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SUMMARY

This thesis presents several research projects related to optimal transport (OT) theory.

The main part of this thesis consists of three sections.

• In the first section, we focus on solving OT problems from three different perspectives:

(1) direct approximation of the optimal transport map in high dimensions; (2) particle

evolving method for generating samples from the optimal transport plan; (3) learning

high dimensional geodesics joining two known distributions. These three perspectives

focus on various aspects of OT problems, which may find their own applications under

distinct settings in diverse branches of data science and machine learning. We derive

sample-based algorithms for each project. Our methods are supported by theoretical

guarantees and numerical justifications on both synthetic and realistic data sets.

• In the second section, we develop and analyze a sampling-friendly method for high di-

mensional Fokker-Planck equations by leveraging the generative models from deep learn-

ing. By utilizing the fact that the Fokker-Planck equation can be viewed as gradient flow

on probability manifold equipped with certain OT distance, we derive an ordinary dif-

ferential equation (ODE) on parameter space whose parameters are inherited from the

generative models. We design a variational semi-implicit scheme for solving the pro-

posed ODE. Moreover, we establish bounds for both the convergence analysis and error

analysis for our method. Several numerical examples are provided to illustrate the per-

formance of the proposed algorithms and analysis.

• In the third section, we present a definition of Hamiltonian process on finite graph via its

corresponding density dynamics on Wasserstein manifold. We demonstrate the existence

of such Hamiltonian process in many classical discrete problems, such as the OT prob-

lem, Schrödinger equation and Schrödinger bridge problem (SBP). The stationary and

periodic properties of Hamiltonian processes are investigated in the framework of SBP.

xvi



CHAPTER 1

INTRODUCTION

Optimal transport (OT) problem was initially introduced as a constrained optimization

problem [1, 2] seeking for the optimal transport plan to move mass from initial to tar-

get positions with minimum cost. Since then, OT problems become a classical topic in

optimization, probability theory and economics. In recent decades, mathematicians had

discovered nice geometric structures of optimal transport [3, 4]. This leads to an elegant

interplay between optimal transport, partial differential equations [5, 4], fluid dynamics

[6], and differential geometry [7]. On the other hand, optimal transport distance itself plays

a significant role on measuring the discrepancy between distributions due to its symmet-

ric and robust properties. Because of this reason, in recent years, optimal transport has

found its widespread applications in various disciplines like data science [8], economy[9],

imaging science [10], and seismology [11].

1.1 Computational problems related to optimal transport

Due to the great importance of OT distance, we are motivated to develop computational

tools for OT problems. Although there exist series of publications [12, 13, 14, 15, 16, 17,

18, 19] on computing both discrete and continuous OT problems, they are still challenging

tasks in many applications. In the first part of the thesis, we propose three novel OT-related

algorithms with different purposes under distinct problem settings.

• Neural network-based approximation of the Monge map T∗

The original version of OT, which is known as the Monge problem, aims at finding the

cost-minimizing map T∗ (known as the Monge map) that transports a given distribution

µ to the desired distribution ν. In [20], we present a scalable algorithm to directly ap-
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proximate T∗ via neural networks. By introducing Lagrange multiplier, we formulate a

max-min saddle scheme that only requires samples from µ, ν. Such saddle problem can

be well resolved by Stochastic Gradient Descent (SGD)-typed methods. The algorithm

is capable of computing OT problems with general cost c between µ, ν with different di-

mensions. The numerical error of such method can also be estimated via certain duality

gaps that come from our algorithm.

This is a work in collaboration with Jiaojiao Fan, Shaojun Ma, Yongxin Chen and Haomin

Zhou. I mainly worked on the derivation and the theoretical analysis of the method. I

also worked on several low dimensional experiments.

• Sample-based approximation of the optimal coupling γ∗

A crucial relaxed formulation of the Monge problem is known as the Kantorovich prob-

lem. Instead of the map T∗, it seeks for the optimal coupling γ∗ whose marginals are µ, ν.

In [21, 22], we propose an innovative algorithm that computes samples from γ∗ which

encodes rich statistical information. Our algorithm uses the 2-Wasserstein gradient flow

derived from the Entropy Transport Problem, which can be treated as the Kantorovich

problem with soft marginal constraints. We realize our algorithm by evolving an associ-

ated interacting particle system so that the empirical distribution of the particles gradually

converges to an approximation of γ∗. Our method is supported by theoretical justification

and numerical verification.

This is a work in collaboration with Haodong Sun, and Hongyuan Zha. I mainly focused

on the derivation and the theoretical analysis of the method.

• Computing geodesic between probability distributions µ and ν

Most of the existing treatments for OT problem focus on the static aspect. We are in-

terested in the problem of interpolating between µ and ν using the action-minimizing

curve: In [23], We consider an optimal control problem on probability space whose so-

lution {ρt} can be regarded as the geodesic joining µ and ν. By applying Lagrange
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multiplier method and deriving a min-max saddle problem, we design a deep learning

strategy that further leads to a sample based algorithm for solving geodesic joining µ, ν

in high dimensional space. Our proposed method enables sampling from the geodesic

{ρt} at arbitrary time t. The algorithm also computes the OT distance together with the

Monge map as by-products. The performance of our method is demonstrated through a

series of experiments on both synthetic and real-world data.

This is a work in collaboration with Shaojun Ma, Yongxin Chen and Haomin Zhou. I

mainly worked on the derivation and the theoretical analysis of the method. I also worked

on several 2D-3D experiments including color transfer, as well as several experiments on

the MNIST data set.

1.2 Computation of high dimensional Fokker-Planck equations via parametrized

pushforward map

In the work [24, 25], we develop and analyze numerical methods for high dimensional

Fokker-Planck equations by leveraging generative models from deep learning. Our starting

point is a formulation of the Fokker-Planck equation as a system of ordinary differen-

tial equations (ODEs) on finite-dimensional parameter space with the parameters inherited

from generative models such as normalizing flows. We call such ODEs neural parametric

Fokker-Planck equations. The fact that the Fokker-Planck equation can be viewed as the

2-Wasserstein gradient flow of relative entropy functional (also known as Kullback–Leibler

(KL) divergence) allows us to derive the ODEs as the constrained 2-Wasserstein gradient

flow of relative entropy on the set of probability densities generated by neural networks.

For numerical computation, we design a novel bi-level minimization strategy for semi-

implicit time discretization scheme of the proposed ODE. Such an algorithm is sampling-

based, which can readily handle the Fokker-Planck equations in higher dimensional spaces.

Moreover, we also establish bounds for the asymptotic convergence analysis of the neural

parametric Fokker-Planck equation as well as the error analysis for both the continuous and
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discrete versions. Several numerical examples are presented to illustrate the performance

of the proposed algorithms and numerical analysis results.

This is a work in collaboration with Wuchen Li, Hongyuan Zha and Haomin Zhou, I

worked on the majority part of this research project including the derivation, numerical

analysis and experiments of the proposed method.

1.3 Hamiltonian process on finite graphs via Wasserstein Hamiltonian theory

Hamiltonian system is ubiquitous in the physical world and has been well studied for the

continuous space. However, very few work has been done on its counterpart in discrete

space such as graphs due to the lack of geometric structures. In [26], motivated by the pre-

vious researches on Markovian process on graphs [27, 28], we present a strategy to tackle

this challenge by using the Wasserstein Hamiltonian flows on the cotangent bundle of the

probability space P(G) defined on graph G. We define a stochastic process as Hamiltonian

process on G if its time varying density can be written as a Wasserstein Hamiltonian flows.

Furthermore, we demonstrate the existence of such Hamiltonian process in many classical

discrete problems.

This is a work in collaboration with Jianbo Cui and Haomin Zhou. I participated in

proposing the concept of Hamiltonian process on graph, I also worked on the examples as

well as the theoretical results in this article.
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CHAPTER 2

PRELIMINARY KNOWLEDGE

In this chapter, we briefly introduce some preliminary knowledge needed for the thesis.

This contains two parts: (1) An overview of the optimal transport problems, and (2) Basic

knowledge of Wasserstein manifold.

2.1 Optimal transport problems

Before our discussion, we first introduce several common notations that we will use through-

out the thesis. Suppose X is a measurable space. We denote P(X) as the space of proba-

bility distributions defined on X . For measurable spaces X, Y , µ ∈ P(X), and measurable

map T : X → Y , we define T♯µ ∈ P(Y ) as

T♯µ(E) = µ(T−1(E)), for any measurable set E ⊂ Y. (2.1)

We will call T♯µ as the pushforward of µ by T . We will also call T as the pushforward

map.

2.1.1 Monge problem

Optimal transport (OT) problem was initially formalized by the mathematician Gaspard

Monge in [1]. To formulated this problem, we consider X, Y as two measurable spaces.

Assume c(·, ·) : X × Y → R is a measurable function defined on X × Y . We treat it as the

cost function: c(x, y) quantifies the effort of moving one unit of mass from location x to

location y. Now given two distributions µ ∈ P(X), ν ∈ P(Y ), we consider the following
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problem on minimizing the average cost

CMonge(µ, ν) ≜ min
T

{∫
c(x, T (x))dµ(x)

}
(MP) (2.2)

over the set of all measurable maps T : X → Y such that T♯µ = ν.

We call (Equation 2.2) as Monge problem(MP). An intuitive illustration of (MP) is shown

Figure 2.1: Illustration of Monge problem: Filling the pit (with distribution ν) by the pile
of sand (with distribution µ) while minimizing the total transport cost.
Source of the image: https://medium.com/analytics-vidhya

in Figure 2.1. In our research, we will mainly focus on the optimal transport on Euclidean

space, i.e., we will treat X = Rn and Y = Rm for our future discussion.

It is natural to ask about the existence and the uniqueness of the optimal solution to

(Equation 2.2). Such problems have been studied by many scholars, and we refer readers

to chapter 9 and chapter 10 of [7] and the references therein for detailed discussions. For

the sake of completeness in this thesis, we state the following useful result, which is a

simplified version of a series of theorems quoted from Chapter 10 of [7]. Let us consider

the following conditions on cost function c(·, ·).

There exists a ∈ L1(µ), b ∈ L1(ν), such that c(x, y) ≥ a(x) + b(y); (2.3)

c(·, ·) is locally Lipschitz and superdifferentiable everywhere; (2.4)

∂xc(x, ·) is injective for any x ∈ Rn. (2.5)

We state the definitions for locally Lipschitz and superdifferentiablity in the appendix. We

then have the following result.

6
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Theorem 2.1.1 (Existence and uniqueness of the Monge map). Suppose the cost function

c(·, ·) satisfies (Equation 2.3), (Equation 2.4), (Equation 2.5), we assume that µ and ν are

compactly supported and µ is absolute continuous with respect to the Lebesgue measure

L n on Rn (In the following discussion of this thesis, we use the notation µ≪ L n for abso-

lute continuity.). Then there exists a unique transport map T∗ solving the Monge problem.

We call T∗ the Monge map for the problem (Equation 2.2).

2.1.2 Kantorovich problem

The Monge Problem aims at finding an optimal map that maps µ to ν. But this requirement

is too restrictive, one can design many counterexamples in which such maps don’t exist. For

example, if we choose µ = δ0 as the Dirac distribution concentrated at 0 and ν = N (0, I)

as standard Gaussian distribution. Since one cannot break particles, we can never find T

that pushforward the point measure δ0 to N (0, I).

In order to generalize the Monge problem, Leonid Kantorovich proposed the following

relaxed formulation [2]

C(µ, ν) ≜ min
γ

{∫∫
X×Y

c(x, y) dγ(x, y)

}
(KP) (2.6)

over the set of joint probability distributions γ ∈ Π(µ, ν).

Here we define Π(µ, ν) as the set of joint distributions with fixed marginals

Π(µ, ν) =

γ ∈ P(X × Y )

∣∣∣∣∣ γ(A× Y ) = µ(A), γ(X ×B) = ν(B)

for any measurable set A ⊂ X,B ⊂ Y.

 .

In stead of searching for the map, we compute an optimal coupling γ∗ with marginal

distributions µ, ν. Such γ∗ is also called optimal transport plan between µ, ν. We call

this relaxed formulation as Kantorovich problem(KP). The formulation allows us to break

the single particle into pieces and then transport each piece to certain positions according
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to γ∗. Thus we are able to deal with OT problem under much more general settings. Some

examples of optimal couplings are shown in Figure 2.2.

Figure 2.2: Optimal coupling γ∗ for discrete point measure (left), and continuous measure
(right). One can tell γ∗ = (Id, T∗)♯µ for the continuous case, i.e., the support of γ∗ belongs
to the graph of Monge map T∗. The figure is taken from [10].

We summarize the existence result of optimal coupling and its relation with Monge map

in the following theorem. Its proof can be found in [29, 7].

Theorem 2.1.2 (Existence & uniqueness of optimal coupling, relation with Monge map).

Suppose the cost function c(·, ·) is lower semi-continuous and satisfies (Equation 2.3). Then

there exists an optimal coupling γ∗ ∈ Π(µ, ν) that solves (KP) (Equation 2.6).

If we assume X = Y = Rd and the cost function takes the form c(x, y) = h(x − y),

where h is a strictly convex function, suppose µ ≪ L d, ν ≪ L d. Then the optimal

solution to (Equation 2.6) exists and is also unique.

If we assume that the Monge map T∗ exists for the corresponding (MP) (Equation 2.2),

then (Id, T∗)♯µ ∈ Π(µ, ν) is an optimal coupling of (KP) (Equation 2.6), and C(µ, ν) =

CMonge(µ, ν).

We will denote the minimum value of the Kantorovich problem (Equation 2.6) asC(µ, ν).

We call C(µ, ν) as the optimal transport (OT) distance or Wasserstein distance between

µ and ν with respect to the cost function c.

Theorem 2.1.3 (C(·, ·) as distance function). Suppose X = Y = Rd and c(·, ·) is distance

function on Rd × Rd. Then C(·, ·) is also a distance function on P(Rd)× P(Rd).
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We give the definition of distance function in Definition A.0.3 in the Appendix. A direct

proof to this theorem can be found in chapter 6 of [7].

Example 2.1.1 (p-Wasserstein distance). SupposeX = Y = Rd, if we set c(x, y) = |x−y|p

with p ≥ 1, then we denote the corresponding OT distance as Wp(µ, ν)
p, we call Wp

as p-Wasserstein distance. Among these distance functions, W1 distance (also known as

Earth mover’s distance) has found many important applications in image processing [30]

and machine learning [8]; W2 distance can imply Riemannian geometry structure on the

probability manifold. This will be discussed in details in subsection 2.2.1.

2.1.3 Kantorovich dual problem

We can treat Kantorovich problem (Equation 2.6) as a linear optimization problem with

two marginal constraints and nonnegative constraint of γ. It is thus natural to consider

the Lagrange multiplier method for (Equation 2.6), i.e., we introduce Lagrange multiplier

functions ψ, ϕ, and σ ≥ 0 for the constraints

∫
Y

γ(·, y) dy = µ(·),
∫
X

γ(x, ·) dx = ν(·), γ ≥ 0

and we obtain the max-min problem of (KP) as

max
ψ, ϕ, σ≥0

min
γ

{∫∫
X×Y

c(x, y)γ(x, y) dxdy +

∫∫
X×Y

ψ(x)(γ(x, y)− µ(x)) dxdy (2.7)

−
∫∫

X×Y
ϕ(y)(γ(x, y)− ν(y)) dxdy −

∫∫
X×Y

σ(x, y)γ(x, y) dxdy

}
(2.8)
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This max-min problem is equivalent to the maximization problem

max
ψ, ϕ, σ≥0

min
γ

{∫∫
X×Y

(c(x, y) + ψ(x)− ϕ(y)− σ(x, y))γ(x, y) dxdy

+

∫
Y

ϕ(y)dν(y)−
∫
X

ψ(x)dµ(x)

}

= max
ψ, ϕ, σ≥0

c(x,y)+ψ(x)−ϕ(y)−σ(x,y)=0

{∫
Y

ϕ(y)ν(x) dy −
∫
X

ψ(x)dµ(x)

}

We can then reformulate it as

K(µ, ν) ≜ max
ϕ(y)−ψ(x)≤c(x,y)

{∫
Y

ϕ(y)dν(y)−
∫
X

ψ(x)dµ(x)

}
(dual-KP). (2.9)

We call the maximization problem (Equation 2.9) as Kantorovich dual problem (dual-

KP). Actually, for arbitrary ψ, we can fix function ϕ in (Equation 2.9) as the optimal one,

i.e., we denote

ψc,+(y) = inf
x∈X

{ψ(x) + c(x, y)} ∀ y ∈ Y. (2.10)

And (Equation 2.9) can be reformulated as

max
ψ

{∫
Y

ψc,+(y)dν(y)−
∫
X

ψ(x)dµ(x)

}
. (2.11)

Similarly, we denote

ϕc,−(x) = sup
y∈Y

{c(x, y)− ϕ(y)} ∀ x ∈ X.

And (Equation 2.9) can also be reformulated as

max
ϕ

{∫
Y

ϕ(y)dν(y)−
∫
X

ϕc,−(x)dµ(x)

}
. (2.12)
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One can actually prove the equivalence between (dual-KP) and (KP) [29, 7]. This is sum-

marized in the following theorem.

Theorem 2.1.4 (Equivalence between primal and dual problem). Suppose c is a cost func-

tion defined on X × Y and satisfies (Equation 2.3). Recall C(µ, ν), K(µ, ν) defined as the

optimal values in (Equation 2.6), (Equation 2.9). We have C(µ, ν) = K(µ, ν).

Furthermore, we can characterize the Monge map T∗ as well as the optimal coupling γ∗

by the optimal dual variables ψ∗, ϕ∗, σ∗. To simplify our discussion, we consider the case

in which the Monge map T∗ and optimal coupling γ∗ uniquely exist. And thus by Theo-

rem 2.1.2, γ∗ = (Id, T∗)♯µ. We now consider the Karush–Kuhn–Tucker (KKT) condition

[31] of (Equation 2.8), this gives

c(x, y) + ψ∗(x)− ϕ∗(y)− σ∗(x, y) = 0,

σ∗ = 0, on Spt(γ∗).

Combining both conditions gives

c(x, y) + ψ∗(x)− ϕ∗(y) = 0 on Spt(γ∗). (2.13)

Now since γ∗ = (Id, T∗)♯µ, thus Spt(γ∗) = {(x, T∗(x))|x ∈ Spt(µ)}. Use (Equation 2.13),

for any x ∈ Spt(µ), ϕ∗(T∗(x)) − ψ∗(x) = c(x, T∗(x)). On the other hand, since ϕ∗(y) −

ψ∗(x) ≤ c(x, y), for any fixed x ∈ Spt(µ), y = T∗(x) is the maximizer of ϕ∗(y)−ψ∗(x)−

c(x, y)(w.r.t. y). Under certain differentiable assumption, the gradient w.r.t. y should vanish

at y = T∗(x). This leads to

∇ϕ∗(T∗(x))− ∂yc(x, T∗(x)) = 0, for x ∈ Spt(µ). (2.14)
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In addition, for any fixed y = T∗(x), using the similar argument, we obtain

−∇ψ∗(x)− ∂xc(x, T∗(x)) = 0, for x ∈ Spt(µ). (2.15)

One can also verify the equivalence between (Equation 2.14) and (Equation 2.15) using

the fact that for optimal dual pair (ψ∗, ϕ∗) satisfies ϕ∗ = ψc,+∗ or ψ∗ = ϕc,−∗ . Now

(Equation 2.15) directly characterizes the Monge map T∗ via

T∗(x) = ∂xc(x, ·)−1(−∇ψ∗(x)), for x ∈ Spt(µ). (2.16)

The above derivation can be made rigorous in the following theorem. It is a simplified

version of Theorem 10.28 combined with Remark 10.33 taken from [7].

Theorem 2.1.5 (Characterization of Monge map and optimal coupling). Under the same

conditions stated in Theorem 2.1.1, there exists unique Monge map T∗ that solves (MP)

(Equation 2.2) and unique γ∗ solving (KP) (Equation 2.6) with γ∗ = (Id, T∗)♯µ. Fur-

thermore, there exists unique ψ∗, ϕ∗ solving the (dual-KP) (Equation 2.9), or equivalently,

ψ∗, ϕ∗ uniquely solve (Equation 2.11), (Equation 2.12). Then ψ∗, ϕ∗ are differentiable on

Spt(µ), Spt(ν). And T∗, ψ∗, ϕ∗ satisfies (Equation 2.15), (Equation 2.14).

Example 2.1.2. When we pick X = Y = Rd and c(x, y) = 1
2
|x − y|2. Assume one of the

optimal duals is ψ∗, then by (Equation 2.16), the Monge map has the form

T∗(x) = x+∇ψ∗(x). (2.17)

2.1.4 Monge map and Monge-Ampère equation

We consider X = Y = Rd. Let us recall under suitable conditions, the Monge map T∗

always possess the form (Equation 2.16). On the other hand, we know T∗ must pushforward

distribution µ to ν, i.e. T∗♯µ = ν. Suppose the density function of µ, ν are ρa, ρb, then the
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density function of T∗♯µ can be written as ρa(T
−1
∗ (·))

det(DT∗(T−1
∗ (·))) , where DT∗ denotes the Jacobian

of map T∗. Then we obtain the equation

ρa(T
−1
∗ (y))

det(DT∗(T−1
∗ (y)))

= ρb(y).

Now replace y by T∗(x) and use T∗(x) = ∂xc(x, ·)−1(−∇ψ∗(x)), we arrive at the following

equation of ψ∗

ρa(x) = det(D(∂xc(x, ·)−1(−∇ψ∗(x)))) · ρb(∂xc(x, ·)−1(−∇ψ∗(x))). (2.18)

This is a nonlinear second order partial differential equation known as the Monge-Ampère

equation [32, 33]. From the discussion above, combining the equation (Equation 2.18) for

ψ∗ and (Equation 2.16) together, one can obtain the Monge map T∗.

Example 2.1.3. When c(x, y) = 1
2
|x − y|2, the equation (Equation 2.18) reduce to the

classical form

det(Id +∇2ψ(x))ρb(x+∇ψ(x)) = ρa(x). (2.19)

Here Id denotes the d× d identity matrix.

2.1.5 Dynamical formulation of optimal transport problem

From now on, let us restrict our discussion on optimal transport problems on the same space

X = Rd. Both Monge problem (Equation 2.2) and Kantorovich problem (Equation 2.6)

can be treated as static optimal transport problems, which do not involve any time evolu-

tional dynamics. It is insightful to generalize the static OT problem to dynamical versions.
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Let us consider the following optimal control problem with boundary constraints

CDym(ρa, ρb) ≜min
ρ,v

{∫ 1

0

∫
Rd

L(v(x, t)) ρ(x, t) dxdt

}
, (Dym-OT) (2.20)

subject to:
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)) = 0, (2.21)

and ρ(·, 0) = ρa, ρ(·, 1) = ρb. (2.22)

This is an optimal control problem on P(Rd). It is first proposed by Jean-David Benamou

and Yann Brenier in [6]. We call (Equation 2.20) as the Dynamical OT problem (Dym-

OT). Here we define the cost function L(·) as

Definition 2.1.1. We define L(·) ∈ C1(Rd) as the Lagrangian of the control problem

(Equation 2.20). We always assume that L satisfies L(−u) = L(u) for arbitrary u ∈ Rd

and is strictly convex and superlinear, i.e., L(·) is super linear if limu→∞
L(u)
|u| = ∞.

One can either treat L as the transporting cost or as the kinetic energy of the trans-

port motion. The first constraint (Equation 2.21) is the continuity equation of ρ, which

describe the density evolution of ρ along the flow field v(·, t). Thus the goal of Dynam-

ical OT problem is to find an optimal way to continuously transfer density ρa to ρb with

minimum average transport cost. The optimal solution {ρ(·, t)}0≤t≤1 can be treated as an

cost-minimizing interpolation between ρa and ρb. We also call the optimal {ρ(·, t)} as the

geodesic (w.r.t. the cost L) joining ρa and ρb. An example of dynamical OT problem

between Gaussian distributions is presented in Figure 2.3.

In addition to the PDE formulation (Equation 2.20)(Equation 2.21)(Equation 2.22) on

(Dym-OT), we also have the equivalent particle control formulation on Dynamical OT
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(a) t=0 (b) t=0.25 (c) t=0.5 (d) t=0.75 (e) t=1

Figure 2.3: The optimal solution to a dynamical OT problem between two Gaussian dis-
tributions with L(v) = |v|2

2
; One can tell that each particle is moving in straight line with

constant velocity.

problem

min
v

{∫ 1

0

E[L(v(X t, t))] dt

}
, (p-Dym-OT) (2.23)

subject to:
d

dt
X t = v(X t, t),

and X0 ∼ ρa, X1 ∼ ρb.

In order to study the optimal solution to Dynamical OT problem (Equation 2.20), we

introduce Lagrange Multiplier Φ(·, t) for constraint (Equation 2.21), and Ψa, Ψb for the

boundary constraints (Equation 2.22). Then we consider the functional

L(ρ, v,Φ,Ψa,Ψb) (2.24)

=

∫ 1

0

∫
L(v) ρ+

(
∂ρ

∂t
+∇ · (ρv)

)
Φ(x, t) dxdt

+

∫
Ψa(x)(ρ(x, 0)− ρa(x)) dx+

∫
Ψb(x)(ρ(x, 1)− ρb(x)) dx

=

∫ 1

0

∫ (
L(v)− ∂Φ

∂t
−∇Φ · v

)
ρ(x, t) dxdt+

∫
Φ(x, 1)ρ(x, 1)− Φ(x, 0)ρ(x, 0) dx

+

∫
Ψa(x)(ρ(x, 0)− ρa(x)) dx+

∫
Ψb(x)(ρ(x, 1)− ρb(x)) dx.

=

∫ 1

0

∫ (
L(v)− ∂Φ

∂t
−∇Φ · v

)
ρ(x, t) dxdt+

∫
(−Ψaρa −Ψbρb) dx

+

∫
(Ψa(x)− Φ(x, 0))ρ(x, 0) dx+

∫
(Ψb(x) + Φ(x, 1))ρ(x, 1) dx.
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For the second equality, we apply integration by parts on [0, 1]. Solving the constrained

optimization problem (Equation 2.20) is equivalent to investigating the following saddle

point optimization problem

max
Φ,Ψa,Ψb

min
ρ,v

L(ρ, v,Φ,Ψa,Ψb), (2.25)

or min
ρ,v

max
Φ,Ψa,Ψb

L(ρ, v,Φ,Ψa,Ψb). (2.26)

The optimality condition is given by the Karush–Kuhn–Tucker (KKT) conditions [31]

∂L

∂Φ
= 0,

∂L

∂Ψa

= 0,
∂L

∂Ψb

= 0,
∂L

∂ρ
= 0,

∂L

∂v
= 0. (2.27)

The first three conditions lead to the constraints (Equation 2.21) and (Equation 2.22). The

fourth condition in (Equation 2.27) yields

−∂Φ
∂t

− (∇Φ(x, t) · v(x, t)− L(v(x, t))) = 0, (2.28)

Ψb(x) + Φ(x, 1) = 0, (2.29)

Ψa(x)− Φ(x, 0) = 0. (2.30)

The last condition in (Equation 2.27) yields ∇L(v(x, t)) − ∇Φ(x, t) = 0, which can be

rewritten as

v(x, t) = ∇L−1(∇Φ(x, t)). (2.31)

Now combine (Equation 2.31) and (Equation 2.28) we obtain the equation

∂Φ

∂t
+ (∇Φ(x, t) · ∇L−1(∇Φ(x, t))− L(∇L−1(∇Φ(x, t)))) = 0. (2.32)

Now we define

Definition 2.1.2. We define the Hamiltonian H(·) as the Legendre transform of the La-
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grangian L(·) as

H(p) = max
v∈Rd

{p · v − L(v)} = ∇L−1(p) · p− L(∇L−1(p)) ∀v ∈ Rd. (2.33)

Furthermore, one can verify that when L is strictly convex, then

∇L−1(p) = ∇H(p), ∇H−1(v) = ∇L(v), ∀ p, v ∈ Rd. (2.34)

Then (Equation 2.32) becomes the following Hamilton-Jacobi equation

∂Φ

∂t
+H(∇Φ(x, t)) = 0. (2.35)

Now we combine all the KKT conditions together and obtain the following PDE system

as the coupling of continuity equation and Hamilton-Jacobi equation with boundary condi-

tions.

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v(x, t)) = 0, (2.36)

here v(x, t) = ∇L−1(∇Φ(x, t)),

∂Φ(x, t)

∂t
+H(∇Φ(x, t)) = 0. (2.37)

Such that: ρ(·, 0) = ρa, ρ(·, 1) = ρb.

We denote {ρ∗(·, t), v∗(·, t)} as the optimal solution to (Equation 2.20). Then we have

ρ∗(·, t) = ρ(·, t), v∗(·, t) = ∇L−1(∇Φ(·, t)), where (ρ(·, t),Φ(·, t)) solve the PDE system

(Equation 2.36)(Equation 2.37).

Example 2.1.4 (p-Wasserstein geodesic). We consider L(v) = |v|p
p

with p > 1. We call the

optimal {ρ(·, t)} to (Dym-OT)(Equation 2.20) as the p-Wasserstein geodesic joining ρa, ρb.
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Specifically, when p = 2, the geodesic equation for 2-Wasserstein geodesic is

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)∇Φ(x, t)) = 0, (2.38)

∂Φ(x, t)

∂t
+

|∇Φ(x, t)|2

2
= 0. (2.39)

Such that: ρ(·, 0) = ρa, ρ(·, 1) = ρb.

Remark 1 (Duality of Dynamical OT problem). One can verify that the max-min saddle

problem (Equation 2.25) is further equivalent to the following maximization problem

KDym(ρa, ρb) ≜max
Φ

{∫
Rd

Φ(x, 1) ρb(x) dx−
∫
Rd

Φ(x, 0)ρa(x) dx

}
, (dual-Dym-OT)

(2.40)

subject to:
∂Φ(x, t)

∂t
+H(∇Φ(x, t)) = 0 0 ≤ t ≤ 1. (2.41)

(Equation 2.40) can be treated as the dual problem of dynamical OT problem (Equation 2.20).

It is worth pointing out the equivalence between (Equation 2.40) and the Kantorovich dual

problem (Equation 2.11). Actually, if we set the cost function c(x, y) = L(x − y). Then

by Hopf-Lax formula [34] of Hamilton Jacobi equation (Equation 2.41), one can verify

Φ(·, 1) = infx{Φ(x, 0) + c(x, ·)} = Φc,+(·, 0). This is exactly the constraint condition of

(Equation 2.11).

It is also worth studying the optimal solution to the equivalent problem (Equation 2.23)

from particle point of view. Due to the equivalence between (Equation 2.23), (Equation 2.20),

the optimal vector field v∗(·, t) of problem (Equation 2.23) should also be ∇L−1(∇Φ(·, t)),

where Φ is solved from (Equation 2.37). Now denote {X∗
t} as the trajectory obeying the

optimal vector field v∗(·, t), i.e., X∗
t solves

Ẋ∗
t = v∗(X

∗
t , t) = ∇L−1(∇Φ(X∗

t , t)). (2.42)
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we analyze the behavior of the movement of particle X∗
t by considering its second order

dynamic: by denoting pt = ∇Φ(X∗
t , t), then under certain smooth assumption on Φ, one

can verify

ṗt = ∇2Φ(X∗
t , t)Ẋ

∗
t +

∂

∂t
∇Φ(X∗

t , t)

= ∇2Φ(X∗
t , t)∇L−1(∇Φ(X∗

t , t)) +
∂

∂t
∇Φ(X∗

t , t)

= ∇2Φ(X∗
t , t)∇H(∇Φ(X∗

t , t)) +
∂

∂t
∇Φ(X∗

t , t). (2.43)

Here for the third equality, we use the fact (Equation 2.34) stated in Definition 2.1.2. On the

other hand, taking gradient of x on both sides of Hamilton Jacobi equation (Equation 2.37)

yields
∂

∂t
∇Φ(x, t) +∇2Φ(x, t)∇H(∇Φ(x, t)) = 0. (2.44)

Thus, combine (Equation 2.43) and (Equation 2.44) one derives ṗt = 0. This indicates

Ẍ∗
t = 0 and X∗

t possess constant velocity. Such property is also reflected in Figure 2.3. In

general, we have the following theorem

Theorem 2.1.6 (Trajectory of (Dym-OT)). Suppose {X∗
t}1t=0 is the trajectory obeying the

optimal vector field of (Equation 2.23) with strictly convex Lagrangian L, then Ẍ∗
t = 0,

and thus

X∗
t = X∗

0 + tv∗(X
∗
0, 0) = X∗

0 + t∇L−1(∇Φ(X∗
0, 0)). (2.45)

This result was discussed by [6] for quadratic Lagrangian. More general results are

presented in Theorem 5.5 of [29]. The following corollary is the natural result of Theo-

rem 2.1.6.

Corollary 2.1.6.1. Suppose the initial distribution of X∗
0 equals ρa and {X∗

t} solves

(Equation 2.42). Then the optimal ρ∗(·, t) to (Equation 2.20) equals to the probability den-
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sity of Law(X∗
t )

1. Using (Equation 2.45), we deduce that

ρ∗(·, t) = (Id + tv∗(·, 0))♯ρa = (Id + t∇L−1(∇Φ(·, 0)))♯ρa. (2.46)

(Equation 2.46) justifies that the optimal ρ∗(·, t) is obtained by pushforwarding the ini-

tial distribution ρa along the geodesic (straight lines) with the initial velocity v∗(, 0) =

∇L−1(∇Φ(·, 0)).

Remark 2. One can also interpret Theorem 2.1.6 from another perspective: each par-

ticle X∗
t should choose its own optimal trajectory by minimizing its cost along the path∫ 1

0
L(Ẋ∗

t ) dt, thus X∗
t solves the corresponding Euler-Lagrange equation − d

dt
(∇vL(Ẋ

∗
t ))+

∇xL(Ẋ
∗
t )) = 0. In our discussion, L is independent of x and is convex w.r.t. v, thus the

E-L equation directly leads to Ẍ∗
t = 0.

2.1.6 Equivalence among different versions of OT problem

We conclude this section by briefly stating the equivalence among different versions of

optimal transport problems. We should first assume L as defined in Definition 2.1.1, and

we further assume the cost function c is compatible with L in the sense of

c(x, y) ≜ min
{Xt},X0=x,X1=y

{∫ 1

0

L(Ẋ t) dt

}
= L(x− y). (2.47)

Let us consider the optimal transport between µ, ν. We assume both µ, ν possess densities

ρa, ρb. We list four different versions of OT problems in the following table.

(Dym-OT) (MP) (KP) (dual-KP)

(Equation 2.20) (Equation 2.2) (Equation 2.6) (Equation 2.9)

Optimal solution {ρ∗(·, t), v∗(·, t)} T∗ γ∗ (ψ∗, ϕ∗)

= {ρ(·, t),∇L−1(∇Φ(·, t))}

Optimal value CDym(ρa, ρb) CMonge(µ, ν) C(µ, ν) K(µ, ν)

1We denote Law(X) as the probability distribution of the random variable X .
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Under the assumption that these optimal solutions uniquely exist, relationships among

these four versions of OT problems are listed as following

• The optimal values of (Dym-OT), (MP), (KP) and (dual-KP) are equal;

• (MP) & (KP): As stated in Theorem 2.1.2, γ∗ = (Id, T∗)♯µ;

• (MP) & (dual-KP): As stated in (Equation 2.14) (Equation 2.15) (Equation 2.16),

∇ϕ∗(T∗(x))− ∂yc(x, T∗(x)) = 0, −∇ψ∗(x)− ∂xc(x, T∗(x)) = 0, on Spt(µ).

T∗(x) = ∂xc(x, ·)−1(−∇ψ∗(x)), on Spt(µ).

• (Dym-OT) & (dual-KP): As stated in Remark 1, we have (ψ∗, ϕ∗) = (Φ(·, 0),Φ(·, 1))

up to a constant number;

• (Dym-OT) & (MP): Combine the discussion in previous two bullets, we obtain

T∗(x) = ∂xc(x, ·)−1(−∇Φ(x, 0)) = x+∇L−1(∇Φ(x, 0)) on Spt(µ). (2.48)

2.2 Wasserstein manifold

In this section, we briefly present some of the basic concepts and results regarding Wasser-

stein manifold. We only provide in section 2.2 a heuristic but informal discussion on

Wasserstein manifold and Wasserstein gradient flow. More rigorous treatments on these

topics can be found in [7],[35].

2.2.1 Wasserstein metric

Recall the 2-Wasserstein distance W2 introduced in Example 2.1.1, this distance function

will imply Riemannian geometry structure on certain probability space[3][4]. To be more

specific, we denote the probability space supported on Rd with positive densities and finite
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second order moments as

P2 =

{
ρ

∣∣∣∣∣
∫
ρ(x)dx = 1, ρ(x) > 0,

∫
|x|2ρ(x) dx <∞

}
. (2.49)

Here and for the following discussion in this section, if not specified, we always treat
∫

as∫
Rd for simplicity.

If we treat P2 as an infinite dimensional manifold, the Wasserstein distance W2 can

induce a metric gW defined on the tangent bundle T P2, with which P2 becomes a Rieman-

nian manifold. For simplicity, here we directly give the definition of gW . One can identify

the tangent space at ρ as:

TρP2 =

{
f

∣∣∣∣∣
∫
f(x)dx = 0

}
.

We now present a less-rigorous, but more heuristic derivation that can motivate the

definition of metric gW . Suppose we fix certain ρ ∈ P2, consider an arbitrary tangent

vector f ∈ TρP , and a very short time stepsize h > 0. Suppose at time t = 0, we start

from ρ0 = ρ, and we let ρ move along the tangent vector f , at time t = h, we should have

ρh = ρ + hf + o(h). The 2−Wasserstein distance between ρ0 and ρh is W2(ρ0, ρh), the

compatibleness between W2 distance and gW leads to

W2(ρ0, ρh)
2 = h2gW (f, f) + o(h2). (2.50)

Suppose the Monge map between ρ0 and ρh is T∗. Then

W2(ρ0, ρh)
2 =

∫
Rd

|T∗(x)− x|2ρ(x)dx. (2.51)

On the other hand, according to the discussion in subsection 2.1.4, the Monge map T∗(x)

takes the form ∂xc(x, ·)−1(−∇ψ∗(x)), where ψ∗ solves the Monge-Ampère equation in
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(Equation 2.18). In the L2 case, c(x, y) = |x− y|2, then we can write

T∗(x) = x+
1

2
∇ψ∗(x).

Furthermore, since ρh differs from ρ by an O(h) term, it is then reasonable to recast the

Monge map as

T∗(x) = x+
h

2
∇ψ̃∗(x), (2.52)

here we are rescaling ψ∗ to hψ̃∗. Now by (Equation 2.18), one can verify that ψ̃∗ solves

ρ(x) = det(Id +
h

2
∇2ψ̃∗(x))) · ρh(x+

h

2
∇ψ̃∗(x)).

Now replace ρh by ρ+ hf + o(h), the previous equation becomes

ρ(x) = det(Id +
h

2
∇2ψ̃∗(x))) · (ρ(x+

h

2
∇ψ̃∗(x)) + hf(x+

h

2
∇ψ̃∗(x))) + o(h). (2.53)

Now we expand det(Id + h
2
∇2ψ̃∗(x))) = 1 + h

2
∆ψ̃∗(x) + o(h), and ρ(x + h

2
∇ψ̃∗(x)) =

ρ(x) + h
2
∇ρ(x) · ∇ψ̃∗(x) + o(h), f(x + h

2
∇ψ̃∗(x)) = f(x) + O(h). Plug these into

(Equation 2.53), we obtain

ρ(x) = (1+
h

2
∆ψ̃∗(x)+o(h))(ρ(x)+

h

2
∇ρ(x) ·∇ψ̃∗(x)+o(h)+h(f(x)+O(h)))+o(h).

(2.54)

This equation can be simplified as

0 = h

(
1

2
∆ψ̃∗(x)ρ(x) +

1

2
∇ρ(x) · ∇ψ̃∗(x) + f(x)

)
+ o(h). (2.55)

Now we divide on both sides of (Equation 2.55) by h, and send h → 0, we obtain the

elliptical PDE

−∇ ·

(
ρ(x)∇ ψ̃∗(x)

2

)
= f(x). (2.56)
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Now recall (Equation 2.50), (Equation 2.51), and (Equation 2.52), we obtain

h2

(∫
|∇ ψ̃∗(x)

2
|2ρ(x)dx

)
= h2gW (f, f) + o(h2). (2.57)

Now we divide (Equation 2.57) on both sides by h2 and send h→ 0, we obtain

gW (f, f) =

∫
|∇ ψ̃∗(x)

2
|2ρ(x)dx, ψ̃∗ solves the equation (Equation 2.56).

The above calculations will motivate the following definition for Wasserstein metric gW :

Definition 2.2.1 (Wasserstein metric). For a specific ρ ∈ P2 and fi ∈ TρP2, i = 1, 2, we

define the Wasserstein metric tensor gW as [3, 4]

gW (ρ)(f1, f2) =

∫
∇ψ1(x) · ∇ψ2(x)ρ(x) dx, (2.58)

where ψ1, ψ2 satisfies

−∇ · (ρ∇ψi) = fi i = 1, 2, (2.59)

with boundary conditions

lim
x→∞

ρ(x)∇ψi(x) = 0 i = 1, 2.

Use the above definition, we can also write

gW (ρ)(f1, f2) =

∫
ψ1(−∇ · (ρ∇ψ2)) dx =

∫
(−∇ · (ρ∇))†(f1) · f2 dx.

Here we denote (−∇ · (ρ∇))† as the pseudo inverse of the negative weighted Laplacian

operator −∇ · (ρ∇). Thus, we can identify gW (ρ) as (−∇ · (ρ∇))−1. Due to the positive

definiteness of −∇·(ρ∇), one can also verify that gW (ρ) is a positive definite bilinear form

defined on tangent bundle T P2 = {(ρ, f) : ρ ∈ P2, f ∈ TρP2}. Hence we can treat P2
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as a Riemannian manifold, which we call Wasserstein manifold, denoted as (P2, g
W ) [4].

In order to keep our notations concise, in future discussion, we denote gW (ρ) as gW if no

confusion is caused.

The Wasserstein metric gW is compatible with W2 distance in the sense that for any

µ, ν ∈ P2 with densities ρa, ρb,

W 2
2 (µ, ν) = min

{ρt}0≤t≤1
ρ0 = ρa, ρ1 = ρb

{∫ 1

0

gW (ρ̇t, ρ̇t) dt

}
.

Here we denote ρt = ρ(·, t) and ρ̇t = ∂tρ(·, t).

2.2.2 Wasserstein gradient flow

We denote the Wasserstein gradient gradW as the manifold gradient on (P2, g
W ). In

Riemannian geometry, the manifold gradient must be compatible with the metric, implying

that for any smooth functional F defined on P2 and any ρ ∈ P2, consider an arbitrary

differentiable curve {ρt}t∈(−δ,δ) with ρ0 = ρ, we have

d

dt
F(ρt)

∣∣∣
t=0

= gW (ρ)(gradWF(ρ), ρ̇0).

Since we can write

d

dt
F(ρt)

∣∣∣
t=0

=

∫
δF(ρ)

δρ(x)
(x) · ρ̇0(x) dx =

〈
δF(ρ)

δρ
, ρ̇0

〉
L2

,

here δF(ρ)
δρ(x)

(x) is the L2 variation of F at point x ∈ Rd, we then have

〈
δF(ρ)

δρ
, ρ̇0

〉
L2

= gW (ρ)(gradWF(ρ), ρ̇0) ∀ ρ̇0 ∈ TρP2. (2.60)
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Recall gW (ρ) = (−∇ · (ρ∇))†, (Equation 2.60) then leads to the following useful formula

for computing the Wasserstein gradient of F

gradWF(ρ) = gW (ρ)
−1
(
δF
δρ

)
(x) = −∇ ·

(
ρ(x)∇ δF(ρ)

δρ(x)
(x)

)
. (2.61)

Once we know how to compute Wasserstein gradient, we can also formulate the Wasser-

stein gradient flow as the following evolutional PDE of ρ(x, t).

∂ρ(x, t)

∂t
= −gradWF(ρt) = ∇ ·

(
ρ(x, t)∇ δ

δρt
F(ρt)

)
. (2.62)

Wasserstein gradient flow has a close relation with many dissipative evolutional PDEs.

Here are some examples.

Example 2.2.1 (Fokker-Planck equation). If F is taken as the relative entropy functional

H(ρ) =

∫
V (x)ρ(x) +Dρ(x) log ρ(x) dx+ Constant, (2.63)

we have ∇ δH(ρ)
δρ

= ∇V + D∇ log ρ. Using (Equation 2.61), and noticing ∇ log ρ = ∇ρ
ρ

,

then ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = ∆ρ, the Wasserstein gradient flow of H is

∂ρ

∂t
= −gradWH(ρ) = ∇ · (ρ∇V ) +D∇ · (ρ∇ log ρ)).

This is the Fokker-Planck equation used to describe the density evolution of certain stochas-

tic dynamics[36][37].

Example 2.2.2 (Porous medium equation). If F is taken as the power functional

F(ρ) =
1

m− 1

∫
ρm dx, m ̸= 1 (2.64)

we have ∇ δF(ρ)
δρ

= ∇( m
m−1

ρm−1) = mρm−2∇ρ. Then gradWF(ρ) = −∇ · (ρ∇ δF(ρ)
δρ

) =
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−∇ · (mρm−1∇ρ) = −∆ρm. The Wasserstein gradient flow of F is

∂ρ

∂t
= −gradWF(ρ) = ∆ρm.

This is the Porous-Medium equation, which appears in a number of physical applications,

such as to describe processes involving fluid flow, heat transfer, or diffusion [4][38].
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CHAPTER 3

COMPUTATIONAL PROBLEMS RELATED TO OPTIMAL TRANSPORT

In this chapter, we mainly focus on solving optimal transport problems from three different

perspectives. This chapter is organized as follows: we first provide in section 3.1 a com-

prehensive literature review on existing algorithms for optimal transport problems; Then in

section 3.2, we derive a scalable algortihm for computing Monge maps with general cost

functions [20, 39]; In section 3.3, we propose a particle evolving technique for approximat-

ing the optimal coupling of the Kantorovich problem [21, 22]; In section 3.4, we design a

novel formulation and learning strategy for computing the Wasserstein geodesic between

two probability distributions in high dimensional space [40].

3.1 Literature review

3.1.1 Algorithms for Monge problem

In [13], the authors propose a method for computing the optimal coupling as well as the

Monge map of a general OT problem by introducing entropic regularization term to the

primal problem (Equation 2.6) and then optimize the corresponding dual problem;

Algorithms proposed in [18, 19, 41] make use of the convex property of Kantorovich

dual pairs, in conjuction with the artitecture of input convex neural network (ICNN) [42] to

formulate certain optimization algorithms, which are able to approximate the optimal map

for L2 Monge problem (i.e. c(x, y) = |x− y|2) under high dimensional settings.

There are also researches focusing on solving the Monge-Ampère equation [43, 44, 45,

46]. As mentioned in subsection 2.1.4, evaluating the Monge map is equivalent to solving

the Monge-Ampère equation (Equation 2.18). However, due to curse of dimenaionality,

the discretization methods proposed in the aforementioned references can not be applied to
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high dimensional problems.

3.1.2 Algorithms for Kantorovich problem

The straightforward way to solve the Kantorovich problem (Equation 2.6) is by using linear

programming solvers such the Hungarian algorithm and the auction algorithm. See [47, 48,

10] and the references therein.

A popular method known as Sinkhorn algorithm [49] for solving Kantorovich problem

(Equation 2.6) is proposed by introducing the entropic regularization to the Kantorovich

problem, and then computes for the optimal γ∗ via iterations. This algorithm is capable of

computing the OT distance between two sets of data points in high dimensional space [50,

51, 52, 53].

Another popular treatment of high dimensional W1 OT problem was introduced in

Wasserstein generative adversarial networks (WGAN) [8] by considering the dual formu-

lation (Equation 2.9). In order to enforce the Lipshitz-1 constraint in the dual Kantorovich

problem, people introduce regularization term such as gradient penalty [54] to improve

the performance of the algorithm. Since then, various regularization-based OT problems

have been formulated, such as OT algorithms with spectral normalization [55], entropic

regularization [13], Laplacian regularization [56], Group-Lasso regularization [57], Tsallis

regularization [58] and L2 regularization [59]. In addition to the ordinary OT problem,

there exists research [60] proposing self-defined dual Kantorovich problem in order to in-

vent new type of discrepancy functions of probability distributions that may improve the

performance of corresponding generative models.

In the research [15], the authors relax the marginal constraints by incorporating the

Wasserstein marginal discrepancies into the Kantorovich problem. Such treatment leads

to an optimization problem without constraints, which can then be efficiently resolved by

classical optimization techniques in deep learning. Although our work [21, 22] share sim-

ilar ideas with [15], both the purposes and computational methods are distinct from this
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work.

3.1.3 Algorithms for dynamical version of optimal transport problem

The first reference that motivates the dynamical version of 2−Wasserstein problem is [61].

Later, in [62], the authors consider and discretize the dynamical 1−Wasserstein problem

and come up with an efficient primal-dual solver. In addition to the dynamical problems

only involving pure transportation, unbalanced transport as well as unnormalized transport

problems have also drawn the interests of researcher in recent days [63, 64]. However, it

is worth mentioning that all the references mentioned so far in this subsection use classical

finite difference or finite element methods, which cannot be scaled up into high dimensions.

One recent work aim at computing high dimensional mean-field games is proposed

in [17]. The algorithm is capable of computing dynamical OT problem by relaxing the

terminal time constraint as a cost functional in the mean-field control functional.
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3.2 Scalable computation of Monge maps with general costs

3.2.1 Introduction

Optimal transport (OT) based applications have achieved great success in machine learn-

ing research [8, 18, 65, 52, 66, 67, 41, 68] in recent years. As mentioned in Chapter 1,

Wasserstein distance C(µ, ν) (subsection 2.1.2) is a crucial measurement of the discrep-

ancy between probability distributions due to its robustness.

By discretizing the space, one can treat Kantorovich problem (Equation 2.6) as a lin-

ear programming problem. Under high dimensional setting, we will face a large scale

linear programming problem which could be very challenging due to the curse of dimen-

sionality. To tackle with such difficulty, by introducing the entropic regularization, people

develop the so-called Sinkhorn algorithm [49] that operates iteratively to computes for the

approximation of Wasserstein distance between two sets of data points in high dimensional

space[50, 51, 52, 53]. However, Sinkhorn algorithm also experiences drawbacks such as

slow convergence speed when entropic regularization coefficient 1
λ

is small, and not being

suitable to handle continuous probability distributions. On the other hand, in the field of

data science and machine learning research, people prefer the exact optimal map T∗ to the

optimal coupling γ∗ since the map T∗, as a generative model, offers great convenience on

sampling from the target distribution ν. In this research, instead of considering the Kan-

torovich problem, we mainly focus on solving the original Monge problem (Equation 2.2)

for the optimal transport map T∗. To be more specific, we treat (Equation 2.2) as a con-

strained optimization problem. By introducing the Lagrange multiplier, we reformulate the

Monge problem as a max-min saddle point problem. Then by setting the transport map

as well as the Lagrange multiplier function as neural networks, we obtain a scalable algo-

rithm for approximating the Monge map T∗ by alternatively optimizing the parameters of

two networks. The main contributions of our proposed method can be summarized as:

1. Our method is capable of computing the Monge map associated with general cost func-
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tion between two distributions with given samples points in high dimensional space;

2. Our method possesses flexibility to deal with OT problems between µ, ν that are not

absolute continuous to the Lebesgue measures, as well as OT problems between unequal

dimensional spaces;

3. We provide theoretical guarantee on the correctness of our method; we also establish

error analysis result based on duality gaps that come from our algorithm;

4. We verify the performance of our algorithm via series of examples varying from low-

dimensional synthetic data to high-dimensional realistic data.

We refer the readers to subsection 3.1.1 for related references. It is worth mention-

ing that in addition to our work [20], several related research projects on computing the

Monge map for general OT problems [69, 70, 71] were also proposed by another group of

researchers recently.

We refer the reader to subsection 2.1.1, subsection 2.1.2, subsection 2.1.3 and subsec-

tion 2.1.6 for related mathematical backgrounds.

3.2.2 Proposed method

Let us recall the Monge problem (Equation 2.2).

CMonge(µ, ν) ≜ min
T

{∫
c(x, T (x))dµ(x)

}
(MP) (Equation 2.2)

over the set of all measurable maps T : X → Y such that T♯µ = ν.

In our following discussion in this section, we treat X = Rn, Y = Rm. In order to

formulate a tractable algorithm for (Equation 2.2) with general cost c, we first notice that

(Equation 2.2) is a constrained optimization problem. Thus, it is natural to introduce the

Lagrange multiplier f for the constraint T♯µ = ν and then reformulate (Equation 2.2) as a
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max-min saddle point problem

sup
f

inf
T

L(T, f) (3.1)

with L defined as

L(T, f) =
∫
Rn

c(x, T (x))dµ(x) +

∫
Rm

f(y)(ν(y)− T♯µ(y)) dy

=

∫
Rn

[c(x, T (x))− f(T (x))] dµ(x) +

∫
Rm

f(y)ν(y) dy (3.2)

We can verify that the max-min scheme (Equation 3.1) is equivalent to the Kantorovich

dual problem (Equation 2.9). To this end, one only need to verify:

inf
T

L(T, f) =−
∫
Rn

sup
ξ
{f(ξ)− c(x, ξ)}dµ(x) +

∫
Rm

f(y)ν(y)dy

=

∫
Rm

f(y)ν(y)dy −
∫
Rn

f c,−(x)dµ(x). (3.3)

Here, recall f c,− is defined in (Equation 2.10). The following theorem guarantees that the

max-min scheme (Equation 3.1) will find the optimal Monge map.

Theorem 3.2.1 (Consistency). We assume that the optimal solution to the Monge problem

(Equation 2.2) exists, and the optimal solution to the Kantorovich problem (Equation 2.6)

is unique up to a constant number. Suppose the saddle point solution to (Equation 3.1) is

(T∗, f∗), then T∗ is the optimal solution to (Equation 2.2) and f∗ = ϕ∗ +C, where ϕ∗ is the

optimal solution to (Equation 2.9) and C is a constant number.

Proof of Theorem 3.2.1. According to (Equation 3.3), and the uniqueness assumption on

(Equation 2.6), we are able to tell that f∗ equals ϕ∗ + C, where C is a constant number.

Furthermore, at the saddle point (T∗, f∗), we have

T∗♯µ = ν, T∗(x) ∈ argmaxξ∈Rm{f∗(ξ)− c(x, ξ)}.
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The second equation leads to

f c,−∗ (x) = f∗(T∗(x))− c(x, T∗(x)).

Then we have

∫
Rn

c(x, T∗(x))dµ(x) =

∫
Rn

f∗(T∗(x))dµ(x)−
∫
Rn

f c,−∗ (x)dµ(x)

=

∫
Rm

f∗(y)ν(y) dy −
∫
Rn

f c,−∗ (x)dµ(x)

≤
∫
Rn×Rm

[f∗(y)− f c,−∗ (x)]dγ(x, y) ≤
∫
Rn×Rm

c(x, y)dγ(x, y)

for any γ ∈ Π(µ, ν). Here the second equality is due to T∗♯µ = ν, the last inequality is due

to the definition of f c,−∗ (x) = supy{f∗(y)− c(x, y)}.

Now we set γ to be the optimal γ∗ of corresponding Kantorovich problem in the previ-

ous inequality. Since we assume that the Monge map exists, by Theorem 2.1.2,

∫
Rn×Rm

c(x, y)dγ(x, y) = C(µ, ν) = CMonge(µ, ν),

thus
∫
Rn c(x, T∗(x))dµ(x) = CMonge(µ, ν). As a result, T∗ is the optimal solution to

(Equation 2.2).

In exact implementation, we will replace both the map T and the dual variable f by the

neural networks Tθ, fη, with θ, η being the parameters of the networks. We aim at solving

the following saddle point problem. The algorithm is summarized in Algorithm 1.

max
η

min
θ

L(Tθ, fη) :=
1

N

N∑
k=1

c(Xk, Tθ(Xk))− fη(Tθ(Xk)) + fη(Yk) (3.4)

where N is the batch size and {Xk}, {Yk} are samples generated from µ and ν separately.

Remark 3 (Relation with WGAN). Although the proposed saddle scheme (Equation 3.4)
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Algorithm 1 Computing Wasserstein distance and optimal map from µ to ν

1: Input: Marginal distributions µ and ν, Batch size N , Cost function c(x, T (x)).
2: Initialize Tθ, fη.
3: for K steps do
4: Sample {Xk}Nk=1 from µ. Sample {Yk}Nk=1 from ν.
5: for K1 steps do
6: Update (via gradient descent) θ to decrease (Equation 3.4)
7: end for
8: for K2 steps do
9: Update (via gradient ascent) η to increase (Equation 3.4)

10: end for
11: end for

shares similarity with the Wasserstein Generative Adversarial Networks (WGAN) [8], both

the designing purpose and mathematical logic behind these two methods are distinct. De-

tailed comparisons are provided in appendix subsection B.1.1.

3.2.3 Error Analysis via Duality Gaps

In this section, we assume that m = n = d, i.e. we consider Monge problem between

Euclidean spaces with the same dimension d. Suppose we solve (Equation 3.1) to a certain

stage and obtain the pair (T, f), inspired by [72] and [18], we want to estimate a weighted

L2 error between our computed map T and the optimal Monge map T∗.

Before we present our result, we introduce definition for c-concave functions. We

mainly adopt the definition from Chapter 5 of [7].

Definition 3.2.1 (c-concavity). We say a function f : Rd → R is c-concave if there exists a

function φ such that f = φc,+. This definition is also equivalent to (f c,−)c,+ = f .

In order to establish our result, we require µ, ν and c(·, ·) to satisfy the conditions men-

tioned in Theorem (Theorem 2.1.1). In addition, we assume that c ∈ C2(Rd × Rd) and
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satisfies

∂xyc(x, y), as an d× d matrix, is invertible and self-adjoint. (3.5)

∂yyc(x, y) is independent of x; (3.6)

Theorem 3.2.2 (Posterior Error Analysis via Duality Gaps). Assume f ∈ C2(Rd) is a c-

concave function and assume that there exists φ ∈ C2(Rd) such that f(y) = infx{φ(x) +

c(x, y)}. Suppose φ(x) + c(x, y) has a unique minimizer x̂y for arbitrary y ∈ Rd. We

further assume there exists function λ(·) > 0 such that the Hessian of φ(·) + c(·, y) at

minimizer x̂y is positive definite and bounded from above by λ(·):

λ(y)In ⪰ ∇2
xx(φ(x) + c(x, y))|x=x̂y ≻ On, (3.7)

where In, On denotes n× n identity matrix and zero matrix.

We denote σ(x, y) as the minimum singular value of the matrix ∂xyc(x, y).

Now denote the duality gaps as

E1(T, f) = L(T, f)− inf
T̃

L(T̃ , f), E2(f) = sup
f̃

inf
T̃

L(T̃ , f̃)− inf
T̃

L(T̃ , f).

Recall T∗ as the Monge map of (Equation 2.2). Then there exists a strict positive weight

function β(x) ≥ miny

{
σ(x,y)
2λ(y)

}
(β depends on c, T∗, f, φ) such that the weighted L2 error

between computed map T and optimal map T∗ is upper bounded by

∥T − T∗∥L2(βµ) ≤
√

2(E1(T, f) + E2(f)).

We prove this theorem in the appendix subsection B.1.2.

Remark 4. We can verify that c(x, y) = 1
2
|x−y|2 or c(x, y) = −x ·y satisfy the conditions

mentioned above. Then Theorem 3.2.2 recovers similar results proved in [72] and [18].
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Remark 5. Suppose c(·, ·) satisfies (Equation 3.5) (Equation 3.6), if c is also an analytical

function, then c takes the form Ψ(x) + ∇u(x)Ty + Φ(y), where Ψ, u,Φ are analytical

functions on Rd, and u is strictly convex.

3.2.4 Experiments

In this section, we first conduct experiments to compute Monge maps under different cost

functions in order to justify the correctness of our method; we then test the effectiveness of

our algorithm on distributions that are either non absolute continuous or supported to spaces

with unequal dimensions. We also test our method on high dimensional realistic data set

to show the effective ness of the algorithm under different choices of cost functions. At

last, we compare the accuracy of our algorithm quantitatively with existing methods on

Gaussian examples. The details of the experiments including hyper parameter choices

are provided in the appendix subsection B.1.3. We also refer the readers to more high

dimensional examples discussed in [20, 39].

Effect of different costs

Next we test our algorithm with more general cost functions. We compare the results on the

same set of problems but with different choice of costs, and illustrate the effects of different

cost functions.

Inverse function as cost We consider the cost function c(x, y) = ϕ(|x − y|) with ϕ as

a monotonic decreasing function. We test our algorithm for a specific example ϕ(s) =

1
s2

. In this example, we compute for the optimal Monge map from µ to ν with µ as a

uniform distribution on Ωa and ν as a uniform distribution on Ωb, where we define Ωa =

{(x1, x2) | 62 ≥ x21 + x22 ≥ 42}, Ωb = {(x, x2) | 22 ≥ x21 + x22 ≥ 12}. We also compute

the same problem for L2 cost. Figure 3.1 shows the transported samples as well as the

differences between two cost functions.
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(a) (b) (c) (d) (e)

Figure 3.1: (a) samples of computed T♯ρa; c(x, y) = 1
|x−y|2 : Computed Monge map of

quarter circles with radius 6 (subplot b) and radius 4 (subplot c); c(x, y) = |x − y|2:
Computed Monge map of quarter circles with radius 6 (subplot d) and radius 4(subplot e).

Monge problem on sphere For a given sphere S with radiusR, for any two points x, y ∈

S, we define the distance d(x, y) as the length of the geodesic joining x and y. Now for

given ρa, ρb defined on S, we consider solving the following Monge problem on S

min
T, T♯ρa=ρb

∫
S

d(x, T (x))ρa(x) dx. (3.8)

Such sphere OT problem can be transferred to an OT problem defined on angular do-

main D = [0, 2π) × [0, π], to be more specific, we consider (θ, ϕ) (θ ∈ [0, 2π), ϕ ∈

[0, π]) as the azimuthal and polar angle of the spherical coordinates. For two points x =

(R sinϕ1 cos θ1, R sinϕ1 sin θ1, R cosϕ1), y = (R sinϕ2 cos θ2, R sinϕ2 sin θ2, R cosϕ2) on

S, the geodesic distance

d(x, y) = c((θ1, ϕ1), (θ2, ϕ2)) = R · arccos(sinϕ1 sinϕ2 cos(θ2 − θ1) + cosϕ1 cosϕ2).

Denote the corresponding distribution of µ, ν on D as µ̂, ν̂, now (Equation 3.8) can also be

formulated as

min
T̂ ,T̂♯µ̂=ν̂

∫
c((θ, ϕ), T̂ (θ, ϕ))µ̂ dθdϕ. (3.9)

We set µ̂ = U([0, 2π])⊗U([0, π
4
]) and ν̂ = U([0, 2π])⊗U([3π

4
, π]). We apply our algorithm

to solve (Equation 3.9) and then translate our computed Monge map back to the sphere S

to obtain the following results.
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(a) (b) (c) (d)

Figure 3.2: Monge map from µ to ν on the sphere: (a) blue samples from µ (corresponds to
µ̂) and orange samples from ν (corresponds to ν̂); (b) blue samples from µ, orange samples
are obtained from T̂♯ν̂, grey curves are geodesics connecting each transporting pairs; (c)
our computed Monge map maps blue ring (ϕ = π

8
) to the orange curve (ground truth is

ϕ = 7
8
π); (d) our computed Monge map maps blue ring (ϕ = π

4
) to the orange curve

(ground truth is the southpole)

Learning with unequal dimensions

Our algorithm framework enjoys a distinguishing quality that it can learn the map from

a lower dimension space Rdx to a manifold in a higher dimension space Rdy(dx ≤ dy).

In this scenario, we make the input dimension of neural network T to be dx and output

dimension to be dy. In case the cost function c(x, y) requires dimensions are x and y

are equal dimensional, we patch zeros behind each sample X ∼ µ and complement to

a counterpart sample X̃ = [X;0], where dimension of 0 is dy − dx. And the targeted

min-max problem is replaced by

max
θ

min
η

1

N

N∑
k=1

c(X̃k, Tθ(Xk))− fη(Tθ(Xk)) + fη(Yk).

In Figure 3.3, we conduct two experiments for dx = 1 and dy = 2. Similarly, each row is

shown as an example. The incomplete ellipse is a 1D manifold and our algorithm is able

to learn a symmetric map from N (0, 1) towards it. The second row is when the support

of ν is in a higher dimension manifold than µ. In this case, our method pushforwards µ to

samples that are attempting to fill the space of the ball.
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(a) ρa (b) ρb (c) T♯ρa (d) T (·) map

Figure 3.3: Qualitative results for learning unequal dimension maps. ρa for two examples
are both N (0, 1), and ρb are uniformly distributed on a incomplete ellipse and a ball re-
spectively.

Experiments in high dimensions

Next we test our algorithm for high dimensional data set. We compare the results on the

same set of problem but with different choice of costs.

Examples in 256D space

KL divergence vs L2 cost In this experiment, we study the digits transfer map from

the data set taken from Modified National Institute of Standards and Technology database

(MNIST) (µ, scaled to 16 × 16 dimensional) to the data taken from US Postal (USPS)

(ν, 16 × 16 dimensional) handwritten digits data sets. The USPS data is derived from a

project on recognizing handwritten digits on envelopes, mentioned in [73]. The MNIST

dataset, one of the most famous in digit recognition, is created by [74]. As we see from

Figure 3.4, the style of MNIST digit number is thinner in (a) while the style of USPS digit

number is larger and rounder in (b). We choose cost functions as | · |22 and KL divergence

respectively. To apply KL divergence, we force L1 norm of each sample is equal to one by

a softmax normalization.
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(a) ρa (b) ρb (c) T♯ρa (d) T♯ρa

Figure 3.4: MNIST maps to USPS in 256D (c): ∥ · ∥22 cost, (d): KL divergence cost.

Learning the map between Gaussians with L2 cost

In this section, we test our method on Gaussian marginal setting to investigate the quanti-

tative performance. We follow the experiment setup exactly in W2GN [19]. The error is

quantified as L2-UVP = 100·[∥T−T∗∥2ρa/Var(ρb))]%. The marginal µ, ν are two randomly

generated centered Gaussian distributions. We refer to Section 5.1, Section C.4 of [19] for

the performance of W2-OT and W2GN methods. In Figure 3.5, we rerun the experiment

in each dimension for 5 times and report the error bar. When d < 64, the L2-UVP is lower

than 1%, which is on par with the performance of W2-OT and W2GN. And L2-UVP in

d ≥ 64 is still bounded by 3%.

Figure 3.5: Quantitative comparison in Gaussian marginals setting with L2 cost.
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3.2.5 Conclusion

We present a novel method to compute the Monge map between two given distributions

with general cost functions. By applying Lagrange multipliers to the Monge problem, we

come up with a max-min saddle point problem. By introducing neural networks as the

transport map as well as the multiplier, we propose a scalable algorithm that can handle

most general costs and even the case where the dimensions of marginals are unequal.

Our method not only computes sample based Wasserstein distance, but also produces

the Monge map. The correctness, effectiveness and accuracy of our scheme has been ver-

ified through a series of experiments varying from low dimensional examples to high di-

mensional data sets.

The proposed method may find its applications in machine learning research. It can

serve as a useful tool for domain adaption that requires transforming data distributions; it

may also find its diverse applications in generative models. Our method also has the poten-

tial to be applied to research fields such as computer vision and robotic control problems.
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3.3 Approximating the Optimal Transport Plan via Particle-Evolving Method

3.3.1 Introduction

As we have mentioned in the previous section, optimal transport provides a flexible frame-

work for comparing probability measures.

In this section, we aim at solving for the optimal coupling γ∗ of the Kantorovich prob-

lem (Equation 2.6). However, instead of directly dealing with the standard Kantorovich

problem with strict marginal constraints, we consider the so-called entropy transport (ET)

problem, which can be treated as a relaxed Kantorovich problem with soft marginal con-

straints. Recently, the importance of ET problem has drawn researchers’ attention due to

its rich theoretical properties [75]. By restricting the ET problem to probability manifold

and formulating the Wasserstein gradient flow of the target functional, we derive a time-

evolutional Partial Differential Equation (PDE) that can be then realized by evolving an

interacting particle system via Kernel Density Estimation techniques [76].

Our method directly computes for the sample-wised approximation of the optimal

coupling γ∗ to the OT problem (Equation 2.6) between two known densities. That is to

say, given the density functions ρa, ρb (no need to be normalized1) of the marginal distribu-

tions, our algorithm is capable of generating samples that approximate the optimal coupling

γ∗. This is very different from traditional methods such as Linear Programming [47, 48],

Monge-Ampère Equation [43, 44, 45, 46], and dynamical scheme [6, 77], which all require

discretization of the continuous space. Our method is also different from the Sinkhorn al-

gorithm [12], which relies samples from marginals and computes for the optimal coupling

on discrete data set; as well as methods involving neural network approximations [13, 78,

18, 20], which also require marginal samples and directly approximates the Monge map

T∗ or the Kantorovich dual pair (ψ∗, ϕ∗). We note that a recent independent work [79]

on sampling algorithm for Wasserstein Barycenter problems shares similar ideas with our

1For example, if the probability densities of marginal distributions are ρa(·) = 1
Za
fa(·), ρb(·) = 1

Zb
fb(·).

Then our algorithm can still operate if we are only given the unnormalized densities fa, fb.
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proposed method.

Our main contribution is to analyze the theoretical properties of the entropy transport

problem constrained on probability space and derive its Wasserstein gradient flow. To be

specific, we study the existence and uniqueness of the solution to ET problem and further

study its Γ-convergence property to the classical OT problem. Then based on the gradient

flow that we derive, we propose an innovative particle-evolving algorithm for obtaining the

sample approximation of the optimal transport plan. Our method can deal with optimal

transport problem between two known unnormalized densities. To the best of our knowl-

edge, there is no method capable of solving this type of problem. We demonstrate the

efficiency of our method by numerical experiments.

We refer the readers to subsection 3.1.1 and subsection 3.1.2 for related references.

We refer the readers to subsection 2.1.2, subsection 2.2.1 and subsection 2.2.2 for re-

lated mathematical backgrounds.

3.3.2 Constrained entropy transport as a regularized optimal transport problem

Optimal transport problem and its relaxation

In this work, we mainly consider the Kantorovich problem (Equation 2.6) with X =

Y = Rd. For the following discussion of section 3.3, we call the optimal solution of

(Equation 2.6) as optimal transport plan and we denote it as γOT .

We can also reformulate (Equation 2.6) as minγ∈P(Rd×Rd) {Eι(γ|µ, ν)} where

Eι(γ|µ, ν) =
∫∫

c(x, y)dγ(x, y) +

∫
ι

(
dγ1
dµ

)
dµ+

∫
ι

(
dγ2
dν

)
dν (3.10)

Here ι is defined as ι(1) = 0 and ι(s) = +∞ when s ̸= 1. We now derive a relaxed version

of (Equation 2.6) by replacing ι(·) with ΛF (·), where Λ > 0 is a tunable positive parameter
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and we assume

F is a smooth convex function with F (1) = 0, and 1 as the unique minimizer. (3.11)

F is superlinear, i.e., lim
x→∞

F (x)

|x|
= +∞. (3.12)

In our research, we mainly focus on F (s) = s log s − s + 1 [75]. It is worth mentioning

that after such relaxation, the constraint term
∫
F (dγ1

dµ
) dµ is known as the Kullback-Leibler

(KL) divergence [80] and is denoted as DKL(γ1∥µ).

From now on, we should focus on the following functional involving cost

c(x, y) = h(x− y) with h as a strictly convex function, (3.13)

and enforcing the marginal constraints by using KL-divergence:

EΛ,KL(γ|µ, ν) =
∫∫

Rd×Rd

c(x, y) dγ(x, y) + ΛDKL(γ1∥µ) + ΛDKL(γ2∥ν). (3.14)

Constrained Entropy Transport problem and its properties

For the following discussions, we always assume that the marginal distributions µ, ν ∈

P(Rd) and µ≪ L d, ν ≪ L d. We now focus on solving the following problem

min
γ∈P(Rd×Rd)

{EΛ,KL(γ|µ, ν)}. (3.15)

A similar problem

min
γ∈M(Rd×Rd)

{EΛ,KL(γ|µ, ν)} (3.16)

has been studied in [75] with P(Rd×Rd) being replaced by the space of positive measures

M(Rd×Rd) and is named as Entropy Transport (ET) problem therein. In our case, since

we restrict γ to probability space, we call (Equation 3.15) constrained Entropy Transport
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(cET) problem and call EΛ,KL the Entropy Transport functional.

The following theorem shows the existence of the optimal solution to cET problem

(Equation 3.15). It also describes the relationship between the solution to the cET problem

(Equation 3.15) and the solution to the general ET problem (Equation 3.16):

Theorem 3.3.1. The infimum value Emin = infγ∈P(Rd×Rd){EΛ,KL(γ|µ, ν)} is finite. There

always exits an optimal solution γ̃ to the ET problem (Equation 3.16). We denote γ =

1
Z
γ̃, here Z = e−

Emin
2Λ . Then γ ∈ P(Rd × Rd) is the optimal solution to cET problem

(Equation 3.15).

Proof of Theorem 3.3.1. First, we prove that Emin = inf
γ∈P(Rd×Rd)

EΛ,KL(γ|µ, ν) is finite.

By choosing γ = µ⊗ ν, i.e. choose γ as the direct product of µ, ν, we have

EΛ,KL(µ⊗ ν|µ, ν) =
∫∫

cdµ⊗ ν ≥ min
x∈Rd

{h(x)},

which is finite value given that h defined in Equation 3.11 is convex. One can thus prove

that

inf
γ∈P(Rd×Rd)

EΛ,KL(γ|µ, ν) ≥ min
x∈Rd

{h(x)}.

Thus the infimum value is finite.

Second, the existence of γ̃ is guaranteed in Theorem B.2.1 stated in appendix .

Then, for any σ̃ ∈ M(Rd × Rd), we can write it as:

σ̃ =Mσ
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with M = σ̃(Rd × Rd) and σ ∈ P(Rd × Rd). Now one can write EΛ,KL(σ̃|µ, ν) as:

EΛ,KL(σ̃|µ, ν)

=

∫∫
c(x, y) d(Mσ) + Λ

∫ (
dπ1♯(Mσ)

dµ
log

(
dπ1♯(Mσ)

dµ

)
− dπ1♯(Mσ)

dµ
+ 1

)
dµ

+ Λ

∫ (
dπ2♯(Mσ)

dν
log

(
dπ2♯(Mσ)

dν

)
− dπ2♯(Mσ)

dν
+ 1

)
dν

=MEΛ,KL(σ|µ, ν) + 2Λ(M logM −M) + 2Λ.

The optimization problem (Equation 3.16) on M(Rd × Rd) can now be formulated as:

inf
σ∈P(Rd×Rd)

min
M≥0

{MEΛ,KL(σ|µ, ν) + 2Λ(M logM −M) + 2Λ} .

It is not hard to verify that when σ is fixed, we denote E(σ) = EΛ,KL(σ|µ, ν) for shorthand.

Then the minimum value of ME(σ) + 2Λ(M logM − 1) + 2Λ (M ≥ 0) is achieved

at M = e−
E(σ)
2Λ and the minimum value is 2Λ(1 − e−

E(σ)
2Λ ). Recall definition of Emin in

Theorem 3.3.1, we have:

inf
σ∈P(Rd×Rd)

min
M≥0

{MEΛ,KL(σ|µ, ν) + 2Λ(M logM −M) + 2Λ}

= inf
σ∈P(Rd×Rd)

{
2Λ(1− e−

E(σ)
2Λ )
}
= 2Λ(1− e−

Emin
2Λ ).

Since γ̃ solves (Equation 3.16), we have:

EΛ,KL(γ̃|µ, ν) = inf
σ∈P(Rd×Rd)

min
M≥0

{MEΛ,KL(σ|µ, ν) + 2Λ(M logM −M) + 2Λ}

=2Λ(1− e−
E min
2Λ ).

Now we write γ̃ = Zγ, with Z = γ̃(Rd × Rd), γ ∈ P(Rd × Rd). We have:

ZEΛ,KL(γ|µ, ν) + 2Λ(Z logZ − Z) + 2Λ = 2Λ(1− e−
E min
2Λ )

47



However, we have:

ZEΛ,KL(γ|µ, ν) + 2Λ(Z logZ − Z) + 2Λ ≥ 2Λ(1− e−
EΛ,KL(γ|µ,ν)

2Λ ). (3.17)

This gives:

2Λ(1− e−
E min
2Λ ) ≥ 2Λ(1− e−

EΛ,KL(γ|µ,ν)
2Λ ) ⇒ EΛ,KL(γ|µ, ν) ≤ E min .

As a result, we have: EΛ,KL(γ|µ, ν) = E min , i.e. γ solves problem (Equation 3.15). And

inequality (Equation 3.17) becomes equality, this shows Z = e−
E min
2Λ .

The following corollary guarantees the uniqueness of optimal solution to (Equation 3.15):

Corollary 3.3.1.1 (Existence & Uniqueness). The cET problem (Equation 3.15) admits a

unique optimal solution.

Proof. We still assume that γ̃ and γ are solutions to (Equation 3.16) and (Equation 3.15)

respectively as stated in Theorem 3.3.1. Suppose despite γ, we have another γ′ ∈ P(Rd ×

Rd) that also solves (Equation 3.15) . Set Z = e−
Emin
2Λ , we can verify that EΛ,KL(Zγ|µ, ν) =

EΛ,KL(Zγ
′|µ, ν). This means that Zγ′ ̸= Zγ (i.e. Zγ′ ̸= γ̃) is another solution to problem

(Equation 3.16). This avoids the uniqueness stated in Theorem B.2.1.

Despite the discussions on the constrained problem (Equation 3.15) with fixed Λ, we

also establish asymptotic results for (Equation 3.15) with quadratic cost c(x, y) = |x− y|2

as Λ → +∞. For the rest of this section, we define:

P2(Rd) =

{
γ
∣∣∣ γ ∈ P(Rd),

∫
Rd

|x|2dγ(x) < +∞
}
.

Let us now consider P2(Rd×Rd) and assume it is equipped with the topology of weak

convergence. We are able to establish the following Γ-convergence result:
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Theorem 3.3.2 (Γ-convergence). Suppose c(x, y) = |x − y|2. Assume that we are given

µ, ν ∈ P2(Rd), µ ≪ L d, ν ≪ L d and at least one of µ and ν satisfies the Logarithmic

Sobolev inequality with constantK > 0. Let {Λn} be a positive increasing sequence, satis-

fying limn→∞ Λn = +∞. We consider the sequence of functionals {EΛn,KL(·|µ, ν)}. Recall

the functional Eι(·|µ, ν) defined in (Equation 3.10). Then {EΛn,KL(·|µ, ν)} Γ- converges to

Eι(·|µ, ν) on P2(Rd × Rd).

We can further establish the equi-coercive property for the family of the functionals

{EΛn,KL(·|µ, ν)} and we use the Fundamental Theorem of Γ-convergence [81] [82] to es-

tablish the following asymptotic results:

Theorem 3.3.3 (Property of Γ-convergence). Suppose c(x, y) = |x− y|2. Assuming µ, ν ∈

P2(Rd), µ ≪ L d, ν ≪ L d, and both µ, ν satisfy the Logarithmic Sobolev inequality

with constants Kµ, Kν > 0. According to Corollary 3.3.1.1, problem (Equation 3.15) with

functional EΛn,KL(·|µ, ν) admits a unique optimal solution, let us denote it as γn. According

to Theorem 2.1.2, the Kantorovich problem (Equation 2.6) also admits a unique solution,

we denote it as γOT . Then limn→∞ γn = γOT in P2(Rd × Rd).

The detailed proofs for Theorem 3.3.2 and Theorem 3.3.3 are provided in appendix

subsection B.2.2.

3.3.3 Wasserstein Gradient Flow Approach

Wasserstein gradient flow of Entropy Transport functional

As mentioned in subsection 2.2.2, there are already numerous researches [83, 4, 35] regard-

ing Wasserstein gradient flows of different types of functionals defined on the Wasserstein

manifold that successfully relate certain kinds of time evolution Partial Differential Equa-

tions (PDEs) to the manifold gradient of corresponding functionals.

We now consider our constrained Entropy Transport problem (Equation 3.15). There

49



are mainly two reasons why we choose to compute the Wasserstein gradient flow of func-

tional EΛ,KL(·|µ, ν):

• Computing the Wasserstein gradient flow is equivalent to applying gradient descent

to determine the minimizer of the entropy transport functional (Equation 3.14);

• In most of the cases, Wasserstein gradient flows can be realized as a time evolution

PDE describing the density evolution of a stochastic process. As a result, once we

derived the gradient flow, there will be a natural particle version associated to the

gradient flow. And this will make the computation of gradient flow tractable since

we can evolve the particle system by applying time discretization scheme.

Now let us compute the Wasserstein gradient flow of EΛ,KL(·|µ, ν):

∂γt
∂t

= −gradWEΛ,KL(γt|µ, ν), γt|t=0 = γ0 (3.18)

To keep our notations concise, we denote ρ(·, ·, t) = dγt
dL 2d ϱ1 = dµ

dL d , ϱ2 = dν
dL d , we can

show that the previous equation (Equation 3.18) can be written as:

∂ρ

∂t
= ∇ · (ρ ∇(c(x, y) + Λ log(

ρ1(x, t)

ϱ1(x)
) + Λ log(

ρ2(y, t)

ϱ2(y)
))) (3.19)

Here ρ1(·, t) =
dπ1♯γt
dL d =

∫
ρ(·, y, t)dy and ρ2(·, t) =

dπ2♯γt
dL d =

∫
ρ(x, ·, t)dx are density

functions of marginals of γt. We put the details of our derivation in appendix subsec-

tion B.2.3.

Remark 6. We are currently not clear about the displacement convexity [7] of the func-

tional EΛ,KL(·|µ, ν) on (P2(Rd × Rd), gW ), which will guarantee its gradient flow to con-

verge to its minimizer. This will be one of our future research directions . In practice, we

should rely on the computational results to tell us whether our method works properly.

50



3.3.4 Particle formulation

Let us treat (Equation 3.19) as certain kind of continuity equation, i.e. we treat ρ(·, t) as the

density of the time-evolving random particles. Then the vector field that drives the random

particles at time t should be −∇(c(x, y) + Λ log
(
ρ1(x,t)
ϱ1(x)

)
+Λ log

(
ρ2(y,t)
ϱ2(y)

)
). This helps us

design the following dynamics {(Xt, Yt)}t≥0: (here Ẋt denotes the time derivative dXt

dt
)


Ẋt = −∇xc(Xt, Yt) + Λ(∇ log ϱ1(Xt)−∇ log ρ1(Xt, t));

Ẏt = −∇yc(Xt, Yt) + Λ(∇ log ϱ2(Yt)−∇ log ρ2(Yt, t));

(3.20)

where Law(X0, Y0) = γ0. Here ρ1(·, t) is the density of Law(Xt) and ρ2(·, t) is the density

of Law(Yt). If we assume the process (Equation 3.20) is well-defined, then the probability

density ρt(x, y) of (Xt, Yt) should solve the PDE (Equation 3.19).

When we take a closer look at (Equation 3.20), we can verify that the movement of

particle (Xt, Yt) at certain time t depends on the probability density of Law((Xt, Yt)) at

(Xt, Yt), which can be approximated by the distribution of the surrounding particles near

(Xt, Yt). Such equation (Equation 3.19) can be treated as a limit case of aggregation-

diffusion equation [84, 85] with Dirac kernel convolution. Generally speaking, we plan

to evolve (Equation 3.20) as a particle aggregation model in order to produce to a sample-

wised approximation of the optimal tansport plan γOT for Kantorovich problem (Equation 2.6).

3.3.5 Proposed algorithm

To simulate the stochastic process (Equation 3.20) with the Euler scheme, we apply the

Kernel Density Estimation [76] here to approximate ∇ log ρ(x) by convolving it with cer-

tain kernel function K(x, ξ)2:

∇ log ρ(x) ≈ ∇ log(K ∗ ρ)(x) = (∇xK) ∗ ρ(x)
K ∗ ρ(x) (3.21)

2In this research, we choose the Radial Basis Function (RBF) as the kernel: K(x, ξ) = exp(− |x−ξ|2
2τ2 ).
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Here K ∗ ρ(x) =
∫
K(x, ξ)ρ(ξ)dξ, (∇xK) ∗ ρ(x) =

∫
∇xK(x, ξ)ρ(ξ)dξ3. Such tech-

nique is also known as blobing method [85][86]. With the blobing method, ∇ log ρ(x) is

evaluated based on the locations of the particles:

Eξ∼ρ∇xK(x, ξ)

Eξ∼ρK(x, ξ)
≈
∑N

k=1 ∇xK(x, ξk)∑N
k=1K(x, ξk)

ξ1, ..., ξN , i.i.d. ∼ ρ

Now we are able to simulate (Equation 3.20) with the following interacting particle system

involving N particles {(Xi, Yi)}i=1,...,N . For the i-th particle, we have:


Ẋi(t) = −∇xc(Xi(t), Yi(t))− Λ

(
∇V1(Xi(t)) +

∑N
k=1 ∇xK(Xi(t), Xk(t))∑N
k=1K(Xi(t), Xk(t))

)

Ẏi(t) = −∇yc(Xi(t), Yi(t))− Λ

(
∇V2(Yi(t)) +

∑N
k=1∇xK(Yi(t), Yk(t))∑N
k=1K(Yi(t), Yk(t))

) (3.22)

Here we denote V1 = − log ϱ1, V2 = − log ϱ2. Since we only need the gradients of V1, V2,

as emphasized in subsection 3.3.1, our algorithm is capable of dealing with unnormalized

probability measures. When t → ∞, with sufficient large N and Λ, we can numerically

verify that the empirical distribution 1
N

∑N
i=1 δ(Xi(t),Yi(t)) will converge to the optimal distri-

bution γcET of (Equation 3.15). We provide the algorithm and discussion on random batch

method in subsection B.2.4.

3.3.6 Experiments

We test our algorithm on several illustrative examples. The experiments are conducted on

a computer with 2.4GHz CPU, 15.3GB of memory.

1D Gaussian We consider two 1D Gaussian distributions N (−4, 1),N (6, 1) as the

marginal distributions and run our algorithm to compute the sample approximation of the

optimal transport plan. In this experiment, we choose λ = 200,∆t = 0.001 and evolve with

1000 particles for 1000 iterations. We initialize our samples {(Xi, Yi)} by sampling {Xi}
3Notice that we always use ∇xK to denote the partial derivative ofK with respect to the first components.
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Figure 3.6: Marginal plot for 1D Gaussian example. The red and black dashed curves
indicate the two marginal distributions, the solid pink and gray curves are kernel estimated
densities of particles at certain iterations. The marginals usually converge fast: after 25
iterations, the marginal samples {Xi}, {Yi} already matched with the real marginals very
well.

Figure 3.7: The sample approximation for 1D Gaussian example. The blue straight line
corresponds to the optimal transport map T (x) = x+ 10.

from N (−15, 4), and {Yi} from N (15, 2). The empirical results are shown in Figure 3.6

and Figure 3.7. We can verify that after 1000 iterations, we obtain a valid approximation

of the optimal transport plan.

1D Gaussian Mixture We apply our method to 1D Gaussian mixtures with ϱ1 =

1
2
N (−1.5, 1) + 1

2
N (1.5, 1), ϱ2 = 1

2
N (−4, 2) + 1

2
N (4, 2). In this experiment, we set

λ = 60,∆t = 0.0004 and run with 800 particles (Xi, Yi)’s for 5000 iterations. We initial-

ize the samples {Xi, Yi} by sampling from N ((0, 0), 2I2). The well match on the marginal

distributions as well as the sample approximation of the optimal transport plan are reflected

in Figure 3.8.

For further experiments on synthetic data sets, as well as Wasserstein Barycenter prob-

lems, we refer the readers to [22].
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Figure 3.8: 1D Gaussian mixture. Left. Marginal plot. The dash curves are two marginal
distributions. The histogram indicates the distribution of the particles after 5000 iterations.
Right. Sample approximation of the optimal coupling.

3.3.7 Conclusion

In this research work, we propose the constrained Entropy Transport problem (Equation 3.15)

and study some of its theoretical properties. We mainly discover and prove that the optimal

distribution of (Equation 3.15) can be treated as an approximation to the optimal transport

plan to the original Kantorovich problem (Equation 2.6) in the sense of Γ-convergence. We

also derive the Wasserstein gradient flow of the Entropy Transport functional. We propose

a novel algorithm that computes for the sample-wised optimal transport plan by evolving an

interacting particle system. We test our algorithm on several illustrative examples. Further

theoretical analysis on the convergence of Wasserstein gradient flow, as well as numerical

experiments on higher dimensional data sets will be considered in our future projects.
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3.4 Learning High Dimensional Wasserstein Geodesics

3.4.1 Introduction

As being emphasized in the previous sections, optimal transport distance has been widely

used to evaluate the distance between two distributions. Recall subsection 2.1.5, we can re-

cast the classical OT problem (Equation 2.2),(Equation 2.6) as an optimal control problem

involving dynamical process [61]. For example, by setting L(v) = |v|2, one obtains

W 2
2 (µ, ν) = inf

{∫ 1

0

∫
Rd

ρ(x, t)|v(x, t)|2dxdt
}
,

subject to: ∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, ρ(·, 0) = ρa, ρ(·, 1) = ρb. (3.23)

Here and for the following part of this section, we denote ρa, ρb as the densities of distri-

butions µ, ν. Recall Example 2.1.4, the geodesic equation for solving (Equation 3.23) is

characterized by the PDE system

∂tρ+∇ · (ρ∇Φ) = 0,
∂Φ

∂t
+

1

2
|∇Φ|2 = 0, (3.24)

subject to: ρ(·, 0) = ρa, ρ(·, 1) = ρb.

Knowing the Wasserstein geodesic between µ and ν (We refer the readers to Figure 2.3,

trajectory of the particle movement is indicated by the red line.) provides ample informa-

tion for their Wasserstein distance and optimal transport map. More importantly, since

the Wasserstein geodesic is automatically energy-minimizing, it offers a natural sampling

mechanism without using additional artificial regularization to generate samples not only

for the target distribution ν, but also for all distributions along the Wasserstein geodesic.

This is different from several recent OT based models for computing the optimal transport

map, such as Jacobian and Kinetic regularized OT [87] and L2 regularized OT [88].

Wasserstein geodesics also find applications in robotics and optimal control researches.
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In [65], the authors apply Brenier-Benamou OT to swarm control and updates the velocity

of each agent. In [66], people study the locations of robots by minimizing the Wasserstein

distance between original and target distributions. Investigations on diverse OT applica-

tions in control theories are provided in [89, 90]. Currently, the research that combines OT

with robotics or control is still limited to low dimensions. We believe, having a method

to compute the Wasserstein geodesic, especially in high dimensional settings, will be ben-

eficial for developing novel algorithms and applications in robotics and control, such as

path planning for multi-agent systems. Furthermore, various OT models bring numerous

applications in domain adaptation [13], generative models [8], inverse problems related to

stochastic dynamics [67] as well as color transfer [19], which is also one of the experiments

in this research.

Last but not least, finding an efficient method to compute the Wasserstein geodesic

is important and challenging in applied mathematics as well. It is well-known that di-

rectly solving Problem (Equation 3.23) or (Equation 3.24) by the traditional numerical

PDE methods, such as finite difference or finite element method which requires spatial

discretization, must face the curse of dimensionality, meaning that the computational cost

grows exponentially as the dimension increases.

In our treatment, we first formulate the OT problem as a saddle point problem without

introducing any regularizers. We further reduce the search space for the saddle point prob-

lem by leveraging KKT conditions. By parametrizing the drifting vector field as well as

the Lagrange multipliers via deep neural networks, we perform our training process alter-

nately. The resulting method is a sample based algorithm that is capable of handling high

dimensional Wasserstein geodesic. We summarize our contributions as following:

• We develop a novel saddle point formulation so that high dimensional Wasserstein geodesic,

optimal map as well as Wasserstein distance between two given distributions can be com-

puted in one single framework.

• Our scheme is formulated to handle general convex cost functions, including the general
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Lp-Wasserstein distance. More importantly, it provides a method without requiring con-

vexity or Lipschitz constraint. Such constraints are usually considered as thorny issues

since they can only be roughly enforced in many proposed methods for optimal transport

problems.

• We show the effectiveness of our method through extensive numerical experiments with

both synthetic and realistic data sets.

We refer the readers to subsection 3.1.1 and subsection 3.1.3 for related references.

It is worth mentioning that in [17], the authors compute high dimensional Wasserstein

geodesic by relaxing the terminal constraint and incorporating it in the cost functional, thus

they are computing for a slightly biased OT problem, which is different from our propose

scheme.

We also note that a similar strategy formulated by [91] derives a saddle point opti-

mization scheme for solving the mean field game equations. We should point out that our

problem setting and sampling method are distinct from theirs.

We refer the readers to subsection 2.1.5 and subsection 2.1.6 for related mathematical

backgrounds of this section.

3.4.2 Proposed method

Primal-Dual based saddle point scheme

Let us recall that in subsection 2.1.5, we consider the Lagrange multiplier method for solv-

ing the dynamical OT problem (Equation 2.20), which is a constrained minimization prob-

lem. We consider the functional: (In the following discussion of this section, we denote
∫

as
∫
Rd for simplicity.)

L(ρ, v,Φ,Ψa,Ψb) =

∫ 1

0

∫ (
L(v)− ∂Φ

∂t
−∇Φ · v

)
ρ(x, t) dxdt+

∫
(−Ψaρa −Ψbρb) dx

+

∫
(Ψa(x)− Φ(x, 0))ρ(x, 0) dx+

∫
(Ψb(x) + Φ(x, 1))ρ(x, 1) dx.
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The dynamical OT problem (Equation 2.20) is equivalent to the saddle point problem

max
Φ,Ψa,Ψb

min
ρ,v

L(ρ, v,Φ,Ψa,Ψb), (Equation 2.25)

or min
ρ,v

max
Φ,Ψa,Ψb

L(ρ, v,Φ,Ψa,Ψb). (Equation 2.26)

We want to reduce the number of variables in the saddle point problem (Equation 2.25),

(Equation 2.26). This goal can be achieved by incorporating certain equations derived

from the KKT conditions (Equation 2.27). Specifically, conditions ∂L
∂ρ

= 0, ∂L
∂v

= 0 yields

Ψb(x) = −Φ(x, 1),Ψa(x) = Φ(x, 0), and v(x, t) = ∇L−1(∇Φ(x, t)). Plugging these

relations into L(ρ, v,Φ,Ψa,Ψb), we obtain the following functional of ρ and Φ:

L̂(ρ,Φ) =

∫ 1

0

∫
−
(
∂Φ

∂t
+H(∇Φ)

)
ρ(x, t) dxdt+

∫
(Φ(x, 1)ρb(x)−Φ(x, 0)ρa(x)) dx.

(3.25)

Now instead of solving (Equation 2.25) or (Equation 2.26), we then seek for the saddle

points of L̂(ρ,Φ), i.e., we consider

max
Φ

min
ρ

L̂(ρ,Φ), (3.26)

or min
ρ

max
Φ

L̂(ρ,Φ). (3.27)

Simplification via geodesic pushforward map

In saddle point problems (Equation 3.26) and (Equation 3.27), both variables ρ(·, t) and

Φ(·, t) are time-varying functions. This requires to optimize over rather large space of

time-varying functions, which may increase the computational cost as well as the chance

of encountering local optima. To mitigate this challenge, recall Theorem 2.1.6 stated in

subsection 2.1.5, we can reduce the search space by leveraging the geodesic property of

optimal transporting trajectory if L is strictly convex. To be more specific, Theorem 2.1.6

indicates that under the steering of the optimal vector field v∗(·, t), each particle is trans-
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porting along geodesic (straight line) with constant speed. This observation further leads

to Corollary 2.1.6.1, which asserts

ρ∗(·, t) = (Id + tv∗(·, 0))♯ρa. (Equation 2.46)

Here (ρ∗, v∗) denotes the optimal solution to dynamical OT problem (Equation 2.20).

(Equation 2.46) justifies that the optimal ρ∗(·, t) can be obtained by pushforwarding

the initial ρa along certain straight lines with initial direction v∗(·, 0). This observation

motivates us to restrict the search space of {ρ(·, t)}0≤0≤1 on the following set:

{ {ρ(·, t)}0≤t≤1 | ρ(·, t) = (Id + tF )♯ρa for t ∈ [0, 1] }.

Here F is an arbitrary vector field defined on Rd. Under such choice, the time dependent

density {ρ(·, t)} is now uniquely determined by the vector field F . Combining this with

saddle point problems (Equation 3.26), (Equation 3.27), we reformulate our scheme as

min
F

max
Φ

L(F,Φ), (3.28)

or max
Φ

min
F

L(F,Φ). (3.29)

Here we denote our target functional L as

L(F,Φ) = L̂((Id + tF )♯ρa,Φ). (3.30)

In our actual implementation on both schemes (Equation 3.28) and (Equation 3.29), we

discovered that the min-max scheme is working much more stable and producing better

results than the max-min scheme. Rigorous justification of this phenomena is still under

research. But to this stage, our intuition for such phenomena is that the inner optimization

over Φ is enforcing the continuity equation constraint (Equation 2.38), which may help
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improving the quality of computed {ρ(·, t)}.

Furthermore, we have the following theoretical guarantee on L:

Theorem 3.4.1. Denote the optimal solution to (Equation 2.20) as (ρ∗(x, t),Φ∗(x, t)). Set

Φ∗
0(·) = Φ∗(·, 0). Assume Φ∗(·, t) ∈ C2(Rd), then (∇L−1(∇Φ∗

0),Φ
∗) is the critical point

to functional L, i.e.

∂L
∂F

(∇L−1(∇Φ∗
0),Φ

∗) = 0,
∂L
∂ψ

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

Furthermore, L(∇L−1(∇Φ∗
0),Φ

∗) = CDym(ρa, ρb), where CDym(ρa, ρb) is denoted as the

optimal value of (Equation 2.20). By subsection 2.1.6, this is exactly the OT distance be-

tween ρa and ρb with cost function c(x, y) = L(x− y).

Theorem 3.4.1 shows that the optimal solution of dynamical OT problem is also the crit-

ical point of the functional used in our saddle point optimization scheme (Equation 3.30).

If the saddle point of L is unique, at such saddle point, value of L is exactly the optimal

transport distance between ρa, ρb. The theorem is proved in the appendix section B.3.

Bidirectional dynamical formulation

To improve the stability and avoid local traps in the training processing, we propose a

bidirectional scheme by exploiting the symmetric status of ρa and ρb as in the optimal

transport distance Theorem 2.1.3.

Let’s consider two OT problems

min
F

max
ΦF

Lab(F,ΦF ), min
G

max
ΦG

Lba(G,ΦG),

where Lab is defined in (Equation 3.28), and Lba is defined by switching ρa and ρb in

(Equation 3.28). When reaching optima, the vector fields F and G are transport vectors

in the opposite directions. At a specific point x ∈ Rd, moving along straight line in the
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direction F ends up at x+F (x). The direction of G at x+F (x) must point to the opposite

direction of F (x), which leads to G(x + F (x)) = −F (x). Similarly, we also have F (x +

G(x)) = −G(x). Thus we introduce two regularization terms for F and G as

Rab(F,G) =

∫
|G(x+ F (x)) + F (x)|2 ρa(x) dx,

Rba(F,G) =

∫
|F (x+G(x)) +G(x)|2ρb(x) dx.

Our final saddle-point problem becomes

min
F,G

max
ΦF ,ΦG

Lab(F,ΦF ) + Lba(G,ΦG) + λ(Rab(F,G) +Rba(F,G)), (3.31)

where λ is a tunable coefficient of our constraint terms.

Overview of the algorithm

We will mainly focus on solving the saddle point problem (Equation 3.31) in our research.

we propose an algorithm that is summarized in the following steps. Please check its detailed

discussions in appendix section B.3.

• Preconditioning We can apply preconditioning techniques to 2-Wasserstein cases in or-

der to make our computation more efficient.

• Main Algorithm We set Fθ1 , Gθ2 and ΦF
ω1
,ΦG

ω2
as fully connected neural networks and

optimize over their parameters ω1, ω2 and θ1, θ2 alternatively via stochastic gradient as-

cend and descend.

• Stopping Criteria When computed F (orG) is close to the optimal solution, the Wasser-

stein distance W (ρa, ρb) (or W (ρb, ρa)) can be approximated by

Ŵ ab =

∫
L(F (x)) ρa(x) dx, Ŵ

ba =

∫
L(G(x)) ρb(x) dx.
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For a chosen threshold ϵ > 0, we treat |Ŵ ab − Ŵ ba| < ϵ as the stopping criteria of our

algorithm.

3.4.3 Experiments

Experiment Setup: We test our algorithm through a series of synthetic data sets and com-

pare our numerical results with the computational methods introduced in the Python library

(Python Optimal Transport (POT)) [92]. We also test our algorithm for realistic data sets

including color transfer [93] and transportation between MNIST digits [94]. The detailed

information on experimental set up is provided in appendix subsection B.3.4.

Notice that we are computing Wasserstein geodesic, namely, starting with an initial

distribution ρt0 with t0 = 0.0, in most cases we generate interpolating distributions for next

ten time steps, from t1 = 0.1 to t10 = 1. The cost functions are chosen as L(v) = |v|2.

We show the final state of the generated distribution for most of the examples due to space

limitation. More experiments can be found in [23].

Synthetic: As a 10-dimensional case, here we set ρa as a standard Gaussian distribution

and ρb as a special distribution where samples are unevenly distributed around four corners.

We show the results of two dimensional projection in Figure 3.9.

For this synthetic data set, in the training process we set the batch size Nt = 2000

and sample size for demonstration Np = 1000. For Figure 3.9, we can tell that in this

10 dimensional case, the generated samples closely follow the ground-truth distributions.

Furthermore, we compare in Figure 3.10 the discrepancy between our numerical results

with the results computed by POT package.

Realistic-1: In this case the view of the West Lake in summer and the view of the

White Tower in autumn are given, then we aim to do a color transfer and simulate the

summer view of White Tower and the autumn view of West Lake, the results are shown in

Figure 3.11, the ground-truth and generated palette distributions are also included.

Realistic-2: We choose MNIST as our data set (28 × 28 dimensional) and study the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Syn-3. (a)(b) true ρa and generated ρb, (c)(d) true ρb and generated ρa, (e)(g)
tracks of sample points from ρa(ρb) to ρb(ρa), (f)(h) vector fields from ρa(ρb) to ρb(ρa).

(a) (b) (c)

Figure 3.10: Left: Syn2: L2(ρa) error between our computed F and the real OT map vs
iteration number; Middle: Syn1: Plot of our computed F (blue) and the OT vector field
computed by POT (orange); Right: Syn3: Plot of our computed F and the OT vector field
computed by POT (orange).

Wasserstein mappings as well as geodesic between digit 0(ρa) and digit 1(ρb), digit 4(ρa)

and digit 8(ρb), digit 6(ρa) and digit 9(ρb). We present part of the results in Figure 3.12.

For realistic-1, we set the batch size Nt = 1000, for realistic-2 in each iteration we

take Nt = 500 pictures for training. For realistic-2 data, we add small noise to the samples

during the training process in order to make our training process more robust.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Real-2, Color transfer. (a)(b) true summer(generated autumn) view of the
West Lake, (c)(d) true autumn(generated summer) view of the White Tower, (e)(f) palette
distribution of the true summer West Lake(generated summer White Tower), (g)(h) palette
distribution of the true autumn White Tower(generated autumn West Lake).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.12: Real-3, Digits transformation. (a)(b) true(generated) digit 4(8), (c)(d)
true(generated) digit 8(4), (e)(f) true(generated) digit 6(9), (g)(h)true(generated) digit 9(6).

3.4.4 Conclusion

OT problem has been drawing more attention in machine learning recently. Though many

algorithms have been proposed during the past several years for efficient computations,

most of them do not consider the Wasserstein geodesics, neither be suitable for estimating

optimal transport map with general cost in high dimensions. In this work we present a novel

method to compute Wasserstein geodesic between two given distributions with general

convex cost. Our method not only computes for the sample based Wasserstein geodesics,

but also provides Wasserstein distance and optimal map. We demonstrate the effectiveness

of our scheme through a series of experiments on both synthetic and realistic data sets. We

are also working on generalizing our numerical scheme to the case of general Lagrangian
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cost L(x, v). Such generalized method will find its broad applications in optimal control

and robotics research, where one needs to steer the distribution of mobile agents to the

target distribution by optimizing the running cost.
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CHAPTER 4

COMPUTATION OF HIGH DIMENSIONAL FOKKER-PLANCK EQUATIONS

VIA PARAMETRIC PUSHFORWARD MAPS

4.1 Introduction

In this chapter, we will mainly focus on the method proposed by us [24],[25] for computing

high dimensional Fokker-Planck equations.

The Fokker-Planck equation is a parabolic partial differential equation (PDE) that plays

a crucial role in stochastic calculus, statistical physics, biology and many other disciplines

[95, 96, 37]. Recently, it has seen many applications in machine learning as well [97,

98, 99]. The Fokker-Planck equation describes the evolution of probability density of a

stochastic differential equation (SDE). In this research, we mainly focus on the following

linear Fokker-Planck equation

∂ρ(t, x)

∂t
=∇ · (ρ(t, x)∇V (x)) +D∆ρ(t, x), ρ(0, x) = p(x), (4.1)

where x ∈ Rd, V : Rd → R is a given potential function, D > 0 is a diffusion coefficient,

and p(x) is the initial (or reference) density function. In numerical algorithms, there exist

several classical methods [100] such as finite difference [101] or finite element [102] for

solving the Fokker Planck equation. Most of the existing methods are grid based, which

may be able to approximate the solution accurately if the grid sizes become small. How-

ever, they find limited usage in high dimensional problems, especially for d > 3, because

the number of unknowns grows exponentially fast as the dimension increases. This is

known as the curse of dimensionality. The main goal of this research is providing an al-

ternative strategy, with provable error estimates, to solve high dimensional Fokker-Planck

equations.
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4.1.1 Neural parametric Fokker-Planck equation

To overcome the challenges imposed by high dimensionality, we leverage the generative

models in machine learning [103] and a new interpretation of the Fokker-Planck equation

in the theory of optimal transport [7]. We first introduce the KL divergence, also known as

relative entropy, defined by

DKL(ρ||ρ∗) =
∫
Rd

ρ(x) log

(
ρ(x)

ρ∗(x)

)
dx ρ∗(x) =

1

ZD
e−

V (x)
D , with ZD =

∫
Rd

e−
V (x)
D dx.

Here ρ∗(x) is the Gibbs distribution. A well-known fact is that the Fokker-Planck equation

(Equation 4.1) can be viewed as the gradient flow of the functional D DKL(ρ||ρ∗) on the

probability space P equipped with Wasserstein metric gW [5, 4]. Recently, this line of

research has been extended to parameter space in the field of information geometry [104,

105, 106], leading to an emergent area called transport information geometry [107, 108,

109, 110].

Inspired by aforementioned work, we study the Fokker-Planck equation defined on

parameter manifold (space) Θ ⊂ Rm equipped with metric tensor G which is obtained by

pulling back the Wasserstein metric gW to Θ. Here the metric tensor G can be viewed

as an m × m matrix that contains all the metric information on Θ. In this research, we

focus on the parameter space from generative models using neural networks. Our line of

thoughts can be summarized as following. We start with a given reference distribution p,

and consider a suitable family of parametric maps {Tθ}θ∈Θ. Such Tθ : Rd → Rd is also

called parametric pushforward map since it generates a family of parametric distributions

{Tθ♯p} by pushing forward p using Tθ (see Definition (Equation 2.1)). Then we consider

the map T(·)♯ : Θ → P , θ 7→ Tθ♯p, which can be treated as an immersion from parameter

manifold Θ to probability manifold P . We derive the metric tensor G(θ) by pulling back

the Wasserstein metric via T(·)♯. Once establishing (Θ, G), we can compute the G-gradient

flow of function H(θ) = D DKL(Tθ♯p || ρ∗) defined on the parameter manifold. This leads
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to an ODE system that can be viewed as a parametric version of Fokker-Planck equation:

θ̇t = −G(θt)−1∇θH(θt). (4.2)

Here (and for the rest of this chapter) dot symbol θ̇ stands for time derivative dθt
dt

. Using the

pushforward ρθ = Tθ♯p, in which θ is the solution of (Equation 4.2), we can approximate

the solution ρt in (Equation 4.1).

There are many potential applications for the parameteric Fokker Planck equation. For

example, the solution of (Equation 4.2) can be immediately used for sampling, which is

a crucial task in statistics and machine learning. To be more precise, if the goal is draw-

ing a large number of samples from ρt at N different time instances {t1, t2, ..., tN} along

the solution of (Equation 4.1), we can acquire N sets of parameters θt1 , ..., θtN from the

solution of (Equation 4.2), which provide N pushforward maps Tθt1 , ..., TθtN . Thus the de-

sired samples at time tk are {Tθtk (Z1), ..., Tθtk (ZM)}, in which {Z1, ...,ZM} are samples

drawn from the reference distribution p. If needed, the pushforward maps can be conve-

niently reused to generate more samples with negligible additional cost.

4.1.2 Computational method

For the computation of (Equation 4.2), we want to point out that metric tensorG(θ) doesn’t

have an explicit form and thus the direct computation of G(θ)−1∇θH(θ) is not tractable.

To deal with this issue, we design a numerical algorithm based on the semi-implicit Euler

scheme of (Equation 4.2) with time step size h. To be more precise, at each time step, the

algorithm seeks to solve the following double-minimization problem:

min
θ

{(∫ (
2 ∇ϕ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇ϕ(x)|2

)
ρθk(x) dx

)
+ 2hH(θ)

}
with ϕ solves: min

ϕ

{∫
|∇ϕ(x)− ((Tθ − Tθk) ◦ T−1

θk
(x))|2ρθk(x) dx

}
.

(4.3)
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Here ρθk is the density of the pushforwarded distribution Tθk♯p (Equation 2.1). And ϕ : Rd →

R is the Kantorovich dual potential variable for constrained probability models in optimal

transport theory. Hence (Equation 4.3) is derived following the semi-implicit Euler scheme

in the dual variable. The advantage of using this formulation is that it allows us to design

an efficient implementation, purely based on sampling techniques which are computational

friendly in high dimensional problems, to compute the solution of the parameteric Fokker-

Planck equation (Equation 4.2). In our implementation, we endow the pushforward map

Tθ with certain kinds of deep neural network known as Normalizing Flow [103], because

it is friendly to our scheme evaluations. The dual variable ϕ in the inner maximization is

parametrized by the deep Rectified Linear Unit (ReLU) networks [111]. Once the network

structures for Tθ and ϕ are chosen, the optimizations are carried out by stochastic gradient

descent method [112], in which all terms involved can be computed using samples from

the reference distribution p. We stress that this is critical in scaling up the computation in

high dimensions. It is worth mentioning that we use neural network as a computational

tool without any actual data. Such “data-poor” computation is in significant contrast to the

mainstream of deep learning research.

4.1.3 Major innovations of the proposed method

There are two main innovative points regarding our proposed method:

• (Dimension reduction) Reducing the high dimensional evolution PDE to a finite di-

mensional ODE system on parameter space. Equivalently, we use the dynamics in

a finite dimensional to approximate the density evolution of particles that follow the

Vlasov-type SDE

Ẋ t = −∇V (X t)−D∇ log ρt(X t), ρt is the density function of distribution of X t.

Here D is the diffusion coefficient as mentioned in (Equation 4.1). The density func-
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tion ρt corresponds to the Fokker-Planck equation (Equation 4.1).

• (Sampling-friendly) We distill the information of ρt into parameters {θt} by solving

the parametric Fokker-Planck equation (Equation 4.2). By doing so, we are able to

obtain an efficient sampling technique to generate samples from ρt for any time step

t. To be more precise, once we have applied our algorithm to solve (Equation 4.2) for

the time-dependent parameters {θt}, we can then generate samples from ρt by push-

ing forward the samples drawn from a reference distribution p using the pushforward

map Tθt with very little computational cost. Such “implementing once for free future

uses” mechanism is one of the significant advantages of our proposed algorithm. It is

worth mentioning that in the view of both theoretical derivation and numerical imple-

mentation, our method is very different from Langevin Monte Carlo (LMC, MALA)

methods [113, 114], which aims at targeting the stationary distribution of the SDE

associated to (Equation 4.1); or moment methods [96] , which focuses on keeping

track of certain statistical information of the density ρt.

4.1.4 Sketch of numerical analysis

In addition to the method proposed for solving (Equation 4.1), we also conducted a math-

ematical analysis on (Equation 4.2) and our algorithm. We established asymptotic conver-

gence and error estimates for the parametric Fokker-Planck equation (Equation 4.2), which

are summarized in the following two theorems:

Theorem 5.1 (Asymptotic convergence). Consider the Fokker-Planck equation (Equation 4.1)

with potential V and diffusion coefficient D. Suppose V can be decomposed as V =

U + ϕ with U ∈ C2(Rd), ∇2U ⪰ KI1 with K > 0 and ϕ ∈ L∞(Rd), and {θt} solves

(Equation 4.2). Then the following inequality holds,

DKL(ρθt∥ρ∗) ≤
δ0

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0∥ρ∗)e−Dλ̃Dt,

1The matrix ∇2U(x)−KId×d is non-negative definite for any x ∈ Rd.
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where ρ∗ is the Gibbs distribution, λ̃D > 0 is a constant related to the potential function V

and D. δ0 is a constant depending on the approximation power of pushforward map Tθ.

Theorem 5.11 (Approximation error). Consider the Fokker-Planck equation (Equation 4.1)

with potential V , diffusion coefficient D and initial density ρ0. Assume that λ is a lower

bound of Hessian of potential V , i.e. ∇2V ⪰ λI , δ0 is defined in Theorem 5.1, E0 =

W2(ρθ0 , ρ0), and δ0, E0 ≪ 1, then the following uniform bounds for the L2-Wasserstein

error W2(ρθt , ρt) hold:

• When λ > 0, W2(ρθt , ρt) ≤ max{
√
δ0/λ,E0} ∼ O(

√
δ0 + E0),

• When λ = 0, W2(ρθt , ρt) ≤
√
δ0
µD

log B√
δ0+E0

+ E0 ∼ O(
√
δ0 log

1√
δ0+E0

+ E0),

• When λ < 0, W2(ρθt , ρt) ≤ A
√
δ0 + C

(
E0 +

√
δ0/|λ|

)α ∼ O((E0 +
√
δ0)

α).

Here δ0 is a constant depending on the approximation power of pushforward map Tθ.

µD, A,B,C > 0 are constants only depending on V,D, ρ0, θ0. And α = µD
|λ|+µD

is a certain

exponent between 0 and 1.

This result reveals that the difference between the solutions of the parametric Fokker-

Planck equation (Equation 4.2) and the original equation (Equation 4.1), measured by their

Wasserstein distanceW2(ρθt , ρt), has a uniformly small upper bound if both the initial error

E0 and δ0 are small enough. Most of the techniques used in our analysis for establishing

such a result rely on the theory of optimal transport and Wasserstein manifold, which are

still not commonly used for numerical analysis in relevant literature. Besides error analysis

for the continuous version of (Equation 4.2), we are able to provide the order of W2-error

for the numerical scheme when (Equation 4.2) is computed at discrete time by numerical

schemes. To be more precise, if we apply forward-Euler scheme to (Equation 4.2) and

compute {θk} at different time nodes {tk}, we can show that error at tk: W2(ρθk , ρtk) is

of order O(
√
δ0) + O(Ch) + O(E0) for finite time t. This is summarized in the following

theorem:
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Theorem 5.14 (Error for discrete scheme). Assume that {ρt}t≥0 solves (Equation 4.1) with

potential satisfying λI ⪯ ∇2V ⪯ ΛI , {θk}Nk=0 is the numerical solution of (Equation 4.2)

at time nodes tk = kh for k = 0, 1, ..., N computed by forward Euler scheme with time step

h. Recall δ0 as mentioned in Theorem 5.1 and we denote E0 = W2(ρθ0 , ρ0), then we have:

W2(ρθk , ρtk) ≤ (
√
δ0h+ Ch2)

(1− e−λtk)

1− e−λh
+ e−λtkE0 ∼ O(

√
δ0) +O(Ch) +O(E0),

for all 0 ≤ k ≤ N . Here C is a constant depending on N and h.

This indicates that the W2-error is dominated by three different terms: O(
√
δ0) is the

intrinsic error originated from the approximation mechanism of the parametric Fokker-

Planck equation; O(Ch) term is induced by the time discretization; and O(E0) term is

the initial error. We further prove that the difference between the forward Euler scheme

and our semi-implicit Euler scheme is of order O(h2), which implies that the proposed

semi-implicit Euler scheme can achieve a similar error bounds as the one presented in

Theorem 5.14.

It is worth mentioning that we establish Theorem 5.14 based on totally different tech-

niques than those used for Theorem 5.11. Since the ODE (Equation 4.2) contains the term

G(θ)−1, which is hard to handle by the traditional strategies, we interpret it as a particle

system governed by a stochastic differential equations (SDEs) of Vlasov type, and obtain

the analysis results shown in Theorem 5.14.

4.1.5 Literature review

Numerous works exist for solving the Fokker-Planck equations. A finite difference scheme

is proposed in [101] so that it preserves the equilibrium of the original equation. A more

general class of equations possessing Wasserstein gradient flow structures is solved in

[115]. in which the method is based on a space discretization of a proximal-typed scheme

(also known as JKO method [83]). Besides direct solutions, particle simulation techniques
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also serve as an efficient way of solving the equation. The so-called “Blob” method is pro-

posed in [85] and solves the equations by evolving a certain interacting particle systems.

Related swarming system is also studied in [116, 117, 118, 119, 120]. In [121], the authors

propose another type of interacting systems in order to approximate ∇ log ρ, which plays

the role of the diffusion term in the Fokker-Planck equation, with higher accuracy and less

fluctuation. In [122, 123], the authors mainly focus on exploiting the gradient flow struc-

ture, i.e. a particle discretization of the Fokker–Planck equation, to deal with Bayesian

inference problems.

In addition to the literature focusing on solving the Fokker-Planck equations, There

are existing works on applying neural networks to solve PDE of various types in high di-

mensional spaces [124, 125, 126, 127, 128, 129]. Among the listed works, algorithms for

general types of high dimensional PDEs are provided in [125, 126]; a sampling friendly

method is proposed in [129] to deal with the general optimal control problem of diffusion

processes. This is equivalent to solving an associated Hamilton-Jacobi-Bellman equation

and such technique can also be applied to importance sampling and rare event simulation.

Moreover, numerical methods for high dimensional parabolic PDEs, to which the Fokker-

Planck equation belongs, are studied in [124] and [127]. Our approach differs from these

existing works in many aspects, including motivations, strategies, and the associated nu-

merical analysis.

For example, in [124], the authors propose to use the non-linear Feynmann-Kac for-

mula to re-write certain parabolic PDEs as the Backward Stochastic Differential Equation

(BSDE), which is then reformulated as a stochastic control problem (also known as re-

inforcement learning in machine learning community). By applying deep neural network

as the control function and optimizing over network parameters, the solution at any given

space-time location can be evaluated. Another example is [127], which mainly focuses on

computing the committor function that solves a steady-state (time-independent) Fokker-

Planck equation with specific boundary conditions. This committor function can be treated
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as the solution to a variational problem associated with an energy functional. A neural

network is used to replace the solution in the variational problem. When optimizing over

network parameters, the neural network can be used to approximate the committor func-

tion.

In this research, we focus on designing a sampling-friendly method for the time de-

pendent Fokker-Planck equation. There are two main reasons that motivate us for this in-

vestigation. One, as mentioned before, is to design sample based algorithm to solve PDEs

in high dimensions. The other is to provide an alternative sampling strategy that can be

potentially faster than LMC. Our approaches are different in terms of how deep networks

are leveraged to approximate the solution of the PDE. We use pushforward of a given refer-

ence measure by neural networks to create a generative model. This is to approximate the

stream of probability distributions, which can be used to generate samples not only at the

terminal time, but also any time in between. More importantly, we prove results, obtained

by using newly developed techniques based on Wasserstein metric on probability manifold,

on the asymptotic convergence and error control of our numerical schemes. To the best of

our knowledge, similar results are still lacking in existing studies.

4.1.6 Organization of this chapter

We organize this chapter as follows. In section 4.2, we briefly introduce some background

knowledge of the Fokker-Planck equation, including its relation with SDE and its Wasser-

stein gradient flow structure. In section 4.3, we introduce the Wasserstein statistical man-

ifold (Θ, G) and derive our parametric Fokker-Planck equation as the manifold gradient

flow of relative entropy on Θ. We study the geometric property of this equation, including

an insightful particle motion based interpretation of the parametric Fokker-Planck equation.

In section 4.4, we discuss the straightforward method for 1-D Fokker-Planck equation. In

section 4.5, we design a numerical scheme that is tractable for computing our parametric

Fokker-Planck equation using deep learning framework. Some important details of imple-
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mentation will be discussed. We present asymptotic convergence and error estimates for the

parametric Fokker-Planck equation in section 4.6, and provide some numerical examples

in section 4.7.

4.2 Background on the Fokker-Planck equation

In this section, we present two different perspectives regarding the Fokker-Planck equa-

tions, More discussion can be found in [130].

4.2.1 As the density evolution of stochastic differential equation

The general form of the Fokker-Planck equation is [131, 132]:

∂ρ(x, t)

∂t
= −∇ · (ρ(x, t)µ(x, t)) + 1

2
∇2 : (D(x, t)ρ(x, t)) (4.4)

= −
d∑
i=1

∂

∂xi
(ρ(x, t)µi(x, t)) +

1

2

d∑
i,j=1

∂2

∂xi∂xj
(Dij(x, t)ρ(x, t)), ρ(x, 0) = ρ0(x).

Here µ = (µ1, ..., µd)
T is the drift function and D = {Dij} is the d × d diffusion tensor.

Furthermore, D can be written as D = σσT, where σ(x, t) is a d× d̃ matrix. One deriva-

tion of the Fokker-Planck equation originates from the following stochastic differential

equation (SDE) [131, 132],

dX t = µ(X t, t) dt+ σ(X t, t) dBt, X0 ∼ ρ0,

where {Bt}t≥0 is the standard Brownian motion in Rd̃, and ρ0 is the distribution of the

initial state. It is well known that the evolution of the density ρ(x, t) of the stochastic

process {X t}t≥0 is described by the above the Fokker-Planck equation.

In this research, we consider a more specific type of (Equation 4.4) by setting µ(x, t) =

−∇V (x), σ(x, t) =
√
2D Id×d (D > 0), where Id×d is the d by d identity matrix, and so
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D = 2D Id×d. Then (Equation 4.2.1) is,

dX t = −∇V (X t) dt+
√
2D dBt X0 ∼ ρ0. (4.5)

This equation is also called over-damped Langevin dynamics which has broad applications

in computational physics, computational biology, Bayesian statistics [113, 133, 134]. The

corresponding Fokker-Planck equation is simplified to

∂ρ(x, t)

∂t
= ∇ · (ρ(x, t)∇V (x)) +D∆ρ(x, t), ρ(x, 0) = ρ0(x). (4.6)

In addition, we would like to mention that there is a Vlasov-type SDE corresponding to the

Fokker-Planck equation (Equation 4.6):

dX t

dt
= −∇V (X t)−D ∇ log ρ(X t, t), X0 ∼ ρ0, (4.7)

in which ρ(·, t) is the density of X t. This Vlasov-type SDE (Equation 4.7) will be very

useful in our proofs for the error estimates of our proposed numerical algorithms.

4.2.2 As the Wasserstein gradient flow of relative entropy

Another useful viewpoint states that (Equation 4.6) is the Wasserstein gradient flow of the

following relative entropy functional (also known as Kullbeck-Leibler divergence).

H(ρ) = D DKL

(
ρ
∣∣∣∣∣∣ ρ∗) =

(∫
V (x)ρ(x) +Dρ(x) log ρ(x) dx

)
+D logZD. (4.8)

We provide a brief introduction to Wasserstein manifold as well as Wasserstein gradient

flow in subsection 2.2.1 and subsection 2.2.2.
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4.3 Parametric Fokker-Planck equation

In this section, we provide detailed derivation for our parametric Fokker-Planck equation.

4.3.1 Wasserstein statistical manifold

Consider a parameter space Θ as an open, convex set in Rm, and assume the sample space

is Rd. Let Tθ be a map from Rd to Rd parametrized by θ. In our discussion, we always

assume the invertibility of Tθ(x), and it is second order differentiable with respect to x and

θ, i.e. Tθ(x) ∈ C2(Θ× Rd).

Remark 7. There are many different choices for Tθ:

• We can set Tθ(x) = Ux+ b, with θ = (U, b), U is a d× d invertible matrix, b ∈ Rd;

• We may also choose Tθ as the linear combination of basis functions i.e., Tθ(x) =∑m
k=1 θkΦ⃗k(x), where {Φ⃗k}mk=1 are the basis functions and the parameter θ will be

the coefficients: θ = (θ1, ..., θm);

• We can also treat Tθ as neural network. Its general structure can be written as the

composition of l affine and non-linear activation functions:

Tθ(x) = σl(Wl(σl−1(. . . σ1(W1x+ b1) . . .)) + bl).

In this case, the parameter θ will be the weight matrices and bias vectors of the

neural network, i.e. θ = (W1, b1, ...,Wl, bl).

Let p ∈ P be a reference probability measure with positive density defined on Rd,

such as the standard Gaussian. Recall the definition on the pushforward of measure in

Equation 2.1, we denote ρθ as the density of Tθ♯p. Such kind of mechanism of producing

parametric probability distributions is also known as generative model, which has broad
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applications in deep learning research [135, 136, 137]. We further assume our Tθ satisfy

the following two conditions:

Condition 1:
∫

|z|2ρθ(z) dz =
∫

|Tθ(x)|2 dp(x) <∞ ∀ θ ∈ Θ. (4.9)

This ensures that ρθ ∈ P for each θ ∈ Θ. In order to introduce Wasserstein metric to

the parameter space Θ, we also assume that the Frobenius norm of the operator ∂θTθ(x) :

Rd → Rd×m is locally bounded in the following sense: for any fixed θ∗ ∈ Θ, there exists

r(θ∗) > 0 and two functions L1(·| θ∗), L2(·| θ∗) satisfying

Condition 2: (4.10)

∥∂θTθ(x)∥F ≤ L1(x| θ∗), ∥∂θTθ(x)∥2F ≤ L2(x| θ∗), ∀ θ, |θ − θ∗| < r(θ∗) and x ∈ Rd,

and
∫
L1(x| θ∗) dp(x) <∞,

∫
L2(x| θ∗) dp(x) <∞.

We define the parametric submanifold PΘ ⊂ P as:

PΘ = {ρθ is density function of Tθ♯p | θ ∈ Θ}.

Clearly, the connection between P and Θ is through the pushforward operation Tθ♯ :

Θ → PΘ, θ 7→ ρθ. Hence it is natural to define the Wasserstein metric G(θ) on parameter

space Θ as the pullback of gW by Tθ♯. To be specific, we define G(θ) = (Tθ♯)
∗gW . Using

this definition, Tθ♯ becomes an isometric immersion from Θ to P . For each θ, G(θ) is a

bilinear form defined on TθΘ ≃ Rm, which can be identified as an m×m matrix.

Before computing G(θ), we introduce a lemma which can help us to better understand

G(θ).

Lemma 4.3.1. Suppose u⃗, v⃗ are two vector fields defined on Rd, suppose φ, ψ solves −∇ ·

(ρ∇φ) = −∇ · (ρu⃗) and −∇ · (ρ∇ψ) = −∇ · (ρv⃗), or equivalently, Projρ[u⃗] = ∇φ and
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Projρ[v⃗] = ∇ψ (check Definition 4.5.1). Then:

∫
u⃗(x) · ∇ψ(x)ρ(x) dx =

∫
∇φ(x) · ∇ψ(x)ρ(x) dx; (4.11)∫

|∇ψ(x)|2ρ(x) dx ≤
∫

|v⃗(x)|2ρ(x) dx. (4.12)

We prove Lemma 4.3.1 in Appendix section C.1. The metric tensor G(θ) is computed

in the following theorem.

Theorem 4.3.2. Assume Θ satisfies (Equation 4.9),(Equation 4.10). Tθ is invertible and

Tθ(x) ∈ C2(Θ × Rd). Then Θ can be equipped with the metric tensor G = (Tθ♯)
∗gW ,

which is an m×m non-negative definite symmetric matrix of the form:

G(θ) =

∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))

T dp(x) (4.13)

at every θ ∈ Θ. More precisely, in entry-wise form,

Gij(θ) =

∫
∇ψi(Tθ(x)) · ∇ψj(Tθ(x)) dp(x), 1 ≤ i, j ≤ m,

in which Ψ = (ψ1, · · · , ψm)T and ∇Ψ is an m × d Jacobian matrix of Ψ. For each

j = 1, 2, · · · ,m, ψj solves the following equation:

∇ · (ρθ∇ψj(x)) = ∇ · (ρθ
∂Tθ
∂θj

(T−1
θ (x))). (4.14)

with boundary conditions

lim
x→∞

ρθ(x)∇ψj(x) = 0.

Proof. Suppose ξ ∈ T Θ is a vector field on Θ, for a fixed θ ∈ Θ, we first compute the

pushforward (Tθ♯)∗ξ(θ) of ξ at point θ: We choose any smooth curve {θt}t≥0 on Θ with

θ0 = θ and θ̇0 = ξ(θ). If we denote ρθt = Tθt ♯p, we have (Tθ♯)∗ξ(θ) =
∂ρθt
∂t

∣∣∣
t=0

.
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To compute ∂ρθt
∂t

∣∣∣
t=0

, we consider an arbitrary ϕ ∈ C∞
0 (M).

On one hand, ρθ∆t
(y)−ρθ0 (y)
∆t

= ∂
∂t
ρ(θt̃1 , y), where t̃1 is some point between 0,∆t, since

ϕ ∈ C∞
0 and ρ(θt, x) is at least C1 with respect to t, y, we can show that the function

φ(x) = sups∈[0,∆t] |ϕ(x) ∂∂tρ(θs, y)| is continuous on a compact set and thus integrable on

Rd. Using dominated convergence theorem, we have:

∂

∂t

(∫
ϕ(y)ρθt(y) dy

) ∣∣∣
t=0

=

∫
ϕ(y)

∂ρθt(y)

∂t

∣∣∣
t=0

dy. (4.15)

On the other hand, we have:

ϕ(Tθ∆t
(y))− ϕ(Tθ0(y))

∆t
= θ̇T

t̃2
∂θTθt̃2

(x)T ∇ϕ(Tθt̃2 (y)), (4.16)

in which t̃2 is also between 0,∆t. For any ∆t small enough and t̃ ∈ [0,∆t], we can easily

find upper bounds for ∥θ̇t̃∥ ≤ A and ∥∇ϕ(·)∥∞ ≤ B. Recall the condition (Equation 4.10),

when ∆t is small enough, we have |θ∆t − θ0| < r(θ0), thus we obtain the following upper

bound for (Equation 4.16)

|θ̇T
t̃ ∂θTθt̃(x)

T ∇ϕ(Tθt̃(y))| ≤ AB∥∂θTθt̃(x)∥F ≤ ABL1(x|θ0).

By (Equation 4.10), we know L1(·|θ0) ∈ L1(p), we can apply dominated convergence

theorem to obtain:

∂

∂t

(∫
ϕ(Tθt(x))dp

) ∣∣∣
t=0

=

∫
θ̇t

T
∂θTθt(x)

T∇ϕ(Tθt(x))|t=0dp. (4.17)

Since ∂
∂t

∫
ϕ(y)ρθt(y) dy = ∂

∂t

∫
ϕ(Tθt(x)) dp(x), we use (Equation 4.15), (Equation 4.17)
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to get:

∫
ϕ(y)

∂ρθt
∂t

(y)
∣∣∣
t=0

dy =

∫
θ̇t

T
∂θTθt(x)

T∇ϕ(Tθt(x))|t=0 dp(x)

=

∫
θ̇T
t

(
∂Tθt
∂θ

(T−1
θt

(x))

)T

∇ϕ(x) ρθt(x)|t=0 dx

=

∫
ϕ(x)

(
−∇ ·

(
ρθt(x)

∂Tθt
∂θ

(T−1
θt

(x)) θ̇t

))
|t=0 dx.

Because ϕ(x) is arbitrary, this weak formulation reveals that

(Tθ♯)∗ξ(θ) =
∂ρθt
∂t

∣∣∣
t=0

= −∇ ·
(
ρθ(x)

∂Tθ
∂θ

(T−1
θ (x))ξ(θ)

)
. (4.18)

Now let us compute the metric tensor G. Since Tθ♯ is isometric immersion from Θ to P ,

the pullback of gW by Tθ♯ gives G, i.e. (Tθ♯)∗gW = G(θ). By definition of pullback map,

for any θ ∈ Θ and ξ(θ) ∈ TθΘ, we have:

G(θ)(ξ(θ), ξ(θ)) = gW (ρθ)((Tθ♯)∗ξ(θ), (Tθ♯)∗ξ(θ)). (4.19)

To compute the right hand side of (Equation 4.19), recall (Equation 2.58), we need to solve

for φ from:
∂ρθt
∂t

∣∣∣
t=0

= −∇ · (ρθ(x)∇φ(x)). (4.20)

By (Equation 4.18), (Equation 4.20) is:

∇ · (ρθ(x)∇φ(x)) = ∇ ·
(
ρθ(x)

∂θTθ
∂θ

(T−1
θ (·))ξ(θ)

)
. (4.21)

We can straightforwardly check that φ(x) = ΨT(x)ξ(θ) is the solution of (Equation 4.21).

Now by definition of gW as mentioned in subsection 2.2.1, we write the right hand side of
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(Equation 4.19) as

gW (ρθ)((Tθ♯)∗ξ(θ), (Tθ♯)∗ξ(θ)) =

∫
|∇φ(y)|2ρθ(y) dy (4.22)

=ξ(θ)T
(∫

∇Ψ(y)∇Ψ(y)Tρθ(y) dy

)
ξ(θ)

=
m∑

i,j=1

(∫
∇ψi(y) · ∇ψj(y)ρθ(y) dy

)
ξi(θ)ξj(θ).

Here we assume components of ξ(θ) as (ξ1(θ), ..., ξm(θ))T. Before we compute G(θ), we

first verify that the inner product in (Equation 4.22) is finite for any ξ ∈ T Θ. To show this,

by Cauchy–Schwarz inequality we obtain

∫
∇ψi(y) · ∇ψj(y)ρθ(y) dy ≤

(∫
|∇ψi(y)|2ρθ(y) dy

) 1
2
(∫

|∇ψj(y)|2ρθ(y) dy
) 1

2

.

recallψj defined in (Equation 4.14), then applying (Equation 4.12) of Lemma (Lemma 4.3.1)

yields

∫
|∇ψj(y)|2ρθ(y) dy ≤

∫ ∣∣∣∣∂Tθ∂θj
(T−1

θ (y))

∣∣∣∣2 ρθ(y) dy ≤
∫
L2(y|θ)p(y) dy <∞.

The last two inequalities are due to condition (Equation 4.10). As a result, we proved the

finiteness of (Equation 4.22).

Finally, let us compute:

G(θ)(ξ(θ), ξ(θ)) =gW (ρθ)((Tθ♯)∗ξ(θ), (Tθ♯)∗ξ(θ))

=ξ(θ)T
(∫

∇Ψ(Tθ(x))∇Ψ(Tθ(x))
Tdp(x)

)
ξ(θ).

Thus we can verify that

G(θ) =

∫
∇Ψ(Tθ(x))∇Ψ(Tθ(x))

T dp(x),
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which completes the proof.

Generally speaking, the metric tensor G does not have an explicit form when d ≥ 2. It

is worth mention that G has an explicit form and can be computed directly when d = 1.

Corollary 4.3.2.1. When dimension d of M equals 1. And we further assume that: ρθ > 0

on M and limx→±∞ ρθ(x) = 0. Then G(θ) has an explicit form:

G(θ) =

∫
∂θTθ(x)

T∂θTθ(x) dp(x). (4.23)

Remark 8 (Well-posedness of (Equation 4.14)). It is worth commenting on the existence

and regularity of (Equation 4.14). Determining what properties or conditions that Tθ

should have to guarantee the well-posedness of (Equation 4.14) is an interesting and im-

portant problem on its own. In references such as [138] and [139], there are sufficient

conditions that guarantee the well-posedness of elliptic PDEs defined on Rd. Most of the

existing results require uniform lower bound on ρθ, i.e. ρθ(x) > ϵ > 0 for all x ∈ Rd.

Such coercive condition is not applicable in our case since
∫
ρθ(x)dx = 1 is finite. On

the other hand, section 8.1.2 of [29] provides another sufficient condition on the well-

posedness of (Equation 4.14): If there exists λ > 0 such that the following Poincaré in-

equality (Equation 4.24) holds for any φ ∈ C∞(Rd) with compact support,

∫
|∇φ(x)|2ρθ(x) dx ≥ λ

∫ (
φ(x)−

∫
φρθ dx

)2

ρθ(x) dx, (4.24)

and −∇·(ρθ ∂Tθ∂θj
(T−1

θ (·))) ∈ L2(ρθ), Then (Equation 4.14) admits a unique solution ψj with

∇ψj ∈ L2(ρθ). To the best of our knowledge, it is still unclear that what kind of properties

of Tθ may lead to (Equation 4.24).

It is worth pointing out that under certain situations discussed in subsection 4.3.4,

(Equation 4.14) does have classical solutions. For example, if we select Tθ as an affine

transform and consider the Fokker-Planck equation (Equation 4.6) with quadratic poten-

83



tial V and Gaussian initial ρ0, we can prove that (Equation 4.14) is well-posed along the

trajectory of the ODE (Equation 4.28), i.e. the following elliptic equation

−∇ · (ρθt∇ψ) = −∇ · (ρθt
∂θTθt
∂θ

(T−1
θt

(x))θ̇t), where {θt} solves (Equation 4.28),

always admits a classical solution ψ(x) = V (x) +D log ρθ(x) + Const.

In general, The conditions imposed on Tθ to guarantee well-posedness of (Equation 4.14)

is a fundamental and interesting topic subject to further investigation. A good reference re-

lated to the topic can be found in [35].

Following theorem provides several criteria for examining whether G is a Riemannian

metric, i.e. whether G(θ) is positive definite.

Theorem 4.3.3. For θ ∈ Θ, {ψk}mk=1 satisfies (Equation 4.14), the following four state-

ments are equivalent

1. G(θ) is positive definite;

2. For any ξ ∈ TθΘ (ξ ̸= 0), there exists z ∈M such that ∇·(ρθ(z)∂Tθ∂θ (T
−1
θ (z))ξ) ̸= 0;

3. {∇ψk}mk=1, as m functions in the space L2(Rd;Rd, ρθk), are linearly independent;

4. d
dt
(Tθ+tξ♯p)|t=0 ̸= 0 for any ξ ∈ Rm.

Proof. We first verify that 1 and 2 are equivalent. We need the following identity used in

Theorem 4.3.2: For any θ, ξ, x, we have

∇ · (ρθ(x)∇(ξTΨ(x))) = ∇ · (ρθ(x)
∂Tθ
∂θ

(T−1
θ (x))ξ). (4.25)

(⇐): suppose for any θ ∈ Θ and ξ ∈ TθΘ, at certain z ∈ Rd, ∇ · (ρθ(z)∂Tθ∂θ (T
−1
θ (z)ξ) ̸= 0,

then ∇ · (ρθ(z)∇(ξTΨ(z))) ̸= 0, thus ρθ∇(ξTΨ) is not identically 0. Using continuity

of ρθ∇(ξTΨ), we know that: |∇(ξTΨ(x))|2ρθ(x) > 0 in some small neighbourhood of z.
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Thus we have:

ξTG(θ)ξ =

∫
|∇Ψ(x)Tξ|2ρθ(x) dx > 0, (4.26)

holds for any θ and ξ, this leads to the positive definiteness of G.

(⇒): Now suppose (Equation 4.26) holds for all θ, ξ, then we have

∫
−∇ · (ρθ(x)∇(ξTΨ(x))) · ξTΨ(x) dx > 0.

This leads to the existence of a z ∈ Rd such that −∇ · (ρθ(z)∇(ξTΨ(z))) ̸= 0. Combining

(Equation 4.25), we have verified the equivalence between 1 and 2.

We recall (Equation 4.18), then d
dt
(Tθ+tξ♯p)|t=0 = (Tθ♯)∗ξ = −∇·(ρθ(x)∂Tθ∂θ (T

−1
θ x))ξ),

this verifies the equivalence between 2 and 3.

Finally, as stated before, we can verify ξTG(θ)ξ = ∥
∑

k=1 ξk∇ψk∥2L2(ρθ)
, this formula

will directly leads to the equivalence between 1 and 4 and we have proved the equivalence

among statements 1,2,3 and 4.

To keep our discussion concise in the following sections, we will always assume G(θ)

is positive definite for every θ ∈ Θ.

4.3.2 Parametric Fokker-Planck equation

We consider the relative entropy functional on Θ as H = H ◦ T(·)♯ : Θ → R,

H(θ) = H(ρθ) =

(∫
V (x)ρθ(x) +Dρθ(x) log ρθ(x) dx

)
+D logZD

=

(∫
V (Tθ(x)) +D log ρθ(Tθ(x)) dp(x)

)
+D logZD. (4.27)

Following the theory in [104], the gradient flow of H on Wasserstein parameter manifold

(Θ, G) satisfies

θ̇ = −G(θ)−1∇θH(θ). (4.28)
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We call (Equation 4.28) parametric Fokker-Planck equation. The ODE (Equation 4.28) as

the Wasserstein gradient flow on parameter space (Θ, G) is closely related to the Fokker-

Planck equation on probability submanifold PΘ. We have the following theorem, which is

a natural result derived from submanifold geometry.

Theorem 4.3.4. Suppose {θt}t≥0 solves (Equation 4.28). Then {ρθt} is the gradient flow of

H on probability submanifold PΘ. Furthermore, at any time t, ρ̇θt =
d
dt
ρθt ∈ TρθtPΘ is the

orthogonal projection of −gradWH(ρθt) ∈ TρθtP onto the subspace TρθtPΘ with respect

to the Wasserstein metric gW .

We prove this theorem in the section C.2.

The following theorem is an important new statement closely related to Theorem 4.3.4.

Theorem 4.3.5 (Wasserstein gradient as solution to a least squares problem). For a fixed

θ ∈ Θ, Ψ ⊂ Rm as defined in Theorem 4.3.2, then

G(θ)−1∇θH(θ) = argmin
η∈TθΘ∼=Rm

{∫
|(∇Ψ(Tθ(x)))

Tη −∇ (V +D log ρθ) ◦ Tθ(x)|2dp(x)
}
.

(4.29)

Proof. Direct computation shows that minimizing the function in (Equation 4.29) is equiv-

alent to minimizing:

ηT
(∫

∇Ψ(Tθ(x))∇Ψ(Tθ(x))
T dp

)
η − 2 ηT

(∫
∇Ψ∇(V +D log ρθ)ρθ dx

)
.
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For each entry in the second term, we have:

∫
∇ψk(x) · ∇(V (x) +D log ρθ(x))ρθ(x) dx

=

∫
−∇ · (ρθ(x)∇ψk(x)) · (V (x) +D log ρθ(x)) dx

=

∫
−∇ · (ρθ(x)∂θkTθ(T−1

θ (x))) · (V (x) +D log ρθ(x)) dx

=

∫
(∇V (Tθ(x)) +D∇ log ρθ(Tθ(x))) · ∂θkTθ(x) dp(x)

=

∫
∇V (Tθ(x)) · ∂θkTθ(x) + ∂θk [D log ρθ(Tθ(x))] dp(x)−

∫
D ∂θk log ρθ(Tθ(x)) dp(x)︸ ︷︷ ︸

=D
∫
∇θρθ(x)dx=0

= ∂θk

(∫
(V (Tθ(x)) +D log ρθ(Tθ(x))) dp(x)

)
= ∂θkH(θ).

Recall the definition (Equation 4.13) ofG(θ), the target function to be minimized is ηTG(θ)η−

2ηT∇θH(θ). And the minimizer is clearly G(θ)−1∇θH(θ).

In addition to the direct proof, the result in Theorem 4.3.5 can also be understood in a

different way. Let us denote ξ = G(θ)−1∇θH(θ), {θt} solves (Equation 4.28) with initial

value θ0 = θ. By Theorem 4.3.4, d
dt
ρθt

∣∣∣
t=0

= (Tθ♯)∗ξ ∈ TρθPΘ is the orthogonal projection

of gradWH(ρθ) onto TρθPΘ with respect to the metric gW . This is equivalent to say that η

solves the following least square problem:

min
η
gW (gradWH(ρθ)− (Tθ♯)∗η, gradWH(ρθ)− (Tθ♯)∗η). (4.30)

Recall the definition of gW in subsection 2.2.1 and by (Equation 2.61), we have gradWH(ρθ) =

−∇·(ρθ∇(V +D log ρθ)). Because of (Equation 4.18), (Tθ♯)∗η = −∇·(ρθ∂θTθ(T−1
θ (·))η),

solving −∇ · (ρθ∇φ) = gradWH(ρθ)− (Tθ♯)∗η gives

φ = (V +D log ρθ)−ΨTη,
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and thus least squares problem (Equation 4.30) can be written as

min
η

{∫
|∇Ψ(x)Tη −∇(V (x) +D log ρθ(x))|2ρθ(x) dx

}
,

which is exactly (Equation 4.29).

4.3.3 A particle viewpoint of the parametric Fokker Planck Equation

The motion of parameter θt solving (Equation 4.28) naturally induce a stochastic dynamics

on Rd whose density evolution is exactly {ρθt}. To see this, notice that {θt} directly leads to

a time dependent map {Tθt}. Let us denote a random variable Z ∼ p, i.e. Z is distributed

according to the reference distribution p. We set Y 0 = Tθ0(Z) ∼ ρθ0 . At any time t,

the map Tθt sends Y 0 to Y t = Tθt(T
−1
θ0

(Y 0)) ∼ ρθt . Thus, we construct a sequence

of random variables {Y t} whose density evolution is exactly {ρθt}. We can characterize

the dynamical system satisfied by {Y t} by taking time derivative: Ẏ t = ∂θTθt(Z)θ̇t =

∂θTθt(T
−1
θt

(Y t))θ̇t. It is actually more insightful to consider the following dynamic:

Ẋ t = ∇Ψt(X t)
T θ̇t, X0 = Tθ0(Z) ∼ ρθ0 . (4.31)

Here Ψt is obtained from (Equation 4.14) with parameter θt. It is not hard to show that for

any time t, X t and Y t has the same distribution. Thus X t ∼ ρθt for all t ≥ 0. Recall

θ̇t = −G(θt)−1∇θH(θt), we are able to rewrite (Equation 4.31) as:

Ẋt = ∇Ψt(Xt)
T
(∫

∇Ψt∇ΨT
t ρθtdx

)
︸ ︷︷ ︸

G(θt)

−1(∫
∇Ψt(−∇V −D∇ log ρθt)ρθtdη

)
︸ ︷︷ ︸

−∇θH(θt)

. (4.32)

If we define the kernel function Kθ : Rd × Rd → Rd×d as

Kθ(x, η) = ∇ΨT(x)

(∫
∇Ψ(x)∇Ψ(x)T ρθ(x) dx

)−1

∇Ψ(η).
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This Kθ induces a linear operator Kθ : L
2(Rd;Rd, ρθ) → L2(Rd;Rd, ρθ) by:

Kθ[v⃗] = (Kθ ∗ v⃗)(·) =
∫
Kθ(·, η) v⃗(η) ρθ(η) dη.

It can be verified that Kθ is an orthogonal projection on the Hilbert space L2(Rd;Rd, ρθ).

The range of such projection is the subspace span {∇ψ1, ...,∇ψm} ⊂ L2(Rd;Rd, ρθ). Here

ψ1, ..., ψm are the m components of Ψ solved from (Equation 4.14). Using the linear oper-

ator, we can rewrite (Equation 4.32) as:

Ẋ t = −Kθt [∇V +D∇ log ρθt ](X t), ρθt is the probability density of X t, X0 ∼ ρθ0 .

(4.33)

We can compare (Equation 4.33) with the following dynamic without projection:

˙̃X t = −(∇V +D∇ log ρt)(X̃ t), ρt is the probability density of X̃ t, X̃0 ∼ ρ0. (4.34)

As discussed in subsection 4.2.1, (Equation 4.34) is the Vlasov-type SDE that involves

the density of random particle. If assuming (Equation 4.34) admits a regular solution, we

have ρ(x, t) = ρt(x), which solves the original Fokker Planck equation (Equation 4.6).

From orthogonal projection viewpoint, we can treat that the approximate solution ρθt of

(Equation 4.6) is actually originated from the projection of vector field that drives the SDE

(Equation 4.34).

We would like to mention that the expectation of ℓ2 discrepancy between ∇V+D∇ log ρ

and its Kθ projection is:

EX∼ρθ |Kθ[∇V +D∇ log ρθ](X)− (∇V +D∇ log ρθ)(X)|2

=

∫
|∇Ψ(x)Tξ − (−∇V −D∇ log ρθ)(x)|2ρθ(x) dx, (4.35)

in which ξ = −G(θ)−1∇θH(θ). This is an essential term appeared in our error analysis
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part.

Remark 9. We should mention the relationship between our kernel Kθt and the Neural

Tangent Kernel (NTK) introduced in [140]. Using our notation, Neural Tangent Kernel

can be written as KNTK
θ = ∂θTθ(x)∂θTθ(ξ)

T. If we consider the flat gradient flow θ̇ =

−∇θH(θ) of relative entropy on Θ, its corresponding particle dynamic is

Ẋ t =

∫
KNTK
θt (T−1

θt
(X t), T

−1
θt

(η))(−∇V (η)−D∇ log ρθt(η))ρθt(η) dη

Different from our Kθ, which introduces an orthogonal projection, Neural Tangent Kernel

introduces an non-negative definite transform to the vector field −∇V −D∇ log ρθt .

Ẋ t = −Kθt

(
∇ δH(ρθt )

δρθt

)
(X t) on Rd Ẋ t = −∇ δH(ρt)

δρt
(X t) on Rd

θ̇ = −G(θ)−1∇θH(θ) on Θ ∂tρ = −gradWH(ρ) on P(Rd)

Projection of
vector field

How dynamics on Θ

triggers dynamics on Rd

Density evolution of
Xt solves Fokker
Planck equationProjection from

(P, gW ) onto (Θ, G)

[Particle point of view]

[Probability manifold point of view]

Figure 4.1: Illustrative diagram

Remark 10. Figure 4.1 illustrates the relation between (Equation 4.6), (Equation 4.28),

(Equation 4.34) and (Equation 4.33). It is worth mentioning that the probability manifold

point of view discussed in Theorem 4.3.4 is useful for our analysis of the continuous dy-

namics (Equation 4.28), while particle point of view helps us on establishing the numerical

analysis for the time discrete scheme (i.e. forward-Euler) of (Equation 4.28).

4.3.4 An example of the parametric Fokker-Planck equation with quadratic potential

The solution of the parametric Fokker-Planck equation (Equation 4.28) can serve as an

approximation to the solution of the original equation (Equation 4.6). In some special

cases, ρθt exactly solves (Equation 4.6). In this section, we provide such examples.
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Let us consider the Fokker-Planck equations with quadratic potentials whose initial

conditions are Gaussian:

V (x) =
1

2
(x− µ)TΣ−1(x− µ) and ρ0 ∼ N (µ0,Σ0). (4.36)

Here N (µ,Σ) denotes Gaussian distribution with mean µ and covariance Σ. We consider

parameter space Θ = (Γ, b) ⊂ Rm (m = 1
2
d(d + 1) + d), where Γ is a d × d symmetric

positive definite matrix and b ∈ Rd. We define the parametric map as Tθ(x) = Γx+ b, and

choose the reference measure p = N (0, I).

Lemma 4.3.6. Let H be the relative entropy defined in (Equation 4.8) and H defined in

(Equation 4.27). For θ ∈ Θ, if the vector function ∇
(
δH
δρ

)
◦ Tθ can be written as the

linear combination of {∂Tθ
∂θ1
, ..., ∂Tθ

∂θm
}, i.e. there exists ζ ∈ Rm, such that ∇

(
δH
δρ

)
◦ Tθ(x) =

∂θTθ(x)ζ . Then:

(1) ζ = G(θ)−1∇θH(θ), which is the Wasserstein gradient of H at θ.

(2) PΘ as gradWH(ρθ)|PΘ
, then gradWH(ρθ)|PΘ

= gradWH(ρθ), where gradWH(ρθ)|PΘ

is the gradient of H on the submanifold PΘ.

Proof. Suppose that ζ ∈ Rm satisfies ∇
(
δH
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ , then we have

∫
|∂θTθ(x)ζ −∇(

δH
δρ

) ◦ Tθ(x)|2 dp(x) = 0.

By definition of Ψ in Theorem 4.3.2, one can verify

−∇ ·
(
ρθ

(
(∇Ψ)Tζ −∇

(
δH
δρ

)))
= −∇ ·

(
ρθ

(
∂θTθ ◦ T−1

θ ζ −∇
(
δH
δρ

)))

Now we apply (Lemma 4.3.1) of Lemma 4.3.1 to obtain:

∫
|(∇Ψ(Tθ(x)))

Tζ −∇
(
δH
δρ

)
◦ Tθ(x)|2 dp(x) ≤ 0.
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This implies,

inf
η

∫
|(∇Ψ(Tθ(x)))

Tη −∇
(
δH
δρ

)
◦ Tθ(x)|2 dp(x)

=

∫
|(∇Ψ(Tθ(x)))

Tζ −∇
(
δH
δρ

)
◦ Tθ(x)|2 dp(x) = 0.

By Theorem 4.3.5, we get ζ = G(θ)−1∇θH(θ) and ∥(Tθ♯)∗ζ − gradWH(ρθ)∥gW (ρθ) =

0. The latter leads to (Tθ♯)∗ζ = gradWH(ρθ). According to Theorem 4.3.4, (Tθ♯)∗ζ =

gradWH(ρθ)|PΘ
. As a result, we have gradWH(ρθ)|PΘ

= gradWH(ρθ).

Back to our example with quadratic potential (Equation 4.36) and Tθ(x) = Γx+ b, we

can compute

ρθ(x) = Tθ♯p(x) =
f(T−1

θ (x))

| det(Γ)|
=
f(Γ−1(x− b))

| det(Γ)|
, f(x) =

exp(−1
2
|x|2)

(2π)
d
2

.

Then we have,

∇
(
δH(ρθ)

δρ

)
◦ Tθ(x) = ∇(V +D log ρθ) ◦ Tθ(x) = Σ−1(Γx+ b− µ)−DΓ−Tx,

which is affine with respect to x.

Notice that

∂Γij
Tθ(x) = (. . . , 0, . . . , xj

i−th

, . . . , 0, . . . )T, ∂biTθ = (. . . , 0, . . . , 1
i−th

, . . . , 0, . . . )T.

We can verify that ζ = (Σ−1Γ−DΓ−T ,Σ−1(b−µ)) solves ∇
(
δH(ρθ)
δρ

)
◦Tθ(x) = ∂θTθ(x)ζ .

By (1) of Lemma 4.3.6, ζ = G(θ)−1∇θH(θ). Thus the ODE (Equation 4.28) for our
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example can be written as

Γ̇ = −Σ−1Γ +DΓ−T Γ0 =
√

Σ0, (4.37)

ḃ = Σ−1(µ− b) b0 = µ0. (4.38)

By (2) of Lemma 4.3.6, we know gradWH(ρθ)|PΘ
= gradWH(ρθ) for all θ ∈ Θ, which in-

dicates that there is no error between our parametric Fokker-Planck and the original equa-

tions.

Following (Equation 4.37) and (Equation 4.38), we have the following corollary,

Corollary 4.3.6.1. The solution of the Fokker-Planck equation (Equation 4.6) with condi-

tion(Equation 4.36) is a Gaussian distribution for all t > 0.

Proof. If we denote {Γt, bt} as the solutions to (Equation 4.37),(Equation 4.38), set θt =

(Γt, bt), then ρt = Tθt ♯p solves the Fokker Planck Equation (Equation 4.6) with conditions

(Equation 4.36). Since the pushforward of Gaussian distribution p by an affine transform

Tθ is still a Gaussian, we conclude that for any t > 0, the solution ρt = Tθt ♯p is always

Gaussian distribution.

Remark 11. This is a well known property for Ornstein–Uhlenbeck process [141]. We

provide an alternative proof under our framework.

4.4 Numerical method for 1D Fokker-Planck equation

Since the Wasserstein metric tensor G has an explicit solution when dimension d = 1, it is

convenient to numerically compute ODE (Equation 4.28).

For example, we can choose a series of basis functions {φk}nk=1. Each φk can be chosen

as a sinusoidal function or a piece-wise linear function defined on a certain interval [−l, l].

It is also beneficial to choose orthogonal or near-orthogonal basis functions because they
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will keep the metric tensorG far away from ill-posedness. We set Tθ(x) =
∑m

k=1 θkφk(x)
2.

Then according to (Equation 4.23), we can compute G as

Gij(θ) = EX∼p

[
φi(X)φj(X)

]
1 ≤ i, j ≤ m

Recall that F (θ) =
∫
V (x)ρθ(x)dx + β

∫
ρθ(x) log ρθ(x)dx. The second part of F is the

entropy of ρθ. For general Tθ, ρθ = Tθ♯p cannot be directly computed efficiently. However,

we can compute the entropy term by solving the following variational problem [142]:

∫
ρθ(x) log ρθ(x) dx = sup

h

{∫
h(x)ρθ(x) dx−

∫
eh(x)dx

}
+ 1 (4.39)

We can solve (Equation 4.39) by parametrizing h. Suppose the optimal solution is h∗. Then

by envelope theorem [143], we can compute ∇θF (θ) as

∇θF (θ) = ∂θ

(∫
V (x)ρθ(x) dx+ β

∫
h∗(x)ρθ(x) dx

)
= Ex∼p

[
∂θTθ(X)T∇y(V (y) + βh∗(y))|y=Tθ(X))

]
(4.40)

Notice that both the metric tensor G and ∇θF (θ) are written in forms of expectations, thus

we can compute them by Monte Carlo simulations. And finally, (Equation 4.28) can be

computed by forward Euler method.

Our numerical results are always demonstrated by sample points: For each time node

t, we sample points {X1, ...,XN} from p, then {Tθt(X1), ..., Tθt(XN)} are our numerical

samples from distribution ρt which solves the Fokker-Planck equation.

Here are two illustrative numerical results based on our method. We exhibit them in

the form of histograms. Consider the potential V (x) = (x + 1)2(x − 1)2. Suppose the

initial distribution is ρ0 = N (0, I). Figure 4.2 contains histograms of ρt which solves

2In application, suitably choosing Tθ which is not necessarily invertibile or smooth can still provide valid
results.
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∂ρ
∂t

= ∇· (ρ∇V ) at different time nodes; we know ρt converges to δ−1+δ+1

2
as t→ ∞. Here

δa is the Dirac distribution concentrated on point a. Figure 4.3 contains histograms of ρt

which solves ∂ρ
∂t

= ∇ · (ρ∇V ) + 1
4
∆ρ at different time nodes, we know ρt will converge to

Gibbs distribution ρ∗ = 1
Z
exp(−4(x+ 1)2(x− 1)2), with Z being a normalizing constant,

as t→ ∞. The density function of ρ∗ is exhibited in Figure 4.3.

Figure 4.2: Histograms of ρt solving ∂ρ
∂t

= ∇ · (ρ∇V )

Figure 4.3: Histograms of ρt solving ∂ρ
∂t

= ∇ · (ρ∇V ) + 1
4
∆ρ

4.5 Numerical methods for high dimensional Fokker-Planck equations

In this section, we introduce our sampling efficient numerical method to compute the pro-

posed parametric Fokker-Planck equations.
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Before we start, we want to mention that as stated in [130], when dimension d = 1,

G(θ) has explicit solution. Thus the push-forward approximation of 1D Fokker-Planck

equation can be directly computed by solving the ODE system (Equation 4.28) with nu-

merical methods, such as forward-Euler scheme. In this section, our focus is on numerical

methods for (Equation 4.28) with dimension d ≥ 2. It turns out to be very challenging

to compute (Equation 4.28) by the forward-Euler scheme directly. There are two reasons.

One is that there is no known explicit formula for G(θ), and direct computation based on

(Equation 4.13) can be expansive because it requires to solve multiple differential equa-

tions. The other is incurred by the high dimensionality, which is the main goal of this

research. To overcome the challenge of dimensionality, we choose to use deep neural

networks to construct our T (θ). However, directly evaluating G(θ)−1∇θH(θ) is difficult,

alternative strategies must be sought.

There are a few papers investigating numerical methods for gradient flows on Rieman-

nian manifolds, such as Fisher natural gradient [144] and Wasserstein gradient [115]. The

well known JKO scheme [83] calculates the time discrete approximation of the Wasserstein

gradient flow using an optimization formulation,

∂tρt = −gradWF(ρt), ρk+1 = argmin
ρ∈P

{
W 2

2 (ρ, ρk)

2h
+ F(ρ)

}
, (4.41)

where h is the time step size, F could be a suitable functional defined on P . Along the line

of JKO scheme, there are further developments in machine learning recently [145].

In our approach, we design schemes that computes the exact Wasserstein gradient flow

directly with provable accuracy guarantee. Our algorithms are completely sample based so

that they can be run efficiently under deep learning framework, and can scale up to high

dimensional cases.
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4.5.1 Normalizing Flow as push forward maps

We choose Tθ as the so-called normalizing flow [103]. Here is a brief sketch of its structure:

Tθ is written as the composition of K invertible nonlinear transforms:

Tθ = fK ◦ fK−1 ◦ ... ◦ f2 ◦ f1,

where each fk (1 ≤ k ≤ K) takes the form

fk(x) = x+ σ(wT
kx+ bk)uk.

Here wk, uk ∈ Rd, bk ∈ R, and σ is a nonlinear function, which can be chosen as tanh for

example. In [103], it has been shown that fk is invertible iff wT
kuk ≥ −1. Figure 4.4 shows

several snapshots of how a normalizing flow Tθ with length equal to 10 pushes forward

standard Gaussian distribution to a target distribution.

Figure 4.4: Top row from left to right are the probability densities of distributions f1♯p, (f2◦
f1)♯p, ..., (f10 ◦ f9 ◦ ... ◦ f1)♯p. The last image displays our target distribution. Bottom row
displays the push-forward effect of each single-layer transformation fk (1 ≤ k ≤ 10).

In a normalizing flow, the parameters are: θ = (w1, u1, b1, ..., wK , uK , bK). The deter-

minant of the Jacobi matrix of Tθ, an important quantity for our schemes, can be explicitly

computed by

det
(
∂Tθ(x)

∂x

)
=

K∏
k=1

(1 + σ′(wT
kxk + bk)w

T
kuk),

where xk = fk ◦ fk−1 ◦ ... ◦ f1(x). Using the structure of normalizing flow, the logarithm
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of the density ρθ = Tθ♯p can be written as

log ρθ(x) = log p ◦ T−1
θ (x)−

K∑
k=1

log(1 + σ′(wT
k x̃k)w

T
kuk), (4.42)

x̃k = fk ◦ ... ◦ f1(T−1
θ (x)) = f−1

k+1 ◦ ... ◦ f
−1
K (x).

Then we can explicitly write the relative entropy functionalH(θ) defined in (Equation 4.27)

as,

H(θ) = EX∼p[V (Tθ(X)) + Lθ(X)], (4.43)

where Lθ is defined by,

Lθ(·) = log p(·)−
K∑
k=1

log(1 + σ′(wT
kFk(·))wT

kuk) Fk(·) = fk ◦ fk−1 ◦ ... ◦ f1(·).

Once H(θ) is computed explicitly, so does the gradient ∇θH(θ).

In summary, we choose the normalizing flow because it has sufficient expression power

to approximate complicated distributions on Rd [103], and the relative entropy H(θ) has a

very concise form (Equation 4.43), and its gradient can be conveniently computed.

Remark 12. We want to emphasize here that the normalizing flow is not the only choice

for Tθ. One may choose other network structures [146, 147] as long as they have sufficient

approximation power and can compute the gradient of relative entropy efficiently.

4.5.2 Numerical scheme

For the convenience of our presentation, at the beginning of this section, we first introduce

the following definition.

Definition 4.5.1 (Orthogonal projection onto space of gradient fields). Consider vector

field v⃗ ∈ L2(Rd;Rd, ρ). Define Projρ[v⃗] = ∇ψ as the L2(ρ)-orthogonal projection of v⃗
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onto the subspace of gradient fields. Where ψ solves:

min
ψ

{∫
|v⃗(x)−∇ψ(x)|2ρ(x) dx

}
. (4.44)

Or equivalently ψ solves −∇ · (ρ(x)∇ψ(x)) = −∇ · (ρ(x)v⃗(x)).

Proposed Double-Minimization Scheme

Our numerical scheme is inspired by the following semi-implicit scheme of (Equation 4.28),

θk+1 − θk
h

= −G−1(θk)∇θH(θk+1).

Equivalently, we can write it as a proximal algorithm,

θk+1 = argmin
θ

{
1

2
⟨θ − θk, G(θk)(θ − θk)⟩+ hH(θ)

}
. (4.45)

Recall Ψ as defined in Theorem 4.3.2, if we denote ψ = ΨT(θ − θk), we have ⟨(θ −

θk), G(θ)(θ − θk)⟩ =
∫
|∇ψ|2ρθk dx with ψ solves the equation

−∇ · (ρθk∇ψ(x)) = −∇ · (ρθk∂θTθk(T−1
θk

(x))(θ − θk)). (4.46)

By Definition 4.5.1, ∇ψ is the orthogonal projection of vector field ∂θTθk(T
−1
θk

(·))(θ− θk).

Equivalently, ψ can also be obtained by solving the least square problem (Equation 4.44).

Based on the observation that ∇ψ is obtained via orthogonal projection after replac-

ing ∂θTθk(θ − θk) by finite difference Tθ − Tθk , we end up with the following double-
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minimization scheme for solving (Equation 4.45)

min
θ

{(∫ (
2 ∇ϕ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇ϕ(x)|2

)
ρθk(x) dx

)
+ 2hH(θ)

}
with ϕ solves: min

ϕ

{∫
|∇ϕ(x)− ((Tθ − Tθk) ◦ T−1

θk
(x))|2ρθk(x) dx

}
.

(4.47)

Scheme (Equation 4.47) has an equivalent saddle point optimization formulation

min
θ

max
ϕ

{(∫
(2∇ϕ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇ϕ(x)|2)ρθk(x) dx

)
+ 2hH(θ)

}
,

(4.48)

which can be directly derived from (Equation 4.45) via adjoint method. Their equivalence

is explained in the next remark.

Remark 13. We briefly demonstrate the equivalence among three schemes (Equation 4.45),

(Equation 4.47) and (Equation 4.48). Our target function 1
2
⟨θ−θk, G(θk)(θ−θk)⟩+hH(θ)

can be formulated as

∫
1

2
|∇ψ(x)|2ρθk(x) dx+ hH(θ) with the constraint: ψ solves (Equation 4.46).

By introducing the dual variable ϕ, and applying the adjoint method, we obtain

1

2
⟨θ − θk, G(θk)(θ − θk)⟩+ hH(θ)

=max
ϕ

min
ψ

{∫
1

2
|∇ψ|2ρθkdx+ hH(θ)

+

∫
ϕ(∇ · (ρθk∇ψ)−∇ · (ρθk∂θTθk(T−1

θk
(x))(θ − θk))) dx

}

=max
ϕ

min
ψ

{∫ (
1

2
|∇ψ|2 −∇ϕ · ∇ψ +∇ϕ · ∂θTθk(T−1

θk
(x))(θ − θk))

)
ρθk dx+ hH(θ)

}
=max

ϕ

{∫ (
−1

2
|∇ϕ|2 +∇ϕ · ∂θTθk(T−1

θk
(x))(θ − θk)

)
ρθk dx+ hH(θ)

}
(4.49)
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In implementation, we substitute ∂θTθk(θ−θk) by Tθ−Tθk since the latter is more tractable

in computation. As a consequence, by substituting (Equation 4.49) into (Equation 4.45) we

obtain (by multiplying the entire function by 2) the saddle scheme (Equation 4.48). To verify

the equivalence between (Equation 4.48) and (Equation 4.47), we check the identity

∫
(2∇ϕ(x) · ((Tθ − Tθk) ◦ T−1

θk
(x))− |∇ϕ(x)|2)ρθk(x) dx

=−
∫

|∇ϕ(x)− (Tθ − Tθk) ◦ T−1
θk

(x)|2ρθk(x) dx+
∫

|(Tθ − Tθk) ◦ T−1
θk

(x)|2ρθk(x) dx︸ ︷︷ ︸
Constant w.r.t. ϕ

Thus the ϕ-minimization process of (Equation 4.47) is equivalent to the ϕ-maximization

process of (Equation 4.48). This leads to the equivalence between (Equation 4.47) and

(Equation 4.48).

Remark 14. Our proposed schemes (Equation 4.47), (Equation 4.48) can be viewed as an

approximation to the JKO scheme (Equation 4.41) with F being the relative entropy H(θ).

To see this, we denote

E(ϕ) =
∫

(2∇ϕ(x) · ((Tθ − Tθk) ◦ T−1
θk

(x))− |∇ϕ(x)|2)ρθk(x) dx,

and set ψ̂ = argmax
ϕ

E(ϕ). We let v⃗h(x) = 1
h
(Tθ ◦ T−1

θk
(x) − x). Under mild conditions,

one can show

W 2
2 (ρθ, ρθk) = W 2

2 ((Id + hv⃗h)♯ρθk , ρθk) =

∫
|∇ψ̂|2ρθk dx+ o(h2) = max

ϕ
E(ϕ) + o(h2).

(4.50)

By replacing W 2
2 (ρθ, ρθk) in (Equation 4.41) by its approximation maxϕ E(ϕ), we obtain

scheme (Equation 4.47), (Equation 4.48).

Although (Equation 4.47) and (Equation 4.48) are mathematically equivalent, we use

them for different purposes. The saddle scheme (Equation 4.48) is our main tool to inves-

tigate the theoretical properties of our proposed method in subsubsection 4.5.2, because
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it better reflects the nature of our approximation method. In our implementation, as dis-

cussed in subsubsection 4.5.2, we prefer the double-minimization scheme (Equation 4.47).

Our experience indicates that (Equation 4.47) makes our code run more efficiently and be-

haves more stably than (Equation 4.48).

Local error of the proposed scheme

We now analyze the local error of scheme (Equation 4.48) as well as (Equation 4.47)

compared with the semi-implicit scheme (Equation 4.45). Let us denote maxϕ E(ϕ) as

Ŵ 2
2 (θ, θk) (Here Ŵ2 is treated as an approximation of L2-Wasserstein distance (remark Re-

mark 14)). It is straightforward to verify Ŵ2(θ, θ
′) ≥ 0 and Ŵ2(θ, θ) = 0. Consider the

following assumption,

Ŵ 2
2 (θ, θ

′) ≥ l(|θ − θ′|) for any θ, θ′ ∈ Θ. (4.51)

Here l : R≥0 → R≥0 satisfies l(0) = 0. l(r) is continuous, strictly increasing when r ≤ r0

for a positive r0 and is bounded below by λ0 > 0 when r > r0. Notice that this assumption

generally guarantees positive definiteness of Ŵ2. Clearly, (Equation 4.51) only depends on

the structure of Tθ, and we expect that (Equation 4.51) holds for the neural networks used

as pushforward maps, including the ones we used in this research.

Theorem 4.5.1. Suppose assumption (Equation 4.51) holds true for the class of pushfor-

ward maps {Tθ}. Then the local error of scheme (Equation 4.48) is of order h2, i.e., assume

that θk+1 is the optimal solution to (Equation 4.48), then

|θk+1 − θk + hG(θk)
−1∇θH(θk+1)| ∼ O(h2). (4.52)

or equivalently: lim suph→0+
|θk+1−θk+hG(θk)

−1∇θH(θk+1)|
h2

< +∞.

Before proving Theorem 4.5.1, we introduce a few additional notations. We define ϵ
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ball in parameter space as Bϵ(θk) = {θ | |θ − θk| ≤ ϵ}, let T (i)
θ be the i-th component

(1 ≤ i ≤ d) of map Tθ. For fixed θk and ϵ > 0 small enough, we assume the following two

quantities are finite

L(θk, ϵ) =
d∑
i=1

Ex∼p sup
θ∈Bϵ(θk)

{
|∂θT (i)

θ (x)|2
}
, H(θk, ϵ) =

d∑
i=1

Ex∼p sup
θ∈Bϵ(θk)

{
∥∂2θθT

(i)
θ (x)∥22

}
.

(4.53)

To prove Theorem 4.5.1, we need the following three lemmas:

Lemma 4.5.2. Suppose we fix θ0 ∈ Θ, for arbitrary θ ∈ Θ and ∇ϕ ∈ L2(Rd;Rd, ρθ0) we

consider

F (θ,∇ϕ | θ0) =
(∫

(2∇ϕ(x) · (Tθ − Tθ0) ◦ T−1
θ0

(x)− |∇ϕ(x)|2) ρθ0(x) dx
)
+ 2hH(θ).

(4.54)

Then F (θ,∇ϕ | θ0) <∞, furthermore, F (·,∇ϕ | θ0) ∈ C1(Θ). We can compute

∂θF (θ,∇ϕ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇ϕ(x) ρθ0(x) dx+ h∇θH(θ)

)
. (4.55)

Lemma 4.5.3. Suppose we fix θ0 ∈ Θ and define J(θ) = sup
∇ϕ∈L2(Rd;Rd,ρθ0 )

F (θ,∇ϕ | θ0).

Then J is differentiable. If we denote ψ̂θ = argmax
ϕ

{F (θ,∇ϕ | θ0)}, then

∇θJ(θ) = ∂θF (θ,∇ψ̂θ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇ψ̂θ(x) ρθ0(x) dx+ h∇θH(θ)

)
.

This lemma is an anology of the envelope theorem [143] under our problem setting.

Lemma 4.5.4. Under assumption(Equation 4.51), the optimal solution of (Equation 4.48)

θk+1 satisfies,

|θk+1 − θk| ∼ o(1) i.e. lim
h→0+

|θk+1 − θk| = 0.

This lemma provides a prior estimation of |θk+1 − θk|.

We prove Lemma 4.5.2, Lemma 4.5.3 and Lemma 4.5.4 in Appendix section C.3.
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Proof of Theorem 4.5.1. Let us consider F (θ,∇ϕ | θk), we denote

∇ψ̂θ = argmax
∇ϕ∈L2(Rd;Rd,ρθk )

{F (θ,∇ϕ | θk)} .

Then we can set

∇ψ̂θ = Projρθk [(Tθ − Tθk) ◦ T−1
θk

], and J(θ) = sup
∇ϕ∈L2(Rd;Rd,ρθk )

F (θ,∇ϕ | θk)

Apply Lemma 4.5.3, we obtain:

∇θJ(θ) = 2

(∫
∂θTθ(T

−1
θk

(x))T ∇ψ̂θ(x) ρθk(x) dx+ h∇θH(θ)

)
.

Due to the differentiability of J(θ), at the optimizer θk+1, the gradient must vanish, i.e.

(∫
∂θTθk+1

(T−1
θk

(x))T ∇ψ̂θk+1
(x) ρθk(x) dx

)
+ h∇θH(θk+1) = 0. (4.56)

We use Taylor expansion at θk+1 to get Tθk+1
− Tθk = ∂θTθk(θk+1 − θk) + R(θk+1, θk),

in which R(θ, θ′)(·) ∈ L2(Rd;Rm, ρθk), the i-th entry of R(θ, θ′) is Ri(θ, θ
′)(x) = 1

2
(θ −

θ′)T∂2θθT
(i)

θ̃i(x)
(x)(θ − θ′), 1 ≤ i ≤ m, where each θ̃i(x) = λi(x)θ + (1− λi(x))θ

′ for some

λi(x) ∈ [0, 1]. Then we can write:

∇ψ̂θk+1
=Projρθk [(Tθk+1

− Tθk) ◦ T−1
θk

]

=Projρθk [∂θTθk ◦ T
−1
θk

(θk+1 − θk)] + Projρθk [R(θk+1, θk) ◦ T−1
θk

]. (4.57)

On the other hand,

∂θTθk+1
= ∂θTθk + r(θk+1, θk). (4.58)

Here r(θ, θ′) ∈ L2(Rd;Rd×m, ρθk), the (i, j) entry of r(θ, θ′) is (θk+1−θk)T∂θ(∂θjT
(i)

θ̃ij(x)
(x)),

1 ≤ i ≤ d, 1 ≤ j ≤ m, where each θ̃ij(x) = µij(x)θk+1 + (1 − µij(x))θk, for some
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µij(x) ∈ (0, 1). Applying (Equation 4.58), (Equation 4.57) to (Equation 4.56), we obtain

∫
∂θTθk(T

−1
θk

(x))TProjρθk [∂θTθk ◦ T
−1
θk

(x)(θk+1 − θk)] ρθk(x) dx

+

∫
∂θTθk(T

−1
θk

(x))TProjρθk [R(θk+1, θk) ◦ T−1
θk

](x) ρθk(x) dx

+

∫
r(θk+1, θk)(T

−1
θk

(x))TProjρθk [(Tθk+1
− Tθk) ◦ T−1

θk
](x) ρθk(x) dx = −h∇θH(θk+1).

(4.59)

Recall definition of Ψ in Theorem 4.3.2, use (Equation 4.11) in Lemma 4.3.1, we know

that the first term on the left hand side of (Equation 4.59) equals

∫
∇Ψ(x)∇Ψ(x)T(θk+1 − θk) ρθk(x) dx = G(θk)(θk+1 − θk).

By applying Cauchy–Schwarz inequality and (Equation 4.12) in Lemma 4.3.1, we bound

the i-th entry of the second term in (Equation 4.59) by:

(∫
|∂θT (i)

θk
(x)|2 dp(x) ·

∫ d∑
i=1

|(θk+1 − θk)∂
2
θθT

(i)

θ̃i(x)
(x)(θk+1 − θk)|2 dp(x)

) 1
2

≤

(
Ep|∂θT (i)

θk
(x)|2 · Ep

[
d∑
i=1

∥∂2θθT
(i)

θ̃i(x)
(x)∥2

]) 1
2

|θk+1 − θk|2
denote as
= A(i)|θk+1 − θk|2.

To bound the third term in (Equation 4.59), we consider Tθk+1
(x) − Tθk(x), the i-th entry

can be written as

T
(i)
θk+1

(x)− T
(i)
θk
(x) = ∂θTθ̄i(x)(x)(θk+1 − θk),

here θ̄i(x) = ζi(x)θk+1 + (1− ζi(x))θk for some ζi(x) ∈ (0, 1). The i-th entry of the third
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term of (Equation 4.59) can be bounded by:

(∫ d∑
i=1

|(θk+1 − θk)
T∂θθT

(i)

θ̃ij(x)
(x)|2 dp(x) ·

∫
|T (i)
θk+1

(x)− T
(i)
θk
(x)|2 dp(x)

) 1
2

≤

(
Ep

[
d∑
i=1

∥∂2θθTθ̃ij(x)(x)∥
2
2

]
· Ep|∂θT (i)

θ̄i(x)
(x)|2

) 1
2

|θk+1 − θk|2
denote as
= B(i)|θk+1 − θk|2.

We denote A ∈ Rm with entries A(i), 1 ≤ i ≤ m and similarly B ∈ Rm with entries B(i),

1 ≤ i ≤ m. (Equation 4.59) leads to the following inequality,

|θk+1 − θk + hG(θk)
−1∇θH(θk+1)| ≤ ∥G(θk)−1∥2(|A|+ |B|) |θk+1 − θk|2.

As we have shown in Lemma 4.5.4 that |θk+1 − θk| ∼ o(1) for any ϵ > 0 when step size

h is small enough, we always have θk+1 ∈ Bϵ(θk). Recall the notations in (Equation 4.53),

we have |A|, |B| ≤
√
L(θk, ϵ)H(θk, ϵ). Thus we have

|θk+1 − θk + hG(θk)
−1∇θH(θk+1)| ≤ 2

√
L(θk, ϵ)H(θk, ϵ)∥G(θk)−1∥2|θk+1 − θk|2.

Denote θk+1 − θk = η, G(θk)−1∇θH(θk+1) = ξ and C = 2
√
L(θk, ϵ)H(θk, ϵ)∥G(θk)−1∥2,

the previous inequality is

|η − h ξ| ≤ C|η|2. (4.60)

Since |η − hξ| ≥ |η| − h|ξ|, we have

C|η|2 ≥ |η| − h|ξ|. (4.61)

Solving (Equation 4.61) gives

|η| ≤ 2|ξ|h
1 +

√
1− 4C|ξ|h

or |η| >
1 +

√
1− 4Ch|ξ|
2C

.
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The second inequality leads to |θk+1− θk| > 1
2C

for any h > 0, which avoids |θk+1− θk| ∼

o(1). Thus, when h is sufficiently small, we have

|η| ≤ 2|ξ|h
1 +

√
1− 4C|ξ|h

. (4.62)

Combining (Equation 4.62) and (Equation 4.60), we have:

|θk+1 − θk + hG(θk)
−1∇θH(θk+1)| ≤

4 C |ξ|2

(1 +
√

1− 4C|ξ|h)2
h2 ≤ 4C|ξ|2h2. (4.63)

This proves the result.

Remark 15. One may be aware of the relation between the positive definite condition

(Equation 4.51) and the positive definiteness of the metric tensor G(θk). A positive definite

G(θ) guarantees the inequality Ŵ 2
2 (θ, θ

′) ≥ C|θ − θ′|2 for θ′ ∈ Br0(θ) (r0 depends on θ is

small enough). However, we are not able to bound Ŵ 2
2 (θ, θ

′) from below when |θ−θ′| > r0.

On the other hand, (Equation 4.51) is a locally weaker condition than positive definiteness

of G(θ).

Implementation

As mentioned before in subsubsection 4.5.2, we prefer the double-minimization scheme

(Equation 4.47) than the saddle scheme (Equation 4.48). We will thus implement scheme

(Equation 4.47). Let us denote

J(θ) =

(∫ (
2 ∇ψ̂(Tθk(x)) · ((Tθ(x)− Tθk(x)))− |∇ψ̂(Tθk(x))|2

)
dp(x)

)
+ 2hH(θ)

(4.64)

with ψ̂ = argmin
ϕ

{∫
|∇ϕ(Tθk)− (Tθ(x)− Tθk(x))|2dp(x)

}
(4.65)
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We then solve ODE (Equation 4.28) at tk by solving

θk+1 = argmin
θ

J(θ), (4.66)

Here we provide some detailed discussion on our implementation.

• In our numerical computation, we approximate ϕ by ψν :M → R, which is a ReLU

neural network [148]. Here ν denotes the parameter vector of the network ψν . We

know that in this case, ψν is a piece-wise affine function and its gradient ∇ψν(·)

forms a piece-wise constant vector field.

• The entire procedure of solving (Equation 4.66) can be formulated as nested loops:

– (inner loop) Every inner loop aims at solving (Equation 4.65) on ReLU func-

tions ψν , i.e. solving:

min
ν

{
EX∼p|∇ψν(Tθk(X))− (Tθ(X)− Tθk(X))|2

}
. (4.67)

One can use Stochastic Gradient Descent (SGD) methods like RMSProp [112]

or ADAM [149] with learning rate αin to deal with this inner loop optimization.

In our implementation, we will stop after Min iterations. Let us denote the

optimal ν in each inner loop as ν̂;

– (outer loop) We apply similar SGD method to J(θ): using Lemma 4.5.3, we are

able to compute ∇θJ(θ) as:

∇θJ(θ) = ∂θ

((∫
2∇ψ̂(x) · (Tθ ◦ T−1

θk
(x))ρθk(x) dx

)
+ 2hH(θ)

)
.

If we treat optimal ψ̂ as ψν̂ , what we need to do in each outer loop is to consider:
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J̃(θ) = EX∼p 2[∇ψν̂(Tθk(X)) · Tθ(X)] + 2h[V (Tθ(X)) + Lθ(X)] (4.68)

and update θ for one step by our chosen SGD method with learning rate αout

applied to optimize J̃(θ). In our actual computation, we will stop the outer loop

after Mout iterations.

• We now present the entire algorithm for computing (Equation 4.28) based on the

scheme (Equation 4.47) in Algorithm Algorithm 2. This algorithm contains the fol-

lowing parameters: T,N ;Mout, Kout, αout;Min, Kin, αin. Recall we set reference dis-

tribution p as standard Gaussian on M = Rd.

Remark 16 (Rescaling). In our implementation, Tθ(X) − Tθk(X) is usually of order

O(αout), which is a small quantity. We can rescale it so that each inner loop can be solved

in a more stable way with larger stepsize (learning rate). That is to say, we choose some

small ϵ ∼ O(αout) and consider

min
θ

max
ϕ


(∫

(2∇ϕ(x) ·
(
1

ϵ
(Tθ − Tθk) ◦ T−1

θk
(x)

)
− |∇ϕ(x)|2)ρθk(x) dx

)
︸ ︷︷ ︸

Eϵ(ϕ)

+
2h

ϵ2
H(θ)

 .

(4.69)

We can also check

argmax Eϵ(ϕ) = Projρθk [
1

ϵ
(Tθ−Tθk)◦T−1

θk
] =

1

ϵ
Projρθk [(Tθ−Tθk)◦T

−1
θk

] =
1

ϵ
argmax E(ϕ).

Using this, we are able to verify maxϕ Eϵ(ϕ) = 1
ϵ2
maxϕ E(ϕ). Thus the optimal solution

of (Equation 4.69) is

argminθ

{
1

ϵ2
max
ϕ

E(ϕ) + 2h

ϵ2
H(θ)

}
= argminθ

{
max
ϕ

E(ϕ) + 2hH(θ)

}
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Algorithm 2 Computing (Equation 4.28) by scheme (Equation 4.48) on the time interval
[0, T ]

1: Initialize θ
2: for i = 1, ..., N do
3: Save current parameter value to θ0: θ0 = θ
4: for j = 1, ...Mout do
5: for p = 1, ...,Min do
6: Sample {X1, ...,XKin} from p
7: Apply one SGD (ADAM) step with learning rate αin to loss function of

variable λ.
1

Kin

(
Kin∑
k=1

|∇ψν(Tθ0(Xk))− (Tθ(Xk)− Tθ0(Yk))|2
)

8: end for
9: Sample {X1, ...,XKout} from p

10: Apply one SGD (ADAM) step with learning rate αout to loss function of vari-
able θ.

1

Kout

(
Kout∑
k=1

2[∇ψν(Tθ0(Xk)) · Tθ(Xk)] + 2h[V (Tθ(Xk)) + Lθ(Xk)]

)

11: end for
12: Set θi = θ
13: end for
14: The sequence of probability densities {Tθ0 ♯p, Tθ1 ♯p, ..., TθN ♯p} will be the numerical

solution of {ρt0 , ρt1 , ..., ρtN}, where ti = i T
N

(i = 0, 1, ..., N − 1, N ). Here ρt solves
the original Fokker-Planck equation (Equation 4.6).
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This shows that the equivalence between the modified scheme (Equation 4.69) and the orig-

inal scheme (Equation 4.48).

In our actual implementation, we still prefer double-minimization scheme. We solve

min
ν

{
EX∼p

∣∣∣∣∇ψν(Tθk(X))−
(
Tθ(X)− Tθk(X)

ϵ

)∣∣∣∣2
}
, (4.70)

instead of (Equation 4.67) in each inner loop and set:

J̃(θ) = EX∼p 2[∇ψν̂(Tθk(X)) · Tθ(X)] +
2h

ϵ
[V (Tθ(X)) + Lθ(X)] (4.71)

in each outer loop. In actual experiments, we set ϵ = αout.

Remark 17 (Sufficiently large sample size). It is worth mentioning that the sample size

Kin, Kout in each SGD step (especially Kin) should be chosen reasonably large so that

the inner optimization problem can be solved with enough accuracy. In our practice, we

usually choose Kin = Kout = max{1000, 300d}. Here d is the dimension of sample space.

This is very different from the small batch technique applied to training neural network in

deep learning [150].

Remark 18 (Using fixed samples). Our numerical experiments indicate that the same sam-

ples can be used for both the inner and outer iterations, which may reduce the computa-

tional cost of our original algorithm.

4.6 Asymptotic properties and error estimations

In this section, we establish numerical analysis for the parametric Fokker-Planck equation

(Equation 4.28).
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4.6.1 An important quantity

Before our analysis, we introduce an important quantity that plays an essential role in our

numerical analysis. Let us recall the optimal value of least square problem (Equation 4.29)

in Theorem 4.3.5 of subsection 4.3.2, or equivalently (Equation 4.30) of subsection 4.3.2,

(Equation 4.35) of subsection 4.3.3. If we denote the upper bound of all possible values to

be δ0, i.e.

δ0 = sup
θ∈Θ

min
ξ∈Rm


∫ ∣∣∣∣∣

M∑
k=1

ξk∇ψk(x)−∇ (V (x) +D log ρθ(x))

∣∣∣∣∣
2

ρθ(x)dx

 , (4.72)

where ψk are solutions to (Equation 4.14) in Theorem 4.3.2. This quantity provides crucial

error bound between our parametric equation and original equation in the forthcoming

analysis. Ideally, we hope δ0 to be sufficiently small. And this can be guaranteed if the

neural network we select has universal approximation power. δ0 can be bounded by another

constant with more approachable form

δ̂0 = sup
θ∈Θ

min
ξ∈Rm


∫ ∣∣∣∣∣

M∑
k=1

ξk
∂Tθ(x)

∂θk
−∇ (V (x) +D log ρθ(x))

∣∣∣∣∣
2

ρθ(x)dx

 . (4.73)

By (Equation 4.12) of Lemma 4.3.1, one can verify δ0 ≤ δ̂0. From (Equation 4.73), we

observe that δ̂0 is determined by the optimal linear combination of {∂Tθ
∂θk

}Mk=1 to approximate

the vector field ∇(V + D log ρθ). One may understand this approximation from three

different aspects.

• If Tθ is chosen as a linear combination of basis functions, i.e. Tθ(x) =
∑M

k=1 θkΦk(x),

we can give an explicit estimate on δ̂0. For example, if Φk(x) is picked as the Fourier

basis and ∇(V + D log ρθ) ∈ Hs (s > 1), the classical spectral method theory can

be applied to obtain an estimate δ̂0 = O(M−s) [151, 152]. If Radial Basis Function

is selected, an related approximation bounded can be obtained too [153].
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• Having a small value for δ̂0 as well as δ0 is equivalent to find a suitable Tθ such

that a specific vector field ∇(V + D log ρθ) can be accurately approximated in our

estimate. In other words, when neural networks are used for Tθ, one needs to pick

a neural network structure such that it can approximate ∇(V +D log ρθ) well. This

seems to be an easier question than the task for the so-called universal approximation

theory for neural networks, which requires Tθ to approximate an arbitrary function

in a space.

• In our implementation, we use Normalizing Flows, a special type of deep neural

networks. Our numerical examples seem to show promising performance. In the

existing literature, although there are several references providing the universal ap-

proximation power of neural networks [154, 155], the results are mainly focused on

general ReLU networks and on the approximation power of function value, which

is different from our case. To the best of our knowledge, there is no existing study

discussing explicit bounds for vector field approximation by deep neural networks.

We believe that the question of how δ0 or δ̂0 explicitly depends on the structure of Tθ

is a fundamental research problem that deserves careful investigations.

It is also worth mentioning that δ0 is used for a priori estimate in this section, because

we don’t know the exact trajectory of {θt} when solving ODE (Equation 4.28), and we

take supremum over Θ to obtain δ0. Once solved for {θt}, denote C as the set covering its

trajectory, i.e.

C = {θ | ∃ t ≥ 0, s.t. θ = θt} (4.74)

We define another quantity δ1:

δ1 = sup
θ∈C

min
ξ∈TθΘ

{∫
|(∇Ψ(Tθ(x))

Tξ −∇ (V +D log ρθ) ◦ Tθ(x)|2 dp(x)
}
. (4.75)

Clearly, we have δ1 ≤ δ0. We can obtain corresponding posterior estimates for the asymp-

totic convergence and error analysis by replacing δ0 with δ1.
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4.6.2 Asymptotic Convergence Analysis

In this section, we consider the solution {θt}t≥0 of our parametric Fokker-Planck equation

(Equation 4.28). We define:

V =

{
V

∣∣∣∣∣V ∈ C2(Rd), V can be decomposed as: V = U + ϕ, with U, ϕ ∈ C2(Rd);
∇2U ⪰ KI with K > 0 and ϕ ∈ L∞(Rd)

}

As we know, for the Fokker-Planck equation (Equation 4.6), when the potential V ∈ V ,

{ρt} will converge to the Gibbs distribution ρ∗ = 1
ZD
e−V (x)/D as t→ ∞ under the measure

of KL divergence [156]. For (Equation 4.28), we wish to study its asymptotic convergence

property. We come up with the following result:

Theorem 4.6.1 (a priori estimation on asymptotic convergence). Consider the Fokker-

Planck equation (Equation 4.6) with the potential V ∈ V . Suppose {θt} solves the paramet-

ric Fokker-Planck equation (Equation 4.28), denote δ0 as in (Equation 4.72). Let ρ∗(x) =

1
ZD
e−V (x)/D be the Gibbs distribution of original equation (Equation 4.6). Then we have

the inequality:

DKL(ρθt∥ρ∗) ≤
δ0

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0∥ρ∗)e−Dλ̃Dt. (4.76)

Here λ̃D > 0 is the constant associated to the Logarithmic Sobolev inequality discussed in

Lemma 4.6.2 with potential function 1
D
V .

To prove Theorem 4.6.1, we need the following two lemmas:

Lemma 4.6.2. [Holley-Stroock Perturbation] Suppose the potential V ∈ V is decomposed

as V = U + ϕ where ∇2U ⪰ KI and ϕ ∈ L∞. Let λ̃ = Ke−osc(ϕ), where osc(ϕ) =

supϕ− inf ϕ. Then the following Logarithmic Sobolev inequality holds for any probability

density ρ:

DKL(ρ∥ρ∗) ≤
1

λ̃
I(ρ|ρ∗). (4.77)
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Here ρ∗ = 1
Z
e−V and I(ρ|ρ∗) is the Fisher information functional defined as:

I(ρ|ρ∗) =
∫ ∣∣∣∇ log

(
ρ(x)

ρ∗(x)

)∣∣∣2ρ(x) dx.
Lemma 4.6.2 is first proved in [156].

Lemma 4.6.3. For any θ ∈ Θ, we have:

D2 I(ρθ|ρ∗) ≤ δ0 +∇θH(θ) ·G(θ)−1∇θH(θ), (4.78)

where δ0 is defined in (Equation 4.72).

Proof of Lemma 4.6.3. Let us denote ξ = G(θ)−1∇θH(θ) for convenience. Suppose {θt}

solves (Equation 4.28) with θ0 = θ. By Theorem 4.3.4, d
dt
ρθt

∣∣∣
t=0

= −(Tθ♯)∗ξ is orthogonal

projection of −gradWH(ρθ) onto TρθP with respect to metric gW . Thus the orthogonal

relation gives:

gW (−gradWH(ρθ),−gradWH(ρθ)) = gW (gradWH(ρθ)− (Tθ♯)∗ξ, gradWH(ρθ)− (Tθ♯)∗ξ)

+ gW ((Tθ♯)∗ξ, (Tθ♯)∗ξ). (4.79)

One can verify that the left hand side of (Equation 4.79) is:

gW (−gradWH(ρθ),−gradWH(ρθ)) =

∫
|∇(V (x)+D log ρθ(x))|2ρ(x) dx = D2 I(ρθ|ρ∗).

(4.80)

Recall the equivalence between (Equation 4.29) and (Equation 4.30) and the definition of

δ0 in (Equation 4.72), we know that the first term on the right hand side of (Equation 4.79)

has an upper bound

gW (gradWH(ρθ)− (Tθ♯)∗ξ, gradWH(ρθ)− (Tθ♯)∗ξ) ≤ δ0. (4.81)
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The second term on the right hand side of (Equation 4.79) is:

gW ((Tθ♯)∗ξ, (Tθ♯)∗ξ) = (Tθ♯)
∗gW (ξ, ξ) = G(θ)(G(θ)−1∇θH(θ), G(θ)−1∇θH(θ))

= ∇θH(θ) ·G(θ)−1∇θH(θ) (4.82)

Combining (Equation 4.79), (Equation 4.80),(Equation 4.81) and (Equation 4.82) yields to

(Equation 4.78).

Proof of Theorem 4.6.1. Let us recall the relationship between KL divergence and relative

entropy,

DKL(ρ∥ρ∗) =
1

D
H(ρ) + log(ZD).

Actually, we can treat DKL(ρθ∥ρ∗) as a Lyapunov function for our ODE (Equation 4.28),

because by taking time derivative of DKL(ρθt∥ρ∗), we obtain

d

dt
DKL(ρθt∥ρ∗) =

1

D

d

dt
H(ρθt) =

1

D
θ̇t · ∇H(θt) = − 1

D
∇H(θt) ·G−1(θt)∇H(θt).

Using the inequality in Lemma 4.6.3, we are able to show:

d

dt
DKL(ρθt∥ρ∗) ≤

δ0
D

−D I(ρθt |ρ∗).

By Lemma 4.6.2, we have:

d

dt
DKL(ρθt∥ρ∗) ≤

δ0
D

−D λ̃D DKL(ρθt∥ρ∗).

Therefore we obtain, by Grownwall’s inequality, the following estimate,

DKL(ρθt∥ρ∗) ≤
δ0

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0∥ρ∗)e−Dλ̃Dt.
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Remark 19. Following the previous proof, we can show a similar convergence estimation

for the solution {ρt}t≥0 of (Equation 4.6). Such result was first discovered in [157].

DKL(ρt∥ρ∗) ≤ DKL(ρ0∥ρ∗) e−Dλ̃Dt ∀ t > 0. (4.83)

A nominal modification of our proof for Theorem 4.6.1 leads to a posterior version of

our asymptotic convergence analysis, which is stated in the following theorem.

Theorem 4.6.4 (Posterior estimation on asymptotic convergence).

DKL(ρθt∥ρ∗) ≤
δ1

λ̃DD2
(1− e−Dλ̃Dt) +DKL(ρθ0∥ρ∗)e−Dλ̃Dt,

where δ1 is defined in (Equation 4.75).

4.6.3 Wasserstein error estimations

In this subsection, we establish our error bounds for both continuous and discrete version

of the parametric Fokker-Planck equation (Equation 4.28) as approximations to the original

equation (Equation 4.6).

Wasserstein error for the parametric Fokker-Planck equation

The following theorem provides an upper bound between the solutions of (Equation 4.6)

and (Equation 4.28).

Theorem 4.6.5. Assume that {θt}t≥0 solves (Equation 4.28) and {ρt}t≥0 solves (Equation 4.6).

If the Hessian of the potential function V in (Equation 4.6) is bounded below by a constant

λ, i.e. ∇2V ⪰ λ I . the 2-Wasserstein difference between ρt and ρθt can be bounded as

W2(ρθt , ρt) ≤ Ωλ(t) =


√
δ0
λ
(1− e−λt) + e−λtW2(ρθ0 , ρ0), if λ ̸= 0,

√
δ0t+W2(ρθ0 , ρ0), if λ = 0.

(4.84)
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To prove this inequality, we need the following lemmas.

Lemma 4.6.6 (Constant speed of geodesic). The geodesic connecting ρ0, ρ1 ∈ P(M) is

described by,


∂ρt
∂t

+∇ · (ρt∇ψt) = 0

∂ψt

∂t
+ 1

2
|∇ψt|2 = 0

ρt|t=0 = ρ0, ρt|t=1 = ρ1. (4.85)

Using the notation ρ̇t = ∂tρt = −∇ · (ρt∇ψt) ∈ TρtP(M), gW (ρ̇t, ρ̇t) is constant for

0 ≤ t ≤ 1 and gW (ρ̇t, ρ̇t) = W 2
2 (ρ0, ρ1) for 0 ≤ t ≤ 1.

Lemma 4.6.7 (Displacement convexity of relative entropy). Suppose {ρt} solves the geodesic

equation (Equation 4.85), the relative entropy H in (Equation 4.8) has potential V satis-

fying ∇2V ⪰ λI , then we have d
dt
gW (gradWH(ρt), ρ̇t) ≥ λW 2

2 (ρ0, ρ1). Or equivalently,

d2

dt2
H(ρt) ≥ λW 2

2 (ρ0, ρ1).

Lemma 4.6.6 originates from section 7.2 of [35]. A generalization of it has been proved

in Lemma 5 of [158]. A more general version on the displacement convexity related to

Lemma 4.6.7 has been discussed in chapter 16 and 17 of [7]. To be self-contained, we

provide direct proofs to both Lemma 4.6.6 and Lemma 4.6.7 in Appendix section C.4.

Proof of Theorem 4.6.5. Figure 4.5 provides a sketch of our proof: For a given time t, the

geodesic {ρ̄τ}0≤τ≤1 on Wasserstein manifold P(M) that connects ρθt and ρt satisfies the

geodesic equations (Equation 4.85). If differentiating W 2
2 (ρθt , ρt) with respect to time t

according to Theorem 23.9 of [7], we are able to deduce

d

dt
W 2

2 (ρθt , ρt) = 2gW (ρ̇θt ,− ˙̄ρ0) + 2gW (ρ̇t, ˙̄ρ1), (4.86)

in which ˙̄ρ0 = ∂τ ρ̄τ |τ=0 = −∇ · (ρ̄0∇ψ0), ˙̄ρ1 = ∂τ ρ̄τ |τ=1 = −∇ · (ρ̄1∇ψ1). Notice that

ρ̇θt = (Tθ♯)∗θ̇t ρ̇t = −gradWH(ρt) = ∇ · (ρt∇(V +D log ρt)).
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P

ρ0

ρt ( or ρ̄1)

ρθ0 ρθt (or ρ̄0)

−gradWH(ρθt)

ρ̇t = −gradWH(ρt)

ρ̇θt = −gradWH(ρθt)|P(Θ)

˙̄ρ1

− ˙̄ρ0PΘ

{ρs}s≥0

{ρθs}s≥0

{ρ̄τ}0≤τ≤1

TρθtPΘ

Figure 4.5: An illustrative diagram for the proof of Theorem 4.6.5

Using the definition (Equation 2.58) of Wasserstein metric, we can compute (recall that

ρθt = ρ̄0, ρt = ρ̄1):

gW (ρ̇θt , ˙̄ρ0) =

∫
∇(V +D log ρ̄0) ·ψ0 ρ̄0 dx gW (ρ̇t, ˙̄ρ1) =

∫
∇(V +D log ρ̄1) ·ψ1 ρ̄1 dx.

Now we can write (Equation 4.86) as,

1

2

d

dt
W 2

2 (ρθt , ρt)

=gW ((Tθt♯)∗θ̇t + gradWH(ρθt),− ˙̄ρ0) + gW (−gradWH(ρθt),− ˙̄ρ0) + gW (−gradWH(ρt), ˙̄ρ1)

=gW (gradWH(ρθt)− (Tθt♯)∗ξ, − ˙̄ρ0)− (gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0)),

(4.87)

here we set ξ = −θ̇t.

For the first term in the last line of (Equation 4.87), we use Cauchy–Schwarz inequality,
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(Equation 4.72), and Lemma 4.6.6, which implies g( ˙̄ρ0, ˙̄ρ0) = W 2
2 (ρθt , ρt), to obtain

gW (gradWH(ρθt)− (Tθt♯)∗ξ,− ˙̄ρ0)

≤
√
gW (gradWH(ρθt)− (Tθt♯)∗ξ, gradWH(ρθt)− (Tθt♯)∗ξ)

√
gW ( ˙̄ρ0, ˙̄ρ0)

≤
√
δ0W (ρθt , ρt). (4.88)

For the second term in (Equation 4.87) , we write it as:

gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0) =

∫ 1

0

d

dτ
gW (gradWH(ρ̄τ ), ˙̄ρτ ) dτ. (4.89)

By Lemma 4.6.7, we have:

gW (gradWH(ρ̄1), ˙̄ρ1)− gW (gradWH(ρ̄0), ˙̄ρ0) ≥ λ W 2
2 (ρθt , ρt). (4.90)

Combining inequalities (Equation 4.88), (Equation 4.90) and (Equation 4.87), we get

1

2

d

dt
W 2

2 (ρθt , ρt) ≤ −λW 2
2 (ρθt , ρt) +

√
δ0 W2(ρθt , ρt).

This is:
d

dt
W2(ρθt , ρt) ≤ −λW2(ρθt , ρt) +

√
δ0.

When λ ̸= 0, the Grownwall’s inequality gives

W2(ρθt , ρt) ≤
√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0).

When λ = 0, the inequality is d
dt
W2(ρθt , ρt) ≤

√
δ0, direct integration yields

W2(ρθt , ρt) ≤
√
δ0t+W2(ρθ0 , ρ0) .
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When the potential V is strictly convex, i.e. λ > 0. (Equation 4.84) in Theorem 4.6.5

provides a nice estimation of the error term W2(ρθt , ρt) at any time t that is always upper

bounded by max{
√
δ0
λ
,W2(ρθ0 , ρ0)}.

In case that the potential V is not strictly convex, i.e. λ could be 0 or negative, the

right hand side in (Equation 4.84) may increase to infinity when time t → ∞. However,

(Equation 4.76) and (Equation 4.83) reveals that both ρθt and ρt stay in a small neighbour-

hood of the Gibbs ρ∗ when t is large. When taking this into account, we are able to show

that the error term W2(ρθt , ρt) doesn’t get arbitrarily large. In the following theorem, we

provide a uniform bound for the error depending on t.

Theorem 4.6.8. Suppose {ρt}t≥0 solves (Equation 4.6) and {ρθt}t≥0 solves (Equation 4.28),

the Hessian of the potential V ∈ V is bounded from below by λ, i.e. ∇2V ⪰ λI , then

W2(ρθt , ρt) ≤ min

Ωλ(t),

√
2δ0

λ̃2DD
2
+


√√√√∣∣∣∣∣2K1 −

2δ0

λ̃2DD
2

∣∣∣∣∣+
√

2K2

λ̃D

 e−
λ̃D
2
Dt

 ,

(4.91)

where function Ωλ(t) is defined in (Equation 4.84), E0 = W2(ρθ0 , ρ0), K1 = DKL(ρθ0∥ρ∗),

and K2 = DKL(ρ0∥ρ∗).

Lemma 4.6.9 (Talagrand inequality [159, 7]). If the Gibbs distribution ρ∗ satisfies the

Logarithmic Sobolev inequality (Equation 4.77) with constant λ̃ > 0, ρ∗ also satisfies the

Talagrand inequality:

√
2
DKL(ρ∥ρ∗)

λ̃
≥ W2(ρ, ρ∗). for any ρ ∈ P . (4.92)

Proof of Theorem 4.6.8. The first term has been proved in Theorem 4.6.5, the second term

is just a quick result of Theorem 4.6.1 and Talagrand inequality: for t fixed, (Equation 4.76)
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together with Talagrand inequality (Equation 4.92) gives:

W2(ρθt , ρ∗) ≤

√
2
DKL(ρθt∥ρ∗)

λ̃D
≤
√

2δ0

λ̃2DD
2
(1− e−λ̃DDt) + 2K1e−λ̃DDt

≤
√

2δ0

λ̃2DD
2
+

√√√√∣∣∣∣∣2K1 −
2δ0

λ̃2DD
2

∣∣∣∣∣e− λ̃D
2
Dt.

Similarly, (Equation 4.83) and (Equation 4.92) gives

W2(ρt, ρ∗) ≤

√
2
DKL(ρt∥ρ∗)

λ̃D
≤

√
2K2

λ̃D
e−

λ̃D
2
Dt.

Applying triangle inequality of Wasserstein distanceW2(ρθt , ρt) ≤ W2(ρθt , ρ∗)+W2(ρt, ρ∗),

we get (Equation 4.91).

Based on Theorem 4.6.8, we can obtain a uniform a priori error estimate.

Theorem 4.6.10 (Main Theorem on a priori error analysis of the parametric Fokker-Planck

equation). Assume E0 = W2(ρθ0 , ρ0) and δ0 defined in (Equation 4.72) are sufficiently

small in the sense that

E0 < A
√
δ0 +B,

√
δ0 + E0 ≤ Be−µD(A+1). (4.93)

Then the approximation error W2(ρθt , ρt) at any time t > 0 can be uniformly bounded by

E0 and δ0.

• When λ > 0, W2(ρθt , ρt) ≤ max{
√
δ0/λ,E0} ∼ O(

√
δ0 + E0),

• When λ = 0, W2(ρθt , ρt) ≤
√
δ0
µD

log B√
δ0+E0

+ E0 ∼ O(
√
δ0 log

1√
δ0+E0

+ E0),

• When λ < 0,W2(ρθt , ρt) ≤ A
√
δ0+B

|λ|
|λ|+µD

(
E0 +

√
δ0/|λ|

) µD
|λ|+µD ∼ O((E0+

√
δ0)

λ̃DD

2|λ|+λ̃DD ).

Here A,B, µD are O(1) constants depending on V,D, ρ0, θ0. Their values are given in

(Equation 4.95).
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Proof of Theorem 4.6.10 . When λ > 0, by (Equation 4.91), we have E(t) ≤
√
δ0
λ

+(
E0 −

√
δ0
λ

)
e−λt, the right hand side can be bounded by max{E0,

√
δ0
λ
}.

When λ < 0, we denote the right hand side of (Equation 4.91) as

E(t) = min

{
− 1

|λ|
√
δ0 +

(
E0 +

√
δ0

|λ|

)
e|λ|t, A

√
δ0 +Be−µDt

}
, (4.94)

where

A =

√
2

λ̃DD
, B =

√√√√∣∣∣∣∣2K1 −
2δ0

λ̃2DD
2

∣∣∣∣∣+
√

2K2

λ̃D
, and µD =

λ̃DD

2
(4.95)

are all positive numbers. The first term in (Equation 4.94) is increasing as a function of

time t while the second term is decreasing, combining E0 < A
√
δ0 + B, we know t0 =

argmaxt≥0E(t) is unique and satisfies

− 1

|λ|
√
δ0 +

(
E0 +

√
δ0

|λ|

)
e|λ|t0 = A

√
δ0 +Be−µDt0 , (4.96)

as indicated in Figure 4.6.

t

E(t)

− 1
|λ|
√
δ0 +

(
E0 +

√
δ0

|λ|

)
e|λ|t

A
√
δ0 +Be−µDt

t0

Figure 4.6: An illustrative diagram for the proof of Theorem 4.6.10

Since A > 0, (Equation 4.96) leads to
(
E0 +

√
δ0

|λ|

)
e|λ|t0 > Be−µDt0 , thus

t0 >
logB − log

(
E0 +

√
δ0

|λ|

)
|λ|+ µD

. (4.97)
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Using (Equation 4.97), we show

max
t≥0

E(t) = E(t0) = A
√
δ0+B e−µDt0 < A

√
δ0+B

|λ|
|λ|+µD

(
E0 +

√
δ0

|λ|

) µD
|λ|+µD

. (4.98)

As a result,W2(ρθt , ρt) can be uniformly bounded by the right hand side of (Equation 4.98).

Since A,B are O(1) coefficients, this uniform bound is dominated by the term

O(

(
E0 +

√
δ0

|λ|

) µD
|λ|+µD

) = O((E0 +
√
δ0)

λ̃DD

2|λ|+λ̃DD ).

At last, when λ = 0, by (Equation 4.91)

E(t) = min
{√

δ0t+ E0, A
√
δ0 +Be−µDt

}
,

Let us denote f(t) = A
√
δ0 + Be−µDt −

√
δ0t − E0. Similar to the analysis for the case

λ < 0, we denote t0 = argmaxt≥0E(t), then t0 is unique and solves f(t0) = 0. Since f(t)

is decreasing with f(A+ 1) > 0, t0 > A+ 1. Then we have

max
t≥0

E(t) = E(t0) = A
√
δ0 +Be−µDt0 =

√
δ0t0 + E0 >

√
δ0(A+ 1) + E0

This leads to Be−µDt0 >
√
δ0 + E0, i.e. t0 < 1

µD
log B√

δ0+E0
. Thus we have

max
t≥0

E(t) = E(t0) =
√
δ0t0 + E0 <

√
δ0
µD

log
B√

δ0 + E0

+ E0.

Therefore W2(ρθt , ρt) can be uniformly bounded by the term
√
δ0
µD

log B√
δ0+E0

+ E0 ∼

O(
√
δ0 log

1√
δ0+E0

+ E0).

Remark 20. In the case that V ∈ V is not convex, we can decompose V by V = U + ϕ

with ∇2U ⪰ KI (K > 0) and ∇2ϕ ⪰ KϕI . We can still assume ∇2V ⪰ λI , but λ may be

124



negative. One can verify that Kϕ < 0 and |Kϕ| − K ≥ |λ|. On the other hand, one can

compute λ̃D = K
D
e−

osc(ϕ)
D . Combining them together, we provide a lower bound for α:

α ≥ γ(D,U, ϕ) =
1

1 + 2
(

|Kϕ|
K

− 1
)
e

osc(ϕ)
D

One can verify that increasing the diffusion coefficient D or convexity K, or decreasing the

oscillation osc(ϕ) and convexity Kϕ can improve the lower bound γ(D,U, ϕ) for order α.

Similarly, one can establish the corresponding posterior error estimate for W2(ρθt , ρt):

Theorem 4.6.11 (Posterior error analysis of the parametric Fokker-Planck equation). Sup-

poseE0 = W2(ρθ0 , ρ0) and δ1defined in (Equation 4.75) satisfy the condition (Equation 4.93)

with δ0 replaced by δ1. Then

1. When λ ≥ 0, W2(ρθt , ρt) can be uniformly bounded by O(E0 +
√
δ1);

2. When λ = 0, W2(ρθt , ρt) can be uniformly bounded by O(
√
δ1 log

1√
δ1+E0

+ E0);

3. When λ < 0, W2(ρθt , ρt) can be uniformly bounded by O((E0 +
√
δ1)

λ̃DD

2|λ|+λ̃DD ).

Wasserstein error for the time discrete schemes

To solve (Equation 4.28) numerically, we need time discrete schemes, such as the one pro-

posed in (Equation 4.48). In this subsection, we present the error estimate in Wasserstein

distance for our scheme. We begin our analysis by focusing on the forward Euler scheme,

meaning that we apply forward Euler scheme to solve (Equation 4.28) and compute θk at

each time step. We denote ρθk = Tθk ♯p. We estimate the W2-error between ρθk and the real

solution ρtk . Then we analyze the W2 distance between the solutions obtained by forward

Euler scheme and our scheme (Equation 4.48) respectively, which in turn give us the W2

error estimate for our scheme.

Theorem 4.6.12 (a priori error analysis of forward Euler scheme). Let θk (k = 0, 1, . . . , N )

be the solution of forward Euler scheme applied to (Equation 4.28) at time tk = kh on [0, T ]
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with time step size h = T
N

, ρθk = Tθk ♯p, and {ρt}t≥0 solves the Fokker-Planck Equation

(Equation 4.6) exactly. Assume that the Hessian of the potential function V ∈ C2(Rd) can

be bounded from above and below, i.e. λI ⪯ ∇2V ⪯ ΛI . Then

W2(ρθk , ρtk) ≤ (
√
δ0h+ Ch2)

1− e−λtk

1− e−λh
+ e−λtkW2(ρθ0 , ρ0) for any tk = kh, (4.99)

for all 0 ≤ k ≤ N . Here C is a constant whose formula is provided in (Equation 4.116).

In order to estimate W2(ρθk , ρtk), we use the triangle inequality of W2 distance [7] to

separate it into three parts:

W2(ρθk , ρtk) ≤ W2(ρθk , ρ̃
⋆
tk
) +W2(ρ

⋆
tk
, ρ̃tk) +W2(ρ̃tk , ρtk). (4.100)

Here {ρ̃t}tk−1≤t≤tk satisfies:

∂ρ̃t
∂t

= ∇ · (ρ̃t∇V ) +D∆ρ̃t , ρ̃tk−1
= ρθk−1

, (4.101)

and {ρ⋆t}t≥tk−1
satisfies:

∂ρ⋆t
∂t

= ∇ · (ρ⋆t∇(V +D log ρθk−1
)) , ρ⋆tk−1

= ρθk−1
. (4.102)

Figure 4.7 shows the relations of different items used in our proof. We present three lemmas

that estimate three terms in (Equation 4.100) respectively.

Lemma 4.6.13. W2(ρθk , ρ
⋆
tk
) in (Equation 4.100) can be upper bounded by

√
δ0h+O(h

2).

An explicit formula for the coefficient of h2 is included in the following proof.

Proof. We establish the desired estimation by introducing several different pushforward

maps as shown in Figure 4.8 and then applying triangle inequality.

(a) We know ρθk−1
= Tθk−1 ♯

p and ρθk = Tθk ♯p, let us denote Ttk−1→tk = Tθk ◦ T−1
θk−1

.

Then ρθk = Ttk−1→tk ♯
ρθk−1

.

126



P(Rd)

ρ0
ρθ0

ρθk

ρtk

ρθk−1

ρtk−1

ρ⋆tk

ρ̃tk

Figure 4.7: Trajectory of {ρθk}k=0,...,N is our numerical solution; trajectory of {ρt}t≥0 is the
real solution of the Fokker-Planck Equation; {ρ̃t}t≥tk−1

solves (Equation 4.101); {ρ⋆t}t≥tk−1

solves (Equation 4.102).

original position of a particle x

Ttk−1→tk(x)

where our para-
metric Fokker
Planck equation
sends x to

T̃tk−1→tk(x)

G̃tk−1→tk(x)

Gtk−1→tk(x)

where the actual
Vlasov dynamic
send x to

Expectation of this
distance w.r.t. ρθk−1

gives upper bound of
W2(ρθk , ρ

⋆
tk
)

Figure 4.8: Illustration of proof strategy for Lemma 4.6.13
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(b) Let ξk−1 = θ̇k−1 = −G(θk−1)
−1∇θH(θk−1) and by convention, we denote Ψ as

solution of (Equation 4.14). We consider the map T̃tk−1→tk(·) = Id + h∇Ψ(·)Tξk−1.

(c) We denote ζθ(·) = V (·) +D log ρθ(·). The particle version (recall (Equation 4.7)) of

(Equation 4.102) is:

żt = −∇ζθk−1
(zt) 0 ≤ t ≤ h with initial condition z0 = x ∼ ρθk−1

. (4.103)

we denote the solution map of (Equation 4.103) by Gtk−1→tk(x) = ztk . Then ρ⋆tk =

Gtk−1→tk ♯
ρθk−1

.

(d) The map Gtk−1→tk is obtained by solving an ODE, in order to compare the difference

with Ttk−1→tk , we consider the ODE with fixed initial vector field:

˙̃zt = −∇ζθk−1
(x) 0 ≤ t ≤ h z̃0 = x ∼ ρθk−1

. (4.104)

This ODE will induce the solution map G̃tk−1→tk(·) = Id − h∇ζθk−1
(·).

With the maps defined in (a),(b),(c),(d), and using the triangle inequality of W2 distance,

we have,

W2(ρθk , ρ̃
⋆
tk
) = W2(Ttk−1→tk♯ρθk−1

, Gtk−1→tk♯ρθk−1
)

≤ W2(Ttk−1→tk♯ρθk−1
, T̃tk−1→tk♯ρθk−1

)︸ ︷︷ ︸
(A)

+W2(T̃tk−1→tk♯ρθk−1
, G̃tk−1→tk♯ρθk−1

)︸ ︷︷ ︸
(B)

+W2(G̃tk−1→tk♯ρθk−1
, Gtk−1→tk♯ρθk−1

)︸ ︷︷ ︸
(C)

.

In the rest of the proof, We give upper bounds for distances (A),(B) and (C) respectively.

(A) Let us define ξ(θ) = −G(θ)−1∇H(θ). Now we set θ(τ) = θk−1 +
τ
h
(θk − θk−1) =

θk−1 + τξ(θk−1). For any x, consider xτ = Tθ(τ)(T
−1
θk−1

(x)) with 0 ≤ τ ≤ h, then
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{xτ}0≤τ≤h satisfies

ẋτ = ∂θTθ(τ)(T
−1
θ(τ)(xτ ))ξ(θk−1) 0 ≤ τ ≤ h. (4.105)

If x0 ∼ ρθk−1
in (Equation 4.105), it is clear that xh ∼ Ttk−1→tk ♯

ρθk−1
. Furthermore,

we denote the distribution of xτ as ρτ and {ψτ} satisfying

−∇ · (ρτ (x)∂θTθ(τ)(T−1
θ(τ)(x))ξk−1) = −∇ · (ρτ (x)∇ψτ (x)) 0 ≤ τ ≤ h. (4.106)

If we consider

ẏτ = ∇ψτ (yτ ) 0 ≤ τ ≤ h with y0 ∼ ρθk−1
,

and denote ϱτ as the distribution of yτ , by continuity equation and (Equation 4.106),

we know ρτ = ϱτ for 0 ≤ τ ≤ h, thus yh ∼ Ttk−1→tk ♯
ρθk−1

. On the other hand, when

τ = 0, (Equation 4.106) shows ∇ψ0(x) = ∇Ψ(x)Tξk−1. Combining them together,

we bound term (A) as

W 2
2 (Ttk−1→tk♯ρθk−1

, T̃tk−1→tk♯ρθk−1
)

≤Ey0∼ρθk−1
|yh − (y0 + h∇ψ0(y0))|2 = Ey0∼ρθk−1

∣∣∣∫ h

0

(∇ψτ (yτ )−∇ψ0(y0)) dτ
∣∣∣2

=Ey0

∣∣∣∣∫ h

0

∫ τ

0

d

ds
(∇ψs(ys)) ds dτ

∣∣∣∣2 = Ey0

∣∣∣∣∫ h

0

∫ h

s

d

ds
(∇ψs(ys)) dτ ds

∣∣∣∣2
=Ey0

∣∣∣∣∫ h

0

(h− s)
d

ds
(∇ψs(ys)) ds

∣∣∣∣2 ≤ Ey0
∫ h

0

(h− s)2 ds

∫ h

0

∣∣∣∣ dds(∇ψs(ys))
∣∣∣∣2 ds

=
h3

3

∫ h

0

Ey0

∣∣∣∣ dds(∇ψs(ys))
∣∣∣∣2 ds

=
h4

3

(
1

h

∫ h

0

Eys

∣∣∣∣∂∇ψs(ys)∂t
+∇2ψs(ys)∇ψs(ys)

∣∣∣∣2 ds
)
.
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Notice that ys follows the distribution

ρs = (Tθk−1+sξ(θk−1) ◦ T
−1
θk−1

)♯ρθk−1
= Tθk−1+sξ(θk−1)♯p.

If we define

M(θ, s) =

∫ ∣∣∣∣ ∂∂t∇ψs(Tθ(s)(z)) +∇2ψs(Tθ(s)(z))∇ψs(Tθ(s)(z))
∣∣∣∣2 p(z) dz (4.107)

with −∇ · (ρs∇ψs) = −∇ · (ρs ∂θTθ(s) ◦ T−1
θ(s) ξ(θ)), ρs = Tθ+sξ(θ)♯p;

and θ(s) = θ + sξ(θ).

we are able to derive

W 2
2 (Ttk−1→tk♯ρθk−1

, T̃tk−1→tk♯ρθk−1
) ≤ 1

3
sup

0≤s≤h
M(θk−1, s)h

4. (4.108)

(B) We have

W 2
2 (T̃tk−1→tk♯ρθk−1

, G̃tk−1→tk♯ρθk−1
) ≤

∫
|T̃tk−1→tk(x)− G̃tk−1→tk(x)|2ρθk−1

(x) dx

= h2
(∫

|∇Ψ(x)Tξ(θk−1)− (−∇ζθk−1
(x))|2ρθk−1

(x) dx

)
= h2

(∫
|∇Ψ(Tθk−1

(x))Tξ(θk−1)− (−∇(V +D log ρθk−1
) ◦ Tθk−1

(x))|2 dp(x)
)

≤ δ0 h
2.

The last inequality is due to Theorem 4.3.5 and definition (Equation 4.72).

(C) Recall that {zt} and {z̃t} solve (Equation 4.103) and (Equation 4.104) with initial

condition z0 = z̃0 = x respectively, similar to the analysis in (A), we can estimate
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term (C) as

W 2
2 (G̃tk−1→tk♯ρθk−1

, Gtk−1→tk♯ρθk−1
)

≤Ex∼ρθk−1
|zh − z̃h|2 = Ex∼ρθk−1

∣∣∣∣∫ h

0

∇ζk−1(x)−∇ζk−1(zτ ) dτ

∣∣∣∣2
=Ex

∣∣∣∣∫ h

0

∫ τ

0

d

ds
∇ζθk−1

(zs) ds dτ

∣∣∣∣2 = Ex
∣∣∣∣∫ h

0

(h− s)
d

ds
∇ζθk−1

(zs) ds

∣∣∣∣2
≤Ex

h3

3

∫ h

0

∣∣∣∣ dds∇ζθk−1
(zs)

∣∣∣∣2 ds = h4

3

(
1

h

∫ h

0

Ezs
∣∣∇2ζθk−1

(zs)ζθk−1
(zs)

∣∣2 ds) .
We define

N(θ, s) = Ezs
∣∣∇2ζθ(zs)ζθ(zs)

∣∣2 , with ζθ(·) = V (·) +D log ρθ(·),

żt = −∇ζθ(zt), z0 ∼ ρθ.

Similar to (A), we have:

W 2
2 (G̃tk−1→tk♯ρθk−1

, Gtk−1→tk♯ρθk−1
) ≤ 1

3
sup

0≤s≤h
N(θk−1, h)h

4

Combining the estimates for terms (A),(B) and (C), and defining

M(θ, h) = sup
0≤s≤h

M(θk−1, s), N(θ, h) = sup
0≤s≤h

N(θk−1, s), (4.109)

we obtain

W2(ρθk , ρ̃
⋆
tk
) ≤

√
δ0h+

M(θk−1, h) +N(θk−1, h)√
3

h2.

Lemma 4.6.14. The second term in (Equation 4.100) can be upper bounded by O(h2).

Proof. Recall that ρ̃t is defined by (Equation 4.101) and ρ∗t is defined by (Equation 4.102).
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We can rewrite (Equation 4.102) as:

∂ρ⋆t
∂t

= ∇ · (ρ⋆t (∇V +D∇ log ρθk−1
−D∇ log ρ⋆t )) +D∆ρ⋆t , tk−1 ≤ t ≤ tk.

We consider the following Stochastic Differential Equations (SDEs) sharing the same tra-

jectory of Brownian motion {Bτ}0≤τ≤h and initial condition:

dxτ = −∇V (xτ )dτ +
√
2D dBτ (4.110)

dx⋆τ = −∇V (x⋆τ )dτ + (D∇ log ρ⋆tk−1+τ
(x⋆τ )−D∇ log ρθk−1

(x⋆τ ))dτ +
√
2D dBτ

(4.111)

with initial condition: x0 = x⋆0 ∼ ρθk−1
and 0 ≤ τ ≤ h.

Subtracting (Equation 4.110) from (Equation 4.111), we get:

x⋆τ − xτ =

∫ τ

0

∇V (xs)−∇V (x⋆s) + r⃗(x⋆s, s) ds,

in which we denote r⃗(x, τ) = D∇ log ρ⋆tk−1+τ
(x) − D∇ log ρθk−1

(x) for convenience.

Hence,

E|x⋆τ − xτ |2 = E
∣∣∣∣∫ τ

0

∇V (xs)−∇V (x⋆s) + r⃗(x⋆s, s) ds

∣∣∣∣2
≤ 2 E

∣∣∣∣∫ τ

0

∇V (xs)−∇V (x⋆s) ds

∣∣∣∣2 + 2 E
∣∣∣∣∫ τ

0

r⃗(x⋆s, s) ds

∣∣∣∣2
≤ 2 E

[
τ

∫ τ

0

|∇V (xs)−∇V (x⋆s)|2 ds
]
+ 2 E

[
τ

∫ τ

0

|r⃗(x⋆s, s)|2 ds
]

= 2τ

(∫ τ

0

E|∇V (xs)−∇V (x⋆s)|2 + E|r⃗(x⋆s, s)|2 ds
)

Since Hessian of V is bounded from above by Λ, |∇V (x) − ∇V (y)| ≤ Λ|x − y| for any
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x, y ∈ Rd, we have the inequality:

E|x⋆τ − xτ |2 ≤ 2τΛ2

∫ τ

0

E|x⋆s − xs|2 ds+ 2τ

∫ τ

0

E|r⃗(x⋆s, s)|2 ds (4.112)

If we define Uτ =
∫ τ
0
E|x⋆s − xs|2 ds and Rτ =

∫ τ
0
E|r⃗(x⋆s, s)|2 ds, (Equation 4.112) be-

comes:

U ′
τ ≤ 2Λ2τUτ + 2τRτ

By integrating this inequality, we have

Uτ ≤
∫ τ

0

2eΛ(τ
2−s2)sRs ds,

and U ′
τ ≤ 4Λ2τ

∫ τ

0

eΛ(τ
2−s2)sRsds+ 2τRτ .

Therefore

W2(ρ
⋆
tk
, ρ̃tk) ≤

√
E|x⋆h − xh|2 =

√
U ′
h ≤

√
4Λ2h

∫ h

0

eΛ(h2−s2)sRs ds+ 2hRh

Since Rτ is increasing with respect to τ , we are able to estimate

W2(ρ
⋆
tk
, ρ̃tk) ≤

√
4Λ2h2

∫ h

0

eΛ(h2−s2)sds+ 2h
√
Rh =

√
2Λ(eΛh2 − 1)h+ 2h

√
Rh.

(4.113)

Next we estimate Rh. Recall ρ∗tk−1
= ρθk−1

as in (Equation 4.102), we have

Rh =

∫ h

0

Ex⋆s |D log ρ⋆tk−1+s
(x⋆s)−D log ρ⋆tk−1

(x⋆s)|2ds

=D2

∫ h

0

Ex⋆s

∣∣∣∣∫ s

0

∂

∂t
∇ log ρ⋆tk−1+t

(x⋆s)dt

∣∣∣∣2 ds
≤D2

∫ h

0

Ex⋆s

[
s

∫ s

0

∣∣∣∣ ∂∂t∇ log ρ⋆tk−1+t
(x⋆s)

∣∣∣∣2 dt
]
ds

=D2

∫ h

0

∫ s

0

s

∫ ∣∣∣∣ ∂∂t∇ log ρ⋆tk−1+t

∣∣∣∣2 ρ⋆tk−1+s
dxdt ds.
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By (Equation 4.102), one can further compute

∂

∂t
log ρ⋆tk−1+t

= −∇ log ρ⋆tk−1+t
· ∇ζθk−1

−∆ζθk−1
.

Let us define

L(θ, t, s) =

∫
|∇(∇ log ρt · ∇ζθ +∆ζθ)|2ρs dx with ζθ = V +D log ρθ

and
∂ρs
∂s

+∇ · (ρs∇ζθ) = 0 ρ0 = ρθ

Then we have the estimation

Rh ≤ D2

∫ h

0

∫ s

0

s ·
(

sup
0≤t≤s≤h

L(θk−1, t, s)

)
dt ds =

D2

3
sup

0≤t≤s≤h
L(θk−1, t, s) h

3.

Let us also define

L(θ, h) =

(
sup

0≤t≤s≤h
L(θ, t, s)

) 1
2

(4.114)

Thus (Equation 4.113) becomes W2(ρ
⋆
tk
, ρ̃tk) ≤

√
2D2

3
(Λ(eΛh2 − 1) + 2)L(θk−1, h) h

2.

When the stepsize h is small enough, we have eΛh2 < 2. Let us denote K(D,Λ) =√
2D2

3
(Λ + 2). Thus we have W2(ρ

⋆
tk
, ρ̃tk) ≤ K(D,Λ)L(θk−1, h) h

2.

Remark 21. Analyzing the discrepancy of stochastic particles under different movements

provides a natural upper bound for W2 distance. Both Lemma 4.6.13 and Lemma 4.6.14

are derived by making use of the particle version of their corresponding density evolution.

Such proving strategy was motivated from subsection 4.3.3.

Lemma 4.6.15. The third term in (Equation 4.100) satisfies

W2(ρtk , ρ̃tk) ≤ e−λhW2(ρtk−1
, ρθk−1

).

Here we recall that λ satisfies ∇2V ⪰ λI .
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This lemma is a direct corollary of the following theorem:

Theorem 4.6.16. Suppose the potential V ∈ C2(Rd) satisfying ∇2V ⪰ λI for a finite

real number λ, i.e. the matrix ∇2V (x) − λI is semi-positive definite for any x ∈ Rd.

Given ρ1, ρ2 ∈ P , and denote ρ(1)t and ρ(2)t the solutions of the Fokker-Planck equation

with different initial distributions ρ1 and ρ2 respectively, i.e.

∂ρ
(1)
t

∂t
= ∇ · (ρ(1)t ∇V ) +D∆ρ

(1)
t ρ

(1)
0 = ρ1,

∂ρ
(2)
t

∂t
= ∇ · (ρ(2)t ∇V ) +D∆ρ

(2)
t ρ

(2)
0 = ρ2.

Then

W2(ρ
(1)
t , ρ

(2)
t ) ≤ e−λtW2(ρ1, ρ2) (4.115)

This is a known stability result on Wasserstein gradient flows. One can find its proof in

[35] or [7]. With the results in Lemma 4.6.13, Lemma 4.6.14, Lemma 4.6.15, we are ready

to prove Theorem 4.6.12.

Proof. (Proof of Theorem 4.6.12) For convenience, we write

Errk = W2(ρθk , ρtk) k = 0, 1, ..., N.

Combining Lemma 4.6.13, Lemma 4.6.14 and Lemma 4.6.15, the triangle inequality in

(Equation 4.100) becomes

Errk ≤
√
δ0 h+

(
1√
3
M(θk−1, h) +

1√
3
N(θk−1, h) +K(D,Λ)L(θk−1, h)

)
h2+e−λh Errk−1.

Let us denote the constant C depending on initial parameter θ0, time stepsize h and time
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steps N :

C(θ0, h,N) = max
0≤k≤N−1

{
1√
3
M(θk−1, h) +

1√
3
N(θk−1, h) +K(D,Λ)L(θk−1, h)

}
.

(4.116)

In the following discussion, we denote C = C(θ0, h,N). By (Equation 4.116), We

have:

Errk ≤
√
δ0h+ Ch2 + e−λhErrk−1 (4.117)

Multiplying eλkh to both sides of (Equation 4.117), we get:

eλkhErrk ≤ (
√
δ0 h+ Ch2)eλkh + eλ(k−1)hErrk−1. (4.118)

For any n, 1 ≤ n ≤ N , summing (Equation 4.118) from 1 to n, we reach

eλnhErrn ≤ (
√
δ0h+ Ch2)

(
n∑
k=1

eλkh

)
+ Err0 = (

√
δ0h+ Ch2)

eλ(n+1)h − eλh

eλh − 1
+ Err0.

Recall that tn = nh for 1 ≤ n ≤ N , it leads to:

Errn ≤ (
√
δ0h+ Ch2)

1− e−λtn

1− e−λh
+ e−λtnErr0 n = 1, ..., N.

Theorem 4.6.12 indicates that the error W2(ρθk , ρtk) is upper bounded by O(
√
δ0) +

O(Ch) +O(W2(ρθ0 , ρ0)). Here O(
√
δ0) is the essential error term that originates from the

approximation mechanism of our parametric Fokker-Planck equation. The O(Ch) error

term is induced by the finite difference scheme. And the O(W2(ρθ0 , ρ0)) term is the initial

error.

It is worth mentioning that the error bound for forward Euler scheme in (Equation 4.99)

matches the error bound for the continuous scheme (Equation 4.84) as we reduce the effects
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introduced by finite difference. More precisely, under assumption lim
h→0

C(θ0, h,N)h = 0,

we have:

lim
h→0

(
√
δ0h+ Ch2)

1− e−λt

1− e−λh
+ e−λtW2(ρθ0 , ρ0) =

√
δ0
λ

(1− e−λt) + e−λtW2(ρθ0 , ρ0),

this indicates that the error bounds (Equation 4.99) and (Equation 4.84) are compatible

when h→ 0.

Remark 22 (O(h) error order). Under further assumptions that Θ = Rm, Tθ(x) ∈ C3(Θ×

Rd) and

lim
θ→∞

H(θ) = +∞ (4.119)

we can show the finite difference error term O(Ch) is of order O(h). In fact, the solu-

tion obtained from forward Euler scheme is always restricted in a fixed bounded region

of Θ. To be more precise, suppose the initial value is θ0, we consider Θ0 = {θ|H(θ) ≤

H(θ0)}. By (Equation 4.119), one can verify Θ0 is bounded and closed set and thus is

compact. We set l = maxθ∈Θ0 |G(θ)−1∇θH(θ)|. Then we consider a slightly larger set

Θl
0 = {θ | there exists θ′ ∈ Θ0, s.t. |θ−θ′| ≤ l}. Notice that Θl

0 is also bounded. We define

σGmin = min
θ∈Θl

0

σmin(G(θ)) σHmax = max
θ∈Θl

0

σmax(∇2
θθH(θ)).

Here σmax(A), σmin(A) denotes the maximum and the minimum singular values of matrixA.

We can show that for any time step size h < min{2σG
min

σH
max
, 1}, the numerical solution {θk}Nk=1

obtained by applying forward-Euler scheme to (Equation 4.28) is included in Θ0. To prove

this, we first show θ1 ∈ Θ0, we consider

H(θ1) = H(θ0 − hG(θ0)
−1∇θH(θ0)) =H(θ0)− hξTG(θ0)ξ +

h2

2
ξT∇2

θθH(θ̃)ξ

≤H(θ0)− hσGmin|ξ|2 +
h2

2
σHmax|ξ|2 ≤ H(θ0)
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Here we denote ξ = G(θ0)
−1∇θH(θ0). The second equality is due to Tθ(x) ∈ C3(Θ×Rd)

and thus H(·) ∈ C2(Θ). We notice that θ̃ = θ0 + τ(hG(θ0)
−1∇θH(θ0)) with 0 ≤ τ ≤ 1

and thus θ̃ ∈ Θl
0. Since H(θ1) ≤ H(θ0), we know θ1 ∈ Θ0. Applying a similar argument

with θ0 being replaced by θ1, we can further prove θ2 ∈ Θ0. By induction, we can prove

{θk}Nk=1 ⊂ Θ0. Since M(θ, s),N(θ, s),L(θ, s) depend continuously on θ, s, there supreme

values on compact set Θ0× [0, 1] must be finite so we know C(θ0, h,N) in (Equation 4.116)

is upper bounded by a constant independent of h as well as N (recall N = T
h

). Thus the

error term O(Ch) is of O(h) order.

Similar to the discussion in previous sections, we can naturally extend Theorem 4.6.12

to a posterior estimate.

Theorem 4.6.17 (posterior error analysis of forward Euler scheme).

W2(ρθk , ρtk) ≤ (
√
δ1h+Ch

2)
1− e−λtk

1− e−λh
+ e−λtkW2(ρθ0 , ρ0) for any tk = kh, 0 ≤ k ≤ N.

The explicit definition of the constant C is in (Equation 4.116).

Up to this point, we mainly analyze the error term for the forward Euler scheme. In our

numerical implementation, we adopt the scheme (Equation 4.48), which turns out to be a

semi-implicit scheme with O(h2) local error. In the following discussion, we compare the

difference between the numerical solutions of our semi-implicit scheme and forward Euler

scheme.

Recall that the parametric Fokker-Planck equation (Equation 4.28) is an ODE: θ̇ =

−G(θ)−1∇θH(θ). We consider two numerical schemes:

θn+1 =θn − hG(θn)
−1∇θH(θn) θ0 = θ, 1 ≤ n ≤ N forward Euler, (4.120)

θ̂n+1 =θ̂n − hG(θ̂n)
−1∇θH(θ̂n+1) θ̂0 = θ, 1 ≤ n ≤ N semi-implicit Euler. (4.121)
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We denote F (θ′) = G(θ′)−1∇θF (θ
′′), and set:

L1 = max
1≤n≤N

{
∥F (θn)− F (θ̂n)∥/∥θn − θ̂n∥

}
,

L2 = max
1≤k≤N

{∥∇θH(θ̂n)−∇θH(θ̂n+1)∥/∥θ̂n − θ̂n+1∥},

M1 = max
1≤n≤N

{∥G(θ̂n)−1∥}, M2 = max
1≤n≤N

{∥∇θH(θ̂n)∥},

where ∥ · ∥ is a vector norm (or its corresponding matrix norm).

Theorem 4.6.18 (Relation between forward Euler and proposed semi-implicit schemes).

The numerical solutions θn and θ̂n of the forward Euler and semi-implicit schemes with

time stepsize h and Nh = T satisfy

∥θn − θ̂n∥ ≤ ((1 + L1h)
n − 1)

M2
1M2L2

L1

h n = 1, 2, ..., N

This result implies that ∥θn− θ̂n∥ can be upper bounded by (eL1T − 1)
M2

1M2L2

L1
h. When

assuming the upper bounds L1, L2,M1,M2 ∼ O(1) as h → 0 (or equivalently N → ∞),

the differences between our proposed semi-implicit scheme and forward Euler scheme can

be bounded by O(h). As a consequence, we are able to establish O(h) error bound for our

proposed scheme (Equation 4.48).

Proof of Theorem 4.6.18. If we subtract (Equation 4.121) from (Equation 4.120),

(θn+1 − θ̂n+1) = (θn − θ̂n)− h(G(θn)
−1∇θH(θn)−G(θ̂n)

−1∇θH(θ̂n+1))

and denote en = θn − θ̂n and F (θ) = G(θn)
−1∇θH(θ), we may rewrite this equation as

en+1 = en − h(F (θn)− F (θ̂n) +G(θ̂n)
−1(∇θH(θ̂n)−∇θH(θ̂n+1))).
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Recall the definitions of L1, L2,M1, we have

∥en+1∥ ≤ ∥en∥+ hL1∥en∥+ hM1L2∥θ̂n+1 − θ̂n∥.

By the semi-simplicit scheme, we have

θ̂n+1 − θ̂n = −hG(θ̂n)−1∇θH(θ̂n+1)

Thus |θ̂n+1 − θ̂n∥ ≤ hM1M2. This gives us a recurrent inequality,

∥en+1∥ ≤ ∥en∥+ hL1∥en∥+M2
1M2L2h

2,

which implies

(
∥en+1∥+

M2
1M2L2

L1

h

)
≤ (1 + hL1)

(
∥en∥+

M2
1M2L2

L1

h

)
n = 0, 1, ..., N − 1.

This leads to:

∥en∥ ≤ ((1 + hL1)
n − 1)

M2
1M2L2

L1

h.

When we solve the ODE on [0, T ] with h = T/N , we have (1 + hL1)
n ≤ (1 + hL1)

N =(
1 + L1T

N

)N ≤ eL1T . This means all terms {∥en∥}1≤n≤N can be upper bounded by (eL1T −

1)
M2

1M2L2

L1
h.

Remark 23. In order to make our argument clear and concise, we omitted the errors

introduced by the approximation of ReLU function ψν . Careful analysis on how well ∇ψν

can approximate a general gradient field is among our future research directions.

Remark 24. The convergence property of the Stochastic Gradient Descent method (mainly

Adam method) used in our Algorithm Algorithm 2 is not discussed in details. One can
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check its convergence analysis in the paper [149]. Based on our experiences, for most

of the smooth potential functions V ∈ V with diffusion coefficient D not too small (i.e.

D > 0.1), our algorithm shows convergent behavior and produces accurate result when

checking against the true solution if it is possible.

4.7 Numerical examples

In this section, we consider solving the Fokker-Planck equation (Equation 4.6) on Rd with

initial condition ρ0(x) = N (0, Id)
3 by using Algorithm Algorithm 2. We demonstrate

several numerical examples with different potential functions V . In the following experi-

ments, unless specifically stated, we choose the length of normalizing flow Tθ as 60. We

set ψν : Rd → R as ReLU network with number of layers equals 6 and hidden dimen-

sion equals 20. We use Adam (Adaptive Moment Estimation) Stochastic Gradient Descent

method [149] with default parameters D1 = 0.9, D2 = 0.999; ϵ = 10−8. For the parame-

ters of Algorithm Algorithm 2, we choose αout = 0.005, αin = 0.0005. We follow Remark

Remark 17 to choose Kin, Kout = max{1000, 300d}. Based on our experience, we set

Mout = O( h
αout

). The suitable value of Min can be chosen after several quick tests to make

sure that every inner optimization problem (Equation 4.67) can be solved.

Our Python code is uploaded to Github, which can be downloaded from website https:

//github.com/LSLSliushu/Parametric-Fokker-Planck-Equation.

4.7.1 Quadratic Potential

Our first set of examples uses quadratic potential V . In this case, we can compute the

explicit solution of (Equation 4.6). These examples are used for the verification purpose,

because we can check the results with exact solutions.
3We can set initial value θ0 so that Tθ0 = Id and thus ρ0 = Tθ0 ♯p is standard Gaussian distribution.
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2D cases

We take d = 2, and set V (x) = 1
2
(x − µ)TΣ−1(x − µ), with µ = [3, 3]T and Σ =

diag([0.25, 0.25]). The solution of (Equation 4.6) is:

ρt = N (µ(t),Σ(t)) µ(t) = (1− e−4t)µ, Σ(t) =

 1
4
+ 3

4
e−8t

1
4
+ 3

4
e−8t

 t ≥ 0.

We solve the equation in time interval [0, 0.7] with time stepsize 0.01. We set Mout = 20

and Min = 100.

To compare against the exact solution, we set M = 6000 and sample {X1, ...,XM} ∼

Tθk ♯p at time tk and use:

µ̂k =
1

M

M∑
j=1

Xj, Σ̂k =
1

M − 1

M∑
j=1

(Xj − µ̂k)(Xj − µ̂k)
T

to compute for its empirical mean and covariance of ρ̂k. We plot the blue curves {µ̂(k)},

{µ̂(k)
2 }, {(Σ̂(k)

11 , Σ̂
(k)
22 )}, {(µ̂(k)

1 , Σ̂
(k)
11 )} in Figure 4.13, these plots properly captures the expo-

nential convergence exhibited by the explicit solution (red curves) {µ(t)}, {µ2(t)}, {(Σ11(t),Σ22(t))},

{(µ1(t),Σ11(t))}.

Figure 4.9: {µ̂(k)} Figure 4.10: {µ̂(k)
1 }

Figure 4.11:
{(Σ̂(k)

11 , Σ̂
(k)
22 )}

Figure 4.12:
{(µ̂(k), Σ̂

(k)
11 )}

Figure 4.13: Plot of empirical statistics (numerical solution: blue; real solution: red)

We also exam the network ψν̂ trained at the end of each outer iteration. Generally
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speaking, the gradient field ∇ψν̂ reflects the movements of the particles under the Vlasov-

typed dynamic (Equation 4.7) at every time step. Here are the graph of ψν̂ at k = 10, k =

140 (Figure 4.14, Figure 4.15). As we can see from these graphs, the gradient field is in the

same direction, but judging from the variation of two ψν̂s, when k = 10, |∇ψν̂ | is much

greater than its value at k = 140. This is because when t = 140, the distribution is already

close to the Gibbs distribution, the particles no longer need to move for a long distance to

reach their final destination.

Figure 4.14: Graph of ψν̂ after Mout = 20
outer iterations at k = 10th time step

Figure 4.15: Graph of ψν̂ after Mout = 20
outer iterations at k = 140th time step

In the next example, we apply our algorithm to the Fokker-Planck equation with non-

isotropic potential

V (x) =
1

2
(x− µ)TΣ−1(x− µ) µ =

 3

3

 and Σ =

 1

1
4

 .
One can verify that the solution to (Equation 4.6) is

ρt = N (µt,Σt) µt =

 3(1− e−t)

3(1− e−4t)

 , Σt =

 1

1
4
(1 + 3e−8t)

 .
We use the same parameters as before. We solve (Equation 4.6) on time interval [0, 1.4]

with time step size 0.005.
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Similarly, we also plot the empirical mean trajectory, one can compare it with the true

solution µ(t) = (3(1 − e−t), 3(1 − e−4t)). Both the curvature and the exponential conver-

gence to µ are captured by our numerical result. To demonstrate the effectiveness of our

formulation, we also compare our result with the mean trajectory obtained by computing

the flat gradient flow θ̇ = −∇θH(θ), which is plotted in Figure 4.17. It reveals very dif-

ferent behavior of the flat gradient (∇θ) flow and Wasserstein gradient (G(θ)−1∇θ) flow.

Clearly, our approximation based on Wasserstein gradient flow captures the exact mean

function much more accurately. We compare the graph of trained ψν̂ at different time steps

Figure 4.16: mean trajectory of
{ρθt} w.r.t. θ̇ = −G(θ)−1∇θH(θ)

Figure 4.17: mean trajectory of
{ρθt} w.r.t. θ̇ = −∇θH(θ)

k = 10, 140 (Figure 4.18, Figure 4.19). The directions of ∇ψν̂ at k = 10 and k = 140 is

different from the previous example. This is caused by the non-isotropic quadratic (Gaus-

sian) potential V used in this example.

Figure 4.18: Graph of ψν̂ after Mout = 20
outer iterations at k = 10th time step

Figure 4.19: Graph of ψν̂ after Mout = 20
outer iterations at k = 140th time step
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Verification of the error estimate

We verify the O(h) error estimation discussed in subsubsection 4.6.3 based on numerical

experiments with quadratic potentials. We consider V (x) = |x − µ|2 defined on R2 with

µ = (12.0, 12.0) and ρ0 as standard Gaussian on time interval [0, 1]. We run our algorithm

with several different time step size h = 0.01, 0.05, 0.08, 0.1, 0.2, 0.3 and record their cor-

responding mean trajectory {µ̂(k)} as defined in Section 6.1.1. During this process, we

need to adjust our hyperparameters αin, αout,Min,Mout correspondingly in order to guaran-

tee the convergence of Adam method. Denote {µ(tk)} as the real solution. We compute the

average l2 error of mean values as AveErr(h) = 1
N

∑
k |µ̂(k) − µ(tk)|. We pick h in a range

larger than 0.01 because when h is smaller, the influence from the approximation error δ0

of normalizing flow Tθ as well as initial error W2(ρ0, ρθ0) start to dominate the overall er-

ror. Figure 4.20 exhibits the linear relationship between our numerical error AveErr(h) and

time step size h, which confirms our theoretical estimates.

Figure 4.20: Numerical errors versus time stepsize h.

Remark 25. The reason of choosing quadratic potential is because its corresponding FPE

has an explicit solution. The reason that we focus on the average error of mean vectors

is mainly due to computational accuracy and convenience: one can approximate the er-
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ror of the mean vector of a distribution by computing the arithmetic average of samples,

which is faster and more accurate than computing for the L2-Wasserstein error among two

distributions.

Higher dimension

We implement our algorithm in higher dimensional space. In the next example, we take

d = 10, and consider the quadratic potential

V (x) =
1

2
(x−µ)TΣ−1(x−µ) Σ = diag(ΣA, I2,ΣB, I2,ΣC) µ = (1, 1, 0, 0, 1, 2, 0, 0, 2, 3)T.

Here we set the diagonal blocks as:

ΣA =

 5
8

−3
8

−3
8

5
8

 ΣB =

 1

1
4

 ΣC =

 1
4

1
4

 .
We solve the equation in time interval [0, 0.7] with time stepsize 0.005. We set Mout =

20 andMin = 100. To demonstrate the results, 6000 samples from the reference distribution

p are drawn and pushforwarded by using our computed map Tθk . We plot a few snapshots

of the pushforwarded points (from t = 0.05 to t = 0.70) in Figure 4.24. One can check

that the distribution of our numerical computed samples gradually converges to the Gibbs

distribution N (µ,Σ).

We solve (Equation 4.6) on time interval [0, 2] with time step size h = 0.005. We set

Kin = Kout = 3000 and choose Mout = 30, Min = 100. To demonstrate the results,

6000 samples from the reference distribution p are drawn and pushforwarded by using our

computed map Tθk . We exhibit the projection of the samples on 0 − 1, 4 − 5 and 8 − 9

plane in Figure 4.24 at time t = 2.0. One can verify that the distribution of our numerical

computed samples converges to the Gibbs distribution N (µ,Σ). The explicit solution to

the Fokker-Planck equation is always Gaussian distribution N (µ(t),Σ(t)) with mean µ(t)
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Figure 4.21: projection of
samples on 0-1 plane

Figure 4.22: projection of
samples on 4-5 plane

Figure 4.23: projection of
samples on 8-9 plane

Figure 4.24: Sample points of computed ρθt projected on different planes at t = 2.0

and covariance matrix Σ(t):

µ(t) =(1− e−t, 1− e−t, 0, 0, 1− e−t, 2(1− e−4t), 0, 0, 2(1− e−4t), 3(1− e−4t))T,

Σ(t) =diag(ΣA(t), I,ΣB(t), I,ΣC(t)),

with ΣA(t) =

 5
8
+ f(t) −3

8
+ f(t)

−3
8
+ f(t) 5

8
+ f(t)

 , ΣB(t) =

 1

1+3e−8t

4

 ,
ΣC(t) =

 1+3e−8t

4

1+3e−8t

4

 ,
here f(t) = −2

7
e−t +

1

3
e−2t +

55

168
e−8t.

To compare against the exact solution, we set sample size M = 6000 and compute the

empirical mean µ̂k and covariance Σ̂k of our numerical solution ρ̂k at time tk. We evaluate

the error between µ̂(k) and µ(tk); Σ̂(k) and Σ(tk). We plot the error curves of ∥µ̂(k)−µ(tk)∥2

(Figure 4.25) and ∥Σ̂(k) − Σ(tk)∥F (Figure 4.26). Here ∥ · ∥F is the matrix Frobenius

norm. Figure 4.27 captures the exponential decay of H along its Wasserstein gradient flow,

this verifies the entropy dissipation property of the Fokker-Planck equation with convex

potential function V .

In this case, we take a closer look at the loss in the inner loops. Figure 4.28 shows the
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Figure 4.25: mean error (l2)
Figure 4.26: covariance error
(∥ · ∥F )

Figure 4.27: Plot of {H(θ)}

first 10 (out of 20) loss plots when applying SGD method to solve (Equation 4.70) with

k = 200 (t = 200 · h = 1.0). The remaining loss plots from the 11th outer iteration to 20th

iteration are similar to the plots in the second row. The situations are similar for other time

step k. We believe that Min = 100 works well in this problem, the SGD method we used

can thoroughly solve the variational problem (Equation 4.70) for each outer loop.

(a) 1st iteration (b) 2nd iteration (c) 3th iteration (d) 4th iteration (e) 5th iteration

(f) 6th iteration (g) 7th iteration (h) 8th iteration (i) 9th iteration (j) 10th iteration

Figure 4.28: Plots of inner loop losses

4.7.2 Experiments with more general potentials

In this section, we exhibit two examples with more general potentials in higher dimensional

space.
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Styblinski-Tang potential

In this example, we set dimension d = 30, and consider the Styblinski–Tang function [160]

V (x) =
3

50

(
d∑
i=1

x4i − 16x2i + 5xi

)
.

We solve (Equation 4.6) with potential V on time interval [0, 3] with time step size h =

0.005. We set Kin = Kout = 9000 and Min = 100, Mout = 30.

To exhibit sample results, due to the symmetric structure of the potential function, we

project the sample points in R30 to some random plane, such as 5−15 plane in this research.

The sample plots and their estimated densities are presented in Figure 4.29.

(a) t=0.30 (b) t=0.60 (c) t=0.90 (d) t=1.20 (e) t=1.50 (f) t=1.80

(g) t=0.30 (h) t=0.60 (i) t=0.90 (j) t=1.20 (k) t=1.50 (l) t=1.80

Figure 4.29: Sample points and estimated densities of ρθt on 5− 15 plane at different time
nodes

In this special example, the potential function is the direct addition of same functions,

we can exploit this property and show that any marginal distribution

ϱj(xj, t) =

∫
...

∫
ρ(x, t) dx1...dxj−1dxj+1...dxd
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of the solution ρt solves the following the 1D Fokker-Planck equation:

∂ϱ(x, t)

∂t
=

∂

∂x
(ϱ(x, t) V ′(x)) +D∆ϱ(x, t) ϱ(·, 0) = N (0, 1), (4.122)

with V (x) =
3

50
(x4 − 16x2 + 5x).

We then solve the SDE associated to (Equation 4.122):

dXt = −V ′(Xt) dt+
√
2DdBt X0 ∼ N (0, 1). (4.123)

Since (Equation 4.123) is an SDE in one dimensional space, we can solve it with high ac-

curacy by Euler-Maruyama scheme [161] and use it as a benchmark for our numerical solu-

tion. The following Figure 4.30 exhibits both the estimated densities for our numerical so-

lutions (marginal distribution on the 15th component) and the solution of (Equation 4.123)

given by Euler-Maruyama scheme with step size 0.005. The sample sizes for both solutions

equal to 6000.

t=0.30 t=0.60 t=0.90 t=1.20 t=1.50 t=1.80

Figure 4.30: Estimated densities of our numerical solution(red) (projected onto the 15th
component) and the solution given by Euler Maruyama scheme(blue)

We also illustrate the graphs of ψν̂ on 5 − 15 plane trained at different time steps in

Figure 4.31.

Affects of different initial distributions

Different initial conditions ρ0 affect the behavior of solutions of neural parametric FPE dif-

ferently, especially on the convergence speed to the Gibbs distribution. Here is an example.

We consider V as Styblinski-Tang potential in R2. We compute the solutions with three
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ψν̂ at k = 30 ψν̂ at k = 150 ψν̂ at k = 360

Figure 4.31: Graph of ψν̂ on 5− 15 plane trained at different time steps

different initial distributions given as Gaussian distributions with covariances

Σ1 =

 1

1

 ,Σ2 =

 13
8

5
8

5
8

13
8

 ,Σ3 =

 13
8

−5
8

−5
8

13
8

 ,
respectively. Although the solutions converge to the Gibbs distribution, as expected from

the theory, regardless of the initial density. Their convergence speed may be different.

Figure 4.32 shows the initial distributions and the corresponding densities (which are the

estimations of the samples obtained from our algorithm) at t = 1.0. As we can observe,

the numerical result produced by ρ0 = N (0,Σ1) is already close to Gibbs distribution

at t = 1.0, while numerical results associated to Σ2,Σ3 still have noticeable differences

from Gibbs. They seems to be trapped in intermediate metastable statuses that are clearly

influenced by the orientations in initial distributions.

ρ0 = N (0,Σ1) t = 1.0 ρ0 = N (0,Σ2) t = 1.0 ρ0 = N (0,Σ3) t = 1.0

Figure 4.32: Different behaviors of numerical solution with different ρ0s

In general, we believe that the choice of ρ0 affects the behavior of numerical solution.

Choosing a suitable ρ0 may shorten the computing time in the training process.
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Solving the equation with different diffusion coefficients

The different behaviors of the Fokker-Planck equation caused by different diffusion co-

efficients D can be captured by our algorithm. As the following figure shows, we apply

our method to solve Fokker-Planck equation with Styblinski-Tang potential function with

D = 0.1, 1.0, 10.0 and exhibit samples points and estimated density surfaces at the time

t = 3.0.

(a) Samples D = 10 (b) Samples D = 1 (c) Samples D =
0.1

(d) Density D = 10 (e) Density D = 1 (f) Density D = 0.1

Figure 4.33: Samples and estimated densities at t = 3.0, from left to right: D = 10,
D = 1.0, D = 0.1

Rosenbrock potential

In this example, we set dimension d = 10. We consider the Rosenbrock typed function

[162]:

V (x) =
3

50

(
d−1∑
i=1

10(xk+1 − x2k)
2 + (xk − 1)2

)
,

which involve interactions among its coordinates. We solve the corresponding (Equation 4.6)

on time interval [0, 1] with step size h = 0.005. We set the length of normalizing flow Tθ

as 100. We set Kin = Kout = 3000 and Min = 100, Mout = 60.
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Here are the sample results, we exhibit the projection of sample points on the 1− 2, 7− 8

and 9 − 10 plane in Figure 4.34. Blue samples are obtained from our numerical solution

while red samples are obtained by applying Euler-Maruyama scheme with the same step

size.

(a) t = 0.05 (b) t = 0.35 (c) t = 0.50 (d) t = 1.00

(e) t = 0.05 (f) t = 0.35 (g) t = 0.50 (h) t = 1.00

(i) t = 0.05 (j) t = 0.35 (k) t = 0.50 (l) t = 1.00

Figure 4.34: Samples of our numerical solution (blue) and Euler-Maruyama (red) on dif-
ferent planes at different time nodes
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4.7.3 Discussion on time consumption

we should point out that the running time of our algorithm depends on the following three

aspects:

(i) Dimension d of the problem; potential function V ;

(ii) The size of normalizing flow Tθ and fully connected neural network ψν ;

(iii) Number of time steps N ; outer iterations Mout; inner iterations Min; sample size Kout

and Kin.

Among them, the networks in (ii) are selected according to (i). The hyper-parameters

Mout,Mout, Kout, Kin in (iii) are chosen based on our trial and error as well as Remark 17

stated earlier in this paper.

All numerical examples reported in this paper are computed on a Laptop with Intel

Core™ i5-8250U CPU @ 1.60GHz × 8 processor. For most of the high dimensional

examples (d ≥ 10), we choose the length of Tθ between 60 and 100; for the ReLU

network ψν , we set its number of layers equal to 6 with hidden dimension 20. We set

Mout ∼ 50,Min ∼ 100 and choose sample sizes Kout, Kin according to Remark 17. The

total running time is ranged in 20− 40 hours.

We observe that the running time of our algorithm is dominated by the inner loop of

Algorithm 2, i.e. the part for optimizing over ψν . The cost associated with this part can

be estimated as O(N ·Mout ·Min · (Kinta + tb)), where ta denotes the time cost of using

backpropagation to evaluate the gradient w.r.t. ν of each |∇ψν(Tθ0(Xk)) − (Tθ(Xk) −

Tθ0(Yk))|2 in every inner loop of Algorithm 2, and tb denotes the time for updating ν by

Adam method. Here ta, tb both depend on d, V and the sizes of networks Tθ, ψν . According

to our experiences, for most of the cases, ta is of the order of magnitude around 10−5s and

tb is around 10−2s.

Although the cost for our current implementation of the train process is still high, we

want to remind that there is a distinct advantage in the sampling application, namely that the
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network training just needs to be done once. The trained network can be reused to generate

samples, regardless the sample size, from distribution ρt by pushing forward samples from

the reference distribution p with negligible additional cost. This is in sharp contrast to the

classical MCMC sampling techniques, which requires to solve the SDE associated with

FPE by numerical methods, such as Euler-Maruyama scheme, for every sample.

4.8 Discussion

In this paper, we design and analyze an algorithm for computing the high dimensional

Fokker-Planck equations. Our approach is based on transport information geometry with

probability formulations arisen in deep learning generative models. We first introduce the

parametric Fokker-Planck equations, a set of ODE, to approximate the original Fokker-

Planck equation. The ODE can be viewed as the “spatial” discretization of the PDE using

neural networks. We propose a variational version of the semi-implicit Euler scheme and

design a discrete time updating algorithm to compute the solution of the parametric Fokker-

Planck equations. Our method is a sampling based approach that is capable to handle high

dimensional cases. It can also be viewed as an alternative of the JKO scheme used in

conjunction with neural networks. More importantly, we prove the asymptotic convergence

and error estimates, both under the Wasserstein metric, for our proposed scheme.

We hope that our study may shed light on principally designing deep neural networks

and other machine learning approaches to compute solutions of high dimensional PDEs,

and systematically analyzing their error bounds for understandable and trustworthy compu-

tations. Our parametric Fokker-Planck equations are derived by approximating the density

function in free energy using neural networks, and then following the rules in calculus of

variation to get its Euler-Langrange equation. The energy law and principles in variational

framework build a solid foundation for our “spatial” discretization that is able to inherit

many desirable physical properties shared by the PDEs, such as relative entropy dissipation

in a neural network setting. Our numerical scheme provides a systemic mechanism to de-
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sign sampling efficient algorithms, which are critical for high dimensional problems. One

distinction of our method is that, contrary to the data dependent machine learning studies

in the literature, our approach does not require any knowledge of the ”data” from the PDEs.

In fact, we generate the “data” to compute the numerical solutions, just like the traditional

numerical schemes do for PDEs. More importantly, we carried out the numerical analysis,

using tools such as KL divergence and Wasserstein metric from the transport information

geometry, to study the the asymptotic convergence and error estimates in probability space.

We emphasize that the Wasserstein metric provides a suitable geometric structure to an-

alyze the convergence behavior in generative models, which are widely used in machine

learning field. For this reason, we believe that our investigations can be adopted to under-

stand many machine learning algorithms, and to design efficient sampling strategies based

on pushforward maps that can generate flows of samples in generative models.

We also believe that the approaches in algorithm design and error analysis developed in

this study can be extended to other types of equations. On one hand, our method is ready

to be applied to equations such as porous media equation and aggregate equation, which

possess gradient flow structures; On the other hand, we are also working on applying simi-

lar technique to high dimensional Hamiltonian flows instead of gradient flows. This could

be more challenging from both computational and theoretical aspects since Hamiltonian is

a second order differential system. Typically, we are interested in applying our computa-

tional tool to deal with Schrödinger equation as well as Schrödinger bridge systems in high

dimensional space, and many more. Those topics are worth to be further investigated in the

future.
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CHAPTER 5

HAMILTONIAN PROCESS ON FINITE GRAPHS VIA WASSERSTEIN

HAMILTONIAN THEORY

5.1 Introduction

Hamiltonian systems, including both ordinary or partial differential equations (ODEs or

PDEs respectively), are ubiquitous in applications. Their mathematical studies have a long

and rich history (see e.g., [163, 164, 165]). Traditionally, the ambient space on which to de-

fine a Hamiltonian system is continuous, such as Euclidean space Rn or smooth manifolds

like torus T2. What is a Hamiltonian process if the underlying space becomes discrete, such

as a finite graph? This is the question that we would like to explore within the framework

of optimal transport (OT) in this study.

Our motivation to consider this question is 3-fold. Curiosity is at the first place. Sec-

ondly, the notion of gradient flow on graph has been investigated extensively using OT

theory (see e.g. [166, 27] and references therein). For example, an irreducible and re-

versible continuous time Markov chain on graph can be viewed as the gradient flow of

entropy with respect to the discrete Wasserstein metric [166]. Naturally, we are inspired to

ask whether the concept of Hamiltonian process on graph exists or not. To the best of our

knowledge, the Hamiltonian mechanics on graph has not been explored yet. Finally and

most importantly, recent developments in several practical problems, which can be defined

in both continuous and discrete spaces, demonstrate Hamiltonian principles on graph. They

are

(i) the OT problem (see e.g. [167]),

W 2
2 (ρ0, ρ1) = inf

v
{
∫ 1

0

E[|Ẋt|2]dt : Ẋt = v(t,Xt), X0 ∼ ρ0, X1 ∼ ρ1}, (5.1)

157



(ii) the SBP (see e.g. [168]),

inf
v

{∫ 1

0

1

2
E[|v(t,Xt)|2]dt : Ẋt = v(t,Xt) +

√
ℏḂt, X0 ∼ ρ0, X1 ∼ ρ1

}
(5.2)

and (iii) the Schrödinger equation (see e.g. [169, 170, 171]),

inf
v

{∫ T

0

1

2
E[|Ẋt|2]dt : Ẋt = v(t,Xt) +

√
ℏḂt, X0 ∼ ρ0, X1 ∼ ρ1

}
. (5.3)

The above formulations are presented in Euclidean space where v ∈ Rd can be any smooth

vector field, Xt is a stochastic process with prescribed probability densities ρ0 and ρ1 at

time 0 and 1 respectively, Bt is the standard Brownian motion and ℏ > 0 is a constant.

A common property shared by these problems is that their critical points obey the

Hamiltonian principle. For instance, the minimizer of OT problem (Equation 5.1) satis-

fies a Hamiltonian PDE with the Hamiltonian H(x, v, t) = 1
2
|v|2 (see e.g. [172]). The

minimizer of SBP (Equation 5.2) is the solution of a Hamiltonian PDE with H(x, v) =

1
2
|v|2 − 1

8
ℏ δ
δρ
I(ρ)(t, x) where the Fisher information I(ρ) =

∫
Rd |∇ log ρ(x)|2ρ(x)dx (see

e.g. [173, 174]). Needless to say, the critical point of (Equation 5.3) satisfies the the

Schrödinger equation, which is a well-known Hamiltonian system. The problems stated in

(Equation 5.1), (Equation 5.2) and (Equation 5.3) can be posed, with nominal changes, on

a graph, and the density functions of their critical points have been studied on the Wasser-

stein manifold (see [175], [176, 177], [171]) showing that they satisfy Hamiltonian ODEs.

Based on those results, we investigate the properties of stochastic processX(t) and provide

a definition of Hamiltonian process on graph within the optimal transport framework.

Defining Hamiltonian process on graph must face several intrinsic difficulties. The

most obvious one is that X(t) is a stochastic process jumping from node to node on the

graph, while its continuous space counterpart trajectory is a spatial-temporal continuous

function. Another challenge is about characteristic line. In fact, it is not clear how to define

characteristic on graph. Furthermore, there is no reported result about examining whether
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a stochastic process, such as discrete OT and SBP, can preserve Hamiltonian along its

trajectory, just like a classical Hamiltonian system does in continuous space.

To fill the gaps on finite graph, our idea is lifting the process on graph into a motion

on its density manifold. To be more precise, we define the Hamiltonian process by a ran-

dom process whose density and generators of instantaneous transition rate matrix form a

Wasserstein Hamiltonian flow on the cotangent bundle of density manifold. Meanwhile, we

show that such defined Hamiltonian processes exist in numerous practical problems, such

as the discrete OT problem and SBP. Two important classes of Hamiltonian processes,

namely the stationary Hamiltonian process and the periodic Hamiltonian process, are also

discussed via the framework of SBP. They correspond to the invariant measure and the pe-

riodic solution of the Hamiltonian flow on the density space. We would like to mention

that the Wasserstein Hamiltonian flow is firstly studied by Nelson’s mechanics (see e.g.

[169, 178]). It is also pointed out that the Hamiltonian flows in density space are proba-

bility transition equations of classical Hamiltonian ODEs (see [167, 179] and references

therein).

There are several works with titles related to Hamiltonian systems on graphs, like the

port-Hamiltonian system on graphs (see e.g. [180, 181] and the references therein). Our

current work is different from them. The port-Hamiltonian systems are the generalization

of classical Hamiltonian system which describes the dynamics in interaction with control

units, energy dissipating or energy storing units. The graph structure is used to characterize

the interaction of the systems with ports, and their underlying phase variables are still in

continuous spaces, like Rd or smooth manifold.

This chapter is organized as follows. In section 2, we use the discrete optimal transport

problem as the motivation of studying the Hamiltonian process on finite graph. In section

3, we present the definition and several properties of the Hamiltonian process on graph. In

section 4, we study several different Hamiltonian dynamics derived from the discrete SBP

from two different perspectives. We also discuss the existence of stationary and periodic
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Hamiltonian processes of the discrete SBP. We provide more examples of Hamiltonian

process on graph in section 5.

5.2 Preliminary knowledge

In this section, we first briefly recall the relationship between the continuous OT problem

and Hamiltonian systems. Then we introduce our motivation example on a graph and

review some notations for inhomogeneous Markov process, which is used in our definition

for Hamiltonian process.

It is known that in a continuous OT problem (Equation 5.1) with given marginal dis-

tributions ρ0 and ρ1, the optimal transfer {Xt}t∈[0,1] induces a trajectory concentrating on

the geodesic path whose position and momentum obey the Hamiltonian principle (see e.g.

[167]). More precisely, recalling that H(x, v) = 1
2
|v|2, the critical point of the OT problem

(Equation 5.1) in density manifold satisfies the Wasserstein–Hamiltonian flow,

∂tρ+∇ · (∂H
∂v

(x,∇S)ρ) = 0,

∂tS +H(x,∇S) = C(t),

(5.4)

where C(t) is a function depending only on t and v = ∇S with |∇S|2 = ∇S · ∇S. Being

a Hamiltonian system on its own, (Equation 5.4) can also be connected to the following

classic Hamiltonian system closely (see e.g. [171]):

dtv = −∂H
∂x

(X, v),

dtX =
∂H

∂v
(X, v),

(5.5)

where X ∈ Rd, the conjugate momenta v ∈ Rd, d ∈ N+, and the Hamiltonian H is

smooth. If the initial position X(0) is random following a distribution with density ρ0, the

trajectory Xt is random too. Its density function ρ, defined by the pushforward operator

induced by the Xt, ρt = X♯
tρ

0, satisfies the Wasserstein-Hamiltonian flow (Equation 5.4).
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However, directly mimicking the relationship between (Equation 5.4) and (Equation 5.5)

is impossible if the underlying space become a graph. In the next subsection, we illustrate

the challenges in detail by an example on graph.

5.2.1 A motivation example

Consider a graphG = (V,E,W) with a node set V = {ai}Ni=1, an edge setE, andwjl ∈ W

are the weights of the edges: wjl = wlj > 0, if there is an edge between aj and al, and 0

otherwise. Below, we write (i, j) ∈ E to denote the edge in E between the vertices ai and

aj . We assume that G is an undirected and connected graph with no self loops or multiple

edges for simplicity. Let us denote the set of discrete probabilities on the graph by:

P(G) = {(ρ)Nj=1 :
∑
j

ρj = 1, ρj ≥ 0, for j ∈ V },

and let Po(G) be its interior (i.e., all ρj > 0, for aj ∈ V ). Inspired by [171, 182, 176],

we consider the following discrete OT problem whose minimizer is the so-called geodesic

random walk.

Example 5.2.1. OT on G (geodesic random walk).

The OT problem on a finite graph is related to the Wasserstein distance on P(G), which

can be defined by the discrete Benamou–Brenier formula:

W (ρ0, ρ1) := inf
v,ρ

{√∫ 1

0

⟨v, v⟩θ(ρ)dt :
dρ

dt
+ divθG(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}
.

where ρ0, ρ1 ∈ P(G), ρ ∈ H1([0, 1],RN) and v is a skew matrix valued function. The

inner product of two vector fields u, v is defined by

⟨u, v⟩θ(ρ) :=
1

2

∑
(j,l)∈E

ujlvjlθjlwjl

with the weight θij depending on ρi and ρj. The divergence of the flux function ρv is defined
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as

(divθG(ρv))j := −(
∑
l∈N(j)

wjlvjlθjl), (5.6)

where N(i) = {aj ∈ V : (i, j) ∈ E} is the adjacency set of node ai. Then its critical point

(ρ, v), with

v = ∇GS := (Sj − Sl)(j,l)∈E (5.7)

for some function S on V , satisfies the following discrete Wasserstein-Hamiltonian flow on

the graph G:

dρi
dt

+
∑
j∈N(i)

wij(Sj − Si)θij(ρ) = 0,

dSi
dt

+
1

2

∑
j∈N(i)

wij(Si − Sj)
2∂θij(ρ)

∂ρi
= 0.

(5.8)

We may view this equation as a discrete analog of (Equation 5.4). Consequently, its Hamil-

tonian only consists of the kinetic energy

H (ρ, S) =
1

4

∑
i,j

(Si − Sj)
2θij(ρ)wij.

As discussed in [176], the goal of the discrete OT problem is to find an optimal transport

of the informal minimization problem

inf
Q

{∫ T

0

1

2

∑
i,j

(vij)
2θijwijdt : dρt = ρtQtdt, X(0) ∼ ρ0, X(T ) ∼ ρT

}
, (5.9)

where the transition rate matrix Qt may be written as

(Qt)ii =
1

2

∑
j∈N(i)

wij
θij(ρ)

ρi
vij,

(Qt)ji = −1

2
wji

θji(ρ)

ρj
vji,
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if θij = θji. In [176], the minimizer of the above discrete OT problem is called the geodesic

random walk which is defined as a random walk whose marginal probability is supported

on the set of geodesic paths on P(G), i.e, Xt is determined by the marginal distribution and

the instantaneous transition rate matrixQt. However, examining the transition rate matrix,

we can find that the geodesic random walk Xt may not be well-defined, because there

may not exist such a stochastic process due to possible negative probability and transition

probability (See Remark 27 for more details).

This example illustrates that when compared to the continuous case, where the Hamil-

tonian system (Equation 5.5) on the phase space corresponds to the Hamiltonian PDEs

(Equation 5.4) on Wasserstein manifold, such a correspondence in discrete space can’t be

easily established, because the counterpart of (Equation 5.5) requires more careful treat-

ments.

5.2.2 Inhomogeneous Markov process

In order to define a stochastic process which plays the role of the Hamiltonian mechanics

(Equation 5.5) on a finite graph, we recall the definition of the inhomogeneous Markov

process in [183]. The linear master equation

dρ

dt
= ρQ

determines a linear Markov process. When Q = Q(t), it corresponds to a time inhomoge-

neous Markov process. Here Q(t) is a family of infinitesimal generators of the stochastic

matrix or Kolmogorov matrix, namely, a square matrix which has non-positive (resp. non-

negative) elements on the main diagonal (resp. off the main diagonal), and the sum of

each row is zero. Among different types of inhomogeneous Markov process, the nonlin-

ear Markov processes [183] whose transition rate matrix Q may depend not only on the

current state x of the process but also on the current distribution ρ of the process is of
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particular interest to us.

Given an initial distribution ρ0, a time inhomogeneous Markov process {Xt}t≥0 can be

defined as a process which has ρ0 as the distribution ofX0 and (s, t) → Ps,t as its transition

mechanism in the sense that

P(X0 = ai) = ρi, P(Xt = aj|Xσ, σ ∈ [0, s]) = (Ps,t)X(s)aj ,

where (Ps,t)aiaj = P(Xt = aj|Xs = ai). The corresponding forward Kolmogorov equation

can be rewritten as

dtPs,t = Ps,tQt.

If t ∈ [s,∞) 7→ ρt is continuously differentiable, then ρ̇t = ρtQt is equivalent to ρt =

ρsPs,t for t ≥ s. Given {Qt}t≥0, ρ0, there exists an inhomogeneous Markov process Xt

related to the transition rate matrix Qt and the marginal distribution ρt. On the other hand,

given an inhomogeneous Markov process with transition matrices Ps,t, it will induce the

equation of ρ with Qt (see e.g. [183]).

5.3 Hamiltonian process on a finite graph

As shown in Example Example 5.2.1, although it may not be possible to find a stochastic

process for every discrete optimal transport problem, it reveals two key features that the

density of such a stochastic process, if exists, satisfies the generalized master equation and

that its Qt-matrix is determined by a potential St, where St satisfies a discrete Hamiltonian

Jacobi equation. Inspired by these properties, we introduce the definition of stochastic

Hamiltonian process.

Definition 5.3.1. A stochastic process {Xt}t≥0 is called a Hamiltonian process on the

graph if
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1. The density ρt of Xt satisfies the following generalized Master equation,

dtρt = ρtQt(v, ρt),

with

(Qt(v, ρ))ij = wjifji(vji, ρ, t), (Qt(v))ii = −
∑
j∈N(i)

wijfji(vji, ρ, t),

where the skew-matrix v is induced by a potential function S, i.e., v = ∇GS + u,

with ρtQt(∇GS, ρt) = ρtQt(v, ρt). And fji : R × R+ ∪ {0} × R+ ∪ {0} → R+ ∪

{0}, is a real-valued measurable function which is piece-wise continuous in the first

component x ∈ R.

2. The density ρ and the potential S form a Hamiltonian system on the cotangent bundle

of the density space.

The following theorem gives the structure of the Hamiltonian on the density manifold

of the Hamiltonian process.

Theorem 5.3.1. Suppose that the stochastic process {Xt}t≥0 with density {ρt}t≥0 and po-

tential {St}t≥0 defined in Definition 5.3.1 forms a Hamiltonian process on the graph G. In

addition assume that the antiderivative Fij of fij exists for ij ∈ E. Then the Hamiltonian

always have the form

H (ρ, S) =
∑
i∈V

∑
j∈N(i)

ρiFji(Sj − Si, ρ, t)wji + V(ρ, t) (5.10)

where V is a function depending ρ and t. Moreover, the Hamiltonian system on the cotan-
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gent bundle of P(G) can be written as:

∂

∂t
ρi(t) =

∑
j∈N(i)

wijfij(Si − Sj, ρ, t)ρj − wjifji(Sj − Si, ρ, t)ρi (5.11)

∂

∂t
Si(t) = −

∑
j∈N(i)

(
wjiFji(Sj − Si, ρ, t) + ρj

∂

∂ρi
Fji(Sj − Si, ρ, t)wji

)
− ∂

∂ρi
V(ρ, t).

Proof. According to Definition 5.3.1, we have ∂
∂t
ρi(t) =

∑
j∈N(i)wijfij(Si − Sj, ρ, t)ρj −

wjifji(Sj − Si, ρ, t)ρi. Since {ρt, St} forms a Hamiltonian system, we are able to state

∂

∂Si
H (ρ, S, t) =

∑
j∈N(i)

wijfij(Si − Sj, ρ, t)ρj − wjifji(Sj − Si, ρ, t)ρi, i ∈ V.

Considering the following quantity,

H0(ρ, S, t) =
∑
i∈V

∑
j∈N(i)

ρiFji(Sj − Si, ρ, t)wji,

we can directly verify that ∂
∂S
(H (ρ, S, t)−H0(ρ, S, t)) = 0. This suggests that there exists

some function V depending on ρ and t such that H (ρ, S, t)− H0(ρ, S, t) = V(ρ, t). This

directly leads to form of Hamiltonian H (ρ, S, t) =
∑

i∈V
∑

j∈N(i) ρiFji(Sj−Si, ρ, t)wji+

V(ρ, t). Furthermore, the discrete Hamiltonian Jacobi equation is derived as

∂

∂t
St = − ∂

∂ρ
H (ρ, S, t).

As a direct consequence, we have the following properties of Hamiltonian process.

Proposition 5.3.1 (Properties of Hamiltonian process). Assume that a stochastic process

Xt on a finite graph is a Hamiltonian process. Then it holds that

1. there exists a Hamiltonian H on the density space such that its marginal distribution

ρt = X♯
tρ0 and the generator St of the transition rate matrix Qt forms a Hamiltonian
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system;

2. the symplectic structure on the density space is preserved, i.e.,

ωg(ρ,S)(g
′(ρ, S)ξ, g′(ρ, S)η) = ω(ρ,S)(ξ, η),

where ω denotes the symplectic form on T ∗P(G), ξ, η ∈ T(ρ,S)(T ∗P (G)) and

g′(ρ, S) is the Jacobi matrix of the Hamiltonian flow on the density space;

3. H (t) = H (0), if the Hamiltonian H is independent of t;

4. and Xt is mass-preserving, i.e.,
∑N

i=1 ρi(t) =
∑N

i=1 ρi(0).

Remark 26 (Particle-level properties of Hamiltonian process). Consider the Hamiltonian

with specific form

H (ρ, S) =
∑
i∈V

∑
j∈N(i)

ρjFji(Sj − Si)wji +
∑
i∈V

ρiVi.

Suppose that {X(t)} is a Hamiltonian process on G associated to the Hamiltonian H .

Then one can verify E[H(X(t), S(t))] with

H(X(t), S(t)) =
∑

j∈N(X(t))

FjX(t)(Sj(t)− SX(t)(t))wjX(t) + VX(t).

remains constant as time t evolves.

Based on the definition of Hamiltonian process, we are able to construct the discrete

optimal transport problem which retains the property that the minimizer is a stochastic

process on the graph for Example 5.2.1.

Proposition 5.3.2. There always exists a density dependent weight θ such that the geodesic

random walk in Example 5.2.1 is a Hamiltonian process.
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Proof. Define θUij = θUS (ρi, ρj), where θUS (ρi, ρj) = ρi if Sj > Si. Denote (x)+ =

max(0, x), (x)− = min(0, x). Using the notations in Example Example 5.2.1, the geodesic

random walk on G with the probability weight θ = θU satisfies

dρi =
∑
j∈N(i)

wij(vij)
+ρj +

∑
j∈N(i)

wij(vij)
−ρi. (5.12)

From the discrete Hodge decomposition on the graph [171], for any skew matrix v and

probability density ρ ∈ Po(G), there exists a decomposition v = ∇GS+uwith divθG(ρu) =

0. Here (∇GS)ij := (Si − Sj) and divθG(ρu) := −(
∑

j∈N(i) uijθ
U
ij(ρ)). To see this fact, it

suffices to prove that there exists a unique solution of S such that divθG(ρ∇GS) = divθG(ρv).

The connectivity of the graph and the fact that ρ ∈ Po(G) implies that if

⟨divθG(ρ∇GS), S⟩ =
1

2

∑
(i,j)∈E

((Si − Sj)
−)2θij(ρ) = 0,

then 0 must be a simple eigenvalue of divθG(ρ∇G) with eigenvector (1, · · · , 1). Thus S is

unique up to a constant shift and the skew matrix vt = ∇GSt + u satisfies

d(St)i = −1

2

∑
j∈N(i)

wij((Si − Sj)
−)2 + C(t), divθG(ρu) = 0,

where C(t) is independent of nodes. Meanwhile, fij can be selected to achieve fij(Si −

Sj) = (Si − Sj)
+ and thus

(Qt)ii =
∑
j∈N(i)

wij(Si − Sj)
− =

∑
j∈N(i)

wijfji(Sj − Si),

(Qt)ji = wji(Sj − Si)
+ = wjifji(Sj − Si), ij ∈ E, otherwise Qji = 0.

We can define a time inhomogenous Markov process as follows by the transition matrix
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P(Xt = vj|Xτ , τ ∈ [0, s]) = (Ps,t)X(s)vj . Given the past σ({Xτ : τ ∈ [0, t]}) of X up to

time t ≥ 0, the probability of its having moved away from Xt at the time t+h with h small

enough can be approximated by 1− (Qt)XtXth, i.e.,

∣∣∣P(X(t+ h) = Xt|Xτ , τ ≤ t)− 1− (Qt)XtXth
∣∣∣ = o(h).

Here {−(Qt)ii}i is often called as the transition rate of Xt. Given the history that the

jump appeared σ({Xτ : τ ∈ [0, t]} ∪ {Xt+h ̸= Xt}), the probability that Xt+h = aj is

approximately (Pt,t+h)Xtaj , which implies that

∣∣∣P(X(t+ h) = aj|Xτ , τ ≤ t)− h(Qt)Xtaj

∣∣∣ = o(h).

Remark 27. It is worth mentioning that the Hamiltonian system on P(G) does not nec-

essarily induce a stochastic process on G. This can also be illustrated by using the op-

timal transport problem introduced in Example Example 5.2.1. Let us take wij = 1 if

ij ∈ E for simplicity. In order to define a Hamiltonian process on G, the probability

weight θ can not be chosen arbitrarily here. For example, if we take the probability weight

θij = θA(ρi, ρj) =
1
2
(ρi + ρj) in [171], the density equation can be rewritten as

dtρt = ρtQt,

where

(Qt)ii =
1

2

∑
j∈N(i)

(Si − Sj),

(Qt)ij =
1

2
(Sj − Si), ij ∈ E, otherwise Qij = 0.

The function fij(x) = 1
2
x.
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When θij = θL(ρi, ρj) =
ρi−ρj

log(ρi)−log(ρj)
in [27], the density equation can be rewritten as

dtρt = ρtQt,

where

(Qt)ii =
∑
j∈N(i)

(Si − Sj)

log(ρi)− log(ρj)
,

(Qt)ij = − (Si − Sj)

log(ρi)− log(ρj)
, ij ∈ E, otherwise Qij = 0.

The function fij(x) = x
log(ρi)−log(ρj)

.

In both cases, there is no guarantee that the off-diagonal of Qt is non-positive. Hence,

Qt is unable to admit a stochastic process Xt which is time inhomogeneous Markov due to

the appearance of negative transition probabilities. For valid choices of θ that may admit

stochastic processes, we refer to [27], [166] and references therein.

Remark 28. If θij > 0 for all ij ∈ E, then the Hodge decomposition yield a unique

potential S up to a constant which induces v. If there exists ij ∈ E such that θij = 0,

then the generator S may be not unique. Meanwhile, the Hamiltonian Jacobi equation may

become one-side inequality,

vij = Si − Sj, ∂tSi +
∂

∂ρi
H (ρ, S) ≤ 0.

Remark 29. The initial value problem of the Hamiltonian system of ρ, S may develop

singularity at a finite time T > 0, i.e, either limt→T Si(t) = ∞ or limt→T ρi ≤ 0.

We would like to emphasize that a Hamiltonian process is not Markov in general. The

sufficient and necessary conditions when a Hamiltonian process gives a Markov process

are presented as follows.
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Theorem 5.3.2. Given a Hamiltonian process {Xt}t≥0 on the graph with a Hamiltonian

H (ρ, S) =
∑N

i=1

∑
j∈N(i) Fij(ρ, S)wijρi. If Xt is a Markov process, then (ρ, S) in Defini-

tion (Definition 5.3.1) satisfies the following system,

∂2Fij
∂Si∂ρi

( ∑
l∈N(i)

∂Fil
∂Si

ρiwil +
∑
l∈N(i)

∂Fli
∂Si

ρlwli

)
(5.13)

+
∂2Fij
∂Si∂ρj

( ∑
k∈N(j)

∂Fjk
∂Sj

ρjwjk +
∑
k∈N(j)

∂Fkj
∂Sj

ρlwkj

)
− ∂2Fij
∂Si∂Si

( ∑
l∈N(i)

∂Fil
∂ρi

ρiwil +
∑
l∈N(i)

∂Fli
∂ρi

ρlwli +
∑
l∈N(i)

(Filwil + Fliwli)
)

− ∂2Fij
∂Si∂Sj

( ∑
k∈N(j)

∂Fjk
∂ρj

ρjwjk +
∑
k∈N(j)

∂Fkj
∂ρj

ρkwkj +
∑
k∈N(j)

(Fjkwjk + Fkiwki)
)
= 0

for i, j ∈ V. Conversely, if (ρ, S) satisfies (Equation 5.13), then there exists a Markov

process which is Hamiltonian.

Proof. Since Xt is a Hamiltonian process, the transition matrix is determined by ρtQt =

∂H
∂S

= dtρt. This implies that

(ρtQt)i =
∑
j∈N(i)

∂Fij(ρ, S)

∂Si
wijρi +

∑
j∈N(i)

∂Fji(ρ, S)

∂Si
wjiρj.

Therefore, (Qt)ii =
∑

j∈N(i)
∂Fij(ρ,S)

∂Si
wij , (Qt)ij =

∂Fij(ρ,S)

∂Sj
wij. Since Xt preserves the

mass, it holds that
∑

j∈N(i)(
∂Fij(ρ,S)

∂Si
+

∂Fij(ρ,S)

∂Sj
)wij = 0 for every i ≤ N.

Notice that Xt is Markov implies that dtQij = 0, for i, j ≤ N, that is

dt
∂Fij
∂Si

= 0, dt
∂Fji
∂Sj

= 0.
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Direct calculation leads to

dt
∂Fij
∂Si

=
∂2Fij
∂Si∂ρi

dtρi +
∂2Fij
∂Si∂ρj

dtρj

+
∂2Fij
∂Si∂Si

dtSi +
∂2Fij
∂Si∂Sj

dtSj

=
∂2Fij
∂Si∂ρi

( ∑
l∈N(i)

∂Fil
∂Si

ρiwil +
∑
l∈N(i)

∂Fli
∂Si

ρlwli

)
+

∂2Fij
∂Si∂ρj

( ∑
k∈N(j)

∂Fjk
∂Sj

ρjwjk +
∑
k∈N(j)

∂Fkj
∂Sj

ρlwkj

)
− ∂2Fij
∂Si∂Si

( ∑
l∈N(i)

∂Fil
∂ρi

ρiwil +
∑
l∈N(i)

∂Fli
∂ρi

ρlwli +
∑
l∈N(i)

(Filwil + Fliwli)
)

− ∂2Fij
∂Si∂Sj

( ∑
k∈N(j)

∂Fjk
∂ρj

ρjwjk +
∑
k∈N(j)

∂Fkj
∂ρj

ρkwkj +
∑
k∈N(j)

(Fjkwjk + Fkiwki)
)
,

which yields the desired result. Conversely, if (ρ, S) satisfies (Equation 5.13), the previ-

ous arguments leads to the equation of ρ becomes a linear Master equation. Then there

always exists a Markov process which is a stochastic representation of linear Master equa-

tion. Meanwhile, it can be verified that this Markov process satisfies all the conditions in

Definition 5.3.1 and is Hamiltonian.

Corollary 5.3.2.1. Given a Hamiltonian H (ρ, S) =
∑N

i=1

∑
j∈N(i) Fij(ρ, S)wijρi. As-

sume that there exists (ρ∗, S∗(t)) satisfies the following conditions,

1.
∑

j∈N(i)
∂Fij(ρ,S)

∂Si
+

∂Fij(ρ,S)

∂Sj
= 0,

2. ρ∗ is independent of t and (ρ∗, S∗(t)) solves

∑
l∈N(i)

∂Fil
∂Si

ρiwil +
∑
l∈N(i)

∂Fli
∂Si

ρlwli = 0,

∂2Fij
∂Si∂Si

( ∑
l∈N(i)

∂Fil
∂ρi

ρiwil +
∑
l∈N(i)

∂Fli
∂ρi

ρlwli +
∑
l∈N(i)

(Filwil + Fliwli)
)

+
∂2Fij
∂Si∂Sj

( ∑
k∈N(j)

∂Fjk
∂ρj

ρjwjk +
∑
k∈N(j)

∂Fkj
∂ρj

ρkwkj +
∑
k∈N(j)

(Fjkwjk + Fkiwki)
)
= 0
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Then there exists a Hamiltonian process which is Markov and preserves the mass. Further-

more, the Hamiltonian process is invariant with respect to ρ∗.

5.4 Hamiltonian process via discrete SBP on graphs

Although the SBP [168] has a history close to 100 years, it has received revived atten-

tion from control theory and machine learning communities recently, see [174, 173]. For

convenience, the background of continuous SBP is presented in the appendix.

For the discrete counterpart of SBP on graph, there are two different treatments reported

in the literature.

1. One is to consider a reference path measureR (induced by a reversible random walk)

on the graph and then study the optimization problem involving the relative entropy

between the reference measure R and the path measure P with given initial and ter-

minal distributions [174, 176].) In this framework, the reference random walk is of-

ten related to a discrete version of (Equation D.5) (For example, the linear discretiza-

tion of the Laplacian gives the time homogenous Markov chain as the reference in

[184]).

2. Another way is proposed by the discrete version of (Equation D.2) or (Equation D.4)

directly [177].

We shall show that different treatments create differences on the structure and formula-

tion of equations, in particular the discrete Laplacian operator. Each of these formulations

can determine its corresponding Hamiltonian process on graph.

5.4.1 Discrete SBP based on relative entropy and reference Markov measure

In the following discussion, we always assume that wij = 1 if ij ∈ E for conciseness of

formulations. By using the discrete Girsanov theorem on graph, the discrete SBP in the
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form of relative entropy (A) becomes the following control problem

min
m̂t≥0


∫ 1

0

∑
i∈V

ρ(i, t)
∑
j∈N(i)

(
m̂t
ij

mt
ij

log

(
m̂t
ij

mt
ij

)
−
m̂t
ij

mt
ij

+ 1

)
mt
ij dt

 (5.14)

subject to:
d

dt
ρ(i, t) =

∑
j∈N(i)

m̂t
jiρj − m̂t

ijρi ρ(·, 0) = ρ0, ρ(·, 1) = ρ1.

where the reference measureR is determined by the master equation dtρ̃i =
∑

j∈N(i)m
t
jiρ̃j−

mt
ij ρ̃i.

Remark 30. The formula for relative entropy between path measure P and reference path

measure R is formulated as

H(P |R) =
∫ 1

0

∑
i∈V

ρ(i, t)
∑
j∈N(i)

(
m̂t
ij

mt
ij

log

(
m̂t
ij

mt
ij

)
−
m̂t
ij

mt
ij

+ 1

)
mt
ij dt.

This result is provided in [174],[176]. A rigorous proof for this formula originates from

Theorem 2.9 of [185].

Let us denote u(x) = x log x−x+1. By introducing Lagrange multiplier ψ, we obtain

the following Lagrangian functional

L (ρ, m̂, ψ) =

∫ 1

0

∑
i∈V

ρ(i, t)
∑
j∈N(i)

u

(
m̂t
ij

mt
ij

)
mt
ij dt

+

∫ 1

0

∑
i∈V

−ρ(i, t) ∂
∂t
ψ(i, t)− ψ(i, t)

 ∑
j∈N(i)

m̂t
jiρj − m̂t

ijρi

 dt

=

∫ 1

0

−
∑
i∈V

ρ(i, t)
∂

∂t
ψ(i, t)− 1

2

∑
(i,j)∈E

[
m̂ji

mji

(ψ(i, t)− ψ(j, t))− u(
m̂ji

mji

)

]
mjiρ(j, t)

+

[
m̂ij

mij

(ψ(j, t)− ψ(i, t))− u(
m̂ij

mij

)

]
mijρ(i, t) dt.
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When solving the above saddle point problem, we minimize over m̂ and get

∫ 1

0

−
∑
i∈V

ρ(i, t)
∂

∂t
ψ(i, t)− 1

2

∑
(i,j)∈E

[u∗(ψ(i, t)− ψ(j, t))mjiρ(j, t)

+ u∗(ψ(j, t)− ψ(i, t))mijρ(i, t)] dt.

Here u∗ is the Legendre dual of u: u∗(x) = supy {x · y − u(y)}, leading to u∗(x) = ex−1.

By formulating the Lagrangian, we can identify the Hamiltonian of this control problem,

which can be written as:

H (ρ, ψ) =
∑
i∈V

∑
j∈N(i)

(exp(ψ(j, t)− ψ(i, t))− 1)mijρ(i, t). (5.15)

Then the above control problem implies the following Hamiltonian system

∂tρ =
∂H (ρ, ψ)

∂ψ
, ∂tψ = −∂H (ρ, ψ)

∂ρ
,

that is,

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−eψ(j,t)−ψ(i,t)mijρ(i, t) + eψ(i,t)−ψ(j,t)mjiρ(j, t), (5.16)

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

(eψ(j,t)−ψ(i,t) − 1)mij.

By using the Hopf-Cole transform, we can further verify that the discrete SBP problem

determines a Hamiltonian process on the graph. Let us consider the following transform

τ : T ∗P(G) → T ∗P(G) as:

τ [(ρ, ψ)] = (ρ, ψ − 1

2
ln ρ) (5.17)

Let us denote g′(ρ, ψ) = Dτ(ρ, ψ). Then the symplectic form ω is unchanged in the sense
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that

ωg(ρ,ψ)(g
′(ρ, ψ)ξ, g′(ρ, ψ)η) = ω(ρ,ψ)(ξ, η),

where (ξ, η) ∈ T(ρ,ψ)T ∗P(G). By using the symplectic submersion from P(G) to RN ,

the symplectic form can be represented by (g′(ρ, ψ)ξ)TJg′(ρ, ψ)η = ξTJη, where J is

the standard symplectic matrix. Since dtτ(ρ, ψ)T = τ ′dt(ρ, ψ)
T and that (τ ′)TJτ ′ = J , we

conclude that the Hopf–Cole transformation (Equation 5.17) is a symplectic transformation

on the cotangent bundle of the density manifold. Denote (ρ, S) as the new coordinate. Then

{ρt, St} satisfies the following Hamiltonian system:

∂ρ(i, t)

∂t
=
∂H̃ (ρ, S)

∂S

∂S(i, t)

∂t
= −∂H̃ (ρ, S)

∂ρ

with

H̃ (ρ, S) = H (τ−1(ρ, S)) =
∑
i∈V

∑
j∈N(i)

e(Sj−Si)mij
√
ρiρj, (5.18)

that is

∂S(i, t)

∂t
= −mii −

1

2

∑
j∈N(i)

eSj−Simij

√
ρj√
ρi

− 1

2

∑
j∈N(i)

eSi−Sjmji

√
ρj√
ρi
, (5.19)

∂ρ(i, t)

∂t
=
∑
j∈N(i)

eSi−Sjmji
√
ρj
√
ρi −

∑
j∈N(i)

eSj−Simij
√
ρi
√
ρj.

As a consequence, we verify that, as reported in [174], the discrete SBP corresponds

to a Hamiltonian process with the transition rate matrix Q (Qij = m̂ij) defined by Qii =

−
∑

j∈N(i) e
Sj−Si

√
ρj√
ρi
mij, Qij = eSi−Sj

√
ρi√
ρj
mji if ij ∈ E.

Using the above procedures, we can naturally extend the original SBP problem to the

following generalized control problem
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min
m̂t≥0


∫ 1

0

∑
i∈V

ρ(i, t)
∑
j∈N(i)

u

(
m̂t
ij

mt
ij

)
mt
ij dt

 (5.20)

subject to:
d

dt
ρ(i, t) =

∑
j∈N(i)

m̂t
jiρj − m̂t

ijρi ρ(·, 0) = ρ0, ρ(·, 1) = ρ1.

Here u is an arbitrary convex function. Then the Hamiltonian associated with this

general control problem is

H (ρ, ψ) =
∑
i∈V

∑
j∈N(i)

u∗(ψ(j, t)− ψ(i, t))mijρ(i, t), (5.21)

where λij = (u′)−1(ψj − ψi).

For the sake of completeness of our discussion, we also reveal the relations among

the so-called Schrödinger system [179, 186, 187] and our derived systems (Equation 5.16)

and (Equation 5.19). All three PDE systems are derived from the SBP. We introduce the

Madelung Transform ϕ : T ∗P(G) → T ∗P(G)

(f, g) = ϕ(ρ, S) = (
√
ρe−S,

√
ρeS), (5.22)

or equivalently,

(f, g) = ϕ̃(ρ, ψ) = (ρe−ψ, eψ). (5.23)

Combining (Equation 5.22) with (Equation 5.19), or combining (Equation 5.23) with

(Equation 5.16) yields the Schrödinger system:

∂

∂t
f(i, t) =

∑
j∈N(i)

(f(j, t)− f(i, t))mt
ij, (5.24)

∂

∂t
g(i, t) = −

∑
j∈N(i)

(g(j, t)− g(i, t))mt
ij.
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Similar to our previous analysis, we can verify that both transforms ϕ and ϕ̃ preserves

the symplectic form. And we know that (Equation 5.24) is a Hamiltonian system and its

corresponding Hamiltonian is

Ĥ (f, g) =
∑
i∈V

∑
j∈N(i)

figjm
t
ij.

By applying Theorem 5.3.2, we obtain the following result about the conditions under

which the Hamiltonian process in SBP enjoys the stationary measure and Markov property.

Proposition 5.4.1. Assume that the reference process is mass-preserving, i.e.,
∑

i ρ̃(i, t) =∑
i ρ̃

0(i), and possesses a stationary measure ρ∗. Then there exists a stationary point

(ρ∗, S∗) of the Hamiltonian system (Equation 5.19) on the density manifold.

Proof. Take ∂H̃
∂S

= 0 and ∂H̃
∂ρ

= 0 such that (ρ, S) is independent of time. The equation of

ρ leads to

∑
j∈N(i)

eSi−Sjmji
√
ρj =

∑
j∈N(i)

eSj−Simij
√
ρj.

Due to mii = −
∑

j∈N(i)mij, the equation of S becomes

1

2

∑
j∈N(i)

(eSi−Sjmji + eSj−Simij)
√
ρj =

∑
j∈N(i)

mij
√
ρi.

Applying the above relationships, we obtain that

∑
j∈N(i)

eSi−Sjmji
√
ρj =

∑
j∈N(i)

mij
√
ρi.

This immediately implies that

∑
j∈N(i)

e−Sjmji
√
ρj =

∑
j∈N(i)

e−Simij
√
ρi.
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Now by taking eS
∗
j
√
ρ∗j = eS

∗
i

√
ρ∗i for all ij ∈ E, the first equation is reduced to

∑
j∈N(i)

mjiρ
∗
j =

∑
j∈N(i)

mijρ
∗
i .

This leads to ∑
j∈N(i)

mjiρ
∗
j +miiρ

∗
i = 0,

which is the sufficient and necessary condition that the reference process admits the station-

ary measure ρ∗. From the above arguments, there always exists a stationary point (ρ∗, S∗)

which refers to the reference process itself and ρ0 = ρ1 = ρ∗ in the SBP.

In the following, we show that if the solution process of the SBP is Markov, then its

density function ρ must be invariant with respect to time.

Corollary 5.4.0.1. Assume there exists a Markov process solving the SBP and that the

reference process is mass-preserving, then for all ij ∈ E, cij =
eSi

√
ρi

eSj√ρj
is the solution of

−
∑
k∈N(i)

ckimik +
∑
l∈N(j)

cljmjl −mjj +mii = 0. (5.25)

Moreover, ρ is the invariant measure of the solution process in SBP.

Proof. Since the solution process of the SBP is time homogenous Markov, we can verify

that eSi
√
ρi

eSj√ρj
= cij > 0 is independent of time and that

dtρ = ρQ,
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where Qii = −
∑

j∈N(i) cjimij, Qij = cjimij. Let eψi = eSi
√
ρi. Then it holds that

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−eψ(j,t)−ψ(i,t)mijρ(i, t) + eψ(i,t)−ψ(j,t)mjiρ(j, t)

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

(eψ(j,t)−ψ(i,t) − 1)mij.

As a consequence, for ij ∈ E,

dtcij = dt[(e
ψi−ψj)] (5.26)

= cij(−
∑
l∈N(i)

eψl−ψimil +
∑
k∈N(j)

eψk−ψjmjk) + cij(−mjj +mii)

= cij(−
∑
l∈N(i)

climil +
∑
k∈N(j)

ckjmjk −mjj +mii) = 0.

Since cij > 0 for ij ∈ E, we obtain (Equation 5.25). Next we show that the density

function ρ is invariant with respect to time.

Notice that eSi−Sj =
√
ρj√
ρi
cij leads to

d(Si − Sj) =
1

2

dρj
ρj

− 1

2

dρi
ρi

+ d ln(cij) =
1

2

dρj
ρj

− 1

2

dρi
ρi
.

This implies that

−mii −
1

2

∑
k∈N(i)

eSk−Simik

√
ρk√
ρi

− 1

2

∑
k∈N(i)

eSi−Skmki

√
ρk√
ρi

+mjj +
1

2

∑
l∈N(j)

eSl−Sjmjl

√
ρl√
ρj

+
1

2

∑
l∈N(j)

eSj−Slmlj

√
ρl√
ρj

= − 1

2ρi
(
∑
k∈N(i)

eSi−Skmki
√
ρiρk −

∑
k∈N(i)

eSk−Simik
√
ρiρk)

+
1

2ρj
(
∑
l∈N(j)

eSj−Slmlj
√
ρjρl −

∑
l∈N(j)

eSl−Sjmjl
√
ρjρl),
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which is equivalent to (Equation 5.25). Using (Equation 5.26), it yields that

∑
k∈N(i)

cikmkiρ(k, t)− ckimikρ(i, t) =
1

ρj

( ∑
l∈N(j)

cjlmljρ(l, t)− cljmjlρ(j, t)
)
,

that is,

dtρi = dt ln(ρj).

Similarly, we have dtρj = dt ln(ρi), which implies that

dtρi = ρiρjdtρi.

Now we claim that ρ must be invariant with respect to t. Indeed, if there exists ij ∈ E such

that dρi ̸= 0, then we have that ρiρj = 1. However, this contradicts the mass conservation∑N
i=1 ρi = 1. It follows that dtρi = 0, and therefore ρ should be invariant with respect to

time. We conclude that ρ must be the invariant measure of the solution process in the SBP.

5.4.2 Discrete SBP based on minimum action with Fisher information

Another way (B) to describe the discrete SBP (see e.g. [177]) lies on the discretization of

the variational problem (Equation D.4). Consider the following control problem by directly

discretizing the Fisher information I(ρ) in (Equation D.4):

J1 = min
ρ,v

{∫ 1

0

(
1

2
⟨v, v⟩θ(ρ) +

1

8
I(ρ))dt+ 1

8

∑
i

(ρ1(i) log(ρ1(i))− ρ0 log(ρ0(i)))
}
,

(5.27)

where ρi ∈ H1((0, 1)), vij ∈ L2((0, 1); θij(ρ)) and

dtρt = ρtQt = −divθG(ρtvt)
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with ρ0, ρ1 ∈ Po(G). In this case, we look for a stochastic process which obeys the above

master equation and minimize the action with the Fisher information

I(ρ) := 1

2

∑
ij∈E

(log(ρi)− log(ρj))
2θ̃ij(ρ).

Here θ̃ is another density dependent weight which may be different from earlier defined θ

on the graph G.

By using Lagrangian multiplier method, the critical point of the discrete variational

approach should satisfies

vij(t) = (Si(t)− Sj(t)),

dtρi −
∑
j∈N(i)

(Si − Sj)θij(ρ) = 0, (5.28)

dtSi +
1

2

∑
j∈N(i)

(Si − Sj)
2∂θij
∂ρi

=
1

8

∂

∂ρi
I(ρ).

It forms a Hamiltonian system on the density space with the Hamiltonian 1
4

∑
i,j(Si −

Sj)
2θij(ρ) − 1

8
I(ρ). In other words, the critical point gives a Hamiltonian process on the

graph.

We can also reformulate the above system (Equation 5.28) in the form of Schrödinger

system (Equation D.5). By taking differential on f =
√
ρeS and g =

√
ρe−S, we get

dtf = e(
1
2
log(ρ)+S)(

1

2

dtρ

ρ
+ dtS)

= e(
1
2
log(ρ)+S)

(1
2

∑
j∈N(i)wij(Si − Sj)θij(ρ)

ρ
− 1

2

∑
j∈N(i)

wij(Si − Sj)
2∂θij
∂ρi

+
1

8

∂

∂ρi
I(ρ)

)
,

dtg = e(
1
2
log(ρ)−S)(

1

2

dtρ

ρ
− dtS)

= e(
1
2
log(ρ)−S)

(1
2

∑
j∈N(i)wij(Si − Sj)θij(ρ)

ρ
+

1

2

∑
j∈N(i)

wij(Si − Sj)
2∂θij
∂ρi

− 1

8

∂

∂ρi
I(ρ)

)
.
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Rewriting the above systems into compact form leads to

dtf = −1

2
∆Gf, (5.29)

dtg =
1

2
∆Gg,

where ∆G is the nonlinear discretization of the Laplacian operator,

(∆Gf)j =

− fj

(
1

fjgj

∑
l∈N(j)

(
w̃jl(log(fj/gj)− log(fl/gl))θ̃ij(fg) + wjl(log(fjgj)− log(flgl))θij(fg)

)

+
∑

l∈N(j)

(
w̃jl| log(fj/gj)− log(fl/gl)|2

∂θ̃ij(fg)

∂fjgj
+ wjl| log(fjgj)− log(flgl)|2

∂θij(fg)

∂fjgj

))
.

Remark 31. In approach (A), the Hamiltonian systems ((Equation 5.16), (Equation 5.19)

and (Equation 5.24)) are corresponding to the control problem (Equation 5.14), which is

derived from discretizing the relative entropy H(P |R) in (Equation D.1); In approach (B),

the Hamiltonian systems ((Equation 5.28) and (Equation 5.29)) are corresponding to the

control problem (Equation 5.27), which is derived via discretizing the Fisher information

I(ρ) in (Equation D.2). It worth mentioning that under continuous cases, (Equation D.1)

and (Equation D.2) are equivalent under the transform (Equation D.3) and their corre-

sponding Hamiltonian systems are also equivalent. However, this is not true for discrete

cases. Discretizing the SBP at different stages leads to different Hamiltonian systems.

Remark 32 (Nonlinear Markov process as reference process in approach (B)). Let us recall

that in continuous space Rd, f, g solve the Schrödinger system

∂

∂t
ft = Ltft,

∂

∂t
gt = −Ltgt. with f0, g1 are given,

with Lt corresponds to the generator of the reference process R (c.f. Equation (32) of

[174]).

By comparing the systems (Equation 5.24) and (Equation 5.29) related to f, g, it is
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observed that Lt in approach (A) can be viewed as a linear approximation of Laplacian

operator, which is associated to the Markov reference process R with transition rate matrix

{mt
ij}; On the other hand, Lt = ∆G in approach (B) is a nonlinear approximation of

Laplacian operator. We can thus interpret ∆G as a nonlinear generator depending on both

the state and the distribution. According to the definition of nonlinear Markov process

mentioned in subsection 5.2.2, we can associate approach (B) with a nonlinear Markov

reference process R generated by ∆G even though such reference process is not needed in

the original control formulation (Equation 5.27).

We end this subsection by presenting the table comparing the two SBPs (Equation 5.19)

and (Equation 5.28) discussed in our thesis.

Table 5.1: Comparing two SBPs on graph

Entropy-minimization SBP Action-minimization SBP
Origin Derived from (Equation 5.14) Derived from (Equation 5.27)

Hamiltonian d
dt
ρt = ρtQ(St, t)

d
dt
ρt = ρtQ(St)

system d
dt
Si = −

∑
j∈N(i)(e

Sj−Si − 1)mt
ij

dSi
dt

+ 1
2

∑
j∈N(i)((Sj − Si)

+)2 = 1
8

∂
∂ρi

IG(ρ)

H ∑
i∈V

∑
j∈N(i)(exp(Sj − Si)− 1)mt

ijρi
1
2

∑
i∈V

∑
j∈N(i) ρi((Sj − Si)

+)2 − 1
8
IG(ρ)

Qji, j ̸= i eSi−Sjmt
ji ≥ 0, Hamiltonian process exists (Si − Sj)

+ ≥ 0, Hamiltonian process exists

Reference R stochastic process induced by stochastic process induced by nonlinear generator

linear generator Q = {mt
ij} related to the Fisher Information IG(ρ)

5.4.3 Periodic marginal distribution of Hamiltonian process in SBP

The periodic solution, as one classical topic of Hamiltonian systems, has been studied for

many decades (see e.g. [188, 163, 165]). For our considered Hamiltonian process, the

periodicity of the solution appears in the density evolution. Below, we present several

examples of periodic reference process, and prove that if the periodic Hamiltonian process

exists, it coincides with the reference process in SBP.

By using the Floquet theorem in [189], the fundamental matrix X(t) satisfies X(t +

T ) = X(t) exp(LT ), where exp(LT ) is a non-singular constant matrix. The Floquet expo-
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nents of dtρ = ρQt are the eigenvalues µi, i ≤ k ≤ N of the matrix L. If there exists some

i such that exp(µiT ) = 1 or −1, then there exists periodic density function with period T

or 2T. As a consequence, we obtain the following results.

Lemma 5.4.1. Assume that {Qt}t≥0 is transition rate matrix and Qt is T-periodic. If there

exists a Floquet exponent µ = kπi
T
, k ∈ Z, then dtρ = ρQt has a periodic density.

Example 5.4.1. Consider a 2-nodes graph G. Given a reference measure which possesses

the marginal distribution as follows,

dtρ1 = ρ1m11 + ρ2m21,

dtρ2 = ρ1m12 + ρ2m22,

where m21 = −m11, m22 = −m12, m11 = −
1
2
− 1

4
cos(t)+ 1

8
sin(t)− 1

16
sin(t) cos(t)

( 1
2
+ 1

4
cos(t))2

and m22 =

− 1
1
2
+ 1

4
cos(t)

.

There exists a nontrivial periodic solution ρ1(t) = 1
2
+ 1

4
cos(t), ρ2(t) = 1− ρ1(t). And

the periods of ρ1 and ρ2 are both T = 2π. Therefore, there exists a time inhomogenous

Markov process Xt with periodic marginal distribution ρt on G with the transition rate

matrix Qt = (mij)i,j≤2.

We can also show the existence of time inhomogeneous Markov process with periodic

marginal distribution on any fully-connected graph.

Proposition 5.4.2. Suppose G is a fully connected graph, and {ρt} is a periodic density

trajectory (with period T ) in Po(G), then we can always find a transition rate matrix Q(t)

such that ρt is the solution to the master equation ρ̇t = ρtQ(t).

Proof. Assume G contains n vertices. Let us assume the non-diagonal entries of Q(t) to

be {mij}, we rearrange these entries to form a n(n− 1) dimensional vector as:

m = (m12, ...,m1n,m21,m23, ...,m2n, ...,mn1, ...,mnn−1)
T .
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Plugging m into the Master’s equation, we derive the linear equation for m:

P (t)m =

(
ρ̇1 ρ̇2 . . . ρ̇n

)T
. (5.30)

Where P is an n× n(n− 1) matrix defined as

P (t) =

(
P1(t) P2(t) . . . Pn(t)

)
.

Pm(t) =


ρm(t)Im 0m×(n−m−1)

−ρm(t)eTm −ρm(t)eTn−m−1

0(n−m−1)×m ρm(t)In−m−1


n×(n−1)

for 1 ≤ m ≤ n

Here we denote eTm = (1, ..., 1)︸ ︷︷ ︸
m 1s

. We can verify that

m0 =

(
1

(n− 1)ρ1
eTn−1,

1

(n− 1)ρ2
eTn−1, ...,

1

(n− 1)ρn
eTn−1

)

belongs to the kernel of P (t), and that P (t) is a full rank matrix. There must exist a solution

m∗ to (Equation 5.30), where its entries are expressions of {ρi, ρ̇i}i∈V . In other words, we

can directly give such a solution. To be more specific, let’s consider the transport process

on the loop from vertex 1 to 2, 2 to 3,... n-1 to n and n to 1. This corresponds to setting mij

to 0 except m12,m23, ...,mn−1 n, and mn1. Now (Equation 5.30) becomes:



−ρ1 ρn

−ρ2
. . .

. . .

−ρn





m12

m23

...

mn−1 n

mn1


=



ρ̇1

ρ̇2
...

ρ̇n−1

ρ̇n


Therefore the solution is (− ρ̇1−ρ̇n

ρ1
,− ρ̇2

ρ2
, · · · ,− ρ̇n−1

ρn−1
,− ρ̇n

ρn
)T .
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Then we can directly take m(t) = Km0(t) + m∗(t), since {ρt} is in the interior of

P(G), we can always find a large enough K > 0 that guarantees the entries of m(t) to

be always non negative. And m(t) forms the transition rate matrix Q(t) whose master

equation admits the periodic solution {ρt}.

Example 5.4.2. Consider the periodic marginal distribution ρt:

ρt = (
cos t

2
√
6
+

sin t

6
√
2
+

1

3
,−cos t

2
√
6
+

sin t

6
√
2
+

1

3
,− sin t

3
√
2
+

1

3
).

which is a circle centered at (1
3
, 1
3
, 1
3
) with radius 1

2
√
3

on P(G). Following the idea of

Proposition Proposition 5.4.2, one may take

m11(t) = −6
√
2 +

√
3 sin t− 3 cos t√

3 cos t+ 4 sin t+ 2
√
2
, m12 = −m11, m13 = 0,

m22(t) = − 24− 4
√
2 cos t

−
√
6 cos t+

√
2 sin t+ 4

, m21 = −1

2
m22, m23 = −1

2
m22,

m33(t) = − 3
√
2√

2− sin t
m13 = 0,m23 = −m33.

such that dt = ρtQt with Qt = (mij)i,j≤3.

Next we aim to use general SBP (Equation 5.20) to produce a Hamiltonian process

with periodic marginal distribution on G. In particular, when the convex function u =

x log(x) − x − 1, by using the Nelson’s transformation ψi =
√
ρie

Si , the Hamiltonian

system can be also rewritten as

dSi = −mii −
1

2

∑
j∈N(i)

eSj−Simij(t)

√
ρj√
ρi

− 1

2

∑
j∈N(i)

eSi−Sjmji(t)

√
ρj√
ρi
,

dρi =
∑
j∈N(i)

eSi−Sjmji(t)
√
ρj
√
ρi −

∑
j∈N(i)

eSj−Simij(t)
√
ρi
√
ρj.

with the Hamiltonian H̃ (ρ, S, t) =
∑

i∈V
∑

j∈N(i) e
(Sj−Si)mij(t)

√
ρiρj. Taking ψ as a

time-independent potential and choosing ρ0, ρ1 as the initial and terminal distribution from
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the periodic solution, then the distribution of the solution process is exactly same as the ref-

erence process. Thus it induces a Hamiltonian system which is periodic in time. Therefore

there exists SBP with the given ρ0, ρ1 such that the solution process is Hamiltonian and its

marginal distribution is periodic in time.

In the following, we assume that the Legendre transformation u∗ of u in (Equation 5.20)

is continuous differentiable and satisfies

u∗(x) ≥ 0, if x ≤ 0, u∗(x) ≤ 0, if x ≥ 0,

∂u∗

∂x
(0) = 1, lim

x→−∞

∣∣∣∂u∗
∂x

(x)
∣∣∣ <∞, lim

x→+∞

∂u∗

∂x
(x) = +∞.

Now we are able to give the characterization of the periodic Hamiltonian process on finite

graph via general SBP.

Theorem 5.4.2. Assume that the reference process is periodic with the marginal distribu-

tion and its period T > 0. There always exists ρ0, ρ1 such that the critical point of the

general SBP problem (Equation 5.20) is a Hamiltonian process and its marginal distribu-

tion is periodic in time.

Proof. Notice that the critical point of SBP satisfies

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−∂u
∗

∂x
(ψj − ψi)mijρ(i, t) +

∂u∗

∂x
(ψi − ψj)mjiρ(j, t),

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

u∗(ψj − ψi)mij,

where ρ(0) = ρ0, ρ(1) = ρ1. Choosing ρ0, ρ1 as two different distribution at different time

of the reference process, and taking ψi = ψj, we get

∂

∂t
ρ(i, t) =

∑
j∈N(i)

−mijρ(i, t) +mjiρ(j, t),

∂

∂t
ψ(i, t) = 0.
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This implies that the critical point forms a Hamiltonian system with Hamiltonian defined

as H(ρ, ψ, t) =
∑

i,jmij(t)ρi. Due to the fact that the marginal distribution of reference

process is periodic in time, the critical point is exactly equal to the reference process and

its marginal distribution is periodic.

One may wonder whether there exists certain Hamiltonian process whose marginal

distribution is periodic but is not the reference process. We first use a 2-nodes graph ex-

ample to point out it is not possible to get such Hamiltonian by using SBP when u(x) =

x log(x)− x− 1. Even worse, we show that for general finite graph, the periodic Hamilto-

nian process exists if and only if it equals to a reference process in general SBP.

Example 5.4.3. Given G consisting of 2 nodes. Assume the reference process with transi-

tion rate matrix m is periodic with period T > 0 and {t ∈ [0, T ]|mij(t) = 0, ij ∈ E} has

Lebesgue measure zero. Notice that ρ, S of the Hamiltonian process X(t) satisfies

∂

∂t
ρ(1, t) = −eψ(2,t)−ψ(1,t)m12ρ(1, t) + eψ(1,t)−ψ(2,t)m21ρ(2, t),

∂

∂t
(ψ(1, t)− ψ(2, t)) = −(eψ(2,t)−ψ(1,t) − 1)m12 + (eψ(1,t)−ψ(2,t) − 1)m21.

Sincem12,m21 ≥ 0, then ψ(1)−ψ(2) equals to constant if and only if ψ(1) = ψ(2).Mean-

while, if ψ1−ψ2 > 0, then ψ1−ψ2 is increasing to +∞, and ψ1−ψ2 is decreasing to −∞ if

ψ1 < ψ2. Then we claim that ρ1 is not periodic in time. If we assume that ρ1 is periodic with

period T1, then it holds true
∫ (k+1)T1
kT1

−eψ(2,t)−ψ(1,t)m12ρ(1, t)+e
ψ(1,t)−ψ(2,t)m21ρ(2, t)dt =

0. Without losing generality, let us assume that ψ1 − ψ2 > 0. It is not hard to see that

eψ(1,t)−ψ(2,t) is increasing to +∞ and eψ(1,t)−ψ(2,t) is decreasing to 0 as t → ∞. The

boundedness of ρ(1, t), ρ(2, t) yield that there exists large enough k such that

∫ (k+1)T1

kT1

−eψ(2,t)−ψ(1,t)m12ρ(1, t) + eψ(1,t)−ψ(2,t)m21ρ(2, t)dt > 0,

which leads to a contradiction. Therefore, ρ(t) is periodic in time if and only if ψ1 = ψ2.
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This implies that X(t) is exactly the reference process.

Theorem 5.4.3. Assume the reference process with transition rate matrix m is periodic

with period T > 0 and {t ∈ [0, T ]|mij(t) = 0, ij ∈ E} has Lebesgue measure zero. Then

the Hamiltonian process which has periodic density distribution in general SBP problem

(Equation 5.20) is equal to the reference process which has the periodic density distribu-

tion.

Proof. Assume that there is a maximum ψi∗ ≥ ψi, i ̸= i∗ and ψi∗ > ψimin
. Then

according to the evolution of ψ,

∂

∂t
ψ(i, t) = −

∑
j∈N(i)

u∗(ψ(j, t)− ψ(i, t))mij,

then the maximum principle holds, i.e., ψi∗(t) ≥ ψi(t) ≥ ψimin
(t). Notice that

d

dt
ρ(i, t) =

∑
j∈N(i)

−∂u
∗

∂x
(ψj − ψi)mijρ(i, t) +

∂u∗

∂x
(ψi − ψj)mjiρ(j, t).

The periodicity of ρi implies that there exists T1 > 0 for any k ∈ N+ such that

∫ (k+1)T1

kT1

∑
j∈N(i)

−∂u
∗

∂x
(ψj − ψi)mijρ(i, t) +

∂u∗

∂x
(ψi − ψj)mjiρ(j, t)dt = 0.

Due to the maximum principle, if there exists one node l with a local maximum of ψl

connected with another node k with a local minimum of ψk, it will lead to ψl −ψk → +∞

as t → ∞. This contradicts with the periodicity of ρk and ρl. If any node l with a local

maximum of ψl is not connected with another node k with a local minimum of ψk, we

pick a road l, j1, · · · , jw, k which connects l and k. Notice that ψl → +∞, ψk → −∞,

ψjm ∈ (ψk, ψl),m ≤ w. Then there must exists jm such that m is the smallest number

which satisfies ψk − ψjm → −∞. Now consider the periodicity of ρjm . There exists k′
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large enough such that

∫ (k′+1)T1

k′T1

∑
j∈N(jm)

−∂u
∗

∂x
(ψj − ψjm)mjmjρ(jm, t) +

∂u∗

∂x
(ψjm − ψj)mjjmρ(j, t)dt > 0.

This leads to a contradiction, we complete the proof.

5.5 More examples and future work

In this section, we conclude this chapter by presenting a few more examples of Hamiltonian

processes on graph and more questions to be considered in the future.

Example 5.5.1. (Euler-Lagrangian equations [175]) Assume that the Lagrangian in den-

sity mainifold is given by L (ρt, ρ̇t) =
1
2
gW (ρ̇t, ρ̇t)−F(ρt).Here gW (σ1, σ2) := −σ1(∆ρ)

+σ2

where σk ∈ TρPo(G), k = 1, 2 and (∆ρ)
+ is the pseudo inverse of the weight graph Lapla-

cian matrix ∆ρ(·) := divθG(ρ∇G(·)). Then the critical point of

inf
ρt

∫ T

0

L (ρt, ∂tρt)dt

with given ρ0 and ρT satisfies the Euler-Lagrangian equation

∂t
δ

δ∂tρt
L (ρt, ∂tρt) =

δ

δρt
L (ρt, ∂tρt) + C(t).

By introducing the Legendre transform St = (−∆ρt)
+∂tρt, it can be rewritten as a Hamil-

tonian system. That is

∂tρt + divθG(ρ∇GS) = 0,

∂tSt +
1

4

∑
j∈N(i)

(Si − Sj)
2(∂ρiθ(ρi, ρj) + ∂ρiθ(ρj, ρi)) +

δ

δρt
F(ρt) = C(t),

with the Hamiltonian H (ρ, S) = 1
4

∑
ij(Si−Sj)2θijwij+F(ρt). Therefore, if the transition

rate matrix in generalized master equation is well-defined, the Euler-Lagrangian equation
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in density space determines a Hamiltonian process on G.

Example 5.5.2. (Madelung system [179]) The energy is given by

H (ρ, S) =
1

4

∑
ij∈E

(Si − Sj)
2θijwij + F(ρt) + βI(ρt), β > 0.

Here F(ρ) =
∑

i ρiVi +
∑

i,j ρiρjWij, and I(ρ) = 1
2

∑
ij∈E(log(ρi)− log(ρj))

2θ̃ij. Here

θ̃ij is another density dependent weight on the graph that can be the same or different from

θij . The Madelung system is

∂tρt + divθG(ρ∇GS) = 0,

∂tSt +
1

4

∑
j∈N(i)

(Si − Sj)
2(∂ρiθ(ρi, ρj) + ∂ρiθ(ρj, ρi)) +

δ

δρt
F(ρt) + β

δ

δρt
I(ρt) = C(t).

When taking θ = θU , the Madelung system in density space determines a Hamiltonian

process on G. This system has a close relationship with the discrete Schrödinger equation

[171].

Example 5.5.3. (p-Wasserstein distance) The Lp Wasserstein distance, p ∈ (1,∞), is re-

lated to the following minimization problem,

W p
p (ρ

0, ρ1) = inf
v
{
∫ 1

0

N∑
i=1

∑
j∈N(i)

1

2
θij(ρ)v

p
ijdt : ∂tρ+ divθG(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1}.

We refer to [190] for a continuous version of p-Wasserstein distance. Its critical point is

related to the Hamiltonian system in density space

∂tρt + divθG(ρt|∇GS|q−2∇GS) = 0,

∂t(Si) +
1

2q

∑
j∈N(i)

|(∇GS)ij|q(∂1θij + ∂2θji) = 0,
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with the Hamiltonian

H (ρ, S) =
1

2q

∑
i,j

|∇GS|qθij,
1

q
+

1

p
= 1, p ∈ (1,∞).

When the equation of ρ is determined by a transition rate matrix, this leads to a Hamilto-

nian process.

To end the discussion, we want to mention two problems that are worth to be studied

further.

• As shown in [179], the classical Hamiltonian ODEs induce the Wasserstein–Hamiltonian

flows on the density manifold. There are many special properties for Hamiltonian

system in continuous space, such as conservation of energy, preservation of the vol-

ume etc. The particle-level counterpart on graph is the Hamiltonian process intro-

duced in Definition 5.3.1. In addition to the conservation property discussed in Re-

mark 26, are there other quantities or structures being preserved by the Hamiltonian

process on the graph G?

• As discussed in [191], stochastic differential equations can be well approximated by

continuous time random walk on the lattices. Then it is natural to ask whether the

proposed Hamiltonian process on a lattice can be used to approximate a Hamiltonian

system in Rd. If so, how well is the approximation?
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Appendices



Table 2: Notations frequently used in this thesis

Indices Meaning
T♯µ pushforward of measure µ by the map T , c.f.

Equation 2.1
L d Lebesgue measure on Rd

µ≪ ν Measure µ is absolute continuous to ν
Law(X) Probability distribution of the random vari-

able X
dµ
dν

Radon-Nikodym derivative between mea-
sure µ, ν

W2(·, ·) 2-Wasserstein distance, c.f. Example 2.1.1
P2 Wasserstein manifold, c.f. Equation 2.49
T P2 Tangent bundle of Wasserstein manifold
TρP2 Tangent space of Wasserstein manifold at ρ
T ∗P2 Cotangent bundle of Wasserstein manifold
gW Wasserstein metric, c.f. Equation 2.58
o(hα) Higher order term of hα (α > 0)
O(hα) Same order term of hα (α > 0)
gradW Wasserstein gradient, c.f. Equation 2.61
H(ρ) Relative entropy of ρ
DKL(·∥·) Kullbeck-Leibler divergence
L(x, v) Lagrandian defined on particle space
L (ρ, ∂tρ) Lagrangian defined on T P2

H(x, p) Hamiltonian defined on particle space
H (ρ, S) Hamiltonian defined on T ∗P2

≻,⪰ For square matrix A,B, A ≻ B indicates
A− B is positive definite, A ⪰ B indicates
A−B is semi-positive definite

In n× n identity matrix
On n× n zero matrix
π1, π2 π1 : Rd × Rd :→ Rd, (x, y) 7→ x is the pro-

jection onto the first coordinate component;
similarly π2 is the projection onto the sec-
ond component
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Table 3: Notations frequently used in this thesis (continued)

Indices Meaning
Θ Parameter space of pushforward map Tθ
θ Parameter of pushforward map Tθ
p Reference probability distribution used in

Chapter 4
ρθ Pushforwarded distribution of p by Tθ, i.e.,

ρθ = Tθ♯p
H(θ) Relative entropy of ρθ
I(µ|ν) Fisher information of distribution µ with

reference measure ν
N (µ,Σ) Gaussian distribution with mean µ and co-

variance Σ
G(V,E) Finite graph with vertices set V , and edge

set E
∇G Gradient on graph, c.f. Equation 5.7
divθG Divergence operator on graph with weight

function θ, c.f. Equation 5.6
N(i) Set of neighbouring vertices of vertex i of

graph G
Qt Transition rate matrix of Markov process
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APPENDIX A

APPENDIX FOR PART 2

Definition A.0.1 (Superdifferentiablity). For function f : Rn → R, we say f is superdif-

ferentiable at x, if there exists p ∈ Rn, such that

f(z) ≥ f(x) + ⟨p, z − x⟩+ o(|z − x|).

Definition A.0.2 (Locally Lipschitz). Let U ⊂ Rn be open and let f : Rn → R be given.

Then

(1) f is Lipschitz if there exists L <∞ such that

∀x, z ∈ Rn, |f(z)− f(x)| ≤ L|x− z|.

(2) f is said to be locally Lipschitz if for any x0 ∈ Rn, there is a neighbourhood O of

x0 in which f is Lipschitz.

Definition A.0.3 (Distance function). For a set X , a distance function d : X ×X → R is

a function satisfies

• d(x, y) = 0 if and only if x = y;

• d(x, y) = d(y, x) for any x, y ∈ X;

• d(x, y) + d(y, z) ≥ d(x, z).
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APPENDIX B

APPENDIX FOR PART 3

B.1 Scalable computation of Monge maps with general costs

B.1.1 Relation between our method and generative adversarial networks

It is worth pointing out that our scheme and Wasserstein generative adversarial networks

(WGAN) [8] are similar in the sense that they are both doing minimization over the gener-

ator/map and maximization over the discriminator/dual potential. However, there are two

main distinctions between them. Such differences are not reflected from the superficial as-

pects such as the choice of reference distributions ρa, but come from the fundamental logic

hidden behind the algorithms.

• We want to first emphasize that the mechanisms of two algorithms are different:

Typical Wasserstein GANs (WGAN) are usually formulated as

min
G

max
∥D∥Lip≤1

∫
D(y)ρb(y)dy −

∫
D(G(x))ρa(x)dx︸ ︷︷ ︸

1−Wasserstein distance W1(G♯ρa,ρb)

(B.1)

and ours reads

max
f

min
T

∫
f(y)ρb(y)dy −

∫
f(T (x))ρa(x)dx+

∫
c(X,T (x))ρa(x)dx︸ ︷︷ ︸

general Wasserstein distance C(ρa,ρb)

(B.2)

The inner maximization of (Equation B.1) computes W1 distance via Kantorovich

duality and the outer loop minimize the W1 gap between desired ρb and G♯ρa; How-

ever, the logic behind our scheme (Equation B.2) is different: the inner optimiza-

tion computes for the c−transform of f , i.e. f c,−(x) = supξ(f(ξ) − c(x, ξ)); And
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the outer maximization computes for the Kantorovich dual problem C(ρa, ρb) =

supf
{∫

f(y)ρb(y)dy −
∫
f c,−(x)ρa(x)dx

}
.

Even under W1 circumstance, one can verify the intrinsic difference between two

proposed methods: when setting the cost c(x, y) = ∥x − y∥, and ρa = G♯ρa in

(Equation B.2), the entire ”max-min” optimization of (Equation B.2) (underbraced

part) is equivalent to the inner maximization problem of (Equation B.1) (underbraced

part), but not for the entire saddle point scheme.

It is also important to note that WGAN aims to minimize the distance between gen-

erated distribution and the target distribution and the ideal value for (Equation B.1)

is 0. On the other hand, one of our goal is to estimate the optimal transport distance

between the initial distribution ρa and the target distribution ρb. Thus the ideal value

for (Equation B.2) should be C(ρa, ρb), which is not 0 in most of the cases.

• We then argue about the optimality of the computed mapG and T : In (Equation B.1),

one is trying to obtain a map G by minimizing W1(ρb, G♯ρa) w.r.t. G, and hopefully,

G♯ρa can approximate ρb well. However, there isn’t any restriction exerted on G,

thus one can not expect the computed G to be the optimal transport map between ρa

and ρb; On the other hand, in (Equation B.2), we not only compute T such that T♯ρa

approximates ρb , but also compute for the optimal T that minimizes the transport cost

Eρa [c(X,T (X))]. In (Equation B.2), the computation of T is naturally incorporated

in the max-min scheme and there exists theoretical result (recall (Theorem 3.2.1) )

that guarantees T to be the optimal transport map.

In summary, even though the formulation of both algorithms are similar, the designing logic

(minimizing distance vs computing distance itself) and the purposes (computing arbitary

pushforward map vs computing the optimal map) of the two methods are distinct. Thus the

theoretical and empirical study of GANs cannot be trivially translated to proposed method.

In addition to the above discussions, we should also refer the readers to [71], in which a
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comparison between a similar saddle point method and the regularized GANs are made in

section 6.2 and summarized in Table 1.

B.1.2 Proof of Theorem 3.1.2

We consider the Monge problem from Rd to Rd with the cost function c ∈ C2(Rd × Rd)

satisfying the conditions mentioned in Theorem 3.2.1. Recall that we assume c satisfies:

∂xyc(x, y), as an n× n matrix, is invertible and self-adjoint. (Equation 3.5)

∂yyc(x, y) is independent of x; (Equation 3.6)

We further denote

σ(x, y) = σmin(∂xyc(x, y)) (B.3)

as the minimum singular value of matrix ∂xyc(x, y), since the matrix is invertible, σ(x, y) >

0 for any x, y ∈ Rn.

Theorem 3.1.2 (Posterior Error Analysis via Duality Gaps). Assume f ∈ C2(Rd) is a c-

concave function and assume that there exists φ ∈ C2(Rd) such that f(y) = infx{φ(x) +

c(x, y)}. Suppose φ(x) + c(x, y) has a unique minimizer x̂y for arbitrary y ∈ Rd. We

further assume there exists function λ(·) > 0 such that the Hessian of φ(·) + c(·, y) at

minimizer x̂y is positive definite and bounded from above:

λ(y)In ⪰ ∇2
xx(φ(x) + c(x, y))|x=x̂y ≻ On, (Equation 3.7)

where In, On denotes n× n identity matrix and zero matrix.

We denote the duality gaps

E1(T, f) = L(T, f)− inf
T̃

L(T̃ , f), E2(f) = sup
f̃

inf
T̃

L(T̃ , f̃)− inf
T̃

L(T̃ , f)
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Denote T∗ as the Monge map of (Equation 2.2). Then there exists a strict positive

weight function β(·) > miny{σ(x,y)2λ(y)
} (β depends on c, T∗, f and φ), such that the weighted

L2 error between computed map T and optimal map T∗ is upper bounded by

∥T − T∗∥L2(βµ) ≤
√

2(E1(T, f) + E2(f)).

Lemma B.1.1. Suppose n×nmatrixA is self-adjoint, i.e. A = AT, with minimum singular

value σmin(A) > 0. Also assume n × n matrix H is self-adjoint and satisfies λIn ⪰ H ≻

On. Then AH−1A ⪰ σmin(A)
2

λ
In.

Proof of Lemma B.1.1 . Firstly, one can verify that H−1 ⪰ 1
λ
In by digonalizing H−1. To

prove this lemma, we only need to verify that for arbitrary v ∈ Rn,

vTAH−1Av = (Av)TH−1Av ≥ |Av|2

λ
≥ σmin(A)

2

λ
|v|2

Thus AH−1A− σmin(A)
2

λ
In is non-negative definite.

The following lemma is crucial for proving our results, it analyzes the concavity of the

target function f(·)− c(·, y) with f to be c-concave.

Lemma B.1.2 (Concavity of f(·) − c(x, ·) when f is c-concave). Suppose the cost func-

tion c(·, ·) and f satisfy the conditions mentioned in Theorem 3.2.2. Denote the function

Ψx(y) = f(y)− c(x, y), keep all notations defined before, we have

∇2Ψx(y) ⪯ −σ(x, y)
2

λ(y)
In.

Proof of Lemma B.1.2. First, we notice that f is c-convex, thus, there exists φ such that

f(y) = infx{φ(x) + c(x, y)}. Let us also denote Φ(x, y) = φ(x) + c(x, y).

Now for a fixed y ∈ Rn, We pick one

x̂y ∈ argminx {φ(x) + c(x, y)}
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Since we assumed that φ ∈ C2(Rn) and c ∈ C2(Rn × Rn), we have

∂xΦ(x̂y, y) = ∇φ(x̂y) + ∂xc(x̂y, y) = 0 (B.4)

At the same time, since x̂y is the minimum point of theC2 function Φ(·, y), then the Hessian

of Φ(·, y) at x̂y is positive definite,

∂2xxΦ(x̂y, y) = ∇2
xx(φ(x) + c(x, y))

∣∣∣∣∣
x=x̂y

= ∇2φ(x̂y) + ∂2xxc(x̂y, y) ≻ 0.

Since ∂2xxΦ(x̂y, y) is positive definite, it is also invertible. We can now apply the implicit

function theorem to show that the equation ∂xΦ(x, y) = 0 determines an implicit function

x̂(·), which satisfies x̂(y) = x̂y in a small neighbourhood U ⊂ Rn containing y. Further-

more, one can show that x̂(·) is continuously differentiable at y. We will denote x̂y as x̂(y)

in our following discussion.

Now differentiating (Equation B.4) with respect to y yields

∂2xxΦ(x̂(y), y)∇x̂(y) + ∂2xyc(x̂(y), y) = 0 (B.5)

On one hand, (Equation B.5) tells us

∇x̂(y) = −∂xxΦ(x̂(y), y)−1∂xyc(x̂(y), y). (B.6)

On the other hand, notice that c ∈ C2(Rn × Rn), thus ∂xyc = ∂yxc. By (Equation B.5), we

have

∂2yxc(x̂(y), y)∇x̂(y) =− ∂2xxΦ(x̂(y), y)∇x̂(y)∇x̂(y)

=− (∇2φ(x̂(y)) + ∂2xxc(x̂(y), y))∇x̂(y)∇x̂(y). (B.7)
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Now we are able to prove our theorem, we directly compute

∇2Ψx(y) = ∇2f(y)− ∂2yyc(x, y). (B.8)

in order to compute ∇2f(y), we first compute ∇f(y)

∇f(y) = ∇(φ(x̂(y)) + c(x̂(y), y)) = ∂yc(x̂(y), y). (B.9)

the second equality is due to the envelope theorem [143]. Then ∇2f(y) can be computed

as

∇2f(y) = ∂yxc(x̂(y), y)∇x̂(y) + ∂yyc(x̂(y), y). (B.10)

Plugging (Equation B.7) into (Equation B.10), recall (Equation B.8), this yields

∇2Ψx(y) = −(∇2φ(x̂(y)) + ∂2xxc(x̂(y), y))∇x̂(y)∇x̂(y) + ∂2yyc(x̂(y), y)− ∂2yyc(x, y)

Now by (Equation 3.6), ∂yyc(x, y) is independent of x, thus ∂2yyc(x̂(y), y)−∂2yyc(x, y) = 0.

As a result we obtain

∇2Ψx(y) = −(∇2φ(x̂(y)) + ∂2xxc(x̂(y), y))∇x̂(y)∇x̂(y)

= −∂2xxΦ(x̂(y), y)∇x̂(y)∇x̂(y). (B.11)

To further simplify (Equation B.11), recall (Equation B.6), we have

∇2Ψx(y) = −∂xyc(x̂(y), y)∂xxΦ(x̂(y), y)−1∂xyc(x̂(y), y).

By (Equation 3.7), λ(y)In ⪰ ∂xxΦ(x̂(y), y) ≻ On. Recall condition (Equation 3.5), ∂xyc

is self-adjoint, and (Equation B.3) leads to σmin(∂xyc(x, y)) = σ(x, y). Now applying
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Lemma B.1.1 yields

∇2Ψx(y) ⪯ −σ(x, y)
2

λ(y)
In.

Now we can prove main result in Theorem 3.2.2:

Proof of Theorem 3.2.2. In this proof, we denote
∫

as
∫
Rd for simplicity.

We first recall

L(T, f) =
∫
f(y)dν(y)−

∫
(f(T (x))− c(x, T (x)))dµ(x),

also recall definition (Equation 3.3), f c,−(x) = supy{f(y)− c(x, y)}, we can write

E1(T, f) = −
∫

[f(T (x))− c(x, T (x))]dµ(x) + inf
T̃

{∫
[f(T̃ (x))− c(x, T̃ (x))]dµ(x)

}
=

∫
[f c,−(x)− (f(T (x))− c(x, T (x)))]dµ(x)

We denote

Tf (x) = argmaxy{f(y)− c(x, y)} = argmaxy{Ψx(y)},

then we have

∇Ψx(Tf (x)) = 0. (B.12)

On the other hand, one can write:

E1(T, f) =
∫

[(f(Tf (x))− c(x, Tf (x)))− (f(T (x))− c(x, T (x)))]dµ(x)

=

∫
[Ψx(Tf (x))−Ψx(T (x))]dµ(x)
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For a fixed x, since Ψx(·) ∈ C2(Rn), then

Ψx(T (x))−Ψx(Tf (x)) =∇Ψx(Tf (x))(T (x)− Tf (x))

+
1

2
(T (x)− Tf (x))

T∇2Ψx(η(x))(T (x)− Tf (x))

with η(x) = (1 − θx)T (x) + θxTf (x) for certain θx ∈ (0, 1). By (Equation B.12) and

Lemma B.1.2, we have

Ψx(T (x))−Ψx(Tf (x)) ≤ −σ(x, η(x))
2

2λ(η(x))
|T (x)− Tf (x)|2.

Thus we have:

E1(T, f) =
∫

[Ψx(Tf (x))−Ψx(T (x))]µ(x)(x) dx ≥
∫
σ(x, η(x))2

2λ(η(x))
|T (x)−Tf (x)|2dµ(x)

(B.13)

On the other hand, let us denote the optimal Monge map from µ(x) to ν as T∗, by

Kontorovich duality, we have

sup
f

inf
T

L(T, f) = inf
T,T♯µ(x)=ν

∫
c(x, T (x))dµ(x) =

∫
c(x, T∗(x))dµ(x)

Thus we have

E2(f) =
∫
c(x, T∗(x))dµ(x)−

(∫
f(y)dν(y)−

∫
f c,−(x)dµ(x)

)
=

∫
c(x, T∗(x))dµ(x)−

(∫
f(T∗(x))dµ(x)−

∫
f c,−(x)dµ(x)

)
=

∫
[f c,−(x)− (f(T∗(x))− c(x, T∗(x)))]dµ(x)

Similar to the previous treatment, we have

E2(f) =
∫
[Ψx(Tf (x))−Ψx(T∗(x))]dµ(x)
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Apply similar analysis as before, we will also have

E2(f) ≥
∫
σ(x, ξ(x))2

2λ(ξ(x))
|T∗(x)− Tf (x)|2dµ(x) (B.14)

with ξ(x) = (1− τx)T∗(x) + τxTf (x) for certain τx ∈ (0, 1).

Now we set

β(x) = min

{
σ(x, η(x))

2λ(η(x))
,
σ(x, ξ(x))

2λ(ξ(x))

}
, (B.15)

combining (Equation B.13) and (Equation B.14), we obtain

E1(T, f) + E2(f) ≥
∫
β(x)(|T (x)− Tf (x)|2 + |T∗(x)− Tf (x)|2)dµ(x)

≥
∫
β(x)

2
|T (x)− T∗(x)|2dµ(x)

This leads to ∥T − T∗∥L2(βµ(x)) ≤
√
2(E1(T, f) + E2(f)).

B.1.3 Experiment details

For general settings, for all experiments we use the Adam optimizer [149] and vanilla feed-

forward networks unless specified. The activation functions are all PReLu unless specified.

Unequal dimensions

We ran all experiments in this part on NVIDIA RTX 2080 GPU.

For the incomplete ellipse example, the networks Tθ and fη each has 5 layers with 10

hidden neurons. The batch size N = 100. K1 = 6, K2 = 1. The learning rate is 10−3. The

number of iterations K = 12000.

For the ball example, the networks Tθ has 12 layers and fη has 5 layers. Both of them

have 32 hidden neurons. The batch size N = 100. K1 = 4, K2 = 1. The learning rate is

10−3. The number of iterations K = 15000.
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Effects of different cost

We ran all experiments in this part on CPU.

Decreasing cost function In this example, we set Tθ(x) = x + Fθ(x) and optimize

over θ. For either 1
|x−y|2 or |x − y|2 case we set both Fθ and the Lagrange multiplier fη

as six layers fully connected neural networks, with PReLU and Tanh activation functions

respectively, each layer has 36 nodes. The training batch sizeN = 2000. We setK = 2000,

K1 = 8, K2 = 6.

On sphere In this example, we set Tθ(x) = x + Fθ(x) and optimize over θ. We set

both Fθ and the Lagrange multiplier fη as six layers fully connected neural networks, with

PReLU activation functions, each layer has 8 nodes The training batch size N = 200. We

set K = 4000, K1 = 8, K2 = 4. We choose rather small learning rate in this example to

avoid gradient blow up, we set 0.5×10−5 as the learning rate for θ and 10−5 as the learning

rate for η.

Examples in 256D space

We ran all experiments in this part on NVIDIA RTX 2080 GPU. For both L2 and KL

divergence experiments, the network Tθ has 4 layers and fη has 5 layers. Both of them

have 512 hidden neurons. The batch size N = 100. K1 = 10, K2 = 1. The learning rate is

10−4. The number of iterations K = 10000. The running time is about 30 minutes.
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B.2 Approximating the Optimal Transport Plan via Particle-Evolving Method

B.2.1 Existence and uniqueness of optimal solution to ET problem

In this part, we present the following theorem that guarantees the existence and uniqueness

of the solution to the Entropy Transport problem (Equation 3.16):

Theorem B.2.1 (Existence and uniqueness of optimal solution to ET problem). We con-

sider the general ET problem (Equation 3.16). Suppose the divergence function F satisfies

(Equation 3.11), (Equation 3.12), and the cost c satisfies (Equation 3.13). We further as-

sume that there exists at least one γ ∈ M(Rd × Rd) such that E(γ|µ, ν) < +∞, and the

marginal distribution µ is absolute continuous with respect to the Lebesgue measure L d

on Rd. Then there exists a unique optimal solution to (Equation 3.16).

This theorem is a direct result of Theorem 3.3, Corollary 3.6, and Example 3.7 of [75].

B.2.2 Γ-convergence results

Despite the discussion for a fixed Λ, we also establish asymptotic results for (Equation 3.15)

as Λ → +∞. We consider P2(Rd×Rd) equipped with the topology of weak convergence.

Before we work on the proofs of Theorem 3.3.2 Theorem 3.3.3, we should briefly introduce

the definition of Γ convergence (c.f. Definition 1.5 of [192]):

Definition B.2.1 (Definition of Γ convergence). Suppose X be a metric space equipped

with the distance d. Denote R̄ = R∪ {−∞,+∞}. Then we say that a sequence fn : X →

R̄ Γ-converges in X to f : X → R̄ if for all x ∈ X we have

1. (lim inf inequality) for every sequence {xn} converging to x

f(x) ≤ lim inf
n

fn(xn);
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2. (lim sup inequality) there exists a sequence {xn} converging to x such that

f(x) ≥ lim sup
n

fn(xn).

The function f is called the Γ−limit of {fn}, and we write f = Γ− limn fn.

We are able to establish the following Γ-convergence results for the functional EΛ,KL(·|µ, ν)

defined on P2(Rd × Rd):

Theorem 3.2.2 (Γ-convergence). Suppose c(x, y) = |x − y|2. Assume that we are given

µ, ν ∈ P2(Rd), µ ≪ L d, ν ≪ L d, and at least one of µ and ν satisfies the Logarithmic

Sobolev inequality with constantK > 0. Let {Λn} be a positive increasing sequence, satis-

fying limn→∞ Λn = +∞. We consider the sequence of functionals {EΛn,KL(·|µ, ν)}. Recall

the functional Eι(·|µ, ν) defined in (Equation 3.10). Then {EΛn,KL(·|µ, ν)} Γ- converges to

Eι(·|µ, ν) on P2(Rd × Rd).

Before we present the proof, we introduce the Logarithmic Sobolev inequality [7]:

Definition B.2.2 (Log-Sobolev). We say a probability distribution µ satisfying the Loga-

rithmic Sobolev inequality with constant K > 0, if for any probability measure µ̃≪ µ, we

have

DKL(µ̃∥µ) ≤
1

2K
I(µ̃|µ).

Here I(µ̄|µ) is the Fisher information defined as

I(µ̃|µ) =
∫ ∣∣∣∣∇ log

(
dµ̃

dµ

)∣∣∣∣2 dµ̃.
We also need the following Talagrand inequality [7]:

Theorem B.2.2 (Talagrand). Suppose µ ∈ P2(Rm) satisfies the Logarithmic Sobolev in-

equality with constant K > 0. Then µ also satisfies the following Talagrand inequality:
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for any µ̃ ∈ P2(Rm),

W2(µ̃, µ) ≤
√

2DKL(µ̃∥µ)
K

. (B.16)

Now we can prove Theorem 3.2.2.

Proof of Theorem 3.2.2. First, we notice that P2(Rd ×Rd) equipped with the topology of

weak convergence is metrizable by the 2-Wasserstein distance [7]. Thus P2(Rd × Rd) is

metric space and is first countable. For first countable space, we only need to verify the

upper bound inequality and the lower bound inequality in order to prove Γ-convergence.

1) Upper bound inequality: For every γ ∈ P(Rd×Rd), there is a sequence {γn} converg-

ing to γ such that

lim sup
n→∞

EΛn,KL(γn|µ, ν) ≤ Eι(γ|µ, ν). (B.17)

We set γn = γ for all n ≥ 1, now there are two cases:

(a) If γ doesn’t satisfy at least one of the marginal constraints, i.e. π1♯γ1 ̸= µ or π2♯γ ̸= ν,

then Eι(γ|µ, ν) = +∞ and the inequality (Equation B.17) definitely holds;

(b) If γ satisfies the marginal constraints, π1♯γ = µ, π2♯γ = ν, then EΛn,KL(γ|µ, ν) =

Eι(γ|µ, ν), (Equation B.17) also holds.

2) Lower bound inequality: For every sequence {γn} converging to γ,

lim inf
n→∞

EΛn,KL(γn|µ, ν) ≥ Eι(γ|µ, ν). (B.18)

We still separate our discussion into two cases:

1Here we define π1 : Rd × Rd :→ Rd, (x, y) 7→ x as the projection onto the first coordinate component;
similarly π2 is the projection onto the second component.
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(a) If γ satisfies the marginal constraints, we have:

lim inf
n→∞

EΛn,KL(γn| µ, ν)

= lim inf
n→∞

∫
Rd×Rd

c(x, y)dγn(x, y) + ΛnDKL(π1♯γn∥µ) + ΛnDKL(π2♯γn∥ν)

≥ lim inf
n→∞

∫
M×M

c(x, y)dγn(x, y)

=

∫
Rd×Rd

c(x, y)dγ(x, y)

=Eι(γ| µ, ν).

Here we use the fact that DKL(µ1∥µ2) ≥ 0 for any µ1, µ2 ∈ P(Rd) with densities.

(b) If γ doesn’t satisfy at least one of the marginal constraints, without loss of generality,

assume that W2(π1♯γ, µ) = δ > 0. We have:

W2(π1♯γ, µ) ≤ W2(π1♯γ, π1♯γn) +W2(π1♯γn, µ) ≤ W2(γ, γn) +W2(π1♯γn, µ).

We can choose large enough N such that when n > N , W2(γ, γn) ≤ δ/2, then we have

W2(π1♯γn, µ) ≥ δ/2.

According to Talagrand inequality (Equation B.16), we have:

√
2DKL(π1♯γn∥µ)

K
≥ W2(π1♯γn, µ) ≥

δ

2
,

i.e., when n > N , DKL(π1♯γn∥µ) ≥ K δ2

8
. This implies:

EΛn,KL(γn|µ, ν) ≥ ΛnK
δ2

8
.

Therefore we show that:

lim inf
n→∞

EΛn,KL(γn|µ, ν) = +∞ = Eι(γ|µ, ν).
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Thus, combining (a) and (b), we have proved (Equation B.18). Combining (Equation B.17),

(Equation B.18), we have shown that {EΛn,KL(·|µ, ν)} Γ-converges to Eι(·|µ, ν).

We then establish the equi-coercive property for {EΛn,KL(·|µ, ν)}n. We can apply the

Fundamental Theorem of Γ-convergence [81] [82] to establish the following asymptotic

result:

Theorem 3.2.3 (Property of Γ-convergence). Suppose c(x, y) = |x− y|2. Assuming µ, ν ∈

P2(Rd), µ ≪ L d, ν ≪ L d, and both µ, ν satisfy the Logarithmic Sobolev inequality

with constants Kµ, Kν > 0. According to Corollary 3.3.1.1, problem (Equation 3.15) with

functional EΛn,KL(·|µ, ν) admits a unique optimal solution, let us denote it as γn. According

to Theorem 2.1.2, the Kantorovich problem (Equation 2.6) also admits a unique solution,

we denote it as γOT . Then limn→∞ γn = γOT in P2(Rd × Rd).

Before we prove this theorem, we introduce the definition of equi-coerciveness:

Definition B.2.3. A family of functions {Fn} on X is said to be equi- coercive, if for every

α ∈ R, there is a compact set Cα such that the sublevel sets {Fn ≤ α} ⊂ Cα for all n.

To prove Theorem 3.2.3, we first establish the following two lemmas:

Lemma B.2.3. Suppose d0 > 0. Denote

C = {γ ∈ P2(Rd × Rd) |W2(π1♯γ, µ) ≤ d0, W2(π2♯γ, ν) ≤ d0}.

Then C is compact set of P2(Rd × Rd). Recall that P2(Rd × Rd) is equipped with the

topology of weak convergence.

Proof of the Lemma B.2.3. According to Prokhorov’s Theorem [193], we only need to show

that C is tight. That is: for any ϵ > 0, we can find a compact set Eϵ ⊂ Rd × Rd, such that

γ(Eϵ) ≥ 1− ϵ ∀ γ ∈ C.
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Let us denote Bd
R ⊂ Rd as the ball centered at origin with radius R in Rd. Since µ, ν are

probability measures, for arbitrary ϵ > 0, we can pick R(µ, ϵ), R(ν, ϵ) > 0 such that

µ(Bd
R(µ,ϵ)) ≥ 1− ϵ, ν(Bd

R(ν,ϵ)) ≥ 1− ϵ.

Now for any chosen ϵ > 0, we choose

R =

√
4d20
ϵ

and R̃ =

√
(R(µ,

ϵ

4
) +R)2 + (R(ν,

ϵ

4
) +R)2.

Now we prove γ(B2d
R̃
) ≥ 1− ϵ for any γ ∈ C:

Denote γ1 = π1♯γ, let γOT be the optimal coupling of γ1 and µ, i.e.

γOT = argmin
π∈Π(γ1,µ)

{∫∫
c(x, y) dπ(x, y)

}
.

Then (here, we denote Rµ = R(µ, ϵ
4
) for short hand):

d20 ≥ W 2
2 (γ1, µ) =

∫
Rd

∫
Rd

|x− y|2dγOT (x, y) ≥
∫
Bd

Rµ+R

∫
Bd

Rµ

|x− y|2 dγOT (x, y)

≥R2

∫
Bd

Rµ+R

∫
Bd

Rµ

dγOT (x, y).

This gives: ∫
Bd

Rµ+R

∫
Bd

Rµ

dγOT (x, y) ≤
d20
R2

=
ϵ

4
. (B.19)

On the other hand, one have:

∫
Bd

Rµ+R

∫
Bd

Rµ

dγOT (x, y) ≤
∫
Bd

Rµ

dµ(y) = 1− µ(Bd
Rµ
) ≤ ϵ

4
. (B.20)

Now sum (Equation B.19) and (Equation B.20) together, we have:

γ1

(
Bd
Rµ+R

)
=

∫
Bd

Rµ+R

∫
Rd

dγOT =

∫∫
Bd

Rµ+R×Bd
Rµ

dγOT +

∫∫
Bd

Rµ+R×Bd
Rµ

dγOT ≤ ϵ

2
.
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Similarly, denote γ2 = π2♯γ, we have:

γ2

(
Bd
Rν+R

)
≤ ϵ

2
.

As a result, for any ϵ > 0, we can pick the compact ball B2d
R̃

⊂ Rd × Rd, so that for any

γ ∈ C,

γ(B2d
R̃
) = 1− γ

(
B2d
R̃

)
≥1− γ

((
Bd
Rµ+R

× Rd
)⋃(

Rd ×Bd
Rν+R

))
≥1− γ1

(
Bd
Rµ+R

)
− γ2

(
Bd
Rν+R

)
≥ 1− ϵ, (B.21)

here we are using the fact:

B2d
R̃

⊂
(
Bd
Rµ+R

× Rd
)⋃(

Rd ×Bd
Rν+R

)
.

The inequality (Equation B.21) proves the tightness of set C and thus C is compact set in

P2(Rd × Rd).

Lemma B.2.4. Assuming µ, ν ∈ P2(Rd) and both µ, ν satisfies the Logarithmic Sobolev

inequality with constants Kµ, Kν > 0. The sequence of functionals {EΛn,KL(·|µ, ν)} de-

fined on P2(Rd × Rd) with positive increasing sequence {Λn} is equi-coercive.

proof of (Lemma B.2.4). By Talagrand inequality (Equation B.16) involving µ, ν:

DKL(ρ∥µ) ≥
Kµ

2
W 2

2 (ρ, µ) DKL(ρ∥ν) ≥
Kν

2
W 2

2 (ρ, ν) ∀ ρ ∈ P2(Rd).

Thus,

EΛn,KL(γ|µ, ν) ≥ Λ1

(
Kµ

2
W 2

2 (π1♯γ, µ) +
Kν

2
W 2

2 (π1♯γ, ν)

)
.
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For any α ≥ 0, we set d0 = max{
√

2α
KµΛ1

,
√

2α
KνΛ1

}, then

{
γ ∈ P2(Rd × Rd) | EΛn,KL(γ|µ, ν) ≤ α

}
⊂
{
γ
∣∣∣W2(π1♯γ, µ) ≤ d0,W2(π2♯γ, ν) ≤ d0

}
︸ ︷︷ ︸

denote as Cα

.

By Lemma B.2.3, Cα is compact in P2(Rd × Rd) for any α (for α < 0, we simply get

empty set and thus is also compact set). Thus the sequence of functionals {EΛn,KL(·|µ, ν)}

is equi-coercive.

Now our proof mainly rely on the following fundamental theorem of Γ-convergence

[81] [82]:

Theorem B.2.5. Let (X, d) be a metric space, let {Fθn} with θn → +∞ be an equi-

coercive sequence of functionals on X , assume {Fθn} Γ-converge to the functional F de-

fined on X; Then

∃min
X

F = lim
n→∞

inf
X
Fθn .

Moreover, if {xn} is a precompact sequence such that xn is the minimizer ofFθn: Fθn(xn) =

infX Fθn , then every limit of a subsequence of {xn} is a minimum point for F .

We can now prove Theorem 3.2.3.

Proof. We apply Theorem B.2.5 to the sequence of functionals {EΛn,KL(·|µ, ν)}n defined

on probability space equipped with 2-Wasserstein metric (P2(Rd×Rd),W2), by Lemma B.2.4

, we know that {EΛn,KL(·|µ, ν)}n is equi-coercive. And by Theorem 3.2.2, {EΛn,KL}(·|µ, ν)}n

Γ-converge to Eι(·|µ, ν). Recall that γn is the unique minimizer of EΛn,KL(·|µ, ν), we are

going to show that {γn} is precompact sequence in P2(Rd × Rd): We define

α =

∫∫
c(x, y) d(µ⊗ ν) = EΛn,KL(µ⊗ ν|µ, ν) ∀ n ≥ 1.
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Then we have EΛn,KL(γn|µ, ν) ≤ EΛn,KL(µ⊗ ν|µ, ν) = α for all n, thus

γn ∈
{
γ | γ ∈ P2(Rd × Rd), EΛn,KL(γ|µ, ν) ≤ α

}
∀ n ≥ 1.

Now since {EΛn,KL(·|µ, ν)} is equi-coercive, we can pick compact Cα such that:

{
γ | γ ∈ P2(Rd × Rd), EΛn,KL(γ|µ, ν) ≤ α

}
⊂ Cα ∀ n ≥ 1.

Thus all {γn} lie in the compact set Cα and {γn} is precompact.

Now Theorem 3.2.3 asserts that any limit point of {γn} is a minimum point of Eι(·|µ, ν),

however, Eι(·, µ, ν) admits unique minimizer γOT , we have proved limn→∞ γn = γOT .

B.2.3 Gradient flow of constrained Entropy Transport functional

We compute the gradient flow of EΛ,KL(·|µ, ν) on P2(Rd × Rd). We assume every thing

is in the form of Radon-Nikodym Derivative, i.e. we assume ρ = dγ
dL 2d and ϱ1 = dµ

dL d ,

ϱ2 =
dν
dL d . We denote ρ1 =

dπ1♯γ

dL d , ρ2 =
dπ2♯γ

dL d , then ρ1 =
∫
ρ dy, ρ2 =

∫
ρ dx. We write the

functional EΛ,KL(γ|µ, ν) as E(ρ) for shorthand, then:

E(ρ) =

∫∫
Rd×Rd

(
c(x, y) + Λ log

(
ρ1(x)

ϱ1(x)

)
+ Λ log

(
ρ2(y)

ϱ2(y)

))
ρ(x, y) dxdy.

To compute L2 variation of E , suppose ρ > 0 and consider arbitrary σ ∈ C0(Rd × Rd).

We denote σ1(x) =
∫
σ(x, y) dy, σ2(y) =

∫
σ(x, y) dx. We compute d

dh
E(ρ+ hσ)

∣∣∣
h=0

as:

d

dh
E(ρ+ hσ)

∣∣∣
h=0

=
d

dh

[∫∫
(c(x, y) + Λ log(

ρ1(x) + hσ1(x)

ϱ1(x)
) + Λ log(

ρ2(y) + hσ2(y)

ϱ2(y)
))(ρ+ hσ) dxdy

]
h=0

=

∫∫ (
2Λ + c(x, y) + Λ log(

ρ1(x)

ϱ1(x)
) + Λ log(

ρ2(y)

ϱ2(y)
)

)
σ dxdy.
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Since dE(ρ+hσ)
dh

∣∣∣
h=0

= ⟨ δE(ρ)
δρ

, σ⟩, we can thus identify that:

δE(ρ)

δρ
= 2Λ + c(x, y) + Λ log

(
ρ1(x)

ϱ1(x)

)
+ Λ log

(
ρ2(y)

ϱ2(y)

)
.

Thus, plugging this result in (Equation 2.62), one can derive:

∂ρ(x, y, t)

∂t
= ∇·

(
ρ(x, y, t)∇

(
2Λ + c(x, y) + Λ log

(
ρ1(x, t)

ϱ1(x)

)
+ Λ log

(
ρ2(y, t)

ϱ2(y)

)))
.

Notice that ∇ means gradient with respect to both variables x and y, i.e. ∇f =

 ∇xf

∇yf


for function f : Rd ×Rd → R, and ∇ · v⃗ = ∇x · v⃗1 +∇y · v⃗2 for vector field v⃗ =

 v⃗1

v⃗2

 :

Rd × Rd → Rd × Rd with v⃗1 : Rd × Rd → Rd; v⃗2 : Rd × Rd → Rd.

Then this equation will simplify to:

∂ρ(x, y, t)

∂t
= ∇ ·

(
ρ(x, y, t)∇

(
c(x, y) + Λ log

(
ρ1(x, t)

ϱ1(x)

)
+ Λ log

(
ρ2(y, t)

ϱ2(y)

)))
.

Which is exactly equation (Equation 3.19).

B.2.4 Algorithm

Direct approximation of ∇ log ρ(x) via blobing method will be expensive. We apply the

Random Batch Methods (RBM) [194] here to reduce the computational effort. We divide

N total particles into m batches equally. Then we approximate ∇ log ρ(Xi) by using the

particles in the same batch as Xi. Now in each time step, the computational complexity

will be reduced from O(n2) to O(n2/m).

Our method with RBM implementation is summarized in the following algorithm.
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Algorithm 3 Random Batch Particle Evolution Algorithm
Input: The density functions of the marginals ϱ1, ϱ2, timestep ∆t, total number of itera-
tions T , parameters of the chosen kernel K
Initialize: The initial locations of all particles Xi(0) and Yi(0) where i = 1, 2, · · · , n,
for t = 1,2,· · · ,T do

Shuffle the particles and divide them into m batches: C1, · · · , Cm
for each batch Cq do

Update the location of each particle (Xi, Yi) (i ∈ Cq) according to
(Equation 3.22)

end for
end for
Output: A sample approximation of the optimal coupling: Xi(T ), Yi(T ) for i =
1, 2, · · · , n

B.3 Learning High Dimensional Wasserstein Geodesics

B.3.1 Proposed method

Proof of Theorem 3.4.1 Let us denote vector field F : Rd → Rd. We denote ρ̂t =

(I + tF )♯ρa. As formulated in (Equation 3.30), we consider the following functional L of

F and Φ:

L(F,Φ) =L̂((Id + tF )♯ρa,Φ)

=

∫ 1

0

∫ (
−∂Φ(x, t)

∂t
−H(∇Φ(x, t))

)
ρ̂(x, t) dxdt (B.22)

+

∫
Φ(x, 1)ρb(x)− Φ(x, 0)ρa(x) dx

=

∫ 1

0

∫ (
−∂Φ(x+ tF (x), t)

∂t
−H(∇Φ(x+ tF (x), t))

)
ρa(x, t) dxdt

+

∫
Φ(x, 1)ρb(x)− Φ(x, 0)ρa(x) dx

As stated in Theorem 3.4.1, the optimal solution obtained from dynamical OT problem

(Equation 2.20) is a critical point to the functional L(F,Φ). Before we prove this result,

we need the following lemmas:

Lemma B.3.1. Given a distribution with density ρ defined on Rd, consider vector field
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F : Rd → Rd. Define time-varying density {ρ(·, t)}t∈[0,1] as ρ(·, t) = (Id + tF )♯ρ0.

Suppose for a given f ∈ C1(Rd), f(x)ρ(x, t) is integrable on Rd. Then

∫
f(x)

∂

∂t
ρ(x, t) =

∫
∇f(x+ tF (x)) · F (x) ρa(x) dx

Proof. We have

∫
f(x)

∂

∂t
ρ(x, t) =

d

dt

(∫
f(x)ρ(x, t) dx

)
=
d

dt

(∫
f(x+ tF (x))ρa(x) dx

)
=

∫
∇f(x+ F (x)) · F (x) ρa(x) dx

Lemma B.3.2. Suppose Φ∗(x, t) is solved from the geodesic equation system (Equation 2.36)

and (Equation 2.37). Denote Φ∗
0(·) = Φ∗(·, 0), we further assume Φ∗(·, t) ∈ C2(Rd). Then

we have

∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t) = ∇Φ∗

0(x). (B.23)

Proof. Now consider Hamilton-Jacobi equation as stated in (Equation 2.37):

∂Φ∗(y, t)

∂t
+H(∇Φ∗(y, t)) = 0 Φ∗(·, 0) = Φ∗

0.

We take gradient with respect to x on both sides, we have

∂

∂t
(∇Φ∗(y, t)) +∇2Φ∗(y, t)∇H(∇Φ∗(y, t)) = 0. (B.24)

Let us denote Tt(x) = x+ t∇H(∇Φ∗
0(x)) for simplicity. We now compute

d

dt
∇Φ∗(Tt(x), t) =

∂

∂t
∇Φ∗(Tt(x), t) +∇2Φ∗(Tt(x), t)∇H(∇Φ∗

0(x))

By plugging y = Tt(x) into (Equation B.24), we are able to verify d
dt
∇Φ∗(Tt(x), t) = 0.
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Thus

∇Φ∗(Tt(x), t) = ∇Φ∗(T0(x), 0) = ∇Φ∗
0(x) for t ∈ [0, 1] (B.25)

Recall H and ∇H = ∇L−1 stated in Definition 2.1.2, then (Equation B.25) leads to

∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t) = ∇Φ∗

0(x).

Lemma B.3.3. We keep all the notations and assumptions about Φ∗ stated in Lemma B.3.2.

Now denote ρ̂(·, t) = (Id + t∇L−1(∇Φ∗
0))♯ρa. Then ρ̂(·, t) solves

∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇L−1(∇Φ∗(x, t))) = 0.

Proof. For arbitrary f ∈ C∞
0 (Rd), we consider:

∫
f(x)

(
∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇L−1(∇Φ∗(x, t)))

)
dx

=

∫
f(x)

∂ρ̂(x, t)

∂t
dx−

∫
∇f(x) · ∇L−1(∇Φ∗(x, t))ρ̂(x, t) dx

By Lemma B.3.1, the first term equals

∫
∇f(x+ t∇L−1(∇Φ∗

0(x))) · ∇L−1(∇Φ∗
0(x)) ρa(x) dx (B.26)

The second term equals

∫
∇f(x+ t∇L−1(∇Φ∗

0(x))) · ∇L−1(∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t)) ρa(x) dx (B.27)

Using Lemma B.3.2, we know the integrals (Equation B.26) and (Equation B.27) are the
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same. Thus we have

∫
f(x)

(
∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇L−1(∇Φ∗(x, t)))

)
dx = 0 ∀ f ∈ C∞

0 (Rd).

This leads to our result.

Lemma B.3.4. We keep all the notations and assumptions about Φ∗ stated in Lemma B.3.2.

Recall CDym(ρa, ρb) denotes the optimal value of (Equation 2.20), then

CDym(ρa, ρb) =

∫
L(∇L−1(∇Φ∗

0(x)))ρa(x) dx. (B.28)

Proof. Consider particle dynamical OT with its optimal solution

v∗(x, t) = ∇L−1(∇Φ∗(x, t))

as stated in (Equation 2.31). Recall Theorem 2.1.6 stating that the optimal plan is trans-

porting each particle X t along straight lines with constant velocity

v∗(X0, 0) = ∇L−1(∇Φ∗
0(X0)).

Combining these, we obtain

CDym(ρa, ρb) =

∫ 1

0

E L(v∗(X t, t)) dt =E
(∫ 1

0

L(v∗(X t, t)) dt

)
=E L(∇L−1(∇Φ∗

0(X0))).

Notice that we require X0 ∼ ρa. This will lead to (Equation B.28).

Now we are able to prove Theorem 3.4.1:

Theorem 3.3.1. Denote the optimal solution to (Equation 2.20) as (ρ∗(x, t),Φ∗(x, t)). Set

Φ∗
0(·) = Φ∗(·, 0). Assume Φ∗(·, t) ∈ C2(Rd), then (∇L−1(∇Φ∗

0),Φ
∗) is the critical point
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to functional L, i.e.

∂L
∂F

(∇L−1(∇Φ∗
0),Φ

∗) = 0,
∂L
∂ρ

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

Furthermore, L(∇L−1(∇Φ∗
0),Φ

∗) = CDym(ρa, ρb), where CDym(ρa, ρb) is denoted as the

optimal value of (Equation 2.20). By subsection 2.1.6, this is exactly the OT distance be-

tween ρa and ρb with cost function c(x, y) = L(x− y).

Proof. Since we have assumed Φ∗(·, t) ∈ C2(Rd), we restrict our Φ ∈ C2(Rd) as well.

We first rewrite L(F,Φ) by using integration by parts as:

∫ 1

0

∫
Φ(x, t)

∂ρ̂(x, t)

∂t
−H(∇Φ(x, t))ρ̂(x, t) dxdt+

∫
Φ(x, 1)(ρa(x)− ρ̂(x, 1)) dx.

(B.29)

By Lemma B.3.1, (Equation B.29) can be written as

L(F,Φ) =
∫ 1

0

∫
Rd

[∇Φ(x+ tF (x), t) · F (x)−H(∇Φ(x+ tF (x), t))]ρa(x) dxdt

(B.30)

+

∫
Φ(x, 1)ρb(x) dx−

∫
Φ(x+ F (x), 1)ρa(x) dx.

Now based on (Equation B.30) here, we are able to compute ∂L(F,Φ)
∂F

(x) as

∂L(F,Φ)
∂F

=

∫ 1

0

t∇2Φ(x+ tF (x), t) · [F (x)−∇H(∇Φ(x+ tF (x), t))]︸ ︷︷ ︸
(A)

ρa(x) dt

(B.31)

+

(∫ 1

0

∇Φ(x+ tF (x), t) dt−∇Φ(x+ F (x), 1)

)
︸ ︷︷ ︸

(B)

ρa(x).
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Now we plug F = ∇L−1(∇Φ∗
0), Φ = Φ∗ into (Equation B.31), by Lemma B.3.2, we have

∇Φ∗(x+ t∇L−1(∇Φ∗
0(x)), t) = ∇Φ∗

0(x). (B.32)

Then using (Equation B.32) and recall that ∇H = ∇L−1, one can verify that (A) = 0,

similarly, for (B), we have ∇Φ(x + tF (x), t) = ∇Φ∗
0 for all t ∈ [0, 1]. Thus (B) = 0 and

we are able to verify ∂L
∂F

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

On the other hand, we can compute ∂L(F,Φ)
∂Φ

(x, t) as

δL(F,Φ)
δΦ

(x, t) =

[
∂ρ̂(x, t)

∂t
+∇ · (ρ̂(x, t)∇H(∇Φ(x, t)))

]
︸ ︷︷ ︸

(C)

+ [ρb(x)− ρ̂(x, 1)]︸ ︷︷ ︸
(D)

δ1(t)

Now by Lemma B.3.3, we know (C) = 0. Furthermore, since Φ∗ solves dynamical OT

problem associated to the optimal transport problem between ρa and ρb, by (Equation 2.46),

we have ρ̂(x, 1) = (Id + ∇L−1(∇Φ∗
0(·)))♯ρa = ρb, this verifies (D) = 0. Thus, we are

able to verify ∂L(F,Φ)
∂Φ

(∇L−1(∇Φ∗
0),Φ

∗) = 0.

At last, we plug F = ∇L−1(∇Φ∗
0),Φ = Φ∗ in (Equation B.30) to obtain:

L(∇L−1(∇Φ∗
0),Φ

∗) =

∫ 1

0

∫
∇Φ∗

0(x) · ∇L−1(∇Φ∗
0(x))−H(∇Φ∗

0(x)) ρa(x) dxdt

=

∫
L(∇L−1(∇Φ∗

0(x)))ρa(x) dx.

Now by Lemma B.3.4, we have verified L(∇L−1(∇Φ∗
0),Φ

∗) = CDym(ρa, ρb).

B.3.2 Preconditioning technique for 2-Wasserstein case

It’s worth mentioning that we can apply preconditioning technique under the 2-Wasserstein

cases, i.e., L(·) = |·|2
2

. When the support of distributions ρa and ρb are far away from each

other, the computational process might get much more sensitive with respect to vector field

F . In order to deal with this situation, we consider preconditioning to our initial distribution
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ρa. In our implementation, we treat P : Rd → Rd as our preconditioning map. We fix its

structure as P (x) = σx + µ with σ ∈ R+, µ ∈ Rd. Such preconditioning process can be

treated as an operation aiming at relocating and rescaling the initial distribution ρa so that

the support of P♯ρa matches with the support of ρb in a better way, which in turn facilitates

the training process of our OT problem.

Let us denote the optimal vector field of OT problem between P♯ρa and ρb as ∇Φ̂0, then

for the vector field F∗(x) = ∇Φ̂0 ◦P (x)+P (x)−x, the following theorem guarantees the

optimality of F∗.

Theorem B.3.5. Suppose L(·) = |·|2
2

. We define the map P (x) = σx + µ with σ ∈

R+, µ ∈ Rd. Recall (Equation 2.31), we denote v(x, t) = ∇Φ̂(x, t) as the optimal solution

to dynamical OT problem (Equation 2.20) from P♯ρa to ρb. We set Φ̂0 = Φ̂(·, 0). Further-

more, we denote v(x, t) = ∇Φ∗(x, t) as the optimal solution to dynamical OT problem

(Equation 2.20) from ρa to ρb, and set Φ∗
0 = Φ∗(·, 0). Then we have

∇Φ∗
0(x) = ∇Φ̂0 ◦P (x) +P (x)− x, Φ∗

0(x) =
1

σ
Φ̂0(σx+µ) +

σ − 1

2
|x|2 +µTx+Const.

This theorem indicates that our constructed F∗ is exactly the optimal transport field

∇Φ∗
0 for the original OT problem from ρa to ρb.

Proof. According to (Equation 2.48), we have

(Id +∇Φ̂0)♯(P♯ρa) = ρb

This yields

(P +∇Φ0 ◦ P )♯ρa = ρb

We rewrite this as

(Id +∇Φ̂0 ◦ P + P − Id)♯ρa = ρb (B.33)
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We denote u(x) = 1
σ
Φ̂0(σx+ µ) + σ−1

2
|x|2 + µTx.

Then we can directly verify that

∇u(x) = ∇Φ̂0(σx+ µ) + (σx+ µ)− x = ∇Φ̂0 ◦ P (x) + P (x)− x

Plug this into (Equation B.33) above we get:

(Id +∇u)♯ρa = ρb

Using the uniqueness of the solution to Monge-Ampere equation, we have Φ∗
0 = u+Const,

or equivalently, ∇Φ∗
0(x) = ∇u(x) = ∇Φ̂0 ◦ P (x) + P (x)− x

B.3.3 Algorithm

Our computation procedure is summarized in Algorithm 4. We set Fθ1 , Gθ2 and ΦF
ω1
,ΦG

ω2

as fully connected neural networks and optimize over their parameters.

Remark 33. In Algorithm 4, we need to sample points {zak} from the distribution ρ̂a =

P♯ρa. To achieve this, we first sample {uk} from ρa. Then {P (uk)} are our desired samples

from ρ̂a.

In Algorithm 4 we define:

Lab(ΦF
ω1
) = − 1

N

N∑
k=1

[
∂

∂t
ΦF

ω1
(xak, t

a
k) +H(∇ΦF

ω1
(xak, t

a
k))

]
+

1

M

M∑
k=1

(ΦF
ω1
(wb

k, 1)− ΦF
ω1
(wa

k , 0)),

Lba(ΦG
ω2
) = − 1

N

N∑
k=1

[
∂

∂t
ΦG

ω2
(xbk, t

b
k) +H(∇ΦG

ω2
(xbk, t

b
k))

]
+

1

M

M∑
k=1

(ΦG
ω2
(wb

k, 1)− ΦG
ω2
(wa

k , 0)),

K(Fθ1 , Gθ2) =
λ

K

K∑
k=1

|Gθ2(ξ
a
k + Fθ1(ξ

a
k)) + Fθ1(ξ

a
k)|2 +

λ

K

K∑
k=1

|Fθ1(ξ
b
k +Gθ2(ξ

b
k)) +Gθ2(ξ

b
k)|2,

Ŵ ab =
1

M

M∑
k=1

L(Fθ1(w
a
k)), Ŵ ba =

1

M

M∑
k=1

L(Gθ2(w
b
k)).
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B.3.4 Experiment details

In our numerical implementation, for low dimensional cases, i.e., 2 and 10 dimensional

cases, we set ΦF ,ΦG and F,G as fully connected neural networks, where ΦF ,ΦG have 6

hidden layers and F and G have 5 hidden layers. Each layer has 48 nodes, the activation

function is chosen as Tanh. For high dimensional cases, where we deal with MNIST hand-

written digits data set, we adopt similar structures of neural networks, the only difference

is that in each layer we extend the number of nodes from 48 to 512. In terms of training

process, for all synthetic and realistic cases we use the Adam optimizer [149] with learning

rate 10−4.

Algorithm 4 Computing Wasserstein geodesic from ρa to ρb via bidirectional scheme
(Equation 3.31) and preconditioning

1: Choose our preconditioning map P (x) = σx + µ. Denote ρ̂a = P♯ρa (This step is
only applicable for 2-Wasserstein case. If we do not need preconditioning, we treat
P = Id.)

2: Set up the threshold ϵ > 0 as the stopping criteria
3: Initialize Fθ1 , Gθ2 , ΦF

ω1
,ΦG

ω2

4: for Fθ1 , Gθ2 steps do
5: Sample {(zak , tak)}Nk=1 from ρ̂a ⊗ U(0, 1) and {(zbk, tbk)}Nk=1 from ρb ⊗ U(0, 1);
6: Set xak = zak + takFθ1(z

a
k), x

b
k = zbk + tbkGθ2(z

b
k);

7: Sample {wak}Mk=1 from ρ̂a and {wbk} from ρb;
8: for ΦF

ω1
,ΦG

ω2
steps do

9: Update (via gradient ascent) ΦF
ω1
,ΦG

ω2
by:

∇ω1,ω2(Lab(ΦF
ω1
) + Lba(ΦG

ω2
))

10: end for
11: Sample {ξak}Kk=1 from ρ̂a and {ξbk}Kk=1 from ρb
12: Update (grad descent) Fθ1 , Gθ2 by:

∇θ1,θ2(Lab(ΦF
ω1
) + Lba(ΦG

ω2
) +K(Fθ1 , Gθ2))

13: Whenever |Ŵ ab − Ŵ ba| < ϵ, skip out of the loop.
14: end for
15: Set F∗ = Fθ1 ◦ P + P − Id and G∗ = Gθ2 ◦ P + P − Id.
16: Wasserstein geodesic from ρa to ρb is given by {(Id+ tFθ1)♯ρa}; Wasserstein geodesic

from ρb to ρa is given by {(Id + tGθ2)♯ρb}.
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APPENDIX C

APPENDIX FOR PART 4

C.1 Proof of Lemma 4.3.1

Lemma 3.3. Suppose u⃗, v⃗ are two vector fields defined on Rd, suppose φ, ψ solves

−∇ · (ρ∇φ) = −∇ · (ρu⃗) and −∇ · (ρ∇ψ) = −∇ · (ρv⃗), or equivalently, Projρ[u⃗] = ∇φ

and Projρ[v⃗] = ∇ψ (c.f. Definition 4.5.1). Then:

∫
u⃗(x) · ∇ψ(x)ρ(x) dx =

∫
∇φ(x) · ∇ψ(x)ρ(x) dx; (Equation 4.11)∫

|∇ψ(x)|2ρ(x) dx ≤
∫

|v⃗(x)|2ρ(x) dx. (Equation 4.12)

Proof of Lemma 4.3.1. For (Equation 4.11):

∫
u⃗(x) · ∇ψ(x)ρ(x) dx =

∫
−∇ · (ρ(x)u⃗(x))ψ(x) dx =

∫
−∇ · (ρ(x)∇φ(x))ψ(x) dx

=

∫
∇φ(x) · ∇ψ(x)ρ(x) dx.

For (Equation 4.12):

∫
|v⃗(x)|2ρ(x) dx =

∫
(|∇ψ(x)|2 + 2(v⃗(x)−∇ψ(x)) · ∇ψ(x) + |v⃗(x)−∇ψ(x)|2)ρdx

=

∫
|∇ψ(x)|2 + |v⃗(x)−∇ψ(x)|2)ρ(x) dx ≥

∫
|∇ψ(x)|2ρ(x) dx.

The second equality is due to (Equation 4.11).
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C.2 Proof of Theorem 4.3.4

Theorem 3.7. Suppose {θt}t≥0 solves (Equation 4.28). Then {ρθt} is the gradient flow of

H on probability submanifold PΘ. Furthermore, at any time t, ρ̇θt =
d
dt
ρθt ∈ TρθtPΘ is the

orthogonal projection of −gradWH(ρθt) ∈ TρθtP onto the subspace TρθtPΘ with respect

to the Wasserstein metric gW .

Theorem 4.3.4 easily follows from the following two general results about manifold

gradient.

Theorem C.2.1. Suppose (N, gN), (M, gM) are Riemannian Manifolds. Suppose φ : N →

M is isometry. Consider F ∈ C∞(M), define F = F ◦ φ ∈ C∞(N). Suppose {xt}t≥0 is

the gradient flow of F on N :

ẋ = −gradNF (x).

Then {yt = φ(xt)}t≥0 is the gradient flow of F on M . That is, {yt} satisfies ẏ =

−gradMF(y).

Proof. Since we always have ẏt = φ∗ẋt = −φ∗gradNF (xt), we only need to show that

φ∗gradNF (xt) = gradMF(φ(xt)). Fix the time t, consider any curve {ξτ} on N passing

through xt at τ = 0, since φ is isometry, we have gN = φ∗gM , thus:

d

dτ
F (ξτ )

∣∣∣
τ=0

= gN(gradNF (xt), ξ̇0) = φ∗gM(gradNF (xt), ξ̇0) = gM(φ∗gradNF (xt), φ∗ξ̇0).

On the other hand, denote ητ = φ(ξτ ), we have:

d

dτ
F (ξτ )

∣∣∣
τ=0

=
d

dτ
F(ητ )

∣∣∣
τ=0

= gM(gradMF(yt), η̇0) = gM(gradMF(yt), φ∗ξ̇0).

As a result, gM(φ∗gradNF (xt) − gradMF(yt), φ∗ξ̇0) = 0 for all ξ̇0 ∈ TxtN . Since φ∗ is

surjective, we have φ∗gradNF (xt) = gradMF(φ(xt)).
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Theorem C.2.2. Suppose (M, gM) is Riemannian manifold, Msub ⊂M is the submanifold

of M . Assume Msub inherits metric gM , i.e. define ι : Msub → M as the inclusion map,

which induces a metric tensor on Msub as gMsub = ι∗gM . For any F ∈ C∞(M), denote

the restriction of F on Msub as F sub. Then the gradient gradMsub
F sub(x) ∈ TxMsub is the

orthogonal projection of gradMF(x) ∈ TxM onto subspace TxMsub with respect to the

metric gM for any x ∈Msub.

Proof. For any x ∈ Msub, consider any curve {γτ} on M sub passing through x at τ = 0.

We have

d

dτ
F sub(γτ )

∣∣∣
τ=0

= gMsub(gradMsub
F sub(x), γ̇0) = gM(ι∗gradMsub

F sub(x), ι∗γ̇0)

= gM(gradMsub
F sub(x), γ̇0).

The last equality is because ι∗ restricted on TMsub is identity. On the other hand, F sub(γτ ) =

F(γτ ) for all τ . We also have:

d

dτ
F sub(γτ )

∣∣∣
τ=0

= gM(gradMF(x), γ̇0).

Combining them we know

gM(gradMsub
F sub(x)− gradMF(x), v) = 0 ∀ v ∈ TxMsub

⇒ gradMsub
F sub(x)− gradMF(x) ⊥gM TxMsub,

which proves this result.

Proof. (Theorem 4.3.4) To prove the first part of Theorem 4.3.4, we apply Theorem C.2.1

with (N, gN) = (Θ, G), M = PΘ with its metric inherited from (P , gW ) and φ = T(·)♯. To

prove the second part, we apply Theorem C.2.2 with (M, gM) = (P , gW ), Msub = PΘ.
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C.3 Proof of Lemma 4.5.2 Lemma 4.5.3 and Lemma 4.5.4

Lemma 4.6. Suppose we fix θ0 ∈ Θ, for arbitrary θ ∈ Θ and ∇ϕ ∈ L2(Rd;Rd, ρθ0), we

consider

F (θ,∇ϕ | θ0) =
(∫

(2∇ϕ(x) · (Tθ − Tθ0) ◦ T−1
θ0

(x)− |∇ϕ(x)|2) ρθ0(x) dx
)
+ 2hH(θ).

(Equation 4.54)

Then F (θ,∇ϕ | θ0) <∞, furthermore, F (·,∇ϕ | θ0) ∈ C1(Θ). We can compute

∂θF (θ,∇ϕ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇ϕ(x) ρθ0(x) dx+ h∇θH(θ)

)
.

(Equation 4.55)

Proof. To show F (θ,∇ϕ |θ0) <∞, we write

F (θ,∇ |θ0) =
∫

2∇ϕ · Tθ(T−1
θ0

(x))ρθ0 dx︸ ︷︷ ︸
A

−
∫

2∇ϕ(Tθ0(x)) · xdp(x)︸ ︷︷ ︸
B

−
∫

|∇ϕ(x)|2ρθ0(x) dx︸ ︷︷ ︸
C

+2hH(θ).

By Cauchy–Schwarz inequality, the first two terms can be estimated as

|A−B| ≤ 2∥∇ϕ∥L2(ρθ0 )

(∫
|Tθ(x)|2dp(x) +

∫
x2dp(x)

)
.

Recall (Equation 4.9) and p having finite second order moment, we know the first two terms

are finite. In addition C = ∥∇ϕ∥2L2(ρθ0 )
<∞. We thus have shown F (θ,∇ϕ |θ0) <∞.

To show F (·,∇ϕ |θ0) ∈ C1(Θ), recall Tθ(x) ∈ C2(Θ × Rd) as mentioned in subsec-

tion 4.3.1, we know the relative entropy H(·) ∈ C1(Θ), thus we only need to prove for

F̃ (·,∇ϕ |θ0) = F (·,∇ϕ |θ0) − 2hH(θ). We consider ξ ∈ Rm with |ξ| small enough and
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θ + ξ ∈ Θ. Then the difference

F̃ (θ + ξ,∇ϕ |θ0)− F̃ (θ,∇ϕ |θ0) =
∫

2∇ϕ(x) · (Tθ+ξ − Tθ) ◦ T−1
θ0

(x) ρθ0(x) dx (C.1)

We denote the i-th component of Tθ as T (i)
θ , 1 ≤ i ≤ d. By Taylor expansion (w.r.t. θ), we

have T (i)
θ+ξ(x)− T

(i)
θ (x) = ∂θT

(i)
θ (x)Tξ + 1

2
ξT∂2θθTθ+λi(x)ξ(x)ξ with λi(x) ∈ [0, 1], then the

right hand side of (Equation C.1) is

(∫
2∂θTθ(T

−1
θ0

(x))T∇ϕ(x)ρθ0 dx
)T

ξ︸ ︷︷ ︸
Denote as J (θ)Tξ

+

∫ ( d∑
i=1

∂xiϕ · (ξT∂2θθT
(i)
θ+λi(x)ξ

(T−1
θ0

(x))ξ)

)
ρθ0 dx

(C.2)

By Cauchy-Schwarz inequality, the sum in the second term of (Equation C.2) can be esti-

mated as

(
d∑

i=1

|∂xi
ϕ|2
) 1

2

·

(
d∑

i=1

|ξT∂2θθT
(i)
θ+λi(x)ξ

(T−1
θ0

(x))ξ|2
) 1

2

≤ |∇ϕ| ·

(
d∑

i=1

∥∂2θθT
(i)
θ+λi(x)ξ

(T−1
θ0

(x))∥22

) 1
2

|ξ|2

Let us recall (Equation 4.53) and the absolute value of the second term in (Equation C.2)

can be upper bounded by

(∫
|∇ϕ|2ρθ0 dx

) 1
2

·

(∫ d∑
i=1

∥∂2θθT
(i)
θ+λi(x)ξ

(x)∥22dp(x)

) 1
2

|ξ|2 ≤ ∥∇ϕ∥2L2(ρθ0
) ·
√
H(θ0, |ξ|)|ξ|2.

This inequality is due to (Equation 4.53). As a result, we have

|F̃ (θ + ξ,∇ϕ |θ0)− F̃ (θ,∇ |θ0)− J (θ)Tξ|
|ξ|

≤ ∥∇ϕ∥2L2(ρθ0 )
·
√
H(θ0, |ξ|) |ξ|. (C.3)

Since H(θ0, ϵ) is increasing w.r.t. ϵ, send |ξ| → 0, the upper bound in (Equation C.3) ap-

proaches to 0. This verifies the differentiability of F̃ (·,∇ϕ |θ0).Thus F (·,∇ϕ |θ0) is also

differentiable and ∂θF (θ,∇ϕ |θ0) = J (θ)+2h∇θH(θ). At last, to show thatF (·,∇ϕ |θ0) ∈
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C1(Θ), we only need to prove the continuity of J (θ). One only need to notice that

2∂θT
(i)
θ′ (T

−1
θ0

(x))T∇ϕ(x) ≤ |∂θ′T (i)
θ (T−1

θ0
(x))|2 + |∇ϕ(x)|2

≤ L2(T
−1
θ0

(x)|θ) + |∇ϕ(x)|2 ∀ θ′, |θ′ − θ| < r(θ).

The last inequality is due to condition (Equation 4.10). Since L2(T
−1
θ0

(x)|θ) + |∇ϕ(x)|2 ∈

L1(ρθ0), then by Dominated Convergence Theorem, we are able to prove the continuity of

∂θF (θ,∇ϕ |θ0).

Lemma 4.7. Suppose we fix θ0 ∈ Θ and define J(θ) = sup
∇ϕ∈L2(Rd;Rd,ρθ0 )

F (θ,∇ϕ | θ0). Then

J is differentiable. If we denote ψ̂θ = argmax
ϕ

{F (θ,∇ϕ | θ0)}, then

∇θJ(θ) = ∂θF (θ,∇ψ̂θ | θ0) = 2

(∫
∂θTθ(T

−1
θ0

(x))T ∇ψ̂θ(x) ρθ0(x) dx+ h∇θH(θ)

)
.

Proof. Let us denote Ξθ = (Tθ − Tθ0) ◦ T−1
θ0

. Then for any ξ ∈ Rm such that θ + ξ ∈ Θ,

we set ψ̂θ+ξ = argmax
ϕ

{F (θ + ξ,∇ϕ | θ0)}. Then according to Definition 4.5.1, ψ̂θ, ψ̂θ+ξ

solves

−∇ · (ρθ0∇ψ̂θ) = −∇ · (ρθ0Ξθ) −∇ · (ρθ0∇ψ̂θ+ξ) = −∇ · (ρθ0Ξθ+ξ). (C.4)

Subtracting the two equations, then multiply ψ̂θ+ξ − ψ̂θ on both sides and integrate yields

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx =

∫
(∇ψ̂θ+ξ −∇ψ̂θ) · (Ξθ+ξ − Ξθ)ρθ0 dx.

Then by Cauchy–Schwarz inequality, we derive

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx ≤

∫
|Ξθ+ξ − Ξθ|2ρθ0 dx.

Now since Ξθξ(x) − Ξθ(x) = (Tθ+ξ − Tθ) ◦ T−1
θ0

(x), by mean value theorem, the i-th
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component of Ξθ+ξ(x)−Ξθ(x) can be written as ∂θT
(i)
θ+λi(x)ξ

(T−1
θ0

(x))Tξ with λi(x) ∈ [0, 1].

Then recall the definition of L(θ, ϵ) in (Equation 4.53), we can verify

∫
|Ξθ+ξ − Ξθ|2ρθ0 dx =

∫
|Tθ+ξ(x)− Tθ(x)|dp(x) ≤ L(θ, |ξ|)|ξ|2.

Thus we have the following estimation

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx ≤ L(θ, |ξ|)|ξ|2 (C.5)

Now let us consider J(θ + ξ)− J(θ)

J(θ + ξ)− J(θ)

=F (θ + ξ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ | θ0)

=F (θ + ξ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ+ξ | θ0)︸ ︷︷ ︸
A

+F (θ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ | θ0)︸ ︷︷ ︸
B

. (C.6)

Now according to Lemma 4.5.2, F (·,∇ϕ | θk) ∈ C1(Θ). By mean value theorem, term A

can be written as

A =F (θ + ξ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ+ξ | θ0) = ∂θF (θ + τξ,∇ψ̂θ+ξ | θ0)ξ with τ ∈ [0, 1]

=∂θF (θ,∇ψ̂θ | θ0)Tξ + (∂θF (θ + τξ,∇ψ̂θ | θ0)− ∂θF (θ,∇ψ̂θ | θ0)︸ ︷︷ ︸
r1(θ, ξ)

)Tξ

+ (∂θF (θ + τξ,∇ψ̂θ+ξ | θ0)− ∂θF (θ + τξ,∇ψ̂θ | θ0)︸ ︷︷ ︸
r2(θ, ξ)

)Tξ.
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Term B can be computed as

B =F (θ,∇ψ̂θ+ξ | θ0)− F (θ,∇ψ̂θ | θ0)

=

∫
(2(∇ψ̂θ+ξ −∇ψ̂θ) · Ξθ − (|∇ψ̂θ+ξ|2 − |∇ψ̂θ|2))ρθ0 dx

=2

∫
(∇ψ̂θ+ξ −∇ψ̂θ) · (Ξθ −∇ψ̂θ)ρθ0 dx−

∫
|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx

=−
∫

|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx.

The last equality is due to integration by parts and (Equation C.4).

Now substituting A and B in (Equation C.6) yields

J(θ + ξ)− J(θ) = ∂θF (θ,∇ψ̂θ | θ0) + r1(θ, ξ)
Tξ + r2(θ, ξ)

Tξ − ∥∇ψ̂θ+ξ −∇ψ̂θ∥2L2(ρθ0 )

We can estimate∣∣∣J(θ + ξ)− J(θ)− ∂θF (θ,∇ψ̂θ | θ0)Tξ
∣∣∣

|ξ|
≤ |r1(θ, ξ)|+|r2(θ, ξ)|+

∥∇ψ̂θ+ξ −∇ψ̂θ∥2L2(ρθ0 )

|ξ|
(C.7)

Now we prove the right hand side of (Equation C.7) approaches to 0 as ξ → 0. Since

∂θF (·,∇ψ̂θ | θ0) ∈ C1(Θ), using continuity, we know limξ→0 r1(θ, ξ) = 0. For r2(θ, ξ),

when |ξ| is sufficiently small, we have

|r2(θ, ξ)| =
∣∣∣∣∫ ∂θTθ+τξ(T

−1
θ0

(x))T(∇ψ̂θ+ξ(x)−∇ψ̂θ(x))ρθ0(x) dx
∣∣∣∣

≤
(∫

∥∂θTθ+τξ(x)∥2Fdp(x)
) 1

2
(∫

|∇ψ̂θ+ξ −∇ψ̂θ|2ρθ0 dx
) 1

2

≤
√

∥L2(·|θ)∥L1(p)

√
L(θ, |ξ|)|ξ|

The last inequality is due to (Equation 4.10) (when |ξ| is small enough so that |ξ| <

r(θ)) and (Equation C.5). Using this we are able to show limξ→0 r2(θ, ξ) = 0. Using

(Equation C.5) again, we can verify 1
|ξ|∥∇ψ̂θ+ξ−∇ψ̂θ∥2L2(ρθ0 )

≤ L(θ, |ξ|)|ξ| → 0 as ξ → 0.
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Thus J is differentiable at θ and we know ∇θJ(θ) = ∂θF (θ,∇ψ̂θ | θ0). We complete the

proof by applying (Equation 4.55) of Lemma (Lemma 4.5.2).

Lemma 4.8. Under assumption(Equation 4.51), the optimal solution of (Equation 4.48)

θk+1 satisfies,

|θk+1 − θk| ∼ o(1) i.e. lim
h→0+

|θk+1 − θk| = 0.

Proof of Lemma 4.5.4. Recall the function to be minimized in (Equation 4.48) is J(θ) =

Ŵ 2
2 (θ, θk) + 2hH(θ). If choosing θ = θk in (Equation 4.48), we have J(θk) = 2hH(θk).

Thus J(θk+1) ≤ J(θk) = 2hH(θk). Since H(θk) ≥ 0, this will lead to Ŵ 2
2 (θk+1, θk) ≤

2hH(θk). When h is small enough, |θk+1 − θk| ≤ l−1(2hH(θk)), here l−1 is the inverse

function of l defined on [0, l(r0)]. We know l−1(0) = 0 and l−1 is also continuous and

increasing function. This leads to limh→0+ |θk+1 − θk| ≤ limh→0+ l
−1(2hH(θk)) = 0.

C.4 Proofs for Lemma 4.6.6 and Lemma 4.6.7

Lemma 5.7. The geodesic connecting ρ0, ρ1 ∈ P(M) is described by,


∂ρt
∂t

+∇ · (ρt∇ψt) = 0

∂ψt

∂t
+ 1

2
|∇ψt|2 = 0

ρt|t=0 = ρ0, ρt|t=1 = ρ1. (Equation 4.85)

Using the notation ρ̇t = ∂tρt = −∇ · (ρt∇ψt) ∈ TρtP(M), gW (ρ̇t, ρ̇t) is constant for

0 ≤ t ≤ 1 and gW (ρ̇t, ρ̇t) = W 2
2 (ρ0, ρ1) for 0 ≤ t ≤ 1.

Proof. Recall the definition (Equation 2.58) of Wasserstein metric gW , we have gW (ρ̇t, ρ̇t) =∫
|∇ψt|2ρt dx. Since {ρt} is the geodesic on (P(M), gW ), the speed gW (σt, σt) remains

constant. To directly verify this, we compute the time derivative:

d

dt
gW (ρ̇t, ρ̇t) =

d

dt

(∫
|∇ψt|2ρt dx

)
=

∫
∂

∂t
|∇ψt|2ρt dx+

∫
|∇ψt|2∂tρt dx.
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Using the first equation in (Equation 4.85), we obtain

∫
|∇ψt|2∂tρt dx =

∫
|∇ψt|2 · (−∇ · (ρt∇ψt)) dx =

∫
∇(|∇ψt|2) · ∇ψtρt dx,

Taking the spatial gradient of the second equation in (Equation 4.85), we have

∂t(∇ψt) = −∇(
1

2
|∇ψt|2).

Then

∫
∂

∂t
|∇ψt|2ρt dx =

∫
2∂t(∇ψt) · ∇ψtρt dx =

∫
−∇(|∇ψt|2) · ∇ψtρt dx.

Adding them together, we verify d
dt
gW (ρ̇t, ρ̇t) = 0, hence

∫ 1

0
gW (ρ̇t, ρ̇t) dt = W 2

2 (ρ0, ρ1).

Thus we know gW (ρ̇t, ρ̇t) = W 2
2 (ρ0, ρ1) for any 0 ≤ t ≤ 1.

Lemma 5.8. Suppose {ρt} solves (Equation 4.85), the relative entropy H in (Equation 4.8)

has potential V satisfying ∇2V ⪰ λI , then we have d
dt
gW (gradWH(ρt), ρ̇t) ≥ λW 2

2 (ρ0, ρ1).

Or equivalently, d2

dt2
H(ρt) ≥ λW 2

2 (ρ0, ρ1).

Proof. Let us write:

gW (gradWH(ρt), ρ̇t) =

∫
∇(V +D log ρt) · ∇ψt ρt dx.

Then:

d

dt
gW (gradWH(ρt), ρ̇t) =

d

dt

(∫
∇(V +D log ρt) · ∇ψt ρt dx

)
=

∫
(∇ψT

t∇2V∇ψt + Tr(∇2ψt∇2ψt)) ρt dx.

The second equality can be carried out by direct calculations. One can check [29] or [7] for

236



its complete derivation. Using ∇2V ⪰ λI , we get

d

dt
gW (gradWH(ρt), ρ̇t) ≥

∫
λ|∇ψt|2ρt dx = λ gW (ρ̇t, ρ̇t) = λW 2

2 (ρ0, ρ1).

The last equality is due to Lemma 4.6.6. By the definition of Wasserstein gradient stated

in (Equation 2.61), we have d
dt
H(ρt) = gW (gradWH(ρt), ρ̇t), we also proved d2

dt2
H(ρt) ≥

λW 2
2 (ρ0, ρ1).
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APPENDIX D

APPENDIX FOR PART 5

D.1 The background of Schrödinger Bridge Problem (SBP)

Denote Ω = C([0, 1],Rd). Given R ∈ M+(Ω) the law of the reversible Brownian motion

(here we consider the Brownian motion with the volume Lebesgue measure, denoted by

Leb, as the initial distribution). Consider the relative entropy of any probability measure

with respect to R,

H(P |R) =
∫
Ω

log(
dP

dR
)dP.

The SBP can be formulated as

minH(P |R), P ∈ P(Ω) : P0 = µ0, P1 = µ1. (D.1)

Here P0 := P (X0 ∈ ·), P1 := P (X1 ∈ ·) and Xt(ω) := ω(t) is the canonical process

with ω ∈ Ω. It is proven (see e.g. [174]) that if H(µ̃0|Leb) <∞ and H(µ̃1|Leb) <∞, the

SBP has a unique solution P̂ which enjoys the following decomposition

P̂ = f0(X0)g1(X1)R ∈ P(Ω),

where f0, g1 are nonnegative measurable functions such that

ER[f0(X0)g1(X1)] = 1.
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Introduce the function ft, gt defined by

ft(z) := ER[f0(X0)|Xt = z],

gt(z) := ER[g1(X1)|Xt = z], Pt-a.e., z ∈ Rd,

and the constraint

µ̃0 = f0g0Leb, µ̃1 = f1g1Leb.

Then the SBP (Equation 5.2) with ℏ = 1 is equivalent to the following minimal action

problem, i.e.,

inf{H(P |R) : P0 = µ̃0, P1 = µ̃1} −H(µ0|Leb) (D.2)

= inf
{∫ 1

0

∫
Rd

|vt|2

2
µt dxdt : (∂t −

∆

2
)µ+∇ · (vµ) = 0,

P0 = µ0, P1 = µ1

}

We denote ρt the density of µt with respect to the Lebesgue measure. In addition, with the

assumption that µ0, µ1 have finite second moments, the critical point of the minimal action

problem satisfies the following system

(∂t −
∆

2
)ρ+∇ · (∇ϕρ) = 0, ρ(0) = ρ0,

(∂t +
∆

2
)ϕ+

1

2
|∇ϕ|2 = 0, ϕ(1) = log(g1)

with vt = ∇ϕt. There is also a backward version of this PDE system, namely

(−∂t −
∆

2
)ρ+∇ · (∇ψρ) = 0, ρ(1) = ρ1,

(−∂t +
∆

2
)ψ +

1

2
|∇ψ|2 = 0, ψ(0) = log(f0).
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Here we have the relation ∇ψt +∇ϕt = ∇ log(ρt).

Applying the transformation

St = ϕt −
1

2
log(ρt) (D.3)

as being done in [169], we arrive at the Hamiltonian system on the density space,

∂

∂t
ρ+∇ · (ρ(t, x)∇S) = 0,

∂

∂t
S +

1

2
|∇S|2 − 1

8

δ

δρt
I(ρt) = 0.

The corresponding Hamiltonian is H (ρ, S) = 1
2

∫
Rd |∇S|2ρdx − 1

8
I(ρ) where I(ρ) =∫

Rd |∇ log(ρ)|2ρdx is the Fisher information. Meanwhile, the action minimizing problem

(Equation D.2) can be rewritten as

inf
vt

{∫ 1

0

E[
1

2
v(t,X(t))2] +

1

8
I(ρ(t))dt+

1

2

∫
(ρ1 log(ρ1)− ρ0 log(ρ0))dx (D.4)

| dXt = v(t,Xt)dt, X(0) ∼ ρ0, X(1) ∼ ρ1
}
.

Here ρ(t) is the density of the marginal distribution of Xt.

Next, by introducing the conjugate Madelung transformation f =
√
ρeS, g =

√
ρe−S

( also known as “Hopf-Cole” transformation), f and g satisfy so-called “Schrödinger sys-

tem” (see e.g. [179, 186, 187]),

(∂t −
∆

2
)g = 0, g(0) = g0, (D.5)

(∂t +
∆

2
)f = 0, f(1) = f1.

This also implies the following relationships

ϕ = log(f) = S +
1

2
log(ρ), ψ = log(g) = −S +

1

2
log(ρ).
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[176] C. Léonard, “Lazy random walks and optimal transport on graphs,” Ann. Probab.,
vol. 44, no. 3, pp. 1864–1915, 2016.

[177] S. Chow, W. Li, C. Mou, and H. Zhou, “A discrete schrodinger bridge problem
via optimal transport on graphs,” Journal of Dynamics and Differential Equations,
vol. 20, no. 33, p. 34, 2020.

[178] E. A. Carlen, “Conservative diffusions,” Communications in Mathematical Physics,
vol. 94, no. 3, pp. 293–315, 1984.

[179] S. Chow, W. Li, and H. Zhou, “Wasserstein Hamiltonian flows,” J. Differential
Equations, vol. 268, no. 3, pp. 1205–1219, 2020.

[180] A. J. van der Schaft, “Port-Hamiltonian systems: An introductory survey,” in In-
ternational Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006,
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