k-mesh (- k-mesh 2)) 
 
(define x 0) 
(define n1 (list (vector3 0 0 0) (vector3 0 0.5 0))) 
(define n2 (list (vector3 0.5 0 0) (vector3 0.5 0.5 0))) 
 
(set! n1 (interpolate k-mesh n1)) 
(set! n2 (interpolate k-mesh n2)) 
 
(while (<= x (+ k-mesh 1))(set! k-points (append k-points 
(interpolate k-mesh (list (list-ref n1 x) 
(list-ref n2 x)))))(set! x (+ x 1))) 
 
(define-param si 3.464) 
(define-param r1 0.35) 
(define-param r2 0.3) 
(define-param ehole1 1.0) 
(define-param ehole2 1.0) 
(set! default-material (make dielectric (index si))) 
                          
(set! geometry (list (make cylinder 
                       (center 0) (material (make dielectric 
(index ehole1))) 
         (radius r1) (height infinity)) 
       (make cylinder 
                       (center 0 1) (material (make dielectric  
         (index ehole2 ))) (radius r2) (height 
infinity)))) 
       
 
(set! resolution 64) 
 
(if (= kz 0) 
    (begin 
      (run-te 
       ) ) 
    (run)) 
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% y-direction band contours 
 
(set! num-bands 4) 
 
(set! geometry-lattice (make lattice (size 1 2 no-size))) 
 
(define-param kz 0) 
(define-param k-mesh 150) 
(set! k-mesh 150) 
(set! k-mesh (- k-mesh 2)) 
 
(define x 0) 
(define n1 (list (vector3 0 0 0) (vector3 0.5 0 0))) 
(define n2 (list (vector3 0 0.5 0) (vector3 0.5 0.5 0))) 
 
(set! n1 (interpolate k-mesh n1)) 
(set! n2 (interpolate k-mesh n2)) 
 
(while (<= x (+ k-mesh 1))(set! k-points (append k-points 
(interpolate k-mesh (list (list-ref n1 x) 
(list-ref n2 x)))))(set! x (+ x 1))) 
 
(define-param si 3.464) 
(define-param r1 0.35) 
(define-param r2 0.3) 
(define-param ehole1 1.0) 
(define-param ehole2 1.0) 
(set! default-material (make dielectric (index si))) 
                          
(set! geometry (list (make cylinder 
                       (center 0) (material (make dielectric 
(index ehole1))) 
         (radius r1) (height infinity)) 
       (make cylinder 
                       (center 0 1) (material (make dielectric  
         (index ehole2 ))) (radius r2) (height 
infinity)))) 
       
 
(set! resolution 64) 
 
(if (= kz 0) 
    (begin 
      (run-te 
       ) ) 
    (run)) 
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Appendix B:  Sample MEEP Code to Generate An Effective 3D Index 
 
;Test to compute effective index  
; on Si slab waveguide structure  6/16/10 
;  Here the PLZT is on index 2.598 biased 
 
(set! geometry-lattice (make lattice (size 1 1 7))) 
 
(set! geometry 
       (list (make block (center 0 0 0) (size infinity infinity 
0.5) 
      (material (make dielectric (index 2.598)))))) 
                                       
 
(set-param! resolution 20) 
 
(set! pml-layers (list (make pml (direction Z) (thickness 
1.25)))) 
 
(define-param fcen 0.375) ; pulse center frequency                             
(define-param df 1.0) ; pulse freq. width: large df = short 
impulse 
 
(set! sources (list 
        (make source 
   (src (make gaussian-src (frequency fcen) (fwidth 
df))) 
   (component Hz) (center 0.123 0.234 0.123)))) 
 
 
(define Gamma (vector3 0 0 0)) 
(define X (vector3 1.5 0 0)) 
 
(define-param k-interp 33) ; # k-points to interpolate, otherwise 
 
(run-sources+ 300  
  (after-sources (harminv Hz (vector3 0.123 0.234 0.123) fcen 
df))) 
       
     
(run-k-points 500 (interpolate k-interp (list Gamma X))) 
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Appendix C:  Matlab Code for Producing Dispersion Contours and 
Refraction Plots 
 
% Matlab program used to plot x-y dispersion contours using MPB data 
% from 2D photonic crystal simulations 
% 3p band (column 9) 
  
clear 
clc 
close 
  
% Set contour frequency of interest 
  
cf = [.259]; 
cfx=[0;.5]; 
[r s]=size(cf); 
  
% Import data matrix, strip out first column (freqs: string) and first 
% row using excel so matrix is all numerical first, .csv file 
  
% Do the gamma-x to y-m direction lines first 
  
kxpoints = 150; 
matrix1=dlmread('sqrsl_dispcont_150x_20nmtio2_te.csv'); 
[m1,n1]=size(matrix1); 
m=m1/kxpoints; 
n=.5/(m-1); 
ansxmatrix1=[]; 
ansymatrix1=[]; 
xmatrix1=[]; 
ymatrix1=[]; 
  
% Use instersections function to find crossings for x lines 
  
for q=1:s 
    rowcount=1; 
    for p=1:m 
        xmatrix1=matrix1(rowcount:rowcount+kxpoints-1,2); 
        ymatrix1=matrix1(rowcount:rowcount+kxpoints-1,9); 
        temp1=intersections(xmatrix1,ymatrix1,cfx,[cf(q);cf(q)]); 
        ansxmatrix1=[ansxmatrix1;temp1]; 
        ansymatrix1=[ansymatrix1;.5*n*(p-1)*ones(size(temp1))]; 
        rowcount=rowcount+kxpoints; 
    end 
end 
  
% Do the gamma-y to x-m directions second 
  
kypoints = 150; 
matrix2=dlmread('sqrsl_dispcont_150y_20nmtio2_te.csv'); 
[m2,n2]=size(matrix2); 
t=m2/kypoints; 
u=.5/(t-1); 
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ansxmatrix2=[]; 
ansymatrix2=[]; 
xmatrix2=[]; 
ymatrix2=[]; 
  
% Use instersections function to find crossings for y lines 
  
for v=1:s 
    rowcount=1; 
    for w=1:t 
        xmatrix2=matrix2(rowcount:rowcount+kypoints-1,3); 
        ymatrix2=matrix2(rowcount:rowcount+kypoints-1,9); 
        temp2=intersections(xmatrix2,ymatrix2,cfx,[cf(v);cf(v)]); 
        ansymatrix2=[ansymatrix2;.5*temp2]; 
        ansxmatrix2=[ansxmatrix2;u*(w-1)*ones(size(temp2))]; 
        rowcount=rowcount+kypoints; 
    end 
end 
  
% Plot the results in a scatter plot (not joined) 
  
%scatter(ansxmatrix1,ansymatrix1,'.') 
%axis equal 
%axis([0 .5 0 .2885]) 
%box on 
%hold on 
%scatter(ansxmatrix2,ansymatrix2,'.') 
%hold off 
  
% Post processing 
  
ansxmatrix3=[ansxmatrix1;ansxmatrix2]; 
ansymatrix3=[ansymatrix1;ansymatrix2]; 
startindex=find(ansymatrix3>.2485); 
ansxmatrix4=ansxmatrix3(startindex); 
ansymatrix4=ansymatrix3(startindex); 
ansxmatrix5=ansxmatrix3; 
ansymatrix5=ansymatrix3; 
ansxmatrix5(startindex)=[]; 
ansymatrix5(startindex)=[]; 
  
% Use for aa=1:size(ansxmatrix3)-1 to start, then find cuttoff point 
  
for aa=1:62 
    bb=1; 
    for bb=1:size(ansxmatrix5) 
        distxmatrix1(bb)=(ansxmatrix4(aa)-ansxmatrix5(bb))^2; 
        distymatrix1(bb)=(ansymatrix4(aa)-ansymatrix5(bb))^2; 
        distmatrix1(bb)=sqrt(distxmatrix1(bb)+distymatrix1(bb)); 
    end 
    [cc,dd]=min(distmatrix1); 
    ansxmatrix4(aa+1)=ansxmatrix5(dd); 
    ansymatrix4(aa+1)=ansymatrix5(dd); 
    ansxmatrix5(dd)=[]; 
    ansymatrix5(dd)=[]; 
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    distxmatrix1=[]; 
    distymatrix1=[]; 
    distmatrix1=[]; 
end 
  
ansxmatrix4=ansxmatrix4.'; 
ansymatrix4=ansymatrix4.'; 
plot(ansxmatrix4,ansymatrix4) 
axis equal 
axis([0 .5 0 .25]) 
box on 
  
% Incorporate rotation angle to plot four sections and put in new 
matrix 
  
quad3x=ansxmatrix4(1:62)-.5; 
quad3y=ansymatrix4(1:62)-.25; 
%quad3x=ansxmatrix4-.5; 
%quad3y=ansymatrix4-.25; 
quad4xtemp=-quad3x; 
quad4ytemp=quad3y; 
quad4x=quad4xtemp(end:-1:1); 
quad4y=quad4ytemp(end:-1:1); 
ansxmatrix6=[quad3x;quad4x]; 
ansymatrix6=[quad3y;quad4y]; 
quad12=rotation([ansxmatrix6,ansymatrix6],[0,0],180); 
quad12x=quad12(:,1); 
quad12y=quad12(:,2); 
ansxmatrix7=[ansxmatrix6;quad12x]; 
ansymatrix7=[ansymatrix6;quad12y]; 
ansmatrix8=rotation([ansxmatrix7,ansymatrix7],[0,0],63.435); 
ansxmatrix8=ansmatrix8(:,1); 
ansymatrix8=ansmatrix8(:,2); 
  
plot(ansxmatrix8,ansymatrix8,'.') 
axis equal 
box on 
  
% Incorporate rotation angle to plot four sections and put in new 
matrix 
  
quad3x=ansxmatrix4(1:60)-.5; 
quad3y=ansymatrix4(1:60)-.25; 
%quad3x=ansxmatrix4-.5; 
%quad3y=ansymatrix4-.25; 
quad2xtemp=quad3x; 
quad2ytemp=-quad3y; 
quad2x=quad2xtemp(end:-1:1); 
quad2y=quad2ytemp(end:-1:1); 
ansxmatrix6=[quad2x;quad3x]; 
ansymatrix6=[quad2y;quad3y]; 
quad12=rotation([ansxmatrix6,ansymatrix6],[0,0],63.435); 
quad12x=quad12(:,1); 
quad12y=quad12(:,2); 
%ansxmatrix7=[ansxmatrix6;quad12x]; 
%ansymatrix7=[ansymatrix6;quad12y]; 
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%ansmatrix8=rotation([ansxmatrix7,ansymatrix7],[0,0],63.435); 
ansxmatrix8=quad12x; 
ansymatrix8=quad12y; 
  
  
plot(ansxmatrix8,ansymatrix8,'.') 
axis equal 
box on 
 
 
[a1,b1]=size(ansxmatrix8); 
  
for a=1:a1-1 
    slopematrix1(a,1)=(ansymatrix8(a+1,1)-
ansymatrix8(a,1))/(ansxmatrix8(a+1,1)-ansxmatrix8(a,1)); 
end 
  
index1=1; 
thetai=(index1*asin(ansxmatrix8)/cf(1,1))*180/pi; 
thetar=atan(slopematrix1)*180/pi; 
thetai(end,:)=[]; 
  
  
% Plot the results in a scatter plot (not joined) 
  
plot(thetai,thetar,'.') 
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