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SUMMARY 

The principal objective of this work is to provide the analytical 

foundation for the analysis of approximate straight line four-bar linkages. 

Graphical procedures developed by previous investigators have been largely 

ignored except for those cases which can easily be interpreted analytic

ally. Nonetheless, no significant area of linkage design has been omitted. 

In addition to a thorough discussion of the advantages of pinned linkages 

for producing approximate straight line motion, there are five major 

areas of study: 

1. The development of the theory and terminology of curvature 

theory. Areas included deal with order of contact, the inflection circle, 

the cubic of stationary curvature, the Burmester points, alternate link

ages, Ball-double Burmester points, and a sequence of design procedures 

using alternate four-bar linkages of specified slider-crank mechanisms. 

2. The development of the analytical theory of four and five 

finitely separated positions of the moving plane in coplanar motion. 

Original derivations are given for the cubic circle point curve, the 

quartic equation for the four Burmester points of the moving plane, the 

quadratic equation for the unknown Burmester points of a given four-bar 

linkage, the cubic equation for the three unknown Burmester points where 

the fourth Burmester point is prescribed in five finitely separated posi

tions on a straight line, and finally the quadratic equation for the two 

unknown Burmester points of a given slider-crank mechanism. 
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3. The development of the analytical theory for combinations 

of contacts of the coupler curve with a straight line. Generally, a 

set of contacts having six points of the sixth degree coupler curve in 

common with a straight line requires an iteration of the design param

eters. The input-output displacement function is derived in closed form 

for the slider-crank mechanism. A technique is given so that the alter

nate four-bar linkages of given slider-crank mechanisms generate a sym

metrical coupler curve. Multiple position design techniques are given 

for the cases of two finitely separated inflections on a symmetrical 

coupler curve, one prescribed intersection with a Ball point, two pre

scribed intersections with a Ball point, one prescribed tangent with a 

Ball point, and one prescribed intersection with a Ball-Burmester point. 

4. Except for the symmetrical linkages, classical mechanisms have 

previously been designed graphically. Analytical interpretations are 

now given in their most general form for the Watt, Evans, and conchoidal 

straight line mechanisms. 

5. The evaluation of linkages from areas one and four 'above is 

undertaken by means of the digital computer. The primary information 

obtained is the length of the approximate straight line output for a 

specified accuracy. Additional information is also obtained, including 

transmission angles, rotation angles of the cranks, type of mechanism, 

linkage dimensions, deviation values, and the second derivative of the 

deviation from a straight line. A detailed explanation of the principal 

segments of the computer program is also given. The linkages for which 

computer data were obtained are compared on the basis of length of approx 

imate straight line output, transmission angles, and higher derivatives 



of the deviation curve. The data for the set of linkages having a 

Ball-double Burmester point are developed in the form of nomographs to 

assist the designer., Data for the other groups are also available for 

this type of presentation. 
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CHAPTER I 

INTRODUCTION 

The production of approximate straight line motion by means of 

the simplest of planar linkages, the four-bar linkage, has been the sub

ject of investigation of many eminent kinematicians. Analytical and 

graphical design procedures for general solutions of approximate straight 

line motion by four-bar linkages have been developed by Chebychev (l), 

Burmester (2), Mueller (3), Allievi (4), and other more recent investi

gators (5, 6, 7, 8). The earlier investigations were very thorough, and 

much significant theoretical information was produced.. 

Roberts (9) and Cayley (10) developed some basic but complex 

mathematical theory related to the properties of the coupler curve of a 

four-bar linkage. Freudenstein and Primrose (11) have recently explained 

much of this theory to make it more useful to the researcher in kine

matics. These publications are of interest since they contain the deriva 

tion of the equation of the coupler curve in rectangular coordinates. 

Finding a general method for the synthesis of straight line mech

anisms was the problem which motivated Burmester (2) to develop that 

important part of kinematics which is called Burmester theory. The 

graphical method which he developed for synthesizing a four-bar linkage 

which guides a point through up to five finitely separated positions 

is explained in recent publications (12, 13, 14, 15)„ A digital com

puter program, published by Freudenstein and Sandor (16), eliminates many 

of the limitations of this graphical approach,, A graphical modification 



2 

of Burmester's concept is the arc match method given by Kearney and Wright 

which they have used in the design of radio station indicators (15)„ 

Freudenstein and Sandor have developed a digital computer method for 

synthesis of path generating mechanisms, including approximate straight 

line mechanisms (17). 

R. Mueller (3) considered the same problem as Burmester but directed 

his study towards the concept of single position design. His investiga

tions were purely geometrical and many important concepts of coplanar 

motion first appeared in his papers. Application of his results to the 

generation of approximate straight line motion led to some important but 

complex graphical procedures. During the same period,L. Allievi (4) made 

a study of coplanar motion on a purely analytical basis. His comprehen

sive book also contains single position design procedures for designing 

four-bar straight line mechanisms. In addition, he set forth much of the 

basic terminology that applies to kinematics in general, 

Other recent works include the important and comprehensive studies 

on straight line mechanism design by W. Meyer zur Capellen (6, 18) and 

A. E. R. De Jonge (5). Isolated design procedures appear in books by 

K. Hain (19), R. Beyer (20), A0 So Hall, Jr. (14), and A. Cowie (21). 

Surprisingly, little useful quantitative information has been 

published by the previous investigators concerning the variation from 

exact straight line motion. Most investigators have been content to 

state general qualitative information. Chebychev (l) derived statements 

for the error and length of the approximating straight line portion of 

the coupler curve. These statements depend on certain parameters which 

must be arrived at through his method of analysis0 Furthermore, they are 
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valid only for symmetrical linkages. Mueller (3) also derived an expres

sion to compare one of his linkages to those of Chebychev. Wunderlich 

(22) gives a nomograph for symmetrical linkages which allows one to 

determine the accuracy of the straight line output for an undetermined 

length of travel. Volmer (23) thoroughly analyzes a group of slider-

crank mechanisms which are closely associated to a special form of the 

Evans type of straight line motion linkage. It is indeed remarkable that 

more usable data are not presently available to designers and that none 

now exist in the English literature. 

Application 

General Comments 

It is the author's contention that pinned linkages have definite, 

desirable properties which make them particularly attractive for the 

production of straight line motion. These are listed below: 

(a) With the use of properly designed bearings, friction at the 

working elements can be reduced to a very low level. Lubrication of the 

bearings is generally a simple matter. This is not the case for slides 

on ways where a constant thickness of the lubricant film must be main

tained for high accuracy in the motion. The application of the driving 

forces on the slider which normally vary in magnitude and direction 

during the cycle also makes it more difficult to maintain the desired 

constant film thickness. For higher speeds, the sliding pair is designed 

to produce a hydrodynamic wedge action in the lubricant. Such designs 

allow backlash (wobble) between the pairing elements during the return 

stroke and create an undesirable condition when the sense of the motion 

is changed at each end of the stroke. 
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(b) Since the four-bar linkage has at least three independent 

design parameters, this linkage has inherently a great flexibility for 

application to a wide number of design situations,, 

(c) The four-bar linkage is light, simple, and easily manufac

tured with high accuracy using standard machine tools„ Its application, 

therefore, would not require an expensive outlay of new tooling. This is 

in marked contrast to the manufacture of sliding pairs which are often 

made as matched pairs and require highly skilled craftsmanship, 

(d) Linkages can be used (in contrast to the sliding pair) to 

efficiently amplify motion. The output element can be a low inertia 

producing mass, removed from the working elements,, In oscillating 

motions, such as that of the slider-crank mechanism, undesirably high 

peaks in the acceleration occur at the end of the stroke,, Furthermore, 

these peak accelerations act on an element having, by necessity, a large 

masso 

(e) Because of the cylindrical working elements of the bearings, 

linkages can be expected to give longer wear when compared with mechanisms 

that have reciprocating surface contact between mating surfaces,, Further

more, the bearings may be easily replaced at relatively small costo 

Bearings used in precision equipment are often designed to allow for 

small adjustments in the location of the center of rotation,, 

(f) Of primary importance is the ability of four-bar linkages to 

be largely unaffected by errors of manufacture. This characteristic was 

first enunciated by Mueller (24) in reference to the use of four-bar 

linkages to produce accurate straight line motion0 The author has in

vestigated this concept with a digital computer in order to indicate its 
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precise meaning. For a particular four-bar straight line mechanism, an 

error of 0̂ =025 in was introduced in one of its 5.0 in cranks, This 

— f\ — f-\ 

reduced the accuracy from ±1., 0 x 10 in to ±5*0 x 10 in over the 

-3 
same range of motion, Instead of reducing the accuracy to ±5o0 x 10 in, 

the linkage compensated for Ihe introduced error and produced a straight 

line output which was 1,000 times better than might generally be expected,, 

Much of the merit of this dissertation depends on this fact, since a truly 

accurate straight line motion can be obtained from a four-bar linkage in 

practice0 

Uses of Straight Line Motion 

Past and Present Uses0 The following list is an indication of the 

actual applications made of approximate straight line motion mechanisms: 

Guidance of piston rods by Watt 

Steam indicators 

Radio station indicators 

Granite gang saws 

Pull rod carriers 

Transport mechanisms 

Film projectors 

Unloading mechanisms 
(The center of gravity of the load travels on a horizontal line) 

Minimum energy jib crane (Wippkrane) 
(important application made by the Germans) 

Oil pump rod guide 

Auger hole driller 

Quick return straight line mechanisms 
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Automatic machines such as: 

Wrapping 

Packaging 

Printing 

Weaving 

Vending 

New and Proposed Uses„ Some new uses, proposed by the author, 

require extremely accurate straight line motion, the design of which is 

now made possible,, 

The proper combination of two straight line linkages in a dwell 

mechanism can give a dwell period, for half the cycle, that has an angular 

rotation during the dwell of ±l/2 minute or less in the output link (25). 

Such a mechanism has been built in model form and the error measured is 

considered to be very small since the length of any of the component links 

could have had an error as large as 0o005 in0 Such dwell linkages can 

substitute adequately for periodic mechanisms such as cams and ratchet, 

and indexing gears to give higher possible speeds. 

Another proposed use is in the area of milling machines0 Special 

milling machines cutting curves defined by a controlling four-bar linkage 

are in use in Germany (26)0 It seems quite possible that reasonably 

accurate and inexpensive milling machines could be designed based on 

very accurate straight line motion produced by the simple four-bar link-. 

age0 

A seismograph designed with the basic supporting mechanisms being 

four-bar linkages having very accurate straight line motion over a. short 

range is the third proposed use0 Since the straight line motion, based 
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on the author's design equations, is extremely accurate near the design 

position, the small amplitudes usually recorded by a seismograph would 

be unaffected by the control linkage. Four-bar linkages that are 

properly manufactured can practically eliminate the friction limita

tions of other designs, 

Scope of this Study 

Many publications concerned with approximate straight line four-

bar linkages appear in the kinematics literature. Previous results have 

been primarily concerned with giving the designer a method for finding 

the necessary link dimensions. Little work has been done to provide 

the designer with data on the length and accuracy of the approximate 

straight line output. There are, in general, a minimum of four indepen

dent design parameters in a four-bar linkage system which results in a 

4 
totality of °o possible solutions to the designer's problem. It is 

the primary purpose of this study to reduce the "trial and error" effort 

now required of the designer by providing?^ deviation analysis and by 

adding restrictions based on curvature theory to interrelate some of 

the independent parameters. The result should reduce the designer's 

problem by providing a systematic set of choices to optimize the result

ing design, 

Mechanisms to be Investigated 

The groups of mechanisms analyzed in this investigation are those 

having the best possibility of producing sufficiently accurate approxi

mate straight line motion. Each group is based on a distinct design 

procedure. The groups are: 
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(1) The classic mechanisms of Evans, Watt, Roberts, and Chebychev 

as well as other linkages found in the literature8 

(2) Those mechanisms having fourth order contact at Ball's 

point; including: 

(a) general Ball-Burmester point 

(b) double Burmester point coincident with Ball's point 

(c) Ball-Burmester point at the inflection polec 

(3) Those mechanisms having combinations of finitely separated 

coupler curve contacts with a straight line; including: 

(a) Ball point and two intersections 

(b) Ball point and one tangent 

(c) Ball-Burmester point and one intersection 

(d) two finitely separated inflections on a symmetrical 
coupler curveo 

Linkages of the first group depend on well known concepts which 

are developed analytically by the author0 Design techniques for the sec

ond group are original with the author although graphical and analytical 

design procedures were given by Mueller and Allievi for the general 

case of a Ball-Burmester pointo To the author's knowledge, the third 

group of linkages has not been attempted before by other investigatorso 

The first two groups have been analyzed by computer oriented programs 

for such properties as: 

lo dimensions of the links 

2. deviation and length of the approximate straight line output 

30 type of mechanism 

40 dynamic characteristics of the deviation curve 
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5. transmission angles 

6. portion of cycle spent producing the straight line output* 

The third group has been analyzed primarily to develop the theory required^ 

to determine link dimensions0 Much of the computer programming for the 

first two groups will also apply for the third groupu 

Analytical Theory of Finitely Separated Coupler Plane Positions 

An analytical theory of the motion of the coupler plane through 

finitely separated positions has also been developed in this disserta

tion. The work of Burmester on this problem was completely geometrical 

and resulted in graphical design procedures,, The basic concepts proposed 

by Bottema (27) are used to derive the cubic circle point curve equation, 

the quartic equation for the Burmester points in the coupler plane when 

it moves through five finitely separated positions,, as well as the design 

equations to find the unknown Burmester points for a given four-bar link

age (or a given slider-crank mechanism) which is displaced in five finitely 

separated positions. 
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CHAPTER II 

CURVATURE THEORY 

Basic Concepts and Terminology 

Order of Contact 

General. Much of the terminology of curvature theory is based on 

the concept of the order of contact between algebraic curves. This order 

of contact indicates how intimately the curves are associated in the 

region of their contacto The particular case where one curve is a straight 

line and the other the sixth degree coupler curve of the four-bar linkage 

is of special interest to this dissertation Any line has six real or 

imaginary intersections with the sixth degree coupler curve., The gener

ality of approximate straight line motion as produced by a four-bar link

age depends on the arrangement and spacing of these intersections. 

Zero Order. If two curves cross each other at an oblique angle 

(which does not approach zero in the sense of a contingence angle), the 

curves will have one point in common,, In this case, the curves show no 

interrelation at the contacto 

First Order Contact, If the two intersections of a secant to a 

curve (Fig. 1) approach each other such that AS —>-0, the secant 

approaches a tangent condition and has two infinitesimally separated points 

in common with the curve. This is first order contact. Note that the 

tangent is a fair approximation to the curve in the region of the con

tact. The general case of first order contact between two general alge

braic curves occurs, obviously, when the two curves have a unique common 



Figure 1. First Order Contact 
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CUSP 2 

igure 2. Two Curves in First Order Contact. 
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tangent at the contact, This insures that the curves have',.two common 

infinitesimally separated pointSo Cusps in contact do not exhibit first 

order contact since there is no unique common tangent (Fig„ 2). 

Second Order Contact,, Second order contact occurs when there 

are three infinitesimally separated points in common between the two 

curves. This case can be best introduced (Fig. 3) by first considering 

three finitely separated intersections. The path element is defined to 

be the length of the path between the two external intersections. If 

AS.9 = AS9~ = AS represents one-half of the path element and if Ai|) 

represents the contingence angle between the finitely separated tangents 

defined by points 1 and 2 and 2 and 3, then 

AS ,. Aj) 
-- = p sin -^ 

where p is the average length of the perpendicular bisectors of the 

chords between points 1 and 2 and 2 and 30 As the value AS -** 0 in 

the limit (Fig„ 4), it follows that, 

Lim sinjAJtl = d£ _ 1 

AS * 0 A S d S P 

This demonstration graphically displays the fact that three infinitesimally 

separated points are necessary to define the curvature of an algebraic 

curve. In general two curves have second order contact (Fig0 5) if there 

exists: 

1. three common infinitesimally separated points.. 

2. two common infinitesimally separated tangents. 

3. one common radius of curvature.. 



J_ BISECTOR 
OF CHORD (1-2) 

ENTER OF 
CURVATURE 

Figure 3. Three Common Infinitesimally 
Separated Points. 
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Figure 4. Two Common Infinitesimally 
Separated Tangents. 
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&A/ 5f* Cfc-?J 
CURVE TANGENT 0 2 2 1 

0-CENTER OF 
CURVATURE 

Figure 5. Second Order Contact (Curvature). 
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Nth Order Contact. Extension of the preceding sections, results 

in a general statement of n order contact in the form: 

n + 1 Common Infinitesimally Separated Points 

n Common Infinitesimally Separated Tangents 

n - 1 Common Infinitesimally Separated Radii 

where: 

n = 0 : Single Point of Intersection 

n = 1 : Single Tangent 
Two Points 

n •= 2 : Single Radius of Curvature 
Two Tangents 
Three Points 

Etc. 

Single Position Design Kinematics 

General. In the consideration of general coplanar motion, the 

instant center (pole) of the motion is well defined. It is that point 

in the moving plane that has zero velocity with respect to the fixed 

plane,. During the process of the motion the pole will trace out a locus 

(fixed polode) in the fixed plane as well as a locus (moving polode) in 

the moving plane. These polodes have first order contact and define, 

therefore, a unique common tangent called the pole tangent (Fig, 6). 

With the pole normal (a line perpendicular to the pole tangent through 

the pole), the pole tangent defines a coordinate system with which the 

basic formulas can be derived. This system is applicable for only one 

position of the moving plane; i.e., the formulas based on this system 

are single position design formulas. 

The general case requires that the inflection circle be neither 
infinite nor zero in diameter and that the pole be located in a "finite" 
location in the moving plane. 
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POLE TANGENT 

FIXED POLODE 
iUXUAZUilU. d l l J ^xu U L 

MOVING POLODE 

POLE NORMAL 

COPLANAR MOTION"-RESULTS FROM PURE ROLLING OF 
THE POLODES AT THE POLE 

(THE POLODES HAVE FIRST ORDER 
CONTACT AT THE POLE., I.e., 
A COMMON TANGENT) 

Figure 6. Coplanar Motion (Pole and Polodes). 
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Inflection Circle., The inflection circle (Fig« 7) is the locus 

of those points in the moving plane which are passing through path ele

ments of their point paths that: 

1. are inflections of their point paths9 

2. have an infinite radius of curvature„ 

3S have 2nd order contact with the tangent to the path element. 

4e have three infinitesimally separated points in common with 
the inflection tangent* 

5. have a stationary tangent. 

Using the polar coordinate system formed by the pole tangent and 

the pole normal, the equation of the inflection circle is 

r = PJ sin a 

The fundamental equation of single position design kinematics is the 

quadratic relationship known as the Euler-Savary equation 

2 
_r 

P ~ r - (PJ) sin a 

The equation is an analytical statement allowing the computation of the 

radius of curvature of all the path elements momentarily being described 

by points in the moving plane* (it does not include the point coinci

dent with the pole0) 

Cubic of Stationary Curvature. The cubic of stationary curvature 

is the locus of points in the moving plane that are momentarily passing 

through path elements (Fig0 8) which have: 

a, the same osculatory circle (i,e0, the same radius of 
curvature) for two infinitesimally separated positions, 
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Figure 7. Inflection Circle. 
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•̂ 123 " •? 234 

Figure 8. Third Order Contact (Stationary 
Curvature). 
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k° four points in common with the stationary osculatory 
circlee 

c. third order contact with a circular arc0 

d0 a zero first derivative of the radius of curvature with 
respect to distance along the path (dp'/ds = 0). 

The polar equation of the cubic curve (Fig, 9) is 

i , -A— + — i _ 
r M sin a N cos a 

where M and N are constants which can be found if two points on the 

curve are known from the constraints on the motion (Ex: the pin joints 

of a four-bar linkage). The derivations of the inflection circle equa

tion, the Euler-Savary equation, and the cubic of stationary curvature 

equation are not given here because they are widely known, A classical 

derivation is given by Hall (14) and a derivation using the method of 

instantaneous invariants is given by Bottema (28) and Veldkamp (29), 

The intersection of the inflection circle and the cubic of sta

tionary curvature, known as Ball's point, is a point on the body which 

traces a path element having an infinite radius of curvature and the 

rate of change of the radius of curvature is momentarily zero0 Four 

infinitesimally separated positions of the point lie on a straight line, 

That is, the point path has third-order contact with the contacting tan

gent* Ball's point, in general, can be determined for any position of 

the coupler plane of any given four-bar linkage and this point will trace 

an approximate straight line path over a limited range of motion0 In a 

sense, all points on the inflection circle have such path elements but 

Ball's point is that point on the inflection circle which should best 

approximate a straight linee 
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BALL 
POINT 

POLE 
TANGENT (RT.) 

POLE NORMAL (P.N.) 

CUBIC OF STATIONARY CURVATURE 

EQUATION OF CUBIC 

I I 
+• r M SIN a N COS OC 

Figure 9. Cubic of Stationary Curvature. 
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Burmester PointSo There are some points of a body moving with 

general coplanar motion which describe, momentarily, path elements hav

ing both the first and second derivatives of their radii of curvature 

with respect to distance along their point paths equal to zero for any 

given position of the moving bodys These points are called the Burmester 

points and have fourth order contact with their osculatory circles. As 

the body moves, five infinitesimally separated positions of a Burmester 

point lie on a circular arc (Fig0 10). A four-bar linkage synthesized 

such that one of the Burmester points of the plane of the coupler link 

lies on the inflection circle coincident with Bali's point should pro

duce very satisfactory results as an approximate straight line mechanism. 

Five infinitesimally separated positions of the Ball-Burmester point of 

the coupler link lie on a straight line (Fig0 11). 

Locating Ball's Point for the Coupler Link of 

a Given Four-Bar Mechanism 

The equation of the cubic of stationary curvature in polar coor

dinates is 

MN sin a cos a ( o n 
r N cos a + M sin a [ } 

The point of zero relative velocity, or pole, is the origin of the 

coordinate systems The distance from the origin to a point on the 

curve is r, and the ray from the pole to the point forms an angle a 

with the pole tangent0 Quantities M and N are constants for any 

As will be shown later, similar points exist for five finitely 
separated positions of the moving plane. 
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Figure 10. Fourth Order Contact (Burmester Points) 
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Figure 11. Ball-Burmester Point. 
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particular positions of the moving plane* In applying Eq. (2.1) to the 

coupler plane of a four-bar linkage, two sets of values for r and a 

are known since the pin joints at the ends of the cranks must lie on 

the cubic Designating the coordinates of the pin joints with r , a 
a a 

and r, , a,, substituting them into Eq. (2.1); and solving the two 

resulting equations simultaneously for M and N gives 
0 

cot a - cot a, 
M = 777—r 777—r (2.2) 

(1/r j cos a - (1/r, ) cos a, 

tan a - tan a, 
N = 7T7—1 = ' 7TT^-\ = (2-3) 

(1/r ) sin a - (VrvJ sin ai 

The equation of the inflection circle in the same coordinate system is 

r = D sin a (2.4) 

where D is the diameter of the inflection circle,, This can be deter

mined from the .equation 

-(PO )(PA) 
D = 77T7T—= (2.5a) 

(0 A) sin a a a 

or 

-(POh)(PB
l) 

D = 7 7 T ^ r ~ (2.5b) 
(0bB) sin ab 

The directions P to A and P to B are taken as positive,, Note 

that D is always positive if a is measured from the pole tangent in 

a direction such that line PJ coincides with the line a = 90°. The 
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angle a from the pole tangent to the pole ray through Ball's point is 

determined by solving Eq. (2.1) and Eq. (2.4) simultaneously, giving 

. -l TMN-DNI ,0 ,, 
a = tan \ ~ D M " j (2'6) 

Substituting the value of a obtained from Eq. (2.6) into Eq. (2.1) or 

Eq. (2.4) gives the distance from the origin to Ball's point. 

Synthesis of Four-Bar .Mechanisms 

With a Burmester Point on the Inflection Circle 

When a Burmester point is on the inflection circle, five infini

tesimal ly separated positions of the point are on a straight line. In 

general, a better straight line mechanism results than for the case 

where Ball's point is not also a Burmester point. A familiar example of 

a mechanism with a Burmester point on the inflection circle is Watt's 

straight-line mechanism. For this particular mechanism, the inflection 

circle is a straight line (infinitely large circle). 

Assume the inflection circle for the coupler link of a four-bar 

mechanism is given and that one of the coupler link's Burmester points, 

D, lies on the inflection circle. Points A and B are the pin joints 

at the ends of the cranks. The angles formed by the pole rays PD, PA, 

and PB with the pole tangent are a,, a , and a,. Suppose these 

angles are known but distances PA and PB are unknowns If distances 

PA and PB can be determined, then the fixed pivots can be located 

using the Euler-Savary equation and the linkage is completely determined. 

Points A, B, and D must satisfy Eq3 (2.1) since they trace 

paths having stationary curvatures 
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1 — 1 1 1 

PA 
— 

M sin a ' N cos a a a 

±_ . i . + i 

(2.7a) 

(2.7b) PB M sin a, N cos a, b b 

+ I T ~ 7 - — (2.7c) PD M sin a , N cos a , d d 

These three equations contain the four unknowns PA, PB, M, and No 

It has been shown (4, 30) that angle a ,, locating the pole ray 

on which Burmester point D is found, must satisfy the Allievi-Wolford 

equation 

4. 2 , r , , . _,_ N(R - M) -, . tan a + tan a + tan a, + N -...—L j tan a L a b RM J 

+ N
2(M - 2R)/RM2 = Q ( } 

(tan a )(tan a, j a o 

with a = a,o d 

The radius of curvature of the moving polode R is related to 

the diameter of the inflection circle D and the constant M by the 

equation 

1 = I (1 + I) M 3 VD R; 

or R = M/(3 - M) where D = 1, 

Eq» (207a), (2,7b), (2.7c) and (2.8) are solved simultaneously 

for the four unknowns PA, PB, M, and N resulting in the following 

expressions for PA and PB! 
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[(3W + 1) tan a, + VW] sin.a 
DA _ 2 3 fo Q^ 

(W + 1) tan a + W(2 tan a, + V) v ' 
cL Q 

[ (3W + 1) tan a, + VW] si n a, 
PB = (W + 1) tan ab + W(2 tan S^T"7J

 (2ol0) 

where V = tan a + tan a, and W = (tan a )»(tan a, ). The Euler-a b a b 

Savary equation is then used to locate the fixed pivots and the mechanism 

is determined. 

Points A, B, and D are three of the four Burmester points 

for coupler link AB„ The fourth Burmester point C can be found by 

determining the second root of Eq. (2,8), a , and then substituting 

this value of a into Eq. (2.1) or (2.4) and solving for the correspond

ing value of r (or PC). As a check on the correctness of the synthe

sized mechanism, the fourth Burmester point should lie on line AB, 

Mueller pointed out from geometric considerations that when one of the 

Burmester points lies on the inflection circle, the other three lie on 

a straight line0 This fact has also been proved analytically by the 

author (31). 

3 
An °° number of approximate straight-line mechanisms can be 

synthesized using the various combinations of a , a, , and a ,« 

Alternate Linkages 

A Burmester pair is any particular Burmester point and its cor

responding Burmester center0 For the case of general coplanar motion 

exhibited by the four-bar linkage, the Burmester pairs represented by 

the pin joints and the corresponding fixed pivots are separated by a 

fixed distance provided by the cranks of the linkage. A new link5 however, 
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could be added to rigidly separate either of the other two Burmester 

pairs. This new link would allow the primary cranks to give the origi

nal motion to the coupler link for five infinitesimally separated 

positions. Beyond this infinitesimal range of movement, in general, 

only two of the three cranks can be used to control the coupler link 

(Fig. 12) „ If all four Burmester pairs are real,, it is possible to 

determine six different mechanisms giving the same motion for five 

infinitesimally separated positions to all the points in the coupler 

plane. Linkages derived in this manner shall be termed -- alternate 

linkages. 

Of particular interest is the case where a Burmester point 

coincides with Ball's point. The Burmester point D traces a coupler 

curve with five points in common with its tangent in the design position, 

Thus, the linkage produces a "five point exact" straight line motion and 

was first designated as such by Mueller (32). The remaining Burmester 

point C must lie on the coupler line AB and is located, in general, 

by 

2 t an a , + V 
t 3 n a c = - — i T T i ( 2 a l ) 

and 

[ (3W + 1) t an a , + VW] s in a 
rc = ^T^lJ(TtIKl~ni') ( 2 ' 1 2 ) 

where the diameter of the inflection circle is unitye 

Ball-Double Burmester Point 

If, for general coplanar motion, one of the Burmester points 

coincides with the Ball point* the remaining three Burmester points 
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Figure 12. Alternate Linkages. 
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are collinear. If, in addition, a second Burmester point coincides with 

the Ball point, it would mean that the Ball-double Burmester point would 

lie on the coupler center line of a four-bar linkage formed by using 

the remaining Burmester pairs as rigid cranks0 

By introducing the requirement that a = a, in Eq„ (2.11), the 

resu l t 

t a n aa = ' Tw~T37 ( 2 - U a ) 

is obtainedo 

Substitution of this information into Eq. (2.9) and (2.10) results 

in 

V(W - 1) sin a 
PA = (W + 3) tan a + VW (2,9a) 

a 

V(W - 1) sin a, 
PB = -TTTrT'ow T~T^ (2.10a) 

(W + 3) tan a, + VW K ' 

where again V = tan a + tan a, and W = (tan a ) (tan a, )«. The remain-
a b a b 

ing necessary design relations obtained by use of the Euler-Savary equa

tion are: 

PA PA Sin aa 
0 A = — — — - > P0 = a a PA - sin a a PA - sin a a a 

0, B = — E L , PO. - b 

b PB - sin a, b PB - sin a, 
b b 

Note that the added restriction of a double Burmester point has reduced 

the number of independent design parameters to two» 
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Alternate Linkages of Slider-Crank Mechanisms 

In many design situations, an analytical single position design 

procedure may be preferred to a graphical approach., In the case of a 

general slider-crank mechanism (Fig, 13), A and D are known to be 

Burmester points» The other two Burmester points (if they are real) 

will generate coupler curves which should result in a particularly 

good match to circular arcs. In fact, for single position design, the 

portion of a point path described by a Burmester point near the initial 

position should be the best approximation to an arc available. 

A method is developed next to find the alternate linkages of a 

given slider-crank mechanism. To accomplish this, Eq. (2.8) will be 

written in terms of the parameters of a general slider-crank mechanism. 

As-before, consider the diameter PJ of the inflection circle to be 

equal to unity. Since the pin joint D lies on the inflection circle,, 

the polar coordinate r = PD can be determined from Eq. (2.4) as 

PD = sin aJ- (2.13) 
d 

Also, the coordinates of the pin joints, A and D, satisfy the cubic 

of stationary curvature equation and result in 

^ = TT^ + ^—^ (2.14) 
PA M sin a N cos a a a 

and 

1 + ^T—™ (2.15) PD M sin a , N cos a, 
d d 

A relationship between PA and PO in the form r a 



A--GENERAL BURMESTER POINT 

D-- BALL-BURMESTER POINT 

PARAMETERS: oca , ccd , and k 

POa = k SIN cca 

P A = - ^ a _ 
k t I 

N = k(TANoca ~ TANocd ) 

PJ= UNIT DIAMETER 

Figure 13. Specification of the Slider-Crank. 
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PO sin a 
PA = — a , . a (2.16) 

PO + sin a a a 

can be obtained from the Euler-Savary equation. Solving Eqs0 (2,13), 

(2.14), (2.15), and (2.16) simultaneously for the constants, M and N 

gives 

N (2.17) 
N - tan a , 

d 

with 

PO 
N =

 a (tan a _ t a n a ) (2.18) 
sin a a d 

a 

Now, remembering that, if PJ = 1, the expression for the instan

taneous radius of curvature of the moving polode can be written in terms 

of the constant M as 

z-rr-u < 2 - 1 9 > 
the constants of Eq* (2.8) are then defined by 

* % = - * ! - 2 tan ad - N (2.20) 

and 

# M - y ' = ^ - i - (2,2i) 
(tan a ) (tan a,) tan a a d a 

Thus, the quadratic equation for locating the two unknown 

Burmester points of a general slider-crank mechanism may be written 

as: 
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2 r -, 
tan a + tan a + 3 tan a, - NI tan a L a d 

tan a , - N 
+ — = 0 (2022) 

tan a 
a 

Solving this modified Allievi-Wolford equation produces two 

roots, tan a, and tan a o The polar coordinates, a, and a , for 
' b c b e 

the Burmester points, B and C, respectively, must also satisfy the 

cubic of stationary curvature equation giving the other coordinates: 

N s in a, N s in a 
PB = I T T > pc = irnr2 (2-23) 

b c 

where K, = tan a, - tan a , and K = tan a - tan a ,° Also, the b b d c c d ? 

Euler-Savary equation can be used to give the necessary expressions for 

locating the center of curvature of the point paths traced by the Burmester 

points, These expressions are: 

N sin a, N sin a 
p o

b
 = - i < r ^ > p o c = — K — - (2°2A 

In order to simplify the calculations, let 

PO 
k = 

sin a 
a 

or 

PO = k sin a (2o25) 
a a 

then, from Eq0 (2„16) it follows that 
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PO 
PA » j-l-j- (2.16a) 

and from Eq. (2.18) that 

N = k (tan a - tan a ,) (2.18a) 
a Q 

Example; Alternate Linkages to a General Slider-Crank Mechanism 

The design parameters are k, a , and a ,. By assuming values 
a Q 

for these parameters, the slider-crank mechanism is completely specified 

Assume: 

k = 0.90 

a = 72.5° a 

a , = 45° d 

for the mechanism shown in Fig. (2-14). From Eqs„ (2.13), (2.25) and 

(2.16a), we obtain 

PD = sin a, = 0.7071 units 
a 

PO = k sin a = 0.8765 units 
a a 

P0 
PA = T—TT = 0.4613 units k + 1 

Substituting the values for a , a,, and N into Eq. (2.22), 
a Q 

we obtain 

a, = 103.13° b 

a = 4.015° 
c 
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Calculating the values for K, and K and using these values 

in Eq„ (2,23), we obtain 

N sin a, 
PB = • , • = - 0.5711 units 

b 

and 

N sin a 
PC = M , T,

 C = 0„1316 units N + K c 

At this point, the pin joints A, B, and C should be laid out 

graphically,, If the points lie on a straight line, the solution is pro

bably correct. The author has found that this is a valuable check on 

the calculations. Now, by using Eq» (2.24), the following values are 

obtained 

N sin a, 
PO, = —7} = -0,3600 units 

b K, 

N sin a 
PO = — = -0.1451 units 

C Is. 

In Fig0 (14), the point paths of the pin joints B and C, fixed 

to the connecting rod AD, are drawn and match their corresponding cir

cular arcs in the vicinity of the design position. 

In Fig. (15) and (16), the alternate linkages 0 O.BC and 0,0 AB, 
' r c b b a y 

respectively, are represented with their straight line output,, In Fig„ 

(17), the third alternate linkage 0 0 CA is drawn with its two cognates 
G C 

(determined graphically according to Roberts' law), and all three linkages 

(alternate and two cognates) produce the same straight line output» 
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Figure 15. Alternate Using Burmester 
Pairs B and C. 



GIVEN: 

k 
GC, a 

CALCULATED: 
0 .90 
72.5° 
45° 

PA 
P0 

PO, 
PB 

a -
0.4613 
0.8765 
103.13° 

-0 .3600 
-0.5711 

POLE TANGENT 

POLE NORMAL 

POINT PATH OF D 

Tfrnrr 

Figure 16. Alternate Using Burmester Pairs A 
and B. 
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:N: CALCULATED: 

k = 
a a = 
a d * 

0.90 
72.5° 

45° 

PA 
P 0 a = 
a c = 

0.4613 
0.8765 
4.02° 

P0C = -0.1451 
PC 0.1316 

POLE NORMAL-

POLE TANGENT 
o c 4 ^ 

POINT 
PATH 
OF D 

Figure 17. Alternate Using Burmester Pairs A and C 
Showing Two Cognates. 
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Thus, it is possible to determine nine different four-bar linkages 

derived from a given slider-crank mechanism that produce a "five point 

exact" straight line motion at the coupler point D. 

Pin Joint D of the Slider at the Inflection Pole 

General Case. The constants in Eq. (2,22) for finding the Burmester 

points of a general slider-crank mechanism become infinitely large when 

a , = 90°, To develop the necessary design equations, the numerator and 

denominator of the right term of Eq. (2.9) are divided by tan a«, and 

then the value a, = 90° is substituted into the equation for a ,. If 
a a 

k sin a 
PA = 

k + 1 

this results in 

3W + 1 
k + 1 2W 

where W = (tan a )(tan a,). Thus this is an expression from which 

tan a, can be determined:, Developing this expression gives 

tan % = - rr i • tiihr (2-26) 

a 

Using the same procedure as was used with Eq„ (2„9), Eq. (2.2.3) 

and (2.24) become 

P0b = k sin ab (2.23a) 

PO. 
PB = £-~• (2.24a) 

These design procedures give results similar to those obtained 
by W. Meyer zur Capellen in Refo (6), 
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Eq* (2ol6a) and (2.25) remain unchanged, Therefore, if the Ball-Burmester 

point (the pin joint of the° slider) coincides with the inflection pole 

such that J E D , the pin joints are found on a circle whose diameter 

on the pole normal is k/(k+l), and the pivot joints are found on a cir

cle whose diameter on the pole normal is k (Fig. 18). Furthermore, the 

coupler link is parallel to the fixed linkc 

From EqQ (2011), it is obvious that if a, = 90°, then 

tan a = °°, i.e.., a„ = 90°„ Using the same technique as before, Eq3 

(2.12) yields 

pc = ^ m (2-28) 

and writing the Euler-Savary equation in the form 

1 1 1 
PC PO PJ 

c c 

gives 

PO C = 5-S-5 (2.29) 

D Coincides with the Inflection Pole - Equal Cranks. If the 

pole normal bisects the angle between the cranks of the alternate link

age of a slider-crank mechanism that has its pin joint D coincident with 

the inflection pole, the cranks will be equal in length,, This requires, 

then, that a + a, = 180° and gives 3 a b y 

tan a =• - tan a, 
a b 

or from Eq. (2,26 
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POLE NORMAL 

Figure 18. General Format of Linkages Having a Ball-Burmester 
Point at the Inflection Pole. 
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x 2 k + 1 tan aa = \T1~3 

i.e., choose any k which will give a real solution to 

t a n % - ± ( F T I >2 (2-30) 

For this case the slider-crank is completely specified by choosing k„ 

D Coincides with the Inflection Pole - A Double Burmester Point, 

If it is desired to have a double Burmester point coincident with Ball's 

point at the inflection pole J, i.e., if the four Burmester points are 

to lie on a straight line, then 

PJ - pc - WT~A - l 

or 

k = -4 

Thus, in this case, the only parameter is a and Eq. (2.26) 
a 

becomes 

tan a, = T~^— (2.27a) 
b tan a 

a 

file:///T1~3
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CHAPTER III 

THE ANALYTICAL THEORY OF FINITELY SEPARATED 

POSITIONS OF THE MOVING PLANE IN COPLANAR MOTION 

Recently, Bottema (27) and Veldkamp (29) have made a fundamental 

analysis of coplanar motion based on the well known transformation exist

ing between two rectangular coordinate systems. The problem of finitely 

separated positions was investigated on a purely geometrical basis by 

Burmester (2)9 For the synthesis of kinematical problems, Burmester 

supplied involved graphical procedures based on his results. Bottema 

(27) has outlined the theory for the problem of having four finitely 

separated positions on a straight line and five finitely separated posi

tions on a circle (a Burmester point)0 Based on these fundamental con

cepts, this chapter includes the original derivation of: 

(a) The equation of the cubic circle point curve which is the 

locus of all points in the moving plane that pass through four finitely 

separated positions on a circular arcc 

(b) The quartic .equation for the general case of five finitely 

separated positions of a point of the moving plane on a circular arc 

(c) The quadratic equation for the unknown Burmester points of 

a given four-bar linkage which is specified in five finitely separated 

positionso 

(d) The cubic equation for the three unknown Burmester points 

where the fourth Burmester point is prescribed in five finitely separated 

positions on a straight line0 
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(e) The quadratic equation for the unknown Burmester points of 

a given slider-crank mechanism which is specified in five finitely sep

arated positions,, 

Four Finitely Separated Positions 

Let OXY and oxy be cartesian coordinate systems arbitrarily 

located in (but rigidly attached to) the fixed and moving planes, respec 

tively0 The two sets of coordinates, x, y and X, Y of a point in 

the moving system are related by the transformation 

X = x cos 0 - y sin 0 + a (3.1) 

Y = x sin 0 + y cos 0 + b 

A displacement of the moving plane is determined by the three parameters 

a, b, 0o The motion of the plane is known when these parameters are 

specified as functions of time t. Since our interest is purely geo

metrical, 0 may be considered as the independent variable (0 = t) 

with a = a(jZf) and b = b(jzf)0 

It is well-known from Burmester theory that there is a locus of 

points (x, y) in the moving plane that have four finitely separated 

positions on a circular arc when the moving plane assumes the four pre

scribed positions defined by a., b„, 0.„ Taking the general form of 

the equation of these circular arcs in the fixed plane to be 

Qo(X2 + Y2) + 2QXX + 2Q2Y + Q3 = 0 (3 .2) 

the following set of four equations is obtained: 
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(x cos 0. - y sin 0. + a.) ' + (x sin 0. + y cos 0. + b )~ 
L 3 r3 J rJ J J 

+ 2Q I x cos 0. - y sin 0. + a . j + 2Q I x sin 0. + 
1 L J J J —' *- I— J 

y cos 0. + b. + Q = 0 for j = 0,1,2,3 (3.3) 
J J-I ^ 

by using the transformation of Eq, (3.1). The equation representing 

the initial position (j = 0) is identically satisfied if the oxy and 

OXY coordinate systems are coincident (a - b - 0 - 0) in that posi' 
' 0 0 0 

tion, Expanding Eq. (3.3) and noting that 

Qo(x
2 + y2) + 2Qxx + 2Q2y + Q3 S 0 

for all prescribed positions of the plane, the system 

a . + b. + 2x(a. cos 0. + b. sin 0.) + 2y(b. cos Gf. - a . sin fi.) 
L J J 3 r3 3 ^3 3 r3 3 rJ -

+ 2Q. a. - x cos 0. - y sin 0. + x 
. 3 ^3 7 ^3 

+ 2Q, 

x sin 0. - y = 0 for j - 1,2,3 

b. + y cos 0. + 
L 3 7 r3 

(3.4) 

results. Temporarily considering x and y to have known values, 

Eq. (3.4) is a set of three linear homogeneous equations in terms of the 

unknowns Q , Q , and Q_. It has a solution only if the A deter

minant of the coefficients of Q , Q., Q~ is zero. That is, if Eq. 

(3.4) is written in the form 

QQD. + Q1Ej + Q2Fj = O0 j-1,2,3 

then the following equality 

(3.5) 
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D i E i F i 

D2 E2 F2 

D3 E3 F3 

= 0 (3.6) 

must hold, Eq0 (3.6) is a cubic equation in terms of the coordinates 

x, y which is the equation of the circle point curve in the moving plane 

corresponding to the prescribed positions a., b., 0., 

When Q = 0, Bottema has shown that, in general, there is only 

one point in the moving plane which passes through four positions on a 

straight line0 If this line in the fixed plane is taken to be the X 

axis (such that b. = 0 ) , then the x, y coordinate system is uniquely 

established in the fixed plane and the origin of the moving system has 

four positions on the X axis. This choice of location for the fixed 

system does not markedly limit the generality of the results to be 

obtained, but it does considerably reduce the magnitude of the result

ing equations. 

Even so, the expansion of the cubic equation represented by Eq„ 

(3.6) is quite lengthy and will not be given in detail here. Using the 

symbols 

Rk = 9k+l nk+2 " nk+l 9k+2 

Sk = mk+l hk+2 " hk+l mk+2 

T, = nk+l hk+2 hk+l nk+2 + 9k+l mk+2 \+l 9k+2 

U, = 

V, = 

a k+l mk+2 

2 
ak+l nk+2 

V l 8k+2 

V l 3k+2 
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where the additional symbols 

gk = 2ak c o s ^ , hR = 2ak sin ^ 

mk = 1 - cos 0 k, nk = - sin fik ^ 

are used for brevity; the cubic equation is j 

3 

I [y3(nk V + ̂ K V + X y 2 ( Tk nk + \V 
k=l 

2 2 2 
+ yx (T, m, + n, R, ) + y (a, S, + n, U, ) + x (a, R, + m, V, ) 7 k k k k' ' ' k k k k' kk kk 

+ xy(Tkak + mkUk + n ^ ) + x(akVk) + y(akUk)] = 0 (3.7) 

The subscript k in Eq0 (3o6) is cyclic and corresponds to the values 

for j = 1,2,3. 

The centers X, Y of the circular arcs^upon which four homologous 

positions of the points of the circle point curve are located, form the 

locus known as the center point curve. In general,, the centers are 

located at 

- Ql Q2 

Q» ' Y = " On 0 0 

when Q ^ 0, Considering x,y to be values for points on the circle 

point curve, Eq„ (3.5) for j = 1,2 is solved to obtain 

E F - E F 
1 2 21 

D F - D F 
lr2 2rl 

v
 D1E2 - D2E1 

F1E2 " F2E1 

O.s; 
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the locus of the desired center point curve corresponding to the x,y 

values of the circle point curve0 

Five Finitely Separated Positions 

Bottema's results concerning the Burmester points for five dis

tinct positions of the moving plane may be particularized to provide a 

method of determining the unknown Burmester points of the coupler plane 

of a given mechanism. Of primary interest are the four-bar and slider-

crank mechanisms where the two pin joints on the coupler link are known 

to be Burmester points,. The alternate four-bar linkages of a slider-crank 

mechanism would then have a coupler curve with five precision points on 

a straight line0 The alternate four-bar linkages of a given four-bar 

would have five precision points on a circular arc thus providing an 

approximation to a circular arc which could be used as the basis for a 

dwell mechanism,, 

The Burmester point (x , y ) of the moving plane will have five 

distinct homologous positions on the Burmester circle 

Q Q(X
2 + Y2) + 2Q:X + 2Q2Y + Q3 = 0 (3.9) 

in the fixed plane and the corresponding Burmester center will be at 

Ql Q2 
x c • - Q - ' Yc - - <r ( 3 a o ) 

0 0 

If Q = 0 , the Burmester center is located at infinity; for the pres

ent, however, we will assume that Q / 0e For the distinct positions 

of the moving plane, the relation between the coordinates of the Burmester 

Eq0 (3.9) through (3.21) of this article are due to Bottema (27). 
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points in the moving and fixed systems are: 

X. = x cos 0. - y sin 0. + a. 

Y. = x sin 0. + y cos 0. + b. 
j o r3 7o rj j 

(3.11) 

The Burmester point must lie on the Burmester circle in the specified 

positions; or X., Y. must satisfy Eq. (3.2) 

(x cos 0. - y sin 0. + a.) + (x sin 0.• + 
o r3 o >j 3' o r3 

2~1 
y cos 0. + b.) + 2Q. (x cos 0. - y sin 0. + a .) 7o ^3 J J 1 0 r3 0 r3 3' 

+ 2Q0(x sin 0. + y cos 0. + b.) + Q = 0 l2v 0 J 0 J J 
(3.12) 

There are 15 specified values, a., b., 0. for the prescribed posi

tions of the moving plane. There are five unknowns 

v v V Q
0 ' Q A ' Q

3/
Q< 

and five independent equations. In the present form, however, the equa

tions are non-linear* Rearranging Eq. (3.12) so that all the known fac

tors play the role of coefficients and using an expanded set of unknowns 

Z = Q , Z = - Q x , Z = - Q y , Z. = Q., Z, = Q0 0 o' 1 o o' 2 crcr 5 1' 6 2 

Z 3 = " V o ' Q2V Z4 = " V o + Q2Xo 

2 2 
Zn = Q (x + y ) + 2Q. x + 2Q0y + Qn , 

7 0 0 J o 1 0 2 7 o 3 ' 
( 3 . 1 3 ) 

Eq. (3.12) is linearized in the form 
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~ ( a 2 + b2)Z + a. Z + b. Z0 + a. ZR + b. Z, 
2 J J o -j 1 -j 2 j 5 j 6 

+ (l - cos j6.) Z 3 + (sin f6.) Z 4 + ^ Z ? = 0 (3.14) 

for j = 0,1,2,3,4 

Note that Z - 0, for the prescribed positions of the moving plane 

and that 

a. = - a. cos 6. - b. sin JZ$. 
~J J J J J 

b. = a. sin 6. - b. cos 6. (3.15) 
"J J J J J 

are the a., b. values for the inverse motion. If, in the zero posi

tion, the coordinate systems coincide (a = b = j6 = 0) then the first 
o o o 

of Eq. (3.14) is identically satisfied. Hence 

7> (a.2 + b.2)Z + a. Z + b. Z 0 + a. ZK + b. Z, 2 J j o -j i -j 2 j 5 j 6 

+ (l - cos ft.) ZQ + sin ft. ZA = 0 (3.16) 
^3 3 J 4 

for j = 1,2,3,4 

is a set of four independent equations in terms of seven homogeneous 

unknowns (disregarding Z ). Since Eq. (3.12) is a determinate system, 

Eq. (3.16) must also be determinate. This requires that there be two 

additional relations among the new unknowns. There are the quadratic 

equations 
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Z Z = Z Z + 7 Z 
o 3 15 T 6 

ZoZ4 = Z2 Z5" Z1 Z6 (3'17) 

Eq. (3.16) and (3.17) form a determinate set of six equations in the 

six unknowns (Z./z , i = 1,2,3,4,5,6) which has, in general, four 

solutions. Consequently, there are four distinct Burmester pairs for 

the general case of coplanar motion. If the solution takes the form 

(Z./Zo)
k - C.- k = 1,2,3,4 

i = 1,2,3,4,5, 

then from Eq. (3.13) and (3.10), we obtain 

x = - C , y '•'" = - C~ I Burmester \ 
o 1 o 2 r n . . 

Point 

x = - C_ , y = - C, ? Burmester 
c 5 ' }c 6 n , 

1 Center 

Burmester (3>1Q) 

Pair 

If one of the Burmester centers lies at infinity, then Q = 0 
' o 

and from Eq. (3.13) we note that 

Z = Z = Z = 0 
o 1 *2 

such that the system, Eq. (3.16), reduces to 

a.Z^ + b.Z, + (l - cos j6.) Z0 + sin j6. Z. = 0 (3.19) 
J 5 j 6 'j' 3 Ĵ 4 

for that particular Burmester pair. For Eq. (3.19) to have a solution, 

the A determinant 
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A = 

al bl 

a 2 b 2 

a3 b3 

a4 b4 

- c os 01 

cos 0 2 

cos 0 

cos 0 4 

sin jZf. 

sin 0 2 

sin jZL 

sin 0 4 

(3.20) 

must be zero. Bottema (27) has shown that when A = 0 for one of the 

Burmester points (five homologous positions on a straight line), then 

the three remaining Burmester points in the moving plane must be col linear. 

In considering the solution for the general case of five distinct 

positions of the moving plane, let Z , Z 1, Z Q temporarily assume 

known values. Rearranging Eq. (3»16) 

(1 - cos 0.) Z„ + (sin 0.) Z. + a.ZR + b.Z, 
r3 3 rj 4 j 5 j 6 

^ (a.2 + b.2) Z - a. Z, - b.Z0 (3.21) 
2 j j o -j 1 -j 2 v 

and using Kramer's rule for linear systems, where A.„ represents the 

cofactor of the coefficients of the unknowns of Eq» (3.21) for the m,n 

positions (based on standard matrix notation) in the determinant, the 

solution takes the form 

( Z i + 2
) A " Zo 

1 C1 , . NJ+i , 2 L , 2, A 

- o / (-1) (a- + b. ) A.. 
2 L j j • ji 

j=i 

+ z 2 [ - E ( - D J + 1 b j A j l ] 
j = i 

(3.22) 



where A is the determinant of the coefficients. A reduced form of Eq, 

(3.22) is obtained by using the symbols 

i V (-l)j+i (a.2
+b.

2) A.. 
2 U j J Ji 

B. = 
1 

V (-l)j+i a. A.„ 
L> ' -J Ji 
j = l 

C. 
1 

•7 (-Dj+1 b. A.. 
U ' -J Ji 
j = l 

such that 

A. B. C. 
Z.̂ o = ' IT Z + 7 Z, + 7 Z. i+2 A 0 A 1 A 2 

(3.23; 

where A, A„, B„, C„ are completely determined by the parameters 

a., b., jZf.„ Substituting Eq. (3*23) in Eq. (3»17) gives 

Z 2 7 

0 0 
(C3 + B 4 ) ^ + (A 4- C l)] 

0 

z ^ z 
+ Y(r) + ( A

3 - V r - A i = 0 

z z z z 
c

3 ( r ) + r [ ( B
3 - c 4 ) r + <A

3 - S \ 
z 2 z 

-B4 ( r ) ' (A4 + B 2 ) r - A 2 = ° 
0 o 

(3.24 
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where: 

( c - h ) 2 - f ( c - h ) ( a - f ) + h ( a - f ) 2 

+ 
Z 3 

1 (h - c ) [2 (k -d ) + f ( b - g ) ] + ( a - f ) [ f ( k - d ) 

+ g (h -c ) + k ( a - f ) + 2h(b-g) ] 
Z 2 

-t 
(k-d) ' 

+ 2 ( h - c ) ( £ - e ) + ( b - g ) [ f ( k - d ) + g (h-c ) + h ( b - g ) ] 

+ ( a - f ) [ f ( £ - e ) + g(k-d) + £ ( a - f ) + 2k(b-g) ] ' 

0 

( 2 + g ) a - e ) ( k - d ) + (b-g) [f(l-e) + g(k-d) 

+ 2^(a-f) + k(b-g)] l + ^ (^ -e) 2 + gtf-e)(b-g) 

+ J(b-g) 
2 1 

= 0 (3 .25) 

b = 

C3 + B4 

A4 " C l 

f = 

g = 

B 3 - C4 
C3 

A 3 - C 2 
C« 

c = 

d = 
A 3 ~ B 1 

k = -
A4 + B2 

e = - I = 
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Alternate Linkages of a Specified Four-Bar Linkage 

For a known mechanism (such as a four-bar linkage or a slider-

crank mechanism), two of the Burmester points are known to be the pin 

joints A, B of the coupler link0 Hence, two solutions to the above 

quartic are known 

Z a 2 b 
x o a = - ( ^ ) > xob - - ( z ; ) 

O 0 

where the superscript denotes the Burmester pairs of the similarly 

labeled pin joints0 The quartic can be reduced to a quadratic equa

tion by using the relations that exist between the roots and coeffi

cients of these equations; therefore 

z 2 r 
(~) + J*/ + *0

b + (h-c)[2(k-d) + f(b-g)] 

+ (a-f)[f(k-d) + g(h-c) + k(a-f) + 2h(b-g)]| ( ^ ) 

+ (l-e)2+q(l-e)(b~q) +l(b-q)2 _ Q (3 2 6 ) 

(xo
a)(xo

b) 

Considering Eq, (3o26) in the form 

0 0 

it is apparent that the two remaining Burmester pairs are imaginary if 

E2 - 4F < 0 
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If the solutions are real, the corresponding values for Ẑ /z can be 

obtained from 

Z2 (Zi/Z0
)2 (c~h) + (Z1/Z0)(k-d) + l-e 

r = g(a-f) + (b-g) ~ (3'27) 

o 
which is arrived at by eliminating the factor (Z~/z ) from Eq. (3.24). 

Then the values for Ẑ /z and Z,/z may be calculated by using Eq. 

(3»23). Finally, the coordinates of the Burmester pairs are found by 

using the formulas outlined in Eq. (3.18). Any two Burmester pairs will 

provide the necessary constraints to take the moving plane through the 

five prescribed positions (a„, b„, ft.). Hence^there are six linkages 

which are alternates of each other. 

Five Finitely Separated Positions on a Line 

The application of the preceding results depends on the determin

ation of the position parameters a., b., f>. for a given linkage, In 

the initial position, the coordinate systems must coincide, but there is 

no restriction upon the location and orientation of the systems. It is 

apparent,then, that given a slider-crank mechanism in five successive 

positions*, the values b0 = 0 , a„, jZf. would result if the X axis 

were coincident with the line of motion of the pin joint of the slider 

Do Letting a. be the location of the pin joint D along the X axis, 

the values for jZL would correspond to positions of the x axis rigidly 

fixed to the coupler link. If a. were chosen to give Chebychev spacing 

for the pin joint of the slider, then the deviation curve of the straight 

line motion that would result by using the alternate four-bar linkages 

to the slider-crank would have nearly equal maximums between the 
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precision points. Note that the A determinant, Eq» (3o20)?is zero 

when b. = 0, 
3 

With b. = 0, Eq. (3.16) becomes 

1 2 
£ a. Z - a . cos 0. Z1 + a . sin 0. Z0 + (1 - cos 0.) Zn 2 J o j r 3 1 j r 3 2 ' j ' 3 

+ sin 0. Z4 + a.Z = 0 for j = 1,2,3,4 (3.28) 

Note that Z, does not appear in this set of linear independent equa

tions, Now, letting Z,- and Z temporarily be assumed as known, 

Eq0 (3°28) may be rearranged 

•a. cos 0. Z, + a. sin 0. Zn + (l - cos 0.) Zn + sin 0.Z. 
3 r3 1 J 3 2 rJ 3 ^j 4 

1 2 _ 
- o a. Z -a.Z,, 
2 j o j 5 

(3.29) 

which has the set of solutions 

( Z . ) A [-* S>>3+1 <•/*» ] 
J = l 

+ zr "- f ( -D j + i a. A.. " 
L u j j i J 

j = l 

and using the symbols 

(3o30) 

M. 
l 

4 
$ C ^ 9 U ^ U j b t t 4 ^ ^ ^ ^ ^ ^ ^ 

u; 
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a result similar to Eq. (3.23) is obtained 

Z Z<=, 
(Z.) = 7 M. + 7 N. i = 1,2,3,4 (3*31) 

l A l A i y y f 

Substituting this relationship into Eq0 (3.17), the result is a cubic 

equation 

Z 3 Z v 2 

( r J ( N1 2 + N22> + ( r ) (2M1N1 - N1N3 + ^ 2 ' N2N4> 

+ 
z 

'o 

Z 

( F ) -(M12 + M22 " M1N3 " N1M3 - N2M4 " W 

- (Nyv^ + M2M4) = 0 (3.32) 

in terms of the unknown Z^/z • The three roots to the above cubic 
5' o 

equation correspond to the three desired Burmester pairs. In this form 

(with b. = 0 ) / a. and 0.< are arbitrary and do not depend on a given 

slider-crank mechanism* The values for Z„/z , i = 1,2,3,4 can be 

calculated by using Eq„ (3.31) and then the value for Z./z becomes 

(z3/zo) - (Zl/zo)(z5/zo) 

Vzo = ~~~ TLJT) " (3o33) 

z 0 

which is arrived at from Eq. (3.17). 

Alternate Linkages of a Specified Slider-Crank Mechanism 

If two Burmester pairs are specified in advance, for example as 

the pin joints A, D of a general slider-crank mechanism, then the 

cubic equation can be reduced further to a quadratic»equation. The 

quadratic equation would have the remaining Burmester pairs as solutions. 
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This would require that 0. - f(a.) as determined by the constraint 

of the slider-crank mechanism on the moving system. 

By comparing the properties between the roots and coefficients 

of cubic and quadratic polynomials, we obtain 

r Z 5 -X2 , r y a , 2M1N1 - N1N3 + 2N2M2 - N2N4 1 f h \ 

^roJ L c
 N l

2
 + N2

2 " J ^ o ; 

M 3 M 1 + M 2 M 4 . 0 

( N :
2 + N 2

2 ) X c
a 

where X corresponds to the known center of rotation of the crank, 

The solution is completed by using Eq. (3°33), (3.31) and (3.17), 
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CHAPTER IV 

MULTIPLE POSITION DESIGN 

The design procedures of the preceding chapters indicate that, 

in general, there are at least three independent design parameters. 

At best, the designer can satisfactorily master the duality resulting 

from two independent parameters. This capacity probably disappears 

when the designer is confronted with three parameters, and the outcome 

is a trial and error procedure which may or may not give satisfactory 

results. It is unlikely that the design could be optimized. It may be 

argued, then, that the designer should restrict himself to procedures 

involving only two parameters. At present the accuracy and length of 

the approximate straight line point path does not depend directly on the 

number of independent parameters. Curvature theory and finitely separated 

position theory can be combined to reduce the number of design parameters 

and at the same time, increase the length and accuracy of the approximate 

straight line segment of the coupler curve. 

Except for the special case of symmetry and a closed form solution 

obtained by Mueller (33), no solutions for the case where the coupler 

curve has six points in common with a straight line are available. In 

general, an iterative procedure will be necessary to extend the previous 

solutions so that six points, some infinitesimally separated and some 

finitely, lie on a straight line. The most direct approach is to design 

a slider-crank mechanism to satisfy the curvature theory of infinitesi-

mally separated points (2nd, 3rd, and 4th order) and to displace the slider 
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to the desired finitely separated positions0 There will, generally, be 

some points in the coupler plane of the slider-crank mechanism that will 

produce coupler curves which can be approximated by an appropriate cir

cular arc (hence a rigid crank) which satisfies the geometry of both 

the finitely and infinitesimally separated positions. The analysis of 

this approach to the design of approximate straight line mechanisms is 

the topic of this chapter. 

Input-Output Displacement Function for the 

Slider-Crank Mechanism 

The slider-crank mechanism designed in the initial position to 

satisfy curvature theory is to be displaced to the finitely separated 

positions in the anticipated design procedures. Consequently, it 

becomes necessary to derive a closed form displacement function (the trav

el s , of the slider being the position parameter) similar to that 

obtained for the four-bar linkage. In Fig0 (19) is represented a gen

eral slider-crank mechanism with an offset of d. The coordinates of 

the pin joints A, D of the coupler in the x?y coordinate system 

are: 

x = R cos u y = R sin u 
a 7a 

xd = s yd = d (4.1) 

Requiring that the coupler AD be inextensible leads to 

M2 = (s - R cos u ) 2 + (d ~ R sin u ) 2 (4.2) 

Using the trigonometric formulas 
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Figure 19. General Slider-Crank Mechanism. 

POLE TANGENT 

INFLECTION 
CIRCLE 

Figure 20. Slider-Crank as Specified by the Three 
Design Parameters. 
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2 tan u / 2 1 - tan u / 2 
.in u = — •—^ ) cos u = — — T - — c — 

1 + tan u / 2 1 + tan u / 2 

in the expanded form of Eq. (4 .2) g ives 

2Rs 
1 - t an u / 2 

1 + t an u / 2 
+ 2Rd 

2 t an u / 2 

1 + t a n 2 u / 2 

9 9 9 9 
= s + R + d -M (4.3) 

which reduces to the quadratic in tan u/2 

r 9 9 9" 
I (s+R) + d - M tan u/2 + 4Rd tan u/2 

+ (s-R) + d - M = 0 (4.4) 

The general solution of this quadratic is 

u = 2 tan 
-1 r -B ±VB 2 - 4AC 

2A (4.5) 

where 

9 9 2 
A = (s + R) + d - M 

B = 4Rd 

9 9 9 
C = (s - R) + d - M 

The output angle has two possible values depending on which of the 

signs on the radical is used. Graphically,, the negative sign is used 

when the coupler link is below the line 0 D0 
a 

Coupler Point Triangulation for a 

Slider-Crank Mechanism 

In the following articles it will be necessary to determine the 
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U,V coordinates of location of the coupler point B of a slider-crank 

mechanism,, Assume that a, and PB are known. Then 
b 

= [(PA)2 + (PD)2-- 2(PA)(PD) cos (ad - aj] 

= [(PB)2 + (PD)2 - 2(PB)(PD) cos (ad - ab)] 

S = (PA)2 + (PB)2 - 2(PA)(PB) cos (ab - aa)] 

e = cos 

2 2 2 
-1 T S + M - N 1 

2MS 
(4.6) 

are the dimensions of the coupler triangle obtained by using the cosine 

law (Fig. 20). 

In general, the angle p of the coupler center line relative to 

the x axis (Fig, 19) is given by 

3 = ta ^ [ -1 r d - R sin u 
s - R cos u _ 

(4.7) 

The x,y coordinates of point B are 

x, = R cos u + S cos (]} - e) 

y, = R sin u + S sin (j3 - e) (4.8) 

and the U,V coordinates are calculated by 

U, = - x, sin CLI - y, cos a , + P0 cos a. 

Vb = xb cos ad - yb sin ad + P0a sin aa (4.9) 
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Symmetrical Coupler Curves Produced by Alternate 

Four-Bar Linkages of Slider-Crank Mechanisms 

Generally, symmetrical coupler curves can easily be obtained 

from the general theories for the production of approximate straight 

line motion by properly adjusting the available parameters of the four-

bar linkage system. This is not the case where the linkage is developed 

as an alternate of a given slider-crank mechanism. A general development 

is given here to relate the parameters k, a, , and a, of a slider-

crank mechanism so that any resulting alternate four-bar linkage will 

generate a symmetrical coupler curve at the coupler point D. 

The crank of the mechanism (Fig. 20) is completely specified by 

the parameters k and a in the system defined by the pole tangent 
a 

and pole normal 

k sin a 
PA = k + ^ (4.10) 

PO = k sin a (4.11) 
a a 

and the location of the slider on the inflection circle is 

PD = sin od (4.12) 

where the diameter of the inflection circle is unity. 

If the length of the proposed coupler link AB of the alternate 

four-bar linkage is S, it will produce a symmetrical coupler curve at 

the coupler point D when 

R = M = S (4.13) 
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The parameters k, a , a, are related by means of the first of these 

equalities. 

The length of the crank of the slider-crank mechanism is given 

by 

R = PO - PA • = 
1 a '. 

k sin < 

k + T 
(4.14) 

The length of the coupler link AD = M is obtained by using the cosine 

law in the form 

M2 = (PA)2 + (PD)2 - 2(PA)(PD) cos (a , - a ) (4.15) 
Q a 

But M = R = |PO - PA|, such that Eq. (4.15) becomes 
3. 

(P0a)
2 - 2(PA)(P0a) = (PD)

2 - 2(PA)(PD) cos (ad - aa) (4.16) 

and, using the previous design equations, this may be reduced to 

!: (k3 -'k2 + k) cos 2a •+ k3 + k2 + 1 

3. 

= (cos 2 a , ) ( l + k cos2a ) + (k s in 2a ) s in 2a, (4.17) 
Q a a Q 

In this form, Eq0 (4.17) is a transcendental equation and cannot be 

solved easily,, However, the trigonometric formulas 

2 tan a 
sin 2a, = 

1 + tan a 
2 9 cos 2ad 

1 - tan 

1 + tan a 

may be used to form a quadratic equation in terms of tan a , 

A tan a, + B tan a , + C = 0 
d d 

(4.18) 
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where 

A = (k3 - k2 + k) cos 2a + k sin 2a + (k3 + k2 + 1) 
a a 

B = 2 + 2k cos 2a 
a 

C = (k3 - k2 + k)-cos 2a - k sin2a + (k3 + k2 + 1) v a a 

Hence, given the parameters k and a , the value of a , can be 

obtained from Eq. (4.18) by using the roots 

-1 r -B ± VB 2 

'd ^Jn L 2A" 
-1 f -B ± VB - 4AC 

a , = tar (4.19! 

Coupler point D of the coupler plane of a four-bar linkage having pin 

joint B on a circle of radius S = R = M and centered at pin joint 

A will then describe a symmetrical coupler curve (Fig. 21). Further

more, the axis of symmetry of the resulting coupler curve is located by 

a line through 0 and oriented by the angle e/2 from the fixed link a 

in the same sense that e is measured in the coupler triangle. For the 

proof of these symmetry properties see Ref. (34). 

Two Inflections on a Symmetrical 

Coupler Curve 

The results of the preceding article will be useful for the pro

duction of approximate straight line motion if the two inflections of 

the symmetrical coupler curve have the same tangent. This special case 

occurs when the axis of symmetry of the coupler curve is parallel to 

pole ray PD. There is, as expected, no apparent closed form solution 

to this problem, and an iterative procedure will be the result. 
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POINT PATH OF D 

Figure 21. Slider-Grank Having Alternate Four-Bar Linkages 
with Symmetrical Coupler Curves. 
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The angle 0 between the crank R and the side M of the 

coupler triangle is 

$ = cos -1 -L +is 
. 2 

sin a 
L 2k 2 „,3 2k sin a 

(4.20) 

by using the cosine law with triangle PAD. Choosing a tentative value 

of e to locate point B on the circular locus, the value for PB is 

PB = 
k sin a. 

k + l" 
1 + k - 2k cos (0 + e) (4.21) 

by again using the cosine law with triangle PAB. Note that the second 

side of the coupler triangle N has the value 

2k s i n a 

N = J T T l s i n £ / 2 (4 .22) 

The value for a, can be obtained by using the cosine law with tri

angle PDN 

cu = a , + cos -1 (PB)2 + (PD)2 - N2 "̂  
2(PB)(PD) (4.23) 

and the dimensions of crank B become 

PB sin a, 
PO, = 
b sin a, - PB 

0 K B = .(PB> D R 

b sin au - PB 
(4.24) 
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The alternate four-bar linkage is now completely determined. It 

may not, however, satisfy the requirement that the axis of symmetry of 

the coupler curve be parallel to pole ray PD. The length of the coupler 

link Q = 0 0, is 
a b 

1 

Q = [(P0a)
2 + (P0b)

2 - 2(P0a)(P0b) cos (ab - a a)]
2 (4.25) 

and the initial position of crank R relative to the fixed link is 

0 = cos -1 
Q2 + (P0a)

2 - (P0b)
2 

2(Q)(P0a) 
(4.26) 

If the following equality 

ê  " a + | + 0 = 180' (4.27) 

holds, the alternate four-bar due to the choice of e satisfies the 

requirement that two inflections on a symmetrical coupler curve have 

the same tangent* Generally, it will be necessary to iterate the value 

of e until Eq. (4027) is satisfied for the given parameter values k 

and a ° 

Ball Point with One Prescribed Intersection 

or One Prescribed Tangent 

As given in the chapter on curvature theory, a slider-crank 

mechanism (Fig» 22) is completely specified by the parameters k, a , 
a 

a , and the formulas 
d 



POLE TANGENT 

NFLECTION 
CIRCLE 

CUBIC OF 
STATIONARY 
CURVATURE 

Figure 22. General Slider-Crank with 
Slider Displacement. 



75 

PO = k sin a. 
a a 

k sin a 
a PA = k + x (4.28) 

PD = sin a-
d 

The constants M, N of the cubic of stationary curvature equation 

" = IT-4 + TT-^ (4-29) 
r M sin a N cos a 

are defined by 

N = k ( t an a - tan a . ) a d 

N - tan a . 
(4o30) 

for the given system position. Any other point B on the cubic of sta

tionary curvature and its corresponding radius of curvature, when 

replaced by a rigid crank OjB, will provide the necessary constraint 

so that point D generates a path element having third order contact 

with its tangents 

The above mentioned procedure entails the specification of four 

parameters (k, a , a,? and ah)» Generally, four design parameters 

would not allow the designer to optimize his solution0 It is possible, 

however, to reduce the number of parameters and also assure an extended 

approximate straight line outputs This can be accomplished by specifying 

an additional contact or contacts between the coupler curve and the line 

being approximated. These contacts (intersections or a tangent) are 

finitely displaced by prescribed distances from the Ball point contacto 
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Suppose the slider is displaced by s.- along its path of travel 

as shown in Fig. (22). Using the displacement function, Eq. (4.5), 

the position of the crank is determined and the change in its posi

tion is Au = co9 - OJ. . The instant center (pole) for the initial posi

tion is P, and for the final position it is P̂ o Since the coupler 

curve to be produced by the desired alternate four-bar linkage is required 

to be tangent at D-, the location of P9 will be the instant center 

of that linkage in that position also. The intermediate pole for the 

finite motion of the coupler plane is P._. Any point B (located by 

specifying a, and calculating PB by using Eq„ (4.29)), which is to 

serve as the second crank of the alternate four-bar must have its cen

ter of rotation 0, on the line P. JD.̂ o The equation for the locus of 

b 12 12 M 

centers corresponding to the points on the cubic ofstationary curvature 

is 

. tan a , , 

I = 1_ + 1 (4.3D 
p N sin a N cos a 

obtained by substituting the following form of the Euler-Savary equation 

1 1 1 
p r sin a 

(4o32) 

into Eq. (4.29). The polar equation of line P. JD _ is 

S12 
m 2 sin (0 - a ,) 

(4.33) 

and for point 0, on that line 
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where m = PO,. Solving the statement of Eq8 (4029) in terms of point 

B and Eq. (4.34) for s. gives 

o f i t a n <1A'S[ 
2 ) 1 d ^ sin (au - a j (4.35) 12 N |cos a, sin a, J b d 

or solving for tan a, gives the quadratic 

2 S12 N 
tan a, cos a, + tan a, (-2 sin a, - — - — ) 

b d b d 2 

+ tan a , sin a , = 0 (4.36) d d 

which has the solutions 

S12 N /N S12 2 

2 sin gd + ~ 2 ~ *V ( ~2~ ) ' ( 2 S l " " J S12N , , „ , 
tan a b = 2 cos a , ( 4 " 3 7 ) 

Eq. (4.37) does not in itself provide sufficient information to insure 

that a tangent exists at DQ as desired. If only an intersection is 

needed at D^, then Eq. (4.37) is the appropriate design equation. 

If, however, the instant center P_, the fixed pivot 0, , and 

the final position BQ of pin joint B are collinear; then the coupler 

curve of the alternate four-bar will indeed have a tangent at D^. The 

(U,, V, ) coordinates of 0, are 
D D D 

(PO, cos a, , PO, sin a, ) 

The coordinates (Up , Vp ) of the pole P are given by 
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Up = - s._ sin a , - s.^ tan GJ cos a , + PO cos a 
12 "d 12 

(4.38) 

VD = s10l cos a , - s._ tan CJ sin a , + PO sin a P0 12 d 12 d a i 

and the coordinates (U^ , V^ ) of B~ can be obtained by using Eq. 

(4.8) and (4.9). These points are collinear if the determinant 

i \ v0fe 

1 Up Vn 
p2 2 

1 UK VK b
2
 b2 

= 0 

If the value of s.p is of primary importance, then an iteration of 

the preceding design equations may be accomplished by choosing a sequence 

of values for a ,. When the above determinant is zero, the coupler 

curve will have a Ball point in the initial position D, and a tangent 

in the final position D,-« 

Ball Point with Two Prescribed Intersections 

If two displacements s.^, s.. of the slider pin joint D are 

specified, the resulting coupler curve of the alternate four-bar will 

have two intersections in addition to the Ball point contact in common 

with a straight line0 Because of the availability of Eq. (4.37) to 

locate a possible second crank 0,B for the desired four-bar, this 

design procedure does not entail a special analysis., The displacement 

function Eq. (4.5) is used to determine the location of the coupler plane 

in the displaced positions. Then by appropriate triangulation, the loca

tions of B., B , and B« can be calculated for these positions. Use 
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of Eq. (4.37) requires that two positions of point B (say B. and B_) 

be on a circular arc about the center 0, which has the coordinates 
b 

(P0, cos a, , P0, sin a, ). The location of B^ (U^ , V^ ) when 

substituted into the equation for the circle described by pin joint B 

(LL - P0, cos a, ) 2 + (V0 - P0, sin a, )
2 - (0, B ) 2 = 6 (4.39) 

3 b b 3 b b b 

will not, in general, make 6 zero. An iteration can be accomplished 

by taking a sequence of values for a , until 6 = 0 . 

Ball-Burmester Point With One Prescribed Intersection 

From curvature theory, the two unknown Burmester points of the 

coupler plane of a general slider-crank mechanism (specified by the 

parameters k, a , a ,) are obtained by solving the Allievi-Wolford 

equation 

P tan a , - N 
tan a + [tan a + 3 tan a , - N] tan a + -7 = 0 (4,40) 

L a d J tan a 
a 

for the roots tan a, and tan a » The constant N is determined by 
b c 7 

N = k (tan a - tan a ,) 
a d 

The dimensions related to points B and C are calculated by using 

N sin a, N sin a 
PB--TTK^ PC = - F m < ^ <4-41> 

b c 

and 
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where: 

K, = tan a, - tan a , , K tan a - tan a , 
b b d ? c c d 

Either crank 0. B or 0 C can be used to replace the constraint 
b e r 

provided by the slider on the motion of the original coupler link to 

form an alternate four-bar linkage* If the slider is given the displace

ment s.9 to D9, the equations from the preceding articles can be used 

to find the coordinates (uV , Vu ) and (U , V„ ) of the displaced 
2 9 9 9 

positions of points B and C, respectively,, The equation of a circle 

centered at either 0, or 0 may be used to evaluate how closely the 

coupler curve approaches the desired intersection D9 on the approxi

mating straight line. That is 

2 + (vb - vn
 N 2 '- - x 2 

'2 v b' b 2 °b 
(Ub^ - U 0 J + (Vb^ - V0 r " (0bB)' = 6, 

(Uc - UQ ) 2 + (Vc - V0 ) 2 - ( O C ) 2 = 6 
c 2 uc

 c 2 c c ' 

(4.44) 

give values for 6 (or 6 ) which approximate the "error" which 

results when B^ (or C~) does not lie on the desired circle,, A 

sequence of values for a , can be used until 6, (or 6 ) approaches 

zero. When 6 = 0, the coupler curve of the alternate four-bar link

age has a Ball-Burmester point in the initial position and an inter

section at D9 in the final position,, 
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CHAPTER V 

CLASSICAL MECHANISMS 

The linkages investigated in this chapter represent a useful and 

perhaps complete (5) assessment of those mechanisms designed by methods 

not dependent on curvature theory. Other design techniques are available, 

but they are in reality based on one of the groups to be considered or 

depend on curvature theory (25). The mechanisms to be considered are the 

Watt, Evans, conchoidal, symmetrical (including both the Roberts and 

Chebychev types), and those mechanisms based on Burmester theory having 

five finitely spaced precision points of the coupler curve on a straight 

line. Design procedures for these groups are given in their most general 

form. 

Watt Mechanisms 

The lemniscoid or Watt motion was perhaps the first mechanism 

actually used to produce approximate straight line motion by means of a 

pinned linkage. In the design position, the control cranks are parallel 

so that their intersection (the instant center for the coupler link) 

is at infinity. Consequently, the coupler link has in this position 

pure translatory motion and all points in the coupler plane momentarily 

describe path elements that have zero curvature. In general, the cranks 

need not be of equal length. If T is the larger crank, the output 

point C (Fig. 23 and 24) on the coupler link center line AB is 

located (35) from pin joint A by the distance 
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Figure 23. Watt Mechanism (Crossed Type). 

Figure 24. Watt Mechanism (Open Type). 
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where n = +1 represents the crossed type and n = -1, the open type. 

A more general form of the linkage is possible. Some points D, not 

lying on the coupler center line, may also produce satisfactory approxi

mate straight line motion. These points are taken to be those lying 

on a line from the instant center through point C and specified by 

the parameter k = CD. 

by 

The location of the fixed pivot 0 in the U, V system is given 
a 

LJ. = - r sin y 

V1 = -(R + r cos y) (5.2) 

where S = 1.0 and y represents the angle formed by the coupler link 

AB with the cranks in the design position. The pin joint A is located 

by 

UP1 = Ul 

VP1 = V1 + R (5.3) 

The coordinates of the fixed pivot 0, are 

V2 = V + R. + cos y + nT 

U2 = U1 + sin y (5.4) 

and the coordinates of the pin joint B are 

VP2 = V2 - nT 

UP2 = U2 (5.5) 
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Finally, the location of the output point D is given by 

V, = k 
d 

ud = o (5 .6) 

such t h a t 

1 

M = [ ( U P ^ 2 + (VPX - k ) 2 ] 2 

1 

N = [ ( U P 2 ) 2 + (VP2 - k ) 2 ] 2 ( 5 .7 ) 

The length of the fixed l i nk i s 

Q = [(U, 

1 

U l ) 2 + ^ V 2 " V 1 ) 2 ] 2 ( 5 . 8 ) 

and the orientation of the x axis is given by 

6 = tan -1 r v 2 - v i 
L U 2 - U 1 J 

(5 .9) 

To obtain the value of the coupler angle e, the cosine law is used 

in the form 

e = ± cos 
-1 

2 2 
1 + 1 - N 

2M 
(5.10; 

where the negative sign is used when the product (k)(n) is greater 

than zero, 

Evans Mechanisms 

The general form of the Evans mechanism is based on the Cardanic 
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circles which produce a special form of cycloidal motion. This cycloidal 

coplanar motion is generated by a circle rolling on the inner surface of 

a fixed circle of twice the diameter of the other. All points rigidly 

attached to the smaller circle (such as A) describe elliptical point 

paths. Those points on the surface of the smaller circle (such as D 

and B) trace exact straight line point paths along diameters of the 

larger fixed circle (Fig. 25). 

If any two points (Ex.: points B and D in Fig. (26)) of a 

moving plane are momentarily tracing exact straight line point paths, 

the remaining points (Ex.: point A) of the moving plane trace ellip

tical coupler curves, segments of which may be approximated by a circular 

arc (Ex.: the arc described by the radius 0 A). If point B is guided 
3 

by a slider and A is controlled by a rigid crank 0 A, the resulting 
3 

slider-crank mechanism will have an .approximate straight line output 

at all points such as D. If the straight line point path of B is 

satisfactorily approximated by a circular arc of sufficiently large 

radius (0J3) the resulting four-bar linkage is known as an Evans 

mechanism. The accuracy of the straight line output at D will depend 

on the quality of the approximations at A and B. 

The initial position of the coupler plane (denoted by the subscript 

o) and the central position (denoted by the subscript c) have well 

defined instant centers P and P . Any crank which is to be added 
o c ' 

as a constraint to the motion such as 0 A must be on pole rays from 

these instant centers. The point P , rigidly attached to the outer 

surface of the smaller Cardan circle, moves along the diameter 2(0P ) 

(Fig. 26) of the larger circle so that P coincides with P in the 
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FIXED 
CARDAN 
CIRCLE 

Figure 25. Cardan Motion. 
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Figure 26. C>eneral Form of the Evans 
Linkage. 
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central position. Hence P ' 0 P " is the diameter of the smaller r c c 

circle which coincides with the diameter 2(0P ) of the larger circle 

in the central position. The result is that the ellipse being traced 

by point A has 2(0P ) as one of its axes of symmetry. If the 

crank 0 A is to approximate the elliptical path of A, its center 
a 

of rotation must lie on OP . 
c 

The smaller Cardan circle has its center 01 on a ray (defined 

by u) from the origin of the U, V coordinate system (the center of 

the fixed Cardan circle) and its radius is r = 1. This circle must 

pass through the origin of the U, V system. The radius of the outer 

circle is OP = 2. As shown in the figure, IL is the average of the 

U coordinates for B and B1 so that arc B B best approximates 
o o c rt^ 

the straight line which point B on the smaller Cardan circle describes. 

This gives the coordinates of 0, to be 

IL = 1 + cos CJ 

V2 = k (5.11) 

where k will take on sufficiently large positive or negative values 

to insure that arc B B satisfactorily approximates a straight line. 

In the initial position, the instant center P is located at r ' o 

(2 cos co, 2 sin u) 

Note that the slope of the diameter P"P ' is governed by the 

angle (2]3 - to). Letting the directed distance of the pin joint A from 

the center 01 of the smaller circle be p, the coordinates of A are 
K' o 
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VP , = sinu + p sin (2(3 - u) 

UP = cos D + p cos (2(3 - co) (5.12) 

The slope of the line A P is 
o o 

m = 
sin u - p sin (2g - u) 
cos w - p cos (2(3 - CJ ) (5.13) 

such that the equation of this line in the U, V system is 

V = 2 sin u + m(U - 2 cos u) (5.14) 

The equation of OP is 

U = V tan (3 (5.15) 

Lines OP and A P intersect at the desired fixed pivot 0 which 
c o o K a 

has the coordinates 

2 sin D - 2m cos u 
1 - m tan (3 

U V tan (3 (5.16) 

The location of D on;the outer surface of the smaller Cardan circle 

is defined by the parameter a, such that 

U , = 2 cos a cos (a - u 

V , = 2 sin a cos (a - u (5.17; 

The orientation of the u,v system which has its origin at D is given 

by the parameter a, Since the coordinates of all of the pertinent 
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points (A,B,0 ,0 ,D) are known, the linkage is completely determined. 
a D 

The determination of the usual link dimensions (Q,R,S,T,M,e) is not 

reviewed here since it is quite straight-forward. 

Note that the angle to is not a parameter for the size of the 

linkage in that it specifies the initial position of the linkage. The 

difference angle (to - 8) is significant in predicting the accuracy of 

the resulting approximate straight line motion. If CJ - 8 is small, 

the approximation will be quite accurate over a small range. If, how

ever, CJ - 8 is large, then the approximation will be poorer but the 

range will have been increased. 

Special cases result when the linkage parameters a, B and p 

take on particular values. These are: 

B = 0 This is the centric oblique case where 0 lies on the 

U axis but a / 90°. 

a = 90° This is the rectangular case where the straight line 

paths of B and D are perpendicular. 

a = 90, B = 0 This is the centric rectangular case which has the points 

D, A, and B lying on a straight line. 

a = 90° This is the well-known Scott-Russell Mechanism. 
B = p = 0 

Conchoidal Straight-Line Motion 

The equation of a conchoid (Fig. 27) in polar coordinates is 

p = a + ~ ~ ? (5.18) 
K cos ft 

The conchoid is generated by all points of a line which has point D 

constrained to move along the U axis and which slides through a fixed 
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y,v,x 

Figure 27. Conchoidal Straight Line Mechanism. 
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point 0, on the V axisc 

The portion of the conchoid between points A and A' may be 

approximated by a circular arc such that A and A' lie on a circle 

with its center at 0 <» The general equation of this circle is: 

U2 + (V - V.) 2 = R' (5.19) 

There are two unknowns in this equation. These may be determined since 

two points are known to lie on the circle. For point A' 

(r - V x )
2 = R2 (5.20) 

and for point A 

2 2 2 
(tan a - r sin a) + (r cos a - V, ) = R (5.21) 

from which the equality 

(r - y ) * = (tan a - r sin a ) Z + (r cos a - V ^ (5.22) 

is obtained. The only unknown in Eq0 (5.22) is V. so that 

\r - tan a 
Vl " 2r 

1 - 2r cos g 
1 - cos a _ 

(5.23) 

It follows from Eq. (5.20) that 

R = r - V, (5.24) 

Note that the coordinates for A are 

VP. = r cos a 

UP. = tan a - r sin a (5.25) 
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The coordinates for point 0, are 

v2 = 1.0 u2 = o 

and for the pin joint B 

VP = 1 + kn sin a 

UP = kn cos a (5,26) 

where k = T and n = -1 when point B lies in the lower half of the 

plane. The crank 0, B is made sufficiently long in order to approxi

mate the sliding motion of the generating line DA through 0, , The 

length of the fixed link is 

Q = |V1 - V2| (5.27) 

The length of the coupler l i nk i s 

1_ 

S = [(UP2 - UPX)2 + (VP2 - VP X ) 2 ] 2 (5 .28) 

and the sides of the coupler triangle are given by 

r 

N = [ ( t a n a - U P j 2 + ( V P j 2 ] 2 (5 .29) 

where the coord ina tes of the output po in t D are 

U , = tan a 

v d = o 
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The enclosed coupler angle e is obtained by using the cosine law in 

the 

-1 
e = n cos 

r- 2 2 2 
VI + S - N 

2MS 
(5,30) 

with the added restriction that e = -|e| if r > 1. The orientation of 

the x axis is 9 - -90° for all cases where r < 1„ If r > 1 then 
* 

e = 90°. 

Symmetrical Linkages 

In a recent paper (22), W. Wunderlich investigates the*accuracy 

of the straight line output of symmetrical linkages for an unspecified 

length of the approximate straight line output* Special cases of sym

metrical linkages are the Roberts, Chebychev, and those resulting from 

curvature theory. To consider the totality of symmetrical linkages, no 

special design procedure need be used. The linkages may be specified 

(Fig. 28) by the following parameters: 

a This parameter orients the fixed pivots about the center 

line of the linkage* If a is negative, the cranks are 

crossed. 

d This parameter gives the spacing between the moving and 

fixed links in the central position. 

c This parameter is the altitude of the coupler triangle 

from the coupler link ABD 

In the following formulas, all dimensions of the links are related 

to the coupler link AB which is taken to have a fixed magnitude S = 280 

The following formulas can be used to determine the link dimensions: 
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Figure 28. Symmetrical Linkage 

Figure 29. Five Finitely Separated Precision Points. 
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1_ 

M = N = [1 + c 2 ] 2 

e = t an (-c) 

Q = I 2a | 

1 

R = T = [d 2 + (1 - a ) 2 ] 2 (5 .31) 

and the u, v system is given in terms of the x,y system as 

u = x - | a | 

V = y - d ± c (5.32) 

where the minus sign corresponds to the minus sign of the parameter a. 

Mechanisms Based on Burmester Theory 

The investigation of those linkages which generate a coupler curve 

passing through five precision points lying on a straight line should 

provide a wide range of mechanisms for use by the designer,, The design 

procedure is based on Burmester theory recently explained by Hall (14) 

and expressed in terms of coordinate transformations by Bottema (27) „ 

Using the fundamental concepts given by Bottema, the theory for four and 

five finitely separated positions of the moving plane is developed in 

Chapter III0 The problem of four and five finitely separated positions 

on a straight line is also considered. Neither of these procedures will 

be reviewed here because of their complexity. 

It is possible, however, to analyze those linkages already exist

ing in the literature (2). The dimensions of the links may be scaled 

directly from the existing figures. The x,y coordinates of at least 
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two of the precision points are necessary to define the u,v system 

which has the orientation 

= tan -1 
y 5 - yi 

X5 " Xl 
(5.34) 

relative to the x axis (Fig.-29). 
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CHAPTER VI 

COMPUTER PROGRAMS 

The computer programming associated with what appears to be a 

very simple mechanism, the four-bar linkage, is in reality very complex. 

The average length of each of seven programs written for the Burroughs 

220 in the algol language was 750 statements., Each program contained 

approximately 50 switch statements which made "debugging" very diffi

cult. A representative program is included for reference in the last 

section of this chapter. The primary information desired is the length 

of the approximate straight line output for a specified accuracy. Much 

more information was obtained, however, to assist the designer to opti

mize the use of the primary information. The additional information 

included data for the transmission angles, the amount of rotation of 

the cranks, the type of mechanism (whether crank and lever, double lever, 

or double crank), the linkage dimensions, as well as information on the 

higher derivatives of the deviation curve and the deviation curve itself. 

Coordinate Systems 

The coordinates of the pin joints, the fixed pivots, and the out

put point are calculated in the initial position by using the supporting 

theory of each group of linkages studied. The location of the coordinate 

system is dictated by the requirements of the design equations. For the 

linkages designed by using curvature theory, the coordinate system is 

attached to the pole tangent and the pole normal. For the other linkages, 



99 

the coordinate system is attached to the fixed link with the origin at 

one of the pivots and the x-axis directed through the other, 

The set of coordinate systems needed to analyze the linkages based 

on curvature theory is represented in' Fig, (30), The supporting theory 

allows the calculation of the coordinates in the U,V system of the 

following essential points necessary to define the linkage: 

0 (U., V.) 
a I I 

A (UP., VP.) 
i' I -

the coordinates of the end-
points of the î h crank 

Vui+i> W 

B (UPi+1, VP.+1)_ 

the coordinates of the end-
points of the (i+l)'th crank 

D(UP1, VP1) the coordinates of the output 
point in the coupler plane. 

The subscript i is used to allow an orderly iteration between the 

three linkages that result from the theory of alternate linkages. For 

all other cases i has the value of one. In the computer program at 

the end of this chapter, these coordinates are calculated by lines 35 

through 50. 

The x., y„ coordinate system has its origin at (U., V.) and 
i' I i' I 

is oriented with its x. axis rotated by 8. from the U axis. The 
I

 2
 I 

angle 0. is obtained by the following 

= tan 
-1 V. ,. - V. 

l+l l 
U. ,. - U. 
l+l l 

(6.1) 
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COORDINATES: 

B U P i t P V P l + . 
A UP; ,VPj 

D UPI % VPI 

°b Ui + PV i+ | 

°a U i .V, 

* a s * i , a b = o c i + | 

POLE NORMAL 

INFLECTION CIRCLE 

POLE TANGENT 

Figure 30. General Set of Coordinate Systems. 
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This computation is accomplished by lines 60 through 62 in the computer 

program. 

The u,v coordinate system is used to represent the travel u 

of the output point D along the path tangent and the deviation v of 

the coupler curve from that tangent. Its origin is located at the Ball-

Burmester point with the coordinates (UP1, VPl). The orientation of 

the u axis with respect to the U axis is given by the angle a, + 90. 

Coordinate Transformations 

One of the important, and sometimes quite confusing, concepts 

used in the computer programs is the transformation of the coordinates 

from one system to another. The coordinate systems of Fig. (30) are 

shown removed from the linkage in Fig. (31). If the (x., y.) coor

dinates of a point are known, the (U,V) coordinates are found by using 

U. = x. cos 0. - y. sin 9. + U. 
1 1 1 1 1 1 

V. = x, sin 0. + y. cos 0. + V. (6.2) 
I I I 7i I I ' 

or if the (U,V) coordinates of the point are known.the (x., y.) 

coordinates are found by using 

x. = (U - U.) cos 9. + (V - V.) sin 0. 
l l l I I 

y. = - (U - U.) sin 0. + (V - V.) cos 0, (6.3) 
I I I I I ' 

Eq. (6.3) is obtained by inverting the transformation represented by 

Eq. (6.2)o Another transformation that is found to be useful occurs 

between the (u,v) and (U,V) systems 



y. sin 0 ; 

Figure 31. Transformation of Coordinates 

AV 

D(UPI,VPI) 

COUPLER 
CURVE 

DEVIATION FROM 
EXACT STRAIGHT 
LINE MOTION 

APPROXIMATING LINE 
OR INITIAL TANGENT 

Figure 32. Deviation Curve. 
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u = (UP1 - U) sin a, - (VP1 - V) cos a, 

v = (UP1 - U) cos a, + (VP1 - V) sin a, (6.4) 

where the 90° rotation angle is taken into account by using the trigono

metric addition formulas. 

As shown in Fig, (32), the u axis coincides with the coupler 

curve tangent and represents a close approximation to the distance 

traveled along the curve, while v represents the deviation of the 

coupler curve from its tangent. A direct transformation between the 

(x„, y.) and (u,v) systems is found to be too cumbersome to use 

except in special cases. The transformation is best accomplished by 

first using Eq0 (6.2) and then Eq. (6.4) 

Computation of Linkage Dimensions 

Since the coordinates of the points A, B, 0 , 0, are known from 

the theory, the link dimensions Q = 0 0, , R = 0 A, S = AB, and 

T = 0,B can be best calculated by using the following formulas: 

Q = [(U.., - U.) 2 + (V.., - V.)2]2 
L l+l l l+l i' J 

1_ 

R = [(UP. - U.) 2 + (VP. - V.) 2] 2 
L l l l l 

1 

s = [(UP 1 + 1 - U P . )
2 + (VP 1 + 1 - V P . )

2 ] 2 

1 

T - [(UPi+1 -U. + 1)
2+ (VP1+1 - V. + 1)

2] 2 

(6.5) 

The computation of these dimensions is carried out by lines 51 through 

59 of the program. 
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Although the dimensions M, N and e of the coupler triangle 

are calculated in a different manner, their computation by using the above 

technique is included here for completeness. These supplementary formu

las are: 

1 

[(UP1 - UP.)2 + (VP1 - VP.)2]2 
L 1 l J 

1 

N = [(UP1 - UP. + 1)
2 + (VP1 - VP ) 2] 2 

(6.6) 

and 

e = cos 
-1 r

J 
S + - w 

2MS 
(6.7) 

The result from Eq. (6.7) does not specify whether the angle is mea

sured in a clockwise or counterclockwise direction. This uncertainty 

can be removed by requiring that the apex of the coupler triangle 

actually coincide with the specified Ball-Burmester point in the ini

tial position. Generally the technique used in the computer programs is 

to find the coordinates of the Ball-Burmester point (xj, yj) by using 

Eq. (6.3) where U = UP1 and V = VP1 and the components 

Mx = xj - R cos 0 

My = yj - R sin ft 

(6.8) 

in the formula 

[(Mx)2 + (My)2]2 (6.9) 
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where 0 is the initial position of the crank R relative to the 

fixed link as shown in Fig. (33). Then the value for e can be cal

culated by using the expression 

e = tan"1 (My/Mx) - x (6.10) 

where x0 is "the initial position of the coupler center line relative 

to the fixed link. 

In the program at the end of this chapter, still a different 

o o 
approach was used for the special case where e = 0.0 or e = 180.0. 

This computation was accomplished by lines 83 through 89. 

Initial Position of the Linkage 

The initial positions 0 , x , ancl ^ of the links R, S, and 

T, respectively, must be known later in the program. Using a trans

formation similar to Eq. (6.3), the values 

xxP = (UP. - U.) cos 0. + (VP. - V.) sin 0. 
l l 1 1 i' l 

yyP = - (UP. - U.) sin 9. + (VP. - V.) cos 9. 
l l 1 1 l l 

xPx = (UPi+1 - Ui+1) cos 9. + (VPi+1 - V.+1)sin 6. 

yPy = - (UP.+1 - U.+1) sin 9. + (VP.+1 - V.+1) cos 9. (6.11) 

are computed. The following formulas 

•jZf = tan" (yyP/xxP) 

TJ) = tan (yPy/xPx) 

Y = t a n " l r _ l P y _ ^ _ r z P _ i (6.12) 
x o LxPx + Q - xxP1' 
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Figure 33. Initial Position of the Linkage. 

A x T y 0 

V 

Figure 34. Transmission Angles 
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may be used to calculate the initial position of the linkage. These cal

culations are executed by lines 63 through 80 in the computer program. 

Note that the computer can evaluate only the principal value of the 

arc-tangent function, therefore necessitating an appropriate corrective 

action. 

Type of Mechanism 

Grashof's rules are applied in the computer program (lines 238 

through 251) to determine whether the linkages are crank and lever, 

double lever, or double crank mechanisms. In the present statement of 

the problem, the links are: 

Q the fixed link 

S the coupler link 

R,T the control cranks. 

It is first necessary to order the sums of the opposing links in mag

nitude and label these links according to the inequalities 

a + b > c + d (6.13) 

and 

a > b, c > d (6.14) 

such that each pair itself is also ordered in magnitude* Now if 

a - b < c - d , (6.15) 

then the shortest link m of this group can make a full revolution 

with respect to each of the others. If this shortest link is Q^ then 

a double crank results. If m is R or T. then a crank and lever 
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results with that particular link being a crank. If, however, relation 

(6.15) is reversed, then a double lever results and no link can rotate 

completely relative to any of the three remaining links. 

Note the use of the Max and Min functions which are available in 

the algol language. If 

a > b > c > d 

are ordered magnitudes as indicated above, then 

a = Max (a,b,c,d) 

and 

d = Min (a,b,c,d) 

Transmission Angles 

An important consideration for the designer of mechanisms is the 

value of the transmission angle at pin joint A or B. The closer the 

transmission angle approaches 90°, the better the linkage is capable of 

transmitting a usable force. Since either of the links R or T might 

be used as the follower link, both are studied for the value of the 

transmission angle Y during the production of the approximate straight 

line portion of the coupler curve. 

In Fig0 (34) a four-bar linkage is represented with transmission 

angles Y and Y, located at pin joints A and B. In the evaluation 

of the transmission angle, the direction of the link center line (without 

regard to the sense of the line) is significant.. Consequently, the 

principal value (represented by primes in the figure) of the arctangent 

function is sufficient for the present purpose. (The principal value of 

the arctangent function has the range -rc/2 to it/2). 
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Consider the evaluation of f for the position shown in Fig. 

a 

(6.5). If both 0' and ^' are positive, then 

Ya = \fi ' X*l (6.16) 

Otherwise, if |jZf' | + |x' I i s larger than 90°, then 

Ta = 180°- ( | .0-| + | X ' | ) (6.17) 

or if [fr | + | x ' | i s less than 90°, then 

r = \fi | + | x ' | (6.18) 
a 

For the calculation of y, , the values of i|)' and X' are used in 

the above relations. This sequence of computations is represented by 

what is known as a procedure statement labeled "angle" (lines 13 through 

22). It can be used at any time in the program as illustrated by lines 

81 and 157. 

Computation of the Deviation Curve 

Most of the preceding discussion of this chapter refers to the 

initial position of the linkage. To cal.culate the deviation of the 

coupler curve from an exact straight line, it is necessary to consider 

the linkage in a range of positions on either side of the initial posi

tion. This requires a special technique of computation due to Denavit 

and Hartenberg (34). It represents a closed form expression for the 

output angle -ty if the value for the input angle 0 is specified. 

Because of the high accuracy required of the computations, a closed form 

solution is virtually essential. It has the limitation, however, of not 

being able to pass through certain dead center positions of the cranks. 
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Derivation of the Input-Output Displacement Function 

Because of the importance of the input-output displacement function 

of the four-bar linkage to this investigation, it is reproduced here in 

a form similar to that given by Denavit and Hartenberg. Referring to 

Fig. (35), it is apparent that 

x = R cos 0 x, = T cos i]j + Q 

y = R s in 0 y, = T s in t|> (6 .19) 

and requiring that the coupler link is inextensible, it follows that 

(xb - x a )
2 + (yb - y j 2 = S 2 (6.20) 

Substitution of the values for the coordinates of the pin joints 

A and B from Eq. (6.19) into Eq. (6.20) results in 

T 2 + Q 2 - S 2 + R2 - 2RQ cos 0 = 

[2RT cos 0 - 2QT] COS T|J + [2RT sin jZQ sin \|j 

and rearranging 

A sin \J) + B COS T(> .= C (6.21) 

where 

A = sin 0 

B = cos 0 - Q/R 

2 2 2 2 
r Q + R + T - S 9 rk 
C = —- - ̂  cos 0 

2RT T r 

Eq. (6.21) is not explicit in the desired variable I(J . To obtain an 
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Figure 35. Symbols for the Input-Output 
Displacement Function. 

Figure 36. Dead Center Positions Along Follower. 
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explicit expression, use the substitutions 

. . 2 tan xb/2 . 1 - tan2 T|>/2 sin \|) = y , cos \J) = . T' 
1 + tan iJ)/2 1 + tan \|>/2 

which results in the quadratic in tan \|)/2 

(B + C) tan2 \|)/2 - 2A tan \|)/2 + (C - B) = 0 (6,22) 

from which 

+ - 2 tan"1 fA±V^T^-C2 j (&>23) 

This is the required explicit form for \J). As mentioned earlier, it 

has certain limitations. The square root term can not have a negative 

argument and there exists the uncertainty associated with its sign. As 

shown in Fig. (35), there are two positions of the follower which satisfy 

Eq. (6.23). Graphically, the positive sign is to be used when the 

coupler link center line does not pass between the fixed pivots. It 

must be pointed out that the explicit form, Eq. (6.23), has a distinct 

advantage over the trancendental form, Eq. (6.21). The explicit form 

does not require an iteration as does the transcendental form. This 

means that the explicit form, where it is applicable, is inherently much 

more accurate and consumes much less machine time. Both of these cri

teria- are of primary importance to this investigation. 

In general, the use of the explicit form was found to be appli

cable for a wide range of motion. That is, normally the entire approxi

mate straight line segment of the coupler curve was successfully calcu

lated by this approach. Given a faster machine such as the Burroughs 



113 

B 5000, the implicit form should be investigated for its usefulness by 

evaluating the amount of machine time required and the resulting accuracy, 

The following approach to eliminate the limitations of the 

explicit form has not been used in the computer programs of this 

investigation (primarily because the memory space of the computer was 

already limited). The difficulty results when a dead center position 

at the follower pin-joint is reached. This difficulty does not occur 

for the drag link mechanism. If the input variable is always applied 

to the crank of those mechanisms that are crank and lever mechanisms, 

dead center positions at the follower do not occur. 

During the motion of those double lever mechanisms which allow a 

full 360° rotation of the coupler link, the square root term of the 

explicit form of the input-output function approaches zero twice. In 

those positions the pin joint B lies on the diagonal 0|A. The sign 

of the square root term must be reversed for these positions; and, in 

addition, the motion of the input lever must be reversed (Fig. 36). The 

values for the input variable 0 corresponding to these positions are 

represented as 0 values calculated by 

0* = cos -1 

<p _ = cos 

9 9 9 
"Q + R - (S + T) " 

2RQ 

,Q2+ R2 - (T - S): 

2RQ 

(6.24) 

The double lever mechanisms which do not allow a full rotation of the 

coupler link have two symmetrically placed positions about the fixed 

axis. The dead center positions are 



114 

2 2 / s2 
0+ = cos Q + R - (S + T)' 

2RQ 

JZf** = 360 - 0** (6.25) 

Application of the Displacement Function 

The sign of the square root term is chosen by lines 93 through 

103 of the computer program. Once this choice has been made the sign is 

not reversed during the rest of the computation. The limitations of 

this procedure have been discussed in the preceding article. The 

computation of the angle ty for increasing 0 is effected by lines 

114 through 129 and for decreasing 0 by lines 176 through 192. The 

position of the coupler link is determined by evaluating the angle x 

as shown in lines 133 through 138. The x and y coordinates of the 

location of the output point are then obtained from 

x = R cos 0 + M cos (e + y-) 

y = R sin 0 + M sin (e + x) (6.26) 

The u and v coordinates are calculated by using the transforma

tions of Eq. (6.2) and (6.4) in succession. These computations are 

carried out in lines 139 through 145 where D is the sought after 

deviation. 

Lines 159 through 173 are used to determine the length of the 

approximate straight line segment of the coupler curve for three dif

ferent specified accuracies. The values of A0, A*[> , y , and y, 
a D 

corresponding to the linkage positions at the extremes of the approxi

mating segment of the curve are also recorded. 
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Lines 254 through 258 represent the calculation of dv/du and 

2 2 
d v/du for the deviation curve by finite difference approximations. 

These derivatives are indicative of the dynamic character of the devia

tion curve. 

Discussion of the Computer Output 

In order to make the data resulting from the computer oriented 

problem more useful, a value for the unit length of the mechanism is 

required. Since the diameter of the inflection circle is largely inde

pendent of the size of the mechanism, it does not fulfill this require

ment. The unit length that has been used is the average of the four 

links Q, R, S, T and the average of M and N, such that 

M + N 
Q + R + S + T + ~-^— 

Unit Length = (6.27) 

This unit value gives very satisfactory results. All data resulting from 

the computations of the computer program are adjusted to this unit length, 

In addition, no link is allowed to be five times larger than the small

est link. This requirement removes from consideration those linkages 

that may be' considered to have poor proportions. This is accomplished 

by lines 90 through 92 in the computer program. At the end of this 

article is a representative output for a linkage having a Ball-double 

Burmester point (Fig. 37). The manner in which the data are inter

preted depends somewhat on the type of mechanism. Three sets of data 

for the length of travel, the range of rotation of a crank, and the 

transmission angles, are given corresponding to the three specified 

accuracies of the output curve. 
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In all cases, the range of the rotation of the cranks A0 or 

Ai|) will be importanto For example if A0 for the crank of a crank and 

lever mechanism is 180°, this tells the designer that half the cycle is 

spent producing the segment of the coupler curve approximating a straight 

line. If it is greater than 180°, the linkage might be considered to be 

a quick return mechanism. Normally, the transmission angle at the driven 

pin joint is of importance. For the drag link mechanism, the driven 

crank will most likely be the one having the minimum rotation during the 

production of the approximate straight line portion of the curve. Hence, 

the largest range of rotation of the cranks and the transmission angle 

of the opposite crank are quoted in the graphical presentation of the 

linkage (Fig, 37). For the crank and lever mechanism, the range of 

rotation of the crank and the transmission angle at the follower are 

listed. Since double lever linkages will most likely be used as guiding 

mechanisms with the input at the coupler point, the larger range of 

rotation, A0 or Aif) , of the levers and the smaller value of the 

transmission angles, y and y,f would be significant. 
a. D 

In Figure (37), the dimensions of the levers R and T are 

given with the other linkage dimensions. If R or T or both are 

cranks, they will be starred. No star is interpreted as a double lever 

mechanism, one star as a crank and lever mechanism, and two stars as a 

drag link mechanism., Fig0 (38) is the graphical plot of the deviation 

2 2 
v and d v/du versus the distance u traveled along the tangent to 

the coupler curve. Note the smoothness of the curves and the high degree 

of "flatness" exhibited by the curve near the design position (u = 0). 

These desirable properties are characteristic of those coupler curves 

whose mechanisms are designed on the basis of curvature theory, 
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PARAMETERS 
oca = 65.0 ccb= 165.0 

D IMENSIONS^ = 142.270) 
Q = 1.13015 S = 1.03814 
R*= 0.39118 M = 1.42187 
T = 1.53773 6 = 0.0 

RESULTS (0O= 231.600) 

Figure 37. Representative Linkage. 



Figure 38. Representative Deviation Curve, 

oo 



Representative Output 

FIVE POINT EXACT STRAIGHT LINE MECHANISMS 

AA= 65,00 AB= 165.00 AD= .14227029, 03 
1 IS CRANK OF 1,2 CRANK AND LEVER MECHANISM 
MECHANISM 1,2 UNIT LENGTH = .69321822, 00 

LINK LENGTHS AND COUPLER DIMENSIONS 
0= .11301506, 01 R= .39117811, 00 S= .10381410, 01 T= .15377302, 
EPSILON = .00000 SIDE 1 = .14218706* 01 SIDE 2 = .38372948* 
INITIAL ANGLES 
PHI= 231.600 PSI= 151.600 GAMMA A= 37.270 GAMMA B= 62.729 
LENGTH - .39753037, 00 DL= .11262542,-03 DR = .10999133,-03 

CORRESPONDING LIMITS FOR INPUT OUTPUT, AND PRESSURE ANGLES 
PHI* 30.000 P5I= 4.279 GAMMA A= 20.418 GAMMA B= 53.860 
PHI= ^32.000 PSI= =6.483 GAMMA A= 57.189 GAMMA B= 68.326 
LENGTH =.10096978, 01 DL = .10418407,-01 DR = #10076307,-01 

CORRESPONDING LIMITS FOR INPUT OUTPUT, AND PRESSURE ANGLES 
PHI= 72.000 PSI= 6.337 GAMMA A- 4.084 GAMMA B= 38.421 
PHI= -=91.000 PSI= -21.923 GAMMA A = 76.327 GAMMA B= 65.404 
LENGTH = .13200716, 01 DL = .20448077,-01 DR r #20140843,-Q3 

CORRESPONDING LIMITS FOR INPUT OUTPUT, AND PRESSURE ANGLES 
PHI= 81.000 PSI- 5.777 GAMMA A= 10.289 GAMMA B= 35.149 
PHI=-153.000 PSI= -34.114 GAMMA A= 7.840 GAMMA B= 46.769 
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01943042 •00000022 
01280350 .00000027 
04426964 .00000019 
07492291 -•00000089 
10470595 -•00000596 
13354783 -•00002293 
16135922 -.00006553 
18803117 -.00015665 
21343110 =•00033064 
23739808 ^•00063552 
25973891 -.00113661 
28022252 ^.00191883 
29857351 -.00309044 
31446264 -•00478514 
32749828 -.00716417 
33721499 -.01041840 
34306067 -.01476598 

27651575 • -05 -.15352068 
51735844 >r05 -•39514020 
1462$064 »-04 -.45705798 
75399906 • -04 ^•57549880 
31740957 • -03 -.15485328 
94897389 • -03 -.30759618 
22950742, • -02 -.65285206 
48363480j • -02 -•13236529 
93333825, • -02 -.22886516 
16852344, • -01 -.41444884 
291843001 • -01 -•72352354 
49198090i • -01 -.13101116 
82061554i • -01 -.24600122 
13824123, 00 -•50871186 
24298295, 00 -.12799208 
47783821, • 00 -.47411232 
13457974, 01 -.55081088 



Representative Computer Program 

COMMENT STUDY OF THE DEVIATION FROM EXACT STRAIGHT LINE MOTION FOR 
THE' LINKAGES WHICH HAVE A DOUBLE BURMESTER-BALL POINT SOME 
WHERE ON THE INFLECTION CIRCLE. THE OUTPUT WILL GIVE 
THE PRESSURE ANGLE, TYPE OF MECHANISM, THE LENGTH OF THE 
STRAIGHT LINE OUTPUT FOR THREE DIFFERENT ACCURACY 
SPECIFICATIONS > - - DELBERT TESAR, M.E., •' G -i I • T • • OCT I , 1963 
DUMP ' ' 
MONITOR Z,X»Y,US»VS 
INTEGER I,J,L,MEN,LADY,2,F,FAT,NAT 

ARRAY AT3) ,AR«3i,Uf21,V(2),UP(2),VP(2)• U U ( 2 ) , 
VVC2),UUP(21,VVP(2),UPU(2),VPV«2),NS«330)»DL(330) 
G=l.7453293**-2 $ 2=0 $ W=(180.0fG» 

PROCEDURE ANGLE(X*Y$V) 
BEGIN S=ABS«X/0.017453293)$ T = ABS( Y/0.017453293) 
EITHER IF (X.Y) GTR 0»0 
BEGIN V=ABSCS-T) $ RETURN END 

OTHERWISE 
EITHER IF IS+T) GTR 90.0 
BEGIN V=ABSf180.0-(S+T)) ' $ RETURN END 

OTHERWISE 
BEGIN V-S+T $ RETURN END 

END ANGLE H 
1=1 • $ J-2 
FOR A(D-75.0,80.0,85*0 
FOR A(2 1=145.0,150.0,155.0,160.0,165.0 

BEGIN ARm-lGHA(l) )'•!?' $ AR ( 2 1= i 6 )( AC 2 ) ) 
VEW = TAN(ARU) )+TAN(AR(2) ) 
WEV*(TAN(AR(1M!.) ITANIARI2) )') 
ARM=ARCTAN<=VEW/CWEV+3.0)). 

EITHER IF ARM LSS 6.0 $ ARt3)=ARM+W 
OTHERWISE $•' ARi3)=ARM $ A<3)=AR(3)/G 
A1R = AR'(3) ~ ~ ^ 
IF-'ABS<A(1)»A<2>) LSS 0.001 5 GO TO JOB $ 33 

2 
3 
4 
5 

$ 6 
$ 7 
$ 8 
$ 9 

10 
$ 11 
$ 12 
$ 13 
$ 14 
$ 15 
$ 16 
$ 17 
$ 18 
$ 19 
$ 20 
$ 21 
$ 22 
$ 23 
$ 24 
$ 25 
$ 26 
$ 27 
$ 28 
$ 29 
$ 30 
$ 31 
$ 32 
$ 33 

K3 



IF ApS<A<l)-A(3)) LSS 0«001 $ GO TO JOB $ 34 
PA*(VEWHWEV-1.0MSIN(AR(1) ))/i <WEV+3.0HTAN<AR(1) }) 35 

.VEW(WEV)' ) $ 36 
P^(VEWJ(WEV-1.0) (SlN(AR(2)))/-(IWEV+3n6) (TAN(AR(2)») 37 

VEWiWEV)) $ 38 
P O A = ( P A M S I N ( A R m ) ) /<S IN(AR(1 ) ) -PA I $ 39 
P O B * ( P B ) ( S I N ( A R ( 2 ) ) ) / ( S I N I A R ( 2 ) » - P B ) $ 4 0 
VC I • ) r<POA-H$ IN(AR(h ) ) $ M 
U(l ) is (POA.MCOS'(AR( l ) ) ) $ 4 2 
VP(1) = «PAMSIN(AR(1) H $ 43 
UP( i ) * ( .PA) fCOS(AR( l ) )) $ 4 4 

V f 2 ) = (POB) t51N<A&(2)) ) $ 4 5 
UC2) = (POB) . (C6s(AR(2) j ) $ 4 6 

V P U ) = IPBHSIN(AR<2) ) ) $ 47 
UP(2)=(PB)<COS«AR*2»)) $ 4 3 
V P l * ( S l N l A R ( 3 n ) «SIN«AR«3) » ) $ 49 
U P H ( C O S U R ( 3 n H S I N « A R ( 3 » n $ §0 
y y i n ^ i y H i i ) ^ $ § i 

VV< U i V C « l | - v r ' t ) $ 52 
u 6 P ( I ) i U P i j ) - H J P U ) $ 5 3 
V V P U J ^ V P C J J - V P < i j $ 54 

UPDU }=up<n-uu J $ UPU(JJ=UP(J)-U< Ji $55 
VPVCI j-vpt n - v c n $ V P V ( J ) = V P ( J ) - V M ) $56 
o » SQRT( (uun n «uu« i•)) + <vvc i ) ) tvv( n n $ 57 
S = SQRT(«UUP(I))(UOP(I))+(VVP(I)) «VVP(I))) $58 
R«ABS(P0A-PA) $ T-ABS(POB-PB) $ 59 

EITHER IF UU(I) LSS 0.0 $ THR*ARCTAN(VV(I)/UU<I))+W $60 
OTHERWISE $ THR^ARCTAN(VV(I)/UUU») $61 
IF THR LSS 0.0 $ THR=THR+2.0.W $ 62 
XXP = UPUUKOSCTHR) + VPVM ) SIN i THR » $ 63 
YYP-=«UPU(.I)SIN!(THR) + VPV(I)COS(THR> $64 
XPX * UPU(J).GbstfHR) + VPVfJ)SIN(THR) $ 6 5 
YPY =-UPU(J)SIN(THR) + VPV(J J COS(THR) $ 66 
PHHI=ARCTAN(YYP/XXP) $ 6 7 

EITHER IF XXP LSS 0.0 $ PPHIR=PHHI+W $ 68 K 
OTHERWISE $ PPHIR=PHHI $69 " 



EITHER 

BEGIN 
EITHER 

EITHER 

BEGIN 

EITHER 
EITHER 

EITHER 

IF PPHIR LSS 0.0 $ 
PPHIaPPHIR/G " 
PPSHARCTAN<YPY/XPX) 
IF (XPX) LSS o.o $ 
OTHERWISE $ 
IF SSTR LSS 0.0 $ 
SSI=SSIR/G 
II^KIRsARCTANC «YPY-YYP) /(XP 
IF (XPX-XXP+Q5 LSS 0.0$ 
OTHERWISE $ 
IF KKIR LSS 0.0 $ 
ANGLE(PHHI»IKKIRSGGA ) 
ANGLE(PPSI»IKKIR$GGB) 
PD = SIN"(AR(3) ) 
N~SQRT(ABStPB.PB+PD.PDH2. 
M=SORT(ABS(PAfPA+PD.PD"{2. 
|F ABS(5~ i M+N ) •) LSS * 0 . 0000 
OTHERWISE 
EITHER IF (M-N) 
OTHERWISE E = 0.0 END $ 
MM * MAX(0*R,S*T»(IM+NJ/2. 
NN = MIN(0»R,S»T»(M+N1 ) 
IF MM/NN GTFR 5*0 $ 
AA = SlNfPPHIR) 
BB * COS«PPHIR}^(Q/R| 
CC ?'•( (Q«O^R.R + T'.f-S«S)/(2 
IF (AAfAA4BB.BB»CC*CC) LSS 
DD - 5QRT«AA.AA+B$.BB^CC.C 
I F ( ( A A + D D ) / ( B B + C C n GEQ 0 
IF ABS(SSIR=(2.0)ARCTAN((A 
CA * .1*0 $ OTHERW 
OTHERWISE $ 
I.F':ABS(SSIR-(2.0) (W+ARCTAN 
CA = 1.0 $ OTHERW 
WRITE($$TL1K 
WRITE($$AN1»TL2]I 

PPHIR=PPHIR+2.0.W 

SSIR=PPSI+W 
SSIR=PPSI 
SSIR=SSIR+2.0?W 

X +Q-XXP)5 
KKIR=IKKIR+W 
KKIR=IKKIR 
KKIR=KKIR+2.0.W END 

0)(PB.PD)C0S(AR(2)-AR<3)))) 
0)CPA.PD)COS(AR(1)-AR<3))>) 
1 $ E=0.0 

0 

LSS 0.0$ 
ER=(E)«G) 

GO TO JOB 

E-180.0 

• O.R.T) )-(Q/T)C0S(PPHIR) 
0.0$ GO TO JOB 

C) 
•0 $ BEGIN 
A+DD)/(BB+CC)n .' LSS 0.001 
ISE $ CA = -1*0 END 

BEGIN 
(•(AA+DP)/(BB+CC) ) ) ) LSS 0.001 
ISE $ CA = -1.0 END 

$ 70 
$ 71 
$ 72 
$ 73 
$ 74 
$ 75 
$ 76 
$ 77 
$ 78 
$ 79 
$ 80 
$ 81 
$ 82 
$ 83 
$ 84 
$ 85 
$ 86 
$ 87 
$ 88 
$ 89 
$ 90 
$ 91 
$ 92 
$ 93 
$ 94 
$ 95 
$ 96 
$ 97 
$ 98 
$ 99 
$ 100 
$ 101 
$ 102 
$ 103 
$ 104 
$ 105 



UN = (Q+R+S+T+((M+N)/2.0) 
MEN«0 $ 
SAVE=Z=SU^GIN=SIR=SOT-0,0 
UMAX1=UMAX2=UMAX3=UMIN1=UMIN 
GA1=GA2*GA3=AG1=AG2*AG3=0.0 
GB1=GB2=GB3=8G1=BG2=BG3=0*0 
IPi=IP2=IP3=ilPi=iiP2=IIP3=0 
IS1=IS2=I53=IIS1=IIS2=IJS3=0 
FOR 2=(0,1,180) 

BEGIN PHIR '* PPHIR + (G.Z)$ 
LA = SIN(PHIR) $ 
LB = GOS(PHIR)-(0/R) 
LC = ((G*Q+RiR+T.T-S.S)/<2.0 
IF (LA.LA+LBiLB-LC.LC) LSS 0 

EITHER IF MEN EOL 0 
BEGIN Z-Z-L $ L=L+1 
OR IF MEN EOL 1 
BEGIN Z = Z-L $ L=L+1 
OTHERWISE 
BEGIN Z^Z-L $ 

LD = 5QRT(LA.LA+LB.LB-LC.LC) 
SIR = (2.0)ARCTAN{(LA+CA.LD) 

EITHER IF SIR GTR 0.0 $ 
OTHERWISE $ 

EITHER IF (SIR GTR W/2.0) AND (SIR 
OR IF (SIR LSS -W/2.0) AND (SIR 

OTHERWISE 
AX * R.COS(PHIR) $ 
BX * T.COS(SIR) + Q $ 

BEGIN IK=ARCTAN((BY-AY)/(BX-AX)) 
EITHER IF (BX-AX) LSS 0.0 $ 

OTHERWISE $ 
IF KIR LSS 0.0 $ 
X»( (RHCOS(PHIR) ) )+•( (M)(GOS( 
Y=((R)(SIN(PHIR)))+((M)(SIN( 
US^UX*(COS(THR)))M (Y> (SIN( 

)/5.0 
SV«0«0 
S 

2=UMIN3=0.0 

.0 

.0 

D=?0.0 $ L = l 

PHI = PPHI + Z 
F^Z+180 

• R.T) ) 
.0 

$ 

$ 

(Q/T)GOS(PHIR) 

GO TO DUT END 

GO TO GUT END 

GO TO MUT END 

/(LB+LO) 
SI*(SIR-SSIR)/G 
SI=(SIR-SSIR+2.0.W)/G 

LEQ W) 
GEO ~W) 

AY = R.SIN(PHIR) 
BY = T.SIN(SIR) 

KIR=IK+W 
KIR=IK 
KIR=KIR+2.0»W 

ER+KIR)) ) 
ER+KIRj)) 
THR))) + (UU)) 

SIRI=SIR-W 
SIRI-SIR+W 
SIRI=SIR 

END 

$ 106 
$ 107 
$ i08 
$ 109 
$ 110 
$ 111 
S 112 
$ 113 
$ 114 
$ 115 
$ 116 
$ 117 
S 118 
$ 119 
$ 120 
S 121 
$ 122 
$ 123 
$ 124 
$ 125 
$ 126 
$ ill 
$ lie 
$ 129 
$ 130 
$ 131 
$ 132 
$ 133 
$ 134 
$ 135 
$ 136 
$ 137 
$ 138 
$ 139 
$ 140 
$ 141 

hO 

en 



VS*((X)(SIN(THR)) ) + ((YMCOS(THR)))+(V(I)) 
SU=((UP1-US)SIN(A1R)+(VS=-VP1)C0S(A1R))/UN 
SV* (UP1-US)C0S(A1R)-(VS-VP1)SIN(A1R) 
D=AB5(SV/UN) 
IF 2 EQL 1.0 $ GIN=SIGN(SU-SOT) 
IF Z EQL 0*0 $ SOT=SU 
IF (GIN)(SU-SAVE) LSS 0.0 

EITHER IF MEN EQL 0 
BEGIN Z=Z-L $ L=L+1 $ GO TO OUT 
OR IF M£N EOL 1 
BEGIN Z = Z-l_ $ L=L+1 $ GO TO GUT 
OTHERWISE 
BEGIN Z*Z-L $ GO TO MUT 

DUF)ssv/UN 
NS(F)=SU-SOT $ SAVE=SU 
ANGLE((PHHI+Z.G)»IK$GA) 
ANGLE(SIRI»IK$GB) 
SWITCH MEN*(BAD,GOOD) 
IF D GTR 0.0001 

DUT,. BEGIN UMAX1=SU-S0T $ MEN = 1 
GA1 = GA $ GB1 = GB $ 
IP1 - Z $ IS1 = SI 

BAD.. IF D GTR 0.01 
GUT.. BEGIN UMAX2-SU-SOT $ MEN = 2 

GA2 = GA $ GB2 = GB $ 
IP2 = Z $ IS2 = 51 

GOOD.. IF D GTR 0*05 
MUT*. BEGIN UMAX3=SU-SOT $ FAT=F 

GA3 = GA $ GB3 ='GB $ 
IP3 « Z $ IS3 = SI 
GO TO PUT 

PUT». LADY=0 $ SVs0»0 
SAVE«Z=SU=GIN=SIR=0»0 $ D=0»0 

FOR i = i^i,-i;*x8o) 
BEGIN PHIR = PPHIR + (G.Z)$ F»Z+180 

PHI * PPHI + Z 

$ 142 
$ 143 
$ 144 
$ 145 
$ 146 
$ 147 
$ 148 
$ 149 

END $ 150 
$ 151 

END $ 152 
$ 153 

END $ 154 
$ 155 
$ 156 
s 157 
$ 158 
$ 15 9 
$ 160 
$ 162 

DL1 = D $ 163 
END $ 164 

$ 165 
$ 166 

DL2 = D $ 167 
END $ 168 

$ 169 
$ 170 

DL3 = D $ 171 
$ 172 

END END $ 173 
$ 174 

$ L = l $ 175 
$ 176 
$ 177 
$ 178 

ro 
o 



LA * SIN(PHIR) $ 179 
LB = CO$(PHIR>-(Q/R) $ 1 8 0 

LG = UQ.Q+R.R+T.T-S.S)/(2.0.R.Tn - (0/T JC0S ( PHI R ) $ 181 
IF (LA.LA+LB.LB-LC.LG) LSS 0.0 " $ 18 2 

EITHER IF LADY EQL 0 $ 183 
BEGIN Z = Z+L $ L = L+1 $ GO TO WUT END $ 184 
OR IF LADY EQL 1 $ 135 
BEGIN Z«Z+L $ L=L+1 $ GO TO YUT END $ 186 
OTHERWISE $ 1 8 7 

BEGIN Z~Z+L $ GO TO GUT END $ 188 
LD ~ SQRTCLA.LA+LB.LB-LC.LC) * $ 189 
SIR ± C2.0)ARCTANC (LA+CA.LD)/fLB+LC) ) $ 19Q 

EITHER IF SIR GTR 0.0 $ SI=(SIR-SSIRJ/G $ 191 
OTHERWISE $ SI=(SIR-SSIR+2i0.W)/G $ 192 

EITHER IF (SIR GTR W/2.0) AND (SIR LEO W) $ SIRI=SIR-W $ 193 
OR IF (SIR LSS>W/2.0) AND ((SIR GEO -W) $ SIRI=SIR+W $ 194 

OTHERWISE $ 5IRI*3IR $ 195 
AX •= R.COS(PHIR) $ AY = RiSINfPHIR) $ 196 
BX - T.COSCSIR) + 0 $ BY = T.SINfSlRJ $ 197 

BEGIN IK=ARCTAN(<BY-AY)/(BX-AXM - $ 198 
EITHER IF CBX-AX) LSS 0.0 $ KIR=IK+W $ 199 

OTHERWISE $ KIR^IK $ 200 
IF KIR LSS 0.0 $ KIR=KIR+2.0.W END $ 201 
X*< '(R) (COS(PHIR)) ) + ( (M)(C0S(ER+KIR) )l • : $ 202 
Y=( (R)(SiN(RHIR))) + <(M)(SIN(ER + KIR))) • • S 203 
US=( Ojt) (COSfTHR >))-(( Y) (SI N(THR) ) ) + (U( I) ) $ 204 
VS=< (X) (SJN(fHR) J ) + ( (Y) (COS(tHR) )) + ( V ( D ) $ 205 
SU=( (UPl»USJ$rN(AlRJ + (VS™VPUGOS(AlR) ) /UN $ 206 
SV= (UP1-US)C0S(A1R)-(VS-VPDSIN(A1R) • : $ 207 
D=ABS(SV/UN) $ 208 
IF Z EQL -1.0 $ GIN=SIGN(SU-S0T) $ 209 
IF (GIN)(SU-SAVE) LSS 0*0 $ 210 

EITHER IF LADY EQL 0 $ 211 
BEGIN Z = Z+L $ L=L+1 $ GO TO WUT END $ 212 
OR IF LADY EQL 1 $ 213 
BEGIN Z=Z+L $ L*L+1 $ GO TO YUT END $ 214 



OTHERWISE 
BEGIN Z * Z + L $ 

D L ( F M S V / U N 
NS«F HSU-SOT $ 
ANGLE*«PHHI+Z .G) * IK$GA> 
A N G L E J S I R I H K S G B ) 
SWITCH LADY* (G IRL*BOY) 
I F O'GTR O.OOOl 

W U T . . BEGIN UMIN1=SU~S0T $ 
AG1 =: GA ' $ 
11 P I •- Z $ 

G I R L . . I F D GTR 0 . 0 1 
YUT.. BEGIN UMIN2=SU-S0T $ 

AG2 ;••= GA $ 
IIP2 = Z $ 

BOY.. IF D GTR 0*05 
CUT.. BEGIN UMIN3=SU~S0T $ 

A G 3 > GA $ 
IIP3-= Z $ 
GO TO RUT 

RUT*. X -ABSfUMAXl)+ABS(UMINl) 
Y"*ABS'(UMAX2)+ABS(UM!N2) 
P =?ABSTUMAX3 J+ABSCUMIN3) 

EITHER IF (Q+SVGTR *T*R) 
BEGIN SA >•l'MAX(Q»S) $ SB=Q+S 

OTHERWISE 
BEGIN SA=MAXCT»R) % SB=T+R-SA 
EITHER I F ( S A ^ S B T L S S «SC~SD) 
BEGIN SM * M I N J S A i S B i S C t S D ) 

I F ABSCSM-Q) LSS 0 * 0 0 0 0 1 
WRITE($$AN2»TL3) 
IF ABSCSM-R) LSS 0*00001 
WRITE($$AN3*TL4) 
IF ABS(SM~T) LSS 0.00001 
WRITE($$AN4*TL4) 
OTHERWISE 

GO TO ( CUT END 
$ 215 
$ 216 

SAVE=SU 
$ 217 
S 218 
$ 219 
$ 220 
$ 221 

LADY = 1 
BGl = GB 
IISl =SI 

$ DR1 = D 
END 

$ 222 
$ 223 
$ 224 
$ 225 

LADY = 2 
BG2 = GB 
IIS2 = SI 

$ DR2 = D 
END 

$ 226 
$ 227 
$ 228 
$ 229 

NAT-F 
BG3 = GB 
US3 = SI 

$ DR3 = D 

END END 

$ 220 
$ 231 
$ 232 
$ 233 
$ 234 
$ 235 
$ 236 
$ 237 

S SC=MAX(T • R) $ sc ) = T+R-SC END 
$ 238 
$ 239 

SC=MAX(0*S) $ SD =Q+S-SC END 
$ 240 
$ 241 

END 

$ 242 
$ 243 
$ 244 
$ 245 
$ 246 
$ 247 
$ 248 
S 249 
S 250 00 



BEGIN 

JOB*. 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

OUTPUT 
FORMAT 
FORMAT 

FORMAT 
FORMAT 

FORMAT 
FORMAT 
FORMAT 

WRITE($$AN2»TL5) 
Q=Q/UN $ R^R/UN $ S=S/UN $ 
WRITE($$ANIO;TL IO) 
FOR F=MNAT+1,1»FAT-1) 
AC ••' = •(2.0) ( (( (DL(F+1)-DL(F) ) / (NS ( F + l) *NS( F ) ) 
UDL<F)-DL(F-1) >/(N${F)~NslF-*inM/(NS(F+l)-NS(F-l) )) 
VE =(DL<F + l)-DL(F~m/<NS«F+l)-NS(F-in 
WRITE($$AN17,TL17) 

-T/UN $ M*M/UN • $ 

) 

AN1 ( A(l) »A( 2K*A(3 
AN2(.j#J) 
AN3(I,I,J) 
AN4(J,I»J) 
AN1Q(I>J,UN,Q,R,s>T* 
X,DL1,DR1,IP1,IS1»GA 
Y»DL2#DR2,IP2»IS2*GA 
P»DL3»DR3,IP3»IS3,GA 
AN17fNS(F)iDL(F),VE 
TLi(B20»*FIVE POINT 
TL2(B5» 

F14.8»W2) 
TL3(B5>I1,*,*,!!,> I 
TL4(B5,I1,* IS CRANK 

*MECHANISM»* 
TL5(B5»I1,*,*,I1»*I 
TL17(B5,X11.8>X17.8» 
TL10(B5,*MECHANISM * 

B5**LINK LENGTHS 
B5»*Q=* i'TiF'14:i'8»B2 

i> 

END 
END 
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S 
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$ WO) 
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W2, 
•8»B2»*T= 
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F14. 

B5,*INITIAL ANGLES*»W2, 
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2 =*» 
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•8»W4»W0» 

251 
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253 
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255 
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CHAPTER VII 

EVALUATION AND COMPARISON OF THE 

LINKAGES STUDIED 

The material included in this chapter is intended to survey the 

results of the analysis derived from the theory of the preceding chap

ters. It is by no means to be considered a complete interpretation of 

the full scope of the data that might be obtained. It should, however, 

provide the fundamental methods of reducing the data to a meaningful 

form. The linkages considered are based on the design equations of 

Chapters II and V. Similar studies can be made on the material given 

in Chapters III and IV. 

The available data consist of approximately 3000 linkages. Of 

these, sixteen are used as representative linkages for the purpose of 

displaying the primary information (the length of the approximate straight 

line output for a specified accuracy). The analysis for the primary 

information of those linkages having a Ball-double Burmester point is 

presented in nomograph form. Although additional data are available, it 

can not be generalized here because of the extent of the data. 

Comparison of Linkages 

The linkages and the respective deviation and second derivative curves 

are presented in Fig, (39-70, 72, and 73). Fig. (39-44) are .the three 

four-bar linkages which are alternates to the original slider-crank 

mechanism 0 AD. These linkages have a Burmester point coincident with 



132 

PARAMETERS (1,2) 
cca = 50. 0 ocb = 20.0 ocd= 80.0 

DIMENSIONS (occ= 96.343) 

Q = 0.78412 S= 0.59214 
R = 2.10674 M= 0.52451 
T = 0.94794 € = - 6 6 . 3 4 3 

Figure 39. Alternate 1,2 for General Ball-Burmester Point. 
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Figure 40. Deviation-Second Derivative Curves for Alternate 1 2 
of General Ball-Burmester Point. 
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PARAMETERS (2,3) 
oc« = 5 0 . 0 oci 

(occ = 

. g - w w . w VA.b 

DIMENSIONS 
Q * 0.52678 
R = 0.93190 
T = 0 .82065 

ESULTS (0O= 53 .657 ) 
D 0.0001 0.01 0.05 
L 0.355 0.810 1.061 
A* 47 103 117 

3.7 

= 20.0 ocd =80.0 

96.343) 
S = 1.46780 
M = 0.60321 
€ = -128.465 

INFLECTION 
CIRCLE 

POINT PATH OF D 

Figure 41. Alternate 2,3 for General 
Ball-Burmester Point. 
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Figure 42. Deviation-Second Derivative Curves for Alternate 2,3 
of General Ball-Burmester Point. 
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PARAMETERS (3,1) 
oca = 50.0 ack=20.0 0^=80.0 

DIMENSIONS (ccc = 96.343) 
Q = 0.61374 S = 1.46185 
R = 0.58522 M 
T = 1.47694 € 

RESULTS((()0=67.877) 
D 0.0001 0.01 
L 0.2 66 0.656 
A(|> 4 9 118 
Yb 17.9 7.7 

= 1.35677 
= 14.3737 

0.5 
0.866 
160 
3.3 

PATH OF D 

Figure 43. Alternate 3,1 for General Ball-Burmester 
Point. 
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the Ball point D on the inflection circle (Eq. 2.22-2.25 of Chapter 

II).. The design parameters are a , a, , and a,0 The dimensions of 

each linkage are given in the figure based on the value of unity deter

mined by Eq. (6027), The results of the digital computation that may 

be used by the designer are also listed. The approximating line of 

the motion of point D is drawn with the limiting positions where the 

coupler curve has a deviation of 0.01, In Figure (40), the deviation 

and second derivative of the deviation of the coupler curve from exact 

straight line motion is illustrated for alternate 1,2. As has been 

indicated earlier, the deviation is extremely small near the design posi 

tion. The fact that the second derivative curve is also very close to 

zero in the design position indicates a very intimate contact between 

the coupler curve and its tangent. These comments apply to all designs 

based on curvature theory and generally hold more fully for the higher 

4 / 4 
orders of contact. For fourth order contact, d v/du = 0, thus indi-

2 2 
eating that the second derivative curve d v/du has an inflection in 

the design position0 Since all derivatives up to the fourth are zero, 

the inflection of the second derivative curve is parallel to the u axis 

Similar diagrams for alternates 2,3 and 3,1 are represented in Fig. 

(41-44)0 Note the remarkable similarity of the second derivative curves 

for these alternates,, All three deviation curves have similar shapes 

and similar second derivative curves, which is indicative of the equi

valence of these alternate linkageso 

The circles along the deviation curve represent 10° increments 
of rotation of the input crank 0 A. 
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Fig0 (45-50) are the corresponding representations of three 

alternate four-bar linkages of a slider-crank mechanism having a Ball-

Burmester point coincident^with the inflection pole (Eq. 2.26-2,29 of 

Chapter II). Remarks similar to those for the case of the Ball-Burmester 

point can also be made. 

Fig. (51-56) represent three linkages designed by Burmester. 

These linkages are alternates of a slider-crank mechanism in the sense 

that five finitely separated positions of the coupler plane (hence, also 

output point D) of these linkages are the same as those of the original 

mechanism. The alternate linkages produce remarkably high quality 

s 

results. Note that there is no restriction on the deviation curve 

between the five specified positions. (The curves are not completely 

accurate in this case since the dimensions were obtained by direct mea

surement from the figures given by Burmester,) Nonetheless, the deviation 

curves are quite long and accurate and the second derivative curves are 

also close to zero over an extended range of the motion., Burmester 

obtained these linkages by means of an involved graphical procedure with 

which accuracy is very difficult to maintain., Generally, the deviation 
between the specified "precision" points can be expected to be consider-

kl 2 ably poorer. 

An important fact can be derived from Burmester's results. Finite 

position theory provides no control on the motion between the specified 

positions. This theory is presented in analytical form in Chapter III 

Burmester, Fig. (665-670). 

2 
The author wishes to express the admiration he holds for these 

results. Burmester must have indeed worked long and hard to find such 
high quality linkages out of the multitude that is possible. 
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PARAMETERS (1,2) 
. k = -2 .50 oca= 75.0 

DIMENSIONS (a b = 38.794) 

Q = 0.74691 S = 0 . 4 9 7 9 4 
R = 2.03564 M = 0.35103 
T = 1.32037 € = -60 .690 

RESULTS (<f)0 = 321.206) 
D 0 .0001 0.01 0.05 
L 0.423 1.072 1.446 
Z\(() I 9 4 6 6 0 
YQ 24 .0 1.0 10.8 

Figure 45. Alternate 1,2 for Ball-Burmester Point 
at Inflection Pole. 



DISPLACEMENT(u) 

Figure 46. Deviation-Second Derivative Curves for Alternate 1 2 
for Ball-Burmester Point at Inflection Pole. 



PARAMETERS (2,3) 
k = -2 .50 oca= 75.0 

DIMENSIONS (ocb= 38.794) 

Q= 0.61476 
R= I.I 4631 
T= 1.82964 

RESULTS (d)0= 68 

S= 0.88580 
M= 0.38829 
6 = 43.187 

103) 
0.01 
0.812 
60.5 
5.5 

INFLECTION CIRCLE 

do 
POINT PATH OF D 

0.05 
1.038 
73.5 
5.5 

Figure 47. Alternate 2,3 for Ball-Burmester Point 
at Inflection Pole. 
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Figure 48. Deviation-Second Derivative Curves for Alternate 2,3 
for Ball-Burmester Point at Inflection Pole. 
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PARAMETERS (3J) 
k = - 2 . 5 0 oca = 75.0 

DIMENSIONS (ocb = 38 .794) 
Q = 0 . 4 0 6 4 5 S = 0.45964 
R = 1.85443 M= 0.66759 
T = 1.79124 € = -23.794 

RESULTS (0O=223.I86) 
D 0.0001 0.01 

L 0.353 0.860 

A0 2 7 63 
YQ 15.0 4.4 

INFLECTION CIRCLE 

POINT PATH OF D 

Figure 49. Alternate 3,1 for Ball-Burmester Point 
at Inflection Pole. 
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Figure 50. Deviation-Second Derivative Curves for Alternate 3,1 
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DIMENSIONS (A,B) 

Q = 1.815 S = 0.764 
R = 0.963 M = 0.778 
T = 0.528 € = -89.65 

RESULTS ((|)0= 42.75) 

D 0.01 0.05 0.1 
L I. 31 1.36 1.38 

A(t) 50 5 7 62 

V b 9.6 9.6 9.6 

Figure 51. Linkage A,B by Burmester. 
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Linkage A,B by Burmester. 
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DIMENSIONS (B,C) 

Q = 1.316 S= 0.624 

R = 0.290 M = 1.627 
T = 0.963 € = -116.90 

RESULTS (<|)0 = 8 0 . 2 0 ) 
D 0.01 0.05 0.1 
L 1.70 2.28 2.42 
A<|> 6 0 146 175 

X 58.1 4.5 4.5 

POINT PATH OF D 

=e=o- -o-

Figure 53. Linkage B,C by Burmester. 



Figure 54. Deviation-Second Derivative Curves for 
Linkage B,C by Burmester. 



DIMENSIONS (A,C) 

Q = I.7IO S = 0.587 
R = 0.216 M = 1.2 2 5 
T = 1.339 £ =-60.90 

RESULTS ($ 0 =67.70) 

D 0.01 0.05 0.1 
L 1-38 1.52 1.53 
&ty 127 169 |70 
V° 1-5 1.5 1.5 

Figure 55. Linkage A,C by Burmester. 



Figure 56. Deviation-Second Derivative Curves f0T 
Linkage C,A by Burmester. 
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of this dissertation,, Since it is likely that far too many linkages 

(oo ) are possible, further restrictions on the higher derivatives 

(suppose that the first derivative of the deviation curve be controlled 

in the Chebychev sense) might be considered. In other words, it will 

be necessary to interrelate the a., 0. parameters of the motion. The 

5 

magnitude of the problem can be reduced to oo by choosing a slider-

crank mechanism in five finitely specified positions (0. is the a 

function of a.). During the process of the motion, the two unknown Bur-

mester points will trace point paths which approximate circular arcs. 

The quality of this approximation will depend on the variation of the 

deviation and its higher derivatives. By placing restrictions on this 

approximation, the digital computer can be used to select those alternate 

linkages giving good results,, 

Two Watt linkages are illustrated in Fig. (57-60). Since the 

output point D is actually a Burmester point (five points infinitesi-

mally separated),the deviation and second derivative curves have a char

acter similar to those of linkages based on curvature theory. 

A symmetrical linkage of the Chebychev type is represented in 

Fig. (61,62). A Roberts type linkage is represented in Fig. (63,64). 

These linkages have inferior but extended straight line outputs. Link

ages of this group that are based on Chebychev minimum deviation theory 

and those based on curvature theory will probably provide the best 

results* 

The next six figures (Fig. 65-70) represent the three distinct 

configurations of the centric-rectangular Evans linkage,. The linkage of 

Fig„ (65) is closely associated with the Scott-Russell exact straight 
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DIMENSIONS 

Q = 1.94913 S = 0.87168 
R = 0.87168 M = 0.43584 
T = 0.87168 € = 0.0 

RESULTS 

D 0.01 0.05 0.1 
L 0 .900 1.146 1.192 
A (J) 62 83 9 2 
Vh 39.8 14.1 14.1 

0.01 

<?D 

77777 

~ 0.01 
A& r- POINT PATH OF D 

Figure 57. Watt Linkage with Equal Cranks. 
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DIMENSIONS 

Q = 1.87681 S = 1.04106 
R = 0.52053 M = 0.69404 
T = 1.04106 € = 0.0 

RESULTS 

D 0.01 0.05 0.1 
L 0.854 1.054 1.074 
A(f) 104 

X 
138 154 

^h 
36.1 11.9 6.4 

JL 

POINT PATH OF D 

Figure 59. Watt Linkage with Unequal Cranks. 
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Figure 60. Deviation-Second Derivative Curves for 
Watt Linkage with Uneaual Cranks. en 
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DIMENSIONS 

0 = 0.91387 S = 0 . 6 0 9 2 5 
R = 1.56815 M = 0.34058 
T = 1.56815 € = 26.565 

RESULTS (0O= 6 0 . 9 4 5 ) 

D 0.01 0.05 0.1 
L 0.360 1.778 1.805 

A<f) 21 81 83 
Yb 44.0 5.0 0.0 

Figure 61. Symmetrical Linkage (Chebychev Type). 



Figure 62. Deviation-Second Derivative Curves for Chebychev Type 
Symmetrical Linkage. LP 
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DIMENSIONS 
Q = I.I3III S = 0.75407 
R = 0.59615 M = 1.92252 
T = 0.59615 € = - 7 8 . 6 9 0 

RESULTS (<|)o = 71.565) 
D 0.01 0.05 0.1 
L 0.607 1.968 2.123 
A<|) 23 72 78 
VL 5 7 0 0.0 12.0 

Figure 63. Symmetrical Linkage (Roberts Type). 



Figure 64. Deviation-Second Derivative Curves for Roberts 
type Symmetrical Linkage. 
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DIMENSIONS ( a =25.0) 

Q = 1.53993 S = 0.61279 
R = 0.45739 M = 0.85791 
T = 1.22558 € = 180.0 

RESULTS (<|)o = 2 7 2 . 7 7 7 ) 

D 0.01 0.05 0.1 
L 1.8 0 0 2.042 2.164 
A<|) 108 129 142 

Vu 

POINT PATH OF D 

0.01 
- 0.002 

+ -0 .002 
-0.01 

Figure 65. Centric-Rectangular Evans Linkage 
(Configuration 1). 
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for Evans Linkage (Configuration 1). ro 
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DIMENSIONS (oc = 20.0 ) 
Q = 1.55247 S = 0.51136 
R = 1.65776 M = 0.15341 
T = 1.02272 € = 0.0 

RESULTS (<|)0= 47.262) 

D 0.01 0.05 0.1 
L 0.602 0.766 0.808 
*$ 17 38 47 
Yb 28.6 15.4 75 

Jt 
TT77T7 

Figure 67. Centric-Rectangular Evans Linkage 
(Configuration 2). 
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Figure 68. Deviation-Second Derivative Curves for 
Evans Linkage (Configuration 2). 
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DIMENSIONS (a = 20.0) 

Q « 1.42634 S = 0.68629 
R*= 0.34807 M = 1.50985 
T = 1,37259 €= 0.0 

RESULTS (<|>0 = 2 96.624) 

1 ° ' 
Figure 69. Centric-Rectangular Evans Linkage 

(Configuration 3). 
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Evans Linkage (Configuration 3). 
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line, slider-crank mechanism and therefore gives very good results. 

Based on the results of the digital computations the other configura

tions do not seem to give very satisfactory results. In general, the 

theory provides four-finitely separated intersections of the coupler 

curve with a straight line. The first configuration, however, apparently 

provides five intersections. 

Design Procedure for One Set of Linkages Based 

On Computer Output 

Up to this point, the data has not been reduced to a form which 

might be useful to the designer. In this section the set of linkages 

having a Ball-double Burmester point will be analyzed to provide the 

designer with a technique enabling him to choose the design parameters 

a , a, for a specified quality and length of the straight line output. a D 

Previously, it was necessary for him to judiciously choose the design 

parameters in a trial and error approach to get a satisfactory straight 

line output. Furthermore, it was difficult to assess the quality of the 

resulting approximation to a straight linee 

Fig. (71) is a nomograph of the primary information plotted on 

the basis of the parameters a , a, . The length of the approximate 

straight line output for an accuracy of 0.01 was calculated by the digi

tal computer for the present set of linkages. A grid of this data was 

then formed and curves having a constant value for the primary informa

tion were interpolated. Linkages having the ratio of the longest and 

shortest links greater than five are not represented on the nomograph. 

This stipulation reduced the number of linkages that were considered by 

a factor of about five. These blank regions should be considered with a 
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larger grid to supply information where it is presently ambiguous0 

Note that there is a symmetry in the design equations (Eq0 209a-2„lla) 

in that a and a, are interchangeable. Hence, a, is allowed to 
a b ? b 

vary from 0 to 180° and a from 0 to 90° with no values of a being 
a a 

considered that are simultaneously greater than those for a, . 

Through the center region of the nomograph there is a curve 

dividing the linkages that are crank and lever and those which are 

double lever., Local areas that are not well defined occur when 

a, < 90°o This information enables the designer to predict in advance 

whether the linkage will be a crank and lever mechanism. It is also 

possible for him to choose linkages that will likely have good propor

tions since only those linkages are representedo Other nomographs 

on transmission angles^ range of motion of the cranks, and dynamic 

characteristics of the deviation curve could also assist the designer 

to isolate that group of linkages having properties best fulfilling his 

requirements,, 

Suppose the designer wants a fairly long approximate straight 

line output to be produced by a crank and lever mechanism0 Choosing 

a =5° and a, = 40° satisfies this requirement and the expected length 

of the output is given to be lo30. This linkage and the corresponding 

curves are represented in Fig0 (72,, 73) „ Note that the transmission 

angle y remains within very desirable limits during the production 
a 

of the straight line portion of the coupler curve. But since the choice 

for a and a, is very close to the dividing curve between crank and 

lever and double lever mechanisms, y will most likely approach zero 
a 

during the complete cycle of the cranko 



PARAMETERS 
«a= 5.0 ocb= 40.0 

DIMENSIONS (163.223) 
Q = 0.88328 S = 1.02568 
R » 1.25723 M = 0.91848 
T*= 0.40249 € = 180.0 

RESULTS (<J>0= 306.314) 

D 0.0001 0.01 0.05 
L 0.545 1.322 1.749 
A $ 57 143 229 
yb 6 2 1 5 l-4 43.0 

Figure 72. Ball-Double Burmester Point Linkage. 



Figure 73. Deviation-Second Derivative Curves for Ball-Double 
Burmester Point Linkage. 
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The computer data given with the linkages should enable the 

designer to determine whether they would satisfy his design require

ments., The quoted parameters are those used in the design equations to 

determine the dimensions of the links0 Again note that a star represents 

those control cranks which can make a full rotation. The dimensions are 

all based on a unit of length closely associated with the average lengths 

of the links. The initial position of the input crank 0 relative to 

the fixed link gives the designer a reference position of the linkage to 

use in applying the remainder of the data. In each figure, data for the 

length of the approximate straight line L, the range of rotation of 

one of the control cranks A0 (or ATJJ ), and the appropriate trans

mission angle y, (or y ) a r e given for three different accuracy 

requirements (usually D = 0o0Q.l, 0o01, 0o05). These values are 

reached when the coupler curve approaches the corresponding values of 

the deviation D0 The transmission angles y of the probable driven 

crank correspond to the lowest values that occur during the production 

of each segment of the approximating coupler curve*, 
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