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SUMMARY 

Designing habitats for crewed in-space or planetary surface missions is a complex, highly 

constrained task with many conflicting objectives.  This process involves four iterative steps: 

selecting mission-appropriate interior equipment and accommodations, sizing the habitat 

geometry, arranging this equipment within the habitat geometry into habitat layouts, and 

evaluating the design.  The third step of this process, which is often overlooked in the conceptual 

phase of habitat design, seeks to ensure that the interior equipment required for a crewed mission 

can be physically accommodated while providing the best compromise between engineering and 

crew performance metrics such as mass, volume, packaging efficiency, workflow efficiency, 

volume quality, and habitability.  At the conceptual phase of design, developing layouts which 

balance these concerns is necessary to identify feasibility issues, safety concerns, or requirements 

violations before they result in expensive design changes, increased mass growth, or reduced 

functionality.  

Current methods for evaluating the goodness of these layouts involve human-in-the-loop 

mockup tests, in-depth CAD (Computer Aided Design) evaluations, or unrepeatable, subjective 

design evaluation studies.  However, these methods are not currently compatible with the 

conceptual phase of design or optimization because of the significant time required to generate 

and evaluate even one layout.  They also lack a comprehensive set of evaluation metrics which 

capture all the listed concerns.  In order to support the mass, cost and volume-constrained long 

duration human missions to asteroids, the Moon, and Mars, improvements to the currently 

available habitat layout evaluation methods which can lead to faster generation and evaluation of 

layouts are needed.  Additionally, because the development of an overall habitat design 

optimization capability is strongly desired, a habitat interior layout automation capability must be 

developed.  
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The objective of this research is to develop a new evaluation methodology for habitat interior 

layouts which speeds and expands the current layout evaluation process and enables consideration 

of interior layout automation.  After researching the underlying causes for the limitations of the 

current interior layout evaluation methods, two key contributions were identified which can 

enable the desired improvements.  The first is a restructuring of the evaluation process using 

systems engineering methods to construct a comprehensive quickly calculable multi-objective 

function capturing designer preferences and critical constraints.  The second contribution is the 

development of a new, comprehensive set of automatically calculable evaluation criteria which 

capture the full range of habitability, workflow, and volumetric efficiency considerations.  The 

automatic calculation of these criteria values is enabled by the development of new analytical and 

numerical calculation methods utilizing separation/collocation matrices, collision detection 

algorithms, and numerical grid-based iterative calculation methods.  By applying these features, 

this new habitat layout evaluation method can extend the state-of-the-art design capability by 

enabling:  

- quick, real time comparison of alternate habitat interior layout concepts 

- optimization of three-dimensional habitat interiors for multiple objectives 

- automated generation of layouts according to user preferences 

- increased understanding of how the interior arrangement affects overall habitat  

effectiveness 

This new habitat layout evaluation method is structured as follows.  First, inputs are defined 

including mission requirements (e.g., mission duration, number of crew, gravity magnitude, etc.).  

A functional decomposition process is then used to translate these requirements into functions 

which are used to specify the pressure vessel geometry and hardware geometries, locations, and 

characteristics (e.g., mass, function, power requirements, etc.) through a functional 

decomposition process.  Then, the hardware are represented as polyhedral objects defined by 

vertices and faces to provide a mathematical means to construct layouts by translation and 
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rotation of the objects.  Using these layouts and hardware pieces as inputs, the evaluation process 

begins by capturing designer preferences needed to construct the objective function: 1) the 

relative importance of the evaluation criteria and 2) the perceived utility of measured evaluation 

criteria values which are used to normalize the evaluation criteria.  By capturing these designer 

preferences before calculating evaluation criteria and constraints dependent upon the layout, the 

time-consuming subjective inputs can be captured once and applied consistently to a large 

number of layouts investigated using the objective step.  This minimizes repetition in the 

evaluation process, greatly increasing the speed of the analysis. 

The Analytic Hierarchy Process was chosen to rank the relative importance of each criterion 

by capturing pair-wise preferences of experts through a structured process.  These preferences are 

then manipulated to create a set of normalized weightings ranking the evaluation criteria.  Single-

Attribute Utility Functions are used to map the values measured for each evaluation criterion to 

some normalized value from 0 to 1 based upon the user’s perceived utility of that value compared 

to the range of possible values and requirements for that particular criterion.  The ‘Mid-

Preference Level Splitting’ method of defining the shape of these utility functions was selected 

for its simple and intuitive process.  This method uses a structured set of expert elicitation 

questions to identify the value which is exactly mid-way in preference between the low and high 

end values of the evaluation criterion. 

The next step of the layout evaluation method is the calculation of evaluation criteria values 

measuring the effectiveness of the layout design.  A new, comprehensive list of criteria derived 

from literature review and expert consultation into human factors, behavioral health, spacecraft 

design, and terrestrial architecture is developed for this step to capture all of the conflicting 

objectives of conceptual level layout design.  Qualitative criteria, which would have required 

subjective designer measurement, are mapped to equivalent quantitative proxies so that all criteria 

can be automatically calculable from the geometry, locations, functions, and characteristics of 

interior equipment.  By using only quantifiable measures to define these evaluation criteria, the 
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non-repeatable and timely user interaction required for the assignment of values can be separated 

from this assignment, allowing for significant acceleration of this portion of the process over the 

current methods. 

Automatic criteria calculation methods are needed in order to measure the comprehensive set 

of habitat layout evaluation criteria.  Several mechanisms are identified to create these methods 

including the use of collision detection algorithms, functional separation/collocation matrices, and 

the use of discrete grid-based iterative methods which use Boolean half-space tests to identify 

particular subsets of the volume.  Collision detection algorithms, which mathematically test for 

the presence of overlapping geometries, are used to test for geometrically feasible equipment 

placement and to characterize subsets of the volumes according to evaluation criteria definitions.  

A multi-layered approach to collision detection is investigated to accelerate these tests by 

applying successively increasing degrees of fidelity and by implementing an industry standard 

method known as the Incremental Separating Axis-Gilbert, Johnson, and Keerthi algorithm for 

the final tests.  Discrete grid-based numerical methods, which use a discrete number of test 

locations to numerically approximate various types of available volume, can be used to quickly 

quantify a criterion through a simple summation of points which pass criterion-specific tests.  

Most tests performed at these locations are Boolean collision tests which identify if the test point 

is in the interior or exterior of nearby equipment.  Functional separation/collocation matrices are 

matrices which capture the desired spatial interrelationships between functions.  These are used to 

operate upon distance matrices which contain the relative separation of these functions (as 

determined by the location of associated equipment) to produce scores for how effective the 

current placement of equipment is at addressing the desired functional separations or collocations.  

Together, these mechanisms allow for the development of quick and effective automatic 

quantification methods for each of the criteria, some of which would have previously required a 

subjective assessment. 
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The final step of the layout evaluation process is the assembly and calculation of a weighted, 

constrained multi-criteria objective function from the designer preferences, evaluation criteria 

values, and applicable constraints.  The resulting values represent an aggregate measure of the 

overall performance or desirability of a layout for the specific set of designer preferences.  This 

value can then be used to quantitatively compare multiple layouts or to modify a single layout to 

improve its overall acceptability.  By implementing stochastic optimization methods such as 

Particle Swarm Optimization, the process of improving layouts can be automated to enable the 

generation of layout concepts performing well as measured by the defined objective function.  

Both the evaluation and automation methods are demonstrated utilizing a cis-lunar habitat 

module design problem to improve a baseline habitat interior layout.  The evaluation example 

compares two cis-lunar habitat layouts against their rationale and each other to demonstrate that 

each of the components of the aggregate objective function calculation is performing as expected.  

This example clearly demonstrates the success of the evaluation process to quickly evaluate a 

layout and compare it against another for a given set of designer preferences.  The application of 

a Particle Swarm algorithm to iteratively improve the objective function value is somewhat 

successful.  It was determined that the fine balance between penalty function calculations, 

evaluation criteria utilities, and particle swarm tuning parameters was required to ensure the 

optimizer converges to feasible layout concepts.  The challenges of automation in practice are 

discussed, followed by descriptions of the alternate methods potentially capable of addressing 

these challenges.  In short, it was determined that automation was feasible, and future work was 

identified to develop a more complete method rigorously demonstrating successful automation. 
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CONTRIBUTIONS OF RESEARCH 

This dissertation leverages techniques from many different fields of study to achieve high 

quality, fast, conceptual design-compatible habitat layout evaluation and automated layout 

generation.  Specific contributions of the author to the state-of-the-art are summarized below: 

- Developed a comprehensive, measurable set of evaluation criteria which capture a full 

range of engineering (mass and volume) and habitability (quality of volume, 

functionality, safety, etc.) concerns and developed automatic methods to measure them; 

capability not apparent in current literature 

- Created a structured, fast, and complete process for habitat interior evaluations useful for 

habitation design community and any other community designing highly constrained, 

highly integrated interiors 

- Demonstrated viability of automation of layout interior designs, which brings forward the 

ability to conceptually size and design habitats with consideration of habitability, 

usability, and crew health desires dependent upon interior designs.  In particular, this 

eliminates use of habitable volume as the sole measure determining habitat size 

- Enables overall habitat conceptual design optimization when combined with equipment 

selection and mass sizing/cost analyses well documented in literature. 

Additionally, there are several additional benefits of developing a comprehensive set of 

habitat layout evaluation criteria and enabling fast generation and evaluation of habitat interior 

designs. A comprehensive set of criteria:  

- Provides a structured and quantifiable way to justify the selection of one layout over 

another for a given set of objective preferences, which will enable trades to be 

performed identifying the architectural elements which most directly affect the 

‘goodness’ of a configuration.  



xxiii 

 

- Increases available knowledge of the mechanisms of designing utility into interior 

designs 

- Enables designers to trade the shapes of hardware and pressure vessels to suit the 

objectives dictated by the mission (never demonstrated in literature). 

Fast generation and evaluation of interior designs: 

- Facilitate designer capabilities to respond to requirements changes, investigate ‘what if’ 

scenarios, and ensure good integration with other elements of the system architecture as 

the concept is developed (lander, propulsive stages, and launch vehicles); all of which 

are characteristic of conceptual design process of exploration missions.  

- Enable early representation of the layout dependent habitat design concerns affecting 

mission design or the design to project management or other element design teams 

during conceptual design.   

- Provide more complete coverage and documentation of the configuration design space, 

leading to the discovery of better alternatives or the identification of important features 

which improve the design.  

- Enable designers to provide justified ‘push-backs’ on limiting constraints or 

requirements for the first time in literature. 

- Could reduce design time and resources to save in development costs both directly (less 

spent - more saved) and indirectly (better configurations require less expensive design 

changes later in the product lifecycle). 

- Enable trade studies, including understanding the impact to the habitat configuration 

when trading various requirements, managerial preferences (weightings), choice of 

subsystems, and different component geometry shapes.  Trades such as these can be 

used to expedite knowledge normally discovered in later design stages to the conceptual 

design phase. 
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CHAPTER ONE: INTRODUCTION 

Over the past fifty years of human space exploration, the human race has proven its ability to 

live in Low Earth Orbit (LEO) for moderate durations and carry out short duration missions 

beyond LEO to the surface of the Moon.  The next step for human space exploration is to send 

humans beyond Low Earth Orbit to pursue long duration human missions to distant destinations 

such as asteroids and the surface of Mars [Augustine et al., 2009; Craig, Hermann, & Troutman, 

2015; Executive Office of the President - “National Space Policy…”, 2010].  These future 

missions pose unique challenges to the design of spacecraft.  The interplanetary trajectories 

necessary to reach the exploration destinations have durations on the order of a year or more and 

do not allow for quick, anytime abort back to Earth.  Missions will be significantly demanding 

from a propulsion perspective, requiring highly efficient, mass constrained systems.  In addition, 

long duration transits in space and lack of Earth abort opportunities will increase the 

physiological and psychological needs of the crew, which will require larger, more capable 

systems.  In order to enable these missions, the development of systems which deliver increased 

capability with minimal mass and volume is critical, particularly for systems supporting human 

crews: habitats. 

In the context of spacecraft design, habitats are the pressurized systems in which the crew 

live and work during human space exploration missions.  Habitats must provide a living volume 

appropriate for the mission duration and house all of the functions and consumables required to 

support crew (e.g., a breathable atmosphere, clean water, food, a place to sleep, workstations to 

support crew tasks, etc.) [Kennedy, 2002a].  Designers must ensure all of these subsystems are 

included and properly integrated within a habitat while minimizing mass and cost.  This is critical 

as habitats are often large, massive elements which must be pushed through most of a mission’s 

propulsive maneuvers to support the crew.  This large ‘gear ratio’ drives the design of launch 
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vehicles and propulsion stages and often drives the overall cost and complexity of a mission.  

Therefore, the optimization of habitat designs is an important aspect of the development of any 

human space exploration mission. 

The habitat design process involves the selection, sizing, and arrangement of the interior 

equipment and logistics required for a mission into an interior layout, which must fit within an 

appropriately sized pressure shell.  The objective of habitat designers is to minimize mass, and 

thus habitat size, while providing adequate space and a functional layout for crew health and 

productivity [Howe & Sherwood, 2009; Kennedy, 2002a; and Simon & Wilhite, 2010].  The 

interior arrangement step of this process seeks to ensure that the interior equipment required for a 

crewed mission can be physically accommodated while providing the best compromise between 

performance metrics such as mass, volume, workflow efficiency, and habitability.  Balancing 

interior layout performance is especially critical at the conceptual design so that feasibility issues, 

safety concerns, and requirements violations can be identified before they result in expensive 

design changes, increased mass growth, or reduced functionality as illustrated in Fabrycky & 

Blanchard, 1991 (high design freedom and low cost committed).  However, ensuring that an 

interior layout is effectively balanced is non-trivial as there is currently no comprehensive and 

timely method to measure the effectiveness of an interior layout and track the complex, 

conflicting habitat design objectives during conceptual design.  This missing evaluation capability 

increases the uncertainty surrounding conceptual habitat designs and prevents further efforts to 

optimize habitat designs for improved exploration mission performance.  This leads to ignored 

consideration of interior designs during the conceptual design process which can result in 

unrealistic designs that have significant risk of mass growth and design changes in later design 

cycles.  Excluding consideration of habitat interiors can also lead to sub-optimal habitat designs 

which can decrease the performance of missions, especially as mission duration increases. 

This dissertation proposes a new, structured method to quickly measure the effectiveness of 

habitat interior designs, allowing for comparison of layouts at conceptual design and enabling the 
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previously unavailable capability to automate the generation of habitat interiors.  This will 

increase the understanding of habitat interior concerns at conceptual design and potentially result 

in cost and performance improvements enabling long duration missions.  The following sections 

briefly discuss the current habitat interior layout design and evaluation process (Section 1.1), 

identify gaps preventing automated layout generation and evaluation (Section 1.2), and then 

describe a proposed solution for addressing these gaps and enabling automated layout generation 

and evaluation (Section 1.3).  Then a set of research questions is used to frame the research 

discussed in this work. 

1.1 Motivation 

Lessons learned from the history of human spaceflight and decades of designs produced by 

“space architects” and other habitat design teams have shaped the current methods and processes 

for designing habitats interiors.  The basic steps in the conceptual design process of habitat 

interior layouts have remained consistent across the design methods used in the last two decades 

[Hopson, Aaron, & Grant, 1990; Kennedy, 1994; Larson & Pranke, 1999; Messerschmid & 

Bertrand, 1999; Allen et al., 2003; Osburg, 2002; Tullis & Bied, 1988].  These basic steps are 

shown Figure 1 [Howe & Sherwood, 2009; NASA, 2010]. 

First, the designer defines the mission objectives, associated requirements, and physical 

constraints which influence habitat design.  These include the mission destination, the number of 

crew, crewed and uncrewed durations, the number of Extravehicular Activities (EVAs), the 

anticipated concept of operations, launch vehicle mass and volume constraints, etc.  These 

mission requirements (particularly destination and duration) are then used to identify the required 

hardware (e.g., Life Support, EVA, etc.), functions/crew tasks (e.g., sleeping, eating, etc.), and 

basic geometric features of the pressure vessel (e.g., the number and location of hatches, 

translation path requirements, the maximum habitat length and diameter dictated by the launch 

vehicle, etc.).  These functions and tasks dictate the required complement of equipment (e.g., 
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crew quarters, food preparation equipment, etc.) and necessary supplies (e.g., food, water, 

cleaning supplies, etc.) [Equipment Information: Larson & Pranke, 1999; Chambliss, 2007; 

Connors, Harrison, & Akins, 1985; Eckart, 1996; Lyle, Stabekis, & Stroud, 1973; Komar, 

Hoffman, Olds, & Seal, 2008; etc.].  The resulting pressure vessel geometry and pieces of 

equipment representing functions must then be arranged into habitat interior layouts according to 

some rationale. 

 

  

Figure 1: Habitat Interior Layout Design Process 

 

A good layout should provide an efficient use of the available space, meet all of critical 

human requirements and standards (e.g., NASA, 1995; NASA, 1999; and NASA, 2010), and 

promote habitability, which is defined as a  

“…measure of the degree to which an environment promotes the productivity, 

well-being, and situationally desirable behavior of its occupants.” [Wise, 1985] 
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Efficient use of space drives the habitat to smaller masses and volumes in order to reduce the 

required launch vehicle and in-space propulsion stage performances.  However, this reduction of 

mass and volume can quickly compromise habitability objectives and dimensional constraints 

which ensure conformance to human standards [Howe & Sherwood, 2009; Kennedy, 2002a and 

2002b].  These conflicting objectives and the highly constrained nature of space habitats make the 

layout generation process very challenging. 

The current process for arranging habitat interior subsystems and supplies into layouts is 

similar to the terrestrial architectural design process.  Design requirements, constraints, customer 

preferences, and an analysis of the relationships between required functions are qualitatively 

factored into manual sketches of the draft interior layout created using designer experience and 

training [Tullis & Bied, 1988; Nixon, 1986; Kennedy, 2002a; Howe & Sherwood, 2009; NASA, 

2010].  This draft may take the form of a two-dimensional layout drawing [Osburg, 2002; Imhof, 

2007; Kennedy, Toups, & Rudisill, 2009] or a detailed three-dimensional model [Fitts, 2002; 

Szabo, Kallay, Twyford, & Maida, 2007] and is iteratively improved as time allows.  The key 

point is that the best practice for initial arrangement of interior layouts is currently a manual 

process because the slowness of the current evaluation process prevents consideration of many 

interior designs.  This requires time and expertise which are rarely available at conceptual design 

phases, so there is a desire to speed this process.  Some efforts have been made in the terrestrial 

architecture and industrial engineering fields to automate this arrangement process by using 

stochastic optimization methods and rule based, logical procedures to dictate placement of 

interior objects [Kalay, 2004; Lobos & Donath, 2010; Homayouni, 2006; and Dyckoff 1990].  

However, the results are still lacking in applicability to the space habitat layout problem which 

requires a comprehensive set of objectives suited to the spaceflight physical/operational 

environment and consideration of three dimensions to account for the unique utilization of space 

in microgravity.  Table 1 summarizes the available layout generation methods and their 

limitations which are described in more detail in Chapter 2.    
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Table 1: Historical Layout Generation/Optimization Methods 
Alternative 

Approach  

Description Limitations 

Space Layout 
Planning Methods 
[e.g., Kalay, 2004; 
Lobos & Donath, 
2010;  Homayouni, 
2006]  

 Area of terrestrial architecture 
focusing on automation and 
optimization of (mostly)  
2-dimensional layouts of 
building interiors.  

 Limited number/scope of objectives considered in 
optimization 

 Mostly 2D rectangular problems  

 Deal with less constrained, less integrated 
requirements than space habitats 

 Heavily relies on historical statistics and 
architectural design rules for room placement 
rationale 

 Not used in terrestrial architectural practice [Lobos 
& Donath, 2010] 

Facility Layout / 
Packing Problems  
[e.g., Dyckhoff, 1990; 
Cagan, Shimada, & 
Yin, 2000; Szykman 
& Cagan, 1997; 
Tutenel, Bidarra, 
Smelik, & de Kraker, 
2009]  

 Set of geometric problems 
with 1-2 objectives used to 
optimize the placement of 
objects into shipping 
containers and warehouses 

 Normally 1-2 objectives only 

 Mostly pure geometry problems focusing on 
packaging efficiency and lacking the complexity of 
integrated living spaces  

 Proof of optimality difficult (np-hard) leads to 
stochastic and numerical solutions [Dyckhoff, 1990]  

Constraint-based  / 
Rule-based Methods 
[e.g., Akazawa et al. 
2005; Sanchez, Le 
Roux, Luga, & 
Gaildrat, 2003; Xu, 
Stewart, & Fiume, 
2002]  

 Interior design/generation 
methods using 
preprogrammed constraints 
and rules to dictate the 
placement of interior items 

 Ex. Place bookshelf along wall; 
group chair with table 

 Hardcoded rules and constraints limit the possible 
design space available in space habitat designs (i.e. 
no novel solutions) 

 Often provides constraint compliant, but non-
optimized designs  

 Limited set of objectives 

 

 

The final step of the habitat interior design process is the evaluation of the acceptability of the 

draft layout as a basis for determining if further iteration is required.  Table 2 shows the current 

methods used for space habitat layout evaluation.  In these currently available methods, designs 

are either qualitatively evaluated against a collected set of customer desires and hard constraints 

[Nixon, 1986; Nixon, Miller, & Fauquet, 1989; SICSA, 2008; SICSA, 2009] or quantitatively 

compared using one or two criteria with a detailed engineering analysis [Szabo et al., 2007; Tullis 

& Bied, 1988; Wise, 1985].  In either case, this process can be time intensive and more difficult 

than the traditional terrestrial design process, which is much less constrained and is more able to 

leverage heritage designs for comparison.  Also, a more extensive set of evaluation criteria is 
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desired to capture the complex, integrated nature of spacecraft interiors while adequately 

addressing habitability concerns.   

Table 3 compares the performances and characteristics of the existing evaluation methods 

(as presented in the identified references) and identifies a desired performance for the method 

proposed in this research based upon the needs of habitat designers at conceptual design phases.  

The following section assesses gaps in the current process to achieve this desired evaluation 

performance. 

Table 2: Currently Available Approaches for Evaluation of Spacecraft Interior Layouts 
Alternative Approach Description  

Human-in-the-loop Mockup/Analog 
Tests  
[Fitts & Howard, 2009; Hertz, 2003; 
Howe & Sherwood, 2009; Litaker et 
al., 2013; Nixon, 1986; Nixon et al., 
1989] 

 Use wood and foam-core models or 
research analogs to test crew activities 
with astronauts using qualitative rating 
scales to capture crew 
preferences/comfort  

 

Subjective Design Evaluation Studies  
[Adams & McCurdy, 1999; Adams & 
McCurdy, 2000; Di Capua, Mirvis, 
Medina, & Akin, 2009; NASA, 2010; 
SICSA, 2008; SICSA, 2009]  

 Qualitatively compare the perceived 
performance of interior design 
alternatives with relative subjective 
ratings  

 

Semi-Quantitative Evaluation Studies  
[Celentano, Amorelli, & Freeman, 
1963; Cohen, 2004; Tullis & Bied, 
1988; Wise, 1985] 

 Establish quantitative criteria to assess 
layout goodness  

 

In-depth CAD Evaluations  
[Fitts, 2002; Szabo et al., 2007]  

 Use detailed CAD models to manually 
measure desired criteria and perform 
virtual mockup tests  

 

Architectural Programming (and other 
a priori methods)  
[Duerk, 1993; Osburg, 2002; NASA, 
2010] 

 Use an interview process with the user 
to create a design catered to an 
individual preferences; features one 
layout activity 

 

 

 

Howe 2009 

Fitts 2002 
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Table 3: Comparison of Performance of Existing Evaluation Methods 
 Human-in-the-loop  

Mockup Tests 
 [Fitts & Howard, 2009; 
Hertz, 2003; Howe & 
Sherwood, 2009; 
Nixon, 1986; Nixon et 
al., 1989] 

Subjective 
Design 
Evaluation 
Studies [Di 
Capua et al., 
2009; SICSA, 
2009] 

In-Depth CAD 
Evaluations  
[Fitts & 
Howard, 2009; 
Szabo et al., 
2007] 

Architectural 
Programming and 
other A Priori Design 
Methods  
[Duerk, 1993; NASA, 
2010; Osburg, 2002] 

Desired 
Capability 

Model Setup Time Weeks Hours - Weeks Days - Weeks Days - Weeks 1-2 Days 

Time for a Single 
Evaluation 

Days Minutes - Hours Hours Days – Months Minutes 

Additional Time 
for Alternate 
Configurations 

Small changes: Hours–
Days 
Large changes: Weeks 

Minutes - Hours Hours Days - Weeks  Seconds 

Completeness of 
Criteria Set 

Incomplete, focusing on 
usability and feasibility 
only 

Somewhat 
complete 

Incomplete, 
focusing on few 
criteria at a 
time 

Somewhat complete Complete 

Measurement  
Method 

Cooper-Harper and 
other rating systems, 
manual measurement 

Qualitative 
relative ratings 

Detailed 
quantitative 
CAD 
measurements 

Qualitative feel based 
upon experience 

Quantitative, 
automatic 

Automatically 
Calculable 

No No Possibly No Yes 

 

1.2 Gap Analysis of Current Interior Evaluation Process 

In practice, layout generation and evaluation are rarely carried out during early conceptual 

design because they are time consuming, and the design is often in flux as the mission 

requirements change.  However, as the durations of human exploration missions increase, larger 

habitat masses have a more driving impact on the mission design while the human habitability 

concerns pushing towards larger, more functional interior spaces become increasingly important 

[Baggerman, Rando, & Duvall 2004; Jones, 1973; Franklin, 1978; Whitmore, McQuilkin, & 

Woolford, 1997; Osburg, 2002; Adams, 1998; Adams & McCurdy, 2000; Kitmacher, 2002; and 

Robinson, Sterenborg, Häuplik, & Aguzzi, 2008].  There is a desire to consider layout 

information early in the design process to improve designs, mitigate potential mass growth, and 

prevent expensive design changes in later design cycles.  In order to address the layout concerns 

early in the design process, advances are necessary to speed up the interior layout evaluation 

process, increase its completeness, and tie this process into the automated generation of layout 

alternatives.  The NASA Systems Engineering Trade Study Process [NASA, 2007] was used to 

frame gaps in the current interior layout design process in order to determine what actionable 
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improvements could be made to enable automatic evaluation and layout generation.  This 

mapping shown in Figure 2 identifies these gaps in the current process, shown in red, which 

prevent automatic evaluation and layout generation.  Actionable steps to fill these gaps are 

presented in the following paragraphs (each step summarized in italics). 

 

 

Figure 2: NASA Systems Engineering Trade Study Process (Modified) [NASA, 2007] 

 

Gap 1: The Define Measures and Measurement Methods Gap identifies the non-

comprehensive and qualitative nature of existing evaluation criteria sets used in previous layout 

evaluation studies.  These previous studies use an incomplete set of interior layout evaluation 

criteria, often missing human habitability design considerations [Aguzzi, Häuplik, Laan, 

Robinson & Sterenborg, 2006; Cohen, 2004; Howe & Sherwood, 2009; and Osburg, 2002].  

Additionally, historical studies lack fast, quantitative measurement methods, instead relying on 

qualitative human judgment or time-consuming manual measurement methods from detailed 

CAD models to compare layout alternatives [SICSA, 2009; Szabo et al., 2007; and Simon & 
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Wilhite, 2010].  There is a desire for the development of a comprehensive set of quantifiable 

interior layout evaluation criteria and automated measurement methods for each criterion which 

are consistent with available layout data [Dudley-Rowley & Bishop, 2002].  

Gap 2: The Collect Data to Calculate Measures Gap identifies that in order to enable 

automated methods to measure criteria to be utilized, layout data including hardware geometry 

and the relationships between functions must be put into a mathematically accessible form 

consistent with identified measurement methods.  While detailed CAD models can achieve this, 

they are time consuming to create and lack the flexibility desired.  Geometry data and the 

relationships between the hardware are available [Tullis & Bied, 1988; NASA, 2010], but must 

be input into a computer framework consistent with the evaluation criteria calculation methods.  

Additionally, this data must be compatible with the definition of layout alternatives and be simple 

enough to prevent difficulties performing the calculation methods.  

Gap 3: The Compute an Estimate of System Effectiveness Gap results from a lack of 

measurable criteria to gage layout performance.  A method is also needed to combine all 

evaluation criteria values and user preferences into a single measure of the overall layout 

effectiveness which enforcing the necessary constraints on the design [NASA, 2010].  A multi-

criteria objective function created using systems engineering techniques should be created to 

provide this overall measure of effectiveness, enabling defendable, repeatable comparison 

between alternatives. 

 Gap 4: Finally, the Define Selection Rule Gap identifies that design of any system for 

human use is subject to qualitative preferences which change the evaluation results based upon 

the designer’s attitude towards the design problem.  A structured process to capture user 

preference separate from the quantification of evaluation criteria values is desired to ensure 

repeatability and provide insight into the effect of the user’s preference on the resulting preferred 

design.  These user preferences are also necessary to identify acceptable layouts based upon the 

objective function and determine whether further iteration is necessary.  
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The proposed research presented in the rest of this paper seeks to develop the implementation 

details associated with each of these identified necessary improvements, to enable faster, more 

complete habitat interior layout evaluation, and establish the foundations for automating the 

generation of acceptable layouts for use at conceptual design.  

1.3 Research Questions and Objectives 

The previous section identified several actionable improvements which must be addressed to 

enable accelerated layout evaluation and automated layout generation.  In the following section, a 

set of questions is presented to frame the proposed research to implement these improvements 

and create an integrated layout evaluation and generation capability. 

1.3.1 Primary Research Question 

Research Question 1: How can the current interior layout evaluation process for habitat 

interiors be improved to enable automation and create better designs at conceptual design? 

Hypothesis 1: A systems engineering-based process can be used to develop a comprehensive 

habitat layout evaluation objective function which:  

• Balances increased habitability and reduced habitat size and 

• Captures and enforces constraints on the placement of interior objects. 

Furthermore, by building this objective function with a comprehensive set of automatically 

quantifiable evaluation criteria, the evaluation process can be performed fast enough to enable 

design automation at conceptual design. 

Systems engineering-based multi-criteria decision making techniques have frequently been 

applied to complex multi-criteria design problems to increase understanding of the design space 

and enable optimization through the use of a multi-criteria objective function.  In order to develop 

a fast, comprehensive, and transparent evaluation process, these methods can be applied so long 

as quantifiable evaluation criteria and constraints can be defined and automatically measured 
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from geometry.  Research into prior evaluation frameworks suggests that such a set of criteria and 

constraints can be defined.  Therefore, it is hypothesized that by addressing each of the 4 gaps, 

this capability can be developed.  Each of the following secondary research questions are used to 

address these gaps. 

1.3.2 Secondary Research Questions 

The following secondary research questions are used to frame the research addressed in 

Chapter 3 with proposed solutions for each research area. 

Research Question 2: How can the performance of an interior layout be measured quantitatively 

while capturing both engineering and habitability concerns? 

Hypothesis 2: A literature derived, expert-approved list of quantifiable evaluation criteria 

applicable to all gravity orientations, durations, and sizes can be created leveraging existing 

literature.  By using quantitative, measurable proxies for qualitative criteria, the objective 

function can be initially quantified for conceptual design.  

Gaps Addressed: Gap 1: Evaluation Criteria Set Gap 

 

Research Question 3: How can the values for these quantifiable evaluation criteria be 

calculated quickly for a layout without manual calculation by the designer?  

Hypothesis 3: Automatic quantification methods can be developed for criteria by using several 

mechanisms featured in literature for similar problem including:  

- collision detection algorithms,  

- discrete grid-based iterative methods which use Boolean half-space tests to identify 

particular subsets of the volume. 

- functional separation/collocation matrices, 
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Gaps Addressed: Gap 1 (Evaluation Criteria Set), Gap 2 (Layout Geometry and Data 

Representation) 

 

Research Question 4: How can the various criteria values and designer preferences be 

combined into an overall value function which measures the relative ‘goodness’ of alternative 

habitat layouts?  

Hypothesis 4: Single-attribute Utility Functions (SUFs) can be used to normalize evaluation 

criteria values against the designer desired values. Analytic Hierarchy Process can be used to 

obtain weightings capturing the relative importance of each criterion. Penalty functions can be 

used to enforce constraints. Then the SUFs can be combined with the evaluation criteria 

calculated values, relative weightings, and constraint penalty functions in a constrained 

‘weighted sum’ multi-criteria objective function to measure overall performance.  

Gaps Addressed:  Gap 3 (Measure of Overall Performance), Gap 4 (Method to Capture 

Preferences) 

 

Research Question 5: What optimization method can be used to automate the improvement of 

layout?  

Hypothesis 5: Stochastic optimization methods can be used to change the location matrix of all 

of the objects to create new layouts. Particle Swarm Optimization (PSO) is anticipated to provide 

the best performance with its additional tracked history over Simulated Annealing and Genetic 

Algorithms. It is also anticipated that a hybrid PSO methods using more traditional optimization 

methods for local tests around optima may improve performance (if necessary).  
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1.4 Dissertation Overview 

Chapter 1 introduced the need for a structured, comprehensive, and timely habitat interior 

layout evaluation methodology capable of ensuring good habitat designs are available during the 

conceptual formulation of human space exploration missions.  This chapter highlighted the 

necessary improvements to the current interior layout design and evaluation processes which 

frame the research described in this thesis. 

Chapter 2 presents a review of the literature which is useful in the development of the interior 

layout evaluation methodology and tool.  This review includes a detailed description of current 

habitat interior design/evaluation methods and metrics.  It then describes the requirements, 

constraints, and subsystem functions/interactions which must be addressed for acceptable and 

desirable layout designs.  Next the mechanisms mentioned in Research Question 3 that enable the 

automated calculation of evaluation criteria are described including geometry modeling methods, 

collision detection tests, and numerical grid based methods.  Finally, stochastic optimization 

methods which are necessary to implement the automated generation of acceptable layouts are 

described. 

Chapter 3 presents the proposed interior layout evaluation methodologies introduced in 

Chapter 1.  First an overview of the systems engineering-derived layout evaluation process is 

given.  This is followed by a description of the development of a comprehensive set of evaluation 

criteria and automated methods to quantitatively measure them.  This chapter will also describe 

the constraints and designer preferences which are combined with the measured evaluation 

criteria values to quantify an objective function providing an integrated measure of overall layout 

effectiveness.  Finally, the use the chosen stochastic optimization method utilized iteratively 

improve values of this multi-criteria objective function and enable the automated generation of 

favorable layout alternatives is described, followed by a high level description of the software 

implementation used to test these evaluation and generation methods. 



15 

 

Chapter 4 demonstrates the effectiveness of the layout evaluation process by analyzing 

manually created sample layouts of a notional habitat intended for a mission to cis-lunar space. It 

describes the mathematical modeling of the design problem (requirements, outfitting, preferences, 

etc.) in the software designed to implement the methodology. Then, alternative layouts are 

compared using this software to verify the measurement of the evaluation criteria and 

demonstrate the ability of the method to differentiate desirable and undesirable layouts. 

Chapter 5 provides the foundations for automating the optimization of interiors and attempts 

to apply the evaluation framework developed in Chapter 4 to enable an automated habitat interior 

layout improvement capability utilizing the same cis-lunar example treated in Chapter 4.  

Specifically, the chapter describes the customized stochastic optimization implementation and 

comments on its ability to identify feasible and favorable candidate layouts for evaluation.  It also 

discuss challenges to objective function convergence, full automation, and potential solutions to 

identified issues.  Finally, it describes the value of the current tool and the potential benefit of a 

fully automated iterative layout improvement capability. 

Finally, Chapter 6 briefly provides conclusions about the layout evaluation and automated 

generation process presented in this research and its implications for the design and sizing of 

habitat systems to support future human exploration missions.  This chapter also discusses the 

recommendations on future work in this area to investigate the impact of uncertainty in designer 

preferences, provide increased fidelity and speed of the results, and expand the habitat layout 

design space to non-conventional habitat designs. 

Finally, it should be mentioned that this dissertation pulls heavily from conference papers and 

a peer-reviewed journal article published by the author for descriptions of relevant background 

information and descriptions of the proposed methodology. References to these works are 

included where those sections are utilized. 
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CHAPTER TWO:  BACKGROUND 

This chapter contains a review of literature which establishes the current state of the art in 

habitat interior layout design and layout evaluation methodologies.  It also describes the 

necessary background information for the development of an improved habitat interior layout 

evaluation method.  A detailed description of space habitat and habitat interior design 

considerations is provided, including a description of habitat design requirements, subsystems, 

potential evaluation criteria, and constraints.  This chapter then describes geometry modeling and 

collision detection methods necessary to perform layout feasibility checks and to measure 

geometry-based evaluation criteria.  Finally, it describes previous attempts in literature of 

automating layout design, provides examples of methods and tools used to optimizing similar 

geometry-based layout problems, and describes the pros and cons of some of the stochastic 

optimization methods which have been successfully applied. 

2.1 Habitat Layout Design 

The purpose of this section is 1) to provide a summary of existing methods to evaluate habitat 

interior layout designs and 2) to provide a summary of habitat interior design requirements, 

subsystems, accommodations, integration concerns, and all other information necessary to assess 

habitat interior configurations.  This information is used in the description of the proposed layout 

generation and evaluation methodology presented in Chapter 3.  The information in this section is 

a compilation of spacecraft design texts, design studies, NASA requirements documentation, 

conversations with habitat design experts, and papers describing the habitat design process as a 

whole.  

2.1.1 Habitat Layout Design Process 
Space habitats are described by many phrases in literature: “inhabited space systems” 

[Osburg, 2002], “human-rated spacecraft” [Allen et al., 2003], or any type of pressurized element 
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in which crew presence is implied such as a lander, base, station module, crew 

transfer/entry/ascent/descent vehicle.  Fundamentally, the primary purpose of a space habitat is to 

provide a “pressurized environment for ... humans to live and work” [Kennedy, 2002a].  These 

habitats must provide adequate volume to accommodate all of the equipment and consumables 

required to support crew and perform all of the tasks crew are required to perform throughout the 

mission.  These tasks include typical living tasks (e.g., eating, sleeping, exercise, etc.) and work 

tasks (e.g., monitoring, maintaining, and operating the spacecraft; performing mission specific 

science; carrying out exploration objectives; etc.) [Larson & Pranke, 1999]. Additionally, habitats 

must also be designed and outfitted to keep crew healthy and happy by fulfilling all of the 

physiological, psychological, and social needs of crew [NASA, 2010; Simon, Whitmire, Otto, & 

Neubek, 2011].  This implies logically designed and arranged equipment, and improved 

consideration of the crew’s physical and cultural preferences [Simon et al., 2011]. 

 

 

Figure 3: Habitat Interior Layout Design Process (Figure 1 reproduced from Ch.1) 
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As shown in Figure 3, designing habitats involves analyzing mission requirements (e.g., 

duration, number of crew, etc.) to identify crew tasks and spacecraft functions, selecting the 

systems and accommodations necessary to perform those tasks/functions, sizing the habitat to 

contain these items, and integrating them together into configurations which are both efficient and 

comfortable [Howe & Sherwood, 2009].  The mapping of mission requirements to the required 

habitat subsystems and crew accommodations is fairly well documented and driven mostly by 

mission duration, the types of activities which would be performed during the mission, and the 

selection of technologies dictated by the designer and program budget [Larson & Pranke, 1999].  

For example, choosing a long duration mission normally dictates the need for a partially closed-

loop, high-reliability life support system to reduce habitat mass, unless the application of other 

advanced technologies such as high-efficiency propulsion system negates the need for additional 

habitat mass reductions.  

The integration of these systems and accommodations into a habitat interior layout has been 

historically carried out using a process very similar to the traditional terrestrial architecture design 

process [Duerk, 1993; Duerk, 2004; Osburg, 2002].  In this process, the architect utilizes years of 

experience designing similar facilities and some artistic license to sketch layouts which meet all 

quantitative requirements while qualitatively evaluating the complex, interacting desires of the 

customer.  These layouts are repeatedly refined as mission concepts and the required crew 

operations are further defined. As space habitats become more complex, a structured, question-

based data collection process referred to as “architectural programming” from terrestrial 

architecture can be implemented to identify required layout features and track all of the 

conflicting design considerations [American Institute of Architects, 2008].  Architectural 

programming is standard practice for the design of space habitat interiors due to the multiple 

conflicting habitat design objectives and constraints [Howe & Sherwood, 2009].  

After initial layouts are created, they are iteratively improved by qualitatively evaluating the 

inter-object relationships and habitat mass and volume constraints to identify an ‘acceptable’ 
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layouts.  As mentioned in Chapter 1, in order to enable consideration of interior layout designs at 

conceptual design phases and to enable end-to-end habitat design optimization there is a desire to 

1) develop an extensive set of automatically quantifiable layout evaluation criteria which include 

both engineering and habitability objectives and 2) develop a tool for the automated evaluation 

and generation of interior layout concepts.  The next section outlines the previous methods used 

to evaluate spacecraft interior layouts.  

2.1.2 Previous Work in Space Habitat Interior Layout Evaluation 
Methods 

There are several characteristics of space habitats which make their evaluation unique from 

terrestrial interiors.  The most substantial change is that space habitats must be designed for 

microgravity, partial gravity, or some combination of the two over the course of a mission 

[Cohen, 1996; Howe & Sherwood, 2009; Kennedy, 2002a].  Microgravity allows all surfaces 

within a habitat, including ceilings and floors, to be accessible and useful for crew tasks and 

associated hardware.  Microgravity and partial gravity also require revised anthropometrics and 

biomechanics relationships as the human body resting positions and movement are vastly 

differently than in normal Earth gravity [Akin, 2012; NASA, 2010].  This causes reach envelopes, 

translation geometries, and equipment placement which make up functional areas to be 

substantially different from terrestrial architecture [NASA, 2010].  Another major difference 

between terrestrial and space architecture is that all of the functions required to support crew for 

long duration, pressure-sealed confinement must be integrated within a single habitation system 

made up of one or multiple pressure vessels [Kennedy, 2002a].  This poses a unique accessibility 

challenge with unique human factors and scheduling constraints [Fitts, 2002; Tullis & Bied, 

1988].  Additionally, the unique hardware for spaceflight functions (e.g., closed loop life support, 

thermal hardware, science hardware, etc.) imposes additional spaceflight-unique relationship 

constraints not found in most terrestrial applications.  Finally, the unique stresses of long-duration 

isolation and confinement in a dangerous, high-risk environment requires that space habitats must 
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be designed with unique psychological and habitability considerations in mind [Adams & 

McCurdy, 1999; Fraser, 1968; Imhof, 2007; NASA, 2010; Simon et al., 2011; Stuster, 2010; 

Wise, 1985].  In summary, there are enough unique considerations to distinguish the space habitat 

evaluation method from the terrestrial architecture design methods, and this has led to the 

creation of many specialized methods for spacecraft design evaluation within space architecture 

practice. 

Table 4 list some of the more influential and relevant space habitat design evaluation 

references which present various methodologies and criteria sets for assessing habitat interiors. 

These papers fall into five layout evaluation categories (Human-in-the-loop Mockup/Analog 

Tests, Subjective Design Evaluation Studies, Quantitative Evaluation Studies, In-Depth CAD 

Evaluations, and Architectural Programming) shown in Table 5 and the typical performance of 

evaluations within each category are compared in Table 6. 
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Table 4: Representative Space Habitat Evaluation Studies 
Alternative Approach Description Limitations 

Celentano et al., 1963 – 
“Establishing a Habitability 
Index”  

 Early reference on habitability needs 
for long duration missions which 
established a somewhat quantifiable 
habitability index for comparing 
habitats 

 Interior design (“Living Space”) criteria 
focus on volume and only comment on 
other measures 

Wise, 1985 – “The 
Quantitative Modeling of 
Human Spatial Habitability”  

 Details numerical methods for 
capturing spatial perception from 
visual, kinesthetic, and social logic 
perspectives including a detailed 
description of an isovist model for 
visual spaciousness  

 Focuses on spatial issues 

 Does not weight or combine measures 
as it argues factors are too 
interdependent to merit combination 

 Relies on expert designer in the loop 

Tullis & Bied, 1988 -  “Space 
Station Functional 
Relationships Analysis  

 Evaluation of interiors based upon 
separation and colocation of systems  

 Incomplete, focuses on schedule, 
traffic, privacy, and noise  

Nixon, 1986; Nixon et al., 
1989 – Space Station 
Habitability Studies 

 Describes a subjective Likert-scale 
evaluation of multiple hardware 
mockups utilizing a detailed set of 
evaluation criteria 

 Many interesting evaluation criteria, 
but only subjective scoring of subjects 
experience in a mockup with little 
definition of criteria is used 

Adams & McCurdy, 1999; 
2000 – “Habitability in 
Advanced Space Mission 
Design”: Parts 1 and 2 

 Adams & McCurdy, 1999 describes 
several criteria for assessing habitat 
concepts, including some 
requirements. Adams & McCurdy, 
2000 assesses several habitat types 
on their potential performance on 
these criteria 

 Though some criteria are measurable, 
all are assessed qualitatively on a Likert 
scale. Specific layouts are not addressed 

Fitts, 2002 – “International 
Space Station (ISS) Internal 
Volume Configuration (IVC) 

 Assesses ISS modules using CAD 
analysis against approved set of 
pass/fail criteria 

 Utilizes manual, quantitative measures 
with definitive constraints, but criteria 
set is incomplete 

 Focuses on constraint satisfaction 

Cohen, 2004 – “Habitat 
Multivariate Design Model 
Pilot Study”  

 Addresses how to determine shape 
and size of habitats based upon 
several spatial variables  

 Numerical, but incomplete 

 Focuses on pressure vessel geometry, 
not interiors 

Di Capua et al., 2009– 
“Minimal Functional 
Habitat”  

 Design study for surface habitat 
design  

 Qualitative preference analysis to 
identify design features to 
implement  

 Relatively complete, but all measure of 
effectiveness are qualitatively ranked 

 Mitigations are design feature focused 
as opposed to layout focused  

SICSA, 2008; 2009;   Design studies of habitat 
architectural concepts including 
ranking of configurations  

 Good selection of criteria, but limited to 
qualitative ratings between few 
concepts 

NASA, 2010 - NASA Human 
Integration Design 
Handbook  

 NASA handbook on designing human 
spaces describing criteria and 
requirements 

 Most comprehensive list of criteria, but 
lacks definition of measurement 
methods for individual criteria and an 
overall performance measure 
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Table 5: Currently Available Approaches for Evaluation of Spacecraft Interior Layouts 

(Replicated from Table 2) 
Alternative Approach Description  

Human-in-the-loop Mockup/Analog 
Tests  
[Fitts & Howard, 2009; Howe & 
Sherwood, 2009; Litaker et al., 2013; 
Nixon, 1986; Nixon et al., 1989; Hertz, 
2003] 

 Use wood and foam-core models or 
research analogs to test crew activities 
with astronauts using qualitative rating 
scales to capture crew 
preferences/comfort  

 

Subjective Design Evaluation Studies  
[Adams & McCurdy, 1999; Adams & 
McCurdy, 2000; Di Capua et al., 2009; 
NASA, 2010; SICSA, 2008; SICSA, 2009]  

 Qualitatively compare the perceived 
performance of interior design 
alternatives with relative subjective 
ratings  

 

Semi-Quantitative Evaluation Studies  
[Celentano et al., 1963; Cohen, 2004, 
Tullis & Bied, 1988; Wise, 1985] 

 Establish quantitative criteria to assess 
layout goodness  

 

In-depth CAD Evaluations  
[Fitts, 2002; Szabo et al., 2007]  

 Use detailed CAD models to manually 
measure desired criteria and perform 
virtual mockup tests  

 

Architectural Programming (and other 
a priori methods)  
[Duerk, 1993; Osburg, 2002; NASA, 
2010] 

 Use an interview process with the user 
to create a design catered to an 
individual preferences; features one 
layout activity 

 

 
 

Table 6: Comparison of Existing Evaluation Method Performances (Replicated from Table 

3) 
 Human-in-the-

loop  
Mockup Tests 

Subjective 
Design 
Evaluation 
Studies  

Semi-
Quantitative 
Evaluation 
Studies 

In-Depth 
CAD 
Evaluations  

Architectural 
Programming 
and other A 
Priori Design 
Methods  

Desired 
Capability 

Model Setup 
Time 

Weeks Hours - 
Weeks 

Hours - Weeks Days - 
Weeks 

Days - Weeks 1-2 Days 

Time for a 
Single 
Evaluation 

Days Minutes - 
Hours 

Hours - days Hours Days – 
Months 

Minutes 

Additional 
Time for 
Alternate 
Configurations 

Small changes: 
Hours–Days 
Large changes: 
Weeks 

Minutes - 
Hours 

Minutes - Days Hours Days - Weeks  Seconds 

Completeness 
of Criteria Set 

Incomplete, 
focusing on 
usability and 
feasibility only 

Somewhat 
complete 

Somewhat 
complete 

Incomplete, 
focusing on 
a couple of 
criteria at a 
time 

Somewhat 
complete 

Complete 

Measurement  
Method 

Cooper-Harper 
and other 
rating systems, 
manual 
measurement 

Qualitative 
relative 
ratings 

Manual 
quantitative 
measurements 
or calculations 

Detailed 
quantitative 
CAD 
measureme
nts 

Qualitative 
feel based 
upon 
experience 

Quantitative, 
automatic 

Automatically 
Calculable 

No No Possibly Possibly No Yes 

Howe 2009 

Fitts 2002 
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Human in the Loop Mockup/Analog Tests 

As the name suggests, human-in-the-loop mockup/analog evaluations utilize human 

evaluators who perform tasks or inhabit an enclosed environment for a period of time to 

demonstrate the performance of the interior design or refine design features through observation 

of potential improvements.  For example, Nixon’s work on wardroom design [Nixon, 1986; 

Nixon et al.,1989] used wood and foam-core mockups while Litaker et al. [Litaker et al., 2013] 

used the Habitat Demonstration Unit: a spacecraft analog designed to simulate the operations on 

the lunar surface.  Evaluators use structured rating scales such as Cooper-Harper, Likert, or the 

NASA Task Load Index (TLX) [Hart & Staveland, 1988; Hart, 2006] to rate tasks or overall 

layout impressions against well-defined qualitative measures.  A strength of this approach is that 

it provides a real, hands-on evaluation which facilitates the identification of less tangible design 

issues which would be overlooked in the other methods, such as usability, feasibility, and human 

factors concerns.  The primary challenge with this type of evaluation is that it takes a substantial 

amount of time and resources to construct the physical simulation environment and perform each 

evaluation, which are both very limited in early conceptual design phases.  Attempts have been 

made to reconcile this by utilizing virtual layouts and immersive virtual reality hardware to 

perform virtual evaluations, but the limitations of virtual reality technologies (lack of realistic 

touch and other sensory perceptions) currently limit their application to the refinement of design 

features and quantification of only a few criteria.  Hands-on evaluations are still highly desirable 

in later design phases, but are not compatible with conceptual design and the desired performance 

of automated design methods described in Table 6. 

Subjective Design Evaluation Studies 

Subjective design evaluation studies establish a set of qualitatively assessable evaluation 

criteria to perform relative comparisons of two-dimensional or three-dimensional layouts.  These 

studies typically use similar rating scales as the human-in-the-loop evaluations to rate designs 
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against a set of relatively complete figures of merit.  For example, the SICSA study on evaluating 

and selecting lunar habitat module concepts [SICSA, 2008] develops a list of evaluation criteria 

which feed into the selection between multiple layout concepts for a lunar habitat.  Alternatives 

were scored qualitatively to establish designer preferences.  The strength of these studies is that 

they can quickly compare multiple layouts against multiple criteria, which makes them well 

suited to the conceptual habitat design problem.  The major limitation of these methods is that the 

total time to evaluate multiple layouts increases linearly with each additional layout.  

Additionally, it becomes difficult to distinguish the differences between multiple layouts, and 

scores can have unintentional biases based upon the evaluator’s perception, preferences, and 

cultural background [Simon et al., 2011].  Many of these studies have developed criteria sets 

which are somewhat quantitative, but quantitative measurement is often bypassed because the 

uncertainty surrounding the exact mission parameters and habitat dimensions is high at the 

conceptual design phase.  Without automated evaluation criteria measurement methods, it is more 

time consuming to perform the measurements and calculations required to quantify the criteria for 

each new layout than it is to simply rerate the effectiveness of the layout qualitatively.  

Semi-Quantitative Layout Evaluation 

Semi-quantitative layout evaluation studies seek to capture the usability and habitability of a 

layout using a semi-complete set of quantitative measures.  Most of these measures are 

measurements of physical parameters which have been observed in human-in-the-loop testing or 

in terrestrial architecture to produce more habitable, usable layouts.  Semi-quantitative evaluation 

methods are the most applicable to the automation of interior layout design and evaluation 

because they offer repeatable, automatable methods to measure layout performance.  The most 

relevant of these papers is “The Quantitative Modeling of Human Spatial Habitability” by J. A. 

Wise [Wise, 1985], which describes a method for measuring spatial perception from visual, 

kinesthetic, and social logic perspectives using isovist analysis.  Isovist analysis utilizes 
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measurements called isovist radials which are measurements from a reference point representing 

an observer to each of the points visible to that observer within an interior.  Wise et al. use isovist 

analysis [Benedikt, 1979] parameters derived from layout geometries to quantify intangible 

aspects of habitability like spaciousness, proportion, body envelopes, and social logic parameters 

affected by layouts like privacy and social power.  By providing quantitative methods, Wise 

makes layout evaluation structured and repeatable. However, there are a few limitations to the 

Wise et al. work which prevents its direct application to the automated, conceptual habitat 

evaluation and generation problems.  Wise et al. examines a broad range of mostly spatial criteria 

for the interior design of spacecraft and maintains that tradeoffs between these criteria are not 

likely needed as design choices can be made to creatively achieve all desired characteristics of a 

layout.  This method relies on an expert designer in the loop to apply creative ways of achieving 

the desired metrics, whereas the goal of the proposed method is to automate interior layout 

generation steps utilizing the most salient, driving criteria.  Additionally, the mass constraints and 

other systems-level considerations involved in the integration of the interplanetary habitat design 

into mission architectures increases the importance of performing these tradeoffs during the 

conceptual design phase when design flexibility remains, but a detailed designer look may be 

impractical.  

In-depth CAD Evaluations 

In-depth CAD evaluations are often used in detailed design to refine design features and 

tightly integrate pieces of hardware.  These methods are currently used extensively to monitor the 

layout of the International Space Station for interferences [Fitts, 2002].  The strength of these 

evaluations is that the results are mostly quantitative measurements derived from precise 

measurements of medium to high-fidelity CAD models.  The weakness of these approaches are 

the amount of effort and time necessary to create each three-dimensional layout model if multiple 

layouts are to be considered.  Additionally, the evaluation criteria measurement methods used in 
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these evaluations are often very manual in nature, which limits the applicability of these methods 

directly to automation without some modification.  In fact, the proposed method [Simon, 

Bobskill, & Wilhite, 2012] utilizes similar methods for measuring habitable volume as the CAD 

assessments [Szabo et al., 2007], but automates and accelerates the calculation through the use of 

numerical algorithms approximating the measurements.  In addition to CAD evaluation methods, 

Building Information Management (BIM) systems have been frequently integrated with CAD 

models to embed relevant design information and requirements directly into CAD models [Polit-

Casillas & Howe, 2013].  This design evaluation is well suited to detailed design phases in which 

the layout is mostly fixed.  

Architectural Programming 

Architectural programming is a standard information management technique used frequently 

in terrestrial architecture practice where a structured set of questions is utilized to establish the 

preferences of the customer while ensuring that the resultant design meets all requirements 

[Duerk, 1993].  This can be thought of as a method which procedurally allows designers to 

evaluate the interior design a priori and generate feasible designs which can then be further 

iterated to improve the look and feel of the space.  While architectural programming is an 

effective way of generating layout alternatives, it has two weaknesses which reduce its 

effectiveness for use in the automated design of long duration space habitats.  First, the highly 

constrained nature of the long duration space habitat design problem described in previous 

sections requires a more optimized solution than the one typically generated through the 

architectural programming process, which benefits from more margin on mass/volume.  Second, 

the time it takes to compare many layout alternatives with architectural programming scales 

somewhat linearly with the number of alternatives, which makes it ill-suited for automation. 

As shown in Table 6, comparison of these various spacecraft interior layout evaluation 

methods reveals the desired performance of the proposed evaluation method.  A method is 
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desired which can quickly investigate large numbers of possible configurations with an absolute 

scale of measurement to allow for direct comparison between alternatives.  The method described 

in Chapter 3 will describe how reduced fidelity geometry and increased automation could be 

leveraged to enable these improvements. The following section describes the habitat design 

requirements, heuristics, evaluation criteria and constraints described in literature which must be 

considered in a complete evaluation process.   

2.1.2 Space Habitat Interior Design Requirements and Heuristics 

Space habitat design requirements and interior layout heuristics which capture major layout 

considerations drive the selection of evaluation criteria and constraints required to perform 

quantitative interior layout evaluations that lead to realistic layouts.  Spacecraft requirements 

ensure that the required functionality and performance of habitat interior are provided to “ensure 

safety and reliability of human-rated exploration vehicles” and the crew they support [Allen et al., 

2003].  Table 7 lists requirements which specifically impact interior layouts which are derived 

from NASA standards [NASA, 1995], OSHA (Occupational Safety and Health Administration) 

requirements, and spacecraft design texts [Allen et al., 2003; NASA, 1999; Salvendy, 1997; 

Larson & Pranke, 1999; Connors et al. 1985,].  This list is not exhaustive, but provides a feel for 

the types of requirements that influence the size and placement of interior items.  These 

requirements are defined at a high-level during conceptual design until mission/destination 

operations are more clearly defined.  Increased definition of the specific mission objectives set 

more numerical thresholds for each of the key requirements and reduce the number of applicable 

implementations capable of fulfilling these requirements.  For example, mission duration and 

destination define acceptable radiation protection thresholds and meeting those radiation 

protection thresholds can be accomplished by a ‘safe haven’, water walls, or by shielding [Larson 

& Pranke, 1999].  Selecting the appropriate option requires analyzing the mission objectives and 

making a decision based upon multiple criteria including cost, mass, volume, and risk.  
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Table 7: Space Habitat Architecture Requirements 

Habitat Design Requirements References 

Comply with appropriate military, NASA, or equivalent human-rated systems 
requirements 

[Larson & Pranke, 1999; Allen et 
al., 2003; NASA, 1995; NASA, 
1999; Salvendy, 1997; ] 

Provide an environment for the crew which is safe to live and work in for the 
specified mission duration and destination 

[NASA, 1995; Kennedy, 2002a; 
Larson & Pranke, 1999] 

Provide the necessary systems and accommodations for the 
sustainment of human life 

[Larson & Pranke, 1999] 

Environmental Control and Life Support Systems (ECLSS) 

[Allen et al., 2003; Larson & 
Pranke, 1999; Eckhart, 1996; 
Chambliss, 2007; Anderson, 
Ewert, Keener, Wagner, 2015] 

Associated consumables, distribution, and storage   

Crew accommodations and associated storage 
[Allen et al., 2003; NASA, 1995; 
Larson & Pranke, 1999] 

Thermal Control System (TCS) 
[NASA, 1995; Larson & Pranke, 
1999; Lyle, Stabekis, & Stroud, 
1973] 

Provide maintenance access for these and all other critical systems   

Provide sufficient redundant units or capability for critical systems  [Larson & Pranke, 1999 (p31)]  

Provide either an internal power source or an interface to an external 
system sufficient to support critical systems through the day/night 
cycle. Also provide a power management and distribution system to 
support powered systems. 

[Larson & Pranke, 1999 (p 39)]   

Provide a reliable structure with adequate safety margins to maintain 
pressure 

[NASA, 1995; NASA, 1999]  

Providing volume sufficient for physiologically, psychologically, and 
psychosocial health and an efficient work environment when all 
systems and cargo are stored and packaged 

[NASA, 1995 8.6, Larson & 
Pranke, 1999 (Ch. 7), Connors et 
al. 1985] 

Provide crew station volume accommodating the necessary tasks to 
be performed in the habitat without interfering with other tasks  

[NASA, 1995 (sec. 8.2.3). 
Salvendy, 1997; Larson & 
Pranke, 1999 (p 30)] 

Arrange equipment to provide separation of certain types of systems 
to increase safety of crew, efficiency of work environment, etc. 

[NASA, 1995 (section 8.2 and 
8.3), Allen et al., 2003; Larson & 
Pranke, 1999] 

Compatibility with surrounding activities and facilities  

Hygiene separation for biological containment and crew safety   

Dust separation from crew activity and living quarters for health 
and equipment operation 

  

Noise separation for crew health and workstation efficiency   

Provide protection from space or surface environment [Allen et al., 2003] 

Radiation protection   

Micro Meteoroid and Orbital Debris (MMOD) protection   

Plasma and electrostatic environment   

Vacuum   

Dust protection   

Thermal extremes protection   

Provide areas and equipment for sleep and rest, eating, exercise, 
hygiene and personal time sufficient for the defined mission 

[Allen et al., 2003; Larson & 
Pranke, 1999] 

Provide method and path for emergency egress routes [NASA, 1995; sec. 8.7.3.4] 

Provide adequate translation paths outside of the crew working 
envelopes 

[NASA, 1995 sec 8.8] 
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Table 7 (continued) 

Hatches and doors should be placed away from hazards and allow for 
full path of motion 

[NASA, 1995 , sec8.10] 

Provide the tools necessary to perform the required diagnostics/repairs and 
increase the efficiency of the work  

  

Provide workstations for control of systems and performance of research 
[Allen et al., 2003; NASA, 1995; 
Salvendy, 1997] 

Provide equipment for communication with mission command either 
independently or by utilization of an existing communication infrastructure 

[Larson & Pranke, 1999 (Ch. 26)] 

Provide the pressurized interfaces and sufficient translation path for 
goods/person transport 

[NASA, 1995] 

Provide equipment and consumables for extra vehicular activity required 
from the mission description and a designated area to maintain EVA 
equipment 

[Larson & Pranke, 1999 (p 134) 

 

Requirements typically fall into three categories which are not mutually exclusive: required 

capabilities, required arrangements, and required performance thresholds.  Required capabilities 

specify the types of hardware which must be provided to support crew work and rest.  These are 

easily identified from major design standards documents like NASA’s Standard 3000 and the 

Human Integration Handbook [NASA, 1995; NASA, 2010].   Required arrangements apply 

constraints to the relative positions and orientations of conflicting or synergistic functional areas 

as well as constraining their location relative to habitat structural features like hatches and 

windows [NASA, 1995; NASA, 2010].  Requirements thresholds identify required levels of 

performance for spacecraft interior and systems.  These can often be nebulous to quantify due to 

the multiple varying opinions on many parameters values specific to spacecraft interiors.  One 

frequent example of this is habitable volume, which has been discussed at length within NASA to 

establish recommendations for future missions [Simon et al., 2012 and Simon et al., 2011].  The 

NASA Standard 3000 indicates that 20 m3 per person is appropriate for long duration missions 

[NASA, 1995; section 8.6.2.1], but several NASA references report different required values 

citing special circumstances or different functionality which must be adequately packaged [Allen 

et al., 2003; Simon et al., 2012].  

Simply addressing the requirements listed in Table 7 does not imply an acceptable/desirable 

design, as additional considerations and crew preferences are required to ensure that the form of 
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the interior layout is consistent with crew expectations of a livable space.  To ensure the proposed 

evaluation method leads to acceptable designs, the most significant rules and design 

considerations which are used in current habitat interior design methods are collected here as a 

table of habitat interior design heuristics.  Heuristics are “rules of thumb” which are often used to 

guide layout design towards favorable alternatives.  Table 8 lists some of the habitat interior 

design heuristics used in practice [Osburg, 2002; Eckart, 1996; 1999; Salvendy, 1997; Larson & 

Pranke, 1999; Allen et al., 2003; Connors et al. 1985; Howe & Sherwood, 2009; and Kennedy, 

2002a; etc.].     

These requirements and heuristics serve two purposes: defining measurable ‘evaluation 

criteria’ which can be used to evaluate alternative configurations and defining ‘constraints’ on the 

placements and orientations of components. Evaluation criteria allowing for comparison of the 

acceptability of a layout include metrics like habitable volume, mass, translation path width, and 

separation for hygiene. Constraints on the placement of objects which must be satisfied include 

translation path and door clearances, heights of workstation consoles, and allowance for 

maintenance access. Chapter 3 will describe in detail how these requirements and heuristics are 

translated into these evaluation criteria and quantitative methods to measure them. 
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Table 8: Habitat Interior Configuration Design Heuristics and Considerations 
Design Area Heuristic References 

Dimensions and 
Volume 

Launch vehicle geometric constraints drive outer mode line 
dimensions 

Osburg, 2002; Adams & 
McCurdy, 2000 

Quantify spatial habitability issues (line-of-sight, volumetric, 
other metrics) for objective ranking of alternatives  

Osburg, 2002; Wise, 1985; 
SICSA, 2008 

Spaciousness increases with neatness/degree of 
organization and skillful distribution of furnishings 

Osburg, 2002 

Volume must be reserved for line runs of power, water, air, 
etc. 

  

Areas in cylindrical habitats without full standing height are 
useful for sleeping, seated workstations, storage 

SICSA, 2008 

Mass 

Provide the maximum usable volume and floor area for the 
associated structural mass 

Eckart, 1999; SICSA, 2008 

Line lengths for power, air, water, etc. should be minimized 
using adjacency matrices and proper placement of resource 
sources 

  

Center of gravity of components should roughly approximate 
center of volume 

SICSA, 2008  

Translation 
Paths 

Paths should be wide enough for two crew members to pass 
each other with EVA suit donned (1.4 m), in case of 
depressurization or other emergency egress situation 

Eckart, 1999;  

Dual egress capability at each location for redundancy and 
emergency sealing off of habitat segments 

Eckart, 1999;  

Stairs or floor translation mechanism must be designed with 
bounding gait and mobility in the mission gravity 

Eckart, 1999;  

Shapes of 
Spaces 

Ceiling height for partial gravity orientations should be set for 
psychological well-being and bounding gait (e.g., 3 m in case 
of lunar surface) 

Eckart, 1999;  

Maintainability 
and Access 

Provide access to external walls, cable standoffs, behind 
subsystems, stowage 

Osburg, 2002; SICSA, 
2008 

Attempt to provide enough space that equipment in regular 
use (exercise, dinner table, etc.) can remain deployed.  

Osburg, 2002 

Workstations 
Workstations should be of standardized, uncomplicated 
design  and should be grouped for task completion 

Eckart, 1999;  

Avoid sharp corners and edges for safety Eckart, 1999;  

Anthropometrics 

Provide appropriately sized and placed work surfaces for 
partial gravity posture 

Eckart, 1999; Salvendy, 
1997 

Operational volume around workstations and systems with 
which crew interact must be reserved for that interaction 

Salvendy, 1997 

Biomechanics 
Locate and organize stowage to facilitate retrieval of objects 
subject to biomechanical limits such as lifting posture, load 
carrying from posture, etc. 

Salvendy, 1997 

 

 

 

 

 

 



32 

 

 

Table 8 (continued) 

Design Area Heuristic References 

General 
Habitability 

Habitability requirements increase as mission duration, risk, 
isolation, and confinement increase 

Connors et al. 1985, 

Adhere to local vertical 
Connors et al. 1985,, 

Adams & McCurdy, 1999 

Increase horizontal line of sight distances and visible volume 
Adams & McCurdy, 1999, 

Wise, 1985 

Privacy and 
Social 

Interaction 

Individual, private crew quarters for sleeping, reading, writing Eckart, 1999;  

“Quarters should be large enough to enable occupant to dress 
and undress with a reasonable amount of volume for 
movement” 

Bernasconi, Versteeg & 
Zenger, 2008 

An area must be included to accommodate all-crew member 
meetings 

Eckart, 1999;  

Separation of living and working environment for enhanced 
privacy 

Bernasconi et al., 2008 

Noise 

Minimize sources of noise, particularly in private spaces Eckart, 1999;  

Noise levels for labs and work areas < 55dB Eckart, 1999;  

Noise levels for sleeping areas < 35 dB Eckart, 1999;  

Vibration Control vibration throughout the habitat Eckart, 1999;  

Hygiene 

Provide separation of hygiene facilities from sleeping and 
galley areas 

Allen et al., 2003 

In partial gravity or microgravity conditions, collection of water 
and debris may require vacuum lines or hand-held vacuums to 
be placed near hygiene stations 

Allen et al., 2003 

If dust control methods are not developed for long-duration 
surface missions, whole body cleansing in the form of a rigid 
water-tight shower like on Mir or Earth analogs 

Allen et al., 2003 

Exercise requirements necessitate full body cleansing facilities Connors et al. 1985, 

Lighting 
Provide task specific lighting Allen et al., 2003 

Provide emergency lighting Eckart, 1999;  

Window 

Provide at least one window for Earth/Space/Surface viewing  
Osburg, 2002; Adams & 

McCurdy, 2000 

Preferred location: conference/ dining area, exercise area, 
quiet area 

Osburg, 2002; Adams & 
McCurdy, 2000 

Placement of windows and lighting devices should take into 
consideration light sensitive activities, such as sleeping, use of 
displays, or tasks requiring dark adaptation 

Allen et al., 2003 

Hatches and 
Doors 

Hatch and door size should accommodate the largest 
crewmember and any equipment to be transported 

Allen et al., 2003 

Translation paths for suited crewmembers may be required in 
some cases 

Allen et al., 2003 

Doors and hatches should be placed to avoid potential traffic 
congestion with crew systems. The reverse is also true.  

Allen et al., 2003 

Seating and 
other Furniture 

Should accommodate posture in mission gravity  Eckart, 1999;  

Microgravity 
Considerations 

IVA mobility aids should be made available in microgravity or 
low gravity situations 

Allen et al., 2003 

 

2.1.4 Subsystem Information 
Habitat interior layouts are arrangements of subsystems, accommodations, and logistics 

packaged within a pressure vessel geometry [Larson & Pranke, 1999].  Kennedy describes 

designing habitats as: 
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“… providing volume for all crew living functions, including galley/wardroom, sleep 

and hygiene accommodations, radiation protection, and stowage. The habitat will also 

serve as the location for a number of crew work functions, such as science 

laboratories, crew medical care & exercise, mission operations, communications with 

Earth, maintenance, and Extravehicular Activity (EVA), including airlocks. Adequate 

volume is required for each of these functions in addition to that devoted to housing the 

habitat systems, such as Environmental Control & Life Support, Avionics, and Power 

Management and Distribution” [Kennedy, 2002a]  

Subsystems include the systems which operate to support the habitat which nominally operate 

with little crew interaction such as life support, thermal control, power, communications, etc. 

[Larson & Pranke, 1999; Eckart, 1996].  Accommodations are systems which the crew interact 

with on a regular basis to support crew life and include crew quarters, galley, refrigerators, tables, 

exercise equipment, etc. [Larson & Pranke, 1999].  Finally, logistics include spares, resupply 

items, and consumables such as food and medicine which would nominally be resupplied 

between missions.  Some information on these packaged components like the mass, volume, 

interfaces, and functionality are necessary inputs to the evaluation criteria quantification methods 

described in Chapter 3.  Table 9 describes the habitat subsystems and accommodations required 

to support a crewed habitat and Figure 4 indicates which are packaged inside the habitat volume 

(and thus are relevant to an interior layout design).  In depth descriptions of each of these 

subsystems are provided in the references listed in Table 10 and the specifics of subsystem 

information used to prove out the method described in Chapter 3, 4, and 5 are provided in 

Appendix C. 
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Table 9: Habitat Subsystem Descriptions [reproduced from Kennedy, 2002a with 

permission] 

 
 

 

 
Figure 4: Habitat Elements and Interfaces [reproduced from Kennedy, 2002a with 

permission] 
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Table 10: Subsystem References 
Subsystem References 

Environmental Control and Life Support Systems / Thermal Control 
Systems 

Eckart, 1996; Eckart, 1999; Hanford, 
2004; Larson & Pranke, 1999  

Human or Crew Accommodations Larson & Pranke, 1999; Allen et al., 2003;  

Power Management and Distribution System Eckart, 1999; Larson & Pranke, 1999;  

Science Equipment Budden, 1994 

Extravehicular Activity (EVA) Equipment Larson & Pranke, 1999 

Workstation Design (Communications, Data Management, etc.)  Larson & Pranke, 1999; NASA, 1995; 
Salvendy, 1997   

 

2.2 Geometry Modeling and Collision Detection 

In order to enable quantifiable evaluation of habitat interior layouts using computer software, 

mathematical representation of the hardware to be packaged must be defined in a manner 

allowing distance measurement between objects and enabling collision detection to eliminate 

infeasible overlap of hardware.  This section presents information about simple geometric 

modeling and collision detection which will be applied in the evaluation criteria and constraint 

measurement methods described in Chapter 3.  

2.2.1 Geometry Modeling 

A mathematical representation of hardware geometry is necessary to define the layout 

geometries which feed quantitative evaluation measurement methods.  Historically, the habitat 

interior design process uses detailed CAD models or drafted drawings to represent the space 

taken up by the hardware in the layouts [Fitts, 2002; Howe & Sherwood, 2009].  These models 

can be powerful tools at the detail design phase, but long creation times and model detail 

complexity are often incompatible with the fast layout evaluation goal defined in Section 2.1.  A 

simple polyhedral representation of the hardware geometry derived from computer animation and 

video game programming is well-structured for use in layout creation and has been used 

extensively in the majority of three-dimensional layout design references [Bénabès, Bennis, 

Poirson, & Ravaut, 2010].  By representing geometries as simple polyhedral objects specified by 

matrices of vertices and face-normal vectors as shown in Figure 5, the overlap of geometries can 

be detected with standard collision detection algorithms to prevent the creation of unrealizable 
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layouts [Ericson, 2004].  Additionally, this polyhedral object representation allows for generation 

of layouts by simply manipulating the location and orientation of each subsystem through 

definition of translation and rotation matrices. What results is a fast, simple, mathematically 

operable method of constructing layout alternatives with relatively simple sets of data.  

 

Figure 5: Mathematical Representation of Object Geometry Collocated with Detailed 

Information 

 

In addition to representing the geometry effectively, the polyhedral representation of 

geometry is easily defined in object-oriented programming languages. This is fortunate as using 

object-oriented programming simplifies the embedding of detailed function and interface 

information together with the geometry data in arrays or matrices within an indexed object. The 

types of object information required include: the mass of an object, the function it belongs to, any 

separation or collocation relationships associated with the provided function, geometry and 

location of anthropometric envelopes reserved for human interaction with the object, and keep out 

zones for moving parts. Collocated storage of this information with geometry data facilitates 

straightforward calculation of evaluation criteria which track these characteristics in combination 

with geometry. The importance of this layout and data representation method will be discussed 

more in Chapter 3.  
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2.2.2 Collision Detection 

Collision detection (also known as interference detection or contact determination) is the 

detection of contact, overlap, or intersection of geometries [Ericson, 2004].  It is used extensively 

in video games [Eberly, 2006], virtual prototyping, robotics [Lin, 1993], animation [Lin, 1993], 

and engineering simulations [Hahn, 1988].  In the evaluation of habitat layout alternatives it 

serves two purposes.  First, interferences between pieces of hardware and between hardware and 

pressure vessel structure must be detected to ensure that only physically realizable layouts are 

acceptable.  Second, collision detection can be used to measure several of the volume evaluation 

criteria which measure volume or task performance criteria counting potential interferences 

between different types of objects. 

In order to develop tests for physical realizability and quantification methods for the 

evaluation criteria mentioned in Chapter 3 and Appendix B, three types of required collision tests 

are summarized in Figure 6.  Determining if a point is located inside an object allows for the 

calculation of sizes of open spaces when combined with other information in a numerical volume 

estimation algorithm [Simon et al., 2012].  Determining the intersection point between a line and 

an object can be used to determine line of sight distances or isovist radials necessary for 

determining lengths of open space [Wise, 1985].  Testing for overlap between any two three-

dimensional geometries enables the detection of interferences between hardware and between 

working envelopes.  This collision detection test is also necessary for testing the realizability 

constraint which requires that packaged geometries not overlap.  
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Figure 6: Types of Collision Detection Needed in Automatic Evaluation Criteria 

Quantification Methods 

 

 
There are several methods available to perform these collision tests documented in dedicated 

texts [Ericson, 2004; van den Bergen, 2003].  Three qualitative figures of merit are used in the 

comparison of collision detection methods: performance (i.e., run time), accuracy in detecting 

collisions, and ease of implementation.  Based upon the complexity of the geometry and number 

of objects anticipated in a realistic layout problem, different options are available for each of 

types of tests.  The following options presented in Table 11 are proposed for each test: 

 

Table 11: Applicable Methods/Algorithms for Required Collision Detection Tests 
Collision Detection Test Method 1 Method 2 (preferred) 

Test if point is in interior of 
an object 

 Half space tests with spatial 
partitioning to reduce objects 
compared [Ericson, 2004] 

 May generalize to Chung-Wang 
Separating-Vector Algorithm 
[Chung & Wang, 1996; Ericson, 
2004] 

 Incremental Separation Axis – 
Gilbert, Johnson, and Keerthi (ISA-
GJK)  Algorithm [van den Bergen, 
2003; Gilbert, Johnson, & Keerthi, 
1988] 

Intersection point between 
a line and an object 

 Intersection of line against a 
triangle algorithm [Ericson, 
2004] 

 Closest point to line algorithm 
[Ericson, 2004] can be used to 
reduce necessary tests  

 Incremental Separation Axis – 
Gilbert, Johnson, and Keerthi (ISA-
GJK)  Algorithm [van den Bergen, 
2003; Gilbert et al., 1988] 

Collision detection 
between three-
dimensional geometries 

 Chung-Wang Separating-Vector 
Algorithm [Chung & Wang, 1996; 
Ericson, 2004] 

 

 Incremental Separation Axis – 
Gilbert, Johnson, and Keerthi (ISA-
GJK)  Algorithm [van den Bergen, 
2003; Gilbert et al., 1988] 
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Simple Collision Detection Tests 

Half-space tests are a fundamental building block of collision detection methods.  Half-space 

tests determine the signs of the dot products between the face normal vector, n, of the polyhedron 

face and the vector p#, between a vertex on the face and the point being investigated, as shown in 

[van den Bergen, 2003].  If the sign of the dot product between the two vectors is positive for any 

of the polyhedron faces, then the point is outside the object.  If the sign is negative for all faces, 

then the point lies within the object and is said to collide with that object. In the example shown 

in Figure 7, p1∙n is positive, indicating that p1 lies outside of the face and p2 ∙n is negative 

indicating that p2 lies within the face.  If the dot product is zero, then the point lies on the surface. 

 

Figure 7: Illustration of Half-space Tests 

 

If the geometry of the polyhedral objects is restricted to triangles, this becomes a simple test 

of determining the intersection point between a line and some triangle, which is solved similarly 

to half- space tests.  The point of intersection between the line and the plane of the triangle is 

calculated.  This point is then tested to determine if it lies within the triangle by determining if the 

signs of particular cross and/or dot products of intermediate products are positive or negative.  

Several methods exist and are described in Ericson, 2004 with discussion on reducing the 

required number of calculations and speeding the tests. 

The Chung-Wang Separating Vector Algorithm 

The Chung-Wang Separating Vector Algorithm [Chung & Wang, 1996] is one of the 

advanced industry standard collision detection algorithms.  It works by finding the extreme 

n 

p1 

p2 
Outside 

Inside 
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vertices between of two objects and using them to iteratively find a separating axis.  This 

separating axis can be defined by the separating-axis test described in Eberly: 

“Two convex polyhedra do not intersect if there exists a line with direction M such 

that the projections of the polyhedra onto the line do not intersect.  In this case 

there must exist a plane with normal vector M that separates the two polyhedra.”  

[Eberly, 2008a; Eberly, 2008b] 

Rather than testing full factorial of many different vector cross products to find if this axis exists, 

the Chung Wang algorithm uses sophisticated methods to converge to the axis much faster.  The 

steps of the algorithm are described in Ericson, 2004 and open-source code is available.  

Incremental Separating Axis – Gilbert-Johnson-Keerthi Algorithm 

Finally, the Incremental Separating Axis – Gilbert-Johnson-Keerthi (ISA-GJK) algorithm 

[van den Bergen, 2003; Gilbert et al., 1988] can be used consistently for each of the types of 

collision detection listed in Figure 6.  This algorithm provides fast and consistent collision 

detection between any two convex geometries.  When a collision test between a point and 

hardware geometry is required, the point can be modeled as a small sphere enabling one type of 

collision test for all applications.  This algorithm is described in detail in Ericson, 2004 and code 

is provided in van de Bergen 2005.  In this body of work, Method 2: the ISA-GJK algorithm was 

implemented because of its speed, accuracy, ease of implementation, and applicability to all three 

collision detection tests.  

One caveat to the application of these collision detection methods worth mentioning is that 

most tend to be substantially simplified with convex objects (defined such that a line can be 

drawn from one point within the object to any other point in the object without passing outside of 

the object).  This adds the additional complexity that object geometries in the habitat interiors 

must be modeled as the combination of multiple convex objects to avoid the use of much more 
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complicated collision detection tests. For more information on non-convex tests, the reader is 

referred to Ericson, 2004 and Ikonen, Biles, Kumar, Wissel, & Ragade, 1997. 

Finally, because of the criticality of fast collision detection tests for video game and computer 

animation applications, many methods to speed up collision detection tests have been created.  

Even moderately-sized problems can require extremely large numbers of collision tests.  The 

primary way of ensuring real-time performance of collision detection methods is to use lower 

fidelity tests to remove pairs of objects which cannot be colliding from consideration.  This can 

be achieved by the utilization of one or more of the following four concepts: bounding volumes, 

bounding volume hierarchies, spatial partitioning, and coherence which each reduce the number 

of objects to be tested significantly.   

- Bounding Volumes: The more polygons an object is made up of, the more complicated 

and time consuming collision detection tests can be.  A ‘bounding volume’, illustrated in 

Figure 8, is a simple approximated geometry often used to represent more complicated 

geometries in collision detection tests.  There are many types of bounding volumes which 

trade the speed of collision detection tests for more accurate representation of geometries.  

Utilization of less precise bounding volumes as a first cut analysis to rule out collision 

can reduce the overall testing time over more accurate complicated geometries.  

References for more information on bounding volumes and their construction are 

included [Ericson, 2004; Bartz, Klosowski, and Staneker, 2005; Konečný & Zikan, 1997; 

Konečný, 1998; Klosowski, Held, Mitchell, Sowizral, & Zikan, 1998; Kavan, 

Kolingerova, & Zara, 2006; Barber 1996; O’Rourke, 1998]. 
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Figure 8: Bounding Volume of Complex Geometry 

 

 

Figure 9: Boundary Volume Hierarchies 

 

 

- Bounding Volume Hierarchies:  Rather than comparing each bounding volume against 

each other bounding volume, bounding volumes can be arranged into tree hierarchies, 

reducing the number of tests by model partitioning [van den Bergen, 2003].  Within a 

hierarchy, children do not have to be investigated if parents do not intersect.  Figure 9 

illustrates this.  Since bounding volumes 1 and 2 don’t overlap, any collision detection 

tests between those boxes in bounding volume 1 and those in bounding volume 2 need 

not be compared.  The hierarchies are not disjoint and can be used to speed tests for 

complex objects [Klosowski et al., 1998].  Desired characteristics of boundary volume 
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hierarchies are found in Kay & Kajiya, 1986 and Hubbard, 1995 and summarized in 

Ericson, 2004. Ericson, 2004 provides methods for generating the trees.  There are 

several other references which use bounding volume hierarchies [Gottschalk, Lin, & 

Manocha, 1996; Klosowski et al., 1998]. 

- Spatial Partitioning:  Spatial partitioning, which is shown in Figure 10 is similar to 

bounding volume hierarchy, but instead of grouping bounding volumes into trees, 

bounding volumes are grouped by physical location to reduce the pairs of objects to be 

tested to those in the same region of space [Ericson, 2004].  Selecting the appropriate cell 

size and arrangement is important.  If cells are too large with respect to object sizes, then 

the number of calculations could remain unchanged.  If cells are too small, the necessary 

additional information required would take extra time and memory [Ericson, 2004; 

Cohen, 1995].  Spatial partitioning can be performed using uniform grids or various types 

of trees including octrees and k-d trees [Jiménez, Thomas, & Torras, 2001].  Octrees are 

axis aligned hierarchal partitioning where each parent can have 8 children (split evenly 

into a two by two cube).  Subdividing continues until no more than a maximum number 

of items are contained in each cell.  k-d trees split the space at an arbitrary position one 

dimension at a time in a cyclic manner (first x, then y, then z, then x, and so on).  This 

simplifies the code necessary to construct the tree because only intersection along one 

plane needs to be checked [Bentley, 1975; Friedman, Bentley, & Finkel 1977]. 
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Figure 10: Spatial Partitioning 

 

 

- Coherence: Coherence simply refers to leveraging the key variables determined in 

previous steps to speed convergence.  The separating axis or closest-point from a 

previous step can be used as a starting point for the next test.  Use of coherence is 

extremely valuable when dealing with small time steps associated with many real time 

applications [Ericson, 2004]. 

These four concepts may be implemented in any combination as deemed necessary by the desired 

timescale of the evaluation procedure.  

2.3 Automated Layout Generation 

The previous sections in this chapter have described the available methods used to evaluate 

space habitat interior layouts and presented the necessary background information to develop 

timely methods to perform these evaluations to inform concept design.  In order to enable the 

iterative improvement of the evaluated layouts leading to an automated layout generation 

capability which can produce desirable layouts, a layout generation literature is surveyed to 

develop an automated habitat interior layout generation method.  Literature has clearly 

characterized the need for the production of “superior layout alternatives for further consideration 
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and treatment by decision makers” [Ahmad, 2005, Tompkins, White, Bozer, & Tanchoco, 2010].  

Automation of layout design is a large field of study spread across many disciplines with many 

proposed solution approaches, each focused on a specific application [Ahmad, 2005; Lobos & 

Donath, 2010; Homayouni, 2006].  The focus of this section is to briefly describe the large 

automated layout design problem as a whole, then identify the desired characteristics of effective 

automation algorithms applicable to the space habitat interior layout design problem. Finally, this 

section will identify those methods utilized in literature which are best suited to implement in the 

proposed process addressed in this thesis.   

2.3.1 Automated Layout Design Problem 

The layout design problem seeks a “superior outcome in the spatial arrangement of modules 

in a given space, satisfying given preferences and constraints, and optimizing some fitness 

metrics” [Ahmad, 2005].  This problem is investigated under many names in many fields of study 

including space layout planning [Homayouni, 2006], the facility layout problem [Cagan, 

Shimada, & Yin, 2000; Lobos & Donath, 2010; Tompkins et al., 2010], layout optimization 

[Cohoon, Hegde, Martin, & Richards, 1991], and some similar problems with similar 

characteristics and solution methodologies including circuit board design [Mazumder & Rudnick, 

1999; Schnecke & Vornberger, 1997] and bin packing [Ahmad, 2005; Dyckhoff, 1990].  As a 

result, there is a substantial amount of literature in the various work domains which is covered in 

several survey references [Ahmad, 2005; Cagan et al., 2000; Cohoon et al., 1991, Dyckhoff, 

1990; Homayouni, 2006; Liggett, 2000; Lobos & Donath, 2010; Kalay, 2004; Tompkins et al., 

2010; Wäscher, Haußner, & Schumann, 2007; etc.].   

In layout design problem solutions, ‘modules’ (whatever is being arranged, e.g., rooms, 

objects, furniture, equipment, goods, buildings, etc.) are arranged using a placement algorithm 

which may be  guided by historically applied heuristics and/or fitness function values to satisfy 

geometric constraints while accommodating the desired design features and relationships between 
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module types.  This complex problem is generally broken into two steps: 1) develop feasible 

alternatives layouts and 2) evaluate those alternatives against a single or weighted sum of 

multiple criteria to guide selection of additional layouts [Tompkins et al., 2010].  In the 

development of feasible layout alternatives step, the goal is to develop layouts which satisfy 

constraints on object placement such as the non-overlap constraint (modules can’t be physical be 

packaged with overlapping geometries) and adjacency constraints (certain pairs of modules must 

or must not be adjacent).  Approaches in the facility layout community group layout alternatives 

generation approaches into two major types: construction and improvement approaches [Liggett, 

2000; Francis, McGinnis Jr., & White, 1992; Tompkins et al., 2010].  Construction approaches 

develop new layouts from scratch, often by rule-based, ordered placement which leads to less 

expensive, but poorer solutions [Liggett, 2000].  Improvement approaches improve upon a 

starting layout.  They usually converge on local optima dependent upon their starting layout 

[Liggett, 2000].  By linking these two approaches, the strength of construction approaches to 

quickly develop initial layouts can speed convergence of improvement approaches [Liggett, 

2000].  

Typically, the layout generation problem is structured as an optimization problem, which is 

implemented in computer software due to the complexity of the mathematical formulations of the 

problem [Cagan et al., 2000].  The NP-hard and subjective nature of layout design problems make 

it difficult to prove optimum solutions with analytical methods [Ahmad, 2005].  This has led to 

the development of many heuristics and stochastic optimization algorithms to solve these 

problems while avoiding local optimum [Ahmad, 2005; Bénabès et al., 2010; Cagan et al., 2000; 

Dyckhoff, 1990; Homayouni, 2006; Lobos & Donath, 2010; Tompkins et al., 2010].  In particular 

simulated annealing and genetic algorithms have been extensively applied.  In the next section, 

characteristics of the space habitat layout design problem are used to focus the literature review to 

the most applicable approaches addressing the specific needs of the proposed method.   
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2.3.2 Previous Work in Interior Layout Automated Generation 

There is a very large set of references on the topic of improved layout generation; 

significantly more than can or should be covered exhaustively in this thesis.  Characteristics of 

the habitat design problem which differentiate it from the general layout design problem are used 

to focus on a subset of applicable literature.  There are three major differences between the 

terrestrial layout design problem and the space habitat layout design problem which limit the 

application of terrestrial layout design methods/tools to space habitat design.  First, modern 

terrestrial layout design tools benefits from hundreds of years of design.  Occupant preferences 

and the resulting design rationale have been codified into a standard set of validated layout 

measurements based upon the purpose of a facility (standard aisle widths, room sizes, etc.), and a 

the relationships between various functions have been formalized into design standards (e.g., 

“kitchen work triangle [University of Illinois Building Research Council, 1993], standard 

standoff distances, building codes, extensive architectural standards documentation [American 

Institute of Architects, 2000]).  These standards and established functional relationships can 

simplify the generation of desirable interior layouts by enabling the application of constructive 

ordered placement algorithms which inherently meet these standards a priori [Akazawa, Okada, 

& Niijima, 2005; Liggett, 2000; Lobos & Donath, 2010; Xu et al., 2002].  Unfortunately, space 

habitats have few historical precedents to draw from, and it can be argued that there are few 

agreed upon standard or unnegotiable specifications for habitat layout design [e.g., NASA, 1995].  

Additionally, pure constructive algorithms which develop acceptable, but poorly evaluated 

layouts are of little use in the design of long duration habitats which requires some degree of 

improvement to alleviate tight mass/power/volume mission architecture constraints.  Finally, the 

sometimes complex geometries in habitat design do not work well with the existing constructive 

algorithms which leverage the simple geometries in the traditional layout design problems to 

reduce algorithm complexity, particularly in 2-D applications.  Therefore, facility layout problem 

approaches which rely upon constructive procedures for object placement that exclusively 
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leverage terrestrial precedents and standards are of some use, but may be of limited to no use in 

space habitat design.  

The second major difference is that the space habitat layout problem is a highly integrated, 

multi-criteria problem with confined, tightly constrained interiors and non-uniform geometries.  

The characteristics of this problem require a slightly different approach than many of the less 

constrained, single-objective layout design approaches treated in literature (with the exception of 

select references dealing with specialized facilities such as naval vessels and small space 

residences) [Kennedy, 2002a; Ölçer, 2008; Simon & Toups, 2014].  Additionally, the highly 

constrained space habitat design problem has a relatively sparse feasible layout design space 

because the high packing density of internal accommodations, subsystems, and logistics makes 

satisfaction of the non-overlap constraint difficult.  For this reason, references which address 

sparse design spaces due to this non-overlap constraint or references which address satisfaction of 

the non-overlap constraint directly are more analogous, and thus applicable, to the habitat layout 

design problem.    

The third difference is that a space habitat is designed for multiple gravity environments such 

as microgravity, which utilizes surfaces such as ceiling and floors more extensively than 

terrestrial applications [Simon et al., 2012].  Additionally, because space habitats are sealed 

systems which provide all of the resources necessary to support crew, constraints like ventilation, 

access to water and waste, and emergency egress paths are critical.  Assessments of how layouts 

affect their efficacy must be investigated in three dimensions to avoid oversights [Akin, 2012; 

Fitts, 2002].  For this reason, the simplification found in many habitat design references to two-

dimensional layout problems would neglect many of the interactions which can only be 

represented in a three-dimensional layout. This additionally complicates the use of most 

constructive techniques which leverage two-dimensional geometry simplifications to allow for 

easy fulfillment of the non-overlap constraint.  These two considerations increase the 

applicability of three-dimensional layout studies over the two-dimensional studies prevalent in 
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most facility layout problem documentation. However, it should be understood that the solution 

algorithms may be similar between the two problems, and should be investigated for 

completeness.   

Based upon these comments regarding the applicability of the existing literature to the space 

habitat layout design problem, Table 12 describes a small subset of applicable literature for 

automating habitat interior layout design based upon multiple criteria and constraints.  This non-

exhaustive subset was chosen for discussion based upon each study’s ability to illustrate specific 

challenges of the multi-criteria, three-dimensional, highly constrained habitat layout generation 

problem.  References in this table are mostly incremental improvement approaches bolstered by a 

stochastic metaheuristics, which are often simulated annealing or genetic algorithm variants.   



50 

 

Table 12: Applicable Interior Layout Automated Design Approaches 
Alternative Approach Description Limitations 

Simulated Annealing   

Szykman & Cagan, 
1997 

 A simulated annealing approach to three 
dimensional component layout which allows 
geometry constraints to be violated during 
the optimization process 

 Uses penalty functions on the objective 
function to drive the production of valid 
designs 

 Limited to blocks and cylinders with 
90 degree orientations 

 Simplified objective function  

Smith, Hills, & 
Cleland, 1996 

 A hybrid approach featuring simulated 
annealing method which hands off results to 
a knowledge-based system to address often 
negotiated requirements including usage of 
space, routing, and adjacencies 

 Applied to fuselage of military aircraft 

 Block representation limits to 
orthogonal orientations 

 Packing density limitations 

Genetic Algorithms   

Ahmad, 2005  An expert system genetic algorithm 
approach to solve the 2D- bin packing 
problem which leverages deterministic 
placement heuristics for local placement 

 2-dimensional, simple geometries, 
few criteria 

 Use of placement heuristics to avoid 
collisions  

Bénabès et al., 2010  A genetic algorithm approach which uses 
designer interaction selectively to ensure 
overlap constraints are minimized in the 
initial population 

 Designer interaction required during 
first iterations 

 Separation algorithm to avoid 
overlap of geometries is difficult to 
calculate in  

Lau et al., 2014; based 
upon Cuco, De Sousa, 
and Neto, 2014 

 A multi-criteria optimization approach for 
spacecraft exterior design utilizing 
evolutionary algorithm to determine a 
Pareto front on 5 objectives  

 Geometric constraints implemented as 
exterior penalty functions on the objective 
functions and by parameterizing the design 
variable 

 Relies on user to make decisions 
between variables from Pareto front 

 Ignores some subjective quantities 

Sanchez et al., 2003  Constraint-based algorithm for 3D object 
layout utilizing genetic algorithm to optimize 
over topological, distance, and orientation 
constraints  

 Like most constraint satisfaction 
problems, focus is on developing 
feasible layouts, not desirable ones 

 No criteria captured relevant to 
quality of human interaction 

 

Habitat Automated Layout Decisions based upon Literature 

There are three major habitat interior layout generation decisions identified by these 

references: 

The first habitat layout generation decision is determining the appropriate method to ensure 

resultant layout alternatives respect the non-overlap constraint.  Two approaches exist in 

literature: 
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1. Prevention using placement algorithms which avoid overlaps [Ahmad, 2005, Tompkins et 

al., 2010], leveraging discretized grid of possible module locations which avoids 

collisions (most 2D early approaches; described in Tomkins et al. 2002), and/or by 

performing a sub-optimization to minimize overlap [Bénabès et al., 2010].  In these 

studies, only “valid” (or feasible layouts satisfying the non-overlap constraint) are 

evaluated to facilitate convergence which could be hindered by the multi-modal, 

discontinuous objective function values caused by non-overlap penalties.  

2. Accept overlapping solutions in early iterations and use penalty functions on the 

objective function to drive later iterations to valid solutions [Szykman & Cagan, 1997].  

This approach has been demonstrated, but requires more care in optimization tuning for 

good convergence behavior. 

Prevention methods are easier to converge, but may prevent a more thorough exploration of the 

design space.  For the proposed method, the Accept method is applied, though prevention 

methods maybe implemented for initial layouts to speed convergence.  Similarly block layouts 

utilizing discrete positions and orientations are avoided when possible, or made sufficiently high-

resolution to approximate to continuous space and fully capture the available design space. 

The second decision is the selection of a stochastic optimization method to drive the selection 

of subsequent layouts.  This can be difficult as the multi-modal, sometimes discontinuous nature 

of the objective function can make it difficult to avoid converging to local optima.   Options 

include: 

- Gradient-Based Methods: Though gradient-based methods can be applied to multi-

objective, multiple constraint problems, the “highly discontinuous and multi-modal” 

nature of layout problems complicates application of gradient based methods.  This is 

because methods necessary to calculate gradients on the design space may have 

misleading effects” on search directions.  Additionally, these methods would have 

difficulty identifying global optima [Cagan et al., 2000].  
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- Genetic Algorithms: Genetic Algorithms (GAs) are used extensively in layout 

generation problems [Ahmad, 2005; Bénabès et al., 2010; Borfeldt & Gehring, 2001; 

Corcoran & Wainwright, 1992; Lau et al., 2014; Sanchez et al., 2003].  They can be 

defined as follows: 

“Genetic Algorithms are evolutionary optimization approaches which 

simulate a natural evolution process based on Darwinian Theory, in which 

the fittest species survive and propagate while the less successful ones tend 

to disappear.  They are most appropriate for complex non-linear models 

where the location of the global optimum is a difficult task. (Genetic 

Algorithms) also differ from many optimization methods in the sense that 

they only use the objective function, not derivatives, to identify possible 

solutions.” [Ölçer, 2008] 

These “fittest species” are locations and orientations which optimize the objective 

function and are passed down like genes to the next generation.  Benefits of GAs are the 

ability to explore a large, non-linear, discontinuous design space efficiently and better 

handling of constraints [Deb, 2001]. They have also been proven effective in 

optimization of interconnections between components in Very Large Scale Integration 

(VLSI) and factory layout problems [Cohoon et al., 1991, Schnecke & Vornberger, 

1997].  The problems with GA methods are the necessity of discretizing the design space, 

the large number of objective function evaluations required for convergence, and the lack 

of actual proof of optimality [Cagan et al., 2000]. 

- Simulated Annealing: Besides GAs, Simulated Annealing (SA) algorithms are the most 

widely applied methods for the multi-objective optimization problem.  Simulated 

annealing is a stochastic technique based upon the analogy between heating and 

controlled cooling of metals to direct crystal formation to reduce defects [Kirkpatrick, 

Gelatt, & Vecchi, 1983; Smith, 2006].  In each step of the algorithm, the solutions are 
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perturbed to alternate solutions, which are evaluated with the objective function.  A 

parameter called ‘temperature’ is used to calculate a probability that a worse solution 

than that of the previous iteration will be accepted as shown:  

. 
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where ΔC is the change in objective function due to the move and T is the current 

temperature [Szykman & Cagan, 1995].  This permissible selection of worse solutions 

prevents the algorithm from getting caught in local minima [Cagan et al., 2000].  The 

algorithm is iterated while changing the temperature according to a cooling schedule to 

settle the solutions into the global optima. There are many other benefits to implementing 

a SA approach.  First, like GAs, SA algorithms are zero-order methods which don’t 

require the calculation of derivatives.  SA algorithms have also been applied extensively 

and successfully to the three-dimensional facility layout problem, which is very similar to 

the habitat interior layout problem [Jajodia, Minis, Harhalakis, & Proth, 1992; Smith et 

al., 1996; Szykman & Cagan, 1995; Szykman & Cagan, 1997; Szykman, Cagan, & 

Weisser, 1998] and the Quadratic Assignment Problem (QAP) [Sharpe & Marksjo, 

1985]. 

- Ant Colony Optimization: Ant Colony Optimization (ACO) is a stochastic method 

which is based off the foraging patterns of ants.  As ants go out to find food, they leave 

behind pheromone trails which are progressively strengthened as other ants progress 

down these trails to the identified food source.  Discovery of optima produce stronger 

pheromone patterns leading to the selection of design variables corresponding to the most 

travelled path.  Pure ACO algorithms fail to compete with other options, but hybridized 

versions of the algorithm perform moderately well [Levine & Ducatelle, 2004].  The 

transition from a discrete optimization problem to a continuous design space represents a 
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massive increase in complexity beyond other methods for dealing with continuous design 

spaces [Blum, 2005; Dorigo, Birattari, & Stutzle, 2006]. 

- Particle Swarm Optimization: Another “swarm intelligence” algorithm like ACO, 

Particle Swarm Optimization (PSO) generates a random sampling of design concepts, 

evaluates the objective functions of the concepts, making this information known to 

neighboring solutions, and uses combinations of local and global knowledge to converge 

to an optimum. Unlike ACO, this method is a zero-order method suited for continuous 

and discrete variables (with modification). Methods derived from particle swarm 

optimization are promising, but may have convergence issues with generated velocities 

when coupled with collision detection algorithms.  Additionally, hybrid versions of PSO 

are often used to speed convergence in local minima.  

These methods are compared against the desired characteristics of a habitat layout optimization 

method in Figure 11.  From this information and investigation of how these methods have been 

applied to facility layout problems, packing problems, and other multi-objective, multiple 

constraint problems; particle swarm and simulated annealing are anticipated to be the prevailing 

approaches.  Ultimately, it is clear from literature that either simulated annealing, genetic 

algorithms, or particle swarm optimization approaches can be implemented effectively in layout 

design problems, provided they are tuned effectively.  The purpose of this thesis is to provide 

methods to measure layout performance and prove that an incremental improvement algorithm 

can be successfully applied, which proves that identification of local optima are possible.  The 

scope of this dissertation will leave hybrid methods and the exact tuning of optimization methods 

as forward work. 
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Figure 11: Comparison of Available Optimization Methods to Guide Automation of Layout 

Designs 

 

Finally, the third decision to apply existing methods is the method of bringing designer and 

user preferences into the decision process.  Ahmad, 2005 and Smith et al 1996 use knowledge-

based systems which formalize designer knowledge into an autonomous decision making entity.  

Bénabès et al., 2010 and Lau et al., 2014 require designer intervention during the layout 

generation and/or evaluation to make critical decisions.  The proposed approach described in 

Chapter 3 will use a combination of system engineering multi-attribute decision making methods 

that are infrequently used in layout design to develop a definitive set of user preferences which 

minimize user time while maintaining the ability to be easily adjusted to perform trades and 

maintain flexibility in design which is often lacking in layout design efforts. 

In summary, the lessons learned from literature addressing the automated layout design 

problem have been captured to inform the development of a hybrid approach combining an 

iterative improvement, metaheuristic algorithm to generate layout alternatives and a multi-

attribute decision making evaluation method to guide future iterations of the improvement 

algorithm.  The main challenges facing this development are the handling of the non-overlap 

geometric constraint to produce feasible layouts without hindering the thorough exploration of the 

available design space or algorithm convergence performance, and the development of realistic 

layouts which can be used by conceptual mission and system designers.  The limited scope of this 
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thesis will demonstrate that such an automation approach can be developed for the habitat interior 

design problem, but will leave the refinement of the optimization algorithm for computationally 

efficient performance as future work. Chapter 5 will describe this proposed method, commenting 

on the specific implementation of each subpart.    
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CHAPTER THREE: METHODOLOGY 

This chapter presents a methodology that will address the habitat interior layout design gaps 

and research questions identified in Chapter 1.  First, the background information provided in 

Chapter 2 is synthesized with systems engineering methods to develop a novel approach for 

evaluating habitat interior layouts.  This approach centers on the development of a habitat layout 

objective function to assess and compare the overall desirability of multiple possible layouts, 

which is structured to enable the automated generation and evaluation of desirable layout 

alternatives at the conceptual design phase.  This chapter describes each part of this structured 

habitat layout objective function in detail, beginning with an overview of the evaluation criteria 

themselves and the automated methods used to quantify them.  Then, geometrical constraints are 

discussed, followed by an overview of the systems engineering methods used to capture user 

preferences through utility functions and evaluation criteria weightings.   It should be noted that 

this chapter draws heavily in text and content from Simon, Bobskill, & Wilhite 2012 and Simon 

& Wilhite, 2013; which were published based upon the content of this work. 

3.1 Systems Engineering-Derived Layout Evaluation Process [Simon 
& Wilhite, 2013] 

As mentioned in Chapter 1 and 2, the major improvements which are required to enable fast 

habitat interior layout evaluation are: 

- A comprehensive, automatically quantifiable set of evaluation criteria 

- A mathematical, computer representation of layout geometry and subsystem 

characteristics 

- A structured method to capture designer preferences 

- A multi-criteria objective function providing an aggregate measure of overall layout 

effectiveness including treatment of interior design constraints 
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In order to evaluate multiple layout alternatives quickly and reliably, these improvements are 

integrated into a structured, systems engineering-derived process which is designed to quantify a 

multi-criteria objective function measuring overall layout effectiveness from input geometry.   

Prior to beginning this process, it is important that a description of the fundamental layout 

design problem and any study constraints guiding the design of the layout are defined.  Examples 

of design problem descriptions with constraints are: “redesign the interior of an existing station 

module keeping pressure vessel geometry constant” or “design a minimum mass lunar surface 

habitat”.  This description does not change the fundamental process, but it is necessary to specify 

unique aspects of the process such as identification of the applicable constraints and the context 

from which user preferences should be collected.  For example, the “redesign of the interior of an 

existing station module keeping pressure vessel geometry constant” example increases the 

importance of constraints protecting translation path and may decrease the importance of mass-

based evaluation criteria, which are not anticipated to vary much in in the available design space. 

After the initial problem description is defined, the process is divided into two major steps: 

Initial Layout Generation and Layout Evaluation.  First, a structured Initial Layout Generation 

method translates mission requirements into the required functions and associated hardware 

which will be packaged within the pressure vessel.  These geometric ‘building blocks’ are then 

used to construct mathematical representations of layout alternatives compatible with the 

evaluation process.  Then each of the layout evaluation improvements discussed in Table 3 can 

be integrated into a systems engineering-derived Layout Evaluation process, which calculates an 

objective function value measuring the overall desirability of each layout.  Figure 12 and Figure 

13 present the proposed combined process for layout generation and evaluation based upon the 

previously described basic systems engineering trade study process from Figure 2, but 

customized for habitat design and the implementation of the desired improvements.  The 

following subsections provide more detailed information on how these steps are performed.  
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Figure 12: Systems Engineering Basic Habitat Interior Layout Process with Example 

[Kennedy, Toups, & Rudisill 2009] 

Interior Layout Generation Process 
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Figure 13: Proposed Systems Engineering Interior Layout Evaluation Process 

 

To aid in the explanation of these proposed processes in this dissertation, two example 

layouts are utilized.  For Chapter 3, the NASA Scenario 12.0 Pressurized Core Module (PCM) 

from the Constellation Lunar Surface Scenario (LSS) study [Kennedy, Toups, & Rudisill, 2009] 

shown in Figure 12 is used to demonstrate each step.  This habitat was designed as part of a three 

module lunar surface habitat to support four crewmembers for durations up to 180 days.  This 

particular module was chosen for the methodology explanation in Chapter 3 because of the 

considerable amount of information available on the motivation, design process, and assumptions.  

The PCM in particular was also chosen because of the diverse mix of functions represented in the 

design, which will aid in the demonstration of the chosen evaluation criteria and measurement 

methods.  Additionally, the intuitiveness of the layout will facilitate discussions of functional 

locations, which would be more difficult with the topological layout utilized for the verification 

Layout Evaluation Process 
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examples in Chapters 4 and 5.  This PCM is used throughout the remaining sections of this 

Chapter 3 as a consistent basis for explaining many of the important features of the method.   

In Chapters 4 and 5, an alternate layout for a Cislunar Habitat is used to verify and test the 

evaluation and automated layout generation methods.  This layout was chosen over the Scenario 

12.0 PCM for several reasons.  First and foremost, the PCM was a two-dimensional layout, 

whereas the cislunar habitat layout is three-dimensional. Additionally, there was considerably 

more data available for the cislunar habitat interior hardware geometry, functions, and interfaces 

as the hardware is anticipated to be similar to existing International Space Station hardware.  

Because the cislunar habitat will be deployed in a microgravity environment, it is also a better 

example for proving out the microgravity-specific criteria.  Finally, as the direction of NASA 

studies has shifted away from the moon towards more near term testing for Mars, the cislunar 

habitat evaluation allows the dissertation to be responsive to recent events and upcoming designs.  

The PCM will be referenced again briefly in Chapter 4 and 5 as a historical point of comparison 

of evaluation times between the currently available evaluation processes and the evaluation 

process described here and demonstrated in subsequent chapters with the cislunar habitat. 

3.1.1 Initial Layout Generation Process [Simon & Wilhite, 2013] 
Figure 12 shows the Initial Layout Generation process which translates high-level mission 

requirements into an initial geometric layout(s) of hardware ready for evaluation through the 

following four steps: Requirements, Functional Decomposition, Generate Physical Subsystems, 

and Generate Layouts. 

Requirements 

The first step is to define requirements including mission/system design objectives 

(destination, number of crew, crewed and uncrewed durations, research or exploration 

objectives), desired crew activities (number and frequency of EVAs, types of research to be 

performed), vehicle integration requirements (including: launch vehicle, in-space transportation, 



62 

 

and lander/entry constraints; number of hatches, etc.), and any additional physical constraints on 

the design.  These requirements (particularly destination and duration) are necessary to identify 

the required functions (e.g., Life Support, EVA, etc.), crew tasks (e.g., sleeping, eating, etc.), and 

basic geometric features of the pressure vessel (e.g., the number and location of hatches, the 

maximum habitat length and diameter dictated by the launch vehicle, etc.).  In the case of the 

Scenario 12.0 PCM (or Cislunar Habitat) example, the design problem statement and 

requirements are to “redesign the interior of one module of a habitation system supporting four 

crewmembers for 180 days of exploration of the lunar surface (or support of research in cislunar 

space) while maintaining the current pressure vessel geometry and complement of subsystems” 

(and thus meeting the same launch vehicle constraints). 

Functional Decomposition 

After the requirements are successfully defined, the functions necessary to achieve the 

mission can be readily identified through a functional decomposition process [NASA, 2007].  

This process which maps mission requirements to functions and hardware is well understood and 

documented in Larson & Pranke, 1999 and NASA, 2010.  Most long duration habitats 

fundamentally provide the same basic set of functions to support exploration missions including 

the habitat support functions (Power, Thermal, Stack Control, Navigation, Vehicle Health 

Monitoring, etc.), crew work (EVA, Science, Maintenance, Repair, Communications, etc.), and 

living activities (Eating, Sleeping, Socializing, Breathing, etc.) [Kennedy, 2002a; Larson & 

Pranke, 1999].  Hardware implementations of these functions typically vary with mission 

duration.  Major variations include the number of redundant hardware units necessary to reduce 

mission risk and various technologies to achieve increased hardware performance or mass 

reduction.  Mass trades have been performed in literature to identify certain mission parameter 

values or breakpoints (certain mission durations, crew abort availabilities, etc.) which drive the 

selection of the specific hardware necessary for each mission.  Comparison of the mission 

requirements to these breakpoint values allows direct selection of the hardware; typically that 
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which minimizes mass or risk [Hardware and breakeven point information: Larson & Pranke, 

1999; Chambliss, 2007; Connors et al. 1985; Eckart, 1996; Lyle, Stabekis, & Stroud, 1973; 

Komar et al., 2008; Swickrath, Anderson, & Bagdigian, 2011].  To illustrate, a carbon dioxide 

removal hardware selection breakpoint is the duration at which the mass of a system implemented 

using open loop lithium oxide canisters equals the mass of a partially closed bed molecular sieve 

system, which reduces consumables at expense of moderately heavier equipment mass [Eckart, 

1996].  In both the Scenario 12.0 habitat concept and the cislunar habitat concept, the 180 day 

duration at a destination (which indicates little to no abort capability capable of returning crew 

under several days) dictated the selection of appropriate functions and subsystem hardware.  

Hardware items allocated to the PCM are focused on group and work activities and include: 

Galley, Wardroom, Life Support (partially closed), Stowage, Waste and Hygiene, Medical, and 

Biology/Life Science Research Station.  As mentioned in Chapter 1, the identification of the 

equipment and logistics, their masses, dimensions, integration requirements (types of line runs), 

etc. are typically available at conceptual design and will be considered an input to the Generate 

Layouts step of the process. 

Generate Physical Subsystems 

The ‘generate physical subsystems’ step involves the creation of a mathematical 

representation of hardware geometry and other characteristics of the equipment that influence its 

layout placement (e.g., tasks performed at hardware, mass, etc.).  The historical habitat interior 

design process uses detailed CAD models or drafted drawings to represent the space taken up by 

the hardware in the layouts.  These models can be powerful tools at the detail design phase, but 

their long creation times and complexity is often incompatible with fast layout evaluation.  The 

proposed process uses a simple polyhedral representation of the hardware geometry derived from 

computer animation and video game programming which is well structured for use in layout 

creation and evaluation criteria calculation methods.  By representing geometries as simple 

polyhedral objects specified by matrices of vertices and faces as shown in Figure 14, the overlap 
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of geometries can be detected with standard collision detection algorithms outlined in Chapter 2 

to prevent the creation of unrealizable layouts [Ericson, 2004; van den Bergen 2005].  

Additionally, this polyhedral object representation allows for generation of layouts by simply 

manipulating the location and orientation of each subsystem through definition of translation and 

rotation matrices.  What results is a fast, simple, mathematically operable method of constructing 

layout alternatives with relatively simple sets of data. 

 

Figure 14: Mathematical Representation of Object Geometry Collocated with Detailed 

Information 

 

An additional benefit of this simplified geometry representation is its compatibility with 

object-oriented programming, which allows for the embedding of detailed function and interface 

information together with the geometry data in arrays or matrices within an indexed object.  The 

types of object information required include: the mass of an object, the function it belongs to, any 

separation or collocation relationships associated with the provided function, geometry and 

location of anthropometric envelopes for human interaction with the object, and envelopes / keep 

out zones for moving parts.  Collocated storage of this information facilitates straightforward 

calculation of evaluation criteria.  The importance of this layout and data representation method 

will be discussed more in Section 3.3. 
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Generate Layouts 

The ‘generate layouts’ step simply involves assigning positions and orientations to each 

polyhedral object.  This is achieved by generating a location and orientation matrix which 

represents a layout concept.  These locations should be selected such that the extreme points of 

each polyhedral object are within the habitat pressure vessel defined by the designer to avoid the 

container constraint discussed later in this chapter.  Additionally, the volume of hardware should 

not inherently exceed the volume of this pressure vessel, as such layouts are inherently 

unrealizable.  Finally, the locations of hatches and windows can either be an input or dynamically 

traded as additional pieces of hardware with constraints to be on the pressure shell.  Figure 12 

provides an illustration of the location of the hardware within the Scenario 12.0 PCM.  Similarly, 

the layout of the initial cislunar habitat will be discussed in Chapter 4. 

3.1.2 Layout Evaluation Process [Simon & Wilhite, 2013] 

This section provides a high-level overview of the layout evaluation process, leaving 

specifics of implementation and rationale to the remaining sections of this chapter.  Figure 13 

shows the proposed Layout Evaluation process, which combines quantitative evaluation criteria 

measurements, design problem constraints, and subjective designer preferences into a single 

aggregate measure of the overall performance of a layout.  This process and its component steps 

are carefully structured to reduce the evaluation time of each layout. 

3.1.2.1 Designer Preferences  
Before any layouts are evaluated, the three types of preference information are collected from 

the designer: 1) the relative importance of the evaluation criteria to establish criteria weightings, 

2) desired values and acceptable ranges for each of the criteria to establish utility functions, and 

3) any constraints the designer wishes to place on the design problem.  By collecting this 

information before layout evaluation, it is possible to consistently apply the same preferences and 
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constraints to all investigated layout concepts and integrate the designer preferences during the 

evaluation process. 

Criteria Weightings 

The relative importance of evaluation criteria gives the designer an opportunity to customize 

the objective function to his/her preferences and the appropriate context of the design problem.  

For example, a human factors-focused designer tasked with improving the habitability of a space 

may care little for mass variations, judging them to be insignificant in comparison to functional 

adjacency considerations.  As a result, this designer’s preference should be reflected in the 

relative contributions of mass and adjacency evaluation criteria.  This relative preference can be 

captured through the expert elicitation method of Analytic Hierarchy Process, which utilizes 

semi-qualitative, pair-wise comparisons between criteria to assign ‘criteria weightings’ reflecting 

their importance and contribution to the objective function [Saaty, 1980; Smith, 2007].  These 

weightings can also be used to screen out or eliminate evaluation criteria which are deemed non-

important from the objective function formulation and allow layout designers to focus on those 

criteria with the most effect on the objective function.  More information on evaluation criteria 

weightings and their generation are provided in Section 3.4.2 

Utility Functions 

In order to ensure each of the evaluation criteria values are combined in the objective 

function using common units (preventing criteria with high numerical values from dominating the 

solution), a function is used to normalize each calculated criteria value to a number between 0 

and 1 (where 0 is lowest permissible performance and 1 is peak performance).  This normalized 

score represents the designer’s perceived ‘utility’ of a criteria value over the possible range of 

values.  The method selected for collecting and applying this designer preference is Mid-

Preference Level Splitting [Smith, 2007] which uses a structured set of questions to shape the 

‘utility function’ used to map evaluation criteria values to utilities.  This method was chosen for 
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its ease of implementation and suitability for continuous evaluation criteria values [Smith, 2007].  

More information about utility functions and the mid-preference level splitting method of utility 

function construction are provided in Section3.4.1 

Design Problem Constraints 

Design problem constraints are constraints enforced on the design problem itself, not the 

constraints which must be met to fulfill human and spaceflight standards.  Examples of these 

constraints include hardcoded placement of certain pieces of hardware, how stringently to enforce 

constraints preventing the overlap of geometries in acceptable solutions, or decisions to bypass 

certain human standard constraints.  As the software necessary to carry out this method develops, 

unique accommodations of these designer desires will be added to the input fields to allow for 

some degree of design problem customization.  These constraints will then be added to the 

constraints based upon human and spaceflight standards which are discussed in Section 3.5.  For 

the Scenario 12.0 PCM example, the interfaces such as hatch location and the functions located in 

adjacent modules are pre-specified as shown in Figure 15, with the distance of those functions 

from the associated hatches characterized as near, medium, or far. 

 

Figure 15: Adjacent Functions to the Scenario 12.0 PCM [Kennedy, Toups, & Rudisill, 

2009] 
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3.1.2.2 Other Objective Function Components 
After obtaining designer preferences, there are two remaining evaluation process components 

shown in Figure 13 which must be addressed to quantify the objective function: 1) automatically 

quantifiable evaluation criteria values capturing the desirability of a layout and 2) the constraints 

based on human and spaceflight standards. This section provides a high level overview of these 

components which is expounded upon in later sections.  

Automatically Quantifiable Evaluation Criteria 

Evaluation criteria measure the degree of desirability of one layout alternative over another 

and expand a constraint satisfaction problem which might create feasible layouts into a multi-

criteria evaluation/optimization problem capable of producing more optimal solutions.  

Investigation of previous evaluation methods including those in Table 4 and Table 5 revealed that 

no comprehensive, expert-approved list of quantifiable space habitat evaluation criteria capturing 

both engineering and human habitability concerns exists [SICSA, 2009; NASA, 2010; Celentano 

et al., 1963; Cohen, 2004; Allen et al., 2003; Wise 1995].  In particular, the desire to improve 

consideration of habitability issues into the layout evaluation is well documented [Rysavy & 

Council, 1971; Jones, 1973; Cohen, 1990; Whitmore et al., 1997; Adams, 1998; Adams & 

McCurdy, 2000; Osburg, 2002; Allen et al., 2003; Rudisill, Howard, Griffin, Green, Toups, & 

Kennedy, 2008].  Additionally, examination of previous methods shows that manual intervention 

by a designer to quantitatively or qualitatively measure evaluation criteria values for individual 

layouts is a time consuming step which limits the number of layouts which can be investigated.  

The development of a comprehensive set of automatically quantifiable evaluation criteria 

calculable directly from layout geometry and hardware functional characteristics is critical to 

ensuring high-quality habitat designs and speeding up the evaluation process.  

The evaluation criteria set developed in this thesis leverages existing quantitative and 

qualitative habitat/terrestrial architecture evaluation methods and human integration handbooks 

[Celentano et al., 1963; Tullis & Bied, 1988; Nixon, 1986; Cohen, 1990; Osburg, 2002; Fitts, 
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2002; Howe & Sherwood, 2009; NASA, 2010].  In order to ensure a comprehensive set of criteria 

was chosen, a structured screening process was used to reduce a large list of criteria (qualitative 

and quantitative) to a set of quantitative criteria and proxies capturing the breadth of driving 

layout concerns identified in literature (described further in Section 3.3).  The resulting criteria 

list includes quantitative measures for mass, psychological acceptability, functionality, safety, 

human factors considerations, and other factors.  Automatic algorithms for quantifying this 

filtered list of criteria were then developed (described completely in Section 3.4).  The evaluation 

criteria set and the automatic methods used to quantify them implemented in the Layout 

Evaluation Process are described in Sections 3.3 and 3.4, respectively. 

Constraints 

The final component to quantify the objective function is the implementation of constraints 

bounding the feasible design space.  For the habitat interior layout problem, constraints are limits 

imposed upon the physical location of interior equipment or the values of the evaluation criteria 

measurements [Simon & Wilhite, 2013].  These generally fall into two categories: geometric 

constraints and human spaceflight standards/safety constraints.  Geometric constraints include: 

-  the ‘non-overlap’ constraint – addressing overlap between two pieces of hardware 

- the ‘container’ constraint – addressing hardware protrusions beyond the bounds of the 

habitat pressure vessel 

If either of these constraints is violated, the resulting layout cannot be manufactured, and is thus 

infeasible.  Additional constraints from spaceflight and human factors standards include 

limitations like minimum translation path widths for safe emergency egress, minimum volume 

limits which would impair crew performance, and clearance to access emergency systems.  Both 

of these types of constraints are independently checked or measured using methods similar to 

those quantifying evaluation criteria.  Methods of implementing constraints in an evaluation vary 

in practice and are described briefly in Section 2.3.2.  In this thesis, constraints are enforced 
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through the addition of penalty functions to the unconstrained weighted objective function which 

yield undesirable objective function values.  The full description of constraints and rationale for 

the chose implementation is provided in Section 3.4.  

3.1.2.3 Objective Function 
As shown in Figure 13, all of the components described in Section 3.1 are combined into a 

multi-criteria objective function which measures the overall desirability of habitat interior 

layouts.  This weighted-sum multi-criteria objective function is provided in Equation 1.  
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Y(A) = the aggregate value of layout A  

A = layout alternative described by location and orientation matrices 

Xi(A) = the measured/calculated values of each criterion, i, corresponding to the layout A  

Ui(Xi(A)) = the utility function for each criterion, i, calculated from the measured value 

Xi(A) 

wi = the relative importance weighting of each criterion, i 
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where gj(x) is the amount the constraint, j, is violated and α is some 

constant indicating how hard the constraint is to be applied 

This evaluation objective function is constructed as shown in Figure 13.  First, the evaluation 

criteria measurement methods utilize layout geometry and hardware specifications defined in the 

Initial Layout Generation step as inputs and automatically calculate values for each evaluation 
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criterion.  These evaluation criteria values are then normalized using the designer-defined utility 

functions and brought into the objective function.  They are weighted by the designer-defined 

criteria weightings and summed to determine an unconstrained value of the input layout.  This 

value varies from a worst rating of zero to a best rating of one.  The final step to defining the 

objective function is then to calculate and check the human spaceflight standards and safety 

constraints.  These constraints are implemented with exterior penalty functions to allow some 

small violations, but greatly penalize intermediate to large violations [Vanderplaats, 1984].  With 

the addition of these constraints, a constrained weight-sum objective function value can be 

determined.  It should be noted that in order to prevent the objective function from returning 

negative numbers (which can complicate optimization algorithms), the unconstrained value of a 

layout represented by the sum of w*U(X(A)) terms (0 to 1, worst to best) is subtracted from 1, 

and the penalty functions values (which are positive) are added to the objective function. Thus 

feasible values violating no constraints are between zero and one, with minimal values preferred. 

The objective function value for a layout can then be compared to the values of other layouts 

to progressively improve layout performance in subsequent iterations.  In order to automate the 

creation of desirable layouts, this objective function can be minimized utilizing an optimization 

algorithm.  Because of the multi-modal, discontinuous nature of the interior layout design space, 

stochastic optimization methods should be used to update the layout defined by translation and 

rotation matrices.  More information on the layout iteration step will be described Section 5.1.  

3.1.2.4 Evaluation Process Inputs 
As mentioned in Sections 2 2.1, 2.2, and 3.1, several inputs are required to address a variety 

of layout evaluation problems.  These inputs include mission specifications, assumed pressure 

vessel and hardware geometry, functional information about the hardware, and any interfaces 

which might dictate positions of interior hardware.  A full list of inputs which may be requested is 

shown in Table 13.  Though this may seem like a significant amount of information, most of 
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these quantities are known at the mission conceptual design phase or can be assumed or estimated 

based upon similar problems.  Additionally, selection of these input values will be facilitated in 

the future by the development of a library of evaluation problems and hardware information.  In 

the subsequent sections, the use of these inputs for the calculation of evaluation criteria and 

constraints will be described in detail.  

 

Table 13: Full List of Inputs Provided to the Evaluation Process 

Mission Specifications 
Pressure Vessel Geometry and 
Specifications 

Component Geometry and 
Specifications 

Destination (LEO, L1, Moon, 
Mars, etc.) 

Basic dimensions Dimensions 

Duration of stay Shape Vertices coordinates 

Number of crew Orientation 
Location (XYZ 
coordinates) 

Crew composition 
(scheduling) 

Mass (input option available) Orientation 

EVA requirements Floor height or floor area 
Face data (which vertices 
in what face, normal 
vectors) 

Landing required of habitat? Ceiling height 
Specification of front 
face(s) 

Gravity orientation / 
magnitude 

Number of hatches Component Mass 

Surface dust present? Hatch locations 
Reserved volumes type 
vertices/lines/faces 

External Interfaces Hatch dimensions 
Reserved volume 
geometries 

Location of hatch closest to 
EVA area 

Hatch type (EVA, inter-
element, etc.) 

Function / task supported 

Distance of functions from 
hatch in external element 
(actual or estimate) 

Diameter of endcap flattening 
for hatch placement 

Line runs required 

Orientation   
Zoning requirements 
(privacy, noise, clean/dirty) 

Water inlet location   Criticality of component 

Power inlet location   Frequency/duration of use 

 
 

This section has described the basic steps of performing layout evaluations.  Each of the 

subsequent sections will describe these steps in detail, including the specific measurements, more 

specific quantification methods, and considerations feeding the evaluation process development.  
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3.2 Evaluation Criteria [Simon & Wilhite, 2013] 

A habitat interior design evaluation criterion is a measure of the effectiveness of an interior 

layout to keep astronauts healthy, safe, and productive for the duration of the mission.  Selecting 

a comprehensive set of these criteria is challenging as many criteria fundamentally measure the 

same characteristic and there are various levels of detail which can be considered.  Some of these 

criteria are obvious and straightforward in definition and measurement, such as the total usable 

volume or “habitable volume” or the size of private space provided for the crew.  Others seek to 

capture a vague principle observed from analog testing or spaceflight and are much more 

subjective in the assessment of value.  In order to ensure a comprehensive set of criteria was 

chosen, a structured screening process was used to assess whether a criterion was essential to the 

assessment of interior layouts.  

First, a comprehensive list of all possible habitat interior layout evaluation criteria (qualitative 

and quantitative) was created from an extensive literature review of space habitat design [Eckart, 

1999; Howe & Sherwood, 2009; Larson & Pranke, 1999; NASA, 1995; Osburg, 2002], habitat 

habitability [Celentano et al., 1963; Fitts, 2002; NASA, 2010; Nixon, 1986; Tullis & Bied, 1988; 

etc.], industrial engineering, terrestrial architecture references (particularly from Architectural 

Programming) [Duerk, 1993] and a field of study focusing on automation in architecture, Space 

Layout Planning [Kalay, 2004; Lobos & Donath, 2010; Homayouni, 2006; etc.]).  Additionally, 

several of the more complete evaluation criteria sets used in existing habitat design literature were 

included (summarized in Table 14).  The fully comprehensive list of possible criteria was then 

screened based upon the following list of desired characteristics.  Criteria should be:  

- As independent as possible from other criteria to prevent an over-emphasis on any 

particular measure [Smith, 2007] 

- Explicitly dependent upon layout or pressure vessel geometry and functionality (inputs 

described in Table 13), which allows for the exclusion of many aesthetic criteria such as 
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color or textures which can be changed with little to no impact after optimizing interior 

layouts  

- Intuitive and easy to justify [Smith, 2007; section 9-4]  

- Consistent with existing requirements [NASA, 1995; NASA, 1999]  

Finally, as the habitat design experts are the target users of the proposed research, criteria should 

be expert recognized and approved.  This final step was achieved by vetting the resulting list of 

criteria with the NASA Johnson Space Center habitation and layout evaluation experts.  

 

Table 14: Historical Habitat Design Evaluation Criteria Sets 
Alternative Approach Description Limitations 

Celentano et al., 1963 – 
“Establishing a 
Habitability Index”  

 Describes a top level index for 
habitability of a habitat based 
upon heuristics 

 Somewhat generic, utilities are assumptive, 
only layout consideration is volume 

Cohen, 2004 – “Habitat 
Multivariate Design 
Model Pilot Study”  

 Addresses how to determine 
shape and size of habitats 
based upon several spatial 
variables  

 Numerical, but incomplete 

 Focuses on pressure vessel geometry, not 
interiors 

Di Capua et al., 2009– 
“Minimal Functional 
Habitat”  

 Design study for surface 
habitat design  

 Qualitative preference analysis 
to identify design features to 
implement  

 Relatively complete, but all measure of 
effectiveness are qualitatively ranked 

 Mitigations are design feature focused as 
opposed to layout focused  

SICSA, 2008; 2009  Design studies of designs 
including ranking of 
configurations  

 Good selection of criteria, but limited to 
qualitative ratings between few concepts 

Tullis & Bied, 1988 -  
“Space Station 
Functional Relationships 
Analysis  

 Evaluation of interiors based 
upon separation and 
colocation of systems  

 Incomplete, focuses on schedule, traffic, 
privacy, and noise  

Wise, 1985 – “The 
Quantitative Modeling 
of Human Spatial 
Habitability”  

 Details numerical methods for 
capturing spatial perception 
from visual, kinesthetic, and 
social logic perspectives  

 Limits itself to spatial issues associated with 
confined spaces, thorough but incomplete 

 Does not weight or combine measures 

NASA, 2010 - NASA 
Human Integration 
Design Handbook  

 NASA handbook on designing 
human spaces 

 Most comprehensive list of criteria, but 
lacks definition of measurement methods 
and overall performance measure 

 

 

The resulting comprehensive evaluation criteria set is shown in Figure 16 grouped into the 

following four categories: Mass, Volume, Task Performance, and Crew Health, Well-Being, and 

Safety.  Mass criteria track the effect that the interior layout has on the overall mass of the habitat, 
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normally through increased structure or utility runs.  Volume criteria measure the efficiency in 

the utilization of the interior volume and general psychological acceptability of the space.  In 

general, larger, more open habitable spaces are preferred to tight confined spaces [NASA 2012].  

Task Performance criteria measure the impact of the layout to the productivity of crew through 

the impact of schedule based factors and the placement of tasks within the habitat.  Finally Crew 

Health, Well-Being, and Safety criteria track several factors which directly impact the 

physiological or psychological health of the crew or pertain to contingency operations, namely 

egress.  Each of these criteria is summarized in Table 15 and described in detail (including 

quantification methods) in Appendix B as shown in Figure 17 and Figure 18 for habitable volume 

and separation for privacy. 

 

 

Figure 16: Comprehensive Habitat Interior Layout Evaluation Criteria Set 
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Table 15: Evaluation Criteria Descriptions (See Appendix B for more details) 

  Description 

Mass 

Structure Mass 
The mass of primary and secondary structures which vary dependent on the 
configuration. This includes the pressure vessel, launch integration structure, 
hatches, windows, walls, floors, ceilings, and support mass for equipment. 

Equipment Mass 
The mass of the Life Support, Thermal, Power Distribution, Stowage, Crew 
Accommodations, Logistics, Avionics, etc. equipment. Does not include power 
and consumable distribution lines.  

Plumbing/Electric Line 
Run Masses 

The mass of power distribution, atmosphere distribution, vacuum, and various 
water/waste distribution lines based upon the placement of interior objects. 

Volume  

Habitable Volume 

The free, pressurized volume, excluding the space required for subsystems, 
structural elements, stowage, outfitting, accommodations, and structural 
Inefficiencies (nooks and crannies). It is literally the space livable, accessible, and 
functionally usable to crew. (also referred to as Net Habitable Volume) 

Unusable Volume 
The inaccessible volume and structural inefficiencies caused by the particular 
packing strategy. Also not usable for stowage) 

Available Non-Dedicated 
Stowage Volume 

The available space for the storage of goods within the free volume outside of 
translation paths and anthropometric envelopes. 

Habitable Floor Area and 
Other Usable Horizontal 
Surface Area 

The floor area available for crew movement (often indicating anthropometrically 
accessible floor area by a standing astronaut (excludes skinny spaces, space 
behind racks, under beds, under desks, etc.)) and the area of horizontal surfaces 
occupied by crew including desks, tables, work counters, shelves, beds, and 
chairs. Frequently replaces habitable volume for planetary surface designs with 
partial gravity. 

Largest Spatial Vista 
The maximum volume swept by the eye of a crew member. A measure of 
spaciousness and psychological/physiological acceptability of the environment. 
Analogous to maximum contiguous line of sight and contiguous field of view. 

Task Performance 

Colocation of Sequential 
Tasks 

The degree of colocation of tasks which are sequential (according to analogous 
crew schedules). A measure of the overall minimized required crew translation 
distances throughout an interior. 

Anthropometry of High 
Duration Tasks 
Interferences 

The number of long duration tasks whose anthropometric volumes interfere 
with either the anthropometric volumes of other high duration tasks, translation 
paths, or hatch clearance areas. 

Colocation of Equipment 
by Function 

The degree of grouping of equipment and components based upon the function 
or task they belong to. Facilitates more efficient operations. 

Placement for 
Function/Ergonomics 

A measure of the displacement of equipment from the location required by its 
function or ergonomic operation (e.g. a desk in a gravity environment should be 
~36 in from the floor). Significant deltas are penalized. 

Placement for High 
Frequency/Duration Use 

A measure of the displacement of 'high frequency/duration of use' equipment 
from the 'prime real estate' locations for human interaction (waist to eye level) 

Crew Health, Well Being, and Safety 

Size of Private Spaces The size of space designated as private (e.g., crew quarters, waste and hygiene). 

Separation for Privacy 
The degree of separation between public and private areas, such as the crew 
quarters and the wardroom 

Separation of Clean and 
Dirty Zones 

The degree of separation between clean and dirty areas, such as crew quarters 
and hygiene area 

Separation for Noise 
The degree of separation between noisy and quiet areas, such as crew quarters 
and the wardroom area 

Minimum Translation 
Path Width 

The minimum width along the path which allows access to each hatch and 
subsystems 
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Figure 17: Example of Evaluation Criteria Information Captured in Appendix B: Habitable 

Volume 
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Figure 18: Example of Evaluation Criteria Information Captured in Appendix B: 

Separation for Privacy 

 

As mentioned before, the bulk of habitat design references use criteria which are either 

incomplete in addressing all engineering and habitability concerns or qualitatively assessed, 

lacking quantitative measurement methods.  No criteria set found in literature has captured a 

comprehensive, numerically measurable set of criteria.  The major reason for this is that some 

interior criteria are seen as qualitative measures which must be subjectively assessed by a 
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designer and are incompatible with quantitative measurement.  While this is generally true, 

review of previous evaluation methods has also shown that designer measurement of evaluation 

criteria must be reduced to ensure consistent evaluations and accelerate the evaluation process.  In 

the creation of a fully quantitative set of evaluation criteria, analysis and reformulation of 

qualitative measures is needed to allow for quantitative measurement.  Figure 19 outlines the 

process taken to reformulate the criteria with a practical example.  ‘Spaciousness’ is a broad 

measure of the psychological acceptability of the size and shape of an interior layout.  It can be 

expressed through the combination of a wide range of criteria which can loosely be split into two 

categories: quantitative and qualitative.  The quantitative measures are easily measurable and 

straightforward in definition.  The qualitative measures are more difficult to measure, as they deal 

more with perception than physical measurement.  Qualitative measures can be divided into three 

basic categories.  Semi-layout independent measures like color or a “clean look’ tend to be 

modifiable with little to no impact on the design, layout, or size and can be removed from 

consideration.  Designer preferences like the relative importance of each of these measures or the 

acceptable values of each criterion have already been discussed as weightings and utilities and 

have been purposefully separated from evaluation criteria measurement to ensure consistent 

application across all layout concepts.  This separation of user interaction and evaluation criteria 

measurement is critical to the automation/acceleration of the evaluation process. 
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Figure 19: Mapping of Qualitative Evaluation Criteria to Quantitative Proxies 

 
 

The remaining measures are perception-driven measures which are dependent upon layout, 

but cannot traditionally be determined without user assessment of the layout in an analogous test 

situation.  However, measurable proxy variables can be used to approximate these qualitative 

perception-based criteria.  In the example illustrated in Figure 19, crowdedness measures the 

degree to which crewmembers will feel crowded or that their tasks are impeded by the presence 

of other crew members.  Crowdedness is strongly correlated with the privacy measure which 

measures the extent to which crew feel that their privacy needs are met.  The combination of 

several quantitative measures like the number of overlaps of high-frequency and high duration 

tasks (which use schedules and task locations to measure how often crew locations might overlap) 

and the width of the translation paths (which measures the ability of crew to pass by one another 

without intersecting) can approximate the potential for crowding.  Similarly the size and 

distribution of private and public spaces can also approximate aspects of crowdedness and 

privacy.  By mapping all qualitative perception-based measures to quantitative proxies which 
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approximately measure the same factors, a fully quantitative criteria set can be created.  Every 

criterion in Figure 16 can be measured directly or by some quantitative proxy.  Ensuring that 

these criteria can be automatically quantified is the focus of the next section. 

3.3 Quantitative Evaluation Criteria Measurement Methods [Simon & 
Wilhite, 2013] 

Though each of the evaluation criteria shown in Figure 16 is quantifiable, that does not imply 

that a method exists to automatically calculate its value without user interaction.  For example, 

habitable volume is a quantifiably measurable quantity, but the current method for measuring it 

from an interior layout is manual measurement using a CAD model [Szabo et al., 2007].  There 

are also several other desired characteristics of the measurement methods: 

- Calculable from layout and available data, with no user interaction 

- Require minimal computational time to solution 

- Scalable to various design precisions 

- Traceable to definitions of measures provided in references (particularly NASA, 2010) 

- Easy to setup 

Several mechanisms enabling the automatic calculation of evaluation criteria values were 

identified through extensive investigation of related fields of study including packing/container 

loading problems [Dyckhoff, 1990; Wäscher et al., 2007], space layout planning [Ahmad, 2005; 

Bénabès et al., 2010; Kalay, 2004; Lobos & Donath, 2010; Homayouni, 2006; Szykman & 

Cagan, 1997], and spacecraft design [Lau et al., 2014; Cuco et al. 2014].  In particular, three 

mechanisms were identified which, when concurrently implemented, will enable the development 

of measurement methods meeting all desired characteristics: 1) collision detection, 2) grid-based 

numerical methods, and 3) separation/collocation matrices.  
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 3.3.1 Collision Detection [Simon & Wilhite, 2013] 
As mentioned in Section 2.2.2, automated evaluation criteria quantification methods require 

the three types of collision tests summarized in Figure 20, which is similar to Figure 6 with the 

additional listing of the evaluation criteria which the tests enable.  Testing if a point is inside an 

object allows for the numerical determination of the size of open spaces and volumes of various 

types (specifically habitable volume, unusable volume, stowage volume, minimum translation 

path width and size of dedicated private spaces) when combined with some logic characterizing 

the various types of volume.  This numerical volume estimation is described more in the next 

section.  The second type of collision test to determine the intersection points between a line and 

an object can be used to determine line of sight distances necessary for line of sight and isovist 

radial based criteria such as spatial vista and minimum translation path width.  The third test 

identifying overlap between three-dimensional geometries enables the detection of interferences 

between 1) two pieces of hardware for the non-overlap constraint, 2) hardware and keep 

out/anthropometric reserved volumes for task clearance checks, and 3) two anthropometric 

volumes representing task volumes to quantify the criterion addressing interference of high 

duration task volumes with other task volumes.  As mentioned in Section 2.2.2, the preferred 

collision detection method implemented in this thesis is the Incremental Separating Axis – 

Gilbert-Johnson-Keerthi (ISA-GJK) algorithm [van den Bergen, 2003; Gilbert et al., 1988], 

which performs all of three tests with some modification (point-hardware collision is enabled by 

modeling the point as a small sphere).  This method was selected due to its speed, accuracy, ease 

of implementation, and readily available open source code.  Furthermore, to speed collision tests 

even further bounding volumes and spatial partitioning (specifically an octrees) are both utilized.  

Collision tests are a particularly powerful for the quantification of habitat interior evaluation 

criteria, especially when used in combination with numerical estimation techniques described in 

the next section.  
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Figure 20: Types of Collision Detection Needed in Automatic Evaluation Criteria 

Quantification Methods 

 

3.3.2 Grid-based Iterative Methods [Simon, Bobskill, & Wilhite 2012] 
To eliminate manual CAD-based measurement of volumes, an automated method of 

measuring and characterizing different types of volume is required.  A numerical integration 

approach using an orthogonal Cartesian grid of discrete test points spanning the pressurized 

volume of the habitat is shown in Figure 21.  This method first tests each point in the grid to 

determine if it is occupied by hardware or ‘free’.  It then applies several Boolean collision 

detection tests based upon the definitions of volume-based criteria to determine if the point 

should count towards a particular type of volume.  This testing continues for each point in the 

pressurized volume utilizing a grid-based iterative method or “Marching Grid Method” in which 

points are investigated in cross sections along the habitat length as shown in Figure 21.  The total 

amount of a particular type of volume can then be determined by summing the points conforming 

to the criteria definition and using this sum with the point spacing of the grid to make a numerical 

approximation to the volume represented by the points.  The major benefits of this marching grid 

approach are the reduced data storage requirements resulting from tracking a single number of 

points passing each test and the facilitation of spatial partitioning enabled by the marching grid 

method.   
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Figure 21: Orthogonal Cartesian Grid of Test Points for Iterative Evaluation Criteria 

Measurement Methods and Illustration of the Marching Grid Method 

 

To illustrate this method, the following process is used to calculate habitable volume.  A test 

point within the grid can be characterized as part of the habitable volume by testing whether it is 

within the free, accessible, and functionally usable volume.  For this thesis, the following 

volumes are assumed not to be included in the estimate of habitable volume: the volume occupied 

by equipment, inaccessible volume behind wall-mounted racks, volume underneath the floor, 

volume above a ceiling, and volume that is inaccessible but not behind racks (e.g., above reach 

height, slots between racks, etc.).  This definition of habitable volume is in agreement with the 

definition provided in the NASA, 2010.  The Boolean tests used to determine if the point should 

be included in habitable volume are all point-hardware collision tests defined in the previous 

section with some half-space tests included for very simple ‘above’ or ‘below checks.  The 

marching grid process used to perform habitable volume calculations is illustrated in Figure 22. 

Investigate Points in Sequential 

Cross Sections 
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Figure 22: Process for Calculating Habitable Volume 
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The five Boolean tests used to specify the habitable volume from Figure 22 are as follows.  

The first test restricts the number of points to those included within the pressurized volume of the 

habitat.  This can either be achieved during the selection of points to be investigated (e.g., any 

points outside the radius of a cylindrical pressure vessel could be eliminated) or by a collision 

detection test with the entire pressure vessel geometry.  If points are outside the pressurized 

volume, they are excluded. 

The second test prevents inclusion of points below the floor or above the ceiling height from 

being considered.  This test primarily applies to habitats with some gravity and will be ignored 

for most microgravity habitats, as no floor or ceiling surface is typically defined.  The test 

excludes all points in the half-spaces above the ceiling or below the floor  

The third test determines if the point is physically located within a piece of hardware. ISA-

GJK point-hardware tests are used to make this determination.  Additionally, this process can be 

accelerated through the use of a simple bounding volume test known as the Axis Aligned 

Bounding Box test [Ericson, 2004], which determines if the maximum and minimum coordinates 

in one of the major axes directions overlaps the point being investigated.  All points located 

within hardware are excluded from the count. 

The remaining tests evaluate accessibility and exclude all points above the maximum reach 

height of an astronaut in a gravity environment and all cavities and voids that are 

anthropometrically inaccessible. The test for reach height is a simple half-space exclusion test as 

described in the second test. The test to include cavities and voids can be visualized as routing out 

the remaining volume to highlight the habitable volume. This is broken into two subtests, of 

which one must be passed to ensure that a point lies in the habitable volume. 

1. The first step determines if the point is in a standing/prone astronaut accessible volume.  

This can be performed by using a test volume representing a crew operational envelope to 

show that an astronaut standing or laying down can occupy the point in space without 

interference from the pressure vessel or interior objects.  Several positions and 
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orientations of the test volume relative to the investigated point may need to be tested.  

The test volume’s shape and size will vary based upon the magnitude of the gravity 

environment.  Test volumes can be tried in various orientations (with position constraints, 

such as “must be attached to floor in gravity environments” and orientation constraints, 

such as “vertical or horizontal for gravity environments”) until at least one case is found 

with which the volume doesn’t collide, as shown in Figure 23. One passing case is 

enough to prove that the point is not within a cavity or void. In order to prevent endless 

testing, discrete orientations and positions of the test volume relative to the point can be 

used. 

 

 
Figure 23: Illustration of Accessible Space for Habitable Volume Calculation 

 

2. The second step assesses cavities for accessibility.  A similar method to that in the first 

test is utilized for this assessment.  A test volume representing the minimum length and 

maximum width of an arm must be tested in multiple positions to find at least one clear 

position where the test volume is free of collisions.  The orientation of the tests could be 

restricted to preset search directions and positions to provide an exit criterion.  The 
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additional stipulation of this test is that not only must the test volume contain the point 

being investigated, but it must also contain at least one point that has been classified as a 

standing/prone astronaut accessible point.  This is illustrated in Figure 23.  The green 

box indicates standing/prone astronaut accessible points and the black point is the point 

being tested.  A blue box illustrates a passed test and a red box a failed test.  Discrete 

orientations and positions may be used here to prevent endless testing as in the previous 

subtest. 

Once the Boolean tests described above are used to remove non-habitable space, each point 

representing habitable volume adds the volume of a cube (equivalent to the cube of the distance 

between points in the grid) to a running total of the habitable volume.  The resultant total is a 

numerical approximation of the habitable volume according to the definition provided by the four 

Boolean tests.  Applying this process to the Scenario 12.0 PCM yields the volume indicated in 

Figure 24.  The major achievement of this volume-estimation method is that it can be calculated 

automatically independent from user involvement.  A similar method was developed for each of 

the volume-related evaluation criteria.  

 

 

Resolution (m) Number of points Habitable Volume (m3) 

0.10 33600 33.6 

0.05 269600 33.7 

0.01 33720000 33.72 

Figure 24: Calculation of Scenario 12.0 PCM Habitable Volume 
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Figure 25: Illustration of Possible Marching Grid Algorithm Issues 

 

As a whole this method accurately measures habitable volume within a spacecraft interior so 

long as the grid resolution is sufficiently dense to capture layout features.  There are two potential 

limitations of this approach and both are illustrated in Figure 25.  First, cavities that are accessible 

from some direction may be labeled inaccessible if not in the plane of the slice being investigated.  

To solve this: once the cavities are identified, points within the cavities should ideally generate a 

local 3-dimensional grid of points inside a sphere with radius equivalent to the length of the arm 

box and retest the points in this sphere for standing/prone astronaut accessibility.  These points 

will be necessary for the second subtest to ensure arm accessibility in non-orthogonal directions 

for the point of interest.  Essentially, a local test can be added to address this deficiency.  The 

second limitation is the possibility that random layout generation can develop layouts where two 

zones of the standing/prone astronaut accessible volume do not have a sufficient translation path 

to translate between them.  However, this problem is deemed to be out of scope in this thesis and 

layouts evaluated by this method are assumed to be reasonably designed concepts that do not 

contain such ambiguous regions.  Making the method fully generic is part of the future work of 

which will be described in Chapter 5.  Additional details of the calculation of habitable volume 

and practical examples can be found in Simon, Bobskill, & Wilhite 2012. 

Methods utilizing this discrete grid of points can also be used for iterative methods of 

defining length-based evaluation criteria, particularly spatial vista and minimum aisle width.  

Spatial vista measures the maximum amount of volume that a crewmember can see within the 

Local grid of 
points 
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habitat as shown in Figure 26.  The point of origin from which the viewer’s perspective originates 

is important to the find the maximum possible visible volume.  The discrete points in the grid can 

be iterated through with some optimization method to converge to the point of view measuring 

the maximum spatial vista.  Similarly, to quantify the minimum translation path width, points of 

origin must be on the translation path, which changes with every layout. The grid of points can be 

used with a robot path planning algorithm like A* or Djkstra’s algorithm to construct a translation 

path from the available points.  These algorithms iteratively, and directionally search for the 

simplest path between two points while avoiding objects.  Then these identified points can be 

used as the points of origin for the measurement of translation path width as shown in Figure 27. 

 

 
Figure 26: Use of Discrete Grid-based Iterative Method to Calculate Spatial Vista 

 

 

 
Figure 27: Use of Grid-based Iterative Methods to Measure Minimum Translation Path 

Width 
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It is important to note that for even moderately sized habitats, the assumed resolution of the grid 

necessary to get accurate measurements may include a computationally prohibitive amount of 

points.  For example, a habitat with 3 m diameter and 7 m length may take as many as 60 million 

points to characterize the space.  Storing data such as the location and exact characteristics of 

each of these points would be difficult.  Two methods are taken to prevent this problem: 

1. Reduced grid resolution to reduce the number of points which must be tracked.  This is 

particularly important in finding the minimum translation path width which must keep 

track of the location of points in the translation path. 

2. Additive calculation with no data can be used to eliminate the need for data storage.  

For example, when calculating habitable volume, the number of points passing each of 

the Boolean tests can be simply be counted using a running counter to determine the 

volume.  Additional optimization or heuristic methods may be implemented in future 

work to speed this process further utilizing coherence and optimization algorithms.  

3.3.3 Separation-Colocation Matrices [Simon & Wilhite, 2013] 

Several evaluation criteria measure how well the functional relationships between systems are 

accommodated by their location.  This can also be thought of as the degree to which conflicting 

or complementary hardware are separated or collocated, respectively.  In spacecraft design and 

terrestrial architecture this is known as a functional relationships analysis and is typically 

characterized qualitatively using an adjacency diagram or bubble chart [Tullis & Bied, 1988; 

Fitts, 2002].  Each piece of hardware can perform multiple functions, so prior to any calculation 

of functional relationships accommodation of a layout, functions (such as Meal Preparation, 

Sleeping, Face cleansing, etc.) must be mapped to hardware (Galley, Crew Quarters, Hygiene, 

etc.). 

After the mapping of functions to hardware is complete, an automatable calculation method 

utilizing two types of matrices has been identified in literature [Tullis & Bied, 1988]: 
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1. Matrices capturing the functional relationships are drawn from station crew 

schedules and crew preference elicitation [Tullis & Bied, 1988].  A library of these is 

documented in Tullis & Bied, 1988 which need only be mapped to the appropriate 

functions carried in any habitat concept.  These provide guidance as to whether 

functions should be separated or collocated based upon specific criteria such as noise, 

hygiene, etc. 

2. Matrices of the distances between objects can be defined based upon the layout and 

combined with the function relationships matrices to derive a measure of how 

successful the layout is at accommodating these functions.  A simple implementation 

of this locates each function at the center of the piece of hardware it is mapped to and 

utilizes Euclidean distance to represent the separation of the functions.  However, the 

distances included in these matrices need not be restricted to Euclidean distances.  

Some criteria desire visual separation or hygiene separation which can be augmented 

by partitions while others dealing with the length of shared consumable lines which 

run along the pressure vessel of the habitat behind equipment are best measured with 

some cylindrical mapping of Manhattan distance. 

The structures of these matrices are shown in Figure 28.  In order to derive a single measure of 

the overall effectiveness of a layout to capture these relationships, the Euclidean norm of the 

Hadamard Product (entry-wise product) of the R and D matrices was used. ||[R◦D]ij||.  While this 

quantity is not physically interpretable as any measurement, it can be compared to the range of 

possible values of this product determined by a design space exploration of the distance matrix 

for the specified pressure vessel geometry to gage its performance against possible values.  Figure 

29 shows an example of the calculation of the separation for privacy metric for the Scenario 12.0 

PCM.  The minimum and maximum possible values shown in this figure may be tracked over 

multiple layout evaluations to better define utility of this non-intuitive criterion. 
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Figure 28: Functional Relationships and Distance Matrices 

 

By implementing combinations of each of these three enabling mechanisms with logical 

definition-derived measurements, detailed automatically calculable algorithms have been created 

for each of the evaluation criteria in Figure 16.  A description of each quantification method can 

be found in Appendix B.  These algorithms are designed to be implementable in an object 

oriented programming language compatible with basic geometry modeling, and the software 

implementation of the method is described in Section 3.7. 
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Figure 29: Example Calculation of the Separation for Privacy Evaluation Criterion for the 

Scenario 12.0 PCM [Tullis & Bied, 1988] 

10 100000 
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3.4 Constraints [Simon & Wilhite, 2013] 

The final piece of the evaluation function which must be described is the implementation of 

constraints on the design problem specified by designer preferences, physical realizability or 

human/spaceflight standards.  Constraints here are limits placed upon the physical location of 

interior equipment or evaluation criteria measurements.  Table 16 lists a few of the constraints 

which apply to habitat interiors.  The first group includes constraints which restrict the placement 

of equipment to certain locations.  The first two constraints (hardware-hardware (also known as 

“non-overlap”) constraint and the hardware-pressure vessel (also known as “container”) 

constraint) within this group ensure that configurations investigated are physically realizable 

while the third places constraints on the overall placement to aid in integration of the habitat into 

the transportation stages and/or landers.  The next three constraints are examples of minimum 

volumes which must be provided to meet human requirements.  The final three are examples of 

constraints which are enforced by using the evaluation criteria values to check on specific 

measures found within human requirements.  Many more constraints exist than can be covered in 

this table.  Complete lists of these constraints are described in NASA standards of practice 

[NASA, 1995; NASA, 1999; Allen et al., 2003; and NASA, 2010]. 
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Table 16: Constraint Types [NASA, 1995; NASA, 1999; Allen et al., 2003; NASA, 2010] 

Constraint Description References 

Constraints on Placement of Equipment 

Hardware-Hardware 
Overlap 

Any two pieces of equipment must not be allowed to exist in the 
same space to ensure physical realizability 

 Tompkins et 
al., 2010 

Hardware - Pressure 
Vessel Protrusion 

Hardware must be contained within the pressurized volume 
specified 

  

Center of Gravity 
Constraints 

There may be constraints upon the location of the center of 
gravity which can be calculated from the masses and positions of 
interior subsystems and structures. This is often a constraint for 
launch vehicle and lander payloads.  

  

Constraints on Required Minimum Volumes 

Minimum Habitable 
Volume 

For missions of a specified number of crew, duration of mission, 
and gravity orientation, a minimum required habitable volume is 
required for crew health and operation efficiency.  ____ 
indicates a minimum of 16.99 m3 per person for missions 
beyond LEO. 

NASA, 2010; 
Celantano 
1963; Allen 
et al., 2003 

Required Volume for 
Specific Tasks  

A minimum contiguous volume is required for several tasks 
within the pressurized volume, particularly for emergency 
situations. Examples of this are suit don/doff (min 1.19 m3) and 
incapacitated crew member suit removal. The volumes are well 
defined anthropometry found in spacecraft design standards. 

NASA, 2010; 
Salvendy, 
1997; Allen 
et al., 2003 

Minimum Sleeping 
Volume 

The minimum required volume for sleeping area (1.5 m3) 
Allen et al., 
2003 

Other Constraints 

Translation Path-
Hardware for Crew and 
Goods Translation 

There is a requirement that two suited astronauts must be able 
to pass ion the translation path which dictates the minimum 
width of the translation path. Additionally, if goods are required 
to be handled or moved within the habitat, a path consistent 
with biomechanics should be provided for the pass-through. 

NASA, 2010; 
NASA, 1995 

Hatch-Hardware 
Clearance Constraints 

There are requirements to ensure hatches swing paths are clear 
to ensure egress pathways or to ensure the ability to seal the 
hab by hatch closure in an emergency  

NASA, 2010 

Anthropometric 
Envelope Clearance for 
Critical Functions 
(Anthropometric 
envelope-hardware 
constraints) 

Objects must be placed to accommodate certain critical 
functional envelopes or task volumes. These constraints can be 
implemented on an as needed basis.  

NASA, 2010 

Noise Exposure Limits 
NASA standards provide noise exposure limits which must be 
considered in the placement of systems 

NASA, 2010; 
Allen et al., 
2003 

Accessible front faces of 
critical high use systems 
(communication, temp 
control, fire extinguisher) 

Emergency equipment such as fire extinguisher has constraints 
on their location and access which must be satisfied.  

Fitts, 2002; 
NASA, 2010 

 

One of the challenges in automated layout design is how to implement the constraints into the 

decision process to enable automation algorithms.  There are three primary methods addressed in 



97 

 

literature and covered in Section 2.3.2.  The first option would be to declare a configuration 

unfeasible if interferences occur, and only evaluate feasible configurations.  However, this makes 

automating the placement of interior components very difficult due to its effect on the design 

space, which becomes highly discontinuous and multi-modal for such hard constraints (e.g. if that 

concept is close to the optimum and small clearance problem caused it to be missed).  Another 

way to enforce these constraints is to hard code placement algorithms to prevent collisions 

through discretization of the possible hardware locations or some logical placement order.  This 

method is often used in facility layout problems to generate a database of feasible alternatives 

which can be evaluated to aid in selection.  The third method to implement constraints is to accept 

their violation and either ignore or enforce them through their effect on objective function values.  

Ignoring constraint violations allows flexibility in the progression of hardware placement towards 

optimum configurations.  Constraint violations can also be implemented by integration into the 

objective function through the use of penalty functions. 

Penalty functions applied at the objective function level are the anticipated best method to 

implement these constraints.  Penalty functions return increasingly large values as constraints are 

violated, which can be added from the unconstrained weighted sum of evaluation criteria to 

prevent layout designs which violate constraints from being acceptable.  Interior penalty 

functions increase before the constraint is violated to enforce ‘hard’ constraints which must be 

met for feasible designs.  Exterior penalty functions are used for ‘soft’ constraints where slight 

violations are acceptable.  In general, exterior penalty functions are more consistent with the 

definition of the evaluation criteria and are anticipated to provide more flexibility in finding 

solutions.  Additionally, all constraints can be relaxed during early iterations to prevent a lack of 

freedom for the optimization method to explore the design space and some schedule of the rate of 

increase of the penalty functions can be implemented to avoid local optima.  For more 

information on external penalty functions see Vanderplaats, 1984.  
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3.5 Implementation of Designer Preferences [Simon & Wilhite, 2013] 

Evaluation criteria measurements described in the previous sections each measure aspects of 

the effectiveness of the layout geometry.  In order to make decisions as to whether additional 

layout iteration is required, these evaluation criteria must be combined into a single aggregate 

measure of the layout’s performance on all objectives and its ability to meet all critical 

constraints.  In order to assemble this objective function as described in Section 3.1.2.3, the 

detailed methods to capture and implement designer preferences are described here. 

3.5.1 Utility Functions 
As shown in Figure 13, Single-attribute Utility Functions (SUFs) are designer-specified 

functions which normalize the measured evaluation criteria values to some value between 0 and 1 

where 1 is peak performance and 0 is the lowest possible.  In most cases, linear relationships for 

these functions determined by the range of possible evaluation criteria values are acceptable.  

However, linear improvement in the value of an evaluation criterion does not always correspond 

to a linear improvement in the user’s preference of that value.  For example, at low values of 

habitable volume (e.g., 5 m3/person) even slight volume increases may provide significantly 

improved human comfort, safety, or productivity.  However, at high values (e.g., 40 m3/person), 

even large increases in volume have diminishing returns as the volume becomes spacious to the 

point of being wasted.  This diminishing return is reflected in the shape of the habitable utility 

function shown in Figure 30, which shows a negligible utility improvement past the value 

corresponding to the optimal amount of volume [NASA, 1995; Simon, Bobskill, & Wilhite 

2012].  Several other types of possible utility functions are shown in Figure 31.  
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Figure 30: Illustration of Scenario 12.0 PCM Habitable Volume Requirements and 

Corresponding Utility Function [NASA, 1995; Simon, Bobskill, & Wilhite 2012] 

 

 

 
Figure 31: Types of Nonlinear Utility Function Shapes 

 
 

Utility functions can capture designer preference of evaluation criterion value as a function of 

its value.  Definition of these functions begins by assigning the best criterion value, Xbest, to a 

value of 1 and the worst criterion value, Xworst, to a value of 0.  The utility of a value between the 

best and worst values, U(X), is a function which can be defined in a few ways.  Many structured, 

repeatable processes to define the utility curves are provided by the Logical Decisions for 

Windows® (LDW) software documented in Smith, 2007.  The Mid-Preference Level Splitting 

was selected based upon its compatibility with the habitat layout design problem and its facility to 

capture designer rationale.  This method uses expert questioning to identify the evaluation criteria 

value or level, ‘L’, where the improvement from the worst allowable value to L is equally 

5 m3/p 17 m3/p 25 m3/p 

Utility of Habitable Volume = 0.96 

Calculated Habitable Volume 
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preferred to an increase from L to the highest possible value (i.e., U(L) - U(L0) = U(L1) - U(L)). 

These preferences can then be captured with a curve fit through the specified points.  This method 

is illustrated in Figure 32.  The LDW software guides users through structured questions and can 

aggregate the responses of a group of experts [Smith, 2007].  The only weakness of this method is 

its inability to model discontinuous utility functions, which do not apply to the set of evaluation 

criteria used in this research. 

 

 
Figure 32: Demonstration of Mid-Preference Level Splitting Utility Function Definition 

[Smith, 2007] 

 

3.5.2 Relative Evaluation Criteria Weightings 
Evaluation criteria weightings enable the designer to customize an objective function to their 

value model or the specific design problem they are investigating. For example, a designer 

focused on increased task performance efficiency or a design problem statement requesting a 

focus on task performance analysis may place less importance on mass related criteria than 

sequential tasks.  Several methods for determining the relative importance of evaluation criteria 

investigated are shown in Table 17.  Comparison of these methods showed that many of the 

Rate the 
evaluation criteria 
value resulting in  
equal preferences  

Assume equal 
preference 
between A and B 
improvements  
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methods were compatible with the design problem with varying levels of complexity and slightly 

different performance.  The method chosen based upon these observations is the Analytic 

Hierarchy Process (AHP) [Saaty, 1980; Smith, 2007].  It was chosen because it is intuitive and 

simple to implement, so long as preferences show a certain level of consistency, which can be 

verified in the process of obtaining inputs. 

 

Table 17: Alternative Multi-Criteria Decision Making (MCDM) Methods to Determine 

Relative Importance Weightings 

Alternative Approach Description Limitations 

Analytic Hierarchy 
Process (AHP) [Saaty, 
1980; Smith, 2007] 

 Uses pairwise comparisons on each 
possible pair of criteria to derive 
weightings 

 Has difficulty dealing with 
inconsistent rankings 

 Assumes independent criteria 

Analytic Network 
Process (ANP) 

 Creates a network of information 
for interrelated criteria 

 Difficult to explain to decision 
makers; Complex 

 Large amounts of information and 
time required 

 Verification of results impossible 
because of interrelated loops 

“Smart” and “Smarter” 
Methods [Smith, 2007] 

 Uses “swing weights” to order all 
alternatives, then converts “swing 
weights” to absolute weightings 

 Difficult for criteria preferences 
aren’t well understood 

Tradeoff Method [Smith, 
2007] 

 Uses pairwise comparisons 
between pairs of alternatives on 
selected criteria to indirectly derive 
relative importance 

 Layout alternatives can seem similar 

 Some criteria are complex and not 
easily judged based upon top level 
data  

Direct Entry Method 
[Smith, 2007] 

 Directly enter in the weights based 
upon expert judgment 

 Acceptable for certain simpler design 
problems, but problematic when 
dealing with more complicated 
design problems.  

 

Analytic Hierarchy Process uses a full-factorial, user-defined set of pair-wise preference 

comparisons to numerically determine a normalized importance of each evaluation criterion 

[Saaty, 1980].  Pair-wise preferences for the each of the major evaluation criteria (mass, volume, 

etc.) from Figure 16 are captured based upon their influence on the final design via expert 

elicitation as shown in Figure 33.  The pair-wise preferences for the sub-criteria are similarly 
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captured based upon their importance as a measure of the top-level criterion to which they 

contribute.  AHP uses the eigenvectors of a matrix built from these numerical pair-wise 

preferences to determine the overall weightings by the process described in Saaty, 1980.  The 

resulting ranked list and overall weighting of each of the sub-criteria is provided in Figure 34 as a 

check to the validity of the preferences. 

 

Figure 33: Pair-wise Comparisons of Evaluation Criteria Preferences 

 

 

 

Figure 34: Relative Weighting of Each Criterion Based upon Pair-wise Comparisons 
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It is important to realize that these weightings are fully adjustable as part of the inputs to the 

quantitative evaluation process and that the current weightings are an example of possible 

weightings provided by the author based upon the Scenario 12.0 PCM design problem.  In 

practice, a set of preset values elicited from experts for various mission types will be included for 

designers who are not completely comfortable with independent estimates.  This is demonstrated 

in Chapter 4 when a habitation design expert provided the pairwise preferences for the criteria 

weightings on the cislunar habitat problem.  It is also expected that the designer may desire to 

observe the impact of changing these preferences on the resultant configuration or to perform 

uncertainties to capture shifting priorities.  For example, maximizing the importance of providing 

volume and reducing mass without considering task performance, quality of the volume or safety 

would result in placement of all of the equipment tightly packed in one or both ends of the habitat 

to maximize the adjacency of systems and maximize resultant volume.  It is expected that the 

weightings may change several times as it becomes clear which evaluation criteria really 

discriminate concepts.  By performing trades like these, it is possible to determine the robustness 

of certain designs to changes in designer preferences. 

In order to focus on those criteria having the most impact to the overall objective function 

value, the list in Figure 16 can be reduced via a screening to include only the evaluation criteria 

accounting for 80% of the weighting as shown in Figure 34.  These criteria can be renormalized 

based upon their original weightings and the weighting of the excluded criteria can be set to zero.  

These other criteria are still calculated and tracked, but they are effectively excluded from the 

objective function. 

3.6 Software Implementation [Simon & Wilhite, 2013] 

In order to implement the evaluation method and optimization algorithm, a software program 

was developed using C++ and OpenGL.  These languages were primarily chosen because of the 

availability of collision detection libraries and the ability to generate a transferrable executable 
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file to facilitate sharing.  The code operates in the following order.  First, the problem description 

information, such as the size of the pressure vessel, is defined.  Then, information about the 

pieces of hardware to be included in the layout is read from objectList.csv input files.  This file 

includes the geometry of these objects (as represented by matrices of vertices, face indices, and 

face normal vectors), geometry of simplified bounding box representations of the objects, 

geometry of reserved anthropometric volume to interact with each object, object mass, object 

volume, a mapping of what tasks are associated with each piece of hardware, a flag to identify 

those objects which should be designated as private space, and a matrix mapping power and 

consumable line mapping to objects.  Additionally, the initial positions and velocities of hardware 

may be specified in this input file to model one layout or they may be procedurally generated to 

create a population of initial layouts. Other .csv files are also used to store functional relationship 

data (hygieneMatrix.csv, noiseMatrix.csv, privacyMatrix.csv, sequentialMatrix.csv) [Tullis & 

Bied, 1988], a list of tasks which must be performed (taskList.csv), and typical spaceflight 

durations of these tasks (taskDurations.csv).  In the main program, all of the information about 

the objects and tasks is stored in structures which allow for colocation and facilitated access of 

geometry, position, and functional relationship data.  Other input files capture the utility functions 

(utilitiesMatrix.csv) and criteria weightings (weightsMatrix.csv) which are collected from expert 

elicitation over the course of a few hours, but these inputs could also be pulled from libraries of 

previous runs in future code implementations.  Examples of all of the .csv input files are provided 

in Appendix C. After all input information is captured; the process described in Chapter 3 is used 

to evaluate input layouts.  Criteria and constraints are calculated to quantify the objective 

function.  Images of the layouts are then rendered using the OpenGL visualization capability 

using transparent blue and yellow boxes to track the anthropometric reserved volumes and 

translation paths, respectively, and displaying key variables of interest. 

In addition to evaluating single layouts, the tool is set up to generate and evaluate multiple 

alternative layouts.  These populations of layouts are generated using Particle Swarm 
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Optimization (PSO) and the preprocessing algorithm described in the previous section.  After a 

significant number of iterations, the resulting best layouts are visualized and recorded; and the 

code can be rerun with a different population of initial layouts to better explore the design space 

and search for other minima. 

The following two chapters describe the implementation, strengths and weaknesses of the 

methodology described in Chapter 3 through demonstration of example layouts.  Chapter 4 

focuses on verification of the evaluation method for single layouts. Chapter 5 addresses 

implementation of the PSO algorithm described in Section3.6 and provides comments on the 

limitations of this method. 
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CHAPTER 4: EVALUATION PROCESS VERIFICATION 

This chapter demonstrates the use of the habitat interior layout evaluation method described 

in Chapter 3 to evaluate a sample layout to verify that the method meets the goals set forth in 

Table 6.  This chapter first describes the setup of a habitat interior layout design problem 

including capture of designer preferences and constraints.  Then, the automated evaluation criteria 

calculation methods and constraints are used to quantify the habitat interior layout objective 

function described in Equation 1 and multiple layouts are compared for the assumed designer 

preferences.  This chapter concludes with comments about the appropriateness of evaluation 

criteria calculations followed by comments describing the verification of the results and the 

evaluation process as a whole.  Once again, it should be noted that this verification example was 

presented in Simon & Wilhite, 2013 and Simon, Bobskill, & Wilhite 2012, and large portions of 

results/text in this chapter are pulled from these references.  

4.1 Example Problem: 180 Day Cis-lunar Habitat [Simon & Wilhite, 
2013] 

In order to demonstrate the habitat layout evaluation method, the cislunar habitat design 

problem introduced in Section 3.1 is used through the remainder of this dissertation.  As 

previously mentioned, this habitat was chosen over the Scenario 12.0 Pressurized Core Module 

(PCM) for the verification example due a few factors.  First, the two-dimensional PCM layout 

and the lack of PCM hardware, geometry, interfaces, and etc. data made it difficult to perform a 

complete layout.  Additionally, there is substantial benefit in assessing the more politically 

relevant and microgravity-specific cislunar habitat, particularly for application to orbital Mars 

missions.  The Scenario 12.0 PCM development process and timeline are used as points of 

comparison for the performance of the habitat interior layout evaluation method application to the 

cislunar habitat problem in Chapters 4 and 5.  The following section starts with a description of 
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the initial cislunar habitat design problem, followed by the explanation of the methods used to 

evaluate a few interior layouts.    

Prior to sending humans on long-duration, crewed missions to Mars, several capabilities will 

be required to ensure that humans and spacecraft will be safe and productive/functional for long 

periods in deep space with little abort or resupply and communications delay [Simon, Wald, 

Howe, & Toups, 2015; Williams-Byrd, Arney, Hay, Simon, Rodgers, & Antol, 2015].  NASA is 

investigating the potential for a 180-day habitat placed in cis-lunar space to serve as a test 

platform for maturing systems and demonstrating technologies and operations which are 

incompatible with the International Space Station.  In order to enable such a habitat design, an 

interior layout describing how all of the required functions can fit in the limited volume of this 

facility has been proposed.  In order to demonstrate the habitat interior layout evaluation method 

and drive out necessary process improvements, the following design problem statement was 

created. 

Evaluate the layout performance of a cis-lunar habitat designed to sustain four crew 

for 180 days in deep space in combination with an entry capsule. Assume the 

spacecraft is 4.5 meters in diameter and 6 meters long with one hatch on an endcap. 

Assume a pre-defined set of International Space Station rack-based hardware with 

standard anthropometric use envelopes, which is to be packaged within this habitat 

while maintaining a central translation path corridor. 

The topology of the notional baseline layout to be evaluated is shown in Figure 35.  The positions 

of each of the subsystems are indicated by the rows which correspond to the standard wall, 

ceiling, and floor rack locations.  The functions shown in this module (long duration 

accommodations such as crew quarters, medical, hygiene and galley; and closed loop life 

support) are focused on increasing crewed duration while functions in the notional attached 

module (entry capsule) are focused on increased EVA and science.  Geometry and functional 

information was provided for each rack, including the geometry of anthropometric envelopes 
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reserved for interacting with the hardware.  Each of the objects was represented by a simplified 

rack geometry, which is a simplification that avoids concave geometry modeling.  This geometry 

modeling is a first order approximation of a more complicated geometry consistent with 

conceptual design detail, but does limit the appearance of cavities which are described in Figure 

25.  The rationale behind this particular layout is to separate private/quiet and public/noisy spaces 

while collocating line runs and function stowage.  Additionally, implementing a rack-based 

layout automatically preserves the translation path by forcing interior rack geometries to the 

habitat walls, which ensures that volume parameters such as habitable volume, spatial vista, and 

unusable volume perform moderately well.  The evaluation criteria calculation results in the next 

section will be used to verify this rationale. 
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Figure 35: Notional Layout of Cis-Lunar Habitat Concept 

 
 

The Initial Layout Generation Process from Figure 12 is performed first to define the 

hardware and functional information necessary for the evaluation.  The design problem statement 

above specifies the design requirements, hardware, and other inputs described in Table 13:  These 

are summarized in Table 18 and the tables in Appendix C.  The hardware listed in this table were 
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pre-specified for the cis-lunar habitat example, but could have been determined via functional 

decomposition from references mentioned in Chapter 3.  The geometry of the hardware racks 

used in this example are similar to the geometry shown in Figure 14 (12 vertices, 14 faces), but 

with quadrilateral faces.  The mapping of functions/tasks to these pieces of hardware is provided 

in Table 19; and the line run requirements, hardware masses, volumes, categorization as private 

space, and ratings of prioritized placement based upon high frequency/duration of use are 

provided in Table 20 as inputs to the Interior Layout Evaluation Process described in Figure 13.  

Additionally, more information on the subsystems used in this example problem is provided in 

Appendix C. 

 

Table 18: Requirements, Hardware, and Inputs for Cis-lunar Habitat Layout Design 

Problem 
Category Specifics 

Number of Crew 4 crew 

Duration 180 days 

Destination Cis-lunar space 

Gravity Orientation Microgravity 

Objectives Extension of human duration/habitability 

Launch Vehicle Unspecified (diameter less than 5 m implies flexibility 

of NASA or commercial launch vehicle) 

Required Hardware 4 Crew Quarters, Galley, Wardroom, Hygiene, 

Medical, Life Support (Air Revitalization, O2 

Generation, Water Reclamation, Water storage), Power 

Thermal, Maintenance, EVA, Science, Logistics, 

Exercise  

Geometric Features Central translation path, 1 Axial end dome hatch, 

Pressure vessel (4.5 m diameter, 6 m long), Hardware 

modeled as International Standard Payload Racks 

(ISPRs) 

Orientation Horizontal like ISS 
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Table 19: Mapping of Cis-lunar Habitat Hardware to Function/Tasks 
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Galley 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power/Avionics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Maintenance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

ARS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wardroom 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Medical 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Water Storage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Water Processor 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WaterProcessor 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power/Thermal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hygiene 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Crew Quarters 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Crew Quarters 2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Crew Quarters 3 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Crew Quarters 4 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
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Table 20: Mapping of Hardware Information Feeding Evaluations 
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Oxygen Generation 1 1 1 0 843 1.57 0

Galley 1 0 1 0 412 1.57 1

Power/Avionics 0 0 1 0 1150 1.57 0

Maintenance 0 0 1 0 400 1.57 1

ARS 1 2 1 0 843 1.57 0

Wardroom 0 0 0 0 100 1.57 1

Medical 1 1 1 0 328 1.57 1

Water Storage 2 0 1 0 571 1.57 0

Water Processor 1 1 0 1 0 455 1.57 0

WaterProcessor 2 1 0 1 0 455 1.57 0

Power/Thermal 1 0 2 0 500 1.57 0

Hygiene 1 1 1 0 197 1.57 3

Crew Quarters 1 0 1 1 1 133 1.57 5

Crew Quarters 2 0 1 1 1 133 1.57 5

Crew Quarters 3 0 1 1 1 133 1.57 5

Crew Quarters 4 0 1 1 1 133 1.57 5  

Before this evaluation begins, designer preferences and constraints are also defined.  First, the 

evaluation criteria are weighted based upon the design problem context using the pairwise 

comparisons in the AHP method.  Larry Toups, an architect and habitat design expert from 

NASA Johnson Space Center, performed pair-wise comparisons of the evaluation criteria 

according to the process described in Section 3.5.2.  These pair-wise comparisons are used to 

create the prioritized list shown in Figure 36 where the weightings are expressed in percentages.  

Note that the weightings are different than those in Figure 34 because of the designer preference 

and the statement of the design problem.  The criteria used to evaluate the cis-lunar habitat in this 

example are a reduced set making up the top 80% of the weightings.  After removing the filtered 

criteria, the weightings shown in Figure 36 were renormalized to sum to unity. 
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Figure 36: Prioritized List of Evaluation Criteria Weightings for the 180-day Cislunar 

Habitat Layout Problem 

 

With the weightings defined, the utility functions are then defined for the reduced list of 

identified evaluation criteria.  For this example, linear utility functions are assumed for all the 

criteria indicated in Table 21.  Habitable volume ranges are set based upon human spaceflight 

design documents [NASA, 2010; Simon et al., 2011], but these ranges could be modified for this 

specific module layout if additional living volumes are assumed to be provided by connected 

modules.  As the mission duration of the cislunar habitat is fairly short and the pressurized 

volume in the chosen pressure vessel is limited, the habitable volume utility function may be 

approximated as linear to reflect the general improvement of habitable volume utility over the 

range of feasible habitable volumes. The remaining criteria values ranges shown in Table 21 are 

determined based upon the range of values observed in a quick exploration of possible cislunar 

habitat layouts within the assumed pressure vessel geometry. For example, the largest spatial 

vista values range from 0 cubic meters to 3 cubic meters is an approximate range of the potential 

values possible when packaging the subsystems and logistics within the 4.5 meter diameter, 6 
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meter long habitat shell.  Similarly, the non-dimensional separation criteria represent values 

achievable within this pressure vessel geometry.  It should be noted that since these simplified 

linear utility functions were defined based upon these pressure shell dimensions and not based 

upon an absolute scale of designer-defined preference, only relative comparison of habitat layouts 

are enabled.  For example, a value of 3 cubic meters for this example does not necessarily imply a 

desirable spatial vista.  The use of data for absolute desirability determination is described further 

in the results section. 

Table 21. Utility Function Values for Top 80% Criteria 

Evaluation Criteria Value for U=0 Value for U=1 

Plumbing/Electric Line Run Masses 100 kg 0 kg 

Habitable Volume 20 m3 100 m3 

Unusable Volume 20 m3 0 m3 

Largest Spatial Vista 0 m3 3 m3 

Anthropometry of High Duration Tasks Interferences 30 interferences 0 interferences 

Placement for High Frequency/Duration Use 0 1 

Separation for Privacy 0 25000 

Separation of Clean and Dirty Zones 0 900 

Separation for Noise 0 28000 

 

For simplicity, the constraints implemented in this example problem are hardware 

interferences (hardware-hardware and hardware-pressure vessel constraints) and clearance checks 

(“anthropometric envelope-hardware”, “hardware-translation path”, and “hardware-hatch 

clearance envelope”). Constraints are implemented based upon the number of interferences 

observed.  For example, some multiple of the number of anthropometric reserved volume-

hardware collisions is added to the unconstrained objective function to decrease desirability.  

These tests are implemented with the same ISA-GJK collision detection tests used for the 

evaluation criteria quantification methods.  

4.2 Cislunar Habitat Interior Example Results 

By performing each of the steps of the process illustrated in Figure 13, the habitat desirability 

objective function can be assembled as shown in Equation 6 and quantified for the baseline 

layout, A.   
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Ybaseline(A) = 1 – wline runsUline runs (Xline runs (A))  

– whabitable volumeUhabitable volume (Xhabitable volume (A))  

– wunusable volumeUunusable volume (Xunusable volume (A))  

– wlargest spatial vistaUlargest spatial vista (Xlargest spatial vista (A))  

– whigh-duration task interferencesUhigh-duration task interferences (Xhigh-duration task interferences (A))  

– wplacement for high frequency/durationUplacement for high frequency/duration (Xplacement for high 

frequency/duration (A))  

– wseparation for privacyUseparation for privacy (Xseparation for privacy (A))  

– wseparation of clean/dirty zonesUseparation of clean/dirty zones (Xseparation of clean/dirty zones (A))  

– wseparation for noiseUseparation for noise (Xseparation for noise (A)) 

+ Pobject-object collisions(A)  + Pobject-pressure vessel collisions(A) + Panthro envelope-object collisions(A)  

+ Pobject-translation patht collisions(A) + Pobject-hatch collisions(A)           (6) 

This objective function equation does not include screened items which are of lesser importance 

to the designer and utilizes the utility functions and adjusted weightings described in Figure 36 

and Table 21.  It should also be repeated that since the sum of the of the w*U(X(A)) terms sum to 

1 at maximum utility, minimum values of the aggregate objective function Y(A) are preferred 

with overall values between 0 and 1 deemed feasible (free from constraint violations).     

Using the software implementation of the automated evaluation criteria calculation methods 

described in Chapter 3 and Appendix B, the evaluation criteria values (Xi) for the baseline layout 

were automatically measured from the baseline layout geometry (as defined by the hardware 

geometry, location matrices, and orientation matrices).  This layout is shown in Figure 37, and 

calculated evaluation criteria values (Xi) are shown in  

Table 22 along with the associated utility values (Ui(Xi)), the evaluation criteria weightings 

(wi) collected from the designer, and the number/degree of constraint violations (which feeds the 

penalty function calculations, Pj).   
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Figure 37: OpenGL Render of Cis-Lunar Habitat Layout Geometry 

 
Table 22. Baseline Layout Objective Function Calculation 

Evaluation Criteria Measured Value Utility Weightings 

Separation for Privacy 20555 0.82 0.26 

Separation for Noise 23233 0.83 0.17 

Habitable Volume 63.0 m3 0.54 0.17 

Spatial Vista                    1.57m3 0.52 0.08 

Separation of Clean and Dirty Spaces 498.9 0.55 0.08 

Total Line Run Mass              61.5 kg 0.38 0.07 

Anthropometric Interferences between High Duration Tasks 5 0.83 0.06 

Placement of Items for High Duration /Frequency Use 0.62 0.62 0.06 

Unusable Volume                 0.28 m3 0.99 0.06 

Constraints Measured Value 
  

Number of Object-Object Collisions       0 
  

Number of Object-Pressure Vessel Collisions      0 
  

Number of Anthropometric Envelope-Object Collisions      0 
  

Number of Object-Translation Path Collisions     0 
  

Number of Object-Hatch Clearance Envelope Collisions     0 
  

OBJECTIVE FUNCTION VALUE 0.30 
  

 

Assuming the utility ranges are appropriate, the resultant utilities indicate that all evaluation 

criteria perform moderately well except line run mass, spatial vista, and separation of clean and 

0.536913 

0.295 
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dirty tasks.  Inspection of the individual evaluation criteria values and comparison to hand 

calculated results verify that the automated evaluation criteria calculation methods are performing 

correctly.  Additionally, inspection of the associated utility values indicate that the layout 

rationale described in Section 4.1 is achieving some of its goals, such as minimizing unusable 

volume and providing good separation for privacy and noise.  Furthermore, the aggregate 

desirability value of 0.30 calculated using Equation 6 shows that this layout performs moderately 

well (minimum values are preferred). 

However, the evaluation criteria utility function ranges defined in Table 21 were chosen 

based upon the ranges of possible values observed in the design space exploration of the assumed 

pressure vessel geometry. As a result, few conclusions can be drawn about whether the overall 

performance of the layout is acceptable on an absolute scale or not for this design problem.  The 

determination of desirability on an absolute scale would require value ranges set from standards 

or human system design heuristics.  Still, this example does show that utilizing the described 

evaluation method to compare multiple layouts (with the same set of assumptions and designer 

preferences) does allow for the determination of a relative desirability of the layouts, which can 

be used to guide iterations towards an optimal layout solution for the given design problem. 

To demonstrate the ability to compare layout alternatives, an alternative layout shown in 

Figure 38 is created by exchanging the rack based locations of a few subsystems.  This layout was 

designed to perform better on line run mass and anthropometric interference criteria at the 

expense of separation/colocation criteria.  It is also anticipated to be a less favorable layout as the 

separation/colocation criteria weightings are relatively high.   Table 23 and Table 24 show that 

these expectations proved to be true.  This layout performs better on line run mass and 

anthropometric interferences due to the movement of the water storage, but at the expense of the 

separation-colocation criteria and placement for high duration/frequency of use. Because the 

separation-colocation criteria have relatively high weightings, the overall utility of Layout 2 is 

significantly decreased and the aggregate value of this layout decreases. 
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Figure 38: Alternate Layout of Cis-Lunar Habitat 

 

 

 

 

Table 24. Comparison of Two Evaluations for Cis-lunar Habitat Layouts (in criteria 

weighting order) 

Evaluation Criteria Layout 1 Utility Layout 2 Utility 

Separation for Privacy 0.82 0.54 

Separation for Noise 0.83 0.51 

Habitable Volume 0.54 0.54 

Spatial Vista                    0.52 0.52 

Separation of Clean and Dirty Spaces 0.55 0.35 

Total Line Run Mass              0.38 0.55 

Anthropometric Interferences between High Duration Tasks 0.83 0.9 

Placement of Items for High Duration /Frequency Use 0.62 0.51 

Unusable Volume                 0.99 0.98 

OBJECTIVE FUNCTION VALUE 0.30 0.43 

 

Evaluation Criteria Measured Value Utility Weightings 

Separation for Privacy 13431 0.54 0.26 

Separation for Noise 14351 0.51 0.17 

Habitable Volume 63.0 m3 0.54 0.17 

Spatial Vista                    1.57m3 0.52 0.08 

Separation of Clean and Dirty Spaces 313 0.35 0.08 

Total Line Run Mass              44.6 kg 0.55 0.07 

Anthropometric Interferences between High Duration Tasks 3 0.9 0.06 

Placement of Items for High Duration /Frequency Use 0.51 0.51 0.06 

Unusable Volume                 0.31 m3 0.98 0.06 

Constraints Measured Value 
  

Number of Object-Object Collisions       0 
  

Number of Object-Pressure Vessel Collisions      0 
  

Number of Anthropometric Envelope-Object Collisions      0 
  

Number of Object-Translation Path Collisions     0 
  

Number of Object-Hatch Clearance Envelope Collisions     0 
  

OBJECTIVE FUNCTION VALUE 0.43 
  

Table 23: Alternative Layout Objective Function Calculation 
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Finally, the timeframe for this evaluation should be mentioned.  This evaluation was 

performed using the software implementation of the evaluation method as described in Section 

3.6.  Assembling the inputs, which includes collecting designer preferences and generating the 

initial layout, comprised the majority of the evaluation time. Collecting weightings and utilities 

took about two hours.  Setting up the hardware geometry and initial layout information took an 

additional hour.  Performing the evaluation of the baseline and alternate layouts by calculating the 

objective functions, checking constraints, and calculating Equation 6 took seconds.  In 

comparison, the Scenario 12.0 PCM described in Chapter 3 and Howe & Sherwood, 2009 took 

several weeks to design and evaluate one to two layouts with a team of 10-20 people discussing 

the complex, interacting layout factors.  Had this method and associated tool been available 

during that design effort, it could have tracked those conflicting objectives allowing for increased 

information facilitating faster and more comprehensive layout designs.  Thus, the fast evaluation 

capability desired in Table 6 has been demonstrated here. It is possible to use this method and 

tool without any layout generation automation to investigate the design space using evaluation 

results as feedback to address particular design issues while tracking their impacts on other 

aspects of desirability.  

4.3 Discussion of Evaluation Process Results 

While Section 4.2 demonstrated that fast, quantifiable habitat layout evaluations capturing 

designer preferences and a comprehensive set of evaluation criteria are enabled by the 

methodology set forth in this thesis, there are several details about the method’s implementation 

which must be discussed to address the performance and completeness of this evaluation.  This 

section describes important factors which must be considered to ensure that evaluations 

performed are accurate, fast, and complete. 

First, the accuracy and speed of evaluation criteria and constraint calculations are greatly 

affected by the number of test points used for numerical tests and the number of allowable 
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hardware locations and orientations for geometry clearance tests.  Increasing the number of test 

points (i.e., decreasing the Cartesian grid spacing to increase the number of test points) 

simultaneously yields more accurate estimates of evaluation criteria and longer calculation times.  

Additionally, as shown in the sample habitable volume calculations in Figure 39 and Figure 40, 

the relationship between the spacing of the grid and the fundamental dimensions of the hardware 

can cause complex, modal variances from the actual value, particularly when the hardware and 

grids are misaligned.  A grid spacing of 0.05 m is anticipated to provide an appropriate balance 

between speed and accuracy for layouts with numerous or more complex objects.  For the current 

example problem, centimeter accuracy was not deemed to be time prohibitive.  Alternative 

approaches including use of an isometric grid are discussed in Simon, Bobskill, & Wilhite 2012. 

 

 
Figure 39: Habitable Volume Calculations using Various Grid Spacing for Scenario 12.0 

PCM [Simon, Bobskill, & Wilhite 2012] 
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Figure 40. Habitable Volume Calculations using Varying Grid Spacing for ISS Destiny 

Module [Simon, Bobskill, & Wilhite 2012] 

 
A second consideration is the simplifying set of assumptions used to facilitate fast layout 

evaluation which may or may not need to be corrected on future instantiations of this method.  

The current layout evaluation method implementation makes the following simplifying 

assumptions, each of which are commented on in the following list: 

- Fixed, user-specified translation paths are used to ensure that there exist good paths 

between all hatches and every functional area of the habitat.  This affects calculation of 

clearance constraints and the minimum translation path width constraint (which is met a 

priori in these layouts).  Ideally, a path planning algorithm such as A* (as discussed in 

Section 3.3.2) would be used to determine a clear translation patch between hatches and 

yield more flexible interpretations of an adequate translation path, but the implementation 

of such an algorithm is complex and left to future design iterations. 

- Simplified separation/colocation distances are assumed to be Euclidean distances to 

simplify the current analysis.  As mentioned before in Section 3.3.3, most 

separation/colocation evaluation criteria would rely on Manhattan distance, or would 
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apply distance penalties/bonuses for use of a partition or door and additional bonuses for 

occlusion of line of sight.  Future instantiations of this method will apply these 

penalties/bonuses for these design features. 

- Limited position/orientation checks in volume characterization criteria are used to 

simplify/speed volume determination. These limited directions and orientations can 

potentially mischaracterize large portions of the interior volume, particularly for layouts 

where interior hardware are packaged in non-orthogonal orientations.  Simon, Bobskill, 

& Wilhite 2012 demonstrates that for layouts with orthogonal hardware which are 

aligned with the slices taken by the Marching Grid Method, the accuracy of the estimates 

are adequate for layout comparison.  In future instantiations of this method which 

implement other evaluation time saving methods and measures, additional orientations 

may be considered. 

Finally, some final comments are made describing the completeness and realistic use of these 

evaluations.  Based upon a review of the available literature, the evaluation criteria and 

constraints successfully capture the majority of the critical measures and concepts necessary to 

assess the desirability and acceptability of an interior layout.  This can be demonstrated through 

the investigation of likely layout scenarios where a human designer would indicate an issue.  For 

example, for objects placed randomly in a volume, it is likely that objects will be placed in the 

middle of aisles or open volumes far from the walls.  Ideally, such hardware would require 

additional structural support, line runs, and more detailed translation paths for maintenance which 

might prevent a human designer from choosing such arbitrary placement.  In this situation, the 

current criteria set would capture and penalize a layout containing a free floating object in the 

middle of an open volume through reduced volume criteria, increased structural mass, and 

increased line run mass.  Furthermore, by implementing this preference through evaluation 

criteria instead of specific placement algorithms forcing objects along the walls, arbitrary 
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restrictions on the available design space which would prevent potentially innovative layouts can 

be avoided. 

Another situation which the current instantiation of the method would appear to be ill-

equipped to handle is the placement of hardware preventing access to an area which would 

otherwise be deemed habitable.  Without implementing the automated translation path 

determination algorithm and requiring access to a translation path as a Boolean test in the 

habitable volume calculation, this volume would be inaccurately characterized.  However, 

implementing these refinements would enable the method presented in this thesis to correctly 

assess this layout as poor without manual intervention by a designer.  Though there may be other 

situations where manual intervention by a designer seems necessary, creative applications of the 

methods described in this thesis are capable of correctly assessing most of these exceptions and 

will direct future improvements to the initial method presented here. 

Still, there are two criteria which were identified that the current method chose not to 

implement: center of mass displacement and radiation protection due to layout arrangement.  

Center of mass displacement is simple to measure and was removed because it doesn’t inherently 

improve the desirability of layout.  Instead of implementing this as a criterion, it was 

implemented as a constraint aimed at maintaining the center of mass within some acceptable 

range dictated by maneuvers such as planetary landing.  Radiation protection is not as simple.  

Methods to measure this criterion are described in Simon et al. 2013b, and involve determining 

the mass of solid surrounding points within a habitat emphasizing uniformity in coverage.  

Implementation of this radiation assessment method into the layout evaluation method is planned 

as a future improvement. This and many other future improvements are discussed further in 

Chapter 6 under future work. 
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4.4 Verification 

Based upon the results discussed in the Sections 4.2 and 4.3, the proposed systems 

engineering-based evaluation method described in this thesis greatly improves upon the currently 

available habitat interior layout methodologies by enabling fast evaluations capturing engineering 

and human factors concerns, designer preferences and important constraints; proving that the 

hypothesized solution to Primary Research Question is feasible.  The proposed, comprehensive 

list of quantifiable evaluation criteria adequately captures the most salient habitat design concerns 

while enabling automated, quantitative calculation of the desirability of interior layout 

alternatives.  The list of design constraints ensure that evaluated layouts are feasible for 

manufacturing and human spaceflight standards while the list of criteria weightings and 

customized utility functions ensure that the most influential criteria drive the overall value of any 

layout alternative.  As a result of the specific implementation of these features, the resulting 

aggregate objective function closely aligns with designer rationale and has been shown to enable 

comparison between multiple layouts using a consistent designer value model. 

At the same time, this evaluation framework has been specifically developed to maintain 

flexibility to identify innovative layout solutions outside of the traditional habitat interior design 

features which have been implemented on previous habitats, such as rack-based or wall based 

layouts.  Furthermore, this evaluation framework is capable of adding any additional custom 

criteria using similar methods described in Chapter 3 to expand its ability to capture specific 

designer concerns and flexibly adapt to a range of habitat interior layout problems.  In short, the 

proposed evaluation method has successfully addressed all but the last research question 

concerning automation while identifying possible areas for improvement.   

This advancement in and of itself is a significant contribution to the field.  For example, using 

the understanding of the established criteria weightings and objective function from the cislunar 

habitat example discussed in Section 4.2, the designer can manually adapt the baseline layout to 

create a third point of comparison layout.  Since the top 4 criteria all respond well to increased 
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volume, a larger volume habitat can greatly increase the relative objective function value.  In 

order to maintain launch vehicle constraints, this could mean adding some length to the end of the 

habitat to better accommodate functional separations and desired interior volume.  Furthermore, 

moving water processing and hygiene away from crew quarters and placing relatively quiet 

functions of logistics and maintenance adjacent to crew quarters would provide better functional 

accommodation of privacy and noise separations.  A potential layout implementing these changes 

is shown in Figure 41.  The designer rationale just described in this third layout example are a 

result of the transparency built into the structured evaluation framework, which can be used to aid 

early interior layout designs and inform manual layout iteration.  Chapter 5 will describe efforts 

to implement an automated, iterative layout design process leveraging this transparency and 

characterize challenges to automating space habitat interior layout design utilizing the same 

example covered in this chapter.  

 

Figure 41: Manually Adjusted Next Layout Based upon Design Rationale from Objective 

Function Definition 
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CHAPTER 5: AUTOMATION OF LAYOUT DESIGN 

This chapter utilizes the software implementation of the iterative layout evaluation method 

described in Chapter 3 to demonstrate the challenges of automating the development of desirable 

layout alternatives.  In particular, the cislunar habitat example problem described in Chapter 4 is 

extended to allow for exploration of the layout design space and iterative improvement of layout 

concepts.  This chapter first describes how the evaluation framework developed in Chapter 3 can 

be augmented to iteratively improve the habitat layout objective function using stochastic 

optimization and constraint implementation techniques.  Then, the specific implementation of this 

method to improve cis-lunar habitat designs in an autonomous fashion is described, including the 

assumptions used to simplify the problem.  Then resulting layouts and algorithm performance are 

discussed, including discussion of the challenges implementing the Particle Swarm Optimization 

algorithm and potential solutions applied to improve development of realistic layouts and/or 

improve convergence behavior.  Finally, the effectiveness and limitations of the current 

implementation of the iterative improvement method are discussed, clarifying what enabling 

advancements have been made, identifying what continued work is required to fully realize 

automation of habitat interior layout generation, and describing what decisions can be informed 

by the current automation results.  

5.1 Layout Design Automation 

By assembling all of the components mentioned in Chapter 3 into the evaluation method 

illustrated in Figure 13 and demonstrated in Chapter 4, an automated layout evaluation capability 

is created which addresses the research questions in Chapter 1 and achieves the performance 

goals from Table 6.  This layout evaluation methodology provides for a consistent basis of 

comparison between various layout alternatives and enables a quantitative evaluation of a single 

layout in seconds using automated calculation methods (not including initial collection of 
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designer preferences and inputs which may take minutes to hours).  What remains to be addressed 

is how this method enables automated, iterative layout improvement capable of finding layout 

concepts which are desirable according to the designer preferences.  This sections describes an 

approach for automatically generating successive populations of layouts which are iteratively 

improved to identify those desirable solutions.  

As described in Chapter 2, approaches in literature which automate layout design problems of 

similar complexity to the habitat interior layout design problem often apply stochastic 

optimization techniques to identify new layout alternatives for evaluation.  The following method 

seeks to minimize the layout evaluation objective function (Equation 1) using Particle Swarm 

Optimization (PSO) to generate new layouts.  In PSO, alternative concepts are treated as particles 

which move about the design space while tracking each particle’s ‘position’ within the design 

space and its ‘velocity’, or movement direction and speed within the design space.  Updates of the 

particle velocity are directed by two previous best positions: the position associated with the best 

objective function value achieved by that particle (personal best, pbest), and the position 

associated with the best objective function achieved by any particle (global best, gbest).  The 

following steps and equations from Eberhart & Shi, 2001 guide the selection of ‘positions’ and 

‘velocities’ for subsequent iterations. Variables from the habitat design problem from Equation 1 

are substituted for the variables of the traditional PSO problem to place the problem in the context 

of habitat design.  In particular, ‘position’ in the traditional PSO algorithm is replaced by a layout 

represented by the variable ‘A’.  This quantity is represented by a matrix containing the locations 

and orientations of all objects within a given layout.  

1. Initialize a set of particles representing layouts, each with semi-random position/layout 

(Ai) and velocities (Vi) 

2. Evaluate the objective function value for each layout, Y(Ai) using Equation 1 

3. Update pbest and gbest objective functions 
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currentpbestcurrentpbestpbestcurrent AAAYAYAYAYIF  ),()(),()(  (2) 

currentgbestcurrentgbestgbestcurrent AAAYAYAYAYIF  ),()(),()(  (3) 

 

4. Update velocity and position/layout based upon a combination of personal and global 

best targets 

)(())(() gbestigbestpbestipbestii AArandAArandVV    (4) 

iii VAA   (5) 

where rand() is a random number between 0 and 1and ω, ϕpbest, and ϕgbest are constants 

referred to as tuning parameters which control the behavior of the PSO algorithm and 

are selected by the designer  

5. Loop to step 2 and continue until desired layout is created 

By implementing this algorithm, multiple layout concepts can be investigated, and 

subsequent iterations of these investigated layouts trend towards better values of the objective 

function.  It should be noted that the intent of this thesis is to demonstrate that a stochastic 

optimization algorithm can be successfully applied, not to optimize the performance of any 

particular optimization algorithm through experimentation with tuning parameters.  That said, 

there are several challenges to implementing this algorithm which are addressed in this thesis. 

First, this method originally proposed the enforcement of constraints listed in Table 16 

through penalty functions added to the evaluation objective function without a priori prevention 

of violated geometric constraints.  However, preliminary investigation of the design space 

indicated that this approach works well for most constraints, but utilizing penalty functions 

exclusively for the non-overlap constraint requires careful refinement of optimization method 

tuning parameters (already described as out of scope) to enable good convergence.  Alternate 

penalty function implementations are discussed in Section 5.3.  For a priori, constraint violation 

prevention approaches, the following preprocessing method (dubbed the Simon-Arney 
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Preprocessing Algorithm) was proposed to provide some prevention of non-overlap constraint 

violations and improve convergence performance.  This method has not been implemented, but is 

expected to facilitate convergence by limiting the evaluated solutions to only feasible solutions.  

First, the PSO outputs a layout to be evaluated.  Because of the high packing density of 

spacecraft interiors, this layout probably violates the non-overlap constraint with one or more 

overlapping objects which will result in a poor objective function value.  This layout can be 

treated as a target (Atarget), and an alternate layout close to the target layout which does not violate 

the non-overlap constraint (Aachieved) can be determined with the following algorithm. 

1. Randomly generate a layout offset from Atarget by a small amount and assign a velocity of 

moderate magnitude towards Atarget 

2. Check for the number of overlap constraint violations. If greater than 0, perform Step 3.  

If 0 then proceed to step 5. 

3. For each pair of objects in the layout, if colliding, modify the components of the velocity 

along a line between the centers of the objects to create a reflection “pushing” the objects 

apart in an inelastic collision (i.e., apply a damping factor to the magnitude of the 

velocity) 

4. Apply these velocity adjustments, move the object positions forward an iteration, and re 

check for collisions (i.e. perform steps 2-4) 

5. Once all objects are deemed to be clear and stable, the resulting layout Aachieved represents 

a close layout to the target which was achievable without constraint violation.  Evaluate 

this layout using Equation 1 and continue with iteration using the PSO. 

By implementing this algorithm, only layouts meeting the non-overlap constraints are 

evaluated, preventing the reliance on fine tuning of PSO tuning parameters.  The key factor in 

successful implementation of this preprocessing algorithm is a reliable exit criterion to identify 

when no collisions are occurring and the resulting layout is somewhat stable.  Several possible 

exit tests may be used, but two major ones should be investigated in future work to optimize 
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runtime.  They are the 1) “first available non-colliding” test (where the first non-colliding layout 

could be utilized as Aachieved) and the 2) “closest non-colliding (where a set number of iterations or 

an object velocity test can be used after many iterations of collision-based velocity updates to 

identify when object motion has settled on a non-colliding solution).  The first available method 

is simpler requiring less iteration to find Aachieved but it places a higher demand on the 

optimization as the first available non-colliding layout may be significantly different than Atarget.  

Conversely, the closest non-colliding layout will closely resemble Atarget, but will require more 

significant iteration and more complicated exit tests to find Aachieved.  Other non-object-object 

constraints are still enforced using penalty functions on the objective function.  

The second major challenge to PSO based layout improvement is convergence speed.  The 

complexity of polyhedral objects being placed and the resolution of the grid in numerical volume 

estimation methods are the major speed limiters.  These issues can be readily overcome through 

limiting details of interior objects, reducing grid size on numerical tests, better utilization of 

coherence in quantification methods, and multi-threading of independent calculations.  Limiting 

details on interior objects and reduction of grid size for numerical tests are straightforward and 

are commented on in Chapter 4.  Coherence (or previous iteration data) can be better leveraged in 

numerical estimation algorithms to speed estimates.  For example, in the habitable volume 

estimation method, when testing for accessibility of a standing astronaut, a successful test 

automatically ensures that a number of points equal to the volume of an astronaut surrounding the 

test point are also accessible.  If this information could be implemented into the algorithm, 

several tests in the Marching grid method could be eliminated at the expense of some additional 

memory to store the bounds of space already deemed accessible by previous tests.  This 

improvement is left as future work.  Finally, convergence can be accelerated by multi-threading 

or parallel processing independent calculations to make use of multiple processors on computing 

platforms.  This is also left as future work and will be discussed in Chapter 6. 
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5.2 Automated Iterative Improvement of Cis-Lunar Habitat 

In order to identify the potential issues and refine the automated layout improvement 

approach, an example problem was chosen.  The following statement is the goal of this analysis: 

“determine whether an implementation of a stochastic optimization method can be developed 

which enables the automated, iterative improvement of habitat layout concepts resulting in an 

automated layout generation capability that can produce acceptable and favorable layout 

concepts”.  It was hypothesized that such a capability could be developed using a PSO or another 

stochastic optimization method such as genetic algorithms or simulated annealing.  In this 

section, a PSO algorithm making use of the inertia parameter from Eberhart & Shi, 2001 is 

applied to the same cis-lunar habitat example utilized in Chapter 4 to investigate whether layout 

concepts identified by the algorithm are capable of automating early layout design.  

The cis-lunar habitat example from the previous chapter focused on the evaluation of various 

layouts manually specified by a designer to understand and compare their relative performance.  

This problem can be extended by iterating upon an initial population of layouts to strategically 

investigate the design space, and eventually converge to a favorable layout using a PSO algorithm 

to specify subsequent layouts.  Once again, it should be noted that this thesis seeks to prove that 

such an approach is feasible and will focus on proof of this feasibility, not optimization for 

streamlined performance or fast convergence.  One possible proof of method feasibility is to 

demonstrate that an implementation that will converge to realistic layouts which have somewhat 

desirable objective function values.  In order to demonstrate that this capability, the following 

simplifying assumptions are used for the cis-lunar example to reduce convergence time and make 

results more transparent. A fully generic implementation of this method is anticipated to perform 

similarly, albeit more slowly.    

- Assume a fixed 1m x 1m translation path located along the axis of the habitat as shown in 

Figure 37.  This will eventually be replaced by an automated translation path 

determination algorithm (the development of which is left to future work.)  
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- Assume that the orientation of racks are automatically adjusted in 90 degree increments 

based upon a radial quadrant they are located in to protect access to front faces.  This 

purpose of this simplification is to limit the more exhaustive design space to those 

solutions more likely to perform well in the small radius pressure vessel.  However, this 

limitation is likely to increase discontinuities in the design space and will be revisited 

later in this chapter. 

- Similarly, orientations for numerical volume checks are also limited to 90 degree 

increments.  Also, the grid spacing for the optimization run was set to 0.25 m.  While, 

this only returns estimates within approximately 10% of the actual value, the speed 

increase for understanding convergence was deemed more important for this example.  

- Initial layouts are randomly generated ensuring that the initial locations of the hardware 

are kept inside of the pressure vessel.  This ensures that initial concepts do not violate the 

hardware-pressure vessel constraints to prevent extremely large objective function values 

for convergence performance. 

- Constraints are implemented utilizing linear penalty functions based upon the number of 

violations.  This allows violation of some constraints in the exploration of the design 

space [Szykman & Cagan, 1997].  Linear penalty functions allow some constraint 

violations to ensure the design space is fully explored.  The slopes assumed are as follows  

o Hardware-hardware collision slope = 1/5 

o Hardware-pressure shell = 3/2 

o Hardware -anthropometric envelope = 1/20 

o Hardware-translation path = 1/5 

o Hardware-hatch clearance envelope = 1/5 

These slopes were qualitatively determined by inspection of the resulting best objective 

function values after several minutes of iteration, and do not represent an optimal setting.  

They do represent that packaging within the pressure shell is the most important 
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constraint to aid overall algorithm convergence, followed by an equal preference between 

hardware-hardware, hardware-translation path, and hardware hatch clearance.  Relatively 

low importance is placed upon hardware-anthropometric envelope constraints for this 

design example.  These slopes should be optimized and can potentially be adjusted in 

future iterations of this method using a cooling schedule similar to that applied in 

simulated annealing to progressively firm up constraints as iterations progress, enabling 

early design space freedom.  This is discussed more in the results later in this section. 

With these assumptions defined, the PSO algorithm described in Section 5.1 can be executed 

for the cis-lunar habitat interior layout problem.  This algorithm was run with the following PSO 

assumptions: 

- PSO tuning parameters are set to ω = -0.002, ϕpbest = 0.05, ϕgbest = 2.7.  These were 

determined by experimentation and are not expected to optimize convergence times. The 

rationale for the current values reflect a focus on global best movement with moderate 

amounts of personal best and inertia to provide variability. 

- Population size of 150, which is roughly three times the number of independent variables 

(3 dimensional positions of 16 objects = 48 independent variables). 

- Maximum number of iterations was set to 200 to allow enough iterations to understand 

convergence behavior. In practice, the objective function values for the currently 

assumed penalty functions and tuning parameter values converges well before this 

number of iterations. 

Initial results shown in Figure 42 and Figure 43 demonstrate that the objective function value 

is highly driven by the implementation of penalty function constraints.  Since a worst possible 

layout may only have utilities totaling zero, objective function values greater than one (the 

acceptability threshold) occur when constraints are violated.  In the cislunar habitat example 

results shown in Figure 42, the automated iterative values greater than one are caused by the 

highly dense interior which causes multiple constraint violations for every generated layout.  
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Essentially, this corresponds to a local minima in the design space where the PSO would require 

augmentation to escape.  Furthermore, this minima is most likely caused by a poor combination 

of the fine balance between multiple factors influencing investigated layouts including: initial 

layout positions, initial layout velocities, penalty function implementation, and PSO tuning 

parameters. 

If fully feasible layouts were chosen as the initial layouts, the velocities of particles in 

subsequent iterations would be more likely to also converge to feasible solutions.  Alternatively, 

penalty functions must be implemented in a balanced manner to encourage good layouts.  For 

example, if hardware-hardware or hardware-translation path penalties are too steep with respect 

to hardware-pressure vessel penalty function slopes, a local minima will exist with hardware 

outside the pressure vessel.  Furthermore, the implementation of penalty functions counting the 

number of collisions does not distinguish for the severity of these collisions.  For example, a 

layout with 20 barely interfering overlaps would be harshly penalized, whereas a layout with 

three collocated, totally overlapping subsystems would be preferred.  Refinement of the penalty 

function definition utilizing penetration depth calculations should be investigated in future 

versions of the method.  Finally, PSO tuning parameters are poorly chosen, the convergence 

performance can be slow and prone to settle in local minima.  The next section describes these 

challenges further and proposes solutions to the local minima in parts of the design space where 

constraints are violated. 
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Figure 42: Baseline PSO Convergence Results for Cis-Lunar Habitat Design Example 

 

  

Figure 43: Resultant Cis-Lunar Habitat Layout for Baseline PSO Run 

 

5.3 Design Space Exploration Results and Improvements 

As demonstrated by the example from the previous section, there are several challenges to 

implementing a PSO-based automation method which must be addressed by some application of 

various techniques or fine tuning.  These techniques must create the appropriate balance between 
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constraint enforcement and freedom to explore the design space, while also preventing stagnation 

in multi-modal or discontinuous design spaces.  Some of these methods are summarized in this 

section and Table 25. 

 

Table 25: Techniques for Improving PSO Automating Layout Design 

Technique Description 

Penalty Function Implementation Balancing penalty function slopes with 
objective function values to enable slow 
convergence to feasible/desirable layouts. 

Feasible Initial Layouts Ensure that initial layouts are feasible layouts 
to seed the PSO with favorable concepts to 
direct later. 

Constraint Violation Prevention (e.g., Simon-
Arney Preprocessing Convergence Algorithm) 

Prevent evaluation of layouts which violate 
harder feasibility constraints to ensure PSO 
only favorable concepts. 

Discretization of Design Space to 
Combinatorial Optimization Problem 

Like Constraint Violation Prevention, evaluates 
only feasible concepts, but further leverages 
rack structures to a small subset of possible 
positions. 

Alternate Stochastic Optimization Method Alternate stochastic methods such as 
simulated annealing or hybrid PSO algorithms 
better suited to deal with local minima, and 
accelerate convergence. 

 

 

As mentioned in the previous section penalty function adjustments can be used to ensure that 

constraints are being applied equitably and that they are not steep enough to cause the design 

space to be discontinuous.  The choice to use linear penalty functions in the previous section is 

not the only option, but was hypothesized to be less severe than a quadratic or higher power 

functions.  The major issue with searching for the right balance of penalty functions is that the 

penalty function slopes are very design problem and geometry specific.  For example, a design 

problem focused on packaging ISS racks within a tight launch vehicle envelope may require 

application of a steep hardware-translation path constraints whereas a more open layout concept 

without a specific launch platform can be more open in its search.  Furthermore, even if 



136 

 

augmented penalty function concepts are allowed to iterate, convergence behavior is slow (on the 

order of hours to days) without some additional logic to escape local minima. 

In addition to slope adjustment, the fundamental formulation of the penalty functions in the 

objective function may need to be changed to enable good convergence performance.  For 

example, use of additive linear penalty functions does allow for more flexible exploration of the 

design space, but does so at the cost of convergence performance.   The additive nature of the 

penalty functions allows the stochastic optimization algorithm to choose layout alternatives where 

penalty functions are purposefully violated and their violation artificially creates favorable, but 

unrealizable utilities.  A dynamic approach should be able to correct this phenomenon.  The slope 

of the penalty functions could start fairly shallow to allow for traversal through the design space 

in early iterations, and then the slope could increase during later iterations to force feasibility and 

prevent the artificial utilities and constraint violations.  This can either be implemented within the 

evolution of a single population of layouts or over multiple populations to identify advantageous 

penalty function slopes. 

Feasible initial layouts can be used to speed convergence.  For example, the rack based 

layouts presented in Chapter 4 could be included in the population of initial layouts to provide a 

well performing global target that can influence the layout population.  Furthermore, 

implementing constraint violation prevention approach as described in Table 25, could further 

reduce convergence time by ensuring all layouts are feasible before evaluation.  Several methods 

of constraint satisfaction can be implemented including ordered placement and discretization of 

the possible design space.  These methods can be applied to ensure satisfaction of multiple 

criteria or can focus on the most critical ones addressing feasibility.   

One such method was identified in the early development of the software implementation of 

the evaluation method.  A program translating objects and reacting to collisions with elastic or 

inelastic collisions was developed to test out various collision detection algorithms.  When this 

program detected a collision, it added separating increments to the component of the velocity in 
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the direction of the vector formed between the objects positions away from the object 

encountered.  This simple physics model can be implemented into a preprocessing algorithm 

which uses damped, inelastic collision handling to shift objects in infeasible layouts to nearby 

feasible layouts where no collisions occur.  This Simon-Arney Preprocessing Convergence 

Algorithm first generates a layout slightly displaced from the PSO targeted layout with an initial 

velocity towards the PSO target layout.  It then utilizes an inner loop which checks the hardware-

hardware constraint (i.e.” non-overlap” constraint) and applies simple inelastic collisions to 

“push” the objects apart until a layout is created which has no hardware-hardware constraint 

violations.  This ‘feasible’ layout is then used as the new PSO target and is evaluated.  In 

summary, this preprocessing algorithm would improve convergence behavior by dealing with 

hardware-hardware constraints a priori.  There are several possible augmentations to this 

approach utilizing more refined logical operators and collision bounding volumes to speed the 

inner loop convergence, but these are left as forward work on a promising method for automated 

layout design.  

The last constraint prevention method utilizes a discretized design space to limit possible 

locations of hardware to a much reduced set of locations known to not overlap.  For example, the 

cis-lunar habitat problem implements an International Space Station (ISS) -derived rack structure 

with a common rack size.  These racks could actually be assigned numbers and a combinatorial 

optimization approach could be used to quickly find an optimum, rack-based layout.  The main 

reason this method is not applied is that it greatly restricts the available layout design space to a 

layout form.  While this solves the cis-lunar problem easily, it makes the generic automation of 

habitat interior layout design unrealistic. 

Finally, an alternate PSO algorithm or an alternate stochastic optimization method altogether 

could be implemented to deal with the local minima issue better than the current PSO algorithm.  

That is not to say that the current algorithm is incapable of identifying desirable and feasible 

layouts, but careful tuning is required for every design applications.  Methods such as simulated 
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annealing could more robustly address the local minima utilizing a cooling schedule or some 

other means of minima-escaping variation factor.  Investigation of the other algorithms is left as 

forward work for future research. 

5.4 Automation Effectiveness, Limitations, and Value 

In summary, this chapter presented multiple methods for enabling automated improvement of 

habitat interior layouts which enable exploration of the habitat interior layout design space at 

conceptual design.  In particular, these methods allow for much faster iteration of the designs that 

the manual process utilized by the Scenario 12.0 PCM designers, who iterated their initial layout 

over weeks to months using currently available methods.  Further refinement of these methods 

and variations of them can be implemented to characterize the layout design space more 

effectively than these manual methods and increase designer knowledge of how the complex 

interactions between constraints and objective function values take place.   

Even though the proposed method in Section 5.1 did not converge to physically realizable 

solutions, it is still considered feasible with the right application of PSO tuning parameters and 

more realistic constraint implementation.  In particular, the choice to automatically adjust the 

orientation of the hardware based upon the radial position was observed to cause the design space 

to have additional modality and discontinuities which complicated the search for feasible 

solutions.  Additionally, the replacement of number of collisions with a quantity like ‘total 

overlapping volume’ is expected to improve convergence to feasible layouts.   

A combination of penalty function and PSO tuning with the implementation of a feasible 

layout seeding of the population is anticipated to speed convergence moderately, while 

implementation of the Simon-Arney Preprocessing Convergence Algorithm held in reserve to 

greatly speed convergence and generate better solutions at the expense of design freedom.  In 

short, viability of the use of a stochastic optimization method to automate the design of interior 
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layouts is suspected, but additional research is necessary to validate the hypothesis from Research 

Question 5.  

Finally, implementation of the identified necessary improvements to fully enable layout 

automation is expected to enable the following analyses to inform designers and, ultimately, 

decision makers.  If desirable objective function values can be obtained, then a family of 

promising layouts will be provided to designers to use in conceptual design phases and iterate the 

selection of equipment and internal geometry much earlier than was previously possible.  If no 

desirable objective function is calculated for a given set of pressure vessel geometry and/or 

hardware, then trades and analyses results can be provided to habitat designers to either increase 

the size of the pressure vessel to better accommodate existing hardware, or to inform the selection 

of certain subsystems or accommodations which should perhaps be moved to another module to 

increase interior space or better accommodate functional desires.  These level of analyses enable 

a more informed selection of the pressure vessel geometry and hardware complement at 

conceptual design, which may lead to less mass/cost growth due to changes in later design 

phases.  

It should also be mentioned that there is inherent value in the current instantiation of the 

habitat interior layout evaluation method, even though it did not converge to feasible solutions in 

its current implementation.  First, the current automation algorithm enables a structured 

exploration of the habitat interior layout design space.  Every layout evaluated can be recorded 

and used to understand trends in subsystem placement and problem points where the designs are 

extremely unfavorable.  Furthermore, by running the algorithm in an unconstrained mode, 

unconstrained relationship-adjacency diagrams representing designer preferences can be 

visualized which could inform a manual design.  For example, if the unconstrained algorithm 

indicates that, for the defined evaluation criteria values and designer utilities, subsystems 

generally cluster into 3 separated zones, then a layout accommodating those separations can be 

manually defined if the designer agrees with that assessment.  These products can inform decision 
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makers on the feasibility of improving achieved layouts through either improved layout or larger 

pressure vessels to better accommodate packaged items. 

As mentioned before, the current automated iteration algorithm can be used as a test bed to 

refine the formulation of the objective function; identifying the right slopes or implementation of 

penalty functions to ensure feasible solutions. Additionally, the current instantiation of the 

automation algorithm is expected to perform well for larger, less densely packed layouts, as the 

PSO can more readily address conflicting constraints.  Finally, converged layouts from the 

current algorithms can be manually adjusted to eliminate collisions and serve as initial layouts for 

future iterations.  For example, the layout in Figure 43 could be manually adjusted to eliminate 

collision detection and re-evaluated to determine layout effectiveness.  This layout could also be 

used as the initial layout for another run of the iteration algorithm.  This user-intervention 

approach common in facility layout problems and could be implemented until the desired 

algorithm improvements are successfully integrated.  
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CHAPTER 6: CONCLUSIONS AND FORWARD WORK 

6.1 Conclusions 

The primary goal of the research presented in this thesis was to develop a fast, 

comprehensive, and transparent method to quantitatively evaluate habitat interior layouts; 

enabling comparison of multiple layout concepts.  A systems engineering trade study process was 

used to identify the gaps necessary to develop this capability.  The following necessary 

improvements to the currently available process were identified:  

- A comprehensive, automatically quantifiable set of evaluation criteria 

- A mathematical, computer representation of layout geometry and subsystem 

characteristics consistent with criteria quantification methods  

- A structured method to capture designer preferences 

- A multi-criteria objective function providing an aggregate measure of overall layout 

effectiveness including treatment of interior design constraints 

It was hypothesized in Research Question 1 that a structured, systems-engineering habitat 

layout evaluation process built around the assembly of a multi-criteria objective function 

capturing both engineering and habitability concerns could be 1) developed and 2) proven to be 

capable of accurately comparing multiple layout alternatives against a consistent set of designer 

preferences.  The process presented in Chapters 3 and 4 of this thesis verifies this hypothesis is 

true by successfully developing and demonstrating implementations of each of the four gaps 

listed above and integrating them into an end-to-end evaluation process.  Section 3.2 outlined the 

quantifiable evaluation criteria identification and the process used to map qualitative criteria to 

quantitative proxies. Together these advances confirm Hypothesis 2 by identifying a more 

comprehensive set of all quantitative evaluation criteria.  Then algorithms/methods were 

developed (Section 3.3 and Appendix B) to automatically measure the resulting 18 evaluation 
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criteria from a chosen mathematical representation of habitat geometry by utilizing a combination 

of automated analytical and numerical methods. These methods demonstrate that habitat layout 

performance can be quickly assessed with no additional designer input during calculation 

(confirming Hypothesis 3).  Systems engineering methods such as Analytic Hierarchy Process 

and single attribute utility functions are implemented to capture a set of designer preferences 

(Section 3.5).  By forcing designer preferences to be collected prior to evaluation criteria 

measurement, a consistent basis from which to assess multiple habitat layouts was developed and 

demonstrated with the cislunar example from Chapter 4.  Furthermore, this separation of 

objective measurements from subjective designer preferences enables the investigation of 

thousands of layouts in the minutes required for “designer-in-the-loop” methods.  These designer 

preference methods were identified from a survey of approaches consistent with the habitat layout 

problem formulation and implemented effectively, confirming Hypothesis 4.  In Chapter 4, every 

step of this layout evaluation process was demonstrated by the evaluation of multiple designs of a 

cis-lunar habitat module, providing real-world examples to confirm Hypotheses 1-4.  The 

evaluation process demonstrated met all speed and automation goals from Table 6.  

In addition to the evaluation capability demonstrated in this thesis, implementation of a 

method to automate generation of desirable layout concepts was proposed featuring this habitat 

evaluation methodology.  The intent of this automation research was not to solve or optimize the 

automated design problem, but rather to identify a promising method while addressing potential 

factors which would prevent automation.  A Particle Swarm Optimization (PSO) algorithm used 

in commercial practice was applied to the cis-lunar habitat example from Chapter 4 to reveal the 

challenges of automating layout design and some potential solutions.  It was determined that a 

fine balance of constraint satisfaction and evaluation criteria optimization was required, and that 

additional methods would be needed to augment the baseline algorithm to truly enable 

automation.  The characterization of potential solutions and the presentation of a preprocessing 

algorithm to speed convergence were discussed, with recommendations for future projects.  As a 
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result of the information collected from the current automation attempt, it was determined that 

automated layout generation would be feasible and capable of creating both acceptable and 

desirable layout alternatives with the implementation of some of the potential PSO augmentations 

outlined in Table 25 (confirming Hypothesis 5).  Furthermore, products and decision forming 

trades were identified for the automation method in its current state and projected for its 

completed state. 

The results of this research are important for the conceptual design of spacecraft because 

automation of the interior layout design of a habitat was the major missing component preventing 

conceptual habitat design optimization.  Other major contributions from this work include: a 

comprehensive, measurable set of evaluation criteria capturing both engineering and habitability 

concerns, automated methods of measuring them which are not apparent in current literature, and 

proof of the viability of PSO for automated habitat layout design.  These capabilities will enable 

earlier identification of habitat sizing or interior design issues with defensible, quantifiable data.  

This will allow earlier changes to designs when design freedom is high and cost is low, and 

potentially reducing mass growth/habitability compromise from architectural issues discovered in 

later phases of design when human in the loop testing typically occurs.  Furthermore, this 

automated layout generation capability will enable engineering research identifying effective 

form factors for habitat interiors (potentially different from the current practice) and assessing 

robustness of designs to multiple managerial preferences and requirements.   

6.2 Future Work 

So in summary, a method for habitat layout evaluation has been developed which is 

compatible with stochastic optimization methods, and preliminary automation of interior layout 

design has been advanced.  There are several pieces of forward work to expand both the 

Evaluation and Generation steps of this method which will result in more complete, autonomous, 

and stable tools and methods for the habitat design community. 
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As mentioned in previous chapters, the current evaluation criteria measurement methods 

perform adequately, but further refinement is desired to make them more autonomous and to 

allow them to capture more detailed, generic interiors.  Subtests for the volume estimation 

methods should be added to ensure complex geometric features such as cavities and protrusions 

don’t introduce error into the estimate.  These subtests can include additional orientations of test 

volumes representing standing/prone crew members or reaching appendages.  Additionally, 

coherence from the previously evaluated points (specifically clearance of test volumes) should be 

used to speed these estimates.  For separation/colocation criteria, more refined distances (such as 

Manhattan or radial distances) and the use of partition penalty/bonuses and/or line of sight 

occlusion tests should be implemented to provide a more accurate representation of design 

features commonly used to increase the perceived separation/colocation of functions.  Finally, the 

minimum width of translation path criterion requires significant development.  Automated 

translation path design algorithms such as the A* algorithm for robotic path planning should be 

implemented and used as test points for this numerically estimated length. 

New criteria and constraints are also expected to be implemented as necessary.  Criteria such 

as center of mass, layout efficiency for radiation protection, etc. are likely to be desired.  Center 

of mass offset and minimal amounts of uniform radiation shielding can also be implemented as 

constraints on the design, though acceptable ranges for these may be hard to determine at 

conceptual design.  In addition to the geometric criteria, some more perception based criteria 

focusing on form and shape [Wise et al. 1985] or criteria capturing the degree to which long 

duration countermeasures play into the evaluation should also be addressed [Simon et al. 2011] 

In addition to refining the current evaluation criteria, alternate constraint approaches should 

be investigated to guide the layout alternatives to feasible design space.  The number of violations 

was used in this work to determine the degree of infeasibility for a number of constraints.  

However, in practice this leads to optimizer decisions to violate one constraint, such as a pressure 

vessel constraint, by a significant distance to reduce the overall score through separation criteria.  



145 

 

Alternate constraint approaches or additional constraints should be investigated to capture the 

extent to which a constraint is violated.  For example, a constraint placing thresholds on the 

amount of overlapping volume between all of the objects could be applied to provide a continual 

improvement function to enforce hardware-hardware collision constraints.  

In addition to refining the evaluation criteria and constraint measurement methods, the 

designer input process should be streamlined to reduce the amount of time necessary to set up 

new design problems.  Libraries of evaluation criteria ranges and previous designer preferences 

based upon certain missions and spaceflight requirements should be established, to enable a 

designer to utilize previously developed inputs when applicable.  Multiple uses of this method 

and tool are expected to develop such libraries.  Additionally, libraries of hardware geometries 

and functional information should also be established, particularly since the same basic pieces of 

hardware are often leveraged to reduce mission development and certification costs.  A more 

streamlined geometry definition should also be identified to allow designers to specify new 

hardware without vertex and face normal representation. 

Finally, the majority of forward work centers on fast, fully generic automated layout iteration 

leading to an automatic layout generation capability producing designs which are both feasible 

and desirable.  Several alternate constraint handling and optimization approaches listed in Table 

25 should be investigated.  In particular, the Simon-Arney Preprocessing Convergence algorithm 

is anticipated to greatly speed convergence while generating all feasible solutions.  Additionally, 

after investigation of PSO algorithms, simulated annealing approaches should be investigated as 

“cooling schedules” are anticipated to work well in this multi-modal design space.  Multiple other 

methods from facility planning literature should also be investigated.  In addition, the layouts 

evaluated in this thesis are pretty straightforward.  Each of these methods should be demonstrated 

on a broad class of highly-constrained and less-constrained layouts with various shapes and sizes.  

It is anticipated that evaluation criteria measurement methods may need to be customized to deal 

with non-convex shapes such as toroids.  
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APPENDIX A: Glossary of Terms 

Table 26: Term Glossary 

 

Term Definition 

Accommodations Configuration, arrangement,  

Constraint Limitations on the design space indicating human system or 

physical limits 

Design Space The full set of possible layouts which could be design that 

must be explored to understand performance on key variables. 

Equipment Used interchangeable with hardware; may be used specifically 

when referring to habitat subsystems 

Evaluation Criteria Measures which are critical for assessing the desirability of a 

layout concept.  

Functions Interchangeable with tasks 

Hardware Generically, interior objects to be packaged including 

subsystems, equipment, accommodations, or logistics 

Layout Arrangement of interior objects through specification of 

location and orientation of each object 

Logistics Goods which vary with mission duration. Item to be packaged 

Penalty Function A function used to ‘penalize’ the aggregate objective function 

for constraint violations 

Subsystems Habitat system used to perform a specific function, most 

commonly a habitat function generally unassociated with 

human tasks.  

Tasks Activities performed by the crew 

Vehicle Typically a launch vehicle or propulsive stage (not a  habitat) 
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APPENDIX B: Evaluation Criteria Detailed Descriptions 

 

 
Figure 44: Evaluation Criterion One Pager: Structure Mass 

 

 

 
Figure 45: Evaluation Criterion One Pager: Equipment Mass 
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Figure 46: Evaluation Criterion One Pager: Line Run Mass 
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Figure 47: Evaluation Criterion One Pager: Habitable Volume 
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Figure 48: Evaluation Criterion One Pager: Unusable Volume 
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Figure 49: Evaluation Criterion One Pager: Available Non-dedicated Stowage Volume 
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Figure 50: Evaluation Criterion One Pager: Habitable Floor Area 

 

 
Figure 51: Evaluation Criterion One Pager: Largest Spatial Vista 
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Figure 52: Evaluation Criterion One Pager: Colocation of Sequential Tests 
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Figure 53: Evaluation Criterion One Pager: Anthropometry Interferences of High Duration 

Tasks 
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Figure 54: Evaluation Criterion One Pager: Colocation of Equipment / Related Storage by 

Function 
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Figure 55: Evaluation Criterion One Pager: Placement for Function/Ergonomics 
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Figure 56: Evaluation Criterion One Pager: Placement for High Frequency/ Duration Use 

 

 

 
Figure 57: Evaluation Criterion One Pager: Size of Dedicated Private Space 
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Figure 58: Evaluation Criterion One Pager: Separation for Privacy 
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Figure 59: Evaluation Criterion One Pager: Separation for Clean and Dirty Zones 
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Figure 60: Evaluation Criterion One Pager: Separation for Noise 
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Figure 61: Evaluation Criterion One Pager: Minimum Translation Path Width 
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APPENDIX C. Definition of Hardware Information from Cis-
Lunar Habitat Example Described in Chapter 4 and 5 

 

 

Table 27: Mapping of Crew Tasks to Hardware (objectList.csv data) 
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Crew Quarters 4 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
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Table 28: Mapping of Hardware Information Feeding Evaluations (objectList.csv data) 
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Oxygen Generation 1 1 1 0 843 1.57 0

Galley 1 0 1 0 412 1.57 1

Power/Avionics 0 0 1 0 1150 1.57 0

Maintenance 0 0 1 0 400 1.57 1

ARS 1 2 1 0 843 1.57 0

Wardroom 0 0 0 0 100 1.57 1

Medical 1 1 1 0 328 1.57 1

Water Storage 2 0 1 0 571 1.57 0

Water Processor 1 1 0 1 0 455 1.57 0

WaterProcessor 2 1 0 1 0 455 1.57 0

Power/Thermal 1 0 2 0 500 1.57 0

Hygiene 1 1 1 0 197 1.57 3

Crew Quarters 1 0 1 1 1 133 1.57 5

Crew Quarters 2 0 1 1 1 133 1.57 5

Crew Quarters 3 0 1 1 1 133 1.57 5

Crew Quarters 4 0 1 1 1 133 1.57 5  
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Table 29: Initial Hardware Locations and Bounding Volume Dimensions (objectList.csv 

data) 

X, m Y, m Z, m Depth, m Height, m Width, m

OGS 0 -1.65 -1.6 0.966 2.014 1.046

Galley -1.65 0 -1.6 0.966 2.014 1.046

Power/Avionics 0 1.65 -1.6 0.966 2.014 1.046

Maintenance 1.65 0 -1.6 0.966 2.014 1.046

ARS 0 -1.65 -0.525 0.966 2.014 1.046

Wardroom -1.65 0 -0.525 0.966 2.014 1.046

Medical 0 1.65 -0.525 0.966 2.014 1.046

Water Storage 1.65 0 -0.525 0.966 2.014 1.046

Water Processor 1 0 -1.65 0.525 0.966 2.014 1.046

Water Processor 2 -1.65 0 0.525 0.966 2.014 1.046

Power/Thermal 0 1.65 0.525 0.966 2.014 1.046

Hygiene 1.65 0 0.525 0.966 2.014 1.046

CrewQuarters 1 0 -1.65 1.6 0.966 2.014 1.046

CrewQuarters 2 -1.65 0 1.6 0.966 2.014 1.046

CrewQuarters 3 0 1.65 1.6 0.966 2.014 1.046

CrewQuarters 4 1.65 0 1.6 0.966 2.014 1.046

Location Dimensions

 
 

Table 30: Hardware Vertices before Translation Defining Polyhedral Rack Structure 

(objectList.csv data) 

Hardware Vertices

X, m Y, m Z, m

0.483 1.007 -0.523

0.483 1.007 0.523

0.483 -1.007 -0.523

0.483 -1.007 0.523

-0.267 -1.007 -0.523

-0.267 -1.007 0.523

-0.483 -0.575 -0.523

-0.483 -0.575 0.523

-0.483 0.397 -0.523

-0.483 0.397 0.523

-0.267 0.829 -0.523

-0.267 0.829 0.523  
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Table 31: Hardware Indices Defining Polyhedral Faces of Rack Structure (objectList.csv 

data) 

0 1 3 2

2 3 5 4

4 5 7 6

6 7 9 8

8 9 11 10

10 11 1 0

0 2 4 10

4 6 8 10

1 11 5 3

5 11 9 7

Hardware Polyhedral Face 

Indices , vertices number

  
 

Table 32: Hardware Face Normal Vectors Defining Polyhedral Faces of Rack Structure 

(objectList.csv data) 

1 0 0

0 -1 0

-0.432 -0.216 0

-1 0 0

-0.432 0.216 0

-0.178 0.75 0

0 0 -1

0 0 -1

0 0 1

0 0 1

Hardware Face Normal 

Vectors, m
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Table 33: Separation Matrix for Clean and Dirty Spaces (hygieneMatrix.csv data) [Tullis & 

Bied, 1988] 
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Eating 0 7 0 7 0 7 10 0 0 0 0 0 0 0 0 3 5 5 0 6 6 0 0 6 6

Meal clean-up 5 0 7 0 7 10 0 0 0 0 0 0 0 0 3 5 5 0 6 6 0 0 6 6
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Personal Hygiene 5 0 6 6 6 0 0 5 0 0 2 0 0 0 0 0 0 2 2

Urination/Defecation 0 10 10 10 0 0 10 0 0 3 0 0 0 0 0 0 6 6
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Payload Support 0 0
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Table 34: Separation Matrix for Noise Interference (noiseMatrix.csv data) [Tullis & Bied, 

1988] 

Separation Matrix for Noise Interference PotentialsM
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Table 35: Separation Matrix for Combined Privacy Needs (privacyMatrix.csv data) [Tullis 

& Bied, 1988] 
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Exercise 54 139 32 142 149 31 124 129 52 83 35 37 40 51 51 51 44 34 34 36 8 15 15
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Meetings and Teleconferences 13 38 38 38 31 39 39 23 29 28 28

Planning and Scheduling 25 25 25 32 42 42 24 32 41 41

Subsystem Monitoring and Control 0 0 7 17 17 15 57 66 66

Pre/Post-EVA Operations 0 7 17 17 15 57 66 66

IVA Support of EVA Operations 7 17 17 15 57 66 66

Proximity Operations 10 10 8 50 59 59

General Space Station Housekeeping 0 18 40 49 49

ORU Maintenance and Repair 18 40 49 49

Logistics and Resupply 42 51 51

Payload Support 9 9
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Table 36: Colocation Matrix for Sequential Functions (sequentialMatrix.csv data) [Tullis & 

Bied, 1988] 

Colocation Matrix for Sequential Functions M
e
a
l 
P

re
p
a
ra

ti
o
n

E
a
ti
n
g

M
e
a
l 
c
le

a
n
-u

p

E
x
e
rc

is
e

M
e
d
ic

a
l 
C

a
re

F
u
ll-

b
o
d
y
 C

le
a
n
s
in

g

H
a
n
d
/F

a
c
e
 C

le
a
n
s
in

g

P
e
rs

o
n
a
l 
H

y
g
ie

n
e

U
ri
n
a
ti
o
n
/D

e
fe

c
a
ti
o
n

T
ra

in
in

g

S
le

e
p

P
ri
v
a
te

 R
e
c
re

a
ti
o
n
 a

n
d
 L

e
is

u
re

S
m

a
ll-

g
ro

u
p
 R

e
c
re

a
ti
o
n
 a

n
d
 

L
e
is

u
re

D
re

s
s
in

g
/U

n
d
re

s
s
in

g

C
lo

th
in

g
 M

a
in

te
n
a
n
c
e

M
e
e
ti
n
g
s
 a

n
d
 T

e
le

c
o
n
fe

re
n
c
e
s

P
la

n
n
in

g
 a

n
d
 S

c
h
e
d
u
lin

g

S
u
b
s
y
s
te

m
 M

o
n
it
o
ri
n
g
 a

n
d
 

C
o
n
tr

o
l

P
re

/P
o
s
t-

E
V

A
 O

p
e
ra

ti
o
n
s

IV
A

 S
u
p
p
o
rt

 o
f 

E
V

A
 O

p
e
ra

ti
o
n
s

P
ro

x
im

it
y
 O

p
e
ra

ti
o
n
s

G
e
n
e
ra

l 
S

p
a
c
e
 S

ta
ti
o
n
 

H
o
u
s
e
k
e
e
p
in

g

O
R

U
 M

a
in

te
n
a
n
c
e
 a

n
d
 R

e
p
a
ir

L
o
g
is

ti
c
s
 a

n
d
 R

e
s
u
p
p
ly

P
a
y
lo

a
d
 S

u
p
p
o
rt

L
if
e
 S

c
ie

n
c
e
s
 E

x
p
e
ri
m

e
n
ts

M
a
te

ri
a
ls

 P
ro

c
e
s
s
in

g
 

E
x
p
e
ri
m

e
n
ts

Meal Preparation 42 0 1 1 0 12 3 3 0 0 0 3 5 0 2 3 1 0 0 0 2 0 1 0 2 2

Eating 41 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Meal clean-up 5 1 0 1 2 1 2 0 1 6 2 1 1 7 0 0 0 1 2 1 0 4 2 1

Exercise 1 3 2 1 5 0 0 1 1 2 0 2 0 1 0 0 0 0 0 0 1 0 0

Medical Care 0 1 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

Full-body Cleansing 0 9 4 0 1 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
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Personal Hygiene 13 0 6 2 1 7 0 0 1 0 0 0 0 0 0 0 0 0 0
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Training 0 2 1 0 0 0 3 0 0 0 0 0 0 1 0 3 0
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Proximity Operations 0 0 0 0 0 0

General Space Station Housekeeping 0 2 0 0 0

ORU Maintenance and Repair 0 1 0 0

Logistics and Resupply 0 0 0

Payload Support 0 1

Life Sciences Experiments 2

Materials Processing Experiments
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Table 37: List of Crew Tasks (taskList.csv) and Daily Durations (taskDurations.csv) [Tullis 

& Bied, 1988] 

Task

Duration, crew-

minutes per day

Meal Preparation 15

Eating 20

Meal clean-up 5

Exercise 480

Medical Care 60

Full-body Cleansing 5

Hand/Face Cleansing 15

Personal Hygiene 20

Urination/Defecation 90

Training 90

Sleep 480

Private Recreation and Leisure 60

Small-group Recreation and Leisure 60

Dressing/Undressing 10

Clothing Maintenance 20

Meetings and Teleconferences 60

Planning and Scheduling 30

Subsystem Monitoring and Control 30

Pre/Post-EVA Operations 90

IVA Support of EVA Operations 240

Proximity Operations 60

General Space Station Housekeeping 30

ORU Maintenance and Repair 30

Logistics and Resupply 30

Payload Support 60

Life Sciences Experiments 480

Materials Processing Experiments 480  
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Table 38: Utility Function Calculation Inputs for the Cislunar Habitat Design Problem 

(utilitiesMatrix.csv data) 

FOM Utility Type Minimum Maximum

Value 

at Min

Value 

at Max

Structure Mass Linear 0 1 0 1

Equipment Mass Linear 0 1 0 1

Plumbing/Electric Line Run Masses Linear 1 100 1 0

Habitable Volume Linear 20 100 0 1

Unusable Volume Linear 0 20 1 0

Available Non-Dedicated Stowage Volume Linear 0 100 0 1

Habitable Floor Area and Other Usable 

Horizontal Surface Area Linear 0 1 0 1

Largest Spatial Vista Linear 0 3 0 1

Colocation of Sequential Tasks Linear 0 500 0 1

Colocation of Equipment/Related Stowage 

by Function Linear 0 1 0 1

Anthropometry of High Duration Tasks 

Interferences Linear 0 30 1 0

Placement for Function/Ergonomics Linear 0 1 0 1

Placement for High Frequency/Duration Use Linear 0 1 0 1

Size of Dedicated Private Spaces Linear 0 1 0 1

Separation for Privacy Linear 0 27000 0 1

Separation of Clean and Dirty Zones Linear 0 900 0 1

Separation for Noise Linear 0 30000 0 1

Minimum Translation Path Width Linear 0 1 0 1  
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Table 39: Evaluation Criteria Weights for the Cislunar Habitat Design Problem 

(weightsMatrix.csv data) 

Evaluation Criteria 

Criteria 

Weighting

Structure Mass 0

Equipment Mass 0

Plumbing/Electric Line Run Masses 0.065

Habitable Volume 0.169

Unusable Volume 0.058

Available Non-Dedicated Stowage 

Volume 0

Habitable Floor Area and Other Usable 

Horizontal Surface Area 0

Largest Spatial Vista 0.078

Colocation of Sequential Tasks 0

Colocation of Equipment/Related 

Stowage by Function 0

Anthropometry of High Duration Tasks 

Interferences 0.06

Placement for Function/Ergonomics 0

Placement for High Frequency/Duration 

Use 0.059

Size of Dedicated Private Spaces 0

Separation for Privacy 0.262

Separation of Clean and Dirty Zones 0.079

Separation for Noise 0.17

Minimum Translation Path Width 0
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