
i

IF THESE WALLS COULD TALK:

AUTOMATED PERFORMANCE MEASUREMENT FOR

BUILDING MODELING DECISIONS USING DATA

ANALYTICS

A Dissertation

Presented to

The Academic Faculty

By

Saman Yarmohammadi

In Partial Fulfillment

of the Requirement Degree

Doctor of Philosophy in the

School of Building Construction

Georgia Institute of Technology

May 2018

Copyright © 2018 by Saman Yarmohammadi

ii

IF THESE WALLS COULD TALK:

AUTOMATED PERFORMANCE MEASUREMENT FOR

BUILDING MODELING DECISIONS USING DATA

ANALYTICS

Approved by:

Dr. Daniel Castro-Lacouture, Advisor Dr. Eunhwa Yang

School of Building Construction School of Building Construction

Georgia Institute of Technology Georgia Institute of Technology

Dr. Kamran Paynabar Dr. John Haymaker, P.E.

School of Industrial and Systems Engineering Director of Research

Georgia Institute of Technology Perkins+Will Design Company

Dr. Daniel Baerlecken

School of Architecture

Georgia Institute of Technology

 Date Approved: November 20th, 2017

iii

To my beloved wife,

Paran

To my kind mom and dad,

Sedigheh and Alim

iv

ACKNOWLEDGMENTS

I am most grateful to my advisor, Dr. Daniel Castro-Lacouture, for his exquisite attention

to detail and immense knowledge. The completion of my dissertation would have not been possible

without his sincere advice and kind support. Special thanks to Dr. John Haymaker who provided

me with invaluable comments and collaboration during my doctoral study. I would also like to

extend my deepest appreciation to Dr. Kamran Paynabar for his continuous support and

mentorship throughout this multi-disciplinary research. Furthermore, I thank my other committee

members, Dr. Eunhwa Yang and Dr. Daniel Baerlecken, for sharing their helpful recommendations

and insights into this study.

I cannot begin to express my thanks to my dear friends. I am deeply indebted to Dr. Kia

Mostaan, Dr. Mohammad Ilbeigi, Dr. Reza Pourabolghasem, Mr. Mostafa Reisi, Mrs. Arezoo

Shirazi, Ms. Shiva Bahrami, and Mr. Minsoo Baek. Their generosity in sharing their indispensable

experience and expertise made me a better researcher.

There are people in everyone’s lives who make success both possible and rewarding. I am

extremely grateful to my wife, Paran, for being my rock throughout this endeavor. I would also

like to thank my loving parents, Sedigheh and Alim, and my supportive siblings, Sadegh, Solmaz,

and Siamak, for being my source of strength and inspiration. I am truly blessed for having you in

my life.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... viii

LIST OF FIGURES .. x

LIST OF SYMBOLS AND ABBREVIATIONS .. xii

SUMMARY .. xiv

CHAPTER 1: INTRODUCTION... 1

1.1 Current Performance Monitoring Methods for Building Design Projects 3

1.2 Performance Monitoring in Collaborative Computer-Aided Design 7

1.3 Chapter Summary .. 10

CHAPTER 2: PROBLEM STATEMENT AND RESEARCH OBJECTIVES 11

2.1 Motivation and Gaps in Knowledge.. 11

2.1.1 Gap 1 in Knowledge .. 11

2.1.2 Gap 2 in Knowledge .. 13

2.1.3 Gap 3 in Knowledge .. 14

2.1.4 Gap 4 in Knowledge .. 14

2.2 Research Objectives .. 17

2.2.1 Research Objective Ⅰ .. 18

2.2.2 Research Objective II ... 19

2.2.3 Research Objective III ... 19

vi

2.3 Research Methodology .. 20

2.4 Dissertation Organization .. 21

2.5 Chapter Summary .. 23

CHAPTER 3: EXTRACTING MODELER PERFORMANCE INFORMATION

FROM DESIGN LOG FILES.. 25

3.1 Introduction ... 25

3.2 Mining Design Log Files .. 26

3.3 Research Methodology .. 27

3.3.1 Dataset.. 27

3.3.2 Algorithm ... 29

3.3 Implementation.. 33

3.3.1 Data Collection .. 35

3.3.2 Input Preparation .. 36

3.3.3 Pattern Extraction... 37

3.3.4 Discussion of Results ... 38

3.4 Chapter Summary .. 45

CHAPTER 4: AUTOMATIC EXTRACTION OF MODELER PERFORMANCE

INFORMATION ... 47

4.1 Introduction ... 47

4.2 Application Programming Interfaces .. 48

4.3 Research Description... 49

4.4 Implementation.. 51

vii

4.4.1 External Application Interface ... 51

4.4.2 Ribbon Item Event Handler ... 53

4.4.3 Document Changed Event Handler ... 55

4.4.4 Software Failure Event Handler ... 60

4.5 Plugin Functionality Validation .. 62

4.6 Chapter Summary .. 62

CHAPTER 5: FINDING OPTIMAL MODELING TEAM CONFIGURATION... 65

5.1 Introduction ... 65

5.2 Experiment Description... 65

5.3 Analysis of Experiment Data .. 68

5.3.1 Processing Collected Modeling Data ... 68

5.3.2 Experiment Results .. 73

5.3.3 Optimal Modeling Team Configuration .. 77

5.4 Discussion of Results .. 81

5.5 Chapter Summary .. 84

CHAPTER 6: CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS 85

6.1 Introduction ... 85

6.2 Summary of Results and Contributions to the Body of Knowledge 86

6.3 Limitations of the Current Study ... 88

6.4 Future Works and Directions .. 89

REFERENCES ... 92

viii

LIST OF TABLES

Table 1-1 Overview of Existing Literature ... 5

Table 2-1 List of Metrics and Information Items Used in The Existing Literature 16

Table 3-1 Sample String Suffixes ... 31

Table 3-2 Examples of Journal File Recorded Data ... 35

Table 3-3 Examples of Structured Processed Data ... 36

Table 3-4 Dataset Statistics ... 39

Table 3-5 Most Frequent Individual Commands .. 39

Table 3-6 Common Command Sequences .. 40

Table 3-7 Pattern Execution Times... 43

Table 3-8 The F-test Results ... 44

Table 3-9 Pairwise Comparison of Modelers ... 44

Table 5-1 Data Frame Column Names ... 69

Table 5-2 Demographic Information of Experiment Participants 73

Table 5-3 Preliminary Measures of Experiment Participants ... 74

Table 5-4 Most Frequent Error and View Types .. 75

Table 5-5 General Parameters of Hypothetical Problem .. 79

Table 5-6 Element Modeling Times Based on Production Rates 80

Table 5-7 Possible Team Configurations .. 80

ix

Table 5-8 Zone Processing Times Based on the CPM ... 81

Table 5-9 Computation of Maximum Lateness for Different Team Configurations 81

x

LIST OF FIGURES

Figure 1-1 Design Performance Monitoring Dashboard (Chiu and Russel, 2011)............. 2

Figure 2-1 Lagging Indicators in Existing Design Modeling Monitoring Practices 12

Figure 2-2 Chapter Contents ... 22

Figure 3-1 Suffix Tree Data Structure for One String .. 32

Figure 3-2 A GST Data Structure for Multiple Strings .. 33

Figure 3-3 Proposed Methodology for Extracting Information from Revit Journal Files

and Identifying Common Frequent Command Execution Sequences .. 34

Figure 3-4 Command Vector Transformation .. 37

Figure 3-5 Pattern Extraction Using a GST .. 38

Figure 3-6 Task Execution Times ... 41

Figure 4-1 Research Methodology for Developing a Data Collector Plugin.................... 50

Figure 4-2 Event Handler Registration in OnSartUp() and OnShutdown() Methods 52

Figure 4-3 Ribbon Item Event Handler Implementation .. 54

Figure 4-4 Document Changed Event Handler Implementation 55

Figure 4-5 Element Deleted Event Handler Implementation ... 57

Figure 4-6 Element Addition Event Handler Implementation .. 58

Figure 4-7 Element Modification Event Handler Implementation 60

Figure 4-8 Software Failure Event Handler Implementation ... 61

xi

Figure 4-9 Sample Plugin Output ... 62

Figure 5-1 Building Floor Plan ... 66

Figure 5-2 Building Elevations ... 66

Figure 5-3 Sample 3D Model Produced by Experiment Participants 67

Figure 5-4 Pandas Data Frame Initialization .. 68

Figure 5-5 Storing Command-Execution Data in the Commands Data Frame 70

Figure 5-6 Storing Software Failure Data in the Errors Data Frame 70

Figure 5-7 Storing Deletions and Modifications in the Element Changes Data Frame 71

Figure 5-8 Storing Addition in the Element Changes Data Frame 71

Figure 5-9 Writing Data Frame Information to CSV Files ... 72

Figure 5-10 Element Change CSV File .. 72

Figure 5-11 Error CSV File .. 72

Figure 5-12 Wall and Window Modifications Bar Chart ... 76

Figure 5-13 Wall and Windows Average Modeling Times .. 76

Figure 5-14 Average Modeling Times vs. Average Number of Modifications 77

Figure 5-15 Framework of Hypothetical Project .. 79

xii

LIST OF SYMBOLS AND ABBREVIATIONS

AEC Architectural, Engineering, and Construction

AIA American Institute of Architects

API Application Programming Interface

BIM Building Information Modeling

CII Construction Industry Institute

CPM Critical Path Method

CSV Comma Separated Values

DFS Depth-First-Search

EDD Earliest Due Date

ENR Engineering News-Record

GSP Generalized Sequential Pattern

GST Generalized Suffix Tree

GUID Globally Unique Identifier

IFC Issued for Construction

KDD Knowledge Discovery in Databases

LoD Level of Development

OOP Object Oriented Programming

RFI Request For Information

xiii

SPM Sequential Pattern Mining

UI User Interface

VDC Virtual Design and Construction

xiv

SUMMARY

Building information modeling (BIM) is instrumental in documenting design,

enhancing customer experience, and improving product functionality in capital projects.

However, high-quality building models do not happen by accident, but rather because of a

managed process that involves several participants from different disciplines and

backgrounds. Throughout this process, the different priorities of design modelers often

result in conflicts that can negatively impact project outcomes. There is a need for effective

management of the modeling process to prevent such unwanted outcomes. Effective

management of this process requires an ability to closely monitor the modeling process and

correctly measure the modelers' performance. Nevertheless, existing methods of

performance monitoring in building design practices lack an objective measurement

system to quantify modeling progress. The widespread utilization of BIM tools presents a

unique opportunity to retrieve granular design process data and conduct accurate

performance measurements. This research improves upon previous efforts by presenting a

novel application programming interface (API)-enabled approach to automatically collect

detailed design development data directly from BIM software packages and efficiently

calculate several modeling performance measures.

The primary objective of this research is to create and examine the feasibility of a

proposed automated design performance monitoring framework. The proposed framework

provides the following capabilities: (a) non-intrusive and cost-effective data acquisition for

capturing design development events in real time, (b) scalable and high-speed ingestion for

the storage of design modeling data, (c) objective measurement of designer performance

xv

and estimating levels of effort required to complete design tasks, and (d) identifying

optimal design teams using empirical performance information.

In chapter 3, the utilization of modeling development information embedded in

design log files that are produced by Autodesk Revit is proposed as a rich source of

performance data. To this end, generalized suffix tree (GST) data structures are utilized to

find common, frequent command sequences among Revit users. In addition to identifying

the common command execution patterns, the average time it takes the selected modelers

to execute command sequences is calculated. The obtained results demonstrate that there

is a statistically significant difference between the modelers in terms of the time it takes

them to conduct similar modeling tasks.

Chapter 4 utilizes modeling software solution’s APIs to automatically collect and

store timestamped design development information. The proposed passive data recording

approach allows for the real-time capture of comprehensive user interface (UI) interaction

and model element modification events. The proposed framework is also implemented as

an Autodesk Revit plugin. An experiment is then conducted to verify the accuracy of this

plugin. Throughout this experiment, manual recordings of model development events were

compared against the automatically generated plugin output.

Chapter 5 outlines the details of an approach to identify the optimal design

modeling team configuration based on automatically collected performance data. To this

end, an experiment is conducted to capture data using the developed Revit plugin.

Experiment participants’ individual production rates are estimated to establish the validity

of the proposed approach to identify the optimal design team configurations. The presented

approach uses the earliest due date (EDD) sequencing rule in combination with the critical

xvi

path method (CPM) to calculate the maximum lateness for different design team

arrangements.

The primary contributions of this study to the state of knowledge are as follows: (a)

proposing a tailored string mining algorithm that is capable of extracting meaningful

information from timestamped design development data, (b) developing a framework

based on APIs to automatically collect design modeling data, and (c) creating a

mathematical model to estimate design modeling project completion times based on

individual performance data and project requirements.

This study contributes to the state of practice by (a) allowing design project

managers to gain an unprecedented insight into the evolution of a building model using the

information embedded in design log files, (b) helping design managers to acquire progress

information without the need to manually record and report data, and (c) enabling design

managers to identify an optimal modeling team arrangement based on automatically

captured, quantitative performance information.

1

CHAPTER 1: INTRODUCTION

The goal of design is to specify a product that best satisfies the client, ensures safe

construction and operations, and achieves minimum overall costs (Wang & Tsai 2011). As

capital projects are becoming more complex, the design process increasingly requires

substantial interactions among a wide range of designers from various architectural,

engineering, and construction (AEC) disciplines (Evins 2013). Throughout this

evolutionary process, multidisciplinary teams of architects and engineers need to make

difficult decisions to design buildings that are functional, safe, and reliable, and that meet

clients’ expectations (Anumba & Yang 2013). Given the specific requirements of different

disciplines, each specialist has a unique approach to design. The existing variations in the

understanding of design problems result in conflicts that negatively impact the concurrent

design efforts as well as the downstream construction activities (Simpeh et al. 2015). While

design processes account for approximately 5%-10% of the total cost of a typical capital

project (Tizani 2011; Egan 1998), rectifying conflicts that result from faulty design

decisions accounts for an additional 5%-8% of total project costs (Lee & Pena-Mora 2007).

Given the value of the U.S. construction industry (U.S. Census Bureau 2015),

approximately $70 billion will be spent annually to resolve design-related issues in capital

projects alone.

The poor management of design processes is the primary cause of costly errors in

construction projects (Sun & Meng 2009; Love & Li 2000). Similar to other design

activities, it is necessary for AEC companies to have an effective performance monitoring

system in order to produce accurate design models (Pilehchian et al. 2015). In fact,

2

effective design progress monitoring is instrumental in preventing potential errors, and it

results in both lower overall project costs and productivity improvements across the

industry (Riley et al. 2005; CII 2001; CII 2004 McGeorge 1998). Any performance

monitoring system depends on metrics to determine the performance of project participants

(Figure 1-1). Calculating performance metrics enables managers to identify where team

members are falling short, make corrective adjustments, and track outcomes across

different projects (Chiu & Russel 2011; Skibniewski & Ghosh 2009).

Figure 1-1 Design Performance Monitoring Dashboard (Chiu & Russel, 2011)

3

1.1 Current Performance Monitoring Methods for Building Design

Projects

The existing literature on performance monitoring in design practices can be

categorized as indicated in Table 1-1. Design progress is traditionally measured by tracking

a designer’s or engineer’s production rate as the relationship between physical inputs and

outputs. The current design or engineering performance metrics can be classified as follows

(Ashuri et al. 2014):

• Design Hours per Construction Document—in this approach, design hours and

construction documents (for example, drawings, specifications, and contract

forms) are considered to be process input and output respectively. In a study to

measure engineering productivity, Thomas et al. (1999) proposed using design

work hours per drawing sheet, design work hours per specification section, and

design work hours per contract document to measure design progress. Chang

and Ibbs (2006) measured production rate using design work hours per drawing

sheet to identify the major factors that affect design productivity. These metrics

regard project documents as tangible outputs of design, which makes output

estimation relatively less burdensome. The number of billable hours that

designers spend can also be measured using company payroll information.

However, this method does not account for the differing complexity and unique

characteristics of construction projects. Therefore, the proposed metrics are

better suited for comparing design performance across similar projects.

4

• Design Hours per Installed/Build Quantities—this approach considers design

hours and installed or built quantities (for example, the amount of installed

equipment, concrete volume, and building floor area) as the input and output of

design processes respectively. In an effort to measure performance in 10

engineering disciplines, the Construction Industry Institute (CII) (2001)

proposed several trade-specific metrics based on the number of equipment

pieces designed. Kim (2007) later used these metrics in another CII-supported

project to benchmark engineering performance. Sacks and Barack (2008) and

Sacks et al. (2010) are other examples of utilizing installed or build quantities

to estimate design output, where the authors investigated the impact of 3D

parametric modeling on structural engineering productivity. The methodologies

proposed in these studies incorporate project characteristics and design quality

in the evaluation of design performance; therefore, they can be used to compare

projects that are different in nature.

• Normalized Design Hours—in this approach, design hours are normalized using

a basis for design hours. The CII (2004) developed multiple regression models

to calculate the basic hours in different engineering disciplines, and design

performance in each discipline is measured by normalizing the actual design

hours against the calculated basis hours. A normalized metric of less than one

indicates a performance that is better than the benchmark. Liao et al. (2009) and

Liao et al. (2011) proposed modifications to the CII’s methodology to convert

and aggregate unit-less design metrics into project-, portfolio-, and company-

5

level measures. This allows managers to compare performance not only across

different projects but also across different disciplines.

Table 1-1 Overview of Existing Literature

Article Metric Required Data

Thomas et al. 1999

Chang and Ibbs 2006

Design hours per

construction document

Design hours

Number of design and construction

documents (for example, drawings,

specifications, and contract forms)

for different disciplines

CII 2001

Kim 2007

Sacks and Barak 2008

Li et al. 2014

Design hours per

installed or built

quantities

Design hours

Installed or built quantities (for

example, linear feet of pipe,

concrete volume, and building floor

area) for different disciplines

CII 2004

Liao et al. 2009

Liao et al. 2011

Normalized design

hours

Design hours per installed or built

quantities

While the above studies primarily rely on input and output production metrics,

some researchers utilized a more holistic perspective and included other measures, such as

design quality, design innovation, design coordination, and client satisfaction, in evaluating

design projects (Yarmohammadi & Ashuri 2015; Ren et al. 2013; Torbett et al. 2001;

Tucker & Scarlett 1986). For example, metrics, such as delay and cost overrun in

fabrication and construction due to design deficiencies or constructability issues, were

utilized to evaluate the outcomes of design projects (Lu et al. 2014; Bassioni et al. 2005;

Fayek & Sun 2001).

6

Overall, the existing methods for design progress monitoring are not up to date, i.e.,

there is a significant lag between the time at which these progress metrics can be calculated

and the time at which design decisions need to be made throughout various phases of design

development. These methods only consider what has been spent and produced in design

projects without sufficient appreciation for the complexity of design evolution as an

evolving system. Several studies have noted this limitation and indicated that the AEC

industry needs to adopt a forward-looking approach to enable proactive design monitoring

(Du et al. 2014; Succar et al. 2012; Leong & Tilley 2008). Due to this major drawback,

current progress monitoring methods have limited capability for helping design managers

to monitor design development in real time and detect design deficiencies in order to take

timely corrective actions.

Above all, the greatest challenge in monitoring design processes is the lack of an

objective and systematic method to accurately capture the required data for quantifying

progress in design modeling. Several studies have indicated that existing data collection

approaches are time consuming, manual, and incapable of capturing information in real

time (Knotten & Svalestuen 2014; Park et al. 2013; Navon & Sacks 2007); therefore, they

are inherently incapable of retrieving useful information, created at the level of various

design tasks, such as conceptual layouts, model element design, and model detailing

(Kymmell 2008; Meredith & Mante 2003). Moreover, while the widespread application of

computer-aided design in the full range of design activities (for example, conceptual

design, detailed design, and construction documents) has facilitated knowledge integration

from various participants, collecting design modeling data remains a challenging task

(Volk et al. 2014).

7

1.2 Performance Monitoring in Collaborative Computer-Aided Design

Collaboration in design is essential for project success; however, the circulation of

incomplete and erroneous process information among project stakeholders makes design

issues inevitable (Love et al. 2014; Anumba et al. 2002; Abdul-Rahman 1995). In addition

to challenges related to collaboration, the following are among the common causes of

design problems: the completeness of scope definition, the project objectives and priorities,

owner profiles, and the reliability of vendor data (Doloi 2012; Chalabi et al. 1987). The

availability of comprehensive information from all disciplines as well as learning from past

projects are necessary for project managers to anticipate problems in design development

and to take corrective actions in a timely manner (White et al. 2005).

Early research in collaborative design management was qualitative in nature, and it

was often based on studying a single design case. Earlier works attempted to address design

issues in the context of a recommendation for a given product. In these studies, there have

been frequent references to the idea that by making use of recommended techniques, one

can improve the productivity, quality, and performance of designers or engineers; for

examples, see concurrent engineering practices (Benayoune & McGreavy 1994; Isbell

1993) and civil engineering design (Girczyc & Carlson 1993; Winter 1992; Graham 1990;

Sackett & Evans 1984). Even though these studies offer several recommendations for

improving design performance, they fail to acknowledge the inherent variations in

approaches that designers in a particular field or from different disciplines take to tackle a

design problem. The unique nature of each design and construction project makes it

difficult to address specific design problems by implementing generic suggestions

(Alzraiee et al. 2012). A single set of rigid design strategies could not be applicable to the

8

construction industry, in contrast to the manufacturing industry, which deals with highly

repetitive processes and mass production, i.e., 43% productive time in construction vs. 88%

productive time in manufacturing (McGraw-Hill 2013).

Computer-aided design tools provide practitioners with an information technology

enabled approach that involves applying and maintaining an integral digital representation

of all building information for different phases of the project lifecycle in the form of a data

repository (Gu & London 2010). The capabilities of virtual design technologies have eased

collaboration in typical design teams that involve a wide array of disciplines, such as

architecture and structural, seismic, hydraulic, and pipeline engineering, working together

for a relatively short period of time (Plume & Mitchell 2007). To facilitate virtual design

efforts, different sequential and parallel collaboration strategies have been proposed for

implementation (ENR 2013; Eastman et al. 2011; Korman et al. 2008). A number of studies

have been conducted to measure the success of these strategies to improve performance.

Lee and Kim (2014) conducted a case study of a seven-story office building to investigate

the impact of parallel versus sequential approaches on a design coordination team’s

production rate. Their findings indicated that a sequential design strategy is faster than the

parallel strategy in terms of design productivity. A further examination of these two

approaches identified deficient information sharing among design team members as the

main factor that negatively impacts performance. Other case studies, such as those

conducted by Staub-French and Khanzode (2007) and Manning and Messner (2008), also

investigated collaborative strategies with a focus on evaluating the impact of virtual design

and construction (VDC) solutions on design performance. Together, these studies

9

demonstrated that information transfer bottlenecks are the primary challenges of design

progress monitoring in collaborative computer-aided design.

An important observation is that the data accumulated in building models largely

consist of information about different building systems (for example, structural,

mechanical, electrical, and architectural), and they exclude model progress data. In fact,

AEC companies still use conventional manual practices, such meeting minutes reports and

Gantt charts, to document design modeling progress data (Yarmohammadi & Ashuri 2015).

In larger projects, those reports consist of several pages of emails, charts, descriptions, and

spreadsheets that are difficult to read and analyze (Dave et al. 2016). These unstructured

documents lack the organization necessary for machine readability—i.e., inclusion in a

relational database that search engine algorithms can readily search (Baars & Kemper

2008). Structured data are understandable in machine language, and computers can

automatically read and analyze them. In contrast, unstructured data are only understandable

to humans, who do not interact with information in strict, database formats (Gautam &

Yadav 2014). The manual compilation of unstructured progress reports to measure design

modeling performance is a time- and energy-consuming task.

Due to the difficulties associated with progress measurement in design modeling,

most decision makers rely heavily on subjective measures and informal communications

to assess progress (Bate & Robert 2007). For instance, when a structural designer reports

to the design manager that 30% of the steel framing has been modeled, the determination

of the percentage of completion is primarily based on the designer’s experience, and it does

not present the real progress of the project in an objective manner. The resulting human

error in the preparation of progress data and their delivery to design managers causes

10

inefficiency in performance monitoring (Taylor-Adams & Kirwan 2013). Moreover,

inaccurate measurements that are calculated using faulty data can be misleading to

managers, thereby causing them to make decisions with negative impacts on the design

modeling process.

1.3 Chapter Summary

As the complexity of capital projects grows, the design modeling process

increasingly involves massive collaborative efforts among various AEC disciplines.

Throughout this multidisciplinary process, the various priorities of design team members

often result in conflicts that can negatively impact project outcomes. To prevent such

conflicts, managers need to closely monitor the design modeling process. However, a

review of the existing literature indicates that the current methods of design performance

monitoring lack objective measurement systems to quantify modeling progress. The

difficulties associated with evaluating design modeling performance renders the existing

methodologies impractical.

11

CHAPTER 2: PROBLEM STATEMENT AND RESEARCH

OBJECTIVES

2.1 Motivation and Gaps in Knowledge

Overall, the existing literature highlights the crucial role of performance

management in the success of building design processes. By utilizing the metrics proposed

in the existing studies, design managers can monitor their teams by comparing their

performance against established baselines. However, the discussed studies make no

attempt to address the issue of data collection during the design modeling processes. The

gaps in the current state of knowledge that render most of the existing approaches

impractical are as follows: the existing design monitoring practices have delays, these

practices are manual and labor-intensive, the manually collected design monitoring data

are of a low quality, and the existing methods are subjective and judgment-based. These

four gaps are discussed next.

2.1.1 Gap 1 in Knowledge: Existing Design Monitoring Practices Have Delays

The existing design modeling performance approaches are either backward-focused

or trailing. There is a significant lag between the time at which the measures are calculated

and the time at which design modeling happens (Jansson et al. 2016). As illustrated in

Figure 2-1, there is also a delay between the time when progress data are captured and

when they are reported to the management. Such delays in current building modeling

practices prevent design managers from taking corrective actions in a timely manner

12

(Yarmohammadi et al. 2017) because it might be too late or too costly to make any

corrections by the time the team reacts to these lagging indicators.

There is a need for a data acquisition method that can provide design managers with

access to real-time, building model development information. Such a system should be able

to capture large amounts of accurate model progress data from project participants across

different stages of design. Once analyzed, the captured granular information can provide

managers with a comprehensive view of the state of their project compared to the

predetermined milestones. Additionally, leading performance indicators can be measured

using real-time design progress data.

Figure 2-1 Lagging Indicators in Existing Design Modeling Monitoring Practices

The lagging measurements of design performance metrics can provide information

about a project after the fact. However, the question remains regarding the value of these

metrics as future predictors for design-related conflicts (Hinze et al. 2013). Moreover, an

unbalanced focus on lagging after-the-fact-based approaches may discourage conflict

prevention (Jin et al. 2013). Therefore, organizations have also adopted proactive leading

DESIGN

S
ta

rt
 o

f
C

o
n

st
ru

ct
io

n

CONSTRUCTION
Performance

Measurements

Time

P
ro

je
ct

 C
o

m
p

le
ti

o
n

Delay

13

measures to predict future levels of performance. For such systems to function properly, it

is necessary to collect accurate data in real time (Manyika et al. 2011).

2.1.2 Gap 2 in Knowledge: Existing Design Monitoring Practices Are Manual and

Labor-Intensive

Existing methods require extensive manual data extraction from various data

sources, such as design documents, schedule and budget updates, and status and progress

emails. In practice, most design managers informally collect information about the state of

the project from the members of the design team at different time intervals (De Marco &

Narbaev 2013).

Table 2-1 presents a summary of the metrics and corresponding information items

used in the existing literature to measure progress in design practices. An important

observation is that the collected information items vary based on the metrics used to

calculate design performance. The required information is usually manually extracted from

various sources to obtain the necessary quantities.

Manual data collection is slow and inaccurate, and it produces vast amounts of

paperwork (Yarmohammadi et al. 2017). In addition to difficulties associated with

manually collecting the required data, design team members generally lack the incentive

to record and report information. This is largely because designers are expected to complete

the job under tight schedules and are hence left with little time to keep track of performance

data (Ding et al. 2014). This task becomes even more challenging, since the disparities

among numerous project participants make it difficult for design managers to efficiently

capture the necessary information (Liao et al. 2011).

14

2.1.3 Gap 3 in Knowledge: Manually Collected Design Monitoring Data Are of a Low

Quality

The manual nature of current monitoring methods may undermine the quality of

the measurements because they introduce error and bias into the process. The design

manager needs to compile large amounts of data from multiple sources and provided by

various parties involved in the design process (Yin et al. 2011; Sacks & Barak 2007). The

excessive amount of work required to extract information from the provided data sources

and perform the necessary analyses may cause human errors that reduce the quality of the

resulting measures. The collected information also presents a designer’s interpretation of

what needs to be measured and the way in which this measurement must be conducted;

therefore, it may not reveal the actual state of the project. Such drawbacks, as well as

difficulties associated with capturing the information required for accurate measurement,

have rendered existing design monitoring methods impractical (Yang et al. 2010). The

design manager consequently relies heavily on experience and informal communications

with the design team to monitor design projects (Bate & Robert 2007).

2.1.4 Gap 4 in Knowledge: Existing Design Monitoring Methods Are Subjective and

Judgment-Based

An accurate measurement of the design progress represents one of the most

challenging data gathering problems when monitoring design projects (White et al. 2005).

It was reported that there is a tendency among members of the design team to use as-

planned progress goals as proxy measures for actual progress or to select only those metrics

that allow for favorable progress to be reported (Meredith & Mantel 2003). This problem

15

is more widespread when non-systematic monitoring methods, such as weighted

milestones and budget-based monitoring, are used to track design progress. For instance, a

structural system designer reports to the design manager that 30% of the steel framing has

been modeled. In this case, the following questions are not clear with regard to the measure

that has been utilized to evaluate progress: does that figure imply that 30% of the planned

design hours have been spent, is it 30% of the required design documents that have been

prepared, or does it mean that 30% of the level of development (LoD) specified in the

contract has been achieved?

In addition, the determination of the percentage of completion is primarily based

on the experience of the designers; therefore, it does not present the real progress of the

project in an objective manner (Sacks & Barak 2008). Subjective progress reports may also

be biased as different design disciplines may not reveal the truth considering incentives,

penalties, and other project-specific conditions. As a result, subjective monitoring methods

can be misinterpreted, and they can mislead the design project manager, since

discrepancies between the as-planned and actual design progress remain undetected and

could lead to further conflicts throughout the project. Also, relying on subjective measures

to determine design progress is the main source of several problems in planning design

projects, such as setting unreasonable expectations for design completion and

misallocating resources to the project (Shahtaheri et al. 2014). For instance, in a case study,

Leite et al. (2011) challenged the conventional assumption about the effort required to

generate a design model in a required LoD, and they demonstrated that more detail in the

model does not necessarily mean a proportionally higher modeling effort.

16

Table 2-1 List of Metrics and Information Items Used in The Existing Literature

 Productivity Metrics

Thomas et al.

(1999)
CII (2001) CII (2003)

Chang and

Ibbs (2006)
Kim (2007)

Sacks and Barak

(2008, 2010)

design hours per

sheet, design hours

per section, design

hours per each

contract document

direct

work hours*

per

installed unit

Direct design

hours*/basis

hours**

predicted

design hours

per drawing

direct work

hours*/Issued

For

Construction

(IFC)

quantities

design hours per

1000 m2 of floor

area, design hours

per m3 of precast

concrete

In
fo

rm
a
ti

o
n

 I
te

m
s

Design Hours

Number of Drawings

Number of Contractual

Documents

Project Size

Project Type

Project Cost

Client/Owner

Number of Installed

Pieces

Volume of Structural

Concrete

Project Delivery System

Project Profit

QA/QC

17

2.2 Research Objectives

The emergence of open-access design software packages provides a unique

opportunity to extend the core capabilities of VDC modeling tools. In particular, these

software solutions can be utilized to record design development events and UI interactions

with design models. However, no research has been conducted to use such capabilities for

monitoring design progress. In simple words, various members of the design team leave

traces behind as they interact with virtual design models. Historical records of design

development events (for example, changes in design elements, and executed commands by

each user) provide a rich source of information about the progress of a design project.

This dissertation seeks to investigate the possibility of utilizing the data of user

interactions, as well as design development events, to extract and measure useful

information regarding the design modeling process. Such information will be used to

examine the research hypothesis that there are meaningful differences among modelers in

terms of the time it takes them to conduct similar modeling tasks. Additionally, the

extracted information can be utilized to measure the design modeling progress at the project

level and to benchmark the performance of each team member involved in the development

of the design model.

The motivation behind the proposed research is that design software protocols, such

as APIs, can be devised to create a novel data acquisition method. Once the system is placed

in the design environment, a wide range of design development events (for example,

attributes related the performed design tasks, and UI interaction features) are captured in

real time and automatically transferred to a database of information that is required for

design monitoring.

18

This research is the first attempt to introduce the use of design software APIs as an

alternative source of information for monitoring design modeling progress and analyzing

modelers’ performance. The fundamentally different property of the proposed approach is

its adaptability to the development of design models that, by nature, are complex, dynamic,

and evolving. This overall research objective is broken down into three sub-research

objectives as follows: (I) to examine the feasibility of extracting modeler performance

information from design log files, (II) to examine the feasibility of automatically extracting

modeler performance information using APIs, and (III) to identify optimal design modeling

teams using performance information. These objectives are discussed in detail below.

2.2.1 Research Objective Ⅰ: To Examine the Feasibility of Extracting Modeler

Performance Information from Design Log Files

Due to the difficulties associated with the manual collection of design modeling

progress data, the first research objective of this study is to empirically examine the

feasibility of utilizing modeling log data to collect granular performance information. The

specific tasks to accomplish this objective are as follows: (1) to investigate the presence of

frequent command sequences (i.e., patterns) that represent specific modeling tasks in

design log files, and (2) to empirically characterize the performance of modelers based on

the extracted information. The non-intrusive and cost-effective data acquisition capability

of the proposed approach will be used to identify and characterize performance variations

observed among design modelers. The following questions are of interest:

• What sequences (patterns) are formed from various commands?

• What types of command sequences do designers execute frequently?

19

• What patterns are common among different designers?

• Is there a meaningful difference between the average time it takes designers to

execute different command sequences?

The results of this part of the study are expected to enable design project managers

to empirically evaluate, benchmark, and compare the performance of their modelers across

different projects.

2.2.2 Research Objective II: To Examine the Feasibility of Automatically Extracting

Modeler Performance Information Using APIs

The second objective of this study is to devise and implement a methodology to

automatically extract modeler performance information utilizing software application

program interfaces. API-based information extraction can help design management teams

to directly collect granular data from design software solutions in real time. The

information acquired using this methodology includes changes in design elements,

executed commands by each user, and errors.

2.2.3 Research Objective III: To Identify Optimal Design Modeling Teams Using

Performance Information

The final objective of this study is to develop a data-driven approach to identify

optimum modeling team configuration based on performance information captured

through a software API. The mathematical model developed in this section helps project

managers to choose a modeling team that is the best fit for the project at hand.

20

2.3 Research Methodology

This dissertation aims to address the three presented research objectives in three

separate sections. The research methodology for each research objective is briefly

presented in this section, and full details are provided in the corresponding chapters.

To address the first research objective, a sequential pattern mining (SPM)-based

approach to retrieve command execution patterns is developed. The following steps are

taken to develop the proposed approach:

• Collect design log files from a major international architectural design firm.

• Extract the required performance information from log files using a tailored text

parser.

• Convert the collected data to a form appropriate to be used in string mining

algorithms.

• Implement a GST-based pattern mining algorithm to identify common

command patterns.

• Calculate the average times it takes modelers to execute identified patterns to

evaluate the existing performance levels.

• Examine the possibility of using design log files as rich sources of modeling

performance data by conducting statistical tests.

The second research objective is addressed by utilizing design software solution

APIs to automatically collect and store timestamped design development information. The

research methodology of this chapter consists of the following steps:

21

• Identify an API functionality capable of recording information in real time

without disrupting design modeling processes.

• Design a modeling data collection framework by utilizing the event-handling

functionality of software APIs.

• Develop a Revit plugin that is capable of capturing and storing UI interactions

and model element modification events in real time.

• Verify the functionality of the developed plugin.

The plugin developed in this chapter should capture all possible software actions,

ranging from creating, selecting, and modifying elements to navigating through different

zones of a virtual model. Such recordings, constituting timestamped event sequences, are

organized and stored in searchable databases.

To address the final research objective, a mathematical model is utilized to choose

and assign modelers to projects based on their past performance information. The following

steps outline this chapter’s research methodology:

• Design and conduct an experiment to collect design modeling data utilizing the

plugin developed in the previous chapter.

• Analyze the collected data to evaluate individual production rates.

• Identify the optimal modeling team configuration to minimize lateness utilizing

the EDD approach.

2.4 Dissertation Organization

To achieve the above-mentioned research objectives, the remainder of this

dissertation is structured as illustrated in Figure 2-2. Chapter 3 addresses the first objective,

22

in which software-generated design log files are analyzed to identify command execution

patterns and measure task execution times to evaluate modelers’ performance levels.

The second research objective of this dissertation is addressed in chapter 4. A

framework to directly capture performance data from software solutions is proposed. The

proposed approach, which uses event handlers to record the evolution of design models,

is implemented in a .NET integrated development environment.

Figure 2-2 Chapter Contents

A methodology to identify the optimal design modeling team is presented in chapter

5. The external application, developed in the previous section, is used to collect

performance data and calculate individual production rates. A mathematical model

identifies the configuration of the optimal design modeling team based on captured

performance information. Finally, chapter 6 concludes the research works presented in this

dissertation, and possible future works and extensions to the proposed analysis are

suggested.

23

2.5 Chapter Summary

The existing literature highlights the important role of performance management in

the success of design modeling processes. However, current methodologies do not address

the problems associated with collecting design modeling data that make evaluating

performance metrics difficult. These problems can be summarized as follows:

• There is a significant delay between design modeling data collection and

performance evaluation.

• Collecting design modeling performance data is a manual and labor-intensive

process.

• Manually collected design modeling performance data are of a low quality.

• The existing design performance management practices rely mainly on

subjective and judgement-based information.

This dissertation seeks to investigate the possibility of utilizing the data of user

interactions, as well as design development events, to extract and measure useful

information regarding the design modeling process. Such information will be used to

examine the research hypothesis that there are meaningful differences among modelers in

terms of the time it takes them to conduct similar modeling tasks. The specific research

objectives of this dissertation are as follows:

I. Examine the feasibility of extracting modeler performance information from

design log files.

24

II. Examine the feasibility of automatically extracting modeler performance

information using APIs.

III. Identify optimal design modeling teams using performance information.

The first research objective is addressed in chapter 3, where software-generated

modeling log files are analyzed to identify command execution patterns and measure task

execution times to evaluate modelers’ performance levels. Chapter 4 addresses the second

objective; in this chapter, a framework to directly retrieve and store performance data from

modeling software tools is proposed. The proposed approach utilizes event-handling

functionality to record the evolution of design models. In chapter 5, an approach to

identifying the optimal design modeling team is presented. This objective is achieved by

optimizing the design team configuration using a combination of scheduling and

sequencing methodologies. A summary of research findings and some recommendations

on future research directions are presented in the final chapter.

25

CHAPTER 3: EXTRACTING MODELER PERFORMANCE

INFORMATION FROM DESIGN LOG FILES

3.1 Introduction

The ability to collect objective progress data is critical to accurately measure

performance in design modeling practices. This chapter presents an SPM-based approach

to retrieving data embedded in design log files. The research objectives of this section are

to (1) investigate the presence of frequent command sequences (i.e., patterns) that represent

specific modeling tasks in design log files, and (2) empirically characterize the

performance of modelers based on the extracted information.

Throughout this chapter, several steps that are necessary to retrieve performance

information from design log files, including data collection, data preparation, and frequent

command pattern extraction, are explained. The Atlanta office of a major international

architectural design firm provided the data for this chapter. Over 11 million user-model

interaction records were analyzed to find common command execution patterns among

building modelers. The novel method created in this chapter contributes to the body of

knowledge by incorporating the chronological dependencies of textual records into the

existing pattern matching models. The findings presented in this chapter contribute to the

state of practice by enabling design project managers to empirically evaluate and compare

the production rate of their modeling team members.

26

The rest of this chapter is organized as into three broad components. The research

methodology used to find modeling patterns in design log files is explained next. Then, a

discussion of the results is provided, followed by a conclusion in the final part.

3.2 Mining Design Log Files

The widespread utilization of VDC tools presents AEC practitioners with an

unprecedented opportunity to automatically capture objective, fine-grained performance

data (Boton et al 2015). Design log files generated by software packages such as Autodesk

Revit and Tekla Structures can be rich sources of process-specific information. These files

are unstructured text files that capture all activities that occur during a modeling session

(Autodesk 2016). Mining the information stored in these files can provide practitioners

with a unique insight into the evolution of a building model (Yarmohammadi et al. 2016).

However, existing applications of data mining methods in the context of the AEC industry

do not incorporate timestamps of unstructured textual data into their analyses.

Soibelman and Kim (2002) outlined the steps necessary to apply data mining and

knowledge discovery in databases (KDD) as tools to extract novel patterns in the design

and construction fields. In two consecutive studies, Caldas et al. (2002) and Caldas and

Soibelman (2003) proposed text mining-based approaches to automatically classify

unstructured construction documents. These efforts laid a solid foundation for a

methodology that Caldas et al. (2005) developed to retrieve project documents (for

example, requests for information [RFIs], change orders, and design reviews) based on the

building model element to which they correspond. Fan et al. (2014) proposed an extended

27

information retrieval system capable of classifying unstructured documents based on their

corresponding projects. Construction cost overrun prediction by William and Gong (2014)

is another example of implementing data mining algorithms to analyze unstructured textual

data. They used a stacking ensemble model of several classifiers to forecast the level of

cost overruns. While these studies offer valuable insights into how to overcome several

challenges in handling unstructured textual AEC data, they do not address the way in which

the chronological dependencies of temporal data can be incorporated into the analysis. This

is a significant limitation as the temporal aspect of unstructured textual data stored in

design log files captures the progress of design modeling. Due to this shortcoming, the

discussed methods cannot be utilized to mine meaningful information from design log files,

whereas sequential pattern mining methodologies have the capability to analyze and

retrieve information from timestamped textual data.

3.3 Research Methodology

3.3.1 Dataset

The presented study utilized design log data from an international architectural

design firm with operational expertise in multidisciplinary practices, including

architecture, interiors, urban design, and landscape architecture. Journal files generated by

Autodesk Revit software were collected to conduct the analysis. These files capture all

modeling activities that occur during a design session as well as system information, such

as memory and processor usage. Revit journal files are largely used to diagnose and

troubleshoot technical problems. However, in this research, these log files were utilized as

a non-intrusive, data capturing mechanism for documenting designer-software interactions

28

and recording model development events. The author had access to data from healthcare

projects that were designed in 2013 and 2014. The provided database consisted of over

4,000 Revit journal files that were later parsed to extract and store the recordings of

executed commands, amounting to over 10 GB of structured data. In addition to the

modeling events, these journal files contained information on the modeler’s identity and

the projects that the models belonged to.

The information extracted from the Revit journal files was utilized to examine the

research hypothesis that there are meaningful differences among modelers in terms of the

time it takes them to conduct similar modeling tasks. In the context of this research, a

journal log file is regarded as a database of ordered modeling events (commands), recorded

with a concrete notion of time; a frequent pattern is an ordered set of individual commands

that occur more than a threshold number of times (i.e., minimum support) in the original

sequence database; and minimum support is an indication of how frequently a pattern

appears in the database.

The following questions are of interest in this research:

• What types of commands sequences do modelers execute frequently?

• What structures are formed from various commands at each stage of modeling,

and how?

• What are the command pattern sequences common among different modelers?

• What types of modeling tasks do these patterns represent?

• Is there a detectable difference between the time it takes BIM users to execute

common pattern sequences?

29

3.3.2 Algorithm

Log files (or transaction logs) have long been studied in the data mining

community. These files can be generated in different applications, such as retail

transactions data and web access logs. Srikant and Agrawal (1996) introduced the

generalized sequential pattern (GSP) algorithm to mine shopping patterns. The authors

studied a large database of customer transaction data, where each transaction consisted of

a customer-ID, a transaction time, and the items bought in the transactions. Compared to

exhaustive search methods, the GSP significantly reduces the search space by utilizing a

downward closure property, which guarantees that for a frequent set of items, all its subsets

are also frequent, and hence infrequent sets can be removed from the search space without

affecting the results (Pei et al. 2001a). However, the time and memory performance of the

GSP is relatively low as a large number of candidates must be generated and stored in each

repetition for evaluation (Verma & Mehta 2014). Other general methodologies to mine

frequent subsequences, such as the PrefixSpan algorithm (Pei et al. 2001b) and CloSpan

(Yan et al. 2003), further reduce the size of the search space by taking advantage of divide-

and-conquer approaches. However, these SPM methodologies do not preserve the exact

order of elements in a sequence. Therefore, some of the elements in extracted sequences

may not necessarily be consecutive in the original string of transactions. In this chapter,

the author used a special SPM algorithm, called a GST, that maintains the order in which

the executed commands are recorded.

A major objective of this dissertation is to characterize BIM users based on the time

it takes them to execute modeling tasks. Therefore, in addition to investigating different

commands and calculating their statistics individually, modelers are characterized based

30

on the common sequence of commands they execute. For example, by looking at each type

of command individually, it is unlikely to determine how quickly a user performs the task

of “modifying the position of an object.” Instead, this measurement can be obtained by

calculating the average time it takes the modeler to perform the “select-rotate-move”

command sequence on a model element.

The GST can extract such patterns, since it preserves the original order of recorded

transactions. Xiao and Dunham (2001) first proposed applying a GST data structure to the

mining of web access log data. The authors analyzed clickstream data, which was generated

based on the access by Internet users, to identify frequent web page traversal patterns. The

technique proposed by Xiao and Dunham achieved a high level of adaptability to large

databases through dynamic compressions and effective pruning. Guerbas et al. (2013)

introduced an improved version of the GST algorithm with an optimized data structure to

extract the page visit patterns of Internet users. The authors’ primary objective was to

improve the search experience of users by predicting the pages they intended to view next.

To this end, they utilized the GST algorithm to identify common web navigational patterns

among users with similar interests. The methodology utilized in this chapter is a modified

version of Guerbas et al.’s algorithm that is tailored for mining journal log files.

To better understand how GST data structures are built, consider two strings of

characters “abab” and “aab”. As presented in Table 3-1, unique identifiers “$” and “#” are

added to each string. Each character is assigned an index number starting from 1. Also, all

possible suffixes of these two strings, including their unique identifiers, are listed in the

table.

31

Table 3-1 Sample String Suffixes

 String 1 String 2

 abab$ aab#

Character Position Index 12345 1234

All Possible Suffixes

(Substrings)

 $

 b$

 ab$

 bab$

 abab$

 b#

 ab#

 aab#

A suffix tree “T for m-character string S is a rooted, directed tree with exactly m

leaves numbered 1 to m” (Gusfield 1997). In this example, string 1 has three unique

characters “a”, “b”, and “$”. Therefore, as indicated in Figure 3-1, the root node (N1) will

have three children. To continue building the tree, the longest path from the root, which

matches a prefix of each suffix, should be found. Then, the suffix structure is built by

adding leaves to the existing node. For instance, “b$” and “bab$” are represented by adding

node “N3” to prefix “b”.

32

Figure 3-1 Suffix Tree Data Structure for One String

The remaining characters of each suffix (i.e., “$” and “ab$”) are then added as

children of internal node “N3”. The numbers in the boxes at the end of each branch

represent the starting character’s position index. For instance, suffix “bab$” (represented

on path N1-N2) starts at index number 2 while suffix “$” starts at the last index.

The same steps should be repeated to add string 2 to the existing suffix tree data

structure. String 2 has three unique characters “a”, “b”, and “#”. As illustrated in Figure 3-

2, only one more branch needs to be added to the root node “N1,” since it already has two

children representing “a” and “b”. As with string 1, the remaining suffixes are added by

searching for the longest path from the root that matches a prefix of the substrings. The

starting character indexes are then added to the end of each node-to-leaf path. This step is

continued until all suffixes are added to the tree. The resulting data structure is a GST

(Figure 3-2).

33

Figure 3-2 A GST Data Structure for Multiple Strings

The constructed data structure can be used to find the number of occurrences of

each suffix in multiple strings. For instance, substring “ab” is on the N1-N2-N4 path;

therefore, N4’s children should be counted to calculate the total number of times “ab”

appears in the strings 1 and 2. In fact, a simple check confirms that “ab” appears a total of

two times in the two analyzed strings. The implementation details, as well as the obtained

results, are discussed in the following sections.

3.3 Implementation

To fulfill the objectives of this chapter, the required steps to extract the necessary

information from Revit journal files and identify common frequent command execution

sequences are presented in Figure 3-3. This process consists of three major parts. First, a

large number of Revit journal files that belong to a design project were collected and parsed

1

3

4
1

2

2

5

4

3

ab$

b
$

#

b

a

$
#

ab#

ab$

#

$

34

to extract and store necessary data items. Second, the obtained data were transformed to

construct long strings of characters and generate input vectors. Finally, the GST data

structures for each user were constructed to retrieve frequent patterns and estimate task

execution times.

Figure 3-3 Proposed Methodology for Extracting Information from Revit Journal Files and

Identifying Common Frequent Command Execution Sequences

35

3.3.1 Data Collection

The temporal command execution data items were extracted, including the user ID,

date, time, project name, Revit version, view type, and command description, from several

journal files that the industry partner provided. This step was particularly challenging as

there is no documentation available on a public domain that specifies how and where

different data components are recorded. Table 3-2 provides examples of each data item as

it appears in the journal files. The files were manually searched to identify the local format

by which each data instance (for example, project name, command, or view type) is

recorded.

Once these protocols were identified, a text processor was developed in the Python

programming language. The developed text parser uses regular expressions to extract and

store information in a comma-separated values (CSV) file, as presented in Table 3-3. Non-

value-adding commands, such as “cancel the current operation” or “delete”, were removed

from the stored entries to improve the quality of the obtained command patterns.

Table 3-2 Examples of Journal File Recorded Data

Command Name Example

User Name

Date and Time

Project Name

General Command

Description

Specific Command

Description

View

Software Version

36

Table 3-3 Examples of Structured Processed Data

Modeler

Name
Time

Project

Name

General

Command
Specific Command

Revit

Version

View

Type

modeler 10:30:07 StdUnion "Internal" "Show or hide recent files 2014 Floor Plan

modeler 10:33:50 StdUnion "StartupPage" "Open an existing project 2014 Floor Plan

modeler 10:36:51 StdUnion "Internal" "Print the active window 2014 Sheet

modeler 10:45:25 StdUnion "Internal" "Activate this viewport 2014 Sheet

modeler 10:48:04 StdUnion "Internal" "Modify view templates 2014 Sheet

modeler 10:48:07 StdUnion "Internal" "Manage links 2014 Sheet

modeler 10:48:09 StdUnion "AccelKey" "Steering wheels 2014 3D View

3.3.2 Input Preparation

The records from five modelers, which each contained over 105,000 log entries,

were used to conduct further analyses. The selected modelers designed the interior systems

of healthcare building projects conducted in 2013 and 2014. To prepare the input for the

GST, the log entries for each user were modeled as long strings of characters. To this end,

all available sequences for each modeler were first retrieved and organized. Sequences that

had two consecutive commands that were executed 10 minutes or more apart were split

and treated as separate series. The 10-minute interval was chosen per the designers’

suggestion, since no clear indicator could be found for distinguishing consecutive

sequences in the recorded data. Once all command vectors for each user were constructed,

the entries were transformed into strings by assigning a unique character to each general

command or specific command combination (Figure 3-4). The final strings that were

generated for each modeler maintained the original chronological order of the data.

37

Figure 3-4 Command Vector Transformation

3.3.3 Pattern Extraction

Testing whether a sequence occurs frequently in large databases needs to be

performed in an efficient manner. Generalized suffix tree data structures can provide linear

time solutions to challenging string mining problems (Gog et al. 2014). Figure 3-5 lists the

steps taken to identify frequent command execution sequences where the original order of

the data is maintained. Once the input strings for each user were prepared, GST data

structures were constructed by considering all possible suffixes. Then, a depth-first search

(DFS) was conducted to generate an ordered list of leaf nodes of the tree. Therefore, the

leaves corresponding to each internal node are a consecutive sub-list of this ordered list of

leaves. The DFS saves the start and end positions of the leaves, based on their DFS order,

for each pattern (i.e., internal node) in a helper hash table. The subtraction of the end

position and the start position will provide the number of repetitions of the specific pattern.

Additionally, in this way, all the instances of that pattern in the original string can be

accessed by retrieving the leaf nodes and their corresponding suffix indexes. This technique

enables one to not only calculate the frequency of design patterns but also efficiently

measure the average time of each pattern in the whole string of commands. These patterns,

38

then, were filtered based on their minimum length and minimum frequency. At the end of

this step, a limited number of the most frequent substrings, with lengths of 3 to 8 that were

common between all users, was selected for further analysis. These substrings are called

“primitives” as they represent different modeling tasks. Finally, the average time that each

user spends performing each primitive was calculated, and the modelers were ranked

accordingly.

Figure 3-5 Pattern Extraction Using a GST

3.3.4 Discussion of Results

Table 3-4 provides some general information about the data utilized in this chapter.

The five modelers selected for further analysis had a total of 582,887 entries. Prior to

mining the dataset, some preliminary analyses were conducted to identify the most

frequently executed individual commands, and the results are presented in Table 3-5.

39

“Move selected objects or their copies”, “align references”, and “create a line” were

consistently the three most frequently executed individual commands among all five

modelers. This consistency among the identified commands further supported the author’s

initial hypothesis that there are common command execution patterns among modelers.

“Floor plan”, “sheet”, and “3D view” were also identified as the three most frequently used

views during the Revit sessions.

Table 3-4 Dataset Statistics

Data set Period (Year) Number of entries

Modeler 1 2013 126,815

Modeler 2 2014 122,813

Modeler 3 2014 114,290

Modeler 4 2013 112,082

Modeler 5 2014 106,887

Table 3-5 Most Frequent Individual Commands

 Frequency

Modeler Move selected objects or their copies Align references Create a line

Modeler 1 19.30% 11.92% 7.89%

Modeler 2 15.27% 13.56% 14.23%

Modeler 3 18.19% 6.21% 11.07%

Modeler 4 15.57% 15.98% 13.07%

Modeler 5 14.31% 6.94% 10.02%

In the next step, frequent command execution patterns for each modeler were

retrieved using GST data structures. Several arbitrary minimum support values were tested,

of which 250 and 500 were found to be optimal. The minimum length of extracted patterns

was also set to 3. The top frequent patterns obtained for the two minimum support values

are presented in Table 3-6. The primitives that were extracted for a minimum support of

250 are longer, and they represent meaningful modeling activities. Pattern 1 corresponds

40

to the task of creating and extending multiple lines. In this case, modelers have hidden a

few objects to gain easier access to the elements they want to modify. The second pattern

appears to present cases where modelers make copies of different elements and visualize

their dimensions. The third pattern captures the commands used to make copies of a

specific object in the model and modify them.

Table 3-6 Common Command Sequences

Pattern 1 Pattern 2 Pattern 3

E
x

tr
ac

te
d

 P
at

te
rn

 2
5

0

1. Select objects to modify

2. Hide selected elements

3. Create a straight detail

line or a detail arc

4. Rotate selected object(s)

5. Trim or extend two lines

or walls to make a corner

1. Copy the selection and put

it on the clipboard

2. Move copies of selected

objects

3. Create aligned dimensions

1. Select objects to modify

2. Create an object similar to

the selected object

3. Move selected objects or

their copies

4. Align references

5. Finish sketch

E
x

tr
ac

te
d

 P
at

te
rn

 5
0

0

1. Activate this viewport

2. Copy the selection and put

it on the clipboard

3. Deactivate the currently

active viewport

1. Move selected objects or

their copies

2. Move selected objects or

their copies

3. Move selected objects or

their copies

1. Deactivate the currently active

viewport

2. Activate this viewport

3. Control the visibility and

appearance of objects

(applied only in the active

view)

The obtained patterns became shorter when the minimum support threshold was

increased. This observation was expected, since longer sequences tend to match less

frequently. The first pattern corresponds to cases where modelers navigate through

different viewpoints to select and copy certain objects. The third pattern also captures the

command sequences used to change the visibility of different layers. In contrast to these

two patterns, it is not clear what specific activity the second command sequence represents.

More examples of such repetitive sequences for both thresholds were observed. The

presence of such patterns may be because of the noisy input data or the consecutive

41

execution of similar commands by modelers. Increasing the minimum support beyond 500

resulted in capturing more patterns with repetitive entries that were not representative of

any specific modeling tasks.

Figure 3-6 Task Execution Times

In addition to identifying the tasks that correspond to different command sequences,

the average time it took modelers to execute these tasks was utilized to evaluate their

performance. Thirty common patterns with lengths of between 3 and 8 were selected for

this purpose. As illustrated in Figure 3-6, there is a visible difference among modelers in

terms of the time it takes them to conduct similar modeling tasks. The point outliers

measured for modelers 1, 2, and 5 could represent specific tasks that these modelers are

particularly less productive in executing and for which they may need further training. A

one-way ANOVA test was conducted to empirically check the initial research hypothesis

formulated as follows:

H0. There is no difference among BIM modelers in terms of the average time it

takes them to execute similar modeling tasks.

42

Ha. There is a significant difference among BIM modelers in terms of the average

time it takes them to execute similar modeling tasks.

The results are listed in Table 3-7 and

The obtained results are listed in Table 3-9. The calculated P-values indicate that, in

most cases, the null hypothesis can be rejected in favor of the alternative one with a 99%

level of confidence. The test result was not significant for modelers 2 and 3; this can be

explained given the fact that modelers 2, 3, and 4 were less experienced in working with

Revit compared to others. These findings indicate that the proposed method can capture

performance differences and similarities among each pair of modelers when their times for

the same type of patterns are compared.

Table 3-8. The calculated F-ratio and P-value demonstrate that the null hypothesis

can be rejected in favor of the alternative one with 99% confidence. Therefore, there is

enough evidence to claim that the information embedded in design log files in general, and

Revit journals in particular, can effectively capture performance variations among

modelers. Another interesting observation is that the average times for the faster modelers

has less variation compared to others. For instance, the calculated standard deviations for

modelers 1 and 5 (7.4 and 4.4 seconds respectively) are considerably smaller than for the

other three modelers (22.6, 15.8, and 12.2 seconds respectively). This could be because

faster modelers are more skilled in executing different tasks and thus consistently quicker

across the board. However, slower modelers are more skilled in executing some tasks and

less experienced in executing others. Therefore, there is a larger variance in terms of the

average times it takes them to conduct different modeling tasks.

43

The author also conducted multiple unpaired student t-tests to verify whether the

calculated times capture the variations among individual modelers. The null and alternative

hypotheses for these tests were formulated as follows:

H0. µ_1 = µ_2, where µ_1 and µ_2 are the mean of the average times for the two

populations being tested.

Ha. µ_1 ≠ µ_2.

Table 3-7 Pattern Execution Times

 Average Execution Time (s)

Patterns

(Minimum Support = 250)
Modeler 1 Modeler 2 Modeler 3 Modeler 4 Modeler 5

1 50.4 99.1 72.7 50.4 51.3

2 37.3 77.7 64.9 75.5 43.0

3 33.3 93.3 63.4 60.6 56.6

4 38.4 95.9 71.4 72.6 51.3

5 38.1 111.6 87.0 96.2 48.2

6 50.7 195.8 138.1 93.5 50.5

7 34.5 88.2 83.5 77.3 50.1

8 37.2 110.3 92.5 90.4 59.6

9 36.7 135.4 77.4 55.5 48.7

10 35.6 92.1 81.6 88.4 56.7

11 33.2 102.8 69.8 74.8 45.3

12 48.3 114.6 100.5 70.2 49.5

13 44.3 95.7 87.3 66.7 56.9

14 48.1 104.8 99.3 89.3 44.4

15 45 121.1 104.7 72.1 46.2

16 31.5 83.4 73.2 63.3 50.4

17 35.2 88.2 99.0 67.6 43.3

18 42.7 93.5 93.1 76.4 48.0

19 29.9 89.4 99.8 61.1 47.2

20 44.1 101.9 96.2 83.0 50.8

21 29.6 92.4 73.4 88.4 52.7

22 60.9 92 105.9 63.7 45.5

23 48.8 80.1 102.3 57.7 50.5

24 47.3 83.3 92.4 70.2 44.2

25 37.9 77.3 66.2 65.1 48.9

44

26 30.2 80 96.3 75.5 47.4

27 39.7 81.5 79.9 87.0 51.8

28 42.3 109.7 84.2 74.5 43.7

29 44.3 97.6 82.5 66.7 49.2

30 43.9 102 91.3 90.9 43.1

�̅� 40.666 99.694 87.666 74.164 49.184

s 7.419 22.644 15.794 12.231 4.363

�̅�ave 70.275

The obtained results are listed in Table 3-9. The calculated P-values indicate that,

in most cases, the null hypothesis can be rejected in favor of the alternative one with a 99%

level of confidence. The test result was not significant for modelers 2 and 3; this can be

explained given the fact that modelers 2, 3, and 4 were less experienced in working with

Revit compared to others. These findings indicate that the proposed method can capture

performance differences and similarities among each pair of modelers when their times for

the same type of patterns are compared.

Table 3-8 The F-test Results

Source df* SS** MS*** F-statistic P-value

treatments 4 75137.236 18784.309 95.2698 0.0000

error 145 28589.583 197.170

total 149 103726.818

* Degree of freedom

** Sum of squares

*** Mean square

Table 3-9 Pairwise Comparison of Modelers

 Modeler 2 Modeler 3 Modeler 4 Modeler 5

Modeler 1 0.00000 0.00000 0.00001 0.00001

T
-test

 P
-V

alu
es

Modeler 2 0.02029 0.00000 0.00000

Modeler 3 0. 00048 0.00000

Modeler 4 0.00001

45

3.4 Chapter Summary

Design modeling is crucial to the success of construction projects. However, a high-

quality building model does not occur in a void; instead, it is the result of a well-managed,

multidisciplinary process. To effectively manage such processes, accurate performance

data are required to evaluate and track different metrics. In this chapter, the utilization of

modeling development information, embedded in design log files produced by Autodesk

Revit, was proposed as a rich source of performance data. To this end, the necessary steps

to extract and analyze the data were outlined, and an effort was made to make a contribution

at each step. Throughout the first step, the format in which different information items are

stored was identified. Using these protocols, a text parser was developed to extract the

required information items. This text parser accepts the raw journal files and produces

structured CSV files. The obtained data were further cleaned and organized by removing

non-value-adding entries, such as cancel and error messages. The conclusion derived at

this level is that using the suggested approach will help to process unstructured journal log

files and produce high-quality input data for the mining algorithm. In the next step, GST

data structures were utilized to identify common command sequences among Revit users.

First, command sequences were transformed into character-based input strings. Then, the

transformed data were utilized to construct a GST. Frequent command patterns were

identified by conducting a DFS on the constructed trees, and the extracted patterns for

different users were compared against each other to identify shared sequences. The

conclusion at this step is that a GST-based string mining approach is an efficient method

for extracting common command patterns among several modelers. In addition to

identifying these common patterns, the average time it takes the selected modelers to

46

execute command sequences was calculated. The obtained results indicate that there is a

statistically significant difference among the modelers in terms of the time it takes them to

conduct similar modeling tasks. This finding confirms the initial hypothesis that Revit

journal files can be used as a rich source of data to capture performance variations among

multiple modelers.

This chapter contributes to the state of knowledge by proposing a tailored string

mining algorithm that is capable of extracting meaningful information from timestamped

design development data. Furthermore, the proposed methodology contributes to the state

of practice by enabling design project managers to gain unprecedented insight into the

evolution of a building model using the information embedded in design log files.

47

CHAPTER 4: AUTOMATIC EXTRACTION OF MODELER

PERFORMANCE INFORMATION

4.1 Introduction

It was demonstrated that design log files can be used to collect objective data that

are necessary to measure, benchmark, and compare design modeling performance.

However, there is still a need to use text parsers to retrieve information from log files, given

that the data embedded in them are unstructured. This chapter addresses the second

research objective of this dissertation, which is to directly extract modeling information

from design software solutions using APIs. To achieve this objective, the remainder of this

chapter is structured as follows: first, a brief introduction to object-oriented software

packages is presented; then, the proposed API-based data collection framework and the

steps conducted in this chapter to implement it are described; thereafter, the plugin

developed in this chapter to automatically collect design modeling performance

information from Autodesk Revit is explained; and finally, the conclusions are presented.

This chapter contributes to the existing body of knowledge by introducing a

framework for capturing accurate performance data from design software solutions. The

proposed methodology can be implemented in any design software package with open-

access capability. The findings of this chapter can help design managers to acquire progress

information without the need to manually record and report data.

48

4.2 Application Programming Interfaces

Conducting data-driven design monitoring requires massive amounts of granular

information to be collected from various sources and several project participants, and the

emergence of API-enabled design software packages provides a unique opportunity to

extend the core capabilities of VDC modeling tools (Zhang et al. 2013). Even though such

APIs can also be utilized to record design development events and UI interactions with

design models, no research has been conducted that uses such capabilities to monitor

design progress. In simple words, various members of the design team leave traces behind

as they interact with virtual design models. Historical records of design development events

(for example, changes in design elements, and executed commands by each user) provide

a rich source of information about the progress of a design project.

The motivation behind the proposed approach is that design software protocols,

such as APIs, can be devised to create a novel data acquisition method. Once the system is

placed in a design environment, a wide range of design development events (for example,

attributes related to the performed design tasks, UI interaction features, and object

parameters) are captured in real time and automatically transferred to a database of

information requirements for design monitoring. This capability can facilitate the creation

of a non-intrusive mechanism to capture model development events and the parametric

information of elements throughout different phases of a design project. This chapter is the

first attempt to introduce the use of design software APIs as an alternative source of

information for monitoring design progress and analyzing performance. The fundamentally

different property of the proposed approach is its adaptability to the evolution of design.

49

4.3 Research Description

In this research, the functionality of event handling that is present in design

software protocols is utilized to record model development events. As noted in the

introduction section, collecting objective data is necessary for evaluating design

performance metrics. Therefore, the first step is to create a robust framework to

automatically capture detailed design progress information. Event handlers offer a

computationally efficient solution to address the data collection issue: an event-handling-

based system can record all possible software actions ranging from creating, selecting, and

modifying elements to navigating through different zones of a virtual model, as well as

information regarding the current dimension, cost, material, and family features of each

element.

The Autodesk Revit API allows for the development of external applications. This

framework allows one to customize Revit ribbon panels and controls, and record model

development events (Autodesk 2017a). This includes more than 1,500 events ranging from

dialog box showing to errors and ribbon button clicks. An event-based framework can be

implemented on parametric design software solutions other than Revit, since these

solutions are created based on the principles of object-oriented programming (OOP).

As illustrated in Figure 4-1, three different event handler functions were used to

develop a data collector Revit plugin. The first function records the user’s interaction with

Revit ribbon buttons, and it is triggered each time modelers use the Revit interface or a

keyboard shortcut. The second function reacts whenever a model element is added,

modified, or deleted. In addition to recording the type of change, other information items,

such as the element’s type, its name, and its globally unique identifier (GUID), are

50

collected. The final function is triggered when an error occurs during the modeling session.

This includes memory and user-induced errors, and any other software failure that

interrupts the workflow. The information captured using these functions is written to a text

file in real time. Also, the collected data are recorded in a pre-defined, comma-separated

format that is machine-readable. This facilitates the analysis of modeling performance data,

since there is no need for a text parser to retrieve the information. The functionality of this

plugin is validated through experiments that are conducted in the next chapter, and the

steps taken to implement this framework are outlined in the following section.

Figure 4-1 Research Methodology for Developing a Data Collector Plugin

51

4.4 Implementation

4.4.1 External Application Interface

To develop a Revit plugin, the IExternalApplication interface should be

implemented. This interface has two abstract methods: OnStartup() and OnShutdown().

These methods, which should be overridden, are called when Revit starts and closes

respectively. Registering event handlers in the OnStartUp() method enables the plugin to

automatically start working when a Revit project is opened. This is particularly important

as the goal of this chapter is to collect modeling progress data without any manual

intervention.

Figure 4-2 presents the segment of C# code where the OnStartUp() and

OnShutDown() methods are implemented. The input parameter, UIControlledApplication,

provides access to the group of event handlers that needs to be activated, and Revit

periodically checks whether any registered events are raised. The following three event

handlers were registered in the OnStartUp() method:

• RibbonItemExecutedEventArgs—this event handler is triggered when a

ribbon button is clicked or a keyboard shortcut is used. ID_EDIT_MOVE and

ID_OBJECTS_WALL_RibbonListButton, which can be used to move

elements and create a wall respectively, are instances of such events.

• DocumentChangedEventArgs—this event handler is executed when a model

element is changed. These changes include addition, any type of modification,

or deletion.

52

Figure 4-2 Event Handler Registration in OnSartUp() and OnShutdown() Methods

53

• FailuresProcessingEventArgs—this event handler is activated when a user-

induced error or software failure occurs, including memory errors and wrong

element positioning warnings.

Once these events are registered at the start up, the plugin writes the current time

and date to a text file where all information will be recorded. This task is done by creating

a DateTime object, which returns the current date and time. The OnShutdown() method is

called when Revit is closed, and as evident in Figure 4-2, this method deactivates the event

handlers that are registered in OnStartup(). Unregistering events is necessary to avoid

interruption caused by the plugin producing exceptions. Similar to the previous method,

OnShutdown() uses a DateTime object to record the current date and time in the destination

text file.

4.4.2 Ribbon Item Event Handler

Ribbon item event handler is a ribbon-specific interface under the

Autodesk.Windows class. This class provides access to track the execution of commands

using ribbon buttons and keyboard shortcuts in several Autodesk products, including Revit.

Figure 4-3 presents the implementation of the CommandExecuted class, which responds

to the signals raised by the RibbonItemExecutedEventArgs event handler. Once this event

is raised, the plugin writes the following information regarding the nature of the executed

command to the text file:

• Entry identifier—the keyword “Command” is used in the beginning to specify

the type of information recorded.

• Current time and date (now)—these are recorded using a DateTime object.

54

• Command-execution point (it.ToString())—this specifies whether the

command is executed using ribbon buttons or keyboard shortcuts (for example,

“UIFramework.SketchGalleryItem” and “Autodesk.Windows.RibbonButton”)

• Command id (it.Id)—this represents the unique IDs specified by Autodesk (for

example, “ID_New_Revit_Design_Model” and “ID_Edit_Move_Copy”).

• Complementary command information (it.Cookie)—this contains more

detailed information regarding the nature of executed commands (for example,

“SketchGalleryItem_ID_Object_3D_Curve_Spline_Through_Points” and

“ID_Button_Select_Modify”).

Figure 4-3 Ribbon Item Event Handler Implementation

55

4.4.3 Document Changed Event Handler

Many actions, such as dragging and deleting elements, are conducted without any

interactions with the Revit ribbon buttons and keyboard shortcuts. In these cases, the ribbon

item event handler will not receive any signals, and it will not write the event to the

destination text file. To address this issue, the action DocumentChangedEventArgs is

activated when any change occurs to the model, including the execution of non-ribbon

commands.

Figure 4-4 Document Changed Event Handler Implementation

Figure 4-4 presents the implementation of the DocumentChanged event handler.

Three different element modifications are of interest:

• Element deletion—the GUIDs of deleted elements are collected using the

“GetDeletedElementIds()” method.

56

• Element modified—the GUIDs of existing elements that have been modified in

any form are collected using the “GetModifiedElementIds()” method.

• Element addition—the GUIDs of newly added elements are collected using the

“GetAddedElementIds()” method.

Figure 4-5 presents the implementation of the element deletion event handler. The

current date and time are returned using a DateTime object. Furthermore, in case there are

any deleted elements, the program loops through the “DeletedElements” collection. The

following information is then printed for each deleted element:

• Entry identifier—the keyword “ElementChange” displays the type of

information recorded.

• User—this is the name of the modeler.

• Current time and date (now)—these are the current date and time captured by

a DateTime object.

• Change identifier—this represents the keyword “Deleted” to specify the type

of change.

• Element id (id.IntegerValue)—this is the deleted element’s GUID.

57

Figure 4-5 Element Deleted Event Handler Implementation

The element addition function is implemented as demonstrated in Figure 4-6. An

advantage of this method is its access to BoundingBoxXYZ objects. The bounding box

objects that are obtained from elements that represent “the boundary of the element in a

given view” (Revit API Doc 2016). The extents of the bounding box are specified by “three

orthogonal planes extended through the minimum (Min) and maximum (Max) points.”

This box coordination information is useful for identifying the initial position of elements

when they are added to a model. Furthermore, the information items recorded when an

element is added to a model are as follows:

• Entry identifier—this is the keyword “ElementChange” to identify the type of

information entry.

• User—this is the name of the modeler.

• Current date and time (now)—these are the current date and time captured by

a DateTime object.

• Change identifier—this represents the keyword “ADDED” to specify the type

of change.

58

• Element category (Category.Name)—this identifies the category or

subcategory to which an element belongs, for example, doors or walls.

• Element bounding box min (box.Min)—this is the minimum extent point of

the element bounding box.

• Element bounding box max (box.Max)—this is the maximum extent point of

the element bounding box.

• Element type (Element.GetType)—this provides more details on the element

category.

• Element Family (Element.Name)—this is the element family that is defined as

a “group of elements with a common set of properties, called parameters, and a

related graphical representation” (Revit API Doc 2017).

• Element id (id.IntegerValue)—this is the modified element’s GUID.

• Current view (currentView.Name)—this is the current elevation perspective of

the model.

• Project name (doc.PathName)—this represents the directory address of the

project being modeled.

Figure 4-6 Element Addition Event Handler Implementation

59

Finally, the implementation of the element modified method is illustrated in Figure

4-7. This method is triggered either when a ribbon item button is clicked or when a direct

element modification, such as dragging, takes place. In case of ribbon buttons, both the

ribbon item event handler and the element modified functions will produce entries. The

information that the element modified method records is as follows:

• Entry identifier—this is the keyword “ElementChange” to identify the type of

information entry.

• User—this is the name of the modeler.

• Current date and time (now)—these are the current date and time captured by

a DateTime object.

• Change identifier—this represents the keyword “MODIFIED” to specify the

type of change.

• Element category (Category.Name)—this identifies the category or

subcategory to which an element belongs, such as doors or walls.

• Element bounding box min (box.Min)—this denotes the minimum extent point

of the element bounding box.

• Element bounding box max (box.Max)—this denotes the maximum extent

point of the element bounding box.

• Element type (Element.GetType)—this provides more details on element the

category.

• Element Family (Elemeent.Name)—this is the element family.

• Element id (id.IntegerValue)—this represents the modified element’s GUID.

60

• Current view (currentView.Name)—this is the current elevation perspective of

the model.

• Project name (doc.PathName)—this is the directory address of the project

being modeled.

Figure 4-7 Element Modification Event Handler Implementation

4.4.4 Software Failure Event Handler

Figure 4-8 presents the implementation of the software failure event handler.

Events, such as errors and warnings, signal this handler to capture the following

information:

• Entry identifier—the keyword “ElementChange” to identify the type of

information entry.

• User—the name of the modeler.

• Current date and time (now)—the current date and time captured by a

DateTime object.

61

• Failure type (Failure.GetTransactionName)—the names of the transactions

associated with the failure event.

Figure 4-8 Software Failure Event Handler Implementation

62

4.5 Plugin Functionality Validation

A test was conducted to ensure the functionality of the developed Revit plugin, and

through this test, simple 3D models were created. Every ribbon command execution, direct

element modification (mouse drag), keyboard shortcut, and error warning were manually

recorded, and these recordings were then compared with the output produced by the plugin

(Figure 4-9). The accuracy of the plugin’s performance was validated by comparing the

output with the manually recorded information.

Figure 4-9 Sample Plugin Output

4.6 Chapter Summary

This chapter described a non-intrusive mechanism to capture model development

events that documents the evolution of design throughout different phases of a project.

Current design practices rely on VDC tools to generate and manage digital representations

of the physical and functional characteristics of a project. The major focus of the proposed

63

approach is to capture temporal modeling events using software application protocols. This

novel approach provides practitioners with broader access to granular design development

data that can be used to generate insights into design modeling performance patterns.

This chapter utilized modeling solution APIs to automatically collect and store

timestamped design development information. The proposed passive data recording

approach allows for the real-time capture of comprehensive UI interactions and model

element modification events. These recordings consist of all possible software actions,

ranging from creating, selecting, and modifying elements to navigating through different

zones of a virtual model. Such recordings, constituting timestamped event sequences, are

organized and stored in machine-readable formats: .txt files.

The presented system can collect and consolidate data from multiple modelers who

are simultaneously working on different design models. This capability allows one to

obtain information from the different parties involved in a design team. Also, this system

is designed in such a way that it can distinguish between projects that a user might be

working on concurrently. The efficiency achieved by using event handlers in the developed

method allows it to be implemented on different platforms. Additionally, disruptions to the

modeling operation are avoided by recording information during the idle time of the

software solutions.

The proposed framework was implemented as an Autodesk Revit plugin, and an

experiment was conducted to verify the accuracy of this plugin. Throughout this

experiment, manual recordings of model development events were compared against the

automatically generated plugin output. This section contributes to the state of knowledge

by introducing a framework for automatically capturing accurate performance data from

64

design software solutions, and it contributes to the state of practice by helping design

managers to acquire progress information without the need to manually record and report

data.

65

CHAPTER 5: FINDING OPTIMAL MODELING TEAM

CONFIGURATION

5.1 Introduction

The final objective of this study seeks to utilize the proposed design modeling

performance data collection approach to identify the optimal modeling team configuration.

As described in the methodology section, an experiment was conducted to collect modeling

performance data using the Revit plugin developed in chapter 4. The collected data were

then analyzed to evaluate participants’ modeling performance. The EDD priority rule was

then used in combination with the CPM to calculate the expected lateness for different

configurations of the modeling team. The remainder of this chapter is structured as follows:

first, the details of the Revit plugin experiment are outlined; then, the findings of the

analysis that was conducted on the collected data are presented; and, the obtained results

are utilized to assess the performance of different team conjugations. Furthermore, a

summary of the chapter is presented in the final section.

5.2 Experiment Description

In this experiment, five Master of Architecture students at the Georgia Institute of

Technology were asked to produce 3D models of a youth and family center building using

Autodesk Revit. Full sets of production drawings, including the floor plan, roof plan, and

building elevations (Figure 5-1 and Figure 5-2), were provided by an Atlanta-based

architectural company. The participants utilized a computer for modeling, with the Revit

plugin installed to track and record model development events.

66

Figure 5-1 Building Floor Plan

Figure 5-2 Building Elevations

67

The experiment focused on specific activities to model walls and windows within

the overall process. Participants were asked to model the building to an LoD that accurately

reflected the information provided in the initial drawings, and the produced models were

checked to ensure that LOD 200 (AIA 2013) requirements were met. Figure 5-3 is an

example of a 3D model that one of the modelers created. The data collected throughout the

experiment were analyzed to evaluate different modeling performance measures. The

results of the analysis are presented next.

Figure 5-3 Sample 3D Model Produced by Experiment Participants

68

5.3 Analysis of Experiment Data

5.3.1 Processing Collected Modeling Data

The Python programming language was used to organize and store the collected

modeling data. In particular, the pandas software library (pandas 2017), which is written

for data manipulation and analysis, was utilized for the following reasons:

• The pandas library has an R-style data frame structure, which allows column

names and indexing; this is helpful for keeping track of the data.

• The pandas library has efficient input and output capabilities to read and write

data from and to different database formats.

• Pandas’ multiple built-in functionalities, such as joins, merges, and searches,

make it an effective data-processing tool.

• Pandas can store non-homogeneous data types in the same data frame. This is

important as the recorded data include both numeric and alphabetic types.

The processed data are stored in three element changes, executed commands, and

errors dataframes. Figure 5-4 depicts the segment of code to initialize these dataframes.

Figure 5-4 Pandas Data Frame Initialization

69

The “modelers” array includes the name of all experiment participants, and

“directory” is a string variable that contains the directory address where the collected text

files are stored. An explanation of the three dataframes’ column names can be found in

Table 5-1.

Table 5-1 Data Frame Column Names

 Dataframes

Element Changes (Deleted,

Modified, Added)
Commands Errors

Column

Names

User: modeler name

Time: current date and time

Action: change identifier

Category: changed element

category

Min: element bounding box

min

Max: element bounding box

max

Center: element bounding

box center

Type: element type

Family: element family

ID: element ID

View: current view

Project: project name

Time: current date and time

Exec_Pt: command-

execution point

Cmd_ID: command ID

Cmd_Info: complementary

command information

User: modeler

name

Time: current date

and time

ErrorType: failure

type

The model development data collected throughout the Revit sessions are stored in

predefined, comma-separated text files. This provides the files with a structure that

facilitates reading and organizing the obtained data. Figure 5-5 and Figure 5-6 contain the

segments of the Python code that process and store command execution and software

failure information in commands and errors dataframes respectively. The code loops

through all modelers’ text files, and the recordings are read line by line. The nature of each

recording is specified by reading the entry identifiers (“Command” and “Error”), and the

current time and date are also stored as a DateTime object. Finally, all information items

70

are recorded in command or error data frames under the corresponding columns specified

in Table 5-1.

Figure 5-5 Storing Command Execution Data in the Commands Data Frame

Figure 5-6 Storing Software Failure Data in the Errors Data Frame

Figure 5-7 and Figure 5-8 present the Python code segments that deal with reading

and storing element change entries, including element deletions, modifications, and

additions. Also, the current date and time are stored using a DateTime object. The element

center coordination is calculated by taking the average of the x, y, and z elements’

71

minimum and maximum coordinates. All information items are finally stored in the

element changes data frame under related columns.

Figure 5-7 Storing Deletions and Modifications in the Element Changes Data Frame

Figure 5-8 Storing Addition in the Element Changes Data Frame

72

While data frames are suitable for storing information, they cannot be directly saved

on a computer’s hard disk. Therefore, data frames should be written to the hard disk to

make the data available for analysis even after the data processing program has finished

running. A comma-separated file format was selected to save the data frames, as indicated

in Figure 5-9. The produced outputs are presented in Figure 5-10 and Figure 5-11.

Figure 5-9 Writing Data Frame Information to CSV Files

Figure 5-10 Element Change CSV File

Figure 5-11 Error CSV File

73

5.3.2 Experiment Results

The demographic information of the experiment participants is presented in Table

5-2 Demographic Information of Experiment Participants. Two modelers were beginners with

little experience working with Revit prior to this experiment, while the other three modelers

had done capstone building modeling projects with Revit prior to this experiment, and they

were working as BIM modelers when the experiment was conducted. The experiment

evaluated different sets of measures for building modeling activities that participants

performed, and the calculated measures are reported anonymously to protect the

participants’ identities. Some preliminary measures regarding the modelers are reported in

Table 5-3. The most frequent individual commands were largely executed to add elements

such as walls and windows. The less experienced modelers also used the sketch mode of

Revit relatively more frequently, and they often executed the “Finish_Sketch” command.

All participants executed most commands using the buttons on the main top ribbon of

Revit.

Table 5-2 Demographic Information of Experiment Participants

 Experience with Revit Age Gender

Modeler 1 Beginner (0-1 years) 20-25 Female

Modeler 2 Beginner (0-1 years) 20-25 Male

Modeler 3 Intermediate (1-3 years) 20-25 Female

Modeler 4 Intermediate (1-3 years) 20-25 Female

Modeler 5 Intermediate (1-3 years) 20-25 Male

Table 5-4 lists some information regarding software failures and the frequent view

types that the experiment participants used. The total number of entries for novice modelers

74

is higher than for the others by a factor of at least 3. The plugin also recorded more errors

for less experienced modelers (1 and 2) compared to the others. This observation can be

expected, since novice Revit users are prone to make more mistakes. Additionally, since

those two modelers used the sketch mode more often, the “Finish sketch” error was raised

more frequently during their modeling sessions. Another common type of error was

“Drag,” which is raised when elements are moved to locations where there are geometric

conflicts, for instance, when moving a door to a location on a model where a window

already exists. “Join” errors occur when elements such as two walls or a wall and roof are

not properly attached, and “Structural” errors also occur when the load bearing and non-

bearing elements are attached and need to be separated (Autodesk 2017b).

Table 5-3 Preliminary Measures of Experiment Participants

 Frequent Individual Commands Command Execution Points

Modeler 1

ID_FINISH_SKETCH

ID_VIEW_DEFAULT_3D_VIEW

ID_OBJECTS_WALL

Autodesk.Windows.RibbonButton

Autodesk.Windows.RibbonSplitB

utton

Modeler 2

ID_FINISH_SKETCH

ID_OBJECTS_WALL

ID_OBJECTS_WINDOW

Autodesk.Windows.RibbonButton

Autodesk.Windows.RibbonSplitB

utton

Modeler 3

ID_OBJECTS_WALL

ID_VIEW_DEFAULT_3D_VIEW

ID_OBJECTS_WINDOW

Autodesk.Windows.RibbonButton

Autodesk.Windows.RibbonSplitB

utton

Modeler 4

ID_OBJECTS_WALL

ID_OBJECTS_ROOM

ID_OBJECTS_WINDOW

Autodesk.Windows.RibbonButton

Autodesk.Windows.RibbonSplitB

utton

Modeler 5

ID_EDIT_MOVE

ID_OBJECTS_WALL

ID_OBJECTS_WINDOW

Autodesk.Windows.RibbonButton

Autodesk.Windows.RibbonSplitB

utton

75

Table 5-4 Most Frequent Error and View Types

Total Number

of Entries

Total Number of

Errors
Top Error Type

Type View

Type

Modeler 1 17,318 162

Finish sketch

Structural Column

Drag

Level 1

{3D}

East

Modeler 2 12,220 155

Drag Wall End

Finish sketch

Wall - Line

Level 1

{3D}

East

Modeler 3 4,131 75

Join Walls to Roof

Wall - Line

Drag

Level 1

{3D}

North

Modeler 4 4,740 61

Trim/Extend to Corner

Wall - Line

Drag

Level 1

{3D}

Roof

Modeler 5 4,379 55

Wall - Line

Select the roofs

Finish sketch

Level 1

{3D}

East

As previously specified, the experiment focused particularly on activities

conducted to model walls and windows. Figure 5-12 illustrates the average number of

commands that each modeler executed to model a wall or a window. Overall, the average

number of modifications are higher for less experienced modelers compared to the more

experienced ones. This can be expected, since expert modelers need fewer tries to obtain

satisfactory results. Also, the modelers generally executed more commands to model walls

compared to windows. However, this is not the case for modeler 4, and it can be attributed

to the high number of drag operations that the user executed to place windows on their

correct coordinates.

76

Figure 5-12 Wall and Window Modifications Bar Chart

The average time it took experiment participants to model a wall or window is

illustrated in Figure 5-13. In calculating these values, the time difference between two

consecutive commands corresponding to an element is considered to be 3 minutes if the

actual difference is more than that. This assumption was made per a suggestion by the

collaborating firm’s designers to avoid counting idle times in measurements. Similar to the

trend observed with the average number of modifications, novice modelers require more

time to produce satisfactory building model elements. Overall, it takes modelers more time

to design walls compared to windows.

Figure 5-13 Wall and Windows Average Modeling Times

77

The relation between the average number of modifications per element and the

average element design times is illustrated in Figure 5-14. As the trend lines depict, there

is a direct correlation between these two variables. In general, it can be said that a higher

number of modifications is associated with a higher average modeling time for walls and

windows.

Figure 5-14 Average Modeling Times vs. Average Number of Modifications

5.3.3 Optimal Modeling Team Configuration

This section focuses on using individual production rates calculated based on plugin

data to identify the optimal configuration of modeling teams. The proposed approach

utilizes EDD sequencing in combination with the CPM. The EDD approach sequences jobs

in their increasing order of due dates and thus minimizes maximum lateness, which is

defined as follows (Baker & Trietsch 2013):

• Lateness (𝐿𝑗) is the amount of time by which the completion time of job 𝑗

exceeds its due date: 𝐿𝑗 = 𝐶𝑗 − 𝐷𝑗 .

78

• Maximum lateness is calculated as 𝐿𝑗 = max
1≤𝑗≤𝑛

{𝐿𝑗}.

In the context of this chapter, a “job” is defined as a set of building segments that

are modeled separately, for example, the floors of a multistory building or building zones

that a design team defines prior to the start of the modeling process. Each job consists of

multiple design modeling tasks such as the modeling of structural, electrical, mechanical

or architectural elements.

The amount of time required to finish each job is assessed using the CPM. First,

available modelers are assigned to the given tasks based on their expertise. Next, the time

it takes each modeler to finish his or her tasks is estimated based on both the number of

elements that need to be modeled and the previously calculated individual production rates.

The total time it takes to finish a job is then calculated using the CPM. Finally, the optimal

configuration of the design modeling team is identified using the EDD approach.

Predetermined due dates, which the design managers set, can be used to calculate the

lateness criterion.

Figure 5-15 Framework of HypotheticalFigure 5-15 depicts the framework of a

hypothetical design modeling project used to establish the functionality of the proposed

method. The process consists of modeling walls and windows in three building zones. The

design team consists of two modelers: one in charge of modeling walls, and one for

modeling windows. The proposed approach and the individual production rates that were

obtained through the experiment were used to identify the optimal assignment of modelers.

79

Figure 5-15 Framework of Hypothetical Project

The general characteristics of the three building zones in the proposed project are

outlined in Table 5-5. These characteristics include the number of wall and window

elements to be modeled as well as the predefined due dates for each zone. The amount of

time that each modeler would need to model different elements was calculated by

multiplying the number of elements specified in Table 5-5 by the individual production

rates obtained from the experiment. The results were converted to 8-hour workdays based

on an 80% productivity rate (Sacks & Barack 2008), as presented in Table 5-6. Due to their

higher performance levels, only modelers 3, 4, and 5 were considered in the analysis.

Similarly, in real-world scenarios, calculating individual production rates would allow

managers to identify modelers with higher performance levels among the available

candidates.

Table 5-5 General Parameters of Hypothetical Problem

 Zone 1 Zone 2 Zone 3

Total number of wall elements 1,500 800 1,150

Total number of window elements 700 1,200 800

Due date (days) 5 8 13

80

Table 5-6 Element Modeling Times Based on Production Rates

 Modeler 3 Modeler 4 Modeler 5

Individual production rate for a wall (hour) 0.023 0.022 0.02

Individual production rate for a window (hour) 0.018 0.015 0.016

Zone 1
Time required to model walls (days) 6 6 5

Time required to model windows (days) 2 2 2

Zone 2
Time required to model walls (days) 3 3 3

Time required to model windows (days) 4 3 3

Zone 3
Time required to model walls (days) 5 4 4

Time required to model windows (days) 3 2 2

Given the number of available modelers, there are six possible configurations for

the design team. The possible modeling task assignments for different configurations are

listed in Table 5-7. In each configuration, one of the modelers is tasked with modeling

walls, while the other models windows.

Table 5-7 Possible Team Configurations

 Modeler 3 Modeler 4 Modeler 5

Configuration 1 walls windows

Configuration 2 walls windows

Configuration 3 windows walls

Configuration 4 windows walls

Configuration 5 walls windows

Configuration 6 windows walls

The amount of time it would take different design team configurations to model

each zone was calculated using the CPM (Table 5-8), whose dependencies are illustrated

in Figure 5-15. Once the zone processing times were estimated, the completion times were

calculated by scheduling the zones (jobs) in EDD order (i.e., earliest due date first), and

each job’s lateness was measured by comparing its completion time and due date. The

maximum lateness values are listed in the last column of Table 5-9. The results indicate

81

that the optimal team arrangement is configuration 6, (𝐿𝑚𝑎𝑥 = 2), where modelers 4 and 5

would design windows and walls respectively.

Table 5-8 Zone Processing Times Based on the CPM

 Zone 1 Zone 2 Zone 3

Configuration 1 7 4 6 P
ro

cessin
g
 T

im
e
s

(d
a

y
s)

Configuration 2 7 4 6

Configuration 3 7 4 5

Configuration 4 6 5 5

Configuration 5 7 4 5

Configuration 6 6 4 5

Table 5-9 Computation of Maximum Lateness for Different Team Configurations

 EDD Sequence Maximum

Lateness

(𝑳𝒎𝒂𝒙)
 Zone 1 Zone 2 Zone 3

Due date 𝑫𝒋 5 8 13

Configuration 1
Completion time 𝑪𝒋 7 11 17

4 Lateness 𝑳𝒋 2 3 4

Configuration 2
Completion time 𝑪𝒋 7 11 17

4 Lateness 𝑳𝒋 2 3 4

Configuration 3
Completion time 𝑪𝒋 7 11 16

3 Lateness 𝑳𝒋 2 3 3

Configuration 4
Completion time 𝑪𝒋 6 11 16

3 Lateness 𝑳𝒋 1 3 3

Configuration 5
Completion time 𝑪𝒋 7 11 16

3 Lateness 𝑳𝒋 2 3 3

Configuration 6
Completion time 𝑪𝒋 6 10 15

2
Lateness 𝑳𝒋 1 2 2

5.4 Discussion of Results

As mentioned in the introduction section, the accurate measurement of design

modeling performance metrics requires the automatic collection of model development

data. The conducted experiment demonstrated that the developed Revit plugin is fully

82

capable of recording several modeling events, such as element changes, command

executions, and errors, in real time. Unlike design log files, there was no need to use a text

parser to gather the necessary information for analysis. The developed plugin also captured

additional information, such as element GUID, coordination, family, type, and command

execution points. These information items are not recorded in design log files and hence

cannot be retrieved from them.

The LoD in the modeled project was low, thereby limiting the collected data to

basic wall, window, door, ceiling, and roof elements. It is likely that increasing the LoD

will result in higher values for the average number of modifications and average modeling

time per elements. This conclusion is justified because more effort is required to model

elements with higher LODs, given their complexity. Another important observation is that

the recorded data captured the variations that exist among all modelers (novice and

experienced) in terms of the time it takes them to model different elements. In fact, to create

the wall and window elements, novice modelers needed approximately 84% and 48% more

time respectively than experienced modelers. Therefore, this methodology can be used in

design offices to develop performance profiles for modelers based on their work in

developing different building systems in multiple projects.

The researcher tested the quality of 3D models that students developed.

Furthermore, the average number of element modifications was used as a measure to assess

the quality of building models. If the average number of modifications by a user is

significantly higher than that of his peers, then it may indicate that he or she requires more

attempts to create a model of comparable quality. This trend was observed in the obtained

results as novice modelers needed at least 50% and 41% more modifications on average

83

for wall and window elements respectively. Another possible method for assessing model

quality is to compare the average number of modified elements after clash detection

sessions. A statistically significant higher number of modified elements may indicate a

need for adding elements or rerouting too many of them. This could be due to factors such

as low experience, the utilization of substandard elements, or having an incomplete model.

The validity of this quality assessment methodology should be tested using large model

development events and clash detection datasets that are collected from a team of modelers

working on different building systems.

The metrics that were measured through the conducted experiment were used to

find the optimal modeling team configuration in a hypothetical project. The required

calculations did not necessitate extensive effort, given the relatively small size of the

participants and the simplicity of the hypothetical project. It should be noted that this

exercise was performed to illustrate the application of the proposed approach, and no

statistically significant conclusion can be drawn from it. However, in full-scale industry

projects, the amount of required calculations will be substantially higher. This increase is

due to the large number of modeling tasks as well as the high number of possible

configurations in real-world projects. Therefore, it is recommended that scheduling

software solutions, such as Microsoft Project, be used for industry projects to calculate

processing times for available jobs. Also, optimization platforms such as ILOG CPLEX

can be utilized to evaluate possible team configurations and find the optimal one.

84

5.5 Chapter Summary

This chapter outlined the details of an experiment that was conducted to both

capture design modeling performance data and utilize the obtained information to identify

the optimal modeling team configuration. Five graduate students from the Georgia Institute

of Technology’s School of Architecture were selected for this experiment. The participants

used the plans of a youth and family center building to produce 3D models on Revit.

Meanwhile, the plugin introduced in the previous chapter captured their model

development data. The collected data were then analyzed using Python’s pandas data

analysis library. The pandas data frames were used to efficiently store data and to calculate

the individual modeling performance measures.

Individual production rates from the experiment participants were used to establish

the validity of an approach proposed to identify optimal design team configurations. The

presented approach uses the EDD sequencing rule in combination with the CPM to

calculate the maximum lateness for different design team arrangements. The arrangement

with the smallest maximum lateness value was selected as the optimal modeling team

configuration.

This section contributes to the state of knowledge by creating a mathematical model

to estimate design modeling project completion times based on individual performance

data and project requirements. This chapter also contributes to the state of practice by

enabling design managers to identify an optimal modeling team arrangement based on

automatically captured quantitative performance information.

85

CHAPTER 6: CONCLUSIONS, LIMITATIONS, AND FUTURE

DIRECTIONS

6.1 Introduction

As capital projects are becoming more complex, their design modeling processes

increasingly require collaborative efforts among various AEC disciplines. Throughout this

process, the different priorities of design modelers often result in conflicts that can

negatively impact project outcomes (for example, a modeler falling behind the design

schedule due to working on other projects). There is a need for the effective management

of the modeling process to prevent such unwanted outcomes. However, a review of the

existing literature demonstrates that the current methods of design management lack

objective measurement systems to quantify performance in modeling. Additionally,

existing methodologies rely on manually collected data that lack the accuracy required for

correct measurements. The difficulties associated with evaluating design modeling

performance renders the existing methodologies impractical. This research improves upon

previous efforts by presenting a novel API-based approach to automatically collect

granular design development data directly from modeling software packages and to

efficiently calculate several modeling performance measures.

A comprehensive review of the existing body of knowledge regarding the design

management practices and motivations behind this study was presented in chapter 2. The

next chapter investigated the presence of frequent command execution patterns using the

GST pattern mining algorithm. In chapter 4, an API-based, object-oriented data collection

framework was introduced, and the steps that were conducted to implement the framework

86

as an Autodesk Revit plugin were outlined. Finally, chapter 5 describes the details of an

approach that is proposed to identify the optimal design modeling team configuration based

on quantitative performance data.

6.2 Summary of Results and Contributions to the Body of Knowledge

In chapter 3, the utilization of modeling development information, embedded in

design log files that Autodesk Revit produces, was proposed as a rich source of

performance data. To this end, the necessary steps to extract and analyze the data were

outlined. Generalized suffix tree data structures were utilized to find common command

sequences among Revit users. Frequent command patterns were identified by conducting

a DFS on constructed GST trees, and the extracted patterns for different users were

compared against each other to identify shared sequences. In addition to identifying the

common command execution patterns, the average time it takes the selected modelers to

execute command sequences was calculated. The obtained results demonstrate that there is

a statistically significant difference among the modelers in terms of the time it takes them

to conduct similar modeling tasks. This chapter contributes to the state of knowledge by

proposing a tailored string mining algorithm that is capable of extracting meaningful

information from timestamped design development data. The proposed methodology

contributes to the state of practice by enabling design project managers to gain

unprecedented insight into the evolution of a building model using the information

embedded in design log files.

87

Chapter 4 utilized modeling software solution’s APIs to automatically collect and

store timestamped design development information. The proposed passive data recording

approach allows for the real-time capture of comprehensive UI interactions and model

element modification events. These recordings consist of all possible software actions,

ranging from creating, selecting, and modifying elements to navigating through different

zones of a virtual model. Such recordings, constituting timestamped event sequences, are

organized and stored in machine-readable .txt file formats. The proposed framework was

also implemented as an Autodesk Revit plugin, and an experiment was conducted to verify

the accuracy of this plugin. Throughout this experiment, manual recordings of model

development events were compared against the automatically generated plugin output.

This section contributes to the state of knowledge by introducing a framework to

automatically capture accurate performance data from design software solutions, and it

contributes to the state of practice by helping design managers to acquire progress

information without the need to manually record and report data.

Chapter 5 outlined the details of an approach to identify the optimal design

modeling team configuration based on automatically collected performance data. To this

end, an experiment was conducted to capture data using the Revit plugin introduced in the

previous chapter. The collected data were then analyzed using Python’s pandas data

analysis library to produce individual performance measures. The experiment participants’

individual production rates were used to establish the validity of an approach proposed to

identify the optimal design team configurations. The presented approach uses the EDD

sequencing rule in combination with the CPM to calculate the maximum lateness for

different design team arrangements. This section contributes to the state of knowledge by

88

creating a mathematical model to estimate design modeling project completion times based

on individual performance data and project requirements. The presented model can be

expanded to include other decision criteria as software has more data capture capabilities,

in addition to time stamps. This chapter also contributes to the state of practice by enabling

design managers to identify an optimal modeling team arrangement based on automatically

captured quantitative performance information.

6.3 Limitations of the Current Study

The results of this study should be interpreted considering the following limitations:

• The analysis presented in chapter 3 focused on modelers working on interior

systems of healthcare projects, and the findings of the chapter should not be

generalized to other building systems, trades, and projects. Moreover, no

statistical significance was sought from the analysis, given the relatively small

size of the data set. There is a need for a larger sample of design development

data from various trades and projects to generalize the obtained results.

• The experiment conducted in chapter 5 focused on collecting data to illustrate

the workings of the proposed optimal modeling team configuration

methodology. Given the small number of participants, no statistically

significant conclusion was drawn from the results of this experiment. Therefore,

the findings of this chapter are subject to validation from a larger sample and a

robust statistical study.

89

• When analyzing the design development data in chapter 3, it was assumed that

the developed building models meet the same quality criteria. This assumption

was made since the quality and LoD-level information for these models were

not provided to the author. Moreover, the building models that all modelers

created had gone through a quality control process, which the collaborating

company established. However, it is recommended that future studies should

measure and consider the quality of the information in their analyses to attain

generalizable findings.

6.4 Future Works and Directions

The primary aim of this dissertation was to develop a methodology for

automatically capturing design development data for modeling performance measurement.

Additionally, an approach was presented to identify optimal design team configurations

based on performance measurements. Future research could concentrate on the following

directions:

• The fine-grained information captured from design modeling software solutions

could be used to develop customized training programs. Furthermore, API-

based data collection systems enable managers to collect granular data on the

actions of each designer during modeling sessions, and such a wealth of

information can be used to benchmark modelers’ performance in their areas of

expertise. These detailed benchmarks allow designers to identify their

weaknesses for further improvement. For instance, an architectural modeler can

90

compare his or her performance in designing a component, such as curved or

spiral stairs, with that of his or her peers. If the modeler is comparatively

underperforming, the project manager can provide customized training to

improve his or her performance in designing the component.

• The granular modeling performance data can be used for developing advanced,

real-time, visualization dashboards, allowing project managers to summon the

relevant context when faced with a modeling conflict. Often, too little

information is provided to convey a message about an actual design modeling

problem, making it problematic for project managers to track issues and

determine the other design disciplines that will be affected by the problem. A

multilayered visualization platform can support design managers to quickly and

easily identify design issues, analyze the causes of these design problems, and

communicate the problem to the design team at the selected level of detail.

• The real-time monitoring of design development events could enable managers

to detect and prevent poor modeling practices. The main purpose of BIM tools

is to generate digital representations of the physical and functional

characteristics of capital projects. Therefore, these virtual models should

include accurate information regarding the actual size, location, and other

properties of each element. However, in practice, some models lack the

intended quality. For instance, a poor modeling practice that usually remains

undetected is the excessive utilization of imported substandard families in

virtual models. Some of these families—often created by manufacturers to

model their products—are corrupted, contain too much detail, or miss important

91

requirements such as parametric information. Such models increase the file

size, and in extreme cases, this results in degrading software performance.

Given the substantial number of elements in a typical virtual model, it is

impossible to manually identify these poor practices. The API-based

monitoring of virtual design models enables managers to detect such damaging

practices and prevent them from leading to further issues in other parts of the

system.

• The wide range of information collected using design solution APIs can help

software developers to improve a user’s experience. The command patterns that

are identified for modelers could be used to create shortcut keys that conduct a

sequence of tasks at once. Additionally, information regarding mouse

movements and the most frequently executed commands may be utilized to

improve software UI designs.

92

REFERENCES

Abdul-Rahman, H. (1995). The cost of non-conformance during a highway project: a case

study. Construction Management and Economics, 13(1), 23-32. DOI:

http://dx.doi.org/10.1080/01446199500000004

Alzraiee, H., Moselhi, O., & Zayed, T. (2012). Dynamic planning of earthmoving projects

using system dynamics. Gerontechnology, 11(2), 316. URL:

https://pdfs.semanticscholar.org/e9cb/f6050f50b640e67c0325a676ca56a6a0d5ed.

pdf

American Institute of Architects (2013). Project Building Information Modeling protocol

form, URL: http://aiad8.prod.acquia-sites.com/sites/default/files/2016-09/AIA-

G202-2013-Free-Sample-Preview.pdf

Anumba, C., Ugwu, O. O., Newnham, L., & Thorpe, A. (2002). Collaborative design of

structures using intelligent agents. Automation in construction, 11(1), 89-103. DOI:

https://doi.org/10.1016/S0926-5805(01)00055-3

Ashuri, B., Yarmohammadi, S., & Shahandashti, M. (2014). A critical review of methods

used to determine productivity of mechanical, electrical, and plumbing systems

coordination. In Construction Research Congress 2014: Construction in a Global

Network, 777-786, DOI: https://doi.org/10.1061/9780784413517.080

Autodesk (2016). Accessed on: https://knowledge.autodesk.com/support/revit-

products/getting started/caas/CloudHelp/cloudhelp/2015/ENU/Revit-

GetStarted/files/GUID-477C6854-2724-4B5D-8B95-9657B636C48D-htm.html

http://dx.doi.org/10.1080/01446199500000004
https://pdfs.semanticscholar.org/e9cb/f6050f50b640e67c0325a676ca56a6a0d5ed.pdf
https://pdfs.semanticscholar.org/e9cb/f6050f50b640e67c0325a676ca56a6a0d5ed.pdf
http://aiad8.prod.acquia-sites.com/sites/default/files/2016-09/AIA-G202-2013-Free-Sample-Preview.pdf
http://aiad8.prod.acquia-sites.com/sites/default/files/2016-09/AIA-G202-2013-Free-Sample-Preview.pdf
https://doi.org/10.1016/S0926-5805(01)00055-3
https://doi.org/10.1061/9780784413517.080
https://knowledge.autodesk.com/support/revit-products/getting%20started/caas/CloudHelp/cloudhelp/2015/ENU/Revit-GetStarted/files/GUID-477C6854-2724-4B5D-8B95-9657B636C48D-htm.html
https://knowledge.autodesk.com/support/revit-products/getting%20started/caas/CloudHelp/cloudhelp/2015/ENU/Revit-GetStarted/files/GUID-477C6854-2724-4B5D-8B95-9657B636C48D-htm.html
https://knowledge.autodesk.com/support/revit-products/getting%20started/caas/CloudHelp/cloudhelp/2015/ENU/Revit-GetStarted/files/GUID-477C6854-2724-4B5D-8B95-9657B636C48D-htm.html

93

Autodesk (2017a). Accessed on: https://knowledge.autodesk.com/search-

result/caas/CloudHelp/cloudhelp/2016/ENU/Revit-API/files/GUID-CEF0F9C9-

046E-46E2-9535-3B9620D8A170-htm.html

Autodesk (2017b). Accessed on: https://knowledge.autodesk.com/support/revit-

products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-

Troubleshooting/files/GUID-F0945713-4389-4F8E-B5DB-DCE03A8C1ADF-

htm.html

Baars, H., & Kemper, H. G. (2008). Management support with structured and unstructured

data—an integrated business intelligence framework. Information Systems

Management, 25(2), 132-148. DOI:

http://dx.doi.org/10.1080/10580530801941058

Baker, K. R., & Trietsch, D. (2013). Principles of sequencing and scheduling. John Wiley

& Sons, Inc. New York.

Bassioni, H.A., Price, A.D.F. & Hassan, T.M. (2005), Building a conceptual framework

for measuring business performance in construction: an empirical evaluation,

Construction Management and Economics, No. 5, 495-507. DOI:

http://dx.doi.org/10.1080/0144619042000301401

Bate, P., & Robert, G. (2007). Bringing user experience to healthcare improvement: The

concepts, methods and practices of experience-based design. Radcliffe Publishing.

Benayoune, M., & McGreavy, C. (1994). Concurrent engineering system for process

design and operation. In Institution of Chemical Engineers Symposium Series.

https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2016/ENU/Revit-API/files/GUID-CEF0F9C9-046E-46E2-9535-3B9620D8A170-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2016/ENU/Revit-API/files/GUID-CEF0F9C9-046E-46E2-9535-3B9620D8A170-htm.html
https://knowledge.autodesk.com/search-result/caas/CloudHelp/cloudhelp/2016/ENU/Revit-API/files/GUID-CEF0F9C9-046E-46E2-9535-3B9620D8A170-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Troubleshooting/files/GUID-F0945713-4389-4F8E-B5DB-DCE03A8C1ADF-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Troubleshooting/files/GUID-F0945713-4389-4F8E-B5DB-DCE03A8C1ADF-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Troubleshooting/files/GUID-F0945713-4389-4F8E-B5DB-DCE03A8C1ADF-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Troubleshooting/files/GUID-F0945713-4389-4F8E-B5DB-DCE03A8C1ADF-htm.html
http://dx.doi.org/10.1080/10580530801941058
http://dx.doi.org/10.1080/0144619042000301401

94

Boton, C., Halin, G., Kubicki, S., & Forgues, D. (2015). Challenges of big data in the age

of building information modeling: a high-level conceptual pipeline. In International

Conference on Cooperative Design, Visualization and Engineering, 48-56. DOI:

10.1007/978-3-319-24132-6_6

Caldas, C. H., Soibelman, L., & Han, J. (2002). Automated classification of construction

project documents. Journal of Computing in Civil Engineering, 16(4), 234-243.

DOI: http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:4(234)

Caldas, C. H., & Soibelman, L. (2003). Automating hierarchical document classification

for construction management information systems. Automation in Construction,

12(4), 395-406. DOI: http://dx.doi.org/10.1016/S0926-5805(03)00004-9

Caldas, C. H., Soibelman, L., & Gasser, L. (2005). Methodology for the integration of

project documents in model-based information systems. Journal of Computing in

Civil Engineering, 19(1), 25-33. DOI: http://dx.doi.org/10.1061/(ASCE)0887-

3801(2005)19:1(25)

Chalabi, A. F., Beaudin, B. J., & Salazar, G. F. (1987). Input variables impacting design

effectiveness. Construction Industry Institute, University of Texas at Austin.

Chang, A. S., & Ibbs, W. (2006). System model for analyzing design productivity. Journal

of Management in Engineering, 22(1), 27-34. DOI:

https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(27)

Chiu, C. Y., & Russell, A. D. (2011). Design of a construction management data

visualization environment: A top–down approach. Automation in Construction,

20(4), 399-417. Doi: https://doi.org/10.1016/j.autcon.2010.11.010

https://link.springer.com/chapter/10.1007/978-3-319-24132-6_6
http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:4(234)
http://dx.doi.org/10.1016/S0926-5805(03)00004-9
http://dx.doi.org/10.1061/(ASCE)0887-3801(2005)19:1(25)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2005)19:1(25)
https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(27)
https://doi.org/10.1016/j.autcon.2010.11.010

95

Construction Industry Institute (CII). (2001). “Engineering productivity measurement.”

RR156-11, Construction Industry Institute, Univ. of Texas at Austin, Austin, TX.

Construction Industry Institute (CII). (2004). “Engineering productivity measurements II.”

RR192-11, Construction Industry Institute, Univ. of Texas at Austin, Austin, TX.

Dave, B., Kubler, S., Främling, K., & Koskela, L. (2016). Opportunities for enhanced lean

construction management using Internet of Things standards. Automation in

Construction, 61, 86-97. DOI: https://doi.org/10.1016/j.autcon.2015.10.009

De Marco, A., & Narbaev, T. (2013). Earned value-based performance monitoring of

facility construction projects. Journal of Facilities Management, 11 Issue: 1, 69-

80. DOI: https://doi.org/10.1108/14725961311301475

Ding, Z., Ng, F., & Li, J. (2014). A parallel multiple mediator model of knowledge sharing

in architectural design project teams. International Journal of Project Management,

32(1), 54-65. DOI: http://dx.doi.org/10.1016/j.ijproman.2013.04.004

Doloi, H. (2012). Cost overruns and failure in project management: Understanding the

roles of key stakeholders in construction projects. Journal of construction

engineering and management, 139(3), 267-279. DOI:

https://doi.org/10.1061/(ASCE)CO.1943-7862.0000621

Du, J., Liu, R., & Issa, R. R. (2014). BIM cloud score: benchmarking BIM performance.

Journal of Construction Engineering and Management, 140(11), 04014054. DOI:

https://doi.org/10.1061/(ASCE)CO.1943-7862.0000891

https://doi.org/10.1016/j.autcon.2015.10.009
https://doi.org/10.1108/14725961311301475
http://dx.doi.org/10.1016/j.ijproman.2013.04.004
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000621
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000891

96

Eastman, C., Eastman, C. M., Teicholz, P., & Sacks, R. (2011). BIM handbook: A guide

to building information modeling for owners, managers, designers, engineers and

contractors. John Wiley & Sons 2nd edition.

Egan, S.J. (1998). Rethinking Construction, the Report of the Construction Task Force on

the Scope for Improving the Quality and Efficiency of the UK Construction

Industry, Department of Environment, Transport and the Regions (DETR),

London, UK.

Engineering News Record (ENR) (2013). Information mobility: improving team

collaboration through movement of project information, SmartMarket report,

McGraw-Hill Construction, New York. URL:

http://enr.construction.com/engineering/pdf/News/Information_Mobility_SMR_2

013.pdf

Evins, R. (2013). A review of computational optimization methods applied to sustainable

building design. Renewable and Sustainable Energy Reviews, 22, 230-245. doi:

http://dx.doi.org/10.1016/j.rser.2013.02.004

Fan, H., Xue, F., & Li, H. (2014). Project-Based as-needed information retrieval from

unstructured AEC documents. Journal of Management in Engineering, 31(1). DOI:

http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000341

Fayek, A. R., & Sun, Z. (2001). A framework for evaluating design project performance

A. Robinson Fayek & Z. Sun. Creative Systems in Structural and Construction

Engineering, Balkema, Netherlands, 191.

http://enr.construction.com/engineering/pdf/News/Information_Mobility_SMR_2013.pdf
http://enr.construction.com/engineering/pdf/News/Information_Mobility_SMR_2013.pdf
http://dx.doi.org/10.1016/j.rser.2013.02.004
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000341

97

Girard, P., & Robin, V. (2006). Analysis of collaboration for project design management.

Computers in industry, 57(8), 817-826. DOI:

https://doi.org/10.1016/j.compind.2006.04.016

Gautam, G., & Yadav, D. (2014). Sentiment analysis of twitter data using machine learning

approaches and semantic analysis. In Contemporary computing (IC3), 437-442,

IEEE. DOI: https://doi.org/10.1109/IC3.2014.6897213

Girczyc, E., & Carlson, S. (1993). Increasing design quality and engineering productivity

through design reuse. In Proceedings of the 30th international Design Automation

Conference, 48-53, ACM, DOI: https://doi.org/10.1145/157485.164565

Gog, S., Beller, T., Moffat, A., & Petri, M. (2014). From theory to practice: Plug and play

with succinct data structures. In International Symposium on Experimental

Algorithms, 326-337. DOI: http://dx.doi.org/10.1007/978-3-319-07959-2_28

Graham, B. B. (1990). Applying software tools to enhance engineering group productivity.

Proceedings of the 5th annual Applied Power Electronics Conference and

Exposition, APEC'90, 612-618, IEEE, DOI:

https://doi.org/10.1109/APEC.1990.66360

Gu, N., & London, K. (2010). Understanding and facilitating BIM adoption in the AEC

industry. Automation in construction, 19(8), 988-999. DOI:

https://doi.org/10.1016/j.autcon.2010.09.002

Gusfield, D. (1997). Algorithms on strings, trees and sequences: computer science and

computational biology. Cambridge university press.

https://doi.org/10.1016/j.compind.2006.04.016
https://doi.org/10.1109/IC3.2014.6897213
https://doi.org/10.1145/157485.164565
http://dx.doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1109/APEC.1990.66360
https://doi.org/10.1016/j.autcon.2010.09.002

98

Guerbas, A., Addam, O., Zaarour, O., Nagi, M., Elhajj, A., Ridley, M., & Alhajj, R. (2013).

Effective web log mining and online navigational pattern prediction. Knowledge-

Based Systems, 49, 50-62. DOI: http://dx.doi.org/10.1016/j.knosys.2013.04.014

Hinze, J., Thurman, S., & Wehle, A. (2013). Leading indicators of construction safety

performance. Safety Science, 51(1), 23-28. DOI:

https://doi.org/10.1016/j.ssci.2012.05.016

Isbell, T.S. (1993). Concurrent engineering planning in HGST systems. High speed ground

transportation systems.

Jansson, G., Viklund, E., & Lidelöw, H. (2016). Design management using knowledge

innovation and visual planning. Automation in Construction, 72, 330-337. DOI:

https://doi.org/10.1016/j.autcon.2016.08.040

Jin, Z., Deng, F., Li, H., & Skitmore, M. (2013). Practical framework for measuring

performance of international construction firms. Journal of Construction

Engineering and Management, 139(9), 1154-1167. DOI:

http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000718

Kim, I. (2007). “Development and implementation of an engineering productivity

measurement system (EPMS) for benchmarking.” Ph.D. dissertation, Univ. of

Texas at Austin, Austin, TX.

Knotten, V., Svalestuen, F., (2014). Implementing Virtual Design and Construction (VDC)

in Veidekke - Using Simple Metrics to Improve the Design Management Process.

In: Proceedings of the 22nd Annual Conference of the International Group for Lean

Construction, 3, Akademika Forlag, 1379-1390.

http://dx.doi.org/10.1016/j.knosys.2013.04.014
https://doi.org/10.1016/j.ssci.2012.05.016
https://doi.org/10.1016/j.autcon.2016.08.040
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000718

99

Korman, T., Simonian, L., & Speidel, E. (2008). Using Building Information Modeling to

improve the mechanical, electrical, and plumbing coordination process for

buildings. In Proceedings of the AEI 2008 Conference, Colorado, USA. DOI:

https://doi.org/10.1061/41002(328)10

Kymmell, W (2008). Building information modeling: planning and managing construction

projects with 4D CAD and simulations, New York: McGraw Hill. URL:

https://www.accessengineeringlibrary.com/browse/building-information-

modeling-planning-and-managing-construction-projects-with-4d-cad-and-

simulations-mcgraw-hill-construction-series

Lee, G. & Kim J. W. (2014). Parallel vs. Sequential Cascading MEP Coordination

Strategies: A Pharmaceutical Building Case Study. Automation in Construction,

43, 170-179. DOI: https://doi.org/10.1016/j.autcon.2014.03.004

Lee, S., & Peña‐Mora, F. (2007). Understanding and managing iterative error and change

cycles in construction, System Dynamics Review, 23(1), 35-60. DOI:

https://doi.org/10.1002/sdr.359

Leite, F., Akcamete, A., Akinci, B., Atasoy, G., & Kiziltas, S. (2011). Analysis of modeling

effort and impact of different levels of detail in building information models.

Automation in Construction, 20(5), 601-609. DOI:

https://doi.org/10.1016/j.autcon.2010.11.027

Leong, M. S., & Tilley, P. (2008). A lean strategy to performance measurement–reducing

waste by measuring next customer needs. In Proceedings for the 16th Annual

https://doi.org/10.1061/41002(328)10
https://www.accessengineeringlibrary.com/browse/building-information-modeling-planning-and-managing-construction-projects-with-4d-cad-and-simulations-mcgraw-hill-construction-series
https://www.accessengineeringlibrary.com/browse/building-information-modeling-planning-and-managing-construction-projects-with-4d-cad-and-simulations-mcgraw-hill-construction-series
https://www.accessengineeringlibrary.com/browse/building-information-modeling-planning-and-managing-construction-projects-with-4d-cad-and-simulations-mcgraw-hill-construction-series
https://doi.org/10.1016/j.autcon.2014.03.004
http://onlinelibrary.wiley.com/doi/10.1002/sdr.359/full
https://doi.org/10.1016/j.autcon.2010.11.027

100

Conference of the International Group for Lean Construction Safety, Quality and

the Environment, 757-768. University of Salford.

Liao, P. C., Thomas, S. R., O'Brien, W. J., Mulva, S. P., & Dai, J. (2009). Development of

project level engineering productivity benchmarking index, In Construction

Research Congress 2009: Building a Sustainable Future, 1087-1095. DOI:

https://doi.org/10.1061/41020(339)110

Liao, P. C., O’Brien, W. J., Thomas, S. R., Dai, J., & Mulva, S. P. (2011). Factors affecting

engineering productivity, Journal of Management in Engineering, 27(4), 229-235.

DOI: http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000059

Love, P. E., & Li, H. (2000). Quantifying the causes and costs of rework in construction.

Construction Management & Economics, 18(4), 479-490. doi:

http://dx.doi.org/10.1080/01446190050024897

Love, P. E., Edwards, D. J., Irani, Z., & Forcada, N. (2014). The latent causes of rework in

floating production storage and offloading projects, Journal of Civil Engineering

and Management, 20(3), 315-329. DOI:

http://dx.doi.org/10.3846/13923730.2013.802725

Lu, W., Fung, A., Peng, Y., Liang, C., & Rowlinson, S. (2014). Cost-benefit analysis of

Building Information Modeling implementation in building projects through

demystification of time-effort distribution curves, Building and Environment, 82,

317-327. DOI: https://doi.org/10.1016/j.buildenv.2014.08.030

https://doi.org/10.1061/41020(339)110
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000059
http://dx.doi.org/10.1080/01446190050024897
http://dx.doi.org/10.3846/13923730.2013.802725
https://doi.org/10.1016/j.buildenv.2014.08.030

101

Manning, R, & Messner, J. (2008). Case studies in BIM implementation for programming

of healthcare facilities, Journal of Information Technology in Construction, Special

Issue Case studies of BIM use, 246-257, http://www.itcon.org/2008/18

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H.

(2011). Big data: The next frontier for innovation, competition, and productivity.

URL:http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innova

tion/Big_data_The_next_frontier_for_innovation

McGeorge, J. F. (1988). Design productivity: a quality problem. Journal of Management

in Engineering, 4(4), 350-362. DOI: https://doi.org/10.1061/(ASCE)9742-

597X(1988)4:4(350)

McGraw-Hill Construction (2013). Lean Construction Leveraging Collaboration and

Advanced Practices to Increase Project Efficiency, SmartMaket report, McGraw-

Hill, New York. URL:

http://www.leanconstruction.org/media/docs/Lean_Construction_SMR_2013.pdf

Meredith J. & Mantel S. (2003). Project management: a managerial approach. J. Wiley and

Sons, Fifth Ed.

Navon, R., & Sacks, R. (2007). Assessing research issues in automated project

performance control (APPC). Automation in Construction, 16(4), 474-484. DOI:

https://doi.org/10.1016/j.autcon.2006.08.001

Pandas Library, URL: http://pandas.pydata.org/

Park, C. S., Lee, D. Y., Kwon, O. S., & Wang, X. (2013). A framework for proactive

construction defect management using BIM, augmented reality and ontology-based

http://www.itcon.org/2008/18
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
https://doi.org/10.1061/(ASCE)9742-597X(1988)4:4(350)
https://doi.org/10.1061/(ASCE)9742-597X(1988)4:4(350)
http://www.leanconstruction.org/media/docs/Lean_Construction_SMR_2013.pdf
https://doi.org/10.1016/j.autcon.2006.08.001
http://pandas.pydata.org/

102

data collection template. Automation in Construction, 33, 61-71. DOI:

https://doi.org/10.1016/j.autcon.2012.09.010

Pei, J., Han, J., & Lakshmanan, L. V. (2001a). Mining frequent itemsets with convertible

constraints. Proceedings. 17th International Conference on Data Engineering. 433-

442). IEEE. DOI: https://doi.org/10.1109/ICDE.2001.914856

Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M-C (2001b). PrefixSpan:

mining sequential patterns efficiently by prefix-projected pattern growth.

Proceeding of the 2001 International Conference on Data Engineering (ICDE’01),

Heidelberg, Germany, 215–224. URL: http://jayurbain.com/msoe/cs498-

datamining/prefixspan_mining_sequential_patterns_by_prefix_projected_growth.

pdf

Pilehchian, B., Staub-French, S., & Nepal, M. P. (2015). A conceptual approach to track

design changes within a multi-disciplinary building information modeling

environment. Canadian Journal of Civil Engineering, 42(2), 139-152. DOI:

https://doi.org/10.1139/cjce-2014-0078

Plume, J., & Mitchell, J. (2007). Collaborative design using a shared IFC building model—

Learning from experience. Automation in Construction, 16(1), 28-36. DOI:

https://doi.org/10.1016/j.autcon.2005.10.003

Ren, Z., Anumba, C. J., & Yang, F. (2013). Development of CDPM matrix for the

measurement of collaborative design performance in construction. Automation in

Construction, 32, 14-23. DOI: https://doi.org/10.1016/j.autcon.2012.11.019

https://doi.org/10.1016/j.autcon.2012.09.010
https://doi.org/10.1109/ICDE.2001.914856
http://jayurbain.com/msoe/cs498-datamining/prefixspan_mining_sequential_patterns_by_prefix_projected_growth.pdf
http://jayurbain.com/msoe/cs498-datamining/prefixspan_mining_sequential_patterns_by_prefix_projected_growth.pdf
http://jayurbain.com/msoe/cs498-datamining/prefixspan_mining_sequential_patterns_by_prefix_projected_growth.pdf
https://doi.org/10.1139/cjce-2014-0078
https://doi.org/10.1016/j.autcon.2005.10.003
https://doi.org/10.1016/j.autcon.2012.11.019

103

Revit API Documentation (2016). Accessed on:

http://www.revitapidocs.com/2016/3c452286-57b1-40e2-2795-c90bff1fcec2.htm

Revit API Documentation (2017). Accessed on:

https://knowledge.autodesk.com/support/revit-products/learn-

explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Model/files/GUID-

4EBB97AD-C7B6-4828-91EB-BC0E99B81E43-htm.html

Riley D. R., Varadan P., James J., & Thomas H. (2005). Benefit-cost metrics for design

coordination of mechanical, electrical, and plumbing systems in multistory

buildings, Journal of construction engineering and management, 131, 877-889.

DOI: https://doi.org/10.1061/(ASCE)0733-9364(2005)131:8(877)

Sackett, P.J. & Evans, S. (1984). Computer Aided Engineering, productivity and quality of

working life, Paper delivered at conference on Human Factors in Manufacturing,

London, April.

Sacks, R., & Barak, R. (2008). Impact of three-dimensional parametric modeling of

buildings on productivity in structural engineering practice, Automation in

Construction, 17(4), 439-449. DOI: https://doi.org/10.1016/j.autcon.2007.08.003

Sacks, R., & Barak, R. (2010). Teaching Building Information Modeling as an Integral Part

of Freshman Year Civil Engineering Education, Journal of Professional Issues in

Engineering Education and Practice, 136(1), 30-38. DOI:

https://doi.org/10.1061/(ASCE)EI.1943-5541.0000003

http://www.revitapidocs.com/2016/3c452286-57b1-40e2-2795-c90bff1fcec2.htm
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Model/files/GUID-4EBB97AD-C7B6-4828-91EB-BC0E99B81E43-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Model/files/GUID-4EBB97AD-C7B6-4828-91EB-BC0E99B81E43-htm.html
https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Model/files/GUID-4EBB97AD-C7B6-4828-91EB-BC0E99B81E43-htm.html
https://doi.org/10.1061/(ASCE)0733-9364(2005)131:8(877)
https://doi.org/10.1016/j.autcon.2007.08.003
https://doi.org/10.1061/(ASCE)EI.1943-5541.0000003

104

Sacks, R., Radosavljevic, M., & Barak, R. (2010). Requirements for building information

modeling based lean production management systems for construction, Automation

in construction, 19(5), 641-655. DOI: https://doi.org/10.1016/j.autcon.2010.02.010

Shahtaheri, M., Nasir, H., & Haas, C. T. (2014). Setting Baseline Rates for On-Site Work

Categories in the Construction Industry, Journal of Construction Engineering and

Management, 141(5). DOI: https://doi.org/10.1061/(ASCE)CO.1943-

7862.0000959

Simpeh, E. K., Ndihokubwayo, R., Love, P. E., & Thwala, W. D. (2015). A rework

probability model: a quantitative assessment of rework occurrence in construction

projects, International Journal of Construction Management, 15(2), 109-116. DOI:

http://dx.doi.org/10.1080/15623599.2015.1033814

Skibniewski, M. J., & Ghosh, S. (2009). Determination of key performance indicators with

enterprise resource planning systems in engineering construction firms, Journal of

Construction Engineering and Management, 135(10), 965-978. DOI:

http://dx.doi.org/10.1061/(ASCE)0733-9364(2009)135:10(965)

Soibelman, L., & Kim, H. (2002). Data preparation process for construction knowledge

generation through knowledge discovery in databases. Journal of Computing in

Civil Engineering, 16(1), 39-48. DOI: http://dx.doi.org/10.1061/(ASCE)0887-

3801(2002)16:1(39)

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: generalizations and

performance improvements, In International Conference on Extending Database

Technology, 1-17. DOI: 10.1007/BFb0014140

https://doi.org/10.1016/j.autcon.2010.02.010
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000959
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000959
http://dx.doi.org/10.1080/15623599.2015.1033814
http://dx.doi.org/10.1061/(ASCE)0733-9364(2009)135:10(965)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:1(39)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:1(39)
https://link.springer.com/chapter/10.1007%2FBFb0014140?LI=true

105

Staub-French S & Khanzode A (2007). 3D and 4D modeling for design and construction

coordination: issues and lessons learned, Journal of Information Technology in

Construction, 12, 381-407, http://www.itcon.org/2007/26

Succar, B., Sher, W., & Williams, A. (2012). Measuring BIM performance: Five metrics.

Architectural Engineering and Design Management, 8(2), 120-142. DOI:

http://dx.doi.org/10.1080/17452007.2012.659506

Sun, M., & Meng, X. (2009). Taxonomy for change causes and effects in construction

projects. International Journal of Project Management, 27(6), 560-572. DOI:

http://dx.doi.org/10.1016/j.ijproman.2008.10.005

Taylor‐Adams, S., & Kirwan, B. (2013). Human reliability data requirements. Disaster

Prevention and Management: An International Journal. DOI:

http://dx.doi.org/10.1108/09653569710193754

Thomas, H. R., Korte, Q. C., Sanvido, V. E., & Parfitt, M. K. (1999). Conceptual model

for measuring productivity of design and engineering, Journal of architectural

engineering, 5(1), 1-7. DOI: https://doi.org/10.1061/(ASCE)1076-

0431(1999)5:1(1)

Tizani, W. (2011). Collaborative Design in Virtual Environments at Conceptual Stage. In

Intelligent Systems, Control and Automation: Science and Engineering, 48, 67-76.

DOI: https://link.springer.com/chapter/10.1007/978-94-007-0605-7_6

Torbett R, Salter AJ, Gann DM, Hobday M (2001). Design performance measurement in

the construction sector: a pilot study. University of Sussex, Brighton

http://www.itcon.org/2007/26
http://dx.doi.org/10.1080/17452007.2012.659506
http://dx.doi.org/10.1016/j.ijproman.2008.10.005
http://dx.doi.org/10.1108/09653569710193754
https://doi.org/10.1061/(ASCE)1076-0431(1999)5:1(1)
https://doi.org/10.1061/(ASCE)1076-0431(1999)5:1(1)
https://link.springer.com/chapter/10.1007/978-94-007-0605-7_6

106

Tucker, R.L. & Scarlett, B.R. (1986). Evaluation of design effectiveness, Construction

Industry Institute. The University of Texas at Austin.

United States Census Burea. (2015). Construction Spending, URL:

https://www.census.gov/construction/c30/c30index.html

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for

existing buildings—Literature review and future needs. Automation in

construction, 38, 109-127. DOI: https://doi.org/10.1016/j.autcon.2013.10.023

Verma, M., & Mehta, D. D. (2014). A Comparative study of Techniques in Data mining.

International Journal of Emerging Technology and Advanced Engineering, 4(4),

314-321. URL:

https://pdfs.semanticscholar.org/5709/2257696e87e154d566fccda2c70fb57db75e.

pdf

Wang, X., & Tsai, J. J. H. (Eds.). (2011). Collaborative Design in Virtual Environments,

48, Springer Science & Business Media.

White, D., Sritharan, S., Suleiman, M., Mekkawy, M., & Chetlur, S. (2005). Identification

of the best practices for design, construction, and repair of bridge approaches, No.

CTRE Project 02-118. URL: http://www.ctre.iastate.edu/reports/tr481.pdf

Williams, T. P., & Gong, J. (2014). Predicting construction cost overruns using text mining,

numerical data and ensemble classifiers, Automation in Construction, 43, 23-29.

DOI: http://dx.doi.org/10.1016/j.autcon.2014.02.014

Winter, P. (1992). Computer aided process engineering: The evolution continues,

Chemical Engineering Progress, 88(2), 76-83.

https://www.census.gov/construction/c30/c30index.html
https://doi.org/10.1016/j.autcon.2013.10.023
https://pdfs.semanticscholar.org/5709/2257696e87e154d566fccda2c70fb57db75e.pdf
https://pdfs.semanticscholar.org/5709/2257696e87e154d566fccda2c70fb57db75e.pdf
http://www.ctre.iastate.edu/reports/tr481.pdf
http://dx.doi.org/10.1016/j.autcon.2014.02.014

107

Xiao, Y., & Dunham, M. H. (2001). Efficient mining of traversal patterns. Data &

Knowledge Engineering, 39(2), 191-214. DOI: http://dx.doi.org/10.1016/S0169-

023X(01)00039-8

Yan X, Han J, Afshar R (2003). CloSpan: mining closed sequential patterns in large

datasets, In: Proceeding of the 2003 SIAM international conference on data mining

(SDM’03), San Francisco, CA, 166–177. DOI:

http://dx.doi.org/10.1137/1.9781611972733.15

Yang, H., Yeung, J. F., Chan, A. P., Chiang, Y. H., & Chan, D. W. (2010). A critical review

of performance measurement in construction", Journal of Facilities Management, 8

Issue: 4, 269-284. DOI: https://doi.org/10.1108/14725961011078981

Yarmohammadi, S., & Ashuri, B. (2015). Exploring the approaches in the implementation

of BIM-based MEP coordination in the USA. Journal of Information Technology

in Construction, 20, 347-363, http://www.itcon.org/2015/22

Yarmohammadi, S., Pourabolghasem, R., Shirazi, A., & Ashuri, B. (2016), A sequential

pattern mining approach to extract information from BIM design log files,

Proceedings of the International Symposium on Automation and Robotics in

Construction (ISARC); Vilnius 33, 1-7, URL:

http://search.proquest.com/openview/381e74c3bbf2fabb45142b8d0e350637/1?pq

-origsite=gscholar&cbl=1646340

Yarmohammadi, S., Pourabolghasem, R., & Castro-Lacouture, D. (2017). Mining implicit

3D modeling patterns from unstructured temporal BIM log text data. Automation

in Construction, 81, 17-24. DOI: https://doi.org/10.1016/j.autcon.2017.04.012

http://dx.doi.org/10.1016/S0169-023X(01)00039-8
http://dx.doi.org/10.1016/S0169-023X(01)00039-8
http://dx.doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1108/14725961011078981
http://www.itcon.org/2015/22
http://search.proquest.com/openview/381e74c3bbf2fabb45142b8d0e350637/1?pq-origsite=gscholar&cbl=1646340
http://search.proquest.com/openview/381e74c3bbf2fabb45142b8d0e350637/1?pq-origsite=gscholar&cbl=1646340
https://doi.org/10.1016/j.autcon.2017.04.012

108

Yin, Y., Qin, S., & Holland, R. (2011). Development of a design performance measurement

matrix for improving collaborative design during a design process, International

Journal of Productivity and Performance Management, 60(2), 152-184. DOI:

https://doi.org/10.1108/17410401111101485

Zhang, S., Teizer, J., Lee, J. K., Eastman, C. M., & Venugopal, M. (2013). Building

information modeling (BIM) and safety: Automatic safety checking of construction

models and schedules. Automation in Construction, 29, 183-195. DOI:

https://doi.org/10.1016/j.autcon.2012.05.006

https://doi.org/10.1108/17410401111101485
https://doi.org/10.1016/j.autcon.2012.05.006

