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GLOSSARY 
 

Adaptive – modification in reaction to changing circumstances to maintain a desired 
behavior or effect a desired outcome 

 
ATC – Air Traffic Control 
 
ARTCC – Air Route Traffic Control Center 
 
Configuration – relative arrangement of parts or elements – a defined construct for a 

model 
 
Control – to exercise restraining or directing influence over  
 
Design – to create, fashion, execute, or construct according to plan – typically an iterative 

process to achieve defined goals for a system 
 
Embedded – to make something an integral part of  
 
Metric – a standard of measurement 
 
Model – an example for imitation or emulation – set of logical relationships defining a 

system 
 
LP – Logical Process 
 
NAS – National Airspace System 
 
NOW – Network of Workstations  
 
PDS – Parallel and Distributed Simulation  
 
RFS – Reconfigurable Flight Simulator  
 
RS – Ranking and Selection 
 
STAR – Standard Terminal Arrival Route 
 
System – a regularly interacting or interdependent group of items forming a unified 

whole – real-world process of interest 
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SUMMARY 
 

This thesis describes adaptive simulation control techniques that differentiate 

between competing system configurations.  Here, a system is a real-world environment 

under analysis.  In this context, proposed modifications to a system denoted by different 

configurations are evaluated using large-scale hybrid simulation.  Adaptive control 

techniques, using ranking and selection methods, compare the relative worth of 

competing configurations and use these comparisons to control the number of required 

simulation observations.  Adaptive techniques necessitate embedded statistical 

computations suitable for the variety of data found in detailed simulations, including 

hybrid and agent-based simulations.  These embedded statistical computations apply 

efficient sampling methods to collect data from simulations running on a network of 

workstations.  The National Airspace System provides a test case for the application of 

these techniques to the analysis and design of complex systems, implemented here in the 

Reconfigurable Flight Simulator, a large-scale hybrid simulation.  Implications of these 

techniques for the use of simulation as a design activity are also presented. 

The figure below is a graphical summary of this method.  Given a properly 

modeled configuration of some real-world system, simulation of the model provides 

predictive insight into actual system performance.  Embedding data analysis within the 

simulation facilitates runtime analysis of practitioner defined metrics.  Runtime 

knowledge of these metrics enables adaptive control techniques, such as ranking and 

selection, to minimize the number of observations required to compare competing 

configurations.  Using a network of workstations with parallel and distributed simulation 

methods makes best use of available computational capacity for a given experiment.   
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Adaptive Control of Large-Scale Simulations 

 

This method can be generalized to any endeavor comparing two or more model 

configurations, using simulation, during analysis and design.  The key contribution of this 

research is the integration of academic fields to improve complex system analysis.  

Additionally, ranking and selection methods are extended.  Lastly, experimental sampling 

methods are developed suitable for agent-based simulation timing mechanisms.   
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CHAPTER 1 

INTRODUCTION 

Increasing use of simulation for both design and analysis motivates models 

capable of increasingly realistic representations of complex systems.  For example, one 

method for obtaining increased realism is the use of hybrid simulations.  Modeled system 

performance can be inferred from simulation output in a variety of manners from simple 

queuing times to multifaceted compliance with regulations or constraints. 

Hybrid simulations, that is, simulations capable of simultaneously including 

discrete-event and continuous-time models, allow for cost-effective and detailed analysis 

of systems that involve complex interactions between heterogeneous entities.  Agent-

based modeling is one method for describing such heterogeneous entities.  In this 

paradigm, each individual agent autonomously pursues a goal and also interacts with 

other agents inside the simulation.  Agent-based modeling provides an inherently 

modular method for high-fidelity simulation of complex systems.  This approach, 

however, requires the inclusion of a range of models with varied output data types such 

as discrete and continuous.  For example, in an air traffic simulation an appropriate 

discrete state variable may be the number of aircraft arrivals into a defined airspace, 

while a continuous variable of interest might be the minimum separation between two 

aircraft. 

Detailed hybrid simulations, including agent-based simulations, require an 

increase in both size and runtime.  Frequently, the amount of simulation output is 

determined by the availability of computational capacity.  Subsequent data analysis, 

commonly done as a separate activity, often reveals either insufficient or excess 
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observations for the required statistical comparison.  Therefore, embedding statistical 

estimators within a simulation can ensure computationally efficient sampling without 

requiring storage and post hoc analysis.  

Incorporating an adaptive control technique, such as a Ranking and Selection 

(RS) method, offers an additional avenue for increased computational efficiency.  RS 

methods calculate the number of required observations, thus ensuring that statistically 

sound comparisons are made with modest computational expense.  The methods 

presented here are sequential and appropriate for general stationary output processes.  A 

new adaptive control technique is developed here that relies on embedded statistical 

estimators to calculate the number of required observations for each simulated 

configuration.  Additionally, the control technique differentiates in an adaptive manner 

between competing configurations by identifying which configurations do not warrant 

further analysis, potentially saving computational resources. 

Bringing together hybrid simulation models, embedded statistical analysis, and 

adaptive control techniques improves the application of simulation to the analysis and 

design of complex systems.  This improvement is realized in terms of computational 

reduction and statistically valid comparison of competing configurations.  Additionally, 

this method creates an environment conducive to Parallel and Distributed Simulation 

(PDS), although the control techniques employed here do not require the strict time 

management generally required in PDS.  Instead, experiments can be implemented on a 

Network of Workstations (NOW) that coordinates observation sampling from 

complementary simulations.  
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An existing hybrid simulation model of the National Airspace System (NAS) 

provides a relevant test case (Pritchett and Ippolito, 2000).  Specifically, as part of this 

research, the Reconfigurable Flight Simulator (RFS) has been extended for embedded 

statistical computations and adaptive control techniques.  The analysis of arrival routing 

configurations for Atlanta International Airport (ATL) is presented as a demonstration. 

Figure 1 provides a graphical summary of this method.  Given a properly modeled 

configuration of some real-world system, simulation of the model provides predictive 

insight to actual system performance.  Embedding data analysis within the simulation 

facilitates runtime analysis of practitioner defined metrics.  Runtime knowledge of these 

metrics enables adaptive analysis and control techniques, such as ranking and selection, 

to minimize the number of observations required to compare competing configurations.  

Using a network of workstations in a parallel and distributed simulation manner makes 

the best use of available computational capacity for a given experiment.   
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Figure 1: Adaptive Control of Large-Scale Simulations 
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This comparative method may be applied to modeled complex systems 

differentiated by a unique performance metric.  For example, continuous-valued profit 

measures or the relative physical separation of modeled components could identify 

desired performance for a particular system.  The comparative method can also 

incorporate derived metrics from discrete variables, such as average throughput.  This 

method relies on observations of estimated mean values which must exhibit 

characteristics enabling the application of ranking and selection methods.  Specifically, 

ranking and selection method performance must be robust for the achieved normality and 

serial correlation of these observations.  Lastly, obtaining observations must be 

computationally tractable. 

 

1.1  Research Objectives 

The objectives of this research can be summarized as follows: 

• Development of efficient and accurate embedded statistical estimators that 

enable fully sequential adaptive control techniques providing comparative 

analysis between competing simulated model configurations. 

• Extension of adaptive control techniques, in this case ranking and 

selection methods, that differentiate between competing simulated model 

configurations and also calculate the number of required observations. 

• Development of a distributed simulation architecture ensuring the best use 

of computational capacity. 

• Integration of these components, thereby extending the use of simulation 

as an analysis and design tool for complex systems. 
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1.2  Research Outline 

The remainder of this dissertation is organized as follows.  Chapter 2 presents a 

literature review of simulation as a design process, adaptive analysis and control 

techniques, embedded statistical encapsulation, and a discussion on parallel and 

distributed simulation.  Chapter 3 details the developed distributed simulation 

architecture.  Chapter 4 highlights extension of ranking and selection methods as a 

control technique.  Chapter 5 presents the application of the developed methods to an 

existing large-scale simulation of the National Airspace System.  Chapter 6 summarizes 

the effort and discusses future research directions.   

 



 6

CHAPTER 2 

BACKGROUND 

Analysis of complex systems requires the integration of several academic fields 

for their efficient and accurate study.  Hybrid simulation, comprised of discrete and 

continuous valued variables, offers a cost-efficient method for complex system analysis.  

Timing mechanisms for agent-based simulations, synchronous or asynchronous, impact 

the appropriate sampling of experimental observations.  Embedded statistical sampling 

methods need to be efficient in terms of memory storage requirements as well as accurate 

in terms of estimation.  Adaptive control techniques, such as Ranking and Selection (RS), 

allow for efficient computation usage by terminating analysis of system configurations 

that are no longer competitive.  Furthermore, relatively “fast” computational results may 

be obtained from a Network of Workstations (NOW) implementation that builds on 

current Parallel and Distributed Simulation (PDS) techniques.  This chapter focuses on 

the discussion of these perspectives and their relation to the increasing use of simulation 

in the design of complex systems. 

 

2.1 Simulation  

Law and Kelton (2000) define simulation as a technique using computers to 

imitate various kinds of real-world facilities or processes.  Generally, simulation offers a 

relatively inexpensive and fast technique for gaining insight into the performance of 

complex systems.  In this context, a system represents a process or facility under scrutiny 

and the simulated model of this system is composed of logical and mathematical 

constructs that define system functionality.  Unless an analytic/numerical solution is 
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possible or the system may be observed while in operation, simulation is required to 

estimate system performance. 

Simulation as an analytic tool is ubiquitous.  However, the actual implementation 

of this tool spans a variety of methods.  Separate discrete and continuous modeling 

techniques are already well established and have also been combined in hybrid 

simulations to create increasingly complex models (Sanchez and Lucas, 2002).  Use of 

the agent-based paradigm further allows the practitioner to more accurately model many 

types of systems and identify emergent behavior.  This section briefly discusses these 

methods as they relate to the modeling of complex systems. 

   

2.1.1 Common Types of Simulation 

Discrete-event simulation models a system as having state variables that change 

by discrete amounts at discrete points in time.  For example, an appropriate state variable 

for discrete modeling might be the number of customers in a queue.  Performance metrics 

of a discrete model include delay, number of waiting entities, system throughput, and 

resource utilization (Fishman, 2001).  Discrete-event simulations are widely used in 

many domains including manufacturing systems, military operations, and transportation 

networks.  This type of simulation is well suited for modeling the stochastic nature of 

arrivals, waiting/servicing, and departures in a system. 

Continuous-time simulation models a system where continuously valued state 

variables change over time.  Continuous-time simulation is effective for modeling 

dynamic behavior such as vehicle movement.  For example, modeling aircraft flight 

dynamics includes state variables describing characteristics such as attitude and heading.  

Differential equations are used to update variables associated with dynamic behavior.  
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Several numerical integration routines, such as Runge-Kutta, can be used to update these 

state variables during the simulation (Chen, 2000).    

Hybrid simulation models include both discrete and continuous state variables.  

This allows for a more realistic representation of a system by modeling both discretely 

and continuously varying state variables.  For example, a hybrid model uses differential 

equations for the internal dynamics of each vehicle and discrete state variables to count 

the number of vehicles at a particular location.  However, the increased complexity of 

hybrid models entails longer development and execution time. 

Agent-based simulation is one form of simulation that models a system through 

the use of agents, often with hybrid models.  An agent in this context is an autonomous 

entity that interacts with other agents and the environment in the pursuit of a goal or set 

of goals.  For example, an aircraft agent modifies its flight to avoid other aircraft and 

terrain during its approach to a given airport.  Agent-based simulations are increasingly 

being applied to model a variety of systems, including telecommunications, business 

processes, control of mobile robots, and military operations (Logan and Theodoropoulos, 

2001).    

Pritchett et al. (2002) discuss an agent-based simulation of the National Airspace 

System (NAS) comprised of heterogeneous entities.  The NAS is an example of a 

complex socio-technical system composed of various entities such as pilots, controllers, 

technical devices, and aircraft.  Here, a socio-technical system denotes one that contains 

both human and machine components.  This example highlights the complexity of agent-

based simulations and the motivation to make the best use of models that require both 

extensive developmental effort and relatively “long” execution time. 
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2.1.2 Simulation as a Design Activity 

Simulation is often used iteratively during the design process.  This section 

highlights the general use of simulation in electronic circuit analysis, manufacturing, 

aircraft operations, and military endeavors.  Each application of simulation facilitates 

product and/or process improvement.   

One example of hybrid simulation practice is electronic circuit analysis.  The goal 

of circuit simulation is pre-manufacturing verification of potential performance (Pillage, 

et al., 1995).  Connectivity within the circuit is modeled by logical gates that have 

discrete behavior.  Timing mechanisms for these logical gates are generally event driven.  

For instance, a gate is opened at a particular time.  Circuit elements, such as resistors and 

capacitors, are evaluated by continuous parameters such as voltage or current updated by 

numerical integration.  Typical use of circuit simulation entails sensitivity analysis; one 

varies a particular resistor parameter and observes how the current changes in the circuit.  

This capability has enabled modern Very Large-Scale Integrated (VLSI) circuit design. 

The use of simulation in manufacturing processes has grown dramatically in 

recent years.  Increased demand for high quality goods on short notice is one factor 

motivating the use of simulation.  In this realm, simulation is often used during product 

acquisition to support: 

• Requirement definition and analysis 
• System engineering 
• System development process 
• System testing 
• System training 

 
To that end, these simulations necessitate a hybrid capability that is interoperable 

between agencies participating in the acquisition process (NRC, 2002). 
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  The use of simulation in the design of aircraft operations can be beneficial in 

multiple areas.  Allocation of ground delay to mitigate costly airborne congestion is one 

example (Kleinman, Hill, and Ilenda, 1998).  In this example, various methods of 

allocating ground delay were assessed by the use of simulation and an optimization 

algorithm.  Evaluation of recovery policies following unforeseen traffic disruptions is 

another example.  SimAir is a discrete-event simulation that models daily airline 

operations to include aircraft, crews, passengers, and disruptions (Schaefer, et al., 2002).  

Simulation also serves as a stimulus for development of aircraft-related technologies such 

as hydraulics and for real-time human-in-the-loop simulators (Rolfe and Staples, 1986).  

Note these simulations are often hybrid in nature with continuous variables such as 

position and velocity accompanied with discrete variables such as the number of aircraft 

arrivals. 

Military simulations generally focus on combat operations.  One focus is on 

attrition rates incurred during a force-on-force confrontation.  Extension of two-sided to 

n-sided conflict analysis is of recent national interest (Brandt and Roland, 1993).  

Another focal point for military simulations is weapon effectiveness.  Here, probabilistic 

analysis of potential detection or successful engagement during a confrontation is 

combined with cost analysis during the acquisition process.  Lastly, large-scale combat 

simulations facilitate military staff operational training.   

 

2.1.3 Simulation Summary 

Large-scale hybrid simulations that mimic complex systems offer an efficient 

method for design and analysis.  The previous section highlights the flexibility of 

simulation as an analysis tool suitable for a wide variety of domains.  Note the 
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appropriate use of simulation relies on model parameterization and correct output 

analysis.  However, the relevance of simulation relies on the computational tractability 

and actual development costs.  There are pitfalls in the current use of hybrid simulation.  

First, embedded statistical controls are infrequently implemented.  Rather, analysis is 

usually done post hoc and often by separate agencies.  Also, the sheer complexity of 

these simulations entails the use of vast computational resources.   

 

2.2 Sampling from Hybrid Simulations 

Hybrid simulations provide a generalized approach to modeling real-world 

systems as they allow for both discrete and continuous state variables.  Discrete events, 

such as vehicle arrivals, often involve metrics derived from queue size.  On the other 

hand, continuous state variables, for example vehicle velocity, involve metrics based on 

maximum, minimum, or average values.  Entities in hybrid simulations commonly have 

differentiable update rates depending upon both their internal dynamics and interactions 

with other entities.   

Likewise, the autonomous aspect of agent-based simulation has inspired novel 

timing mechanisms (Lee, Pritchett, and Goldsman, 2001).  In addition to involving hybrid 

dynamics, agent-based simulations may use either asynchronous or synchronous timing 

mechanisms.  Both types of mechanisms necessitate sophisticated statistical sampling 

methods as detailed in the following sections.   

 

2.2.1 Synchronous Sampling 

Synchronous sampling entails obtaining observations at predetermined time steps 

that are periodic.  The following example assumes post hoc sampling where all 
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observations are stored for later analysis.  In Figure 2 below, objects 1 through 4 are 

updated at 0.2 second increments.  Sampling occurs every 0.5 seconds with an overlap of 

0.2 seconds.  For instance, a sample taken at 9.5 seconds includes observations with 

update times from 9.4 to 9.6 seconds.  Note that at a simulation time of 9.5 seconds there 

are eight observations while there are only four at the 10.0 second sampling.  This 

difference has minimal, if any, effect on the measure of any state variable.  However, 

calculations must be based on the number of observations rather than the number of 

objects.  Also, the practitioner must ensure the sampling rate and overlap will indeed 

capture observations. 
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2.2.2 Asynchronous Sampling 

In general, synchronous timing methods for large-scale simulations are 

computationally inefficient because all agents update at specified time steps regardless of 

the necessity.  Asynchronous timing methods can also provide correct model and 

simulation results if update times are managed by agents in accordance to their internal 

dynamics and interactions.  For example, Figure 3 shows a possible 2-dimensional spatial 

separation scenario with six vehicles.  Obviously, vehicles 1 and 2 must be checked more 

often than vehicles 5 and 6 to measure if safe separation has been lost. 
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Figure 3: Spatial Separation Asynchronous Update Example 

 

Asynchronous statistical sampling creates a more perplexing problem.  Figure 4 

below details a possible sampling scenario.  Objects 1, 2, and 3 update at periodic 

intervals, but their update rates are different.  Hence, sampling at set intervals could bias 

the estimated mathematical distribution to more frequently updated objects.  Likewise, 
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object 4 in this example is updating at intervals that are not constant.  Objects of this 

nature add randomness to the results obtained via a constant sampling rate.  
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Figure 4: Asynchronous Sampling 

 

2.2.3 Combined Sampling 

Sequential combination of simulation output from these sampling methods entails 

several assumptions.  First, the simulated configurations must be of identical models.  

Second, generated random numbers from the simulations must not significantly overlap 

or the obtained observations may be redundant.  Note that combining variance estimators, 

discussed later, generally results in higher estimated values due to the decreased degrees 

of freedom.  However, underestimation of variance may also occur when combining 

simulation output.   
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Combining simulation output to predict long-term systemic performance also 

relies on assumptions about the complex system.  For example, the analysis of arrivals 

into a facility can be modeled by seasonal factors such as the hours of daylight truncated 

by day increments.  To some extent, day-to-day increments of this simulated output may 

be combined.  Yet, missed systemic failures, with subsequent recovery, are the major 

issue with this assumption.  For example, a severe weather incident may stop all arrivals 

on a particular day, and recovery on the next day will entail increased traffic flow.  

Combining simulation output in the discussed manner would fail to capture such effects.  

However, combining simulation output potentially speeds complex system analysis. 

 

2.2.4 Sampling Summary 

Simulation timing mechanisms complicate observation sampling from an 

experiment.  Sampling methods should be generalized to handle any timing mechanism 

and type of variable.  Additionally, simulation-specific diagnostic tests are required to 

select appropriate sampling rates and the overlap size.  In this context, an appropriate rate 

and overlap ensure accurate estimation of the underlying process.  Therefore, 

development of relatively simple sampling methods that avoid storage of historical data 

and preclude over/under flow of variables are needed; these methods should also be 

computationally efficient, accurate, and robust.   

 

2.3 Parallel and Distributed Simulation  

Parallel and Distributed Simulation (PDS) has been studied for many years in an 

effort to speed increasingly complex simulation models.  PDS research has primarily 

focused on manipulating sequential simulations and unifying coupled simulation 
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processes for discrete-event systems.  Manipulation of sequential simulations is generally 

accepted for queuing systems or for the mass replication of a particular simulation 

configuration.  Combining separate but interacting simulations spans sophisticated 

synchronization algorithms and prescribed interfaces such as the DOD High Level 

Architecture (HLA).  Fujimoto (2000) provides a comprehensive discussion of current 

PDS techniques that is briefly highlighted in this section. 

A key issue in most PDS techniques is the synchronization of a set of logical 

processes (LP) running on separate processors.  Note that LP assignment to participating 

processors is generally done by temporal or spatial decomposition.  Temporal methods 

logically separate distinguishable simulation scenarios by time, such as decomposition of 

aircraft arrivals by day increments at a major airport.  The issue with decomposition by 

this method relies on tying the terminating conditions of one temporal LP to the initial 

conditions of another.  Spatial decomposition, on the other hand, divides complex 

simulations into geographically separate LPs, such as separation of arrival patterns into a 

given airport, in an effort to distribute the computational load.  This method of 

decomposition requires spatially adjoining simulations to communicate or pass entities 

between LPs.  In general, between-LP interaction is required at the boundaries created by 

the decomposition method. 

The goal of synchronization in this context is to avoid causality errors from out-

of-order event processing.  For example, under temporal decomposition, if one LP 

computed an event that impacted a previous event on a different LP, then a causality error 

might exist.  The two classes of algorithms that address this issue are called conservative 

and optimistic.  Conservative synchronization algorithms strictly enforce the event 
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processing in the associated LPs to avoid causality errors.  On the other hand, optimistic 

algorithms detect causality errors at runtime with a subsequent roll back mechanism to 

“undo” the error; Time Warp is a well-known example (Fujimoto, 2000).  Note that these 

algorithms may entail significant computational expense to accurately roll back the LP.  

Regardless of the method, synchronization methods rely on strict interpretations of time 

in the participating LPs, or federate in HLA vernacular, for successful and repeatable 

execution. 

Other PDS implementations focus on compiler or operating system kernel 

modifications to speed LPs.  For example, Carothers (2002) implemented a PDS called 

Extreme Simulation (XSim) on the Linux operating system.  XSim is promising in terms 

of simplified kernel modification and virtual memory management, but is limited by the 

cost of redeveloping existing simulation models to this paradigm. 

Another possible PDS architecture allows for heterogeneous processor 

contributions to a given experiment.  Specifically, contributing processors simulate 

differentiable model configurations of a complex system.  Unlike temporal and spatial 

decomposition PDS methods that contain coupled dynamics, this approach incorporates 

independent execution of the simulations.  The lack of coupled dynamics with this 

approach avoids causal synchronization issues.  Beyond mere mass replication of a 

particular simulation, this method naturally acquires computational capacity for 

configuration comparison.  Computational load sharing in this manner is similar to 

previous efforts by Karatza and Hilzer (2002).    
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2.4 Metric Selection 

Metrics define measurable criteria for organizational analysis.  Obviously 

comparative analysis between competing configurations requires selection of a metric 

valued by the practitioner.  These metrics can be based on a mix of discrete and 

continuous valued variables.  Analysis methods must accommodate these varying 

metrics.  For example, the following are a subset, and “non-exhaustive” survey, of 

potential metrics for analysis of the National Airspace System (NAS):  

 
• Safety 

o Recordable injuries/fatalities 
o Lost workday cases 
o Aircraft damage 
o Accidents/incidents 
o Aircraft spacing 
o Go around frequency 

• Schedule performance 
o Aircraft on time 
o Arrival/departure delay rate 
o Aircraft turn time 

• Cost/Benefit 
o Passenger revenue from tickets 
o Inconvenienced passenger costs 
o Fuel consumption 

 

Clearly, there are numerous metrics available to the analyst of air transportation, and each 

may be analyzed in a number of ways.  For example, the analyst may require a 

measurement of a minimum, maximum, average, and/or count of a variable.   

The goal of this research is not to extend metric development.  Instead, the 

demand for analysis of a variety of metrics motivates two aspects of this research.  First, 

analysis of complex systems requires metrics encompassing discrete and continuous-
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valued variables.  Second, the use of runtime-determined metrics encourages modularity 

and reuse.   

 

2.5 Embedded Statistical Analysis 

Adaptive control techniques often require calculations on both individual and 

batched observation data.  To that end, a relatively simple data encapsulation method is 

discussed later in this thesis that does not require use of historical experimental 

observation values, but instead maintains only current state variables and certain summed 

values.  This embedded method allows for both estimator calculations and availability of 

these estimators at each simulation time step along with inherent reduction of memory 

usage.   

Embedded statistical estimators enable the acquisition of batched observations.  

These batched observations, under certain conditions, exhibit characteristics assumed for 

the appropriate application of adaptive control techniques.  Specifically, data batching 

methods facilitate the acquisition of normally distributed batched observations.  Also, an 

appropriate sampling rate allows us to obtain unbatched observations correlated at a 

manageable level.  Note that variance estimators for correlated data are typically biased.  

Simulation-specific diagnostics determining these values are discussed later in this thesis.  

The remainder of this section details methods for the acquisition of normally distributed 

simulation output that can also avoid autocorrelation issues.   

Embedding this data acquisition method within a steady-state simulation whose 

output is neither independent nor identically distributed requires assumptions on 

simulation initialization.  Law and Kelton (2000) suggest truncating early data in a 

simulation as one method of avoiding initialization bias.  Embedded statistical estimators 
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are used to compare k competing simulated configurations where ki ,,2,1 K= .  Given 

K,, 21 ii XX  as the simulation output from a single replication of the ith alternative, then 

after appropriate initialization the following assumptions hold: 

 
Stationarity: K,, 21 ii XX  forms a stationary stochastic process. 

(Strong) Consistency: ii rX µ→)( as ∞→r  with probability one, where iµ  is the 

steady-state mean from system i and )(rX i  is the sample mean based on r observations 

from system i. 

Functional Central Limit Theorem (FCLT):  There exist constants iµ and 02 >iv  such 

that 
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for 10 ≤≤ t , where ⇒denotes weak convergence and W(t) is a standard Brownian 

motion (Weiner) process (Glynn and Iglehart, 1990). 

For this effort, comparisons are made on steady-state means kµµµ ,,, 21 K , which 

is reasonable due to the consistency assumption.  The variance parameter, 2
iv , can be 

estimated by batch means, overlapping batch means, and standardized time series 

methods.  Note that variance estimation from a single long simulation run ameliorates 

somewhat the issue of initialization bias.  The following techniques provide estimators 

for the asymptotic variance constant ( )( )rXrVARv i
ri ∞→

≡ lim2 . 

 



 21

2.5.1 Batch Means 

If n observations inii XXX ,,, 21 K are divided into b batches of length m, then the 

jth batch mean from system i is: 

 ∑
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m
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1
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1  (2) 

The observations mimjimji XXX ,2)1(,1)1(, ,,, K+−+−  comprise the jth batch, bj ,,2,1 K= , for 

system i.  For 1>b , the batch means variance estimator is: 
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where 2
dχ  is a chi-squared random variable with 1−= bd  degrees of freedom and 

D
⎯→⎯  

indicates convergence in distribution as m becomes large (Glynn and Whitt, 1991). 

 

2.5.2 Overlapping Batch Means  

Consider all batch means of the form: 
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The observations 1,2,1, ,,, −+++ mjijiji XXX K  comprise the jth overlapping batch for 

ki ,,2,1 K=  and 1,,2,1 +−= mnj K  for system i.  The overlapping batch means 

variance estimator is: 
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≈ where 2

dχ  is a chi-squared random variable with ( )⎣ ⎦2)13 −= bd  

degrees of freedom (Meketon and Schmeiser, 1984). 
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2.5.3 Standardized Time Series 

For ki ,,2,1 K= , bj ,,2,1 K= , and mh ,,2,1 K=  the hth cumulative mean from 

batch j of system i is: 

 ∑
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h
X

1
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1  (6) 

For ki ,,2,1 K= , bj ,,2,1 K= , and 10 ≤≤ t  the standardized times series from 

batch j of system i is: 
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The weighted area under the standardized time series formed by the jth batch of 

observations from system i is: 
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where ( ) ( )5.033840 2 +−≡ tttw , obtained from Goldsman et al. (2002), is a wise choice 

for a weighting function to reduce bias.  The weighted area variance estimator is: 
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2.5.4 Embedded Statistical Analysis Summary 

The embedded methods presented in this section enable encapsulation of defined 

performance metrics.  Furthermore, these methods provide normally distributed 

observations under certain conditions.  Generally, a sufficiently large batch size is 

required for the batch means method.  This guarantees normally distributed batched 

observations by the Central Limit Theorem.  The overlapping batch means method 
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requires sufficiently large batch size along with a large ratio of raw sample size to batch 

size.  The ratio requirement mitigates inherent convergence issues with this method.  

Note the application of these methods to a new simulation necessitates diagnostics to 

verify normality and variance convergence before use with adaptive control techniques. 

 

2.6 Adaptive Control Techniques 

The goal of any selection, screening, and multiple comparison problem is to 

determine the “best” of several competing configurations.  In this context, a configuration 

implies that we have two or more competing systems that are compared by the mean 

value of some metric describing performance, where simulation is required to assess the 

value of this metric.  Bechhofer et al. (1995) highlight several problem formulations 

appropriate to various experimental designs.  Here, focus is on the indifference-zone 

formulation where the objective is to select the configuration with the highest/lowest 

(interpreted “best”) expected value.  In this realm, an expectation offers insight on long-

term performance. 

The practitioner provides ),( ** Pδ , where *δ  is the indifference-zone parameter 

and *P  denotes the threshold desired probability of correctly identifying a difference 

between configurations.  Note that the indifference-zone indicates some comparative 

region where the practitioner would not discriminate between configurations.  Also, the 

threshold probability, *P , can be interpreted as a α−1  confidence interval when 

configuration mean values do in fact differ by at least *δ . 

Ranking and Selection (RS) methods enable adaptive control of this multiple 

comparison problem.  Ultimately, RS methods determine the number of required 
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observations necessary for statistically rigorous comparison of competing simulated 

configurations.  RS methods may be single or multi-stage.  In this context, a stage 

denotes the execution of a simulated configuration for a number of observations.  A 

single-stage method determines the number of required observations from parameters 

determined by the experimenter.  Adaptive control is not possible with a single-stage RS 

method.  However, a multi-stage RS method updates the required number of observations 

from simulated configuration output, thereby enabling adaptive control of the comparison 

problem. 

To highlight a single-stage RS method, if we assume random data from a normal 

distribution with known variance, 2σ , then the classical Bechhofer (1954) method is 

appropriate.  This method determines the number of required observations, n, from the 

following:  
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)1(
,1

*P
kZ −
− ρ  is the )1( *P−  equicoordinate point of the 1−k  dimensional multivariate standard 

normal distribution with off-diagonal correlation ρ .  Values for )1(
,1

*P
kZ −
− ρ  may be obtained 

from table lookup or from the application presented in Appendix B.  Here, k is the 

number of configurations in contention at the start of the experiment.  For example, if the 

variance, 2σ , is known to be 2.25 and the experimenter sets ( ) ( )950.30619,0., ** =Pδ  

with 6=k  configurations, then 262 observations are estimated for statistical comparison.  

Examples of two-stage and multi-stage methods follow.    
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If the variance of a predetermined metric is unknown, then Rinott’s method 

(1978) provides a well known two-stage technique for comparing configurations.  This 

method relies on the assumptions that obtained data are independent, identically 

distributed, and from a normal distribution.  Goldsman et al. (2002) present an extended 

version of this two-stage method (R+) and the extended version of the multi-stage Kim 

and Nelson (KN+) method (2001).  Note that batched observations are assumed to be 

normally distributed for both methods.  The following sub-sections detail both methods.  

 

2.6.1 Extended Rinott’s Procedure (R+) 

Setup:  Select confidence level α−1 , indifference-zone parameter 0>δ , first-stage 

sample size 20 ≥n , and batch size 0nm < . 

Initialization:  Obtain Rinott’s constant (from Bechhofer et al.) ( )α−= 1,, kdhh , where 

d is the degrees of freedom and k is the number of systems.   

Obtain 0n  observations ,,,2,1 , 0njX ij K=  from each system ki ,,2,1 K= . 

For ki ,,2,1 K=  compute 2
imV , the sample asymptotic variance of the data from system i  

using estimators discussed in section 2.5.   

Let 
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Stopping Rule:  If ii Nn max0 ≥  then stop and select the system with the largest 

estimated mean, ( )0nX i , as the best.  Otherwise, take 0nNi − additional 
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observations
iNinini XXX ,2,1, ,,,

00
K++  from each system i where 0nNi > .  Select the 

configuration with the largest ( )ii NX  as the best. 

 

2.6.2 Extended Kim and Nelson’s Procedure (KN+)  

For two systems i and l, the asymptotic variance of the difference, 22
li vv + , is 

calculated by forming the differenced series ,2,1, K=−= jXXD ljijilj  then applying 

one of the estimators presented in section 2.5 to the series. 

Setup:  Select confidence level α−1 , indifference-zone parameter 0>δ , first-stage 

sample size 20 ≥n , and batch size 0nm < .  Calculate 

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη  (12) 

Initialization:  Let },,2,1{ kI K=  be the set of systems still in contention, and let 

dh η22 = .  Obtain 0n  observations ,,,2,1, 0njX ij K=  from each system ki ,,2,1 K= .  

For all li ≠  compute 2
ilmV , the sample asymptotic variance of the difference of systems i 

and l.   

Let 
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and 
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Here 1+iN  is the maximum number of observations that can be taken from system i.  If 

( )1max0 +≥ ii Nn  then stop and select the system with the largest ( )0nX i  as the best.  

Otherwise, set the observation counter 0nr =  and go to Screening. 

Screening:  Set II old = .  Let 
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Stopping Rule:  If 1=I , then stop and select the system whose index is in I as the best.  

Otherwise, take one additional observation 1, +riX  from each system Ii∈  and set 

1+= rr .  If 1max += ii Nr , then stop and select the system whose index is in I and has 

the largest ( )rX i  as the best.  Otherwise, repeat the screening process.  Note that variance 

estimation only depends on data collected in the initialization stage of this method. 

 

2.6.3 Adaptive Control Technique Summary  

Adaptive control techniques enable differentiation of competing system 

configurations.  Additionally, these techniques determine the number of required 

observations necessary to discriminate between competing system configurations.  The 

application of these techniques to a large-scale simulation of a complex system is a 

relatively new idea.  Typically, previous adaptive control techniques of this nature 

validated performance by the use of simulations mimicking a known process rather than a 

large-scale simulation modeling a complex system.  Limitations to current techniques 



 28

include reliance on normally distributed data and some type of staged execution.  

Extension of sequential adaptive control techniques, enabled by embedded estimators, is 

promising in terms of enhanced computational efficiency.   

 

2.7 Summary 

The use of large-scale simulations in the design and analysis of complex systems 

will be improved by the integration of embedded statistical analysis, adaptive control 

techniques, and parallel simulation methods.  Improvements are in the form of increased 

computational efficiency and appropriate statistical comparison of competing simulated 

configurations.  Extension of current ranking and selection methods will further increase 

computational efficiency.  Application of this integrated method extends the use of 

simulation as a design and analysis activity.   
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CHAPTER 3 
 

DISTRIBUTED COMPUTING METHOD 

The Parallel and Distributed Simulation (PDS) techniques discussed in section 2.3 

facilitate efficient use of computational capacity.  This capacity can be applied to 

enlarging the scale of a particular simulation or, relevant to this effort, enabling 

appropriate statistical analysis by the acquisition of sufficient simulated observations.  

This chapter presents a distributed simulation architecture capable of incorporating 

Ranking and Selection (RS) methods, discussed in section 2.6, as a control technique 

enabling efficient analysis of competing simulated configurations.  A sample application 

of this distributed simulation architecture is also presented as a performance 

demonstration. 

 

3.1 Distributed Simulation Architecture  

Ranking and selection methods control the number of observations taken from 

simulated system configurations to select the “best” system configuration(s) among those 

in contention.  Each simulated system configuration is a separate process that can be 

distributed to participating processors for execution.  Using the indifference-zone 

formulation, it is possible that several configurations may be selected as the “best” 

ensuring computational termination.  RS methods require synchronization of the 

statistical estimators only when determining which configurations are still competitive for 

selection as the “best” and when calculating the number of required observations.  This 

section explores the requirements of RS method implementation in a distributed 

simulation environment and outlines an architecture meeting these requirements. 
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3.1.1 Distributed Simulation Implementation 

A Network of Workstations (NOW), with each simulating a modeled 

configuration, can provide suitable computational capacity for a given experiment.  

Simulation jobs need to be assigned by a central server, or controller.  Jobs can be 

different configurations or the same configuration to allow for simulation replications.  

The controller coordinates NOW usage by using ranking and selection methods to 

determine which configurations, and their lengths, to distribute out to participating 

workstations for execution.    

The following distributed simulation architecture allows for heterogeneous 

workstation contributions.  Specifically, contributing workstations simulate different 

system configurations.  Unlike temporal and spatial decomposition PDS methods that 

contain coupled dynamics, this method only requires independent execution of the 

simulations.  The lack of coupled dynamics within the architecture avoids causal 

synchronization issues.  Beyond mere mass replication of a single configuration, this 

architecture provides the computational capacity for configuration comparison.  

Computational load sharing in this manner is related to previous efforts by Karatza and 

Hilzer (2002).    

The implementation of a distributed simulation architecture used here is shown in 

Figure 5.  Each stage denotes the execution of a simulated configuration for a number of 

observations specified by the RS method.  The controller can potentially reschedule 

logical process execution amongst contributing workstations.  Between each stage, the 

controller compares and discriminates between competing configurations.  Of interest in 

this example is the elimination of one competing configuration from future analysis.  For 
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example, in Figure 5, configuration C2 is eliminated from further analysis between stage 

k-1 and stage k.  The multi-stage aspect of this architecture brings together distributed 

simulation and RS methods, using embedded statistical analysis in the process. 
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Figure 5: Distributed Simulation Implementation with Ranking and Selection Methods 

 

This implementation requires only the minimal necessary computations for 

statistically valid configuration comparisons.  Distributing simulations in this manner is 

unique in that it avoids the inherent timing mechanism and synchronization issues faced 

by most PDS techniques while facilitating “loose” coupling of related processes.  

Distributed simulation to obtain sufficient data for valid statistical comparison is an 

extension to the current state of the art.   
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The specific client-server architecture used here is shown in Figure 6.  The server 

acts as the controller.  Competing configurations such as systems A, B, and C are run on 

participating workstations providing computational contributions to the experiment using 

simulation executable programs that allow for external control in terms of run, pause, and 

terminate commands.  Additionally, the simulation executable program is required to 

make embedded statistical calculations.   
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Figure 6: Distributed Simulation Architecture 

 

Participating workstations function as individual clients.  Clients act as an 

interface between the server and the simulation executable program.  Each client 

manages one or more simulation executable program and monitors its associated 

simulation status.  It is assumed that more than one instantiation of the simulation 

executable program may execute on a participating workstation at any time.  For this 

architecture, only one simulation executable may have a “run” status on each workstation 
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while other simulation executables wait in a “paused” status for client commands.  

Pausing simulation executables in this manner avoids the transfer of simulation state 

variables and potential simulation re-initialization.  Additionally, the client prepares 

simulation output for the server.  For this implementation, if a client is tasked with more 

than one job then it must be differentiable in terms of the naming convention.  Also, job 

scheduling on the client is sequential when more than one is assigned. 

The server interacts with the clients as it compares different configurations’ 

metrics in a statistical sense at appropriate intervals.  Beyond monitoring status, the 

server also consolidates simulation output required for ranking and selection methods.  

Because the sampling intervals can be much greater than time steps within the 

simulations and because the comparisons are only used to start and end simulation runs, 

the distributed simulations are much more “loosely” coupled than in most PDS 

implementations.  Therefore, strict time synchronization is not required in this distributed 

simulation architecture. 

The server uses RS methods to calculate the number of required observations and 

also to discriminate between competing configurations.  Here, if one particular 

configuration is deemed unworthy of further analysis due to poor performance, then it is 

eliminated from further computational analysis.  The server also maintains the status of 

participating clients.  Additionally, the server manages “job” allocation, where a “job” in 

this case is the simulation sampling requirements for a particular configuration, as 

detailed in the next section. 

Communication between the client and the existing simulation is accomplished 

through the use of text scripts.  Server and clients communicate by the use of an 
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operating system managed TCP/IP Ethernet connection.  This generalized approach is 

extensible.  Additionally, it is easily reconfigured for varying experimental designs.   

 

3.1.2 Distributed Simulation Job Queuing  

Defining a job as a requirement for a specific number of simulated observations 

and a machine as a workstation highlights the scheduling problem inherent to this 

distributed simulation architecture.  Typical scheduling problems are NP-hard (Hopp and 

Spearman, 2000).  Assuming simulated configurations are similar, acquisition of first-

stage observations requires approximately the same time when using homogeneous 

processors on the contributing workstations.  However, heterogeneous workstation use 

and later-stage observation requirements obtained from ranking and selection methods 

complicate the estimation of job duration.   

With this distributed simulation architecture, job requirements can be dynamically 

resized using RS methods.  In this context, a job is a quantifiable computational expense, 

such as running a particular configuration of a simulated model for a specified number of 

observations.  Assuming homogeneous workstations contribute to an experiment, the 

differing observational requirements, or job size, dramatically increases the difficulty of 

efficient job queuing.  However, the decreased computational expense achieved through 

the deletion of unnecessary jobs, i.e., simulated system configurations that are no longer 

competitive, offers increased computational efficiency.  In addition, the comparative 

capability of such a method enables automated design analysis.   

This distributed simulation architecture allows for job allocation in several 

manners.  If the practitioner lacks knowledge of simulation computational requirements 

and believes that combining simulated configuration output is inappropriate, then job 
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allocation is sequential.  For example, if there are six configurations and three clients, 

then client one receives job A, client two job B, etc.  If combining simulated 

configuration output is considered appropriate then all configurations are distributed to 

each client.  A technical side note, all simulators discussed in this effort are designed to 

incorporate previously obtained data defined through runtime interpreted scripts. 

Figure 7 highlights one example of partial job allocation.  In this example, the 

server needs to allocate six jobs to three participating clients.  Recall the server issues job 

commands, monitors job execution, and consolidates data from each client.  Here, the 

configurations are designated A thru F.  In partial job allocation, the server assigns jobs 

sequentially.  In this example, client one is assigned jobs A and D for execution on 

workstation one.  Note the assumption that jobs outnumber participating clients.  Similar 

to second or later stages in ranking and selection methods, each configuration has 

different observational requirements.  Observe the occasional idleness of workstations 

one and three.   
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Figure 7: Example of Partial Job Allocation 

 

Figure 8 highlights another method of job allocation.  Again, the server needs to 

allocate six jobs of varying size to three participating clients.  With full job allocation, 

each client is directed to execute an equal portion of all jobs.  For example, if the 

observational requirement for job A is twelve then each client would contribute four 

observations.  If the job cannot be equally divided then rounding up ensures adequate 

observation acquisition.  Assuming the observational requirement is large negates the 

impact of these excess observations.  However, the distribution of all jobs to all 

participating clients, assuming somewhat similar workstation performance, allows for 

near optimal execution by precluding idle time.  Additionally, it avoids job transfer 

between workstations and the associated efficiency loss both in simulation initialization 

time and state variable data transfer.   
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Figure 8: Example of Full Job Allocation 

 

The central assumption enabling job allocation in this manner is the 

appropriateness of combining simulation output.  Obviously, simulation output should 

only be combined from the same simulated configurations.  The random number seeds 

must be different for the jobs, thereby ensuring observation independence.  Also, 

combining output from one simulated configuration to another must not distort overall 

interpreted results or nullify inherent assumptions to the particular simulation.  If 

combining simulation output cannot be done in this manner then this method of job 

allocation is problematic.  Specific simulation requirements such as initialization time 

and the difficulty in transferring state space must be compared to the potential benefit of 

job rescheduling.  



 38

3.1.3 Distributed Simulation Exception Handling 

The largest potential issue from this distributed simulation architecture is 

communication errors between the controller and participating workstations.  

Communication errors are handled by “loose” synchronization between the controller and 

participating workstations.  Specifically, the controller can only discriminate between 

configurations when data required by ranking and selection methods are available.  If 

data are not available for some or all configurations under contention, then the controller 

will pause for a specified period and subsequently reattempt data acquisition from 

participating workstations.  Additionally, controller issued commands to participating 

workstations require confirmation of successful receipt.  If this receipt is not obtained by 

the controller then the command is reissued after a specified period.  Failed 

communication within the distributed simulation architecture is mitigated by these error 

handling techniques. 

 

3.2 Distributed Simulation Performance 

This section demonstrates performance of this distributed simulation architecture 

in a specific application.  This sample experiment requires the selection of the “best” 

among six competing simulated configurations.  For this experiment, the underlying 

process of the simulators is assumed to be an independent and identically distributed, iid, 

)5.1,(),( µσµ NNormal =  distribution.  The mean, µ , for five of the competing 

configurations was set to 0.0 while the mean for the sixth, or “best”, configuration was 

set to 0.009682 for this experiment.  Relatively large observational requirements are 

developed when batching methods, such as Batch Means (BM), are employed.  

Specifically, if the batch size, m, is increased when using BM, then the number of 
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unbatched observations, n, also increases by the relationship mbn =  where b is the 

number of batches.  For this performance demonstration the batch size .1000=m   The 

central issue here is the tradeoff between workstation performance and the overhead 

associated from the distributed simulation architecture.  Specifically, contributing 

workstations should not be idle from a lack of controller issued commands, which 

generally results from slow communication, e.g., TCP/IP network bandwidth limitations.   

Figure 9 highlights the distributed simulation architecture implemented on a 

homogeneous NOW comprised of dual Intel Xeon 2.2 GHz processors with 512 

megabytes of RAM.  Workstations communicated by operating system managed TCP/IP 

over a 100 megabit Ethernet connection for this experiment.  Competing configurations 

of a normal iid process are compared using Rinott’s procedure discussed in section 2.6.  

An experiment entails the selection of the “best” competing configuration.  For this test 

case, 100 independent replications of the experiment facilitated estimation of the number 

of experiments completed per minute.  In this test case, above-linear performance 

increases, in terms of the completed experiments, are obtained by the addition of more 

workstations.  Note that each competing simulated configuration consumes 

computational resources if it is paused or actually generating observations.  Distributing 

the computational requirement of a paused simulation along with observation 

requirements explains the above linear increase in performance.   
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Figure 9: Test Case Performance 

 

 While small in comparison to observation acquisition, the controller for the 

distributed simulation architecture does consume computational capacity.  So, the 

controller ran on an additional workstation to directly assess the computational impact of 

adding each additional workstation.   

This experiment assessed the performance of a NOW comprised of up to four 

workstations.  While not explored in this research, increasing the number of workstations 

contributing to an experiment will eventually result in a less than linear performance 

increase due to both network bandwidth and hard disk access limitations.  However, this 
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experiment is encouraging as it shows a small number of workstations may contribute 

computational capacity in a coordinated manner.  

 

3.3 Summary 

This distributed simulation architecture enables the efficient use of computational 

capacity for a small number of workstations.  Comparison of differentiable simulated 

configurations facilitates distribution of computational requirements to participating 

workstations.  Ranking and selection methods enable efficient calculation of the number 

of required observations and determination of which configurations are still in contention 

for selection as the “best”.  Additionally, an assumption on the appropriateness of 

combining simulation output offers additional computational efficiency. 
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CHAPTER 4 

RANKING AND SELECTION METHOD EXTENSION 

This chapter focuses on the development, testing, and comparison of Ranking and 

Selection (RS) methods.  RS methods enable efficient analysis of competing simulated 

configurations.  Development of RS methods involves both theoretical analysis and 

empirical testing.  Inherent RS assumptions and the specific goals of a method guide the 

theoretical analysis.  Application of a RS method to simulations of an underlying normal 

or autoregressive process enables empirical testing.  Together, this analysis and testing 

validates RS method performance.      

Many of the test statistics required by ranking and selection methods have been 

made available at runtime by software developed for this thesis.  Appendix B gives a 

brief example of test statistic calculations.  Available test statistics, by dynamic link 

library (dll) access, include the multivariate normal, multivariate student t, studentized 

range distribution, and studentized maximum modulus distribution.  Rinott’s constant is 

also available.  Previously, these test statistics were available from table lookups or from 

FORTRAN software (Bechhofer, Santner, and Goldsman, 1995). 

 

4.1 Assumptions and Goals 

The RS methods in this chapter obtain observations, ,,2,1 , K=jX ij  for 

competing system configurations ki ,,2,1 K=  from either an independent, identically 

distributed normal, ),( σµNiid − , process or from an autoregressive, )1(AR , process.  

RS methods described in section 2.6 assume observations are ),( σµNiid − .  The )1(AR  

process facilitates analysis of more realistic simulation output that is serially correlated.  
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Note the use of batching methods on )1(AR  process data results in normal observations 

in certain conditions.   

Requirements on whether the variance, 2
iσ , is known and/or equal can vary by 

the RS method.  Generally, methods that allow for unknown/unequal variances require 

more observations to correctly select the “best” system configurations than methods 

assuming known/equal variance.  All methods in this chapter will allow for unknown and 

unequal variances unless otherwise stipulated.    

Using the indifference-zone formulation, the goal of RS methods is to select the 

system configuration with the “best”, e.g., largest, expected value, iµ .  The experimenter 

provides ( *δ , *P ), where *δ  is the indifference-zone parameter and *P  denotes the 

desired threshold probability of correctly identifying a difference between system 

configurations.  Note that the indifference zone indicates some comparative region where 

the experimenter would not discriminate between system configurations.  Also, the 

desired threshold probability, P*, can be interpreted as a α−1  confidence interval that 

configuration mean values do in fact differ by at least *δ .  Given k ordered means, 

kµµµ ,,, 21 K , the probability requirement for this formulation is *)( PCSP ≥  whenever 

*
1 δµµ ≥− −kk , where CS denotes correct selection. 

 

4.2 Empirical Comparison Overview 

There are several infrastructure requirements for comparing alternative RS 

methods.  Each method must be parameterized in a similar manner to allow direct 

comparison.  In this context, a parameterization denotes the selection of a simulated 

underlying process, indifference-zone parameter, desired probability, initial number of 
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observations, and batch method along with its associated settings.  In this controlled 

environment, a simulation mimicking either an ),( σµNiid −  process or an )1(AR  

process is required.  The simulation architecture must also allow for both single and 

multi-stage RS methods, and must implement embedded data encapsulation in a manner 

that is both efficient and accurate.  Lastly, metrics of method performance are necessary.  

This section details the techniques used in this effort to compare RS method performance. 

 

4.2.1 Assessing Method Performance 

The relative difference between competing system configurations directly impacts 

RS method performance.  In the multivariate normal case where mean statistics 

kWWW ,,, 21 K  are obtained from k  competing simulated system configurations with 

common correlation ρ , the equicoordinate multivariate normal point, )1(
,1

*P
kZ −
− ρ , ensures 

compliance with the probability requirement: 

 ( ) *)1(
,11

*

max PZWP P
kiki

=≤ −
−≤≤ ρ  (17) 

The quantity )1(
,1

*P
kZ −
− ρ  satisfies this probability requirement for any configuration of means 

in the form: 

 *
11 δµµµ −== − kk  (18) 

This is often referred to as the slippage or Least Favorable (LF) configuration of means 

because of the strict equality induced in the probability requirement.  Equal Spacing (ES) 

is another interesting configuration of means often used to compare RS method 

performance.  For the ES configuration we will use *
1

*
10 )1(,,,0 δµδµµ −=== − kkK  

and *δµ kk =  in our evaluations.  The ES configuration of means relaxes the strict 
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equality in the probability requirement and for such competing system configurations, it 

is usually easier to distinguish the “best”.  All RS methods in this chapter are applied to a 

LF configuration of means unless otherwise noted.    

The ratio of σδ *  also impacts RS method performance.  Recall the indifference-

zone parameter, *δ , is a comparative region where the experimenter would not 

discriminate between competing system configurations.  Also, RS methods discussed in 

this chapter assume unknown variance.  However, a controlled environment, enabled by 

the simulation of an ),( σµNiid −  process or an )1(AR  process, facilitates performance 

evaluation of RS methods.  Here, the asymptotic variance is known or can be estimated, 

thereby allowing manipulation of *δ  for RS method performance evaluation purposes.  If 

the ratio is “too small”, then the number of required observations can be prohibitively 

high.  If the ratio is large, then it is it difficult to differentiate between the performance of 

RS methods as all will have modest sample-size requirements.   

Knowledge of the asymptotic variance of the underlying simulated process allows 

for good selection of the ratio σδ * .  For example, if it is assumed that 24 initial 

observations, 0n , is an adequate sample size for obtaining relatively good variance 

estimation, then generating random numbers from a )5.1,0(),( NNormal =σµ  

distribution with batch size 1=m  allows selection of the indifference-zone parameter in 

the following manner:  

 30619.0
24

5.1
0

* ===
n

σδ  (19) 
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Selection of this parameter enables analysis of performance within one standard deviation 

of prescribed performance.  All RS method comparisons in this chapter select the 

indifference-zone parameter, *δ , in a similar fashion. 

Given similar parameterization, 1000 independent experiments have been 

replicated of the RS methods given here to empirically assess performance.  Unless 

otherwise noted, the LF configuration of means is used where )5.1,( iN µ  random 

numbers are generated with 011 == −kµµ , 30619.0=kµ , 6=k , 1=m , and 

30619.0* =δ .  In this context, an experiment denotes the use of a particular RS method 

to determine the “best” of 6=k  system configurations.  Here, the “best” system 

configuration is 30619.06 =µ .  Note that an ),( σµNiid −  process with batch size, 

1=m , is used for initial RS method comparison and development.  This simplification 

eases computational expense and analysis.  However, batching techniques such as Batch 

Means (BM) and Overlapping Batch Means (OBM) are applied later in this chapter to an 

)1(AR  process to assess RS method robustness to serially correlated simulation output.   

Separate simulators, in terms of data storage and parameterization, are used for 

each system configuration.  Each simulator provides either ),( σµNiid −  or )1(AR  

observations following parameters set at runtime through the use of script files.  At each 

stage each simulator has the ability to communicate its status and interpret controller 

issued commands, thus enabling RS methods to be applied by the controller module.  

Using the controller, each experiment automatically terminates and regenerates until the 

required number of experiments are replicated.  Also, the controller module stores 

experimental outcomes that summarize the performance of the RS method after each 
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experiment replication.  A detailed discussion of the control architecture can be found in 

section 3.1.   

After a RS method has been implemented, there are two performance metrics that 

facilitate side-by-side comparison.  First, the achieved probability of correct selection, 

)(CSP , indicates whether the method meets or exceeds the desired probability *P .  For 

the indifference-zone formulation, the event of correct selection is observed when the 

“best” configuration is in fact selected by the method.  The second metric for comparing 

RS methods involves the average number of required raw or unbatched observations, T , 

necessary to select a configuration.  This metric corresponds to the computational 

efficiency of the method.  All RS method comparisons in this chapter utilize these 

metrics to assess performance and computational requirements. 

 

4.2.2 Data Encapsulation Methods 

Embedded estimators of mean and variance enable RS method calculations, such 

as the number of required observations.  Point estimators for the mean are relatively easy 

to calculate as they sum observation values, in this case iX , and divide by the number of 

observations, here n: 

 ∑
=

=
n

i

i

n
X

X
1

 (20) 

Variance estimation of this sample mean is found from sample observations by: 

 [ ]
)1(

)(
1

2
2

−

−
==
∑
=

∧

nn

XX

n
SXVAR

n

i
i

 (21) 

By algebraic manipulation: 
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Selected terms from the last relationship can be calculated and stored during simulator 

execution thereby precluding the need for storage of historical data.   

Under certain conditions it may be necessary to combine simulation output, as 

discussed in section 2.2.3.  The following relationship enables the combination of 

variance estimators: 
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Also, if using batch means of size m with independent and identically distributed normal 

data, then variance estimators are related in the following manner: 

 [ ] [ ]
m
XVARXVAR Obs

Batch

∧
∧

=  (24) 

Technical requirements for using these embedded estimators reside on ensuring 

the absence of under/overflow within developed software.  In particular, the ∑
=

n

i
iX

1

2  term 

can become relatively large.  Also, there are known issues with C, C++, and C# when 

variable typecasting is absent.    

 

4.2.3 Random Number Generator Verification 

Simulators for both ),( σµNiid −  and )1(AR  processes require random number 

generators.  The uniform random number generator used here is the multiple recursive 

generator presented in Law and Kelton (2000).  The normal random number generator is 
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the polar Acceptance-Rejection (A-R) method described in the same source.  The normal 

random number generator provides the underlying process for the simulator that uses 

stipulated configuration parameters set at runtime to include the initial random number, 

or seed.   

Implementation of a known random number generator on any compiler requires 

some form of empirical testing.  Specific implementation issues generally revolve on 

correctly mimicking the prescribed distribution, serial correlation of the data, and the 

relative independence of observed data.  To that end, empirical testing of the 

implemented normal random number generator follows.  

The probability plot shown in Figure 10 indicates a relatively good 

)5.1,0(),( NNormal =σµ  distribution.  The Anderson-Darling test value is high, thereby 

reinforcing confidence that the generator is in fact performing properly.  The small serial 

correlation, or in this case autocorrelation if observations are assumed to be time-based, 

shown in Figure 11 is also promising.  A runs test on the data also indicates 

independence.  Incorporated into a basic simulator, these results verify random number 

generator characteristics enabling performance comparison between different RS 

methods. 
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Figure 10: Polar Acceptance-Rejection Normal Random Number Generator Probability 

Plot 
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Figure 11: Polar Acceptance-Rejection Normal Random Number Generator 

Autocorrelation 
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4.2.4 Sample RS Method Experiment 

Given a simulator mimicking a system with an underlying ),( σµNiid −  or 

)1(AR  process, a control mechanism is required to implement RS methods.  

Communication of simulated system data at each stage, i.e., obtaining a specified number 

of observations, enables the application of RS methods.  Here, an experiment consists of 

using a RS method to select the “best” system configuration.  The following sample 

experiment highlights the specific simulation architecture and process used in this effort. 

Figure 12 highlights an implementation using this control mechanism to use 

Rinott’s method (discussed in section 2.6).  Recall Rinott’s method is two-stage.  

Experimental setup, in the top left, includes RS method parameterization of the first-stage 

number of observations 100 =n , the desired probability 95.01* =−= αP , and the 

indifference-zone parameter 30619.0* =δ .  The underlying process for this sample 

experiment is ),( σµNiid − .  Shown in the top right, the experimenter has set the 

required number of replications to 1000.  At the time of the snapshot in Figure 12, the 

control mechanism is between the first and second-stage of experiment 125 out of the 

required 1000 experiments.  Under experimental status, observe approximately 36 

seconds of computer-time have elapsed.  Rinott’s constant is an integral component of 

this RS method.  The location of simulation initialization files helps to identify competing 

configurations.  Estimated mean and variance highlight specific system configuration 

performance.  Of interest, the “Rinott Number” is the total number of observations 

estimated by the RS method to be necessary for system configuration comparison.  Note 

that higher first-stage variability results in a higher number of estimated raw 

observations.  Overall performance of the method is described by estimators of the 
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probability of correct selection (CS), )(ˆ CSP , and the average number of required 

unbatched observations, T̂ .  In this case, the performance estimators are 0.992 and 334 

respectively.  Knowledge of the true “best” configuration allows for calculation of 

)(ˆ CSP . 

 

 
Figure 12: Sample Ranking and Selection Method Experiment 

 

Comparing first and second-stage counters of experiment replications in which 

each system configuration is considered the “best” at a particular stage requires 

explanation based on knowledge of the system configurations.  In this example, all of the 

system configurations were considered the “best” during the first-stage of at least one of 

the 124 initial experiments, but not necessarily the final choice as “best”.  This implies 

the system configurations are closely competitive, unless enough observations are taken.  
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Observe the last system configuration, C6, is selected as the “best” in 99% of the 

experiments.   

 

4.3 R+ and KN+ Methods Performance Analysis 

Comparison of the Rinott (R+) and the Kim and Nelson (KN+) methods allows 

for verification and validation of the implementation, and also provides insight for 

improving RS methods.  Verification is obtained by manual numerical comparison using 

spreadsheets and table lookups.  Validation comes from comparing performance trends of 

these methods to other published analyses.  Insight for new method development comes 

from both analysis of these methods’ algorithms and their observed performance.   

Initially, both methods are parameterized in the ES and LF configuration of 

means with 30619.0* =δ , 6=k , 1=m , and an ),( σµNiid −  underlying process.  

After method performance comparison on ES and LF configurations, the LF 

configuration will be used primarily unless otherwise noted.  Comparative analysis 

focuses on varying the desired probability *P , the first-stage number of observations 0n , 

and ultimately the batch size m .  Performance metrics are estimators of the probability of 

correct selection, )(ˆ CSP , and average number of required raw/unbatched observations, 

T̂ , obtained from 1000 independent experiment replications.  Since the KN+ method is 

multistage, the upper bound on the number of required unbatched observations, 

determined at the end of the first stage as detailed earlier in section 2.6.2, is also reported.  

The remainder of this section discusses experimental results. 
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4.3.1 Varying Desired Probability 

In this experiment, ranking and selection method performance on both the LF and 

ES configuration of means is explored as the desired probability *P  is varied.  As shown 

in Table 1 and Figure 13, both R+ and KN+ methods exceed the desired probability in all 

conditions.  In fact, the methods surpass the desired probability implying the number of 

required observations is higher than necessary.  KN+ outperforms R+ in exceeding the 

desired probability at all levels.  Also, note the desired probability is exceeded to a 

greater extent in the ES configuration of means than the LF configuration.  This follows 

since it is easier to distinguish between competing populations in the ES configuration 

than in the LF configuration.  For the KN+ method, the estimated observation 

requirements along with the associated upper bound calculated by this method are 

reported.   

   

Table 1: R+ and KN+ Comparison Varying Desired Probability 

30619.0* =δ , 100 =n ,  LF/ES, ),( σµNiid − , 1=m  
 LF ES 

*P   )(ˆ CSP  T̂ /Upper Bound )(ˆ CSP  T̂ /Upper Bound 
0.75 R+ 0.815 146 0.934 145 

 KN+ 0.886 103/349 0.955 57/348 
0.90 R+ 0.977 265 0.978 251 

 KN+ 0.984 169/568 0.992 96/568 
0.95 R+ 0.968 337 0.990 337 

 KN+ 0.976 236/754 0.993 131/746 
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Figure 13: R+ and KN+ Estimated P(CS) versus Desired Probability 

 

The average number of required raw observations, T̂ , shown in Figure 14, 

increases as the desired probability, *P , is raised for both methods.  From the tabular 

values, observe the upper bound on the estimated number of required observations for 

KN+ is much higher than the number of required observations for R+.  On the other 

hand, the benefit of the multi-stage nature of the KN+ method is shown by directly 

comparing the number of required observations.  Unlike the two-stage R+ method, the 

multi-stage aspect of the KN+ method allows for elimination of simulated system 

configurations, resulting in a lower average number of required raw observations.  Also, 

the average number of required observations is smaller for the ES mean configuration 
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than the LF mean configuration.  Again, it is easier to distinguish between competing ES 

configurations than those in the LF configuration.    
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Figure 14: R+ and KN+ Required Observations versus Desired Probability 

 

4.3.2 Varying First-Stage Number of Observations 

In this experiment, the initial number of observations, 0n , was varied.  

Parameterization for this experiment includes an underlying ),( σµNiid −  process, batch 

size 1=m , indifference-zone parameter 30619.0* =δ , 6=k competing system 

configurations, and a desired probability 95.0* =P  in the LF configuration of means.  As 

shown in Table 2 and Figure 15 below, the KN+ method requires fewer total raw 

observations, T̂ , than the R+ method except when 0n  is large (where both methods 
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require the same amount).  Achieved )(ˆ CSP  is statistically equivalent to or exceeds the 

desired probability, *P , in all conditions.  Also, a large number of initial observations 

creates computational inefficiency, i.e., a large total observation requirement, in both 

methods.  While the upper bound for required observations for the KN+ method is always 

larger than that for the R+ method, the screening process within the KN+ method allows 

for increased computational efficiency.  This efficiency is obtained by eliminating 

competing system configurations during the screening phase of this method, as discussed 

in section 2.6.2. 

 

Table 2: R+ and KN+ Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF, ),( σµNiid − , 1=m  

0n  Method )(ˆ CSP  T̂ /Upper 
Bound 0n  Method )(ˆ CSP  T̂ /Upper 

Bound 
R+ 0.982 420 R+ 0.951 262 8 

KN+ 0.990 277/928 
100 

KN+ 0.968 143/419 
R+ 0.990 356 R+ 0.963 263 10 KN+ 0.968 235/764 110 KN+ 0.984 147/416 
R+ 0.952 292 R+ 0.969 263 20 KN+ 0.968 162/533 120 KN+ 0.978 152/416 
R+ 0.951 278 R+ 0.967 263 30 KN+ 0.971 152/481 130 KN+ 0.943 157/413 
R+ 0.967 274 R+ 0.986 261 40 KN+ 0.992 149/468 140 KN+ 0.986 162/409 
R+ 0.970 269 R+ 0.955 261 50 KN+ 0.963 141/446 150 KN+ 0.969 168/405 
R+ 0.976 258 R+ 0.951 260 60 KN+ 0.957 137/420 200 KN+ 0.993 205/399 
R+ 0.971 266 R+ 0.963 262 70 KN+ 0.975 140/432 250 KN+ 0.969 252/395 
R+ 0.948 262 R+ 0.966 300 80 KN+ 0.967 141/428 300 KN+ 0.979 301/394 
R+ 0.958 261 R+ 1.000 400 90 KN+ 0.972 143/422 400 KN+ 1.000 400 
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Figure 15 shows how the initial number of observations impacts the total number 

of observations for both methods.  Both methods exhibit concave behavior where both a 

low and high number of initial observations, 0n , equate to a high number of total raw 

observations.  The location of this curve relative to the number of initial observations, 

depends upon the selection of the indifference-zone parameter.  So, if there is no fore-

knowledge on the variance of the underlying process, as assumed in both the R+ and 

KN+ methods, then selecting the number of initial observations can be problematic.   
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Figure 15: Initial Number of Observations versus Required Number of Observations 
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4.3.3 Batched Data Method Performance 

The RS methods discussed in section 2.6 rely on the assumption of independent 

and identically distributed, iid, normal data.  Batching methods, discussed in section 2.5, 

enable approximately iid normal observations from underlying non-normal distributions 

when m, the batch size, is sufficiently large.  The batching methods explored in this 

section include Batch Means (BM) and Overlapping Batch Means (OBM).  Incorporation 

of these batching methods permits the application of RS methods to more realistic 

simulations that generate data from a variety of stochastic processes.  As a test case, 

batching methods are applied to an autoregressive )1(AR  process that mimics a system 

with correlated observations.  Note an )1(AR  process is often used to represent 

observations from a time-based system.  With a mean for system i, iu , an )1(AR  process 

generates each observation ,,2,1 , K=jX ij  for competing system configurations 

ki ,,2,1 K=  from the relationship: 

 jiijiiji ZuXuX ,1,, )( +−+= −φ  (25) 

k
kjijik XXCovR φ== − ),( ,, , where 11 <<− φ .  The error terms, jiZ , , are distributed iid 

)1,0( 2φ−N .   

Unless specified otherwise, 22.0=φ , which creates mildly correlated 

observations.  A variance estimator for correlated data follows: 

 [ ] ∑
−

=

∧

⎟
⎠
⎞

⎜
⎝
⎛ −+=

1

1
0 1

m

k
kBatch R

m
kRXVARm  (26) 

It can be shown that with large batch size, m, the variance of the sample mean for an 

)1(AR  process converges to: 
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 [ ]
φ
φ

−
+

→
1
1

BatchXmVAR  (27) 

Using 2σ̂  as an estimator for [ ]BatchXVARm
∧

 facilitates our choice of the indifference-

zone parameter as: 

 
00

* 251.1ˆ
nmn

== σδ  (28) 

The remainder of this section focuses on R+ and KN+ technique performance using an 

)1(AR  process with BM and OBM data acquisition methods. 

 
Batch Means  

 The BM method obtains b batched observations of size m.  The number of initial 

batches may be obtained from the relationship ⎡ ⎤mnb 00 =  where 0n  is the number of 

initial unbatched or raw observations.  A side note, the embedded data estimators create 

batched observations for the adaptive control techniques given in section 2.6, requiring 

no more than 1−m  excess unbatched observations from the simulation.  Central to any 

batching method is how large the batch size must become to enable sufficient estimation 

of the underlying process variance, [ ]XmVAR
m ∞→

≡ lim2σ .  For any process the 

convergence of [ ]XmVAR  to 2σ  may be demonstrated by simulating the process while 

increasing the batch size as long as the underlying distribution is stationary (along with 

other mild conditions).   

For example, the following experiment illustrates variance convergence for a 

specific )1(AR  process.  Figure 16 highlights estimated variance using the BM method 

with an )1(AR  process with 22.0=φ  and 200000 =n  as a function of batch size.  1000 
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independent replications of a simulated )1(AR  process facilitated asymptotic variance 

estimation.  Note asymptotic variance estimation is obtained by averaging the variance 

estimator from each experiment.  In fact, variance estimators have inherent variability as 

a result of the underlying )1(AR  process.  As both R+ and KN+ methods rely on variance 

estimators to determine the number of required observations, underestimation of variance 

will result in a lower estimate of required observations, with a corresponding lower 

)(CSP .  For this particular )1(AR  process, batch sizes below 40 result in 

underestimation, at some points significant, of the asymptotic variance.  Batch sizes 

above 40 indicate sufficient convergence of the variance estimators to the asymptotic 

variance.  Note the asymptotic variance is indicated by the flat line obtained from the 

relationship 564.1
1
1

=
−
+
φ
φ .  
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Figure 16: BM Estimated Variance Parameter versus Batch Size for AR(1) Data 

 

Table 3 presents the experimental results of the R+ and KN+ methods applied to 

an )1(AR  process while obtaining observations with the BM method.  Experiment 

parameterization involved setting 22.0=φ , 42000 =n , 95.0* =P , 6=k competing 

system configurations, and 4200564.1019298.0* ==δ  while varying both the batch 

size, m, and the initial number of batched observations 0b .  The required raw observation 

upper bound for the KN+ method is also reported.  Intuitively, as 0b  decreases, the 

number of required unbatched or raw observations, T̂ , increases.  Since the variance 

estimator is based on a 2χ  distribution with 10 −b  degrees of freedom, the variance of 

that distribution is high for a low 0b .  This is consistent with results found in the iid case.  
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Of special interest is the relatively poor performance, in terms of achieving the desired 

probability, of the R+ method when the batch size is small.  This can be attributed to the 

lack of asymptotic convergence of the variance estimator.  An experiment follows to 

determine a sufficiently large batch size for acceptable R+ method performance.  Note 

that, in this experiment, the KN+ method is not as susceptible to poor )(ˆ CSP  

performance as the R+ method when there is a lack of asymptotic variance convergence.  

Lastly, KN+ requires far fewer raw observations due to its screening process. 

 

Table 3: R+ and KN+ Comparison Using Batch Means while Varying Batch Size 

019298.0* =δ , 95.0* =P , 42000 =n , LF, )1(AR , 22.0=φ  
 R+ KN+ 

m  0b  )(ˆ CSP T̂  )(ˆ CSP T̂ /Upper Bound 
10 420 0.887 43244 0.968 20912/64676 
25 168 0.940 44861 0.964 22834/69939 
50 84 0.936 45917 0.972 23005/73263 
100 42 0.952 46825 0.976 25219/82739 
150 28 0.976 51321 0.955 30191/94992 
200 21 0.956 51826 0.974 29919/99284 
300 14 0.941 53732 0.962 33371/110908 

 

Table 4 explores the R+ method’s )(ˆ CSP  performance as the number of initial 

unbatched observations is increased.  This experiment determines if this specific )1(AR  

process with 22.0=φ , a batch size of 300 or larger and 42000 >n  ensures sufficient 

variance convergence for acceptable R+ method performance.  Parameterization for this 

experiment includes 95.0* =P , 300=m , 6=k competing system configurations, and 

0
* 564.1 n=δ varying  with the number of initial unbatched observations.  Compared 

to the previous experiment, this experiment indicates the R+ method achieves the desired 
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probability with a sufficiently large batch size.  However, the number of unbatched 

observations is significantly higher thereby increasing computational expense.  

 

Table 4: R+ Method Analysis with Varying Initial Unbatched Observations 

95.0* =P , 300=m , 0
* 564.1 n=δ , LF, )1(AR , 22.0=φ  

0n  0b  )(ˆ CSP  T̂  
4200 14 0.941 53732 
8400 28 0.973 95148 
12600 42 0.964 140036 
16800 56 0.957 189987 
21000 70 0.963 229749 
25200 84 0.984 280430 

 
 

Overlapping Batch Means  

The Overlapping Batch Means (OBM) method obtains 1+−= mnb   batched 

observations.  The number of initial batches may be obtained from the relationship 

100 +−= mnb  where 0n  is the number of initial unbatched or raw observations.  Again, 

the embedded data estimators create batched observations for the adaptive control 

techniques given in section 2.6.  A side note, to speed the distributed simulation 

architecture discussed in section 3.1, simulation sampling was modified to acquire m  

OBM observations for multi-stage RS methods.  Worst case from this modification is 

1−m  excess unbatched observations from the simulation executable.   

Clearly, for the same number of unbatched or raw observations OBM obtains 

more batched observations than BM; however, OBM batches are highly correlated.  It 

can be shown that as both the ratio mnb =  and m  become sufficiently large, the 

following estimator is consistent for the underlying process variance: 
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Figure 17 highlights the estimated variance of an )1(AR  process with 22.0=φ  

and 200000 =n  while varying batch size using the OBM method.  This experiment 

determines the location of asymptotic variance convergence for this specific )1(AR  

process.  1000 independent replications were made at selected mn  ratios.  Note 

asymptotic variance estimation is obtained by averaging the variance estimator from each 

experiment.  Again, as in the BM case, variance estimators have inherent variability as a 

result of the underlying )1(AR  process.  As both the R+ and KN+ methods rely on 

variance estimators to determine the number of required observations, underestimation of 

variance will result in a lower estimate of the number of required observations, with a 

corresponding lower )(CSP .  This empirical analysis implies a ratio mn  greater than 8 

is necessary for OBM usage when applied to an underlying )1(AR  process with  

22.0=φ .   
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Figure 17: OBM Estimated Variance versus n/m Ratio for AR(1) Data 

 

Table 5 presents the experimental results of the R+ and KN+ methods applied to 

an )1(AR  process while obtaining batched observations with the OBM method.  

Parameterization for this experiment includes 22.0=φ , 84000 =n , 95.0* =P , 

6=k competing system configurations, and 8400564.1013646.0* ==δ ; both batch 

size, m, and the initial number of OBM observations, 0b , were varied.  Note the number 

of initial unbatched observations, 0n , remains constant.   

This experiment highlights the necessity of asymptotic variance convergence for 

appropriate use of the R+ and KN+ ranking and selection methods.  Asymptotic variance 

estimator convergence for an )1(AR  process is obtained by both sufficiently large m and 
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a large mn  ratio when using OBM.  Ranking and selection method performance is 

relatively poor in this experiment indicating m and/or the ratio mn  are not sufficiently 

large.  Observe that the estimated )(ˆ CSP  is nominally achieved with a large mn  ratio, 

implying a necessity for an increase in the number of initial unbatched observations.  

 

Table 5: R+ and KN+ Comparison Using Overlapping Batch Means while Varying Batch 
Size, 84000 =n  

013646.0* =δ , 95.0* =P , 84000 =n , LF, )1(AR , 22.0=φ  
 R+ KN+ 

m  0b  )(ˆ CSP T̂  )(ˆ CSP T̂ /Upper Bound 
10 8391 0.951 86819 0.953 41872/127280 
25 8376 0.935 89075 0.952 43514/132585 
50 8351 0.944 89861 0.933 42938/135185 
100 8301 0.933 88517 0.956 43259/135788 
150 8251 0.944 87038 0.942 42403/134688 
200 8201 0.914 85283 0.939 41699/135308 
300 8101 0.916 85254 0.913 42456/137350 
400 8001 0.938 86436 0.925 41390/138420 
500 7901 0.917 83850 0.927 40502/137088 
600 7801 0.928 82064 0.924 40433/136469 

 

Table 6 extends the previous experiment by increasing the initial number of 

unbatched observations, 0n , by a factor of three from 8400 to 25200.  This allows for 

larger mn  ratios than the previous experiment along with relatively large batch sizes.  

The desired probability is met by this increase in the number of initial unbatched 

observations at the cost of added computational expense.  This experiment shows the 

validity and computational requirements of using R+ and KN+ RS methods on 

underlying processes that are not iid normal as long as batching methods are applied 

appropriately. 
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Table 6: R+ and KN+ Comparison Using Overlapping Batch Means while Varying Batch 
Size, 252000 =n  

007878.0* =δ , 95.0* =P , 252000 =n , LF, )1(AR , 22.0=φ  
 R+ KN+ 

m  0b  )(ˆ CSP  T̂  )(ˆ CSP  T̂  
100 25101 0.982 272346 0.968 133642 
200 25001 0.971 270824 0.940 130027 
300 24901 0.969 273142 0.952 131120 
400 24801 0.953 270408 0.957 135667 
500 24701 0.968 269023 0.945 130849 

 

 
Batch Method Summary  

Data batching methods like BM and OBM allow for normal observations under 

certain conditions from simulations whose data fit a variety of distributions.  BM requires 

a relatively large number of unbatched observations along with a sufficiently large batch 

size to ensure proper ranking and selection method performance.  The OBM method 

requires fewer raw observations than the BM method for the same number of batched 

observations; however, OBM batches are correlated.  This necessitates a large mn  ratio 

along with a large batch size m  to ensure consistent variance estimation.  Once 

asymptotic variance convergence is obtained, RS methods such as R+ and KN+ can meet 

the requirements of )(CSP .   

 

4.3.4 Summary 

Implementation of the Rinott (R+) and the Kim and Nelson (KN+) RS methods 

provides a baseline for the new RS methods developed in the next section.  Several 

insights from these results also highlight potential improvements.  First, embedded data 
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estimators can potentially decrease the required number of raw observations.  Second, the 

reliance of these methods on the initial number of observations motivates new methods 

whose total required observations are not sensitive to high or low initial observation 

settings.  Finally, batching methods allow these RS methods to be used with simulated 

processes generating correlated output, but warrant a mechanism for confirming 

asymptotic variance convergence to ensure that the desired )(CSP  is achieved.   

 

4.4 Ranking and Selection Method Development 

There are several possible improvements to current RS methods.  Note R+ and 

KN+ both rely on variance estimators from first-stage observed data to estimate the 

number of observations required in second and later stages.  The first new RS method 

developed here uses variance estimators from current data, which is enabled by the data 

encapsulation methods discussed in section 4.2.2.  Since the desired probability is often 

greatly exceeded, a second RS method introduces a reduction coefficient in the 

calculation determining the number of required raw observations.  The third new RS 

method incorporates designer intuition about simulated system configuration 

performance.  The fourth new method presented here uses embedded data calculations  

for the degrees of freedom to reduce the number of required raw observations.  Lastly, a 

new method is explored which incorporates the current number of simulated system 

configurations still in contention for selection as the “best”. The remainder of this section 

explores corresponding extensions to current RS methods.   
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4.4.1 BGP Technique 1 

Recall the KN+ method described in section 2.6.2.  In this method the variance of 

the difference between observations from competing system configurations, 

222
illi Vvv =+ , is used to eliminate system configurations from analysis using: 
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Note this variance estimator, 2
ilV , is based on first-stage observations.  The 

Benson/Goldsman/Pritchett (BGP) 1 method modifies the KN+ method by using the 

current variance estimator of the difference as enabled by the embedded data 

encapsulation methods presented in section 4.2.2. 

The next experiment uses the LF configuration of means, a desired probability of 

95.01* =−= αP , 6=k competing system configurations, and an indifference-zone 

parameter of 30619.0* =δ ,  and a batch size 1=m .  The underlying simulated process 

for this experiment is ),( σµNiid −  where 5.1=σ .  1000 independent replications were 

made for each experiment.  The first-stage number of initial observations, 0n , varies in 

this experiment.  Overall performance of the method, described by estimators of the 

probability of correct selection, )(ˆ CSP , average number of required raw observations T̂ , 

and the upper bound on the number of required raw observations, is shown below in 

Table 7.  Recall the upper bound on the number of required raw observations is 

calculated during the second-stage of the KN+ method.  
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Table 7: BGP1 and KN+ Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF, ),( σµNiid − , 1=m  
BGP1 KN+  

)(ˆ CSP  T̂ /Upper Bound )(ˆ CSP  T̂ /Upper Bound 
80 =n  0.989 234/945 0.990 277/928 

100 =n  0.982 207/760 0.968 235/764 
200 =n  0.975 159/543 0.968 162/533 
300 =n  0.985 147/478 0.971 152/481 
400 =n  0.986 142/469 0.992 149/468 
500 =n  0.984 140/444 0.963 141/446 
600 =n  0.959 139/444 0.957 137/420 
700 =n  0.965 138/434 0.975 140/432 
800 =n  0.967 139/427 0.967 141/428 
900 =n  0.965 140/422 0.972 143/422 

1000 =n  0.971 141/420 0.968 143/419 
 

Recall the assumption of strong consistency, where ii rX µ→)( as ∞→r  with 

probability one.  Here, iµ  is the steady-state mean from system i and )(rX i  is the sample 

mean based on r observations from system i.  Assuming strong consistency, updated 

variance estimators are less than or equal to first-stage variance estimators guaranteeing 

BGP1 will perform at least as well, if not better, than the KN+ method.  Observed 

performance of BGP1, in terms of the required number of raw observations, is marginally 

better than KN+, especially when the number of initial observations is small.  )(ˆ CSP  is 

not statistically differentiable between the methods.  Note )(ˆ CSP  meets or exceeds the 

desired probability in all conditions.  BGP1 performance in terms of the average number 

of required raw observations, T̂ , is used for comparative analysis for subsequent 

methods.  
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4.4.2 BGP Technique 2 

BGP2 adds to BGP1 a reduction coefficient, cR , to decrease the number of 

required observations.  To do so, this method recognizes that the achieved )(CSP  of 

BGP1 and other methods often exceeds the specified requirement.  The reduction 

coefficient reduces the conservatism of the method.  Specifically, this method uses the 

following relationship during the screening process: 
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The reduction coefficient effectively increases the elimination rate during the screening 

phase of the method.  The following experiment sets 80.0=cR , with results shown in 

Table 8. 

 

Table 8: BGP2 and BGP1 Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF, ),( σµNiid − , 1=m  
BGP2 ( )80.0=cR  BGP1 

 
)(ˆ CSP  T̂ /Upper Bound )(ˆ CSP  T̂ /Upper Bound 

80 =n  0.992 202/952 0.989 234/945 
100 =n  0.980 178/752 0.982 207/760 
200 =n  0.942 135/534 0.975 159/543 
300 =n  0.973 123/483 0.985 147/478 
400 =n  0.949 121/473 0.986 142/469 
500 =n  0.940 119/449 0.984 140/444 
600 =n  0.931 119/439 0.959 139/444 
700 =n  0.936 119/431 0.965 138/434 
800 =n  0.939 121/415 0.967 139/427 
900 =n  0.957 127/417 0.965 140/422 

1000 =n  0.952 132/414 0.971 141/420 
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Improvement in terms of reduced observations is evident.  The relative 

performance improvement also decreases as the number of initial observations, 0n , 

becomes large.  Observe the desired probability is not achieved with several settings of 

the initial number of observations, 0n .  Other experiments where the reduction 

coefficient is set to 60.0=cR  indicate a greatly increased failure rate in achieving the 

desired probability.  On the other hand, experiments with a reduction coefficient set to 

90.0=cR  generally achieved the desired probability.  Based on these factors, the 

introduction of a reduction coefficient may aid in the application of RS methods in some 

situations, but must be carefully checked to ensure the desired probability is being 

achieved. 

 

4.4.3 BGP Technique 3 

Another possible performance improvement adds designer intuition to BGP1.  For 

example, a designer may have some intuition, as a ratio value inferring some relative 

strength of one system configuration relative to others.  This intuition can be used to take 

more initial observations from the “believed” best system configuration.  Therefore, 

BGP3 will: 

1. Sample a system configuration identified by designer intuition for a scaled 

number of additional observations during the first stage of the RS method. 

2. Retain the intuitively selected system configuration, i.e., keep it in contention, 

until termination of the experiment. 

Table 9 presents BGP3 experimental results when the designer has “good” 

intuition, i.e, selects the “best” system configuration.  Two ratio values are selected 
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intuitively; specifically, multipliers of the initial number of observations are 02n  and 

05n .   

 

Table 9: BGP3 and BGP1 Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF – Good Intuition, ),( σµNiid − , 1=m  
BGP3 ( )02n  BGP3 ( )05n  BGP1  

)(ˆ CSP  T̂ /Upper 
Bound 

)(ˆ CSP T̂ /Upper 
Bound 

)(ˆ CSP  T̂ /Upper 
Bound 

80 =n  0.999 232/880 0.993 226/831 0.989 234/945 
100 =n  0.998 202/718 0.999 197/693 0.982 207/760 
200 =n  0.989 153/508 0.983 143/512 0.975 159/543 
300 =n  0.983 138/452 0.955 133/462 0.985 147/478 
400 =n  0.985 135/445 0.955 128/436 0.986 142/469 
500 =n  0.971 131/429 0.941 153/410 0.984 140/444 
600 =n  0.953 130/409 0.942 174/389 0.959 139/444 
700 =n  0.983 125/398 0.925 171/387 0.965 138/434 
800 =n  0.962 128/398 0.943 173/388 0.967 139/427 

 

For a small number of initial observations, “good” intuition results in a high 

estimated )(ˆ CSP  and a lower number of total required observations.  Also, a higher ratio 

value achieves a lower number of required observations.  Thus, relatively strong and 

“good” intuition implies using a higher multiplier when the number of initial observations 

is small.   

However, a large multiplier combined with a large number of initial observations 

can result in a failure to achieve the desired probability.  Recall BGP3 calculates an upper 

bound on the number of raw observations that is directly proportional to the value of the 

first-stage variance estimator.  Failure to achieve the desired probability is attributed to a 
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relatively small upper bound, i.e., small first-stage variance estimator, on the number of 

observations for the “best” system configuration.     

Table 10 highlights BGP3 experimental results when both “good” and “poor” 

intuition is used by the designer.  BGP3 achieves the desired probability in all conditions.  

Both “good” and “poor” intuition impact the required number of observations in a logical 

manner, e.g., “good” intuition results in fewer required observations and vice versa.  If 

designer intuition is completely random, then using BGP3 results in a higher expected 

number of observations.  Also, the use of “good” intuition results in a lower number of 

required observations when the number of initial observations is larger. 

 

Table 10: BGP3 Intuition Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF – Intuition, ),( σµNiid −  
BGP3 ( )02n   POOR BGP3 ( )02n  GOOD BGP1  

)(ˆ CSP  T̂ /Upper 
Bound 

)(ˆ CSP  T̂ /Upper 
Bound 

)(ˆ CSP  T̂ /Upper 
Bound 

80 =n  0.990 246/883 0.999 232/880 0.989 234/945 
100 =n  0.983 214/711 0.998 202/718 0.982 207/760 
200 =n  0.971 169/509 0.989 153/508 0.975 159/543 
300 =n  0.982 159/454 0.983 138/452 0.985 147/478 
400 =n  0.978 153/444 0.985 135/445 0.986 142/469 
500 =n  0.987 154/420 0.971 131/429 0.984 140/444 

 

Unconditional retention of the intuitively selected “best” system configuration 

may be overly cautious.  Therefore, the following experiment explores changing BGP3 to 

only use intuition to scale the initial number of observations while not retaining the 

intuitively selected “best” system configuration should it be found to be no longer 

competitive.  Table 11 highlights experimental results.  Again, the desired probability is 
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achieved in all conditions.  The modified BGP3 technique penalizes “poor” intuition to a 

lesser extent.  While the use of completely random intuition results in a slightly higher 

number of expected observations, “good” intuition offers improved computational 

performance.   

 

Table 11: BGP3 without Retention Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF – Intuition, ),( σµNiid − , 1=m  
BGP3 ( )02n   POOR BGP3 ( )02n  GOOD BGP1  

)(ˆ CSP  T̂ /Upper 
Bound 

)(ˆ CSP  T̂ /Upper 
Bound 

)(ˆ CSP  T̂ /Upper 
Bound 

80 =n  0.988 237/887 0.992 231/885 0.989 234/945 
100 =n  0.983 206/722 0.984 204/715 0.982 207/760 
200 =n  0.989 158/504 0.983 154/510 0.975 159/543 
300 =n  0.987 151/455 0.979 139/456 0.985 147/478 
400 =n  0.967 146/442 0.976 136/445 0.986 142/469 
500 =n  0.974 143/417 0.971 131/432 0.984 140/444 

 

Thus, BGP3 is appropriate when practitioner intuition is reliable, but only 

provides improved performance when using a relatively small number of initial 

observations.  However, without a priori knowledge on the relationship of the 

indifference-zone parameter to the underlying variance, the selection of the initial number 

of observations can be problematic.  Manipulating the indifference-zone parameter 

should not be considered because it ought to be selected as the point where the designer 

would not differentiate between competing system configurations and thus should depend 

on other considerations.   
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4.4.4 BGP Technique 4 

The theoretical bounding of updated variance estimators, 2
ilV , being less than or 

equal to first-stage estimators, assuming variance consistency, implies ranking and 

selection methods using updated variance estimators will always exhibit equal or 

increased computational performance compared to methods such as KN+.  Recall both 

R+ and KN+ use first-stage variance estimators for second and later-stage calculations.  

Also, recalculation of the test statistic, dh η22 = , with the current degrees of freedom, 

d , results in a monotonically decreasing value for 2h .  Embedded calculation of the 

following relationships using updated variance estimators: 
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1 /2)1(1 −−−= −− dkαη  (33) 

are generally smaller than first-stage calculations of the same relationships.  BGP4 thus 

incorporates embedded data estimators enabling updates of η  and ( )rWil  at each stage as 

a heuristic RS method. 

 

4.4.4.1 BGP4 Initial Performance Assessment 

Table 12 below compares performance of BGP4 and BGP1.  Experiment 

parameterization includes the LF configuration of means, a desired probability of 

95.0* =P , an indifference-zone parameter of 30619.0* =δ , 6=k competing system 

configurations, and a batch size 1=m .  The underlying simulated process for this 

experiment is ),( σµNiid −  where 5.1=σ .  1000 independent replications were made in 
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each experimental condition.  The first-stage number of initial observations, 0n , varies in 

this experiment.  Overall performance of the method, described by estimators of the 

probability of correct selection, )(ˆ CSP , average number of required raw observations T̂ , 

and the upper bound on the number of required raw observations is shown below. 

 

Table 12: BGP4 and BGP1 Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF, ),( σµNiid − , 1=m  
BGP4 BGP1 

 
)(ˆ CSP  T̂ /Upper 

Bound 
)(ˆ CSP  T̂ /Upper 

Bound 
80 =n  0.966 133/897 0.989 234/945 

100 =n  0.976 132/757 0.982 207/760 
200 =n  0.985 133/541 0.975 159/543 
300 =n  0.982 130/476 0.985 147/478 
400 =n  0.981 130/466 0.986 142/469 
500 =n  0.984 133/440 0.984 140/444 
600 =n  0.989 133/424 0.959 139/444 
700 =n  0.988 133/419 0.965 138/434 
800 =n  0.979 135/416 0.967 139/427 
900 =n  0.975 135/417 0.965 140/422 

1000 =n  0.964 142/416 0.971 141/420 
 

Observe there is significant reduction in the number of required observations 

when the number of initial observations, 0n , is small.  Additionally, the number of 

required observations for BGP4 is approximately flat when the number of initial 

observations is less than 100, implying the selection of 0n  has little effect on method 

performance for relatively small 0n  values.  Figure 18, below, graphically confirms this 

observation.     
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Figure 18  compares the ranking and selection methods KN+, BGP1, and BGP4.  

KN+ and BGP1 have similar performance.  Both methods produce T̂  values that are 

concave in nature, illustrated by the decreasing then increasing number of required 

observations as the number of initial observations, 0n , becomes larger.  BGP1 

outperforms KN+ to some extent when 0n  is small.  On the other hand, BGP4 exhibits 

different behavior in that its number of total required observations is approximately 

constant when the number of initial observations is small.  This is a result of using 

embedded variance estimators.  Therefore, BGP4 is promising as the selection of the 

initial number of observations, 0n , has little, if any, effect on the number of total required 

observations for small 0n  values.   
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Figure 18: KN+, BGP1, and BGP4 Comparison of Initial Number of Observations versus 
Required Number of Observations 
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4.4.4.2 BGP4 AR(1) Batch Means Performance 

Application of BGP4 to a simulation with an underlying autoregressive, )1(AR ,  

process using Batch Means (BM) for observation acquisition ascertains the robustness of 

the method to the correlated output often generated by time-based simulations.  

Experiment parameterization involved setting 22.0=φ , 42000 =n , 95.0* =P , 

6=k competing system configurations, and 4200564.1019298.0* ==δ  while 

varying both batch size, m, and the initial number of batched observations where 

mnb =0 .  Results from this experiment are shown in Table 13 for simulated 

configurations possessing an underlying autoregressive process.  Recall an )1(AR  

process mimics systems with time-based observations or some type of correlation 

between the data.   

 

Table 13: BGP4 and KN+ Comparison Using Batch Means while Varying Batch Size 
with Mildly Correlated Data 

019298.0* =δ , 95.0* =P , 42000 =n , LF, )1(AR , 22.0=φ  
 BGP4 KN+ 

m  0b  )(ˆ CSP T̂ /Upper Bound )(ˆ CSP T̂ /Upper Bound 
10 420 0.959 20550/65428 0.968 20912/64676 
25 168 0.958 22199/69994 0.964 22834/69939 
50 84 0.957 22313/73859 0.972 23005/73263 
100 42 0.948 22785/82173 0.976 25219/82739 
150 28 0.950 23010/90078 0.955 30191/94992 
200 21 0.959 23423/96782 0.974 29919/99284 
300 14 0.949 23617/109016 0.962 33371/110908 

 

BGP4 achieves the desired probability, statistically, in all conditions.  At a small 

number of initial batches, 0b , BGP4 significantly outperforms the KN+ method.  This is 

attributed to the use of embedded data estimators enabling the method to anneal/conform 
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to the underlying distributions.  Note asymptotic variance convergence of the underlying 

process is a requirement for proper method performance in terms of achieving the desired 

probability.   

Table 14 extends the previous experiment by changing 5.0=φ  to increase the 

correlation within the simulated )1(AR  process.  This increase in φ  induces an 

underlying process with higher variability.  The indifference-zone parameter is set to 

026726.042000.3* ==δ .   

 

Table 14: BGP4 Using Batch Means while Varying Batch Size with Moderately 
Correlated Data 

026726.0* =δ , 95.0* =P , 42000 =n , LF, )1(AR , 5.0=φ  

 BGP4 ( )5.0=φ  BGP4 ( )22.0=φ  

m  0b  )(ˆ CSP T̂ /Upper Bound )(ˆ CSP T̂ /Upper Bound 
100 42 0.947 22621/82101 0.948 22785/82173 
150 28 0.946 22828/89693 0.950 23010/90078 
200 21 0.958 23024/95294 0.959 23423/96782 
300 14 0.949 23682/111031 0.949 23617/109016 

 

BGP4 achieves the desired probability, statistically, in all conditions.  Observe the 

slight reduction in )(ˆ CSP  with the higher φ .  This experiment indicates encouraging 

BGP4 performance on batched observations from a moderately correlated underlying 

process.     

Generally, time based simulations can produce highly correlated output.  For 

example, measuring separation between arriving entities to some location will naturally 

produce highly correlated data.  To ascertain the robustness of BGP4 in a highly 

correlated environment, an )1(AR  process with 95.0=φ  provides an appropriate test 
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case.  The indifference-zone parameter is set to 096262.042000.39* ==δ for this 

experiment.  Note Equal Spacing (ES) of means is assumed for the configurations under 

contention for selection as the “best”.  This assumption gives us an example in which the 

competing system configurations are differentiated by some significant factor.  We would 

expect to do well here, in terms of achieved )(CSP , since this is a “highly favorable” 

configuration of the means.  Experimental results are shown in Table 15.    

 

Table 15: BGP4 Using Batch Means while Varying Batch Size with Highly Correlated 
Data 

096362.0* =δ , 95.0* =P , 42000 =n , ES, )1(AR , 95.0=φ  
 BGP4 

m  0b  )(ˆ CSP  T̂ /Upper Bound 
100 42 0.961 10881/64898 
200 21 0.981 12172/86007 
300 14 0.970 13406/105144 

 

BGP4 achieves the desired probability in all conditions.  This experiment shows 

promise for the use of BGP4 with highly correlated output given an assumed ES 

configuration of means for the competing system configurations.  

 

4.4.4.3 BGP4 AR(1) Overlapping Batch Mean Performance 

Application of BGP4 to an autoregressive, )1(AR ,  process using Overlapping 

Batch Means (OBM) for observation acquisition further explores the applicability of the 

method.  This experiment sets 22.0=φ , 252000 =n , 95.0* =P , 6=k competing 

system configurations, and 25200564.1007878.0* ==δ , while varying both batch 

size, m, and the initial number of batched observations where 10 +−= mnb .  Note the 
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difference between OBM and BM where batched observations are obtained from the 

relationship mnb = .  Results are shown in Table 16. 

 

Table 16: BGP4 and KN+ Comparison Using Overlapping Batch Means while Varying 
Batch Size 

007878.0* =δ , 95.0* =P , 252000 =n , LF, )1(AR , 22.0=φ  
 BGP4 KN+ 

m  0b  )(ˆ CSP T̂  )(ˆ CSP T̂  
100 25101 0.960 133781 0.968 133642 
200 25001 0.959 132874 0.940 130027 
300 24901 0.961 133045 0.952 131120 
400 24801 0.967 135944 0.957 135667 
500 24701 0.972 134810 0.945 130849 

 

BGP4 achieves the desired probability in all conditions.  Computational reduction 

relative to KN+ is not evident in this experiment.  This is attributed to the selection of *δ  

and 0n  where KN+ achieves efficient performance.  The relevant aspect of this 

experiment is BGP4 achieving the desired probability when using OBM for observation 

acquisition. 

 

4.4.4.4 BGP4 Summary 

BGP4 is a new ranking and selection method.  BGP4 anneals or conforms in some 

sense to the underlying simulated process.  Clearly, BGP4 offers increased performance 

in several areas.  Given asymptotic variance convergence, BGP4 performs as well or 

better than other RS methods in terms of computational requirements while achieving the 

desired probability.  Additionally, BGP4 avoids “guessing” on the initial number of 

observations.  Rather, asymptotic variance convergence and normally distributed 

observations are the only requirements for proper method performance.  Note that 
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batched )1(AR  observations are marginally normal.  A formal statement of the BGP4 

method follows: 

For two systems i and l, the asymptotic variance of the difference between the two 

systems, 22
li vv + , is estimated by applying one of the estimators presented in section 2.5 

on the differenced series ,2,1, K=−= jXXD ljijilj . 

Setup:  Select confidence level α−1 , indifference-zone parameter 0>δ , first-stage 

sample size 20 ≥n , and batch size 0nm < .  Selection of 0n  must ensure asymptotic 

variance convergence. Calculate 

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη  (34) 

Initialization:  Let },,2,1{ kI K=  be the set of systems still in contention, and let 

dh η22 = .  Obtain 0n  observations ,,,2,1, 0njX ij K=  from each system ki ,,2,1 K= .  

For all li ≠  compute 2
0 ilVm , the sample asymptotic variance of the difference of systems 

i and l.   

Let 
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and 

 ilili NN
≠

= max  (36) 

Here 1+iN  is the maximum number of observations that can be taken from system i.  If 

1max0 +≥ ii Nn  then stop and select the system with the largest ( )0nX i  as the best.  

Otherwise, set the observation counter 0nr =  and go to Screening. 
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Screening:  Set II old = .  

update with the current degrees of freedom, d : 

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη  (37) 

update with the current degrees of freedom, d , and η : 

 dh η22 =  (38) 

update with the current test statistic, 2h , and estimated variance, 2
ilV : 
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Stopping Rule:  If 1=I , then stop and select the system whose index is in I as the best.  

Otherwise, take one additional observation 1, +riX  from each system Ii∈  and set 1+= rr .  

If 1max += ii Nr , then stop and select the system whose index is in I and has the largest 

( )rX i  as the best.  Otherwise, repeat the screening process.  

 BGP4 outperforms other ranking and selection methods, such as R+ and KN+, 

when the underlying simulated process is either ),( σµNiid −  or )1(AR .  Performance of 

BGP4 with BM and OBM batching methods on correlated data from an )1(AR  process 

demonstrates applicability for different variance estimators. 
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4.4.5 BGP Technique 5 

One possible enhancement to BGP4 involves the use of embedded estimators to 

update the relationship: 

 }1])1(1(2{[
2
1 /2)1(1 −−−= −− dkαη  (41) 

by the number of system configurations, k, still in contention versus the number of total 

initial system configurations.  Recall η  is an intrinsic component of 2h  used in the 

screening phase of the KN+ method discussed in section 2.6.2.  

Using the same experimental parameterization as the BGP4 experiment, Table 17 

compares performance of BGP5 with the BGP4 method.  The use of embedded 

estimators to update η  in this manner is ineffective; even though the number of required 

observations has decreased, BGP5 fails to achieve the desired probability.   

 

Table 17: BGP5 and BGP4 Comparison Varying Initial Number of Observations 

30619.0* =δ , 95.0* =P , LF, ),( σµNiid − , 1=m  
BGP5 BGP4 

 
)(ˆ CSP  T̂ /Upper Bound )(ˆ CSP  T̂ /Upper Bound 

80 =n  0.852 109/897 0.966 133/897 
100 =n  0.887 109/760 0.976 132/757 
200 =n  0.875 106/545 0.985 133/541 
300 =n  0.886 107/480 0.982 130/476 
400 =n  0.895 104/469 0.981 130/466 
500 =n  0.856 108/439 0.984 133/440 
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4.4.6 Method Development Summary 

Incorporation of embedded variance estimators extends current ranking and 

selection methods by achieving the desired probability while decreasing computational 

requirements.  BGP1 offers better computational performance over current methods, such 

as KN+, when the number of initial observations is small.  However, when the number of 

initial observations is large there is little, if any, improvement.  The latter case is 

equivalent to the experimenter obtaining more observations in the initial stage than is 

required for the experiment.   

Current RS methods often exceed the desired probability.  Introduction of a 

reduction coefficient can result in achieving the desired probability while increasing 

computational efficiency.  However, arbitrary selection of the reduction coefficient can 

result in failure to achieve the desired probability.  In fact, the practitioner can only select 

a reduction coefficient with a priori knowledge of the underlying system.  Hence, BGP2 

should only be used in strictly defined experimental environments as this method lacks 

theoretical rigor. 

Use of designer intuition resulted in better computational performance under 

certain conditions.  When the number of initial observations is small, strong and accurate 

intuition decreases the required number of observations.  However, random or “poor” 

intuition degrades RS method performance.  Of note, BGP3 incorporates designer 

subjectivity into the experimental process.  

BGP4 offers significantly increased computational efficiency compared to other 

RS methods.  Use of embedded data estimators enables this method to “anneal” itself to 

the underlying processes in contention.  Selection of the initial number of observations 
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needs only ensure asymptotic variance convergence for this method to perform properly.  

Observations are assumed to be normally distributed but can be obtained from batching 

methods.  Known RS methods such as R+ and KN+ have the same requirements.  

However, the lack of the need to “guess” the number of initial observations differentiates 

BGP4 from other RS methods.    

BGP4 is a new approach to RS methods.  This method avoids the pitfalls of 

reliance on the initial number observations, 0n .  Rather, BGP4 incorporates embedded 

estimators to enable a form of annealing to the underlying process.  The use of current 

estimators enables tight control of the process.  Application of this technique to simulated 

configurations with an underlying )1(AR  process highlights the robustness of the method.   

BGP5 uses the number of competing configurations still in contention for 

selection as the “best” during the screening process of the method.  This RS method fails 

to achieve the probability requirement.  Here, the use of embedded estimators is 

inappropriate.   

 

4.5 Ranking and Selection Method Summary 

Adaptive control techniques, such as ranking and selection, enable differentiation 

between competing simulated system configurations.  BGP4 is a new method that 

outperforms known ranking and selection methods in terms of computational efficiency.  

Increased performance is obtained by incorporation of embedded data estimators.  BGP4 

relies on the same assumptions as R+ and KN+.  Specifically, observation normality, 

variance consistency, and an underlying stationary process are assumed.  In addition, 

batching methods allow transformation of correlated data into normal observations under 

certain conditions.   



 89

CHAPTER 5 

TEST CASE:  NATIONAL AIRSPACE SYSTEM ANALYSIS 

Parallel and Distributed Simulation (PDS) techniques along with Ranking and 

Selection (RS) methods enable analytic comparison of large-scale simulated system 

configurations of a real-world process.  While previous chapters presented PDS and RS 

methods in a controlled environment for testing and evaluation, this chapter highlights 

the application of these methods to an existing simulation of a complex system.  

Specifically, PDS and RS methods are applied to the Reconfigurable Flight Simulator 

(RFS), an existing large-scale hybrid simulation, to assess aircraft separation with 

differing arrival route densities in the National Airspace System (NAS).  Additionally, 

diagnostics for appropriate simulation parameterization are presented.   

 

5.1 Air Traffic Simulation 

One example of a complex system is the National Airspace System (NAS).  

Within the NAS, Air Traffic Control (ATC) systems ensure the safe travel of an aircraft 

from one airport to another while Air Traffic Management (ATM) systems schedule and 

sequence aircraft to increase throughput and reduce delay.  Prior to departure the flight 

crew is given routing information from both automated and human components of the 

system.  This route is developed accounting for regulations, expected weather conditions, 

and traffic density.  During departure, commercial aircraft follow specific directions on 

speed, heading, and altitude on a path that includes navigational points called “fixes”.  En 

route, the aircraft will traverse one or more flight sectors that are managed by Air Route 

Traffic Control Centers (ARTCC) manned by human controllers assisted by a variety of 

aids.  During arrival into a major airport, commercial aircraft generally follow a 
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published procedure called a Standard Terminal Arrival Route (STAR) until the final 

approach.   

This section provides a general description of ATC and ATM simulations.  

Models of ATC/ATM systems can be composed of human performance parameters, 

equipment characteristics, and regulatory procedures.  Simulation of these models 

generally looks exclusively at factors such as capacity or safety.  Capacity is often 

measured in throughput, or entities per time unit, that accomplish an activity, such as a 

plane arriving at a gate.  Beyond a measure of performance, capacity directly relates to 

profit.  Also, increased capacity is needed to meet anticipated future demand.  On the 

other hand, safety is usually a discrete count of entities that violate specific criteria, for 

example a minimum separation distance between aircraft.   

ATM simulation can determine the impact of flight restrictions on delay, 

throughput, and traffic congestion.  Wieland (1998) describes the Detailed Policy 

Assessment Tool (DPAT) as a large-scale simulation capable of calculating traffic 

conditions for entire airspace regions, for example the continental United States.  DPAT 

models the NAS as a sequence of capacitated resources in a parallel and discrete-event 

manner.  The parameters used within DPAT are obtained from external models.  DPAT 

has successfully simulated NAS operations for the entire continental United States faster 

than real-time for specific models.  

The Total Airspace and Airport Model (TAAM) simulation is a high-fidelity 

simulation modeling NAS components such as gates, terminals, taxiways, and airspace.  

As one example, Holden and Wieland (2003) incorporated simulation optimization 

methods with TAAM to optimize runway scheduling.  For this particular analysis, the 
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scheduling impact of adding a new runway was simulated.  Potentially, this method could 

also assist controllers with the allocation of aircraft to runways.  

ATM simulation can also provide predictive insight on the impact of new 

equipment on airport throughput.  For example, Schwartz et al. (1997) describe the use of 

simulation to evaluate the introduction of new Flight Management System (FMS) 

equipment in aircraft cockpits along with new routing procedures.  They assumed that 

more sophisticated, but higher cost, FMS equipment corresponded to decreased 

controller-pilot verbal communication.  Then, they simulated various combinations of 

traffic throughput and percentage of FMS equipped aircraft.  Note that the capability of 

installed FMS equipment also varied in terms of acquisition cost.  This method of 

sensitivity analysis provided insight not only that capacity could be increased by 

equipment fielding but it offered a cost-benefit element for determining the required 

sophistication in new FMS equipment. 

Simulation of aircraft routing procedures has also been pursued as a method to 

increase capacity.  Tofukuji (1993) provides an example in which various routing 

configurations were simulated to assess throughput.  Results from this experiment 

included a relationship between throughput and required controller interventions.  

Additionally, this experiment compared existing route configurations along with 

proposed modifications. 

Simultaneous impacts of changes on both capacity and safety have also been 

investigated through the use of simulation.  For example, Zeghal and Hoffman (2000) 

explored model performance of ATC operations where the requirement of maintaining 

separation was delegated to individual aircraft.  Here the sequencing of self-separating 
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aircraft was simulated to predict future capacity and controller workload.  Safety, in this 

case violation of a minimum separation threshold, was indirectly assessed using rules for 

sequencing aircraft that ensured safe separation. 

Increasing use of simulation as a design and analysis activity implies larger and 

more complex simulations.  Combination of discrete-event and continuous-time models 

into hybrid simulations will complicate metric analysis.  However, this combination is 

necessary to provide realistic representation of complex systems such as the National 

Airspace System.   

Modeled ATC and ATM systems have been simulated in an effort to obtain 

predictive measures of performance by numerous agencies with varying fidelity.  

Common to all efforts is the need for metric assessment and computational efficiency.  

Application of adaptive control techniques within a distributed simulation architecture 

not only reduces the computational requirement but speeds experimental execution.  

Versatile, embedded data encapsulation methods enable these control techniques. 

 

5.2 Reconfigurable Flight Simulator (RFS) 

The Reconfigurable Flight Simulator is used as a test case for several reasons.  

First, it is hybrid simulation modeling a complex system that cannot be simplified for an 

analytic solution without loss of fidelity.  Second, it is a significant development in terms 

of personnel-hours as well as high-level software engineering.  Minor modifications 

within the RFS software architecture, presented later, bode well for simulating other 

existing complex systems.  Also, as the name implies, RFS is easily initialized for 

alternative configurations of the NAS by the use of formatted text configuration files.  

Lastly, RFS supports analysis of both discrete and continuous state variables. 
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Pritchett and Ippolito (2000) discuss the Object-Oriented (OO) structure and 

capabilities of the RFS.  Also, Lee, Pritchett, and Goldsman (2001) detail the RFS timing 

mechanisms and their application to a hybrid, agent-based simulation of the National 

Airspace System.  The OO structure of RFS is extensible and modular.  Instantiation of 

the base classes produces objects that compose the simulation; these objects can be 

configured by a script file during initialization.  In this context, an object is also 

considered an agent if it can autonomously interact with other agents while pursuing a 

particular goal or set of goals.  Note that each agent is also self-describing in terms of 

identity, performance parameters, and current state.  Combined agent behavior models 

complex system performance.  Other objects in the simulation may not have two-way 

interactions with the agents, but instead serve other purposes such as graphic displays, 

date loggers, and analyzers.   

The RFS architecture is shown in Figure 19.  The simulation object is the overall 

controller of the simulation and manages all callback messages to other components.  The 

timer object maintains the temporal state of the simulator and facilitates both continuous 

and discrete agent update timing mechanisms.  Arrows in this diagram correspond to 

communication between agents.  Lists within the architecture track corresponding agents 

in the simulation.  Agents are included in the simulation by calling dynamic link libraries 

(.dll) enabling both modular development and rapid reconfiguration.  Configuration of 

the simulation during initialization and runtime is accomplished through the use of 

pseudo-code and formatted text configuration files. 
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Figure 19: Reconfigurable Flight Simulator Architecture 

 

The Environment Controller and Database (ECAD) object maintains the 

simulation environment.  Environmental effects such as wind, terrain, and axis systems 

can be loaded as needed to ensure that the simulation environment is coherent.    

Input/Output objects (I/O) provide mechanisms for both graphical and textual 

manipulation.  For example, graphical output can take the form of an ATC display or a 

view of vehicle instrumentation.  Text output is supported in ASCII format.  

Additionally, I/O objects support communications with other simulations and hardware.  

The I/O list manages all I/O objects. 

Through inheritance of the base vehicle class, vehicle agents may be modified to 

represent continuous-time models of aircraft, ground vehicles, etc. in arbitrary numbers.  

This base class provides interfaces for communication to other vehicles and the 

simulation object.  State variables, such as position, are available to these interfaces.  

Additionally, the simulation object can relay elements of the simulation status via these 



 95

interfaces and vehicles can access the ECAD and I/O objects.  All vehicles are 

maintained on the vehicle list to facilitate management and control.  Several vehicles 

have been developed, such as a waypoint following aircraft, which can be used for 

complex system analysis. 

Controller, Event, and Measurement (CEM) agents have access to the vehicle list, 

input/output list, and the ECAD object.  CEM objects are typically extensions to a base 

class to complete a particular task.  For example, the Measurement Management Agent 

(MMA) is a CEM agent that measures relative differences between or pairing interaction 

of agents in the simulation.  One use of this agent to date is for adjusting vehicle update 

times to separate agents (aircraft), in air traffic control, to prevent collisions (Lee, 2002).   

Access to base classes within the RFS is generally accomplished through the use 

of pointers and standardized interfaces.  Object Data/Method Extensions (ODME) 

provide an alternative for invoking function calls or accessing data in RFS objects.  

Basically, ODME allows for extension of existing interfaces by allowing objects to 

specify data and methods available to other objects.  Note that ODME allows for 

different objects to pass data without sharing header files. 

The inherent modularity of RFS simplifies incorporation of ranking and selection 

methods.  Here, the modularity allows for easy integration of new modules into the 

simulation.  Additionally, existing RFS modules are extensible in nature.  This allows for 

the minor modifications needed by the adaptive control structure.  The following section 

details RFS module extension and new module development.   
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5.3 Reconfigurable Flight Simulator Module Development 

The Reconfigurable Flight Simulator provides a modular, extensible, and 

reconfigurable architecture for use in the analysis of a complex system.  This section 

highlights minor modifications to existing modules and new module development.  

Together, these modules enable adaptive control of RFS within a distributed simulation 

environment.  Note the functionality of these modules can be generalized for the 

integration of adaptive control and PDS techniques to any existing large-scale simulation.   

 

5.3.1 Simulation Controller (SC) 

The Simulation Controller (SC) is a CEM agent that enables external control of 

the RFS.  External control includes simulator commands of “PAUSE”, “UNPAUSE’, and 

“TERMINATE”.  The “PAUSE” and “UNPAUSE’ commands allow the adaptive 

controller to command sufficient observation acquisition from each competing 

configuration during ranking and selection.  The “TERMINATE” command is used when 

a configuration is no longer in contention for selection as the “best”.  The SC also 

broadcasts an “EXIT” status after successful simulation termination.   

 

5.3.2 Data Analyzer (DA) 

The Data Analyzer (DA) is a CEM agent that monitors and calculates both mean 

and variance estimators for specified ODME variables.  Figure 20 shows the general 

structure of this object.  Flexible implementation of the DA created the ability for data 

encapsulation of single or grouped objects.  For example, a DA can encapsulate data from 

a single vehicle or from all vehicles of a specific type.  Additionally, the DA allows the 

practitioner to define logical data clusters, i.e. group variables.  In this example, the data 
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group POSITION clusters variables that include latitude, longitude, and altitude.  The 

Interval Sampler (IS) is a CEM agent that allows for dynamic runtime setting of sampling 

methods.  The sampling method may be synchronous or asynchronous with a specified 

time step and associated overlap.  The overlap allows for obtaining observation data from 

agents possessing an update time within a certain boundary of the current sampling time.   
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Figure 20: Data Analyzer Object Example Where it is Capturing Aircraft Position  

 

A unique facet of the DA is embedded calculation of mean and variance 

estimators, precluding storage of historical data beyond summed and summed squared 

values for iX  as shown in section 4.2.2.  Note the absence of variable under/overflow 

ensures estimator accuracy.  Hard disk storage of these estimators in runtime specified 

locations enables external monitoring. 

The computational overhead from using embedded estimators of this sort was 

assessed by running the same simulated configuration without embedded statistical 

analysis (NOSTAT), with embedded statistical analysis (STAT), and lastly with both the 

embedded statistical analysis and the distributed simulation client module (RFS Client).  

Figure 21 below highlights the overall results.  Addition of embedded statistical analysis 

increased the computational expense of obtaining a specified number of observations by 
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less than 1% in this example.  Here, the RFS client module increased the overall expense 

by less than 2% for the same number of observations.  In practical terms, arrivals for an 

operational day at Atlanta International Airport can be simulated on a single dual 

processor 2.2 GHz workstation with 512 megabytes of RAM in approximately 160 

computer-minutes.  An additional 3 minutes of workstation time allows for embedded 

statistical analysis in this example.  Note the computational expense of embedded 

statistical analysis is inversely proportional to the expense of running the simulation.  The 

impact of embedding statistical analysis is small when the computational requirements of 

the simulated configuration are large and vice versa. 
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Figure 21: Software Infrastructure Overhead Comparison 

 

For analyzing these results, note that users of an existing simulation generally 

record all data from a simulation for follow on analysis.  The computational cost of this 
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output and storage is not analyzed here.  Presumably, however, it can represent both an 

increase in runtime and a subsequent analysis process that is necessary only in the 

“NOSTAT” condition. 

 

5.3.3 Measurement Management Agent (MMA) 

The previously established Measurement Management Agent (MMA) was a CEM 

object that measured relative differences between or interaction of pairs of agents in the 

simulation.  In this test case, the paired objects are two individual aircraft, and extension 

of the MMA involved calculation of the average minimum, mean, and maximum distance 

between them.  These calculations are available as ODME variables to other simulation 

modules.   

 

5.4 Example NAS Scenario: Arrivals on Macey Two STAR to ATL 

An Air Traffic Control (ATC) scenario with varied configurations provides an 

interesting large-scale simulation as a test case for the application of adaptive control and 

distributed simulation techniques.  Specifically, different arrival routing density 

configurations for the Atlanta International Airport (ATL) Macey Two Standard 

Terminal and Arrival Routing (STAR) procedure are compared.  Figure 22, below, 

highlights the Macey Two STAR.  Of interest, the intersection at MACEY involves the 

incorporation or merging of traffic from the navigation aids Volunteer (VXV) and 

Spartanburg (SPA) and the “fix” AVERY.  Arriving aircraft are assigned to one of these 

three paths by an air traffic manager much earlier in the flight depending upon the 

direction of arrival and expected aircraft density on each path.  Once on a path, an air 

traffic controller maintains spacing between the aircraft.   
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Figure 22: Atlanta International Macey Two Arrival STAR 

 

RFS waypoint following aircraft (WPT) agents model arriving aircraft for this 

scenario.  Each WPT agent uses numerical integration routines to update state variables 

including speed, heading, latitude, longitude, and altitude.  The trajectory of WPT agents 

is defined by a list of waypoints initialized at instantiation.  In this test case, WPT agents 

adjust their internal dynamics to cross each waypoint at a specified speed.  

WPT agents are instantiated by the RFS Random Plane Generator (RPG) agent 

with initial performance parameters.  The RPG agent creates WPT agents based on a 

random stationary Poisson process.  The inter-arrival time for this Poisson process is set 

at RFS initialization.  While actual arrivals to ATL are more closely modeled by a non-
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homogeneous Poisson process, this simplification still allows for relevant system 

analysis.  Note that generated WPT agents are added to the simulation vehicle list.  

The RFS ATC agent models the air traffic controller.  The ATC agent monitors 

waypoint following aircraft agents to ensure safe separation.  The ATC agent maintains a 

list of WPT agents within a defined sector and provides calculated speed and heading 

commands to the WPT agents.  The ATC agent also determines WPT agent sequencing 

in merging arrival streams.  Additionally, the ATC agent models missed communication, 

communication delay, and misinterpreted command behavior (Lee, 2002). 

Currently, approximately 615 aircraft arrive daily at ATL.  The majority of these 

aircraft arrive between 6 am and 12 pm.  This equates to an approximate 100 second 

inter-arrival time between aircraft, although this can be much higher during banks of 

arriving aircraft.  Varying the allocation of aircraft on the three merging paths of the 

Macey Two STAR approach provides comparable configurations for this test case.   

Table 18 presents the three route density configurations under analysis.  Recall 

arriving aircraft merge from the navigation aids Volunteer (VXV) and Spartanburg (SPA) 

and the “fix” AVERY on the Macey Two STAR.  Configuration C1 is the base case with 

equal 300 second expected inter-arrival times on each of the three arrival paths for a 

system-wide expected inter-arrival time of 100 seconds.  Configuration C2 involves a 

higher arrival density, i.e., a lower inter-arrival time, on the northern path resulting in a 

system-wide expected inter-arrival time of approximately 83 seconds.  Lastly, 

configuration C3 involves higher arrival densities on the two southern paths with the 

same system-wide expected inter-arrival time as configuration C2.    

 
 



 102

Table 18: Test Case Configuration Descriptions 

Configuration Expected Inter-Arrival Time (sec) 

C1 
VXV – 300 

AVERY – 300 
SPA – 300 

C2 
VXV – 150 

AVERY – 375 
SPA – 375 

C3 
VXV – 500 

AVERY – 200 
SPA – 200 

 

Varying route densities in this manner addresses questions about efficient and 

safe allocation of aircraft to arrival paths.  While central ATM seeks to control the overall 

number of aircraft arriving into ATL, traffic problems induced by such factors as weather 

can demand redistribution of these aircraft onto the arrival paths.    

One metric of performance is the average minimum separation distance between 

aircraft.  A larger value for this metric is considered safer.  Without having to model all 

the factors contributing to a near-miss or aircraft collision (NMAC) event, low average 

minimum aircraft separation is a sufficient condition for such safety problems.  It can 

also be inferred that a smaller average minimum separation implies a reduction in 

allowable reaction time from both pilots and controllers.  The indifference-zone 

parameter, *δ , is set to 1500 feet for this metric.  This equates approximately to a six-

second reaction time differential for pilots and controllers.   

Initializing the RFS for this scenario is accomplished through the use of formatted 

text configuration files.  Note all RFS modules are initialized in a similar fashion.  A 

sample configuration file is shown in Figure 23.  Note the commands to set simulation 

parameters.  ODME variables, such as minimum_separation, for a MMA will be 

monitored by a DA.  Lastly, external control files for the simulation are specified.   
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Figure 23: Sample Reconfigurable Flight Simulator Initialization Script 

   

5.5 Simulation Diagnostic Testing  

Several diagnostic tests are required before applying ranking and selection 

methods to these simulated configurations.  First, the simulation, in this test case the RFS, 

must be validated as adequately mimicking the real-world system.  In this case, validation 

was performed subjectively; extensive validations are often conducted for such 

simulations, but are beyond the scope of this study.   

Next, a sampling rate must be found that provides observations exhibiting 

acceptable correlation.  The performance, noted earlier in section 4.4.4, of ranking and 
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selection methods, such as BGP4, highlight the level of acceptable correlation.  Likewise, 

the batch size must be sufficiently large to ensure batched observations fit any normal 

distribution requirements of the ranking and selection methods.  The remainder of this 

section highlights the application of these diagnostic tests to the RFS.   

 

5.5.1 RFS Model Versus System Comparison  

To demonstrate the ability of the RFS to mimic aircraft arrivals at an airport, a 

sample arrival configuration was developed for Atlanta International Airport.  Aircraft in 

this configuration entered the Macey Two STAR with arrival densities based on historical 

data from 2002.  Figure 24 highlights simulated arrivals by RFS.  An overall aircraft 

inter-arrival time of 100 seconds mimicked 615 total arrivals observed during a standard 

operational day.  Note arrivals are evenly distributed from the navigation aids Volunteer 

(VXV) and Spartanburg (SPA), and the “fix” AVERY for this experiment. 

 

 
Figure 24: Simulation of Atlanta International Arrivals 
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The goal of this diagnostic test was to subjectively validate simulated behavior as 

mimicking the real-world system.  The use of a data analyzer agent verified obtained 

arrival rates were approximately the same as those specified.  Also, a single long 

simulation run subjectively verified an absence of programming errors such as memory 

leaks.  When using a simulation developed by several agencies with multiple 

contributors, a diagnostic test of this nature is necessary to ensure overall simulation 

stability.  Note this diagnostic test did not validate controller strategies for aircraft 

spacing. 

This diagnostic test also allowed for estimation of an appropriate simulation 

initialization period.  Recall that sufficient simulation initialization is necessary to avoid 

bias in a steady-state simulation such as RFS.  Here, the first aircraft arrived at ATL 

before approximately 30 simulation-minutes.  Hence, data sampling starts after this 

initialization period for test case analysis.    

 

5.5.2 RFS Simulation Output Correlation  

In general, simulation output is correlated.  Arrival data, such as average 

minimum separation in this test case, is highly correlated.  Varying the observation 

sampling rate within RFS from 30 to 120 simulation seconds resulted in correlation 

coefficients ranging from 0.95 to 0.80 respectively.  Note the increased computational 

requirement for obtaining decreased observation correlation.  A side note, the sampling 

overlap was set to 10 seconds.  The autocorrelation diagnostic test with a 30 second 

sampling rate is shown in Figure 25.  Note observation correlation decreases as the time 

between observations increases. 



 106

Recall BGP4 achieved the desired probability in an Equal Spacing (ES) condition 

when the underlying autoregressive process was parameterized with 95.0=φ .  This 

corresponds approximately to data correlated with a coefficient value of 0.95.  Hence, a 

30 second sampling rate is appropriate if the competing configurations are assumed to be 

in the ES configuration.   
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Figure 25: RFS Autocorrelation Diagnostic Test 

 

5.5.3 RFS Simulation Batched Observation Normality  

Assuming a 30 second sampling rate is appropriate, the next simulation diagnostic 

involves determining the batch size for the Batch Means (BM) method.  Recall a 

sufficiently large batch size results in normally distributed batched observations that are 
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approximately uncorrelated.  The key tradeoff in selecting a batch size is computational 

expense versus independent and normally distributed batch mean observations.  A batch 

size of 100 resulted in observations described in Figure 26.  
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Figure 26: RFS Batched Observation Normality Diagnostic Test 

 

A sampling rate of 30 seconds with a batch size of 100 obtains one batched mean 

observation for each 3000 simulation-seconds.  With a dual 2.2 GHz processor 

workstation with 512 megabytes of RAM, this equates to approximately 180 seconds of 

computer-time.  At p-values less than 0.136 there is no evidence the data is non-normal.  

For this reason, a batch size of 100 is selected for test case analysis. 

 

5.5.4 RFS Simulation Batched Observation Variance Convergence  

With an established sampling rate and batch size, the next diagnostic test focuses 

on batched observation variance convergence.  Recall sufficient variance estimation is 
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required for successful ranking and selection method performance.  A single simulated 

configuration, shown in Figure 27, indicates batched observation variance does converge 

and how many batched observations are required for sufficient estimation.  
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Figure 27: RFS Batch Mean Observation Variance Convergence Diagnostic  

 

Note if this diagnostic test failed to indicate variance convergence then no known 

ranking and selection method could be used for comparative analysis because of the lack 

of variance consistency.  Also, observe the convergence of variance is not smooth.  Other 

long simulation runs should converge to the same value; however, the shape of the 

convergence curve could differ.  In this example, it would be unwise to use BGP4 until at 

least 10 batched observations have been obtained due to a lack of variance convergence.  

With the given parameterization, this equates to 30000 simulation seconds or 

approximately 1800 computer seconds using a workstation with a dual 2.2 GHz 
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processor.  The practitioner must ensure some amount of variance of convergence while 

weighing the computational impact of delayed application of adaptive control techniques 

such as BGP4. 

Convergence of Overlapping Batch Mean (OBM) observation variance is shown 

in Figure 28.  BM and OBM variance estimators eventually converge to the same 

approximate value.  Here, the practitioner should obtain at least 1000 overlapping 

batched observations before applying adaptive control techniques such as BGP4.  This 

equates to 1099 unbatched observations from the simulation.  While the unbatched 

observation requirement is significantly less for OBM than BM, the correlation of OBM 

observations is higher.  The impact on adaptive control techniques of increased 

correlation from OBM observations is offset by the higher degrees of freedom of the 

variance estimator discussed in section 2.5.2.  In general, the use of the OBM method 

should result in fewer unbatched observations than the BM method.  
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Figure 28: RFS Overlapping Batch Mean Observation Variance Convergence Diagnostic  

 

5.5.5 Simulation Diagnostic Summary  

The diagnostics presented in this section can be generalized to any simulation 

where a unique metric defines performance.  These diagnostics enable the application of 

ranking and selection methods, such as BGP4.  First, the simulation must mimic the real-

world system at a level subjectively accepted by the practitioner.  This also allows for 

selection of a simulation initialization period.  Next, a simulation sampling rate must be 

determined that results in data sufficiently uncorrelated for the ranking and selection 

method.  Given a sampling rate, a batch size resulting in normally distributed 

observations is found.  Lastly, variance convergence identifies the minimal number of 

initial observations necessary for the application of ranking and selection methods.  

Recall BGP4 significantly outperforms other known ranking selection methods when 
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parameterized with the minimal number of initial observations.  These diagnostics incur 

some initial computational expense; however, they ensure appropriate application of 

adaptive simulation control techniques. 

 

5.6 Test Case Experiment 

Given unlimited computational capacity, the designer would execute a large 

number of independent simulation replications to produce experimental results.  

However, the goal of adaptive control techniques, such as BGP4, is to reduce 

computational requirements for such assessments.  A single experiment using BGP4 

should provide rigorous statistical selection of the “best” simulated configuration.  

Multiple experiments can subsequently validate the comparative method.  This section 

highlights a sample application of BGP4 to competing system configurations discussed in 

section 5.4.  

 

5.6.1 Example Test Case Experiment 

A snapshot is presented in Figure 29.  In this example, three workstations 

contribute computational capacity while a fourth workstation functions as the server.  The 

workstations for this experiment were homogeneous; workstation specifications include 

dual 2.2 GHz processors, 512 megabytes of RAM, and a Microsoft XP Professional 

operating system.  Workstations communicate by operating system managed TCP/IP over 

a switched 100 megabit Ethernet connection.  The right portion of the figure highlights 

participating workstations remotely mounted using Microsoft remote access software.  

Here, gt-2/3/4 workstations are the clients and gt-1 is the server or controller. 
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Figure 29: Snapshot of Test Case Experiment Session 

 

Each contributing workstation executes a client module that controls the 

simulated configurations and communicates both status and estimated data parameters to 

the controller.  The server samples and consolidates data in the manner prescribed by the 

designer.  In this example, overlapping batch means obtain observations for the control 

technique; the DA samples every 30 simulation seconds with an overlap of 10 seconds.  

BGP4 is the adaptive control technique for this example.  At this point in the experiment, 

all configurations are still in contention for selection as the “best”.   
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The goal of this sample experiment was to highlight stable operation between the 

client and server modules demonstrated by no loss of control by the server of a client 

simulation and also by data streams updated without error.  This experiment also 

provided verification, by separate analysis, of embedded statistical collection methods.  

Lastly, this sample experiment highlights the functionality of combined embedded 

statistical estimators, PDS techniques, and ranking and selection methods.   

An example of adaptive control technique performance is shown in Figure 30 for 

BGP4.  In this example, batch means were used to obtain observations.  Observe 

configuration C1 was eliminated from further consideration at 33 batched observations 

but 34 observations were actually obtained from the participating workstation.  This 

exemplifies the RS screening process eliminating a competing configuration from further 

analysis.  PDS error handling allows for further observation acquisition should a 

communication error occurs, hence the 34th observation.   

Experiment metrics, such as the estimated probability of correct selection and 

required observations, are maintained by the controller as shown in the bottom right of 

Figure 30.  Performance of BM and OBM methods can be compared by the number of 

raw observations.  Additionally, the use of varying random number seeds facilitates 

comprehensive analysis of the simulated configurations.  The computational tractability 

of this approach is addressed in following sections. 
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Figure 30: BGP4 Sample Test Case Application 

   

5.6.2 Best Case Arrival Routing Analysis 

The “best” or “preferred” arrival routing configuration obtains the highest average 

minimum separation for a given total throughput.  From RFS test diagnostics a 30 second 

sampling rate, a 10 second sampling overlap, and batch size of 100 is used to acquire 

observations using the batch means method.  This experiment also provides validation of 

the combined embedded statistical encapsulation methods, adaptive control techniques, 

and distributed simulation architecture.  Here, validation is obtained by separate analysis 

of long simulated runs of the competing system configurations.    

Table 19 presents experimental results from the application of BGP4 to 

configurations described in section 5.4.  Experiment duration for these specific random 

number seeds was approximately 96 computer-minutes using four dual 2.2 GHz 

processor workstations each with 512 megabytes of RAM.  The workstations 
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communicated by operating system managed TCP/IP over a 100 megabit Ethernet 

connection.  Three of the workstations provided computational capacity while the fourth 

acted as the controller in this experiment.  For this experiment, simulation seeds for 

aircraft generation remained constant between experimental runs to verify the underlying 

simulation, i.e. the RFS, was capable of reproducible results.  Note BGP4 is intended for 

needing only one experiment to select the “best” competing system configuration.   

 

Table 19: Arrival Routing Comparison of Average Minimum Separation in Feet 

Average Minimum Separation (feet)  
Replication 

Configuration 1 2 3 4 5 6 7 8 
C1 56652 56652 56928 56856 56652 56856 56652 56652
C2 51031 51031 51031 51066 51031 51066 51031 51031
C3 50693 50693 50504 50504 50693 50589 50693 50693

 

Configuration C1 was selected as the “best” for all experimental replications.  

Observe the average minimum separation varies between experiments.  This is attributed 

to communication errors between contributing workstations and the controller.  Recall the 

distributed simulation architecture allows contributing workstations to continue 

observation acquisition when a communication error is encountered.  Each 

communication error extended experiment execution time by the time required to obtain 

an additional batched observation, in this case approximately three minutes of computer-

time. 

 

5.6.3 Worst Case Arrival Routing Analysis 

The “worst” arrival routing configuration obtains the lowest average minimum 

separation for a given total throughput.  Experimental parameterization is the same as the 
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previous experiment.  Table 20 highlights the application of BGP4 to identify the “worst” 

arrival route density allocation from a single experiment.  Configuration C3 is the 

“worst”.  Recall BGP4 ensures statistical rigor in the selection of a competing simulated 

configuration from a single experiment.   

 

Table 20: Worst Case Arrival Routing Comparison 

Configuration  
C1 C2 C3 

Average Minimum 
Separation (feet) 59186 53562 50165 

 

Replicating this experiment validates the comparative method and also allows for 

performance estimation.  Table 21 presents the application of BGP4 to identify the 

“worst” arrival route density allocation.  Initial random number seeds varied in an 

incremental manner controlled by the server module for these experiments.  Twenty-one 

experimental replications provided estimators of average minimum separation, standard 

error, and the average required number of unbatched observations.   

 

Table 21: Replicated Worst Case Arrival Routing Comparison 

Average Minimum Separation 
Configuration  

C1 C2 C3 
Mean (feet) 57569 52174 49706 

SE 232 148 155 

T̂  2700 5600 5600 
 

Configuration C3, i.e., the highest route densities on the two southern paths in the 

Macey Two STAR, is confirmed to be the “worst” performing simulated configuration.  
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The probability for selecting configuration C3 equaled 1.00.  Also, the standard error 

indicates the competing configurations are statistically differentiable in post hoc analysis.  

Observe the early elimination of configuration C1 from comparative analysis shown by 

the low average number of unbatched observations, T̂ .  Configurations C2 and C3, the 

last two competing configurations under analysis, terminate at the same number of 

unbatched observations when one of them is selected as the “worst”. 

 

5.6.4 Routing Analysis Summary 

Application of combined adaptive control and PDS techniques is appropriate after 

RFS diagnostics.  In this test case, the applied technique selected configuration C1 as the 

“best” and C3 as the “worst” route allocation scenario.  Specifically, configurations with 

high arrival route densities on southern paths into Atlanta International Airport resulted in 

the lowest average minimum separation.  Several replications of the experiment with 

different random number seeds demonstrate that considered configurations were 

statistically differentiable.  This leads to a definitive conclusion that configuration C3 is 

indeed the worst possible routing scenario. 

Although not observed in the previous experiments, if the competing 

configurations were not statistically differentiable then replicated experiments could 

result in several configurations being identified as the “best” or “worst”.  Technically, the 

practitioner would fail to achieve the desired probability.  However, this highlights the 

robustness of ranking and selection methods.  Recall the indifference-zone parameter is a 

subjective level where the practitioner would not discriminate between competing 

configurations.  For this test, the parameter is 1500 feet which equates to approximately 

six seconds of flight time.  If several configurations are selected as the “best” or “worst” 
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after replicated experiments, then the practitioner should interpret these results in a 

grouped nature.  For example, if any two configurations were consistently identified as 

the “worst” configurations then the practitioner may collectively group these 

configurations as poor performers.  

 

5.7 Test Case Computational Performance Comparison  

The goal of integrated adaptive control and PDS techniques is statistical selection 

that is efficient and correct.  This section explores the computational performance 

efficiency of two job allocation schemes, i.e., assignment of simulated configuration 

observation requirements to contributing workstations.  Also, the effect of Batch Mean 

(BM) and Overlapping Batch Mean (OBM) batched observation acquisition methods on 

the total number of unbatched observations is explored. 

Partial Job Allocation (PJA) entails sequential job allocation to contributing 

workstations.  For example, if there are three participating workstations and three 

configurations then a single job is allocated to each workstation.  As another example, if 

there are three workstations and four configurations then a single job is allocated to two 

of the participating workstations.  The third workstation is assigned two jobs.  PJA is 

relevant when the number of configurations in contention is greater than or equal to the 

number of participating workstations. 

Full Job Allocation (FJA) consists of all configurations being distributed to all 

participating workstations.  Implementation of FJA assumes the combination of data from 

similarly configured simulations is appropriate as discussed in section 2.2.3.  The primary 

motivation for FJA stems from the screening phase of discussed adaptive control 
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techniques.  Specifically, the elimination of a competing configuration may result in 

workstation idleness during an experiment. 

Table 22 highlights the application of BGP4 to the configurations discussed in 

section 5.4.  Average minimum separation is reported along with the standard error and 

the estimated number of unbatched observations.  Configuration C3 is identified as the 

“worst” in all conditions.  The estimated probability of correction selection, )(ˆ CSP , 

equaled 1.00 for all conditions.  Also, mean estimators for each configuration are not 

statistically differentiable by the job allocation or batching method.  Observe the standard 

error is higher for OBM and even higher for full job allocation.  There appears to be 

higher estimated variance for these methods.  Note the decreased unbatched observation 

requirement, T̂ , for OBM versus BM.  There is also a slightly increased unbatched 

observation requirement using full job allocation versus partial job allocation.   

 

Table 22: Test Case Computational Analysis 

Partial Job – BM  Full Job  – BM Partial Job – OBM  
C1 C2 C3 C1 C2 C3 C1 C2 C3 

Mean 
(feet) 57275 52061 49614 57051 52467 49802 57472 52263 49028 

SE 344 208 216 482 338 306 384 214 370 

T̂  2700 5600 5600 2800 6000 6000 2173 4918 4933 
 

While the high )(ˆ CSP  is encouraging, it fails to validate inherent assumptions in 

full job allocation.  Instead, the high )(ˆ CSP  for these replicated experiments implies a 

relatively large indifference-zone parameter.  Recall the indifference-zone parameter is 

subjectively selected by the practitioner. 
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Figure 31 graphically highlights the estimated NOW minutes required for an 

experiment.  Clearly, the observation or computational requirement is directly related to 

execution time.  Observe FJA completes experiments faster than PJA because this job 

allocation scheme avoids workstation idleness.  A NOW minute in this context is the 

collective contributions from four dual 2.2 GHz processor workstations for one minute 

apiece.  Each workstation possessed 512 megabytes of RAM and communicated through 

a 100 megabit Ethernet switch on operating system managed TCP/IP.  Three of the 

workstations contribute computational capacity while the fourth acts as the controller.     
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Figure 31: Test Case Computational Performance 
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5.8 Test Case Summary  

The application of adaptive control and distributed simulation techniques to an 

existing large-scale simulation is relatively new.  The required effort to modify an 

existing simulation, in this case the Reconfigurable Flight Simulator, for the application 

of these techniques can be relatively small compared to the overall development of the 

simulation itself.  The application of these techniques also avoids post hoc analysis. 

Simulation diagnostics ensure the appropriate application of these techniques.  

Results from this test case, for example, imply general procedures for Atlanta 

International Airport.  Amongst the configurations tested here, equal routing densities for 

the Macey Two STAR provides the largest average minimum separation of aircraft.  

Likewise, high route densities for southern paths on the STAR should be avoided. 

Computational savings from the integration of adaptive control and distributed 

simulation techniques are potentially large.  A distributed simulation architecture in the 

form of a network of workstations provides approximately linear increases in overall 

experimental performance for a small number of workstations.  Without adaptive control 

techniques, long runs of each configuration are needed for appropriate statistical analysis.  

In a practical sense, data analysis as a post hoc activity also requires personnel-hours and 

the input/output burden or recording.  This scenario was not used for baseline comparison 

as it can be assumed to be significantly long.   
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CHAPTER 6 

CONCLUSIONS 

This research brings together the fields of simulation, embedded statistical 

analysis, adaptive control techniques, parallel and distributed simulation, and complex 

system analysis.  Combination of these fields itself is an intellectual contribution; in 

addition, there are several derived practical and theoretical contributions within each 

field.  Practical modifications to existing large-scale simulations for these techniques 

establish a methodology suitable for reuse.  Embedded statistical calculations enable 

runtime analysis.  Theoretical development of adaptive control techniques, such as 

ranking and selection, combined with the practical aspects of the implementation, create 

an analytic environment that allows discrimination between competing system 

configurations.  PDS methods offer near linear reduction in terms of computational 

expense for a small number of participating workstations.   

In a unified sense, this research enables enhanced use of simulation in the design 

and analysis of complex systems.  Ranking and selection methods provide a control 

technique.  Embedded statistical analysis allows for runtime input to this control 

technique.  PDS implementation provides the computational capacity necessary for 

practical use.  Modifications and extensions of these somewhat related disciplines 

establish a coherent analysis tool for sophisticated design activities. 

Embedded statistical estimators incur computational overhead.  However, this 

overhead is justified by the utility of these estimators in enabling runtime comparison 

between competing simulated system configurations.  Incorporated with ranking and 
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selection methods, these estimators enable calculation of the number of required 

observations necessary for rigorous statistical analysis.   

Appropriate combination of simulation output from these embedded statistical 

estimators must address several issues.  First, generated random numbers must be 

sufficiently offset to avoid redundant observations.  Second, a small number of combined 

observations may result in underestimation of the variability of the simulated process.  

Also, combination of simulation output must represent behavior possible from the actual 

system, such as combining seasonal or related elements of a simulated configuration.  

Embedded statistical analysis enables the application of Ranking and Selection 

(RS) methods for comparison of competing simulated system configurations.  Embedded 

statistical estimators bound the variance central to RS method calculations.  Specifically, 

selection of the initial number of observations directly affects current method 

performance in terms of the total required observations.  This motivated the development 

of the RS BGP4 method, a new RS method enabled by the incorporation of embedded 

statistical estimators.  While derived from the KN+ RS method, BGP4 conforms to the 

underlying simulated process through the use of embedded statistical estimators. 

Diagnostics to ascertain the appropriate application of BGP4 can be generalized 

to any large-scale simulation.  First, determining where data sampling may begin avoids 

initialization bias.  Next, underlying process serial correlation can be mitigated by the 

determination of a sufficiently long sampling rate.  Then, a batch size can be found that 

results in sufficiently normal batched observations.  Lastly, the convergence of variance 

estimators gives a lower bound on when the RS method may be employed.  
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BGP4 performs significantly better than other RS methods in terms of 

computational requirements while still achieving the desired probability.  BGP4 was 

found to perform well with mildly or moderately correlated data when competing 

simulations are in the Least Favorable configuration of means.  BGP4 also performed 

well on highly correlated data when competing simulations are in the Equal Spacing 

configuration of means. 

Incorporation of BGP4 within a distributed simulation architecture using a 

Network of Workstations (NOW) increases computational capacity.  A key issue for the 

application of a distributed simulation architecture is job allocation.  Sequential allocation 

results in workstation idleness.  Allocation of all simulation jobs to all participating 

workstations is only appropriate when simulation output may be combined for analysis. 

Application of BGP4 within this distributed simulation architecture to an existing 

large-scale simulation produced promising results.  Modifications to an existing large-

scale hybrid simulation, in this case the Reconfigurable Flight Simulator, were small 

compared to development of the simulation itself.  Initial application of these techniques 

with partial job allocation while using Batch Means for observation acquisition identified 

the “best” and “worst” competing configurations.  Computational performance was 

improved by full job allocation and the Overlapping Batch Means (OBM) data 

acquisition methods.   

Experimental results highlight the types of insights that this method provides.  In 

this test case, allocation of arrivals on the two southern paths of the Macey Two STAR 

was found to significantly lower average minimum separation distance, with implications 

for arrival procedures into Atlanta International Airport. 
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This comparative method may be applied to modeled complex systems 

differentiated by a unique performance metric.  For example, continuous-valued profit 

measures or the relative physical separation of modeled components could identify 

desired performance for a particular system.  The comparative method can also 

incorporate derived metrics from discrete variables, such as average throughput.  The 

described method relies on observations of estimated mean values.  These observations 

must exhibit characteristics enabling the application of ranking and selection methods.  

Specifically, ranking and selection method performance must be robust for the achieved 

normality and serial correlation of these observations.  Lastly, obtaining observations 

must be computationally tractable. 

 

6.1 Contribution Summary 

Contributions of this research can be summarized as follows: 

• Integration of embedded statistical analysis, ranking and selection 

methods, and parallel and distributed simulation techniques for the 

analysis of complex systems. 

• Embedded data estimators that are both efficient and accurate. 

• Extended ranking and selection methods that determine which simulated 

configurations are still in contention for selection as the “best” along with 

the number of required observations required.  Specifically, BGP4 only 

requires preliminary diagnostics to ascertain the initialization period, 

sampling rate providing acceptable correlation, batch size providing 

sufficiently normal observations, and variance convergence. 
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• A generalized method for diagnosing simulation parameters needed for 

appropriate application of adaptive control and distributed simulation 

techniques.  

• Specific results on arrival procedures for Atlanta International Airport as a 

demonstration of the insight these techniques can provide.  

 

6.2 Future Efforts 

Several extensions may be possible of the methods and techniques developed in 

this effort.  First, embedding statistical analysis within an existing simulation involves a 

relatively small expenditure in terms of personnel-hours compared to the reduction in 

required post hoc analysis.  The embedded statistical methods developed here should be 

explored to ascertain other potential applications in the use of simulation as a design 

activity.   

BGP4 is a significant extension to current RS methods.  In certain situations, it 

may be assumed that simulation observations are related between configurations.  In such 

cases, a paired t-test may provide a stricter statistical comparison.  Incorporation of this 

test statistic for comparative analysis is bounded by the multivariate normal test statistics 

used by BGP4.  Potentially, the incorporation of a t-test, under assumed conditions, 

would increase the computational efficiency of BGP4. 

Another RS method extension would incorporate nonparametric test statistics.  

The techniques developed here assume normally distributed observations.  

Nonparametric test statistics preclude a reliance on the assumption of normality in a 

general sense.  Incorporation of nonparametric test statistics would be relatively easy 

with the given techniques.  It is possible the incorporation of nonparametric test statistics 
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would speed the acquisition of observations with an overall increase of computational 

efficiency. 

Job queuing for participating workstations and the overall experimental 

architecture can be improved in several areas.  If participating workstations have 

heterogeneous performance, then allowing execution of simulated configurations scaled 

to the speed of the workstation can be more efficient.  If the length of a job is known, job 

shop like algorithms may be employed to reduce computational expense.  The central 

issues here are simulation initialization and state space transfer between contributing 

workstations.  

Integration of these techniques extends the use of simulation as an analysis and 

design activity for complex systems.  Application of developed techniques to other large-

scale simulations should be explored.  One interesting application is rare event analysis.  

Rather than focusing on estimated mean values, rare events are often minima or maxima.  

Incorporation of test statistics suited for extreme value analysis would extend the 

applicability of this comparative method. 
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APPENDIX A: DISTRIBUTED SIMULATION SOFTWARE 

The distributed simulation architecture developed for this research uses a Network 

of Workstations (NOW) to acquire computational capacity.  Client-server software 

enables control of participating workstations in an experiment.  The server module 

controls all aspects of the experiment.  The client module acts as an interface between the 

server and simulated configurations.  Ranking and Selection (RS) method modules apply 

adaptive techniques to experiment execution.   

The server is initialized by a runtime interpreted script.  This script identifies 

participating workstations by network address.  The location of the existing simulation 

executable program is also contained in this script.  Note the simulation executable 

programs used in this research are also initialized by runtime interpreted scripts detailing 

specific configuration information.  Here, an executable batch file associates the existing 

simulation executable program with a specific configuration.  Additionally, the server 

initialization script identifies the location of simulated configuration output.  

A snapshot of the server module is shown in Figure 32.  In this example, three 

workstations participate in an experiment entailing the comparison of three simulated 

configurations.  At the time of the snapshot, one workstation is waiting, or idle, for 

further commands.  A workstation becomes idle after completing all jobs.  Recall a job 

denotes the acquisition of a specified number of observations from a simulated 

configuration.  Here, all clients are assigned all configurations.  Simulation output is 

viewable in the bottom of the module.  Note the batch means method for this experiment.  

Overall experiment status is highlighted by the number of obtained observations.  
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Figure 32: Distributed Simulation Server Module 

The server issues commands to participating workstations via script files.  Each 

workstation runs a client module providing an interface between the server and simulated 

configurations.  This script files contains the location of the batch files, output, and the 
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number of required observations for the client.  Note the client schedules jobs 

sequentially.  The client issues commands to the existing simulation executable program 

by script files.  Recall existing simulations can interpret commands of “PAUSE”, 

“UNPAUSE”, and “TERMINATE”.  Also, existing simulations are capable of embedded 

statistical analysis.  

A snapshot of the client module is shown in Figure 33.  In this example, the client 

is waiting for further commands from the server.  Here, the client has completed three 

jobs.  Sample simulated configuration output allows for experimental monitoring.  Lastly, 

the number of observations highlights this workstations contribution to the experiment. 

 

 
Figure 33: Distributed Simulation Client Module 
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RS method modules apply adaptive techniques to an experiment by determining 

the number of required observations and which simulated configurations are still in 

contention for selection as the “best”.  The server module uses this information to 

determine job requirements at each stage of the experiment.  Here, a stage denotes the 

execution of all jobs.  Recall RS methods terminate when either the upper bound on the 

number of observations is achieved or there is only one configuration still in contention.    

A snapshot of the BGP4 RS method module is shown in Figure 34.  The 

practitioner sets RS method parameters to include the initial number of observations, 

desired probability, and indifference-zone parameter.  Also, the number of experiment 

replications is set.  In this example, the eighth experiment is currently proceeding with 

two configurations still in contention for selection as the “best”.  Configuration specific 

data facilitates experiment monitoring.  Note configuration C3 was selected as the “best” 

in the seven completed experiments.  Observation requirements for an experiment give 

insight on the computational expense.   

 



 132

 
Figure 34: Distributed Simulation BGP4 Module 
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APPENDIX B: RANKING AND SELECTION PARAMETER CALCULATION 

Figure 35 presents sample test statistics necessitated by ranking and selection 

methods.  Input and output columns follow from Bechhofer, Santner, and Goldsman 

(1995) table guidelines.  Of interest, these test statistics are available at runtime.  Test 

statistics include multivariate normal and t-distribution equicoordinate points with 

varying correlation inputs.  Studentized range and maximum modulus parameters are also 

available.  Historically, table lookups or FORTRAN code were used for these 

calculations. 

 

 
Figure 35: Ranking and Selection Parameter Calculations 
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