
SCHEDULING TECHNIQUES FOR COMPLEX RESOURCE ALLOCATION
SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Michael Ibrahim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial Engineering

Georgia Institute of Technology

December 2019

Copyright c©Michael Ibrahim 2019

SCHEDULING TECHNIQUES FOR COMPLEX RESOURCE ALLOCATION
SYSTEMS

Approved by:

Dr. Spyros Reveliotis, Advisor
School of Industrial Engineering
Georgia Institute of Technology

Dr. Hayriye Ayhan
School of Industrial Engineering
Georgia Institute of Technology

Dr. Nagi Gebraeel
School of Industrial Engineering
Georgia Institute of Technology

Dr. Kamran Paynabar
School of Industrial Engineering
Georgia Institute of Technology

Dr. Douglas Down
Department of Computing and
Software
McMaster University

Date Approved: August 15, 2019

To my family and friends.

ACKNOWLEDGMENTS

First and foremost, I would like to thank to my PhD advisor, Professor Spyros Reveli-

otis, for his patience, guidance, help and support during these past four years. Spyros is an

excellent mentor and advisor, he is a thorough and rigorous researcher, and he helped me

to improve my research skills. I could not imagine the completion of this work without his

technical and editorial advising.

I would like to thank Professor Hayriye Ayhan, Professor Nagi Gebraeel, Professor

Kamran Paynabar and Professor Douglas Down for serving on my thesis committee and

providing valuable ideas and feedback. Also, I would like to thank Dr. Ahmed Nazeem

for his collaboration, help and guidance. Finally, I would like to thank my fellow graduate

students for making my stay in Atlanta much more pleasurable.

Last but not least, I would like to thank my sister and my mother for their care and

support.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . viii

List of Figures . x

Chapter 1: Introduction . 1

Chapter 2: Research background . 12

2.1 The considered RAS model . 12

2.2 The RAS problem of liveness enforcement and the current literature 16

2.3 The CRL and its RAS abstraction . 21

2.3.1 The considered CRL model . 21

2.3.2 Abstracting the CRL “untimed” dynamics through a finite state au-
tomaton . 24

2.3.3 Establishing deadlock freedom for the considered CRL model . . . 27

2.4 The CRL scheduling problem of throughput maximization and its MDP
formulation . 33

Chapter 3: Maximal Linear Deadlock Avoidance Policies for D/C-RAS 40

3.1 Maximal linear DAPs . 40

3.2 Computing the maximal linear DAPs . 44

v

3.2.1 A basic algorithm for the enumeration of the set L̄(Φ) 45

3.2.2 Further implementational details 52

3.2.3 Some numerical results . 62

Chapter 4: Fluid-Relaxation-based scheduling for CRLs 69

4.1 The proposed scheduling method . 70

4.2 Example . 78

4.3 Complexity considerations . 82

4.4 Some numerical experiments . 84

4.4.1 Demonstrating and assessing the quality of the obtained schedules . 84

4.4.2 Demonstrating and assessing the tractability of the presented method 88

Chapter 5: An implementation of the FR-based scheduling method through Timed-
Continuous-Petri-Net-based modeling and analysis 92

5.1 Modeling the considered CRL as a GSPN 93

5.2 Fluidization of the GSPN model N . 101

5.2.1 Untimed and Timed Continuous Petri nets 102

5.2.2 A fluidized version for the CRL-modeling GSPN N 107

5.3 The proposed scheduling method . 116

5.3.1 The employed LP formulation . 117

5.3.2 The induced scheduling policy . 120

5.4 Extending the presented methodology to other RAS classes 121

5.5 Limitations of the FR-based scheduling method 123

5.5.1 Limitations due to some quantization in the material-flow dynamics
of the original GSPN model that is not visible to the relaxing LP . . 124

vi

5.5.2 Limitations due to starvation effects that do not appear in the fluid
dynamics of the LP relaxation . 127

Chapter 6: Performance enhancement of the FR-based scheduling policy 132

6.1 Some fundamental results from the sensitivity analysis of infinite-horizon
AR-MDPs and their implications for the potential improvement of the FR-
based scheduling policy . 135

6.2 Sample-path-based estimation of the system throughput and of the state
potentials under a given scheduling policy 142

6.3 A “ranking & selection” algorithm for identifying a performance-improving
decision . 145

6.4 An empirical assessment of the proposed policy improving methods and
some further implementational details . 148

6.4.1 Implementing the r&s algorithm of Figure 6.3 in an “on-line” oper-
ational mode . 150

6.4.2 Implementing the r&s algorithm of Figure 6.3 in an “off-line” op-
erational mode . 154

6.4.3 Orchestrating the presented developments into a policy-improving
mechanism . 158

Chapter 7: Summary of the major contributions and possible future extensions . 162

7.1 The major contributions . 162

7.2 Possible future extensions . 163

Appendix A: A brief introduction to Petri net modeling theory 166

References . 176

Vita . 177

vii

LIST OF TABLES

2.1 The state description for the STD of Figure 2.3. 31

3.1 The main data structures that are employed by class RAS for the representa-
tion of the underlying RAS dynamics and the various policies ∆ evaluated
by the considered algorithm. 53

3.2 The safe states of the example RAS in Section 3.2.3 63

3.3 The first set of the D/C-RAS configurations considered in the numerical
experiment of Section 3.2.3 and the obtained results 65

3.4 The second set of the D/C-RAS configurations considered in the numerical
experiment of Section 3.2.3 and the obtained results 66

4.1 Comparing the policy specified for the example CRL of Figure 2.2 by the
methodology that is presented in this work to the optimal policy for this
re-entrant line. 79

4.2 The CRL configurations considered in the numerical experiment of Sec-
tion 4.4.1 (borrowed from [39]). 85

4.3 An empirical characterization of the performance that is attained by the
various heuristic policies considered in the experiment of Section 4.4.1. . . 89

4.4 A statistical comparison of the performance of the proposed scheduling
methodology to the performance of the other heuristic policies considered
in the experiment of Section 4.4.1. 89

4.5 An empirical characterization of the computational tractability of the pro-
posed scheduling method. 90

6.1 The amount of sampling that is required by the “on-line” implementation
of the r&s algorithm of Figure 6.3. 152

viii

6.2 An empirical assessment of the relative throughput gain that is incurred by
the policy π′ that is recommended by the r&s algorithm of Figure 6.3, under
an “on-line” execution of this algorithm. 155

6.3 The amount of sampling that is required by the “off-line” implementation
of the r&s algorithm of Figure 6.3. 156

6.4 An empirical assessment of the relative throughput gain that is incurred by
the policy π′ that is recommended by the r&s algorithm of Figure 6.3, under
an “off-line” execution of this algorithm. 157

6.5 The relative absolute error in the throughput estimates that were used in the
potential estimator of Equation 6.24. 158

ix

LIST OF FIGURES

1.1 An event-driven control scheme for the real-time management of the considered
RAS [63]. 3

2.1 Characterization of the safe and unsafe reachable states for an example D/C-RAS
with two resource types, R1 and R2, with corresponding capacities C(R1) =

C(R2) = 2, and two process types, Π1 and Π2, with corresponding process plans
R1 → 2.R2 and R2 → 2.R1. Recognizing that the terminal processing stages
of these two process types will never get involved in a deadlock, the information
that is provided by this figure is projected on the sub-space that is defined by the
state components s1 and s3, which correspond to the first processing stage of each
process plan. Safe reachable states are depicted by rhombi and unsafe reachable
states by squares. The reader should notice that the convex hull of the depicted
safe states includes the unsafe state corresponding to point (1, 1), and therefore, in
this case, the reachable safe states and the boundary unsafe states of the considered
system are not linearly separable. 20

2.2 An example CRL. 23

2.3 The reachable and safe state space Srs for the CRL of Figure 2.2, and some
further structure that defines the MDP characterizing the corresponding
throughput-maximization problem. 32

4.1 The optimal server allocation, over the entire time horizon T , that is re-
turned by the solution of the “fluid” relaxation for the example CRL of
Figure 2.2 at the vanishing state s12. 81

4.2 The average throughput obtained through the solution of the “fluid” relax-
ation for the example CRL of Figure 2.2 over different time horizons T ; the
starting state of the line is the vanishing state s12. 81

4.3 The values of the vector u∗1 obtained from the solution of the “fluid” relax-
ation for the example CRL of Figure 2.2, over different time horizons T ;
the starting state of the line is the vanishing state s12. 82

x

5.1 The GSPN subnet modeling a single processing stage of the considered
CRL in the GSPN modeling framework. 93

5.2 The GSPN model for the CRL depicted in Figure 2.2. 97

5.3 The GSPN model studied in Section 5.5.1 124

6.1 A schematic representation of the transitional dynamics that determine the transi-
tion rates qij(π) of the CTMCM(π). 137

6.2 A schematic representation of the policy modifications that are considered in this
chapter. 140

6.3 The fully sequential procedure of [30] for resolving the “comparison with a
standard” version of the r&s problem under Assumptions 1–6. It is assumed
that the “standard” value µ0 is unknown, and the parameter c has been set
equal to 1. 149

xi

SUMMARY

This research program provides a complete framework for the real-time management

of complex sequential resource allocation systems (RAS) with blocking and deadlocking

effects in their dynamics. This framework addresses both control objectives of logical

correctness and performance optimization for the conisidered RAS.

A more detailed account of the thesis contributions is as follows:

For the logical-correctness part of the presented framework, we leverage some formal

Discrete Event System (DES)-based representations of the RAS behavior and we intro-

duce a new class of deadlock avoidance policies (DAPs) for the considered sequential RAS

that is characterized as the class of “maximal linear” DAPs. We also provide a complete

algorithm for enumerating all the elements of this policy class for a broad class of RAS in-

stances. Finally, we present some numerical experimentation that demonstrates the efficacy

of the presented algorithm.

For the performance-optimization part of the presented framework, we provide a schedul-

ing methodology that aims to maximize the throughput of complex RAS with blocking and

deadlocking effects. This methodology is based on the solution of a pertinent “fluid” relax-

ation of the addressed scheduling problem, and it is enabled by the pre-established ability

to control the underlying RAS for deadlock freedom, and by the further ability to express

the corresponding DAP as a set of linear inequalities on the system state.

Furthermore, we strengthen and further formalize these developments by taking ad-

vantage of the representational and analytical capabilities of the Petri net (PN) modeling

framework, which is one of the main formal representational frameworks employed by

the current DES theory. These capabilities enable a seamless treatment of the behavioral

and the time-based dynamics of the underlying RAS, and they also support a notion of “flu-

idization” of these dynamics through the more recent developments in the area of timed and

untimed continuous PN models; this last capability was especially critical for the system-

xii

atic derivation of the sought “fluid relaxation” models and formulations. The information

that is contained in the developed “fluid” models, when combined with the “linear” dead-

lock avoidance policies that have been employed in this work, provide a complete and very

efficient controller for the considered RAS.

Finally, we present a “correction” algorithm that aims to detect potential suboptimal

decisions that might be effected by the aforementioned controller and correct them. These

“corrections” can be effected either in an “off-line” mode, by simulating the dynamics of

the underlying RAS, or in an “on-line” mode where the underlying RAS is fully opera-

tional and the necessary corrections are inferred from the observed behavior of the system.

In both of these modes, and especially the second one, the “correction” algorithm endows

the developed control framework with a “learning” capability. From a more methodologi-

cal standpoint, the results that enable this correcting mechanism are based on the sensitivity

analysis of Markov reward processes and the statistical theory of “ranking & selection”. A

series of numerical results demonstrate and assess the efficacy of the developed methodol-

ogy.

CHAPTER 1

INTRODUCTION

The research program presented in this document addresses the problem of providing a

tractable methodology for scheduling complex workflows with finite reusable resources

that take place in the context of repetitive and fully automated operations. The scheduling

problems that are defined in these environments must address typical time-based perfor-

mance objectives, like the maximization of the throughput of the underlying processes

and/or the control of the experienced delays and congestions. But the finiteness of the

resources in such an automated workflow, when combined with the complexity and the

arbitrary structure of the underlying operations, can give rise to “blocking” and “deadlock-

ing” effects. These deadlocks must be eliminated from the operation of the underlying

workflow in order to ensure its uninterrupted operation. Furthermore, this deadlock elimi-

nation must be done in a way that will not impair dramatically the production capacity of

the underlying system.

One “real-world” application that motivates this research is the contemporary man-

ufacturing operations. For instance, in an automated manufacturing cell with a number

of machines, different kinds of arriving parts may require processing by the machines in

different but specified orders. On the other hand, each machine is capable of processing

different part types, or the same part type at different stages, but one machine cannot pro-

cess multiple parts at the same time. This flexibility gives rise to “competition” among the

parts for the processing capacity of these machines and leads to a “scheduling” problem.

In other words, when two or more parts, diversified either by their types or stages, are pre-

sented at the same machine, a decision must be made to exclusively allocate the machine

to one of the parts in a way that optimizes some performance measure of interest.

Another application for workflow scheduling beyond the scope of the manufacturing

1

processes can be seen in the domain of internet-based workflow management for certain

business processes [45]. Possible applications for the automation of business processes

include the processing of loan applications, insurance claims, or passport applications. All

these transactions follow well-established procedures and rely on human clerks, computer

programs and other computational resources to carry out individual tasks. Also, all these

transactions are repetitive and occur in an automated environment.

In order to optimize the performance of the complex resource allocation functions that

have been discussed in the previous paragraph while maintaining logical correctness, the

formal abstraction of the sequential resource allocation system (RAS) [63] was introduced

2

RAS Domain

Lo
gi

ca
l

C
on

tro
l

S
ys

te
m

 S
ta

te
 M

od
el

P
er

fo
rm

an
ce

 C
on

tro
l

Configuration Data

Feasible
Actions

Admissible
Actions

Event Commanded
Action

Figure 1.1: An event-driven control scheme for the real-time management of the considered RAS
[63].

by the relevant research community. Furthermore, the Discrete Event Systems (DES) the-

ory [6] provides a powerful base for modeling and analyzing the RAS dynamics. More

specifically, Figure 1.1 presents an event-driven control scheme for the considered RAS

model. This control scheme responds to the various events taking place in the controlled

RAS by updating a state model that defines the feasible behavior of this system. This

feasible behavior is “filtered” through the behavioral – or “logical” – controller in or-

der to obtain the admissible behavior, i.e., the behavior that is consistent with certain

qualitative specifications imposed on the RAS operation, including the requirements for

deadlock-freedom and liveness. Finally, the admissible behavior is processed through the

performance-oriented controller in order to select the particular action(s) among the admis-

sible behavior that eventually will be commanded upon the RAS.

As already mentioned, the “logical” control problem of deadlock avoidance that arises

in the control scheme of Figure 1.1, is formulated with w.r.t. the “untimed” dynamics of

the underlying RAS. Furthermore, this problem has been studied extensively within the

DES community, as a particular application of DES Supervisory Control (SC) theory [76,

3

9]. Furthermore, there has been an additional request for maximal permissiveness for the

corresponding supervisory control policies; i.e., these policies should ensure the aforemen-

tioned capability of all activated processes to run successfully to their completion, while

imposing the minimum possible restriction to the original behavior that is generated by the

uncontrolled system. Such a maximally permissive supervisor is well-defined and unique

for the RAS instantiations studied in [59]. But it is also true that computing the maximally

permissive DAP is an NP-hard problem for almost all RAS classes of interest [61].

On the other hand, when it comes to the performance-control problem of the logically

controlled RAS, the currently available results are very limited. The research program

proposed in this document uses formal DES-based representations of the RAS behavior in

order to provide a complete and systematic framework for the RAS scheduling problem.

This framework enables a succinct characterization of the involved complexities and their

root causes, and the eventual management of these complexities through the development

of systematic trade-offs between the operational and computational efficiencies of the con-

trol mechanisms and the policies to be deployed on the controlled system.

Formal representational frameworks employed by the current DES theory to represent

the basic structure of the workflow dynamics of the considered RAS include the finite state

automaton (FSA) [63] and the Petri net (PN) [49, 9] modeling frameworks. These frame-

works enable the study of the underlying resource allocation process w.r.t. its deadlock-

formation dynamics, and the deployment of real-time control policies that prevent these

deadlock formations. And since deadlocks result only from the specific sequencing of the

executed resource allocation events and not from the exact timing of these events, the cor-

responding models and methods must be drawn from the theory of computation [26] that

formally models and analyzes “behaviors” represented by such event sequences; i.e., any

deadlock-related study of the considered resource allocation processes must focus on their

“untimed” dynamics [9] that define a notion of “qualitative behavior” for these processes.

Furthermore, the untimed dynamics and the corresponding deadlock avoidance policies

4

that were mentioned in the previous paragraph, subsequently must be complemented with

timing information and additional control logic that will attend to the aforementioned per-

formance objectives of throughput maximization and/or congestion control. This last task

requires an additional set of models that come from the area of stochastic processes [67],

and will be able to effectively represent the “timed” dynamics of the underlying resource

allocation processes. Even more importantly, there is a need for systematic and effective

integration of these new models with the models that support the representation, analysis

and control of the untimed behavior. Under further assumption of Markovian behavior for

the timing of the various events in the considered RAS, the “timed” dynamics of these

systems can be effectively modeled by a generalized stochastic PN (GSPN) [49].

The optimal solution of the developed GSPN models could be calculated through a set

of classical methods borrowed from the theory of Markov decision processes [57]. More

specifically, a GSPN can be modeled through a Markovian model [2] and its performance

can be analyzed through the Markovian model. Therefore, the optimal solution of the con-

sidered GSPNs can be obtained through the solution of an average-reward Markov decision

process (AR-MDP) whose objective is the maximization of the steady-state average reward.

In fact, the underlying logically-controlled RAS can be directly formulated as an AR-MDP

[63]. In either way, the develop AR-MDP is used to select one “admissible actions” in the

event-driven control scheme of Figure 1.1.

An optimal solution to the considered AR-MDP could be simply calculated through

classical approaches such as linear programming, value iteration or policy iteration. How-

ever, these classical approaches require the explicit enumeration of the underlying state

space, and produces the optimal solution in the form of a look-up table that pairs the RAS

decision states with action choices [57]. Clearly, these classical approaches suffer from the

“curse of dimensionality” [4], which render their optimal solution intractable. In fact, the

size of these state spaces even for moderately sized RAS, when combined with their dis-

crete nature, further implies that even the mere enumeration of an optimal (deterministic)

5

scheduling policy for the considered AR-MDPs as a look-up table is an intractable task,

since this enumeration must specify an optimal action for every single state.

There are some approaches that have tried to address the aforementioned RAS performance-

control problem by adapting ideas and techniques that come from the burgeoning area of

Approximate Dynamic Programming (ADP) [5, 56]. These approaches reduce the repre-

sentational and the computational complexity the by approximating some aspects of the

underlying MDPs of the considered RASs. In particular, these approaches avoid the ex-

plicit enumeration of the state space of the MDPs and they represent the selected solution

in a more parsimonious way than a look-up table. But, this complexity reduction is usually

caused by the deterioration in performance, or the reduction of the operational efficiency.

Hence, there is a trade-off between computational and operational efficiency.

In the context of the considered scheduling problem, [13] has explored the possibility of

controlling the very high complexity of this problem by providing a solution to the underly-

ing MDP problem that is based on linear, feature-based approximations of the relative value

function. However, such an approach is challenged by (i) (the need for) an ad hoc selection

of the corresponding features, and (ii) the further fact that it tries to control the quality of

the resulting scheduling policy implicitly, by controlling the quality of the approximation

of the relative value function. Typically, extensive trial-&-error will be necessary in order

to identify a set of features that might strike a satisfactory balance between the quality of

the resulting policy and its on-line computational complexity.

Motivated by these remarks, the work of [41, 40] has tried to pursue a more structured

approach to the problem, that is based on the ADP notion of “approximation in the policy

space” [5]. This new approach employs a timed Petri net (PN)-based representation for

the underlying RAS dynamics, and reduces the design of the sought scheduling policy to

the problem of determining a set of probability distributions that will govern the selection

of an enabled transition at certain markings of the net that correspond to decision points

for the underlying resource allocation process. In this new setting, the problem complexity

6

is controlled by a further “coupling” of the aforementioned distributions that reduces sub-

stantially the number of the free variables that are involved in the final problem definition.

These free variables define a parameterized policy space, and the selection of an optimized

set of values for these variables is effected through stochastic approximation [36]. From the

above description, it is clear that the method of [41, 40] enables (a) a much more explicit

determination of the employed policy space than the method of [13], and (b) a systematic

optimization over this policy space. On the other hand, some apparent limitations of this

approach are (i) the eventual formulation of the considered scheduling problem in a more

restricted policy space that might not even contain an optimal policy w.r.t. the original

MDP formulation, and (ii) the computational challenges that are frequently encountered by

stochastic approximation, especially in the case of problems involving a large number of

decision variables and the estimation of expectations that are defined over a very large set

of possible outcomes.

This research program complements and extends the existing theory on performance

control of the considered RAS by introducing a new methodology for developing near-

optimal scheduling policies for the considered RAS and the corresponding MDP formu-

lation. From a methodological standpoint, this new approach resolves the performance-

control problem that is addressed at each decision epoch by the real-time control framework

of Figure 1.1 as follows: First, it defines and solves a linear programming (LP) formula-

tion known as the corresponding “(fluid) LP relaxation”, and subsequently it utilizes the

obtained optimal solution for this LP in order to define a selection criterion among the set

of decisions / actions that are admissible by the applied DAP at the current decision point.

The aforementioned LP relaxation to be solved at each decision epoch is systematically

determined by (i) the structure of the underlying RAS, (ii) the RAS state at the current

decision epoch, and (iii) the control logic of the applied DAP. The last dependency further

implies that the applied DAP must be expressible as a set of linear inequalities on the RAS

state; such DAPs are characterized as “linear” in the corresponding literature. The theory

7

presented in [59] can provide effective and parsimonious realizations of these policies for

any given instance from the RAS class(es) to be considered in this work. But one issue

that has remained unaddressed by the current literature is the specification and support of

a notion of “maximality” within the class of linear DAPs. The systematic investigation of

this concept and its properties is another major task of the presented research program.

Furthermore, this research program explores the possibility of further enhancing the

FR-based scheduling policy by using techniques from the sensitivity analysis of Markov

reward processes and statistical inference. In more specific terms, the developed method-

ology can be applied at a single decision point of the underlying MDP, in order to detect

opportunities for enhancing the performance of the current policy. This detection can be

performed through two distinct sequential procedures that are based on the “ranking and se-

lection” algorithm of [32]. The first of these procedures is an “online” scheme that observes

the system operation under the current scheduling policy, and it employs the “ranking and

selection” algorithm of [32] in order to identify the action with the largest potential at the

considered decision point. The second developed procedure is an “offline” procedure that

simulates all scheduling policies that result from picking some available action at the con-

sidered decision point while maintaining the same decisions for the rest of the policy, and

again uses the “ranking and selection” algorithm of [32] in order to identify the policy with

the highest long-term average reward.

Although the proposed methodological framework can be applied to any general RAS,

the main results of this thesis are developed for the stochastic scheduling problem that con-

cerns the throughput maximization of a particular RAS model that is known as the capaci-

tated re-entrant line (CRL). The CRL model was initially introduced in [64] as a variation

of the original re-entrant line (RL) model [34] that assumes finite buffering capacities for

all workstations of the line.

The basic RL model has been studied extensively in stochastic scheduling theory; e.g.,

c.f. [34, 16, 17, 20, 35, 47, 43, 33]. But the works of [64, 12] have shown that the presence

8

of the finite buffers in the CRL model negates all the past results on the optimal scheduling

of conventional re-entrant lines, and introduces all the operational and analytical compli-

cations and challenges that were discussed in the earlier parts of this section.

On the other hand, the considered CRL model retains some of the operational and an-

alytical simplicity of a manufacturing flowline, that render it attractive as a prototypical

model for the study of the considered scheduling problems. More specifically, an attribute

of the (C)RL concept that renders it particularly convenient in that sense, is that it enables

a clear and straightforward definition of the notion of the “(long-term) throughput” of the

line. At the same time, the considered (C)RL models possess the primary structure that

defines the analytical and computational complexity of the corresponding scheduling prob-

lems, while avoiding the representational complexity that arises by the presence of more

than one process types and more complex resource allocation patterns.

On the more practical standpoint, the uncapacitated “reentrant line” model has been

extensively promoted as a pertinent abstraction for the representation of the basic work-

flow that is encountered in many semiconductor manufacturing fabs [72, 33]. And as the

semiconductor manufacturing industry moves toward higher levels of automation, the issue

of deadlock avoidance has been revived with the emergence of “cluster tools” [70], and the

adopted set of constraints on the buffer capacities that are considered in this work allow the

modeling and analysis of the blocking and deadlocking phenomena and their consequences.

In summary, the work presented in this thesis makes the following important contribu-

tions to the problem of scheduling the complex resource allocation that takes place in the

RAS classes of [59]:

1. First, it defines the notion of “maximal linear” DAP for the considered RAS and

investigates its properties.

2. It also provides effective and computationally efficient methodology for obtaining a

maximal linear DAP for any given RAS instance.

9

3. It adapts the generic method of “fluid relaxation (FR)”- based scheduling to the op-

erational context of the logically controlled RAS, focusing primarily on the CRL

model.

4. It also uses the modeling framework of timed-continuous PNs [44] in order to further

systematize the specification of the necessary FR models for the considered opera-

tional setting, and further investigate certain qualitative and quantitative properties of

these models.

5. This work also considers the extension of the FR-based scheduling policies devel-

oped for the CRL model to some broader RAS classes.

6. Finally, this work also uses results from the sensitivity analysis of Markov reward

processes and the ranking and selection algorithm of [32] in order to further improve

the scheduling policy obtained through the FR models.

The rest of the thesis is organized as follows: Chapter 2 defines formally the RAS

models considered in this work and the corresponding performance optimization problem,

and also gives background information that is necessary for building the proposed method-

ological framework. Chapter 3 addresses the systematic definition of linear DAPs that are

appropriate for the considered RAS and observe a “maximality” requirement in terms of

their permissiveness. Chapter 4 presents the scheduling methodology for maximizing the

throughput of the considered CRL model that is based on the solution of a “fluid” relax-

ation at each decision point of the original scheduling problem. Chapter 5 enhances the

scheduling methodology presented in Chapter 4 by leveraging the modeling and analytical

power of timed-continuous Petri nets. This chapter also leverages the increased represen-

tational and analytical power that is provided by the timed-continuous Petri net modeling

framework in order to identify certain reasons that might compromise the performance of

the FR-based scheduling policy. On the other hand, Chapter 6 considers the enhancement

of the FR-based scheduling policy through the employment of results coming from the

10

sensitivity analysis of the underlying Markov reward process and statistical inference. Fi-

nally, Chapter 7 concludes the work, and outlines some possible directions for its further

extension.

11

CHAPTER 2

RESEARCH BACKGROUND

This chapter introduces the necessary background information for the development of the

methodological framework that was outlined in Chapter 1. First, the modeling abstraction

of a disjunctive/conjunctive resource allocation system is formally defined, and some key

assumptions that underlie the specification of this model are explicitly stated. Next, there

is an overview of the available methodologies for the RAS logical control problem, and the

implementation of these methodologies. The third part of this chapter gives the necessary

basic knowledge on the considered CRL model, and provides the necessary background

material for a detailed characterization of the corresponding logical control problem of

deadlock avoidance. Finally, the chapter concludes with the formal definition of the CRL

scheduling problem of throughput maximization.

2.1 The considered RAS model

In this section we will focus primarily on the class of Disjunctive-Conjunctive (D/C-) RAS.

This is a pretty broad RAS class that allows for (i) an arbitrary structure of the resource

requests that are posed by the different processing stages, and also for (ii) the presence of

routing flexibility in the supported process plans. A formal definition of the D/C-RAS class

is as follows:

Definition 1 A Disjunctive-Conjunctive (D/C-) Resource Allocation System (RAS) is a

4-tuple Φ = 〈R, C,P , D〉, where:

1. R = {R1, . . . , Rm} is the set of the system resource types.

2. C : R → Z+ – the set of strictly positive integers – is the system capacity function,

characterizing the number of identical units from each resource type available in the

12

system. Resources are assumed to be reusable, i.e., each allocation cycle does not

affect their functional status or subsequent availability, and therefore, C(Ri) ≡ Ci

constitutes a system invariant for each i.

3. P = {Π1, . . . ,Πn} denotes the set of the system process types supported by the

considered system configuration. Each process type Πj is a composite element itself,

in particular, Πj =< Θj,Gj >, where: (a) Θj = {θj1, . . . , θj,lj} denotes the set of

processing stages involved in the definition of process type Πj , and (b) Gj is an acyclic

digraph with its node set, Qj , being bijectively related to the set Θj . Denoting by Q↗j

(resp., Q↘j) the set of source (resp., sink) nodes of Gj , the available process plans for

process type Πj are represented by the paths leading from some node qs ∈ Q↗j to

some node qf ∈ Q↘j in digraph Gj . Also, in the following, we shall set Θ ≡
⋃n
j=1 Θj

and ξ ≡ |Θ|.

4. D : Θ →
∏m

i=1{0, . . . , Ci} is the resource allocation function associating every

processing stage θjk with the resource allocation vector D(θij) required for its ex-

ecution; it is further assumed that D(θij) 6= 0, ∀, i, j. At any point in time, the

system contains a certain number of (possibly zero) instances of each process type

that execute one of the corresponding processing stages. A process instance execut-

ing a non-terminal stage θij ∈ Qi\Q↘i , must first be allocated the resource differen-

tial (D(θi,j+1) − D(θij))
+ in order to advance to (some of) its next stage(s) θi,j+1,

and only then will it release the resource units |(D(θi,j+1) −D(θij))
−|, that are not

needed anymore. The considered resource allocation protocol further requires that

no resource type Ri ∈ R be over-allocated with respect to its capacity Ci at any

point in time.

Finally, for purposes of complexity considerations, we define the size |Φ| of RAS Φ by

|Φ| ≡ |R|+ ξ +
∑m

i=1Ci.

Modeling the D/C-RAS dynamics as a Finite State Automaton: The dynamics of

13

the RAS Φ = 〈R, C,P , D〉 that was described in the previous paragraph, can be further

formalized by a Deterministic Finite State Automaton (DFSA) G(Φ) = 〈S,E, f, s0 , SM〉,

that is defined as follows:

1. The state set S consists of ξ-dimensional vectors s. The components s[l], l =

1, . . . , ξ, of s are in one-to-one correspondence with the RAS processing stages, and

they indicate the number of process instances executing the corresponding stage in

the considered RAS state. Hence, S consists of all the vectors s ∈ (Z+
0)ξ that further

satisfy

∀i = 1, . . . ,m,

ξ∑
l=1

s[l] ·D(θl)[i] ≤ Ci (2.1)

where, according to the adopted notation, D(θl)[i] denotes the allocation request for

resource Ri that is posed by stage θl.1

2. The event set E is the union of the disjoint event sets E↗, Ē and E↘, where:

(a) E↗ = {erp : r = 0, θp ∈
⋃n
j=1Q

↗
j }, i.e., event erp represents the loading of a

new process instance that starts from stage θp.

(b) Ē = {erp : ∃j ∈ 1, . . . , n s.t. θp is a successor of θr in graph Gj}, i.e., erp rep-

resents the advancement of a process instance executing stage θr to a successor

stage θp.

(c) E↘ = {erp : θr ∈
⋃n
j=1Q

↘
j , p = 0}, i.e, erp represents the unloading of a

finished process instance after executing its last stage θr.

3. The state transition function f : S × E → S is defined by s′ = f(s, erp), where the

1Following standard practice in DES literature (cf., for instance, the relevant definition in page 8 of [9]),
in the rest of this document we will frequently use the terms “space” and “subspace” in order to refer to the
state set S and its various subsets considered in this work.

14

components s′[l] of the resulting state s′ are given by:

s′[l] =

s[l]− 1 if l = r

s[l] + 1 if l = p

s[l] otherwise

We also notice that f(s, erp) is a partial function, defined only if the resulting state

s′ ∈ S. For any state s ∈ S, the event set Γ(s) ⊆ E for which f(s, e) is defined,

constitutes the set of feasible events at s.

4. The initial state s0 = 0, i.e., the state vector with all its components equal to zero.

This initial state represents the situation where the system is empty of any process

instances.

5. The set of marked states SM is the singleton {s0}. This specification of SM expresses

the requirement for complete process runs.

Letting f̂ denote the natural extension of the state transition function f to S × E∗, 2

the behavior of RAS Φ is modeled by the language L(G) generated by DFSA G(Φ), i.e.,

by all strings σ ∈ E∗ such that f̂(s0, σ) is defined. Furthermore, we define the reachable

subspace Sr of G(Φ) by

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂(s0, σ) = s} (2.2)

and its safe subspace Ss by

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂(s, σ) = s0} (2.3)

Also, in the following, we shall denote the complements of Sr and Ss with respect to S by
2We remind the reader that, in the relevant automata theory, E∗ denotes the Kleene closure of the event

set E; i.e., E∗ contains all the finite-length sequences σ of the elements of E, including the empty sequence
ε.

15

Sr̄ and Ss̄, and we shall refer to them as the unreachable and unsafe subspaces. Finally,

Sxy, x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the intersection of the corresponding sets Sx and

Sy.

The target behavior of G(Φ) and the maximally permissive DAP: The desired – or “tar-

get” – behavior of RAS Φ is expressed by the marked language Lm(G), which is defined

by means of the set of marked states SM , as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂(s0, σ) ∈ SM}

= {σ ∈ L(G) : f̂(s0, σ) = s0} (2.4)

Equation 2.4, when combined with all the previous definitions, further implies that the

set of states that are accessible under Lm(G) is exactly equal to Srs. Hence, we have the

following definition of the maximally permissive deadlock avoidance policy (DAP) ∆∗ for

the considered RAS:

Definition 2 The maximally permissive deadlock avoidance policy (DAP) ∆∗ for any in-

stantiation Φ from the RAS class of Definition 1 is a supervisory control policy that, at

every state s ∈ Srs, admits a feasible transition s′ = f(s, erp) of the underlying DFSA

G(Φ) if and only if s′ ∈ Ss. �

The reader should also notice that the above characterization of the policy ∆∗ further

implies that, for any given RAS instance Φ, this policy is unique.

2.2 The RAS problem of liveness enforcement and the current literature

According to Definition 2, the maximally permissive DAP ∆∗ can be effectively imple-

mented through any mechanism that recognizes and rejects the unsafe states that are ac-

cessible through one-step transitions from Srs. In the following, we shall refer to these

particular unsafe states as “boundary” unsafe states, and we shall perceive the policy ∆∗ as

16

a classifier that distinguishes effectively between reachable safe states and boundary unsafe

states.

The corresponding research community has developed methodology that enables the

off-line synthesis of representations for these policies that are very parsimonious, and there-

fore amenable for real-time control [59]. Among these DAP representations, one of the

most interesting and tractable, in terms of, both, analysis and implementation, is that of

a “linear” classifier [53, 11]. In this case, the policy admissibility of any given state is

resolved based on the ability of this state to satisfy a given set of linear inequalities. In

the following, we shall refer to DAPs that admit such a linear representation of their state-

acceptance logic as “linear” DAPs.

But as established in [60, 15], linear representation of the maximally permissive DAP

is not a viable option for all RAS instantiations of practical interest. To circumvent this

limitation, the works of [51, 50, 52, 22] have proposed additional representations for the

sought classifiers that either employ nonlinear discriminant functions of the RAS state, or

they constitute “non-parametric” classification schemes that rely on the efficient storage

and processing of explicit information about the structure of the underlying state space.

These alternative representations have been shown to be complete, i.e., they will always

provide an effective representation of the target DAP.

Yet, in spite of the aforementioned developments, in many application contexts, DAPs

that admit linear representation are still a most desirable solution, due to the analyzability

of these policies, and their easy integrability into broader decision-making frameworks.

And, in fact, the literature avails of methodology that can synthesize correct linear (but not

necessarily maximally permissive) DAPs for a large spectrum of RAS classes of practical

interest. Some characteristic examples of this methodology can be found in [21, 65, 37,

55, 42, 71], while a more comprehensive treatment of these methods is provided in Chapter

6 of [59]. But the existing theory does not allow for an explicit characterization and/or

control of the extent of the sub-optimality of the DAPs that are derived by it with respect

17

to the maximally permissive DAP.

A result that has proven very useful in the development of the maximally permissive

DAP classifiers, is the following “monotonicity” property that is exhibited by the RAS state

safety:

Proposition 1 Consider the partial order “≤” that is defined on the state space S of any

given RAS Φ through the following comparison of the state components:

∀s, s′ ∈ S, s ≤ s′ ⇐⇒ (∀l = 1, . . . ξ, s[l] ≤ s′[l]) (2.5)

Then,

1. s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss

2. s ∈ Ss̄ ∧ s ≤ s′ =⇒ s′ ∈ Ss̄

�

In [53] it is shown that, thanks to Proposition 1, it is possible to develop a classifier that

will distinguish correctly between (a) the states of the reachable and safe subspace Srs, and

(b) the boundary unsafe states, by focusing only on the correct classification of the maximal

elements of the set Srs and the minimal boundary unsafe states. Furthermore, additional

efficiencies in this endeavor, and in the on-line computational complexity of the developed

classifier, can be obtained by identifying and removing from the classified vectors any

components corresponding to processing stages that do not impact the safety of the system

state (e.g., the terminal processing stages of any process type Πj). The reader is referred to

Chapter 4 of [59] for a concise and comprehensive exposition of the corresponding theory

on the effective and efficient synthesis of the sought classifiers.

Linear representation of the maximally permissive policy ∆∗: As remarked in the

introductory section, a desirable representation of the classification logic that is effected by

18

the maximally permissive DAP ∆∗ is that of a linear classifier. This last concept has been

formally defined in [53] as follows:

Definition 3 Consider two vector sets G and H from a ξ-dimensional vector space V .

1. For the need of this work, we shall say that sets G and H are linearly separated by a

set of k linear inequalities {(ai, bi) : i = 1, · · · , k} if and only if (iff)

(∀g ∈ G : ∀i ∈ {1, · · · , k}, aTi · g ≤ bi) ∧

(∀h ∈ H : ∃i ∈ {1, · · · , k}, aTi · h > bi) (2.6)

2. A linear classifier – or separator – for vector sets G and H is structurally minimal,

iff it employs the minimum possible number of linear inequalities that can separate

these two sets.

�

In the case of the classification that is effected by the DAP ∆∗, the roles of the setsG and

H in Definition 3 are played, respectively, by the sets S̄rs and S̄brs̄ that contain the maximal

reachable safe states and the minimal boundary unsafe states. In this case, Proposition 1

implies the following additional result for the sought classifiers [53]:

Proposition 2 If the maximally permissive DAP ∆∗ of a given D/C-RAS Φ admits a rep-

resentation as a linear classifier of Definition 3, then, there exists such a linear classifier

with nonnegative parameters (ai, bi) for all the involved inequalities. �

The astute reader will also notice that Definition 3 implies an asymmetry for the role of

the sets S̄rs and S̄brs̄ in the design of the sought (linear) classifier. This asymmetry is dictated

by the further implementation of the resulting classifier through some popular modeling

frameworks for the (controlled) RAS dynamics, and especially, the modeling framework of

Petri nets (PNs) [49]. In the PN modeling framework, each of the inequalities implementing

19

Figure 2.1: Characterization of the safe and unsafe reachable states for an example D/C-RAS
with two resource types, R1 and R2, with corresponding capacities C(R1) = C(R2) = 2, and
two process types, Π1 and Π2, with corresponding process plans R1 → 2.R2 and R2 → 2.R1.
Recognizing that the terminal processing stages of these two process types will never get involved
in a deadlock, the information that is provided by this figure is projected on the sub-space that is
defined by the state components s1 and s3, which correspond to the first processing stage of each
process plan. Safe reachable states are depicted by rhombi and unsafe reachable states by squares.
The reader should notice that the convex hull of the depicted safe states includes the unsafe state
corresponding to point (1, 1), and therefore, in this case, the reachable safe states and the boundary
unsafe states of the considered system are not linearly separable.

a linear classifier that (a) presents the structure described in Definition 3, and (b) satisfies

the additional “non-negativity” condition of Proposition 2, can be enforced on the RAS-

modeling PN through the addition of a single place that is known as the corresponding

“monitor” place [23, 29]. More importantly, the resulting PN, that represents the behavior

of the controlled RAS, belongs to the same class with the PNs that model the uncontrolled

RAS behavior, and therefore, it is amenable to the same analysis and design methods that

are available for the “plant” (i.e., the RAS-modeling) PN.

On the other hand, it is also well known that ∆∗ might not admit a linear representation

along the lines of Definition 3 [60, 15].3 Such a case is provided in Figure 2.1, where it can

be seen that the lack of a linear representation for the corresponding DAP ∆∗ is due to the

inclusion of elements of the set S̄brs̄ in the convex hull of Srs. As remarked in the earlier

part of this section, this problem has been addressed through the development of additional

3 Also, some interesting related work concerning the limitations of the aforementioned structure of “mon-
itor” places to provide effective representation of the maximally permissive supervisor that ensures deadlock-
free and/or live operation for various PN classes, can be found in [28].

20

representations for the classification logic that is effected by the target policy ∆∗. How-

ever, these representations are not amenable to the PN-based implementation of ∆∗ that

was discussed in the previous paragraph, and to the various analytical and computational

possibilities and efficiencies that result from such an implementation. One such possibility

that is of particular interest in the presented research program is the inclusion of the logic

of the employed DAP into some linear programming formulations that seek to complement

the preventive control of deadlock avoidance with scheduling capability, and are known as

“fluid relaxations” of the underlying RAS dynamics; these developments are the subject of

Chapter 4.

2.3 The CRL and its RAS abstraction

This section introduces the considered CRL model, and provides the necessary background

material for a detailed characterization of the corresponding logical control problem of

deadlock avoidance.

2.3.1 The considered CRL model

The considered CRL model can be perceived as a subclass of the D/C-RAS of Definition 1

that supports a single process type, with no routing flexibility, and with the only resource

types being the servers and the buffer slots of the various workstations of the line.

More specifically, in the considered CRL model, production is supported by L single-

server workstations, W1,W2, . . . ,WL, each possessing finite buffering capacity Bi, i =

1, . . . , L. On the other hand, the process type that is supported by this line is defined by

a sequence of M processing stages, J1, J2, . . . , JM . Each processing stage Jj is carried

out at one of the line workstations and it requires a slot of the station buffering capacity

during its entire sojourn in it. This station will be denoted byW (Jj), and the functionW (·)

constitutes the resource allocation function for the corresponding L-SU RAS. Furthermore,

it is assumed that L < M , an assumption that manifests the re-entrant nature of the line.

21

Some additional assumptions that detail the line operation, are as follows:

A part visiting the workstation W (Jj) for the processing of the corresponding process-

ing stage Jj will receive service from the station server by having the server visiting the

buffer slot that accommodates this part. Hence, any part visiting this workstation will re-

main in its allocated slot during its entire sojourn at the station, and at any time point during

this sojourn, the part will either be waiting for processing, be in processing, or will have

completed processing and it will be waiting for transfer to the next required workstation.

Furthermore, in line with the corresponding resource allocation theory, a part that has

completed the processing of stage Jj , can move to the next required workstation W (Jj+1)

for the execution of its next processing stage, only when there is an available buffer slot at

this workstation. Hence, the processed parts are subjected to blocking effects, and when

combined with the re-entrant nature of the considered workflow, these blocking effects can

also give rise to deadlocks.4

The processing times for the processing stages Jj, j = 1, . . . ,M , are assumed to be ex-

ponentially distributed with mean processing time τj . And we shall also set µj ≡ 1/τj, ∀j.5

Furthermore, part loading and transfer times between the line workstations are assumed to

be negligible w.r.t. processing times.6

Finally, since in the following developments our primary objective is the throughput

maximization of the considered CRL model, we also assume the existence of an “infinite

backlog” of parts waiting for processing in front of the line; i.e., the line never starves for

4 We also want to notice that while the adopted service model for the line workstations intends to provide
a concrete base for the exposition of the presented developments, it is not restrictive in any strong sense, since
the presented method can be easily adapted to other service models that are employed by such workstations.
From a more practical standpoint, this service model for the line workstations is a quite faithful abstraction of
the workflow that is materialized at the various chambers of the, so called, “cluster tools” [70], that constitute
a prevailing technology in the current semiconductor manufacturing.

5While the assumption of exponential processing times is meant to simplify the exposition of the theory
that is developed in this paper, more generally distributed processing times can be handled by approximating
them by phase-type distributions to any desired degree of accuracy; please, c.f. to [10] for an introduction to
phase-type distributions, and to [9] for a brief introduction on the modeling of non-Markovian dynamics by
phase-type distributions.

6Non-zero loading and transfer times can be included easily in the considered model through the addition
of further stages in the underlying process plan.

22

WS 1 WS 2

I/O Port

Process route:
WS1 -> WS2 -> WS1

Figure 2.2: An example CRL.

work.

Example: We concretize the definition of the CRL model that was provided in the pre-

vious paragraphs, through the example manufacturing system that is depicted in Figure 2.2.

This system consists of two workstations, labeled as WS1 and WS2 in Figure 2.2, and an

I/O port that interfaces it with the rest of its operational environment. Each workstation

has a single server, depicted as a grey ellipse in Figure 2.2, and two buffer slots, depicted

by the corresponding rectangles. Parts visiting each of the two workstations are accom-

modated at one of the available buffer slots, and they are processed by the workstation

server by having the server visiting the corresponding slot. A robotic manipulator supports

the necessary material handling functions, and integrates the entire facility to a fully au-

tomated cell. Figure 2.2 also provides the process route for the parts that are processed

through this CRL; since workstation WS1 is visited twice by each part, the considered

layout constitutes a re-entrant line. Furthermore, letting Jj, j = 1, 2, 3, denote the three

processing stages of this CRL, under the notation that was introduced in the earlier parts of

this section we shall also have W (J1) = W (J3) = WS1 and W (J2) = WS2. Finally, we

assume that the processing times for each of the three processing stages are exponentially

distributed with corresponding instantaneous rates µj and corresponding expected values

τj = 1/µj, j = 1, 2, 3.

23

2.3.2 Abstracting the CRL “untimed” dynamics through a finite state automaton

Following the relevant theory presented in Section 2.1, we model the basic structure of the

workflow dynamics of the introduced CRL model, and the corresponding resource alloca-

tion function, by means of a finite state automaton (FSA) Φ ≡ (S,E, f, s0, SM). Next, we

define the various elements of this automaton Φ.

State and state space: A pertinent definition of a notion of state for this automaton

can be based on the number of the parts waiting for processing, being processed or having

completed processing of the different processing stages, Jj , of the supported process type.

More specifically:

Definition 4 The state s of the CRL model considered in this work is a 3M -dimensional

vector with component 3j + k, j = 0, . . . ,M − 1, k = 1, 2, 3, denoting respectively the

number of parts that are waiting for processing, executing, or having completed processing

stage Jj . �

The state set S of the aforementioned automaton Φ consists of all vectors s that ad-

mit an interpretation according to Definition 4, and are compatible with (i) the single-

server assumption for the line workstations, and (ii) the available buffering and capacities

Bi, i = 1, . . . , L, at these workstations. Then, the finite buffering capacity of all worksta-

tions implies that the resulting state set S of Φ is, indeed, finite.

Furthermore, since, in the considered CRL model, (a) part loading and unloading re-

quire zero time, and (b) there is an infinite backlog of jobs waiting for processing, it is

possible to simplify the state concept introduced in Definition 4 by dropping the first and

the last component of the state vector s; i.e., parts seeking to execute their first processing

stage can be loaded into the line only when the corresponding server is available, and parts

having completed processing of the last processing stage can be unloaded immediately. In

the following, we shall adopt this simplified state model, with the necessary adjustments in

the corresponding notation.

24

Example: The (simplified) state s of the FSA Φ corresponding to the CRL of Figure 2.2

is a 7-dim integer vector. The first two components of this vector s, s1 and s2, report,

respectively, the number of parts at workstation WS1 executing processing stage J1 and

having completed the processing of this stage; components s3, s4 and s5 report the number

of parts in workstation WS2 that are, respectively, waiting for the execution of stage J2,

executing this stage, and having completed execution of this stage; finally, components s6

and s7 of state s report the number of parts at workstation WS1 respectively waiting for the

execution of stage J3 and executing this stage. �

Events and their controllability: The set of events, E, that advance state s, consists

of (i) the event el that loads a new part on the line; (ii) the events eaj , j = 1, . . . ,M − 1,

that advance a part from workstation W (Jj) to the next requested workstation, W (Jj+1),

allocating to this part a free buffer slot of the new workstation; (iii) the events epj , j =

1, . . . ,M , that initiate the processing of a part at workstation W (Jj) by allocating to it the

corresponding server; (iv) the events edj , j = 1, . . . ,M , that de-allocate the server upon

completion of the part processing; and (v) the event eu that unloads a completed part from

the line.

Furthermore, for the needs of the subsequent developments, it is also pertinent to distin-

guish the various event types that were defined in the previous paragraph into “controllable”

and “uncontrollable” events. More specifically, the events of type (i), (ii), (iii) and (v) are

controllable by the line supervisor. Furthermore, under the aforestated assumptions, these

events are executed in zero time when commanded by the supervisor. On the other hand,

the events of type (iv) occur spontaneously upon the completion of the processing of the

corresponding part, and therefore, they will be treated as uncontrollable events. The reader

should also notice that, in the timed dynamics of the considered CRL, there is a nonzero

lag between a type (iii) event and the execution of the corresponding type (iv) event, that

corresponds to the necessary processing time.

The state transition function: The state transition function f : S × E of automaton

25

Φ is a partial function encoding the evolution of the system state s upon the execution

of the different events e ∈ E. In particular, function f is defined only on those pairs

(s, e) ∈ S × E where the considered event e is feasible in the corresponding state s.

Furthermore, f extends on S × E∗ in the natural manner.

Initial and marked states: For the initial state s0 of FSA Φ, we set s0 = 0, i.e., the

state where the line is empty of any parts. We also set SM = {s0}, signifying the fact that

an accepting run of FSA Φ should complete all the activated jobs and bring the system back

to its initial state.

Deadlock and the need for deadlock avoidance: As remarked in the earlier part of this

section, the ability of the considered CRL to reach its marked state s0 can be compromised

by the formation of deadlock. In the abstracting representational framework of the above

FSA Φ, deadlock is formally defined as follows:

Definition 5 A CRL deadlock is a state s of the corresponding FSA Φ where there is a

subset I ⊆ {1, . . . , L} such that (i) each workstation Wi, i ∈ I, has its buffer slots fully

allocated, and (ii) each part p accommodated in the workstation subset that is defined by

the index set I requests transfer to another workstation in this subset. �

Example: In the FSA Φ that corresponds to the CRL of Figure 2.2, any state s that has

(a) the buffer slots of workstationW1 fully allocated to parts executing or having completed

their first processing stage, and (b) the buffer slots of workstation W2 also fully allocated

(obviously to parts waiting for the execution / executing / having completed the execu-

tion of their second processing stage), is a deadlock. Formally, these deadlock states are

represented by the set

Sd ≡ {s ∈ S : s1 + s2 = 2 ∧ s3 + s4 + s5 = 2} (2.7)

The reader can also check that the states contained in the above set Sd are the only deadlock

states of the CRL considered in this example. �

26

It is clear that under the operational assumptions that were stated in the opening part

of this section, parts that are involved in a deadlock formation will be permanently stalled

in their current workstations, and at the same time, they will prevent the advancement of

any further parts through these workstations. Hence, CRL states containing such deadlock

formations must be proactively identified and blocked during the line operation. Next,

we overview some basic developments in the RAS deadlock avoidance theory that are

particularly relevant to the CRL operational context.

2.3.3 Establishing deadlock freedom for the considered CRL model

An alternative, more compressed representation of the underlying CRL dynamics: It

is clear from Definition 5 and its accompanying example that CRL deadlock is due only

to the allocation of the workstation buffering capacity, and not to the allocation of the

processing capacity of the line servers. Hence, the corresponding problem of deadlock

avoidance can be focused on this particular allocation. This can be achieved by considering

the further abstraction of the FSA Φ, that was introduced in the previous subsection, to

the FSA Φ̂ = (Ŝ, Ê, f̂ , ŝ0, ŜM), with a (vector) state ŝ that considers collectively all the

parts located at workstation W (Jj), j = 1, . . . ,M , for the execution of the corresponding

processing stage Jj; in other words, each component of the new state ŝ will report the

number of parts located at some workstation W (Jj), j = 1, . . . ,M , for the execution

of the corresponding processing stage Jj , without discriminating whether these parts are

waiting for processing, are in processing, or have completed processing of this stage and

are waiting for transfer to the next required workstation. Furthermore, the event set Ê of Φ̂

will consist only of the type (i), type (ii) and type (v) events of the original FSA Φ. Finally,

we also set ŝ0 = 0, and ŜM = {ŝ0}.

Example: For the example CRL of Figure 2.2, the corresponding FSA Φ̂ has a 3-dim

state ŝ. Furthermore, for any state s of the original FSA Φ that was defined in Section 2.3.2,

27

the corresponding state ŝ is obtained through the following equations:

ŝ1 ≡ s1 + s2

ŝ2 ≡ s3 + s4 + s5

ŝ3 ≡ s6 + s7 (2.8)

Clearly, state ŝ changes only when a part enters or leaves one of the line workstations,

and it ignores completely the server allocation at these workstations, as well as the specific

processing status of the various parts that are located at these workstations.

It is also interesting to notice that, according to Equations 2.7 and 2.8, in the more

abstracted representation of the CRL dynamics that is provided by FSA Φ̂, all deadlock

formations taking place in the CRL of Figure 2.2 are represented by the single state ŝd =

(2, 2, 0). It is this representational compression attained by FSA Φ̂ that renders it useful

in the analysis of the corresponding deadlock avoidance problem and in the subsequent

developments. �

State reachability, safety and maximally permissive deadlock avoidance: In the

notational semantics that are associated with FSA Φ̂, we shall further denote by Ŝr the set

of reachable states of Φ̂, i.e., the states ŝ ∈ Ŝ that are accessible from state ŝ0 through

some feasible event sequence σ ∈ Ê∗. On the other hand, state set Ŝs will denote the

set of co-reachable – or “safe” – states of Φ̂, i.e., the states ŝ ∈ Ŝ from which state ŝ0 is

accessible through some feasible event sequence σ′ ∈ Ê∗. We shall also set Ŝr̄ ≡ Ŝ\Ŝr and

Ŝs̄ ≡ Ŝ \ Ŝs, and we shall refer to these two sets, respectively, as the sets of the unreachable

and the unsafe states. Finally, we shall also use the notation Ŝxy ≡ Ŝx ∩ Ŝy, for x ∈ {r, r̄}

and y ∈ {s, s̄}.

It should be clear from the definition of the set Ŝrs in the previous paragraph that it

comprises all the reachable states s ∈ Ŝr for which there exist feasible event sequences,

σ ∈ E∗, leading to the completion of all the parts that are in execution in these states. In

28

the state transition diagram (STD) Ĝ representing the dynamics of FSA Φ̂, this property of

Ŝrs is manifested by the fact that the subgraph induced by its states is the maximal strongly

connected component of Ĝ containing the empty state ŝ0. These remarks subsequently

imply the following characterization of the maximally permissive DAP for the considered

CRL model:

Theorem 1 In the representational semantics of FSA Φ̂, deadlock can be avoided while

imposing the minimal possible restriction on the workflow dynamics of the underlying CRL,

by identifying and blocking attempted transitions from subspace Ŝrs to subspace Ŝrs̄. The

resulting DAP is characterized as maximally permissive in the corresponding literature, it

is uniquely defined, and, in the following, it will be denoted by ∆∗. �

Theorem 1 is a specialization to the considered CRL model of the corresponding devel-

opments of Section 2.2 concerning the characterization of maximally permissive deadlock

avoidance in complex resource allocation systems. As we saw in that section, the work

of [59] provides also a complete methodology for the effective deployment of the optimal

DAP ∆∗ for any instantiation of the CRL model that is considered in this work.

Furthermore, the works of [59, 38] present an additional set of results which establish

that for a very large subclass – in fact, the majority of the practical instantiations – of the

considered CRL model, the optimal DAP ∆∗ admits a representation as a set of linear

inequalities on the state ŝ.

Example: For the example CRL of Figure 2.2, the reader can check that

Ŝs̄ = Ŝd = {(2, 2, 0)} (2.9)

Hence, for this simple CRL, deadlock can be effectively avoided by enforcing the con-

straint

ŝ1 + ŝ2 ≤ 3 (2.10)

29

in underlying workflow dynamics. Furthermore, this constraint attains deadlock freedom

for the line operation in a maximally permissive manner, since, starting from the initial state

ŝ0, the only reachable state that violates this inequality is the deadlock state ŝd = (2, 2, 0).

�

Correct linear DAPs and policy “lifting” to FSA Φ: As we shall see in Chapter 4, the

ability to represent the employed DAP ∆ through a set of linear inequalities on the state ŝ is

instrumental for developing the LP relaxation and the corresponding scheduling method for

the throughput maximization of the considered CRL model that are pursued in this work.

In order to address CRL instances where the corresponding maximally permissive DAP

does not admit a representation as a set of linear inequalities on state ŝ, we also introduce

the broader concept of a “correct linear DAP”:

Definition 6 A set of linear inequalities imposed on the state ŝ of any given instantiation

of the considered CRL model defines a correct linear DAP ∆ for this CRL if and only if

the set Ŝa(∆) ⊆ Ŝr containing the reachable states that satisfy these inequalities, induces

a strongly connected component, Ĝa(∆), of the corresponding STD Ĝ, that contains the

initial state ŝ0.

Also, the aforementioned state set Ŝa(∆) that is induced by a correct linear DAP ∆, is

characterized as the (reachable) state (sub-)space that is admissible by this policy.7 �

The developments of [59] also enable the computation of efficient approximations of

the optimal DAP ∆∗ that take the form of a correct linear DAP ∆, when the optimal DAP

∆∗ does not admit a linear representation.

Furthermore, the eventually employed DAP ∆ can be “lifted” to the original FSA Φ,

that models more completely the operation of the underlying CRL, through a state admis-

sion rule that will admit a state s ∈ S if and only if (iff) the corresponding state ŝ belongs in

Ŝa(∆). The resulting admissible subspace of S will be denoted by Sa(∆), and the subgraph

7This reader should notice that Definition 6 further implies that, for any correct linear DAP ∆, Ŝa(∆) ⊆
Ŝrs.

30

Ga(∆) induced by the state set Sa(∆) in the STD G of the FSA Φ has similar connectivity

properties to the connectivity properties of the subgraph Ĝa(∆) w.r.t. the STD Ĝ. Fur-

thermore, the notions of “(state) reachability” and “co-reachability / safety” are naturally

extended to the CRL dynamics that are described by the FSA Φ.

Table 2.1: The state description for the STD of Figure 2.3.

s s1s2 s3s4s5 s6s7 s s1s2 s3s4s5 s6s7

0 0 0 0 0 0 0 0 33 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 34 0 0 0 0 0 2 0
2 0 1 0 0 0 0 0 35 1 0 1 0 1 1 0
3 1 1 0 0 0 0 0 36 0 0 0 1 1 1 0
4 0 0 1 0 0 0 0 37 0 0 1 0 0 2 0
5 1 0 1 0 0 0 0 38 0 0 0 1 0 2 0
6 0 0 0 1 0 0 0 39 1 0 0 1 1 1 0
7 1 0 0 1 0 0 0 40 0 1 0 1 1 1 0
8 0 1 0 1 0 0 0 41 1 0 0 0 2 1 0
9 1 0 0 0 1 0 0 42 0 1 0 0 2 1 0
10 1 0 0 0 0 1 0 43 0 1 0 0 2 0 1
11 0 1 0 0 0 1 0 44 0 1 0 0 2 0 0
12 0 0 1 0 0 1 0 45 0 1 0 1 1 0 1
13 0 1 0 0 0 0 1 46 0 1 0 1 1 0 0
14 0 0 1 0 0 0 1 47 0 0 1 1 0 1 0
15 0 0 0 1 0 0 1 48 0 1 0 1 0 0 1
16 0 0 0 0 1 0 1 49 0 0 1 1 0 0 1
17 0 0 0 0 0 1 1 50 0 0 1 1 0 0 0
18 0 0 0 0 0 1 0 51 1 0 1 1 0 0 0
19 0 0 0 0 0 0 1 52 0 1 1 1 0 0 0
20 1 0 1 0 0 1 0 53 1 0 1 0 1 0 0
21 0 0 0 1 0 1 0 54 1 0 0 1 1 0 0
22 1 0 0 1 0 1 0 55 0 1 1 0 1 0 0
23 0 1 0 1 0 1 0 56 0 1 1 0 0 1 0
24 1 0 0 0 1 1 0 57 0 0 2 0 0 1 0
25 0 1 0 0 1 1 0 58 0 1 1 0 0 0 1
26 0 0 1 0 1 1 0 59 0 0 2 0 0 0 1
27 0 1 0 0 1 0 1 60 1 0 2 0 0 1 0
28 0 0 1 0 1 0 1 61 1 0 1 1 0 1 0
29 0 0 0 1 1 0 1 62 0 1 1 1 0 1 0
30 0 0 1 0 0 1 1 63 0 1 1 1 0 0 1
31 0 0 0 1 0 1 1 64 0 1 1 0 1 0 1
32 0 0 0 0 1 1 1 65 1 1 0 1 0 0 0

31

0

1

2

3 4

5 6

7

8

9

μ2 / (μ1 + μ2)

ξ1

1 – ξ5

13

12

ξ7

ξ5

14

17

23

μ2 / (μ2 + μ3)

ξ3

1 – ξ2

ξ2

18

20

19

22

11

55

56

58

59
60

62

65

26

28

29 30

51

53

μ3 / (μ2 + μ3)

μ2 / (μ1 + μ2)

μ1 / (μ1 + μ2)

49

50 47

48

44

46

45

25

323334

36

37

38

4041

57

1 – ξ7

63

27

35

64

10

16

15

μ2 / (μ2 + μ3)

μ3 / (μ2 + μ3)

μ1 / (μ1 + μ2)

24

1 – ξ1

1 – ξ3

μ1 / (μ1 + μ2)

μ2 / (μ1 + μ2)

1 – ξ4

ξ4

31

39

42

μ2 / (μ1 + μ2)
μ1 / (μ1 + μ2)

43

μ3 / (μ2 + μ3)

μ2 / (μ2 + μ3)

ξ6

1 – ξ6

61
μ2 / (μ1 + μ2)

μ1 / (μ1 + μ2)

52

μ2 / (μ2 + μ3)

54

μ3 / (μ2 + μ3)
μ2 / (μ2 + μ3)

21

μ3 / (μ2 + μ3)

Figure 2.3: The reachable and safe state space Srs for the CRL of Figure 2.2, and
some further structure that defines the MDP characterizing the corresponding throughput-
maximization problem.

Example: Figure 2.3 depicts the reachable and safe state space, Srs, for the example

CRL of Figure 2.2. Srs is also the subspace admitted by the maximally permissive, correct,

linear DAP, ∆∗, that is defined by Equation 2.10. A complete characterization of the various

states depicted in this figure is provided in Table 2.1. In the next section, we shall show

how to formulate the scheduling problem of the throughput maximization for this CRL as

an MDP, by introducing additional information to the STD of Figure 2.3 that pertains to the

“timed” dynamics of the considered CRL.

32

2.4 The CRL scheduling problem of throughput maximization and its MDP formu-

lation

Introducing “timed” dynamics to FSA Φ – tangible and vanishing states: This section

(i) introduces the scheduling problem of the throughput-maximization of the considered

CRLs when operated under the supervision of a correct DAP ∆, and (ii) formulates this

problem as an average-reward MDP. To fully characterize this scheduling problem, and

proceed with the corresponding MDP formulation, we must augment the FSA-based rep-

resentation of the workflow dynamics of the considered CRLs with time-related elements.

An effective way to perform this augmentation is by differentiating the states s in the ∆-

admissible state space Sa 8 into (a) states where the only enabled events are some uncon-

trollable events edj , and (b) states that enable controllable events as well,9 according to the

following definition:

Definition 7 Consider a CRL instance controlled by a correct DAP ∆. Then, a state s ∈ Sa

is characterized as tangible iff the only enabled events in s are some uncontrollable events

edj ; otherwise, state s will be characterized as vanishing. Furthermore, the entire set of

tangible states will be denoted by STa , and the set of vanishing states will be denoted by

SVa . �

We demonstrate the concepts of “tangible” and “vanishing” states that were introduced

in the previous definition, and highlight the significance of these concepts for the subse-

quent developments, through the following example.

Example: In the example STD of Figure 2.3, tangible states are depicted as double-

circled, while vanishing states are single-circled.

Next, let us focus on tangible state #7. From Table 2.1, it is clear that this state contains

two parts: a part p1 executing processing stage J1, and a part p2 executing processing stage
8 In order to avoid an “over-loading” of the employed notation, in the following we shall use Sa instead

of Sa(∆), assuming that this set is defined by an appropriately selected DAP ∆.
9The application of the employed DAP ∆ ensures that every state s ∈ Sa will possess at least one enabled

event that is also admissible by the applied DAP ∆.

33

J2. The earlier completion of each of these two parts w.r.t. the other one leads respectively

to states #8 and #9. Furthermore, since processing times for these two parts are exponen-

tially distributed with respective instantaneous rates µ1 and µ2, the respective probabilities

for each of these two transitions are those annotated in the figure. Finally, the expected

sojourn time for state #7 is 1/(µ1 + µ2) > 0.

On the other hand, states #8 and #9 are vanishing states, since in each case, the com-

pleted part can be advanced to its next processing stage, obtaining, respectively, states #65

and # 10. Furthermore, under the stated operational assumptions for the considered CRL,

these part advancements require zero time; hence, the sojourn time for states #8 and #9 is

zero. �

As revealed in the previous example, tangible states essentially define an “exponential

race” among its enabled events edj , and therefore, they possess a non-zero sojourn time.

On the other hand, since (i) vanishing states enable some controllable event, according to

Definition 7, and (ii) any controllable event in the considered CRL model executes in zero

time, the sojourn times of these states will be consistently equal to zero.10

Furthermore, it is important to notice that, while in the case of tangible states the se-

lection of the executed events is resolved endogenously, by the corresponding exponential

race, in the case of vanishing states, there is a further need for an extraneous mechanism

that will select a particular enabled controllable event for execution. This mechanism must

bias the underlying selection in a way that it supports the pursued objective of throughput

maximization, and it will be provided by the sought scheduling policy. Next we discuss

how this scheduling policy can be obtained, at least in principle, through the formulation

and solution of a Continuous-Time, Average-Reward (CT-AR) MDP [57] that is defined by

means of the various structural elements that have been introduced in this section.

Formulating the considered scheduling problem as an MDP: According to the gen-

eral MDP theory [57], in order to obtain a complete MDP formulation of the considered

10These remarks also justify the respective names of these two state classes as “tangible” and “vanishing”;
the corresponding terminology has been borrowed from [1].

34

scheduling problem in the context of the timed CRL dynamics that were presented in the

previous part of this subsection, we need to define: (i) the decision states of this MDP; (ii)

the set of actions that are available at each decision state; (iii) the transitional dynamics

that are incurred by the execution of a particular action at a decision state; (iv) the im-

mediate rewards that result from these executions; and (v) the function of these rewards

that formalizes the problem objective. Next, we provide a detailed characterization of all

these elements; our discussion relies heavily on the various concepts and insights that were

provided in the earlier parts of this chapter.

When it comes to the “decision states” of the considered MDP, it should be evident

from the discussion that was provided in the previous part of this section, that these states

are the vanishing states that result from the occurrence of an event edj at any of the admis-

sible tangible states s ∈ STa . The following definition formalizes this remark.

Definition 8 Let X ⊆ Sa denote the set of states that result from the execution of an event

edj at some state s ∈ STa . Then, the set X constitutes the set of the decision states of the

considered MDP. �

Next, we define the set of the available “actions” (or “decisions”) at any given state

s′ ∈ X . From a more conceptual standpoint, each of these decisions will take the consid-

ered MDP to a new admissible tangible state s′′ ∈ STa , in zero time, and then, the process

will wait for the next completion event, edj , at that state. It is also important to notice that

in order to reach a next admissible tangible state s′′ ∈ STa from the current decision state

s′, the underlying process might have to pass through a cascade of vanishing states that are

reached through a sequence of controllable events, σ; the reader is referred to Figure 2.3

and the accompanying Table 2.1 for some concrete examples of this last statement. Fur-

thermore, the above remarks motivate the following definition:

Definition 9 For any decision state s′ ∈ X , define the corresponding “tangible reach” of

s′, T R(s′), as the set of the admissible tangible states s′′ that are reachable from state s′

35

through an event sequence σ ∈ E∗ that contains only controllable events. Then, the set of

actions, A(s′), of the considered MDP at decision state s′ is defined as A(s′) ≡ T R(s′).

�

For any state s′′ ∈ T R(s′), the corresponding action can be materialized through the

execution of any controllable-event sequence σ leading from state s′ to state s′′.

We also notice, for completeness, that the set of vanishing states s′′′ which are reachable

from state s′ through the aforementioned event sequences σ that lead to some state s′′ ∈

T R(s), is characterized as the “vanishing reach” of state s′. This set of states is denoted

by VR(s′), and it can be empty for some states s′.

The “transitional dynamics” for the considered CT-MDP model that result from the

execution of an action a ≡ s′′ ∈ T R(s′) at some decision state s′, are determined by the

exponential race that takes place in the tangible state s′′.

On the other hand, since our stated objective is the maximization of the long-term

throughput of the line, the expected immediate reward, r(s′, a), from executing action a

at state s′ is defined as follows:

Definition 10 For the considered MDP, the expected immediate reward from executing ac-

tion a at state s′ is denoted by r(s′, a), and it is equal to the probability that the next decision

state will be defined by the occurrence of event edM that corresponds to the completion of

the last processing stage by a running part and the unloading of this part from the line.

Hence, letting s′′ ∈ T R(s′) denote the tangible state that corresponds to action a, and

E(s′′) denote the set of the events edj enabled in s′′, the expected immediate reward r(s′, a)

will be equal to µM/
∑

edj∈E(s′′) µj if edM ∈ E(s′′), and zero otherwise.

Finally, in view of the above definitions of the decision states and actions of the con-

sidered MDP, the induced transitional dynamics, and the expected immediate rewards, the

problem of maximizing the throughput of the considered CRLs is reduced to the problem

36

of maximizing the (long-term) average reward of this MDP.11 The communicating structure

of the admissible state space Sa for the underlying stochastic process that was established

in the earlier parts of this section, further implies that this CT-MDP formulation is well

defined, and it will have an optimal solution that takes the form of a deterministic, station-

ary policy [57]. Hence, letting Π denote the set of deterministic stationary policies for the

considered MDP, an optimal schedule for the considered CRL is represented by a policy

π∗ ∈ Π that, at each state s′ ∈ X , will select a single action a ∈ T R(s′) so that

π∗ = arg max
π∈Π

lim
N→∞

1

E[tN]
E

[
N∑
i=1

r(s′i, ai)
∣∣∣ s0, π

]

In the above equation, tN denotes the time of the N -th state transition of the underly-

ing stochastic process. Furthermore, some simplification of this CT-MDP formulation, and

some methodology for its solution through uniformization [9], are presented in Appendix

A of [39]. But, as remarked in the introductory chapter, in most practical cases the solution

of this CT-MDP model will be intractable due to the very large size of the involved state

spaces. Hence, there is a remaining need for the computation of suboptimal scheduling

policies that will trade off some of the performance of the underlying system for computa-

tional tractability. The development of such a methodology is at the core of the presented

research program. We conclude this section by discussing the MDP formulation and its

optimal solution for the example CRL of Figure 2.2.

Example: As already discussed in the previous parts of this section, the STD of Fig-

ure 2.3 highlights the classification of the depicted states into tangible and vanishing, and

11 The specification of the set of actions at each decision state s′ of this CT-MDP through the corresponding
tangible reach T R(s′) implies a non-idling scheduling policy for the underlying CRL; i.e., under such a
policy, no server that could be engaged in the processing of some available part will remain idle. Due to the
blocking experienced in the operation of the considered CRLs, such a non-idling scheme might be suboptimal
[24, 64]. We have opted to confine the presented developments within the class of the non-idling scheduling
policies, in an effort to attain some simplicity for the presentation of the main concepts and ideas involved.
But it is possible to extend the presented methodology to deliberately idling schemes, by introducing further
actions at the states s′ that correspond to decision epochs; these actions will correspond to controllable-event
sequences σ leading to some state s′′ in the vanishing reach VR(s′) of the considered state s′, that contains
some enabled events edj .

37

it also reports the transitional dynamics that are defined by the exponential races that take

place at each tangible state. An additional development in Figure 2.3 is a proposed “thin-

ning” of the presented STD through the elimination of the vanishing states and their inter-

connected transitions that are depicted in dashed lines. This simplification is justified by

the facts that (i) the timed performance of the considered CRL is determined by the sojourn

times that are spent by this line at the tangible states only, and (ii) the proposed “thin-

ning” does not alter the reachability among the various tangible states, and also among the

decision states s ∈ X that result from the execution of an edj–type event.12

The vanishing states that involve choice in the remaining STD structure are the seven

states colored in grey in Figure 2.3. More specifically, in the remaining STD, each of

these seven states possesses two enabled transitions, and any selection between these two

transitions can be represented by setting the corresponding variable ξk, k = 1, . . . , 7, either

to the value of 0 or 1. In the context of the corresponding MDP terminology, any possible

pricing of the variables ξk depicted in Figure 2.3 defines a complete deterministic stationary

policy for the considered MDP.13

On the other hand, to fully specify this MDP, we must also specify the immediate-

reward function. Under the previously introduced notation, this function is fully defined

by associating with every pair (s′, s′′) ∈ X × T R(s′), an immediate reward equal to the

occurrence probability of event ed3(≡ eu) in state s′′.

Finally, for a better understanding of the semantics of the MDP that was defined in the

previous paragraphs, we also notice that, in the operational context of the CRL depicted in

12A complete analysis that formalizes this “thinning” process, provides a more rigorous justification for it,
and supports it with computationally efficient algorithms, is presented in [40].

13In more accurate terms, the suggested pricing of the variables ξk defines a deterministic stationary policy
of the considered MDP because of the following two additional facts: (I) For any vanishing state s′ ∈ X ,
that results from the execution of an edj–type event at some tangible state s, the aforementioned pricing of the
variables ξk defines completely the next tangible state s′′ to be reached from state s′. (II) In addition, for any
pair of states s′1 and s′2 in X , the pricing of the variables ξk does not introduce any “coupling” in the resulting
transitional dynamics from these two states.

We also notice that allowing the variables ξk to take values in the interval [0, 1] would result in a randomized
stationary scheduling policy. But in the considered problem setting, enabling such a randomization will not
lead to any performance enhancement for the underlying CRL [57, 12].

38

Figure 2.2, each of the variables ξk that define the various deterministic stationary policies

for this MDP, essentially models the choice between (i) allocating the server of workstation

WS1 to a part that will execute processing stage J3 (by setting ξk = 0), and (ii) allocating

this server to a newly loaded part for the execution of its first processing stage (by setting

ξk = 1).

39

CHAPTER 3

MAXIMAL LINEAR DEADLOCK AVOIDANCE POLICIES FOR D/C-RAS

In this chapter, first we introduce the new DAP class of the maximal linear DAPs, ex-

plaining the rationale that underlies the definition of these policies, and establishing their

well-posedness for any given instance from the considered RAS classes. Next, we address

the more practical issue of computing maximal linear DAPs for any given RAS instance.

Finally, we complement the theoretical developments by (i) some further discussion on an

efficient implementation of the proposed algorithms, and (ii) a series of numerical experi-

ments that exemplify these developments, and demonstrate and assess their computational

tractability.

3.1 Maximal linear DAPs

This section introduces the new concept of the “maximal linear DAP”, as it materializes in

the considered class of D/C-RAS. We shall formally define this new DAP class by providing

a complete set of conditions that must be satisfied by the admissible subspace of such a

policy. Hence, let ∆ denote a tentative DAP from the considered class for some given D/C-

RAS Φ, and let Sa(∆) ⊆ S denote the corresponding policy-admissible subspace. We also

define Sā(∆) ≡ S \ Sa(∆). For the dynamics of the controlled system to be well-defined,

clearly we need

s0 ∈ Sa(∆) (3.1)

Then, we can also define Sr(∆), the reachable subspace of Φ under policy ∆, as the limit

set of the following recursion:

40

Sr(∆)(0) := {s0} (3.2)

Sr(∆)(k+1) := Sr(∆)(k) ∪ {s′ ∈ Sa(∆) :

∃s ∈ Sr(∆)(k), e ∈ Γ(s) with f(s, e) = s′} (3.3)

A primary requirement in the specification of the sought policy ∆ is that it does not

induce any new deadlocks or livelocks; such a DAP is characterized as “correct” in the

relevant literature [59]. The correctness of ∆ translates into the following requirement for

the corresponding set Sr(∆):

∀s ∈ Sr(∆), ∃e ∈ Γ(s) \ E↗, f(s, e) ∈ Sr(∆) (3.4)

In more natural terms, the condition of Equation 3.4 requires that at every state s that

is reachable in the considered RAS under supervision by ∆, there is a policy-admissible

event e that concerns the stage advancement or the unloading of an already initiated pro-

cess instance. In Chapter 6 of [59] it is shown that this condition further implies that the

subgraph Gr(∆) of the state transition diagram (STD) of the FSA G(Φ) that is induced by

the state set Sr(∆), contains the initial state s0 and it is strongly connected. Hence, state

s0 is reachable from every state s ∈ Sr(∆), and therefore, there will be no deadlocks or

livelocks in the operation of the controlled RAS.

Next we address the requirement that the sought policy ∆ will admit a representation

through the linear classifiers of Definition 3. Furthermore, for the reasons that were ex-

plained in Section 2.2, we also want the linear representations for our target policies ∆ to

satisfy the “non-negativity” property of Proposition 2.

To formally state the conditions that will help us meet these two requirements, let us

denote the convex hull of any given vector set V by conv(V), and also define the set Sbr̄(∆)

41

as follows:

Sbr̄(∆) ≡ {s′ ∈ Sr \ Sa(∆) :

∃s ∈ Sr(∆), e ∈ Γ(s) with f(s, e) = s′} (3.5)

The set Sbr̄(∆) contains all the states s that are reachable through a single transition from

Sr(∆) but are blocked by policy ∆. Hence, this set collects all the “boundary inadmissible”

states in the controlled dynamics of RAS Φ.

Then, in analogy to the corresponding results for the maximally permissive DAP ∆∗,

the aforestated requirement for a representation of the policy ∆ through a linear classifier

of Definition 3 with non-negative coefficients can be met by introducing the following two

conditions to the policy specification:

∀s, s′ ∈ Sa(∆), s′ ≤ s ∧ s ∈ Sa(∆) =⇒ s′ ∈ Sa(∆) (3.6)

conv(Sr(∆)) ∩ Sbr̄(∆) = ∅ (3.7)

Up to this point, we have articulated the requirements that must be satisfied by the

sought DAP ∆ for any given D/C-RAS Φ so that (i) it is correct, and (ii) admits a de-

sired linear representation, as qualified by Definition 3 and the condition of Proposition 2.

Policy ∆ will also be a “maximal” (correct) linear DAP for RAS Φ, if there is no other

correct linear DAP ∆′ for RAS Φ with an admissible reachable subspace Sr(∆′) such that

Sr(∆
′) ⊃ Sr(∆).

The following definition provides a more formal expression to all the previous discus-

sion.

Definition 11 A policy ∆ is a linear DAP for some given D/C-RAS Φ iff its admissible

subspace Sa(∆) satisfies the following conditions:

42

Correctness: (s0 ∈ Sa(∆)) ∧

(
∀s ∈ Sr(∆), ∃e ∈ Γ(s) \ E↗, f(s, e) ∈ Sr(∆)

)

Monotonicity: ∀s, s′ ∈ Sa(∆),

s′ ≤ s ∧ s ∈ Sa(∆) =⇒ s′ ∈ Sa(∆)

Linearity: conv(Sr(∆)) ∩ Sbr̄(∆) = ∅

Furthermore, a linear DAP ∆ for a given D/C-RAS Φ is maximal iff there is no other

linear DAP ∆′ for D/C-RAS Φ with Sr(∆′) ⊃ Sr(∆). �

Example: Two maximal linear DAPs for the example D/C-RAS of Figure 2.1, are

the DAPs ∆1 and ∆2 that will admit a state s ∈ S if its projection on the 2-dim space

that is defined by the state components s1 and s3, belongs, respectively, in the sets S1
a ≡

{(0, 0), (1, 0), (2, 0), (0, 1)} and S2
a ≡ {(0, 0), (1, 0), (0, 1), (0, 2)}.

Indeed, both of these policies admit the initial state s0 and it can be easily checked

that they do not suffer from any policy-induced deadlock or livelock. Furthermore, they

satisfy the “monotonicity” requirement of Definition 11, and the corresponding state sets

Sr(∆
i), Sbr̄(∆

i), i = 1, 2, will admit linear separation in the projected space that is defined

by the state coordinates s1 and s3. Finally, these two policies are also maximal, since the

only possible expansion of the corresponding sets Sr(∆i), i = 1, 2, is by re-admitting the

blocked pairs (0,2) and (2,0) in the corresponding sets Sia, i = 1, 2; but the policy that

will result from any of these two augmentations is ∆∗, and we know that this policy is not

linear.

Finally, the reader should also notice that Sr(∆1) 6= Sr(∆
2), and therefore, the two

policies ∆1 and ∆2 are essentially different.

43

Existence but non-uniqueness of maximal linear DAPs: The closing remark in the

previous example further implies that, for any given D/C-RAS Φ, the maximal linear DAPs

of Definition 11 will not be unique, in general. Hence, for further reference, we shall denote

the set of linear DAPs for any given D/C-RAS Φ by L(Φ), and its subset that contains its

maximal elements by L̄(Φ).

The next result is also important for the well-posedness of the considered DAP class.

Proposition 3 For any given D/C-RAS Φ, L̄(Φ) 6= ∅.

Proof: For any given D/C-RAS Φ, consider the policy ∆̂ that admits a state s ∈ S iff

(a) either it is the initial state s0, or (b) it contains only one active process instance. Then,

it is easy to see that the policy ∆̂ is correct, and satisfies the “monotonicity” requirement

of Definition 11. It is also clear that the admissibility logic of this policy can be expressed

by the linear inequality
ξ∑
i=1

s[i] ≤ 1

Hence, the set of linear DAPs for any given D/C-RAS Φ, L(Φ), is non-empty. Since

this set is also finite, it will possess well-defined maximal elements, and therefore, the set

L̄(Φ) is also non-empty. �

With the notion of the maximal linear DAP well-defined, next we turn to the develop-

ment of the necessary algorithms that will provide a maximal linear DAP for any given

D/C-RAS Φ.

3.2 Computing the maximal linear DAPs

In this section, we consider the computation of the maximal linear DAPs, for any given

D/C-RAS Φ, that were defined in the previous section. The presented developments are

organized as follows: (i) First, we introduce a basic algorithm for the systematic enumera-

tion of all the maximal linear DAPs ∆ ∈ L̄(Φ), for any given D/C-RAS Φ, and we prove

the algorithm correctness and the finiteness of its computation. (ii) In a second part of this

44

Algorithm 1 The main algortihm for computing L̄(Φ)

Input: DFSA G(Φ)
Output: L̄(Φ)

/* INITIALIZE */
1: STORE := NILL; EXPLORE := 〈S̄rs〉;

/* MAIN ITERATION */
2: while EXPLORE 6= NILL do
3: S̄r := POP(EXPLORE);
4: Sbr̄ := {s ∈ S :

(
∃s′ ∈ S, s′′ ∈ S̄r, e ∈ Γ(s′) s.t. f(s′, e) = s AND s′ ≤

s′′
)

AND
(
6 ∃ s′′′ ∈ S̄r s.t. s ≤ s′′′

)
};

5: S̄br̄ := {s ∈ Sbr̄ : 6 ∃s′ ∈ Sbr̄ s.t. s′ 6= s AND s′ ≤ s};
6: if ((S̄r, S̄br̄) linearly separable) AND

(6 ∃ S̄ ′r ∈ STORE : S̄ ′r ⊇ S̄r) then
7: Remove from STORE any element sets S̄ ′′r s.t. S̄ ′′r ⊂ S̄r;
8: Enter S̄r in STORE;
9: else

10: for all s ∈ S̄r do
11: S̃r := PRUNE(S̄r, s, G(Φ));
12: if (6 ∃ S̄ ′r ∈ STORE : S̄ ′r ⊇ S̃r) then
13: PUSH(S̃r;EXPLORE);
14: end if
15: end for
16: end if
17: end while

/* TERMINATE */
18: return STORE;

section, we also discuss certain implementational details that concern the employed data

structures and some additional arbitrating logic that can be introduced at certain steps of

the algorithm, and can streamline further the overall execution. (iii) Finally, the last part

of the section provides the results of some numerical experimentation that seeks to assess

(a) the practical tractability of the presented algorithm, and (b) the extent of restrictiveness

that is introduced by the linearity of the target policies.

3.2.1 A basic algorithm for the enumeration of the set L̄(Φ)

Description of the proposed algorithm: The basic structure for the algorithm that we

propose for the enumeration of the policy set L̄(Φ), for any given D/C-RAS Φ, is presented

45

Algorithm 2 Function PRUNE(S̄, s̃, G(Φ))

Input: DFSA G(Φ), maximal-state set S̄, pruned state s̃
Output: PRUNE(S,G(Φ))

1: Ŝr := {s0};
2: while Ŝ := {s ∈ S \ (Ŝr ∪ {s̃}) : (∃s′ ∈ Ŝr, e ∈ Γ(s′) with f(s′, e) = s) AND

(∃s′′ ∈ S̄ s.t. s ≤ s′′)} 6= ∅ do
3: Ŝr := Ŝr ∪ Ŝ;
4: end while
5: while Ŝ := {s ∈ Ŝr : ∀e ∈ Γ(s) \ E↗, f(s, e) 6∈ Ŝr} 6= ∅ do
6: Ŝr := Ŝr \ Ŝ;
7: end while
8: S̄r := {s ∈ Ŝr : 6 ∃s′ s.t. s′ > s};
9: return S̄r;

in the pseudo-code of Algorithm 1. This algorithm starts with the computation of the set

of reachable and safe states, Srs, that defines the reachable subspace under the maximally

permissive DAP ∆∗, and seeks to detect all the maximal subsets of this set – including the

set Srs itself – that will define correct linear DAPs. In particular, the set Srs is tested first,

and if it is found to admit a linear representation, then the algorithm exits returning this set

as the single element of the set L̄(Φ). On the other hand, if the maximally permissive DAP

∆∗ is not linearly representable, the algorithm will run a search process for all those proper

subsets of Srs that constitute the reachable subspace for a maximal linear DAP ∆ ∈ L̄(Φ).

Each proper subset of Srs that is considered by this search process, is obtained from a

“parent” subset in the generated “search tree” by removing (i) a single maximal element of

the “parent” set, and (ii) any additional states that need to be removed in order to restore the

correctness of the induced DAP. The induced DAP ∆ that is obtained through this process-

ing can be tested for membership in L(Φ) through the corresponding algorithms that are

available in [53]. More specifically, Algorithm 1 computes the sets S̄r and S̄br̄ , containing,

respectively, the maximal reachable states and the minimal boundary inadmissible states

under the considered policy ∆, and tries to construct a linear separator for these two sets

using one of the methods that are presented in [53]. If such a construction is successful,

then the algorithm recognizes policy ∆ as a linear DAP; otherwise, policy ∆ defines a

46

“branching node” of the underlying search tree for the generation of new candidate poli-

cies ∆′ according to the state-removal scheme that was mentioned at the beginning of this

paragraph. The detailed branching logic that was employed in our eventual implementation

of Algorithm 1 is discussed in the next subsection.

Another salient point for the complete understanding of the pseudo-code that is pre-

sented in Algorithm 1, is that the aforementioned subsets of Srs that are generated during

the search process, are supposed to be represented by means of their maximal elements; in

the presented pseudo-code, this fact is indicated by “barring” or “tilding” the corresponding

sets. Some details on the buildup and the maintenance of these particular representations

during the algorithm execution are provided in the next subsection.

The “mechanics” of the search process that was described in the previous paragraphs,

are facilitated in Algorithm 1 through the employment of two lists, STORE andEXPLO−

RE, that hold, respectively, (a) the subsets of Srs that correspond to linear DAPs and are

maximal among the currently detected such sets, and (b) subsets of Srs that have been

generated as potential candidates for specifying maximal linear DAPs, but have not been

assessed and further processed yet. Then, as can be seen in Lines 3–16 of Algorithm 1, the

detailed processing of a set S̄r that has been extracted from the list EXPLORE, consists

of the following steps: First it is checked whether this set defines a linear DAP.1 If this is

the case, and, furthermore, this set is not dominated by any set already in STORE, then it

is entered in STORE as the reachable subspace of a tentative maximal linear DAP. During

this stage, STORE is also cleared by any already stored sets that are dominated by the

new entrance. If, on the other hand, the considered set does not specify a linear DAP, then

it spawns a number of entries for the list EXPLORE. Each of these entries is generated

through (i) the removal of a maximal element from the “parent” set, and (ii) the further

pruning of the resulting set in order to ensure that it specifies a correct DAP. The func-

tion that performs this pruning is listed in Algorithm 2, and it constitutes a “fixed point”

1As already mentioned, this test can be performed through the procedures that have been developed in
[53].

47

computation that seeks to establish the correctness condition of Definition 11.

The entire algorithm is initialized with list STORE empty and list EXPLORE con-

taining the set Srs (represented by the subset of its maximal elements, S̄rs). Hence, the

algorithm will first assess whether the maximally permissive DAP ∆∗ is a linear DAP, and

if this is the case, it will terminate without considering any other policies. In the opposite

case, it will run as described in the previous paragraphs, and eventually it will terminate

when the list EXPLORE becomes empty. At this point, the algorithm will return the

contents of the STORE list as its output.

Concluding the description of Algorithm 1, we also notice, for completeness, that the

set dominance that is tested in certain parts of the algorithm, can be resolved by means of

the maximal elements that are stored in the employed representation of these sets, through

the following criterion:

S̄r ⊇ S̄ ′r ⇐⇒ ∀s′ ∈ S̄ ′r, ∃s ∈ S̄r : s ≥ s′ (3.8)

Proving the correctness of Algorithm 1 and the finiteness of its computation: Next

we proceed to prove the correctness of Algorithm 1 and the finiteness of its computation.

In order to derive these results, we shall start with a more technical proposition that will

ensure that the policies ∆ induced by the sets S̄r that are generated and stored in the lists

EXPLORE and STORE of Algorithm 1, satisfy the “monotonicity” requirement of Def-

inition 11. In order to establish this result, we must also specify more explicitly the sets

Sa(∆) that consist of all the admissible states by any such policy ∆. For the needs of

the subsequent discussion, we shall define Sa(∆), for any policy ∆ that is induced by the

search process of Algorithm 1, as follows:

Sa(∆) ≡
{
s ∈ Sr : ∃s′ ∈ S̄r s.t. s ≤ s′

}
∪ Sr̄s (3.9)

48

The first set of states in the right-hand-side of Equation 3.9 contains all the reachable

states of the FSA G(Φ) that are dominated by some element of the policy-defining set

S̄r, and therefore, are admissible by the corresponding policy ∆ according to the logic of

Algorithm 1 that was discussed in the previous part of this subsection. The second set is

the set of all the safe but unreachable states of G(Φ). Since these states are unreachable

in the original dynamics of the FSA G(Φ), they will never materialize when this FSA is

controlled under the considered policy ∆. But their inclusion in the set Sa(∆) is technically

necessary in order to ensure that this set will contain the entire sub-lattices of (Z+
0)ξ that

are dominated by each of its elements (since some elements of these sub-lattices might be

unreachable). With the sets Sa(∆) well-defined through Equation 3.9, now we can state

and prove the following result:

Proposition 4 The sets Sa(∆) corresponding to the policies ∆ that are generated by Al-

gorithm 1 through Equation 3.9, satisfy the “monotonicity” condition of Definition 11.

Proof: We shall establish the result of Proposition 4 through a double induction, where

the outer induction will run on the sets that enter list EXPLORE, and the inner induction

will be with respect to the state sets that are pruned during the iterations that take place in

Algorithm 2. Also, in the rest of the proof, we shall write Sa instead Sa(∆), in order to

simplify the corresponding notation.

As the base case for the outer part of the pursued induction, we notice that the set Sa

that is induced by the first state set to enter listEXPLORE, during the initialization phase

of Algorithm 1, is the set Srs ∪ Sr̄s = Ss, which satisfies the “monotonicity” condition of

Definition 11 by Proposition 1.

Next, suppose that the “monotonicity” property is possessed by the first k entries to list

EXPLORE, and consider the set Sa that corresponds to entry (k+1) to this list. We shall

show that this set possesses the desired “monotonicity” property by showing that, for every

state s pruned from this set by function PRUNE, PRUNE will also prune all states s′′

with s′′ > s.

49

We establish this result, using the second induction. For the base case of this induc-

tion, we establish the aforementioned result for those states that are removed by the first

execution of the “While” loop of Lines 5–7 in PRUNE. Hence, let s′ denote the maximal

state that was removed from the “parent” set S ′a during the generation of the considered set

Sa, and s denote a state that was removed from the newly generated set Sa during the first

iteration of the “while” loop in Algorithm 2.

From the logic that drives this pruning process, it follows that the set Γ(s)∩(E\E↗) is a

singleton, containing an event e that leads to the (removed maximal) state s′. Furthermore,

event e cannot be an unloading event, since, then, we shall have s > s′, and s′ is not

maximal. Since event e is not a loading event either, it follows that the pruned state s must

contain the same set of process instances with state s′.

Next, we use the above facts to show that any state that dominates state s in S ′a will also

be pruned from Sa by the pruning function of Algorithm 2. Hence, consider a state s′′ ∈ S ′a

with s′′ > s. According to the D/C-RAS dynamics, the presence of the extra processes in

state s′′ can only hinder the further progress of its common processes with state s. Hence,

for this last set of processes, the only available move in s′′ is the event e that led from s to

s′. If this event can be executed in s′′ while some of the extra processes are still present

in the system, then, for the resulting state s′′′′, it will hold s′′′ > s′, which contradicts the

presumed maximality of s′ in S ′a. Hence, the extra processes in state s′′ must be cleared

before the remaining processes in that state can move. But then, any process-completing

path for state s′′ must still go through state s, and therefore, state s′′ must be pruned as well.

For the inductive step of the inner induction, suppose that the inductive hypothesis holds

for the first k executions of the “while” loop of function PRUNE, and consider a state s

that is pruned during the (k + 1) iteration of this loop. If this state is maximal in S ′a, then,

its removal from Sa cannot impair the “monotonic” structure of this set. If, on the other

hand, there exists s′ ∈ S ′a s.t. s′ > s, then, we discern two cases for the advancement

of the extra processes in s′: If the advancement of these processes is interleaved with the

50

advancement of some processes that are also present in state s, then, any such interleaving

will result in a state s′′ that dominates the corresponding state s′′′ that would result from

the advancement of the same processes in s. But state s′′′ is a state that must have been

removed in the previous iterations of the considered “while” loop in the PRUNE function,

and, according to the inductive hypothesis, state s′′ has been pruned as well. If, on the other

hand, the extra processes in state s′ must complete before any further advancement of the

common processes in s′ and s, then, the completion of these extra processes would result

in state s, which is pruned according to the working hypothesis. Hence, state s′ must also

be pruned. �

Next, we state and prove the main technical result of this subsection, that concerns the

correctness and the finiteness of the computation of Algorithm 1.

Theorem 2 When applied on any given D/C-RAS Φ, Algorithm 1 will terminate in a finite

number of steps, and it will return a nonempty output that is a correct enumeration (under

the adopted representation) of the set L̄(Φ).

Proof: The finiteness of the algorithm computation results from the following facts:

At each iteration, the generated sets S̄r that enter list EXPLORE for further processing

are of finite number and of smaller cardinality than the corresponding “parent” set that

generated them. Also, the starting set S̄rs is a finite set, and each generated subset of this

set will be processed through the EXPLORE list a finite number of times. Finally, each

single operation that is performed by the algorithm is also of finite length.

Next, we prove the correctness of the algorithm, i.e., that the algorithm will compute

correctly the target set L̄(Φ). We have already seen that the first set S̄r that is considered by

Algorithm 1 as the reachable subspace for a candidate policy ∆, is the set S̄rs, that induces

the maximally permissive DAP, ∆∗, according to Definition 2. Hence, the algorithm will

return the maximally permissive DAP ∆∗ as its unique output, if this policy is also found

to be linear.

51

On the other hand, if ∆∗ does not admit a linear representation, and the algorithm must

search for alternative policies, then, Line 11 of the algorithm, together with the defini-

tion of function PRUNE in Algorithm 2, ensure that every set S̃r that enters the lists

EXPLORE and (possibly) STORE, induces a policy ∆ that satisfies the “correctness”

condition of Definition 11. Also, Proposition 4 ensures that all these policies satisfy the

“monotonicity” condition of Definition 11. Similarly, the first condition in the “if” state-

ment in Line 6 of the algorithm ensures that a policy ∆ will enter list STORE only if it

is linear. Finally the way that the sets S̄r are generated by pruning their “parent” sets by

one maximal element at a time, together with the set-inclusion tests that are performed in

Lines 6 and 7 of the algorithm, ensure that the eventual content of list STORE will be the

maximal subsets of the set Srs that pass the aforementioned tests.

In order to complete the “correctness” part of the proof, we must also establish that there

is no advantage in removing a non-maximal element from the “parent” sets that are handled

by the pursued search process over the subsets of Srs. This can be seen upon noticing that

these state removals essentially seek to separate the convex hulls of the resulting sets S̄r

and S̄br̄ for the corresponding induced policy ∆. But it is clear that any state removal that

maintains intact the “parent” set S̄r will not be able to effect the aforementioned separation.

Finally, the claimed non-emptiness of the STORE list that is returned by Algorithm 1,

follows from the algorithm correctness, that was established in the previous paragraphs, and

Proposition 3, that established the existence of (maximal) linear DAPs for every D/C-RAS

Φ.

3.2.2 Further implementational details

From a computational standpoint, the policy enumeration that is effected by Algorithm 1

is a very expensive proposition. Hence, in this subsection, we provide some further dis-

cussion on certain implementational details that can streamline the algorithm and expedite

its execution on sizable problem instances. This discussion focuses primarily on (i) the

52

Table 3.1: The main data structures that are employed by class RAS for the representation
of the underlying RAS dynamics and the various policies ∆ evaluated by the considered
algorithm.

Class RAS: Static Part
ReachableStates: A dynamic list containing all reachable
states of the considered RAS.
NextStates: A list of hashsets mapping each reachable state
to the set of states that are immediately reachable from it.
PrevStates: A list of hashsets mapping each reachable state
to the set of reachable states that are immediately backward
reachable from it.
ReachableStatesSet: A hashset that enables testing of
membership in list ReachableStates, for any state s,
in O(1).
DominatedBy: A hashmap mapping each reachable state to
a hashset of the reachable states that dominate it by one extra
process instance; this data structure is used to facilitate the
computation of maximal safe states and minimal unsafe states.
Class RAS: Dynamic Part (provides effective representation

to some tentative policy ∆)
IsAdmissible: A list of Boolean entries used to mark each
state as admissible or not by the considered policy ∆. This is
set Sr in the semantics of Algorithm 1.
MaxAdmissible: A hashset of the maximal admissible states
under the considered policy ∆. This is set S̄r in the semantics
of Algorithm 1.
MinBoundaryInadmissible: A hashset of the minimal
boundary inadmissible states under the considered policy ∆.
This is set S̄br in the semantics of Algorithm 1.
InseparableMinBoundaryInadmissible: A hashset
of the minimal boundary inadmissible states that are not
linearly separable from the maximal admissible states under
the considered policy ∆.

employed data structures for the representation of the dynamics of the underlying RAS and

of the policies that are evaluated at the different stages of the conducted search process,

(ii) the “branching logic” that drives this search process through the selection of the max-

imal states to be pruned from the admissibility space of each policy ∆ that fails to pass

the linearity test, and (iii) the management of the EXPLORE list that provides a sense of

direction in this search process. We address each of these issues in a separate part.

53

The main data structures used for the implementation of the algorithm and their main-

tenance: In our implementation of Algorithm 1 we organized all the information processed

by the algorithm in a class named RAS that consisted of two parts:

• A “static” part that is shared by all the instances of this class, and provides an ef-

fective and efficient representation of the state transition diagram of the underlying

RAS. This part is computed only once at the beginning of the algorithm execution.

• A “dynamic” part that is distinct for each object that instantiates this class, and pro-

vides an effective and efficient representation of the tentative policies ∆ that are

generated by the conducted search process.

Both parts of class RAS are detailed in Table 3.1. In the algorithm semantics that

were introduced in Subsection 3.2.1, each instance of class RAS essentially collects all the

information that is stored and processed at a single node of the search tree that is generated

by Algorithm 1. Next, we briefly discuss how the different data structures that appear in

Table 3.1 are built and maintained by the algorithm every time that it generates an instance

from class RAS.

The first four data structures in the static part of class RAS are constructed through

standard reachability analysis on the state space of the underlying RAS Φ during the initial

phase of the algorithm execution. At this point, the hashmap DominatedBy is also easily

constructed by a procedure that scans the list ReachableStates, and for each state s

that is stored in it, generates the states si = s + ei, i = 1, . . . , ξ, and checks (through the

hashset ReachableStateSet) whether state si is a reachable state.

On the other hand, the list IsAdmissible belonging to the first node of the search

tree that is built by Algorithm 1, is obtained through standard co-reachability analysis on

the STD of the underlying RAS Φ with respect to the initial state s0. This computation

will return the set Srs as the admissible set of states for the first tentative policy ∆ to be

considered by the algorithm. Furthermore, the obtained list IsAdmissible is processed

54

Algorithm 3 Calculates Maximal Admissible States
Input: IsAdmissible
Output: MaxAdmissible

1: for all s in IsAdmissible do
2: TEST := TRUE;
3: for all s′ in DominatedBy[s] do
4: if IsAdmissible[s′] then
5: TEST := FALSE; GOTO step 8;
6: end if
7: end for
8: if TEST then
9: MaxAdmissible.add(s);

10: end if
11: end for
12: return MaxAdmissible;

through Algorithm 3 in order to obtain the hashset MaxAdmissible that collects its

maximal elements. The reader should notice that by making use of the pre-constructed

hashmap DominatedBy, Algorithm 3 computes the sought set MaxAdmissible with

complexity O(N · ξ), where N is the cardinality of its input set and ξ is the dimensionality

of the stored state vectors; a more traditional approach based on a pairwise comparison of

the admissible states would be of order O(N2 · ξ).

For the first node of the search tree of Algorithm 1, the hashet MinBoundaryInadmi-

ssible is obtained by feeding the set of inadmissible states to Algorithm 4; this last set

can be obtained straightforwardly from the content of list IsAdmissible. The first

part (Lines 1–12) of this algorithm identifies the set of the boundary inadmissible states

by checking their one-step reachability from some admissible state, while the second part

(Lines 13–19) uses the DominatedBy hashmap in order to identify the minimal elements

of this last set.

Once the MinBoundaryInadmissible hashset has been constructed, the algo-

rithm proceeds to assess whether the considered policy ∆ – in the case of the first node

of the underlying search tree, this is the maximally permissive policy ∆∗ – admits a linear

representation. This test is performed by checking whether each identified minimal bound-

55

Algorithm 4 Calculates Minimal Boundary Inadmissible States
Input: STATES
Output: MinBoundaryInadmissible

1: MinBoundaryInadmissible := STATES;
2: for all s in STATES do
3: PrevAdmissible := FALSE;
4: for all s′ in PrevStates[s] do
5: if IsAdmissible[s′] then
6: PrevAdmissible := TRUE;
7: end if
8: end for
9: if ¬ PrevAdmissible then

10: MinBoundaryInadmissible.remove(s);
11: end if
12: end for
13: for all s in MinBoundaryInadmissible do
14: for all s′ in DominatedBy[s] do
15: if MinBoundaryInadmissible.contains(s′) then
16: MinBoundaryInadmissible.remove(s′);
17: end if
18: end for
19: end for
20: return MinBoundaryInadmissible;

ary inadmissible state u is linearly separable from the maximally admissible states si ∈ S̄r.

More specifically, for any given minimal boundary inadmissible state u, this last test is

performed through the solution of the following LP:

max
a≥0,b≥0

0 (3.10)

s.t.

aT si ≤ b , ∀si ∈ S̄r (3.11)

aTu ≥ b+ ε (3.12)

In the above formulation, ε is a preselected parameter such that ε → 0+. The resulting

LP formulation is essentially a feasibility test for the constraints that appear in it. A negative

56

outcome for this test implies that the considered minimal boundary inadmissible state u is

not linearly separable from the set of the maximal admissible states, and therefore, state

u is placed in the InseparableMinBoundaryInadmissible hashset. Similarly,

the non-emptiness of this last set at the end of this entire computation implies that the

considered policy ∆ is not linearly separable, and therefore, the corresponding node in the

search tree will be a branching node. Otherwise, the considered policy ∆ belongs in L(Φ),

and the corresponding instance of class RAS that represents it, enters the STORE list of

Algorithm 1.

In order to complete the first part of this subsection, it remains to discuss how we have

organized the computation of the dynamic part of the class RAS for the internal nodes of

the underlying search tree, in order to take advantage of (i) the “locality” of the pruning

process that is effected by Algorithm 2, and (ii) the information that is available in the

instances of the class RAS that represents their “parent” nodes.

This computation starts with the execution of Algorithm 5. Algorithm 5 (i) first con-

structs the RAS instance of the newly generated node (to be called the “child” node in the

following) by replicating the RAS instance of its parent node, (ii) performs the pruning of

the state s that generates this new node by eliminating state s from the IsAdmissible

list of this node, and subsequently (iii) it proceeds to perform the remaining state pruning

that is dictated by Algorithm 2. This further pruning utilizes the information on state admis-

sibility that is provided in the IsAdmissible list of the parent node2 and the structure

of the underlying automaton Φ that is encoded in the static part of the RAS data structure.

In particular, for any already pruned state u, Algorithm 5 identifies additional states x that

need to be pruned, by looking into the PrevStates hashset of u for members of this list

that do not have any (remaining) admissible states in their NextStates hashset. Any

such state x is removed from the IsAdmissible list, it is entered into list Q for further

processing according to the logic that was described above, and it is also entered into list

2This information has been inherited by the child node through the aforementioned replication of the
corresponding RAS object.

57

Algorithm 5 Constructs a Child Node from its Parent Node and Updates State Admissi-
bility for the Child Node
Input: parent RAS instance, pruned state s
Output: child RAS instance

1: child := parent
2: child.IsAdmissible[s] := FALSE;
3: Q := {s}; E := {s};
4: while Q 6= NILL do
5: u := Q.pop();
6: for all x in PrevStates[u] do
7: TEST := FALSE;
8: for all y in NextStates[x] do
9: if child.IsAdmissible[y] then

10: TEST := TRUE;
11: end if
12: end for
13: if ¬ (TEST ∨ E.contains(x)) then
14: child.IsAdmissible[x] := FALSE;
15: Q.add(x); E.add(x);
16: end if
17: end for
18: end while
19: return child;

E in order to be recognized as an already identified inadmissible state.

Once the child IsAdmissible list has been properly updated, it is run through Algo-

rithm 3 that will compute its maximal elements, i.e., the MaxAdmissible hashset of the

child node. On the other hand, in order to compute the MinBoundaryInadmissible

hashset of this node, the algorithm first combines (i) the MinBoundaryInadmissible

hashet of the parent node, and (ii) the set of states that were pruned during the execution of

Algorithm 5, into a new hashset that is called PotentialMinBoundaryInadmissible,

and it is this set that is fed into Algorithm 4. Finally, the assessment of the linearity of the

policy ∆ that is induced by the derived IsAdmissible list, and the computation of the

corresponding InseparableMinBoundaryInadmissible hashset, are performed

as described in the previous parts of this subsection.

Concluding the first part of this subsection, it should be clear from all the above dis-

58

cussion that the data structures that are defined in Table 3.1, manage, indeed, to support

a localized and incremental computation of all those elements that define each policy ∆

considered by the proposed algorithm, and also enable a srtaightforward assessment of the

linearity of these policies.

Refining the “branching” logic of Algorithm 1: In the original statement of Algo-

rithm 1, the algorithm is supposed to branch on all the elements of the set S̄r, i.e., on

each maximal admissible state si by the policy ∆ that corresponds to the current search

node (c.f. Line 10 of Algorithm 1).

However, in our eventual implementation of Algorithm 1 we have confined the nodal

branching only to a certain subset of the original set S̄r, focusing on those elements of

S̄r that can substantially improve the prospects of obtaining a linear policy ∆′ from the

corresponding state pruning. The rationale for the selection of the target subset of S̄r that is

eventually used for the proposed nodal branching, is defined by the following two remarks.

Remark 1: Let S̄ ′r = {s ∈ S̄r : s is an extreme point of conv(Sr)}. Then, the sets

(S̄r, S̄
b
r̄) are linearly separable if and only if the sets (S̄ ′r, S̄

b
r̄) are linearly separable.

Indeed, if the sets (S̄r, S̄
b
r̄) are linearly separable, then the sets (S̄ ′r, S̄

b
r̄) are linearly

separable since S̄ ′r is a subset of S̄r. On the other hand, if the sets (S̄r, S̄
b
r̄) are not linearly

separable, then the sets (S̄ ′r, S̄
b
r̄) are also not linearly separable, because it is easy to see that

the set conv(Sr) is essentially determined by the set S̄ ′r.

In order to calculate the set S̄ ′r, we iterate over all states si ∈ S̄r, and for each of these

states we solve the following linear program that checks whether this state can be expressed

as a convex combination of the other states in S̄r:

min
x≥0

xi (3.13)

59

s.t.

∑
k:sk∈S̄r

xksk ≥ si (3.14)

∑
k:sk∈S̄r

xk = 1 (3.15)

If the optimal solution of the above LP is xi = 1, we can conclude that the state si is an

extreme point of conv(Sr), and we add the state si to the set S̄ ′r. The constructed set S̄ ′r can

be further thinned through the following remark.

Remark 2: Let the set S̄ ′′r be the subset of S̄ ′r that is obtained by Algorithm 6. Then, the

sets (S̄r, S̄
b
r̄) are linearly separable if and only if the sets (S̄ ′′r , S̄

b
r̄) are linearly separable.

Algorithm 6 identifies subsets of the set S̄ ′r that contain, in their convex hull, some

unsafe state u ∈ InseparableMinBoundaryInadmissible, or maybe a point that

dominates some unsafe state u ∈ InseparableMinBoundaryInadmissible. All

these subsets are compiled in the set S̄ ′′r . Then, it is easy to see that if the sets (S̄r, S̄
b
r̄) are

linearly separable, the sets (S̄ ′′r , S̄
b
r̄) are linearly separable as well, since, in this case, the set

S̄ ′′r returned by Algorithm 6 will be the empty set. On the other hand, if the sets (S̄r, S̄
b
r̄)

are not linearly separable, then the sets (S̄ ′′r , S̄
b
r̄) are not linearly separable either, because

by the construction of the set S̄ ′′r in Algorithm 6, this set contains at least one subset of S̄r

that has a minimal boundary inadmissible state u within or below its convex hull.

In view of the above two remarks, in our implementation of Algorithm 1, the branching

that takes place at each node of the underlying search tree, is based on the set S̄ ′′r that

corresponds to this node. This set can be considerably “thinner” than the original set S̄r.

The management of the list EXPLORE: A last issue regarding the detailing of Al-

gorithm 1 for a tractable and streamlined execution concerns the queueing discipline to be

followed in the management of the list EXPLORE that is maintained by this algorithm.

In our eventual implementation of Algorithm 1, this list was managed as a stack, since any

other discipline resulted in an explosion of the list contents to the point that it was impos-

60

Algorithm 6 Calculates the state set S̄ ′′r that is used for the branching that takes place at
each node of the underlying search tree

Input: (S̄ ′r, S̄
b
r̄)

Output: S̄ ′′r
1: S̄ ′′r := ∅;
2: for all u ∈ S̄br̄ do
3: Solve the LP

min
x≥0

0

s.t. ∑
k:sk∈S̄′r

xksk ≥ u

∑
k:sk∈S̄′r

xk = 1

4: if the above LP is feasible then
5: for all sk ∈ S̄ ′r do
6: if xk > 0 then
7: S̄ ′′r := S̄ ′′r ∪ {sk};
8: Add the constraint xk = 0 to the above LP;
9: end if

10: end for
11: GOTO step 3;
12: end if
13: end for
14: return S̄ ′′r ;

sible to maintain this list in the core memory. This fact further implies that the underlying

search tree was processed according to a “depth-first” scheme.

Furthermore, according to our numerical experiments that are reported in the next sub-

section, a heuristic that has been very helpful in identifying high-quality policies early on

in the conducted search, concerns the sequence of storing the elements of the set S̄ ′′r in

the maintained stack. According to this heuristic, the elements of the set S̄ ′′r should enter

the list EXPLORE in a way that those elements with the largest weights in the linear

combinations that are defined by the LP of Algorithm 6, should be retrieved first from the

list.

61

3.2.3 Some numerical results

In this subsection, first we present a smaller example that provides a more concrete ex-

position of the various concepts and results that were introduced in this manuscript, and

subsequently we report the results of a more extensive numerical experiment that seeks to

(i) assess the tractability of the presented algorithm, (ii) understand (some of) the factors

that might impact this tractability, and also (iii) get a more concrete view of the policy

spaces L̄(Φ).

Applying the presented algorithm on an example RAS: In this example, we consider

a conjunctive RAS Φ that supports three process types Π1,Π2 and Π3. RAS Φ has six

resource types – i.e., R = {R1, . . . , R6} – with corresponding capacities Ci = 4, i =

1, . . . , 6. On the other hand, the three process types Π1,Π2 and Π3 that are supported by

RAS Φ, possess a strictly sequential structure, and the corresponding resource allocation

function A is described by the following vector-sequences:

Π1 =

〈

2

0

0

0

3

0

,

2

0

0

4

4

0

,

3

2

0

4

2

0

,

3

2

0

4

2

1

〉

62

Table 3.2: The safe states of the example RAS in Section 3.2.3

State State Vector State State Vector State State Vector

s0 (0,0,0,0,0,0,0,0,0,0,0,0,0,0) s14 (0,0,0,0,1,1,0,0,0,0,0,0,0,0) s28 (0,0,1,0,0,0,0,0,0,0,1,0,0,0)
s1 (1,0,0,0,0,0,0,0,0,0,0,0,0,0) s15 (0,0,0,0,0,0,1,0,0,0,0,0,0,0) s29 (0,0,0,0,1,0,0,1,0,0,0,0,0,0)
s2 (0,0,0,0,1,0,0,0,0,0,0,0,0,0) s16 (0,0,0,0,0,0,0,0,0,1,1,0,0,0) s30 (0,0,0,0,0,0,0,0,1,0,0,0,0,0)
s3 (0,0,0,0,0,0,0,0,0,1,0,0,0,0) s17 (0,0,0,0,0,0,0,0,0,0,0,1,0,0) s31 (0,0,0,0,0,0,0,0,0,1,0,0,1,0)
s4 (0,1,0,0,0,0,0,0,0,0,0,0,0,0) s18 (0,0,0,1,0,0,0,0,0,0,0,0,0,0) s32 (0,0,0,0,0,0,0,0,0,0,0,0,0,1)
s5 (1,0,0,0,0,0,0,0,0,1,0,0,0,0) s19 (0,0,1,0,0,0,0,0,0,1,0,0,0,0) s33 (0,0,0,1,0,0,0,0,0,2,0,0,0,0)
s6 (0,0,0,0,2,0,0,0,0,0,0,0,0,0) s20 (0,1,0,0,0,0,0,0,0,2,0,0,0,0) s34 (0,0,0,1,0,0,0,0,0,0,1,0,0,0)
s7 (0,0,0,0,0,1,0,0,0,0,0,0,0,0) s21 (0,1,0,0,0,0,0,0,0,0,1,0,0,0) s35 (0,0,0,0,1,0,0,0,1,0,0,0,0,0)
s8 (0,0,0,0,0,0,0,0,0,2,0,0,0,0) s22 (0,0,0,0,1,0,1,0,0,0,0,0,0,0) s36 (0,0,0,0,0,0,0,0,0,1,0,0,0,1)
s9 (0,0,0,0,0,0,0,0,0,0,1,0,0,0) s23 (0,0,0,0,0,0,0,1,0,0,0,0,0,0) s37 (0,0,0,0,0,0,0,0,0,2,0,0,0,1)
s10 (0,0,1,0,0,0,0,0,0,0,0,0,0,0) s24 (0,0,0,0,0,0,0,0,0,1,0,1,0,0) s38 (0,0,0,0,0,0,0,0,0,0,1,0,0,1)
s11 (0,1,0,0,0,0,0,0,0,1,0,0,0,0) s25 (0,0,0,0,0,0,0,0,0,0,0,0,1,0) s39 (0,0,0,0,0,0,0,0,0,1,1,0,0,1)
s12 (1,0,0,0,0,0,0,0,0,2,0,0,0,0) s26 (0,0,0,1,0,0,0,0,0,1,0,0,0,0) s40 (0,0,0,0,0,0,0,0,0,0,0,1,0,1)
s13 (1,0,0,0,0,0,0,0,0,0,1,0,0,0) s27 (0,0,1,0,0,0,0,0,0,2,0,0,0,0) s41 (0,0,0,0,0,0,0,0,0,1,0,1,0,1)

Π2 =

〈

0

0

0

2

0

0

,

0

1

0

2

0

4

,

4

1

0

2

0

4

,

0

1

0

2

0

4

,

2

1

4

2

2

4

〉

Π3 =

〈

0

0

0

0

0

1

,

0

1

0

0

0

3

,

0

3

1

0

0

3

,

0

1

1

4

0

3

,

3

0

0

4

0

0

〉

Hence, the state s of the considered RAS Φ is a vector with fourteen components: the

first four components of vector s report the number of parts in each processing stage of

the first process type; the next five components of vector s report the number of parts in

each processing stage of the second process type; and the final five components of vector s

63

report the number of parts in each processing stage of the third process type.3 Also, state

s0 = (0 . . .0)T denotes the initial empty state.

The state space S of the considered RAS Φ consists of 98 states, from which 42 are

safe. These safe states are listed in Table 3.2. Furthermore, there are 17 maximal safe

states, with S̄r = {s6, s12, s13, s14, s20, s21, s22, s27, s28, s29, s31, s33, s34, s35, s37, s39, s41},

and a single boundary unsafe state that is not separable from the maximal safe states; this

inseparable unsafe state has one active process instance at the first processing stage of the

second process type and a second active process instance at the first processing stage of the

third process type.

In order to apply the branching scheme that was presented in the previous subsection to

the first node of the underlying search tree, we first try to find the maximal safe states that

are extreme points of the convex hull of the set of reachable and safe states Srs. It turns out

that all of the 17 maximal safe states are extreme points of this convex hull, i.e., S̄ ′r = S̄rs.

But the subsequent application of Algorithm 6 on the set S̄ ′r returns the set S̄ ′′r = {s6, s12},

and therefore, the branching process at the considered node will focus only on these two

states.

Running Algorithm 5 for the child node that results from the pruning of state s6, we

find out that the pruning of this state from the admissible space of the parent node does

not require the pruning of any further nodes in order to obtain a correct policy ∆ for

the child node. Also, the hashset of maximal admissible states for this child node is

MaxAdmissible = S̄r\{s6}, where S̄r is the set of maximal admissible states for the parent

node that was reported above. On the other hand, in order to find the minimal boundary in-

admissible states for this child node, we create the hashset PotentialMinBoundaryIna−

dmissible = S̄br̄∪{s6}, where S̄br̄ denotes the set of minimal boundary inadmissible states

3In fact, for the purposes of deadlock avoidance that is the focus of this thesis, the state component corre-
sponding to the last processing stage of each process type could have been dropped from the processed (state)
vectors s without compromising the correctness of the derived policies; c.f. the corresponding discussion
in [53]. But we have opted to keep these processing stages in the presented developments in order to not
complicate any further the corresponding exposition of this material.

64

Table 3.3: The first set of the D/C-RAS configurations considered in the numerical experi-
ment of Section 3.2.3 and the obtained results

Configuration State Space Linear DAPs
Res Cap Proc. Safe Unsafe Max. Min. S̄′′r Count Common Min Max Time

Safe Unsafe (sec)

1 8 4 {8, 8, 8} 109 1379 57 35 3 2 94 98 105 26
2 8 4 {7, 8, 8} 99 776 50 31 3 2 85 89 95 12
3 7 4 {8, 8, 9} 144 961 53 32 4 2 122 125 141 42
4 7 4 {8, 8, 9} 110 1692 60 37 3 2 96 100 106 101
5 7 4 {7, 8, 10} 128 2215 69 41 3 2 114 118 124 123
6 8 4 {7, 8, 8} 103 1001 54 31 4 2 89 93 99 31
7 8 4 {7, 7, 8} 87 490 42 29 2 2 75 77 85 2
8 7 4 {7, 8, 8} 103 1295 54 33 4 2 89 93 99 31
9 6 4 {6, 8, 8} 99 1371 49 35 3 2 84 88 95 98

10 8 4 {8, 8, 10} 99 1218 61 44 3 2 92 95 96 3
11 7 4 {8, 8, 8} 101 1461 52 28 3 2 87 91 97 23
12 6 4 {7, 8, 8} 139 1688 76 23 5 3 119 123 135 1062
13 8 4 {6, 8, 8} 97 962 51 29 4 2 77 79 85 15
14 8 4 {6, 7, 8} 74 455 37 27 2 2 65 66 73 2
15 7 4 {6, 7, 8} 105 910 59 31 5 3 83 87 101 137
16 6 4 {6, 7, 7} 100 906 55 31 5 3 78 82 96 31
17 7 4 {7, 7, 9} 104 1686 55 37 3 2 90 94 100 2
18 6 4 {6, 7, 8} 91 772 44 31 3 2 77 81 87 109
19 6 4 {7, 7, 8} 121 1481 66 21 4 3 101 105 117 1163
20 7 4 {7, 8, 8} 89 962 44 26 2 2 77 79 87 3
21 7 4 {7, 7, 8} 91 787 46 31 2 2 79 81 89 2
22 8 4 {5, 7, 8} 68 416 34 25 2 2 60 61 67 9
23 7 4 {7, 7, 8} 101 1612 53 35 3 2 87 91 97 22
24 8 4 {7, 8, 10} 94 1214 57 44 4 2 87 90 91 15
25 6 4 {6, 6, 7} 70 419 36 23 4 2 57 61 66 4

of the parent node. Finally, feeding this hashset to Algorithm 4, we find out that this hashset

defines also the set of minimal boundary inadmissible states for this child node.

At this point, the algorithm proceeds to assess the linearity of the policy ∆ correspond-

ing to this child node, making use of (i) the computed sets of maximally admissible states

and minimal boundary inadmissible state, and (ii) Algorithm 6. It turns out that this policy

∆ is linear, indeed, and therefore, the corresponding hashset MaxAdmissble is entered

into list STORE.

Next, the algorithm shifts its attention to the node that is obtained from the root node

of the underlying search tree by pruning the maximal safe state s12. This node is processed

similarly to the previous child node, but the resulting policy ∆′ is not linear. Hence, the

algorithm branches further on this node, and at the end of the algorithm execution, we find

out that the two maximal linear policies for the considered RAS Φ are (a) the policy ∆ that

was identified in the first child node discussed above, and also (b) the policy ∆′′ that admits

all states of Table 3.2 except for the states in {s8, s12, s20, s27, s33, s37}.

A more extensive numerical experiment: In this part, we report the results of a more ex-

65

Table 3.4: The second set of the D/C-RAS configurations considered in the numerical
experiment of Section 3.2.3 and the obtained results

Configuration State Space Linear DAPs Day1 Linear DAPs Day2
Res Cap Proc. Safe Uns. Max. Min. S̄′′r Cnt Com Min Max Cnt Com Min Max

Safe Uns.

1 10 4 {8, 8, 8} 593 2756 81 32 27 3 395 399 527 3 395 399 527
2 10 4 {7, 8, 8} 578 2729 77 29 27 2 446 447 538 2 446 447 538
3 9 4 {7, 7, 8} 175 885 46 20 22 2 122 126 165 2 122 126 165
4 9 4 {6, 8, 8} 545 2644 68 28 25 2 440 441 506 2 440 441 506
5 7 4 {6, 7, 8} 491 2510 61 28 26 2 314 315 447 2 314 315 447
6 7 4 {6, 7, 7} 455 2160 53 25 25 2 268 269 410 2 268 269 410
7 10 4 {7, 8, 8} 569 2744 80 32 28 2 384 385 508 2 384 385 508
8 10 4 {7, 7, 8} 536 2687 71 32 27 2 356 357 495 2 356 357 495
9 9 4 {6, 7, 8} 521 2327 67 27 24 2 350 351 467 2 350 351 467

10 9 4 {7, 8, 8} 554 2550 75 31 26 2 444 445 507 2 444 445 507
11 7 4 {8, 8, 8} 554 2540 75 31 24 2 491 492 553 2 491 492 553
12 7 4 {8, 8, 8} 660 3109 84 32 24 2 539 540 587 2 539 540 587
13 7 4 {7, 8, 8} 634 3087 82 32 33 2 486 487 573 2 486 487 573
14 7 4 {7, 8, 8} 1181 6483 112 38 40 2 804 805 1073 2 804 805 1073
15 7 4 {6, 7, 8} 1031 5175 98 32 39 3 723 724 927 3 723 724 927
16 8 4 {6, 8, 8} 610 3075 81 32 31 2 501 502 554 2 501 502 554
17 8 4 {6, 7, 8} 577 3018 72 32 29 2 382 383 520 2 382 383 520
18 9 4 {6, 7, 7} 1112 4294 178 23 19 3 829 831 1043 3 829 831 1043
19 8 4 {6, 7, 7} 479 1947 58 24 26 3 280 282 434 3 280 282 434
20 8 4 {6, 6, 7} 453 1925 56 24 24 3 269 272 397 3 269 272 397
21 8 4 {6, 7, 7} 542 2820 67 31 25 3 411 413 497 3 411 413 497
22 7 4 {6, 7, 7} 479 1947 58 24 26 3 280 282 434 3 280 282 434
23 7 4 {5, 7, 8} 444 1749 53 23 46 3 328 331 396 3 328 331 396
24 7 4 {5, 7, 8} 995 5151 97 32 38 3 694 696 859 3 694 696 859
25 7 4 {5, 7, 9} 1682 13608 194 36 69 3 1173 1174 1499 3 1173 1174 1499

tensive computational experiment that sought to (i) assess the tractability of the proposed

algorithm for computing the maximal linear DAPs on some more sizable RAS, (ii) identify

potential factors that might assess this tractability, and also (iii) get a more concrete feel-

ing of the structure of the policy spaces L̄(Φ). More specifically, in this experiment, we

generated randomly a number of conjunctive RAS configurations, and recognizing (a) the

extent of the computation to be performed by Algorithm 1, but also (b) the “off-line” nature

of this computation, we gave the algorithm 48 hours to work on each configuration; if the

algorithm reached this deadline of 48 hours, it was terminated and its partially obtained

results were collected. The results obtained from 50 such runs are summarized in Tables

3.3 and 3.4

Table 3.3 reports the results from the algorithm executions on 25 RAS configurations Φ

that were able to enumerate the corresponding sets L̄(Φ) within the provided time budget of

48 hours. For each of these configurations, the first two parts of Table 3.3 report (i) the size

of the configuration in terms of the number of resource types involved, their capacities,

the number of process types and the number of stages of each process type, and (ii) the

66

size and the complexity of the underlying state space as defined by the numbers of safe

and unsafe states, and also the maximal safe and minimal unsafe states. The third part

reports: (a) the cardinality of the set S̄ ′′r during the first iteration of the algorithm (i.e., the

number of inseparable minimal boundary unsafe states that were used by the algorithm

for its branching at the first level of the underlying search tree); (b) the cardinality of the

computed set L̄(Φ) (i.e., the number of maximal linear DAPs identified by the algorithm);

(c) the number of common admissible states across all these DAPs; (d) the smallest number

of admissible states by a policy in L̄(Φ); and (e) the largest number of admissible states by

a policy in L̄(Φ). Finally, the fourth part of Table 3.3 reports the algorithm execution time

on each of these configurations.

Table 3.4 reports the results from the algorithm executions on 25 RAS configurations Φ

that were not able to complete within the provided time budget of 48 hours. The first two

parts of this table characterize the size and the structure of the considered RAS Φ and the

underlying state spaces in the same way as in Table 3.3. On the other hand, the third and the

fourth parts of Table 3.4 report (i) the cardinality of the set S̄ ′′r during the first iteration of

the algorithm (similar to the corresponding column in Table 3.3), and (ii) a characterization

of the contents of the list STORE after (a) 24 and (b) 48 hours of the algorithm execution;

this characterization is similar to the corresponding characterization that is provided for the

final contents of this list in Table 3.3.

Some salient points that can be made on the basis of the contents of Tables 3.3 and 3.4

are as follows: (a) The target set L̄(Φ) seems to be of quite low cardinality. (b) The target

policies ∆ provide extensive coverage of the corresponding sets Srs, and there is significant

overlap among their admissible subspaces. These statements are especially obvious in the

results reported in Table 3.3, but they are also corroborated by the results reported in the

columns entitled ‘Max’ in Table 3.4. (c) A key factor that seems to determine the length of

the computation of Algorithm 1 is the size of the set S̄ ′′r that is obtained by the algorithm

during its first iteration, while a secondary role might be played by the cardinality of the set

67

S̄rs. (d) Finally, it is also interesting to notice that in the cases where the algorithm was not

able to complete within the provided time interval of 48 hours, it had made almost all of its

attained progress within the first 24 hours, obtaining some very good policies during this

interval, while the second day apparently was spent in an effort to “validate” this initial set

of results (c.f. parts 3 and 4 in Table 3.4). This realization is important because it implies

that even a premature termination of the algorithm can provide some high-quality policies,

and it is reminiscent of the behavior of similar search methods in the context of other

combinatorial optimization problems. Finally, we should also point out that the heuristic

for the management of the list EXPLORE that was discussed at the end of Section 3.2.2,

was instrumental for attaining this last effect.

68

CHAPTER 4

FLUID-RELAXATION-BASED SCHEDULING FOR CRLS

This chapter presents a scheduling methodology for the complex RAS considered in this

work that is based on the solution of a “fluid” relaxation at each decision point of the orig-

inal scheduling problem. The employed “fluid” relaxation for this new regime differs from

the “fluid” relaxations that have been employed in past implementations of the method,

since it must account for the blocking effects that take place in the considered RAS. For

better clarity and specificity, the subsequent developments are focusing on the particular

RAS class of the capacitated re-entrant line, and the scheduling problem addressed is the

maximization of the long-term throughput of this line.

Furthermore, in the subsequent developments, the considered CRL is assumed to be

controlled by a correct linear DAP ∆ obtained, for instance, through the corresponding

methodology that is presented in [59] or the developments of Chapter 3. Hence, in the con-

text of the RAS real-time control framework of Figure 1.1, the methodology that is devel-

oped in this chapter supports essentially the function of the performance-oriented controller

/ scheduler in that figure.

From an organizational standpoint, the chapter consists of four major sections, with the

first section introducing the proposed method itself. The second section demonstrates the

application and the efficacy of the method through the example CRL of Figure 1.1. The

third section provides some complexity analysis of the proposed method, highlighting the

primary factors that determine this complexity, and establishing, thus, the tractability of

the method. And, finally, the last section reports a series of numerical experiments that

implement the presented method on a number of CRL configurations taken from some

respective experiments that are reported in [39], and enable us to assess the efficacy of the

method in terms of the quality of the derived solutions. At the same time, a complementary

69

set of experiments on larger CRL configurations also demonstrates the scalability of the

presented method in terms of the involved computations.

4.1 The proposed scheduling method

The basic structure and rationale of the proposed method: As discussed in the introduc-

tory chapter, the considered scheduling method effects its decisions at each decision state

reached by the underlying CRL by (i) first formulating and solving an LP that is known as

the corresponding “(fluid) LP relaxation”, and (ii) subsequently utilizing the information

that is contained in the optimal solution of this LP in order to select an optimized action at

that decision point.

The employed LP relaxation can be perceived as a simplification of the underlying

scheduling problem that is obtained by treating the material processed through the consid-

ered CRL as a continuous flow that is constrained by the processing capacities of the line

servers. Additional constraints restrict the spatial distribution of this flow across the line

workstations and its time-based evolution so that it observes (i) the buffering capacities of

these workstations, and (ii) the additional bounds that are imposed by the applied DAP. In

this new operational setting, the considered LP seeks to maximize the line output over a

predetermined time horizon T , further assuming that (a) the line workstations are initial-

ized with the fluid levels corresponding to the current decision state s, and (b) there exists

an “infinite backlog” of fluid that can be fed into the line.

As demonstrated in the following, assuming that the employed time horizon T is suf-

ficiently long, any optimal solution of the considered LP will seek to drive the line to a

“steady-state” operational regime that maximizes its output flow rate, while minimizing the

losses that will be experienced during the transient phase. This realization further suggests

that the scheduler of Figure 1.1 can utilize the information about the server allocation that

is encoded in the very first part of any optimal solution of the considered LP formulation,

as guidance for resolving the action selection at the decision state s under consideration.

70

The detailed logic for translating the obtained solution of the LP relaxation to an action-

selection scheme is the second major component of this method.

LP relaxations similar to that outlined in the previous paragraphs have been employed

in the past for the scheduling of uncapacitated re-entrant lines and other more general multi-

class queueing networks [73, 74, 7]. On the other hand, the particular implementation of

this scheduling method in the CRL (or the more general RAS) context that is presented in

this work, is differentiated from the previous instantiations of the method in the aforemen-

tioned references by (i) the integration of this scheduling methodology with the necessary

logical control policies in the real-time control framework of Figure 1.1, and (ii) the en-

suing need for further modification of the method in order to accommodate effectively the

spatio-temporal constraints that are imposed by the workstation buffering capacities and

the employed DAP.

In the rest of this section we provide all the necessary details for a complete implemen-

tation of the considered scheduling method in the CRL context. This discussion will also

show that the sought integration to the employed LP relaxation of the spatio-temporal re-

strictions that are imposed by the workstation buffering capacities and the employed DAP,

in a way that captures effectively the impact of these restrictions on the underlying opera-

tion of the line, requires some special care. One first differentiation of our implementation

of the considered scheduling method compared to its past implementations in [73, 74, 7]

that results from the aforementioned consideration, is the modeling of the fluidized opera-

tion of the line, and the definition of the corresponding LP formulation, in a discrete-time

setting. We turn to this issue next.

Time discretization: In an effort to capture more effectively the impact of the blocking

effects that are caused by the finite buffers and the imposed DAP, our LP relaxation is for-

mulated in discrete and not in continuous time. More specifically, assuming that the mean

processing times τj for the different processing stages Jj, j = 1, . . . ,M , are rationally val-

ued, we set the discretizing time interval ∆t equal to the greatest common divisor (GCD)

71

of τj . In this way, the mean processing time, τj , of any processing stage Jj , corresponds

to an integral multiple of ∆t, which will be denoted by τ̂j . In the following discussion,

we also scale time by further assuming that ∆t = 1.00, and thus, τ̂j also denotes the mean

processing time of processing stage Jj in this new time scale. The significance of this dis-

cretization in the context of the pursued modeling will be revealed in the detailed discussion

of the employed LP formulation, which is the topic to be considered next.

The employed LP relaxation: We start the detailed presentation of the employed LP

relaxation, by introducing first some supporting notation. Subsequently, we introduce the

decision variables, the constraints, and the objective function, in this order.

Supporting notation:

• Jl, l = 1, ..., L: The set of all processing stages executed on workstation WSl; i.e.,

Jl = {j : W (Jj) = l, j = 1, . . . ,M}.

• T : The total time horizon over which we are maximizing the line throughput; as ex-

plained in the opening part of this section, T is expressed in terms of the discretizing

time interval ∆t.

• sinit: The CRL vanishing state that corresponds to the current decision state.

• v: A 2M -dim vector with its components v1+2j, j = 0, . . . ,M − 1, representing

the volume of “fluid” waiting for the execution of processing stage Jj+1 at the cor-

responding workstation W (Jj+1), and the components v2+2j, j = 0, . . . ,M − 1,

representing the volume of “fluid” that has completed the execution of processing

stage Jj+1 but is still located at the corresponding workstation W (Jj+1). We shall

refer to the components of vector v as the corresponding “fluid buffers”.

• vinit: The initial value for the “fluid buffer” vector v as defined by the state vector

sinit. Due to the presumed exponential nature for the distribution of the various

processing times, components v1+2j, j = 0, . . . ,M − 1, will aggregate all the parts

72

that either wait for the initiation of the execution of the corresponding processing

stage Jj+1 or have already initiated the execution of this processing stage.

• f : A fictitious “fluid feeder” at the beginning of the line representing an “infinite

backlog”.

• d: A fictitious “fluid buffer” at the end of the CRL, of unlimited capacity, that collects

all the “fluid” that is output by this line over the considered time horizon T .

Decision Variables:

• xj,t, j = 1, . . . , 2M, t = 1, . . . , T : The “fluid” volume in “fluid buffer” vj at the end

of period t.

• uj,t, j = 1, . . . , 2M+1, t = 1, . . . , T : The amount of the “fluid” that is added, during

period t, to the “fluid buffer” vj or, in the case of j = 2M + 1, to the “output fluid

buffer” d. More specifically:

– u1,t represents the amount of “fluid” that is added to the “fluid buffer” v1 at

period t. This “fluid” is drawn from the external “fluid feeder” f , during the

same period, and its addition to the “fluid buffer” v1 is equivalent to the action

of loading new material to the CRL.

– u2+2i,t, i = 0, ...,M − 1, represent the amount of “fluid” that is added to the

corresponding “fluid buffer” v2+2i at period t. This “fluid” corresponds to ma-

terial completing the processing of processing stage Ji+1, and it was drawn from

“fluid buffer” v1+2i at period t− τ̂i+1 + 1.

– u1+2i,t, i = 1, . . . ,M − 1, represent the amount of “fluid” that is added to

the corresponding “fluid buffer” v1+2i at period t. This “fluid” corresponds to

material transferred to this “fluid buffer” from “fluid buffer” v2i−1 during this

period.

73

– u2M+1,t represents the amount of “fluid” that is transferred from the “fluid

buffer” v2M to the “output fluid buffer” d during period t.

Constraints:

1. The first set of constraints expresses the limited processing capacity at each worksta-

tion; namely, the server at each workstation cannot process more than a unit amount

of work during a single time unit.

∑
j∈Sl

min{t+τ̂j−1,T}∑
q=t

u2j,q ≤ 1, l = 1, ..., L, t = 1, ..., T

2. The second set of constraints expresses the material flow conservation; these con-

straints break down into the following two parts:

(a) Material flow conservation constraints for period t = 1:

x1+2i,1 = vinit1+2i + u1+2i,1 − u2+2i,τ̂i+1
1{τ̂i+1≤T},

i = 0 . . . ,M − 1

x2i,1 = vinit2i + u2i,1 − u1+2i,1, i = 1 . . . ,M

(b) Material flow conservation constraints for periods t = 2, . . . , T :

x1+2i,t = x1+2i,t−1 + u1+2i,t − u2+2i,t+τ̂i+1−11{t+τ̂i+1−1≤T}, i = 0 . . . ,M − 1

x2i,t = x2i,t−1 + u2i,t − u1+2i,t, i = 1 . . . ,M

3. This set of constraints expresses the fact that a server cannot work on an empty buffer,

while also acknowledging the availability of the “infinite backlog” that provides the

input material for processing stage J1; similar to the second set of constraints, we

express these constraints separately for period 1 and for the remaining periods:

(a) For period t = 1:

74

vinit1+2i + vinit2i − u2+2i,τ̂i+1
1{τ̂i+1≤T} ≥ 0,

i = 1, . . . ,M − 1

(b) For periods t = 2, . . . , T :

x1+2i,t−1 − u2+2i,t+τ̂i+1−11{t+τ̂i+1−1≤T} ≥ 0, i = 1, . . . ,M − 1

4. These constraints express the finite buffering capacity of the line workstations.∑
j∈Sl x2j−1,t + x2j,t +

∑min{t+τ̂j−1,T}
q=t+1 u2j,q ≤ Bl, l = 1, ..., L, t = 1, ..., T

5. These constraints account for the imposed deadlock avoidance policy ∆. The pre-

sumed linear structure of the applied DAP ∆ implies that the state-admissibility con-

dition of the policy can be expressed as a set of K inequalities having the form

A · ŝ ≤ b (4.1)

where: (i) ŝ is the condensed state of the considered CRL, (ii) A is a K × M

matrix, and (iii) b is a K-dim positive vector. The constraints of Equation 4.1

can be introduced in the considered LP relaxation by substituting each component

ŝj, j = 1, . . . ,M , of the state vector ŝ by the quantity

x2j−1,t + x2j,t +

min{t+τ̂j−1,T}∑
q=t+1

u2j,q

6. We also want to prevent activity that will not contribute to the total output volume

by the end of the time horizon T . For this, we enforce the condition that the total

outflow from the network equals the total inflow to it plus the initial “fluid buffer”

contents as defined by the vector vinit.

2M∑
j=1

vinitj +
T∑
t=1

u1,t −
T∑
t=1

u2M+1,t = 0

7. This constraint recognizes the fact that “fluid buffer” contents cannot be negative.

75

xj,t ≥ 0, j = 1, ..., 2M, t = 1, ..., T

8. Also, the “material flows” uj,t cannot be negative either.

uj,t ≥ 0, j = 1, ..., 2M + 1, t = 1, ..., T

9. Finally, the next constraint accounts for the non-preemptive nature of our scheduling

policies.1

u2j,τ̂j = 1, j ∈ {1, . . . ,M : sinit1+3(j−1) = 1}

Objective Function:

As already stated, we want to maximize the total outflow of the considered CRL over the

employed time horizon T , assuming that (i) the line is operated under the relaxed modeling

assumptions that are expressed by the constraints of the considered LP, and (ii) its initial

“fluid buffer” contents are set to the levels that are defined by the state sinit of the original

CRL model. Hence, the objective function takes the form:

max
T∑
t=1

u2M+1,t

The induced scheduling policy: After we have solved the LP relaxation, the next step

is to translate the solution of the linear program to a scheduling policy for the underlying

CRL. In particular, we want to use the solution of this LP as a “guide” in the selection

of the next tangible state s among the set of tangible states that is defined by the tangible

reach, T R(sinit), of the state sinit that constitutes the current decision point.

To effect this selection, let us denote by u∗1 the vector that is defined by the obtained

optimal values for the variables u1,1, u2,τ1 , u3,1, u4,τ2 . . . , u2M,1, and by v the “fluid buffer”

1In the MDP formulation of Section 2.4, the non-preemptive character of the pursued policies is implied
by the structure of the underlying state space S and the dynamics that are induced by this structure for that
formulation.

76

vector that corresponds to any state s ∈ T R(sinit). Then, the proposed scheduling policy

will select the next tangible state, s̃, through the following rule:

s̃ ∈ arg min
s∈T R(sinit)

M−1∑
j=0

|s1+3j − u∗1,2+2j| (4.2)

In more natural terms, the criterion of Equation 4.2 seeks to select a tangible state s ∈

T R(sinit) that has a server allocation w.r.t. the various processing stages Jj, j = 1, . . . ,M ,

that is most similar to the server allocation that is implied by the vector u∗1.

Furthermore, a secondary criterion that we have used to break any ties that are generated

through the criterion of Equation 4.2, is as follows:

s̃ ∈ arg min
s∈T R(sinit)

|v − vinit − u∗1|1 (4.3)

This new criterion perturbs the initial “buffer fluid” vector vinit by the “flow” vector

u∗1, and eventually selects a tangible state s ∈ T R(sinit) with a “fluid buffer” vector v that

has the smallest l1-distance from the aforementioned perturbation vinit + u∗1; hence, this

secondary criterion considers also state similarity in terms of buffer occupancy.

Selecting an appropriate time-horizon length T : One last parameter that needs to

be further specified for the complete definition of the CRL scheduling methodology that

was presented in the previous parts of this section, is the value of the parameter T to be

employed in the LP relaxation, i.e., the time-horizon over which the line output will be

maximized. This selection is driven by the realization that the optimal solution of the

considered LP will essentially lead the system to an operational regime that provides the

maximal possible output of the system as defined by the bottleneck stations of the line and

the applied DAP bounds, and it will divert from this operational regime only towards the

end of the operational horizon, in an effort to satisfy the termination condition of Constraint

#6 above. Furthermore, the numerical experimentation that is reported in the last part of

this chapter, has shown that as long as the selected T value is adequately large to let the

77

line reach the aforementioned operational regime, the returned vector u∗1 that is used in

the determination of the induced scheduling policy, will be quite insensitive to the exact T

value. So, with these insights and findings, we propose to set T = (
∑L

i=1Bi)(
∑M

j=1 τ̂j),

since this is an upper bound for the time that is necessary to empty the line from the entire

workload that is defined by the state sinit under any globally nonidling policy.

4.2 Example

In this section, we apply the scheduling method of the previous section to the particular

CRL that was considered in the example of Section 2.3 . The application of the “fluid”

LP relaxation that was presented in the previous section at any of the seven vanishing

states sl, l ∈ {12, 18, 21, 26, 33, 47, 57}, that constitute decision points for that CRL (c.f.

Figure 2.2 and the STD of Figure 2.3), results in the following LP formulation:

max
x,u

T∑
t=1

u7,t

s.t.

u2,t + u6,t ≤ 1, t = 1, . . . , T

u4,t ≤ 1, t = 1, . . . , T

x1+2i,1 − u1+2i,1 + u2+2i,τ̂i+1
= vinit1+2i, i = 0, . . . , 2

x2i,1 − u2i,1 + u1+2i,1 = vinit2i , i = 1, . . . , 3

x1+2i,t − x1+2i,t−1 − u1+2i,t + u2+2i,t+τ̂i+1−1 = 0, i = 0, . . . , 2, t = 2, . . . , T

x2i,t − x2i,t−1 − u2i,t + u1+2i,t = 0, i = 1, . . . , 3, t = 2, . . . , T

78

Table 4.1: Comparing the policy specified for the example CRL of Figure 2.2 by the
methodology that is presented in this work to the optimal policy for this re-entrant line.

s Vanishing State Tangible Reach Opti- Select. Crit.
s1s2 s3s4s5 s6s7 s1s2 s3s4s5 s6s7 mal of Eq. 4.2

12 00 100 10 10 010 10 YES 1.0626
00 010 01 NO 1.4439

18 00 000 10 10 000 10 YES 0.7693
00 000 01 NO 2.3220

21 00 010 10 10 010 10 YES 0.7285
00 010 01 NO 1.2715

26 00 101 10 10 011 10 NO 1.7492
00 010 11 YES 1.2365

33 00 001 10 10 001 10 YES 0.8282
00 000 11 NO 1.7219

47 00 110 10 00 110 01 YES 0.6529
10 110 10 NO 1.3471

57 00 200 10 00 110 01 YES 0.6826
10 110 10 NO 1.5370

u2+2i,1 ≤ vinit1+2i + vinit2+2i, i = 1, 2

u2+2i,t − x1+2i,t−1 ≤ 0, i = 1, 2, t = 2, . . . , T

x1,t + x2,t + x5,t + x6,t ≤ 2, t = 1, . . . , T

x3,t + x4,t ≤ 2, t = 1, . . . , T

x1,t + x2,t + x3,t + x4,t ≤ 3, t = 1, . . . , T
T∑
t=1

u7,t −
T∑
t=1

u1,t =
6∑
j=1

vinitj

xi,t ≥ 0, i = 1, . . . , 6, t = 1, . . . , T

ui,t ≥ 0, i = 1, . . . , 7, t = 1, . . . , T

u2j,τ̂j = 1, j ∈ {1, 2, 3 : sinit1+3(j−1) = 1}

The parameters sinit· and vinit· that appear in the right-hand-side of the above formu-

lation, are determined by the considered vanishing state sl according to the defining logic

for these parameters that was discussed during their introduction in the earlier parts of this

section.

79

Table 4.1 compares the policy that is defined by the solution of the above LP formula-

tion at the seven vanishing states sl, l ∈ {12, 18, 21, 26, 33, 47, 57}, of this example CRL

where τj = 1.0, ∀j. Also, in line with our earlier recommendations, in the corresponding

computations the parameter T was set equal to 4× 3 = 12. Each primary row in Table 4.1

corresponds to one of the considered vanishing states sl, and the first two parts of the row

provide a complete characterization of state sl and its tangible reach, T R(sl). On the other

hand, the row entry in the column entitled “Optimal” provides the choice for the next tangi-

ble state s′l ∈ T R(sl) specified by the optimal policy that is obtained through the solution

of the throughput-maximizing MDP formulation for this CRL of Section 2.4. Finally, the

last column of Table 4.1 provides the values for the “action”-selection criterion of Equa-

tion 4.2 that are obtained from the solution of the corresponding LP relaxations. It can be

checked that, for each state sl, l ∈ {12, 18, 21, 26, 33, 47, 57}, the minimum value for this

criterion corresponds to the tangible state s′l ∈ T R(sl) that is the optimal choice according

to column “Optimal”. Hence, for this example CRL, our scheduling methodology is able

to identify an optimal policy.2

Figure 4.1 depicts the evolution of the variable sequences u∗j,t, t ∈ {0, . . . , 12}, j =

2, 4, 6, that constitute part of the optimal solution of the “fluid” relaxation for the example

CRL of Figure 2.2 when this line is started at the vanishing state s12. In the operational

context of the considered CRL, these three sequences essentially represent the server al-

location that is implied by the optimal solution of the “fluid” relaxation. The three plots

of Figure 4.1 exhibit clearly that the optimal solution of this relaxation drives the line to a

workflow configuration where all servers maintain a constant allocation for the most part

of the corresponding time horizon, except for some starting and ending phases where the

solution must satisfy the specified boundary conditions. Similar behavior is exhibited for

2We emphasize, however, that the considered methodology does not pre-compute the applied scheduling
policy in the form that is communicated in Table 4.1. At each decision state, the action that is selected by this
policy is determined in real-time through (i) the formulation and solution of the corresponding LP relaxation,
and (ii) the post-processing of the obtained optimal solution for this relaxation through the selection logic of
Equations 4.2 and 4.3.

80

Figure 4.1: The optimal server allocation, over the entire time horizon T , that is returned
by the solution of the “fluid” relaxation for the example CRL of Figure 2.2 at the vanishing
state s12.

Figure 4.2: The average throughput obtained through the solution of the “fluid” relaxation
for the example CRL of Figure 2.2 over different time horizons T ; the starting state of the
line is the vanishing state s12.

the remaining vanishing states sl that constitute decision points for this line.

Also, Figure 4.2 corroborates to the above remarks, by showing that as the value of

the time horizon T is increased to ever higher values, the average line throughput, under

the optimal solutions of the corresponding LP formulations, converges to the value of 0.5,

which is the production rate of the “bottleneck” workstation WS1.

Finally, Figure 4.3 exhibits the server allocation for period t = 1 that is specified by

the optimal solution of the “fluid” relaxation for the considered CRL, using a set of values

for T that ranges from 12 to 500 periods. It is clearly seen in the provided plots that the

81

Figure 4.3: The values of the vector u∗1 obtained from the solution of the “fluid” relaxation
for the example CRL of Figure 2.2, over different time horizons T ; the starting state of the
line is the vanishing state s12.

corresponding u∗1 vectors are practically insensitive to this variation of the parameter T ;

this fact further implies that the scheduling policy specified by the criterion of Equation 4.2

will be insensitive to this variation of T , as well.

4.3 Complexity considerations

In this section we provide some remarks that establish the tractability of the proposed

scheduling method, and also reveal the primary factors that determine its computational

efficiency. Also, the last part of the section outlines some additional possibilities that can

be employed during the method implementation, in case that there is a need to alleviate the

computational overhead that is incurred by the involved computation.

We start the overall discussion by noticing that the core of the proposed method is the

solution, at each decision epoch, of the LP relaxation that was developed in Section 4.1.

This LP formulation involves

• (4M + 1)T = (4M + 1)(
∑L

i=1 Bi)(
∑M

j=1 τ̂j) variables, and

• (2L+ 2M − 1 +K)T + x+ 1 technological constraints.

To help the readers parse the above expressions, we also remind them that, accord-

ing to the adopted notation, M stands for the number of processing stages, L stands for

82

the number of the line workstations, T is the length of the employed time horizon in the

discretizing time unit ∆t, Bl, l = 1, . . . , L, is the buffer size at the workstation Wl, and

τ̂j, j = 1, . . . ,M , is the mean processing time of processing stage Jj under the time dis-

cretization and normalization that were introduced in Section 4.1. Also, x is the number of

active servers at the current decision state sinit.

Then, when we also consider the computational capabilities of current commercial LP

solvers, it is clear from the above expressions, that the generated LPs will be effectively

solvable by these LP solvers for a very broad spectrum of CRL configurations. This is

especially true when we realize that the values τ̂j that appear in the computation of the

employed time horizon T , are normalized w.r.t. the gcd of the actual mean processing

times τj, j = 1, . . . ,M ; hence, as long as the original mean processing times do not have

a very large spread, then the τ̂j values that are employed in the formulation can be pretty

small.3 The above remarks are corroborated by some experiments that are reported in the

next section, and reveal that the necessary solution times for the proposed LP relaxation

are in the order of a few seconds even for some pretty sizeable CRL configurations.

Yet, an additional concern arises from the fact that the considered LP relaxation must be

solved “on-line” and in a repetitive fashion, i.e., at each decision point that is encountered

during the real-time operation of the underlying CRL. The repetitive solution of this LP

defines a computational overhead that can be significant, especially in the case that the pro-

cessing times involved are pretty small, and therefore, the solution times of the formulated

LPs are comparable to these processing times. If this happens to be the case, then the re-

sulting computational overhead can be controlled through the “hashing” of the LP solutions

in combination with some approximating / interpolating schemes similar to those that are

outlined in [7] for the implementation of the LP-relaxation-based scheduling method that

is discussed in that work; we refer the reader to [7] for some discussion on these schemes
3As a more vivid example of this statement, in the case of CRLs where the original mean processing

times τj , j = 1, . . . ,M , are equal to some constant value C, all the corresponding τ̂j will be equal to 1.0,
irrespective of what is the actual value of C.

83

and the corresponding implementational details.

4.4 Some numerical experiments

In this section we report two series of experiments. The first set of experiments intends

to further demonstrate and assess the ability of the proposed scheduling method to return

scheduling policies that are (a) of comparable quality to the corresponding optimal schedul-

ing policies, and (b) very competitive w.r.t. some other heuristic scheduling policies that are

adapted from the corresponding literature. On the other hand, the second set demonstrates

and assesses the computational tractability of the presented method. We organize the rele-

vant material into two separate subsections.

4.4.1 Demonstrating and assessing the quality of the obtained schedules

In this part of the presented experiments, we used the 20 CRL configurations that are listed

in Table 4.2 in order to assess the performance of the scheduling methodology that has been

developed in this work against (i) the optimized performance that can be obtained (at least,

in principle) through the solution of the corresponding MDP formulation of Section 2.4,

and also (ii) the performance of some heuristic scheduling policies for these lines, that have

been adapted from the relevant literature on the throughput maximization of uncapacitated

re-entrant lines [43, 33, 18]. More specifically, for each of the CRL configurations 1 to 16

in Table 4.2, we generated 30 problem instances by varying randomly the processing rates

for the corresponding processing stages over the interval [1,10]. On the other hand, for each

of the CRL configurations 17 to 20 of Table 4.2, we generated only 5 problem instances,

with similar ranges for the random processing rates of their processing stages, since the

state spaces for these configurations are very large, and therefore, the computation of these

state spaces and the performance evaluation of the corresponding scheduling policies took

a very long time. Furthermore, in the employed “fluid” relaxations, we set the length of the

employed time horizon T = 20
∑M

j=1 τ̂j .

84

Table 4.2: The CRL configurations considered in the numerical experiment of Section 4.4.1
(borrowed from [39]).

Configuration Number Of Number of Job Stages (JS) Buffer Capacities
Workstations and Job Routes

Conf 1 (B1, B2) = (1, 2)
Conf 2 (B1, B2) = (2, 2)
Conf 3 2 3JS (W1 → W2 → W1) (B1, B2) = (3, 2)
Conf 4 (B1, B2) = (4, 4)
Conf 5 (B1, B2) = (9, 9)
Conf 6 (B1, B2, B3) = (1, 2, 2)
Conf 7 (B1, B2, B3) = (3, 2, 2)
Conf 8 3 4JS(W1 → W2 → W3 → W1) (B1, B2, B3) = (4, 3, 2)
Conf 9 (B1, B2, B3) = (5, 5, 6)
Conf 10 4 7JS(W1 → W2 → W4 → W1 (B1, B2, B3, B4) = (3, 2, 1, 2)

→ W2 → W3 → W1)
Conf 11 3 5JS(W1 → W2 → W3 → W1 (B1, B2, B3) = (3, 4, 3)

→ W2)
Conf 12 3 5JS(W1 → W2 → W3 → W2 (B1, B2, B3) = (3, 3, 3)

→ W3)
Conf 13 3 5JS(W1 → W2 → W1 → W3 (B1, B2, B3) = (3, 4, 1)
Conf 14 → W2) (B1, B2, B3) = (2, 2, 2)
Conf 15 3 6JS(W1 → W2 → W3 → W1 (B1, B2, B3) = (2, 3, 2)
Conf 16 → W2 → W3) (B1, B2, B3) = (2, 2, 2)
Conf 17 4 7JS(W1 → W2 → W4 → W1 Bi = 3, i = 1, . . . , 4

→ W2 → W3 → W1)
Conf 18 5 7JS(W1 → W2 → W1 → W3 B1 = B2 = B3 = 2

→ W4 → W5 → W4) B4 = B5 = 3
Conf 19 4 8JS(W1 → W2 → W3 → W2 Bi = 3, i = 1, . . . , 5

→ W3 → W4 → W3 → W4)
Conf 20 5 8JS(W1 → W2 → W3 → W2 Bi = 3, i = 1, . . . , 5

→ W3 → W4 → W5 → W3)

The heuristic scheduling policies that are considered in this experiment, are described

as follows:4

4As already mentioned in the opening paragraph of this section, the heuristic policies that have been used
as “benchmarks” for the presented experiment, constitute adaptations to the CRL operational setting of some
simple policies that have been shown to be throughput-optimal for uncapacitated re-entrant lines. The per-
formed adaptation seeks to fit the procedural logic that defines the original policies to the operational setting
that is considered in this paper. But, of course, these modifications do not extend the original optimality
analysis for these policies to this new setting. On the other hand, to the best of our knowledge, there are no
other heuristic scheduling policies that are known to be (near-)optimal for the considered operational setting

85

• “Fluid”-Relaxation(-based) Policy – FR: This is the policy defined by the schedul-

ing method that is developed in this work.

• First-Buffer-First-Serve Policy– FBFS: At any vanishing state s that constitutes a

decision point for the underlying CRL, this policy gives priority to the state s′ ∈

T R(s) that has the line working at the earliest possible processing stage of the line.

If there are many such tangible states in T R(s), the selected state is the one that

incurs the largest number of part advancements from their current processing stage

to the next one.

• Last-Buffer-First-Serve Policy – LBFS: At any vanishing state s that constitutes

a decision point for the underlying CRL, this policy gives priority to the state s′ ∈

T R(s) that has the line working at the latest possible processing stage of the line. If

there are many such tangible states in T R(s), the selected state is the one that incurs

the largest number of part advancements from their current processing stage to the

next one.

• Shortest-Processing-Time-FBFS – SPT-FBFS: At any vanishing state s that con-

stitutes a decision point for the underlying CRL, this policy gives priority to the

state s′ ∈ T R(s) that leads to the processing of one of the parts with the smallest

expected processing time among the parts that can receive processing in the next de-

cision epoch. In case of many such tangible states in T R(s), the final state is selected

according to the FBFS logic that was defined in the first item above.

• Shortest-Processing-Time-LBFS – SPT-LBFS: At any vanishing state s that con-

stitutes a decision point for the underlying CRL, this policy gives priority to the

state s′ ∈ T R(s) that leads to the processing of one of the parts with the smallest

expected processing time among the parts that can receive processing in the next de-

cision epoch. In case of many such tangible states in T R(s), the final state is selected

and could have defined a more appropriate “benchmark” for the results that are presented in this chapter.

86

according to the LBFS logic that was defined in the second item above.

• Maximum-Pressure Policy – MP: For any state s ∈ S and any processing stage

Jj, j = 1, . . . ,M , we define the “pressure” associated with processing stage Jj at

state s as

P(s, Jj) ≡ µj[(s3(j−1) + s3(j−1)−1)1{j>1}+

s1+3(j−1) − (s2+3(j−1) + s3j + s1+3j)1{j<M}]

Also, we define the “(total) pressure” associated with state s by

P(s) ≡
M∑
j=1

s1+3(j−1)P(s, Jj)

i.e., P(s) is the total pressure across all processing stages that receive processing at

state s.

Then, at any vanishing state s that constitutes a decision point for the underlying

CRL, and for any tangible state s′ ∈ T R(s), this policy selects a state s′ that has the

highest total pressure among the states in T R(s).

The performance of each of these heuristic policies for each CRL instantiation that was

generated in the considered experiment, was evaluated by solving the LP that is obtained

from the corresponding Bellman equation [57] by fixing the selected actions at each de-

cision state s ∈ X to the actions that are specified by this policy. In this way, we can

characterize the level of sub-optimality for each of these policies, for any given CRL in-

stantiation, through a “percentage (%-) error” that is defined by:

%-error =
optimal throughput - policy throughput

optimal throughput
× 100

Table 4.3 reports the average, minimum and maximum %-errors that were observed

87

during the application of the considered scheduling policies on the generated instances

from the 20 CRL configurations of Table 4.2. It can be seen that the FR policy results in

pretty small %-errors. This policy also outperforms the other heuristic policies in terms of,

both, the average and the maximal values of these errors, a result that suggests an ability

of this policy to obtain better performance than the other policies in a consistent manner.

This assessment was further substantiated by performing a paired t-test [68] and a paired

Wilcoxon test [75] on the %-error values that were obtained in the considered experiment.

The p-values that were obtained through these two tests, assessing the dominance of the

FR policy over each of the remaining heuristic policies, are reported in Table 4.4. It is

clear from the values reported in this table that the difference between (a) the %-errors

attained by the FR policy and (b) the %-errors that are attained by the other scheduling

policies, is statistically significant. This finding further implies that the “fluid” relaxation

developed in this work, and the accompanying logic of Equations 4.2 and 4.3, manage to

capture effectively the basic workflow dynamics of the considered CRLs that shape their

performance.

Finally, we also report that the largest LP formulations resulting from the “fluid” relax-

ation of the CRL configurations of Table 4.2 were solved in less than 3 seconds. Hence,

unless the scale of the processing times involved is very small (i.e., of the order of a few

seconds), the presented methodology will be very comfortably implemented in the context

of the CRLs that are considered in this experiment. But in the next section, we also con-

sider more explicitly the scaling of the LP solution times as the size of the underlying CRL

increases.

4.4.2 Demonstrating and assessing the tractability of the presented method

In this section we report and discuss the results from an additional set of numerical ex-

periments that intended to investigate empirically the increase of the solution time of the

proposed LP relaxation as the underlying CRLs are scaled up to some pretty sizable con-

88

Table 4.3: An empirical characterization of the performance that is attained by the various
heuristic policies considered in the experiment of Section 4.4.1.

Config. % FR FBFS LBFS SPT- SPT- MP
error FBFS LBFS

Avg. 0 2.323356 0 1.049778 0.581273 0
Conf 1 Min. 0 0.230038 0 0 0 0

Max. 0 7.453339 0 3.863308 3.486496 0
Avg. 0 2.563791 0 1.24137 0.765513 0

Conf 2 Min. 0 0.02166 0 0 0 0
Max. 0 7.803391 0 4.640675 3.682091 0
Avg. 0.558299 4.281953 0.986135 2.446898 2.3089 1.580789

Conf 3 Min. 0 0.00912 0 0.00048 0 0.00112
Max. 1.604902 12.173708 2.566975 5.517447 4.551116 3.45924
Avg. 0.424129 2.53043 0.116397 0.893047 0.868761 1.627846

Conf 4 Min. 0 0 0 0 0 0
Max. 1.603027 11.14905 0.503845 3.707549 3.707549 6.765885
Avg. 0.056252 1.072059 0.000941 0.250837 0.189375 0.845842

Conf 5 Min. 0 0 0 0 0 0
Max. 0.627573 8.386695 0.011211 1.843072 1.248081 5.951457
Avg. 0.787126 3.087116 0.424329 1.501644 1.074064 2.058273

Conf 6 Min. 0 0.045081 0.000827 0.00506 0.000827 0.01904
Max. 2.468721 10.00878 1.711332 6.370564 4.164482 7.04788
Avg. 0.262069 2.921857 2.242041 2.497875 2.538068 1.514924

Conf 7 Min. 0 0.0143 0.009941 0.0143 0.0147 0.045611
Max. 1.077797 9.432003 7.589988 8.149082 7.843766 5.124153
Avg. 0.348257 2.601589 1.797056 2.174541 2.152668 2.067119

Conf 8 Min. 0.00012 0.00948 0.00022 0.00948 0.01296 0.013749
Max. 1.365613 12.276351 9.255655 7.782629 7.782629 8.948562
Avg. 0.074912 1.331306 0.341868 0.668099 0.640542 0.586824

Conf 9 Min. 0 0 0 0 0 0
Max. 0.353171 9.699296 2.322959 4.391537 4.391537 5.283458
Avg. 3.318123 5.666601 4.888519 5.035612 4.983614 4.061828

Conf 10 Min. 0.160619 0.781178 0.372858 0.954592 0.94859 0.445644
Max. 6.94834 14.570786 12.520645 15.677988 15.684631 9.899285
Avg. 0.837663 2.777581 3.677889 1.303101 1.69863 1.633319

Conf 11 Min. 0.032066 0.017783 0.257924 0.017783 0.092037 0.161028
Max. 1.800238 12.551314 10.558961 4.213472 7.117571 4.232176
Avg. 1.121402 1.750244 2.452877 0.513728 0.583221 2.630212

Conf 12 Min. 0.008642 0.032489 0.001541 0.001401 0.001541 0.019846
Max. 2.579237 6.878605 8.388345 0.984445 1.650506 8.486197
Avg. 1.153944 2.264382 4.354457 2.158219 2.663196 2.176783

Conf 13 Min. 0.034693 0.056632 0.222106 0.158161 0.2213 0.030272
Max. 2.823261 8.684196 10.984664 8.385657 9.550511 5.152178
Avg. 1.330487 4.610859 1.528115 2.281134 2.089135 3.060204

Conf 14 Min. 0.009692 0.047781 0.058834 0.058834 0.059004 0.099643
Max. 2.752433 8.670543 4.278931 4.618316 5.159253 5.3891
Avg. 1.087259 2.441627 3.636966 0.92349 1.102124 2.274138

Conf 15 Min. 0.484144 0.448128 1.277105 0.143185 0.143185 0.662133
Max. 2.075733 9.279909 10.152834 3.754415 3.754415 5.461083
Avg. 1.485586 2.141188 3.186278 0.876134 1.005724 2.443547

Conf 16 Min. 0.077542 0.025837 0.43741 0.025837 0.025837 0.195422
Max. 3.165834 7.171983 8.032857 2.690495 2.823853 4.837758
Avg. 1.23399 3.190605 6.283274 3.711618 4.010187 3.144512

Conf 17 Min. 0 0.490636 0.030681 0.490636 0.030681 0.067602
Max. 3.581841 6.302036 15.98632 7.48842 7.48842 7.174882
Avg. 3.431575 8.666107 10.35568 8.993217 8.655773 11.74234

Conf 18 Min. 1.294327 6.396949 6.432713 6.396949 6.432713 7.038907
Max. 4.468809 11.394275 16.312115 12.035385 10.939199 16.799726
Avg. 3.372908 8.528441 10.312104 8.869568 8.533083 11.517266

Conf 19 Min. 1.07888 5.816134 6.021595 5.816134 5.638849 7.232241
Max. 4.546285 10.8824 16.257885 11.561644 10.519218 16.014564
Avg. 3.35003 8.658793 10.693207 9.087125 8.751012 11.758839

Conf 20 Min. 0.77972 5.625051 8.035321 6.695957 6.205683 7.809635
Max. 5.313402 12.155388 16.182583 12.155388 11.16347 17.40793

Table 4.4: A statistical comparison of the performance of the proposed scheduling method-
ology to the performance of the other heuristic policies considered in the experiment of
Section 4.4.1.

Method FBFS LBFS SPT-FBFS SPT-LBFS MP
t-test 4.405229e-48 1.071112e-16 4.142378e-12 5.152820e-11 9.354007e-22
w-test 5.339791e-52 6.755720e-15 4.400029e-14 1.003275e-12 2.285927e-35

figurations. These results are reported in Table 4.5.

More specifically, the considered LP relaxation was formulated and solved for 20 con-

89

Table 4.5: An empirical characterization of the computational tractability of the proposed
scheduling method.

Basic configuration # of passes LP sol. time (sec)
(min, mean, max)

5 workstations 2 (10 stages) (0.23, 0.27, 0.34)
Bl = 5, ∀l 3 (15 stages) (0.34, 0.37, 0.42)
τj = 1, ∀j 4 (20 stages) (0.46, 0.50, 0.59)

5 (25 stages) (0.71, 0.82, 0.91)
6 (30 stages) (0.93, 1.06,1,34)

5 workstations 2 (10 stages) (7.71, 8.16, 8.74)
Bl = 5, ∀l 3 (15 stages) (15.53, 16.51, 17.76)
τ1 = 1 4 (20 stages) (26.52, 27.51, 28.42)

τj = 10, ∀j 6= 1 5 (25 stages) (36.33, 40.14, 44.22)
6 (30 stages) (59.98, 59.29, 60.72)

20 workstations 2 (40 stages) (0.47,0.52,0.70)
Bl = 5, ∀l 3 (60 stages) (1.30, 1.46, 1.71)
τj = 1, ∀j 4 (80 stages) (1.67, 1.80, 2.05)

5 (100 stages) (2.42, 2.55, 2.69)
6 (120 stages) (2.81, 3.12, 3.42)

20 workstations 2 (40 stages) (31.46, 34.25, 38.20)
Bl = 5, ∀l 3 (60 stages) (56.94, 68.72, 80.39)
τ1 = 1 4 (80 stages) (95.39, 99.58, 106.38)

τj = 10, ∀j 6= 1 5 (100 stages) (136.19, 142.29, 151.85)
6 (120 stages) (189.25, 197.34, 203.49)

figurations, with each configuration being defined by the first two columns of Table 4.5.

In particular, the first column of this table reports the number of workstations of the cor-

responding configurations, the buffer size of each workstation, and the mean processing

time of the involved processing stages. On the other hand, the second column of Table 4.5

reports the number of times that the line is traversed by each part, and therefore it also de-

termines the number of stages of the corresponding process plan. Finally, the third column

of Table 4.5 reports the solution times for the corresponding LP relaxations; for each of

the 20 CRL configurations, the LP relaxation was formulated and solved at 10 randomly

selected decision states, and this column of Table 4.5 reports the minimum, maximum

and average values of the corresponding solution times. We also note that the formulated

LPs were solved through the CPLEX Studio IDE 12.8 package, running on a Windows 10

computational platform with an Intel Core i5, 2.2 GHz, 2-core processor, and 8GB DDR3

90

memory.

As seen in Table 4.5, the solution times for the proposed LP relaxation can be at the

order of a few seconds even for some pretty large configurations. This fact is especially

true as long as the “spread” of the mean processing times involved is quite small; the

corresponding cases are those in blocks #1 and #3 of Table 4.5.

On the other hand, the results of Table 4.5 also suggest that the considered solution

times can be severely impacted by a larger “spread” among the underlying processing

times. This can be seen by juxtaposing the results of block #2 to those of block #1, and

similarly, the results of block #4 to those of block #3. In particular, the configurations of

block #4 in Table 4.5 correspond to a “worst-case” scenario where the underlying CRL is

pretty sizeable in terms of numbers of workstations and processing stages, and at the same

time, all mean processing times involved have very large values except for one. Then, as

indicated by the provided formulae in Section 4.3, the resulting LPs will be pretty large

in terms of the numbers of variables and constraints involved, and therefore, their solution

times might scale up to the order of a few minutes. Whether these solution times will be

tolerable or not, will depend on the magnitude of the actual processing times involved. If

these times are also pretty small, then it might be necessary to control further the com-

putational overhead that is incurred by the presented method, by employing some of the

mechanisms that were suggested in the closing part of Section 4.3. Furthermore, in this

case, it is also pertinent to try to control more carefully the length of the time horizon T

that is employed by the relaxing LP. Some mechanisms that can facilitate a better control

of this parameter are discussed in the next chapter.

91

CHAPTER 5

AN IMPLEMENTATION OF THE FR-BASED SCHEDULING METHOD

THROUGH TIMED-CONTINUOUS-PETRI-NET-BASED MODELING AND

ANALYSIS

This chapter intends to show that the fluid-relaxation-based scheduling method that was

developed in Chapter 4 can be enhanced by leveraging the modeling and analytical power

of timed-continuous Petri nets (tc-PNs) [44]. More specifically, the fluid relaxation model

and the corresponding relaxing LP that are used in the implementation of the FR-based

scheduling method in Chapter 4, have been developed through some ad hoc representations

and arguments. This chapter intends to show that timed-continuous Petri nets provide a

natural and more structured medium for the representation of these fluid relaxations, and

that the existing theory for the tc-PN model also enables (i) a more systematic derivation of

the relaxing LP, and (ii) an analytical study of the solution space of this LP and the structure

of its optimal solutions. Besides their theoretical interest, these results further enable (iii) a

more informed parameterization of the relaxing LP, and (iv) a systematic extension of the

methodology to RAS with very complex structure and dynamics. Finally, the tc-PN-based

representations that are employed in this chapter, have also enabled us to identify certain

structures and conditions in the operation of the original GSPN that can be a source of

confusion for the FR-based scheduling methodology that is pursued in this work.

This chapter is organized as follows: Section 5.1 abstracts the operation of the con-

sidered CRL in the modeling framework of Generalized Stochastic PNs (GSPNs) [1], and

overviews the representation of linear DAPs in this framework through the theory of “mon-

itor” places [23, 48]. Section 5.2 overviews the definition and some basic properties of

untimed and timed continuous PN models, and subsequently it uses this material in order

to define a fluidized version of the original CRL of Section 5.1 as a timed continuous PN,

92

Figure 5.1: The GSPN subnet modeling a single processing stage of the considered CRL
in the GSPN modeling framework.

and a corresponding throughput-maximization problem in this tc-PN model. On the other

hand, Section 5.3 uses the developments of Section 5.2 in order to detail the FR-based

scheduling method for the considered CRL, and for the underlying GSPN model that is

presented in this chapter. Section 5.4 briefly discusses the extension of this approach to the

broader class of the D/C-RAS of Definition 1. Finally, Section 5.5 presents the identified

cases where the FR-based scheduling method might result in suboptimal choices.

5.1 Modeling the considered CRL as a GSPN

In this section, we introduce an alternative formal model for the structure and the operation

of the CRL model that was introduced in Section 2.3.1, that is based on the GSPN mod-

eling framework. In the subsequent discussion, we shall assume that the reader is familiar

with the basic PN modeling framework. Furthermore, Appendix A overviews some basic

concepts and properties of this framework that are necessary for the developments that are

presented in this work, and introduces the relevant notation that will be employed in the

rest of this chapter.

Modeling the CRL workflow as a PN: The workflow materialized by the considered

CRL model can be formally represented by a PN that has the particular structure of a

93

“process-resource” net [59]. More specifically, this PN will consist of (i) a “process” sub-

net that will model the sequential logic of the single process plan that is supported by the

considered CRL, and (ii) a set of “resource” places that will model the availability of the

various buffers and servers that are utilized for the support of the various processing stages

of the aforementioned process plan, and the allocation of these resource units to the exe-

cuting process instances.

Figure 5.1 depicts the subnet of the aforementioned process-resource net that models

the dynamics of the j-th processing stage, Jj , of the considered CRL. More specifically,

places pjw, pjp and pjb and their interconnecting transitions model the part of the afore-

mentioned process subnet that models processing stage Jj . Tokens in place pjw represent

process instances waiting for the execution of processing stage Jj , at workstation WS(Jj);

tokens in place pjp represent process instances executing processing stage Jj , at worksta-

tion WS(Jj); and tokens in place pjb represent process instances that have completed the

execution of processing stage Jj but are still located at workstation WS(Jj). In the follow-

ing, we shall denote these three substages respectively by Jjw, Jjp and Jjb. Furthermore,

assuming that the considered CRL starts idle and empty of any jobs, the initial marking

m0(pjx) of all places pjx, j = 1, . . . ,M, x ∈ {w, p, b}, must be set equal to zero.

The places pBWS(j) and pSWS(j) depicted in Figure 5.1 are “resource” places. More

specifically, tokens in place pBWS(j) model the free buffer slots at the workstation WS(j);

as indicated in the figure, a process instance entering this workstation for the execution of

processing stage Jj must be allocated one of the free buffer slots, and this buffer slot will

be released when this process instance leaves the workstation, heading to the workstation

that will support the execution of the next processing stage, Jj+1 (or exits the CRL, if

processing stage Jj is the last processing stage). The initial marking of place pBWS(j) is

m0(pBWS(j)) = BWS(j), i.e., the buffering capacity of workstation WS(j). Place pSWS(j)

models the server availability at workstation WS(j). The tokens in this place are required

only for the execution of the corresponding substage Jjp. Furthermore, since we assume

94

single-server workstations, we shall also have m0(pSWS(j)) = 1.

For the needs of the subsequent developments, it is also important to notice that each

CRL-modeling PN N possesses the following minimal p-semiflows that are defined re-

spectively by the finite buffering and processing capacity at each workstation WSi, i =

1, . . . , L:

m(pBWSi
) +

∑
j:WS(j)=WSi

(
m(pjw) + m(pjp) + m(pjb)

)
= Bi (5.1)

m(pSWSi
) +

∑
j:WS(j)=WSi

m(pjp) = 1 (5.2)

Finally, the next proposition establishes some important properties of the CRL-modeling

PN N that will be useful in the following developments.

Proposition 5 The CRL-modeling PN N possesses the following properties:

1. N is conservative, consistent and structurally bounded.

2. |R(N ,m0)| <∞, ∀m0.

3. N is a mono-t-semiflow net.

4. Under the initial marking m0 that was specified in the previous paragraphs, the

considered net N is quasi-live.

Proof: In order to prove the conservative nature of net N , consider the summation of

Equations 5.1 and 5.2 for all workstations WSi, i = 1, . . . , L. This summation results in

the p-semiflow

L∑
i=1

[
m(pBWSi

) +m(pSWSi
) +

∑
j:WS(j)=WSi

(
m(pjw)+2·m(pjp)+m(pjb)

)]
=

L∑
i=1

(Bi+1)

(5.3)

which includes the marking of every place p ∈ P of net N ; hence, N is conservative.

95

The conservative nature of N subsequently implies its structural boundedness. Also,

Item #2 in Proposition 5 is an immediate consequence of the structural boundedness of net

N .

On the other hand, in order to establish the consistency and the mono-t-semiflow prop-

erty of net N , let us denote the four transitions appearing in the corresponding path of

Figure 5.1 by tj1, tj2, tj3, tj+1,1. Then, it can be easily checked that the transition se-

quence σ = t11t12t13t21 . . . tM1tM2tM3tM+1,1 corresponds to the complete processing of

a single process instance through the underlying CRL. Clearly, the Parikh vector of σ is

|σ| = 1, where 1 is a |T |-dim vector with all its components equal to one. Furthermore,

letting Θ denote the flow matrix of netN , we shall have Θ·|σ| = 0. Hence,N is consistent.

The reader can also check that the aforementioned sequence σ is the only minimal

t-semiflow of N . Since N is also consistent and conservative, it is a mono-t-semiflow net.

Finally, the transition sequence σ that is mentioned in the previous paragraphs is also

feasible under the initial marking m0 of N that was specified in the previous paragraphs.

Since |σ| = 1, the net N is quasi-live under this initial marking. �

Example: Figure 5.2 concretizes the CRL-modeling PN structure that was defined in

the previous paragraphs, by providing the PN that models the CRL of Figure 2.2. The

path 〈t0, p0, . . . , p6, t7〉 models the process subnet of this PN. Places p8 and p10 model

respectively the buffer availability for workstations WS1 and WS2, and places p7 and p9

model the server availability for these two workstations.

However, for a complete understanding of the PN of Figure 5.2, the reader must also no-

tice that places p1w and p3b have been dropped from the corresponding process subnet. This

simplification is justified by the working assumption of zero loading and unloading times

for the considered CRL model, and it will be presumed in all the technical developments

and the supporting examples that will be presented in the following.

Finally, the p-semiflows of Equations 5.1 and 5.2 for the PN model of Figure 5.2 are as

96

t0

t1

t2

t3

t4

t5

t6

t7

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9 p10

p11

Figure 5.2: The GSPN model for the CRL depicted in Figure 2.2.

follows:

m(p8) + m(p0) + m(p1) + m(p5) + m(p6) = 2 (5.4)

m(p10) + m(p2) + m(p3) + m(p4) = 2 (5.5)

m(p7) + m(p0) + m(p6) = 1 (5.6)

m(p8) + m(p3) = 1 (5.7)

Liveness-enforcing supervision of the considered PN model: In the PN-based repre-

sentation of the considered CRL model, the requirement for deadlock-free resource allo-

cation translates naturally to a requirement for reversibility of the corresponding process-

97

resource net. Furthermore, the work presented in [62, 63] establishes the following impor-

tant result:

Proposition 6 In a class of process-resource nets that subsumes the CRL-modeling PN N

that was defined in the previous paragraphs, reversibility is equivalent to liveness.

Example: In the PN of Figure 5.2, the deadlock states of the underlying CRL that were

discussed in Section 2.3.2, are represented by any feasible marking m satisfying

m(p0) + m(p1) + m(p2) + m(p3) + m(p4) = 4 (5.8)

These markings can be effectively blocked from the net dynamics, in a minimally re-

strictive manner, by imposing the inequality:

m(p0) + m(p1) + m(p2) + m(p3) + m(p4) ≤ 3 (5.9)

The above inequality can be enforced upon the plant PN of Figure 5.2 by super-imposing

upon this net the subnet that is depicted in dashed lines in that figure. This subnet intro-

duces the “monitor” place p11 with initial marking m0(p11) = 3, and it can be systemati-

cally synthesized through the corresponding theory of [48]. From a functional standpoint,

the “monitor” place p11 limits the token flow in the process subnet defined by the path

〈t0, p0, . . . , p6, t7〉 in a way that is not very different from the limitation that is exerted upon

this token flow by the various resource places of the line; therefore, we can perceive this

“monitor” place as an additional “(fictitious) resource” place for the underlying PN model.

And this “fictitious resource” place introduces an additional minimal p-semiflow in the dy-

namics of the controlled PN, with a structure similar to that of the p-semiflows that are

defined by Equations 5.1 and 5.2. �

Clearly, the enforcement of the inequality of Equation 5.9 on the dynamics of the PN

of Figure 5.2 through the superimposition of the corresponding “monitor” place p11, as dis-

98

cussed in the previous example, can be extended to any set of similar linear inequalities that

define a correct DAP. Furthermore, the resulting PN that models the dynamics of the logi-

cally controlled CRL, remains in the class of process-resource nets. Hence, the employed

PN modeling framework of process-resource nets constitutes a very effective platform for

the integrative representation of, both, the plant RAS and the necessary DAP.

Modeling the timed dynamics of the considered CRL model: The CRL-modeling PN

and the corresponding problem of liveness-enforcing supervision that were introduced in

the previous parts of this section, concern the characterization and the study of all the

possible event sequences w.r.t. process initiation, advancement and completion that can take

place in the underlying CRL. In the relevant DES terminology [9], these event sequences

constitute the “untimed” dynamics of the considered CRL and of the corresponding PN

model.

On the other hand, the “timed” dynamics of this CRL can be systematically character-

ized and investigated by extending the original PN model to a GSPN [1]. This is attained by

associating an exponential distribution with each transition of the original PN model that

represents an event with non-zero execution times. In the considered CRL model, the only

such events are the events that correspond to the processing of a part at some particular pro-

cessing stage. Furthermore, in the processing-stage-modeling PN subnet that is depicted

in Figure 5.1, the corresponding event is represented by the output transition of place pjp;

hence, this transition is characterized as a “timed” transition of the corresponding GSPN

model, and its firing times are drawn from an exponential distribution with instantaneous

rate µj , to be denoted Exp(µj). Also, in the typical GSPN semantics, the timed nature of

the aforementioned transition is indicated by depicting this transition by a white rectangle

(and this is also what has been adopted in Figures 5.1 and 5.2).

The remaining transitions are characterized as “untimed”, and they are represented by

a black bar. Since untimed transitions require zero time for their execution, they can fire

99

spontaneously, as soon as they are enabled, and therefore, in standard GSPN theory, they

are presumed to have precedence over any timed transitions that are also enabled at a given

marking.

Finally, for further reference, in the following discussion we shall denote the set of

the timed transitions of the considered GSPN models by Tt, and the complementary set of

untimed transitions by Tu.

The aforestated assumptions regarding the firing dynamics of the timed and the untimed

transitions of any given GSPN modelN induce a partitioning of the underlying reachability

space R(N ,m0) into “vanishing” and “tangible” markings; the respective subspaces will

be denoted byRV (N ,m0) andRT (N ,m0). For a formal definition of these two subspaces,

consider a marking m ∈ R(N ,m0), and let E(m) denote the set of the enabled transitions

at m. Then, m ∈ RV (N ,m0) iff E(m) ∩ Tu 6= ∅; otherwise, m ∈ RT (N ,m0).

The exponential and independent nature of the firing times of the timed transitions

of net N further implies that each marking m ∈ RT (N ,m0) will have an exponentially

distributed sojourn time that is defined by the “exponential race” [9] of the set of its enabled

transitions E(m). Furthermore, this exponential race also determines the firing probability

p(t;m) of each enabled transition t ∈ E(m) at marking m. On the other hand, for a

vanishing marking m ∈ RV (N ,m0) that enables more than one untimed transition, there

is a need for an extraneous specification of a probability distribution that will arbitrate

the firing of these untimed transitions. In the standard GSPN terminology, this externally

specified probability distribution is known as a “random switch”, and in the following it

will be denoted by rs(m).

The timed dynamics of a GSPN model N with a well defined set of random switches

for all the vanishing markings m ∈ RV (N ,m0), constitutes a semi-Markov process [67],

to be denoted by SM(N). In the case of the GSPNN that models the operation of a CRL

under the control of a correct linear DAP, the necessary random switches can be specified

in a way that the resulting semi-Markov process SM(N) is ergodic. Then, there will

100

exist a “stationary” probability distribution ψ(N), defined on the set of tangible markings

RT (N ,m0),1 that will characterize the “long term” (or “steady state”) behavior of the

underlying CRL, and will enable the definition and the computation of similar performance

measures for this system.

As explained in Chapter 2, in this work we are especially interested in such a set of

random switches that maximizes the long-term throughput of the underlying CRL. Fur-

thermore, the sought random switches can be obtained, in principle, through an MDP for-

mulation that is obtained from a straightforward translation of the MDP formulation of

Section 2.4 to the GSPN semantics that were defined in the previous paragraphs.

5.2 Fluidization of the GSPN model N

One way to overcome the computational challenges that arise from the explosive size of the

state space of the MDP corresponding to the GSPN model N , while retaining a significant

part of the structure of the corresponding scheduling problem, is by considering an approx-

imation of this problem that is defined through a “fluidization” of the original GSPN model

N . The resulting system is an alternative PN model that is known as a “timed continuous

PN (tc-PN)”. This new PN model possesses the same net structure with the original GSPN

N , but it adheres to modified semantics and dynamics for the net marking, that will enable

the characterization of the underlying state space, and the various levels of (steady-state)

throughput that can be attained in this state space, through efficient algebraic methods.

Hence, in the first part of the section we overview the definition of tc-PNs, and present

some properties of these models that are useful for the derivation of the results that are

pursued in this paper. The second part of the section focuses on the particular tc-PN that

is derived from the fluidization of the CRL-modeling GSPN N , to be denoted by N (tc),

and investigates the problem of maximizing the steady-state throughput for this particular

model. The results of this section will be utilized eventually in Section 5.3 in order to

1since vanishing markings have zero sojourn times

101

develop a heuristic scheduling method for the throughput maximization of the original

GSPN N .

5.2.1 Untimed and Timed Continuous Petri nets

Untimed Continuous Petri nets: An untimed continuous PN (uc-PN) system (N ,m0) is

a PN system with the net structureN being defined as in the case of the classical PN system

(c.f. Definition 15 in Appendiix A), but with the marking m of the net taking nonnegative

real values (i.e., m : P → R+
0).

In the semantics of the uc-PN system, a transition t ∈ T is enabled at some marking m

iff ∀p ∈• t, m(p) > 0. For any enabled transition t at m, we further define the “enabling

degree” enab(t,m) as follows:2

enab(t,m) = min
p∈•t

{
m(p)

Θ−(p, t)

}
(5.10)

At a given marking m, an enabled transition t can fire at any amount 0 ≤ a ≤

enab(t,m), leading to a new marking

m′ = m + a ·Θ(·, t) (5.11)

where Θ(·, t) denotes the column of the flow matrix Θ corresponding to transition t. This

new definition of transition fireability in uc-PNs further implies that a fireable transition

sequence σ at some marking m is completely specified not only by the transition sequence

itself, but also by the level of firing of each of these transitions at the corresponding mark-

ing. With this understanding, we define the reachability space Ruc(N ,m0) of a uc-PN

2We remind the reader that the matrix Θ− that appears in Equation 5.10, is the “pre-flow” matrix of net
N , that encodes the restriction of the flow relation W of Definition 15 on the (P × T) part of its domain.
Please, refer to Appendix A for further details.

102

system (N ,m0) as follows:

Ruc(N ,m0) =
{
m|∃σ = a1t1 . . . aktk s.t. m0[σ〉m

}
(5.12)

But while Ruc(N ,m0) collects all the markings m that are reachable from the initial

marking m0 through the firing of a finite transition sequence σ, in uc-PNs we can also have

markings that are obtained in the limit, through the firing of an infinite transition sequence.

This possibility is captured by the notion of “lim-reachability”, which is formally defined

as follows:

Definition 12 [58] In a uc-PN system (N ,m0), a marking m is lim-reachable iff there

exists a sequence of reachable markings {mi}i≥1 such that

m0[σ1〉m1[σ2〉m2 . . .mi−1[σi〉mi . . .

and limi→∞mi = m. Furthermore, the marking set that results from the augmentation

of the reachability set Ruc(N ,m0) with the lim-reachable markings of (N ,m0) will be

denoted by lim–Ruc(N ,m0).

An important property of lim–Ruc(N ,m0) is that it is a closed convex set [58]. Fur-

thermore, the notions of boundedness, liveness, quasi-liveness, reversibility and deadlock

extend naturally over the reachability space Ruc(N ,m0). In addition, [58] introduces the

following notions of “lim-liveness” and “lim-deadlock”:

Definition 13 In an uc-PN system (N ,m0), a transition t is lim-live iff

∀m ∈ lim–Ruc(N ,m0), ∃m′ ∈ Ruc(N ,m) s.t. enab(t,m′) > 0

Furthermore, a uc-PN system (N ,m0) lim-deadlocks iff

∃m ∈ lim–Ruc(N ,m0) s.t. ∀t ∈ T, enab(t,m) = 0

103

Finally, there are structural versions for boundedness, liveness and lim–liveness, that

are defined in the same spirit as in the original PN system of Appendix A.

Since the structure of a uc-PN system (N ,m0) is defined by the same net structure N

that is employed in Appendix A, this new class of PNs inherits all the structural concepts

and properties that have been defined for the original PNs in that section. Of particular

interest in the subsequent discussion are the notions of “p- and t-semiflows” of these nets,

that are respectively defined as the nonnegative left and right annulers of the flow matrix

Θ. In view of Equations 5.11 and 5.12, these two types of semiflows have similar con-

notations for the dynamics of the uc-PNs with the connotations of their counterparts for

the dynamics of the original PNs of Appendix A. They also induce the same notions of

“consistency” and “conservativeness”’ as in the original PNs, with similar implications for

the dynamics of the underlying uc-PN system. Furthermore, in the case of uc-PNs, the

notion of a “mono-T-semiflow net” is defined in exactly the same manner as in the original

PNs (c.f. Definition 17 in Appendix A). Finally, the following proposition collects some

properties of uc-PNs that will be useful in the subsequent developments; formal proofs for

these results can be traced in [58, 69]

Proposition 7 If a uc-PN system (N ,m0) is consistent and quasi-live, then

m ∈ lim–Ruc(N ,m0) ⇐⇒ ∃σ ≥ 0 s.t. m = m0 + Θ · σ

Furthermore, if system (N ,m0) is also conservative, then the above two statements are

also equivalent to the following one:

∀ p-semiflow y, y ·m = y ·m0

104

Timed Continuous Petri nets: Next we introduce the class of timed continuous PNs (tc-

PNs) and overview some results for this class that are necessary for this work. tc-PNs are

obtained from the class of uc-PNs, by associating a firing rate µ(t) with every transition

t ∈ T . Then, adopting the “infinite-server” semantics for this class of nets,3 we define the

“flow vector” f(m), for the transitions t ∈ T at some marking m, as follows:

∀t ∈ T, f(t;m) = µ(t) · enab(t,m) = µ(t) ·min
p∈•t

{
m(p)

Θ−(p, t)

}
(5.13)

From a more conceptual standpoint, the flow vector f(m) defines the rate of change of

marking m when the net transitions are fired at their maximum possible speed; for each

transition t ∈ T , this maximum speed is defined by the firing rate µ(t) and the enabling

degree of this transition at marking m. Hence, if we let τ denote the absolute time, and we

consider the net marking m as a function of τ , we shall have that (c.f. Equation 5.11)

m(τ) = m0 + Θ · σ(τ) (5.14)

and differentiating both sides of this equation w.r.t. τ , we get

ṁ(τ) = Θ · σ̇(τ) = Θ · f(m(τ)) (5.15)

In the subsequent developments, we shall further allow that µ(t) = ∞ for some tran-

sitions t ∈ T , which will enable us to replicate the notion of “untimed” transitions of the

GSPN modeling framework in the tc-PN context. It is clear from Equation 5.13, that for

these transitions, f(t;m) = ∞, for all markings m, and therefore, these transitions can

fire instantaneously at marking m at any level that does not exceed enab(t,m) (i.e., their

enabling degree at that marking).

3 The adoption of the “infinite-server” semantics for tc-PNs in this work is justified by the explicit model-
ing of the resources that regulate the firing of the various transitions of the CRL-modeling PNN through the
corresponding “resource” places; the reader is referred to Sections 2.3.1 and 3.1 of [44] for a more thorough
support of this statement.

105

In addition, we shall consider a “controlled” version of tc-PNs, where

∀t ∈ T, f(t;m) ≤ µ(t) · enab(t,m) = µ(t) ·min
p∈•t

{
m(p)

Θ−(p, t)

}
(5.16)

i.e., transitions t ∈ T can be “slowed down” w.r.t. their maximal firing speeds. Controlled

tc-PNs have similar reachability dynamics to the underlying uc-PNs, and they inherit the

structural and behavioral properties of the latter.

A last concept that we must introduce in the modeling regime of tc-PNs before we turn

to the particular tc-PN structure that corresponds to the CRL-modeling GSPN N , is that

of the “steady-state operation” of a controlled tc-PN. For the needs of this work, we define

this concept as follows:

Definition 14 A controlled tc-PN can be operated at a steady-state regime at some marking

m iff

∃ f ∈ R|T | s.t.
(
∀t ∈ T, 0 < f(t;m) ≤ µ(t) · enab(t,m)

)
∧
(

Θ · f = 0

)

Marking m itself is characterized as a potential steady-state marking.

In other words, a given marking m of tc-PN N is a potential steady-state marking, if

there is a strictly positive t-semiflow ofN that constitutes a feasible flow vector f for mark-

ing m under the controlled dynamics of N . Then, marking m will remain unaltered under

the firing of the net transitions according to the considered flow vector f . Furthermore, the

strict positivity of f implies that this operation will keep active the entire network.

Next we turn our attention to the dynamics of the particular ct-PN that is induced by the

fluidization of the CRL-modeling GSPN N that was introduced in Section 5.1, focusing

primarily on the potential steady-state markings of this net.

106

5.2.2 A fluidized version for the CRL-modeling GSPN N

In this subsection, we (i) abstract the CRL-modeling GSPN N to a tc-PN N (tc); (ii) estab-

lish some basic properties for this new PN system; and (iii) characterize the space of the

potential steady-state markings ofN (tc) and the maximal flow that can be attained at such a

marking. The results and the insights to be developed in this subsection will be at the core

of the scheduling method for the original CRL-modeling GSPN N that will be developed

in Section 5.3.

The considered net N (tc): It should be obvious from the definitions and the discussion

that were provided in the previous subsection, that the tc-PN N (tc) which is the fluidized

version of the CRL-modeling GSPN N of Section 5.1, can be obtained straightforwardly

from the latter by (i) letting the marking m of this net attain nonnegative real values, and (ii)

re-interpreting the firing rates, µt, of its timed transitions t ∈ Tt, according to the semantics

that are defined by Equations 5.14–5.16.

Furthermore, net N (tc) inherits all the properties that were established in Proposition 5

of Section 5.1 for the original PNN that was introduced in that section. Also, the minimal

p-semiflows of netN (tc) consist of (i) those p-semiflows that are defined by Equations 5.1–

5.2 in Section 5.1, and (ii) the p-semiflows that that are induced by the “monitor” places

that implement the applied linear DAP ∆.4 And since N (tc) is consistent, quasi-live and

conservative (according to Proposition 5), Proposition 7 further implies that these minimal

p-semiflows also provide a complete characterization of the lim-reachability space, lim–

Ruc(N ,m0), for the untimed fluidized version of the original PN N of Section 5.1. In

order to further enable this characterization, in the following, all minimal p-semiflows of

the considered net N (tc) will be collected in the rows of a matrix to be denoted by By(N).

Finally, since the considered tc-PN N (tc) is a controlled tc-PN w.r.t. the firing rate of

its timed transitions, the lim-reachability space lim–Ruc(N ,m0) constitutes also the lim-

4 c.f. the corresponding discussion in the example of Section 5.1.

107

reachability space for net N (tc) itself.

Characterizing the potential steady-state markings of N (tc): Next, we employ all the

above results for the tc-PN N (tc) in order to characterize the space of its potential steady-

state markings, and the connectivity of this space to the overall lim-reachability space,

lim–Ruc(N ,m0).

As discussed in the proof of Proposition 5, the unique minimal t-semiflow x for the

CRL-modeling PNN , and, therefore, for the considered tc-PNN (tc), is the |T |-dim vector

1 (i.e., the vector with all its components equal to 1). This further implies that any flow

vector f that can define a steady-state regime at any marking m ∈ lim–Ruc(N ,m0), will

have the following structure for some scalar f > 0:

f = f · 1 (5.17)

Furthermore, according to the definition of the CRL-modeling GSPNN in Section 5.1,

the set of timed transitions, Tt, for this net consists of the transitions tj that are the output

transitions for the places pjp, j = 1, . . . ,M , that model the job processing at the cor-

responding processing stage Jj (c.f., Figure 5.1). And for any timed transition tj ∈ Tt,

•tj = {pjp} with Θ−(pjp, tj) = 1.

Then, in view of Definition 14 and the second part of Proposition 7, we have the fol-

lowing characterization of the space of the potential steady-state markings of the tc-PN

N (tc):

Proposition 8 The set of potential steady-state markings for the tc-PN N (tc) is given by:

SS(N (tc)) ≡

{
m ∈ R+

0

∣∣∣∣ (By(N)·m = By(N)·m0

)
∧
(
∀j = 1, . . . ,M, m(pjp) > 0

)}

108

Proof: Proposition 8 is an immediate consequence of the remarks in the paragraphs that

precede this proposition, upon noticing the following two additional facts:

First, Proposition 7 implies that the set

{
m ∈ R+

0

∣∣∣∣ By(N) ·m = By(N) ·m0

}
(5.18)

is a complete characterization of the lim-reachability space of the considered net N (tc).

This fact explains the first part of the condition that is posed upon the sought markings m

by Proposition 8.

On the other hand, the sought markings must further satisfy the condition of Defini-

tion 14. But in view of (i) Equation 5.17, (ii) the untimed transitions that are present in

N (tc), and (iii) the inflow relation of the timed transitions tj, j = 1, . . . ,M , of the net to

their corresponding input places pjp, the condition of Definition 14 reduces to the following

condition:5

∃ f ∈ R+ s.t. ∀tj ∈ Tt, f ≤ µ(tj) ·m(pjp) (5.19)

The proof concludes by noticing that the second part in the condition that is posed

upon the sought markings m by Proposition 8, is essentially a rewriting of the condition of

Equation 5.19. �

In the following, we are particularly interested in those elements of the marking set

SS(N (tc)) that will enable a maximal steady-state flow f ∗ for the underlying tc-PN N (tc).

In view of all the previous discussion, this set of markings, and the corresponding maximal

flow f ∗, can be obtained as optimal solutions to the following linear program (LP):

max f (5.20)
5We remind the reader that R+ denotes the set of strictly positive reals.

109

s.t.

By(N) ·m = By(N) ·m0 (5.21)

∀tj ∈ Tt, f ≤ µ(tj) ·m(pjp) (5.22)

f ≥ 0 (5.23)

The reader should notice that the required non-negativity for the vector variable m that

appears in the above LP, is enforced by the combination of Equations 5.22 and 5.23 and the

strict positivity of the rates µ(tj), ∀tj ∈ Tt.

On the other hand, the existence of an optimal solution (f ∗,m∗) for this LP with f ∗ > 0

is guaranteed by (i) the resource availability that is presumed by the CRL model that is

considered in this work, and (ii) the logical correctness of the applied DAP ∆; these two

elements define the effective content of Equation 5.21.

Finally, for further reference, we shall denote the set of markings m∗ that constitute

part of an optimal solution (f ∗,m∗) for the LP of Equations 5.20–5.23, by OSS(N (tc)).

Example: For the tc-PN N (tc) that is induced from the GSPN N of Figure 5.2, the LP

of Equations 5.20–5.23 can be written as follows:

max f (5.24)

s.t.

m(p0) + m(p1) + m(p5) + m(p6) ≤ 2 (5.25)

m(p2) + m(p3) + m(p4) ≤ 2 (5.26)

110

m(p0) + m(p6) ≤ 1 (5.27)

m(p3) ≤ 1 (5.28)

m(p0) + m(p1) + m(p2) + m(p3) + m(p4) ≤ 3 (5.29)

f ≤ µ1 ·m(p0) (5.30)

f ≤ µ2 ·m(p3) (5.31)

f ≤ µ3 ·m(p6) (5.32)

f ≥ 0 (5.33)

Next, we provide a more intuitive interpretation of the content of this LP regarding the

maximal levels of flow f that are attainable in the corresponding tc-PN N (tc). For a start,

the reader should notice that the structure of the above LP implies that there will exist an

optimal solution (f ∗,m∗) with

m∗(p1) = m∗(p2) = m∗(p4) = m∗(p5) = 0 (5.34)

When we add the constraint of Equation 5.34 to the LP of Equations 5.24–5.33, the

constraints of Equations 5.25 and 5.26 of that LP become redundant, and we obtain the

111

following simplified LP:

max f (5.35)

s.t.

m(p0) + m(p6) ≤ 1 (5.36)

m(p3) ≤ 1 (5.37)

m(p0) + m(p3) ≤ 3 (5.38)

f ≤ µ1 ·m(p0) (5.39)

f ≤ µ2 ·m(p3) (5.40)

f ≤ µ3 ·m(p6) (5.41)

f ≥ 0 (5.42)

Furthermore, it is easy to see that, in this new LP, the constraint of Equation 5.38 is also

redundant since it is implied by the constraints of Equations 5.36 and 5.37.

Finally, the LP that is defined by the remaining six constraints can be transformed into

the following form:

max f (5.43)

s.t

f · (1

µ1

+
1

µ3

) ≤ 1 (5.44)

112

f · (1

µ2

) ≤ 1 (5.45)

f ≥ 0 (5.46)

This last LP implies that, in the considered tc-PNN (tc), the maximal flow f ∗ is defined

by the processing capacities at the two single-server workstations WS1 and WS2 of the

underlying CRL.

However, it is also interesting to notice that if the buffering capacitiesB1 andB2 for the

two workstations WS1 and WS2 in the considered example were equal to one unit instead

of two, then, the right-hand-side of Equation 5.38, that represents the corresponding max-

imally permissive LES, would be equal to 1+1-1 = 1. Hence, the constraint that is defined

by this equation in the LP of Equations 5.35–5.42 would not be redundant, and, therefore,

the LP of Equations 5.43–5.46 should be augmented with the additional constraint

f · (1

µ1

+
1

µ2

) ≤ 1 (5.47)

From a more conceptual standpoint, the constraint of Equation 5.47 can be perceived as

a potential “virtual bottleneck” [19] for the tc-PNN (tc) that is defined by the applied DAP.

�

We close this section with a result that establishes the finite accessibility of the set

OSS(N (tc)) from any marking m ∈ lim–Ruc(N ,m0), of the considered net N (tc).

Proposition 9 Let f ∗ denote the maximal steady-state flow for the considered net N (tc),

and define the marking m̃ of this net as follows:

113

∀p ∈ P, m̃(p) =

f∗

µ(tj)
, if p = pjp for some j ∈ {1, . . . ,M}

0, if p = pjw or pjb for some j ∈ {1, . . . ,M}

m0(p)−
∑

p′∈P\{p} yp(p
′) · m̃(p′), for every place p modeling a resource or

a monitor place with corresponding

p-semiflow yp
(5.48)

Then, marking m̃ satisfies the following two properties:

1. m̃ ∈ OSS(N (tc)).

2. m̃ ∈ Ruc(N ,m), ∀m ∈ lim–Ruc(N ,m0).

Proof: In order to prove the first part of Proposition 9, it suffices to show that marking

m̃ satisfies the constraints of the LP of Equations 5.20–5.23, for f = f ∗. The constraint

of Equation 5.22 is satisfied immediately by the definition of marking m̃. Furthermore,

since f ∗ is the maximal steady-state flow of net N (tc), there exists a marking m∗ such that

(f ∗,m∗) is an optimal solution to the LP of Equations 5.20–5.23. Also, Equations 5.22

and 5.48 imply that m̃(p) ≤m∗(p), ∀p ∈ {pjw, pjp, pjb : j = 1, . . . ,M}. Therefore,

m0(p)−
∑

p′∈P\{p}

yp(p
′) · m̃(p′) ≥ m0(p)−

∑
p′∈P\{p}

yp(p
′) ·m∗(p′) ≥ 0

and marking m̃ satisfies the constraints of Equation 5.21, as well.

Next, we shall establish the second part of Proposition 9 by providing a finite transition

sequence σ = σ1σ2σ3σ4 that will lead from any given marking m ∈ lim–Ruc(N ,m0) to

the target marking m̃.

Transition subsequence σ1 will first establish a “corridor” of free capacity δ < min{

m̃(pjp) : j = 1, . . . ,M} w.r.t. each resource or monitor place q across the entire line.

This can be attained in an iterative manner, starting from the place pMp and unloading the

114

necessary amount of fluid from this place in order to attain the aforestated free-capacity

requirement w.r.t. any resource or monitor place q that includes place pMp in the corre-

sponding p-semiflow. Subsequently, we employ the free capacity established through this

fluid removal from place pMp, in order to satisfy the same free-capacity requirement w.r.t.

the resource and the monitor places that are engaged by the places pM−1,w, pM−1,p, pM−1,b,

that model stage JM−1; we omit the relevant details to the reader. Sequence σ1 is completed

by proceeding in a similar manner through the remaining stages JM−2, . . . , J1, in this order.

Let m′ denote the marking that will result from this draining.

Transition subsequence σ2 will employ the “corridor of free capacity” established by

sequence σ1 in order to drain the line from the following quantities:

• For each place p ∈ {pjp|j = 1, . . . ,M} with m′(p) > m̃(p) − δ, transition subse-

quence σ2 will remove an amount of fluid equal to m′(p)− m̃(p) + δ.

• For each place p ∈ {pjw, pjb|j = 1, . . . ,M} with m′(p) > m̃(p) = 0, transition

subsequence σ2 will empty completely this place by removing the corresponding

amount of fluid m′(p).

For all these places, the corresponding drainage will occur in chunks no larger than

δ. Then, since the original marking m satisfies all the minimal p-semiflows of net N ,

all the markings that will be generated by the fluid advancement through the line during

this drainage will satisfy these p-semiflows, as well (i.e., they will respect the resource

availability of the line and the imposed LES). Let us denote the marking that will result

from the execution of transition subsequence σ2 by m′′.

Transition subsequence σ3 will add to places p ∈ {pjp : j = 1, . . . ,M} with m′′(p) <

m̃(p) − δ, the quantities m̃(p) − δ − m′′(p). For each such place p, the corresponding

quantity will be loaded from the beginning of the line, in chunks no larger than δ. Let us

denote the marking that will result from the execution of transition subsequence σ3 by m′′′.

Finally, transition subsequence σ4 will bring to each place pjp, j = 1, . . . ,M , a fluid

115

amount equal to δ, starting with place pMp, and proceeding with places pM−1,p, . . . , p1p, in

this order. The plausibility of this operation w.r.t. the p-semiflows of net N is guaranteed

by the specification of (i) marking m̃ in Equation 5.48, and (ii) the intermediate target

markings m′′ and m′′′. �

Next, we use the result of Proposition 9 in order to develop a “fluid relaxation” for the

CRL scheduling problem that is considered in this work, in the CRL-modeling framework

of the tc-PN N (tc) that was defined in this section.

5.3 The proposed scheduling method

As discussed in Chapter 4, the “fluid relaxation (FR)”-based method to the CRL throughput-

maximization problem that is considered in this work, tries to determine a near-optimal

scheduling policy in real-time, according to an on-line computational scheme that, at each

decision state, operates as follows:

1. First, it defines and solves an LP formulation that is known as a “fluid relaxation”

of the original problem; this LP formulation constitutes a continuous, more tractable

abstraction of the underlying resource allocation process, while the initial condition

of this process is set to the current decision state.

2. Once the aforementioned LP has been solved, the proposed scheduler employs the

information that is provided in the (first part of the) optimal solution of this LP in

order to select the action to be performed at that particular decision state.

In the rest of this section we provide a detailed implementation of this computational

scheme that leverages, N (tc), the CRL-modeling tc-PN model of Section 5.2.2, in order to

define the corresponding LP formulation.

116

5.3.1 The employed LP formulation

In Section 5.2.2, we provided a complete characterization of (i) the maximal steady-state

throughput, f ∗, that can be attained by the fluidized version of the considered CRL that

is encoded by the tc-PN N (tc), and (ii) the set of markings OSS(N (tc)) that can support

this steady-state operation. The LP formulation that constitutes the fluid relaxation to be

employed in this section essentially tries to drive the net N (tc) from the marking m̂ of

GSPNN that corresponds to the current decision point in the considered CRL, to a marking

m̃ ∈ OSS(N (tc)), while minimizing the experienced loss during this transition w.r.t. the

maximal possible outflow that is defined by f ∗. The resulting optimal control problem

belongs to the class of optimal control problems for the considered tc-PN models that has

been investigated in Chapter 7 of [44]. Next we adapt the results of that work to the CRL-

modeling tc-PN N (tc) and the particular optimal control problem that is considered in this

work.

As in [44], we shall derive the sought LP formulation in discretized time, where the

time-discretizing (or “sampling”) period will be set equal to some value ∆t. Furthermore,

for reasons that will become clear in the sequel, we stipulate that

∆t < min
j=1,...,M

{
1

µ(tj)

}
(5.49)

The above discretization of time induces a discrete-time controlled continuous PN,

N (dt), from the original tc-PN model N (tc). Letting m(k) denote the marking of net N (dt)

at period k, the one-time-step transitional dynamics of this net satisfy the following state

equation

m(k + 1) = m(k) + ∆t ·Θ ·w(k) (5.50)

In Equation 5.50, Θ denotes the flow matrix of the underlying netN , and w(k) denotes

the instantaneous firing levels for the various transitions t ∈ T , that are presumed to be

kept constant during the considered time interval ∆t.

117

Furthermore, for a well-defined operation of the net N (dt), the input variable w(k) that

drives the dynamics of Equation 5.50 must satisfy the following additional constraints:

∀j = 1, . . . ,M, w(tj; k) ≤ µ(tj) ·m(pjp; k) (5.51)

w(k) ≥ 0 (5.52)

∀j = 1, . . . ,M, m(pjw; k + 1) ≥ 0 ; m(pjb; k + 1) ≥ 0 (5.53)

Then, Proposition 7.6 of [44] implies the following properties for the dynamics of the

dt-PN N (dt):

Proposition 10 Consider the dt-PN N (dt) that is induced from the CRL-modeling ct-PN

N (ct) under time discretization with a sampling period ∆t that satisfies the condition of

Equation 5.49. Furthermore, suppose that the one-time-step transitional dynamics of net

N (dt) satisfy Equations 5.50–5.53. Then, net N (dt) possesses the following properties:

1. All the markings m(k), k = 1, 2, . . . , that are reached by netN (dt), when initialized

at any initial marking m0 ≥ 0, are nonnegative.

2. ∀pjp ∈ P, j = 1, . . . ,M , m0(pjp) > 0 =⇒m(pjp; k) > 0, ∀k = 1, 2,

Part 1 of Proposition 10 guarantees that, under the condition of Equation 5.49, the dt-PN

N (dt) is a valid approximation of the dynamics of the ct-PN N (ct) w.r.t. the preservation

of the nonnegativity of the net marking.6 On the other hand, part 2 of Proposition 10

replicates in the context of the dt-PNN (dt), the fact that places pjp, that are the input places

for the timed transitions in net N (ct), can be emptied only in the limit. These results are

6This remark pertains especially to the places pjp, j = 1, . . . ,M , since, for places pjw and pjb, nonneg-
ativity is enforced explicitly by the constraint of Equation 5.53. Also, the correct marking of resource and
monitor places is guaranteed by the corresponding p-semiflows of the net.

118

complemented, and further strengthened, by the following proposition, that constitutes an

adaptation to the considered net N (dt) of the result that appears in Theorem 7.9 of [44].

Proposition 11 A marking m′ is reachable in net N (dt) iff it is reachable in the untimed

dynamics of net N (tc) with a sequence that never empties an already marked place.

It can be easily checked that the transition sequence σ that was employed in the proof

of Proposition 9, satisfies the condition of Proposition 11, and therefore, Proposition 11

enables the extension of the reachability result of Proposition 9 to the operational context

of net N (dt); i.e., starting from any initial marking m of net N (dt), we can drive this net to

the marking setOSS(N (tc)) in a finite number of periods ∆t. This realization subsequently

leads to the following LP formulation for the fluid relaxation of the original scheduling

problem that is pursued in this section:

min
H∑
k=0

(f ∗ −w(tM ; k)) (5.54)

s.t.

∀k = 0, 1, . . . , H, m(k + 1) = m(k) + ∆t ·Θ ·w(k) (5.55)

∀k = 0, 1, . . . , H, ∀j = 1, . . . ,M, w(tj; k) ≤ µ(tj) ·m(pjp; k) (5.56)

∀k = 0, 1, . . . , H, w(k) ≥ 0 (5.57)

∀k = 0, 1, . . . , H, ∀j = 1, . . . ,M, m(pjw; k + 1) ≥ 0 ; m(pjb; k + 1) ≥ 0 (5.58)

m(0) = m̂ (5.59)

119

The LP of Equations 5.54–5.59 is formulated over a finite time-horizonH+1 that is se-

lected a priori as one of the problem parameters. During this time-horizon, the considered

LP tries to determine the control variables w(k), k = 0, . . . , H , for the underlying dt-PN

N (dt) so that the total amount of fluid output by this net over the considered time-horizon

is maximized. But for a sufficiently long time-horizon H + 1, this objective will be equiv-

alently attained by trying to drive the net N (dt) from its current marking m̂ to a marking

m̃ ∈ OSS(N (tc)), while minimizing the loss experienced during this transition w.r.t. the

total fluid that would be output by net N (dt) if it was operated at the maximal flow rate

f ∗ that was determined in Section 5.2.2. The LP objective that is stated in Equation 5.54

adopts this last perspective.7

On the other hand, the constraints of Equations 5.55–5.58 essentially replicate the con-

straints of Equations 5.50–5.53 on the pricing of the variables w(k), for every period

k = 0, 1, . . . , H . Collectively, they guarantee the proper functioning of the net N (dt),

and the satisfaction of the properties of Propositions 10 and 11 by the resulting operation.

Finally, the constraint of Equation 5.59 simply sets the marking m̂, corresponding to

the current decision point of the underlying CRL, as the initial marking of net N (dt).

5.3.2 The induced scheduling policy

After we have formulated and solved the LP relaxation of Equations 5.54–5.59 at some

decision state m̂, the next step is to interpret the obtained optimal solution for this LP to a

scheduling policy for the underlying CRL. The subsequent discussion essentially replicates

the corresponding logic of Section 4.1 in the semantics of the CRL-modeling GSPNN . In

particular, in this new modeling framework, we want to use the optimal solution of the LP

of Equations 5.54–5.59 as a “guide” in the selection of the next tangible marking m for the

7The provided explanation for the LP objective of Equation 5.54 also suggests the following criterion for
assessing the adequacy of the length H + 1 for the time-horizon that is employed by the considered LP: The
optimal value for this LP should be invariant to any extensions of the selected time-horizon H + 1 by one or
more extra periods. It is this realization that has driven our preference for this particular representation of the
LP objective.

120

CRL-modeling GSPNN among the set of tangible markings that is defined by the tangible

reach T R(m̂).

To effect this selection, let us denote by m∗(1) the marking in the obtained optimal

solution for the LP relaxation for k = 1. Then, the proposed scheduling policy will select

the next tangible marking m̃ ∈ T R(m̂) for the CRL-modeling GSPN N , through the

following rule:

m̃ ∈ arg min
m∈T R(m̂)

∑
j=1,...,M

|m(pj)−m∗(pj; 1)| (5.60)

In more natural terms, the criterion of Equation 5.60 seeks to select a tangible marking

m ∈ T R(m̂) that matches the marking m∗(1) at the places pjp that enable the timed

transitions tj, j = 1, . . . ,M , as much as possible (w.r.t. the employed l1-norm).

Furthermore, a secondary criterion that we have used to break any ties that are generated

through the criterion of Equation 5.60, is as follows:

m̃ ∈ arg min
m∈T R(m̂)

∑
∀p∈{pjx:j=1,...,M ;x=w,p,b}

|m(p)−m∗(p; 1)| (5.61)

This new criterion selects a tangible marking m ∈ T R(m̂) that has the smallest l1-

distance from the marking m∗(1) w.r.t. the sub-marking that is defined by the places p of

net N that model the processing stages of the underlying CRL.

5.4 Extending the presented methodology to other RAS classes

In this section we briefly discuss the extension of the FR-based scheduling method for

the CRL throughput maximization problem that has been developed in this work, to the

scheduling problem of maximizing the throughput of more complex RAS. In particular,

we focus on the class of Disjunctive–Conjunctive (DC–) RAS, that has been studied exten-

sively in [59].

From a modeling standpoint, the class of DC-RAS supports the concurrent execution

of a number of process types. Furthermore, for each such process type, this new class

121

allows for (i) more arbitrary resource allocation requests by the corresponding processing

stages than the CRL model considered in this work, and (ii) routing flexibility (i.e., an

instance of these process types can execute through more than one sequence of processing

stages). The monograph [59] provides (a) a detailed characterization of the structure and

the operation of these RAS by means of the PN modeling framework, and (b) extensive

methodology for the synthesis of efficient deadlock avoidance policies that take the form

of linear inequalities on the net marking, and can be implemented through “monitor” places

superimposed on the RAS-modeling PN.

A first complication for any attempted extension of the considered scheduling problem

to the DC-RAS context arises from the fact that the notion of throughput maximization

itself is ill-defined, since there is more than one process type. A reasonable way to circum-

vent this complication is by assuming that the production rates of all these process types

must observe some predefined ratios; then, it is possible to maximize the total production

rate, across all process types, by maximizing the production rate of any one of them. Fur-

thermore, the work of [27] discusses how to encode these production-ratio requirements

in the underlying PN model, while preserving all the corresponding theory of deadlock

avoidance for these nets.

A second complication for the extension of the results that were developed in the pre-

vious parts of this chapter to DC-RAS, even when they are operated under the production-

ratio constraints that were mentioned in the previous paragraph, arises from the presence of

routing flexibility for the supported process types. When viewed in the light of the technical

developments that were pursued in the earlier parts of this document, this routing flexibility

implies that the underlying GSPN N will not possess the mono-t-semiflow property. This

fact, in turn, requires the redefinition of the steady-state regime for the fluidized version of

net N so that it allows the potential “shut down” of certain parts of this net, in particular,

those routes of the different process types that might not be competitive. Once this new

convention has been established, the computation of a maximizing flow vector f∗ for the

122

controlled fluidized net N (tc) can be attained through an LP formulation that is similar, in

terms of its informational content, to the LP of Equations 5.20–5.23.8

A last point that needs some further discussion regarding the proposed extension of our

main results to the DC-RAS model, concerns the second part of Proposition 10. We remind

the reader that this part implies that in the operation of the discrete-time PN model N (dt)

that is induced from the fluidized net N (tc), a marked place that feeds a timed transition

of the net will never get empty. This could be a potential complication in view of the

aforementioned need to “shut down” certain parts of the net in the steady-state markings

that support its optimized operation.

But this issue is immediately resolved in any real-time implementation of the proposed

method that starts the underlying RAS in its empty state, and consistently guides it through

those markings that are competitive markings according to the selection logic of Equa-

tions 5.60–5.61. Such an operational scheme will never route any process instances in

the direction of those processing stages that are not competitive according to the flow-

maximizing LP of Equations 5.20–5.23, and therefore, the underlying network N will

never mark any places that will have to be emptied by the considered LP relaxation.

Based on all the above discussion, it should be clear that the FR-based scheduling

method that has been developed in this work, is effectively extensible to the broader class

of DC-RAS. This discussion also reveals the structure, as well as the modeling and analyt-

ical capabilities, that are attained when the FR-based scheduling methodology is pursued

through the PN-based modeling framework, according to the lines that were specified in

this chapter.

5.5 Limitations of the FR-based scheduling method

In this section, we take advantage of the increased expressive power of the PN modeling

framework for the considered scheduling problem that has been developed in this chapter,
8We emphasize, however, that this claim presumes that the structure of the DC-RAS modeling PNN will

also encode, both, the applied deadlock avoidance policy and the imposed production-ratio constraints.

123

Figure 5.3: The GSPN model studied in Section 5.5.1

in order to identify some more concrete reasons that might be behind the suboptimality

of the FR-based scheduling policy. Along these lines, we present two particular cases. In

the first case, the FR-based scheduling method fails to make an optimal decision due to its

inability to discern some discrete elements in the material-flow dynamics of the original

scheduling problem that are invisible to the relaxing LP formulation. In the second case,

the FR-based scheduling method fails to properly control some starvation effects in the

dynamics of the underlying GSPN because, once again, these effects are not experienced

in the relaxed, fluid dynamics. Furthermore, the insights that are obtained from this second

case, also suggest a revision for (part of) the “action selection” logic of Section 5.3.2.

5.5.1 Limitations due to some quantization in the material-flow dynamics of the original

GSPN model that is not visible to the relaxing LP

In this subsection, we consider the GSPN model depicted in Figure 5.3, where the solid-

black transitions t0, t2 and t4 constitute untimed transitions, while the remaining transitions

t1, t3 and t5, which are depicted as white bars, are timed. The firing rates for the timed

transitions are λi, i = 1, 3, 5. Furthermore, a unit reward is associated with the firing of

the timed transition t5.

124

A simple inspection of the depicted PN reveals that the single repetitive behavior of

this net is given by the sequence t4t5t4t5t4t5 . . . ≡ (t4t5)+, and this behavior results in a

long-term throughput of (1/λ5)−1 = λ5. Furthermore, this behavior is activated as soon as

place p5 acquires two tokens. These two tokens can be obtained from places p0 and/or p2,

through the respective firing of the transition sequences t0t1 and t2t3. Finally, the presence

of place p4, and its respective connectivity to transitions t0, t1, t2 and t3, imply that only

one of these two transition sequences can be active at any point in time.

More specifically, the firing of transition sequence t0t1 has an expected duration of

1/λ1 time units, and brings two tokens in place p5. On the other hand, the firing of the

transition sequence t2t3 has a duration of 1/λ3 time units, and brings only one token in

place p5. Hence, in this second case, for the proper activation of the repetitive behavior

of the net, it is necessary to additionally fire the transition sequence t0t1, and therefore, in

this case, the repetitive behavior of the net will be activated after an expected total time of

(1/λ1) + (1/λ3). Clearly, a policy that seeks to maximize the long-term throughput of the

considered net when started from the marking depicted in Figure 5.3, must fire transition

t0 at this marking.

Next, let us consider what is the decision that is reached when applying the FR-based

scheduling policy of the previous sections in the depicted situation.

Recognizing that the target throughput in the considered case is equal to λ5, as discussed

above, the corresponding relaxing LP of Equations 5.54–5.59 takes the following form for

the considered case:

min
w≥0;m≥0

H∑
k=0

(
λ5 −w(t5; k)

)
s.t.

m(k + 1) = m(k) + ∆t ·Θ ·w(k), k = 0, . . . , H

w(ti; k) ≤ λi ·
m(pj; k)

1 + Iti∈{t1,t5}
, ∀ti ∈ {t1, t3, t5}, ∀pj ∈• ti, k = 0, . . . , H

w(t5;H) = λ5

125

In the above LP formulation, Θ is the flow matrix of the PN that is depicted in Fig-

ure 5.3, and ∆t is a scalar such that ∆t < min{1/λ1, 1/λ3, 1/λ5}. By solving this LP,

and applying the selection logic of Section 5.3.2, the selected transition to be fired at the

depicted marking is:

• t0 if 2λ1 > λ3;

• t2 if 2λ1 < λ3;

• any of t0 and t2 if 2λ1 = λ3.

In order to understand the rationale of this selection scheme, the reader should notice the

following: (i) Upon the firing of untimed transition t0, transition t1 gets an enabling degree

of 1.0, and the same happens to transition t3 when untimed transition t2 fires. (ii) On the

other hand, the outflow of transition t1 towards place p5 during this activation, is twice the

outflow of transition t3 towards the same place. Hence, the FR-based scheduling policy

tries to maximize the total inflow to place p5 in the early periods of the planning horizon of

the relaxing LP, since this inflow to place p5 will enable to the maximum possible degree

the repetitive behavior (t4t5)+ and the collection of the targeted reward through the firing of

the corresponding transition t5. But as we discussed in the opening part of this subsection,

this rationale does not capture the operational reality of the underlying GSPN, where the

activation of the repetitive behavior (t4t5) will take place only when there are two tokens

in place p5.

As a more positive remark, we also notice that the limitation of the FR-based schedul-

ing policy that was described in this example, will not be encountered in the context of

the CRL – and even the DC-RAS – throughput maximization problem that has been con-

sidered in this work. In both of these cases, all the arcs that connect the timed transitions

of the corresponding GSPNs with the input “process” places of these transitions, have a

unitary weight, a fact that reflects the atomic nature of the processed entities in these sys-

tems. Hence, the asymmetry in the dynamics of the firing sequences t0t1 and t2t3 that was

126

experienced in the case of the the GSPN of Figure 5.3, cannot take place in the GSPNs that

model the aforementioned RAS.

5.5.2 Limitations due to starvation effects that do not appear in the fluid dynamics of the

LP relaxation

In this subsection, we will consider CRLs consisting of two workstations, WS1 and WS2,

with buffer sizes B1 and B2, and supporting a process plan with three processing stages

Jj, j = 1, 2, 3, such that W (J1) = W (J3) = WS1 and W (J2) = WS2. Furthermore, we

assume that the processing times for each of the three processing stages are exponentially

distributed, with corresponding instantaneous rates µj = 1, j = 1, 2, 3. And we also

remind the reader that for the considered CRLs, the maximally permissive DAP takes the

form

ŝ1 + ŝ2 ≤ B1 +B2 − 1

where ŝi, i = 1, 2, 3, denotes the number of process instances located in workstation

WS(Ji) in order to execute the corresponding processing stage Ji; more specifically, the

process instances that are included in ŝi might wait for the execution of the processing stage

Ji, are currently executing this processing stage, or have completed the execution of this

processing stage but have not advanced yet to the next required workstation.

In the following, we shall focus on some vanishing states that are also decision states,

and have the following form:

ŝ = (0, B1 − 2, 0, 1, B2 − 1, 1, 0)

Given the CRL state semantics that were introduced in Section 2.3.2, the above form

implies that, in the considered states ŝ, there are: (B1 − 2) process instances in the “after-

processing” status of processing stage J1; (B2−1) process instances in the “after-processing”

status of processing stage J2; 1 process instance in the “before-processing” status of pro-

127

cessing stage J3; and, finally, 1 process instance is being processed in processing stage

J2.

On the other hand, the states in the tangible reach T R(ŝ) are distinguished into two

classes: (i) class C1 containing all those tangible states that allocate the currently idle server

of workstation WS1 to a process instance executing processing stage J1; and (ii) class C2

containing those tangible states where the server of workstation WS1 is allocated to a

process instance executing processing stage J3. In the following, we shall further assume

that the timed dynamics of the considered CRL are such that the optimal decision at state ŝ

belongs in class C1.

It is not hard to see that the aforementioned state class C1 consists of all those states

with the form

s̃(i) = (1, B1 − 2− i, i, 1, B2 − 1− i, 1 + i, 0), i = 0, ...,min(B1 − 2, B2 − 1)

More specifically, state s̃(0) is obtained by simply loading a new process instance in

workstation WS1 and initiating its first processing stage, without advancing any of those

process instances that are already in the system. State s̃(1) is obtained by (a) first advancing

a completed process instance in workstation WS2 to workstation WS3, (b) subsequently

advancing a process instance that has completed the processing of its first processing stage

at workstation WS1 to workstation WS2, and, finally, (c) loading a new process instance

to workstation WS1 and initiating the processing of the first stage of this process instance.

The remaining states s̃(i), i ≥ 2, are obtained by iterating accordingly the above process-

advancing scheme for the already loaded process instances, before loading the new process

instance to workstation WS1.

Furthermore, numerical experimentation with the aforementioned structures for values

of B1 = 3, . . . , 10 and B2 = 3, . . . , 10 has shown that, when class C1 contains the optimal

128

decision for state ŝ, this optimal decision is the state

s̃(i) = (1, B1 − 2− i, i, 1, B2 − 1− i, 1 + i, 0) for i = min(B1 − 2, B2 − 1)

An intuitive explanation of this finding can be provided as follows: First, it is easy to

check that each of the states s̃(i), i = 0, 1, . . . ,min(B1−2, B2−1), has the buffers of both

workstations WS1 and WS2 fully allocated. Furthermore, this regime will persist as long

as the server of workstation WS1 remains preoccupied with the processing of the currently

allocated process instance (executing processing stage J1). Hence, during this time interval,

workstation WS2 can work only on the i process instances that were advanced to it during

the transition from the decision state ŝ to the corresponding state s̃(i). The aforementioned

optimal decision seeks to maximize the available “work-in-process (WIP)” inventory for

the server of workstation WS2.

However, when we applied the FR-based scheduling method to some instantiations of

the decision state ŝ that is considered in this discussion, the returned decision was rep-

resented by the tangible state s̃(1) = (1, B1 − 3, 1, 1, B2 − 2, 2, 0), which, according to

the above discussion, is suboptimal. This is happening because the “fluid” model of the

considered CRLs does not face the problem of blocking discussed in the previous para-

graph, and therefore, the optimal solution of the LP relaxation does not have any incentive

to allocate the buffers appropriately in order to minimize the starvation probability for the

server of workstation WS2. This misallocation of the buffering capacity by the optimal so-

lution of the relaxing LP eventually is passed in the scheduling policy that is derived for the

underlying CRL through the secondary selection rule of Section 5.3.2, since all the states

s̃(i) ∈ C1 correspond to the same server allocation for workstation WS1, and therefore,

they are equivalent with respect to the primary selection rule of that section.

Along similar lines to the above remarks, we have also noticed that, for a CRL that

has no deadlock-free unsafe states and is operated under the optimal linear DAP (As ≤ b),

129

when two tangible states s1 and s2 are in the tangible reach of a decision state s, and it

further holds that

• s1 and s2 have the same server allocation;

• s1 and s2 have the same number of parts at each workstation; and

• As1 ≤ As2,

then, for the considered problem of the throughput maximization of this line, the optimal

relative value of state s1 is no less than the optimal relative value of state s2; i.e., state

s2 does not correspond to an optimal decision. We have not pursued a formal proof for

this last remark, but it also true that, in all of our experiments, we have not found a single

example that would counter this claim. On the other hand, the FR-based scheduling policy

that is based on the selection logic of Section 5.3.2, might fail to recognize this dominance

relationship among the aforementioned states s1 and s2.

Closing the discussion of this subsection, we want also to notice that, besides the in-

teresting conceptual insights and some potential new research themes that are defined by

this discussion, an important practical implication of this discussion is the realization that

the secondary selection rule of Section 5.3.2 might not be very pertinent after all. Indeed,

all our experimental findings indicate that the fluid-relaxation models that have been de-

veloped in this work, provide excellent guidance for the allocation of the system servers

(which admittedly is the most major concern in the considered scheduling problems); but

the attempt to resolve ties among competing states with the same server allocation on the

basis of the information on buffer allocation that is provided by the optimal solution of the

relaxing LP, might end up being misguided. More work is needed in the resolution of this

last issue, and in the meantime, breaking the corresponding ties completely randomly might

be a more pertinent decision mechanism.9 Motivated by this last remark, in the next chapter

9This statement would be especially true for the example that was provided in the first part of this sub-
section, since such a randomizing mechanism would give a much larger probability to states s̃(i) with larger
values of i than the current selection logic of Section 5.3.2.

130

we also consider possible corrective mechanisms that can detect and correct decisions of

the FR-based scheduling policy that might end up being suboptimal.

131

CHAPTER 6

PERFORMANCE ENHANCEMENT OF THE FR-BASED SCHEDULING

POLICY

The FR-based scheduling policy that was presented in Chapters 4 and 5 has been shown to

outperform significantly any other practical policies that can be contemplated for the target

RAS. It also gives near-optimal results when assessed against the optimal scheduling poli-

cies that are specified by the MDP formulation of the corresponding scheduling problem.

Nevertheless, this policy remains a heuristic solution to the considered scheduling prob-

lem, and, in fact, the last section of Chapter 5 identified certain conditions under which the

policy decisions might be expected to be suboptimal. Hence, in this chapter we develop

some additional tools that establish a capability to detect such suboptimal decisions by the

FR-based scheduling policy and correct them.

The presented tools can be applied locally at the different decision points of the under-

lying MDP, and the selection of these decision points can be performed in such a way that

any attained local improvements can have the most extensive impact on the performance of

the overall scheduling policy. Furthermore, the attempted improvements can be performed

either (i) in an “off-line” mode that uses simulation in order to identify and assess potential

modifications of the current scheduling policy that might lead to an enhanced performance

for the underlying RAS, or (ii) in an “on-line” mode that uses information gathered during

the real-time operation of the system under the current scheduling policy, in order to iden-

tify potential improvements for this policy and assess their expected impact on the system

performance.

From a methodological standpoint, the presented results are based on (i) some funda-

mental results that are borrowed from the area of the sensitivity analysis of Markov reward

processes [8], and (ii) the central role of the notion of the “state potential” in this anal-

132

ysis.1 On the other hand, the computational tractability of the presented developments is

established through statistical methods that enable (iii) the evaluation of the system perfor-

mance and the aforementioned potentials through a sample-path based computation, and

(iv) a systematic and robust comparison of the obtained estimates of these quantities. In

particular, the task of selecting reliably the option that is expected to have the best perfor-

mance, according to the obtained estimates of the employed performance indices, across

all the entertained options, is based on a body of results from statistical inference that are

collectively known as “ranking & selection (r&s)” [31].

We should also notice, at this point, that there have been some prior attempts to de-

velop “corrective methods” to scheduling policies that have been obtained through a relax-

ing approach to an original MDP formulation. Perhaps the most prominent among these

approaches in the current literature is that presented in [46]. This approach has been de-

veloped for multi-class queueing networks under a typical assumption of infinite-capacity

buffers, and tries to determine an efficient scheduling policy that will drain these networks

from a large accumulated backlog in the network buffers. To this end, the method of [46]

first formulates and solves “off-line” a (deterministic) optimal control problem based on a

fluidized version of the underlying system dynamics, and subsequently it tries to guaran-

tee the feasibility and the efficiency of the computed scheduling policy by trying to keep

the system operation away from a “boundary region” that is defined by the drainage of

the system buffers; the tool for attaining this last objective in [46] is the notion of “safety

stock”. As remarked, however, in [25], the estimation and preservation of the right amounts

of “safety stock” is a challenging problem, and, furthermore, the amounts of the required

safety stocks can be quite extensive. In addition, the notion of “safety stock” can be further

challenged by the presence of finite buffer capacities. Besides rendering impossible the

preservation of some large amounts of safety stock that might be requested by the afore-

mentioned method, the presence of finite buffering capacities in the underlying scheduling

1State potentials are also known as the “relative value function” in the relevant MDP literature.

133

problem defines an additional “boundary’ region” that must be avoided during the real-

time execution of the pre-determined scheduling policy, which is defined by a complete

allocation of the limited buffers. The avoidance of this new “boundary region” requires the

preservation of a “safety stock” of free buffering capacity, and the simultaneous attendance

of both “safety stock” requirements might result in an over-constrained problem.

On the other hand, our FR-based scheduling policy tries to account for the impact of

these “boundary” effects on the system performance by (re-)formulating and solving the

employed LP relaxation at each decision point. In the same spirit, the eventually sought

improvements of the original scheduling policy will be determined at the decision-point

level; i.e., they constitute isolated revisions of the actions to be selected by the applied

policy at a targeted set of decision points. In fact, when viewed from this standpoint, the

policy-improving methodology that is pursued in this chapter, bears stronger similarity to

the ideas and the techniques that underlie the “policy iteration (PI)” method for the solution

of infinite-horizon, average-reward MDPs [57, 8], especially those implementations of this

method that seek to evaluate the performance of the running policy at each iteration and

solve the corresponding Poisson equation through simulation [6, 8, 14].

Finally, closing this brief literature review on “correcting” methods for FR-based sched-

uling policies, we should also mention the approach presented in [7]. Actually, this ap-

proach does not constitute a “correcting” method for a pre-determined FR-based schedul-

ing policy in the strict sense, but it introduces a notion of “robustness” in the formulation of

the relaxing LP that is solved at each decision point, in an attempt to account more explic-

itly for the statistical characteristics that determine the notion of randomness in the timing

distributions of the underlying stochastic network. The experimental results that are re-

ported in [7], indicate that the modified LP relaxation, based on the aforementioned notion

of “robustness”, can result in an improved scheduling policy for the underlying stochastic

network.

In view of the above positioning of the main results of this chapter, the rest of it

134

is organized as follows: Section 6.1 reviews the results from the sensitivity analysis of

infinite-horizon AR-MDPs that are at the basis of the developments that are presented in

this chapter, adapts these results to the context of the particular scheduling problem and

the corresponding MDP that are addressed in this work, and motivates the two improving

methods for the FR-scheduling policy of Chapters 4 and 5 that are implied by these results

(i.e., the “off-line” and the “on-line” improving method that were discussed in the opening

paragraphs of this chapter). On the other hand, Sections 6.2 and 6.3 present the implemen-

tational details of the presented methods. In particular, Section 6.2 discusses the sample-

path-based methods that are necessary for the computation of the different estimates that

are necessary for a systematic comparison of the different decisions that are available at

the selected decision point(s), while Section 6.3 presents the “ranking & selection” method

that is employed for this comparison. The chapter concludes with Section 6.4 that presents

a series of results which demonstrate and assess the efficacy of the developed methodol-

ogy, and briefly discusses some further implementational details for the orchestration of the

presented developments into a full-fledged policy-improving method.

6.1 Some fundamental results from the sensitivity analysis of infinite-horizon AR-

MDPs and their implications for the potential improvement of the FR-based

scheduling policy

In this section we consider a Markov reward process that is induced by any given station-

ary deterministic policy π ∈ Π for the MDP that models the CRL scheduling problem

addressed in this work, and we present some results regarding the sensitivity analysis of

this Markov reward process. These sensitivity results subsequently enable us to motivate

and outline the policy-improving methods that are the main theme of this chapter.

An induced Markov reward process In order to define the Markov reward process that

is the focus of this section, we start by considering the continuous-time Markov chain

135

(CTMC)M(π) that is defined by any given stationary deterministic policy π for the MDP

of Section 2.4, as follows:

The state space of this CTMC is the set STa of the tangible states of the underlying state

space S that models the untimed dynamics of the considered CRL, that are also admissible

by the applied DAP ∆. The transition rate qij(π) for any pair of states (si, sj) ∈ STa × STa ,

under the considered policy π, can be computed as follows:

qij(π) =
∑

edζ∈E(si): sl=f(si,edζ) ∧ a(sl;π)=sj

µζ (6.1)

We remind the reader that, according to the notation that was introduced in Chapter 2,

in the above equation, (i) edζ denotes the uncontrollable event corresponding to the comple-

tion of processing stage Jζ , ζ = 1, . . . ,M ; (ii) f(·, ·) denotes the state transition function

modeling the untimed dynamics of the considered CRL; (iii) state sl constitutes a decision

point for the MDP that models the scheduling problem of maximizing the throughput of

the considered CRL; and (iv) a(sl; π) denotes the decision (or action) that is selected by the

deterministic policy π at the decision point sl; furthermore, (v) an action selected at deci-

sion state sl is essentially a tangible state s′ in the tangible reach T R(sl) of state sl. Hence,

in plain terms, the transition rate qij(π) is equal to the total occurrence rate in state si of

all those timed events edζ that lead to a decision state sl where the selected decision under

policy π is the tangible state sj . The transitional dynamics that underlie this definition, are

depicted schematically in Figure 6.1.

The CTMCM(π) is turned into a Markov reward process by associating the following

reward rate r(si) with every state si ofM(π):

r(si) =

 µM , if edM ∈ E(si)

0, o.w.
(6.2)

In order to simplify the exposition of the subsequent developments,M(π) is also uni-

136

Figure 6.1: A schematic representation of the transitional dynamics that determine the transition
rates qij(π) of the CTMCM(π).

formized, with uniformizing rate ru =
∑L

i=1 maxj:W (Jj)=WSi µj , in order to obtain the

discrete-time Markov chain (DTMC) M̂(π). Letting also ∆tu ≡ 1/ru, the one-step transi-

tion probability matrix P̂ (π) for this last Markov chain is defined as follows:

P̂ (i, j; π) =

qij(π) ·∆tu =

(∑
edζ∈E(si): sl=f(si.edζ) ∧ a(sl;π)=sj

µζ

)
·∆tu, if i 6= j

1−
∑

j:j 6=i P̂ (i, j; π) = 1−∆tu ·
∑

j:j 6=i qij(π), o.w.
(6.3)

Finally, in the uniformized dynamics of the DTMC M̂(π), the state rewards are given

by the vector r̂, with components

r̂i = r(si) ·∆tu =

 µM ·∆tu, if edM ∈ E(si)

0, o.w.
(6.4)

The Poisson equation and performance derivatives for the Markov reward process

M̂(π) Let η̂(π) denote the long-term average reward of process M̂(π) under policy π.

Then, assuming that the considered policy π confines the long-term behavior of the under-

lying CRL in a single communicating class of the process state space Sa,2 we have that

2 In general, there is no straightforward guarantee that the arbitrary policies π that are considered in this
chapter will induce a Markov chainM(π) with a single absorbing communicating class. In fact, we do not
have similar formal guarantees even for the FR-based scheduling policy that was discussed in Chapters 4

137

η̂(π) = ψ̂(π)T · r̂ (6.5)

where ψ̂(π) is the column vector that represents the limiting distribution of Markov chain

M̂(π). Furthermore, it is well known that, under the same ergodicity assumptions, there

exists a vector ĝ(π) that is defined up to an additive constant by the following equation [57,

8]: (
I − P̂ (π)

)
· ĝ(π) = r̂− η̂(π)1 (6.6)

Equation 6.6 is known as the Poisson equation in the corresponding literature. The

matrix I that appears in the left-hand-side of this equation denotes an appropriately dimen-

sioned identity matrix, while the vector 1 that appears in its right-hand-side is a vector with

all its components being equal to one. Vector ĝ(π) is known as the relative value function

for the underlying Markov reward process M̂(π), and its components are also known as

the corresponding state potentials (under the considered policy π).

Next, consider another stationary deterministic policy π′ for the MDP of Section 2.4,

with one-step transition probability matrix P̂ (π′) and limiting distribution ψ̂(π′) for the

corresponding DTMC M̂(π′). From Equation 6.6 we have:

ψ̂(π′)T ·
(

(I − P̂ (π)
)
· ĝ(π) = ψ̂(π′)T ·

(
r̂− η̂(π)1

)
=⇒

ψ̂(π′)T ·
(
P̂ (π′)− P̂ (π)

)
· ĝ(π) = ψ̂(π′)T · r̂− η̂(π)

(
ψ̂(π′)T · 1

)
=⇒

ψ̂(π′)T ·
(
P̂ (π′)− P̂ (π)

)
· ĝ(π) = η̂(π′)− η̂(π) (6.7)

In the above derivation we have used the additional facts that

ψ̂(π′)T · P̂ (π′) = ψ̂(π′)T (6.8)

and 5. Although such a problem has not been detected in the numerical experiments that are reported in
the various parts of this thesis, we notice that one way to regain the aforementioned ergodicity property
for any policy π, is by considering a randomized implementation of this policy that, at each decision state,
it implements the action-selection logic of policy π with a very high probability p, and selects completely
randomly from the available actions at that decision point, with probability 1− p.

138

and

ψ̂(π′)T · 1 = 1.0 (6.9)

Equation 6.7 is a “performance difference” formula, since it characterizes the differ-

ence in the long-term performance of the underlying CRL as we switch from policy π to

policy π′. We can see that this difference is determined by (i) the element-wise difference

of the one-step transition probability matrices P̂ (π) and P̂ (π′) for the DTMCs that are in-

duced by these two policies, (ii) the relative value function ĝ(π) of policy π, and (iii) the

limiting distribution ψ̂(π′) of policy π′.

Furthermore, setting

P̂δ(π, π
′) = (1− δ)P̂ (π) + δP̂ (π′) (6.10)

for some δ ∈ (0, 1), and applying the result of Equation 6.7 with respect to the policies that

correspond to the matrices P̂ (π) and P̂δ(π, π′), we get

ψ̂δ(π, π
′)T · δ

(
P̂ (π′)− P̂ (π)

)
· ĝ(π) = η̂δ(π, π

′)− η̂(π) (6.11)

where ψ̂δ(π, π′) and η̂δ(π, π′) denote, respectively, the limiting distribution and the long-

term throughput of the randomized policy that corresponds to the one-step transition proba-

bility matrix P̂δ(π, π′). Furthermore, dividing both sides of Equation 6.11 by δ, and letting

δ → 0+, we get the equation

ψ̂(π)T ·
(
P̂ (π′)− P̂ (π)

)
· ĝ(π) =

dη̂δ(π, π
′)

dδ

∣∣∣∣
δ=0

(6.12)

Equation 6.12 is a “performance derivative” formula. The quantity dη̂δ(π,π
′)

dδ

∣∣∣∣
δ=0

that

appears in the right-hand-side of this equation, can be perceived as a “directional deriva-

tive” that characterizes the performance change for the underlying MDP as the applied

139

Figure 6.2: A schematic representation of the policy modifications that are considered in this
chapter.

policy moves from the original policy π towards policy π′ according to the randomizing

scheme that is defined by Equation 6.10.

The reader should also notice that in the evaluation of the derivative dη̂δ(π,π
′)

dδ

∣∣∣∣
δ=0

ac-

cording to the left-hand-side of Equation 6.12, both, the relative value function and the

limiting distribution that are employed in this computation, are those corresponding to the

originating policy π. This realization is important since it implies that in the sample-path-

based computations that are pursued in the rest of this chapter, the application of the result

of Equation 6.12 requires the observation of the underlying CRL under the operation of

the currently applied policy π only; therefore, those computations that are based only on

the result of Equation 6.12, can be performed in an “on-line” mode, during the “real-time”

operation of the considered CRL.

Detecting policy-improving opportunities for the MDP of Section 2.4 In the rest of

this section, we specialize the results of Equations 6.7 and 6.12 to the particular case where

the deterministic policy π′ is obtained from the currently applied deterministic policy π

through the modification of a single decision, that is associated with some decision state

sl ∈ X . The considered modification is depicted graphically in Figure 6.2. The char-

acterization of the performed modification through Figure 6.2, when combined with the

characterization of the one-step transition probability matrix P̂ (π) through Equation 6.3,

140

further imply that, in the considered case, the matrix difference ∆P̂ (π, π′) ≡ P̂ (π′)−P̂ (π),

that appears in Equations 6.7 and 6.12, will possess the following structure:

∆P̂ (i, k; π, π′) =

−µj∆tu, if ∃edj ∈ E(si) s.t. f(si, e

d
j) = sl ∧ k = p

µj∆tu, if ∃edj ∈ E(si) s.t. f(si, e
d
j) = sl ∧ k = q

0, o.w.

(6.13)

Equation 6.13 subsequently implies the following forms for the performance-difference

and the performance-derivative formulae of Equations 6.7 and 6.12:

η̂(π′)− η̂(π) = ∆tu

(∑
i: ∃edj∈E(si) s.t. f(si,edj)=sl

ψ̂(si; π
′) · µj

)[
ĝ(sq; π)− ĝ(sp; π)

]
(6.14)

dη̂δ(π, π
′)

dδ

∣∣∣∣
δ=0

= ∆tu

(∑
i: ∃edj∈E(si) s.t. f(si,edj)=sl

ψ̂(si; π) · µj
)[

ĝ(sq; π)− ĝ(sp; π)
]

(6.15)

Equations 6.14 and 6.15 imply that a policy modification of the type that is described

in Figure 6.2 can result in an improvement of the performance of the underlying CRL only

if

ĝ(sq; π) > ĝ(sp; π) (6.16)

The magnitude of this improvement is determined by the difference ĝ(sq; π)− ĝ(sp; π),

and it is further modulated by the factors that multiply this difference in the two Equa-

tions 6.14 and 6.15. It can also be seen that, for Equation 6.15, this modulating factor is

essentially the “steady-state” probability of visiting the considered decision state sl under

policy π, while, for Equation 6.14, the corresponding modulating factor is the “steady-

state” probability of visiting the considered decision state sl under policy π′.

The above remarks imply that in order to effect a performance improvement through a

policy change of the type that is suggested by Figure 6.2, one needs to identify a decision

141

state sl such that the current decision corresponds to a tangible state sp ∈ T R(sl) with

ĝ(sp; π) < maxs∈T R(sl) ĝ(s; π). Furthermore, it makes sense to focus the search for a

decision state sl with the aforementioned property, to those decision states that are visited

most frequently under the current policy π.

Finally, for the subsequent developments, it is also useful to notice that while the state

potentials ĝ(s; π), s ∈ STa , provide good guidance for identifying improving policy modi-

fications of the type described in Figure 6.2, when one tries to assess the pertinence and the

significance of such policy changes in an “off-line” mode, it is also possible to work more

directly with estimates of the corresponding throughputs η̂(π) and η̂(π′), obtained through

simulation of the underlying CRL.

In the next section we address the issue of developing pertinent estimators for the

throughput η̂(π) and the potentials ĝ(s; π), s ∈ STa , for the considered Markov reward

process M̂(π), which is induced by some stationary deterministic policy π. Furthermore,

in Section 6.3 we present a systematic methodology that will help us identify reliably im-

proving modifications of the current policy π, based on some throughput and/or potential

estimates that are obtained from the results of Section 6.2.

6.2 Sample-path-based estimation of the system throughput and of the state poten-

tials under a given scheduling policy

In this section, we present some estimators for the throughput, η̂(π), and the potentials,

ĝ(s; π), s ∈ STa , that were introduced in the previous section. In the subsequent dis-

cussion it is assumed that the considered policy π induces a single absorbing communi-

cating class for the DTMC M̂(π), and therefore, the throughput η(π) and the potentials

ĝ(s; π), s ∈ STa , are well defined. Furthermore, from the overall discussion of the pre-

vious section, it should be clear that in regards to the potentials ĝ(s; π), s ∈ STa , we are

particularly interested in those states that belong in the aforementioned single communicat-

ing class, and therefore, they have a recurrent presence in the dynamics of the considered

142

DTMC M̂(π). The focus to this particular subclass of states subsequently enables us to

leverage the regenerative nature of the dynamics of Markov chain M̂(π) within its absorb-

ing communicating class.

From an organizational standpoint, the section consists of two major parts, with the first

part addressing the estimation of the throughput η̂(π), and the second part addressing the

estimation of the state potentials ĝ(s; π).

Estimating the throughput η̂(π) of the DTMC M̂(π) This part adapts to the considered

problem of the estimation of the throughput η̂(π), some related results that are presented

in [3]. Hence, let us consider a recurrent state s∗ of the DTMC M̂(π), set s(0) = s∗ (i.e.,

initialize the process M̂(π) to state s∗), and define the stopping time τ = inf{t > 0 : s(t) =

s∗} (i.e., τ is the “recurrence time” to state s∗). Then, it is well known that

η̂(π) =
E
[∑τ−1

t=0 r̂
(
s(t)
)]

E[τ]
(6.17)

Equation 6.17 subsequently suggests the following estimator, ̂̂η(π), for the throughput

η̂(π): Simulate the DTMC M̂(π) initializing it to the selected state s∗, and let τN denote

the time of the N -th recurrence of the process to state s∗. Then, set

̂̂η(π) ≡
∑τN−1

t=0 r̂
(
s(t)
)

τN
(6.18)

Estimator ̂̂η(π) essentially employs the empirical means of the expectations E[τ] and

E
[∑τ−1

t=0 r̂
(
s(t)
)]

appearing in Equation 6.17, that are based on the N simulated recurrent

cycles. Therefore, ̂̂η(π) is strongly consistent (i.e., ̂̂η(π) → η̂(π) as N → ∞ w.p. 1),

but it is also biased for any finite N . In [3] it is shown that the bias of ̂̂η(π) is O(1/N),

and if necessary, it can be further reduced to O(1/N2) by applying certain techniques like

“jack-knifing”. Furthermore, the O(1/N) dependence of the bias of ̂̂η(π) on N implies

that, when N takes fairly large values, this bias will be an order of magnitude smaller than

143

the st. deviation of this estimator, which behaves as O(1/
√
N); therefore, the existing bias

in the above estimator ̂̂η(π) is not expected to have a significant impact in the subsequent

developments.

Estimating the state potentials ĝ(s; π) of the DTMC M̂(π) for its recurrent states s

This part is based on corresponding developments that appear in [8, 14]. One way to

motivate these developments is as follows: It is well known that a solution ĝ(π) for the

Poisson equation of Equation 6.6, can be obtained by setting

∀ si ∈ STa , ĝ(si; π) = lim
L→∞

E
[L−1∑
t=0

(
r̂
(
s(t)
)
− η̂(π)

) ∣∣∣ s(0) = si

]
(6.19)

Furthermore, from Equation 6.19 it follows that for sj 6= si,

γ(si, sj; π) ≡ ĝ(sj; π)− ĝ(si; π) = E
[τ(i|j)−1∑

t=0

(
r̂
(
s(t)
)
− η̂(π)

) ∣∣∣ s(0) = sj

]
(6.20)

where

τ(i|j) = inf{t > 0 : s(t) = si | s(0) = sj} (6.21)

Finally, setting

ĝ(s∗; π) = 0 (6.22)

for some arbitrary recurrent state s∗, Equation 6.20 implies that the vector

g̃(si; π) =

 0, if si = s∗

γ(s∗, si; π), o.w.
(6.23)

is another valid solution for the Poisson equation of Equation 6.6.

Moreover, Equations 6.20 and 6.21 further imply that an estimator, ˜̂g(si; π), of g̃(si; π),

for some recurrent state si 6= s∗, can be obtained as follows: Consider a recurrent cycle of

the DTMC M̂(π) with respect to the state s∗, of length τ . If this recurrent cycle does not

144

visit state si, then it cannot provide an estimate of g̃(si; π). If, on the other hand, state si is

visited during this recurrent cycle, then let τi denote the first period that state si is visited

during this cycle. According to Equations 6.20 and 6.21, an estimate of g̃(si; π) is provided

by

˜̂g(si; π) =
τ−1∑
t=τi

(
r̂
(
s(t)
)
− ̂̂η(π)

)
(6.24)

In Equation 6.24, ̂̂η(π) is a previously obtained estimate of the throughput η̂(π); e.g.,

through the methodology that was discussed in the previous part of this section. Then, it

can also be seen that the estimator ˜̂g(si; π) will be unbiased if the employed throughput

estimate ̂̂η(π) is unbiased; otherwise, it will be biased. Finally, a more robust estimate

of g̃(si; π) can be obtained by averaging the estimator of Equation 6.24 over N recurrent

cycles with respect to state s∗ that involve a visitation to the considered state si, for some

appropriately selected value of N .

6.3 A “ranking & selection” algorithm for identifying a performance-improving de-

cision

As explained in Section 6.1, we are interested in improving modifications for any given

policy π for the scheduling problem that is considered in this work, that adhere to the

modification logic that is depicted in Figure 6.2. Furthermore, according to the discussion

that was provided in the closing part of that section, such an improving modification can

be detected by comparing either (i) the state potentials ĝ(s; π) of all states s that are in the

tangible reach T R(sl) of the decision state sl under consideration (when working in an

“on line” mode), or (ii) the throughputs η̂(π′) that are attained by the policies π′ that result

from the replacement of the current decision at the considered decision state sl with another

decision that corresponds to an alternative state s ∈ T R(sl) (when working in an “off line”

mode). In both cases, we are faced with the problem of selecting the state s ∈ T R(sl)

that maximizes the performance index of interest – i.e., the state potential ĝ(s; π), or the

145

throughput η̂(π′) of the policies π′ that result from the contemplated modifications – and

we need to solve this problem while working with sample-path-based estimates of these

quantities that can be obtained through the estimators that were defined in Section 6.2.

The problem of effecting comparisons of the type that was described in the previous

paragraph, has been addressed in the statistics literature under the general term of “ranking

& selection (r&s)” [31]. Some of the most general results for this problem work with the

following basic positioning of it:

Assumption 1 The performance measure of interest for each entertained option i = 1, . . . ,

k, is the unknown mean µi of a normal random variable (r.v.) Xi.

Assumption 2 Besides the means µi, the variances, σi, for the r.v.’s Xi, are also unknown

and possibly unequal.

Assumption 3 It is possible to generate a sequence 〈X̂ij, j = 1, 2, . . .〉 of independent

samples for each r.v. Xi

Assumption 4 The set of samples {X̂ij, i = 1, . . . , k} – i.e., the samples obtained for the

r.v.’s Xi, i = 1, . . . , k, during the j-th round of sampling – can be independent or

(positively) correlated.

Assumption 5 There is also a pre-specified parameter δ such that any pair of options {i, j}

with |µi − µj| ≤ δ are treated as equivalent during the attempted comparison – in

more technical terms, the parameter δ defines an “indifference zone” for the pursued

comparison.

Assumption 6 Finally, all the existing approaches also allow for an erring probability a

with a < 1/k.3

3The reader should notice that 1/k is the probability of selecting the correct option when this selection is
performed completely randomly among the k available options.

146

Problem statement Under Assumptions 1-6, we want to design a sampling process and

the accompanying inference logic that will select an option i in the indifference zone

of arg maxj∈{1...,k}{µj} with probability 1− a.

Of particular interest to this work, are solutions to the aforestated version of the r&s

problem that are “fully sequential”. Generally speaking, these solutions go through a first

sampling round that enable them to collect some information about the inherent variability

in each r.v. Xi, and subsequently they perform an additional number of sampling rounds

where the information that is obtained from the additional samples that are collected at each

round is used to further assess the competitiveness of the options that are still entertained in

that round, and potentially eliminate some of these options that are deemed to not be com-

petitive anymore. The entire process terminates when the set of (remaining) competitive

options becomes a singleton. Some perceived advantages of such a (fully) sequential pro-

cedure are: (i) the ability to make more expedient and efficient use of the information that is

contained in the collected samples, eliminating early options that are not deemed compet-

itive by this sampling process, and (ii) its amenability to implementation in a “real-time”

operational setting.

Also, an additional potential feature of the r&s problem that was described in the pre-

vious paragraphs, is the presence of an option – to be denoted as the 0-th option – that is to

be treated as the “preferred choice” as long as it belongs in the arg maxj∈{0,1...,k}{µj}. The

corresponding version of the r&s problem is known as “comparison with a standard” in the

relevant literature [54, 30]. This version is particularly relevant in our case, since we want

to alter the current policy only if the expected gain from the contemplated modification(s)

is significant.

Finally, a more technical remark concerns the removal of the normality requirement

for the r.v.’s Xi, i = 1, . . . , k, that was posed in Assumption 1. This can be attained by

re-defining the j-th sample X̂ij of the i-th random variableXi as the average ofN indepen-

dent samples drawn from the corresponding distribution. Then, as long as the employed

147

sample size N is adequately large, the central limit theorem [66] ensures that this modified

sample concept follows approximately a normal distribution with mean E[Xi]. Clearly, the

practical significance of this remark is very important for the application of the existing

r&s algorithms to various practical applications, including the application that is the focus

of this work.

A fully sequential procedure that addresses the “comparison with a standard” version

of the considered r&s problem under the aforestated Assumptions 1-6, is provided in [30].

Furthermore, from all the previous discussion, it is clear that this procedure defines a very

effective tool for resolving the r&s problems that we need to address in this chapter. There-

fore, we replicate this procedure in Figure 6.3, focusing on the particular variations that are

of interest in this work, and we demonstrate its application to the particular context of the

scheduling problem that is considered in this work, in the next section.

6.4 An empirical assessment of the proposed policy improving methods and some

further implementational details

In the first parts of this section, we present a series of experiments that have the double

purpose of (i) demonstrating and assessing the efficacy of the r&s algorithm of Figure 6.3 to

detect improving opportunities for the FR-based scheduling policy of Chapters 4 and 5 for

the considered CRLs, and also (ii) demonstrating and assessing the efficacy of the decisions

that are effected by the FR-based scheduling policy of Chapters 4 and 5 at the most visited

states of the underlying state space (and therefore, the most critical states for shaping the

overall performance of the policy). All these experiments were conducted on a laptop with

a 2.2 GHz i5 processor and 8GB of memory. The employed r&s algorithm was coded in

C# and executed in Microsoft Visual Studio 2017.

The last part of the section builds upon the experience of the earlier parts in order to

provide some ideas about the orchestration of the presented results in a full-fledged im-

proving process for the FR-based scheduling policy (or any other deterministic scheduling

148

Setup: Select confidence level 1 − a, indifference-zone parameter δ, and the first-stage
sample size n0. Also, set

β =

1− (1− a)1/k if the obtained samples for the various options at

each sampling iteration are independent
a/k if the obtained samples for the various options at

each sampling iteration are correlated

and determine η by solving the equation(
1 + 2η

)−(n0−1)/2
= 2β

Initialization: Let I = {0, 1, 2, . . . , k} be the set of options in contention. Obtain n0

observations X̂ij, j = 1, 2, . . . , n0, from each option i = 0, 1, 2, . . . , k.
For all i 6= l, l = 0, 1, 2, . . . , k, compute S2

il, the sample variance of the difference between
option i and option l, and let

ail =
η(n0 − 1)S2

il

δil
and λil =

δil
2

where

δil =

{
δ/2, if i = 0 ∨ l = 0
δ, o.w.

Set the observation counter r := n0 and go to Screening.

Screening: For each i < l, i ∈ I and l ∈ I , if

r∑
j=1

(
Xij −Xlj

)
≤ −max

{
0, ail − λilr

}
,

then eliminate i from I; else if

r∑
j=1

(
Xij −Xlj

)
≥ max

{
0, ail − λilr

}
,

then eliminate l from I .
In the above inequalities,

Xij =

{
X̂ij + δ/2, if i = 0

X̂ij, o.w.

Stopping Rule: If |I| = 1, then stop and select the option whose index is in I . Otherwise,
set r = r + 1, take one additional observation, X̂ir, from each option i ∈ I , and go to
Screening.

Figure 6.3: The fully sequential procedure of [30] for resolving the “comparison with
a standard” version of the r&s problem under Assumptions 1–6. It is assumed that the
“standard” value µ0 is unknown, and the parameter c has been set equal to 1.

149

policy that might provide a good starting solution to the considered scheduling problems).

6.4.1 Implementing the r&s algorithm of Figure 6.3 in an “on-line” operational mode

In this part of the presented experiments, we used the 20 CRL configurations that are listed

in Table 4.2 in order to investigate empirically the ability of the r&s algorithm of Figure 6.3

to identify policy-improving opportunities, when this algorithm is implemented in an “on-

line” operational mode for the underlying CRL. We remind the reader that, according to

the corresponding discussion of Section 6.1, these improvements are sought locally at some

pre-selected decision state s, and in the case of an on-line operational mode, the primary

guidance in this search is provided by the state potentials, ĝ(s′; π), of the states s′ that are

in the tangible reach T R(s) of state s. In this experiment, the considered state s was the

most visited state when the underlying CRL was operated in steady-state under the control

of the corresponding FR-based scheduling policy.

Some particular details for this part of the experiment are as follows:

For each of the CRL configurations 1 to 16 in Table 4.2, we generated 30 problem

instances by varying randomly the processing rates for the corresponding processing stages

over the interval [1,10]. On the other hand, for each of the CRL configurations 17 to 20

of Table 4.2, we generated only 5 problem instances, with a similar range for the random

processing rates of their processing stages, since the state spaces for these configurations

are very large, and therefore, the computation of these state spaces and the performance

evaluation of the corresponding scheduling policies took a very long time.

For each CRL instantiation that was generated in this experiment, we implemented

the corresponding FR-based scheduling policy – to be denoted by π in the following –

according to the logic described in Section 5.3. Then, we randomly selected one state s

from the underlying state space, and we simulated 10,000 regenerative cycles of the line

operation under policy π, in order to find the most visited decision state sm.

The data collected from these regenerative cycles were also used in order to obtain

150

an estimate, ̂ĝ(a(sm; π); π), of the potential of the action a(sm; π) that is selected at state

sm by policy π, according to the logic described in Section 6.2. We used the estimate

̂ĝ(a(sm; π); π) in order to specify the indifference zone δ for the r&s algorithm; in particu-

lar, we considered two different values:

δ = 0.001 ̂ĝ(a(sm; π); π) and δ = 0.0005 ̂ĝ(a(sm; π);π)

These values were expected to provide a very high discerning power for the applied r&s

algorithm. In a similar spirit, we also set the erring probability a for this algorithm to the

two values of

a = 0.05 and a = 0.01

The combination of the above values for the parameters δ and a provides some infor-

mation about the impact of these parameters on the computational effort and the execution

time of the algorithm. At the same time, the employment of the really tight values for the

parameters δ and a that were mentioned above, boosts the ability of the r&s algorithm to

make a correct choice at every iteration of the experiment, and therefore, it allows us to

obtain a good assessment of the ability of the original policy π to make a pertinent choice

at the state sm (i.e., the most visited state by this policy).

Finally, the initial 10,000 regenerative cycles for the CRL operation under policy π

that were mentioned in the previous paragraphs, gave us also an estimate of the long-

term throughput of the policy, ̂̂η(π), according to the corresponding estimator that was

introduced in Section 6.2. This estimate was used subsequently in the estimator of the state

potentials under consideration, that is defined by Equation 6.24.

During the execution of the r&s algorithm of Figure 6.3 at the selected decision state

sm, we used the average of a batch of 30 estimates obtained through Equation 6.24, as a

single estimate for any of the compared potentials ĝ(s; π), s ∈ T R(sm). This batching

intended to address the normality requirement for the distributions of the various options

151

Table 6.1: The amount of sampling that is required by the “on-line” implementation of the
r&s algorithm of Figure 6.3.

Config. r α = 5% α = 1%

δ = 0.001 ̂g̃(si;π) δ = 0.0005 ̂g̃(si;π) δ = 0.001 ̂g̃(si;π) δ = 0.0005 ̂g̃(si;π)

Avg. 32976.4 72009.333 71086.1 201286.36
Config 1 Min. 2099 12186 7782 21350

Max. 148275 280269 273920 821453
Avg. 68024.5 156710.46 162662.16 480027.63

Config 2 Min. 8038 6758 20992 33280
Max. 245350 483942 509235 1904486
Avg. 47916.8 126287.5 106544.7 316015.73

Config 3 Min. 5427 2611 17357 29184
Max. 146688 629453 410419 1137306
Avg. 83224.966 196545.66 182637.83 596400.06

Config 4 Min. 8550 13005 40755 64307
Max. 311296 599194 407398 2073242
Avg. 95488.4 289512.3 220018.3 646735.36

Config 5 Min. 2304 63795 6298 107213
Max. 401920 905933 861901 1949952
Avg. 63631.93 133122.63 113645.6 393409.16

Config 6 Min. 6246 21453 5171 44032
Max. 243610 612966 403917 1677978
Avg. 83224.7 72009.2 220018.56 316015.36

Config 7 Min. 20224 17387 53116 76698
Max. 477744 756985 843953 2536516
Avg. 68024.43 196545.76 162662.83 480027.26

Config 8 Min. 16647 47691 39246 116374
Max. 537969 1299023 735744 3033296
Avg. 47916.366 196545.16 182637.73 393409.2

Config 9 Min. 11717 49723 45463 96990
Max. 242521 992283 639194 2464795
Avg. 95488.6 156710.3 162662.7 646735.6

Config 10 Min. 23239 40162 39246 157789
Max. 434586 926385 732723 3197955
Avg. 63631.1 72009.33 182637.9 646735.5

Config 11 Min. 15521 17387 44673 156384
Max. 275538 773472 639194 3366711
Avg. 63631.33 196545.03 113645.7 316015.96

Config 12 Min. 15489 49723 27527 78416
Max. 529183 1006056 634689 2310007
Avg. 83224.8 72009.566 220018.36 393409.8

Config 13 Min. 20066 18140 53499 96179
Max. 314723 627961 1301937 2464795
Avg. 83224.966 126287.8 182637.8 316015.73

Config 14 Min. 20191 30413 44673 78416
Max. 313136 851767 772673 2536516
Avg. 63631.73 133122.93 162662.66 393409.3

Config 15 Min. 15364 32807 39350 95585
Max. 438559 546512 599245 2464795
Avg. 83224.9 156710.76 113645.2 316015.03

Config 16 Min. 20316 38098 27527 76698
Max. 411798 797361 1089191 2581982
Avg. 204073.6 378860.4 660055.4 603858.8

Config 17 Min. 49254 92487 160932 157791
Max. 1138975 2646077 2531860 7427441
Avg. 286464 470129.6 319631.4 1180227

Config 18 Min. 69777 113144 77332 288538
Max. 1506816 1781064 1870520 4824812
Avg. 286464.6 378860.8 487987.2 1440082.6

Config 19 Min. 69501 91737 119636 349122
Max. 1778688 2555300 2207232 9099889
Avg. 254525.8 626838.2 426175.8 1920109.6

Config 20 Min. 61455 160648 103290 464242
Max. 2116731 3771488 2889291 11640026

that are considered by the r&s algorithm of Figure 6.3.

Also, at each sampling iteration of the algorithm, we used the same regenerative cycles

for the construction of the necessary estimates for all of the potentials that are still assessed

during this iteration; hence, the potential estimates used during each sampling iteration

were positively correlated.

Table 6.1 reports the average, minimum and maximum number of sampling cycles that

152

were required by the algorithm in order to reach a decision, for all the considered CRL

configurations. We see that these numbers can be quite significant. On the other hand,

the execution time of the algorithm on any particular instantiation of the considered CRLs

lasted from a few seconds for the smaller configurations, to no more than 30 minutes for

the largest ones. Table 6.1 also reveals that as the employed values for the parameters δ

and a get tighter, the required amount of sampling increases, but, for all the selected values

of these parameters, the number of the required sampling cycles has the same order of

magnitude.

Finally, we should also notice that when we relaxed the indifference zone δ by an order

of magnitude, to a value of 0.01 ̂ĝ(a(sm; π);π), the corresponding values to those reported

in Table 6.1 dropped drastically, never exceeding the value of 1000 even for the largest

configurations.

In order to assess the quality of the decisions that were made by the r&s algorithm of

Figure 6.3 upon its execution on the considered CRL instantiations, we also evaluated the

relative gains in throughput that are incurred by the policies π′ that are specified by the

actions that are selected by this algorithm. More specifically, for each CRL instantiation in

the considered experiment, we computed the quantity

%-improvement =
η̂(π′)− η̂(π)

η̂(π)
× 100

where the quantities η̂(π′) and η̂(π) that appear in this expression, were computed through

the solution of the corresponding Poisson equation [57]. Table 6.2 tabulates the obtained re-

sults, reporting the average, minimum and maximum %-improvements that were observed

for the generated instances from the 20 CRL configurations of Table 4.2.

The perusal of the values that are reported in Table 6.2 reveals that, under the employed

parameterization, the considered r&s algorithm never came up with a decision that would

result in a degraded performance with respect to the applied policy π. Furthermore, the

153

values that are reported in Table 6.2 are very small, a fact that indicates that the FR-based

scheduling policy typically makes pretty good choices in the most visited state sm. In fact,

it is also true that in most of the considered CRL instantiations, the action selected with

the r&s algorithm coincided with the action that was selected by the FR-based scheduling

policy itself. This finding is consistent with the experimental results of Chapters 4 and 5

that have indicated that the FR-based scheduling policy will make a pertinent decision at

most decision states.

6.4.2 Implementing the r&s algorithm of Figure 6.3 in an “off-line” operational mode

In this part of our experiments, we shifted attention to an “off-line” determination of a best

action at the decision state under consideration. The basic set up of this experiment was

similar to that used in the “on-line” case; in particular, we still used the same number of

instantiations from the same set of CRL configurations that are reported in Table 4.2, and,

in each case, we focused on the same state sm, that is the most frequently visited state by

the corresponding FR-based scheduling policy. Also, the selection of the employed values

for the parameters δ and a of the r&s algorithm was made in the same manner as in the

“on-line” case, but for parameter δ we used the estimate ̂̂η(π) as reference. And we used a

batching scheme of 30 samples per batch in order to obtained the required samples by the

r&s algorithm.

As discussed in the closing part of Section 6.1, in the “off-line” case, the selection of

the best action at the considered decision point sm should be based on a direct comparison

of the throughputs η̂(π′) of the corresponding policies π′ that are defined by each state

s′ ∈ T R(sm). The required estimates ̂̂η(π′), for each policy π′, were obtained through the

corresponding estimator of Section 6.2, while simulating the system operation under this

policy. As a result, in this case, the throughput estimates computed for each competing

option at each sampling cycle of the algorithm were independent from each other, and the

r&s algorithm of Figure 6.3 was configured accordingly.

154

Table 6.2: An empirical assessment of the relative throughput gain that is incurred by the
policy π′ that is recommended by the r&s algorithm of Figure 6.3, under an “on-line”
execution of this algorithm.

Config. %improvement α = 5% α = 1%

δ = 0.001̂̂η(π) δ = 0.0005̂̂η(π) δ = 0.001̂̂η(π) δ = 0.0005̂̂η(π)

Avg. 0 0 0 0
Conf 1 Min. 0 0 0 0

Max. 0 0 0 0
Avg. 0 0 0 0

Conf 2 Min. 0 0 0 0
Max. 0 0 0 0
Avg. 0.0077 0.0077 0.0077 0.0077

Conf 3 Min. 0 0 0 0
Max. 0.1198 0.1198 0.1198 0.1198
Avg. 0.0116 0.0116 0.0116 0.0116

Conf 4 Min. 0 0 0 0
Max. 0.1637 0.1637 0.1637 0.1637
Avg. 0.0070 0.0070 0.0070 0.0070

Conf 5 Min. 0 0 0 0
Max. 0.2121 0.2121 0.2121 0.2121
Avg. 0.0155 0.0155 0.0155 0.0155

Conf 6 Min. 0 0 0 0
Max. 0.2321 0.2321 0.2321 0.2321
Avg. 0.0296 0.0296 0.0296 0.0296

Conf 7 Min. 0 0 0 0
Max. 0.3426 0.3426 0.3426 0.3426
Avg. 0.0042 0.0042 0.0042 0.0042

Conf 8 Min. 0 0 0 0
Max. 0.0755 0.0755 0.0755 0.0755
Avg. 0.0011 0.0011 0.0011 0.0011

Conf 9 Min. 0 0 0 0
Max. 0.0339 0.0339 0.0339 0.0339
Avg. 0.0257 0.0257 0.0257 0.0257

Conf 10 Min. 0 0 0 0
Max. 0.1661 0.1661 0.1661 0.1661
Avg. 0.0079 0.0079 0.0079 0.0079

Conf 11 Min. 0 0 0 0
Max. 0.1407 0.1407 0.1407 0.1407
Avg. 0.0093 0.0093 0.0093 0.0093

Conf 12 Min. 0 0 0 0
Max. 0.0851 0.0851 0.0851 0.0851
Avg. 0.0114 0.0114 0.0114 0.0114

Conf 13 Min. 0 0 0 0
Max. 0.1846 0.1846 0.1846 0.1846
Avg. 0.0101 0.0101 0.0101 0.0101

Conf 14 Min. 0 0 0 0
Max. 0.0796 0.0796 0.0796 0.0796
Avg. 0.0098 0.0098 0.0098 0.0098

Conf 15 Min. 0 0 0 0
Max. 0.1171 0.1171 0.1171 0.1171
Avg. 0.0120 0.0120 0.0120 0.0120

Conf 16 Min. 0 0 0 0
Max. 0.1058 0.1058 0.1058 0.1058
Avg. 0.0258 0.0258 0.0258 0.0258

Conf 17 Min. 0 0 0 0
Max. 0.1294 0.1294 0.1294 0.1294
Avg. 0 0 0 0

Conf 18 Min. 0 0 0 0
Max. 0 0 0 0
Avg. 0.0155 0.0155 0.0155 0.0155

Conf 19 Min. 0 0 0 0
Max. 0.0779 0.0779 0.0779 0.0779
Avg. 0 0 0 0

Conf 20 Min. 0 0 0 0
Max. 0 0 0 0

The experimental results obtained for the “off-line” case are reported in Tables 6.3

and 6.4, that are the counterparts of Tables 6.1 and 6.2 of the previous subsection. Some

observations that can be made about these results are as follows:

When it comes to the amount of the required sampling, the juxtaposition of Tables 6.1

and 6.3 indicates that, in the “off-line” case, the amount of the sampling that is employed

155

Table 6.3: The amount of sampling that is required by the “off-line” implementation of the
r&s algorithm of Figure 6.3.

Config. r α = 5% α = 1%

δ = 0.001̂̂η(π) δ = 0.0005̂̂η(π) δ = 0.001̂̂η(π) δ = 0.0005̂̂η(π)

Avg. 20610.366 45006.53 44429.4 125804.03
Config 1 Min. 1312 7616 4864 13344

Max. 92672 175168 171200 513408
Avg. 42515.366 97943.1 101664.46 300017.66

Config 2 Min. 5024 4224 13120 20800
Max. 153344 302464 318272 1190304
Avg. 29948.566 78929.166 66590.83 197509.1

Config 3 Min. 3392 1632 10848 18240
Max. 91680 393408 256512 710816
Avg. 52015.666 122841.96 114148.26 372750.6

Config 4 Min. 5344 8128 25472 40192
Max. 194560 374496 254624 1295776
Avg. 59680.2 180945.66 137511.03 404209.8

Config 5 Min. 1440 39872 3936 67008
Max. 251200 566208 538688 1218720
Avg. 39770.53 83201.5 71028.2 245881.5

Config 6 Min. 3904 13408 3232 27520
Max. 152256 383104 252448 1048736
Avg. 52015.43 45006.13 137511.2 197509.36

Config 7 Min. 11184 9328 28475 42171
Max. 246575 428110 389959 1387813
Avg. 42515.13 122841.1 101664.5 300017.1

Config 8 Min. 9508 26194 20979 63651
Max. 293715 689049 358176 1595793
Avg. 29948.9 122841.8 114148.06 245881.1

Config 9 Min. 6668 32543 27924 57215
Max. 121628 497337 285348 1294617
Avg. 59680.266 97943.73 101664.6 404209.26

Config 10 Min. 12941 27563 20979 88880
Max. 211936 481047 356288 1594513
Avg. 39770.466 45006.766 114148.9 404209.06

Config 11 Min. 8735 9328 25454 84490
Max. 132442 438414 285348 1699985
Avg. 39770.9 122841.83 71028.83 197509.13

Config 12 Min. 8632 32543 14993 47540
Max. 290970 505945 325652 1246245
Avg. 52015.93 45006 137511.3 245881.13

Config 13 Min. 10691 11683 29672 54680
Max. 144687 347470 676199 1294617
Avg. 52015.33 78929.466 114148.06 197509.83

Config 14 Min. 11081 16112 25454 47540
Max. 143695 453425 368772 1387813
Avg. 39770.3 83201.866 101664.56 245881.2

Config 15 Min. 8242 19322 21306 52824
Max. 234330 258369 272864 1294617
Avg. 52015.9 97943.1 71028.5 197509.43

Config 16 Min. 11472 21112 14993 42171
Max. 205359 400407 609716 1416229
Avg. 127546.6 236787.8 412534.2 377411.8

Config 17 Min. 26373 52234 90379 115687
Max. 584314 1417011 1169878 4264739
Avg. 179040.8 293830.2 199770.4 737642.4

Config 18 Min. 39014 59745 41893 164040
Max. 762720 819334 969306 2277866
Avg. 179040 236787.8 304992.4 900051.8

Config 19 Min. 38150 49892 68870 190954
Max. 932640 1360275 1074528 4787379
Avg. 159078.6 391774.2 266359.6 1200068.6

Config 20 Min. 32968 110252 56421 250689
Max. 1163878 1965406 1539447 6074948

by the r&s algorithm during its execution on each CRL instantiation, tends to be less than

the corresponding amount of sampling that is observed in the “on-line” case; but all these

amounts are of the same order of magnitude.

On the other hand, the juxtaposition of Tables 6.2 and 6.4 reveals that these two tables

are identical; i.e., for each considered CRL instantiation, the employed r&s algorithm has

selected the same action at the corresponding state sm in, both, the “on-line” and the “off-

156

Table 6.4: An empirical assessment of the relative throughput gain that is incurred by the
policy π′ that is recommended by the r&s algorithm of Figure 6.3, under an “off-line”
execution of this algorithm.

Config. %improvement α = 5% α = 1%

δ = 0.001̂̂η(π) δ = 0.0005̂̂η(π) δ = 0.001̂̂η(π) δ = 0.0005̂̂η(π)

Avg. 0 0 0 0
Conf 1 Min. 0 0 0 0

Max. 0 0 0 0
Avg. 0 0 0 0

Conf 2 Min. 0 0 0 0
Max. 0 0 0 0
Avg. 0.0077 0.0077 0.0077 0.0077

Conf 3 Min. 0 0 0 0
Max. 0.1198 0.1198 0.1198 0.1198
Avg. 0.0116 0.0116 0.0116 0.0116

Conf 4 Min. 0 0 0 0
Max. 0.1637 0.1637 0.1637 0.1637
Avg. 0.0070 0.0070 0.0070 0.0070

Conf 5 Min. 0 0 0 0
Max. 0.2121 0.2121 0.2121 0.2121
Avg. 0.0155 0.0155 0.0155 0.0155

Conf 6 Min. 0 0 0 0
Max. 0.2321 0.2321 0.2321 0.2321
Avg. 0.0296 0.0296 0.0296 0.0296

Conf 7 Min. 0 0 0 0
Max. 0.3426 0.3426 0.3426 0.3426
Avg. 0.0042 0.0042 0.0042 0.0042

Conf 8 Min. 0 0 0 0
Max. 0.0755 0.0755 0.0755 0.0755
Avg. 0.0011 0.0011 0.0011 0.0011

Conf 9 Min. 0 0 0 0
Max. 0.0339 0.0339 0.0339 0.0339
Avg. 0.0257 0.0257 0.0257 0.0257

Conf 10 Min. 0 0 0 0
Max. 0.1661 0.1661 0.1661 0.1661
Avg. 0.0079 0.0079 0.0079 0.0079

Conf 11 Min. 0 0 0 0
Max. 0.1407 0.1407 0.1407 0.1407
Avg. 0.0093 0.0093 0.0093 0.0093

Conf 12 Min. 0 0 0 0
Max. 0.0851 0.0851 0.0851 0.0851
Avg. 0.0114 0.0114 0.0114 0.0114

Conf 13 Min. 0 0 0 0
Max. 0.1846 0.1846 0.1846 0.1846
Avg. 0.0101 0.0101 0.0101 0.0101

Conf 14 Min. 0 0 0 0
Max. 0.0796 0.0796 0.0796 0.0796
Avg. 0.0098 0.0098 0.0098 0.0098

Conf 15 Min. 0 0 0 0
Max. 0.1171 0.1171 0.1171 0.1171
Avg. 0.0120 0.0120 0.0120 0.0120

Conf 16 Min. 0 0 0 0
Max. 0.1058 0.1058 0.1058 0.1058
Avg. 0.0258 0.0258 0.0258 0.0258

Conf 17 Min. 0 0 0 0
Max. 0.1294 0.1294 0.1294 0.1294
Avg. 0 0 0 0

Conf 18 Min. 0 0 0 0
Max. 0 0 0 0
Avg. 0.0155 0.0155 0.0155 0.0155

Conf 19 Min. 0 0 0 0
Max. 0.0779 0.0779 0.0779 0.0779
Avg. 0 0 0 0

Conf 20 Min. 0 0 0 0
Max. 0 0 0 0

line” setups. We consider this fact as a manifestation of the high discerning power and the

robustness of the employed r&s algorithm, especially under the pricing of the parameters δ

and a that was described in the previous parts of this section.

Closing the discussion on the experiments that are presented in this section, we also

157

Table 6.5: The relative absolute error in the throughput estimates that were used in the
potential estimator of Equation 6.24.

Config. |η̂(π)−̂̂η(π)|
η̂(π)

Config. |η̂(π)−̂̂η(π)|
η̂(π)

Avg. 0.00052 Avg. 0.02715
Config 1 Min. 1.10E-05 Config 11 Min. 0.00044

Max. 0.0017 Max. 0.0769
Avg. 0.0067 Avg. 0.0171

Config 2 Min. 4.86E-05 Config 12 Min. 0.00047
Max. 0.0339 Max. 0.0488
Avg. 0.0249 Avg. 0.023

Config 3 Min. 0.00011 Config 13 Min. 0.00042
Max. 0.0636 Max. 0.0805
Avg. 0.0189 Avg. 0.0146

Config 4 Min. 8.15E-06 Config 14 Min. 0.00086
Max. 0.0790 Max. 0.0300
Avg. 0.0094 Avg. 0.03053

Config 5 Min. 8.76E-05 Config 15 Min. 0.011
Max. 0.0690 Max. 0.07584
Avg. 0.0044 Avg. 0.02828

Config 6 Min. 0.00012 Config 16 Min. 0.00338
Max. 0.0178 Max. 0.07249
Avg. 0.0401 Avg. 0.0414

Config 7 Min. 0.0004 Config 17 Min. 0.001
Max. 0.110 Max. 0.10582
Avg. 0.0455 Avg. 0.05074

Config 8 Min. 0.00028 Config 18 Min. 0.01359
Max. 0.1412 Max. 0.09187
Avg. 0.0039 Avg. 0.011756

Config 9 Min. 4.84E-05 Config 19 Min. 0.00257
Max. 0.0233 Max. 0.0210
Avg. 0.05712 Avg. 0.0095

Config 10 Min. 0.0065 Config 20 Min. 0.0014
Max. 0.1534 Max. 0.01925

report, in Table 6.5, the relative absolute error

|η̂(π)− ̂̂η(π)|
η̂(π)

in the throughput estimates that we have used in the potential estimator of Equation 6.24,

during the “on-line” implementation of the r&s algorithm of Figure 6.3. The perusal of

this table reveals that, at least for certain configurations, these errors can be considerable,

in a few cases even reaching or exceeding a value of 10%. Nevertheless, the findings that

were reported in the earlier parts of this section about the observed performance of the

considered algorithm, suggest that these errors in the employed throughput estimates do

not have a significant negative impact on the algorithm performance.

6.4.3 Orchestrating the presented developments into a policy-improving mechanism

In the last part of this chapter we provide a few remarks on how to orchestrate the develop-

ments that were presented in its earlier parts, into a complete mechanism able to support a

systematic improvement of the FR-based scheduling policy for the RAS classes that have

158

been considered in this work. Furthermore, it should be clear that this discussion, and also

all the earlier developments in this chapter, apply not only to the aforementioned policy,

but also to any other heuristic deterministic policy for the considered environments that is

expected to have a good bottomline performance.

The proposed policy-improving mechanism is essentially an iterative search process.

Starting with the original heuristic policy, at each iteration the proposed search scheme

will select one or more decision states and it will assess the efficacy of the decisions that

are effected at those states by the current policy π. More specifically, the selection of a

set X̃ = {s1, s2, . . . , sn} of decision states to be assessed at a given iteration, defines a set

of potential modifications to the current policy π which is succinctly described by the set

T R(s1)×T R(s2)× . . .×T R(sn); each element of this set is a n-tuple of tangible states

that defines a modified policy π′ through the replacement of the decision of policy π at each

state si ∈ X̃ with the corresponding decision (i.e., tangible state) that is contained in this

tuple. Collectively, all policies π′ that are defined in this way define a “local neighborhood”

of policy π that must be searched for the best policy. The mechanism for this local search

is the r&s algorithm that was presented in the previous parts of this chapter.

Clearly, the cardinality of the set X̃ to be used at each iteration will affect the size of the

induced local neighborhood, and thus the complexity of the corresponding search process.

Also, the set of decision states to be included in the aforementioned sets X̃ will affect the

performance of this search scheme. In general, most visited states by the current policy π

constitute good candidates for the reasons that were explained in the earlier parts of this

section. But it is also true that if the starting heuristic policy is of high quality, then, these

states might be less likely to generate actual improvements for the current policy, since the

corresponding decisions might be already optimized. On the other hand, improving the

decision at a decision state that is visited with a low frequency might still not have a major

impact on the overall performance of the underlying system, to the point that it might not be

worth considering. Clearly, a more thorough understanding of the pertinent composition of

159

the set X̃ is necessary, and this is a problem that would define an interesting line for future

research.

On the representational side, the proposed search mechanism will need to explicitly

store the identified decisions that will differ from the decisions that are effected by the

original heuristic policy. Based on all the previous discussion, it is expected that, if the

original policy is of good quality (as is the case with the FR-based scheduling policy that

has been developed in this thesis), then, the decision points where this policy will need

to be corrected might not be that many; this is especially true when we also take into

consideration the above discussion about the potential insignificance of less visited states

in the overall performance of the derived policy. But, more generally, the form and the

amount of storage space that should be provided for tracing the effected modifications

to the original policy should be considered as an additional “parameter” of the presented

scheme that should be determined before its implementation.

A last theme that can be further discussed in the context of the proposed search mech-

anism, is the selection of the parameters δ and a for the employed r&s algorithm. As we

saw in the previous section, selecting some tight values for these two parameters will es-

tablish a high discerning power for the algorithm, and a high quality for its decisions, but

it will also result in a requirement for a very large amount of samples from each evaluated

option. In view of this realization, it might be pertinent to start the proposed search by us-

ing some more relaxed values for these parameters, and tighten them as the overall search

progresses to more difficult policy neighborhoods. This remark is especially pertinent for

the parameter δ, that defines the indifference zone utilized by the algorithm, for the fol-

lowing two reasons: (i) The observation in our reported experiments that a relaxation of

the employed value for δ can lead to a very drastic reduction of the required sampling. (ii)

The fact that the r&s algorithm of Figure 6.3 will favor the incumbent action when it has to

choose within the indifference zone, which guards against an unintentional degradation of

the maintained performance with respect to the performance of the original policy. Hence,

160

by starting with a larg(er) value for δ, the proposed search scheme will be able to identify

fast any possible improvements that will have a drastic impact on the performance of the

underlying system, and once this lower value cannot effect any further improvement, one

can consider decreasing it and conducting a new search starting with the policy π′ that was

obtained in the first phase. A pertinent calibration and evolution of these values is another

issue that is open to future investigation.

Closing our discussion on the considered policy-improving scheme, we want also to

make the following two remarks:

First, the above description of the proposed policy-improving scheme also reveals the

affinity of this scheme to the policy-iteration (PI) algorithm of the classical MDP theory

[57]. But in the proposed scheme, policies are evaluated and improved in a more incremen-

tal and localized manner, in an effort to control the underlying representational and com-

putational complexities. Thus, from a more theoretical standpoint, the presented results

expose the “flexibility” that is inherent in the mechanisms that enable the PI algorithm in

the first place.

Furthermore, the presented policy-improving scheme defines also an interesting and

novel proposition at the representational level, in the way that it leverages the original

heuristic policy (more specifically, in the context of this thesis, the FR-based scheduling

policy) as a means for encoding the decisions to be effected at most decision states of the

underlying MDP. At the same time, improved decisions that are incurred by the search

mechanism described in the previous parts of this section, can be stored in a more tabu-

lar manner. We believe that this “distribution” of the overall policy logic over a number

of representational modes that complement each other, in an effort to ensure, both, the

operational efficiency and the compactness of the resulting policy, is an unexplored terri-

tory that might hold more extensive potential for hard decision-making problems like those

addressed in this work, and, therefore, it might deserve more extensive attention.

161

CHAPTER 7

SUMMARY OF THE MAJOR CONTRIBUTIONS AND POSSIBLE FUTURE

EXTENSIONS

7.1 The major contributions

In the previous chapters of this work we have provided a complete framework for the real-

time management of complex sequential resource allocation systems with blocking and

deadlocking effects in their dynamics. In particular, this framework is a detailed realization

of the integrated event-driven control framework depicted in Figure 1.1.

Hence, in Chapter 3, we leveraged some formal DES-based representations of the RAS

behavior and we introduced a new DAP class for the considered sequential RAS that was

characterized as the class of “maximal linear” DAPs. We also provided a complete algo-

rithm for enumerating all the elements of this class for any given D/C-RAS instance Φ.

Finally, we have presented some numerical experimentation that demonstrated the efficacy

of the presented algorithm.

In Chapter 4, we have provided a scheduling methodology that aims to maximize the

throughput of complex RAS with blocking and deadlocking effects. This methodology is

based on the solution of a pertinent “fluid” relaxation of the addressed scheduling problem,

and it is enabled by a pre-established ability to control the underlying RAS for deadlock

freedom, and by the further ability to express the corresponding DAP as a set of linear

inequalities on the system state. However, in this chapter, the detailed specification and

parameterization of the developed fluid model was performed in an ad hoc manner.

Acknowledging this particular element in the developments of Chapter 4, in Chapter 5

we tried to strengthen and (further) formalize these developments by taking advantage of

the representational and analytical capabilities of the Petri net modeling framework, which

162

is one of the main formal representational frameworks employed by the current DES theory.

These capabilities have enabled a seamless treatment of the behavioral and the time-based

dynamics of the underlying RAS, and they also support a notion of “fluidization” of these

dynamics through the more recent developments in the area of timed and untimed contin-

uous PN models; this last capability was especially critical for the systematic derivation

of the sought “fluid relaxation” models and formulations. From a more conceptual stand-

point, the “fluid” models that are presented in Chapters 4 and 5, when combined with the

“linear” deadlock avoidance policies that have been employed in this work, provide a com-

plete and very efficient implementation of the DES-based controller for complex RAS that

is depicted in Figure 1.1.

Finally, in Chapter 6, we presented an extension to the developments of Chapters 4

and 5, in the form of a “correction” algorithm that aims to detect suboptimal decisions

by the FR-based scheduling policy and correct them. These “corrections” can be effected

either in an “off-line” mode, by simulating the dynamics of the underlying RAS, or in an

“on-line” mode where the underlying RAS is fully operational and the necessary correc-

tions are inferred from the observed behavior of the system. In both of these modes, and

especially the second one, the developments of this chapter endow the control framework

depicted in Figure 1.1 with a “learning” capability. From a more methodological stand-

point, the results that were developed in this chapter are based on the sensitivity analysis of

Markov reward processes and the r&s algorithm developed by [31]. The chapter also con-

tains a series of numerical results that demonstrate and assess the efficacy of the developed

methodology.

7.2 Possible future extensions

In this section, we briefly discuss some potential extensions of this work.

Along these lines, perhaps the currently most open and interesting direction for further

exploration is the systematic development of the policy-improving mechanism that was

163

outlined in Section 6.4.3. The discussion on this topic that was provided in Section 6.4.3,

defines a good starting “base” for any further exploration in this direction.

A second issue that is quite intellectually stimulating, and it can also have significant

practical implications for an even more effective implementation of the presented devel-

opments, is the more thorough and more complete understanding of the mechanisms that

incur the sub-optimality of the FR-based scheduling policy. We provided some pointers in

this direction in the closing part of Chapter 5, but more extensive and systematic work can

be done in this area.

Finally, a third possibility for extending the results of this work, is through the adap-

tation of the notion of “robustness” that has been pursued in the context of the FR-based

scheduling in [7], to the particular scheduling problem and the methods that have been pur-

sued in this work. Generally speaking, the approach of [7] seeks to bring the effects of the

randomness that are experienced in the processing times and / or the arrival processes of the

underlying stochastic network, into the formulated relaxing LP, by leveraging techniques

borrowed from the area of robust linear programming. In [7], it is reported that this ap-

proach leads to improved scheduling policies compared to the scheduling policies that are

obtained through the more basic implementation of the FR-based scheduling method, using

more standard LP formulations. It would be interesting to investigate the implementational

details and the potential effects of this approach in the context of the RAS throughput max-

imization problems that have been considered in this work.

164

Appendices

165

APPENDIX A

A BRIEF INTRODUCTION TO PETRI NET MODELING THEORY

This appendix provides an overview of the Petri net (PN) modeling framework, and in-

troduces the relevant notation that is used in the rest of this document. In the subsequent

discussion, we focus on those concepts and results of the general PN theory that are nec-

essary for the formal modeling of the workflows of the CRL model that is considered in

this document, and for the definition and the analysis of some basic properties of these

workflows; a more expansive exposition of the basic PN theory can be found in [49].

A formal definition of the basic Petri net model is as follows:

Definition 15 [49] A Petri net (PN) system is defined by a quadruple N = 〈P, T,W,

m0〉, where

• P is the set of places,

• T is the set of transitions,

• W : (P × T) ∪ (T × P)→ Z+
0 is the flow relation, and

• m0 : P → Z+
0 is the net initial marking, assigning to each place p ∈ P , m0[p]

tokens.

The first three items in Definition 15 essentially define a weighted bipartite digraph

representing the system structure that generates the corresponding DES dynamics. The

last item defines the system initial state. A conventional graphical representation of the net

structure and its marking depicts nodes corresponding to places by empty circles, nodes

corresponding to transitions by bars, and the tokens located at the various places by small

filled circles. The flow relation W is depicted by directed edges that link every nodal pair

166

for which the corresponding W -value is non-zero. These edges point from the first node of

the corresponding pair to the second, and they are also labelled – or, “weighted” – by the

corresponding W -value. By convention, absence of a label for any edge implies that the

corresponding W -value is equal to unity.

PN structure-related concepts and properties: Given a transition t ∈ T , the set of

places p for which (p, t) > 0 (resp., (t, p) > 0) is known as the set of input (resp., output)

places of t. Similarly, given a place p ∈ P , the set of transitions t for which (t, p) > 0

(resp., (p, t) > 0) is known as the set of input (resp., output) transitions of p. It is customary

in the PN literature to denote the set of input (resp., output) transitions of a place p by •p

(resp., p•). Similarly, the set of input (resp., output) places of a transition t is denoted by

•t (resp., t•). This notation is also generalized to any set of places or transitions, X , e.g.

•X =
⋃
x∈X

•x.

The sequence X = 〈x1 . . . xn〉 ∈ (P ∪ T)∗ is a path, if and only if (iff) xi+1 ∈ x•i , i =

1, . . . , n − 1. A path X is simple iff there is no repetition of nodes in it. Furthermore, a

path X is characterized as a circuit iff x1 ≡ xn.

A PN with a flow relation W mapping onto {0, 1} is said to be ordinary. If only the

restriction of W to (P ×T) maps on {0, 1}, the PN is said to be PT -ordinary. An ordinary

PN s.t. ∀t ∈ T , |t•| = |•t| = 1, is characterized as a state machine, while an ordinary PN s.t.

∀p ∈ P , |p•| = |•p| = 1, is characterized as a marked graph.

A PN is said to be pure if ∀(x, y) ∈ (P × T)∪ (T ×P), W (x, y) > 0⇒ W (y, x) = 0.

The flow relation of pure PNs can be represented by the flow matrix Θ = Θ+ −Θ− where

Θ+[p, t] = W (t, p) and Θ−[p, t] = W (p, t).

PN dynamics-related concepts and properties: In the PN modelling framework, the

system state is represented by the net marking m; this is a nonnegative integer vector

of dimensionality |P |, that is perceived as a function from P to Z+
0 , assigning a token

content to each place p ∈ P . The net marking m is initialized to marking m0, introduced

167

in Definition 15, and it subsequently evolves through a set of rules summarized in the

concept of transition firing. A concise characterization of this concept is as follows: Given

a marking m, a transition t is enabled iff for every place p ∈ •t, m[p] ≥ W (p, t), and

this is denoted by m[t〉. On the other hand, a transition t ∈ T is disabled by a place p ∈
•t at m iff m[p] < W (p, t). Furthermore, a place p ∈ P for which there exists t ∈ p•

s.t. m[p] < W (p, t), is a disabling place at m. Given a marking m, a transition t can be

fired only if it is enabled at m; the firing of such an enabled transition t results in a new

marking m′, which is obtained from m by removing W (p, t) tokens from each place p ∈
•t, and placing W (t, p′) tokens in each place p′ ∈ t•. For pure PNs, the marking evolution

incurred by the firing of a transition t can be concisely expressed by the state equation:

m′ = m + Θ · 1t (A.1)

where 1t denotes the unit vector of dimensionality |T | and with the unit element located at

the component corresponding to transition t.

The set of markings reachable from the initial marking m0 through any fireable se-

quence of transitions is denoted by R(N ,m0) and it is referred to as the net reachability

space. In the case of pure PNs, Eq. A.1 implies that a necessary reachability condition for

any given marking m (i.e., for m ∈ R(N ,m0)), is that the following system of equations

is feasible in z:

m = m0 + Θ · z (A.2)

z ∈ (Z+
0)|T | (A.3)

A PN N = (P, T,W,m0) is said to be bounded iff all markings m ∈ R(N ,m0) are

bounded; i.e., for every place p ∈ P, ∃B(p) ∈ Z+
0 s.t. m[p] ≤ B(p), ∀m ∈ R(N ,m0). N

is said to be structurally bounded iff it is bounded for any initial marking m0. N is said to

be reversible iff m0 ∈ R(N ,m), for all m ∈ R(N ,m0). A transition t ∈ T is said to be

168

live iff for all m ∈ R(N ,m0), there exists m′ ∈ R(N ,m) s.t. m′[t〉; non-live transitions

are said to be dead at those markings m ∈ R(N ,m0) for which there is no m′ ∈ R(N ,m)

s.t. m′[t〉. PN N is quasi-live iff for all t ∈ T , there exists m ∈ R(N ,m0) s.t. m[t〉; it is

weakly live iff for all m ∈ R(N ,m0), there exists t ∈ T s.t. m[t〉; and it is live iff for all

t ∈ T , t is live. A marking m ∈ R(N ,m0) is a (total) deadlock iff every t ∈ T is dead at

m.1

PN invariants and semiflows: As suggested by their name, PN invariants provide an

analytical characterization of various notions of invariance that are observed by the dy-

namics of the underlying PN. In the context of the general PN theory, there are two types

of invariants: the p and t-invariants. These two concepts are formally defined as follows:

Definition 16 A p-invariant of a PN N = 〈P, T,W,m0〉 is a |P |-dimensional vector y

satisfying yT · Θ = 0. On the other hand, a t-invariant of N is a |T |-dimensional vector

x satisfying Θ · x = 0. Furthermore, a p-invariant (resp., t-invariant) with nonnegative

elements is further characterized as a p(resp., t)-semiflow.

In the light of Equation A.2, the invariance property expressed by a p-invariant y is that

yT ·m = yT ·m0, for all m ∈ R(N ,m0). Similarly, Equation A.2 implies that for any

t-invariant x, m = m0 + Θ · x = m0.

Given a p-invariant y, its support is defined as ‖y‖ = {p ∈ P | y[p] 6= 0}. A p-

invariant y is said to be minimal iff there is no p-invariant y′ s.t. ‖y′‖ ⊂ ‖y‖, and its

nonzero components are relatively prime. Furthermore, similar definitions apply to the

case of a t-invariant x.
1The reader should notice that the concept of “deadlock” in the PN modeling framework does not have

the same meaning with the usage of this term in the context of Definition 5 in Chapter 2. More specifically,
in the context of Definition 5, and in most of the main text of this manuscript, “deadlock” implies a “resource
allocation deadlock”, and this usage of the term is motivated by its similar employment in the corresponding
theory of complex RAS [59], that has its own strong presence in the broader DES literature. Whenever there
is a need to clarify / disambiguate this term in the presented developments, we shall differentiate between a
“PN deadlock” and a “RAS deadlock”.

169

A PN N is conservative iff there exists a p-semiflow y with all its components strictly

greater than zero. Obviously, any conservative PN N is bounded. Also, a PN N is consis-

tent iff there exists a t-semiflow x with all its components strictly greater than zero. Finally,

we also have the following definition:

Definition 17 A PN N is a mono-t-semiflow net iff it is consistent, conservative, and has

only one minimal t-semiflow.

170

REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Model-
ing with Generalized Stochastic Petri Nets. John Wiley & Sons, 1994.

[2] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems,” ACM Trans.
Comput. Sys., vol. 2, pp. 93–122, 1984.

[3] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and Analysis. NY,
NY: Springer, 2007.

[4] R. Bellman, Applied Dynamic Programming. Princeton, N. J.: Princeton University,
1957.

[5] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. 2 (4th ed.) Bel-
mont, MA: Athena Scientific, 2012.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific, 1996.

[7] D. Bertsimas, E. Nasrabadi, and I. C. Paschalidis, “Robust fluid processing net-
works,” IEEE Trans. on Automatic Control, vol. 60, pp. 715–728, 2015.

[8] X. Cao, Stochastic Learning and Optimization. NY,NY: Springer, 2007.

[9] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems (2nd ed.)
NY, NY: Springer, 2008.

[10] H. Chen and D. D. Yao, Fundamentals of Queueing Networks. NY, NY: Springer,
2001.

[11] Y. F. Chen and Z. W. Li, “Design of a maximally permissive liveness-enforcing
supervisor with a compressed supervisory structure for flexible manufacturing sys-
tems,” Automatica, vol. 47, pp. 1028–1034, 2011.

[12] J. Y. Choi and S. A. Reveliotis, “A generalized stochastic Petri net model for perfor-
mance analysis and control of capacitated re-entrant lines,” IEEE Trans. on Robotics
and Automation, vol. 19, pp. 474–480, 2003.

171

[13] ——, “Relative value function approximation for the capacitated re-entrant line
scheduling problem,” IEEE Trans. on Automation Science and Engineering, vol. 2,
pp. 285–299, 2005.

[14] W. L. Cooper, S. G. Henderson, and M. E. Lewis, “Convergence of simulation-
based policy iteration,” Probability in Engineering and Information Science, vol. 17,
pp. 213–234, 2003.

[15] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Designing optimal deadlock
avoidance policies for sequential resource allocation systems through classification
theory: Existence results and customized algorithms,” IEEE Trans. Autom. Control,
vol. 58, pp. 2772–2787, 2013.

[16] J. G. Dai, “On positive Harris recurrence of multiclass queueing networks: A unified
approach via fluid limit models,” Annals of Applied Probability, vol. 5, pp. 49–77,
1995.

[17] ——, “Stablity of fluid and stochastic processing networks,” Dept. of Mathematical
Sciences, University of Aarhus, Denmark, Tech. Rep. Miscellanea, No. 9, 1998.

[18] J. G. Dai and W. Lin, “Maximum Pressure Policies in Stochastic Processing Net-
works,” Operations Research, vol. 53, pp. 197–218, 2005.

[19] J. G. Dai and J. H. Vande Vate, “The stability od two-station multitype fluid net-
works,” Operations Reseach, vol. 48, pp. 721–744, 2000.

[20] J. G. Dai and G. Weiss, “Stability and instability of fluid models for reentrant lines,”
Mathematics of Operations Research, vol. 21, pp. 115–134, 1996.

[21] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock prevention
policy for flexible manufacturing systems,” IEEE Trans. on R&A, vol. 11, pp. 173–
184, 1995.

[22] Z. Fei, S. Reveliotis, S. Miremadi, and K. Akesson, “A BDD-based approach for
designing maximally permissive deadlock avoidance policies for complex resource
allocation systems,” IEEE Trans. on Automation Science and Engineering, vol. 12,
pp. 990–1006, 2015.

[23] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion constraints on
nets with uncontrollable transitions,” in Proceedings of the 1992 IEEE Intl. Confer-
ence on Systems, Man and Cybernetics, IEEE, Chicago, IL, 1992, pp. 974–979.

[24] P. Glasserman and D. Yao, Monotone Structure in Discrete-Event Systems. NY,NY:
John Wiley & Sons, Inc., 1994.

172

[25] S. G. Henderson, S. P. Meyn, and V. B. Tadic, “Performance evaluation and policy
selection in multiclass networks,” Discrete Event Systems: Theory and Applications,
vol. 13, pp. 149–189, 2003.

[26] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation. Reading, MA: Addison-Wesley, 1979.

[27] H. Hu, M. Zhou, and Z. Li, “Liveness and ratio-enforcing supervision of automated
manufacturing systems using Petri nets,” IEEE Trans. on Systems, Man and Cyber-
netics – Part A: Systems and Humans, vol. 42, pp. 392–403, 2012.

[28] M. V. Iordache and P. J. Antsaklis, “Design of t-liveness enforcing supervisors in
petri nets,” IEEE Trans. on Automatic Control, vol. 48, pp. 1962–1974, 2003.

[29] ——, Supervisory Control of Concurrent Systems: A Petri net structural approach.
Boston, MA: Birkhäuser, 2006.

[30] S.-H. Kim, “Comparison with a standard via fully sequential procedures,” ACM
Trans. on Modeling and Computer Simulation, vol. 15, pp. 155–174, 205.

[31] S.-H. Kim and B. L. Nelson, “Selecting the best system,” in Handbook in Operations
Research and Management Science: Simulation, S. G. Henderson and B. L. Nelson,
Eds., Elsevier, 2006.

[32] S.-H. Kim, “Comparison with a standard via fully sequential procedures,” ACM
Transactions on Modeling and Computer Simulation (TOMACS), vol. 15, no. 2,
pp. 155–174, 2005.

[33] P. R. Kumar, “Scheduling manufacturing systems of re-entrant lines,” in Stochastic
Modeling and Analysis of Manufacturing Systems, D. D. Yao, Ed., Springer-Verlag,
1994, pp. 325–360.

[34] ——, “Scheduling semiconductor manufacturing plants,” IEEE Control Systems Mag-
azine, vol. 14–6, pp. 33–40, 1994.

[35] P. R. Kumar and S. P. Meyn, “Duality and linear programs for stability and perfor-
mance analysis of queueing networks and scheduling policies,” IEEE Trans. Autom.
Control, vol. 41, pp. 4–17, 1996.

[36] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms
and Applications. NY, NY: Springer, 2003.

[37] M. Lawley, S. Reveliotis, and P. Ferreira, “A correct and scalable deadlock avoidance
policy for flexible manufacturing systems,” IEEE Trans. on Robotics & Automation,
vol. 14, pp. 796–809, 1998.

173

[38] M. A. Lawley and S. A. Reveliotis, “Deadlock avoidance for sequential resource
allocation systems: Hard and easy cases,” Intl. Jrnl of FMS, vol. 13, pp. 385–404,
2001.

[39] R. Li, “Performance optimization of complex resource allocation systems,” PhD the-
sis, ISyE, Georgia Tech, Atlanta, GA, 2016.

[40] R. Li and S. Reveliotis, “Designing parsimonious scheduling policies for complex
resource allocation systems through concurrency theory,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 26, pp. 511–537, 2016.

[41] ——, “Performance optimization for a class of generalized stochastic Petri nets,”
Discrete Event Dynamic Systems: Theory and Applications, vol. 25, pp. 387–417,
2015.

[42] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their application to dead-
lock prevention in flexible manufacturing systems,” IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, vol. 34, no. 1, pp. 38–51, 2004.

[43] S. H. Lu and P. R. Kumar, “Distributed scheduling based on due dates and buffer
priorities,” IEEE Trans. on Aut. Control, vol. 36, pp. 1406–1416, 1991.

[44] C. Mahulea, “Timed continuous petri nets:quantitative analysis, observability and
control,” PhD thesis, Universidad de Zaragoza, Zaragoza, Spain, 2007.

[45] D. C. Marinescu, Internet-Based Workflow Management: Towards a Semantic Web.
NY,NY: Wiley Interscience, 2002.

[46] S. Meyn, Control Techniques for Complex Networks. Cambridge, UK: Cambridge
University Press, 2008.

[47] S. P. Meyn, “Stability and optimization of multi-class queueing networks and their
fluid models,” Lectures in Applied Mathematics, vol. 33, pp. 175–199, 1997.

[48] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event Systems using
Petri nets. Boston, MA: Kluwer Academic Pub., 1998.

[49] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, pp. 541–580, 1989.

[50] A. Nazeem and S. Reveliotis, “A practical approach for maximally permissive liveness-
enforcing supervision of complex resource allocation systems,” IEEE Trans. on Au-
tomation Science and Engineering, vol. 8, pp. 766–779, 2011.

174

[51] ——, “Designing maximally permissive deadlock avoidance policies for sequen-
tial resource allocation systems through classification theory: The non-linear case,”
IEEE Trans. on Automatic Control, vol. 57, pp. 1670–1684, 2012.

[52] ——, “Efficient enumeration of minimal unsafe states in complex resource alloca-
tion systems,” IEEE Trans. on Automation Science & Engineering, vol. 11, pp. 111–
124, 2014.

[53] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune, “Optimal deadlock avoidance
for complex resource allocation systems through classification theory,” in Proceed-
ings of the 10th Intl. Workshop on Discrete Event Systems, IFAC, Berlin, Germany,
2010, pp. 277–284.

[54] B. Nelson and D. Goldsman, “Comparison with a standard in simulation experi-
ments,” Management Science, vol. 47, pp. 449–463, 2001.

[55] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings,” IEEE Trans. on
Automatic Control, vol. 46, pp. 1572–1583, 2001.

[56] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. NY, NY: Wiley, 2007.

[57] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 1994.

[58] L. Recalde, E. Teruel, and M Sliva, “Autonomous continuous P/T systems,” in Ap-
plications and Theory of Perti Nets 1999, Williamsburg, VA, 1999, pp. 107–126.

[59] S. Reveliotis, “Logical Control of Complex Resource Allocation Systems,” NOW
Series on Foundations and Trends in Systems and Control, vol. 4, pp. 1–224, 2017.

[60] S. Reveliotis and A. Nazeem, “Optimal linear separation of the safe and unsafe sub-
spaces of sequential RAS as a set-covering problem: Algorithmic procedures and
geometric insights,” SIAM Journal on Control and Optimization, vol. 51, pp. 1707–
1726, 2013.

[61] S. Reveliotis and E. Roszkowska, “On the complexity of maximally permissive dead-
lock avoidance in multi-vehicle traffic systems,” IEEE Trans. on Automatic Control,
vol. 55, pp. 1646–1651, 2010.

[62] S. A. Reveliotis, “On the siphon-based characterization of liveness in sequential re-
source allocation systems,” in Applications and Theory of Perti Nets 2003, Eind-
hoven, NL, 2003, pp. 241–255.

175

[63] ——, Real-time Management of Resource Allocation Systems: A Discrete Event Sys-
tems Approach. NY, NY: Springer, 2005.

[64] ——, “The destabilizing effect of blocking due to finite buffering capacity in multi-
class queueing networks,” IEEE Trans. on Autom. Control, vol. 45, pp. 585–588,
2000.

[65] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for automated
manufacturing cells,” IEEE Trans. on Robotics & Automation, vol. 12, pp. 845–857,
1996.

[66] S. M. Ross, A First Course in Probability (9th edition). N.Y.: Pearson, 2014.

[67] ——, Stochastic Processes. N.Y.: Wiley, 1983.

[68] P. Rowe, “The paired t-test,” Essential Statistics for the Pharmaceutical Sciences,
Second Edition, pp. 163–175,

[69] M. Silva, E. Teruel, and J. M. Colom, “Linear algebraic and linear programming
techniques for the analysis of place/transition net systems,” in Lecture Notes in Com-
puter Science, Vol. 1491, W. Reisig and G. Rozenberg, Eds., Springer-Verlag, 1998,
pp. 309–373.

[70] P. Singer, “The driving forces in cluster tool development,” Semiconductor Interna-
tional, vol. July ’95, pp. 113–118, 1995.

[71] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A Petri net structure-
based deadlock prevention solution for sequential resource allocation systems,” in
Proceedings of the ICRA 2005, IEEE, Barcelona, 2005, pp. 271–277.

[72] L. M. Wein, “Scheduling semiconductor wafer fabrication,” IEEE Transactions on
semiconductor manufacturing, vol. 1, no. 3, pp. 115–130, 1988.

[73] G. Weiss, “On optimal draining of re-entrant fluid lines,” IMA volumes in mathemat-
ics and its applications, vol. 71, pp. 91–91, 1995.

[74] ——, “Scheduling and control of manufacturing systems,” in Proceedings of the
37th Allerton Conference, University of Illinois, Allerton, IL, 2000, pp. –.

[75] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bulletin,
vol. 1, no. 6, pp. 80–83, 1945.

[76] W. M. Wonham, “Supervisory control of discrete event systems,” Electrical & Com-
puter Eng., University of Toronto, Tech. Rep. ECE 1636F / 1637S 2013-14, 2006.

176

VITA

Michael Ibrahim was born in Cairo, Egypt. He received a Bachelor’s Degree in Computer

Engineering from Cairo University in 2012, and a Master’s degree in Computer Engineer-

ing from Cairo University in 2015. Since 2015, he has been pursuing a Ph.D. degree in

Industrial Engineering at the Georgia Institute of Technology. His research interests in-

clude discrete event systems, operations research, and machine learning.

177

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research background
	The considered RAS model
	The RAS problem of liveness enforcement and the current literature
	The CRL and its RAS abstraction
	The considered CRL model
	Abstracting the CRL ``untimed'' dynamics through a finite state automaton
	Establishing deadlock freedom for the considered CRL model

	The CRL scheduling problem of throughput maximization and its MDP formulation

	Maximal Linear Deadlock Avoidance Policies for D/C-RAS
	Maximal linear DAPs
	Computing the maximal linear DAPs
	A basic algorithm for the enumeration of the set ()
	Further implementational details
	Some numerical results

	Fluid-Relaxation-based scheduling for CRLs
	The proposed scheduling method
	Example
	Complexity considerations
	Some numerical experiments
	 Demonstrating and assessing the quality of the obtained schedules
	Demonstrating and assessing the tractability of the presented method

	An implementation of the FR-based scheduling method through Timed-Continuous-Petri-Net-based modeling and analysis
	Modeling the considered CRL as a GSPN
	Fluidization of the GSPN model N
	Untimed and Timed Continuous Petri nets
	A fluidized version for the CRL-modeling GSPN N

	The proposed scheduling method
	The employed LP formulation
	The induced scheduling policy

	Extending the presented methodology to other RAS classes
	Limitations of the FR-based scheduling method
	Limitations due to some quantization in the material-flow dynamics of the original GSPN model that is not visible to the relaxing LP
	Limitations due to starvation effects that do not appear in the fluid dynamics of the LP relaxation

	Performance enhancement of the FR-based scheduling policy
	Some fundamental results from the sensitivity analysis of infinite-horizon AR-MDPs and their implications for the potential improvement of the FR-based scheduling policy
	Sample-path-based estimation of the system throughput and of the state potentials under a given scheduling policy
	A ``ranking & selection'' algorithm for identifying a performance-improving decision
	An empirical assessment of the proposed policy improving methods and some further implementational details
	Implementing the r&s algorithm of Figure 6.3 in an ``on-line'' operational mode
	Implementing the r&s algorithm of Figure 6.3 in an ``off-line'' operational mode
	Orchestrating the presented developments into a policy-improving mechanism

	Summary of the major contributions and possible future extensions
	The major contributions
	Possible future extensions

	A brief introduction to Petri net modeling theory
	References
	Vita

