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SUMMARY

With recent research advances, the dream of bringing domestic robots into our everyday

lives has become more plausible than ever. Domestic robotics has grown dramatically in

the past decade, with applications ranging from house cleaning to food service to health

care. To date, the majority of the planning and control machinery for these systems are

carefully designed by human engineers. A large portion of this effort goes into selecting

the appropriate models and control techniques for each application, and these skills take

years to master. Relieving the burden on human experts is therefore a central challenge for

bringing robot technology to the masses.

This work addresses this challenge by introducing a physics engine as a model space

for an autonomous robot, and defining procedures for enabling robots to decide when and

how to learn these models. We also present an appropriate space of motor controllers

for these models, and introduce ways to intelligently select when to use each controller

based on the estimated model parameters. We integrate these components into a framework

called Physics-Based Reinforcement Learning, which features a stochastic physics engine

as the core model structure. Together these methods enable a robot to adapt to unfamiliar

environments without human intervention.

The central focus of this thesis is on fast online model learning for objects with under-

specified dynamics. We develop our approach across a diverse range of domestic tasks,

starting with a simple table-top manipulation task, followed by a mobile manipulation

task involving a single utility cart, and finally an open-ended navigation task with mul-

tiple obstacles impeding robot progress. We also present simulation results illustrating the

efficiency of our method compared to existing approaches in the learning literature.
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CHAPTER I

INTRODUCTION

It is hard to imagine a truly intelligent agent that does

not conceive of the world in terms of objects and their

properties and relations to other objects. [67]

Leslie Kaelbling (MIT)

This work focuses on robot manipulation in unfamiliar environments, such as homes,

offices, and public spaces. In designing planning and control systems for these environ-

ments, a common theme emerges: The modern world was designed for people, not robots.

Even simple scenes like an office present vast complexity, and unlike controlled factory or

laboratory settings, no two rooms are exactly alike. However, humans are adept at quickly

understanding the physical behavior of natural scenes by drawing on extensive prior knowl-

edge [10]. The goal of this research is to equip robots with similar prior knowledge and

inference methods to enable them to learn about unfamiliar environments from interaction.

This research agenda raises numerous questions about the form of this prior informa-

tion, and what principles it encodes. As many researchers in Artificial Intelligence [43,

67] and Cognitive Science [24, 154] have suggested, objects are a fundamental concept

for physical agents. In principle, we would like our model to capture as broad a space

of object behaviors as possible, while simultaneously being data-efficient and tractable to

estimate. Unfortunately the space of possible object behaviors is vast, and could draw on

techniques from rigid body motion to fluid mechanics, elastics, and even thermodynamics,

just to name a few. This research focuses on rigid body dynamics as a starting point for

constructing learnable models of natural object dynamics. Rigid-body physics is a well-

studied field, and the core principles have already been encoded in a usable computational
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tool: the physics engine. We will argue that these engines provide a compact encapsula-

tion of a range of physical phenomena, and therefore provide an attractive model space for

a Reinforcement Learning agent, such as a robot, which has to interact with the physical

world.

While intuitive, the underlying principles behind this approach are at the center of de-

bates in both robotics and cognitive science. Within the robotics community, proponents of

non-parametric learning methods argue that parametric approaches are too inaccurate and

brittle [118]. Within the cognitive science literature, detractors argue that physical simu-

lation fails to explain human success and biases in physical reasoning tasks [31]. While

evidence supports these claims in many cases, we argue that physics engines offer good ap-

proximations of a large array of useful phenomena, and are compact, conceptually simple

to work with, and can be learned efficiently. We will demonstrate these properties by defin-

ing a Reinforcement Learning framework utilizing a subset of the modeling API of a 2D

physics engine. The approach we take in this thesis constitutes a proof-of-concept using a

planar manipulation task and restricted subset of a 2D physics engine. Chapter 7 will con-

sider the problem of extending this approach to a broader range of possible environments

and dynamics.

1.1 Motivation

As evinced by recent successes such as the Darpa Robotics Challenge (DRC, [127]), robots

are now capable of quite sophisticated behaviors, including autonomous mapping and nav-

igation, manipulation of large objects in clutter, and avoiding dynamic obstacles [106].

These abilities are critical in the vast majority of human environments which, in contrast

to factory settings, are only loosely structured and can change over time in ways that are

potentially difficult to predict.
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These sorts of semi-structured environments are also ubiquitous: According to US En-

ergy Information Administration reports, the amount of residential square footage of build-

ings in the United States outnumbers industrial square footage by a factor of more than 100

(256B vs. 1.9B) [1, 2]. Further, the modeling of semi-structured environments is a large

part of the effort that goes into deploying robotic systems. A recent robotics-education

study found that 56% of the time spent developing a working system focused on behavior

and structure modeling, and only 24% on robot construction and 20% on actual software

implementation [132].

This issue becomes even more pronounced as we progress to higher-level tasks with

humanoid robots. Many cutting-edge research applications on humanoids depend on rich

simulation environments for decision making. For example, the core planning algorithm in

[96] utilizes a rigid body physics engine to reason about mechanical advantage for different

manipulation actions. These methods require carefully designed geometric and dynamic

models of the scene and the robot itself, and explicitly utilize these parameters for planning.

In other words, from an autonomous-agent perspective these methods implicitly as-

sume a physics simulator as a model representation already. It is perhaps surprising then

that much of the model learning literature in robotics focuses on more general methods

such as Gaussian Processes [35] that do not feature objects as a core concept. This may

be justified by their focus on manipulator and single-object systems. However, it is diffi-

cult to imagine generalizing these methods to mobile manipulation tasks that make explicit

use of physical concepts such as collisions or mechanical advantage1. By contrast, our

approach is based on the simple idea of using the same models for learning that applica-

tions researchers already use for planning in these domains. We aim to strike a balance

between the compactness of differential-equation based models and the generality of more

1The closest possible exception with Gaussian Process models is PILCO, which was shown to handle
collisions and multiple objects in [36]. However, this required specific choice of shaping potentials for
pushing the manipulator away from obstacles, and did not expose parameters for physical reasoning in the
manner of a physics engine.
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abstract models in Machine Learning. In this thesis we will argue that this approach is

more intuitive, requires less supervision, and as we will show, more efficient.

1.2 Approach

This thesis focuses on autonomous model learning from exploration. Our primary interest

is mobile manipulation planning, which requires modeling scenes containing multiple in-

teracting objects. Compared with perceiving or planning, interacting with objects with a

robot is expensive: it takes considerable time and energy, and invariably risks damaging the

robot, the object, or even injuring nearby people [34]. Therefore the particular challenge

we consider is how to build models that make efficient use of the data available to the robot.

This challenge can be reframed as a problem of inductive bias: How can we build

models that generalize appropriately from limited amounts of data? The methods we

present draw from both the robotics and machine learning literatures. We use Reinforce-

ment Learning (RL) as a framework to formalize the learning and planning problem, which

offers several benefits for this research:

• It gives a rich theoretical foundation to the decision-making problem under uncer-

tainty in perception, actuation, and even the robot’s internal model of the world.

• It offers a clean separation of what the engineer provides, in the form of models and

algorithms, from what the end-user provides, which is simply performance feedback.

• It treats the robot not just as a dynamical system, but as a persistent agent in the

world, complete with internal state and beliefs.

RL is thus an ideal choice for the long-horizon manipulation tasks we consider here, in

which information about the world is incrementally revealed to the robot.

Our main contribution is a model-space for a Reinforcement Learning agent that is

built on a full rigid-body simulation engine. The benefits of our physics-based approach

are both statistical and practical: First, it encodes much of what has been learned about the
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mathematical structure of object dynamics, and yields a compact parametric description of

non-linear, discontinuous behavior that is easy to learn from small amounts of data. Second,

it gathers all model information into a single coherent structure, the physics engine prior. In

addition to being parsimonious, this makes it straightforward to implement model learning,

perception, and planning algorithms against a single API.

We approach this problem in stages. First, we will introduce a simplified RL framework

for model-based planning for multiple objects. This work will serve as an introduction

to multi-object planning with empirical object models. Next we generalize the planning

methodology to handle a full-size humanoid robot, and incorporate kinematic constraints

between the robot and the target object. This work will introduce the basic control method-

ology for mobile manipulation with unconstrained objects, and show how the articulation

capabilities of the arms can be used in a long-horizon planner. We then consider the model

learning problem, consider the problem of how to learn the dynamics of constrained ob-

jects. It is in this chapter that we introduce Physics-Based Reinforcement Learning (PBRL),

and demonstrate its viability and efficiency on real and simulated data.

Finally, we show how these methods can be combined to solve challenging mobile ma-

nipulation tasks in unfamiliar environments. We present a full scale manipulation problem

called Navigation Among Movable Obstacles (NAMO) which requires carefully sequenc-

ing multiple manipulation actions on (possibly) constrained objects to clear a collision-free

path to a desired goal position. This task requires a full dynamic model of all objects in a

scene, actions for articulating objects with respect to model constraints, and methods for

detecting and resolving inaccuracies in these models.

1.3 Thesis Overview

We now provide a concise statement of our thesis and contributions.
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1.3.1 Thesis Statement

Physics-based Reinforcement Learning is a feasible and efficient method for autonomous

robot manipulation, and enables adaptive behavior in natural environments.

1.3.2 Summary of Contributions

The contributions made by this thesis can be summarized as follows:

• TS-RRT — Task-Space RRT is an algorithm for multi-object manipulation planning

that operates entirely in the space of object poses (the robot is not represented). TS-

RRT extends the Rapidly-Exploring Random Tree (RRT) algorithm, a Monte-Carlo

planner designed for high-dimensional problems such path planning for a robot ma-

nipulator [91] However, instead of requiring a specific goal state like RRT, TS-RRT

can operate with a reward signal like a Reinforcement Learning algorithm.

• Articulated Mobile Manipulation — introduces the ability to articulate a grasped ob-

ject about arbitrary points in the reachable workspace, and a planner that can operate

over the full robot-object system, represented as a deformable footprint.

• OO-LWR — an object-oriented non-parametric regression model for capturing multi-

body dynamics. OO-LWR avoids strong parametric assumptions present in the physics-

engine based approach, but makes less efficient use of data.

• PBRL — Physics-Based Reinforcement Learning is a model-based RL framework

specifically designed for physical planning tasks such as robot manipulation.

1.3.3 Document Outline

The remainder of this document is structured as follows:

Chapter 2 - Background provides background material on the core methodology and

related work in Reinforcement Learning and Robotics.
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Chapter 3 - Planning with Data-Driven Models introduces the online model-based

planning paradigm, and the TS-RRT.

Chapter 4 - Planning with Kinematic Constraints discusses the challenge of bi-

manual manipulation planning with a full humanoid robot.

Chapter 5 - Learning Kinematic and Dynamic Constraints introduces PBRL, which

provides a way to learn the dynamics of certain types of constrained bodies from data

gathered during manipulation.

Chapter 6 - Learning and Planning with Dynamic Constraints generalizes the artic-

ulation abilities of Chapter 4 and incorporates the physics-based model learning framework

from Chapter 5 to solve a NAMO problem in an office environment with multiple unknown

objects.

Chapter 8 - Conclusion offers closing remarks and perspective on future research di-

rections.
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CHAPTER II

BACKGROUND

In this chapter we provide an overview of the core mathematical ideas in this thesis, and

summarize the relevant results from the machine learning and robotics literature. Our main

interest is in controlling large physical robots in unfamiliar environments, so we focus

on methods that relate to learning and planning with data driven models. This section

provides a general overview of the main research issues, and we will introduce additional

background as necessary in each chapter.

2.1 Physical Scene Understanding

Before delving into the formal methods involved in this thesis it is worth drawing atten-

tion to the broader scientific discussion of physical scene understanding. From a sensory

perspective, the sheer volume of information available to a physically-grounded agent is

daunting. However, from a young age, humans are capable of remarkably nuanced predic-

tions, e.g. that a broom propped against a door will fall if the door is opened, or that two

colliding objects will reverse directions and impart energy in proportion to their mass [137].

Many models have been proposed in both cognitive science to explain these abilities

Sanborn et al. argue that a probabilistic physics program, or “Noisy Newton”, is cleaner

than the heurisitc alternatives, and matches empirical data. Battaglia et al. go further,

arguing that while promising, Noisy Newton only addresses “idealized cases, much closer to

the examples of introductory physics classes than to the physical contexts people face in the

real world” [10]. Missing, they argue, is a single parsimonious explanation of how agents

can efficiently make sense of static and dynamic object behavior. Instead they suggest

that these reasoning abilities can best be explained by an “intuitive physics engine” (IPS),

which is similar to a regular physics engine but with probabilistic beliefs on the engine
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parameters. In [10], the authors show that subjects’ successes and failures at a collection

of static and dynamical predictions involving toppling Jenga towers closely agree with the

posterior samples from the IPS1.

Battaglia et al therefore make a strong commitment to the “engine hypothesis”, arguing

that despite its superficial complexity, it is in fact simpler than heuristic or “feature-based”

alternatives when considering the full range of predictions that it must support. In this

thesis we adopt a similar view: a physics engine does constitute a large amount of domain

knowledge to build into an agent, but in the context of object manipulation in general it is

simpler than the leading alternatives. Where [10] resorted to human testing to support this

view, we will show it quantitatively in terms of agent performance on several tasks.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a canonical formalism for describing decision making

problems for dynamical systems [68, 165]. RL is best thought of as a class of problems

which can broadly be explained as follows. An “agent”, the actor in the dynamical system,

interacts with a world represented by a (possibly infinite) set of states; For any state in

which the agent finds itself, it selects an available action, observes a new state, and obtains

some reward. It is a learning problem because the machinery the agent uses to select actions

is typically under-specified, and the agent must adapt from experience. RL is therefore a

trial and error approach that leaves room for any sort of structure we may wish to impose

to help the agent maximize its rewards.

The two central structures of interest in most Reinforcement Learning algorithms are

the value function and the policy. These are complementary objects – the value function

V (s) describes the expected utility for any state s in the world, and the policy π(s) indicates

which action to select in those states. The agent’s goal is generally to find the optimal

1Posterior samples from an IPS were obtained in the same MCMC fashion as in our approach for PBRL
in Section 5.3.2
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policy π∗ that maximizes the long-term expected rewards V ∗ for every state. Note that

V ∗(s) is a proxy measure of the agent’s future experience – it indicates the total expected

reward that can be obtained in state s assuming the agent follows π∗.

Given an optimal policy or value function the agent has everything it needs to behave

optimally in the world. Much of RL research has focused on helping the agent efficiently

learn the value function, e.g. with appropriate function approximators [19, 20], or the pol-

icy, e.g. with policy gradient methods [166]. However, these functions are often difficult

to compute in practice, particularly on problems with large state and action spaces as we

consider in this thesis. An alternative approach is to focus the agent’s effort at learning

the world dynamics, which it can then use to select actions by internally simulating their

effects. In this thesis we largely focus on providing the agent with an appropriate model

representation, such that it can quickly figure out the domain dynamics and plan for itself.

However, in Chapter 6 we do introduce a hierarchical structure for approximating the value

function of a large MDP.

2.2.1 Markov Decision Processes

The Markov Decision Processes is a mathematical formalism on which much of the Re-

inforcement Learning literature is based. An MDP is defined by 〈S,A,T,R,γ〉 for a state

space S, action space A, transition function T (s,a)→ P(s), reward function R(s)→ R,

and discount factor γ ∈ [0,1). The agent tries to find a policy π(s)→ a which maximizes

long-term expected reward Vπ(s) = Eπ [∑
∞
t=0 γ trt |s0 = s] for all s.

In model-based RL, the agent is uncertain about some of the components of the un-

derlying MDP and must refine its knowledge from experience. If information about pa-

rameters is represented in parametric form and updated in accordance to Bayes’ rule with

new information, it is referred to as Bayesian RL (BRL) [178]. In this thesis we are pri-

marily interested in the transition model T , and will consider several possible model priors

P(T ). The overall object manipulation problem then is to use observed transition samples
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to update model parameters, and plan using a learned T .

2.2.2 Dynamics Models in RL

Researchers have been exploring different ways of capturing structure in MDP models for

decades. In this section we provide an overview of several relevant approaches to modeling

the world dynamics for an RL agent. Each approach makes different assumptions about

the nature of the model, and exploits this structure to accelerate model learning in different

contexts. Our presentation is roughly sorted along a spectrum of decreasing generality

and increasing efficiency. We note however that “efficiency” is context-dependent, and we

conclude with two models which are efficient in different ways – object-oriented models

for relational dynamics and regression models for continuous dynamics.

Dynamic Bayesian Network Models. A Dynamic Bayesian Network, or DBN is a form

of a Bayesian network designed for modeling dynamical systems. A DBN is a two-layer

directed acyclic graph in which each layer represents variables at one point in time, and in

which all edges are between layers2.

MDPs which use DBNs to represent domain dynamics are referred to as factored MDPs.

In a factored MDP, model learning amounts to learning the conditional probability tables

of the DBN, rather than the full transition matrix of the MDP. This factorization implicitly

marginalizes out all independent variables, which can offer exponential savings in sample

complexity. The main difficulty with factored MDPs is that value function does not neces-

sarily factor, even if the model does. Accordingly, much of the research on these models fo-

cuses on how to approximate the value function. However, our focus is on model learning,

and we will generally resort to online Monte-Carlo methods for approximate value-based

planning. Therefore the DBN gives us a starting point for discussing how to exploit struc-

ture in dynamics model. As we will see below, despite offering some savings, the DBN

2This can be generalized to include intra-layer connections without loss of generality [56]
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fails to capture a crucial independence pattern in physical dynamics.

Relocatable-Action Models. The Relocatable-Action MDP (RAMDP) [92] proposed a

clustering method for generalizing action effects across states. This was successfully ap-

plied to robot-navigation in a small domain without velocity. In each dynamics regime

(wood, cloth, or collision), robot motion was sufficiently consistent to cluster together,

resulting in a more compact model. The core strength of this approach, in contrast to fac-

tored MDPs [33], is that statistical dependency between attributes was no longer stationary

but rather depended on a function evaluated at each query state. The OO-MDP [43], dis-

cussed next, can be viewed as a successor to this idea, which formalizes the state-clustering

process using first-order predicates, and introduces object attributes as arguments to these

predicates.

Object Oriented Models. The primary objective behind OO-MDPs is to exploit the

unique pattern of stationarity in the dynamics model of tasks with multiple interacting

bodies. Unlike previous methods for factoring MDP dynamics, such as Dynamic Bayesian

Networks, the OO approach allows model dependencies to vary throughout the state-action

space. For example, the next-state of a chair in a kitchen only depends on the state

parameters of other chairs if it is about to collide with them. To capture this, an OO-

MDP defines a set of object classes C = {C1, . . . ,Cc} (e.g. table, chair, wall), attributes

A (C ) = {C.a1, . . . ,C.an} (e.g. wheels-locked), and relations r : Ci×C j → Boolean (e.g.

contact-left(chair,wall)) enumerating the possible relationships between objects.

These relations allow dependencies to be formalized as a collection of functions that

convert a state into a set of boolean literals, the “condition” associated with that state:

Cond(s,a) 7→ {p1(s,a), p2(s,a), . . . , pn(s,a)}

In this fashion, the OO-MDP uses a collection of first-order expressions to partition the

state-action space into sets with homogeneous dynamics. Model learning then amounts to
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learning the action effects under each condition, where a condition is a particular assign-

ment to the OO-MDP predicates and attributes, rather than for each state. The OO-MDP

constitutes the closest method from the Reinforcement Learning literature to satisfying the

requirements of robot manipulation. However, as we will discuss in greater detail in Chap-

ter 5, this method fails to capture the differential nature of object dynamics.

Non-Parametric Regression Models. Due to their generality, the regression approaches

frequently used in RL are non-parametric in nature [34]. Two popular approaches include

locally weighted (Bayesian) regression [8] and Gaussian Processes [130]. Locally weighted

regression (LWR) will be covered in greater detail in Chapter 5, but we summarize its

key properties here. LWR is a “lazy” learning method – rather than fitting a model and

discarding the training data, the data is kept and used to evaluate the model by weighting

instances in proportion to some notion of distance from the query. It therefore maintains

many of the favorable properties of linear regression, in terms of analytical tractability and

straightforward (least-squares) estimation, but allows for a more general class of functions:

locally linear functions. In Bayesian LWR, a prior is assigned to the model parameters,

which can be incorporated into the estimation machinery to obtain a closed-form expression

for the posterior distribution of the one-step prediction given the current state, action, and

history of observations [34].

Gaussian Processes (GP) offer a similar “lazy” learning approach but can be analyzed

as a prior over functions [130]. In a GP the operations are defined entirely in an inner-

product space (the weights in LWR are encoded by a kernel), which permits more abstract

prior assumptions such as differentiability or periodicity [34].

The favorable properties of GPs have been explored extensively for model-based and

model-free RL, and have led to very efficient model-based policy search algorithms, e.g. PILCO

[35]. Both LWR and GP assume states and actions can be represented as vectors, and are

therefore a good choice for control-level tasks that involve non-linear dynamical systems
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(e.g. an inverted pendulum). They are useful tools when little is known about the dynamics,

but are not sufficient by themselves for the tasks we consider here, which include discrete

state variables (e.g. is-grasped), and non-smooth dynamical effects (e.g. collisions).

2.3 Optimal Control

Optimal control is closely related to model-based Reinforcement Learning, and both fields

can trace their roots back to Bellman [12]. Optimal Control is a mature discipline that is

applicable to systems in which the dynamics model is a smooth function of state and action

(e.g. linear or locally-linear).

Similar to model-based RL, these algorithms take as input a dynamics model and a re-

ward (or cost) function that captures some notion of good or bad behavior, and they output

a policy (or control strategy) that attempts to minimize this cost. A very common form of

optimal control considers linear dynamics and quadratic costs, leading to the so-called Lin-

ear Quadratic Regulator (LQR) [14]. These assumptions permit a thorough mathematical

analysis of the convergence properties and stability of LQR, but are too strict for many of

the problems of interest in this thesis.

Specifically, several of the tasks we consider include discontinuous and nonlinear ef-

fects such as wheel friction and object contact that cannot be fully captured by linear dy-

namics models. In addition, the tasks of interest will have rewards with non-smooth costs

that cannot be represented as quadratic forms, e.g. the cost to reach a goal pose in a NAMO

task Chapter 6 critically depends on whether a collision-free path exists. Lastly, our pol-

icy space has discrete combinatorial structure, e.g. choosing when and where to grasp an

object, or rotating an object while following a trajectory on the ground, that cannot be

represented as a linear control law.
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2.4 System Identification

The idea of estimating physical parameters from data has a rich history in the robotics,

graphics, and computer vision literatures. It arises in vision for model-based tracking [45,

70], and in graphics for data-driven tuning of simulation parameters e.g. for cloth simula-

tion [16], rigid-body motion [15], and even humanoid motion [100].

The challenge of controlling an initially unknown system and estimating its relevant

parameters online has also been addressed within the controls subfield of indirect adaptive

control [86]. Adaptation is typically done in two stages. In the first stage, the dynamical

system parameters are estimated using a Parameter Adaptation Algorithm (PAA). In the

next stage, these parameter estimates are used to update the controller. While most PAA

methods assume a linear mode [86], our approach can be seen as an PAA method supporting

non-linear model estimation using Bayesian approximate inference. As such, our work is

complementary to the existing controls literature.
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CHAPTER III

MANIPULATION WITH DATA-DRIVEN MODELS

The goal of this research is to introduce methods for solving real-world manipulation tasks

with under-specified models. This is difficult to achieve in practice the underlying state-

action space is both continuous and high-dimensional, which poses a challenge for standard

value-based dynamic-programming RL methods. However, there has been considerable

progress in the planning and control communities on physical decision problems [88], al-

beit typically without considering long-horizon tasks with incrementally gathered world

knowledge.

In this chapter we introduce an RL-inspired method that handles continuous and high-

dimensional spaces using a combination of established planning and optimization methods

in the robotics literature. Like a model-based Reinforcement Learning algorithm, our ap-

proach allows the dynamics model to adapt over time as the robot gathers data in the world.

As we will see, this method makes only weak assumptions about dynamics, at the cost

of constraining the planner to a set of simple predefined motion primitives. In later chapters

we will recover some of the decision-theoretic properties of RL, and generalize our models

beyond simple motion primitives. In addition to introducing the problem, this chapter

anticipates the general strategy put forward in this thesis: Adding flexibility to physics-

inspired methods from the robotics literature by incorporating learning and optimization.

3.1 Planning as Optimization

In the context of service manipulation, the two key advantages of reinforcement learning

over classical path planning are that abstract goals can be specified through intuitive re-

wards and that actions can have uncertain outcomes. Because tasks like cleaning a table

require the robot to displace multiple objects, the configuration space for planning has
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exponential dimension in the number of objects [158]. This makes it infeasible to apply

standard RL strategies. However in many cases we observe that reaching an optimal world

configuration is more important than finding the optimal way to reach it. We use this insight

to decouple the RL problem into three tasks: (1) determining the goal, or the optimal con-

figuration, (2) finding forward models for robot actions and (3) planning to use the actions

to reach the goal.

In this chapter, Sect. 3.1.1 and 3.1.2 describe optimization procedures. Sect. 3.1.3

describes a planning algorithm which seeks a feasible, but not necessarily optimal plan

for robot actions. We consider a common service task: cleaning a table. Cleanliness is

naturally expressed as an objective function over object poses. We focus on cases in which

the objective function is provided by a human programmer. However, as with reward-

function learning in RL, these criteria can also be extracted from interactions with humans

or the environment. First, we present a method for formulating the objective function.

Second, we present a method for learning forward models of object motion. Finally, we

combine these elements with sampling-based planning.

3.1.1 Objective Function Specification

Table-setting for an arbitrary number of guests is an abstract goal. This goal is fundamen-

tally distinct from positioning plates at desired locations since it is the spacing between the

dinnerware that matters to the guests rather than their precise locations. Using our method,

the programmer can specify the goal as an abstract optimization metric.

Without loss of generality, consider a dinner where n guests must be given n plates and

m platters must be placed at the center of the table. The programmer should be able to state

the following objectives:

1. The plates should be located far from each other.

2. The platters should be at the center of the table.

3. The platters should be aligned parallel to the table.
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The same plate positions will not satisfy these criteria for different numbers of guests.

However, the optimization criteria indicated by the objectives are easily formulated with

Eq. 1-3. We define two sets of objects: plates, P, and platters, Q. Each object location is

parameterized by position and orientation {x,y,θ}. For a rectangular table, parallel to the

frame of reference its center is (xG,yG).

cdist = − ∑
p1∈P

∑
p2∈P

√
(xp1− xp2)2 +(yp1− yp2)2 (1)

cpos = ∑
q∈Q

√
(xq− xG)2 +(yq− yG)2 (2)

cortho = ∑
q∈Q
|(mod(θq,

π

2
)| (3)

The programmer or high-level planner should also specify environment constraints. For

example, Eq. 4 limits all objects to the table dimensions:

xmin ≤ x≤ xmax,ymin ≤ y≤ ymax, (4)

More generally applicable optimization criteria can also be specified. For instance, the

table center (xG,yG) can be inferred from the table dimensions as shown in Eq. 5.

xG = argmaxx(min(x− xmin),(xmax− x))

yG = argmaxy(min(y− ymin),(ymax− y)) (5)

The overall objective for cleaning a table is simply the sum of our intuitive criteria as given

in Eq. 6. The weights α,β ,γ must be specified with regard to the relative importance of

the subtasks.

Ctable = α cdist + βcpos + γcortho (6)

3.1.2 Action Model Learning

The second optimization problem we consider is determining the relationship between

robot actions and their effects on objects. Here we consider only collision free motions,

18



and handle collision-avoidance in the planner. This approach requires significantly less

data than when modeling all possible contacts between an unbounded number of objects.

We now describe the action model learning procedure which allows the planner to reason

about the outcomes of its actions in various states.

In our implementation, the robot was equipped with a ball-shaped end-effector that

could only push objects. In other domains, the robot might grasp objects. In either case,

a service robot will encounter new objects. Different pushes or grasps will have distinct

effects on object displacement. For simplicity, consider the pushing domain. Our actions

change the pose of an object, O, placed on the table at {xO,yO,θO}.

In order to encode uncertainty in action outcomes we follow the definition of Markov

Decision Processes (MDP). Our action model is a function that maps state and action to a

probability distribution over states. Given some state-space S and actions A, a planner must

know the probability of a given outcome of any action in any state:

P(s′|a,s) ∀ s ∈ S, a ∈ A (7)

Our approach automatically generates P(s′|a,s) from data obtained by exploration. In our

domain, object displacement has a direct relationship to the motion of the end-effector

relative to the object rather than relative to the world. We defined six actions relative to the

object as shown in Fig. 4. We then compute probability models of displacement:

P(∆s|a,o) ∀o ∈ O, a ∈ A (8)

To estimate P(∆s|a,o) for every action applied to every object, we implemented the op-

timization algorithm shown in Fig. 1. LEARN MODEL incrementally completes a tabular

probability distribution that relates each action, a ∈ A, to the displacement, ∆s, for the ob-

ject, o ∈ O. On each iteration, the robot applies an action to the object, observes the result

using an overhead camera, and uses UPDATEDISTR to update the probability distribution,

P(∆s|a,o), as shown in Eqs. 9-10. Our model represents the probability of displacement
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LEARN MODEL(o,A,sinit)
1 s = sinit
2 for i← 1 to |A|
3 do while σ2 > σ2

re f
4 do (∆s,s) = APPLY ACTION(ai,O)
5 P(∆s|ai,o) = UPDATEDISTR(P(∆s|ai,o),ai,∆s)
6 σ2← VARIANCE(P(∆s|ai,o))

Figure 1: Pseudo-code for learning forward models. Note that ∆s encodes state transitions
in object coordinates.

with a normal distribution. This requires UPDATEDISTR to update the distribution mean

and variance. For each variable in state s, {v = x,y or θ}, the nth update is given as follows:

µ
n
v =

nµn−1
v +∆v

n
(9)

σ
n
v =

√
(n−1)σ

2(n−1)
v +(∆v−µn

v )(∆v−µ
n−1
v )

n
(10)

Iteration terminates when the variance of the distribution reaches a desired threshold, σ2
re f .

This criterion identifies that the model is sufficiently accurate for planning. In our ex-

periments, we empirically determined that σ2
re f = 0.4 yielded a reasonable compromise

between execution times for learning and plan execution for our table-top domain.

The model achieved by the algorithm for three objects is illustrated in Fig. 2. The figure

shows mean displacements and confidence intervals when the robot applies our six actions

to each object. Notice the significant variation in these parameters. This is precisely the

reason that learning object models is essential to the construction of valid plans.

3.1.3 Task-Space Planning

Given a task-level goal and a forward model that relates robot actions to world effects,

the remaining challenge is to produce a planner that efficiently finds a sequence of actions

that achieves an optimal configuration. In order for this optimization process to be useful
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(a) Eraser (b) Remote (c) Scale

Figure 2: Model learning results with three objects: a chalkboard eraser, a TV remote,
and a digital scale. Bars show the mean and 95% confidence intervals extracted from each
object for all degrees of freedom. Actions are those illustrated in Fig. 4.

it must respect the physical limitations of the environment/robot and be reachable from

the initial state of the problem. The first condition is satisfied by imposing collision and

boundary constraints (Eq. 4). To satisfy the second, the optimizer must also respect the

motion constraints specified by our models.

We present a motion planning algorithm that directly searches the optimization land-

scape using models of the robot’s actions. By combining optimization and motion plan-

ning into a single search, we restrict the search to states that are relevant given the robot’s

available actions. Our algorithm prevents the planner from aiming towards optimal config-

urations that are unreachable. Furthermore, since the planner always knows the best state

in its search graph, it offers more reliable anytime characteristics than approaches that sep-

arate goal optimization from planning. The remainder of this section describes the basic

functionality of the algorithm, as well as an extension which makes it more efficient when

searching large spaces.

Our algorithm, given in Fig. 3, extends RRT [81, 89], a probabilistically complete

method that is commonly applied to motion planning in high-dimensional spaces. Ba-

sic RRTs produce a tree of valid, collision-free configurations for n-dimensional spaces

through incremental expansions of the tree towards random configurations. Application

of the basic RRT to problems such as manipulator control relies on some form of inverse
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TASK SPACE RRT(sinit ,A)
1 for i← 1 to |O|
2 do Model← LEARN MODEL(Oi,A,sinit)
3 T.init(sinit)
4 for i← 1 to max nodes
5 do sGD← DIRECTGD(T )
6 if RAND()> ε

7 then ssamp← sGD
8 else ssamp← RANDOM CONFIG()
9 snear← NEAREST NEIGHBOR(ssamp)

10 a∗← ARGMINa(ρ (MODEL(snear,a),ssamp))
11 snew←MODEL(snear,a∗)
12 if not IN COLLISION(snew)
13 then ADD VERTEX(snew)
14 ADD EDGE(snear →

a∗
snew)

Figure 3: Pseudo-code for RRT-based task space planner using forward models. T is the
search tree, and ρ is the distance function defined in Eq. 11.

model for the system to determine how to reach a child node from its parent. When work-

ing in task space, however, we have no clear model for how to transition between nodes.

Instead we modify our approach to perform a forward search over the robot’s possible ac-

tions. The core idea is that by confining the search to a set of pre-defined actions for which

we have controllers, we can both restrict the search to reachable states, and relieve the need

for an inverse model. A similar approach is given by Frazzoli [49].

Our method preserves the rapidly exploring characteristics standard RRT search with

two modifications. First, rather than growing the tree directly towards sampled states, we

select the state-action pair which results in a node closest to a sample point according

to a weighted distance metric. If this state is valid, we add a directed edge labeled with

the appropriate action to the tree. Since the best action can fail the subsequent collision

check, we maintain state-action pairs in a queue ordered by distance. The planner iterates

through this list and adds the first collision-free pair that is closer than the parent node.

This modification yields efficient extensions to new states using only forward models.
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The second unique modification is the addition of a conventional gradient descent opti-

mization routine, DIRECTGD, during the planning process. DIRECTGD is a heuristic that

searches the objective function directly, without branching over robot actions. Periodically

executing this search from leaf nodes in the tree provides a way to quickly discover the

nearby local minima of the objective function. Empirically, we found that this heuristic

significantly speeds up search towards the global minimum while the random action of the

RRT prevents the overall planner from getting stuck in any local minimum. Our technique

is inspired by existing RRT heuristics like RRT-CONNECT [81] which try to extend the

tree towards a goal or a goal tree. However, in our case the “goals” are the modes of the

optimization landscape, and DIRECTGD allows us to explore this space more efficiently.

If DIRECTGD returns a more optimal state than one that currently exists in the planner’s

search tree, it attempts to apply RRT-CONNECT using the robot’s actions to find a path to

this state.

As with a conventional RRT, our planner contains an ε parameter that trades exploration

and exploitation. The planner takes greedy steps towards the lowest-cost state identified by

DIRECTGD with probability 1− ε . In our domain we empirically determined that ε = 0.8

gave the fastest convergence to a global optimum.

In addition to the two RRT algorithm modifications we must design a distance metric

that accurately reflects the similarity between states:

ρ : f (s1,s2) → R (11)

This distance function is used to query nearest neighbors in TASK SPACE RRT (line 9). In

task space, the parameters used to describe state are specified by the programmer. They are

not required to share a coordinate frame or scale. For our table-top manipulation experi-

ments we empirically determined that weighing orientation parameters 40 : 1 over position

produced the most consistent alignment of objects.
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3.1.4 Executing Motion Primitives

We designed a set of six simple motion primitives for 2D manipulation with a single-point

contact end effector (Fig. 4). In order to minimize the branching factor of the planner, we

defined actions based on relative motions with respect to simplified object geometry.

The robot identified objects in its workspace using a simple threshold-based segmenta-

tion scheme with an overhead camera. Objects were extracted by finding closed contours

in a mask image. Each object was represented by a bounding box aligned with its long axis

and then classified based on the size and aspect ratio of the bounding box. The position

and orientation parameters were taken as the centroid and the angle of the box from hori-

zontal, respectively. We defined six primitives to control the three degrees of freedom as

independently as possible, one for increasing and one for decreasing each parameter.

Each of the six primitives was defined by a workspace vector in the object frame

(Fig. 4). During action execution, the robot lifted and lowered its end-effector to the point

on the bounding box along the vector direction. It then pushed the object by tracking the

vector in workspace for a distance of 5cm. The robot transformed the nominal workspace

trajectory into the arm’s joint-space with analytical inverse kinematics and tracked the ref-

erence with PD control. In order to produce mostly linear translations of the object, actions

1-4 were set as vectors normal to the bounding box at the midpoint of each face. Actions

5-6 were set as the two opposing vectors at 90% of the box length along the long-axis box

faces, targeting rotation.

The effect of primitive actions on each of three classes of objects is given by Fig. 2.

During learning, we found that each action’s influence was largely confined to the state

parameters it was designed to influence. However, the extent of influence varied greatly

due to differences in physical properties. For the scale, rotation actions also produced

significant changes in position terms. This was due to the rubber feet on the corners of the

scale, which tended to break loose and skip all at once as the robot pushed from the end.

One advantage of this approach is that observable dynamics which are difficult to model
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Figure 4: Six motion primitives defined with respect to a bounding box around a sample
object. Arrows indicate motion vectors for the end-effector as defined in the object frame.

explicitly are captured through learning and accounted for at plan time.

3.2 Experiments

We conducted four experiments using the TASK SPACE RRT planner. The first two exper-

iments were simulated table-setting tasks. These were performed in SRLib, which repli-

cated a real world task domain with dynamics and visually perceived object states [121].

We used the SRLib block and cylinder primitive shapes to represent plates, platters, and a

table. In both tasks the problem was to optimize the table-setting function (Eq. 6). Fig. 6

and 7 present two manipulation plans from our algorithm that generate neat tabletop con-

figurations from random configurations of three and six objects. Notice that the planner

gracefully adapts to object quantity and geometry resulting in different final configurations

under different circumstances. Fig. 10 gives the planning statistics and shows the perfor-

mance improvement from the GD heuristic. The greatest challenge in larger problems was

collision detection when the free-space became increasingly taken up by objects. Most

RRT steps, both greedy and random, fail when the planner becomes deadlocked, reducing

the algorithm to a slow random search.

For the first demonstration on the physical robot we designed a simple task of posi-

tioning an object in the presence of a stationary obstacle. We reused the distance (Eq. 2)

and orthogonality (Eq. 3) terms from the previous experiment, and added an additional

25



(a) Initial State, Plan (b) Final State

Figure 5: Table configurations before and after executing a plan computed to optimize
the table-cleaning objective function. Colored outlines depict the sequence of states visited
during execution for each object.

constraint in the form of a fixed obstacle. The eraser was used for the mobile object, and

the hole-punch was labeled as an obstacle (Fig. 8). After learning a motion model for the

eraser, the robot found a plan that involved pushing the object up and around the obstacle

to a goal point on the left side of the table (Fig. 8).

To demonstrate a more practical application, the goal our final experiment was to make

the robot straighten up a desk. The scale, the remote, and the eraser were distributed

randomly around the workspace at the start of the experiment, and it was the robot’s job

to find a sequence of actions which minimized an objective function for “table-cleaning”

with the same form as (Eq. 6). The planner execution for this task can be seen in Fig. 5.

After learning models for the three objects, the robot proceeded to push the three objects

into orthonormal alignment with a center of mass less than two inches from the center of

the table. Execution took 13 minutes, and required re-planning 4 times (Fig. 9).
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(a) Initial Plan (b) Result

Figure 6: Execution of the table-setting planner in the srLib simulator with two plates and
one platter. Colored outlines depict the sequence of states visited during execution for each
object.

(a) Initial Plan (b) Result

Figure 7: Execution of the table-setting planner in the srLib simulator with four plates
and two platters. Colored outlines depict the sequence of states visited during execution
for each object.

(a) Initial Plan (b) Correcting from error

Figure 8: Manipulation in the presence of obstacles
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TSet 6 TSet 3 Obst Clean
n-nodes w/ GD 2161 1438 541 981

n-nodes w/o GD 1898 1399 549 954
time (m:s) w/ GD 0:32 0:18 7:22 13:40

time (m:s) w/o GD 1:34 0:33
n-steps w/ GD 114 122 44 89

Figure 9: Selected statistics on planning for 6 object table-setting, 3 object table-setting,
1 object obstacle, and 3 object cleaning.

Task TSet 6 TSet 3 Obst Clean
DOF 18 9 3 9

# replans 1 1 2 4

Figure 10: Degrees of freedom (DOF) and the number of required re-plans for each
problem in Fig. 9

3.3 Discussion

In this chapter we presented an algorithm for cost-based task planning with empirical dy-

namics models, using a novel combination of sample-based motion planning and optimiza-

tion. While not physics-based in the same sense as the PBRL method introduced in Chap-

ter 5, there are several physical ideas implicit in TASK SPACE RRT. The first is probabil-

ity models of displacement, an idea we will extend with Object-Oriented Locally-Weighted

Regression Chapter 5. These displacement models are discrete approximations of the true

differential dynamics of each object, but lacking force or velocity terms. Furthermore,

using them requires mapping the sampled displacement to the frame of the query node

using a homogeneous transform (an operation specific to 3D euclidean space). Second,

TASK SPACE RRT makes use of a collision detector to avoid pushing objects into contact

with one another. While this doesn’t capture full collision dynamics like the physics-engine

in Chapter 5, the collision detector does require geometry-based computations.

From these results we conclude that sample-based planning and empirical displace-

ment models are a potent combination for multi-object planning in physical environments.

Such an approach leverages the well-known insight from Reinforcement Learning that it

is often faster to learn a model to use for online planning than it is to learn a full policy.
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However, there are several shortcomings of TASK SPACE RRT that limit its applicability

to problems of interest, such as NAMO. Foremost, the actions were open-loop pushes that

failed to exploit grasp capabilities or take the robot’s body into account. In addition, mo-

tion primitives provide a very restrictive action space for object manipulation. Sequencing

primitives is a slow and brute-force method of search, and the planner therefore required

a separate optimization module to explore efficiently. Incorporating the robot’s body and

grasp kinematics will be the topic of the next chapter, and we leave it to Chapter 6 to enrich

the action space to achieve arbitrary directions.
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CHAPTER IV

PLANNING WITH KINEMATIC CONSTRAINTS

The previous chapter contributed a novel algorithm for object manipulation that offered

some of the flexibility of the Reinforcement Learning framework, but could handle contin-

uous high-dimensional state spaces. Although this represents a major step towards our goal,

the planner relied on fairly crude primitives which drastically limited the set of achievable

behaviors. Most importantly, these primitives were designed for tabletop manipulation with

an overhead arm, and therefore failed to consider the geometric or dynamic constraints of

the robot itself.

Full-scale mobile manipulation also introduces additional forms of complexity due to

the need to localize and safely maneuver a high degree-of-freedom (DOF) robot in a large

workspace, possibly including dynamic obstacles such as people. As a result, the method

in Chapter 3 is not directly applicable to mobile manipulation tasks.

In this chapter we address these limitations by incorporating the components necessary

to achieve full mobile manipulation planning with a humanoid robot. We present a planner

for articulated mobile manipulation of a single holonomic object with known kinemat-

ics and geometry. This chapter introduces a one degree-of-freedom deformable collision

model, parameterized by grasp angle, which represents a system including both the robot

and a rigidly-grasped object. We will show that this model increases the manipulation

capabilities of the robot, and is critical for navigating narrow spaces. As we discuss in

Chapter 6, these abilities also lay the foundation for more general manipulation strategies

with constrained objects. This work was originally published in [142].
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4.1 Motivation

The earliest results in pushing carts using robots were achieved using a single manipulator

mounted on a mobile holonomic base [169–171]. In these systems the manipulator came

into contact with the cart at a single point, and the problem was to solve for the effector

forces required to produce desired trajectories with the cart. This work showed progress

towards task-level cart manipulation, but was limited to tracing simple open-loop paths

with the cart [171]. In contrast, our solution can execute arbitrary smooth trajectories in a

closed-loop controller using two arms, assuming the object is holonomic.

Subsequent work explored the use of full humanoid robots for pushing carts with two

arms. In principle, two arms can simplify the cart control problem by fully constraining all

degrees of freedom. Honda’s ASIMO is capable of pushing a cart while walking across a

room and even up an incline, but does not make use of its arms to articulate the cart for

navigation [148].

Several projects have explored the use of another humanoid robot, the HRP-2, for push-

ing mobile objects. One domain which shares our interest in manipulating large objects is

navigation among moveable obstacles (NAMO), which we will discuss in depth in Chap-

ter 6. Although both domains involve navigation and manipulation, NAMO addresses the

complementary problem of navigating the robot on a map containing obstacles that must be

moved in order to reach a robot goal pose [105]. Rather than focusing on navigation among

static objects, this work focuses on navigation of objects, amidst other dynamic obstacles.

In another mobile manipulation application with a biped humanoid, [120] presented an

HRP-2 capable of pushing a human in a wheelchair. As with ASIMO and NAMO, this

project described a zero-moment-point (ZMP) offset approach to achieving basic mobility

with a mobile object [69]. However, none of these examples with humanoid robots demon-

strated robust navigation in dynamic, cluttered environments with tight clearances for the

robot, and none took advantage of both arms for articulation. The PR2 mobile manipula-

tion robot used in this study offers a stable, omni-directional base. Its ability to articulate
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the cart greatly enhances the reachable workspace for the robot since it can now take tight

turns in cluttered spaces.

The work that is closest to ours is the approach of Lamiraux, et. al., who demonstrated

motion planning for a robot towing a trailer [84]. The trailer is attached to the robot through

a single degree of freedom pivot joint. In our approach, we restrict the motion of the

cart to be around an (imaginary) pivot point in front of the robot. In contrast to [84], we

present a complete solution integrating 3D sensing to develop a system capable of realtime

navigation in a cluttered indoor environment.

4.2 The PR2 Hardware Platform

The hardware used for the experiments in this chapter is the PR2 personal robot (Figure 11)

which has an omni-directional base and two 7-DOF arms. It is also equipped with a tilt-

ing laser scanner mounted to the head, two stereo cameras, an additional laser scanner

mounted on the base, and a body-mounted IMU. Encoders on each joint provide joint an-

gle information. The end-effector is a parallel jaw gripper whose fingertips are equipped

with capacitive sensor arrays, each consisting of 22 individual cells. The laser scanner

mounted on the base is useful both for obstacle detection and localization. The robot’s base

is approximately 63 cm in both length and width.

The cart used in the experiments in this work is a regular holonomic utility cart. It has

casters mounted at all four corners and can thus be pushed in any direction. The top shelf of

the cart was removed to reduce the volume of the region in front of the cart that is occluded

from the PR2’s tilt scanning laser sensor mounted on the head. The PR2 grasps the handle

of the cart as shown in Figure 12(a). The grasp is sufficiently rigid to maintain its relative

pose with respect to the cart handle.
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Figure 11: The PR2 mobile manipulation robot with a holonomic cart

(a) The PR2 has a firm grasp on the cart han-
dle (right).

(b) State representation: Blue rectangle represents the
robot, and θ its orientation. Green rectangle repre-
sents the cart, and ψ its orientation in the robot frame.

Figure 12: Cart grasping (a), and state representation (b)
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4.3 Approach

Navigation while manipulating moveable objects is a challenging planning and control

problem. Ideally, a planner used for this task should efficiently take advantage of the la-

tent capabilities of the robot, and react quickly to failure given a cluttered and dynamic

environment. We make almost no assumptions about the structure of the environment. For

simplicity, we assume a known 2D map of the environment as a starting representation.

The map was built separately from real sensor data using tools available in the ROS frame-

work [129]. This map is not, however, assumed to be a completely accurate representation

of the environment, which can contain both static and dynamic obstacles such as people

or other robots. We demonstrate, through experiments, the ability of our approach to deal

with such static and dynamic obstacles that are not initially known to the robot. We assume

a known geometric and kinematic model for the cart. This helps us in localizing and con-

trolling the cart relative to the robot. The task of determining a dynamic model for the cart

is left to Chapter 5.

Overall our approach consists of a tight integration of three different components: sens-

ing for the cart and the environment, motion planning for the robot and the cart, and control

of the robot and the cart along the desired path.

4.4 Sensing

Our approach to mobile manipulation builds on components developed for navigation and

manipulation with the PR2 [106, 135]. To navigate effectively, our system must be able to

differentiate between sensor readings that may correspond to points on the cart or the robot,

and those from points in the environment. Sensor readings corresponding to points on the

cart are filtered out directly from a 2D costmap representation (Figure 13) of the collision

environment if their 2D projection falls within the known polygonal footprint of the cart.

Two approaches were implemented to sense the pose of the cart relative to the robot.

First, a checkerboard attached to the cart was used to localize the cart pose relative to
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Figure 13: A view of the local costmap. Red cells are lethal obstacles while blue cells lie
within a threshold distance of the nearest obstacle.

the robot using the cameras mounted on the head of the PR2. Second, the known initial

positions of the grasps of the two end-effectors on the cart were used to provide a proprio-

ceptive estimate of the cart relative pose. Note that this assumes that the cart handle stays

rigidly fixed relative to the end-effectors of the two arms, which proved a safe assumption

in our experiments. Indeed, we found the proprioceptive estimate to be more stable than

the checkerboard estimate due to the visual noise and jitter in the camera.

4.5 Motion Planning

The motion planner provides global collision-free plans between the start pose (the current

pose of the robot) and the final desired position of the robot and the cart. There are several

approaches to motion planning for mobile robots that could be applicable in this case,

including both graph and sampling-based planners [83]. We choose to use a graph based

approach coupled with an anytime planner. A graph based method was selected for this

task because the configuration space is dominated by numerous long, narrow passages

(see Fig. 15), which are pose a greater challenge for sample-based planners. As we shall
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describe in the next few sections, the choice of such a planner allows us to specify candidate

motions of the robot and cart system (motion primitives) that allow the robot to navigate

tight turns.

We first describe the construction of the graph itself and then we describe the construc-

tion of the transitions between the nodes in the graph. We will then briefly describe the

algorithm used to search the graph for low-cost solutions.

4.5.1 State Representation

To construct the graph, we need to specify the state representation for the nodes of the

graph. A full state representation would include the 7 degrees of freedom for each arm, the

3 degrees of freedom of the robot base and the 3 planar degrees of freedom of the cart rela-

tive to the robot base. However, as noted earlier, the arms of the robot are constrained by the

grasp on the cart, which itself is constrained to planar motion. One simpler representation

to eliminate redundancies could be the planar degrees of freedom of both the base of the

robot and the cart (in the robot reference frame). Such a representation (x,y,θ ,xc,yc,θc)

would result in a highly controllable 6-dimensional state space for the system. However,

we choose instead to restrict the motion of the cart by specifying a fixed point of articu-

lation for the cart in the robot frame. This choice is motivated planning considerations —

it reduces the dimensionality of the search space for planning while still retaining enough

flexibility to allow the articulation needed to execute tight turns. Our choice of state repre-

sentation (x,y,θ ,φ) is shown in Figure 12(b).

4.5.2 Transitions

The transitions between nodes in the search graph are defined using a lattice-based planning

representation [97, 125]. A lattice-based planning representation discretizes the configu-

ration space into a set of states. The connections between the states are also discretized

and every connection represents a feasible path. The lattice representation can be used to

36



(a) (b) (c) (d)

Figure 14: Four example motion primitives. The red arrow indicates the final pose of
the robot at the end of each primitive. (a) rotate in place, (b) move forward, (c) move
diagonally, (d) articulated right-turn.

specify the motion planning problem as a graph-search. The key advantage of this rep-

resentation, in contrast to other approaches like 4-connected or 8-connected grids, is that

every connection between states is a feasible connection. This makes the lattice-based

representation a good choice for constrained systems, such as a robot with an articulable

cart.

Since the PR2 robot is omni-directional, we choose to enable transitions that allow the

robot to move forwards, along diagonal paths, rotate in place, move backwards and move

forwards and backwards while rotating. These transitions are thus motion primitives and

can be used to generate a search graph of the task space. Note that these primitives dif-

fer from those used in Chapter 3 in that they are executed by a closed-loop manipulation

controller with prehensile grasp, and therefore present no uncertainty to the planning sys-

tem. In order to exploit the controllable degrees of freedom of the robot+cart system, we

also designed primitives for simultaneous navigation and articulation. Four of the motion

primitives used are illustrated in Figure 14. During the search process, the planner checks

the entire motion primitive between parent and child nodes for collisions using the global

costmap.
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4.5.3 Cost Function

In general, the planner can accommodate an arbitrary cost function reflecting such objec-

tives as travel time, risks involved in hard-to-execute maneuvers, distance from obstacles

and other metrics. In our experiments, the cost of each edge in the constructed graph cor-

responded to the time required to execute the motion primitive represented by the edge.

The cost of the edge was also increased further when the corresponding motion primitive

traveled close to an obstacle. Finally, we also increased the cost of edges for certain motion

primitives that were harder to execute.

4.5.4 Graph Search

Given a graph defined as above and a cost function associated with each action, an efficient

search method is required for finding a solution path. A* search is one of the most popular

methods for this problem [58]. It utilizes a heuristic to focus the search towards the most

promising areas of the search space. While highly efficient, A* aims to find an optimal path

which may not be feasible given time constraints and the dimensionality of the problem.

To cope with limited deliberation time, we use an anytime variant of A* — Anytime Re-

pairing A* (ARA*) [98]. This algorithm generates an initial, possibly suboptimal solution

quickly and then concentrates on improving this solution while time allows. The algorithm

guarantees completeness (for a given graph) and provides bounds on the sub-optimality of

the solution at any point of time during the search. Furthermore, this bound, denoted by ε ,

can be controlled by a user. In all of our experiments, we set the initial ε to 3.0, implying

that the cost of the returned solution can be no worse than 3.0 times the cost of an optimal

solution (even though the optimal solution is not known). In nearly all of our experiments,

ARA* was able to decrease the bound on on sub-optimality to 1.0 (corresponding to a

provably optimal solution) within the time we allocated for planning.

Similar to [97], the heuristics we used were computed online as costs of 2D (x,y) paths

that take into account obstacles. These heuristics were computed via a single Dijkstra’s
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search before each planning episode.

4.5.5 Local Control

Given a path from the global planner, i.e., a set of waypoints of the form (x,y,θ ,φ), a local

controller is responsible for translating this path into commands for the base and arms. It

runs at 20 hz in the odometric (rather than the map) frame. It therefore provides robustness

against dynamic obstacles and localization errors. It aims to follow the global plan as

closely as possible: if the plan is found to be in collision, it will slow down or stop rather

than attempt to move around the obstacle. If it is unable to follow the global plan, the local

controller aborts, forcing the system to re-plan a global path.

The local controller operates by moving its desired goal along the global plan returned

by the planner. Desired base velocity (vb) and cart (vc) velocities are determined using a

proportional controller (Equation 12).

vb = TbKb
peb (12)

vc = Kc
pec (13)

where eb and ec represent the errors in base pose (expressed in the global frame) and cart

pose (expressed in the robot frame), Tb transforms the desired base velocity into the base

frame and Kb
p and Kc

p are positive definite gain matrices. The errors are given by,

eb = qd
b−qa

b

ec = qd
c −qa

c

The superscripts d and a indicate desired and actual velocities respectively. The desired

base and cart command velocities are scaled appropriately based on desired maximum

speeds for the base and the cart.

Note that because of our choice to parametrize the base motion by articulating the cart

about a fixed point in the robot base frame, the position of the center of the cart and orienta-

tion of the cart qc = (xc,yc,θc) are a function of the cart articulation angle φ . The position
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and orientation of the base in the global frame, qb = (x,y,θ) is completely specified by

the plan. The desired base (vb) and cart (vc) velocities are determined using a proportional

controller.

The velocities for the base and the cart are forward simulated in the odometric frame to

check for collisions against the local costmap. If they result in collision, the velocities are

scaled down until a collision is avoided, and failure is declared by the local controller if no

scaling is possible. The failure of the controller triggers global re-planning. These steps

serve to slow the system down when operating near obstacles, and results in re-planning if

failure of the local controller is unavoidable.

4.5.6 Cart Articulation

Articulation of the cart is critical for narrow-tolerance navigation problems, such as pass-

ing through doors, rounding corners in narrow hallways, or avoiding obstacles in densely

cluttered areas. Where previous approaches required error-prone analysis of contact forces

and dynamics, the presence of two arms allowed us to produce accurate cart trajectories

simply by transforming the desired cart velocity appropriately into desired velocities for

the two end-effectors (vee). These velocities are then mapped into the joint space of each

arm using the transpose of the manipulator Jacobian. The net result is a set of desired joint

velocities (qd
arm) for each arm that allow the system to track the desired cart velocity:

q̇d
arm = JT vee (14)

4.6 Experimental Results

We conducted extensive experimentation to validate the robustness and reliability of our

system. The experiments were carried out in a typical office building with furniture and

people. The robot was completely autonomous and would follow a sequence of waypoints

defined on the building map. Waypoints were chosen such that the robot would have to
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Figure 15: A long planned path using the lattice-based planner. The red arrow indicates
the goal for the robot base, the blue polygon is the footprint of the robot during the plan
and the green rectangle represents the cart. Note the frequent use of the articulated motion
primitives.

move through tight spaces and high-traffic areas. The global planner was allocated a maxi-

mum planning time of 10 seconds. In most cases, the planner took significantly less time to

plan the first solution. Data logged for the global planner included time to first plan, time

to final plan, and cost of the plan. An example global plan returned by the planner on the

global map is shown in Figure 15 which shows the plan for a distant goal.

The system performed exceptionally well. It was able to handle the presence of people

in its vicinity, stopping when they suddenly stepped in front of it, and either re-planning or

restarting once they moved away. It never hit any obstacle in the environment. Figure 16

provides a series of snapshots of a run of the robot as it was performing a tight 90 degree

turn. Figure 17 contains a series of snapshots showing the robot stopping in time to avoid

hitting a person and then planning a path around the person.

Analysis of the data from the planner showed that it was generally successful in finding

paths quickly. The analysis is summarized in Table 4.6 for one run lasting nearly an hour

in which we repeatedly directed the robot to goals at far regions of the building. The time

to first solution corresponds to the time (in seconds) taken to find a solution with the initial

value of ε = 3.0. The number of expands corresponds to the number of states that were
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(a) (b)

(c) (d)

Figure 16: Articulating the cart to execute a tight turn.

(a) (b)

(c) (d)

Figure 17: Stopping in presence of person and then replanning to go around him.
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expanded in getting to the initial solution (ε = 3.0).

Table 1: Global planner statistics from a long run.

number of planner calls 134
expansions (first solution) (mean) 15157.87
expansions (first solution) (std. dev.) 24529.92
time to first solution (secs) (mean) 1.23
time to first solution (secs) (std. dev.) 1.93
final epsilon (mean) 1.30
final epsilon (std. dev.) 0.61
number of planning failures 25

Of the 134 calls that were made to the planner, 25 did not succeed. An examination

of these calls showed that they failed much before the allocated final time for the planner

expired. There are several reasons that this could have happened. If the robot was blocked

by people, no plan would be found for getting out of a tight spot and the planner would

fail. Once the people moved out of the way and the costmap was clear, the planner would

be able to find a path to its goal. Spurious sensor readings were another frequent cause of

failures. Although we attempted to filter out these readings, they were never completely

eliminated and would often completely block all plans for the robot. The recovery behavior

helped in clearing out these spurious reading but improving the quality of our sensing is

essential to achieve longer robust continuous operation.

The addition of the articulated primitives clearly helped the robot traverse tight corri-

dors, made the plans look much more natural, and reduced the total footprint of the robot

as it was making turns. Figure 18 illustrates the plans for a turn through -90 degrees. The

motion plan on the left was made with a set of articulated motion primitives while the plan

on the right was planned without them.

4.7 Discussion

In this chapter we presented a robust and reliable system for a full-scale mobile manip-

ulation task: cart pushing in a typical office environment. Our method is able to handle
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Figure 18: The overall footprint of the robot when using articulated primitives is much
smaller (left) than when it is not using them (right). The red arrow indicates the goal for
the robot base, the blue polygon is the footprint of the robot during the plan and the green
rectangle represents the cart
.

tight turns using articulation of the cart, to escape very tight spots requiring the planning

of a series of small moves, and can respond to the presence of dynamic obstacles such as

humans.

These capabilities relied on a low-dimensional configuration space that included both

the robot and the target object. However, in this configuration space the DOF pose param-

eters are hard-coded, and the planner assumes that a controller exists which can reliably

articulate the target object about this point. This method is therefore not capable of adapt-

ing to constraints such as wheels or casters on the objects themselves. For such a capability

the robot requires methods for determining, online, the physical model for any object it

encounters, as well as suitably general methods for control with respect to these models. In

the next chapter we address the model learning problem, and consider the control problem

in Chapter 6.
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CHAPTER V

LEARNING KINEMATIC AND DYNAMIC CONSTRAINTS

So far we have contributed two insights towards our goal of decision making in unfamiliar

physical environments. The first was that in order to adapt to novel objects the agent must

be able learn their dynamics online. However, the method we presented operated with a

very restricted action space which limited its applicability to more general manipulation

tasks. Therefore the second was that it is important to consider the agent’s body and articu-

lation abilities to solve more challenging mobile manipulation problems. If the first served

to motivate the need for tools from the robotics toolkit, the second gave a taste for how

deep this rabbit hole goes. The central problem is the explosion in complexity that arises

when engineering systems for full-scale mobile manipulation. This chapter asks whether it

is possible to incorporate this domain knowledge in a more parsimonious way.

The goal of this chapter is to provide a principled framework for supporting decision

problems in physical domains with under-specified dynamics. Specifically, our aim is to

eliminate the implicit keyframe-based constraint representation from Chapter 4 by directly

modeling the continuous motion of interacting rigid bodies.

We begin by providing an overview of differential-equation based dynamics, which is

the mathematical foundation of state-space dynamics, and the main point of departure from

motion primitives and other more general transition models in Reinforcement Learning.

However, the state-space approach only gives a general template for representing systems

which can be described by coupled first-order differential equations. For this approach to

be applicable to multi-object scenes, the model must capture relational behavior – how

object movement depends on the state of other objects. We will consider several different

approaches to this problem, and ultimately argue for a simulation-based method analogous
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to the models of physical reasoning in humans described in Chapter 1.

5.1 State-Space Dynamics

This thesis is concerned with physical planning, such as object manipulation with mobile

robots or sprites in physically-realistic video games. The low-level state representation

in these domains is typically the position and velocity of one or more rigid bodies. This

representation is referred to as the state-space representation in control theory, and comes

from Newton-Euler dynamics [152]. Actions correspond to the forces and torques that can

be applied to these bodies to move them. Standard notation defines a state-space in terms

of state x and control u:

ẋ = f (x,u) (15)

where ẋ is the first time-derivative of the state; however, in order to remain consistent with

the RL literature we will use s to denote the state, a to denote actions, and s′ to denote next

state. This corresponds to the discrete-time version of Eq. 15, as is common in the controls

literature, and is obtained by applying f (s,a) for a finite time-interval. When state vectors

include more than one object we use superscripts to indicate the state dimensions, (e.g. si

for object i).

In general we assume that the agent can apply forces directly to one object at a time

(though objects may interact via contact). Consequently, an action is uniquely defined by

a force and torque vector and a target-object identifier. In two dimensions, we require six

parameters to represent the state si: two for position in the (x,y) plane, one for orientation

θ , and three for their derivatives. An action requires five parameters: two for the force

〈 fx, fy〉, one for a torque τθ , one for a target object index i, and one for a time step δ t. For

k objects this results in the overall model signature of:

f (R6k+5)→ R6k (16)

In summary, a state is a concatenation of the position and velocity for each object, and an

action is a tuple containing an applied force-torque, target object index, and a time step.

46



5.2 Object-Oriented Regression

Recall from Chapter 1 that the OO-MDP purports to capture discrete object dynamics in a

compact and efficient way. We therefore begin by attempting to integrate state-space dy-

namics into the OO-MDP framework. Our first contribution, Object-Oriented Regression

(OOR), combines a non-linear regressor for modeling the continuous dynamics of individ-

ual objects with the predicate-based method for representing object relationships from the

OO-MDP (effectively creating a hybrid system [53] model). This will constitute a test of

the core hypothesis of the OO-MDP that object dynamics can be captured with predicate-

based (i.e. discrete) description of the possible relationships between objects.

OO-MDP Limitations Recall from Section 2.2.2 that Object-Oriented Markov Decision

Processes (OO-MDPs) represent dynamics as a finite set of object attributes and relation-

ships [43]. In this way, OO-MDPs both manage large state-spaces and can generalize to

unseen states; however, there are three critical properties that limit the usefulness of OO-

MDPs for real-world dynamics:

1. The underlying effect model is discrete, and cannot exploit the geometry of physical

state spaces (e.g. actions cause displacements in coordinate frames).

2. It is missing the notion of an integrator, which models the evolution of state dimen-

sions conditional on other state dimensions (e.g. velocity changes position without

external force).

3. Relations are represented with first-order predicates, which cannot define relations

parametrically (e.g. contactθ (ob j1)).

As we will show, the first two issues can be overcome by using state-space regression as

the core dynamics model; however, overcoming the limitations of first-order predicates to

represent relationships for real-world applications is a more serious challenge.
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Figure 19: Detecting collision sectors for contact predicates (OO-LWR) in an apartment
task.

5.2.1 Collision Predicates

In the original OO-MDP, the choice of contact predicates was driven by adjacency proper-

ties of states arranged in a grid; however, in reality objects can come into contact from any

orientation, and react according to where the collision occurred in the coordinate-frame of

the object. To handle this reality, the object boundary can be discretized into a set of ns

contact sectors, each of which is assigned a contact predicate:

contactθ1(ob j), . . . ,contactθn(ob j)

Importantly, sector predicates must be computed in the coordinate frame of the object. For

example, the reaction of a shopping cart to a collision depends on its direction relative to

its wheels, not the grocery store in which it is located.

Fig. 19 illustrates sector-based collision detection applied to objects in an apartment.

Lines indicate the level of discretization, and dark (red) dots represent the sectors in colli-

sion. The number of sectors ns is a free parameter of the model.
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5.2.2 Local State-Space Models

As mentioned in Section 5.1, state-space dynamics are differential, defining displacements

from the current state. Objects can also have differential constraints (e.g. wheels) causing

transitions to be non-linear in the state and action parameters; therefore, the effect model

must be (a) compatible with the state-space representation, (b) invariant to object pose, and

(c) capable of representing non-linear functions.

The building block for state-space regression models matching Eq. 16 are scalar-valued

predictors of the form f (Rk+5) → R1 for each dimension of each object. To simplify

notation here we use the superscript to denote individual state dimensions of a single object,

rather than an object index (e.g. s1
1 denotes the x coordinate of object 1 at time t = 0, not

the full state of object 1). For a single object the function f (st ,at)→ s′t can be written as:
f 1(st ,at)+ ε

. . .

f n(st ,at)+ ε

=


s1
t
′

. . .

sn
t
′

 (17)

For these individual predictors we use locally-weighted regression (we summarize the main

properties of LWR here, but for a more thorough overview see [118]). LWR is a kernel-

based generalization of linear regression that permits interpolation of arbitrary non-linear

functions. In LWR, a kernel function is used to compute a positive distance wi = k(X∗,X i)

between a query point X∗ and each element X i of the training set, which are collected into

a diagonal matrix W . Kernels are typically decreasing functions of distance from the query,

such as the Gaussian or “squared-exponential”: k(X∗,X i) ∝ e−(X
∗−X i)2/λ .

Defining the training data X̃ := [s,a]Tt=0 and y := [s′]Tt=0, and the query X̃∗ := [s∗,a∗],

state predictions can be estimated for each output dimension with weighted least-squares:

β
∗
i = ((X̃TWX̃)−1X̃TWyi

′ (18)

s′i = X̃∗T β
∗
i (19)

In contrast to parametric approaches, the model parameters β ∗ are re-computed for each
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query. As a result, the regression coefficients may vary across the input space, allowing

LWR to model nonlinear functions with linear machinery.

Pose invariance is achieved by first transforming s′t and a′t to the st frame, then drop-

ping the position components of st . Transforming all observations in this fashion yields a

displacement model for individual objects that generalizes across position, at the expense

of being able to capture position-dependent effects. However, the only position-dependent

effect in the domains we consider is collisions, which are handled by the contact predicates.

Furthermore, learning collisions between dynamic bodies with LWR would require a single

monolithic model over the joint state-space of all objects, which would require an infea-

sible number of observations. Therefore in OO-LWR we use a collection of independent

single-body, pose-invariant LWR models.

In two-dimensions the resulting signature for a single-body LWR model is f (R7)→

R6, which computes a state displacement in the query frame (note that angular velocity is

frame-independent in two-dimensions):

f (ẋ, ẏ, θ̇ , fx, fy,τθ ,δ t)→ (δx,δy,δθ ,δ ẋ,δ ẏ, θ̇) (20)

The overall transition in the original state space is then obtained by transforming the

local-frame position, orientation, and linear velocity back to the world-frame. In this fash-

ion, LWR can exploit the geometric nature of the state-space representation, where coor-

dinate transformations are internal to the regression model (challenge 1). By building a

regression model in which a given output dimension can depend on multiple state dimen-

sions, this approach can also effectively handle integration effects (challenge 2). We now

discuss how these models can be fit.

5.2.3 Fitting Local Models

Recall that the purpose of predicates in an OO-MDP is to segment the state-action space

into sets with distinct object dynamics. The process of training an OO-LWR model on a
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history of observations h = [st ,at ,st+1]
T
t=0 is therefore achieved by assigning observations

to effect models by condition, where a condition is a boolean string containing the output

of all relations (e.g. collision predicates) applied to that state. For example, all training

instances in which the front of a given chair is in collision should be assigned to the same

condition. By using state-space regression for the individual effect models, OO-LWR is

able to model rigid body motion for multiple objects; however, OO-LWR does not naturally

admit a compact representation of the space of possible collisions. As we will see, there

are considerable performance implications for larger domains.

5.3 Physics-based Reinforcement Learning

As discussed in Section 5.2.3, Object-Oriented Regression gives means of handling col-

lisions while avoiding any parametric assumptions about the underlying object dynamics.

Here we present PBRL, a parametric alternative. In PBRL the basic idea is to view a physics

engine as a hypothesis space for nonlinear rigid-body dynamics. This representation allows

us to compactly describe transition uncertainty in terms of the parameters of the underlying

physical model of the objects in the world. We capture this uncertainty using distributions

over the relevant physical quantities, such as masses and friction coefficients, and obtain

transitions by taking the expectation of the simulator’s output over those random variables.

5.3.1 Physical Quantities as Latent Variables

At its core, a physics engine uses systems of differential equations to capture the funda-

mental relationship between force, velocity, and position. During each time step the engine

is responsible for integrating the positions and velocities of each body based on extrinsic

forces (e.g. provided by a robot), and intrinsic forces (i.e. differential constraints).

Differential constraints are ubiquitous in natural environments, and arise whenever bod-

ies experience forces that depend on their configuration relative to one another. A wheel

rolling along a surface, a door rotating around a hinge, and a train gliding along a track are
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all examples of differential constraints acting on a body. For RL purposes, these param-

eters provide attractive learning targets that may prove more efficient than more general

functional forms, such as non-parametric regression.

In PBRL we model the state-space dynamics f (Eq. 16) in terms of the agent’s beliefs

over objects’ inertial parameters and the existence and parametrization of physical con-

straints, such as wheels. Like a standard Bayesian regression model, this model includes

uncertainty in the process input parameters (physical parameters) and in output noise. If

f (·;Φ̃) denotes a deterministic physical simulation parameterized by Φ̃, then the core dy-

namics function is:

st+1 = f (st ,at ;Φ̃)+ ε (21)

where Φ̃ = (φ̃)n
i=1 denotes a full assignment to the relevant physical parameters for all n

objects in the scene, and ε is zero-mean Gaussian noise with variance σ2.

For any domain, Φ̃ must contain a core set of inertial parameters for each object, as well

as zero or more constraints. Inertial parameters define rigid body behavior in the absence

of interactions with other objects, and constraints define the space of possible interactions.

In the general case inertia requires 10 parameters; 1 for the object’s mass, 3 for the

location of the center of mass, and 6 for the inertia matrix; however, if object geometry

is known, we can reduce this to a single parameter m by assuming uniform distribution of

mass.1 This is sufficient for our purposes, but for a full parametrization see [6, 119].

We focus on three types of constraints that arise frequently in mobile manipulation

applications: anisotropic friction, distance, and non-penetration.

Anisotropic friction is a velocity constraint that allows separate friction coefficients in

the x and y directions, typically with one significantly larger than the other. We define

an anisotropic friction joint by the 5-vector Jw = 〈wx,wy,wθ ,µx,µy〉, corresponding to the

joint pose in the body frame, and the two orthogonal friction coefficients. Anisotropic

1Mass is often parameterized in this fashion in modern simulation tools, such as Box2D [25]
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friction constraints can be used to model wheels, tracks, and slides.

A distance joint is a position constraint between two bodies, and can be specified with

a 6-vector Jd = 〈ia, ib,ax,ay,bx,by〉 which indicates the indices of the two target objects a

and b as well as a position offset in each body frame. Distance joints can be used to model

orbital motion, such as hinges or pendulums.

Non-penetration, or contact constraints, are responsible for ensuring objects react ap-

propriately when they come into contact. Object penetration is detected during state in-

tegration based on object geometry, and is resolved by computing two types of collision-

forces. The first is normal to each collision surface, and pushes objects apart. The mag-

nitude of this force is controlled by the coefficient of restitution r, which is a rigid-body

property that can be interpreted as “bounciness”. The second is tangential to each collision

surface, which captures contact friction and allows transfer of angular momentum. This

force is proportional to a contact-friction coefficient µc.

In general this model-space is over-complete: not all bodies will have both hinges and

wheels. The model must therefore allow constraint effects to be added and removed. This

can be accomplished by including auxiliary variables for represented components, e.g. us-

ing a Dirichlet Process prior on constraints; however, this issue can be avoided for cases

where the effects of interest can be represented with a finite number of constraints, and

where individual constraints can be nullified for certain parameter settings.

We satisfy these conditions by including only a single wheel constraint, and bounding

the number of distance constraints by the number of unique pairs of objects. One wheel

is sufficient for modeling the bodies typically found indoors, such as shopping carts and

wheel chairs, because they have only one constrained axis (multiple coaxial wheels can

be expressed by a single constraint). The wheel can be nullified by zeroing the friction

coefficients, and the distance constraints can be nullified by setting ia = ib.

In summary, our dynamics model for a single body is represented by a set φ containing

the mass m, restitution r, contact-friction µc, plus k distance constraints Jd , and a single
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f (s,a;Φ̃)
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π(s)
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σ

Φ

Γ

Φ̃

Figure 20: Graphical model depicting the online model learning problem, and the as-
sumptions of PBRL, in terms of states s and actions a. Latent variables Γ (geometric prop-
erties) and Φ (dynamics properties) parameterize the full time-series model. π(·) denotes
the policy and f (·) denotes the dynamics function. We assume Γ to be observable.

anisotropic constraint Jw.

φ := {m,r,µc}∪{Jd}k∪{Jw}1 (22)

Fig. 20 illustrates our approach and modeling assumptions. We split object parameters

into two sets according to whether they are potentially observable by the agent. The first,

Φ, denotes the un-observable physical properties that are needed to parameterize object

dynamics, such as friction and mass. The second, Γ, describes geometric information such

as polygons or meshes, and are needed to compute inertial forces and collision effects.

Note that these both describe physical object properties, and are distinct from object state

parameters (position and velocity). We then define Φ̃ = Φ∪ Γ as the full set of object

properties which are sufficient to parametrize the physical dynamics of all objects in the

model.

Inferring Φ from s and a is the model learning problem, and is the focus of this work.

Deciding a from s and Φ is the planning problem, which we consider in Chapter 6. Inferring

s and Γ from sensor observations is the vision problem, which is outside the scope of this

work.

In summary, PBRL provides a model prior for object dynamics in terms of a small set

of latent physical parameters. The goal of this approach is expressiveness, and the core
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Table 2: Univariate distributions for each physical parameter, with ∗ used to indicate
subscripting for the appropriate property.

Property (∗) Distribution
m,r Log-Normal(µ∗,σ2

∗ )
µc,µx,µy Truncated-Normal(µ∗,σ2

∗ ,0,1)
wx,wy,ax,ay Truncated-Normal(µ∗,σ2

∗ ,a
xy
min,a

xy
max)

bx,by Truncated-Normal(µ∗,σ2
∗ ,b

xy
min,b

xy
min)

wθ Von-Mises(µwθ
,κwθ

)
ia, ib Categorical(p∗)

technical challenge is estimating Φ from time-series data, considered next.

5.3.2 A Prior Over Physical models

In order to fully specify a PBRL model we must assign priors over each parameter of each

body to restrict support to legal values. Mass m and restitution r can take values in R+,

all friction coefficients {µc,µx,µy} can take values in [0,1], all position-offset parameters

{wx,wy,ax,ay,bx,by} can take values within the bounds of the appropriate object, orien-

tation {wθ} can take values in [−π,π], and index ia, ib can take values in {1, . . . ,k} for

k objects in the world. To represent the agent’s beliefs over these parameters, we assign

the distributions denoted in Table 2 for each object. In general this model prior would be

initialized with uninformative values, and be updated from posterior statistics as the agent

receives data.

Fitting physical models Now we consider inferring physical parameters Φ from a history

of manipulation data {st ,at ,st+1}T
t=0. Let h denote a matrix of observed transitions:

h =



s1 a1 s′1

s2 a2 s′2
...

...
...

sT aT s′T


(23)

We should use h to update the the agent’s beliefs about Φ and the noise term σ . In a

Bayesian approach this is expressed as the model posterior given history h:
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P(Φ,σ |h) = P(h|Φ,σ)P(Φ)P(σ)∫
Φ,σ P(h|Φ,σ)P(Φ)P(σ)

(24)

where Φ = {φ1,φ2, . . . ,φk} is the collection of hidden parameters for the k objects in

the domain, and σ is a scalar. This expression is obtained from Bayes’ rule, and defines the

abstract model inference problem for a PBRL agent.

The prior P(Φ) can be used to encode any prior knowledge about the parameters. In

this work P(Φ) is not assumed to be of any particular parametric form, although this is

an interesting avenue for inserting additional structure in physical scenes, e.g. that large

objects tend to have higher mass, or table-like objects tend to have wheels. For a particular

assignment to Φ, Eq. 21 implies a Gaussian likelihood over next states:

P(h|Φ,σ) =
n

∏
t=1

P(s′t |Φ,σ ,st ,at)

=
n

∏
t=1

1
σ
√

2π
exp
(−‖s′t− f (st ,at ;Φ̃)‖

2σ2

) (25)

Eq. 25 tells us that the likelihood for proposed model parameters are evaluated on a

Gaussian centered on the predicted next state for a generative physics world parameterized

by Φ̃ (i.e., with known geometry and proposed dynamics). Due to Gaussian noise, the log-

likelihood for Φ is obtained by summing squared distances between the observed value and

the predicted state for each state and action.

lnP(h|Φ,σ) ∝−
n

∑
t=1

∥∥(s′t− f (st ,at ;Φ̃)
∥∥ (26)

Note that, technically, any state parameters representing angles can only exist on the inter-

val [−π,π], and therefore that the likelihood for (s2′
t − f (s2

t ,a
2
t ;Φ̃)) should use a distribution

with this support (e.g. Von-Mises(µ,κ)). However, in our experiments we ignored this, at

the risk of over-penalizing certain predictions with rotation errors that wrap around the

unit-circle.

Along with the prior defined in Table 2, this provides the necessary components for a
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Metropolis sampler for the unnormalized density:

P(Φ,σ |h) ∝ P(h|Φ,σ)P(Φ)P(σ) (27)

These posterior samples can then be used by any stochastic planner for selecting ac-

tions with respect to the agent’s model beliefs. Transition samples from a PBRL model can

be obtained by first sampling the physical parameters Φ from the model posterior, step-

ping the physics world for the appropriate state and action, and (optionally) sampling the

output noise. If P(Φ,σ |h) represents the agent’s current model beliefs given a history of

observations h, the full generative process for sampling transitions in PBRL is:

Φ,σ ∼ P(Φ,σ |h)

ε ∼ N(0,σ2)

st+1 = f (st ,at ;Φ̃)+ ε

(28)

MCMC for PBRL Despite being compact and self-contained, constructing a sampler

for a probabilistic model on a physics engine API is non-trivial. At a minimum it requires

specifying prior distributions of the appropriate kind from Table 2, each with with valid

support on every object (e.g. wheel offsets (wx,wy) must fall within the area of the object),

and deriving expressions for their conditional likelihood. In our experiments we found

it greatly useful to specify the PBRL prior using an MCMC library called PyMC [122],

which automates the process of constructing Metropolis-Hastings samplers for arbitrary

probabilistic models. A full description of the PyMC language is outside the scope of this

thesis, but in short it implements a concise syntax for declaring random variables that can

depend on other random variables. These variables can be used in subroutines as though

they were regular python variables, for example in a deterministic physical simulation that

depends on the random variables in Φ. PyMC keeps track of the dependencies of these

variables, and automatically computes the overall model log-likelihood. We take advantage

of this to construct a scalable model prior that can handle multiple interacting parameters

for an arbitrary number of objects.
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In our experiments we also discovered a practical issue when scaling MCMC inference

to more than one object, resulting in a minor change to the noise term in the model. To

understand this, we must first explain the behavior of an MH sampler using a scalar noise

parameter σ ∈R as defined in Eq. 21. MH defines a random walk in model space, guided by

a proposal distribution (e.g. adaptive Gaussian) which generates candidate samples for the

each model parameter to be accepted or rejected according to the MH ratio [22]. However,

when performing MH on regression models like the one here, the noise parameter plays a

critical role in determining the likelihood of the data – the larger the value of σ , the smaller

the impact of changes in Φ on the overall likelihood2. The result is that σ collapses as the

model fit increases, decreasing the overall model entropy. As a consequence, the sampler

has to pay a greater price for proposals to Φ that are suboptimal, effectively making the

sampler greedier over time. This is desirable – indeed a small value of σ indicates that a

good model has been found.

The difficulty is that σ only collapses when the entire model has been fit. For large

models such as the one we consider here, the probability of simultaneously finding good

values for all model parameters is very low3. Fortunately, we can ameliorate this issue by

taking advantage of the object-wise block structure of our model space. Ideally what we

want is the model to be able to fit the components of Φ object-wise, in order to match the

block structure of the model likelihood.

We can achieve this behavior by replacing the scalar noise parameter with a vector

containing one element for each object (i.e. σ ∈ Rk). This does not change the validity of

original likelihood expression in Eq. 26, but introduces object-wise control of the steepness

of this function:

2This should be intuitive, since σ controls the width of the Gaussian centered on the model predictions
f (st ,at ;Φ̃)

3Even if the sampler finds a good fit for one object φi, if the remaining components of Φ are poor then σ

remains large and the sampler tends to “walk away” from φi.
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lnP(h|Φ,σ) ∝
−∑

n
t=1

∥∥(s′t− f (st ,at ;Φ̃)
∥∥

σT σ
(29)

The results presented in Section 5.5 were obtained without this optimization, but it was

necessary for all results in Chapter 6. For similar reasons, we also found it useful to define

a proposal distribution for sampling parameters in Φ object-wise (i.e. sampling each φi in

turn).

5.4 Model Learning on Real Robots

So far we have considered the problem of modeling and estimating object dynamics in

an idealized setting in which the agent has access to the the exact position and velocity

of every object in the scene, as well as the force and torque being applied to the object’s

center-of-mass. In this section we consider the practical issues in obtaining these data from

sensors on a real robot, and transforming them to a single consistent reference frame. We

also address an unexpected difficulty that arose while attempting to fit models using the

likelihood expression in Eq. 26. Further implementation details can be found in [143].

5.4.1 Hardware Prerequisites

There are two basic requirements for implementing our approach on a real robot. The first

is a method for measuring the reaction forces and torques during manipulation. The process

presented here assumes access to measurements from a wrist-mounted force-torque sensor

as well as an end-effector suitable for manipulating the target objects. Although our model

as described above was restricted to planar dynamics, we describe a solution involving full

3D sensing and actuation as is typically required in robot manipulation.

We denote the raw 6-axis force-torque measurement in the gripper frame as g
gF =

[F ,τ]T , which contains linear component F = [Fx,Fy,Fz] and moment τ = [τx,τy,τz]. Fol-

lowing Craig [30], we use the leading subscript to indicate source frame (in which the

quantity is located), and the superscript to indicate the target frame (in which the quantity
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is observed). For example, we will write g
gF to represent the gripper force-torque as mea-

sured at the gripper, o
gF to represent the same force-torque as seen in the frame of object

o, and w
o F the same force-torque transformed to the object’s center-of-mass and observed

in (rotated to) the world frame.

The second requirement is a method for tracking the trajectories of objects over the

course of manipulation episodes. In this work we are interested in planar-dynamics, and

require the planar pose and velocity of the target object. We denote the 6-dimensional state

vector containing object o’s position and velocity in the world-frame as w
o x= [xo,yo,θo, ẋo, ẏo, θ̇o].

We use w
o T to denote the corresponding homogeneous transform, composed of the 3x3 ro-

tation w
o R and 3x1 translation w

o P:

w
o T =

 w
o R w

o P

0 1

 (30)

We also require the world-frame pose of the gripper, w
g T during the episode for mapping

applied forces to the object frame, considered next.

5.4.2 Gathering Data

To gather data the robot must apply manipulation forces to some point on the object, and

record the force-torque response as well as resulting object trajectory. To avoid having

to introduce the end-effector contact point in the model presented in Eq. 21, the sensor

readings must be adjusted to compensate for the weight of the end-effector, and transformed

to the object frame.

These are standard operations [30] which we reproduce here for completeness. First,

let A
BT denote a force-moment transformation which maps force measurements from frame

B to frame A:

A
AF = A

BT B
BF (31)

=

 A
BR 0

A
BP× A

BR A
BR


 B

BF

B
Bτ

 (32)

60



where A
BR and A

BP denote the rotation matrix and translation vector, respectively, from frame

B to A, and P× is the cross-product operator

P×=


0 −pz py

pz 0 −px

−py px 0

 (33)

We can therefore compute the applied force and torque at the center of mass for object

i, as seen in the world frame, as follows:

w
o F = w

o T o
gT

g
gF (34)

=

 w
o R 0

0 w
o R


 o

gR 0

o
gP× o

gR o
gR


 g

gF

g
gτ

 (35)

=

 w
o Ro

gR 0

w
o R
[o

gP× o
gR
] w

o Ro
gR


 g

gF

g
gτ

 (36)

This process can be visualized in Fig. 28, and is equivalent to applying the force-moment

transform from Eq. 32 using the transform:

w
ogT =

 w
o R 0

0 1

o
gT (37)

Note that the first transform involves a change of location from the gripper to the object

center-of-mass, but the latter only involves a rotation. Fig. 21 shows an example of these

operations being applied simultaneously to the left and right gripper force-torque signals

during the pull action on the rectangular table in Fig. 44(g).

Gravity Compensation A straightforward method for gripper mass compensation is to

cache an initial sensor offset g
gF0 and gripper pose w

g T0 (before object contact), and trans-

form it to the current frame w
g Tt using Eq. 32 at each time step:

g
gF
∗
t = g

gFt−
w
g Tt
w
g T0

T g
gF0 (38)
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(a) Left Gripper (b) Right Gripper (c) Object COM

Figure 21: Force-Torque data gathered during pull action on rectangular table with a
locked left caster (unknown to robot). (a) Raw readings in left-gripper frame (b) Raw
readings in right-gripper frame (c) Total force-torque transformed to the object center-of-
mass

This adjusted reading g
gF ∗

t can now be transformed to the object frame using the current

transform between the gripper and the object, following Eq. 36. This method can handle

changes in the pose of the gripper with respect to gravity, which is sufficient for our pur-

poses. We note that it cannot handle changes in conformation (e.g. finger movement) or

inertial effects which may be relevant for different applications. We also note that in prac-

tice the sampling rate of the object-tracker and force-sensor may differ, so Eq. 38 should

be computed using the most recent relative transforms from the object tracking system.

5.4.3 Estimation On Real Data

Estimating the PBRL model in Section 5.3.2 involved MCMC sampling guided by the log

of Eq. 27. The (log) priors P(Φ) and P(σ) were evaluated directly, and typically chosen to

be uninformative. The log-likelihood in Eq. 26 was obtained by summing squared distances

between the observed value and the predicted state for each state and action. A challenge

when attempting to fit log(h|Φ,σ) in practice is that the trajectory data on real robots will

be densely sampled, and contain both noise and un-modeled dynamical effects (e.g. static

friction or caster orientation). In our initial experiments this lead to large data sets for

relatively short manipulation episodes, as well as inaccurate long-term predictions.

To address this, we modify the log-likelihood term to penalize the final integrated error,
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rather than incremental displacements:

lnP(h|Φ,σ) ∝−(sT − s∗T )
2 (39)

where s∗i is defined recursively as s∗i = f (st ,at ;Φ̃), with s∗0 = s0.

The main difference with Eq. 26 is that this function maintains a separate predicted

state x∗ over time. Therefore the actual states xt in the trajectory are only used to evaluate

the transformation of each control input ui to the object frame (as necessary to omit grasp

variables), and final error for t = T . This can be understood as a method for handling an

under-parameterized model: By not penalizing deviations from intermediate points in the

trajectory we allow greater flexibility to fit the overall displacement.

5.5 Evaluation

On this section we evaluate the methods described above both in simulation and on a phys-

ical robot using a series of object manipulation tasks. Our goal is to answer the following

two questions:

1. What is the most efficient way to capture collision dynamics with multiple con-

strained rigid bodies?

2. Is the constraint parameterization in PBRL is learnable, and if so is it more efficient

than non-parametric regression?

These questions will be answered implicitly by examining agent performance, and also by

directly comparing model accuracy curves as a function of data quantity and quality.

5.5.1 Simulation Results

Before presenting our results on the robot, we take advantage of the fact that our engine-

based approach provides infinite source of synthetic data to rigorously test our proposed

methods under a variety of learning conditions. Given our ultimate aim of efficiently solv-

ing manipulation tasks in novel environments, our chief interest is in the performance of
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(a) Shopping Cart (b) Apartment

Figure 22: Simulated manipulation domains

PBRL and OO-LWR on actual tasks. We will also present the results of several experiments

comparing these models directly, as a means of explaining the task performance pattern.

Shopping Cart Task The first task is to push a shopping-cart to a user-specified goal

configuration. Reward was proportional to the L2 distance of the cart from the red cross

marked in Fig. 22(a). The cart was modeled as a single body with a wheel constraint in

the center of the handle axis, and behaved similarly to a real shopping cart which can pivot

around points along the wheel axis, but cannot translate along the same axis. Because the

cart can collide with the wall, the model must be able to handle collisions. It must also be

capable of modeling the non-linear behavior of the cart with sufficient accuracy to produce

a plan over the long horizon of the task.

We present results under two learning conditions for this task: one which is noise-

free, and a second in which the training observations were corrupted by Gaussian noise

(σ = 0.25). In addition to our primary comparison of PBRL and OO-LWR, we also include

the performance of an agent directly using the LWR model described in Section 5.2.2. This

was included to decouple the object-oriented approach from the use of an effect model

which can model state integration. An agent given access to the true model is provided as
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Table 3: Table of the relevant algorithm parameters for each experiment. k: number of
nearest neighbors (LWR,OO-LWR), λ : bandwidth (LWR,OO-LWR), ns: number of sectors
(OO-LWR), nt ps: number of raycast collision tests per sector (OO-LWR), εc: collision
radius (OO-LWR), prior: type of prior (PBRL), MCMC: sampler parameters (iterations,
burn-in, thin, number of chains) (PBRL).

k λ ns nt ps εc prior MCMC
Shopping Cart 1000 1.5 4 10 20 continuous 2e4,1e3,10,30
Apartment 1000 1.5 4 10 20 categorical 5e3,1e3,10,1

a baseline.

Fig. 23(a) shows the online performance of agents using each of these models in the

noise-free condition. Each trace represents an average over 10 episodes. At each step the

agent received an observation, updated its model, and selected a new action using an A*

planner.

In this experiment we expected the collision-aware agents, PBRL and OO-LWR, to be

successful, and the regular LWR agent to get stuck at the closest obstacle en route to the

goal. Further, we expected the PBRL agent to have a steeper learning curve than OO-LWR,

especially in the presence of noise, owing to its stronger learning bias.

In Fig. 23(a) we observe that in the absence of noise, the PBRL agent was able to

recover the true model after two steps, and perform nearly as well as the baseline agent.

The OO-LWR agent was slower to learn, but also reached the goal configuration. We note

that despite attaining the same final reward, the online behavior of these agents was very

different. Because OO-LWR had to (re)learn a separate model for each collision sector, it

tended to bump into walls more. This behavior was not penalized in the reward function

here, but in situations where collisions are undesirable are during learning, the margin

between PBRL and OO-LWR could be considerably higher.

The LWR agent failed to reach the goal configuration because it lacked the ability to

model collisions, due to the lack of collision predicates. It was therefore greedy with

respect to the reward function, and the value at which it plateaus corresponds to the distance

of the wall separating the start and goal configurations. Note that a non-pose-invariant LWR
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Figure 23: Online performance of various agents under different domain sizes and train-
ing conditions.

model is capable, in principle, of learning collision dynamics. However, it is incapable of

generalizing to unseen states and therefore cannot return useful predictions for states in

which the agent has not already visited.

In the presence of training noise (Fig. 23(b)) we observed the same overall pattern of

results, but with more gradual learning as was required to average out the noise, in particular

for OO-LWR. What appears to be a small steady-state error for the OO-LWR agent was in

fact due to this trace averaging across runs, some of which had not obtained sufficient

accuracy to plan a successful path around the wall. The disproportionate effect of noise on

OO-LWR will be the topic of Section 5.5.1.

Apartment Rearrangement Task The next task is a multi-object rearrangement prob-

lem in a simulated apartment. Multi-object rearrangement tasks of this sort are the main

focus of this thesis, and provide a true test of the collision-handling capabilities of both

methods. The apartment task contains 11 objects with various shapes and physical proper-

ties, including fixed wheels (dining table, office desk), large mass (couch, bed), small mass

(chairs), and a revolute constraint (kitchen table). Reward was again proportional to the L2

distance of the objects from user-defined goal configurations, visualized in Fig. 22(b).

The prior for PBRL is a categorical distribution defined over a collection of pre-learned

modes from individual object trials. This was done because sampling a joint set of object
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parameters under the continuous prior in Table 2 using MCMC was very slow to mix.

Addressing this issue with more sophisticated mixture-based priors and sampling methods

will be a topic for future work.

Fig. 23(c) compares the online performance of PBRL and OO-LWR on the apartment

task. In this domain, the inefficiency of OO-LWR is apparent: even after 1000 observations

the OO-LWR agent was incapable of modeling domain dynamics with sufficient accuracy

to produce a valid plan. This result is not surprising, given that OO-LWR requires 2|O|ns

separate effect models to fully describe the collision space over |O| objects. However, the

physics-based representation of collision dynamics yields qualitatively different behavior.

In contrast to the predicate-based approach, the PBRL agent quickly obtained an accurate

estimate of full relational dynamics of the task, and produced a viable plan.

Model Quality In this section we take a closer look at the learning behavior of the model

in PBRL, in contrast to regression based alternatives. This section serves to asses the learn-

ability and efficiency of the constraint parameterization in Section 5.3.2. We compared

PBRL to Locally-Weighted Regression (LWR) [7] and Linear Regression (LR). These

methods were selected because they represent common approaches at two different ex-

trema of the bias-variance spectrum, and have complementary strengths:

• LWR is a non-parametric method with high expressive power, but requires many data

points.

• LR is a parametric method which can only represent linear functions, but is very

sample efficient.

Both regression methods were trained on data from Eq. 23. In LR the free parameters

were the regression coefficients, and for LWR the free parameters were the Gaussian kernel

hyper-parameters.

Fig. 24 compares the efficiency of each model across the ten objects depicted in Fig. 25.

The five left-most objects contained a nonlinear constraint in some configuration. The
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Figure 24: Number of samples required to achieve R2 ≥ 0.995 on a collection of house-
hold objects

Figure 25: Visualization of the 10 objects used for the evaluation.
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remaining objects were linear and only vary in shape and mass. For each object, 50 noisy

training observations were gathered online and used to train a model (σ = 0.50).

For each object, bar height indicates the number of observations required by the model

to obtain a given test accuracy, as measured by an r2-statistic evaluated on 200 test sam-

ples. The samples were generated by the same procedure as used for training. The accuracy

threshold was set to r2 ≥ 0.995. Although it may appear strict, this threshold was empiri-

cally determined such that a planner was able to solve a short ( 50 step) open-loop pushing

task around a static obstacle with final error less than the object radius. This criterion is

appropriate for the intended purpose of our model, which is to determine kinematically

feasible trajectories for manipulation with velocity or force controlled effectors.

As expected, LR fails to achieve the target accuracy for all five non-linear objects. How-

ever, it is efficient for the remaining ones. LWR achieves the accuracy threshold for all

objects except the kitchen table. PBR was the most sample-efficient model, and reached

the accuracy threshold for all objects. However, it was the worst-performing model on the

bed object. Since the bed model was representable, this indicates a failure in the MCMC

estimator. We plan on investigating the use of different estimators in future work.

Signal-To-Noise Ratio An important practical consideration when fitting dynamics mod-

els from data is robustness to noise. As mentioned in Section 5.5.1, we often observed that

despite noisy data, PBRL agents would find approximately-correct models with a much

small number of samples than LWR-based agents. In order to measure this effect more

closely we examined model test-accuracy as a function of both training noise and training

size on data gathered from a simulated shopping cart. Each plot compares three models at

different point in the bias-variance spectrum, as discussed in Section 5.5.1. The first, PBR,

uses the physics-based model defined in Eq. 21. The next two are state-space regression

methods using either linear regression (LR) or locally-weighted regression (LWR) as the

underlying regressor.
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Figure 26: (a) Model accuracy as a function of training size (σ2 = 0.50) (b) Model accu-
racy as a function of noise level (50 training samples)

Fig. 26(a) shows a a plot of model test-accuracy vs. training size for a fixed noise level

(0.50). Fig. 26(b) shows complimentary result, plotting test-accuracy vs. training noise,

with number of training samples held constant (50). In both cases the R2 statistic was

computed on 200 test samples independently generated from the simulator with no noise.

The first result in Fig. 26(b) demonstrates that PBRL is more robust to Gaussian noise

than both regression methods (in cases where it can represent the target dynamics). The

inset shows that LR fails to reach zero-error even in the absence of noise, and indicates that

while LWR can achieve zero-error with no noise, its performance quickly falls off as noise

increases.

The second result indicates that the variance-related error in MCMC model estimates

drops rapidly with subsequent observations. Least-squares for linear-regression (LR) is

also a low-variance estimator, as shown by the sharp performance curve. The plateau at a

non-zero error is an indication of the model bias in LR, which cannot represent the non-

linear effect of the wheel on the shopping cart. By contrast, LWR can represent the target

function, as evidenced by its convergence to R2 = 1, but its predictions suffer more from

noise corruption at small training sizes than the other methods. This could be remediated

by tuning the kernel bandwidth to average across a wider region, but this would introduce
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(a) Table with locked caster (b) Utility Cart

Figure 27: Raw force-torque readings from robot effector during two manipulation
episodes. Robot executes a forward (+X) velocity action to (a) a table with a locked wheel,
and (b) a utility cart.

a linear bias that shifts the performance of LWR closer to LR. Overall these results suggest

that if an appropriate physics-based model can be defined, it can outperform more general-

purpose alternatives.

5.5.2 Robot Results

We implemented the proposed framework on the mobile manipulator Golem Krang [164].

As will be covered in greater detail in Section 6.1, Golem Krang has a segway-like base

with a slider in the back to provide static stability, two 7-DOF arms with 6-axis force-torque

sensors in the wrist joints and 1-DOF gripper end-effectors. To obtain position estimates in

the world coordinate system, we used external sensing consisting of 4 cameras for tracking

AR-Markers on the robot end-effector and environment objects.

As discussed in Section 5.4.2, the main difference between these experiments and those

in [144] is that here we consider actions as measured by a robot-mounted force-sensor that

is potentially in non-rigid contact with the target object, rather than simulated forces defined

at the object center-of-mass.
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(a) Start State (b) Result

Figure 28: Humanoid robot manipulating a cart with a non-holonomic constraint. (a)
Start state; robot applies force in the forward (+X) direction. (b) Result: cart rotates and
slides along wheel direction.
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(a) Start State (b) Result

Figure 29: Mobile manipulator pushing an office table with lockable wheels. (a) Start
state; robot applies force in the forward (+X) direction. (b) Result: table rotates around
locked wheel.

We performed a series of experiments using different configurations of a standard office

table, and on a utility cart with fixed front wheels. The robot was tasked with applying

a closed-loop velocity controlled push-action on the objects, and estimating the physical

parameters of the object based on the force-torque readings as well as position estimates.

Fig. 29(a) and Fig. 29(b) show the starting and final configurations for an experiment on

an office table with lockable wheels. As the robot did not know a priori that the lower-left

table wheel was locked, the expected outcome was that it would move in a straight line.

Fig. 30(a) visualizes the expected and actual obtained behavior.
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(a) Expected result: table trans-
lates

(b) Attempted learning: inappro-
priate loss function

(c) Correctly fitting table with
locked wheel

(d) Fitting unlocked table (e) Expected result: cart trans-
lates

(f) Fitting a cart with fixed wheels

Figure 30: Overlay of observed data (green) and model predictions (blue) with and with-
out PBR model learning. (a,e) Without learning: robot expects object to move straight
forward. (b) With learning, using the full trajectory likelihood function: large error in final
position estimate. (c) Learning on locked table: robot estimates that a wheel-constraint is
active on the lower-left corner. (d) Learning on unlocked table: robot correctly estimates a
mass and friction that reproduce the observed trajectory. (f) Learning on utility cart: robot
estimates a fixed wheel on the right side of the cart.
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The presented framework uses the observed behavior as well as the obtained force-

torque readings, shown in Fig. 27(a), to estimate a model. The first attempt at model

learning employed the loss function utilized in Eq. 26. As can be seen in Fig. 30(b), this

approach failed to produce accurate long-term predictions when applying the measured

force-torque signal to the starting table configuration.

Utilizing the integrated-error loss function Eq. 39, our method obtained a model for the

object that included a wheel in the lower left quadrant of the table, with high friction in the

push direction. This result consistent with the training data, but and yielded a constraint

pose near the location of the actual locked wheel on the table. Fig. 30(c), visualizes an

overlay of the observed table positions and a physical simulation of the estimated model

when the same forces are exerted on it. In a second experiment in which all wheels were

unlocked we obtained the results in Fig. 30(d), in which the mass and friction were tuned

to produce the appropriate straight-line trajectory.

Fig. 30(e) shows a similar false prediction on a utility cart, resulting in the updated

model shown in Fig. 30(f), containing a fixed wheel.

5.6 Discussion

The goal for this chapter was to define a compact and learnable parameterization of multi-

body dynamics for manipulation applications. We presented two methods, OO-LWR and

PBRL, and conducted experiments to determine which approach was more efficient at han-

dling collision effects and nonlinear constraint effects. By contrast to the methods presented

in Chapter 3 and Chapter 4, both of these methods were directly based on the differential

equations relating position, velocity, and force.

Our results showed that, for small problems, OO-LWR could learn collision dynam-

ics and non-linear effects. The primary drawback of OO-LWR was that it required large

amounts of data to make accurate predictions. Importantly, OO-LWR also inherits the gen-

eral limitation from the use of non-parametric regression that the computation time for
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model queries scales (at least) linearly with the amount of training data. Although we

didn’t consider this issue in this chapter, it is of practical concern for robots operating on

real-time budgets.

PBRL pushes the physics-based approach further, adding explicit differential constraints

on object motion, and utilizing a proper Newton-Euler integrator for solving them. Com-

pared to OO-LWR, PBRL encodes much richer domain knowledge about collision effects.

Instead of having to relearn object dynamics from scratch for every possible collision, it

only has to learn two coefficients: restitution and contact friction. This allowed better

generalization, sample efficiency, and query speed than OO-LWR.

Our experiments confirmed that the physics-based model in PBRL is learnable from

data available during robot manipulation. We also showed that PBRL is more robust to

training noise than OO-LWR, and is significantly more sample efficient than non-parametric

regression for learning individual object dynamics, leading to improved online task perfor-

mance. Another potential advantage of PBRL is that it contains explicit constraint param-

eters, rather than relying on the data to represent non-linear behavior. As we will show in

Chapter 6, this can be useful when implementing controllers to manipulate these objects in

kinematically feasible ways.
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CHAPTER VI

MOBILE MANIPULATION WITH LEARNED PHYSICAL

CONSTRAINTS

In Chapter 4 we presented a framework for articulated mobile manipulation planning with

a two-armed mobile robot, but left open the problems of how to identify and how to plan

with constrained objects when necessary. Chapter 5 addressed the first issue of identifying

certain kinds of non-holonomic behavior in indoor scenarios. In this chapter we address the

second issue of how to plan with objects from the model class in Chapter 5. We present a

method in the spirit of Chapter 3, in which the agent plans with respect to its model beliefs,

and updates its model online as it gathers experience in the world.

This chapter also details the implementation of a full mobile manipulation system

which applies the methods in this thesis to the Navigation Among Movable Objects prob-

lem. In the process, we develop the planning and control machinery necessary to manipu-

late objects in the PBRL model class using a real robot. We provide a complete overview

of the NAMO problem and the control stack on our robot, Golem-Krang Fig. 31.

6.1 Platform

Krang is a humanoid robot with a 16 degree-of-freedom body consisting of two 7DOF

arms, a waist joint, and a torso joint Fig. 31. It has differential-drive base, on which it

can balance (Fig. 31) or sit (Fig. 44(a)). In this work we used 1-DOF grippers with large

rubber plates for high-friction grasp. The arms are equipped with six-axis ATI force-torque

sensors, which are capable of better than 1
8 N force resolution and 1

300 Nm torque resolution.

At the lowest level we control Krang’s wheel motors and body modules using current or

velocity commands. From there we have implemented a base controller that tracks 2D pose
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Figure 31: Golem-Krang robot and control diagram. Krang has a 16-DOF body with a
differential-drive base, and is actuated by a control stack that achieves whole-body motion
using visual servoing with force-feedback.

on the ground using odometry and/or visual localization feedback. For object manipulation

we have implemented Jacobian-based Cartesian gripper controllers for both arms, which

accept 3D pose and velocity commands in the robot-base frame, and dispatch low-level

velocity commands to the modules. This controller is also capable of force-compliance,

achieved using FT values from the ATI sensor to drive a proportional offset from the current

gripper reference.

6.2 Navigation Among Movable Objects

There is great interest in robots that can safely navigate in common environments such

as homes and offices. However, the presence of obstacles poses a serious challenge. As

evinced by Chapter 4, interacting with a single piece of clutter found in typical environ-

ments is difficult in itself, and the robot may need to manipulate many pieces of clutter to

clear a path to a goal safely. Even given a map of the room, how does the robot decide

which path to take, or which object to move? This problem is referred to as Navigation

Among Movable Obstacles (NAMO) [161, 163, 177]. NAMO is an important research

area that is on the critical path to robot interaction in human environments.

There are two primary challenges in developing a practical algorithm for the NAMO
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Figure 32: The table wheels are likely to be locked, making it impossible for the robot to
move the table. In contrast to deterministic planners, our proposed framework accounts for
this probability.

domain: the exponential size of the search space and the inevitable inaccuracies in percep-

tion as well as actuation that occur on physical systems.

In a parallel line of research we have presented the first stochastic planning method for

solving NAMO problems in realistic environments with model uncertainty [94, 95]. To

better understand the importance of handling uncertainty, consider the example in Fig. 32.

Perhaps the robot knows that the shortest path to the goal involves moving the table, but

it cannot see whether all the table wheels are unlocked. How might it weigh the costs of

moving the table versus the couch? How would this answer be affected if it were given

only a crude action model for manipulating the couch? These sorts of reasoning patterns

are not expressible within the framework of deterministic search, without resorting to ad

hoc heuristics.

Leveraging ideas from decision theory, this work has achieved a novel representation

that formally addresses uncertainty in NAMO, while simultaneously addressing the di-

mensionality problem by exploiting task structure in the form of a hierarchical MDP. By

casting the NAMO problem as a hierarchical Markov Decision Process, we achieved the

first NAMO planner which can bias its decisions at plan time in order to compute policies

that are likely to succeed.

The core technical idea behind this method is the NAMO-MDP, a hierarchical MDP

model for capturing the abstract subproblem of moving between free space regions. This
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Figure 33: Robot determines free space regions as subgraphs in a PRM and constructs
MDP accordingly.

construction allows the planner to focus effort on the relevant part of the state action space.

In this section we provide an overview of the NAMO-MDP, summarize the key theoretical

and empirical results from [94] and [95], and present an RL-based method for solving it in

physical environments with model uncertainty, using ideas from Chapter 4 and Chapter 5.

6.2.1 The NAMO MDP

The NAMO MDP is an “approximate” MDP that closely resembles the real problem but

can be solved in linear time for typical environments [94]. The construction of this MDP

builds on two insights of the domain. First, there is a natural abstraction from the low-

level state space into a small set of abstract states, which we call “free-space regions” to

indicate that the robot can move collision-free between any two configurations within the

region. This suggests also a small number of implied abstract actions for maneuvering in

this abstract state space: since each free space region is circumscribed by obstacles, we can

define the abstract action “create an opening to neighboring free-space” for each obstacle.

This property is the basis for the state and action spaces in the NAMO MDP, visualized in

Fig. 33.
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The second insight is that we can capture the transition and reward dynamics in this ab-

stract representation by computing a low-level manipulation policy for each abstract action.

The transition model, T a
ss′ , is used to model uncertainty in manipulation dynamics, such as

might occur if obstacle mass or friction is unknown, and should reflect the likelihood of

actually creating an opening between the free spaces. The reward function, Ra
s , reflects the

expected reward (or cost) in terms of required time and physical work for creating such an

opening.

Together these two ideas permit the construction of a hierarchical MDP, which can

be solved in a manner analogous to MAX-Q [40]. The obtained policy describes both a

mapping for the abstract representation – from a given free space region to an object to ma-

nipulate, as well as the raw representation – from a given obstacle state to a parameterized

controller.

NAMO MDP Construction The proposed NAMO MDP has a two-level hierarchy, with

navigation between regions as the high-level task, and object manipulation as the low-level

task. Here we define both MDPs, and their hierarchical semantics. Recall that an MDP is

defined as M = (S,A,T a
ss′,R

a
s ,γ), which leaves four properties to define at each level of the

hierarchy (γ can be viewed as a parameter of the algorithm).

States and Actions: The fundamental state space in the NAMO problem is the set of

possible configurations CW of the robot and environment. We define the low-level MDP

Mll in terms of these states Sll , and a set of primitive actions All for manipulating obstacles

on the map. Note that defining a low-level MDP does not imply we are actually solving

for optimal low-level policies. Following [94] and [95], we use approximate Monte-Carlo

based planners to solve the manipulation problems, and use these estimates in a value-

iteration algorithm for the high-level MDP.

For the high-level MDP Mhl , we define the state space Shl to be the set of free-space
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regions implied by the starting obstacle configuration. To construct Shl we adopt a sam-

pling approach that has been proven in the planning literature and build a roadmap over the

state space. The main insight behind this approach is that the resulting roadmap will con-

tain disconnected subgraphs for precisely the free space regions that we are attempting to

identify. The probabilistic roadmap (PRM) [75] algorithm samples random configurations

within the state-space and connects nearby collision-free samples if there is a collision-free

path between them. Constructing a PRM in a disconnected configuration space will con-

sequently return multiple disconnected subgraphs. Each of these subgraphs now encode

separate free space regions and together they yield the MDP states. This is visualized in

Fig. 33.

Having determined the MDP states, the actions need to be determined. The action

space Ahl is the union of all possible manipulation sub-tasks for each region, where sub-

task ai jk
hl = πi jk means “open a path from state i to state j by manipulating obstacle k”.

This is done by finding the obstacles disconnecting two free space regions. We accomplish

this with a slight extension to the PRM construction phase: Instead of only considering

random state-space samples during the construction of the PRM, we also use samples of

valid grasping poses for objects. If, upon termination of the PRM construction phase,

sampled grasping poses of the same obstacle belong to different subgraphs, the obstacle is

considered disconnecting the free spaces and an according action in the MDP is created.

Transitions and Rewards: The rewards in Mll and Mhl are defined to reflect their hi-

erarchical relationship. Values for Rhl represent expectations over the reward accumulated

by subtasks in Ahl , and individual subtasks ai receive the value of their final state in Mhl as

a terminal reward [94]. This should be intuitive, since the high-level policy needs to know

the actual outcome of executing each possible subtask, and each subtask needs to know

its context in the high-level policy in order to know how important different obstacles are.

Initially, only the state s ∈ Shl containing the goal configuration has a reward, set according

to the robot’s utility function.
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The transition probabilities in Mhl directly represent the expected outcome of executing

a subtask πi jk in some state si
hl . For example, the manipulation sub-task πi jk terminates

in state j if it successfully opens a path from i to j, and terminates in state i otherwise.

Therefore, the transition probability P(s′ = j|s = i,πi jk) is nonzero if and only if πi jk can

terminate in j for some PBRL model beliefs. In addition, this suggests that the transition

model Thl is sparse: the probabilities are automatically zero for all states that do not share

an obstacle in their adjacency lists. Transition probabilities Thl and Rewards Rhl are esti-

mated by Monte-Carlo simulation of obstacle-clearing plans under sampled model beliefs,

following Eq. 28:

1. Sample world w with object parameters Φ,σ ∼ P(Φ,σ |h) for all objects.

2. Call a manipulation planner on w trying to create an opening between the free-spaces

represented by s and s′ using the object represented by a, and save the result.

T a
ss′ is now set to be the ratio of manipulation plans that succeeded in creating an open-

ing.

T a
ss′ = P(s′ = target|s,a) = |succ|

k
(40)

By construction, the reward function Ra
s includes the cost for the manipulation action

plus a discounted reward for the region reached. Therefore we want the manipulation cost

to be negative, and on the same order of magnitude as the terminal reward. We achieve this

with a decreasing sigmoid function that is scaled to the range y ∈ [0,α] for total time ttotal ,

total linear force ftotal , and total torque τtotal applied during a manipulation action:

Ra
s =

1
3

3

∑
i=1

α exp(β (2 xi
mi
−1)/2)

1+α exp(β (2 xi
mi
−1)/2

+Vs′ (41)

for quantities x = [ttotal, ftotal,τtotal] with nominal maxima m = [tmax, fmax,τmax]. The shape

parameters α and β control the magnitude and steepness, respectively, of the cost function.

In the experiments in Section 6.5 we set α = 200
4 = 25 (for terminal reward 200) and β = 10.
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(a) (b) (c) (d)

Figure 34: Adaptive behavior in simulated NAMO task (a) Initial configuration (b) Ex-
pected outcome: table has lower mass and offers lowest-cost manipulation plan. (c) Actual
behavior: table rotates in place. Robot updates beliefs to reflect high probability of revolute
constraint. (d) Based on the new information the robot decides to move the couch.

Note that we cannot just fix a manipulation plan and evaluate it for different samples

of P(Ω) as this would yield an estimate of the success probability of a specific plan rather

than provide insight into the general success probability of manipulating the object. Given

these estimates, Mhl can be solved using standard value iteration.

This completes the construction of the NAMO MDP. Note that this construction is an

instance of what Dietterich refers to as a funnel abstraction [40]: the value all possible

robot configurations within the target free space get mapped to a single value: the value

of that region. This is the basic abstraction from which the hierarchical MDP obtains its

savings.

Examples of the NAMO MDP being solved in a simulation are shown in Fig. 34 and

Fig. 35. The runtime of the NAMO MDP solver is linear in the number of obstacles for

typical environments, rather than exponential as in the naive case [94, 95]. These results

established the viability NAMO MDP solver in a physics-based world, but relied on several

unrealistic assumptions about the accuracy of the model and of the force-control capabili-

ties of the arms. Specifically, in these examples we simulated manipulation with a single

3DOF in-plane arm, and used a Kinodynamic-RRT (KD-RRT) to plan for the system [91].

KD-RRT is a general-purpose method for planning trajectories for arbitrary dynamical sys-

tems that works by sampling the raw control space of the robot. In our experiments we

found that KD-RRT was not very efficient, and often produced low-quality plans when the
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(a) Initial configuration. (b) Execution path of the robot.

Figure 35: Execution example with more than 30 obstacles.
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model was not known with high accuracy [95]. We address these issues in the next section.

6.3 Manipulation Control for Physics-Based Models

To perform manipulation actions such as the obstacle-clearing operations described above,

we require an appropriate method for manipulating objects in the PBRL model space. The

KD-RRT approach in Section 6.2.1 was a viable approach for object manipulation in sim-

ulation, but ignored several important aspects of (bi-manual) manipulation with physical

robots which we address here. These considerations are relevant to any method for per-

forming whole-body manipulation of objects on the ground.

Like many humanoid robot systems, we assume access to low-level current and velocity

controllers of the individual wheels and joint motors, but not necessarily torque control1.

Our goal is therefore to achieve velocity control of grasped objects in terms of velocities at

the wheel motors and the joints in the body and arms.

Naively sampling this control space, as in the KD-RRT above, is not a viable option

because it would result in out-of-plane movements of the grippers. Even assuming Carte-

sian velocity controllers for the grippers, sampling the gripper velocity space independently

will cause the arms to fight each other, creating large grasp forces. Instead we require an

approach that solves for the base and joint motor velocities directly as a function of the de-

sired object velocity and the current body configuration. If done correctly, this will produce

a coherent whole-body motion that manipulates the grasped object in the desired directions,

without causing motion artifacts, internal forces, or manipulator singularities.

Constraints and Compliance The cart articulation controller in Chapter 4 provides a

partial solution to this problem. This method worked by transforming the desired object

velocity to the grippers, and feeding it through the manipulator Jacobian pseudo-inverse

1Force and torque is often difficult or impossible to control precisely; Many arms are not equipped with
joint-torque sensors, and even given a force-torque sensor at the gripper, closed-loop force-control can be
noisy and error-prone without accurate models of the dynamics of the manipulator.
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(a) Expected Motion (b) Actual Motion with Constraint

Figure 36: Body control without considering constraints. Note large gripper forces from
trajectory deviation, visualized in red ( fx), green ( fy), and blue (τ).

to obtain joint velocities. We then defined a set of useful velocities for the robot-object

system, represented as key-frames (the motion primitives), which could be tracked by this

controller.

There are two assumptions which must be relaxed for manipulating NAMO obstacles

from the PBRL model-class with our robot. First, Chapter 4 was implemented on a PR2,

which has a non-holonomic base. Krang has a differential-drive base, and therefore only

has control in the x (forward-backward) and θ (rotational) directions. Second, the cart used

in Chapter 4 was unconstrained, so the only concern in selecting manipulation velocities

was the workspace of the arms (easily accomplished by restricting articulation to small

displacements from the middle of the workspace).

To understand the importance of incorporating constraints into the body controller, con-

sider what would happen if the robot tried to execute the trajectory in Fig. 36. Because of

the fixed-wheels on the front of the cart, the cart would rotate, causing large rotational and

translational forces to build up at the grippers (visualized as gripper force-torque vectors in

Fig. 36(b)).

It may be tempting to rely on gripper compliance to compensate for the induced rota-

tion, but there are two problems with this:
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1. Active compliance biases the gripper velocities in proportion to perceived force,

which quickly increases as objects deviate from their intended trajectories.

2. For planning we want to know where an object will end up when the robot tries to

apply a velocity, but relying on compliance means we only find out when the action

is executed on the physical system.

6.3.1 The Body Jacobian

A more principled solution is to implement a whole-body Jacobian controller for the robot-

object system, and simulating its outcome in the PBRL world for planning. A body Jaco-

bian for this system is 8x3 , which is obtained by stacking three velocity transformations:

one mapping base velocity in the robot frame to object velocity in the object-frame (with

the base y-component dropped), and the others mapping gripper velocity in the robot frame

to object velocity in the object frame (for Cartesian gripper controllers defined in the robot

frame):

J =

 o
bRT 0 o

lgRT 0 o
rgRT 0

yb − xb 1 ylg − xlg 1 yrg − xrg 1


T

(42)

where A
BR denotes the 2x2 rotation from A to B for the robot base b, object o, left-gripper

lg, and right-gripper rg. To use Eq. 42 for control the simplest method is to drop the base-y

component (second row) to obtain the controllable Jacobian J̄ and apply the pseudo-inverse

to obtain body velocities from desired object velocities:

rv = J̄+ov (43)

A difficulty with this standard approach is that it divides the work evenly between the arms

and the base. In practice we often want the base to do as much as possible, and leave

the arms to do only what the base cannot (e.g. translation along base-y and rotation about

arbitrary points). We can address this by projecting ideal base and gripper velocities into
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(a) Without Steering (Infeasible) (b) With Steering

Figure 37: Comparison of body Jacobian with and without steering for cart manipulation.

the Jacobian pseudo-inverse nullspace:

rv = J̄+r ov+ cn(I− J̄+r J̄r)


bv∗,

lgv∗,

rgv∗

 (44)

where the ideal base velocity is the desired object velocity transformed to the base frame

(i.e. bv∗= b
oV ov), the ideal gripper velocities lgv∗ and rgv∗ are zero, and cn is a tunable gain.

This method successfully biases the control effort to the base where possible, but failed

to utilize the rotational DOF of the base to achieve lateral object velocities. As we will

see, this can cause the arms to hit kinematic limits when generating longer manipulation

trajectories.

Base Steering The Jacobian-based control approach described above offers a sound method

for planning robot trajectories that are accurate and safe to execute, but we found that it fre-

quently allowed the arms to drift out of the reachable workspace (Fig. 37(a) and Fig. 38(a)).

This problem comes from having a differential drive base: any desired object velocity per-

pendicular to the wheels could only be achieved with the arms. Motivated by the nullspace

controller in Eq. 44, we addressed this problem by splitting the Jacobian transform into two

parts, and running a steering controller for the base at each intermediate waypoint before
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(a) Without Steering (Infeasible) (b) With Steering

Figure 38: Comparison of body Jacobian with and without steering for table manipula-
tion.

simulating the gripper velocities. The process for each time-step can be summarized as

follows:

1. Integrate the desired object-frame velocity to obtain an ideal object pose, assuming

no constraints.

2. Transform the desired object velocity to the base and integrate it to obtain a desired

base waypoint, and then apply a base steering controller to obtain a reachable base

waypoint.

3. Compute the residual error between the object location at the reached base pose and

the ideal object pose (i.e. the work to do be done by the arms), and apply a manipu-

lation controller to minimize this error.

We implemented a threshold-based steering method for the differential-drive robot base.

Let e = s̄− s denote the state-error vector for state s and reference (i.e. goal) s̄, and ew =

atan2(ey,ex)− sθ denote the waypoint error (i.e. the difference between the robot’s current

heading and the vector towards the current waypoint). Base steering is achieved by adding

a term to the angular velocity that turns the robot to minimize the y error ey, and zeroing

the x velocity if this error was above a threshold:
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eθ =


eθ , ‖exy‖ ≤ εang

ew, ‖exy‖> εang

 (45)

exy =


exy, ew ≤ εlin

0, ew > εlin

 (46)

In our implementation εlin = 0.01 and εang = 0.05. After applying the operations in

Eq. 45 and Eq. 46 to the state-error vector, base controls can be computed using standard

control laws (e.g. PD).

Incorporating the steering controller into the trajectory generation process relieved the

burden on the arms to control errors in the y direction, allowing the grippers to remain in

the middle of their workspace. Fig. 37 and Fig. 38 illustrate the effect of adding steering to

the body controller.

This completes the description of the manipulation controller for PBRL models. In

summary, we adopted a steered Jacobian-based controller to obtain robot base and grip-

per velocities as a function of desired object velocity, which we then integrated using the

robot’s current world beliefs to obtain executable trajectories.

6.3.2 Manipulation Policies

Using the method described in this section, the only free parameters for manipulation are

(1) the grasp point on the object and (2) the desired object velocity. Manipulation planning

therefore consists of searching over searching the space of valid grasp points and object

velocities and evaluating the outcomes in the simulator. While far more compact than

the raw control space, this still yields a large search space. For this reason, we defined a

model-dependent manipulation policy, which indicated the set of achievable velocities and

grasp points as a function of object dynamics. The policy we describe can be viewed as an

optional planning heuristic which trades completeness for computation time.

We consider four model classes for the purposes of defining manipulation policies:
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(a) Sampling for Unconstrained Table (b) After Grasping Locked Table

Figure 39: Sampling reachable grasp points depends on object dynamics. (a) For uncon-
strained object, points are sampled for each face and projected off the surface to leave room
for grasp. (b) After grasping a fixed-point object. Note sampled boundary point and gripper
offsets.

Model Velocities Grasp Points
Static n/a n/a

Unconstrained Linear: ±vx and ±vy Uniform
Angular: ±vθ at object center

Anisotropic Linear: ±vu along unconstrained Faces perpendicular
axis (u = argminx,y(µx,µy). to unconstrained axis.
Angular: ±vθ at constraint anchor

Fixed-Point Linear: None. Top and bottom faces
Angular: ±vθ at constraint anchor opposite to constraint

Figure 40: Manipulation policy for each model class.
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static, unconstrained, anisotropic, and fixed-point. Static objects have sufficiently large

values for all friction coefficients that no manipulation is possible. If an object is known

to be static, the manipulation policy is null. Unconstrained objects have no physical con-

straints, and are free to move in any direction. For unconstrained objects we consider

the three planar DOF separately, as in Chapter 3, for a total of six directions: ±{x,y,θ}.

Anisotropic objects have a single large friction coefficient µx|µy > 0.3, and behave like

wheeled bodies. To manipulate these objects we only consider angular velocities at the

constraint and linear velocities along the unconstrained axis (e.g. if µx < 0.3 and µy > 0.3

then we only consider linear velocities along the constraint’s x-axis). Fixed-point objects

have either a distance joint or large values for both linear friction coefficient µx,µy > 0.3,

and rotate about the joint anchor. These objects are the most constrained, and to manipulate

them we consider only angular velocities ±vθ at the constraint anchor2.

The grasp space is parameterized by angle from the object center-of-mass. Candidate

grasp points are obtained by sampling an angle from a model-specific distribution over

angles from the object center, computing the boundary point at this angle, projecting the

boundary point off the object face (to leave room for the arms to grasp the object), and

checking for a collision free navigation path to this point. If a path is found, this point is

added to a list of viable grasp points. After the time-budget has been exceeded for this

operation, the robot selects the shortest path point from the list of candidates. This process

can be visualized in Fig. 39. Note that in Fig. 39(a) the object is unconstrained, and the

grasp points are sampled from all object faces. In Fig. 39(b), however, the object has a

locked wheel, and the grasp angles are constrained to the top and bottom face along the

opposite end of the object3.

These rules were sufficient for our purposes, but learning model-dependent policies

2Recall that for learning and planning object velocities are defined at the object center-of-mass, so these
velocities will in general have non-zero linear terms when transformed to the object COM.

3Formally, we selected angles from the set ±atan2(
√

3
2 , w

2h ), where w,h denote object width and height,
respectively.
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Subtask Parameters
x,y = GetGraspPoint(oi) oi: target object index
NavigateToPoint(x,y) x,y: navigation goal point
Grasp(oi) oi: target object index
ClearObstacle( fi) fi: target free-space region index
Release(oi) oi: target object index

Figure 41: Subtasks involved in the execution of a NAMO action.

GetGraspPoint(oi)start

NavigateToPoint(x,y)

Grasp(x,y)

ClearObstacle( f j)

UpdateModel()

Release(oi)

0

1

0

1

0

1

0

0

1

1

Figure 42: State-machine for performing a NAMO obstacle-clearing action, with predic-
tive execution monitoring and model updating. Shaded nodes generate actual robot motion,
and non-shaded nodes are purely computational. If triggered, UpdateModel operates on
data recorded during the latest call to ClearObstacle.

(i.e. P(a|Φ,s)) is an interesting area of research that may further justify our choice of model

representation over more generic alternatives.

6.4 Predictive Execution

To solve a NAMO problem in realistic environments, the next step is designing a robust

method for executing these manipulation actions on a physical robot. Our considerations

include all of the safety and error-recovery issues from Chapter 4, and we introduce three

new features for the NAMO problem:

1. NAMO requires sequencing multiple object interactions, and we therefore must con-

sider navigating to, grasping, and releasing objects.
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2. The termination condition is not a specific goal configuration, but rather any state

that creates an opening.

3. Models may be wrong, so the robot should maintain expectations about the results of

its actions, and abort to update its world model as necessary.

For these reasons a single high-level NAMO action is actually composed of a set of

distinct intermediate subtasks: finding a valid grasp point according to the world state and

model (Section 6.3.2), navigating to the grasp point, grasping the object, and executing a

manipulation trajectory while (a) comparing forces with expected values from planning,

aborting and updating the model as necessary, and (b) periodically checking for openings

created using a path planner.

To handle this we implement a (stochastic) state machine for coordinating the execution

of these operations. An abstract NAMO action instantiates each of the operations above

with the appropriate parameters, as defined in Table 6.4.

The most important aspect of this construction is the mechanism for execution monitor-

ing and model updating. We achieve this ability by leveraging our physics-engine frame-

work to compute and save gripper forces during manipulation planning4. If unexpected

forces are observed during execution, the subtask pauses and the data gathered during the

aborted episode is passed to a learning procedure based on the method introduced in Chap-

ter 5. After the model has been updated the planner releases the object and recomputes the

NAMO policy for the current world state (note that the aborted action may have changed

the action cost, and possibly even the free-space connectivity). A diagram illustrating the

state machine for implementing a NAMO action is shown in Fig. 42.

As illustrated in Fig. 31, the ClearObstacle subtask uses the body controller defined

in Section 6.3.1 for object manipulation. During manipulation, this subtask periodically

checks for openings to the target free-space region using a fast circular-footprint RRT path

4This is similar to the idea of efference-copy in biological systems [185].
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planner. For each timestep, ClearObstacle also computes the object-frame forces from the

wrist sensor signals, and compares them to the expected forces applied during planning.

This subtask terminates when either (a) a force is perceived that exceeds the maximum ex-

pected value by a user-defined threshold (150% in our implementation), or (b) the controller

stalls or reaches a timeout.

6.5 Evaluation

In this section we present results demonstrating the performance of our full system on

NAMO tasks with multiple unknown objects. The primary goal for these experiments is to

demonstrate the adaptability conferred by PBRL model learning in an actual mobile manip-

ulation task. In addition to replicating the model-identification results from Chapter 5, these

experiments will also show how manipulation control can leverage the learned parameters

explicitly for control. Finally, these results constitute the first real-robot implementation of

the NAMO MDP.

All experiments were conducted in an office-like setting within the Humanoids lab at

Georgia Institute of Technology. Task configurations were chosen to replicate the simu-

lation result in Fig. 34, and then extend it using the new model-dependent manipulation

policy from this chapter. We selected two tables to use as obstacles in this task: one which

is square with actual mass 33Kg, and another which is rectangular with mass 38Kg. For

these experiments we used a six-camera overhead vision system that tracked the robot and

objects using AR-tags [47]. Both tables have four lockable casters which are difficult to

perceive visually, even for humans.

Computation was distributed across three machines in these experiments. The core

Krang controllers were run on-board using an Intel Core2 processor with a real-time linux

operating system. A second desktop machine with an Intel 4-core i5 processor was ded-

icated to vision. All planning and state-machine execution was driven by a 2.6 Ghz i7

Macbook Pro laptop.
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6.5.1 NAMO with a Static Constraint

In our first experiment we replicate the two-obstacle task from Fig. 34, in which the robot

must update its model after encountering an immovable obstacle. Fig. 43 shows key-frames

of the planning and execution trace of this task. The robot identified two free space regions

and selected the square table as the lowest-cost obstacle to clear. When the robot grasped

and attempted to push this object out of the way it encountered unexpected force in the

−x direction (see Fig. 43(d)), and halted to update its model. Using the method from

Chapter 5, the robot estimated an anisotropic friction constraint in the middle of the table

with two large coefficients, effectively rendering it static. The robot then recomputed the

object Q-values and elected to pull the rectangular table down to create an opening. This

action was successful, clearing the path shown in Fig. 43(h).

6.5.2 NAMO with a Non-Static Constraint

In the previous experiment the robot successfully identified a static constraint on the square

table and re-planned accordingly. While an example of adaptive behavior, this result does

not fully showcase the physical reasoning capabilities of a PBRL agent – a simple boolean

model with a “movable” thresholded would have been capable of the same result. Thus,

the only real advantage of modeling physics in experiment 1 was to provide a principled

way detect when the robot’s beliefs about the square table were wrong, and to stop pulling.

We therefore ran a second experiment in which one of the obstacles was movable, but

only given knowledge of the physical constraint. Key-frames from this task are shown in

Fig. 44. Planning and execution in this task follows the events in experiment 1, up to the

point at which the robot attempts to pull the rectangular table. Instead of succeeding on its

first attempt, the table rotates unexpectedly, due to a locked wheel on the left corner of the

table. Rather than aborting, the robot the successfully estimates the coefficients and pose

of this constraint, and executes a parameterized fixed-point action to rotate the table about

this point (Section 6.3.2). The result of this rotation action can be seen in Fig. 44(j). This
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(a) Starting Configuration (b) Initial NAMO
MDP

(c) Expected Solution:
Pull Square Table

(d) Table is Stuck (e) Learns Static Con-
straint

(f) New Solution: Pull
Long Table

(g) Table Pulled Successfully (h) Opening Found! (i) Task Complete

Figure 43: Key-frames from Navigation Among Movable Obstacles task using physics-
based model prior (PBRL). The square table has two locked casters, which is initially
unknown to the robot.
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(a) Starting Configuration (b) Initial NAMO
MDP

(c) Expected Solution:
Push Square Table

(d) Table is Stuck (e) Learns Static Con-
straint

(f) New Solution: Pull
Long Table

(g) Table Rotates Unexpectedly (h) Learns Parameters
of Locked Caster

(i) New Solution: Ro-
tate Long Table

(j) Table Rotated Successfully (k) Opening Found! (l) Task Complete

Figure 44: Key-frames from Navigation Among Movable Obstacles task using physics-
based model prior (PBRL). The square table has two locked casters, and the rectangular
table has a single locked wheel on the left side. Both of these properties are initially un-
known to the robot.
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Experiment 1 Experiment 2
Number of Free-space Regions 2 2
Overall Runtime 4m 48s 7m 46s
Overall Planning time 0m 37s 0m 52s
Number of calls to NAMO planner 1 2
Number of calls to UpdateModel 1 2

Figure 45: Planning and execution statistics for NAMO experiments. Note that the
NAMO planner was called twice in experiment 2 because the map changed during the
first manipulation attempt on the rectangular table, which invalidated the action Q-values.

action successfully opened a path to the goal, as can be seen in Fig. 44(k). A table with

relevant statistics comparing these two experiments can be found in Table 45.

6.5.3 Learning Through Contact

So far the primary motivation for using a full multi-body simulation engine, as opposed to a

set of individual object models, has been parsimony and compactness. The simulator’s API

gave a compact parameter space, and included the collision detection machinery needed

for path planning. However, one of the primary functions of a physics engine is simulating

the behavior of multiple interacting bodies. Can a PBRL agent take advantage of this

functionality in its world model?

There are many mobile manipulation tasks that involve collision prediction (e.g. the

Darpa Robotics Challenge [127]), but generalizing NAMO to the collision case is beyond

the scope of this thesis. Instead, as this thesis is focused on learning, we ask a comple-

mentary question: Can the simulator enable the agent to learn through observing colliding

bodies without ever directly measuring forces on one of the bodies directly?

Specifically, this experiment examines whether it is possible to estimate anisotropic

friction parameters on an object through indirect contact. We expect this to be more difficult

than the rigid grasp case for several reasons:

1. We can no longer directly compute force on the target object; Instead force is trans-

mitted through a chain of intermediate calculations involving approximate collision

resolution machinery.

100



(a) Starting Configuration (b) Ending Configuration

(c) Manipulation Result (Simu-
lation)

(d) Applied Force-Torque Data
(COM)

(e) Learned Constraint on Long
Table

Figure 46: Reasoning through contact: Robot successfully estimates parameters of a
locked wheel on the rectangular table despite never touching it directly.

2. Collision simulation depends on additional model parameters (restitution and surface

friction).

3. Collision simulation is critically sensitive to object geometry.

4. The contact point is crucial for determining how both objects move, and error in

vision can introduce significant bias in the transmission of forces.

Despite these potential difficulties, Fig. 46 shows preliminary results which suggest

that it is possible to estimate anisotropic friction parameters on an object through indirect

contact. In this experiment, the robot grasped a square table and pushed it into a rectangular

table which had a locked caster on the lower-right corner. Fig. 46(e) shows the final model

estimated by the robot for this system, which contains an anisotropic friction joint on the

rectangular table close to its true location. Although we have not formally assessed the

tolerance of the fixed-point controller, the final pose of this constraint was within the range
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of values that we found could be handled by gripper compliance.

Unfortunately due to hardware malfunctions, we were unable to obtain collision datasets

across a broader range of objects and configurations. Therefore the accuracy and generality

of this result has not yet been established. However, we find this result to be promising,

and expect it may open the door to a range of human-like reasoning patterns.

6.5.4 Failure Cases

Although the results described here demonstrated adaptive behavior, there were several

common points of failure in our experiments. Foremost, mobile manipulation tasks such

as NAMO require the synthesis of many complex components, from low-level hardware

to high-level perception and planning algorithms, and the brittleness of the overall system

was one of the primary bottlenecks in this research. For example, precise calibration of

the overhead vision system or the manipulator kinematics often made the difference be-

tween a grasp or manipulation succeeding and failing. In addition, many of the subroutines

involved in our overall method involved some form of randomness, including PRM free-

space detection, RRT path planning, grasp-point sampling, and MCMC model inference.

We were able to tune these algorithms to achieve 90+% success rates on each subroutine,

but the long horizon of the tasks we consider here led to frequent failures at some point in

the pipeline.

6.6 Discussion

The purpose of this chapter was to introduce methods for planning with PBRL models, and

implement a framework which unified the methods discussed in this thesis. We began with

an overview of the NAMO problem, and described a hierarchical MDP model for this task

which grounded abstract dynamics uncertainty in terms of PBRL model beliefs. We then

described a Jacobian-based control stack on our robot, Golem-Krang, for achieving whole-

body manipulation of constrained bodies from the PBRL model class. These controllers and

the associated logic for identifying valid grasp points and model parameters was embedded
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in a state machine for coordinated, robust execution of NAMO obstacle-clearing actions.

Finally, we considered the problem of planning on top of these abstract NAMO actions,

and introduced an additional optimization in the form of a model-dependent manipulation

policy for efficient planning with constrained objects.

Our experiments focused on demonstrating the feasibility of our methods on a manip-

ulation problem that forced the robot to detect errors in its world model and adjust its plan

accordingly. The NAMO task presented here included unobservable physical properties, in

the form of lockable wheels, that required the robot to either switch objects (experiments 1

and 2), or switch control strategies (experiment 2).

Our early results in experiment 2 suggested that a model-specific manipulation policy

is important for manipulation planning. Although it would have been possible for the

robot to find a kinematically feasible trajectory through exhaustive search over grasp and

velocity parameters, it required a time-consuming search through a control space ubody ∈

R4, requiring expensive trajectory evaluations. From these observations we would argue

that the mapping from dynamics models to control is a useful and fundamental concept that

should be explored in greater depth in the future.

Additional justification for this point of view can be found in motor neuroscience. Re-

search suggests that humans are adept at learning context or object-specific control strate-

gies [184]. Further, it has been proposed that the human motor system is modular, and that

the core organizational structure involves pairs of forward (predictive) and inverse (con-

trol) models. In terms of this “MOSIAC” model, the manipulation policy we describe fills a

necessary role as the mapping between the dynamics model and the appropriate controller.

Following the terminology of Wolpert et al. [185], we have used Φ as a “context” parameter

c to identify the appropriate controller. However, in our work the manipulation policy was

hand-coded rather than learned. These results therefore motivate the question of how to

learn a model-dependent manipulation policy empirically. Overall our experiments illus-

trated the viability of PBRL as a method for producing adaptive behavior in online mobile
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manipulation scenarios.
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CHAPTER VII

DISCUSSION AND FUTURE DIRECTIONS

At its core, Physics-Based Reinforcement Learning is about modeling the physical motion

of objects, and how they influence one another. Many areas of physics do not center on

objects, for example fluid dynamics, thermodynamics, and relativity. These dynamics may

be relevant to robots operating in some circumstances, but do not feature prominently in

the domestic manipulation tasks we consider. As a result, this thesis has taken the strict

view that a PBRL agent uses a physics engine as a model space; however, there could be

more general notions of what it means to be a physics-based agent.

In this chapter we discuss the assumptions behind PBRL, and tease apart our specific

contributions from the broader implications of a physics-aware RL agent. We will also

identify the limitations of our current implementation, and discuss several generalizations

of our approach that seem promising given the current state of machine learning research.

7.1 Core Assumptions

Here we elaborate the specific assumptions involved in our implementation of a PBRL

agent, as well as the more general assumptions implied in a PBRL approach.

Specific Assumptions The methods and results presented in this thesis were focused on

manipulation of furniture-like objects with a mobile robot. We therefore focused on a

subset of planar object dynamics that were useful for these problems. These assumptions

can be summarized as follows:

• The world state could be parameterized as the union of the planar position and ve-

locity of all objects in the domain, and actions could be summarized as the force and

torque applied to a single target object.
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• A 2D physics-engine could capture all relevant dynamical effects.

• There were only three necessary parameter classes: rigid body parameters to capture

collisions, anisotropic friction parameters to model wheels, and distance constraint

parameters to model revolute motion.

• The robot was equipped with force-torque sensors, and all forces applied to objects

were transmitted through these sensors.

• Object geometry was known, and mass distributions could be computed assuming

uniform density over polygonal object geometry.

• Object state could be obtained from an overhead-vision system using AR-tags, and

velocity could be approximated by finite-differencing these pose estimates.

• The robot was equipped with an appropriate action space for the range of objects

considered by the model space.

General Assumptions In addition to our specific implementation choices, there are sev-

eral assumptions inherent to a physics-based approach that are not required of more abstract

decision problems:

• The world dynamics can be fully described in terms of objects and their interactions.

• The choice of object state representation is motivated by an underlying differential

equation capturing object motion, e.g. position and velocity.

• Object interactions are modeled using established physical laws, encoded in specific

computational tools.

• The choice of model parameters is determined by the auxiliary variables needed to

parametrize these physical laws.
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• These parameters directly influence the evolution of the world state, allowing a sim-

ulator to be used as a generative model for the observed state-action data.

• The agent can provide input to the system, and measure this input using a sen-

sor (e.g. force sensor, pressure sensor), which (a) summarizes the input in some

physically-defined unit (N, pascal, etc), and (b) the locus of input is known (e.g. grasp

point, contact distribution, etc.)

7.2 Limitations

There are a number of limitations that follow from the assumptions discussed above. The

most important practical consideration is the reliance on known geometric models and an

object tracking system. Without a reliable solution to these problems for natural scenes, the

methods presented here will be of little practical value. We also restricted our attention to a

narrow set of furniture-like objects in two-dimensions. As a result we cannot solve dynamic

manipulation problems in three dimensions, for example moving a book from a table to a

shelf. Many pick-and-place tasks in 3D involve simple unconstrained rigid bodies, so our

method would be more relevant for interacting with kinematically-constrained bodies such

as doors, drawers, levers, and other jointed objects. To the extent which our implementation

involved 3D gripper motion, the trajectories were defined by hand and not collision checked

against 3D geometric models. Our NAMO manipulation actions required object-specific

grasp and release trajectories for both arms. This is a less severe limitation, as there are

existing grasp and motion-planning algorithms for solving these problems assuming object

geometry is known. Our implementation also does not reason about non-object world

properties, e.g. surface friction of carpet vs. hard-wood. This may be an important addition

for deploying mobile manipulation systems in domestic environments with heterogeneous

surfaces.

More generally, PBRL was not designed for problems that do not involve objects or
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Deep Learning Helicopter Dynamics Models

Ali Punjani and Pieter Abbeel

Abstract— We consider the problem of system identification
of helicopter dynamics. Helicopters are complex systems, cou-
pling rigid body dynamics with aerodynamics, engine dynam-
ics, vibration, and other phenomena. Resultantly, they pose
a challenging system identification problem, especially when
considering non-stationary flight regimes.

We pose the dynamics modeling problem as direct high-
dimensional regression, and take inspiration from recent results
in Deep Learning to represent the helicopter dynamics with a
Rectified Linear Unit (ReLU) Network Model, a hierarchical
neural network model. We provide a simple method for ini-
tializing the parameters of the model, and optimization details
for training. We describe three baseline models and show that
they are significantly outperformed by the ReLU Network
Model in experiments on real data, indicating the power of the
model to capture useful structure in system dynamics across
a rich array of aerobatic maneuvers. Specifically, the ReLU
Network Model improves 58% overall in RMS acceleration
prediction over state-of-the-art methods. Predicting acceleration
along the helicopter’s up-down axis is empirically found to be
the most difficult, and the ReLU Network Model improves by
60% over the prior state-of-the-art. We discuss explanations
of these performance gains, and also investigate the impact of
hyperparameters in the novel model.

I. INTRODUCTION AND BACKGROUND

System identification, the modeling of a system’s dynam-
ics, is a basic and important part of control. Constructing
such a model is often the first step in controller design.
Modeling accuracy directly impacts controller success and
performance, as inaccuracies appear to the controller as
external disturbances.

The aerobatic helicopter has received attention in the past
as a system that is difficult to both model and control but
which humans can fly effectively, even through complex
maneuvers. The helicopter system couples rigid body dy-
namics with aerodynamic forces, internal control loops and
lag, engine dynamics, vibration, etc.[1, 2, 3, 4]. Much of
this dynamic coupling involves state variables like airflow
which are not easily measured, and thus remain hidden.
The resulting system identification problem for aerobatic
helicopters poses a challenging problem. This paper focuses
on a method to learn a system dynamics model by leveraging
captured state-action trajectories from expert demonstrations.

The helicopter is well studied, and simple linear models
from aerodynamic first-principles allow construction of con-
trollers for simple trajectories (hover, forward flight) [5, 6, 7].
More complex nonlinear models from first-principles with
parameters learned from data have enabled some simple
aerobatics (roll, hammerhead, split-S) [8, 9, 10]. Advanced

Authors are with the Department of Electrical Engineering and Computer
Science, University of California at Berkeley, USA {ali.punjani,
pabbeel}@berkeley.edu

Fig. 1. The dynamical modeling method presented in this work is used to
model a helicopter’s dynamics as it is flown through aerobatics. A unified
model is learned for a rich array of maneuvers, including flips, loops,
stop and go, vertical sweeps, circles, dodging, orientation sweeps, gentle
freestyle, tictocs, chaos, and aggressive freestyle.

aerobatics, however, have only been successfully flown under
autonomous control using Apprenticeship Learning [11]. In
the Apprenticeship Learning approach for autonomous heli-
copter aerobatics, demonstrations of interest are collected,
then aligned in time using a variant of Dynamic Time
Warping (DTW) [12, 13]. From the aligned trajectories, a
target trajectory for control and time-varying dynamics are
estimated. Together, the target trajectory and time-varying
dynamics around that trajectory allow for successful control
of the helicopter through advanced aerobatics, using Model
Predictive Control (MPC). The Apprenticeship Learning
work demonstrates that in fact helicopter dynamics during
aerobatics are predictable enough for MPC to be successful
in control around even the most complex trajectories [11].
This suggests that the difficulty in modeling helicopter dy-
namics does not come from stochasticity in the system or un-
structured noise in the demonstrations. Rather, the presence
of unobserved state variables causes simple models to be
innacurate, even though repeatability in the system dynamics
is preserved across repetitions of the same maneuver.

Modeling systems with hidden latent state is often treated
as a parameter learning problem in a graphical model
[14, 15]. One illustrative example is Expectation Maximiza-
tion - Extended Kalman Smoothing (EM-EKS) [15] which
treats the dynamical system as a latent variable model, and
aims to directly estimate the hidden latent state at each
timestep along a demonstration trajectory while simultane-
ously learning a simple dynamics model. In EM-EKS, the
form of the dynamics model as well as the number of
hidden state variables needs to be prescribed a-priori. The
Apprenticeship Learning method of [11], on the other hand,
deals with hidden state by relying on the assumption that
across different demonstrations of the same maneuver, the
trajectories of both observed and hidden state variables are
similar. For example, [11] expects that the effect of the
airflow around the helicopter is similar at the apex of two
different loop demonstrations. Using DTW to align annotated
loop trajectories and their corresponding state trajectories

(a) Autonomous Helicopter (b) Ball-In-Cup

Figure 47: Example Reinforcement Learning problems in physical domains that are not
ideal candidates for PBRL approach. (a) Autonomous helicopter trained with Reinforce-
ment Learning method based on non-parametric regression model. (b) Ball-in-Cup task
trained with model-free policy-search method.

physical agents, e.g. warehouse logistics, stock portfolio management, power grid man-

agement, or elevator scheduling, to name a few. Perhaps less obviously, there are also

many physical decision problems that are not ideal candidates for a PBRL approach. For

example, tasks involving specific systems with complex dynamics, such as a helicopter,

rally car, or airplane, offer a distinct set of challenges in which multi-body dynamics is of

little relevance. The acrobatic maneuvers depicted in Fig. 47(a) were achieved by a model-

predictive-control strategy using a non-parametric regression model (LWR) on a position

and velocity representation of the helicopter state [117]. PBRL is also not ideal for low-

level control problems which are readily approached with model-free methods, such as the

ball-in-cup task shown in Fig. 47(b) (solved using a policy-search approach, [77]).

7.3 Extending PBRL

As mentioned above, many planning and control problems in physical domains are outside

the current scope of PBRL as presented here. In this section we define the basic require-

ments of a PBRL problem, and consider the steps involved in generalizing our method to a

wider array of domains.
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7.3.1 Considerations

There are two core considerations that determine whether a PBRL approach is appropriate

for a given problem. The first is whether a known dynamics engine can encapsulate all

relevant dynamics, and the second is whether an object-oriented state representation pro-

vides sufficient input to this dynamics engine. In problems involving fluid dynamics, for

example, the state representation is no longer position and velocity vectors for rigid bod-

ies but scalar and vector fields describing pressure and fluid flow. For this reason it is not

straight-forward to generalize the methods considered here to problems involving interac-

tion with fluids1. By contrast, generalizing from 2D to 3D is more straight-forward, in

principle, because it involves the same basic approach: a search over the model space of a

fully-parameterized engine.

7.3.2 Engine-Based Approach

The simplest approach to designing PBRL models, and the approach taken in this thesis,

is to obtain a fully-functional physics engine that is appropriate for the target domain, and

define a learning interface over its model parameters. At a high level this procedure can be

summarized as follows:

1. Obtain an engine which can simulate the desired scene.

2. Define geometric models for the relevant objects.

3. Define a model space for each object using the engine’s modeling API.

4. Assign appropriate priors either manually or with a probabilistic modeling tool such

as PyMC [122]. Alternatively, define parameter bounds and implement or obtain a

optimizer such L-BFGS [189].

1We note, however, that fluid physics is well understood, and the like the rigid-body case offers a number
of ready computational tools.
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5. Define an appropriate set of controllers and planners for the agent to interact with the

domain.

6. Implement an RL agent interface for executing actions against the simulator and the

real world, aggregating state-action data, and updating the world model as often as

necessary2.

While this approach is sound, the feasibility of inference on larger model spaces and

3D scenes is an open research question. Even for the restricted model space considered

here, we had to do a considerable amount of tuning to achieve reasonable performance

(see Section 5.3.2). One possible route to achieving more efficient inference algorithms is

to utilize recent developments in fully differentiable contact physics models, e.g. [176], to

allow gradient-based optimization [189] (for the maximum-likelihood case) or Hamiltonian

MCMC [116] (for the MAP case).

7.3.3 Alternative Model Representations

Physics engines are only approximations of natural dynamics, and there may be problems

which will require higher fidelity than existing simulation tools can provide. In this section

we consider alternative approaches to encoding physical knowledge that do not involve a

black-box engine. The approaches discussed are motivated by published results, but should

be considered speculative.

Deep-Learning Approaches Neural networks are currently undergoing a renaissance in

machine learning. Like non-parametric regression, deep-learning has the appealing capa-

bility of learning functions that we, as systems engineers, do not necessarily understand

2Recall that data-aggregation may involve non-trivial processing of sensory data to obtain a compact
dataset in terms of the target objects rather than the robot. This is especially important when using Eulerian
simulators that define constraints implicitly, as opposed to Lagrangian simulators in generalized coordinates,
since they can be quite inaccurate at simulating kinematic structures such as robot arms.
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Figure 1. The pipeline for learning design patterns with grammar induction. A set of example designs, each comprising a hierarchy of labeled
components, are used to produce an initial, specific grammar. Then, Markov chain Monte Carlo optimization is employed to explore a space of
more general grammars, balancing the descriptive power of each one against its representation complexity. At the end of this process, the best
scoring grammar is returned, and can be sampled to generate new designs.

BACKGROUND
The use of grammars as generative models has a long history
in design. Grammar-based procedural models have seen ex-
tensive use in architecture [39, 8, 12], product design [24, 1,
34], document layout [9, 44], and 3D modeling [33, 31, 29].
However, despite the proven utility of grammars as a com-
putational mechanism for design, the overwhelming majority
of these models are coded painstakingly by hand. Although
a few attempts have been made to learn deterministic rules
from patterns [38] and adapt texture synthesis techniques to
geometric modeling [28, 6], relatively little work has been
done on learning grammars from designs in a principled way.

In formal language theory, the problem of grammar induc-
tion was first introduced by Solomonoff [37], who posed the
fundamental question of language learning: given a sequence
of words from a formal language, is it possible to learn an
automaton capable of recognizing that language? The clas-
sical result, due to Gold [15], is negative, and states that no
superfinite language class is learnable in the limit from posi-
tive examples. This means that none of the languages in the
Chomsky hierarchy—regular, context-free, context-sensitive,
or recursively enumerable—can be learned in this way, re-
gardless of how many samples from the language the induc-
tion algorithm is allowed to inspect, or how long it is allowed
to process them.

Horning [19] showed that things are not quite so grim for
probabilistic languages: in fact, stochastic context-free gram-
mars can—in theory—be induced from positive examples.
Learning these grammars in practice, however, is a challeng-
ing problem: even deciding whether or not there exists an n-
state automaton which agrees with some finite set of data is
known to be NP-complete [16]. Accordingly, no general al-
gorithm for learning stochastic context-free grammars in the
limit has been proposed [10], although several authors have
demonstrated natural language induction from large corpora
by leveraging domain-specific linguistic features [22, 23].

One popular strategy for making the grammar induction prob-
lem tractable is the introduction of an inductive bias. In
this paper, we use a technique called Bayesian Model Merg-
ing [41] which employs an inductive bias based on the cog-
nitive principle of Occam’s razor: specific, complex models

are deemed less likely than simple, general ones [26]. In par-
ticular, we formulate a posterior probability distribution over
the space of possible grammars, and then attempt to maxi-
mize this posterior via Markov chain Monte Carlo (MCMC)
optimization. This gives a principled, flexible method for in-
ducing design patterns from data.

ALGORITHM OVERVIEW
The method takes as input a set of designs in the form of
labeled trees, where each label is drawn from a discrete dic-
tionary C. The algorithm begins by traversing each tree and
creating a production rule for every node to generate a least-
general conforming grammar (LGCG). The grammar is con-
forming in the sense that every exemplar is a valid derivation
from it; it is the least-general such grammar because it derives
only the exemplars, with no additional generalization capac-
ity.

Once this grammar is constructed, Markov chain Monte
Carlo optimization is used to explore a series of more general
conforming grammars by merging and splitting nonterminal
symbols. Each merge operation takes two nonterminals,
rewrites them to have a common name, and unions their
productions; each split operation is the reverse of a merge.

To judge the quality of each candidate grammar, we adopt a
Bayesian interpretation that balances the likelihood of the ex-
emplar designs against the description length of the grammar.
At each step in the optimization, we randomly select a split or
merge move to apply, and evaluate the posterior of the resul-
tant grammar. This search procedure is run until it exhausts
a predetermined computational budget and the maximum a
posteriori estimate is returned. This process is outlined in
Figure 1.

GRAMMAR FORMULATION
In order to describe the grammar induction framework, we
must first define some basic concepts. A stochastic, context-
free grammar (SCFG) is a tuple

G = hV, T, !, R, ✓i,
where V is the set of nonterminals, T is the set of terminals,
! 2 (V [ T )+ is the axiom, R ⇢ V ⇥ (V [ T )+ is a finite
set of production rules, and ✓ : R ! (0, 1] is a probability

Figure 48: The pipeline for learning design patterns with grammar induction, reproduced
from [168]. A set of example designs, each comprising a hierarchy of labeled compo-
nents, are used to produce an initial, specific grammar. Then, Markov chain Monte Carlo
optimization is employed to explore a space of more general grammars, balancing the de-
scriptive power of each one against its representation complexity. At the end of this process,
the best scoring grammar is returned, and can be sampled to generate new designs.

or have models for (at the expense of transparency). There is already evidence that deep-

networks have the capacity to simultaneously capture a variety of rigid and non-rigid dy-

namical effects. In [128], a rectified linear unit (ReLU) neural network was used to directly

model the nonlinear dynamics of a helicopter using a training set that included acrobatic

maneuvers (as an alternative to LWR, discussed in Section 7.2). Deep neural networks

have also been used to model partial differential equations (PDEs) for segmentation in

vision [99]. Therefore an interesting possibility is to attempt to encode the mathematical

principles supporting rigid body simulation (i.e. Newton-Euler integration, differential con-

straints, and collisions), in a neural architecture3. To-date there is no research which has

shown how collision dynamics can be computed neurally; however, if successful, this ap-

proach could provide a more flexible approach to modeling physical dynamics that retains

the favorable sample efficiency of the engine-based approach.

Probabilistic Differential Grammars The Deep-Learning approach discussed previ-

ously constitutes a significant departure from the standard computational model for im-

plementing dynamics algorithms. Another more familiar approach to eliminating the need

3This can be motivated by analogy to the well-known convolutional neural network, which incorporated
the vision-related concepts of local receptive fields and retinotopic invariance via the convolution operation.
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for a black-box physics engine is to attempt to assemble the engine from parts. Probabilis-

tic grammars offer a mechanism for achieving this by allowing data-driving composition of

arbitrary structured components. [168] shows example of probabilistic grammar induction

for learning generative hierarchical structure in images, 3D structures (Sakura trees, space

ship models), and websites. An illustration of this process can be seen in Fig. 48. Grammar

inference generalizes the engine-based approach by permitting search over the structural

components of the physcs-engine code itself. The key advantage of a grammar-based ap-

proach is that it can leverage complex algorithms, e.g. collision detectors, in their entirety

while permitting a search over the simpler components. This offers an appealing middle-

ground between tightly structured approaches, such as placing a prior on a complete engine,

and loosely structured approaches such as a neural network model or non-parametric re-

gression. The drawback to this approach is that it can eliminate the optimizations present

in production simulation software, such as broad-phase collision detection in which the

engine maintains a binary search tree over bounding boxes to reduce the naive O(n2) com-

plexity of overlap testing.

The approaches discussed in this section offer greater modeling power within the PBRL

framework. However, this expressiveness necessarily comes at the cost of having to search

a larger parameter space. In order to be feasible for online applications, our goal will be to

find the right balance between overly precise physical models which are brittle and hard to

fit, and coarse models that lack expressive power.

112



CHAPTER VIII

CONCLUSION

The central challenge we consider in this thesis is the need for learnable models of multi-

body object dynamics. These models are integral to many of the planning and control

algorithms driving recent successes in modern robot manipulation. In this thesis we ar-

gued that equipping robots with methods for estimating their own simulation models is an

important step towards achieving these successes in the real world.

This thesis presented a coherent framework called Physics-Based Reinforcement Learn-

ing to meet this challenge. PBRL is a model-based Reinforcement Learning framework

which uses a physics engine as the core model representation. We presented a set of manip-

ulation planning methods designed to handle the PBRL model space. We also introduced

two manipulation tasks that are well modeled as RL problems. The first was confined

to a table-top setting, and was driven by an abstract cost function measuring table clean-

liness. For this task we presented a new algorithm called the task-space RRT that was

able to directly search the provided cost function using learned action models. Although

demonstrated with fairly crude action primitives, the TS-RRT is equally relevant to mobile

manipulation problems, and can operate with the continuous action space defined in later

chapters. The second task was Navigation Among Movable Obstacles. We presented the

first NAMO implementation which was able to operate in an underspecified environment,

and adapt to a range of common objects. To the best of our knowledge, this is the first time

this type of behavior has been achieved in a mobile manipulation setting.

While the goal of PBRL is to be parsimonious, the results presented here utilize only

a small fraction of the modeling power of modern simulation tools. PBRL makes strong

parametric assumptions that were appropriate for NAMO-like tasks, but will be insufficient
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for many other mobile manipulation problems with different types of objects. However,

we have yet to exhaust the modeling potential of 2D rigid body simulation tools, and there

are many additional effects that would be useful to incorporate into the PBRL model space,

such as elastic motion, fluid and non-rigid motion, and three-dimensional motion. These

dynamics are ubiquitous in natural environments, and uncertainty of this kind will be the

norm when deploying robots outside of factories and laboratories.

Some may also argue that our parametric approach also disregards the progress made

in model-based RL with more flexible non-parametric models. In fact, we view these ap-

proaches as complementary rather than contradictory. Indeed one of the most interesting

directions of future work in this area is unifying parametric and nonparametric methods.

One simple approach would be to replace the Gaussian likelihood in Eq. 25 with a Gaussian

Process (i.e. “wrap” a GP around the PBRL prediction). In this scheme, PBRL parameters

could be sampled via MCMC, or from another posterior approximation, and the final pre-

diction would be obtained by evaluating the GP with this mean. Such an approach would

inherit the advantages of GP models for handling arbitrary dynamics and explicitly rep-

resenting uncertainty, while also incorporating differential effects and collision machinery

to help the model extrapolate. Ultimately, we contend that some sort of physics engine is

necessary to encapsulate what is known about the dynamics (and appearance) of objects in

the world, but that this structure will likely need to be augmented with methods to soften

its parametric assumptions.

Model richness and policy richness also go hand in hand: as we add model flexibility

we often require additional control methods to handle these cases. The manipulation meth-

ods presented in Chapter 6 were sufficient for planar object manipulation with anisotropic

friction constraints, but will need to be generalized as we introduce additional object mod-

els. Creating appropriate controllers or policy representations for arbitrary objects is a

non-trivial problem which will likely occupy researchers in robotics for decades.

Another crucial omission is visual perception. All methods presented here assumed the
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geometry of the world was known. This is clearly unrealistic for natural tasks. Our model is

in the tradition of generative models of object dynamics [137], and we are very sympathetic

with efforts to build generative models of object appearance that are currently emerging in

the vision literature [82].

More generally, PBRL can be viewed as an ontological constraint on the world model: it

is governed by the laws of physics. We hope that this approach helps to close the represen-

tational gap between the sorts of models used in Reinforcement Learning and the models

that robotics engineers use in practice. If successful, this approach may yield opportuni-

ties for learning representations that are currently engineered by hand in robotics. We feel

that rich generative models of this sort stand to address some of the deepest challenges in

robotics and artificial intelligence, and allow future research to advance to higher levels of

reasoning and behavior.
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