

ADAPTIVE CONTROL OF LARGE-SCALE SIMULATIONS

A Thesis
Presented to

The Academic Faculty

by

Kirk C. Benson

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
July 2004

Copyright 2004 by Kirk C. Benson

ADAPTIVE CONTROL OF LARGE-SCALE SIMULATIONS

Approved by:

Dr. Amy R. Pritchett, Co-Advisor

Dr. David M. Goldsman, Co-Advisor

Dr. Christos Alexopoulos

Dr. Nelson C. Baker

Dr. Richard M. Fujimoto

April 20, 2004

 ii

ACKNOWLEDGEMENTS

First, and foremost, I would like to acknowledge the contribution of my advisors,

Dr. Amy Pritchett and Dr. Dave Goldsman. Both serve as role models in the education

and research fields as they inspire those around them to seek knowledge out of sheer

enjoyment of the learning process. Thanks to their patience and motivation, this research

endeavor has been rewarding on both a personal and professional level. Also, I would

like to acknowledge the ISYE faculty at large as they have been insightful and

encouraging in all pursuits.

My wife, Shelley, is always supportive and endearing. Her help and humor make

all of this possible.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

TABLE OF CONTENTS... iii

LIST OF TABLES... vi

LIST OF FIGURES ... viii

GLOSSARY ... x

SUMMARY... xi

CHAPTER 1 INTRODUCTION .. 1

1.1 Research Objectives... 4
1.2 Research Outline.. 5

CHAPTER 2 BACKGROUND .. 6

2.1 Simulation .. 6
2.1.1 Common Types of Simulation... 7
2.1.2 Simulation as a Design Activity .. 9
2.1.3 Simulation Summary ... 10

2.2 Sampling from Hybrid Simulations ... 11
2.2.1 Synchronous Sampling .. 11
2.2.2 Asynchronous Sampling .. 13
2.2.3 Combined Sampling... 14
2.2.4 Sampling Summary.. 15

2.3 Parallel and Distributed Simulation ... 15
2.4 Metric Selection ... 18
2.5 Embedded Statistical Analysis... 19

2.5.1 Batch Means... 21
2.5.2 Overlapping Batch Means.. 21
2.5.3 Standardized Time Series .. 22
2.5.4 Embedded Statistical Analysis Summary .. 22

2.6 Adaptive Control Techniques .. 23
2.6.1 Extended Rinott’s Procedure (R+)... 25
2.6.2 Extended Kim and Nelson’s Procedure (KN+) ... 26
2.6.3 Adaptive Control Technique Summary ... 27

2.7 Summary .. 28

CHAPTER 3 DISTRIBUTED COMPUTING METHOD ... 29

3.1 Distributed Simulation Architecture .. 29
3.1.1 Distributed Simulation Implementation... 30
3.1.2 Distributed Simulation Job Queuing.. 34

 iv

3.1.3 Distributed Simulation Exception Handling.. 38
3.2 Distributed Simulation Performance.. 38
3.3 Summary .. 41

CHAPTER 4 RANKING AND SELECTION METHOD EXTENSION........................ 42

4.1 Assumptions and Goals.. 42
4.2 Empirical Comparison Overview .. 43

4.2.1 Assessing Method Performance... 44
4.2.2 Data Encapsulation Methods ... 47
4.2.3 Random Number Generator Verification... 48
4.2.4 Sample RS Method Experiment... 51

4.3 R+ and KN+ Methods Performance Analysis ... 53
4.3.1 Varying Desired Probability .. 54
4.3.2 Varying First-Stage Number of Observations ... 56
4.3.3 Batched Data Method Performance ... 59
4.3.4 Summary .. 68

4.4 Ranking and Selection Method Development ... 69
4.4.1 BGP Technique 1... 70
4.4.2 BGP Technique 2... 72
4.4.3 BGP Technique 3... 73
4.4.4 BGP Technique 4... 77

4.4.4.1 BGP4 Initial Performance Assessment... 77
4.4.4.2 BGP4 AR(1) Batch Means Performance .. 80
4.4.4.3 BGP4 AR(1) Overlapping Batch Mean Performance......................... 82
4.4.4.4 BGP4 Summary .. 83

4.4.5 BGP Technique 5... 86
4.4.6 Method Development Summary .. 87
4.5 Ranking and Selection Method Summary ... 88

CHAPTER 5 TEST CASE: NATIONAL AIRSPACE SYSTEM ANALYSIS............... 89

5.1 Air Traffic Simulation.. 89
5.2 Reconfigurable Flight Simulator (RFS)... 92
5.3 Reconfigurable Flight Simulator Module Development.................................... 96

5.3.1 Simulation Controller (SC) .. 96
5.3.2 Data Analyzer (DA)... 96
5.3.3 Measurement Management Agent (MMA) ... 99

5.4 Example NAS Scenario: Arrivals on Macey Two STAR to ATL..................... 99
5.5 Simulation Diagnostic Testing... 103

5.5.1 RFS Model Versus System Comparison.. 104
5.5.2 RFS Simulation Output Correlation .. 105
5.5.3 RFS Simulation Batched Observation Normality...................................... 106
5.5.4 RFS Simulation Batched Observation Variance Convergence.................. 107
5.5.5 Simulation Diagnostic Summary ... 110

5.6 Test Case Experiment .. 111
5.6.1 Example Test Case Experiment ... 111
5.6.2 Best Case Arrival Routing Analysis .. 114

 v

5.6.3 Worst Case Arrival Routing Analysis.. 115
5.6.4 Routing Analysis Summary ... 117

5.7 Test Case Computational Performance Comparison 118
5.8 Test Case Summary ... 121

CHAPTER 6 CONCLUSIONS .. 122

6.1 Contribution Summary... 125
6.2 Future Efforts ... 126

APPENDIX A: DISTRIBUTED SIMULATION SOFTWARE 128

APPENDIX B: RANKING AND SELECTION PARAMETER CALCULATION 133

REFERENCES ... 134

VITA... 140

 vi

LIST OF TABLES

Table 1: R+ and KN+ Comparison Varying Desired Probability..................................... 54

Table 2: R+ and KN+ Comparison Varying Initial Number of Observations.................. 57

Table 3: R+ and KN+ Comparison Using Batch Means while Varying Batch Size 63

Table 4: R+ Method Analysis with Varying Initial Unbatched Observations.................. 64

Table 5: R+ and KN+ Comparison Using Overlapping Batch Means while Varying

Batch Size, 84000 =n .. 67

Table 6: R+ and KN+ Comparison Using Overlapping Batch Means while Varying

Batch Size, 252000 =n .. 68

Table 7: BGP1 and KN+ Comparison Varying Initial Number of Observations 71

Table 8: BGP2 and BGP1 Comparison Varying Initial Number of Observations 72

Table 9: BGP3 and BGP1 Comparison Varying Initial Number of Observations 74

Table 10: BGP3 Intuition Comparison Varying Initial Number of Observations 75

Table 11: BGP3 without Retention Varying Initial Number of Observations.................. 76

Table 12: BGP4 and BGP1 Comparison Varying Initial Number of Observations 78

Table 13: BGP4 and KN+ Comparison Using Batch Means while Varying Batch

Size with Mildly Correlated Data ... 80

Table 14: BGP4 Using Batch Means while Varying Batch Size with Moderately

Correlated Data ... 81

Table 15: BGP4 Using Batch Means while Varying Batch Size with Highly

Correlated Data ... 82

Table 16: BGP4 and KN+ Comparison Using Overlapping Batch Means while

Varying Batch Size ... 83

Table 17: BGP5 and BGP4 Comparison Varying Initial Number of Observations 86

Table 18: Test Case Configuration Descriptions .. 102

Table 19: Arrival Routing Comparison of Average Minimum Separation in Feet 115

 vii

Table 20: Worst Case Arrival Routing Comparison... 116

Table 21: Replicated Worst Case Arrival Routing Comparison..................................... 116

Table 22: Test Case Computational Analysis... 119

 viii

LIST OF FIGURES

Figure 1: Adaptive Control of Large-Scale Simulations 3

Figure 2: Synchronous Sampling 12

Figure 3: Spatial Separation Asynchronous Update Example 13

Figure 4: Asynchronous Sampling 14

Figure 5: Distributed Simulation Implementation with Ranking and Selection Methods 31

Figure 6: Distributed Simulation Architecture 32

Figure 7: Example of Partial Job Allocation 36

Figure 8: Example of Full Job Allocation 37

Figure 9: Test Case Performance 40

Figure 10: Polar Acceptance-Rejection Normal Random Number Generator

Probability Plot 50

Figure 11: Polar Acceptance-Rejection Normal Random Number Generator

Autocorrelation 50

Figure 12: Sample Ranking and Selection Method Experiment 52

Figure 13: R+ and KN+ Estimated P(CS) versus Desired Probability 55

Figure 14: R+ and KN+ Required Observations versus Desired Probability 56

Figure 15: Initial Number of Observations versus Required Number of Observations 58

Figure 16: BM Estimated Variance Parameter versus Batch Size for AR(1) Data 62

Figure 17: OBM Estimated Variance versus n/m Ratio for AR(1) Data 66

Figure 18: KN+, BGP1, and BGP4 Comparison of Initial Number of Observations

versus Required Number of Observations 79

Figure 19: Reconfigurable Flight Simulator Architecture 94

Figure 20: Data Analyzer Object Example Where it is Capturing Aircraft Position 97

 ix

Figure 21: Software Infrastructure Overhead Comparison 98

Figure 22: Atlanta International Macey Two Arrival STAR 100

Figure 23: Sample Reconfigurable Flight Simulator Initialization Script 103

Figure 24: Simulation of Atlanta International Arrivals 104

Figure 25: RFS Autocorrelation Diagnostic Test 106

Figure 26: RFS Batched Observation Normality Diagnostic Test 107

Figure 27: RFS Batch Mean Observation Variance Convergence Diagnostic 108

Figure 28: RFS Overlapping Batch Mean Observation Variance Convergence

Diagnostic 110

Figure 29: Snapshot of Test Case Experiment Session 112

Figure 30: BGP4 Sample Test Case Application 114

Figure 31: Test Case Computational Performance 120

Figure 32: Distributed Simulation Server Module 129

Figure 33: Distributed Simulation Client Module 130

Figure 34: Distributed Simulation BGP4 Module 132

Figure 35: Ranking and Selection Parameter Calculations 133

 x

GLOSSARY

Adaptive – modification in reaction to changing circumstances to maintain a desired
behavior or effect a desired outcome

ATC – Air Traffic Control

ARTCC – Air Route Traffic Control Center

Configuration – relative arrangement of parts or elements – a defined construct for a

model

Control – to exercise restraining or directing influence over

Design – to create, fashion, execute, or construct according to plan – typically an iterative

process to achieve defined goals for a system

Embedded – to make something an integral part of

Metric – a standard of measurement

Model – an example for imitation or emulation – set of logical relationships defining a

system

LP – Logical Process

NAS – National Airspace System

NOW – Network of Workstations

PDS – Parallel and Distributed Simulation

RFS – Reconfigurable Flight Simulator

RS – Ranking and Selection

STAR – Standard Terminal Arrival Route

System – a regularly interacting or interdependent group of items forming a unified

whole – real-world process of interest

 xi

SUMMARY

This thesis describes adaptive simulation control techniques that differentiate

between competing system configurations. Here, a system is a real-world environment

under analysis. In this context, proposed modifications to a system denoted by different

configurations are evaluated using large-scale hybrid simulation. Adaptive control

techniques, using ranking and selection methods, compare the relative worth of

competing configurations and use these comparisons to control the number of required

simulation observations. Adaptive techniques necessitate embedded statistical

computations suitable for the variety of data found in detailed simulations, including

hybrid and agent-based simulations. These embedded statistical computations apply

efficient sampling methods to collect data from simulations running on a network of

workstations. The National Airspace System provides a test case for the application of

these techniques to the analysis and design of complex systems, implemented here in the

Reconfigurable Flight Simulator, a large-scale hybrid simulation. Implications of these

techniques for the use of simulation as a design activity are also presented.

The figure below is a graphical summary of this method. Given a properly

modeled configuration of some real-world system, simulation of the model provides

predictive insight into actual system performance. Embedding data analysis within the

simulation facilitates runtime analysis of practitioner defined metrics. Runtime

knowledge of these metrics enables adaptive control techniques, such as ranking and

selection, to minimize the number of observations required to compare competing

configurations. Using a network of workstations with parallel and distributed simulation

methods makes best use of available computational capacity for a given experiment.

 xii

Ranking
and

Selection
Techniques

Simulation

Data Analysis

Configuration
Comparison

Minimize
Required

Observations

Performance Metrics

Use
Network of

Workstations

Number of Observations/Configurations

Embedded

Ranking
and

Selection
Techniques

Simulation

Data Analysis

Configuration
Comparison

Minimize
Required

Observations

Performance Metrics

Use
Network of

Workstations

Number of Observations/Configurations

Embedded

Adaptive Control of Large-Scale Simulations

This method can be generalized to any endeavor comparing two or more model

configurations, using simulation, during analysis and design. The key contribution of this

research is the integration of academic fields to improve complex system analysis.

Additionally, ranking and selection methods are extended. Lastly, experimental sampling

methods are developed suitable for agent-based simulation timing mechanisms.

 1

CHAPTER 1

INTRODUCTION

Increasing use of simulation for both design and analysis motivates models

capable of increasingly realistic representations of complex systems. For example, one

method for obtaining increased realism is the use of hybrid simulations. Modeled system

performance can be inferred from simulation output in a variety of manners from simple

queuing times to multifaceted compliance with regulations or constraints.

Hybrid simulations, that is, simulations capable of simultaneously including

discrete-event and continuous-time models, allow for cost-effective and detailed analysis

of systems that involve complex interactions between heterogeneous entities. Agent-

based modeling is one method for describing such heterogeneous entities. In this

paradigm, each individual agent autonomously pursues a goal and also interacts with

other agents inside the simulation. Agent-based modeling provides an inherently

modular method for high-fidelity simulation of complex systems. This approach,

however, requires the inclusion of a range of models with varied output data types such

as discrete and continuous. For example, in an air traffic simulation an appropriate

discrete state variable may be the number of aircraft arrivals into a defined airspace,

while a continuous variable of interest might be the minimum separation between two

aircraft.

Detailed hybrid simulations, including agent-based simulations, require an

increase in both size and runtime. Frequently, the amount of simulation output is

determined by the availability of computational capacity. Subsequent data analysis,

commonly done as a separate activity, often reveals either insufficient or excess

 2

observations for the required statistical comparison. Therefore, embedding statistical

estimators within a simulation can ensure computationally efficient sampling without

requiring storage and post hoc analysis.

Incorporating an adaptive control technique, such as a Ranking and Selection

(RS) method, offers an additional avenue for increased computational efficiency. RS

methods calculate the number of required observations, thus ensuring that statistically

sound comparisons are made with modest computational expense. The methods

presented here are sequential and appropriate for general stationary output processes. A

new adaptive control technique is developed here that relies on embedded statistical

estimators to calculate the number of required observations for each simulated

configuration. Additionally, the control technique differentiates in an adaptive manner

between competing configurations by identifying which configurations do not warrant

further analysis, potentially saving computational resources.

Bringing together hybrid simulation models, embedded statistical analysis, and

adaptive control techniques improves the application of simulation to the analysis and

design of complex systems. This improvement is realized in terms of computational

reduction and statistically valid comparison of competing configurations. Additionally,

this method creates an environment conducive to Parallel and Distributed Simulation

(PDS), although the control techniques employed here do not require the strict time

management generally required in PDS. Instead, experiments can be implemented on a

Network of Workstations (NOW) that coordinates observation sampling from

complementary simulations.

 3

An existing hybrid simulation model of the National Airspace System (NAS)

provides a relevant test case (Pritchett and Ippolito, 2000). Specifically, as part of this

research, the Reconfigurable Flight Simulator (RFS) has been extended for embedded

statistical computations and adaptive control techniques. The analysis of arrival routing

configurations for Atlanta International Airport (ATL) is presented as a demonstration.

Figure 1 provides a graphical summary of this method. Given a properly modeled

configuration of some real-world system, simulation of the model provides predictive

insight to actual system performance. Embedding data analysis within the simulation

facilitates runtime analysis of practitioner defined metrics. Runtime knowledge of these

metrics enables adaptive analysis and control techniques, such as ranking and selection,

to minimize the number of observations required to compare competing configurations.

Using a network of workstations in a parallel and distributed simulation manner makes

the best use of available computational capacity for a given experiment.

Ranking
and

Selection
Techniques

Simulation

Data Analysis

Configuration
Comparison

Minimize
Required

Observations

Performance Metrics

Use
Network of

Workstations

Number of Observations/Configurations

Embedded

Ranking
and

Selection
Techniques

Simulation

Data Analysis

Configuration
Comparison

Minimize
Required

Observations

Performance Metrics

Use
Network of

Workstations

Number of Observations/Configurations

Embedded

Figure 1: Adaptive Control of Large-Scale Simulations

 4

This comparative method may be applied to modeled complex systems

differentiated by a unique performance metric. For example, continuous-valued profit

measures or the relative physical separation of modeled components could identify

desired performance for a particular system. The comparative method can also

incorporate derived metrics from discrete variables, such as average throughput. This

method relies on observations of estimated mean values which must exhibit

characteristics enabling the application of ranking and selection methods. Specifically,

ranking and selection method performance must be robust for the achieved normality and

serial correlation of these observations. Lastly, obtaining observations must be

computationally tractable.

1.1 Research Objectives

The objectives of this research can be summarized as follows:

• Development of efficient and accurate embedded statistical estimators that

enable fully sequential adaptive control techniques providing comparative

analysis between competing simulated model configurations.

• Extension of adaptive control techniques, in this case ranking and

selection methods, that differentiate between competing simulated model

configurations and also calculate the number of required observations.

• Development of a distributed simulation architecture ensuring the best use

of computational capacity.

• Integration of these components, thereby extending the use of simulation

as an analysis and design tool for complex systems.

 5

1.2 Research Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents a

literature review of simulation as a design process, adaptive analysis and control

techniques, embedded statistical encapsulation, and a discussion on parallel and

distributed simulation. Chapter 3 details the developed distributed simulation

architecture. Chapter 4 highlights extension of ranking and selection methods as a

control technique. Chapter 5 presents the application of the developed methods to an

existing large-scale simulation of the National Airspace System. Chapter 6 summarizes

the effort and discusses future research directions.

 6

CHAPTER 2

BACKGROUND

Analysis of complex systems requires the integration of several academic fields

for their efficient and accurate study. Hybrid simulation, comprised of discrete and

continuous valued variables, offers a cost-efficient method for complex system analysis.

Timing mechanisms for agent-based simulations, synchronous or asynchronous, impact

the appropriate sampling of experimental observations. Embedded statistical sampling

methods need to be efficient in terms of memory storage requirements as well as accurate

in terms of estimation. Adaptive control techniques, such as Ranking and Selection (RS),

allow for efficient computation usage by terminating analysis of system configurations

that are no longer competitive. Furthermore, relatively “fast” computational results may

be obtained from a Network of Workstations (NOW) implementation that builds on

current Parallel and Distributed Simulation (PDS) techniques. This chapter focuses on

the discussion of these perspectives and their relation to the increasing use of simulation

in the design of complex systems.

2.1 Simulation

Law and Kelton (2000) define simulation as a technique using computers to

imitate various kinds of real-world facilities or processes. Generally, simulation offers a

relatively inexpensive and fast technique for gaining insight into the performance of

complex systems. In this context, a system represents a process or facility under scrutiny

and the simulated model of this system is composed of logical and mathematical

constructs that define system functionality. Unless an analytic/numerical solution is

 7

possible or the system may be observed while in operation, simulation is required to

estimate system performance.

Simulation as an analytic tool is ubiquitous. However, the actual implementation

of this tool spans a variety of methods. Separate discrete and continuous modeling

techniques are already well established and have also been combined in hybrid

simulations to create increasingly complex models (Sanchez and Lucas, 2002). Use of

the agent-based paradigm further allows the practitioner to more accurately model many

types of systems and identify emergent behavior. This section briefly discusses these

methods as they relate to the modeling of complex systems.

2.1.1 Common Types of Simulation

Discrete-event simulation models a system as having state variables that change

by discrete amounts at discrete points in time. For example, an appropriate state variable

for discrete modeling might be the number of customers in a queue. Performance metrics

of a discrete model include delay, number of waiting entities, system throughput, and

resource utilization (Fishman, 2001). Discrete-event simulations are widely used in

many domains including manufacturing systems, military operations, and transportation

networks. This type of simulation is well suited for modeling the stochastic nature of

arrivals, waiting/servicing, and departures in a system.

Continuous-time simulation models a system where continuously valued state

variables change over time. Continuous-time simulation is effective for modeling

dynamic behavior such as vehicle movement. For example, modeling aircraft flight

dynamics includes state variables describing characteristics such as attitude and heading.

Differential equations are used to update variables associated with dynamic behavior.

 8

Several numerical integration routines, such as Runge-Kutta, can be used to update these

state variables during the simulation (Chen, 2000).

Hybrid simulation models include both discrete and continuous state variables.

This allows for a more realistic representation of a system by modeling both discretely

and continuously varying state variables. For example, a hybrid model uses differential

equations for the internal dynamics of each vehicle and discrete state variables to count

the number of vehicles at a particular location. However, the increased complexity of

hybrid models entails longer development and execution time.

Agent-based simulation is one form of simulation that models a system through

the use of agents, often with hybrid models. An agent in this context is an autonomous

entity that interacts with other agents and the environment in the pursuit of a goal or set

of goals. For example, an aircraft agent modifies its flight to avoid other aircraft and

terrain during its approach to a given airport. Agent-based simulations are increasingly

being applied to model a variety of systems, including telecommunications, business

processes, control of mobile robots, and military operations (Logan and Theodoropoulos,

2001).

Pritchett et al. (2002) discuss an agent-based simulation of the National Airspace

System (NAS) comprised of heterogeneous entities. The NAS is an example of a

complex socio-technical system composed of various entities such as pilots, controllers,

technical devices, and aircraft. Here, a socio-technical system denotes one that contains

both human and machine components. This example highlights the complexity of agent-

based simulations and the motivation to make the best use of models that require both

extensive developmental effort and relatively “long” execution time.

 9

2.1.2 Simulation as a Design Activity

Simulation is often used iteratively during the design process. This section

highlights the general use of simulation in electronic circuit analysis, manufacturing,

aircraft operations, and military endeavors. Each application of simulation facilitates

product and/or process improvement.

One example of hybrid simulation practice is electronic circuit analysis. The goal

of circuit simulation is pre-manufacturing verification of potential performance (Pillage,

et al., 1995). Connectivity within the circuit is modeled by logical gates that have

discrete behavior. Timing mechanisms for these logical gates are generally event driven.

For instance, a gate is opened at a particular time. Circuit elements, such as resistors and

capacitors, are evaluated by continuous parameters such as voltage or current updated by

numerical integration. Typical use of circuit simulation entails sensitivity analysis; one

varies a particular resistor parameter and observes how the current changes in the circuit.

This capability has enabled modern Very Large-Scale Integrated (VLSI) circuit design.

The use of simulation in manufacturing processes has grown dramatically in

recent years. Increased demand for high quality goods on short notice is one factor

motivating the use of simulation. In this realm, simulation is often used during product

acquisition to support:

• Requirement definition and analysis
• System engineering
• System development process
• System testing
• System training

To that end, these simulations necessitate a hybrid capability that is interoperable

between agencies participating in the acquisition process (NRC, 2002).

 10

 The use of simulation in the design of aircraft operations can be beneficial in

multiple areas. Allocation of ground delay to mitigate costly airborne congestion is one

example (Kleinman, Hill, and Ilenda, 1998). In this example, various methods of

allocating ground delay were assessed by the use of simulation and an optimization

algorithm. Evaluation of recovery policies following unforeseen traffic disruptions is

another example. SimAir is a discrete-event simulation that models daily airline

operations to include aircraft, crews, passengers, and disruptions (Schaefer, et al., 2002).

Simulation also serves as a stimulus for development of aircraft-related technologies such

as hydraulics and for real-time human-in-the-loop simulators (Rolfe and Staples, 1986).

Note these simulations are often hybrid in nature with continuous variables such as

position and velocity accompanied with discrete variables such as the number of aircraft

arrivals.

Military simulations generally focus on combat operations. One focus is on

attrition rates incurred during a force-on-force confrontation. Extension of two-sided to

n-sided conflict analysis is of recent national interest (Brandt and Roland, 1993).

Another focal point for military simulations is weapon effectiveness. Here, probabilistic

analysis of potential detection or successful engagement during a confrontation is

combined with cost analysis during the acquisition process. Lastly, large-scale combat

simulations facilitate military staff operational training.

2.1.3 Simulation Summary

Large-scale hybrid simulations that mimic complex systems offer an efficient

method for design and analysis. The previous section highlights the flexibility of

simulation as an analysis tool suitable for a wide variety of domains. Note the

 11

appropriate use of simulation relies on model parameterization and correct output

analysis. However, the relevance of simulation relies on the computational tractability

and actual development costs. There are pitfalls in the current use of hybrid simulation.

First, embedded statistical controls are infrequently implemented. Rather, analysis is

usually done post hoc and often by separate agencies. Also, the sheer complexity of

these simulations entails the use of vast computational resources.

2.2 Sampling from Hybrid Simulations

Hybrid simulations provide a generalized approach to modeling real-world

systems as they allow for both discrete and continuous state variables. Discrete events,

such as vehicle arrivals, often involve metrics derived from queue size. On the other

hand, continuous state variables, for example vehicle velocity, involve metrics based on

maximum, minimum, or average values. Entities in hybrid simulations commonly have

differentiable update rates depending upon both their internal dynamics and interactions

with other entities.

Likewise, the autonomous aspect of agent-based simulation has inspired novel

timing mechanisms (Lee, Pritchett, and Goldsman, 2001). In addition to involving hybrid

dynamics, agent-based simulations may use either asynchronous or synchronous timing

mechanisms. Both types of mechanisms necessitate sophisticated statistical sampling

methods as detailed in the following sections.

2.2.1 Synchronous Sampling

Synchronous sampling entails obtaining observations at predetermined time steps

that are periodic. The following example assumes post hoc sampling where all

 12

observations are stored for later analysis. In Figure 2 below, objects 1 through 4 are

updated at 0.2 second increments. Sampling occurs every 0.5 seconds with an overlap of

0.2 seconds. For instance, a sample taken at 9.5 seconds includes observations with

update times from 9.4 to 9.6 seconds. Note that at a simulation time of 9.5 seconds there

are eight observations while there are only four at the 10.0 second sampling. This

difference has minimal, if any, effect on the measure of any state variable. However,

calculations must be based on the number of observations rather than the number of

objects. Also, the practitioner must ensure the sampling rate and overlap will indeed

capture observations.

Time

O
bj

ec
t

O1

O2

O3

O4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3

X

X

X

X

X = Update Time

O
bj

ec
t

O1

O2

O3

O4

O
bj

ec
t

O1

O2

O3

O4

O1

O2

O3

O4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.39.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.39.0 9.1 9.2 9.3 9.4 9.59.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.99.6 9.7 9.8 9.9 10.0 10.1 10.2 10.310.0 10.1 10.2 10.3

X

X

X

X

X

X

X

X

X = Update
Figure 2: Synchronous Sampling

 13

2.2.2 Asynchronous Sampling

In general, synchronous timing methods for large-scale simulations are

computationally inefficient because all agents update at specified time steps regardless of

the necessity. Asynchronous timing methods can also provide correct model and

simulation results if update times are managed by agents in accordance to their internal

dynamics and interactions. For example, Figure 3 shows a possible 2-dimensional spatial

separation scenario with six vehicles. Obviously, vehicles 1 and 2 must be checked more

often than vehicles 5 and 6 to measure if safe separation has been lost.

2
1

3

4

5

6

2
1

22
11

3

4

33

44

5

6

55

66
Figure 3: Spatial Separation Asynchronous Update Example

Asynchronous statistical sampling creates a more perplexing problem. Figure 4

below details a possible sampling scenario. Objects 1, 2, and 3 update at periodic

intervals, but their update rates are different. Hence, sampling at set intervals could bias

the estimated mathematical distribution to more frequently updated objects. Likewise,

 14

object 4 in this example is updating at intervals that are not constant. Objects of this

nature add randomness to the results obtained via a constant sampling rate.

Time

O
bj

ec
t

O1

O2

O3

O4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3

X

X

X

X

X X

X

X

X

X X

X

X

X

X = Update Time

O
bj

ec
t

O1

O2

O3

O4

O
bj

ec
t

O1

O2

O3

O4

O1

O2

O3

O4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.39.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.39.0 9.1 9.2 9.3 9.4 9.59.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.99.6 9.7 9.8 9.9 10.0 10.1 10.2 10.310.0 10.1 10.2 10.3

X

X

X

X

X

X

X

X

XX X

X

X

X

X

X

X

X

XX X

X

X

X

X

X

X

X

X = Update
Figure 4: Asynchronous Sampling

2.2.3 Combined Sampling

Sequential combination of simulation output from these sampling methods entails

several assumptions. First, the simulated configurations must be of identical models.

Second, generated random numbers from the simulations must not significantly overlap

or the obtained observations may be redundant. Note that combining variance estimators,

discussed later, generally results in higher estimated values due to the decreased degrees

of freedom. However, underestimation of variance may also occur when combining

simulation output.

 15

Combining simulation output to predict long-term systemic performance also

relies on assumptions about the complex system. For example, the analysis of arrivals

into a facility can be modeled by seasonal factors such as the hours of daylight truncated

by day increments. To some extent, day-to-day increments of this simulated output may

be combined. Yet, missed systemic failures, with subsequent recovery, are the major

issue with this assumption. For example, a severe weather incident may stop all arrivals

on a particular day, and recovery on the next day will entail increased traffic flow.

Combining simulation output in the discussed manner would fail to capture such effects.

However, combining simulation output potentially speeds complex system analysis.

2.2.4 Sampling Summary

Simulation timing mechanisms complicate observation sampling from an

experiment. Sampling methods should be generalized to handle any timing mechanism

and type of variable. Additionally, simulation-specific diagnostic tests are required to

select appropriate sampling rates and the overlap size. In this context, an appropriate rate

and overlap ensure accurate estimation of the underlying process. Therefore,

development of relatively simple sampling methods that avoid storage of historical data

and preclude over/under flow of variables are needed; these methods should also be

computationally efficient, accurate, and robust.

2.3 Parallel and Distributed Simulation

Parallel and Distributed Simulation (PDS) has been studied for many years in an

effort to speed increasingly complex simulation models. PDS research has primarily

focused on manipulating sequential simulations and unifying coupled simulation

 16

processes for discrete-event systems. Manipulation of sequential simulations is generally

accepted for queuing systems or for the mass replication of a particular simulation

configuration. Combining separate but interacting simulations spans sophisticated

synchronization algorithms and prescribed interfaces such as the DOD High Level

Architecture (HLA). Fujimoto (2000) provides a comprehensive discussion of current

PDS techniques that is briefly highlighted in this section.

A key issue in most PDS techniques is the synchronization of a set of logical

processes (LP) running on separate processors. Note that LP assignment to participating

processors is generally done by temporal or spatial decomposition. Temporal methods

logically separate distinguishable simulation scenarios by time, such as decomposition of

aircraft arrivals by day increments at a major airport. The issue with decomposition by

this method relies on tying the terminating conditions of one temporal LP to the initial

conditions of another. Spatial decomposition, on the other hand, divides complex

simulations into geographically separate LPs, such as separation of arrival patterns into a

given airport, in an effort to distribute the computational load. This method of

decomposition requires spatially adjoining simulations to communicate or pass entities

between LPs. In general, between-LP interaction is required at the boundaries created by

the decomposition method.

The goal of synchronization in this context is to avoid causality errors from out-

of-order event processing. For example, under temporal decomposition, if one LP

computed an event that impacted a previous event on a different LP, then a causality error

might exist. The two classes of algorithms that address this issue are called conservative

and optimistic. Conservative synchronization algorithms strictly enforce the event

 17

processing in the associated LPs to avoid causality errors. On the other hand, optimistic

algorithms detect causality errors at runtime with a subsequent roll back mechanism to

“undo” the error; Time Warp is a well-known example (Fujimoto, 2000). Note that these

algorithms may entail significant computational expense to accurately roll back the LP.

Regardless of the method, synchronization methods rely on strict interpretations of time

in the participating LPs, or federate in HLA vernacular, for successful and repeatable

execution.

Other PDS implementations focus on compiler or operating system kernel

modifications to speed LPs. For example, Carothers (2002) implemented a PDS called

Extreme Simulation (XSim) on the Linux operating system. XSim is promising in terms

of simplified kernel modification and virtual memory management, but is limited by the

cost of redeveloping existing simulation models to this paradigm.

Another possible PDS architecture allows for heterogeneous processor

contributions to a given experiment. Specifically, contributing processors simulate

differentiable model configurations of a complex system. Unlike temporal and spatial

decomposition PDS methods that contain coupled dynamics, this approach incorporates

independent execution of the simulations. The lack of coupled dynamics with this

approach avoids causal synchronization issues. Beyond mere mass replication of a

particular simulation, this method naturally acquires computational capacity for

configuration comparison. Computational load sharing in this manner is similar to

previous efforts by Karatza and Hilzer (2002).

 18

2.4 Metric Selection

Metrics define measurable criteria for organizational analysis. Obviously

comparative analysis between competing configurations requires selection of a metric

valued by the practitioner. These metrics can be based on a mix of discrete and

continuous valued variables. Analysis methods must accommodate these varying

metrics. For example, the following are a subset, and “non-exhaustive” survey, of

potential metrics for analysis of the National Airspace System (NAS):

• Safety

o Recordable injuries/fatalities
o Lost workday cases
o Aircraft damage
o Accidents/incidents
o Aircraft spacing
o Go around frequency

• Schedule performance
o Aircraft on time
o Arrival/departure delay rate
o Aircraft turn time

• Cost/Benefit
o Passenger revenue from tickets
o Inconvenienced passenger costs
o Fuel consumption

Clearly, there are numerous metrics available to the analyst of air transportation, and each

may be analyzed in a number of ways. For example, the analyst may require a

measurement of a minimum, maximum, average, and/or count of a variable.

The goal of this research is not to extend metric development. Instead, the

demand for analysis of a variety of metrics motivates two aspects of this research. First,

analysis of complex systems requires metrics encompassing discrete and continuous-

 19

valued variables. Second, the use of runtime-determined metrics encourages modularity

and reuse.

2.5 Embedded Statistical Analysis

Adaptive control techniques often require calculations on both individual and

batched observation data. To that end, a relatively simple data encapsulation method is

discussed later in this thesis that does not require use of historical experimental

observation values, but instead maintains only current state variables and certain summed

values. This embedded method allows for both estimator calculations and availability of

these estimators at each simulation time step along with inherent reduction of memory

usage.

Embedded statistical estimators enable the acquisition of batched observations.

These batched observations, under certain conditions, exhibit characteristics assumed for

the appropriate application of adaptive control techniques. Specifically, data batching

methods facilitate the acquisition of normally distributed batched observations. Also, an

appropriate sampling rate allows us to obtain unbatched observations correlated at a

manageable level. Note that variance estimators for correlated data are typically biased.

Simulation-specific diagnostics determining these values are discussed later in this thesis.

The remainder of this section details methods for the acquisition of normally distributed

simulation output that can also avoid autocorrelation issues.

Embedding this data acquisition method within a steady-state simulation whose

output is neither independent nor identically distributed requires assumptions on

simulation initialization. Law and Kelton (2000) suggest truncating early data in a

simulation as one method of avoiding initialization bias. Embedded statistical estimators

 20

are used to compare k competing simulated configurations where ki ,,2,1 K= . Given

K,, 21 ii XX as the simulation output from a single replication of the ith alternative, then

after appropriate initialization the following assumptions hold:

Stationarity: K,, 21 ii XX forms a stationary stochastic process.

(Strong) Consistency: ii rX µ→)(as ∞→r with probability one, where iµ is the

steady-state mean from system i and)(rX i is the sample mean based on r observations

from system i.

Functional Central Limit Theorem (FCLT): There exist constants iµ and 02 >iv such

that

()

⎣ ⎦

)(1 tWv
r

X

i

rt

j
iij

⇒
−∑

=

µ
 (1)

for 10 ≤≤ t , where ⇒denotes weak convergence and W(t) is a standard Brownian

motion (Weiner) process (Glynn and Iglehart, 1990).

For this effort, comparisons are made on steady-state means kµµµ ,,, 21 K , which

is reasonable due to the consistency assumption. The variance parameter, 2
iv , can be

estimated by batch means, overlapping batch means, and standardized time series

methods. Note that variance estimation from a single long simulation run ameliorates

somewhat the issue of initialization bias. The following techniques provide estimators

for the asymptotic variance constant ()()rXrVARv i
ri ∞→

≡ lim2 .

 21

2.5.1 Batch Means

If n observations inii XXX ,,, 21 K are divided into b batches of length m, then the

jth batch mean from system i is:

 ∑
=

+−≡
m

p
pmjimji X

m
X

1
)1(,,,

1 (2)

The observations mimjimji XXX ,2)1(,1)1(, ,,, K+−+− comprise the jth batch, bj ,,2,1 K= , for

system i. For 1>b , the batch means variance estimator is:

 ()()∑
=

−

−
⎯→⎯−

−
≡

b

j

bi
D

imjiB b
vnXX

b
mmV

1

2
1

2
2

,,
2

11
χ (3)

where 2
dχ is a chi-squared random variable with 1−= bd degrees of freedom and

D
⎯→⎯

indicates convergence in distribution as m becomes large (Glynn and Whitt, 1991).

2.5.2 Overlapping Batch Means

Consider all batch means of the form:

 () ∑
−

=
+≡

1

0
,

1,
m

p
pjii X

m
mjX (4)

The observations 1,2,1, ,,, −+++ mjijiji XXX K comprise the jth overlapping batch for

ki ,,2,1 K= and 1,,2,1 +−= mnj K for system i. The overlapping batch means

variance estimator is:

 ()() () ()()∑
+−

=

−
−+−

≡
1

1

22 ,
1

mn

j
iiO nXmjX

mnmn
nmmV (5)

Note that
d

vmV di
O

22
2 χ
≈ where 2

dχ is a chi-squared random variable with ()⎣ ⎦2)13 −= bd

degrees of freedom (Meketon and Schmeiser, 1984).

 22

2.5.3 Standardized Time Series

For ki ,,2,1 K= , bj ,,2,1 K= , and mh ,,2,1 K= the hth cumulative mean from

batch j of system i is:

 ∑
=

+−≡
h

p
pmjihji X

h
X

1
)1(,,,

1 (6)

For ki ,,2,1 K= , bj ,,2,1 K= , and 10 ≤≤ t the standardized times series from

batch j of system i is:

 () ⎣ ⎦ ⎣ ⎦()
mv

XXmt
tT

i

mtjimji
mji

,,,,
,,

−
≡ (7)

The weighted area under the standardized time series formed by the jth batch of

observations from system i is:

 () ∑
=

≡
m

l
mji

i
ji mlTmlw

m
v

tA
1

,,,)()((8)

where () ()5.033840 2 +−≡ tttw , obtained from Goldsman et al. (2002), is a wise choice

for a weighting function to reduce bias. The weighted area variance estimator is:

 ∑
=

⎯→⎯≡
b

j

bi
D

jiA b
vA

b
mV

1

22
2
,

2 1 χ (9)

2.5.4 Embedded Statistical Analysis Summary

The embedded methods presented in this section enable encapsulation of defined

performance metrics. Furthermore, these methods provide normally distributed

observations under certain conditions. Generally, a sufficiently large batch size is

required for the batch means method. This guarantees normally distributed batched

observations by the Central Limit Theorem. The overlapping batch means method

 23

requires sufficiently large batch size along with a large ratio of raw sample size to batch

size. The ratio requirement mitigates inherent convergence issues with this method.

Note the application of these methods to a new simulation necessitates diagnostics to

verify normality and variance convergence before use with adaptive control techniques.

2.6 Adaptive Control Techniques

The goal of any selection, screening, and multiple comparison problem is to

determine the “best” of several competing configurations. In this context, a configuration

implies that we have two or more competing systems that are compared by the mean

value of some metric describing performance, where simulation is required to assess the

value of this metric. Bechhofer et al. (1995) highlight several problem formulations

appropriate to various experimental designs. Here, focus is on the indifference-zone

formulation where the objective is to select the configuration with the highest/lowest

(interpreted “best”) expected value. In this realm, an expectation offers insight on long-

term performance.

The practitioner provides),(** Pδ , where *δ is the indifference-zone parameter

and *P denotes the threshold desired probability of correctly identifying a difference

between configurations. Note that the indifference-zone indicates some comparative

region where the practitioner would not discriminate between configurations. Also, the

threshold probability, *P , can be interpreted as a α−1 confidence interval when

configuration mean values do in fact differ by at least *δ .

Ranking and Selection (RS) methods enable adaptive control of this multiple

comparison problem. Ultimately, RS methods determine the number of required

 24

observations necessary for statistically rigorous comparison of competing simulated

configurations. RS methods may be single or multi-stage. In this context, a stage

denotes the execution of a simulated configuration for a number of observations. A

single-stage method determines the number of required observations from parameters

determined by the experimenter. Adaptive control is not possible with a single-stage RS

method. However, a multi-stage RS method updates the required number of observations

from simulated configuration output, thereby enabling adaptive control of the comparison

problem.

To highlight a single-stage RS method, if we assume random data from a normal

distribution with known variance, 2σ , then the classical Bechhofer (1954) method is

appropriate. This method determines the number of required observations, n, from the

following:

⎥
⎥

⎥

⎤

⎢
⎢

⎢

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−
−

2

*

)1(
5.0,1

*

2
δ

σ P
kZ

n (10)

)1(
,1

*P
kZ −
− ρ is the)1(*P− equicoordinate point of the 1−k dimensional multivariate standard

normal distribution with off-diagonal correlation ρ . Values for)1(
,1

*P
kZ −
− ρ may be obtained

from table lookup or from the application presented in Appendix B. Here, k is the

number of configurations in contention at the start of the experiment. For example, if the

variance, 2σ , is known to be 2.25 and the experimenter sets () ()950.30619,0., ** =Pδ

with 6=k configurations, then 262 observations are estimated for statistical comparison.

Examples of two-stage and multi-stage methods follow.

 25

If the variance of a predetermined metric is unknown, then Rinott’s method

(1978) provides a well known two-stage technique for comparing configurations. This

method relies on the assumptions that obtained data are independent, identically

distributed, and from a normal distribution. Goldsman et al. (2002) present an extended

version of this two-stage method (R+) and the extended version of the multi-stage Kim

and Nelson (KN+) method (2001). Note that batched observations are assumed to be

normally distributed for both methods. The following sub-sections detail both methods.

2.6.1 Extended Rinott’s Procedure (R+)

Setup: Select confidence level α−1 , indifference-zone parameter 0>δ , first-stage

sample size 20 ≥n , and batch size 0nm < .

Initialization: Obtain Rinott’s constant (from Bechhofer et al.) ()α−= 1,, kdhh , where

d is the degrees of freedom and k is the number of systems.

Obtain 0n observations ,,,2,1 , 0njX ij K= from each system ki ,,2,1 K= .

For ki ,,2,1 K= compute 2
imV , the sample asymptotic variance of the data from system i

using estimators discussed in section 2.5.

Let

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎤
⎢
⎢

⎡
= 2

22

0 ,max
δ

i
i

mVh
nN (11)

Stopping Rule: If ii Nn max0 ≥ then stop and select the system with the largest

estimated mean, ()0nX i , as the best. Otherwise, take 0nNi − additional

 26

observations
iNinini XXX ,2,1, ,,,

00
K++ from each system i where 0nNi > . Select the

configuration with the largest ()ii NX as the best.

2.6.2 Extended Kim and Nelson’s Procedure (KN+)

For two systems i and l, the asymptotic variance of the difference, 22
li vv + , is

calculated by forming the differenced series ,2,1, K=−= jXXD ljijilj then applying

one of the estimators presented in section 2.5 to the series.

Setup: Select confidence level α−1 , indifference-zone parameter 0>δ , first-stage

sample size 20 ≥n , and batch size 0nm < . Calculate

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη (12)

Initialization: Let },,2,1{ kI K= be the set of systems still in contention, and let

dh η22 = . Obtain 0n observations ,,,2,1, 0njX ij K= from each system ki ,,2,1 K= .

For all li ≠ compute 2
ilmV , the sample asymptotic variance of the difference of systems i

and l.

Let

 ⎥
⎦

⎥
⎢
⎣

⎢
= 2

22

δ
il

i
mVh

N (13)

and

 ilili NN
≠

= max (14)

 27

Here 1+iN is the maximum number of observations that can be taken from system i. If

()1max0 +≥ ii Nn then stop and select the system with the largest ()0nX i as the best.

Otherwise, set the observation counter 0nr = and go to Screening.

Screening: Set II old = . Let

}, allfor

),()()(and :{

ilIl

rWrXrXIiiI
old

illi
old

≠∈

−≥∈=
 (15)

where

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= r

mVh
r

rW il
il 2

22

2
,0max

δ
δ (16)

Stopping Rule: If 1=I , then stop and select the system whose index is in I as the best.

Otherwise, take one additional observation 1, +riX from each system Ii∈ and set

1+= rr . If 1max += ii Nr , then stop and select the system whose index is in I and has

the largest ()rX i as the best. Otherwise, repeat the screening process. Note that variance

estimation only depends on data collected in the initialization stage of this method.

2.6.3 Adaptive Control Technique Summary

Adaptive control techniques enable differentiation of competing system

configurations. Additionally, these techniques determine the number of required

observations necessary to discriminate between competing system configurations. The

application of these techniques to a large-scale simulation of a complex system is a

relatively new idea. Typically, previous adaptive control techniques of this nature

validated performance by the use of simulations mimicking a known process rather than a

large-scale simulation modeling a complex system. Limitations to current techniques

 28

include reliance on normally distributed data and some type of staged execution.

Extension of sequential adaptive control techniques, enabled by embedded estimators, is

promising in terms of enhanced computational efficiency.

2.7 Summary

The use of large-scale simulations in the design and analysis of complex systems

will be improved by the integration of embedded statistical analysis, adaptive control

techniques, and parallel simulation methods. Improvements are in the form of increased

computational efficiency and appropriate statistical comparison of competing simulated

configurations. Extension of current ranking and selection methods will further increase

computational efficiency. Application of this integrated method extends the use of

simulation as a design and analysis activity.

 29

CHAPTER 3

DISTRIBUTED COMPUTING METHOD

The Parallel and Distributed Simulation (PDS) techniques discussed in section 2.3

facilitate efficient use of computational capacity. This capacity can be applied to

enlarging the scale of a particular simulation or, relevant to this effort, enabling

appropriate statistical analysis by the acquisition of sufficient simulated observations.

This chapter presents a distributed simulation architecture capable of incorporating

Ranking and Selection (RS) methods, discussed in section 2.6, as a control technique

enabling efficient analysis of competing simulated configurations. A sample application

of this distributed simulation architecture is also presented as a performance

demonstration.

3.1 Distributed Simulation Architecture

Ranking and selection methods control the number of observations taken from

simulated system configurations to select the “best” system configuration(s) among those

in contention. Each simulated system configuration is a separate process that can be

distributed to participating processors for execution. Using the indifference-zone

formulation, it is possible that several configurations may be selected as the “best”

ensuring computational termination. RS methods require synchronization of the

statistical estimators only when determining which configurations are still competitive for

selection as the “best” and when calculating the number of required observations. This

section explores the requirements of RS method implementation in a distributed

simulation environment and outlines an architecture meeting these requirements.

 30

3.1.1 Distributed Simulation Implementation

A Network of Workstations (NOW), with each simulating a modeled

configuration, can provide suitable computational capacity for a given experiment.

Simulation jobs need to be assigned by a central server, or controller. Jobs can be

different configurations or the same configuration to allow for simulation replications.

The controller coordinates NOW usage by using ranking and selection methods to

determine which configurations, and their lengths, to distribute out to participating

workstations for execution.

The following distributed simulation architecture allows for heterogeneous

workstation contributions. Specifically, contributing workstations simulate different

system configurations. Unlike temporal and spatial decomposition PDS methods that

contain coupled dynamics, this method only requires independent execution of the

simulations. The lack of coupled dynamics within the architecture avoids causal

synchronization issues. Beyond mere mass replication of a single configuration, this

architecture provides the computational capacity for configuration comparison.

Computational load sharing in this manner is related to previous efforts by Karatza and

Hilzer (2002).

The implementation of a distributed simulation architecture used here is shown in

Figure 5. Each stage denotes the execution of a simulated configuration for a number of

observations specified by the RS method. The controller can potentially reschedule

logical process execution amongst contributing workstations. Between each stage, the

controller compares and discriminates between competing configurations. Of interest in

this example is the elimination of one competing configuration from future analysis. For

 31

example, in Figure 5, configuration C2 is eliminated from further analysis between stage

k-1 and stage k. The multi-stage aspect of this architecture brings together distributed

simulation and RS methods, using embedded statistical analysis in the process.

Time Raw Processing Raw Processing

Workstation
Stage k-1

Controller

1

Job = C1

2

Job = C1

3

Job = C2

4

Job = C2

5

Job = C3

6

Job = C3

Scripts
RS adjudication
Job scheduling

Workstation
Stage k

Controller

1

Job = C1

2

Job = C1

3

Job = C1

4

Job = C3

5

Job = C3

6

Job = C3

Scripts
RS adjudication
Job scheduling

Controller
Return

Time Raw Processing Raw Processing

Workstation
Stage k-1

Controller

1

Job = C1

11

Job = C1

2

Job = C1

22

Job = C1

3

Job = C2

33

Job = C2

4

Job = C2

44

Job = C2

5

Job = C3

55

Job = C3

6

Job = C3

66

Job = C3

Scripts
RS adjudication
Job scheduling

Workstation
Stage k

Controller

1

Job = C1

11

Job = C1

2

Job = C1

22

Job = C1

3

Job = C1

33

Job = C1

4

Job = C3

44

Job = C3

5

Job = C3

55

Job = C3

6

Job = C3

66

Job = C3

Scripts
RS adjudication
Job scheduling

Controller
Return

Controller
ReturnReturn

Figure 5: Distributed Simulation Implementation with Ranking and Selection Methods

This implementation requires only the minimal necessary computations for

statistically valid configuration comparisons. Distributing simulations in this manner is

unique in that it avoids the inherent timing mechanism and synchronization issues faced

by most PDS techniques while facilitating “loose” coupling of related processes.

Distributed simulation to obtain sufficient data for valid statistical comparison is an

extension to the current state of the art.

 32

The specific client-server architecture used here is shown in Figure 6. The server

acts as the controller. Competing configurations such as systems A, B, and C are run on

participating workstations providing computational contributions to the experiment using

simulation executable programs that allow for external control in terms of run, pause, and

terminate commands. Additionally, the simulation executable program is required to

make embedded statistical calculations.

Server(Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Maintain Job Queue
•Consolidate Data

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE
•EXIT

Client
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Configuration A
•SimController Object
•Data Analyzer Object

Configuration B
•SimController Object
•Data Analyzer Object

Configuration C
•SimController Object
•Data Analyzer Object

Control Computation

Server(Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Maintain Job Queue
•Consolidate Data

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE
•EXIT

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE
•EXIT

Client
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Configuration A
•SimController Object
•Data Analyzer Object

Configuration A
•SimController Object
•Data Analyzer Object

Configuration B
•SimController Object
•Data Analyzer Object

Configuration B
•SimController Object
•Data Analyzer Object

Configuration C
•SimController Object
•Data Analyzer Object

Configuration C
•SimController Object
•Data Analyzer Object

Control Computation
Figure 6: Distributed Simulation Architecture

Participating workstations function as individual clients. Clients act as an

interface between the server and the simulation executable program. Each client

manages one or more simulation executable program and monitors its associated

simulation status. It is assumed that more than one instantiation of the simulation

executable program may execute on a participating workstation at any time. For this

architecture, only one simulation executable may have a “run” status on each workstation

 33

while other simulation executables wait in a “paused” status for client commands.

Pausing simulation executables in this manner avoids the transfer of simulation state

variables and potential simulation re-initialization. Additionally, the client prepares

simulation output for the server. For this implementation, if a client is tasked with more

than one job then it must be differentiable in terms of the naming convention. Also, job

scheduling on the client is sequential when more than one is assigned.

The server interacts with the clients as it compares different configurations’

metrics in a statistical sense at appropriate intervals. Beyond monitoring status, the

server also consolidates simulation output required for ranking and selection methods.

Because the sampling intervals can be much greater than time steps within the

simulations and because the comparisons are only used to start and end simulation runs,

the distributed simulations are much more “loosely” coupled than in most PDS

implementations. Therefore, strict time synchronization is not required in this distributed

simulation architecture.

The server uses RS methods to calculate the number of required observations and

also to discriminate between competing configurations. Here, if one particular

configuration is deemed unworthy of further analysis due to poor performance, then it is

eliminated from further computational analysis. The server also maintains the status of

participating clients. Additionally, the server manages “job” allocation, where a “job” in

this case is the simulation sampling requirements for a particular configuration, as

detailed in the next section.

Communication between the client and the existing simulation is accomplished

through the use of text scripts. Server and clients communicate by the use of an

 34

operating system managed TCP/IP Ethernet connection. This generalized approach is

extensible. Additionally, it is easily reconfigured for varying experimental designs.

3.1.2 Distributed Simulation Job Queuing

Defining a job as a requirement for a specific number of simulated observations

and a machine as a workstation highlights the scheduling problem inherent to this

distributed simulation architecture. Typical scheduling problems are NP-hard (Hopp and

Spearman, 2000). Assuming simulated configurations are similar, acquisition of first-

stage observations requires approximately the same time when using homogeneous

processors on the contributing workstations. However, heterogeneous workstation use

and later-stage observation requirements obtained from ranking and selection methods

complicate the estimation of job duration.

With this distributed simulation architecture, job requirements can be dynamically

resized using RS methods. In this context, a job is a quantifiable computational expense,

such as running a particular configuration of a simulated model for a specified number of

observations. Assuming homogeneous workstations contribute to an experiment, the

differing observational requirements, or job size, dramatically increases the difficulty of

efficient job queuing. However, the decreased computational expense achieved through

the deletion of unnecessary jobs, i.e., simulated system configurations that are no longer

competitive, offers increased computational efficiency. In addition, the comparative

capability of such a method enables automated design analysis.

This distributed simulation architecture allows for job allocation in several

manners. If the practitioner lacks knowledge of simulation computational requirements

and believes that combining simulated configuration output is inappropriate, then job

 35

allocation is sequential. For example, if there are six configurations and three clients,

then client one receives job A, client two job B, etc. If combining simulated

configuration output is considered appropriate then all configurations are distributed to

each client. A technical side note, all simulators discussed in this effort are designed to

incorporate previously obtained data defined through runtime interpreted scripts.

Figure 7 highlights one example of partial job allocation. In this example, the

server needs to allocate six jobs to three participating clients. Recall the server issues job

commands, monitors job execution, and consolidates data from each client. Here, the

configurations are designated A thru F. In partial job allocation, the server assigns jobs

sequentially. In this example, client one is assigned jobs A and D for execution on

workstation one. Note the assumption that jobs outnumber participating clients. Similar

to second or later stages in ranking and selection methods, each configuration has

different observational requirements. Observe the occasional idleness of workstations

one and three.

 36

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE

Control Computation

Client 2
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 3
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

A D
Client 1
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Server (Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Manage Job Queue
•Consolidate Data

B

Workstation 1

Workstation 2

Workstation 3

E

C F

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE

Control Computation

Client 2
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 2
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 3
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 3
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

A DD
Client 1
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 1
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Server (Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Manage Job Queue
•Consolidate Data

B

Workstation 1

Workstation 2

Workstation 3

E

C F

Figure 7: Example of Partial Job Allocation

Figure 8 highlights another method of job allocation. Again, the server needs to

allocate six jobs of varying size to three participating clients. With full job allocation,

each client is directed to execute an equal portion of all jobs. For example, if the

observational requirement for job A is twelve then each client would contribute four

observations. If the job cannot be equally divided then rounding up ensures adequate

observation acquisition. Assuming the observational requirement is large negates the

impact of these excess observations. However, the distribution of all jobs to all

participating clients, assuming somewhat similar workstation performance, allows for

near optimal execution by precluding idle time. Additionally, it avoids job transfer

between workstations and the associated efficiency loss both in simulation initialization

time and state variable data transfer.

 37

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE

Control Computation

Client 2
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 3
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 1
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Server (Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Manage Job Queue
•Consolidate Data

Workstation 1

Workstation 2

Workstation 3

A B C D E F

A B C D E F

A B C D E F

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE

STATUS
•RUN
•PAUSE
•UNPAUSE
•TERMINATE

Control Computation

Client 2
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 2
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 3
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 3
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 1
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Client 1
•Receive Commands
•Control SIM
•Monitor SIM
•Broadcast “STATUS”

Server (Controller)
•Issue Commands
•Prepare scripts
•Poll Clients
•Manage Job Queue
•Consolidate Data

Workstation 1

Workstation 2

Workstation 3

A B C D E FA B C D E F

A B C D E FA B C D E F

A B C D E FA B C D E F

Figure 8: Example of Full Job Allocation

The central assumption enabling job allocation in this manner is the

appropriateness of combining simulation output. Obviously, simulation output should

only be combined from the same simulated configurations. The random number seeds

must be different for the jobs, thereby ensuring observation independence. Also,

combining output from one simulated configuration to another must not distort overall

interpreted results or nullify inherent assumptions to the particular simulation. If

combining simulation output cannot be done in this manner then this method of job

allocation is problematic. Specific simulation requirements such as initialization time

and the difficulty in transferring state space must be compared to the potential benefit of

job rescheduling.

 38

3.1.3 Distributed Simulation Exception Handling

The largest potential issue from this distributed simulation architecture is

communication errors between the controller and participating workstations.

Communication errors are handled by “loose” synchronization between the controller and

participating workstations. Specifically, the controller can only discriminate between

configurations when data required by ranking and selection methods are available. If

data are not available for some or all configurations under contention, then the controller

will pause for a specified period and subsequently reattempt data acquisition from

participating workstations. Additionally, controller issued commands to participating

workstations require confirmation of successful receipt. If this receipt is not obtained by

the controller then the command is reissued after a specified period. Failed

communication within the distributed simulation architecture is mitigated by these error

handling techniques.

3.2 Distributed Simulation Performance

This section demonstrates performance of this distributed simulation architecture

in a specific application. This sample experiment requires the selection of the “best”

among six competing simulated configurations. For this experiment, the underlying

process of the simulators is assumed to be an independent and identically distributed, iid,

)5.1,(),(µσµ NNormal = distribution. The mean, µ , for five of the competing

configurations was set to 0.0 while the mean for the sixth, or “best”, configuration was

set to 0.009682 for this experiment. Relatively large observational requirements are

developed when batching methods, such as Batch Means (BM), are employed.

Specifically, if the batch size, m, is increased when using BM, then the number of

 39

unbatched observations, n, also increases by the relationship mbn = where b is the

number of batches. For this performance demonstration the batch size .1000=m The

central issue here is the tradeoff between workstation performance and the overhead

associated from the distributed simulation architecture. Specifically, contributing

workstations should not be idle from a lack of controller issued commands, which

generally results from slow communication, e.g., TCP/IP network bandwidth limitations.

Figure 9 highlights the distributed simulation architecture implemented on a

homogeneous NOW comprised of dual Intel Xeon 2.2 GHz processors with 512

megabytes of RAM. Workstations communicated by operating system managed TCP/IP

over a 100 megabit Ethernet connection for this experiment. Competing configurations

of a normal iid process are compared using Rinott’s procedure discussed in section 2.6.

An experiment entails the selection of the “best” competing configuration. For this test

case, 100 independent replications of the experiment facilitated estimation of the number

of experiments completed per minute. In this test case, above-linear performance

increases, in terms of the completed experiments, are obtained by the addition of more

workstations. Note that each competing simulated configuration consumes

computational resources if it is paused or actually generating observations. Distributing

the computational requirement of a paused simulation along with observation

requirements explains the above linear increase in performance.

 40

0

0.5

1

1.5

2

2.5

1 2 3

Computers

Ex
pe

ri
m

en
ts

 p
er

 M
in

ut
e

Figure 9: Test Case Performance

 While small in comparison to observation acquisition, the controller for the

distributed simulation architecture does consume computational capacity. So, the

controller ran on an additional workstation to directly assess the computational impact of

adding each additional workstation.

This experiment assessed the performance of a NOW comprised of up to four

workstations. While not explored in this research, increasing the number of workstations

contributing to an experiment will eventually result in a less than linear performance

increase due to both network bandwidth and hard disk access limitations. However, this

 41

experiment is encouraging as it shows a small number of workstations may contribute

computational capacity in a coordinated manner.

3.3 Summary

This distributed simulation architecture enables the efficient use of computational

capacity for a small number of workstations. Comparison of differentiable simulated

configurations facilitates distribution of computational requirements to participating

workstations. Ranking and selection methods enable efficient calculation of the number

of required observations and determination of which configurations are still in contention

for selection as the “best”. Additionally, an assumption on the appropriateness of

combining simulation output offers additional computational efficiency.

 42

CHAPTER 4

RANKING AND SELECTION METHOD EXTENSION

This chapter focuses on the development, testing, and comparison of Ranking and

Selection (RS) methods. RS methods enable efficient analysis of competing simulated

configurations. Development of RS methods involves both theoretical analysis and

empirical testing. Inherent RS assumptions and the specific goals of a method guide the

theoretical analysis. Application of a RS method to simulations of an underlying normal

or autoregressive process enables empirical testing. Together, this analysis and testing

validates RS method performance.

Many of the test statistics required by ranking and selection methods have been

made available at runtime by software developed for this thesis. Appendix B gives a

brief example of test statistic calculations. Available test statistics, by dynamic link

library (dll) access, include the multivariate normal, multivariate student t, studentized

range distribution, and studentized maximum modulus distribution. Rinott’s constant is

also available. Previously, these test statistics were available from table lookups or from

FORTRAN software (Bechhofer, Santner, and Goldsman, 1995).

4.1 Assumptions and Goals

The RS methods in this chapter obtain observations, ,,2,1 , K=jX ij for

competing system configurations ki ,,2,1 K= from either an independent, identically

distributed normal,),(σµNiid − , process or from an autoregressive,)1(AR , process.

RS methods described in section 2.6 assume observations are),(σµNiid − . The)1(AR

process facilitates analysis of more realistic simulation output that is serially correlated.

 43

Note the use of batching methods on)1(AR process data results in normal observations

in certain conditions.

Requirements on whether the variance, 2
iσ , is known and/or equal can vary by

the RS method. Generally, methods that allow for unknown/unequal variances require

more observations to correctly select the “best” system configurations than methods

assuming known/equal variance. All methods in this chapter will allow for unknown and

unequal variances unless otherwise stipulated.

Using the indifference-zone formulation, the goal of RS methods is to select the

system configuration with the “best”, e.g., largest, expected value, iµ . The experimenter

provides (*δ , *P), where *δ is the indifference-zone parameter and *P denotes the

desired threshold probability of correctly identifying a difference between system

configurations. Note that the indifference zone indicates some comparative region where

the experimenter would not discriminate between system configurations. Also, the

desired threshold probability, P*, can be interpreted as a α−1 confidence interval that

configuration mean values do in fact differ by at least *δ . Given k ordered means,

kµµµ ,,, 21 K , the probability requirement for this formulation is *)(PCSP ≥ whenever

*
1 δµµ ≥− −kk , where CS denotes correct selection.

4.2 Empirical Comparison Overview

There are several infrastructure requirements for comparing alternative RS

methods. Each method must be parameterized in a similar manner to allow direct

comparison. In this context, a parameterization denotes the selection of a simulated

underlying process, indifference-zone parameter, desired probability, initial number of

 44

observations, and batch method along with its associated settings. In this controlled

environment, a simulation mimicking either an),(σµNiid − process or an)1(AR

process is required. The simulation architecture must also allow for both single and

multi-stage RS methods, and must implement embedded data encapsulation in a manner

that is both efficient and accurate. Lastly, metrics of method performance are necessary.

This section details the techniques used in this effort to compare RS method performance.

4.2.1 Assessing Method Performance

The relative difference between competing system configurations directly impacts

RS method performance. In the multivariate normal case where mean statistics

kWWW ,,, 21 K are obtained from k competing simulated system configurations with

common correlation ρ , the equicoordinate multivariate normal point,)1(
,1

*P
kZ −
− ρ , ensures

compliance with the probability requirement:

 () *)1(
,11

*

max PZWP P
kiki

=≤ −
−≤≤ ρ (17)

The quantity)1(
,1

*P
kZ −
− ρ satisfies this probability requirement for any configuration of means

in the form:

 *
11 δµµµ −== − kk (18)

This is often referred to as the slippage or Least Favorable (LF) configuration of means

because of the strict equality induced in the probability requirement. Equal Spacing (ES)

is another interesting configuration of means often used to compare RS method

performance. For the ES configuration we will use *
1

*
10)1(,,,0 δµδµµ −=== − kkK

and *δµ kk = in our evaluations. The ES configuration of means relaxes the strict

 45

equality in the probability requirement and for such competing system configurations, it

is usually easier to distinguish the “best”. All RS methods in this chapter are applied to a

LF configuration of means unless otherwise noted.

The ratio of σδ * also impacts RS method performance. Recall the indifference-

zone parameter, *δ , is a comparative region where the experimenter would not

discriminate between competing system configurations. Also, RS methods discussed in

this chapter assume unknown variance. However, a controlled environment, enabled by

the simulation of an),(σµNiid − process or an)1(AR process, facilitates performance

evaluation of RS methods. Here, the asymptotic variance is known or can be estimated,

thereby allowing manipulation of *δ for RS method performance evaluation purposes. If

the ratio is “too small”, then the number of required observations can be prohibitively

high. If the ratio is large, then it is it difficult to differentiate between the performance of

RS methods as all will have modest sample-size requirements.

Knowledge of the asymptotic variance of the underlying simulated process allows

for good selection of the ratio σδ * . For example, if it is assumed that 24 initial

observations, 0n , is an adequate sample size for obtaining relatively good variance

estimation, then generating random numbers from a)5.1,0(),(NNormal =σµ

distribution with batch size 1=m allows selection of the indifference-zone parameter in

the following manner:

 30619.0
24

5.1
0

* ===
n

σδ (19)

 46

Selection of this parameter enables analysis of performance within one standard deviation

of prescribed performance. All RS method comparisons in this chapter select the

indifference-zone parameter, *δ , in a similar fashion.

Given similar parameterization, 1000 independent experiments have been

replicated of the RS methods given here to empirically assess performance. Unless

otherwise noted, the LF configuration of means is used where)5.1,(iN µ random

numbers are generated with 011 == −kµµ , 30619.0=kµ , 6=k , 1=m , and

30619.0* =δ . In this context, an experiment denotes the use of a particular RS method

to determine the “best” of 6=k system configurations. Here, the “best” system

configuration is 30619.06 =µ . Note that an),(σµNiid − process with batch size,

1=m , is used for initial RS method comparison and development. This simplification

eases computational expense and analysis. However, batching techniques such as Batch

Means (BM) and Overlapping Batch Means (OBM) are applied later in this chapter to an

)1(AR process to assess RS method robustness to serially correlated simulation output.

Separate simulators, in terms of data storage and parameterization, are used for

each system configuration. Each simulator provides either),(σµNiid − or)1(AR

observations following parameters set at runtime through the use of script files. At each

stage each simulator has the ability to communicate its status and interpret controller

issued commands, thus enabling RS methods to be applied by the controller module.

Using the controller, each experiment automatically terminates and regenerates until the

required number of experiments are replicated. Also, the controller module stores

experimental outcomes that summarize the performance of the RS method after each

 47

experiment replication. A detailed discussion of the control architecture can be found in

section 3.1.

After a RS method has been implemented, there are two performance metrics that

facilitate side-by-side comparison. First, the achieved probability of correct selection,

)(CSP , indicates whether the method meets or exceeds the desired probability *P . For

the indifference-zone formulation, the event of correct selection is observed when the

“best” configuration is in fact selected by the method. The second metric for comparing

RS methods involves the average number of required raw or unbatched observations, T ,

necessary to select a configuration. This metric corresponds to the computational

efficiency of the method. All RS method comparisons in this chapter utilize these

metrics to assess performance and computational requirements.

4.2.2 Data Encapsulation Methods

Embedded estimators of mean and variance enable RS method calculations, such

as the number of required observations. Point estimators for the mean are relatively easy

to calculate as they sum observation values, in this case iX , and divide by the number of

observations, here n:

 ∑
=

=
n

i

i

n
X

X
1

 (20)

Variance estimation of this sample mean is found from sample observations by:

 []
)1(

)(
1

2
2

−

−
==
∑
=

∧

nn

XX

n
SXVAR

n

i
i

 (21)

By algebraic manipulation:

 48

 []
)1(2

1

2

1

2

−

⎟
⎠

⎞
⎜
⎝

⎛
−

=
∑ ∑
= =

∧

nn

XXn
XVAR

n

i

n

i
ii

 (22)

Selected terms from the last relationship can be calculated and stored during simulator

execution thereby precluding the need for storage of historical data.

Under certain conditions it may be necessary to combine simulation output, as

discussed in section 2.2.3. The following relationship enables the combination of

variance estimators:

[]
n

XXVARnn
X

n

i
in

i
i

2

1

2

1

2
)1(⎟

⎠

⎞
⎜
⎝

⎛
+−

=
∑

∑ =

∧

=

 (23)

Also, if using batch means of size m with independent and identically distributed normal

data, then variance estimators are related in the following manner:

 [] []
m
XVARXVAR Obs

Batch

∧
∧

= (24)

Technical requirements for using these embedded estimators reside on ensuring

the absence of under/overflow within developed software. In particular, the ∑
=

n

i
iX

1

2 term

can become relatively large. Also, there are known issues with C, C++, and C# when

variable typecasting is absent.

4.2.3 Random Number Generator Verification

Simulators for both),(σµNiid − and)1(AR processes require random number

generators. The uniform random number generator used here is the multiple recursive

generator presented in Law and Kelton (2000). The normal random number generator is

 49

the polar Acceptance-Rejection (A-R) method described in the same source. The normal

random number generator provides the underlying process for the simulator that uses

stipulated configuration parameters set at runtime to include the initial random number,

or seed.

Implementation of a known random number generator on any compiler requires

some form of empirical testing. Specific implementation issues generally revolve on

correctly mimicking the prescribed distribution, serial correlation of the data, and the

relative independence of observed data. To that end, empirical testing of the

implemented normal random number generator follows.

The probability plot shown in Figure 10 indicates a relatively good

)5.1,0(),(NNormal =σµ distribution. The Anderson-Darling test value is high, thereby

reinforcing confidence that the generator is in fact performing properly. The small serial

correlation, or in this case autocorrelation if observations are assumed to be time-based,

shown in Figure 11 is also promising. A runs test on the data also indicates

independence. Incorporated into a basic simulator, these results verify random number

generator characteristics enabling performance comparison between different RS

methods.

 50

Av erage: 0.0261289
StDev : 1.31281
N: 100

Anderson-Darling Normality Test
A-Squared: 0.399
P-Value: 0.359

-3 -2 -1 0 1 2 3 4

.001

.01

.05

.20

.50

.80

.95

.99

.999

Pr
ob

ab
ilit

y

Figure 10: Polar Acceptance-Rejection Normal Random Number Generator Probability

Plot

and,

5 15 25

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Au
to

co
rr

el
at

io
n

 1
 2
 3
 4
 5
 6
 7

 8
 9
10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25

 0.03
-0.18
 0.06
 0.04
-0.07
-0.19
 0.06

 0.16
 0.00
-0.02
 0.03
-0.09
 0.03
 0.10

-0.13
-0.13
 0.10
 0.07
-0.20
-0.15
-0.01

 0.12
-0.07
-0.12
 0.18

 0.35
-1.81
 0.59
 0.34
-0.65
-1.82
 0.60

 1.52
 0.00
-0.22
 0.25
-0.77
 0.25
 0.89

-1.14
-1.13
 0.87
 0.62
-1.70
-1.23
-0.11

 0.95
-0.57
-0.95
 1.45

 0.13
 3.55
 3.94
 4.07
 4.57
 8.48
 8.94

11.92
11.92
11.99
12.07
12.92
13.02
14.18

16.14
18.15
19.37
20.01
24.97
27.75
27.77

29.51
30.17
32.01
36.44

Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ

Lag

Figure 11: Polar Acceptance-Rejection Normal Random Number Generator

Autocorrelation

 51

4.2.4 Sample RS Method Experiment

Given a simulator mimicking a system with an underlying),(σµNiid − or

)1(AR process, a control mechanism is required to implement RS methods.

Communication of simulated system data at each stage, i.e., obtaining a specified number

of observations, enables the application of RS methods. Here, an experiment consists of

using a RS method to select the “best” system configuration. The following sample

experiment highlights the specific simulation architecture and process used in this effort.

Figure 12 highlights an implementation using this control mechanism to use

Rinott’s method (discussed in section 2.6). Recall Rinott’s method is two-stage.

Experimental setup, in the top left, includes RS method parameterization of the first-stage

number of observations 100 =n , the desired probability 95.01* =−= αP , and the

indifference-zone parameter 30619.0* =δ . The underlying process for this sample

experiment is),(σµNiid − . Shown in the top right, the experimenter has set the

required number of replications to 1000. At the time of the snapshot in Figure 12, the

control mechanism is between the first and second-stage of experiment 125 out of the

required 1000 experiments. Under experimental status, observe approximately 36

seconds of computer-time have elapsed. Rinott’s constant is an integral component of

this RS method. The location of simulation initialization files helps to identify competing

configurations. Estimated mean and variance highlight specific system configuration

performance. Of interest, the “Rinott Number” is the total number of observations

estimated by the RS method to be necessary for system configuration comparison. Note

that higher first-stage variability results in a higher number of estimated raw

observations. Overall performance of the method is described by estimators of the

 52

probability of correct selection (CS),)(ˆ CSP , and the average number of required

unbatched observations, T̂ . In this case, the performance estimators are 0.992 and 334

respectively. Knowledge of the true “best” configuration allows for calculation of

)(ˆ CSP .

Figure 12: Sample Ranking and Selection Method Experiment

Comparing first and second-stage counters of experiment replications in which

each system configuration is considered the “best” at a particular stage requires

explanation based on knowledge of the system configurations. In this example, all of the

system configurations were considered the “best” during the first-stage of at least one of

the 124 initial experiments, but not necessarily the final choice as “best”. This implies

the system configurations are closely competitive, unless enough observations are taken.

 53

Observe the last system configuration, C6, is selected as the “best” in 99% of the

experiments.

4.3 R+ and KN+ Methods Performance Analysis

Comparison of the Rinott (R+) and the Kim and Nelson (KN+) methods allows

for verification and validation of the implementation, and also provides insight for

improving RS methods. Verification is obtained by manual numerical comparison using

spreadsheets and table lookups. Validation comes from comparing performance trends of

these methods to other published analyses. Insight for new method development comes

from both analysis of these methods’ algorithms and their observed performance.

Initially, both methods are parameterized in the ES and LF configuration of

means with 30619.0* =δ , 6=k , 1=m , and an),(σµNiid − underlying process.

After method performance comparison on ES and LF configurations, the LF

configuration will be used primarily unless otherwise noted. Comparative analysis

focuses on varying the desired probability *P , the first-stage number of observations 0n ,

and ultimately the batch size m . Performance metrics are estimators of the probability of

correct selection,)(ˆ CSP , and average number of required raw/unbatched observations,

T̂ , obtained from 1000 independent experiment replications. Since the KN+ method is

multistage, the upper bound on the number of required unbatched observations,

determined at the end of the first stage as detailed earlier in section 2.6.2, is also reported.

The remainder of this section discusses experimental results.

 54

4.3.1 Varying Desired Probability

In this experiment, ranking and selection method performance on both the LF and

ES configuration of means is explored as the desired probability *P is varied. As shown

in Table 1 and Figure 13, both R+ and KN+ methods exceed the desired probability in all

conditions. In fact, the methods surpass the desired probability implying the number of

required observations is higher than necessary. KN+ outperforms R+ in exceeding the

desired probability at all levels. Also, note the desired probability is exceeded to a

greater extent in the ES configuration of means than the LF configuration. This follows

since it is easier to distinguish between competing populations in the ES configuration

than in the LF configuration. For the KN+ method, the estimated observation

requirements along with the associated upper bound calculated by this method are

reported.

Table 1: R+ and KN+ Comparison Varying Desired Probability

30619.0* =δ , 100 =n , LF/ES,),(σµNiid − , 1=m
 LF ES

*P)(ˆ CSP T̂ /Upper Bound)(ˆ CSP T̂ /Upper Bound
0.75 R+ 0.815 146 0.934 145

 KN+ 0.886 103/349 0.955 57/348
0.90 R+ 0.977 265 0.978 251

 KN+ 0.984 169/568 0.992 96/568
0.95 R+ 0.968 337 0.990 337

 KN+ 0.976 236/754 0.993 131/746

 55

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.75 0.9 0.95
Desired Probability

Es
tim

at
ed

 P
(C

S) Desired Probability P*
Rinott (LF)
Kim and Nelson (LF)
Rinott (ES)
Kim and Nelson (ES)

Figure 13: R+ and KN+ Estimated P(CS) versus Desired Probability

The average number of required raw observations, T̂ , shown in Figure 14,

increases as the desired probability, *P , is raised for both methods. From the tabular

values, observe the upper bound on the estimated number of required observations for

KN+ is much higher than the number of required observations for R+. On the other

hand, the benefit of the multi-stage nature of the KN+ method is shown by directly

comparing the number of required observations. Unlike the two-stage R+ method, the

multi-stage aspect of the KN+ method allows for elimination of simulated system

configurations, resulting in a lower average number of required raw observations. Also,

the average number of required observations is smaller for the ES mean configuration

 56

than the LF mean configuration. Again, it is easier to distinguish between competing ES

configurations than those in the LF configuration.

0

50

100

150

200

250

300

350

0.75 0.9 0.95
Desired Probability

R
eq

ui
re

d
O

bs
er

va
tio

ns

Rinott (LF)
Kim and Nelson (LF)
Rinott (ES)
Kim and Nelson (ES)

Figure 14: R+ and KN+ Required Observations versus Desired Probability

4.3.2 Varying First-Stage Number of Observations

In this experiment, the initial number of observations, 0n , was varied.

Parameterization for this experiment includes an underlying),(σµNiid − process, batch

size 1=m , indifference-zone parameter 30619.0* =δ , 6=k competing system

configurations, and a desired probability 95.0* =P in the LF configuration of means. As

shown in Table 2 and Figure 15 below, the KN+ method requires fewer total raw

observations, T̂ , than the R+ method except when 0n is large (where both methods

 57

require the same amount). Achieved)(ˆ CSP is statistically equivalent to or exceeds the

desired probability, *P , in all conditions. Also, a large number of initial observations

creates computational inefficiency, i.e., a large total observation requirement, in both

methods. While the upper bound for required observations for the KN+ method is always

larger than that for the R+ method, the screening process within the KN+ method allows

for increased computational efficiency. This efficiency is obtained by eliminating

competing system configurations during the screening phase of this method, as discussed

in section 2.6.2.

Table 2: R+ and KN+ Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF,),(σµNiid − , 1=m

0n Method)(ˆ CSP T̂ /Upper
Bound 0n Method)(ˆ CSP T̂ /Upper

Bound
R+ 0.982 420 R+ 0.951 262 8

KN+ 0.990 277/928
100

KN+ 0.968 143/419
R+ 0.990 356 R+ 0.963 263 10 KN+ 0.968 235/764 110 KN+ 0.984 147/416
R+ 0.952 292 R+ 0.969 263 20 KN+ 0.968 162/533 120 KN+ 0.978 152/416
R+ 0.951 278 R+ 0.967 263 30 KN+ 0.971 152/481 130 KN+ 0.943 157/413
R+ 0.967 274 R+ 0.986 261 40 KN+ 0.992 149/468 140 KN+ 0.986 162/409
R+ 0.970 269 R+ 0.955 261 50 KN+ 0.963 141/446 150 KN+ 0.969 168/405
R+ 0.976 258 R+ 0.951 260 60 KN+ 0.957 137/420 200 KN+ 0.993 205/399
R+ 0.971 266 R+ 0.963 262 70 KN+ 0.975 140/432 250 KN+ 0.969 252/395
R+ 0.948 262 R+ 0.966 300 80 KN+ 0.967 141/428 300 KN+ 0.979 301/394
R+ 0.958 261 R+ 1.000 400 90 KN+ 0.972 143/422 400 KN+ 1.000 400

 58

Figure 15 shows how the initial number of observations impacts the total number

of observations for both methods. Both methods exhibit concave behavior where both a

low and high number of initial observations, 0n , equate to a high number of total raw

observations. The location of this curve relative to the number of initial observations,

depends upon the selection of the indifference-zone parameter. So, if there is no fore-

knowledge on the variance of the underlying process, as assumed in both the R+ and

KN+ methods, then selecting the number of initial observations can be problematic.

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Number of Initial Observations

Ex
pe

ct
ed

 N
um

be
r o

f R
eq

ui
re

d
O

bs
er

va
tio

ns

Rinott+

Kim and Nelson+

Figure 15: Initial Number of Observations versus Required Number of Observations

 59

4.3.3 Batched Data Method Performance

The RS methods discussed in section 2.6 rely on the assumption of independent

and identically distributed, iid, normal data. Batching methods, discussed in section 2.5,

enable approximately iid normal observations from underlying non-normal distributions

when m, the batch size, is sufficiently large. The batching methods explored in this

section include Batch Means (BM) and Overlapping Batch Means (OBM). Incorporation

of these batching methods permits the application of RS methods to more realistic

simulations that generate data from a variety of stochastic processes. As a test case,

batching methods are applied to an autoregressive)1(AR process that mimics a system

with correlated observations. Note an)1(AR process is often used to represent

observations from a time-based system. With a mean for system i, iu , an)1(AR process

generates each observation ,,2,1 , K=jX ij for competing system configurations

ki ,,2,1 K= from the relationship:

 jiijiiji ZuXuX ,1,,)(+−+= −φ (25)

k
kjijik XXCovR φ== −),(,, , where 11 <<− φ . The error terms, jiZ , , are distributed iid

)1,0(2φ−N .

Unless specified otherwise, 22.0=φ , which creates mildly correlated

observations. A variance estimator for correlated data follows:

 [] ∑
−

=

∧

⎟
⎠
⎞

⎜
⎝
⎛ −+=

1

1
0 1

m

k
kBatch R

m
kRXVARm (26)

It can be shown that with large batch size, m, the variance of the sample mean for an

)1(AR process converges to:

 60

 []
φ
φ

−
+

→
1
1

BatchXmVAR (27)

Using 2σ̂ as an estimator for []BatchXVARm
∧

 facilitates our choice of the indifference-

zone parameter as:

00

* 251.1ˆ
nmn

== σδ (28)

The remainder of this section focuses on R+ and KN+ technique performance using an

)1(AR process with BM and OBM data acquisition methods.

Batch Means

 The BM method obtains b batched observations of size m. The number of initial

batches may be obtained from the relationship ⎡ ⎤mnb 00 = where 0n is the number of

initial unbatched or raw observations. A side note, the embedded data estimators create

batched observations for the adaptive control techniques given in section 2.6, requiring

no more than 1−m excess unbatched observations from the simulation. Central to any

batching method is how large the batch size must become to enable sufficient estimation

of the underlying process variance, []XmVAR
m ∞→

≡ lim2σ . For any process the

convergence of []XmVAR to 2σ may be demonstrated by simulating the process while

increasing the batch size as long as the underlying distribution is stationary (along with

other mild conditions).

For example, the following experiment illustrates variance convergence for a

specific)1(AR process. Figure 16 highlights estimated variance using the BM method

with an)1(AR process with 22.0=φ and 200000 =n as a function of batch size. 1000

 61

independent replications of a simulated)1(AR process facilitated asymptotic variance

estimation. Note asymptotic variance estimation is obtained by averaging the variance

estimator from each experiment. In fact, variance estimators have inherent variability as

a result of the underlying)1(AR process. As both R+ and KN+ methods rely on variance

estimators to determine the number of required observations, underestimation of variance

will result in a lower estimate of required observations, with a corresponding lower

)(CSP . For this particular)1(AR process, batch sizes below 40 result in

underestimation, at some points significant, of the asymptotic variance. Batch sizes

above 40 indicate sufficient convergence of the variance estimators to the asymptotic

variance. Note the asymptotic variance is indicated by the flat line obtained from the

relationship 564.1
1
1

=
−
+
φ
φ .

 62

1

1.4

1.8

0 5 10 15 20 25 30 35 40

Batch Size

Es
tim

at
ed

 V
ar

ia
nc

e

BM Variance
True Variance

Figure 16: BM Estimated Variance Parameter versus Batch Size for AR(1) Data

Table 3 presents the experimental results of the R+ and KN+ methods applied to

an)1(AR process while obtaining observations with the BM method. Experiment

parameterization involved setting 22.0=φ , 42000 =n , 95.0* =P , 6=k competing

system configurations, and 4200564.1019298.0* ==δ while varying both the batch

size, m, and the initial number of batched observations 0b . The required raw observation

upper bound for the KN+ method is also reported. Intuitively, as 0b decreases, the

number of required unbatched or raw observations, T̂ , increases. Since the variance

estimator is based on a 2χ distribution with 10 −b degrees of freedom, the variance of

that distribution is high for a low 0b . This is consistent with results found in the iid case.

 63

Of special interest is the relatively poor performance, in terms of achieving the desired

probability, of the R+ method when the batch size is small. This can be attributed to the

lack of asymptotic convergence of the variance estimator. An experiment follows to

determine a sufficiently large batch size for acceptable R+ method performance. Note

that, in this experiment, the KN+ method is not as susceptible to poor)(ˆ CSP

performance as the R+ method when there is a lack of asymptotic variance convergence.

Lastly, KN+ requires far fewer raw observations due to its screening process.

Table 3: R+ and KN+ Comparison Using Batch Means while Varying Batch Size

019298.0* =δ , 95.0* =P , 42000 =n , LF,)1(AR , 22.0=φ
 R+ KN+

m 0b)(ˆ CSP T̂)(ˆ CSP T̂ /Upper Bound
10 420 0.887 43244 0.968 20912/64676
25 168 0.940 44861 0.964 22834/69939
50 84 0.936 45917 0.972 23005/73263
100 42 0.952 46825 0.976 25219/82739
150 28 0.976 51321 0.955 30191/94992
200 21 0.956 51826 0.974 29919/99284
300 14 0.941 53732 0.962 33371/110908

Table 4 explores the R+ method’s)(ˆ CSP performance as the number of initial

unbatched observations is increased. This experiment determines if this specific)1(AR

process with 22.0=φ , a batch size of 300 or larger and 42000 >n ensures sufficient

variance convergence for acceptable R+ method performance. Parameterization for this

experiment includes 95.0* =P , 300=m , 6=k competing system configurations, and

0
* 564.1 n=δ varying with the number of initial unbatched observations. Compared

to the previous experiment, this experiment indicates the R+ method achieves the desired

 64

probability with a sufficiently large batch size. However, the number of unbatched

observations is significantly higher thereby increasing computational expense.

Table 4: R+ Method Analysis with Varying Initial Unbatched Observations

95.0* =P , 300=m , 0
* 564.1 n=δ , LF,)1(AR , 22.0=φ

0n 0b)(ˆ CSP T̂
4200 14 0.941 53732
8400 28 0.973 95148
12600 42 0.964 140036
16800 56 0.957 189987
21000 70 0.963 229749
25200 84 0.984 280430

Overlapping Batch Means

The Overlapping Batch Means (OBM) method obtains 1+−= mnb batched

observations. The number of initial batches may be obtained from the relationship

100 +−= mnb where 0n is the number of initial unbatched or raw observations. Again,

the embedded data estimators create batched observations for the adaptive control

techniques given in section 2.6. A side note, to speed the distributed simulation

architecture discussed in section 3.1, simulation sampling was modified to acquire m

OBM observations for multi-stage RS methods. Worst case from this modification is

1−m excess unbatched observations from the simulation executable.

Clearly, for the same number of unbatched or raw observations OBM obtains

more batched observations than BM; however, OBM batches are highly correlated. It

can be shown that as both the ratio mnb = and m become sufficiently large, the

following estimator is consistent for the underlying process variance:

 65

 ()() () ()()∑
+−

=

−
−+−

≡
1

1

22
0 ,

1

mn

j
ii nXmjX

mnmn
nmmV (29)

Figure 17 highlights the estimated variance of an)1(AR process with 22.0=φ

and 200000 =n while varying batch size using the OBM method. This experiment

determines the location of asymptotic variance convergence for this specific)1(AR

process. 1000 independent replications were made at selected mn ratios. Note

asymptotic variance estimation is obtained by averaging the variance estimator from each

experiment. Again, as in the BM case, variance estimators have inherent variability as a

result of the underlying)1(AR process. As both the R+ and KN+ methods rely on

variance estimators to determine the number of required observations, underestimation of

variance will result in a lower estimate of the number of required observations, with a

corresponding lower)(CSP . This empirical analysis implies a ratio mn greater than 8

is necessary for OBM usage when applied to an underlying)1(AR process with

22.0=φ .

 66

0.2

0.6

1

1.4

1.8

0 5 10 15 20 25 30 35 40 45 50

n/m Ratio

Es
tim

at
ed

 V
ar

ia
nc

e

OBM Variance
True Variance

Figure 17: OBM Estimated Variance versus n/m Ratio for AR(1) Data

Table 5 presents the experimental results of the R+ and KN+ methods applied to

an)1(AR process while obtaining batched observations with the OBM method.

Parameterization for this experiment includes 22.0=φ , 84000 =n , 95.0* =P ,

6=k competing system configurations, and 8400564.1013646.0* ==δ ; both batch

size, m, and the initial number of OBM observations, 0b , were varied. Note the number

of initial unbatched observations, 0n , remains constant.

This experiment highlights the necessity of asymptotic variance convergence for

appropriate use of the R+ and KN+ ranking and selection methods. Asymptotic variance

estimator convergence for an)1(AR process is obtained by both sufficiently large m and

 67

a large mn ratio when using OBM. Ranking and selection method performance is

relatively poor in this experiment indicating m and/or the ratio mn are not sufficiently

large. Observe that the estimated)(ˆ CSP is nominally achieved with a large mn ratio,

implying a necessity for an increase in the number of initial unbatched observations.

Table 5: R+ and KN+ Comparison Using Overlapping Batch Means while Varying Batch
Size, 84000 =n

013646.0* =δ , 95.0* =P , 84000 =n , LF,)1(AR , 22.0=φ
 R+ KN+

m 0b)(ˆ CSP T̂)(ˆ CSP T̂ /Upper Bound
10 8391 0.951 86819 0.953 41872/127280
25 8376 0.935 89075 0.952 43514/132585
50 8351 0.944 89861 0.933 42938/135185
100 8301 0.933 88517 0.956 43259/135788
150 8251 0.944 87038 0.942 42403/134688
200 8201 0.914 85283 0.939 41699/135308
300 8101 0.916 85254 0.913 42456/137350
400 8001 0.938 86436 0.925 41390/138420
500 7901 0.917 83850 0.927 40502/137088
600 7801 0.928 82064 0.924 40433/136469

Table 6 extends the previous experiment by increasing the initial number of

unbatched observations, 0n , by a factor of three from 8400 to 25200. This allows for

larger mn ratios than the previous experiment along with relatively large batch sizes.

The desired probability is met by this increase in the number of initial unbatched

observations at the cost of added computational expense. This experiment shows the

validity and computational requirements of using R+ and KN+ RS methods on

underlying processes that are not iid normal as long as batching methods are applied

appropriately.

 68

Table 6: R+ and KN+ Comparison Using Overlapping Batch Means while Varying Batch
Size, 252000 =n

007878.0* =δ , 95.0* =P , 252000 =n , LF,)1(AR , 22.0=φ
 R+ KN+

m 0b)(ˆ CSP T̂)(ˆ CSP T̂
100 25101 0.982 272346 0.968 133642
200 25001 0.971 270824 0.940 130027
300 24901 0.969 273142 0.952 131120
400 24801 0.953 270408 0.957 135667
500 24701 0.968 269023 0.945 130849

Batch Method Summary

Data batching methods like BM and OBM allow for normal observations under

certain conditions from simulations whose data fit a variety of distributions. BM requires

a relatively large number of unbatched observations along with a sufficiently large batch

size to ensure proper ranking and selection method performance. The OBM method

requires fewer raw observations than the BM method for the same number of batched

observations; however, OBM batches are correlated. This necessitates a large mn ratio

along with a large batch size m to ensure consistent variance estimation. Once

asymptotic variance convergence is obtained, RS methods such as R+ and KN+ can meet

the requirements of)(CSP .

4.3.4 Summary

Implementation of the Rinott (R+) and the Kim and Nelson (KN+) RS methods

provides a baseline for the new RS methods developed in the next section. Several

insights from these results also highlight potential improvements. First, embedded data

 69

estimators can potentially decrease the required number of raw observations. Second, the

reliance of these methods on the initial number of observations motivates new methods

whose total required observations are not sensitive to high or low initial observation

settings. Finally, batching methods allow these RS methods to be used with simulated

processes generating correlated output, but warrant a mechanism for confirming

asymptotic variance convergence to ensure that the desired)(CSP is achieved.

4.4 Ranking and Selection Method Development

There are several possible improvements to current RS methods. Note R+ and

KN+ both rely on variance estimators from first-stage observed data to estimate the

number of observations required in second and later stages. The first new RS method

developed here uses variance estimators from current data, which is enabled by the data

encapsulation methods discussed in section 4.2.2. Since the desired probability is often

greatly exceeded, a second RS method introduces a reduction coefficient in the

calculation determining the number of required raw observations. The third new RS

method incorporates designer intuition about simulated system configuration

performance. The fourth new method presented here uses embedded data calculations

for the degrees of freedom to reduce the number of required raw observations. Lastly, a

new method is explored which incorporates the current number of simulated system

configurations still in contention for selection as the “best”. The remainder of this section

explores corresponding extensions to current RS methods.

 70

4.4.1 BGP Technique 1

Recall the KN+ method described in section 2.6.2. In this method the variance of

the difference between observations from competing system configurations,

222
illi Vvv =+ , is used to eliminate system configurations from analysis using:

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= r

Vmh
r

rW il
il 2

2
0

2

2
,0max

δ
δ (30)

Note this variance estimator, 2
ilV , is based on first-stage observations. The

Benson/Goldsman/Pritchett (BGP) 1 method modifies the KN+ method by using the

current variance estimator of the difference as enabled by the embedded data

encapsulation methods presented in section 4.2.2.

The next experiment uses the LF configuration of means, a desired probability of

95.01* =−= αP , 6=k competing system configurations, and an indifference-zone

parameter of 30619.0* =δ , and a batch size 1=m . The underlying simulated process

for this experiment is),(σµNiid − where 5.1=σ . 1000 independent replications were

made for each experiment. The first-stage number of initial observations, 0n , varies in

this experiment. Overall performance of the method, described by estimators of the

probability of correct selection,)(ˆ CSP , average number of required raw observations T̂ ,

and the upper bound on the number of required raw observations, is shown below in

Table 7. Recall the upper bound on the number of required raw observations is

calculated during the second-stage of the KN+ method.

 71

Table 7: BGP1 and KN+ Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF,),(σµNiid − , 1=m
BGP1 KN+

)(ˆ CSP T̂ /Upper Bound)(ˆ CSP T̂ /Upper Bound
80 =n 0.989 234/945 0.990 277/928

100 =n 0.982 207/760 0.968 235/764
200 =n 0.975 159/543 0.968 162/533
300 =n 0.985 147/478 0.971 152/481
400 =n 0.986 142/469 0.992 149/468
500 =n 0.984 140/444 0.963 141/446
600 =n 0.959 139/444 0.957 137/420
700 =n 0.965 138/434 0.975 140/432
800 =n 0.967 139/427 0.967 141/428
900 =n 0.965 140/422 0.972 143/422

1000 =n 0.971 141/420 0.968 143/419

Recall the assumption of strong consistency, where ii rX µ→)(as ∞→r with

probability one. Here, iµ is the steady-state mean from system i and)(rX i is the sample

mean based on r observations from system i. Assuming strong consistency, updated

variance estimators are less than or equal to first-stage variance estimators guaranteeing

BGP1 will perform at least as well, if not better, than the KN+ method. Observed

performance of BGP1, in terms of the required number of raw observations, is marginally

better than KN+, especially when the number of initial observations is small.)(ˆ CSP is

not statistically differentiable between the methods. Note)(ˆ CSP meets or exceeds the

desired probability in all conditions. BGP1 performance in terms of the average number

of required raw observations, T̂ , is used for comparative analysis for subsequent

methods.

 72

4.4.2 BGP Technique 2

BGP2 adds to BGP1 a reduction coefficient, cR , to decrease the number of

required observations. To do so, this method recognizes that the achieved)(CSP of

BGP1 and other methods often exceeds the specified requirement. The reduction

coefficient reduces the conservatism of the method. Specifically, this method uses the

following relationship during the screening process:

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= r

Vmh
r

RrW il
cil 2

2
0

2

2
,0max

δ
δ (31)

The reduction coefficient effectively increases the elimination rate during the screening

phase of the method. The following experiment sets 80.0=cR , with results shown in

Table 8.

Table 8: BGP2 and BGP1 Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF,),(σµNiid − , 1=m
BGP2 ()80.0=cR BGP1

)(ˆ CSP T̂ /Upper Bound)(ˆ CSP T̂ /Upper Bound

80 =n 0.992 202/952 0.989 234/945
100 =n 0.980 178/752 0.982 207/760
200 =n 0.942 135/534 0.975 159/543
300 =n 0.973 123/483 0.985 147/478
400 =n 0.949 121/473 0.986 142/469
500 =n 0.940 119/449 0.984 140/444
600 =n 0.931 119/439 0.959 139/444
700 =n 0.936 119/431 0.965 138/434
800 =n 0.939 121/415 0.967 139/427
900 =n 0.957 127/417 0.965 140/422

1000 =n 0.952 132/414 0.971 141/420

 73

Improvement in terms of reduced observations is evident. The relative

performance improvement also decreases as the number of initial observations, 0n ,

becomes large. Observe the desired probability is not achieved with several settings of

the initial number of observations, 0n . Other experiments where the reduction

coefficient is set to 60.0=cR indicate a greatly increased failure rate in achieving the

desired probability. On the other hand, experiments with a reduction coefficient set to

90.0=cR generally achieved the desired probability. Based on these factors, the

introduction of a reduction coefficient may aid in the application of RS methods in some

situations, but must be carefully checked to ensure the desired probability is being

achieved.

4.4.3 BGP Technique 3

Another possible performance improvement adds designer intuition to BGP1. For

example, a designer may have some intuition, as a ratio value inferring some relative

strength of one system configuration relative to others. This intuition can be used to take

more initial observations from the “believed” best system configuration. Therefore,

BGP3 will:

1. Sample a system configuration identified by designer intuition for a scaled

number of additional observations during the first stage of the RS method.

2. Retain the intuitively selected system configuration, i.e., keep it in contention,

until termination of the experiment.

Table 9 presents BGP3 experimental results when the designer has “good”

intuition, i.e, selects the “best” system configuration. Two ratio values are selected

 74

intuitively; specifically, multipliers of the initial number of observations are 02n and

05n .

Table 9: BGP3 and BGP1 Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF – Good Intuition,),(σµNiid − , 1=m
BGP3 ()02n BGP3 ()05n BGP1

)(ˆ CSP T̂ /Upper
Bound

)(ˆ CSP T̂ /Upper
Bound

)(ˆ CSP T̂ /Upper
Bound

80 =n 0.999 232/880 0.993 226/831 0.989 234/945
100 =n 0.998 202/718 0.999 197/693 0.982 207/760
200 =n 0.989 153/508 0.983 143/512 0.975 159/543
300 =n 0.983 138/452 0.955 133/462 0.985 147/478
400 =n 0.985 135/445 0.955 128/436 0.986 142/469
500 =n 0.971 131/429 0.941 153/410 0.984 140/444
600 =n 0.953 130/409 0.942 174/389 0.959 139/444
700 =n 0.983 125/398 0.925 171/387 0.965 138/434
800 =n 0.962 128/398 0.943 173/388 0.967 139/427

For a small number of initial observations, “good” intuition results in a high

estimated)(ˆ CSP and a lower number of total required observations. Also, a higher ratio

value achieves a lower number of required observations. Thus, relatively strong and

“good” intuition implies using a higher multiplier when the number of initial observations

is small.

However, a large multiplier combined with a large number of initial observations

can result in a failure to achieve the desired probability. Recall BGP3 calculates an upper

bound on the number of raw observations that is directly proportional to the value of the

first-stage variance estimator. Failure to achieve the desired probability is attributed to a

 75

relatively small upper bound, i.e., small first-stage variance estimator, on the number of

observations for the “best” system configuration.

Table 10 highlights BGP3 experimental results when both “good” and “poor”

intuition is used by the designer. BGP3 achieves the desired probability in all conditions.

Both “good” and “poor” intuition impact the required number of observations in a logical

manner, e.g., “good” intuition results in fewer required observations and vice versa. If

designer intuition is completely random, then using BGP3 results in a higher expected

number of observations. Also, the use of “good” intuition results in a lower number of

required observations when the number of initial observations is larger.

Table 10: BGP3 Intuition Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF – Intuition,),(σµNiid −
BGP3 ()02n POOR BGP3 ()02n GOOD BGP1

)(ˆ CSP T̂ /Upper
Bound

)(ˆ CSP T̂ /Upper
Bound

)(ˆ CSP T̂ /Upper
Bound

80 =n 0.990 246/883 0.999 232/880 0.989 234/945
100 =n 0.983 214/711 0.998 202/718 0.982 207/760
200 =n 0.971 169/509 0.989 153/508 0.975 159/543
300 =n 0.982 159/454 0.983 138/452 0.985 147/478
400 =n 0.978 153/444 0.985 135/445 0.986 142/469
500 =n 0.987 154/420 0.971 131/429 0.984 140/444

Unconditional retention of the intuitively selected “best” system configuration

may be overly cautious. Therefore, the following experiment explores changing BGP3 to

only use intuition to scale the initial number of observations while not retaining the

intuitively selected “best” system configuration should it be found to be no longer

competitive. Table 11 highlights experimental results. Again, the desired probability is

 76

achieved in all conditions. The modified BGP3 technique penalizes “poor” intuition to a

lesser extent. While the use of completely random intuition results in a slightly higher

number of expected observations, “good” intuition offers improved computational

performance.

Table 11: BGP3 without Retention Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF – Intuition,),(σµNiid − , 1=m
BGP3 ()02n POOR BGP3 ()02n GOOD BGP1

)(ˆ CSP T̂ /Upper
Bound

)(ˆ CSP T̂ /Upper
Bound

)(ˆ CSP T̂ /Upper
Bound

80 =n 0.988 237/887 0.992 231/885 0.989 234/945
100 =n 0.983 206/722 0.984 204/715 0.982 207/760
200 =n 0.989 158/504 0.983 154/510 0.975 159/543
300 =n 0.987 151/455 0.979 139/456 0.985 147/478
400 =n 0.967 146/442 0.976 136/445 0.986 142/469
500 =n 0.974 143/417 0.971 131/432 0.984 140/444

Thus, BGP3 is appropriate when practitioner intuition is reliable, but only

provides improved performance when using a relatively small number of initial

observations. However, without a priori knowledge on the relationship of the

indifference-zone parameter to the underlying variance, the selection of the initial number

of observations can be problematic. Manipulating the indifference-zone parameter

should not be considered because it ought to be selected as the point where the designer

would not differentiate between competing system configurations and thus should depend

on other considerations.

 77

4.4.4 BGP Technique 4

The theoretical bounding of updated variance estimators, 2
ilV , being less than or

equal to first-stage estimators, assuming variance consistency, implies ranking and

selection methods using updated variance estimators will always exhibit equal or

increased computational performance compared to methods such as KN+. Recall both

R+ and KN+ use first-stage variance estimators for second and later-stage calculations.

Also, recalculation of the test statistic, dh η22 = , with the current degrees of freedom,

d , results in a monotonically decreasing value for 2h . Embedded calculation of the

following relationships using updated variance estimators:

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= r

Vmh
r

rW il
il 2

2
0

2

2
,0max

δ
δ (32)

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη (33)

are generally smaller than first-stage calculations of the same relationships. BGP4 thus

incorporates embedded data estimators enabling updates of η and ()rWil at each stage as

a heuristic RS method.

4.4.4.1 BGP4 Initial Performance Assessment

Table 12 below compares performance of BGP4 and BGP1. Experiment

parameterization includes the LF configuration of means, a desired probability of

95.0* =P , an indifference-zone parameter of 30619.0* =δ , 6=k competing system

configurations, and a batch size 1=m . The underlying simulated process for this

experiment is),(σµNiid − where 5.1=σ . 1000 independent replications were made in

 78

each experimental condition. The first-stage number of initial observations, 0n , varies in

this experiment. Overall performance of the method, described by estimators of the

probability of correct selection,)(ˆ CSP , average number of required raw observations T̂ ,

and the upper bound on the number of required raw observations is shown below.

Table 12: BGP4 and BGP1 Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF,),(σµNiid − , 1=m
BGP4 BGP1

)(ˆ CSP T̂ /Upper

Bound
)(ˆ CSP T̂ /Upper

Bound
80 =n 0.966 133/897 0.989 234/945

100 =n 0.976 132/757 0.982 207/760
200 =n 0.985 133/541 0.975 159/543
300 =n 0.982 130/476 0.985 147/478
400 =n 0.981 130/466 0.986 142/469
500 =n 0.984 133/440 0.984 140/444
600 =n 0.989 133/424 0.959 139/444
700 =n 0.988 133/419 0.965 138/434
800 =n 0.979 135/416 0.967 139/427
900 =n 0.975 135/417 0.965 140/422

1000 =n 0.964 142/416 0.971 141/420

Observe there is significant reduction in the number of required observations

when the number of initial observations, 0n , is small. Additionally, the number of

required observations for BGP4 is approximately flat when the number of initial

observations is less than 100, implying the selection of 0n has little effect on method

performance for relatively small 0n values. Figure 18, below, graphically confirms this

observation.

 79

Figure 18 compares the ranking and selection methods KN+, BGP1, and BGP4.

KN+ and BGP1 have similar performance. Both methods produce T̂ values that are

concave in nature, illustrated by the decreasing then increasing number of required

observations as the number of initial observations, 0n , becomes larger. BGP1

outperforms KN+ to some extent when 0n is small. On the other hand, BGP4 exhibits

different behavior in that its number of total required observations is approximately

constant when the number of initial observations is small. This is a result of using

embedded variance estimators. Therefore, BGP4 is promising as the selection of the

initial number of observations, 0n , has little, if any, effect on the number of total required

observations for small 0n values.

100

150

200

250

300

8 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Initial Observations

R
eq

ui
re

d
O

bs
er

va
tio

ns

KN+
BGP1
BGP4

Figure 18: KN+, BGP1, and BGP4 Comparison of Initial Number of Observations versus
Required Number of Observations

 80

4.4.4.2 BGP4 AR(1) Batch Means Performance

Application of BGP4 to a simulation with an underlying autoregressive,)1(AR ,

process using Batch Means (BM) for observation acquisition ascertains the robustness of

the method to the correlated output often generated by time-based simulations.

Experiment parameterization involved setting 22.0=φ , 42000 =n , 95.0* =P ,

6=k competing system configurations, and 4200564.1019298.0* ==δ while

varying both batch size, m, and the initial number of batched observations where

mnb =0 . Results from this experiment are shown in Table 13 for simulated

configurations possessing an underlying autoregressive process. Recall an)1(AR

process mimics systems with time-based observations or some type of correlation

between the data.

Table 13: BGP4 and KN+ Comparison Using Batch Means while Varying Batch Size
with Mildly Correlated Data

019298.0* =δ , 95.0* =P , 42000 =n , LF,)1(AR , 22.0=φ
 BGP4 KN+

m 0b)(ˆ CSP T̂ /Upper Bound)(ˆ CSP T̂ /Upper Bound
10 420 0.959 20550/65428 0.968 20912/64676
25 168 0.958 22199/69994 0.964 22834/69939
50 84 0.957 22313/73859 0.972 23005/73263
100 42 0.948 22785/82173 0.976 25219/82739
150 28 0.950 23010/90078 0.955 30191/94992
200 21 0.959 23423/96782 0.974 29919/99284
300 14 0.949 23617/109016 0.962 33371/110908

BGP4 achieves the desired probability, statistically, in all conditions. At a small

number of initial batches, 0b , BGP4 significantly outperforms the KN+ method. This is

attributed to the use of embedded data estimators enabling the method to anneal/conform

 81

to the underlying distributions. Note asymptotic variance convergence of the underlying

process is a requirement for proper method performance in terms of achieving the desired

probability.

Table 14 extends the previous experiment by changing 5.0=φ to increase the

correlation within the simulated)1(AR process. This increase in φ induces an

underlying process with higher variability. The indifference-zone parameter is set to

026726.042000.3* ==δ .

Table 14: BGP4 Using Batch Means while Varying Batch Size with Moderately
Correlated Data

026726.0* =δ , 95.0* =P , 42000 =n , LF,)1(AR , 5.0=φ

 BGP4 ()5.0=φ BGP4 ()22.0=φ

m 0b)(ˆ CSP T̂ /Upper Bound)(ˆ CSP T̂ /Upper Bound
100 42 0.947 22621/82101 0.948 22785/82173
150 28 0.946 22828/89693 0.950 23010/90078
200 21 0.958 23024/95294 0.959 23423/96782
300 14 0.949 23682/111031 0.949 23617/109016

BGP4 achieves the desired probability, statistically, in all conditions. Observe the

slight reduction in)(ˆ CSP with the higher φ . This experiment indicates encouraging

BGP4 performance on batched observations from a moderately correlated underlying

process.

Generally, time based simulations can produce highly correlated output. For

example, measuring separation between arriving entities to some location will naturally

produce highly correlated data. To ascertain the robustness of BGP4 in a highly

correlated environment, an)1(AR process with 95.0=φ provides an appropriate test

 82

case. The indifference-zone parameter is set to 096262.042000.39* ==δ for this

experiment. Note Equal Spacing (ES) of means is assumed for the configurations under

contention for selection as the “best”. This assumption gives us an example in which the

competing system configurations are differentiated by some significant factor. We would

expect to do well here, in terms of achieved)(CSP , since this is a “highly favorable”

configuration of the means. Experimental results are shown in Table 15.

Table 15: BGP4 Using Batch Means while Varying Batch Size with Highly Correlated
Data

096362.0* =δ , 95.0* =P , 42000 =n , ES,)1(AR , 95.0=φ
 BGP4

m 0b)(ˆ CSP T̂ /Upper Bound
100 42 0.961 10881/64898
200 21 0.981 12172/86007
300 14 0.970 13406/105144

BGP4 achieves the desired probability in all conditions. This experiment shows

promise for the use of BGP4 with highly correlated output given an assumed ES

configuration of means for the competing system configurations.

4.4.4.3 BGP4 AR(1) Overlapping Batch Mean Performance

Application of BGP4 to an autoregressive,)1(AR , process using Overlapping

Batch Means (OBM) for observation acquisition further explores the applicability of the

method. This experiment sets 22.0=φ , 252000 =n , 95.0* =P , 6=k competing

system configurations, and 25200564.1007878.0* ==δ , while varying both batch

size, m, and the initial number of batched observations where 10 +−= mnb . Note the

 83

difference between OBM and BM where batched observations are obtained from the

relationship mnb = . Results are shown in Table 16.

Table 16: BGP4 and KN+ Comparison Using Overlapping Batch Means while Varying
Batch Size

007878.0* =δ , 95.0* =P , 252000 =n , LF,)1(AR , 22.0=φ
 BGP4 KN+

m 0b)(ˆ CSP T̂)(ˆ CSP T̂
100 25101 0.960 133781 0.968 133642
200 25001 0.959 132874 0.940 130027
300 24901 0.961 133045 0.952 131120
400 24801 0.967 135944 0.957 135667
500 24701 0.972 134810 0.945 130849

BGP4 achieves the desired probability in all conditions. Computational reduction

relative to KN+ is not evident in this experiment. This is attributed to the selection of *δ

and 0n where KN+ achieves efficient performance. The relevant aspect of this

experiment is BGP4 achieving the desired probability when using OBM for observation

acquisition.

4.4.4.4 BGP4 Summary

BGP4 is a new ranking and selection method. BGP4 anneals or conforms in some

sense to the underlying simulated process. Clearly, BGP4 offers increased performance

in several areas. Given asymptotic variance convergence, BGP4 performs as well or

better than other RS methods in terms of computational requirements while achieving the

desired probability. Additionally, BGP4 avoids “guessing” on the initial number of

observations. Rather, asymptotic variance convergence and normally distributed

observations are the only requirements for proper method performance. Note that

 84

batched)1(AR observations are marginally normal. A formal statement of the BGP4

method follows:

For two systems i and l, the asymptotic variance of the difference between the two

systems, 22
li vv + , is estimated by applying one of the estimators presented in section 2.5

on the differenced series ,2,1, K=−= jXXD ljijilj .

Setup: Select confidence level α−1 , indifference-zone parameter 0>δ , first-stage

sample size 20 ≥n , and batch size 0nm < . Selection of 0n must ensure asymptotic

variance convergence. Calculate

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη (34)

Initialization: Let },,2,1{ kI K= be the set of systems still in contention, and let

dh η22 = . Obtain 0n observations ,,,2,1, 0njX ij K= from each system ki ,,2,1 K= .

For all li ≠ compute 2
0 ilVm , the sample asymptotic variance of the difference of systems

i and l.

Let

 ⎥
⎦

⎥
⎢
⎣

⎢
= 2

22

δ
il

i
mVh

N (35)

and

 ilili NN
≠

= max (36)

Here 1+iN is the maximum number of observations that can be taken from system i. If

1max0 +≥ ii Nn then stop and select the system with the largest ()0nX i as the best.

Otherwise, set the observation counter 0nr = and go to Screening.

 85

Screening: Set II old = .

update with the current degrees of freedom, d :

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη (37)

update with the current degrees of freedom, d , and η :

 dh η22 = (38)

update with the current test statistic, 2h , and estimated variance, 2
ilV :

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= r

mVh
r

rW il
il 2

22

2
,0max

δ
δ (39)

Let

}, allfor

),()()(and :{

ilIl

rWrXrXIiiI
old

illi
old

≠∈

−≥∈=
 (40)

Stopping Rule: If 1=I , then stop and select the system whose index is in I as the best.

Otherwise, take one additional observation 1, +riX from each system Ii∈ and set 1+= rr .

If 1max += ii Nr , then stop and select the system whose index is in I and has the largest

()rX i as the best. Otherwise, repeat the screening process.

 BGP4 outperforms other ranking and selection methods, such as R+ and KN+,

when the underlying simulated process is either),(σµNiid − or)1(AR . Performance of

BGP4 with BM and OBM batching methods on correlated data from an)1(AR process

demonstrates applicability for different variance estimators.

 86

4.4.5 BGP Technique 5

One possible enhancement to BGP4 involves the use of embedded estimators to

update the relationship:

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη (41)

by the number of system configurations, k, still in contention versus the number of total

initial system configurations. Recall η is an intrinsic component of 2h used in the

screening phase of the KN+ method discussed in section 2.6.2.

Using the same experimental parameterization as the BGP4 experiment, Table 17

compares performance of BGP5 with the BGP4 method. The use of embedded

estimators to update η in this manner is ineffective; even though the number of required

observations has decreased, BGP5 fails to achieve the desired probability.

Table 17: BGP5 and BGP4 Comparison Varying Initial Number of Observations

30619.0* =δ , 95.0* =P , LF,),(σµNiid − , 1=m
BGP5 BGP4

)(ˆ CSP T̂ /Upper Bound)(ˆ CSP T̂ /Upper Bound

80 =n 0.852 109/897 0.966 133/897
100 =n 0.887 109/760 0.976 132/757
200 =n 0.875 106/545 0.985 133/541
300 =n 0.886 107/480 0.982 130/476
400 =n 0.895 104/469 0.981 130/466
500 =n 0.856 108/439 0.984 133/440

 87

4.4.6 Method Development Summary

Incorporation of embedded variance estimators extends current ranking and

selection methods by achieving the desired probability while decreasing computational

requirements. BGP1 offers better computational performance over current methods, such

as KN+, when the number of initial observations is small. However, when the number of

initial observations is large there is little, if any, improvement. The latter case is

equivalent to the experimenter obtaining more observations in the initial stage than is

required for the experiment.

Current RS methods often exceed the desired probability. Introduction of a

reduction coefficient can result in achieving the desired probability while increasing

computational efficiency. However, arbitrary selection of the reduction coefficient can

result in failure to achieve the desired probability. In fact, the practitioner can only select

a reduction coefficient with a priori knowledge of the underlying system. Hence, BGP2

should only be used in strictly defined experimental environments as this method lacks

theoretical rigor.

Use of designer intuition resulted in better computational performance under

certain conditions. When the number of initial observations is small, strong and accurate

intuition decreases the required number of observations. However, random or “poor”

intuition degrades RS method performance. Of note, BGP3 incorporates designer

subjectivity into the experimental process.

BGP4 offers significantly increased computational efficiency compared to other

RS methods. Use of embedded data estimators enables this method to “anneal” itself to

the underlying processes in contention. Selection of the initial number of observations

 88

needs only ensure asymptotic variance convergence for this method to perform properly.

Observations are assumed to be normally distributed but can be obtained from batching

methods. Known RS methods such as R+ and KN+ have the same requirements.

However, the lack of the need to “guess” the number of initial observations differentiates

BGP4 from other RS methods.

BGP4 is a new approach to RS methods. This method avoids the pitfalls of

reliance on the initial number observations, 0n . Rather, BGP4 incorporates embedded

estimators to enable a form of annealing to the underlying process. The use of current

estimators enables tight control of the process. Application of this technique to simulated

configurations with an underlying)1(AR process highlights the robustness of the method.

BGP5 uses the number of competing configurations still in contention for

selection as the “best” during the screening process of the method. This RS method fails

to achieve the probability requirement. Here, the use of embedded estimators is

inappropriate.

4.5 Ranking and Selection Method Summary

Adaptive control techniques, such as ranking and selection, enable differentiation

between competing simulated system configurations. BGP4 is a new method that

outperforms known ranking and selection methods in terms of computational efficiency.

Increased performance is obtained by incorporation of embedded data estimators. BGP4

relies on the same assumptions as R+ and KN+. Specifically, observation normality,

variance consistency, and an underlying stationary process are assumed. In addition,

batching methods allow transformation of correlated data into normal observations under

certain conditions.

 89

CHAPTER 5

TEST CASE: NATIONAL AIRSPACE SYSTEM ANALYSIS

Parallel and Distributed Simulation (PDS) techniques along with Ranking and

Selection (RS) methods enable analytic comparison of large-scale simulated system

configurations of a real-world process. While previous chapters presented PDS and RS

methods in a controlled environment for testing and evaluation, this chapter highlights

the application of these methods to an existing simulation of a complex system.

Specifically, PDS and RS methods are applied to the Reconfigurable Flight Simulator

(RFS), an existing large-scale hybrid simulation, to assess aircraft separation with

differing arrival route densities in the National Airspace System (NAS). Additionally,

diagnostics for appropriate simulation parameterization are presented.

5.1 Air Traffic Simulation

One example of a complex system is the National Airspace System (NAS).

Within the NAS, Air Traffic Control (ATC) systems ensure the safe travel of an aircraft

from one airport to another while Air Traffic Management (ATM) systems schedule and

sequence aircraft to increase throughput and reduce delay. Prior to departure the flight

crew is given routing information from both automated and human components of the

system. This route is developed accounting for regulations, expected weather conditions,

and traffic density. During departure, commercial aircraft follow specific directions on

speed, heading, and altitude on a path that includes navigational points called “fixes”. En

route, the aircraft will traverse one or more flight sectors that are managed by Air Route

Traffic Control Centers (ARTCC) manned by human controllers assisted by a variety of

aids. During arrival into a major airport, commercial aircraft generally follow a

 90

published procedure called a Standard Terminal Arrival Route (STAR) until the final

approach.

This section provides a general description of ATC and ATM simulations.

Models of ATC/ATM systems can be composed of human performance parameters,

equipment characteristics, and regulatory procedures. Simulation of these models

generally looks exclusively at factors such as capacity or safety. Capacity is often

measured in throughput, or entities per time unit, that accomplish an activity, such as a

plane arriving at a gate. Beyond a measure of performance, capacity directly relates to

profit. Also, increased capacity is needed to meet anticipated future demand. On the

other hand, safety is usually a discrete count of entities that violate specific criteria, for

example a minimum separation distance between aircraft.

ATM simulation can determine the impact of flight restrictions on delay,

throughput, and traffic congestion. Wieland (1998) describes the Detailed Policy

Assessment Tool (DPAT) as a large-scale simulation capable of calculating traffic

conditions for entire airspace regions, for example the continental United States. DPAT

models the NAS as a sequence of capacitated resources in a parallel and discrete-event

manner. The parameters used within DPAT are obtained from external models. DPAT

has successfully simulated NAS operations for the entire continental United States faster

than real-time for specific models.

The Total Airspace and Airport Model (TAAM) simulation is a high-fidelity

simulation modeling NAS components such as gates, terminals, taxiways, and airspace.

As one example, Holden and Wieland (2003) incorporated simulation optimization

methods with TAAM to optimize runway scheduling. For this particular analysis, the

 91

scheduling impact of adding a new runway was simulated. Potentially, this method could

also assist controllers with the allocation of aircraft to runways.

ATM simulation can also provide predictive insight on the impact of new

equipment on airport throughput. For example, Schwartz et al. (1997) describe the use of

simulation to evaluate the introduction of new Flight Management System (FMS)

equipment in aircraft cockpits along with new routing procedures. They assumed that

more sophisticated, but higher cost, FMS equipment corresponded to decreased

controller-pilot verbal communication. Then, they simulated various combinations of

traffic throughput and percentage of FMS equipped aircraft. Note that the capability of

installed FMS equipment also varied in terms of acquisition cost. This method of

sensitivity analysis provided insight not only that capacity could be increased by

equipment fielding but it offered a cost-benefit element for determining the required

sophistication in new FMS equipment.

Simulation of aircraft routing procedures has also been pursued as a method to

increase capacity. Tofukuji (1993) provides an example in which various routing

configurations were simulated to assess throughput. Results from this experiment

included a relationship between throughput and required controller interventions.

Additionally, this experiment compared existing route configurations along with

proposed modifications.

Simultaneous impacts of changes on both capacity and safety have also been

investigated through the use of simulation. For example, Zeghal and Hoffman (2000)

explored model performance of ATC operations where the requirement of maintaining

separation was delegated to individual aircraft. Here the sequencing of self-separating

 92

aircraft was simulated to predict future capacity and controller workload. Safety, in this

case violation of a minimum separation threshold, was indirectly assessed using rules for

sequencing aircraft that ensured safe separation.

Increasing use of simulation as a design and analysis activity implies larger and

more complex simulations. Combination of discrete-event and continuous-time models

into hybrid simulations will complicate metric analysis. However, this combination is

necessary to provide realistic representation of complex systems such as the National

Airspace System.

Modeled ATC and ATM systems have been simulated in an effort to obtain

predictive measures of performance by numerous agencies with varying fidelity.

Common to all efforts is the need for metric assessment and computational efficiency.

Application of adaptive control techniques within a distributed simulation architecture

not only reduces the computational requirement but speeds experimental execution.

Versatile, embedded data encapsulation methods enable these control techniques.

5.2 Reconfigurable Flight Simulator (RFS)

The Reconfigurable Flight Simulator is used as a test case for several reasons.

First, it is hybrid simulation modeling a complex system that cannot be simplified for an

analytic solution without loss of fidelity. Second, it is a significant development in terms

of personnel-hours as well as high-level software engineering. Minor modifications

within the RFS software architecture, presented later, bode well for simulating other

existing complex systems. Also, as the name implies, RFS is easily initialized for

alternative configurations of the NAS by the use of formatted text configuration files.

Lastly, RFS supports analysis of both discrete and continuous state variables.

 93

Pritchett and Ippolito (2000) discuss the Object-Oriented (OO) structure and

capabilities of the RFS. Also, Lee, Pritchett, and Goldsman (2001) detail the RFS timing

mechanisms and their application to a hybrid, agent-based simulation of the National

Airspace System. The OO structure of RFS is extensible and modular. Instantiation of

the base classes produces objects that compose the simulation; these objects can be

configured by a script file during initialization. In this context, an object is also

considered an agent if it can autonomously interact with other agents while pursuing a

particular goal or set of goals. Note that each agent is also self-describing in terms of

identity, performance parameters, and current state. Combined agent behavior models

complex system performance. Other objects in the simulation may not have two-way

interactions with the agents, but instead serve other purposes such as graphic displays,

date loggers, and analyzers.

The RFS architecture is shown in Figure 19. The simulation object is the overall

controller of the simulation and manages all callback messages to other components. The

timer object maintains the temporal state of the simulator and facilitates both continuous

and discrete agent update timing mechanisms. Arrows in this diagram correspond to

communication between agents. Lists within the architecture track corresponding agents

in the simulation. Agents are included in the simulation by calling dynamic link libraries

(.dll) enabling both modular development and rapid reconfiguration. Configuration of

the simulation during initialization and runtime is accomplished through the use of

pseudo-code and formatted text configuration files.

 94

CEM Agent

CEM Agent

CEM List

CEM Agent

I/O Object

I/O Object

I/O List

I/O Object

Vehicle Agent

Vehicle Agent

Vehicle List

Vehicle Agent

Environment
Controller and
Database (ECAD)

Atmospheric Model

Terrain Model

Ground Model

Axis Definitions

Master Simulation ControllerSimulation Object Timer Object

CEM Agent

CEM Agent

CEM List

CEM Agent

CEM AgentCEM Agent

CEM AgentCEM Agent

CEM List

CEM AgentCEM Agent

I/O Object

I/O Object

I/O List

I/O Object

I/O ObjectI/O Object

I/O ObjectI/O Object

I/O List

I/O ObjectI/O Object

Vehicle Agent

Vehicle Agent

Vehicle List

Vehicle Agent

Vehicle Agent

Vehicle Agent

Vehicle List

Vehicle Agent

Environment
Controller and
Database (ECAD)

Atmospheric Model

Terrain Model

Ground Model

Axis Definitions

Environment
Controller and
Database (ECAD)

Atmospheric ModelAtmospheric Model

Terrain ModelTerrain Model

Ground ModelGround Model

Axis DefinitionsAxis Definitions

Master Simulation ControllerMaster Simulation ControllerSimulation Object Timer Object

Figure 19: Reconfigurable Flight Simulator Architecture

The Environment Controller and Database (ECAD) object maintains the

simulation environment. Environmental effects such as wind, terrain, and axis systems

can be loaded as needed to ensure that the simulation environment is coherent.

Input/Output objects (I/O) provide mechanisms for both graphical and textual

manipulation. For example, graphical output can take the form of an ATC display or a

view of vehicle instrumentation. Text output is supported in ASCII format.

Additionally, I/O objects support communications with other simulations and hardware.

The I/O list manages all I/O objects.

Through inheritance of the base vehicle class, vehicle agents may be modified to

represent continuous-time models of aircraft, ground vehicles, etc. in arbitrary numbers.

This base class provides interfaces for communication to other vehicles and the

simulation object. State variables, such as position, are available to these interfaces.

Additionally, the simulation object can relay elements of the simulation status via these

 95

interfaces and vehicles can access the ECAD and I/O objects. All vehicles are

maintained on the vehicle list to facilitate management and control. Several vehicles

have been developed, such as a waypoint following aircraft, which can be used for

complex system analysis.

Controller, Event, and Measurement (CEM) agents have access to the vehicle list,

input/output list, and the ECAD object. CEM objects are typically extensions to a base

class to complete a particular task. For example, the Measurement Management Agent

(MMA) is a CEM agent that measures relative differences between or pairing interaction

of agents in the simulation. One use of this agent to date is for adjusting vehicle update

times to separate agents (aircraft), in air traffic control, to prevent collisions (Lee, 2002).

Access to base classes within the RFS is generally accomplished through the use

of pointers and standardized interfaces. Object Data/Method Extensions (ODME)

provide an alternative for invoking function calls or accessing data in RFS objects.

Basically, ODME allows for extension of existing interfaces by allowing objects to

specify data and methods available to other objects. Note that ODME allows for

different objects to pass data without sharing header files.

The inherent modularity of RFS simplifies incorporation of ranking and selection

methods. Here, the modularity allows for easy integration of new modules into the

simulation. Additionally, existing RFS modules are extensible in nature. This allows for

the minor modifications needed by the adaptive control structure. The following section

details RFS module extension and new module development.

 96

5.3 Reconfigurable Flight Simulator Module Development

The Reconfigurable Flight Simulator provides a modular, extensible, and

reconfigurable architecture for use in the analysis of a complex system. This section

highlights minor modifications to existing modules and new module development.

Together, these modules enable adaptive control of RFS within a distributed simulation

environment. Note the functionality of these modules can be generalized for the

integration of adaptive control and PDS techniques to any existing large-scale simulation.

5.3.1 Simulation Controller (SC)

The Simulation Controller (SC) is a CEM agent that enables external control of

the RFS. External control includes simulator commands of “PAUSE”, “UNPAUSE’, and

“TERMINATE”. The “PAUSE” and “UNPAUSE’ commands allow the adaptive

controller to command sufficient observation acquisition from each competing

configuration during ranking and selection. The “TERMINATE” command is used when

a configuration is no longer in contention for selection as the “best”. The SC also

broadcasts an “EXIT” status after successful simulation termination.

5.3.2 Data Analyzer (DA)

The Data Analyzer (DA) is a CEM agent that monitors and calculates both mean

and variance estimators for specified ODME variables. Figure 20 shows the general

structure of this object. Flexible implementation of the DA created the ability for data

encapsulation of single or grouped objects. For example, a DA can encapsulate data from

a single vehicle or from all vehicles of a specific type. Additionally, the DA allows the

practitioner to define logical data clusters, i.e. group variables. In this example, the data

 97

group POSITION clusters variables that include latitude, longitude, and altitude. The

Interval Sampler (IS) is a CEM agent that allows for dynamic runtime setting of sampling

methods. The sampling method may be synchronous or asynchronous with a specified

time step and associated overlap. The overlap allows for obtaining observation data from

agents possessing an update time within a certain boundary of the current sampling time.

Data Analyzer
•ODME Object
•Group
•CEM

Interval Sampler
(user/interface)
CEM

Data Group
(POSITION)
•Variables –

•LAT
•LON
•ALT

•Sampling Method

Data Analyzer
•ODME Object
•Group
•CEM

Interval Sampler
(user/interface)
CEM

Interval Sampler
(user/interface)
CEM

Data Group
(POSITION)
•Variables –

•LAT
•LON
•ALT

•Sampling Method

Data Group
(POSITION)
•Variables –

•LAT
•LON
•ALT

•Sampling Method

Figure 20: Data Analyzer Object Example Where it is Capturing Aircraft Position

A unique facet of the DA is embedded calculation of mean and variance

estimators, precluding storage of historical data beyond summed and summed squared

values for iX as shown in section 4.2.2. Note the absence of variable under/overflow

ensures estimator accuracy. Hard disk storage of these estimators in runtime specified

locations enables external monitoring.

The computational overhead from using embedded estimators of this sort was

assessed by running the same simulated configuration without embedded statistical

analysis (NOSTAT), with embedded statistical analysis (STAT), and lastly with both the

embedded statistical analysis and the distributed simulation client module (RFS Client).

Figure 21 below highlights the overall results. Addition of embedded statistical analysis

increased the computational expense of obtaining a specified number of observations by

 98

less than 1% in this example. Here, the RFS client module increased the overall expense

by less than 2% for the same number of observations. In practical terms, arrivals for an

operational day at Atlanta International Airport can be simulated on a single dual

processor 2.2 GHz workstation with 512 megabytes of RAM in approximately 160

computer-minutes. An additional 3 minutes of workstation time allows for embedded

statistical analysis in this example. Note the computational expense of embedded

statistical analysis is inversely proportional to the expense of running the simulation. The

impact of embedding statistical analysis is small when the computational requirements of

the simulated configuration are large and vice versa.

0

2000

4000

6000

8000

10000

12000

NOSTAT STAT RFS Client

Method

Co
m

pu
te

r T
im

e
(s

ec
)

Figure 21: Software Infrastructure Overhead Comparison

For analyzing these results, note that users of an existing simulation generally

record all data from a simulation for follow on analysis. The computational cost of this

 99

output and storage is not analyzed here. Presumably, however, it can represent both an

increase in runtime and a subsequent analysis process that is necessary only in the

“NOSTAT” condition.

5.3.3 Measurement Management Agent (MMA)

The previously established Measurement Management Agent (MMA) was a CEM

object that measured relative differences between or interaction of pairs of agents in the

simulation. In this test case, the paired objects are two individual aircraft, and extension

of the MMA involved calculation of the average minimum, mean, and maximum distance

between them. These calculations are available as ODME variables to other simulation

modules.

5.4 Example NAS Scenario: Arrivals on Macey Two STAR to ATL

An Air Traffic Control (ATC) scenario with varied configurations provides an

interesting large-scale simulation as a test case for the application of adaptive control and

distributed simulation techniques. Specifically, different arrival routing density

configurations for the Atlanta International Airport (ATL) Macey Two Standard

Terminal and Arrival Routing (STAR) procedure are compared. Figure 22, below,

highlights the Macey Two STAR. Of interest, the intersection at MACEY involves the

incorporation or merging of traffic from the navigation aids Volunteer (VXV) and

Spartanburg (SPA) and the “fix” AVERY. Arriving aircraft are assigned to one of these

three paths by an air traffic manager much earlier in the flight depending upon the

direction of arrival and expected aircraft density on each path. Once on a path, an air

traffic controller maintains spacing between the aircraft.

 100

Figure 22: Atlanta International Macey Two Arrival STAR

RFS waypoint following aircraft (WPT) agents model arriving aircraft for this

scenario. Each WPT agent uses numerical integration routines to update state variables

including speed, heading, latitude, longitude, and altitude. The trajectory of WPT agents

is defined by a list of waypoints initialized at instantiation. In this test case, WPT agents

adjust their internal dynamics to cross each waypoint at a specified speed.

WPT agents are instantiated by the RFS Random Plane Generator (RPG) agent

with initial performance parameters. The RPG agent creates WPT agents based on a

random stationary Poisson process. The inter-arrival time for this Poisson process is set

at RFS initialization. While actual arrivals to ATL are more closely modeled by a non-

 101

homogeneous Poisson process, this simplification still allows for relevant system

analysis. Note that generated WPT agents are added to the simulation vehicle list.

The RFS ATC agent models the air traffic controller. The ATC agent monitors

waypoint following aircraft agents to ensure safe separation. The ATC agent maintains a

list of WPT agents within a defined sector and provides calculated speed and heading

commands to the WPT agents. The ATC agent also determines WPT agent sequencing

in merging arrival streams. Additionally, the ATC agent models missed communication,

communication delay, and misinterpreted command behavior (Lee, 2002).

Currently, approximately 615 aircraft arrive daily at ATL. The majority of these

aircraft arrive between 6 am and 12 pm. This equates to an approximate 100 second

inter-arrival time between aircraft, although this can be much higher during banks of

arriving aircraft. Varying the allocation of aircraft on the three merging paths of the

Macey Two STAR approach provides comparable configurations for this test case.

Table 18 presents the three route density configurations under analysis. Recall

arriving aircraft merge from the navigation aids Volunteer (VXV) and Spartanburg (SPA)

and the “fix” AVERY on the Macey Two STAR. Configuration C1 is the base case with

equal 300 second expected inter-arrival times on each of the three arrival paths for a

system-wide expected inter-arrival time of 100 seconds. Configuration C2 involves a

higher arrival density, i.e., a lower inter-arrival time, on the northern path resulting in a

system-wide expected inter-arrival time of approximately 83 seconds. Lastly,

configuration C3 involves higher arrival densities on the two southern paths with the

same system-wide expected inter-arrival time as configuration C2.

 102

Table 18: Test Case Configuration Descriptions

Configuration Expected Inter-Arrival Time (sec)

C1
VXV – 300

AVERY – 300
SPA – 300

C2
VXV – 150

AVERY – 375
SPA – 375

C3
VXV – 500

AVERY – 200
SPA – 200

Varying route densities in this manner addresses questions about efficient and

safe allocation of aircraft to arrival paths. While central ATM seeks to control the overall

number of aircraft arriving into ATL, traffic problems induced by such factors as weather

can demand redistribution of these aircraft onto the arrival paths.

One metric of performance is the average minimum separation distance between

aircraft. A larger value for this metric is considered safer. Without having to model all

the factors contributing to a near-miss or aircraft collision (NMAC) event, low average

minimum aircraft separation is a sufficient condition for such safety problems. It can

also be inferred that a smaller average minimum separation implies a reduction in

allowable reaction time from both pilots and controllers. The indifference-zone

parameter, *δ , is set to 1500 feet for this metric. This equates approximately to a six-

second reaction time differential for pilots and controllers.

Initializing the RFS for this scenario is accomplished through the use of formatted

text configuration files. Note all RFS modules are initialized in a similar fashion. A

sample configuration file is shown in Figure 23. Note the commands to set simulation

parameters. ODME variables, such as minimum_separation, for a MMA will be

monitored by a DA. Lastly, external control files for the simulation are specified.

 103

Figure 23: Sample Reconfigurable Flight Simulator Initialization Script

5.5 Simulation Diagnostic Testing

Several diagnostic tests are required before applying ranking and selection

methods to these simulated configurations. First, the simulation, in this test case the RFS,

must be validated as adequately mimicking the real-world system. In this case, validation

was performed subjectively; extensive validations are often conducted for such

simulations, but are beyond the scope of this study.

Next, a sampling rate must be found that provides observations exhibiting

acceptable correlation. The performance, noted earlier in section 4.4.4, of ranking and

 104

selection methods, such as BGP4, highlight the level of acceptable correlation. Likewise,

the batch size must be sufficiently large to ensure batched observations fit any normal

distribution requirements of the ranking and selection methods. The remainder of this

section highlights the application of these diagnostic tests to the RFS.

5.5.1 RFS Model Versus System Comparison

To demonstrate the ability of the RFS to mimic aircraft arrivals at an airport, a

sample arrival configuration was developed for Atlanta International Airport. Aircraft in

this configuration entered the Macey Two STAR with arrival densities based on historical

data from 2002. Figure 24 highlights simulated arrivals by RFS. An overall aircraft

inter-arrival time of 100 seconds mimicked 615 total arrivals observed during a standard

operational day. Note arrivals are evenly distributed from the navigation aids Volunteer

(VXV) and Spartanburg (SPA), and the “fix” AVERY for this experiment.

Figure 24: Simulation of Atlanta International Arrivals

 105

The goal of this diagnostic test was to subjectively validate simulated behavior as

mimicking the real-world system. The use of a data analyzer agent verified obtained

arrival rates were approximately the same as those specified. Also, a single long

simulation run subjectively verified an absence of programming errors such as memory

leaks. When using a simulation developed by several agencies with multiple

contributors, a diagnostic test of this nature is necessary to ensure overall simulation

stability. Note this diagnostic test did not validate controller strategies for aircraft

spacing.

This diagnostic test also allowed for estimation of an appropriate simulation

initialization period. Recall that sufficient simulation initialization is necessary to avoid

bias in a steady-state simulation such as RFS. Here, the first aircraft arrived at ATL

before approximately 30 simulation-minutes. Hence, data sampling starts after this

initialization period for test case analysis.

5.5.2 RFS Simulation Output Correlation

In general, simulation output is correlated. Arrival data, such as average

minimum separation in this test case, is highly correlated. Varying the observation

sampling rate within RFS from 30 to 120 simulation seconds resulted in correlation

coefficients ranging from 0.95 to 0.80 respectively. Note the increased computational

requirement for obtaining decreased observation correlation. A side note, the sampling

overlap was set to 10 seconds. The autocorrelation diagnostic test with a 30 second

sampling rate is shown in Figure 25. Note observation correlation decreases as the time

between observations increases.

 106

Recall BGP4 achieved the desired probability in an Equal Spacing (ES) condition

when the underlying autoregressive process was parameterized with 95.0=φ . This

corresponds approximately to data correlated with a coefficient value of 0.95. Hence, a

30 second sampling rate is appropriate if the competing configurations are assumed to be

in the ES configuration.

1901409040

1.0
0.8
0.6
0.4
0.2
0.0

-0.2
-0.4
-0.6
-0.8
-1.0Au

to
co

rr
el

at
io

n

LBQTCorrLagLBQTCorrLagLBQTCorrLagLBQTCorrLagLBQTCorrLag

2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05

2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.8E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05

2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.7E+05
2.6E+05
2.6E+05
2.6E+05
2.6E+05
2.6E+05
2.6E+05
2.5E+05
2.5E+05
2.5E+05

2.5E+05
2.4E+05
2.4E+05
2.4E+05
2.3E+05
2.3E+05
2.3E+05
2.2E+05
2.2E+05
2.1E+05
2.1E+05
2.0E+05
1.9E+05
1.9E+05
1.8E+05

1.7E+05
1.7E+05
1.6E+05
1.5E+05
1.4E+05
1.4E+05
1.3E+05
1.2E+05
1.1E+05
9.4E+04
8.2E+04
6.9E+04
5.4E+04
3.8E+04
2.0E+04

 0.75
 0.80
 0.88
 0.95
 1.01
 1.07
 1.13
 1.21
 1.30
 1.39
 1.53
 1.69
 1.85
 2.02
 2.18

 2.35
 2.50
 2.70
 2.89
 3.08
 3.26
 3.39
 3.57
 3.76
 3.99
 4.26
 4.49
 4.74
 4.98
 5.26

 5.59
 5.93
 6.27
 6.61
 6.96
 7.31
 7.66
 8.04
 8.44
 8.83
 9.21
 9.60
 10.03
 10.46
 10.90

 11.35
 11.83
 12.34
 12.90
 13.46
 14.02
 14.62
 15.22
 15.82
 16.47
 17.14
 17.86
 18.65
 19.47
 20.33

 21.24
 22.23
 23.34
 24.59
 26.05
 27.71
 29.68
 32.03
 34.85
 38.32
 42.91
 49.27
 60.34
 80.29
142.24

0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.04
0.04
0.05
0.05
0.06
0.06
0.07
0.07

0.08
0.08
0.09
0.10
0.10
0.11
0.11
0.12
0.13
0.13
0.14
0.15
0.16
0.17
0.18

0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.28
0.29
0.30
0.31
0.32
0.34
0.35

0.36
0.37
0.39
0.40
0.42
0.43
0.44
0.46
0.47
0.48
0.50
0.51
0.52
0.54
0.55

0.57
0.58
0.59
0.61
0.63
0.65
0.67
0.69
0.71
0.73
0.76
0.79
0.85
0.90
0.95

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46

45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16

15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

Lag

Figure 25: RFS Autocorrelation Diagnostic Test

5.5.3 RFS Simulation Batched Observation Normality

Assuming a 30 second sampling rate is appropriate, the next simulation diagnostic

involves determining the batch size for the Batch Means (BM) method. Recall a

sufficiently large batch size results in normally distributed batched observations that are

 107

approximately uncorrelated. The key tradeoff in selecting a batch size is computational

expense versus independent and normally distributed batch mean observations. A batch

size of 100 resulted in observations described in Figure 26.

P-Value: 0.136
A-Squared: 0.572

Anderson-Darling Normality Test

N: 224
StDev : 8128.56
Av erage: 58879.9

880007800068000580004800038000

.999

.99

.95

.80

.50

.20

.05

.01

.001

P
ro

ba
bi

lity

Normal Probability Plot

Figure 26: RFS Batched Observation Normality Diagnostic Test

A sampling rate of 30 seconds with a batch size of 100 obtains one batched mean

observation for each 3000 simulation-seconds. With a dual 2.2 GHz processor

workstation with 512 megabytes of RAM, this equates to approximately 180 seconds of

computer-time. At p-values less than 0.136 there is no evidence the data is non-normal.

For this reason, a batch size of 100 is selected for test case analysis.

5.5.4 RFS Simulation Batched Observation Variance Convergence

With an established sampling rate and batch size, the next diagnostic test focuses

on batched observation variance convergence. Recall sufficient variance estimation is

 108

required for successful ranking and selection method performance. A single simulated

configuration, shown in Figure 27, indicates batched observation variance does converge

and how many batched observations are required for sufficient estimation.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

0 50 100 150 200

Batched Observations

Es
tim

at
ed

 V
ar

ia
nc

e

Figure 27: RFS Batch Mean Observation Variance Convergence Diagnostic

Note if this diagnostic test failed to indicate variance convergence then no known

ranking and selection method could be used for comparative analysis because of the lack

of variance consistency. Also, observe the convergence of variance is not smooth. Other

long simulation runs should converge to the same value; however, the shape of the

convergence curve could differ. In this example, it would be unwise to use BGP4 until at

least 10 batched observations have been obtained due to a lack of variance convergence.

With the given parameterization, this equates to 30000 simulation seconds or

approximately 1800 computer seconds using a workstation with a dual 2.2 GHz

 109

processor. The practitioner must ensure some amount of variance of convergence while

weighing the computational impact of delayed application of adaptive control techniques

such as BGP4.

Convergence of Overlapping Batch Mean (OBM) observation variance is shown

in Figure 28. BM and OBM variance estimators eventually converge to the same

approximate value. Here, the practitioner should obtain at least 1000 overlapping

batched observations before applying adaptive control techniques such as BGP4. This

equates to 1099 unbatched observations from the simulation. While the unbatched

observation requirement is significantly less for OBM than BM, the correlation of OBM

observations is higher. The impact on adaptive control techniques of increased

correlation from OBM observations is offset by the higher degrees of freedom of the

variance estimator discussed in section 2.5.2. In general, the use of the OBM method

should result in fewer unbatched observations than the BM method.

 110

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

0 500 1000 1500 2000 2500 3000

Batched Observations

Es
tim

at
ed

 V
ar

ia
nc

e

Figure 28: RFS Overlapping Batch Mean Observation Variance Convergence Diagnostic

5.5.5 Simulation Diagnostic Summary

The diagnostics presented in this section can be generalized to any simulation

where a unique metric defines performance. These diagnostics enable the application of

ranking and selection methods, such as BGP4. First, the simulation must mimic the real-

world system at a level subjectively accepted by the practitioner. This also allows for

selection of a simulation initialization period. Next, a simulation sampling rate must be

determined that results in data sufficiently uncorrelated for the ranking and selection

method. Given a sampling rate, a batch size resulting in normally distributed

observations is found. Lastly, variance convergence identifies the minimal number of

initial observations necessary for the application of ranking and selection methods.

Recall BGP4 significantly outperforms other known ranking selection methods when

 111

parameterized with the minimal number of initial observations. These diagnostics incur

some initial computational expense; however, they ensure appropriate application of

adaptive simulation control techniques.

5.6 Test Case Experiment

Given unlimited computational capacity, the designer would execute a large

number of independent simulation replications to produce experimental results.

However, the goal of adaptive control techniques, such as BGP4, is to reduce

computational requirements for such assessments. A single experiment using BGP4

should provide rigorous statistical selection of the “best” simulated configuration.

Multiple experiments can subsequently validate the comparative method. This section

highlights a sample application of BGP4 to competing system configurations discussed in

section 5.4.

5.6.1 Example Test Case Experiment

A snapshot is presented in Figure 29. In this example, three workstations

contribute computational capacity while a fourth workstation functions as the server. The

workstations for this experiment were homogeneous; workstation specifications include

dual 2.2 GHz processors, 512 megabytes of RAM, and a Microsoft XP Professional

operating system. Workstations communicate by operating system managed TCP/IP over

a switched 100 megabit Ethernet connection. The right portion of the figure highlights

participating workstations remotely mounted using Microsoft remote access software.

Here, gt-2/3/4 workstations are the clients and gt-1 is the server or controller.

 112

Figure 29: Snapshot of Test Case Experiment Session

Each contributing workstation executes a client module that controls the

simulated configurations and communicates both status and estimated data parameters to

the controller. The server samples and consolidates data in the manner prescribed by the

designer. In this example, overlapping batch means obtain observations for the control

technique; the DA samples every 30 simulation seconds with an overlap of 10 seconds.

BGP4 is the adaptive control technique for this example. At this point in the experiment,

all configurations are still in contention for selection as the “best”.

 113

The goal of this sample experiment was to highlight stable operation between the

client and server modules demonstrated by no loss of control by the server of a client

simulation and also by data streams updated without error. This experiment also

provided verification, by separate analysis, of embedded statistical collection methods.

Lastly, this sample experiment highlights the functionality of combined embedded

statistical estimators, PDS techniques, and ranking and selection methods.

An example of adaptive control technique performance is shown in Figure 30 for

BGP4. In this example, batch means were used to obtain observations. Observe

configuration C1 was eliminated from further consideration at 33 batched observations

but 34 observations were actually obtained from the participating workstation. This

exemplifies the RS screening process eliminating a competing configuration from further

analysis. PDS error handling allows for further observation acquisition should a

communication error occurs, hence the 34th observation.

Experiment metrics, such as the estimated probability of correct selection and

required observations, are maintained by the controller as shown in the bottom right of

Figure 30. Performance of BM and OBM methods can be compared by the number of

raw observations. Additionally, the use of varying random number seeds facilitates

comprehensive analysis of the simulated configurations. The computational tractability

of this approach is addressed in following sections.

 114

Figure 30: BGP4 Sample Test Case Application

5.6.2 Best Case Arrival Routing Analysis

The “best” or “preferred” arrival routing configuration obtains the highest average

minimum separation for a given total throughput. From RFS test diagnostics a 30 second

sampling rate, a 10 second sampling overlap, and batch size of 100 is used to acquire

observations using the batch means method. This experiment also provides validation of

the combined embedded statistical encapsulation methods, adaptive control techniques,

and distributed simulation architecture. Here, validation is obtained by separate analysis

of long simulated runs of the competing system configurations.

Table 19 presents experimental results from the application of BGP4 to

configurations described in section 5.4. Experiment duration for these specific random

number seeds was approximately 96 computer-minutes using four dual 2.2 GHz

processor workstations each with 512 megabytes of RAM. The workstations

 115

communicated by operating system managed TCP/IP over a 100 megabit Ethernet

connection. Three of the workstations provided computational capacity while the fourth

acted as the controller in this experiment. For this experiment, simulation seeds for

aircraft generation remained constant between experimental runs to verify the underlying

simulation, i.e. the RFS, was capable of reproducible results. Note BGP4 is intended for

needing only one experiment to select the “best” competing system configuration.

Table 19: Arrival Routing Comparison of Average Minimum Separation in Feet

Average Minimum Separation (feet)
Replication

Configuration 1 2 3 4 5 6 7 8
C1 56652 56652 56928 56856 56652 56856 56652 56652
C2 51031 51031 51031 51066 51031 51066 51031 51031
C3 50693 50693 50504 50504 50693 50589 50693 50693

Configuration C1 was selected as the “best” for all experimental replications.

Observe the average minimum separation varies between experiments. This is attributed

to communication errors between contributing workstations and the controller. Recall the

distributed simulation architecture allows contributing workstations to continue

observation acquisition when a communication error is encountered. Each

communication error extended experiment execution time by the time required to obtain

an additional batched observation, in this case approximately three minutes of computer-

time.

5.6.3 Worst Case Arrival Routing Analysis

The “worst” arrival routing configuration obtains the lowest average minimum

separation for a given total throughput. Experimental parameterization is the same as the

 116

previous experiment. Table 20 highlights the application of BGP4 to identify the “worst”

arrival route density allocation from a single experiment. Configuration C3 is the

“worst”. Recall BGP4 ensures statistical rigor in the selection of a competing simulated

configuration from a single experiment.

Table 20: Worst Case Arrival Routing Comparison

Configuration
C1 C2 C3

Average Minimum
Separation (feet) 59186 53562 50165

Replicating this experiment validates the comparative method and also allows for

performance estimation. Table 21 presents the application of BGP4 to identify the

“worst” arrival route density allocation. Initial random number seeds varied in an

incremental manner controlled by the server module for these experiments. Twenty-one

experimental replications provided estimators of average minimum separation, standard

error, and the average required number of unbatched observations.

Table 21: Replicated Worst Case Arrival Routing Comparison

Average Minimum Separation
Configuration

C1 C2 C3
Mean (feet) 57569 52174 49706

SE 232 148 155

T̂ 2700 5600 5600

Configuration C3, i.e., the highest route densities on the two southern paths in the

Macey Two STAR, is confirmed to be the “worst” performing simulated configuration.

 117

The probability for selecting configuration C3 equaled 1.00. Also, the standard error

indicates the competing configurations are statistically differentiable in post hoc analysis.

Observe the early elimination of configuration C1 from comparative analysis shown by

the low average number of unbatched observations, T̂ . Configurations C2 and C3, the

last two competing configurations under analysis, terminate at the same number of

unbatched observations when one of them is selected as the “worst”.

5.6.4 Routing Analysis Summary

Application of combined adaptive control and PDS techniques is appropriate after

RFS diagnostics. In this test case, the applied technique selected configuration C1 as the

“best” and C3 as the “worst” route allocation scenario. Specifically, configurations with

high arrival route densities on southern paths into Atlanta International Airport resulted in

the lowest average minimum separation. Several replications of the experiment with

different random number seeds demonstrate that considered configurations were

statistically differentiable. This leads to a definitive conclusion that configuration C3 is

indeed the worst possible routing scenario.

Although not observed in the previous experiments, if the competing

configurations were not statistically differentiable then replicated experiments could

result in several configurations being identified as the “best” or “worst”. Technically, the

practitioner would fail to achieve the desired probability. However, this highlights the

robustness of ranking and selection methods. Recall the indifference-zone parameter is a

subjective level where the practitioner would not discriminate between competing

configurations. For this test, the parameter is 1500 feet which equates to approximately

six seconds of flight time. If several configurations are selected as the “best” or “worst”

 118

after replicated experiments, then the practitioner should interpret these results in a

grouped nature. For example, if any two configurations were consistently identified as

the “worst” configurations then the practitioner may collectively group these

configurations as poor performers.

5.7 Test Case Computational Performance Comparison

The goal of integrated adaptive control and PDS techniques is statistical selection

that is efficient and correct. This section explores the computational performance

efficiency of two job allocation schemes, i.e., assignment of simulated configuration

observation requirements to contributing workstations. Also, the effect of Batch Mean

(BM) and Overlapping Batch Mean (OBM) batched observation acquisition methods on

the total number of unbatched observations is explored.

Partial Job Allocation (PJA) entails sequential job allocation to contributing

workstations. For example, if there are three participating workstations and three

configurations then a single job is allocated to each workstation. As another example, if

there are three workstations and four configurations then a single job is allocated to two

of the participating workstations. The third workstation is assigned two jobs. PJA is

relevant when the number of configurations in contention is greater than or equal to the

number of participating workstations.

Full Job Allocation (FJA) consists of all configurations being distributed to all

participating workstations. Implementation of FJA assumes the combination of data from

similarly configured simulations is appropriate as discussed in section 2.2.3. The primary

motivation for FJA stems from the screening phase of discussed adaptive control

 119

techniques. Specifically, the elimination of a competing configuration may result in

workstation idleness during an experiment.

Table 22 highlights the application of BGP4 to the configurations discussed in

section 5.4. Average minimum separation is reported along with the standard error and

the estimated number of unbatched observations. Configuration C3 is identified as the

“worst” in all conditions. The estimated probability of correction selection,)(ˆ CSP ,

equaled 1.00 for all conditions. Also, mean estimators for each configuration are not

statistically differentiable by the job allocation or batching method. Observe the standard

error is higher for OBM and even higher for full job allocation. There appears to be

higher estimated variance for these methods. Note the decreased unbatched observation

requirement, T̂ , for OBM versus BM. There is also a slightly increased unbatched

observation requirement using full job allocation versus partial job allocation.

Table 22: Test Case Computational Analysis

Partial Job – BM Full Job – BM Partial Job – OBM
C1 C2 C3 C1 C2 C3 C1 C2 C3

Mean
(feet) 57275 52061 49614 57051 52467 49802 57472 52263 49028

SE 344 208 216 482 338 306 384 214 370

T̂ 2700 5600 5600 2800 6000 6000 2173 4918 4933

While the high)(ˆ CSP is encouraging, it fails to validate inherent assumptions in

full job allocation. Instead, the high)(ˆ CSP for these replicated experiments implies a

relatively large indifference-zone parameter. Recall the indifference-zone parameter is

subjectively selected by the practitioner.

 120

Figure 31 graphically highlights the estimated NOW minutes required for an

experiment. Clearly, the observation or computational requirement is directly related to

execution time. Observe FJA completes experiments faster than PJA because this job

allocation scheme avoids workstation idleness. A NOW minute in this context is the

collective contributions from four dual 2.2 GHz processor workstations for one minute

apiece. Each workstation possessed 512 megabytes of RAM and communicated through

a 100 megabit Ethernet switch on operating system managed TCP/IP. Three of the

workstations contribute computational capacity while the fourth acts as the controller.

0

50

100

150

200

250

300

PJA - BM FJA - BM PJA - OBM

Method

N
et

w
or

k
of

 W
or

ks
ta

tio
n

(N
O

W
) M

in
ut

es

Figure 31: Test Case Computational Performance

 121

5.8 Test Case Summary

The application of adaptive control and distributed simulation techniques to an

existing large-scale simulation is relatively new. The required effort to modify an

existing simulation, in this case the Reconfigurable Flight Simulator, for the application

of these techniques can be relatively small compared to the overall development of the

simulation itself. The application of these techniques also avoids post hoc analysis.

Simulation diagnostics ensure the appropriate application of these techniques.

Results from this test case, for example, imply general procedures for Atlanta

International Airport. Amongst the configurations tested here, equal routing densities for

the Macey Two STAR provides the largest average minimum separation of aircraft.

Likewise, high route densities for southern paths on the STAR should be avoided.

Computational savings from the integration of adaptive control and distributed

simulation techniques are potentially large. A distributed simulation architecture in the

form of a network of workstations provides approximately linear increases in overall

experimental performance for a small number of workstations. Without adaptive control

techniques, long runs of each configuration are needed for appropriate statistical analysis.

In a practical sense, data analysis as a post hoc activity also requires personnel-hours and

the input/output burden or recording. This scenario was not used for baseline comparison

as it can be assumed to be significantly long.

 122

CHAPTER 6

CONCLUSIONS

This research brings together the fields of simulation, embedded statistical

analysis, adaptive control techniques, parallel and distributed simulation, and complex

system analysis. Combination of these fields itself is an intellectual contribution; in

addition, there are several derived practical and theoretical contributions within each

field. Practical modifications to existing large-scale simulations for these techniques

establish a methodology suitable for reuse. Embedded statistical calculations enable

runtime analysis. Theoretical development of adaptive control techniques, such as

ranking and selection, combined with the practical aspects of the implementation, create

an analytic environment that allows discrimination between competing system

configurations. PDS methods offer near linear reduction in terms of computational

expense for a small number of participating workstations.

In a unified sense, this research enables enhanced use of simulation in the design

and analysis of complex systems. Ranking and selection methods provide a control

technique. Embedded statistical analysis allows for runtime input to this control

technique. PDS implementation provides the computational capacity necessary for

practical use. Modifications and extensions of these somewhat related disciplines

establish a coherent analysis tool for sophisticated design activities.

Embedded statistical estimators incur computational overhead. However, this

overhead is justified by the utility of these estimators in enabling runtime comparison

between competing simulated system configurations. Incorporated with ranking and

 123

selection methods, these estimators enable calculation of the number of required

observations necessary for rigorous statistical analysis.

Appropriate combination of simulation output from these embedded statistical

estimators must address several issues. First, generated random numbers must be

sufficiently offset to avoid redundant observations. Second, a small number of combined

observations may result in underestimation of the variability of the simulated process.

Also, combination of simulation output must represent behavior possible from the actual

system, such as combining seasonal or related elements of a simulated configuration.

Embedded statistical analysis enables the application of Ranking and Selection

(RS) methods for comparison of competing simulated system configurations. Embedded

statistical estimators bound the variance central to RS method calculations. Specifically,

selection of the initial number of observations directly affects current method

performance in terms of the total required observations. This motivated the development

of the RS BGP4 method, a new RS method enabled by the incorporation of embedded

statistical estimators. While derived from the KN+ RS method, BGP4 conforms to the

underlying simulated process through the use of embedded statistical estimators.

Diagnostics to ascertain the appropriate application of BGP4 can be generalized

to any large-scale simulation. First, determining where data sampling may begin avoids

initialization bias. Next, underlying process serial correlation can be mitigated by the

determination of a sufficiently long sampling rate. Then, a batch size can be found that

results in sufficiently normal batched observations. Lastly, the convergence of variance

estimators gives a lower bound on when the RS method may be employed.

 124

BGP4 performs significantly better than other RS methods in terms of

computational requirements while still achieving the desired probability. BGP4 was

found to perform well with mildly or moderately correlated data when competing

simulations are in the Least Favorable configuration of means. BGP4 also performed

well on highly correlated data when competing simulations are in the Equal Spacing

configuration of means.

Incorporation of BGP4 within a distributed simulation architecture using a

Network of Workstations (NOW) increases computational capacity. A key issue for the

application of a distributed simulation architecture is job allocation. Sequential allocation

results in workstation idleness. Allocation of all simulation jobs to all participating

workstations is only appropriate when simulation output may be combined for analysis.

Application of BGP4 within this distributed simulation architecture to an existing

large-scale simulation produced promising results. Modifications to an existing large-

scale hybrid simulation, in this case the Reconfigurable Flight Simulator, were small

compared to development of the simulation itself. Initial application of these techniques

with partial job allocation while using Batch Means for observation acquisition identified

the “best” and “worst” competing configurations. Computational performance was

improved by full job allocation and the Overlapping Batch Means (OBM) data

acquisition methods.

Experimental results highlight the types of insights that this method provides. In

this test case, allocation of arrivals on the two southern paths of the Macey Two STAR

was found to significantly lower average minimum separation distance, with implications

for arrival procedures into Atlanta International Airport.

 125

This comparative method may be applied to modeled complex systems

differentiated by a unique performance metric. For example, continuous-valued profit

measures or the relative physical separation of modeled components could identify

desired performance for a particular system. The comparative method can also

incorporate derived metrics from discrete variables, such as average throughput. The

described method relies on observations of estimated mean values. These observations

must exhibit characteristics enabling the application of ranking and selection methods.

Specifically, ranking and selection method performance must be robust for the achieved

normality and serial correlation of these observations. Lastly, obtaining observations

must be computationally tractable.

6.1 Contribution Summary

Contributions of this research can be summarized as follows:

• Integration of embedded statistical analysis, ranking and selection

methods, and parallel and distributed simulation techniques for the

analysis of complex systems.

• Embedded data estimators that are both efficient and accurate.

• Extended ranking and selection methods that determine which simulated

configurations are still in contention for selection as the “best” along with

the number of required observations required. Specifically, BGP4 only

requires preliminary diagnostics to ascertain the initialization period,

sampling rate providing acceptable correlation, batch size providing

sufficiently normal observations, and variance convergence.

 126

• A generalized method for diagnosing simulation parameters needed for

appropriate application of adaptive control and distributed simulation

techniques.

• Specific results on arrival procedures for Atlanta International Airport as a

demonstration of the insight these techniques can provide.

6.2 Future Efforts

Several extensions may be possible of the methods and techniques developed in

this effort. First, embedding statistical analysis within an existing simulation involves a

relatively small expenditure in terms of personnel-hours compared to the reduction in

required post hoc analysis. The embedded statistical methods developed here should be

explored to ascertain other potential applications in the use of simulation as a design

activity.

BGP4 is a significant extension to current RS methods. In certain situations, it

may be assumed that simulation observations are related between configurations. In such

cases, a paired t-test may provide a stricter statistical comparison. Incorporation of this

test statistic for comparative analysis is bounded by the multivariate normal test statistics

used by BGP4. Potentially, the incorporation of a t-test, under assumed conditions,

would increase the computational efficiency of BGP4.

Another RS method extension would incorporate nonparametric test statistics.

The techniques developed here assume normally distributed observations.

Nonparametric test statistics preclude a reliance on the assumption of normality in a

general sense. Incorporation of nonparametric test statistics would be relatively easy

with the given techniques. It is possible the incorporation of nonparametric test statistics

 127

would speed the acquisition of observations with an overall increase of computational

efficiency.

Job queuing for participating workstations and the overall experimental

architecture can be improved in several areas. If participating workstations have

heterogeneous performance, then allowing execution of simulated configurations scaled

to the speed of the workstation can be more efficient. If the length of a job is known, job

shop like algorithms may be employed to reduce computational expense. The central

issues here are simulation initialization and state space transfer between contributing

workstations.

Integration of these techniques extends the use of simulation as an analysis and

design activity for complex systems. Application of developed techniques to other large-

scale simulations should be explored. One interesting application is rare event analysis.

Rather than focusing on estimated mean values, rare events are often minima or maxima.

Incorporation of test statistics suited for extreme value analysis would extend the

applicability of this comparative method.

 128

APPENDIX A: DISTRIBUTED SIMULATION SOFTWARE

The distributed simulation architecture developed for this research uses a Network

of Workstations (NOW) to acquire computational capacity. Client-server software

enables control of participating workstations in an experiment. The server module

controls all aspects of the experiment. The client module acts as an interface between the

server and simulated configurations. Ranking and Selection (RS) method modules apply

adaptive techniques to experiment execution.

The server is initialized by a runtime interpreted script. This script identifies

participating workstations by network address. The location of the existing simulation

executable program is also contained in this script. Note the simulation executable

programs used in this research are also initialized by runtime interpreted scripts detailing

specific configuration information. Here, an executable batch file associates the existing

simulation executable program with a specific configuration. Additionally, the server

initialization script identifies the location of simulated configuration output.

A snapshot of the server module is shown in Figure 32. In this example, three

workstations participate in an experiment entailing the comparison of three simulated

configurations. At the time of the snapshot, one workstation is waiting, or idle, for

further commands. A workstation becomes idle after completing all jobs. Recall a job

denotes the acquisition of a specified number of observations from a simulated

configuration. Here, all clients are assigned all configurations. Simulation output is

viewable in the bottom of the module. Note the batch means method for this experiment.

Overall experiment status is highlighted by the number of obtained observations.

 129

Figure 32: Distributed Simulation Server Module

The server issues commands to participating workstations via script files. Each

workstation runs a client module providing an interface between the server and simulated

configurations. This script files contains the location of the batch files, output, and the

 130

number of required observations for the client. Note the client schedules jobs

sequentially. The client issues commands to the existing simulation executable program

by script files. Recall existing simulations can interpret commands of “PAUSE”,

“UNPAUSE”, and “TERMINATE”. Also, existing simulations are capable of embedded

statistical analysis.

A snapshot of the client module is shown in Figure 33. In this example, the client

is waiting for further commands from the server. Here, the client has completed three

jobs. Sample simulated configuration output allows for experimental monitoring. Lastly,

the number of observations highlights this workstations contribution to the experiment.

Figure 33: Distributed Simulation Client Module

 131

RS method modules apply adaptive techniques to an experiment by determining

the number of required observations and which simulated configurations are still in

contention for selection as the “best”. The server module uses this information to

determine job requirements at each stage of the experiment. Here, a stage denotes the

execution of all jobs. Recall RS methods terminate when either the upper bound on the

number of observations is achieved or there is only one configuration still in contention.

A snapshot of the BGP4 RS method module is shown in Figure 34. The

practitioner sets RS method parameters to include the initial number of observations,

desired probability, and indifference-zone parameter. Also, the number of experiment

replications is set. In this example, the eighth experiment is currently proceeding with

two configurations still in contention for selection as the “best”. Configuration specific

data facilitates experiment monitoring. Note configuration C3 was selected as the “best”

in the seven completed experiments. Observation requirements for an experiment give

insight on the computational expense.

 132

Figure 34: Distributed Simulation BGP4 Module

 133

APPENDIX B: RANKING AND SELECTION PARAMETER CALCULATION

Figure 35 presents sample test statistics necessitated by ranking and selection

methods. Input and output columns follow from Bechhofer, Santner, and Goldsman

(1995) table guidelines. Of interest, these test statistics are available at runtime. Test

statistics include multivariate normal and t-distribution equicoordinate points with

varying correlation inputs. Studentized range and maximum modulus parameters are also

available. Historically, table lookups or FORTRAN code were used for these

calculations.

Figure 35: Ranking and Selection Parameter Calculations

 134

REFERENCES

Banks, J., Carson, J. S., et al. (2001). Discrete-Event System Simulation. Upper Saddle

River, New Jersey, Prentice Hall.

Bechhofer, R. E., (1954). A Single-Sample Multiple Decision Procedure for Ranking

Means of Normal Populations with Known Variances. Ann. Math. Sta. 25, 16-39.

Bechhofer, R. E., Santner, T. J., and D. M. Goldsman. (1995). Design and Analysis of

Experiments for Statistical Selection, Screening, and Multiple Comparisons. New
York, John Wiley & Sons, Inc.

Behforooz, A. and F. Hudson. (1996). Software Engineering Fundamentals. New York,

Oxford University Press.

Bertsimas, D. and S. S. Patterson. (1998). The Air Traffic Flow Management Problem

with Enroute Capacities. INFORMS Operations Research, 46(3):406-423,
Linthicum, MD, Institute for Operations Research and the Management Sciences.

Blom, H. A. P., Klompstra, M. B., and B. Bakker. (2001). Accident Risk Assessment of

Simultaneous Converging Instrument Approaches. In the 4th USA/Europe Air
Traffic Management R&D Seminar, Piscataway, New Jersey, Institute of
Electrical and Electronics Engineers.

Brandt, K. and E. Roland. (1993). Modeling Coalition Warfare: A Multi-Sided

Simulation Design. In Proceedings of the 1993 Winter Simulation Conference,
ed. G.W. Evans, M. Mollaghasemi, E.C. Russel, and W.E. Biles, 977-983,
Piscataway, New Jersey, Institute of Electrical and Electronics Engineers.

Callaham, M. B. (1997). National Airspace System Architecture Metrics Assessment.

16th Digital Avionics Systems Conference, AIAA/IEEE, 2:6.4-17.6.4-24,
Piscataway, New Jersey, Institute of Electrical and Electronics Engineers.

Carothers, C. D. (2002). XSim: Real-Time Analytic Parallel Simulations. In Proceedings

of the 16th Workshop on Parallel and Distributed Simulation, Piscataway, New
Jersey, Institute of Electrical and Electronics Engineers.

Chen, T. L. (2000). Design and Evaluation of an In-Cockpit Re-Planning Tool as an

Emergency Decision Aid. M.S. Thesis, Georgia Institute of Technology, Atlanta,
Georgia.

Chick, S. E., and K. Inoue. (2001). New Procedures to Select the Best Simulated System

Using Common Random Numbers. INFORMS Management Science, 47(8):1133-
1149, Linthicum, MD, Institute for Operations Research and the Management
Sciences.

Chin, D. K. and F. Melone. (1999). Using Airspace Simulation to Assess Environmental

Improvements from Free Flight and CNS/ATM Enhancements. In Proceedings of
the 1999 Winter Simulation Conference, ed. P.A. Farrington, H.B. Nembhard, D.
T. Sturrock, and G.W. Evans, 2:1295-1301, Piscataway, New Jersey, Institute of
Electrical and Electronics Engineers.

 135

Corker, K. M. (1999). Human Performance Simulation in the Analysis of Advanced Air

Traffic Management. In Proceedings of the 1999 Winter Simulation Conference,
ed. P.A. Farrington, H.B. Nembhard, D.T. Sturrock, and G.W. Evans, 821-829,
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Diamond, P., Kloeden, P. E., Kozyakin, V. S., and A. V. Pokrovskii. (1997). A Model for

Roundoff and Collapse in Computation of Chaotic Dynamical Systems.
Mathematics and Computers in Simulation, 44:163-185, Orlando, FL, Elsevier.

Falker, J. M. and J. K. Kuchar. (2001). Analytical and Empirical Analysis of the Impacts

of Restricting Airspace. In the 4th USA/Europe Air Traffic Management R&D
Seminar, Piscataway, New Jersey, Institute of Electrical and Electronics
Engineers.

Fishman, G. (2001). Discrete-Event Simulation: Modeling, Programming, and Analysis.

New York, Springer-Verlag.

Fishwick, P. A. and R. Modjeski (1991). Knowledge-Based Simulation: Methodology

and Application (Advances in Simulation Vol.4). New York, Springer-Verlag.

Fondacci, R., Goldschmidt, O., and V. Letrouit. (1998). Combinatorial Issues in Air

Traffic Optimization. INFORMS Transportation Science, 32(3):256-268
Linthicum, MD, Institute for Operations Research and the Management Sciences.

Fujimoto, R. M. (2000). Parallel and Distributed Simulation Systems. New York, John

Wiley & Sons, Inc.

Fujimoto, R. M. (2001). Parallel and Distributed Simulation Systems. In Proceedings of

the 2001 Winter Simulation Conference, ed. B.A. Peters, J.S. Smith, D.J.
Medeiros, and M.W. Rohrer, 147-157, Piscataway, New Jersey, Institute of
Electrical and Electronics Engineers.

Frolow, I. and J. H. Sinnott. (1989). National Airspace System Demand and Capacity

Modeling. In Proceedings of the IEEE 77(11):174-186, Piscataway, New Jersey,
Institute of Electrical and Electronics Engineers.

Goldsman, D., Kim, S., Marshall, W. S., and B. L. Nelson. (2002). Ranking and Selection

for Steady-State Simulation: Procedures and Perspectives. INFORMS Journal on
Computing, 14 (1):2-19, Linthicum, MD, Institute for Operations Research and
the Management Sciences.

Glynn P. W. and D. L. Iglehart. (1990). Simulation Output Analysis Using Standardized

Time Series. Mathematics of Operations Research, 15:1-16.

Glynn P. W. and W. Whitt. (1990). Estimating the Asymptotic Variance with Batch

Means. Operations Research Letters, 10:431-435.

Hayes, C. C. (1999). Agents in a Nutshell – a Very Brief Introduction. IEEE

Transactions on Knowledge and Data Engineering 11 (1):127-132, Piscataway,
New Jersey, Institute of Electrical and Electronics Engineers.

 136

Hatley, D. J., and I. A. Pirbhai. (1988) Strategies for Real-Time System Specification.
New York, Dorset House Publishing Co., Inc.

Holden, T. C. and F. Wieland. (2003). Runway Schedule Determination by Simulation

Optimization. In Proceedings of the 2003 Winter Simulation Conference, ed. S.
Chick, P.J. Sanchez, D. Ferrin, and D.J. Morrice, Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Hopp, W. J., and M. I. Spearman. (2000) Factory Physics. 2nd Ed. New York, McGraw-

Hill.

Karatza, H. D. and R. C. Hilzer. (2002). Load Sharing in Heterogeneous Distributed

Systems. In Proceedings of the 2002 Winter Simulation Conference, ed. E.
Yucesan, C.H. Chen, J.L. Snowdon, and J.M. Charnes, 489-496, Piscataway, New
Jersey, Institute of Electrical and Electronics Engineers.

Kim, S. and B. Nelson. (2001). A Fully Sequential Procedure for Indifference-Zone

Selection in Simulation. ACM TOMACS, 11:251-273.

Kettenis, D. L. (1997). An Algorithm for Parallel Combined Continuous and Discrete-

Event Simulation. In Simulation Practice and Theory, 5:167-184, Orlando, FL,
Elsevier.

Kleinman, N. L., Hill, S. D., and V. A. Ilenda. (1998). Simulation Optimization of Air

Traffic Delay Cost. In Proceedings of the 1998 Winter Simulation Conference,
ed. D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Manivannan, 1177-1181,
Piscataway, New Jersey, Institute of Electrical and Electronics Engineers.

Kochan, S. G. (1994). Programming in ANSI C. Revised Edition. Indianapolis, Indiana,

SAMS – Prentice Hall.

Kostiuk, P. F. (2001). Demand Management versus Capacity Enhancement: Which

Direction for Air Transportation? In the 4th USA/Europe Air Traffic Management
R&D Seminar, Piscataway, New Jersey, Institute of Electrical and Electronics
Engineers.

Knorr, D., Post, J., Walker, M., and D. Howell. (2001) An Operational Assessment of

Terminal and En Route Free Flight Capabilities. In the 4th USA/Europe Air Traffic
Management R&D Seminar, Piscataway, New Jersey, Institute of Electrical and
Electronics Engineers.

Law, A. M. and W. D. Kelton. (2000). Simulation Modeling and Analysis. 3rd Edition.

Boston, MA, McGraw Hill.

Lee, S. M., A. R. Pritchett, and D. Goldsman. (2001). Hybrid Agent-Based Simulation

for Analyzing the National Airspace System. In Proceedings of the 2001 Winter
Simulation Conference, ed. B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W.
Rohrer, 1029-1036, Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Lee, S.M. (2002). Agent-Based Simulation of Socio-Technical Systems: Software

Architecture and Timing Mechanisms. Ph.D. Dissertation, Georgia Institute of
Technology, Atlanta, Georgia.

 137

Leveson, N. et al. (2001). A Safety and Human-Centered Approach to Developing New

Air Traffic Management Tools. In the 4th USA/Europe Air Traffic Management
R&D Seminar, Piscataway, New Jersey, Institute of Electrical and Electronics
Engineers.

Logan, B. and G. Theodoropoulos. (2001). Multi-Agent Systems and Agent-Based

Simulation. In Proceedings of the IEEE 29(2):174-186, Piscataway, New Jersey,
Institute of Electrical and Electronics Engineers.

Meketon, M. S. and B. W. Schmeiser. (1984). Overlapping Batch Means: Something for

Nothing? In Proceedings of the 1984 Winter Simulation Conference, ed. S.
Sheppard, U. W. Pooch, and C. D. Pegden, 227-230, Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

National Research Council (NRC) (2002). Modeling and Simulation in Manufacturing

and Defense Systems Acquisition. Washington D.C., National Academy of
Sciences.

National Airspace System (NAS) Report Card. (1999). MITRE Corporation. McLean,

Virginia.

Nelson, B. L., and D. Goldsman. (2001). Comparisons with a Standard in Simulation

Experiments. INFORMS Management Science, 47(3):449-463, Linthicum, MD,
Institute for Operations Research and the Management Sciences.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and W. Wasserman. (2001). Applied Linear

Statistical Models 4th ed. New York, McGraw-Hill.

Oliver, D. W.. (1997). Engineering of Complex Systems with Models. In IEEE

Transactions on Aerospace and Electronic Systems, 33(2):667-685, Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers.

Odoni, A. R. (1991). Issues in Modeling a National Network of Airports In Proceedings

of the 1991 Winter Simulation Conference, ed. B.L. Nelson, W.D. Kelton, G.M.
Clark, 756-762, Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers.

Pallottino, L. and A. Bicchi. (2000). On the Optimal Conflict Resolution for Air Traffic

Control. In Proceedings of Intelligent Transportation Systems, Piscataway, New
Jersey, Institute of Electrical and Electronics Engineers.

Pillage, L. T., Rohrer, R. A., and C. Visweswariah. (1995). Electronic Circuit and

System Simulation Methods. New York, McGraw-Hill, Inc.

Pinedo, M. (1995). Scheduling. Theory, Algorithms, and Systems. Englewood Cliffs,

New Jersey. Prentice Hall.

Pritchett, A. R., Lee, S., Abkin, M., Gilgur, A. Z., Bea, R. C., Corker, K. M., Verma, S.,

and A. Jadhav. (2002). Examining Air Transportation Safety Issues Through
Agent-Based Simulation Incorporating Human Performance Models. In

 138

Proceedings of 2002 Digital Avionics Systems Conference, 2:27-31, Piscataway,
New Jersey, Institute of Electrical and Electronics Engineers.

Pritchett, A. R. and C. Ippolito. (2000). Software Architecture for a Reconfigurable Flight

Simulator. In Proceedings of the AIAA Modeling and Simulation Technologies
Conference, Denver, CO.

Reiss, R. D. and M. Thomas (2001). Statistical Analysis of Extreme Values. 2nd ed.

Basel, Birkhauser Verlag.

Rinott, Y. (1978). On Two-Stage Selection Procedures and Related Probability-

Inequalities. Commun. Stat. –Theory and Methods A8, 799-811.

Ross, S. M. (1996). Stochastic Processes. 2nd ed. New York, John Wiley & Sons.

Rolfe, J. M. and K. J. Staples. (1986). Flight Simulation. Melbourne, Australia,

Cambridge University Press.

Sanchez, S. M and T. W. Lucas. (2002). Exploring the World of Agent-Based

Simulations: Simple Models, Complex Analyses. In Proceedings of the 2002
Winter Simulation Conference, ed. E. Yucesan, C.H. Chen, J.L. Snowdon, and
J.M. Charnes, 116-126, Piscataway, New Jersey, Institute of Electrical and
Electronics Engineers.

Schaefer, A. J., Goldsman, D., Johnson, E., Kleywegt, A. J., and G. L. Nemhauser.

(2002). A Stochastic Model of Airline Operations. INFORMS Transportation
Science, 36(4):357-377, Linthicum, MD, Institute for Operations Research and
the Management Sciences.

Schwabacher, M., and A. Gelsey. (1998). Multilevel Simulation and Numerical

Optimization of Complex Engineering Designs. In Journal of Aircraft,
35(3):387-397. Reston, VA, American Institute of Aeronautics and Astronautics,
Inc.

Schwartz, J., Mundra, A., Broderick, J., and R. Nash (1997). Some ATC Implications of

Introducing Flight Management System Based Routes in the Terminal Airspace.
16th Digital Avionics Systems Conference, AIAA/IEEE, 2:9.1-16-9.1-23,
Piscataway, New Jersey, Institute of Electrical and Electronics Engineers.

Seber, G.A.F. (1997). Linear Regression Analysis. New York, John Wiley & Sons.

Tan, G., Ng, W. N., and F. Moradi. (2001). An Enroute ATC Simulation Experiment for

Sector Capacity Estimation. In IEEE Transactions on Control Systems
Technology, 1:(3)138-144, Piscataway, New Jersey, Institute of Electrical and
Electronics Engineers.

Tofukuji, N. (1993). Engineering of Complex Systems with Models. In IEEE

Transactions on Aerospace and Electronic Systems, 33(2):667-685, Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers.

 139

Wieland, F. (1998). Parallel Simulation for Aviation Applications. In Proceedings of the
1998 Winter Simulation Conference, ed. D.J. Mediros, E.F. Watson, J.S. Carson,
and M.S. Manivannan, 1191-1199, Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Wilson, J. R. (2001). A Multiplicative Decomposition Property of the Screening-and-

Selection Procedures of Nelson Et Al. INFORMS Operations Research,
49(6):964-966, Linthicum, MD, Institute for Operations Research and the
Management Sciences.

Wilson, I. and K. Fleming (2002). Controller Reactions to Free Flight in a Complex

Transition Sector Re-Visited Using ADS-B+. 21st Digital Avionics Systems
Conference, AIAA/IEEE, 1:2.B.5-1-2.B.5-10, Piscataway, New Jersey, Institute
of Electrical and Electronics Engineers.

Zeitlin, Andrew D. (2001). Safety Assessments of ADS-B and ASAS. In the 4th

USA/Europe Air Traffic Management R&D Seminar, Piscataway, New Jersey,
Institute of Electrical and Electronics Engineers.

Zeghal, K. and E. Hoffman (2000). Design of cockpit displays for limited delegation of

separation assurance. 18th Digital Avionics Systems Conference, AIAA/IEEE,
D:2-1-D2-8, Piscataway, New Jersey, Institute of Electrical and Electronics
Engineers.

 140

VITA

Kirk C. Benson

Kirk C. Benson was born in Renton, Washington on March 28, 1964. He

received a B.S. in Mechanical Engineering from the United States Military Academy in

1986 and obtained a commission in the U.S. Army as an engineer. After serving in

Germany and Hawaii in positions ranging from platoon leader to company commander,

he obtained a M.S. in Operations Research from the Naval Postgraduate School in 1997.

His master thesis research involved modeling data encapsulation and a communications

network for the National Training Center located at Fort Irwin, California. Subsequently,

he served as an assistant professor in the Department of Mathematical Sciences at the

United States Military Academy. In 2001, he entered the doctoral program in the School

of Industrial and Systems Engineering at the Georgia Institute of Technology in Atlanta,

Georgia. His minor is in Adaptive System Control Methods.

He is married to Shelley and enjoys a variety of pursuits to include weightlifting,

skiing, and reading.

