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SUMMARY 

Building information modeling (BIM) is instrumental in documenting design, 

enhancing customer experience, and improving product functionality in capital projects. 

However, high-quality building models do not happen by accident, but rather because of a 

managed process that involves several participants from different disciplines and 

backgrounds. Throughout this process, the different priorities of design modelers often 

result in conflicts that can negatively impact project outcomes. There is a need for effective 

management of the modeling process to prevent such unwanted outcomes. Effective 

management of this process requires an ability to closely monitor the modeling process and 

correctly measure the modelers' performance. Nevertheless, existing methods of 

performance monitoring in building design practices lack an objective measurement 

system to quantify modeling progress. The widespread utilization of BIM tools presents a 

unique opportunity to retrieve granular design process data and conduct accurate 

performance measurements. This research improves upon previous efforts by presenting a 

novel application programming interface (API)-enabled approach to automatically collect 

detailed design development data directly from BIM software packages and efficiently 

calculate several modeling performance measures.  

The primary objective of this research is to create and examine the feasibility of a 

proposed automated design performance monitoring framework. The proposed framework 

provides the following capabilities: (a) non-intrusive and cost-effective data acquisition for 

capturing design development events in real time, (b) scalable and high-speed ingestion for 

the storage of design modeling data, (c) objective measurement of designer performance 
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and estimating levels of effort required to complete design tasks, and (d) identifying 

optimal design teams using empirical performance information.  

In chapter 3, the utilization of modeling development information embedded in 

design log files that are produced by Autodesk Revit is proposed as a rich source of 

performance data. To this end, generalized suffix tree (GST) data structures are utilized to 

find common, frequent command sequences among Revit users. In addition to identifying 

the common command execution patterns, the average time it takes the selected modelers 

to execute command sequences is calculated. The obtained results demonstrate that there 

is a statistically significant difference between the modelers in terms of the time it takes 

them to conduct similar modeling tasks.  

Chapter 4 utilizes modeling software solution’s APIs to automatically collect and 

store timestamped design development information. The proposed passive data recording 

approach allows for the real-time capture of comprehensive user interface (UI) interaction 

and model element modification events. The proposed framework is also implemented as 

an Autodesk Revit plugin. An experiment is then conducted to verify the accuracy of this 

plugin. Throughout this experiment, manual recordings of model development events were 

compared against the automatically generated plugin output.  

Chapter 5 outlines the details of an approach to identify the optimal design 

modeling team configuration based on automatically collected performance data. To this 

end, an experiment is conducted to capture data using the developed Revit plugin. 

Experiment participants’ individual production rates are estimated to establish the validity 

of the proposed approach to identify the optimal design team configurations. The presented 

approach uses the earliest due date (EDD) sequencing rule in combination with the critical 
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path method (CPM) to calculate the maximum lateness for different design team 

arrangements.  

The primary contributions of this study to the state of knowledge are as follows: (a) 

proposing a tailored string mining algorithm that is capable of extracting meaningful 

information from timestamped design development data, (b) developing a framework 

based on APIs to automatically collect design modeling data, and (c) creating a 

mathematical model to estimate design modeling project completion times based on 

individual performance data and project requirements.  

This study contributes to the state of practice by (a) allowing design project 

managers to gain an unprecedented insight into the evolution of a building model using the 

information embedded in design log files, (b) helping design managers to acquire progress 

information without the need to manually record and report data, and (c) enabling design 

managers to identify an optimal modeling team arrangement based on automatically 

captured, quantitative performance information. 
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CHAPTER 1: INTRODUCTION 

The goal of design is to specify a product that best satisfies the client, ensures safe 

construction and operations, and achieves minimum overall costs (Wang & Tsai 2011). As 

capital projects are becoming more complex, the design process increasingly requires 

substantial interactions among a wide range of designers from various architectural, 

engineering, and construction (AEC) disciplines (Evins 2013). Throughout this 

evolutionary process, multidisciplinary teams of architects and engineers need to make 

difficult decisions to design buildings that are functional, safe, and reliable, and that meet 

clients’ expectations (Anumba & Yang 2013). Given the specific requirements of different 

disciplines, each specialist has a unique approach to design. The existing variations in the 

understanding of design problems result in conflicts that negatively impact the concurrent 

design efforts as well as the downstream construction activities (Simpeh et al. 2015). While 

design processes account for approximately 5%-10% of the total cost of a typical capital 

project (Tizani 2011; Egan 1998), rectifying conflicts that result from faulty design 

decisions accounts for an additional 5%-8% of total project costs (Lee & Pena-Mora 2007). 

Given the value of the U.S. construction industry (U.S. Census Bureau 2015), 

approximately $70 billion will be spent annually to resolve design-related issues in capital 

projects alone. 

The poor management of design processes is the primary cause of costly errors in 

construction projects (Sun & Meng 2009; Love & Li 2000). Similar to other design 

activities, it is necessary for AEC companies to have an effective performance monitoring 

system in order to produce accurate design models (Pilehchian et al. 2015). In fact, 
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effective design progress monitoring is instrumental in preventing potential errors, and it 

results in both lower overall project costs and productivity improvements across the 

industry (Riley et al. 2005; CII 2001; CII 2004 McGeorge 1998). Any performance 

monitoring system depends on metrics to determine the performance of project participants 

(Figure 1-1). Calculating performance metrics enables managers to identify where team 

members are falling short, make corrective adjustments, and track outcomes across 

different projects (Chiu & Russel 2011; Skibniewski & Ghosh 2009). 

 

 

Figure 1-1 Design Performance Monitoring Dashboard (Chiu & Russel, 2011) 
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1.1 Current Performance Monitoring Methods for Building Design 

Projects 

The existing literature on performance monitoring in design practices can be 

categorized as indicated in Table 1-1. Design progress is traditionally measured by tracking 

a designer’s or engineer’s production rate as the relationship between physical inputs and 

outputs. The current design or engineering performance metrics can be classified as follows 

(Ashuri et al. 2014): 

• Design Hours per Construction Document—in this approach, design hours and 

construction documents (for example, drawings, specifications, and contract 

forms) are considered to be process input and output respectively. In a study to 

measure engineering productivity, Thomas et al. (1999) proposed using design 

work hours per drawing sheet, design work hours per specification section, and 

design work hours per contract document to measure design progress. Chang 

and Ibbs (2006) measured production rate using design work hours per drawing 

sheet to identify the major factors that affect design productivity. These metrics 

regard project documents as tangible outputs of design, which makes output 

estimation relatively less burdensome. The number of billable hours that 

designers spend can also be measured using company payroll information. 

However, this method does not account for the differing complexity and unique 

characteristics of construction projects. Therefore, the proposed metrics are 

better suited for comparing design performance across similar projects.  



4 

 

• Design Hours per Installed/Build Quantities—this approach considers design 

hours and installed or built quantities (for example, the amount of installed 

equipment, concrete volume, and building floor area) as the input and output of 

design processes respectively. In an effort to measure performance in 10 

engineering disciplines, the Construction Industry Institute (CII) (2001) 

proposed several trade-specific metrics based on the number of equipment 

pieces designed. Kim (2007) later used these metrics in another CII-supported 

project to benchmark engineering performance. Sacks and Barack (2008) and 

Sacks et al. (2010) are other examples of utilizing installed or build quantities 

to estimate design output, where the authors investigated the impact of 3D 

parametric modeling on structural engineering productivity. The methodologies 

proposed in these studies incorporate project characteristics and design quality 

in the evaluation of design performance; therefore, they can be used to compare 

projects that are different in nature.  

• Normalized Design Hours—in this approach, design hours are normalized using 

a basis for design hours. The CII (2004) developed multiple regression models 

to calculate the basic hours in different engineering disciplines, and design 

performance in each discipline is measured by normalizing the actual design 

hours against the calculated basis hours. A normalized metric of less than one 

indicates a performance that is better than the benchmark. Liao et al. (2009) and 

Liao et al. (2011) proposed modifications to the CII’s methodology to convert 

and aggregate unit-less design metrics into project-, portfolio-, and company-
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level measures. This allows managers to compare performance not only across 

different projects but also across different disciplines.  

 

Table 1-1 Overview of Existing Literature 

Article Metric Required Data 

Thomas et al. 1999 

Chang and Ibbs 2006 

Design hours per 

construction document 

Design hours 

Number of design and construction 

documents (for example, drawings, 

specifications, and contract forms) 

for different disciplines 

CII 2001 

Kim 2007 

Sacks and Barak 2008 

Li et al. 2014 

Design hours per 

installed or built 

quantities 

Design hours 

Installed or built quantities (for 

example, linear feet of pipe, 

concrete volume, and building floor 

area) for different disciplines 

CII 2004 

Liao et al. 2009 

Liao et al. 2011 

Normalized design 

hours 

Design hours per installed or built 

quantities 

While the above studies primarily rely on input and output production metrics, 

some researchers utilized a more holistic perspective and included other measures, such as 

design quality, design innovation, design coordination, and client satisfaction, in evaluating 

design projects (Yarmohammadi & Ashuri 2015; Ren et al. 2013; Torbett et al. 2001; 

Tucker & Scarlett 1986). For example, metrics, such as delay and cost overrun in 

fabrication and construction due to design deficiencies or constructability issues, were 

utilized to evaluate the outcomes of design projects (Lu et al. 2014; Bassioni et al. 2005; 

Fayek & Sun 2001). 
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Overall, the existing methods for design progress monitoring are not up to date, i.e., 

there is a significant lag between the time at which these progress metrics can be calculated 

and the time at which design decisions need to be made throughout various phases of design 

development. These methods only consider what has been spent and produced in design 

projects without sufficient appreciation for the complexity of design evolution as an 

evolving system. Several studies have noted this limitation and indicated that the AEC 

industry needs to adopt a forward-looking approach to enable proactive design monitoring 

(Du et al. 2014; Succar et al. 2012; Leong & Tilley 2008). Due to this major drawback, 

current progress monitoring methods have limited capability for helping design managers 

to monitor design development in real time and detect design deficiencies in order to take 

timely corrective actions. 

Above all, the greatest challenge in monitoring design processes is the lack of an 

objective and systematic method to accurately capture the required data for quantifying 

progress in design modeling. Several studies have indicated that existing data collection 

approaches are time consuming, manual, and incapable of capturing information in real 

time (Knotten & Svalestuen 2014; Park et al. 2013; Navon & Sacks 2007); therefore, they 

are inherently incapable of retrieving useful information, created at the level of various 

design tasks, such as conceptual layouts, model element design, and model detailing 

(Kymmell 2008; Meredith & Mante 2003). Moreover, while the widespread application of 

computer-aided design in the full range of design activities (for example, conceptual 

design, detailed design, and construction documents) has facilitated knowledge integration 

from various participants, collecting design modeling data remains a challenging task 

(Volk et al. 2014).  
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1.2 Performance Monitoring in Collaborative Computer-Aided Design 

Collaboration in design is essential for project success; however, the circulation of 

incomplete and erroneous process information among project stakeholders makes design 

issues inevitable (Love et al. 2014; Anumba et al. 2002; Abdul-Rahman 1995). In addition 

to challenges related to collaboration, the following are among the common causes of 

design problems: the completeness of scope definition, the project objectives and priorities, 

owner profiles, and the reliability of vendor data (Doloi 2012; Chalabi et al. 1987). The 

availability of comprehensive information from all disciplines as well as learning from past 

projects are necessary for project managers to anticipate problems in design development 

and to take corrective actions in a timely manner (White et al. 2005).  

Early research in collaborative design management was qualitative in nature, and it 

was often based on studying a single design case. Earlier works attempted to address design 

issues in the context of a recommendation for a given product. In these studies, there have 

been frequent references to the idea that by making use of recommended techniques, one 

can improve the productivity, quality, and performance of designers or engineers; for 

examples, see concurrent engineering practices (Benayoune & McGreavy 1994; Isbell 

1993) and civil engineering design (Girczyc & Carlson 1993; Winter 1992; Graham 1990; 

Sackett & Evans 1984). Even though these studies offer several recommendations for 

improving design performance, they fail to acknowledge the inherent variations in 

approaches that designers in a particular field or from different disciplines take to tackle a 

design problem. The unique nature of each design and construction project makes it 

difficult to address specific design problems by implementing generic suggestions 

(Alzraiee et al. 2012). A single set of rigid design strategies could not be applicable to the 
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construction industry, in contrast to the manufacturing industry, which deals with highly 

repetitive processes and mass production, i.e., 43% productive time in construction vs. 88% 

productive time in manufacturing (McGraw-Hill 2013).  

Computer-aided design tools provide practitioners with an information technology 

enabled approach that involves applying and maintaining an integral digital representation 

of all building information for different phases of the project lifecycle in the form of a data 

repository (Gu & London 2010). The capabilities of virtual design technologies have eased 

collaboration in typical design teams that involve a wide array of disciplines, such as 

architecture and structural, seismic, hydraulic, and pipeline engineering, working together 

for a relatively short period of time (Plume & Mitchell 2007). To facilitate virtual design 

efforts, different sequential and parallel collaboration strategies have been proposed for 

implementation (ENR 2013; Eastman et al. 2011; Korman et al. 2008). A number of studies 

have been conducted to measure the success of these strategies to improve performance. 

Lee and Kim (2014) conducted a case study of a seven-story office building to investigate 

the impact of parallel versus sequential approaches on a design coordination team’s 

production rate. Their findings indicated that a sequential design strategy is faster than the 

parallel strategy in terms of design productivity. A further examination of these two 

approaches identified deficient information sharing among design team members as the 

main factor that negatively impacts performance. Other case studies, such as those 

conducted by Staub-French and Khanzode (2007) and Manning and Messner (2008), also 

investigated collaborative strategies with a focus on evaluating the impact of virtual design 

and construction (VDC) solutions on design performance. Together, these studies 
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demonstrated that information transfer bottlenecks are the primary challenges of design 

progress monitoring in collaborative computer-aided design. 

An important observation is that the data accumulated in building models largely 

consist of information about different building systems (for example, structural, 

mechanical, electrical, and architectural), and they exclude model progress data. In fact, 

AEC companies still use conventional manual practices, such meeting minutes reports and 

Gantt charts, to document design modeling progress data (Yarmohammadi & Ashuri 2015). 

In larger projects, those reports consist of several pages of emails, charts, descriptions, and 

spreadsheets that are difficult to read and analyze (Dave et al. 2016). These unstructured 

documents lack the organization necessary for machine readability—i.e., inclusion in a 

relational database that search engine algorithms can readily search (Baars & Kemper 

2008). Structured data are understandable in machine language, and computers can 

automatically read and analyze them. In contrast, unstructured data are only understandable 

to humans, who do not interact with information in strict, database formats (Gautam & 

Yadav 2014). The manual compilation of unstructured progress reports to measure design 

modeling performance is a time- and energy-consuming task.  

Due to the difficulties associated with progress measurement in design modeling, 

most decision makers rely heavily on subjective measures and informal communications 

to assess progress (Bate & Robert 2007). For instance, when a structural designer reports 

to the design manager that 30% of the steel framing has been modeled, the determination 

of the percentage of completion is primarily based on the designer’s experience, and it does 

not present the real progress of the project in an objective manner. The resulting human 

error in the preparation of progress data and their delivery to design managers causes 
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inefficiency in performance monitoring (Taylor-Adams & Kirwan 2013). Moreover, 

inaccurate measurements that are calculated using faulty data can be misleading to 

managers, thereby causing them to make decisions with negative impacts on the design 

modeling process. 

 

1.3 Chapter Summary 

As the complexity of capital projects grows, the design modeling process 

increasingly involves massive collaborative efforts among various AEC disciplines. 

Throughout this multidisciplinary process, the various priorities of design team members 

often result in conflicts that can negatively impact project outcomes. To prevent such 

conflicts, managers need to closely monitor the design modeling process. However, a 

review of the existing literature indicates that the current methods of design performance 

monitoring lack objective measurement systems to quantify modeling progress. The 

difficulties associated with evaluating design modeling performance renders the existing 

methodologies impractical.  
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CHAPTER 2: PROBLEM STATEMENT AND RESEARCH 

OBJECTIVES 

2.1 Motivation and Gaps in Knowledge 

Overall, the existing literature highlights the crucial role of performance 

management in the success of building design processes. By utilizing the metrics proposed 

in the existing studies, design managers can monitor their teams by comparing their 

performance against established baselines. However, the discussed studies make no 

attempt to address the issue of data collection during the design modeling processes. The 

gaps in the current state of knowledge that render most of the existing approaches 

impractical are as follows: the existing design monitoring practices have delays, these 

practices are manual and labor-intensive, the manually collected design monitoring data 

are of a low quality, and the existing methods are subjective and judgment-based. These 

four gaps are discussed next. 

 

2.1.1 Gap 1 in Knowledge: Existing Design Monitoring Practices Have Delays 

The existing design modeling performance approaches are either backward-focused 

or trailing. There is a significant lag between the time at which the measures are calculated 

and the time at which design modeling happens (Jansson et al. 2016). As illustrated in 

Figure 2-1, there is also a delay between the time when progress data are captured and 

when they are reported to the management. Such delays in current building modeling 

practices prevent design managers from taking corrective actions in a timely manner 
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(Yarmohammadi et al. 2017) because it might be too late or too costly to make any 

corrections by the time the team reacts to these lagging indicators.  

There is a need for a data acquisition method that can provide design managers with 

access to real-time, building model development information. Such a system should be able 

to capture large amounts of accurate model progress data from project participants across 

different stages of design. Once analyzed, the captured granular information can provide 

managers with a comprehensive view of the state of their project compared to the 

predetermined milestones. Additionally, leading performance indicators can be measured 

using real-time design progress data.  

 

 

Figure 2-1 Lagging Indicators in Existing Design Modeling Monitoring Practices 

 

The lagging measurements of design performance metrics can provide information 

about a project after the fact. However, the question remains regarding the value of these 

metrics as future predictors for design-related conflicts (Hinze et al. 2013). Moreover, an 

unbalanced focus on lagging after-the-fact-based approaches may discourage conflict 

prevention (Jin et al. 2013). Therefore, organizations have also adopted proactive leading 
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measures to predict future levels of performance. For such systems to function properly, it 

is necessary to collect accurate data in real time (Manyika et al. 2011).  

2.1.2 Gap 2 in Knowledge: Existing Design Monitoring Practices Are Manual and 

Labor-Intensive 

Existing methods require extensive manual data extraction from various data 

sources, such as design documents, schedule and budget updates, and status and progress 

emails. In practice, most design managers informally collect information about the state of 

the project from the members of the design team at different time intervals (De Marco & 

Narbaev 2013).  

Table 2-1 presents a summary of the metrics and corresponding information items 

used in the existing literature to measure progress in design practices. An important 

observation is that the collected information items vary based on the metrics used to 

calculate design performance. The required information is usually manually extracted from 

various sources to obtain the necessary quantities.  

Manual data collection is slow and inaccurate, and it produces vast amounts of 

paperwork (Yarmohammadi et al. 2017). In addition to difficulties associated with 

manually collecting the required data, design team members generally lack the incentive 

to record and report information. This is largely because designers are expected to complete 

the job under tight schedules and are hence left with little time to keep track of performance 

data (Ding et al. 2014). This task becomes even more challenging, since the disparities 

among numerous project participants make it difficult for design managers to efficiently 

capture the necessary information (Liao et al. 2011). 
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2.1.3 Gap 3 in Knowledge: Manually Collected Design Monitoring Data Are of a Low 

Quality 

The manual nature of current monitoring methods may undermine the quality of 

the measurements because they introduce error and bias into the process. The design 

manager needs to compile large amounts of data from multiple sources and provided by 

various parties involved in the design process (Yin et al. 2011; Sacks & Barak 2007). The 

excessive amount of work required to extract information from the provided data sources 

and perform the necessary analyses may cause human errors that reduce the quality of the 

resulting measures. The collected information also presents a designer’s interpretation of 

what needs to be measured and the way in which this measurement must be conducted; 

therefore, it may not reveal the actual state of the project. Such drawbacks, as well as 

difficulties associated with capturing the information required for accurate measurement, 

have rendered existing design monitoring methods impractical (Yang et al. 2010). The 

design manager consequently relies heavily on experience and informal communications 

with the design team to monitor design projects (Bate & Robert 2007). 

 

2.1.4 Gap 4 in Knowledge: Existing Design Monitoring Methods Are Subjective and 

Judgment-Based 

An accurate measurement of the design progress represents one of the most 

challenging data gathering problems when monitoring design projects (White et al. 2005). 

It was reported that there is a tendency among members of the design team to use as-

planned progress goals as proxy measures for actual progress or to select only those metrics 

that allow for favorable progress to be reported (Meredith & Mantel 2003). This problem 
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is more widespread when non-systematic monitoring methods, such as weighted 

milestones and budget-based monitoring, are used to track design progress. For instance, a 

structural system designer reports to the design manager that 30% of the steel framing has 

been modeled. In this case, the following questions are not clear with regard to the measure 

that has been utilized to evaluate progress: does that figure imply that 30% of the planned 

design hours have been spent, is it 30% of the required design documents that have been 

prepared, or does it mean that 30% of the level of development (LoD) specified in the 

contract has been achieved?  

In addition, the determination of the percentage of completion is primarily based 

on the experience of the designers; therefore, it does not present the real progress of the 

project in an objective manner (Sacks & Barak 2008). Subjective progress reports may also 

be biased as different design disciplines may not reveal the truth considering incentives, 

penalties, and other project-specific conditions. As a result, subjective monitoring methods 

can be misinterpreted, and they can mislead the design project manager, since 

discrepancies between the as-planned and actual design progress remain undetected and 

could lead to further conflicts throughout the project. Also, relying on subjective measures 

to determine design progress is the main source of several problems in planning design 

projects, such as setting unreasonable expectations for design completion and 

misallocating resources to the project (Shahtaheri et al. 2014). For instance, in a case study, 

Leite et al. (2011) challenged the conventional assumption about the effort required to 

generate a design model in a required LoD, and they demonstrated that more detail in the 

model does not necessarily mean a proportionally higher modeling effort. 
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Table 2-1 List of Metrics and Information Items Used in The Existing Literature 

  Productivity Metrics 

 
  

Thomas et al. 

(1999) 
CII  (2001) CII  (2003) 

Chang and 

Ibbs (2006) 
Kim (2007) 

Sacks and Barak 

(2008, 2010) 
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concrete 
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Concrete 
     

Project Delivery System     


Project Profit 
 

 


QA/QC 
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2.2 Research Objectives 

The emergence of open-access design software packages provides a unique 

opportunity to extend the core capabilities of VDC modeling tools. In particular, these 

software solutions can be utilized to record design development events and UI interactions 

with design models. However, no research has been conducted to use such capabilities for 

monitoring design progress. In simple words, various members of the design team leave 

traces behind as they interact with virtual design models. Historical records of design 

development events (for example, changes in design elements, and executed commands by 

each user) provide a rich source of information about the progress of a design project. 

This dissertation seeks to investigate the possibility of utilizing the data of user 

interactions, as well as design development events, to extract and measure useful 

information regarding the design modeling process. Such information will be used to 

examine the research hypothesis that there are meaningful differences among modelers in 

terms of the time it takes them to conduct similar modeling tasks. Additionally, the 

extracted information can be utilized to measure the design modeling progress at the project 

level and to benchmark the performance of each team member involved in the development 

of the design model.  

The motivation behind the proposed research is that design software protocols, such 

as APIs, can be devised to create a novel data acquisition method. Once the system is placed 

in the design environment, a wide range of design development events (for example, 

attributes related the performed design tasks, and UI interaction features) are captured in 

real time and automatically transferred to a database of information that is required for 

design monitoring.  
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This research is the first attempt to introduce the use of design software APIs as an 

alternative source of information for monitoring design modeling progress and analyzing 

modelers’ performance. The fundamentally different property of the proposed approach is 

its adaptability to the development of design models that, by nature, are complex, dynamic, 

and evolving. This overall research objective is broken down into three sub-research 

objectives as follows: (I) to examine the feasibility of extracting modeler performance 

information from design log files, (II) to examine the feasibility of automatically extracting 

modeler performance information using APIs, and (III) to identify optimal design modeling 

teams using performance information. These objectives are discussed in detail below. 

 

2.2.1 Research Objective Ⅰ: To Examine the Feasibility of Extracting Modeler 

Performance Information from Design Log Files 

Due to the difficulties associated with the manual collection of design modeling 

progress data, the first research objective of this study is to empirically examine the 

feasibility of utilizing modeling log data to collect granular performance information. The 

specific tasks to accomplish this objective are as follows: (1) to investigate the presence of 

frequent command sequences (i.e., patterns) that represent specific modeling tasks in 

design log files, and (2) to empirically characterize the performance of modelers based on 

the extracted information. The non-intrusive and cost-effective data acquisition capability 

of the proposed approach will be used to identify and characterize performance variations 

observed among design modelers. The following questions are of interest: 

• What sequences (patterns) are formed from various commands? 

• What types of command sequences do designers execute frequently? 
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•  What patterns are common among different designers? 

•  Is there a meaningful difference between the average time it takes designers to 

execute different command sequences? 

The results of this part of the study are expected to enable design project managers 

to empirically evaluate, benchmark, and compare the performance of their modelers across 

different projects.  

 

2.2.2 Research Objective II: To Examine the Feasibility of Automatically Extracting 

Modeler Performance Information Using APIs 

The second objective of this study is to devise and implement a methodology to 

automatically extract modeler performance information utilizing software application 

program interfaces. API-based information extraction can help design management teams 

to directly collect granular data from design software solutions in real time. The 

information acquired using this methodology includes changes in design elements, 

executed commands by each user, and errors.  

 

2.2.3 Research Objective III: To Identify Optimal Design Modeling Teams Using 

Performance Information 

The final objective of this study is to develop a data-driven approach to identify 

optimum modeling team configuration based on performance information captured 

through a software API. The mathematical model developed in this section helps project 

managers to choose a modeling team that is the best fit for the project at hand.  
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2.3 Research Methodology 

This dissertation aims to address the three presented research objectives in three 

separate sections. The research methodology for each research objective is briefly 

presented in this section, and full details are provided in the corresponding chapters. 

To address the first research objective, a sequential pattern mining (SPM)-based 

approach to retrieve command execution patterns is developed. The following steps are 

taken to develop the proposed approach: 

• Collect design log files from a major international architectural design firm. 

• Extract the required performance information from log files using a tailored text 

parser.  

• Convert the collected data to a form appropriate to be used in string mining 

algorithms.  

• Implement a GST-based pattern mining algorithm to identify common 

command patterns.  

• Calculate the average times it takes modelers to execute identified patterns to 

evaluate the existing performance levels. 

• Examine the possibility of using design log files as rich sources of modeling 

performance data by conducting statistical tests.  

The second research objective is addressed by utilizing design software solution 

APIs to automatically collect and store timestamped design development information. The 

research methodology of this chapter consists of the following steps:  
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• Identify an API functionality capable of recording information in real time 

without disrupting design modeling processes.  

• Design a modeling data collection framework by utilizing the event-handling 

functionality of software APIs.  

• Develop a Revit plugin that is capable of capturing and storing UI interactions 

and model element modification events in real time.  

• Verify the functionality of the developed plugin.  

The plugin developed in this chapter should capture all possible software actions, 

ranging from creating, selecting, and modifying elements to navigating through different 

zones of a virtual model. Such recordings, constituting timestamped event sequences, are 

organized and stored in searchable databases.  

To address the final research objective, a mathematical model is utilized to choose 

and assign modelers to projects based on their past performance information. The following 

steps outline this chapter’s research methodology: 

• Design and conduct an experiment to collect design modeling data utilizing the 

plugin developed in the previous chapter.  

• Analyze the collected data to evaluate individual production rates.  

• Identify the optimal modeling team configuration to minimize lateness utilizing 

the EDD approach.  

2.4 Dissertation Organization 

To achieve the above-mentioned research objectives, the remainder of this 

dissertation is structured as illustrated in Figure 2-2. Chapter 3 addresses the first objective, 
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in which software-generated design log files are analyzed to identify command execution 

patterns and measure task execution times to evaluate modelers’ performance levels.  

The second research objective of this dissertation is addressed in chapter 4. A 

framework to directly capture performance data from software solutions is proposed. The 

proposed approach, which uses event handlers to record the evolution of design models, 

is implemented in a .NET integrated development environment. 

 

Figure 2-2 Chapter Contents 

A methodology to identify the optimal design modeling team is presented in chapter 

5. The external application, developed in the previous section, is used to collect 

performance data and calculate individual production rates. A mathematical model 

identifies the configuration of the optimal design modeling team based on captured 

performance information. Finally, chapter 6 concludes the research works presented in this 

dissertation, and possible future works and extensions to the proposed analysis are 

suggested. 
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2.5 Chapter Summary 

The existing literature highlights the important role of performance management in 

the success of design modeling processes. However, current methodologies do not address 

the problems associated with collecting design modeling data that make evaluating 

performance metrics difficult. These problems can be summarized as follows: 

• There is a significant delay between design modeling data collection and 

performance evaluation.  

• Collecting design modeling performance data is a manual and labor-intensive 

process.  

• Manually collected design modeling performance data are of a low quality.  

• The existing design performance management practices rely mainly on 

subjective and judgement-based information.  

This dissertation seeks to investigate the possibility of utilizing the data of user 

interactions, as well as design development events, to extract and measure useful 

information regarding the design modeling process. Such information will be used to 

examine the research hypothesis that there are meaningful differences among modelers in 

terms of the time it takes them to conduct similar modeling tasks. The specific research 

objectives of this dissertation are as follows: 

I. Examine the feasibility of extracting modeler performance information from 

design log files. 
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II. Examine the feasibility of automatically extracting modeler performance 

information using APIs.  

III. Identify optimal design modeling teams using performance information. 

The first research objective is addressed in chapter 3, where software-generated 

modeling log files are analyzed to identify command execution patterns and measure task 

execution times to evaluate modelers’ performance levels. Chapter 4 addresses the second 

objective; in this chapter, a framework to directly retrieve and store performance data from 

modeling software tools is proposed. The proposed approach utilizes event-handling 

functionality to record the evolution of design models. In chapter 5, an approach to 

identifying the optimal design modeling team is presented. This objective is achieved by 

optimizing the design team configuration using a combination of scheduling and 

sequencing methodologies. A summary of research findings and some recommendations 

on future research directions are presented in the final chapter.  
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CHAPTER 3: EXTRACTING MODELER PERFORMANCE 

INFORMATION FROM DESIGN LOG FILES 

3.1 Introduction 

The ability to collect objective progress data is critical to accurately measure 

performance in design modeling practices. This chapter presents an SPM-based approach 

to retrieving data embedded in design log files. The research objectives of this section are 

to (1) investigate the presence of frequent command sequences (i.e., patterns) that represent 

specific modeling tasks in design log files, and (2) empirically characterize the 

performance of modelers based on the extracted information.  

Throughout this chapter, several steps that are necessary to retrieve performance 

information from design log files, including data collection, data preparation, and frequent 

command pattern extraction, are explained. The Atlanta office of a major international 

architectural design firm provided the data for this chapter. Over 11 million user-model 

interaction records were analyzed to find common command execution patterns among 

building modelers. The novel method created in this chapter contributes to the body of 

knowledge by incorporating the chronological dependencies of textual records into the 

existing pattern matching models. The findings presented in this chapter contribute to the 

state of practice by enabling design project managers to empirically evaluate and compare 

the production rate of their modeling team members.  
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The rest of this chapter is organized as into three broad components. The research 

methodology used to find modeling patterns in design log files is explained next. Then, a 

discussion of the results is provided, followed by a conclusion in the final part.  

 

3.2 Mining Design Log Files 

The widespread utilization of VDC tools presents AEC practitioners with an 

unprecedented opportunity to automatically capture objective, fine-grained performance 

data (Boton et al 2015). Design log files generated by software packages such as Autodesk 

Revit and Tekla Structures can be rich sources of process-specific information. These files 

are unstructured text files that capture all activities that occur during a modeling session 

(Autodesk 2016). Mining the information stored in these files can provide practitioners 

with a unique insight into the evolution of a building model (Yarmohammadi et al. 2016). 

However, existing applications of data mining methods in the context of the AEC industry 

do not incorporate timestamps of unstructured textual data into their analyses.  

Soibelman and Kim (2002) outlined the steps necessary to apply data mining and 

knowledge discovery in databases (KDD) as tools to extract novel patterns in the design 

and construction fields. In two consecutive studies, Caldas et al. (2002) and Caldas and 

Soibelman (2003) proposed text mining-based approaches to automatically classify 

unstructured construction documents. These efforts laid a solid foundation for a 

methodology that Caldas et al. (2005) developed to retrieve project documents (for 

example, requests for information [RFIs], change orders, and design reviews) based on the 

building model element to which they correspond. Fan et al. (2014) proposed an extended 



27 

 

information retrieval system capable of classifying unstructured documents based on their 

corresponding projects. Construction cost overrun prediction by William and Gong (2014) 

is another example of implementing data mining algorithms to analyze unstructured textual 

data. They used a stacking ensemble model of several classifiers to forecast the level of 

cost overruns. While these studies offer valuable insights into how to overcome several 

challenges in handling unstructured textual AEC data, they do not address the way in which 

the chronological dependencies of temporal data can be incorporated into the analysis. This 

is a significant limitation as the temporal aspect of unstructured textual data stored in 

design log files captures the progress of design modeling. Due to this shortcoming, the 

discussed methods cannot be utilized to mine meaningful information from design log files, 

whereas sequential pattern mining methodologies have the capability to analyze and 

retrieve information from timestamped textual data.  

 

3.3 Research Methodology 

3.3.1 Dataset 

The presented study utilized design log data from an international architectural 

design firm with operational expertise in multidisciplinary practices, including 

architecture, interiors, urban design, and landscape architecture. Journal files generated by 

Autodesk Revit software were collected to conduct the analysis. These files capture all 

modeling activities that occur during a design session as well as system information, such 

as memory and processor usage. Revit journal files are largely used to diagnose and 

troubleshoot technical problems. However, in this research, these log files were utilized as 

a non-intrusive, data capturing mechanism for documenting designer-software interactions 
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and recording model development events. The author had access to data from healthcare 

projects that were designed in 2013 and 2014. The provided database consisted of over 

4,000 Revit journal files that were later parsed to extract and store the recordings of 

executed commands, amounting to over 10 GB of structured data. In addition to the 

modeling events, these journal files contained information on the modeler’s identity and 

the projects that the models belonged to.  

The information extracted from the Revit journal files was utilized to examine the 

research hypothesis that there are meaningful differences among modelers in terms of the 

time it takes them to conduct similar modeling tasks. In the context of this research, a 

journal log file is regarded as a database of ordered modeling events (commands), recorded 

with a concrete notion of time; a frequent pattern is an ordered set of individual commands 

that occur more than a threshold number of times (i.e., minimum support) in the original 

sequence database; and minimum support is an indication of how frequently a pattern 

appears in the database.  

The following questions are of interest in this research:  

• What types of commands sequences do modelers execute frequently?  

• What structures are formed from various commands at each stage of modeling, 

and how?  

• What are the command pattern sequences common among different modelers? 

•  What types of modeling tasks do these patterns represent?  

• Is there a detectable difference between the time it takes BIM users to execute 

common pattern sequences? 
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3.3.2 Algorithm 

Log files (or transaction logs) have long been studied in the data mining 

community. These files can be generated in different applications, such as retail 

transactions data and web access logs. Srikant and Agrawal (1996) introduced the 

generalized sequential pattern (GSP) algorithm to mine shopping patterns. The authors 

studied a large database of customer transaction data, where each transaction consisted of 

a customer-ID, a transaction time, and the items bought in the transactions. Compared to 

exhaustive search methods, the GSP significantly reduces the search space by utilizing a 

downward closure property, which guarantees that for a frequent set of items, all its subsets 

are also frequent, and hence infrequent sets can be removed from the search space without 

affecting the results (Pei et al. 2001a). However, the time and memory performance of the 

GSP is relatively low as a large number of candidates must be generated and stored in each 

repetition for evaluation (Verma & Mehta 2014). Other general methodologies to mine 

frequent subsequences, such as the PrefixSpan algorithm (Pei et al. 2001b) and CloSpan 

(Yan et al. 2003), further reduce the size of the search space by taking advantage of divide-

and-conquer approaches. However, these SPM methodologies do not preserve the exact 

order of elements in a sequence. Therefore, some of the elements in extracted sequences 

may not necessarily be consecutive in the original string of transactions. In this chapter, 

the author used a special SPM algorithm, called a GST, that maintains the order in which 

the executed commands are recorded.  

A major objective of this dissertation is to characterize BIM users based on the time 

it takes them to execute modeling tasks. Therefore, in addition to investigating different 

commands and calculating their statistics individually, modelers are characterized based 
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on the common sequence of commands they execute. For example, by looking at each type 

of command individually, it is unlikely to determine how quickly a user performs the task 

of “modifying the position of an object.” Instead, this measurement can be obtained by 

calculating the average time it takes the modeler to perform the “select-rotate-move” 

command sequence on a model element.  

The GST can extract such patterns, since it preserves the original order of recorded 

transactions. Xiao and Dunham (2001) first proposed applying a GST data structure to the 

mining of web access log data. The authors analyzed clickstream data, which was generated 

based on the access by Internet users, to identify frequent web page traversal patterns. The 

technique proposed by Xiao and Dunham achieved a high level of adaptability to large 

databases through dynamic compressions and effective pruning. Guerbas et al. (2013) 

introduced an improved version of the GST algorithm with an optimized data structure to 

extract the page visit patterns of Internet users. The authors’ primary objective was to 

improve the search experience of users by predicting the pages they intended to view next. 

To this end, they utilized the GST algorithm to identify common web navigational patterns 

among users with similar interests. The methodology utilized in this chapter is a modified 

version of Guerbas et al.’s algorithm that is tailored for mining journal log files.  

To better understand how GST data structures are built, consider two strings of 

characters “abab” and “aab”. As presented in Table 3-1, unique identifiers “$” and “#” are 

added to each string. Each character is assigned an index number starting from 1. Also, all 

possible suffixes of these two strings, including their unique identifiers, are listed in the 

table.  
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Table 3-1 Sample String Suffixes 

 String 1 String 2 

 abab$ aab# 

Character Position Index 12345 1234 

All Possible Suffixes 

(Substrings) 

    $ 

    b$ 

    ab$       

    bab$       

    abab$ 

# 

    b#  

    ab#       

    aab#          

A suffix tree “T for m-character string S is a rooted, directed tree with exactly m 

leaves numbered 1 to m” (Gusfield 1997). In this example, string 1 has three unique 

characters “a”, “b”, and “$”. Therefore, as indicated in Figure 3-1, the root node (N1) will 

have three children. To continue building the tree, the longest path from the root, which 

matches a prefix of each suffix, should be found. Then, the suffix structure is built by 

adding leaves to the existing node. For instance, “b$” and “bab$” are represented by adding 

node “N3” to prefix “b”. 
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Figure 3-1 Suffix Tree Data Structure for One String 

 

The remaining characters of each suffix (i.e., “$” and “ab$”) are then added as 

children of internal node “N3”. The numbers in the boxes at the end of each branch 

represent the starting character’s position index. For instance, suffix “bab$” (represented 

on path N1-N2) starts at index number 2 while suffix “$” starts at the last index.  

The same steps should be repeated to add string 2 to the existing suffix tree data 

structure. String 2 has three unique characters “a”, “b”, and “#”. As illustrated in Figure 3-

2, only one more branch needs to be added to the root node “N1,” since it already has two 

children representing “a” and “b”. As with string 1, the remaining suffixes are added by 

searching for the longest path from the root that matches a prefix of the substrings. The 

starting character indexes are then added to the end of each node-to-leaf path. This step is 

continued until all suffixes are added to the tree. The resulting data structure is a GST 

(Figure 3-2).  
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Figure 3-2 A GST Data Structure for Multiple Strings 

 

The constructed data structure can be used to find the number of occurrences of 

each suffix in multiple strings. For instance, substring “ab” is on the N1-N2-N4 path; 

therefore, N4’s children should be counted to calculate the total number of times “ab” 

appears in the strings 1 and 2. In fact, a simple check confirms that “ab” appears a total of 

two times in the two analyzed strings. The implementation details, as well as the obtained 

results, are discussed in the following sections. 

 

3.3 Implementation 

To fulfill the objectives of this chapter, the required steps to extract the necessary 

information from Revit journal files and identify common frequent command execution 

sequences are presented in Figure 3-3. This process consists of three major parts. First, a 

large number of Revit journal files that belong to a design project were collected and parsed 
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to extract and store necessary data items. Second, the obtained data were transformed to 

construct long strings of characters and generate input vectors. Finally, the GST data 

structures for each user were constructed to retrieve frequent patterns and estimate task 

execution times. 

 

Figure 3-3 Proposed Methodology for Extracting Information from Revit Journal Files and 

Identifying Common Frequent Command Execution Sequences 
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3.3.1 Data Collection 

The temporal command execution data items were extracted, including the user ID, 

date, time, project name, Revit version, view type, and command description, from several 

journal files that the industry partner provided. This step was particularly challenging as 

there is no documentation available on a public domain that specifies how and where 

different data components are recorded. Table 3-2 provides examples of each data item as 

it appears in the journal files. The files were manually searched to identify the local format 

by which each data instance (for example, project name, command, or view type) is 

recorded. 

Once these protocols were identified, a text processor was developed in the Python 

programming language. The developed text parser uses regular expressions to extract and 

store information in a comma-separated values (CSV) file, as presented in Table 3-3. Non-

value-adding commands, such as “cancel the current operation” or “delete”, were removed 

from the stored entries to improve the quality of the obtained command patterns. 

Table 3-2 Examples of Journal File Recorded Data 

Command Name Example 

User Name 
 

Date and Time 
 

Project Name 
 

General Command 

Description  

Specific Command 

Description  

View 
 

Software Version 
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Table 3-3 Examples of Structured Processed Data 

Modeler 

Name 
Time 

Project 

Name 

General 

Command 
Specific Command 

Revit 

Version 

View 

Type 

modeler 10:30:07 StdUnion "Internal" "Show or hide recent files 2014 Floor Plan 

modeler 10:33:50 StdUnion "StartupPage" "Open an existing project 2014 Floor Plan 

modeler 10:36:51 StdUnion "Internal" "Print the active window 2014 Sheet 

modeler 10:45:25 StdUnion "Internal" "Activate this viewport 2014 Sheet 

modeler 10:48:04 StdUnion "Internal" "Modify view templates 2014 Sheet 

modeler 10:48:07 StdUnion "Internal" "Manage links 2014 Sheet 

modeler 10:48:09 StdUnion "AccelKey" "Steering wheels 2014 3D View 

 

3.3.2 Input Preparation 

The records from five modelers, which each contained over 105,000 log entries, 

were used to conduct further analyses. The selected modelers designed the interior systems 

of healthcare building projects conducted in 2013 and 2014. To prepare the input for the 

GST, the log entries for each user were modeled as long strings of characters. To this end, 

all available sequences for each modeler were first retrieved and organized. Sequences that 

had two consecutive commands that were executed 10 minutes or more apart were split 

and treated as separate series. The 10-minute interval was chosen per the designers’ 

suggestion, since no clear indicator could be found for distinguishing consecutive 

sequences in the recorded data.  Once all command vectors for each user were constructed, 

the entries were transformed into strings by assigning a unique character to each general 

command or specific command combination (Figure 3-4). The final strings that were 

generated for each modeler maintained the original chronological order of the data. 
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Figure 3-4 Command Vector Transformation 

 

3.3.3 Pattern Extraction 

Testing whether a sequence occurs frequently in large databases needs to be 

performed in an efficient manner. Generalized suffix tree data structures can provide linear 

time solutions to challenging string mining problems (Gog et al. 2014). Figure 3-5 lists the 

steps taken to identify frequent command execution sequences where the original order of 

the data is maintained. Once the input strings for each user were prepared, GST data 

structures were constructed by considering all possible suffixes. Then, a depth-first search 

(DFS) was conducted to generate an ordered list of leaf nodes of the tree. Therefore, the 

leaves corresponding to each internal node are a consecutive sub-list of this ordered list of 

leaves. The DFS saves the start and end positions of the leaves, based on their DFS order, 

for each pattern (i.e., internal node) in a helper hash table. The subtraction of the end 

position and the start position will provide the number of repetitions of the specific pattern. 

Additionally, in this way, all the instances of that pattern in the original string can be 

accessed by retrieving the leaf nodes and their corresponding suffix indexes. This technique 

enables one to not only calculate the frequency of design patterns but also efficiently 

measure the average time of each pattern in the whole string of commands. These patterns, 
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then, were filtered based on their minimum length and minimum frequency. At the end of 

this step, a limited number of the most frequent substrings, with lengths of 3 to 8 that were 

common between all users, was selected for further analysis. These substrings are called 

“primitives” as they represent different modeling tasks. Finally, the average time that each 

user spends performing each primitive was calculated, and the modelers were ranked 

accordingly. 

 

 

Figure 3-5 Pattern Extraction Using a GST 

 

3.3.4 Discussion of Results 

Table 3-4 provides some general information about the data utilized in this chapter. 

The five modelers selected for further analysis had a total of 582,887 entries. Prior to 

mining the dataset, some preliminary analyses were conducted to identify the most 

frequently executed individual commands, and the results are presented in Table 3-5. 
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“Move selected objects or their copies”, “align references”, and “create a line” were 

consistently the three most frequently executed individual commands among all five 

modelers. This consistency among the identified commands further supported the author’s 

initial hypothesis that there are common command execution patterns among modelers. 

“Floor plan”, “sheet”, and “3D view” were also identified as the three most frequently used 

views during the Revit sessions. 

Table 3-4 Dataset Statistics 

Data set Period (Year) Number of entries 

Modeler 1  2013 126,815 

Modeler 2 2014 122,813 

Modeler 3 2014 114,290 

Modeler 4 2013 112,082 

Modeler 5 2014 106,887 

 

Table 3-5 Most Frequent Individual Commands 

  Frequency 

Modeler Move selected objects or their copies Align references Create a line 

Modeler 1  19.30% 11.92% 7.89% 

Modeler 2 15.27% 13.56% 14.23% 

Modeler 3 18.19% 6.21% 11.07% 

Modeler 4 15.57% 15.98% 13.07% 

Modeler 5 14.31% 6.94% 10.02% 

 

In the next step, frequent command execution patterns for each modeler were 

retrieved using GST data structures. Several arbitrary minimum support values were tested, 

of which 250 and 500 were found to be optimal. The minimum length of extracted patterns 

was also set to 3. The top frequent patterns obtained for the two minimum support values 

are presented in Table 3-6. The primitives that were extracted for a minimum support of 

250 are longer, and they represent meaningful modeling activities. Pattern 1 corresponds 
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to the task of creating and extending multiple lines. In this case, modelers have hidden a 

few objects to gain easier access to the elements they want to modify. The second pattern 

appears to present cases where modelers make copies of different elements and visualize 

their dimensions. The third pattern captures the commands used to make copies of a 

specific object in the model and modify them.  

Table 3-6 Common Command Sequences 
 

Pattern 1 Pattern 2 Pattern 3 

E
x

tr
ac

te
d

 P
at

te
rn

 2
5

0
 

1. Select objects to modify 

2. Hide selected elements 

3. Create a straight detail 

line or a detail arc 

4. Rotate selected object(s) 

5. Trim or extend two lines 

or walls to make a corner 

1. Copy the selection and put 

it on the clipboard 

2. Move copies of selected 

objects 

3. Create aligned dimensions 

1. Select objects to modify 

2. Create an object similar to 

the selected object 

3. Move selected objects or 

their copies 

4. Align references 

5. Finish sketch 

E
x

tr
ac

te
d

 P
at

te
rn

 5
0

0
 

1. Activate this viewport 

2. Copy the selection and put 

it on the clipboard 

3. Deactivate the currently 

active viewport 

 

1. Move selected objects or 

their copies 

2. Move selected objects or 

their copies 

3. Move selected objects or 

their copies 

1.  Deactivate the currently active 

viewport 

2. Activate this viewport 

3. Control the visibility and 

appearance of objects 

(applied only in the active 

view) 

 

The obtained patterns became shorter when the minimum support threshold was 

increased. This observation was expected, since longer sequences tend to match less 

frequently. The first pattern corresponds to cases where modelers navigate through 

different viewpoints to select and copy certain objects. The third pattern also captures the 

command sequences used to change the visibility of different layers. In contrast to these 

two patterns, it is not clear what specific activity the second command sequence represents. 

More examples of such repetitive sequences for both thresholds were observed. The 

presence of such patterns may be because of the noisy input data or the consecutive 
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execution of similar commands by modelers. Increasing the minimum support beyond 500 

resulted in capturing more patterns with repetitive entries that were not representative of 

any specific modeling tasks.  

 

Figure 3-6 Task Execution Times 

 

In addition to identifying the tasks that correspond to different command sequences, 

the average time it took modelers to execute these tasks was utilized to evaluate their 

performance. Thirty common patterns with lengths of between 3 and 8 were selected for 

this purpose. As illustrated in Figure 3-6, there is a visible difference among modelers in 

terms of the time it takes them to conduct similar modeling tasks. The point outliers 

measured for modelers 1, 2, and 5 could represent specific tasks that these modelers are 

particularly less productive in executing and for which they may need further training. A 

one-way ANOVA test was conducted to empirically check the initial research hypothesis 

formulated as follows: 

H0. There is no difference among BIM modelers in terms of the average time it 

takes them to execute similar modeling tasks.  
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Ha. There is a significant difference among BIM modelers in terms of the average 

time it takes them to execute similar modeling tasks. 

The results are listed in Table 3-7 and  

The obtained results are listed in Table 3-9. The calculated P-values indicate that, in 

most cases, the null hypothesis can be rejected in favor of the alternative one with a 99% 

level of confidence. The test result was not significant for modelers 2 and 3; this can be 

explained given the fact that modelers 2, 3, and 4 were less experienced in working with 

Revit compared to others. These findings indicate that the proposed method can capture 

performance differences and similarities among each pair of modelers when their times for 

the same type of patterns are compared. 

Table 3-8. The calculated F-ratio and P-value demonstrate that the null hypothesis 

can be rejected in favor of the alternative one with 99% confidence. Therefore, there is 

enough evidence to claim that the information embedded in design log files in general, and 

Revit journals in particular, can effectively capture performance variations among 

modelers. Another interesting observation is that the average times for the faster modelers 

has less variation compared to others. For instance, the calculated standard deviations for 

modelers 1 and 5 (7.4 and 4.4 seconds respectively) are considerably smaller than for the 

other three modelers (22.6, 15.8, and 12.2 seconds respectively). This could be because 

faster modelers are more skilled in executing different tasks and thus consistently quicker 

across the board. However, slower modelers are more skilled in executing some tasks and 

less experienced in executing others. Therefore, there is a larger variance in terms of the 

average times it takes them to conduct different modeling tasks. 
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The author also conducted multiple unpaired student t-tests to verify whether the 

calculated times capture the variations among individual modelers. The null and alternative 

hypotheses for these tests were formulated as follows: 

H0. µ_1 = µ_2, where µ_1 and µ_2 are the mean of the average times for the two 

populations being tested.  

Ha. µ_1 ≠ µ_2. 

 

Table 3-7 Pattern Execution Times 

 Average Execution Time (s) 

Patterns 

(Minimum Support = 250) 
Modeler 1 Modeler 2 Modeler 3 Modeler 4 Modeler 5 

1 50.4 99.1 72.7 50.4 51.3 

2 37.3 77.7 64.9 75.5 43.0 

3 33.3 93.3 63.4 60.6 56.6 

4 38.4 95.9 71.4 72.6 51.3 

5 38.1 111.6 87.0 96.2 48.2 

6 50.7 195.8 138.1 93.5 50.5 

7 34.5 88.2 83.5 77.3 50.1 

8 37.2 110.3 92.5 90.4 59.6 

9 36.7 135.4 77.4 55.5 48.7 

10 35.6 92.1 81.6 88.4 56.7 

11 33.2 102.8 69.8 74.8 45.3 

12 48.3 114.6 100.5 70.2 49.5 

13 44.3 95.7 87.3 66.7 56.9 

14 48.1 104.8 99.3 89.3 44.4 

15 45 121.1 104.7 72.1 46.2 

16 31.5 83.4 73.2 63.3 50.4 

17 35.2 88.2 99.0 67.6 43.3 

18 42.7 93.5 93.1 76.4 48.0 

19 29.9 89.4 99.8 61.1 47.2 

20 44.1 101.9 96.2 83.0 50.8 

21 29.6 92.4 73.4 88.4 52.7 

22 60.9 92 105.9 63.7 45.5 

23 48.8 80.1 102.3 57.7 50.5 

24 47.3 83.3 92.4 70.2 44.2 

25 37.9 77.3 66.2 65.1 48.9 
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26 30.2 80 96.3 75.5 47.4 

27 39.7 81.5 79.9 87.0 51.8 

28 42.3 109.7 84.2 74.5 43.7 

29 44.3 97.6 82.5 66.7 49.2 

30 43.9 102 91.3 90.9 43.1 

�̅� 40.666 99.694 87.666 74.164 49.184 

s 7.419 22.644 15.794 12.231 4.363 

�̅�ave 70.275     

 

The obtained results are listed in Table 3-9. The calculated P-values indicate that, 

in most cases, the null hypothesis can be rejected in favor of the alternative one with a 99% 

level of confidence. The test result was not significant for modelers 2 and 3; this can be 

explained given the fact that modelers 2, 3, and 4 were less experienced in working with 

Revit compared to others. These findings indicate that the proposed method can capture 

performance differences and similarities among each pair of modelers when their times for 

the same type of patterns are compared. 

Table 3-8 The F-test Results 

Source df* SS** MS*** F-statistic P-value 

treatments 4 75137.236 18784.309 95.2698 0.0000 

error 145 28589.583 197.170   

total 149 103726.818    

      

* Degree of freedom 

** Sum of squares 

*** Mean square 

  

 

Table 3-9 Pairwise Comparison of Modelers 

 Modeler 2 Modeler 3 Modeler 4 Modeler 5  

Modeler 1 0.00000 0.00000 0.00001 0.00001 

T
-test 

 P
-V

alu
es 

Modeler 2  0.02029 0.00000 0.00000 

Modeler 3   0. 00048 0.00000 

Modeler 4    0.00001 
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3.4 Chapter Summary 

Design modeling is crucial to the success of construction projects. However, a high-

quality building model does not occur in a void; instead, it is the result of a well-managed, 

multidisciplinary process. To effectively manage such processes, accurate performance 

data are required to evaluate and track different metrics. In this chapter, the utilization of 

modeling development information, embedded in design log files produced by Autodesk 

Revit, was proposed as a rich source of performance data. To this end, the necessary steps 

to extract and analyze the data were outlined, and an effort was made to make a contribution 

at each step. Throughout the first step, the format in which different information items are 

stored was identified. Using these protocols, a text parser was developed to extract the 

required information items. This text parser accepts the raw journal files and produces 

structured CSV files. The obtained data were further cleaned and organized by removing 

non-value-adding entries, such as cancel and error messages. The conclusion derived at 

this level is that using the suggested approach will help to process unstructured journal log 

files and produce high-quality input data for the mining algorithm. In the next step, GST 

data structures were utilized to identify common command sequences among Revit users. 

First, command sequences were transformed into character-based input strings. Then, the 

transformed data were utilized to construct a GST. Frequent command patterns were 

identified by conducting a DFS on the constructed trees, and the extracted patterns for 

different users were compared against each other to identify shared sequences. The 

conclusion at this step is that a GST-based string mining approach is an efficient method 

for extracting common command patterns among several modelers. In addition to 

identifying these common patterns, the average time it takes the selected modelers to 
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execute command sequences was calculated. The obtained results indicate that there is a 

statistically significant difference among the modelers in terms of the time it takes them to 

conduct similar modeling tasks. This finding confirms the initial hypothesis that Revit 

journal files can be used as a rich source of data to capture performance variations among 

multiple modelers. 

This chapter contributes to the state of knowledge by proposing a tailored string 

mining algorithm that is capable of extracting meaningful information from timestamped 

design development data. Furthermore, the proposed methodology contributes to the state 

of practice by enabling design project managers to gain unprecedented insight into the 

evolution of a building model using the information embedded in design log files. 
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CHAPTER 4: AUTOMATIC EXTRACTION OF MODELER 

PERFORMANCE INFORMATION 

4.1 Introduction 

It was demonstrated that design log files can be used to collect objective data that 

are necessary to measure, benchmark, and compare design modeling performance. 

However, there is still a need to use text parsers to retrieve information from log files, given 

that the data embedded in them are unstructured. This chapter addresses the second 

research objective of this dissertation, which is to directly extract modeling information 

from design software solutions using APIs. To achieve this objective, the remainder of this 

chapter is structured as follows: first, a brief introduction to object-oriented software 

packages is presented; then, the proposed API-based data collection framework and the 

steps conducted in this chapter to implement it are described; thereafter, the plugin 

developed in this chapter to automatically collect design modeling performance 

information from Autodesk Revit is explained; and finally, the conclusions are presented.  

This chapter contributes to the existing body of knowledge by introducing a 

framework for capturing accurate performance data from design software solutions. The 

proposed methodology can be implemented in any design software package with open-

access capability. The findings of this chapter can help design managers to acquire progress 

information without the need to manually record and report data.  
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4.2 Application Programming Interfaces 

Conducting data-driven design monitoring requires massive amounts of granular 

information to be collected from various sources and several project participants, and the 

emergence of API-enabled design software packages provides a unique opportunity to 

extend the core capabilities of VDC modeling tools (Zhang et al. 2013). Even though such 

APIs can also be utilized to record design development events and UI interactions with 

design models, no research has been conducted that uses such capabilities to monitor 

design progress. In simple words, various members of the design team leave traces behind 

as they interact with virtual design models. Historical records of design development events 

(for example, changes in design elements, and executed commands by each user) provide 

a rich source of information about the progress of a design project.  

The motivation behind the proposed approach is that design software protocols, 

such as APIs, can be devised to create a novel data acquisition method. Once the system is 

placed in a design environment, a wide range of design development events (for example, 

attributes related to the performed design tasks, UI interaction features, and object 

parameters) are captured in real time and automatically transferred to a database of 

information requirements for design monitoring. This capability can facilitate the creation 

of a non-intrusive mechanism to capture model development events and the parametric 

information of elements throughout different phases of a design project. This chapter is the 

first attempt to introduce the use of design software APIs as an alternative source of 

information for monitoring design progress and analyzing performance. The fundamentally 

different property of the proposed approach is its adaptability to the evolution of design.  
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4.3 Research Description 

In this research, the functionality of event handling that is present in design 

software protocols is utilized to record model development events. As noted in the 

introduction section, collecting objective data is necessary for evaluating design 

performance metrics. Therefore, the first step is to create a robust framework to 

automatically capture detailed design progress information. Event handlers offer a 

computationally efficient solution to address the data collection issue: an event-handling-

based system can record all possible software actions ranging from creating, selecting, and 

modifying elements to navigating through different zones of a virtual model, as well as 

information regarding the current dimension, cost, material, and family features of each 

element. 

The Autodesk Revit API allows for the development of external applications. This 

framework allows one to customize Revit ribbon panels and controls, and record model 

development events (Autodesk 2017a). This includes more than 1,500 events ranging from 

dialog box showing to errors and ribbon button clicks. An event-based framework can be 

implemented on parametric design software solutions other than Revit, since these 

solutions are created based on the principles of object-oriented programming (OOP).  

As illustrated in Figure 4-1, three different event handler functions were used to 

develop a data collector Revit plugin. The first function records the user’s interaction with 

Revit ribbon buttons, and it is triggered each time modelers use the Revit interface or a 

keyboard shortcut. The second function reacts whenever a model element is added, 

modified, or deleted. In addition to recording the type of change, other information items, 

such as the element’s type, its name, and its globally unique identifier (GUID), are 
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collected. The final function is triggered when an error occurs during the modeling session. 

This includes memory and user-induced errors, and any other software failure that 

interrupts the workflow. The information captured using these functions is written to a text 

file in real time. Also, the collected data are recorded in a pre-defined, comma-separated 

format that is machine-readable. This facilitates the analysis of modeling performance data, 

since there is no need for a text parser to retrieve the information. The functionality of this 

plugin is validated through experiments that are conducted in the next chapter, and the 

steps taken to implement this framework are outlined in the following section.  

 

Figure 4-1 Research Methodology for Developing a Data Collector Plugin 
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4.4 Implementation 

4.4.1 External Application Interface  

To develop a Revit plugin, the IExternalApplication interface should be 

implemented. This interface has two abstract methods: OnStartup() and OnShutdown(). 

These methods, which should be overridden, are called when Revit starts and closes 

respectively. Registering event handlers in the OnStartUp() method enables the plugin to 

automatically start working when a Revit project is opened. This is particularly important 

as the goal of this chapter is to collect modeling progress data without any manual 

intervention.  

Figure 4-2 presents the segment of C# code where the OnStartUp() and 

OnShutDown() methods are implemented. The input parameter, UIControlledApplication, 

provides access to the group of event handlers that needs to be activated, and Revit 

periodically checks whether any registered events are raised. The following three event 

handlers were registered in the OnStartUp() method: 

• RibbonItemExecutedEventArgs—this event handler is triggered when a 

ribbon button is clicked or a keyboard shortcut is used. ID_EDIT_MOVE and 

ID_OBJECTS_WALL_RibbonListButton, which can be used to move 

elements and create a wall respectively, are instances of such events.  

• DocumentChangedEventArgs—this event handler is executed when a model 

element is changed. These changes include addition, any type of modification, 

or deletion. 
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Figure 4-2 Event Handler Registration in OnSartUp() and OnShutdown() Methods 
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• FailuresProcessingEventArgs—this event handler is activated when a user-

induced error or software failure occurs, including memory errors and wrong 

element positioning warnings. 

Once these events are registered at the start up, the plugin writes the current time 

and date to a text file where all information will be recorded. This task is done by creating 

a DateTime object, which returns the current date and time. The OnShutdown() method is 

called when Revit is closed, and as evident in Figure 4-2, this method deactivates the event 

handlers that are registered in OnStartup(). Unregistering events is necessary to avoid 

interruption caused by the plugin producing exceptions. Similar to the previous method, 

OnShutdown() uses a DateTime object to record the current date and time in the destination 

text file.  

 

4.4.2 Ribbon Item Event Handler  

Ribbon item event handler is a ribbon-specific interface under the 

Autodesk.Windows class. This class provides access to track the execution of commands 

using ribbon buttons and keyboard shortcuts in several Autodesk products, including Revit. 

Figure 4-3 presents the implementation of the CommandExecuted class, which responds 

to the signals raised by the RibbonItemExecutedEventArgs event handler. Once this event 

is raised, the plugin writes the following information regarding the nature of the executed 

command to the text file: 

• Entry identifier—the keyword “Command” is used in the beginning to specify 

the type of information recorded. 

• Current time and date (now)—these are recorded using a DateTime object.  
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• Command-execution point (it.ToString())—this specifies whether the 

command is executed using ribbon buttons or keyboard shortcuts (for example, 

“UIFramework.SketchGalleryItem” and “Autodesk.Windows.RibbonButton”) 

• Command id (it.Id)—this represents the unique IDs specified by Autodesk (for 

example, “ID_New_Revit_Design_Model” and “ID_Edit_Move_Copy”). 

• Complementary command information (it.Cookie)—this contains more 

detailed information regarding the nature of executed commands (for example, 

“SketchGalleryItem_ID_Object_3D_Curve_Spline_Through_Points” and 

“ID_Button_Select_Modify”). 

 

 

Figure 4-3 Ribbon Item Event Handler Implementation 
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4.4.3 Document Changed Event Handler  

Many actions, such as dragging and deleting elements, are conducted without any 

interactions with the Revit ribbon buttons and keyboard shortcuts. In these cases, the ribbon 

item event handler will not receive any signals, and it will not write the event to the 

destination text file. To address this issue, the action DocumentChangedEventArgs is 

activated when any change occurs to the model, including the execution of non-ribbon 

commands.  

 

Figure 4-4 Document Changed Event Handler Implementation 

 

Figure 4-4 presents the implementation of the DocumentChanged event handler. 

Three different element modifications are of interest: 

• Element deletion—the GUIDs of deleted elements are collected using the 

“GetDeletedElementIds()” method. 
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• Element modified—the GUIDs of existing elements that have been modified in 

any form are collected using the “GetModifiedElementIds()” method. 

• Element addition—the GUIDs of newly added elements are collected using the 

“GetAddedElementIds()” method. 

Figure 4-5 presents the implementation of the element deletion event handler. The 

current date and time are returned using a DateTime object. Furthermore, in case there are 

any deleted elements, the program loops through the “DeletedElements” collection. The 

following information is then printed for each deleted element: 

• Entry identifier—the keyword “ElementChange” displays the type of 

information recorded.  

• User—this is the name of the modeler. 

• Current time and date (now)—these are the current date and time captured by 

a DateTime object.  

• Change identifier—this represents the keyword “Deleted” to specify the type 

of change. 

• Element id (id.IntegerValue)—this is the deleted element’s GUID.  
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Figure 4-5 Element Deleted Event Handler Implementation 

The element addition function is implemented as demonstrated in Figure 4-6. An 

advantage of this method is its access to BoundingBoxXYZ objects. The bounding box 

objects that are obtained from elements that represent “the boundary of the element in a 

given view” (Revit API Doc 2016). The extents of the bounding box are specified by “three 

orthogonal planes extended through the minimum (Min) and maximum (Max) points.” 

This box coordination information is useful for identifying the initial position of elements 

when they are added to a model. Furthermore, the information items recorded when an 

element is added to a model are as follows: 

• Entry identifier—this is the keyword “ElementChange” to identify the type of 

information entry.  

• User—this is the name of the modeler. 

• Current date and time (now)—these are the current date and time captured by 

a DateTime object. 

• Change identifier—this represents the keyword “ADDED” to specify the type 

of change.  
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• Element category (Category.Name)—this identifies the category or 

subcategory to which an element belongs, for example, doors or walls.  

• Element bounding box min (box.Min)—this is the minimum extent point of 

the element bounding box.  

• Element bounding box max (box.Max)—this is the maximum extent point of 

the element bounding box.  

• Element type (Element.GetType)—this provides more details on the element 

category. 

• Element Family (Element.Name)—this is the element family that is defined as 

a “group of elements with a common set of properties, called parameters, and a 

related graphical representation” (Revit API Doc 2017). 

• Element id (id.IntegerValue)—this is the modified element’s GUID.  

• Current view (currentView.Name)—this is the current elevation perspective of 

the model.  

• Project name (doc.PathName)—this represents the directory address of the 

project being modeled.  

 

 

Figure 4-6 Element Addition Event Handler Implementation 
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Finally, the implementation of the element modified method is illustrated in Figure 

4-7. This method is triggered either when a ribbon item button is clicked or when a direct 

element modification, such as dragging, takes place. In case of ribbon buttons, both the 

ribbon item event handler and the element modified functions will produce entries. The 

information that the element modified method records is as follows: 

• Entry identifier—this is the keyword “ElementChange” to identify the type of 

information entry.  

• User—this is the name of the modeler.  

• Current date and time (now)—these are the current date and time captured by 

a DateTime object. 

• Change identifier—this represents the keyword “MODIFIED” to specify the 

type of change.  

• Element category (Category.Name)—this identifies the category or 

subcategory to which an element belongs, such as doors or walls.  

• Element bounding box min (box.Min)—this denotes the minimum extent point 

of the element bounding box.  

• Element bounding box max (box.Max)—this denotes the maximum extent 

point of the element bounding box.  

• Element type (Element.GetType)—this provides more details on element the 

category. 

• Element Family (Elemeent.Name)—this is the element family. 

• Element id (id.IntegerValue)—this represents the modified element’s GUID.  
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• Current view (currentView.Name)—this is the current elevation perspective of 

the model.  

• Project name (doc.PathName)—this is the directory address of the project 

being modeled.  

 

Figure 4-7 Element Modification Event Handler Implementation 

 

4.4.4 Software Failure Event Handler 

Figure 4-8 presents the implementation of the software failure event handler. 

Events, such as errors and warnings, signal this handler to capture the following 

information:  

• Entry identifier—the keyword “ElementChange” to identify the type of 

information entry.  

• User—the name of the modeler.  

• Current date and time (now)—the current date and time captured by a 

DateTime object. 



61 

 

• Failure type (Failure.GetTransactionName)—the names of the transactions 

associated with the failure event. 

 

 

Figure 4-8 Software Failure Event Handler Implementation 
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4.5 Plugin Functionality Validation 

A test was conducted to ensure the functionality of the developed Revit plugin, and 

through this test, simple 3D models were created. Every ribbon command execution, direct 

element modification (mouse drag), keyboard shortcut, and error warning were manually 

recorded, and these recordings were then compared with the output produced by the plugin 

(Figure 4-9). The accuracy of the plugin’s performance was validated by comparing the 

output with the manually recorded information.  

 

Figure 4-9 Sample Plugin Output 

 

4.6 Chapter Summary 

This chapter described a non-intrusive mechanism to capture model development 

events that documents the evolution of design throughout different phases of a project. 

Current design practices rely on VDC tools to generate and manage digital representations 

of the physical and functional characteristics of a project. The major focus of the proposed 
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approach is to capture temporal modeling events using software application protocols. This 

novel approach provides practitioners with broader access to granular design development 

data that can be used to generate insights into design modeling performance patterns. 

This chapter utilized modeling solution APIs to automatically collect and store 

timestamped design development information. The proposed passive data recording 

approach allows for the real-time capture of comprehensive UI interactions and model 

element modification events. These recordings consist of all possible software actions, 

ranging from creating, selecting, and modifying elements to navigating through different 

zones of a virtual model. Such recordings, constituting timestamped event sequences, are 

organized and stored in machine-readable formats: .txt files.  

The presented system can collect and consolidate data from multiple modelers who 

are simultaneously working on different design models. This capability allows one to 

obtain information from the different parties involved in a design team. Also, this system 

is designed in such a way that it can distinguish between projects that a user might be 

working on concurrently. The efficiency achieved by using event handlers in the developed 

method allows it to be implemented on different platforms. Additionally, disruptions to the 

modeling operation are avoided by recording information during the idle time of the 

software solutions.  

The proposed framework was implemented as an Autodesk Revit plugin, and an 

experiment was conducted to verify the accuracy of this plugin. Throughout this 

experiment, manual recordings of model development events were compared against the 

automatically generated plugin output. This section contributes to the state of knowledge 

by introducing a framework for automatically capturing accurate performance data from 
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design software solutions, and it contributes to the state of practice by helping design 

managers to acquire progress information without the need to manually record and report 

data. 
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CHAPTER 5: FINDING OPTIMAL MODELING TEAM 

CONFIGURATION 

5.1 Introduction 

The final objective of this study seeks to utilize the proposed design modeling 

performance data collection approach to identify the optimal modeling team configuration. 

As described in the methodology section, an experiment was conducted to collect modeling 

performance data using the Revit plugin developed in chapter 4. The collected data were 

then analyzed to evaluate participants’ modeling performance. The EDD priority rule was 

then used in combination with the CPM to calculate the expected lateness for different 

configurations of the modeling team. The remainder of this chapter is structured as follows: 

first, the details of the Revit plugin experiment are outlined; then, the findings of the 

analysis that was conducted on the collected data are presented; and, the obtained results 

are utilized to assess the performance of different team conjugations. Furthermore, a 

summary of the chapter is presented in the final section.  

 

5.2 Experiment Description 

In this experiment, five Master of Architecture students at the Georgia Institute of 

Technology were asked to produce 3D models of a youth and family center building using 

Autodesk Revit. Full sets of production drawings, including the floor plan, roof plan, and 

building elevations (Figure 5-1 and Figure 5-2), were provided by an Atlanta-based 

architectural company. The participants utilized a computer for modeling, with the Revit 

plugin installed to track and record model development events. 
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Figure 5-1 Building Floor Plan 

 

Figure 5-2 Building Elevations 
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The experiment focused on specific activities to model walls and windows within 

the overall process. Participants were asked to model the building to an LoD that accurately 

reflected the information provided in the initial drawings, and the produced models were 

checked to ensure that LOD 200 (AIA 2013) requirements were met. Figure 5-3 is an 

example of a 3D model that one of the modelers created. The data collected throughout the 

experiment were analyzed to evaluate different modeling performance measures. The 

results of the analysis are presented next.  

 

Figure 5-3 Sample 3D Model Produced by Experiment Participants 
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5.3 Analysis of Experiment Data 

5.3.1 Processing Collected Modeling Data  

The Python programming language was used to organize and store the collected 

modeling data. In particular, the pandas software library (pandas 2017), which is written 

for data manipulation and analysis, was utilized for the following reasons: 

• The pandas library has an R-style data frame structure, which allows column 

names and indexing; this is helpful for keeping track of the data.  

• The pandas library has efficient input and output capabilities to read and write 

data from and to different database formats.  

• Pandas’ multiple built-in functionalities, such as joins, merges, and searches, 

make it an effective data-processing tool. 

• Pandas can store non-homogeneous data types in the same data frame. This is 

important as the recorded data include both numeric and alphabetic types.  

The processed data are stored in three element changes, executed commands, and 

errors dataframes. Figure 5-4 depicts the segment of code to initialize these dataframes.  

 

Figure 5-4 Pandas Data Frame Initialization 
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The “modelers” array includes the name of all experiment participants, and 

“directory” is a string variable that contains the directory address where the collected text 

files are stored. An explanation of the three dataframes’ column names can be found in 

Table 5-1.  

Table 5-1 Data Frame Column Names 

 Dataframes 

 
Element Changes (Deleted, 

Modified, Added) 
Commands Errors 

Column 

Names 

 

User: modeler name 

Time: current date and time 

Action: change identifier 

Category: changed element 

category 

Min: element bounding box 

min 

Max: element bounding box 

max 

Center: element bounding 

box center 

Type: element type 

Family: element family 

ID: element ID 

View: current view 

Project: project name 

 

Time: current date and time 

Exec_Pt: command-

execution point 

Cmd_ID: command ID 

Cmd_Info: complementary 

command information 

 

User: modeler 

name 

Time: current date 

and time 

ErrorType: failure 

type 

 

The model development data collected throughout the Revit sessions are stored in 

predefined, comma-separated text files. This provides the files with a structure that 

facilitates reading and organizing the obtained data. Figure 5-5 and Figure 5-6 contain the 

segments of the Python code that process and store command execution and software 

failure information in commands and errors dataframes respectively. The code loops 

through all modelers’ text files, and the recordings are read line by line. The nature of each 

recording is specified by reading the entry identifiers (“Command” and “Error”), and the 

current time and date are also stored as a DateTime object. Finally, all information items 
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are recorded in command or error data frames under the corresponding columns specified 

in Table 5-1. 

 

Figure 5-5 Storing Command Execution Data in the Commands Data Frame 

 

 

Figure 5-6 Storing Software Failure Data in the Errors Data Frame 

 

Figure 5-7 and Figure 5-8 present the Python code segments that deal with reading 

and storing element change entries, including element deletions, modifications, and 

additions. Also, the current date and time are stored using a DateTime object. The element 

center coordination is calculated by taking the average of the x, y, and z elements’ 
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minimum and maximum coordinates. All information items are finally stored in the 

element changes data frame under related columns.  

 

Figure 5-7 Storing Deletions and Modifications in the Element Changes Data Frame 

 

Figure 5-8 Storing Addition in the Element Changes Data Frame 
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While data frames are suitable for storing information, they cannot be directly saved 

on a computer’s hard disk. Therefore, data frames should be written to the hard disk to 

make the data available for analysis even after the data processing program has finished 

running. A comma-separated file format was selected to save the data frames, as indicated 

in Figure 5-9. The produced outputs are presented in Figure 5-10 and Figure 5-11.  

 

Figure 5-9 Writing Data Frame Information to CSV Files 

 

 

Figure 5-10 Element Change CSV File 

 

Figure 5-11 Error CSV File 
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5.3.2 Experiment Results 

The demographic information of the experiment participants is presented in Table 

5-2 Demographic Information of Experiment Participants. Two modelers were beginners with 

little experience working with Revit prior to this experiment, while the other three modelers 

had done capstone building modeling projects with Revit prior to this experiment, and they 

were working as BIM modelers when the experiment was conducted. The experiment 

evaluated different sets of measures for building modeling activities that participants 

performed, and the calculated measures are reported anonymously to protect the 

participants’ identities. Some preliminary measures regarding the modelers are reported in 

Table 5-3. The most frequent individual commands were largely executed to add elements 

such as walls and windows. The less experienced modelers also used the sketch mode of 

Revit relatively more frequently, and they often executed the “Finish_Sketch” command. 

All participants executed most commands using the buttons on the main top ribbon of 

Revit.  

Table 5-2 Demographic Information of Experiment Participants 

 Experience with Revit Age Gender 

Modeler 1 Beginner (0-1 years) 20-25 Female 

Modeler 2 Beginner (0-1 years) 20-25 Male 

Modeler 3 Intermediate (1-3 years) 20-25 Female 

Modeler 4 Intermediate (1-3 years) 20-25 Female 

Modeler 5 Intermediate (1-3 years) 20-25 Male 

 

Table 5-4 lists some information regarding software failures and the frequent view 

types that the experiment participants used. The total number of entries for novice modelers 
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is higher than for the others by a factor of at least 3. The plugin also recorded more errors 

for less experienced modelers (1 and 2) compared to the others. This observation can be 

expected, since novice Revit users are prone to make more mistakes. Additionally, since 

those two modelers used the sketch mode more often, the “Finish sketch” error was raised 

more frequently during their modeling sessions. Another common type of error was 

“Drag,” which is raised when elements are moved to locations where there are geometric 

conflicts, for instance, when moving a door to a location on a model where a window 

already exists. “Join” errors occur when elements such as two walls or a wall and roof are 

not properly attached, and “Structural” errors also occur when the load bearing and non-

bearing elements are attached and need to be separated (Autodesk 2017b).  

Table 5-3 Preliminary Measures of Experiment Participants 

 Frequent Individual Commands Command Execution Points 

Modeler 1 

ID_FINISH_SKETCH                           

ID_VIEW_DEFAULT_3D_VIEW       

ID_OBJECTS_WALL 

Autodesk.Windows.RibbonButton            

Autodesk.Windows.RibbonSplitB

utton       

Modeler 2 

ID_FINISH_SKETCH                     

ID_OBJECTS_WALL 

ID_OBJECTS_WINDOW 

Autodesk.Windows.RibbonButton            

Autodesk.Windows.RibbonSplitB

utton       

Modeler 3 

ID_OBJECTS_WALL 

ID_VIEW_DEFAULT_3D_VIEW                           

ID_OBJECTS_WINDOW   

Autodesk.Windows.RibbonButton            

Autodesk.Windows.RibbonSplitB

utton       

Modeler 4 

ID_OBJECTS_WALL 

ID_OBJECTS_ROOM                      

ID_OBJECTS_WINDOW 

Autodesk.Windows.RibbonButton            

Autodesk.Windows.RibbonSplitB

utton       

Modeler 5 

ID_EDIT_MOVE                                             

ID_OBJECTS_WALL 

ID_OBJECTS_WINDOW 

Autodesk.Windows.RibbonButton            

Autodesk.Windows.RibbonSplitB

utton       
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Table 5-4 Most Frequent Error and View Types 

 
Total Number 

of Entries 

Total Number of 

Errors 
Top Error Type 

Type View 

Type 

Modeler 1 17,318 162 

Finish sketch      

Structural Column     

Drag 

Level 1 

{3D} 

East 

Modeler 2 12,220 155 

Drag Wall End            

Finish sketch 

Wall - Line 

Level 1 

{3D} 

East 

Modeler 3 4,131 75 

Join Walls to Roof  

Wall - Line  

Drag 

Level 1 

{3D} 

North 

Modeler 4 4,740 61 

Trim/Extend to Corner    

Wall - Line   

Drag 

Level 1 

{3D} 

Roof 

Modeler 5 4,379 55 

Wall - Line 

Select the roofs 

Finish sketch 

Level 1 

{3D} 

East 

As previously specified, the experiment focused particularly on activities 

conducted to model walls and windows. Figure 5-12 illustrates the average number of 

commands that each modeler executed to model a wall or a window. Overall, the average 

number of modifications are higher for less experienced modelers compared to the more 

experienced ones. This can be expected, since expert modelers need fewer tries to obtain 

satisfactory results. Also, the modelers generally executed more commands to model walls 

compared to windows. However, this is not the case for modeler 4, and it can be attributed 

to the high number of drag operations that the user executed to place windows on their 

correct coordinates.  
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Figure 5-12 Wall and Window Modifications Bar Chart 

 

The average time it took experiment participants to model a wall or window is 

illustrated in Figure 5-13. In calculating these values, the time difference between two 

consecutive commands corresponding to an element is considered to be 3 minutes if the 

actual difference is more than that. This assumption was made per a suggestion by the 

collaborating firm’s designers to avoid counting idle times in measurements. Similar to the 

trend observed with the average number of modifications, novice modelers require more 

time to produce satisfactory building model elements. Overall, it takes modelers more time 

to design walls compared to windows.  

 

Figure 5-13 Wall and Windows Average Modeling Times 
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The relation between the average number of modifications per element and the 

average element design times is illustrated in Figure 5-14. As the trend lines depict, there 

is a direct correlation between these two variables. In general, it can be said that a higher 

number of modifications is associated with a higher average modeling time for walls and 

windows.  

 

Figure 5-14 Average Modeling Times vs. Average Number of Modifications 

5.3.3 Optimal Modeling Team Configuration 

This section focuses on using individual production rates calculated based on plugin 

data to identify the optimal configuration of modeling teams. The proposed approach 

utilizes EDD sequencing in combination with the CPM. The EDD approach sequences jobs 

in their increasing order of due dates and thus minimizes maximum lateness, which is 

defined as follows (Baker & Trietsch 2013): 

• Lateness (𝐿𝑗) is the amount of time by which the completion time of job 𝑗 

exceeds its due date: 𝐿𝑗 = 𝐶𝑗 − 𝐷𝑗 . 
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• Maximum lateness is calculated as 𝐿𝑗 = max
1≤𝑗≤𝑛

{𝐿𝑗}.  

In the context of this chapter, a “job” is defined as a set of building segments that 

are modeled separately, for example, the floors of a multistory building or building zones 

that a design team defines prior to the start of the modeling process. Each job consists of 

multiple design modeling tasks such as the modeling of structural, electrical, mechanical 

or architectural elements.  

The amount of time required to finish each job is assessed using the CPM. First, 

available modelers are assigned to the given tasks based on their expertise. Next, the time 

it takes each modeler to finish his or her tasks is estimated based on both the number of 

elements that need to be modeled and the previously calculated individual production rates. 

The total time it takes to finish a job is then calculated using the CPM. Finally, the optimal 

configuration of the design modeling team is identified using the EDD approach. 

Predetermined due dates, which the design managers set, can be used to calculate the 

lateness criterion.  

Figure 5-15 Framework of HypotheticalFigure 5-15 depicts the framework of a 

hypothetical design modeling project used to establish the functionality of the proposed 

method. The process consists of modeling walls and windows in three building zones. The 

design team consists of two modelers: one in charge of modeling walls, and one for 

modeling windows. The proposed approach and the individual production rates that were 

obtained through the experiment were used to identify the optimal assignment of modelers.  
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Figure 5-15 Framework of Hypothetical Project 

 

The general characteristics of the three building zones in the proposed project are 

outlined in Table 5-5. These characteristics include the number of wall and window 

elements to be modeled as well as the predefined due dates for each zone. The amount of 

time that each modeler would need to model different elements was calculated by 

multiplying the number of elements specified in Table 5-5 by the individual production 

rates obtained from the experiment. The results were converted to 8-hour workdays based 

on an 80% productivity rate (Sacks & Barack 2008), as presented in Table 5-6. Due to their 

higher performance levels, only modelers 3, 4, and 5 were considered in the analysis. 

Similarly, in real-world scenarios, calculating individual production rates would allow 

managers to identify modelers with higher performance levels among the available 

candidates.  

 

Table 5-5 General Parameters of Hypothetical Problem 

 Zone 1 Zone 2 Zone 3 

Total number of wall elements 1,500 800 1,150 

Total number of window elements 700 1,200 800 

Due date (days) 5 8 13 
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Table 5-6 Element Modeling Times Based on Production Rates 

 Modeler 3 Modeler 4 Modeler 5 

Individual production rate for a wall (hour) 0.023 0.022 0.02 

Individual production rate for a window (hour) 0.018 0.015 0.016 

Zone 1 
Time required to model walls (days) 6  6 5 

Time required to model windows (days) 2 2 2 

Zone 2 
Time required to model walls (days) 3 3 3 

Time required to model windows (days) 4 3 3 

Zone 3 
Time required to model walls (days) 5 4 4 

Time required to model windows (days) 3 2 2 

 

Given the number of available modelers, there are six possible configurations for 

the design team. The possible modeling task assignments for different configurations are 

listed in Table 5-7. In each configuration, one of the modelers is tasked with modeling 

walls, while the other models windows.  

Table 5-7 Possible Team Configurations 

 Modeler 3 Modeler 4 Modeler 5 

Configuration 1 walls windows  

Configuration 2 walls  windows 

Configuration 3 windows walls  

Configuration 4 windows  walls 

Configuration 5  walls windows 

Configuration 6  windows walls 

The amount of time it would take different design team configurations to model 

each zone was calculated using the CPM (Table 5-8), whose dependencies are illustrated 

in Figure 5-15. Once the zone processing times were estimated, the completion times were 

calculated by scheduling the zones (jobs) in EDD order (i.e., earliest due date first), and 

each job’s lateness was measured by comparing its completion time and due date. The 

maximum lateness values are listed in the last column of Table 5-9. The results indicate 
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that the optimal team arrangement is configuration 6, (𝐿𝑚𝑎𝑥 = 2), where modelers 4 and 5 

would design windows and walls respectively. 

Table 5-8 Zone Processing Times Based on the CPM 

 Zone 1 Zone 2 Zone 3  

Configuration 1 7 4 6 P
ro

cessin
g
 T

im
e
s 

(d
a

y
s) 

Configuration 2 7 4 6 

Configuration 3 7 4 5 

Configuration 4 6 5 5 

Configuration 5 7 4 5 

Configuration 6 6 4 5 

 

Table 5-9 Computation of Maximum Lateness for Different Team Configurations 

 EDD Sequence Maximum 

Lateness 

(𝑳𝒎𝒂𝒙) 
 Zone 1 Zone 2 Zone 3 

Due date 𝑫𝒋 5 8 13 

Configuration 1 
Completion time 𝑪𝒋 7 11 17 

4 Lateness 𝑳𝒋 2 3 4 

Configuration 2 
Completion time 𝑪𝒋 7 11 17 

4 Lateness 𝑳𝒋 2 3 4 

Configuration 3 
Completion time 𝑪𝒋 7 11 16 

3 Lateness 𝑳𝒋 2 3 3 

Configuration 4 
Completion time 𝑪𝒋 6 11 16 

3 Lateness 𝑳𝒋 1 3 3 

Configuration 5 
Completion time 𝑪𝒋 7 11 16 

3 Lateness 𝑳𝒋 2 3 3 

Configuration 6 
Completion time 𝑪𝒋 6 10 15 

2 
Lateness 𝑳𝒋 1 2 2 

 

5.4 Discussion of Results 

As mentioned in the introduction section, the accurate measurement of design 

modeling performance metrics requires the automatic collection of model development 

data. The conducted experiment demonstrated that the developed Revit plugin is fully 
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capable of recording several modeling events, such as element changes, command 

executions, and errors, in real time. Unlike design log files, there was no need to use a text 

parser to gather the necessary information for analysis. The developed plugin also captured 

additional information, such as element GUID, coordination, family, type, and command 

execution points. These information items are not recorded in design log files and hence 

cannot be retrieved from them.  

The LoD in the modeled project was low, thereby limiting the collected data to 

basic wall, window, door, ceiling, and roof elements. It is likely that increasing the LoD 

will result in higher values for the average number of modifications and average modeling 

time per elements. This conclusion is justified because more effort is required to model 

elements with higher LODs, given their complexity. Another important observation is that 

the recorded data captured the variations that exist among all modelers (novice and 

experienced) in terms of the time it takes them to model different elements. In fact, to create 

the wall and window elements, novice modelers needed approximately 84% and 48% more 

time respectively than experienced modelers. Therefore, this methodology can be used in 

design offices to develop performance profiles for modelers based on their work in 

developing different building systems in multiple projects.  

The researcher tested the quality of 3D models that students developed. 

Furthermore, the average number of element modifications was used as a measure to assess 

the quality of building models. If the average number of modifications by a user is 

significantly higher than that of his peers, then it may indicate that he or she requires more 

attempts to create a model of comparable quality. This trend was observed in the obtained 

results as novice modelers needed at least 50% and 41% more modifications on average 
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for wall and window elements respectively. Another possible method for assessing model 

quality is to compare the average number of modified elements after clash detection 

sessions. A statistically significant higher number of modified elements may indicate a 

need for adding elements or rerouting too many of them. This could be due to factors such 

as low experience, the utilization of substandard elements, or having an incomplete model. 

The validity of this quality assessment methodology should be tested using large model 

development events and clash detection datasets that are collected from a team of modelers 

working on different building systems. 

The metrics that were measured through the conducted experiment were used to 

find the optimal modeling team configuration in a hypothetical project. The required 

calculations did not necessitate extensive effort, given the relatively small size of the 

participants and the simplicity of the hypothetical project. It should be noted that this 

exercise was performed to illustrate the application of the proposed approach, and no 

statistically significant conclusion can be drawn from it. However, in full-scale industry 

projects, the amount of required calculations will be substantially higher. This increase is 

due to the large number of modeling tasks as well as the high number of possible 

configurations in real-world projects. Therefore, it is recommended that scheduling 

software solutions, such as Microsoft Project, be used for industry projects to calculate 

processing times for available jobs. Also, optimization platforms such as ILOG CPLEX 

can be utilized to evaluate possible team configurations and find the optimal one.  
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5.5 Chapter Summary 

This chapter outlined the details of an experiment that was conducted to both 

capture design modeling performance data and utilize the obtained information to identify 

the optimal modeling team configuration. Five graduate students from the Georgia Institute 

of Technology’s School of Architecture were selected for this experiment. The participants 

used the plans of a youth and family center building to produce 3D models on Revit. 

Meanwhile, the plugin introduced in the previous chapter captured their model 

development data. The collected data were then analyzed using Python’s pandas data 

analysis library. The pandas data frames were used to efficiently store data and to calculate 

the individual modeling performance measures.  

Individual production rates from the experiment participants were used to establish 

the validity of an approach proposed to identify optimal design team configurations. The 

presented approach uses the EDD sequencing rule in combination with the CPM to 

calculate the maximum lateness for different design team arrangements. The arrangement 

with the smallest maximum lateness value was selected as the optimal modeling team 

configuration.  

This section contributes to the state of knowledge by creating a mathematical model 

to estimate design modeling project completion times based on individual performance 

data and project requirements. This chapter also contributes to the state of practice by 

enabling design managers to identify an optimal modeling team arrangement based on 

automatically captured quantitative performance information.  
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CHAPTER 6: CONCLUSIONS, LIMITATIONS, AND FUTURE 

DIRECTIONS 

6.1 Introduction  

As capital projects are becoming more complex, their design modeling processes 

increasingly require collaborative efforts among various AEC disciplines. Throughout this 

process, the different priorities of design modelers often result in conflicts that can 

negatively impact project outcomes (for example, a modeler falling behind the design 

schedule due to working on other projects). There is a need for the effective management 

of the modeling process to prevent such unwanted outcomes. However, a review of the 

existing literature demonstrates that the current methods of design management lack 

objective measurement systems to quantify performance in modeling. Additionally, 

existing methodologies rely on manually collected data that lack the accuracy required for 

correct measurements. The difficulties associated with evaluating design modeling 

performance renders the existing methodologies impractical. This research improves upon 

previous efforts by presenting a novel API-based approach to automatically collect 

granular design development data directly from modeling software packages and to 

efficiently calculate several modeling performance measures.  

A comprehensive review of the existing body of knowledge regarding the design 

management practices and motivations behind this study was presented in chapter 2. The 

next chapter investigated the presence of frequent command execution patterns using the 

GST pattern mining algorithm. In chapter 4, an API-based, object-oriented data collection 

framework was introduced, and the steps that were conducted to implement the framework 
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as an Autodesk Revit plugin were outlined. Finally, chapter 5 describes the details of an 

approach that is proposed to identify the optimal design modeling team configuration based 

on quantitative performance data.  

 

6.2 Summary of Results and Contributions to the Body of Knowledge 

In chapter 3, the utilization of modeling development information, embedded in 

design log files that Autodesk Revit produces, was proposed as a rich source of 

performance data. To this end, the necessary steps to extract and analyze the data were 

outlined. Generalized suffix tree data structures were utilized to find common command 

sequences among Revit users. Frequent command patterns were identified by conducting 

a DFS on constructed GST trees, and the extracted patterns for different users were 

compared against each other to identify shared sequences. In addition to identifying the 

common command execution patterns, the average time it takes the selected modelers to 

execute command sequences was calculated. The obtained results demonstrate that there is 

a statistically significant difference among the modelers in terms of the time it takes them 

to conduct similar modeling tasks. This chapter contributes to the state of knowledge by 

proposing a tailored string mining algorithm that is capable of extracting meaningful 

information from timestamped design development data. The proposed methodology 

contributes to the state of practice by enabling design project managers to gain 

unprecedented insight into the evolution of a building model using the information 

embedded in design log files. 
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Chapter 4 utilized modeling software solution’s APIs to automatically collect and 

store timestamped design development information. The proposed passive data recording 

approach allows for the real-time capture of comprehensive UI interactions and model 

element modification events. These recordings consist of all possible software actions, 

ranging from creating, selecting, and modifying elements to navigating through different 

zones of a virtual model. Such recordings, constituting timestamped event sequences, are 

organized and stored in machine-readable .txt file formats. The proposed framework was 

also implemented as an Autodesk Revit plugin, and an experiment was conducted to verify 

the accuracy of this plugin. Throughout this experiment, manual recordings of model 

development events were compared against the automatically generated plugin output. 

This section contributes to the state of knowledge by introducing a framework to 

automatically capture accurate performance data from design software solutions, and it 

contributes to the state of practice by helping design managers to acquire progress 

information without the need to manually record and report data. 

Chapter 5 outlined the details of an approach to identify the optimal design 

modeling team configuration based on automatically collected performance data. To this 

end, an experiment was conducted to capture data using the Revit plugin introduced in the 

previous chapter. The collected data were then analyzed using Python’s pandas data 

analysis library to produce individual performance measures. The experiment participants’ 

individual production rates were used to establish the validity of an approach proposed to 

identify the optimal design team configurations. The presented approach uses the EDD 

sequencing rule in combination with the CPM to calculate the maximum lateness for 

different design team arrangements. This section contributes to the state of knowledge by 
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creating a mathematical model to estimate design modeling project completion times based 

on individual performance data and project requirements. The presented model can be 

expanded to include other decision criteria as software has more data capture capabilities, 

in addition to time stamps. This chapter also contributes to the state of practice by enabling 

design managers to identify an optimal modeling team arrangement based on automatically 

captured quantitative performance information.  

 

6.3 Limitations of the Current Study 

The results of this study should be interpreted considering the following limitations: 

• The analysis presented in chapter 3 focused on modelers working on interior 

systems of healthcare projects, and the findings of the chapter should not be 

generalized to other building systems, trades, and projects. Moreover, no 

statistical significance was sought from the analysis, given the relatively small 

size of the data set. There is a need for a larger sample of design development 

data from various trades and projects to generalize the obtained results. 

•  The experiment conducted in chapter 5 focused on collecting data to illustrate 

the workings of the proposed optimal modeling team configuration 

methodology. Given the small number of participants, no statistically 

significant conclusion was drawn from the results of this experiment. Therefore, 

the findings of this chapter are subject to validation from a larger sample and a 

robust statistical study. 
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• When analyzing the design development data in chapter 3, it was assumed that 

the developed building models meet the same quality criteria. This assumption 

was made since the quality and LoD-level information for these models were 

not provided to the author. Moreover, the building models that all modelers 

created had gone through a quality control process, which the collaborating 

company established. However, it is recommended that future studies should 

measure and consider the quality of the information in their analyses to attain 

generalizable findings.  

 

6.4 Future Works and Directions 

The primary aim of this dissertation was to develop a methodology for 

automatically capturing design development data for modeling performance measurement. 

Additionally, an approach was presented to identify optimal design team configurations 

based on performance measurements. Future research could concentrate on the following 

directions: 

• The fine-grained information captured from design modeling software solutions 

could be used to develop customized training programs. Furthermore, API-

based data collection systems enable managers to collect granular data on the 

actions of each designer during modeling sessions, and such a wealth of 

information can be used to benchmark modelers’ performance in their areas of 

expertise. These detailed benchmarks allow designers to identify their 

weaknesses for further improvement. For instance, an architectural modeler can 
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compare his or her performance in designing a component, such as curved or 

spiral stairs, with that of his or her peers. If the modeler is comparatively 

underperforming, the project manager can provide customized training to 

improve his or her performance in designing the component.  

• The granular modeling performance data can be used for developing advanced, 

real-time, visualization dashboards, allowing project managers to summon the 

relevant context when faced with a modeling conflict. Often, too little 

information is provided to convey a message about an actual design modeling 

problem, making it problematic for project managers to track issues and 

determine the other design disciplines that will be affected by the problem. A 

multilayered visualization platform can support design managers to quickly and 

easily identify design issues, analyze the causes of these design problems, and 

communicate the problem to the design team at the selected level of detail. 

• The real-time monitoring of design development events could enable managers 

to detect and prevent poor modeling practices. The main purpose of BIM tools 

is to generate digital representations of the physical and functional 

characteristics of capital projects. Therefore, these virtual models should 

include accurate information regarding the actual size, location, and other 

properties of each element. However, in practice, some models lack the 

intended quality. For instance, a poor modeling practice that usually remains 

undetected is the excessive utilization of imported substandard families in 

virtual models. Some of these families—often created by manufacturers to 

model their products—are corrupted, contain too much detail, or miss important 
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requirements such as parametric information. Such models increase the file 

size, and in extreme cases, this results in degrading software performance. 

Given the substantial number of elements in a typical virtual model, it is 

impossible to manually identify these poor practices. The API-based 

monitoring of virtual design models enables managers to detect such damaging 

practices and prevent them from leading to further issues in other parts of the 

system.  

• The wide range of information collected using design solution APIs can help 

software developers to improve a user’s experience. The command patterns that 

are identified for modelers could be used to create shortcut keys that conduct a 

sequence of tasks at once. Additionally, information regarding mouse 

movements and the most frequently executed commands may be utilized to 

improve software UI designs.  
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