NON-SEPARATING PATHS IN GRAPHS

A Dissertation
Presented to
The Academic Faculty
By
Yingjie Qian
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the College of Sciences
School of Mathematics
Georgia Institute of Technology

August 2022
(C) Yingjie Qian 2022

NON-SEPARATING PATHS IN GRAPHS

Thesis committee:

Dr. Anton Bernshteyn
School of Mathematics
Georgia Institute of Technology

Dr. Grigoriy Blekherman
School of Mathematics
Georgia Institute of Technology

Dr. Zi-Xia Song
Department of Mathematics
University of Central Florida

Dr. Zhiyu Wang
School of Mathematics
Georgia Institute of Technology

Dr. Xingxing Yu
School of Mathematics
Georgia Institute of Technology

To my parents and grandparents.

ACKNOWLEDGMENTS

First, I would like to express my deepest appreciation to advisor Xingxing Yu, whose expertise, patience, energy and persistence were instrumental to my growth as a researcher. When I was in the dark, his mentorship guided me like a north star. I am extremely fortunate and honored to be his student. Without him, I would not be who I am today.

I would also like to thank my dissertation committee members Anton Bernshteyn, Grigoriy Blekherman, Zi-Xia Song, Zhiyu Wang and Xingxing Yu for their time and service. I'm especially grateful to my thesis reader $\mathrm{Zi}-\mathrm{Xia}$, for reading my thesis thoroughly and providing helpful comments.

I am indebted to Robin Thomas, who provided me with the opportunity to attend the ACO program. Robin not only was a great mathematician, but also nurtured many talents in graph theory and enhanced the prestigious reputation of the ACO program. Without Robin, none of these would be possible. Sergey Norin, Robin's student and ACO alumnus, led me to Graph Theory in undergraduate and has been a tremendous help in my academic career.

I am grateful to professors at school, researchers at conferences, classmates and friends from whom I learned a great deal of mathematics and with whom I had many thoughtprovoking discussions. They have always inspired and supported me in academics and life. Among them, I am most grateful to Shijie Xie, with whom I collaborated the most on research, and Prasad Tetali, for his care throughout my years at Georgia Tech.

As always and forever, I am grateful to my parents, family and Xiaoyun for their love and support. I couldn't have achieved any of this without them in my corner. To them, I dedicate this thesis.

TABLE OF CONTENTS

Acknowledgments iv
List of Tables viii
List of Figures ix
Summary x
Chapter 1: Introduction 1
1.1 Notation and terminology 1
1.1.1 Graph operations 1
1.1.2 Paths 2
1.1.3 Connectivity 2
1.1.4 Bridges 3
1.1.5 Plane graphs 3
1.1.6 Lexicographic ordering 3
1.2 Background on non-separating paths 4
1.3 Structure theorem 6
1.4 Related problems 8
1.4.1 Linkage problem 8
1.4.2 Signed graphs 9
1.4.3 A general conjecture 10
Chapter 2: Previous results on disjoint paths 12
2.1 Feasibility for 5-connected graphs 12
2.2 Characterization of 2-linked graphs 14
2.3 Characterization of graphs with special three paths 15
Chapter 3: Frames and constraints 23
3.1 Frame and its properties 23
3.2 Ladders and rungs 30
Chapter 4: Rungs intersecting three special paths 38
4.1 Technical lemma 38
4.2 Structures 41
4.2.1 $\quad H_{1}$ and H_{m+1} 42
4.2.2 Rungs not in $H_{1} \cup H_{m+1}$ 43
Chapter 5: Structure of other rungs 52
5.1 Technical lemmas 52
5.2 Structures 57
5.2.1 $\quad H_{1}$ and H_{m+1} 57
5.2.2 Rungs not in $H_{1} \cup H_{m+1}$ 58
Chapter 6: A 7-connected example 62
6.1 Infeasibility 63
6.2 7-connectivity 63
References 67

LIST OF TABLES

1.1 Connectivity for non-separating paths avoiding m vertices 5

LIST OF FIGURES

1.1 Decomposition of infeasible graphs 6
1.2 Subgraph H of infeasible graphs 8
2.1 All types of rungs 17
2.2 Example of a ladder 18
2.3 Structure (iii) of Yu's characterization 19
3.1 Structure of infeasible graphs 33
6.1 Subgraph H of the 7 -connected example 62
6.2 Subgraph A_{1} of the 7-connected example 62

SUMMARY

Motivated by Tutte's result and Lovász's conjecture, there is a series of work on nonseparating paths in graphs and their applications. Let G be a graph and $a_{1}, a_{2}, b_{1}, b_{2}$ be distinct vertices of G, we give a structural characterization for G not containing a path A from a_{1} to a_{2} and avoiding b_{1} and b_{2} such that removing A from G results in a 2-connected graph. Using this structure theorem, we construct a 7 -connected such graph. We will also discuss potential applications to other problems, including the 3-linkage conjecture made by Thomassen in 1980. This is based on joint work with Shijie Xie and Xingxing Yu.

CHAPTER 1

INTRODUCTION

1.1 Notation and terminology

In this section, we give notation and terminology. For some (well-known) graph concepts that are omitted, we refer the readers to Graph Theory textbook by Bondy and Murty [2] and Diestel [5].

1.1.1 Graph operations

Let $G=(V(G), E(G))$ be a graph where $V(G)$ is its vertex set and $E(G)$ is its edge set. For all $x \in V(G), d_{G}(x)$ (or $d(x)$ if G is understood) denotes the degree of x in G, i.e., $d_{G}(x)=|\{y \in V(G): x y \in E(G)\}|$. For any $S \subseteq V(G), N_{G}(S)$ is the neighborhood of S in G, i.e., $N_{G}(S)=\{v \in V(G) \backslash S: \exists u \in S$ such that $u v \in E(G)\}$. We use $G[S]$ to denote the subgraph of G induced by S, i.e., $V(G[S])=S$ and $E(G[S])=\{u v \in E(G)$: $\forall u, v \in S\}$. We also use $G-S$ to denote $G[V(G) \backslash S]$. When $S=\{s\}$, we write $G-s$ for $G-\{s\}$.

For two graphs G and H, let $G \cup H=(V(G) \cup V(H), E(G) \cup E(H)), G \cap H=$ $(V(G) \cap V(H), E(G) \cap E(H))$, and $G-H$ be the graph obtained from G by deleting vertices of H and all edges of G incident with H. We call H a subgraph of G, denoted as $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Let G be a graph. For any subgraph $H \subseteq G$, and for any $S_{1} \subseteq V(G)$ and $S_{2} \in$ $\binom{V(H) \cup S_{1}}{2}$ (i.e., S_{2} is a set of 2-element subsets of $V(H) \cup S_{1}$), define $H+S_{1}+S_{2}=$ $\left(V(H) \cup S_{1}, E(H) \cup S_{2}\right)$. For subgraphs $G_{1}, G_{2} \subseteq G$, we say $\left(G_{1}, G_{2}\right)$ is a separation of G if $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset, G=G_{1} \cup G_{2}$, and for $i=1,2, E\left(G_{i}\right) \backslash E\left(G_{3-i}\right) \neq \emptyset$ or $V\left(G_{i}\right) \backslash V\left(G_{3-i}\right) \neq \emptyset$.

1.1.2 Paths

We call a path P with ends a, b an $a-b$ path. For $v_{1}, v_{2} \in V(P)$, we define $P\left[v_{1}, v_{2}\right]$ to be the subpath of P with ends v_{1}, v_{2}. Let $P\left(v_{1}, v_{2}\right]=P\left[v_{1}, v_{2}\right]-v_{1}, P\left[v_{1}, v_{2}\right)=P\left[v_{1}, v_{2}\right]-v_{2}$ and $P\left(v_{1}, v_{2}\right)=P\left[v_{1}, v_{2}\right]-\left\{v_{1}, v_{2}\right\}$.

We call two paths P_{1}, P_{2} disjoint if $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\emptyset$. A collection of paths P_{1}, \ldots, P_{k} are independent if no vertex of any path is an internal vertex of any other path in the collection. For any $a-b$ path P in a graph G and for any subgraph H of G, P is internally disjoint from H if $(V(P) \backslash\{a, b\}) \cap V(H)=\emptyset$. For $A, B \subseteq V(G), A-B$ paths in G are paths in G from A to B and internally disjoint from $A \cup B$.

1.1.3 Connectivity

A graph is connected if there is a path from any vertex to any other vertex in the graph, and a graph that is not connected is disconnected.

We call a set $T \subseteq V(G)$ a cut of a graph G if $G-T$ is disconnected; and if $|T|=k$, we call T a k-cut. Note that for any separation $\left(G_{1}, G_{2}\right)$ of $G, V\left(G_{1} \cap G_{2}\right)$ is a cut of G if $V\left(G_{i}-G_{3-i}\right) \neq \emptyset$ for both $i \in[2]$.

For graph G and its subgraph H, we call C a component of $G-H$ if C is a subgraph of $G-H, C$ is connected, and for any $C^{\prime} \subseteq G-H$ such that C^{\prime} is connected and $C \subseteq C^{\prime}$, $C=C^{\prime}$.

Let k be a positive integer. We call a graph $G k$-connected if $|V(G)| \geq k+1$ and for any $S \subseteq V(G)$ with $|S|<k, G-S$ is connected. For any set $A \subseteq V(G)$, we say G is (k, A)-connected if for any cut $S \subseteq V(G)$ with $|S|<k$ and for every component C of $G-S,|V(C) \cap A| \geq k-|S|$.

A subgraph B of a graph G is called a block if it is isomorphic to K_{2} or 2-connected, and for any $B^{\prime} \subseteq G$ such that B^{\prime} is isomorphic to K_{2} or 2-connected, $B \subseteq B^{\prime}$ implies $B=B^{\prime}$. A block is non-trivial if $|V(B)| \geq 3$.

1.1.4 Bridges

Let G be a graph and $H \subseteq G$, we call $X \subseteq G$ an H-bridge of G, if either
(1) X is induced by some edge $e=u v \in E(G) \backslash E(H)$ with $u, v \subseteq V(H)$, or
(2) $X=C+S$ where C is a component of $G-H$ and $S=\{e, v: e=u v \in E(G), u \in$ $V(C), v \in V(H)\}$.

When (1) holds, X is said to be trivial, and when (2) holds, X is non-trivial. The vertices in $V(X \cap H)$ are called attachments of X on H.

1.1.5 Plane graphs

A graph G is planar if it can be drawn in the plane with no edge crossing. Such a drawing is called a plane graph. Let G be a plane graph. The faces of G are the connected open regions of the complement of G in the plane. The boundary of a face F consists of vertices and edges incident with F. The boundary of the unbounded (or infinite) face is called the outerwalk of G. Two vertices of G are cofacial if they belong to the boundary of a common face. Note that if G is 2-connected, then all its faces are bounded by cycles. A triangular face in G is a face of G bounded by a triangle.

1.1.6 Lexicographic ordering

For any positive integer k, we denote $[k]=\{1,2, \ldots, k\}$.
Let $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}$ be real numbers. We say that the sequence $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is larger than the sequence $\left(\beta_{1}, \cdots, \beta_{m}\right)$ with respect to the lexicographic ordering, denoted by $\left(\alpha_{1}, \ldots, \alpha_{n}\right)>\left(\beta_{1}, \ldots, \beta_{m}\right)$, if either
(i) $n>m$ and $\alpha_{i}=\beta_{i}$ for $i=1, \cdots, m$, or
(ii) there exists $j \in[\min (m, n)]$ with $\alpha_{j}>\beta_{j}$ and $\alpha_{i}=\beta_{i}$ for all $i<j$.

1.2 Background on non-separating paths

When developing a theory of 3-connected graphs, Tutte [25] showed that
Theorem 1.2.1 ([25]). For any 3-connected graph G and any distinct vertices a_{1}, a_{2}, b of $G, G-b$ has an $a_{1}-a_{2}$ path P such that $G-P$ is connected.

We call such a path non-separating. The "3-connectedness" condition cannot be relaxed; for instance, when $\left\{a_{1}, a_{2}\right\}$ is a 2-cut if G is allowed to be 2-connected. Lovász [15] made a conjecture which would generalize Tutte's result.

Conjecture 1.2.2 (Lovász, 1975). For each natural number k, there exists a least natural number $\beta(k)$ such that, for any two vertices a, b in any $\beta(k)$-connected graph G, there exists a path P between a and b such that $G-P$ is k-connected.

Thus, Tutte's result showed that $\beta(1)=3$. Chen, Gould and $\mathrm{Yu}[3]$, and, independently, Kriesell [13] showed $\beta(2)=5$. Moreover, Kawarabayashi, Lee and Yu [11] showed that $\beta(2)=4$ except for double wheels. Conjecture 1.2 .2 for $k \geq 3$ is still open.

For $m \geq 0$ and $k \geq 1$, let $\alpha(m, k)$ be the minimum connectivity such that for any $\alpha(m, k)$-connected graph G and distinct $a_{1}, a_{2}, b_{1}, \ldots, b_{m} \in V(G)$, there exists an $a_{1}-a_{2}$ path P, such that $b_{1}, \ldots, b_{m} \notin V(P)$ and $G-P$ is k-connected.

Note that $\alpha(0, k)=\beta(k)$. See the first column of Table 1.1 for the discussion above on $\alpha(0, k)=\beta(k)$ for $k \in[2]$.

Now, let us look at the first row of Table 1.1. Theorem 1.2.1 also proved $\alpha(1,1)=3$. One can also deduce Theorem 1.2.1 from the following result of Tutte.

Theorem 1.2.3 ([25]). For any 3-connected graph G and any distinct vertices a_{1}, a_{2} of G, G has independent $a_{1}-a_{2}$ paths P_{1}, P_{2} such that $G-P_{i}$ is connected for $i \in[2]$.

Similarly, one can deduce from the following result of Chen, Gould and Yu [3] that finds a non-separating path avoiding arbitrarily m vertices in any $(22 m+24)$-connected graph, and thus, $\alpha(m, 1) \leq 22 m+24$.

Table 1.1: Connectivity for non-separating paths avoiding m vertices

$\alpha(m, k)-$ Avoiding connected m G vertices	$m=0$	1	2	3	$\cdots m \cdots$
$k=1$	3	3	6	6	$\leq 22 m+24$
2	5	5	≥ 8		$\alpha(m, 2)$
3	Lovász's Conjecture open for $k \geq 3$				k)

Theorem 1.2.4 ([3]). For any $(22 m+24)$-connected graph G and any distinct vertices a_{1}, a_{2} of G, G has $m+1$ independent $a_{1}-a_{2}$ paths P_{i} such that $G-P_{i}$ is connected for all $i \in[m+1]$.

It is worth mentioning that with higher connectivity, Wollan [26] showed that one can remove a subset of paths without disconnecting the graph.

Theorem 1.2.5 ([26]). For any $83(m+1)$-connected graph G and any distinct a_{1}, a_{2} of G, there exist independent $a_{1}-a_{2}$ paths P_{1}, \ldots, P_{m} such that for any subset $I \subseteq[m], G-$ $\left(\bigcup_{i \in I} V\left(P_{i}\right)\right)$ is connected.

Note that the above results (other than Theorem 1.2.1) involve graphs with high connectivity. In applications, one often needs to find a non-separating path that avoids specific vertices in graphs. For example, when proving the Kelmans-Seymour conjecture, He, Wang and $\mathrm{Yu}[6,7,8,9]$ needed non-separating paths in 4-connected graphs that avoids two vertices.

The result on 2-linked (defined later) graphs by Jung [10], Seymour [19], Shiloach [20], Thomassen [24], and Chakravarti and Robertson [17] showed that $\alpha(2,1)=6$. Thomas, Xie, and Yu [23] showed that $\alpha(3,1)=6$. One can easily deduce $\alpha(1,2)=5$ from a result
of Chen, Gould and Yu [3] and Kriesell [13], and we will present it as Corollary 2.1.4. We are primarily interested in a structural characterization of graphs not containing nonseparating paths between two given vertices and avoiding two other given vertices. Such a characterization should help determine $\alpha(2,2)$, and we believe $\alpha(2,2)=8$.

1.3 Structure theorem

Given a graph G and distinct vertices $a_{1}, a_{2}, b_{1}, b_{2}$ of G. We say that (G, $a_{1}, a_{2}, b_{1}, b_{2}$) is feasible if $G-\left\{b_{1}, b_{2}\right\}$ contains an $a_{1}-a_{2}$ path A such that $G-A$ is 2 -connected. We say ($G, a_{1}, a_{2}, b_{1}, b_{2}$) is infeasible if G is not feasible.

Our aim is to provide structural information about ($G, a_{1}, a_{2}, b_{1}, b_{2}$) when it is not feasible. We show that if $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible then G is the edge disjoint union of three graphs A_{1}, A_{2} and H, where $a_{i} \in V\left(A_{i}\right) \backslash V\left(A_{3-i} \cup H\right), A_{i}$ is planar, and H can be further decomposed into graphs of simple structures. See Figure 1.1 for an illustration.

Figure 1.1: Decomposition into edge disjoint subgraphs A_{1}, A_{2} and H.

Theorem 1.3.1. Let G be an 8-connected graph and let $a_{1}, a_{2}, b_{1}, b_{2} \in V(G)$ be distinct. Suppose $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible. Then, the following statements hold:
(i) $G-\left\{a_{1}, a_{2}\right\}$ contains three independent induced $b_{1}-b_{2}$ paths B_{1}, B_{2}, B_{3} such that, for $i \in[2]$, the $\left(B_{1} \cup B_{2} \cup B_{3}\right)$-bridge of G containing a_{i}, denoted as $A_{i}\left(B_{1} \cup B_{2} \cup B_{3}\right)$, satisfy the following properties (up to relabeling):

- $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has all its attachments on B_{3},
- $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{3}$ has a plane representation in which B_{3} and a_{1} are on the boundary of the infinite face,
- $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has attachments on both B_{1} and B_{2}.
(ii) There exists $w \in V\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \cap V\left(B_{3}\right)$ such that $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\right.$ $\left.B_{3}\right)-w-a_{2}$ has three independent $b_{1}-b_{2}$ paths P_{1}, P_{2}, P_{3}, and the $\left(P_{1} \cup P_{2} \cup P_{3}\right)$ bridge of G containing a_{2}, denoted as $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$, satisfies the following properties:
- $A_{2}\left(P_{1}, P_{2}, P_{3}\right)$ has all its attachments on P_{3},
- $A_{2}\left(P_{1}, P_{2}, P_{3}\right) \cup P_{3}$ has a plane representation in which P_{3} and a_{2} are on the boundary of its infinite face.
(iii) $H:=G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(B_{3}-w\right)\right)-\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)-P_{3}\right)$ is the edge disjoint union of subgraphs H_{1}, \ldots, H_{m+1}, such that $V\left(H_{i} \cap H_{i+1}\right)=\left\{u_{i}, v_{i}, w_{i}\right\}$ is a 3-cut of H separating b_{1} from $b_{2}, b_{1}, u_{1}, \ldots, u_{m}, b_{2}$ occur on P_{3} in order, $b_{1}, v_{1}, \ldots, v_{m}, b_{2}$ occur on P_{2} in order, and $b_{1}, w_{1}, \ldots, w_{m}, b_{2}$ occur on P_{1} in order.
(iv) For each vertex $u \in V\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)\right) \cap V\left(P_{3}\right), u=u_{i}$ for some i.
(v) For each $i \in[m] \backslash\{1\}, H_{i}=\left(J_{i}, L_{i}\right)$, where J_{i} is a plane graph and L_{i} is a ladder consisting of rungs of simple structure.

See Figure 1.2 for an illustration of H in the above theorem. The concept of ladders and rungs will be described in Chapter 2.

Note that " 8 -connected" cannot be replaced by " 7 -connected", as we have an example (see Chapter 6) on 7 -connected infeasible graph.

We believe Theorem 1.3 .1 will be enough to show that 8 -connected graphs are feasible, i.e., $\alpha(2,2)=8$, which is work in progress.

Figure 1.2: H is a union of subgraphs H_{1}, \ldots, H_{m+1}.

1.4 Related problems

1.4.1 Linkage problem

Theorem 1.3.1 should serve as a step towards the following conjecture of Thomassen [24].

Conjecture 1.4.1 (Thomassen, 1980). Let G be an 8-connected graph and let $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in V(G)$ be distinct. Then, G contains disjoint paths from a_{1}, b_{1}, c_{1} to a_{2}, b_{2}, c_{2}, respectively.

More generally, a graph G is k-linked if, for any k disjoint pairs of vertices $\left\{s_{i}, t_{i}\right\}, i \in$ [$k]$, in G, G has pairwise disjoint paths from s_{i} to t_{i} for $i \in[k]$. Note that if ($G, a_{1}, a_{2}, b_{1}, b_{2}$) is infeasible then G is not 3 -linked as can be seen by taking $c_{i} \in N_{G}\left(b_{i}\right) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right)$ for both $i \in[2]$.

Thomassen [24] initially conjectured that every $(2 k+2)$-connected graph is k-linked, but this is false for $k \geq 4$: the graph obtained from the complete graph $K_{3 k-1}$ minus a matching of size k is a counterexample. Robertson and Seymour [18] showed that there is a polynomial time algorithm for deciding whether a graph is k-linked (when k is fixed). Bollobás and Thomason [1] showed that every $(22 k)$-connected graph is k-linked. Thomas and Wollan [21] improved this further to that every $(2 k)$-connected graph with average degree at least $10 k$ is k-linked.

Conjecture 1.4 .1 states that 8 -connected graphs are 3 -linked, which is still open. The best result on this conjecture is due to Thomas and Wollan [22].

Theorem 1.4.2 ([22]). Every 6 -connected graph on n vertices with $5 n-14$ edges is 3linked.

As a consequence, every 10-connected graph is 3 -linked. Theorem 1.4.2 combined with a result of Chen, Gould and Yu [3] (see Lemma 2.1.2) gives the following.

Corollary 1.4.3. For every 6 -connected graph G on n vertices with $5 n-14$ edges and distinct $a_{1}, a_{2}, b_{1}, b_{2} \in V(G),\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

Corollary 1.4.4. For every 10 -connected graph G and $a_{1}, a_{2}, b_{1}, b_{2} \in V(G)$, $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

Note that the k-linked notion was further extended by Kostochka and G.Yu [12] to H-linked graphs for any fixed graph H. Recent work of Liu, Rolek, Stephens, Ye and G. Yu [14] shows that every 7-connected graph is kite-linked, where a kite is a graph obtained from K_{4} by deleting two adjacent edges.

1.4.2 Signed graphs

A signed graph is a triple $(V(G), E(G), f)$ where $f: E(G) \rightarrow\{1,-1\}$. The sign of a cycle is the product of the signs of its edges. We call a signed graph G balanced if every cycle is positive and imbalanced if G is not balanced.

Theorem 1.2.1 has a signed graph version by Tutte in [25], and we state it here.

Theorem 1.4.5 ([25]). Let G be a 3 -connected signed graph and $b \in V(G)$. Suppose $G-b$ is imbalanced, then G has a negative cycle C such that $b \notin V(C)$ and $G-C$ is connected.

Note that Theorem 1.4.5 implies Theorem 1.2.1: For any 3-connected graph G and distinct $a_{1}, a_{2}, b \in V(G)$, let $G^{\prime}=G+a_{1} a_{2}$. We assign $f: E\left(G^{\prime}\right) \rightarrow\{1,-1\}$ such that
$f\left(a_{1} a_{2}\right)=-1$ and $f(e)=1$ for all $e \in E\left(G^{\prime}\right) \backslash\left\{a_{1} a_{2}\right\}$. Then, Theorem 1.2.1 follows from Theorem 1.4.5.

Similarly, the following signed graph version of Corollary 2.1.4, by Devos, Nurse, Qian and Wollan [4], also implies Corollary 2.1.4.

Theorem 1.4.6 ([4]). Let G be a 5 -connected signed graph and $b \in V(G)$. Suppose $G-b$ is imbalanced, then G has a negative cycle C such that $b \notin V(C)$ and $G-C$ is 2-connected. It is natural to ask the following:

Question 1.4.7. Can we extend other results in Table 1.1 to signed graphs?

The above known signed graph results, Theorem 1.4.5 and Theorem 1.4.6, imply Theorem 1.2.1 and Corollary 2.1.4.

Question 1.4.8. Can we find an example on other results in Table 1.1 whose signed graph version does not hold? A positive answer would imply that signed graph version could be strictly stronger than the graph version.

1.4.3 A general conjecture

Recall Table 1.1 and definition of $\alpha(m, k)$. When $m=0$, it centers around Lovász's conjecture which is open for $k \geq 3$. For $k=1, \alpha(m, k)$ exists by Chen, Gould and Yu [3], and we have exact values when $m \leq 3$. Wollan ${ }^{1}$ conjectured that $\alpha(m, 2)=2 m+C$ for some constant C.

It is also natural to formulate a more general conjecture on non-separating paths avoiding more vertices.

Conjecture 1.4.9 (Qian, Xie, Yu). For each natural number k and m, there exists a least natural number $\alpha(m, k)$ such that, for any two vertices a_{1}, a_{2} in any $\alpha(m, k)$-connected graph G, there exists an $a_{1}-a_{2}$ path P avoiding a given set of m vertices such that $G-P$ is k-connected.

[^0]The rest of the thesis is organized as follows:
In Chapter 2, we state previous results on disjoint paths that we will use in the thesis. We first state and prove feasibility for 5-connected graphs with given conditions. The result also provides us with an equivalent condition for feasibility that is convenient to use. Then, we introduce Seymour's characterization of 2-linked graphs and Yu's characterization of graphs with special three paths.

In Chapter 3, for an infeasible 8 -connected graph G, we use three special paths B_{1}, B_{2}, B_{3} to give a decomposition of G into three edge disjoint subgraphs A_{1}, A_{2} and H. We will show A_{i} is planar for both $i \in[2]$ and H can be further decomposed into graphs with simple structures, called rungs.

Structure of H is further explored in Chapter 4 and Chapter 5. In Chapter 4, we show that most rungs will avoid at least one of the special paths B_{i} for all $i \in[3]$. In Chapter 5, we consider those rungs intersecting at most two B_{i} 's.

In Chapter 6, using the structure theorem we proved, we construct examples of A_{1} and H, and we use them to form a 7 -connected graph with special vertices $a_{1}, a_{2}, b_{1}, b_{2}$ such that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible. Thus, $\alpha(2,2) \geq 8$.

CHAPTER 2
 PREVIOUS RESULTS ON DISJOINT PATHS

In this chapter, we state and prove some known results on disjoint paths that we will use in the thesis.

First in section 2.1, we state and prove a result on feasibility for 5 -connected graphs. That result gives Corollary 2.1.3, providing us with a convenient working condition on disjoint paths which is equivalent to feasibility. One other consequence is Corollary 2.1.4, which reproves $\alpha(1,2)=\alpha(0,2)=5$.

In section 2.2, we introduce the concept of " 3 -planar" graphs and state Seymour's characterization of 2-linked graphs.

In section 2.3, we introduce definitions of "rungs" and "ladders", and state Yu's characterization of graphs containing certain types of three disjoint paths.

2.1 Feasibility for 5-connected graphs

The following well-known result of Menger [16] is often used to find independent paths in graphs.

Theorem 2.1.1 ([16]). For any positive integer k and any k-connected graph G, and for any $A, B \subseteq V(G)$ with $|A| \geq k$ and $|B| \geq k$, there are at least k disjoint A - B paths.

Chen, Gould and Yu [3] proved a result that implies the following result. We give a proof for the sake of completeness.

Lemma 2.1.2 ([3]). For any 5-connected graph G and any distinct vertices $a_{1}, a_{2}, b_{1}, b_{2}$ of G, if there exist three independent paths A, B_{1}, B_{2} such that A is from a_{1} to a_{2} and B_{i} is from b_{1} to b_{2} for both $i \in[2]$, then $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

Proof. We may assume A is induced. Let C_{1} be the component of $G-A$ containing $\left\{b_{1}, b_{2}\right\}$ and B be the block in C_{1} containing $B_{1} \cup B_{2}$. Let $B^{1}, B^{2}, \ldots, B^{n}$ denote the B-bridges of C_{1}, and let C_{2}, \ldots, C_{m} be the other components of $G-A$. We may assume $\left|V\left(B^{i-1}\right)\right| \geq\left|V\left(B^{i}\right)\right|$ for $2 \leq i \leq n$ and $\left|V\left(C_{i-1}\right)\right| \geq\left|V\left(C_{i}\right)\right|$ for $2 \leq i \leq m$. Now, we further choose A, B_{1}, B_{2} such that $\left(|V(B)|,\left|V\left(B^{1}\right)\right|, \ldots,\left|V\left(B^{n}\right)\right|,\left|V\left(C_{1}\right)\right|, \ldots,\left|V\left(C_{m}\right)\right|\right)$ is maximal with respect to the lexicographic ordering.

Suppose $m \geq 2$. Since G is 5 -connected, by Theorem 2.1.1, there exist 5 disjoint paths from $V\left(C_{m}\right)$ to $V\left(G-C_{m}\right)$. Since $V\left(C_{i}\right) \cap N_{G}\left(C_{m}\right)=\emptyset$ for all $i<m, \mid V(A) \cap$ $N_{G}\left(C_{m}\right) \mid \geq 5$. Let $x, y \in V(A) \cap N_{G}\left(C_{m}\right)$ such that $A\left[a_{1}, x\right) \cap N_{G}\left(C_{m}\right)=\emptyset$ and $A\left(y, a_{2}\right] \cap$ $N_{G}\left(C_{m}\right)=\emptyset$. Since $\{x, y\}$ is not a cut in G separating $A(x, y)$ from $G-C_{m}$, there exists $z \in V(A(x, y))$ such that $N_{G}(z) \cap V\left(C_{j}\right) \neq \emptyset$ for some $j<m$. Choose minimum such j. Let P be an induced $x-y$ path in $G\left[V\left(C_{m}\right) \cup\{x, y\}\right]$. Take $A^{\prime}=A\left[a_{1}, x\right] \cup P \cup A\left[y, a_{2}\right]$. Note that $C_{1}, C_{2}, \ldots, C_{j-1}$ are components of $G-A^{\prime}$, and if $j=1$, the block in $G-A^{\prime}$ containing $\left\{b_{1}, b_{2}\right\}$ still contains B. However, $\left|V\left(C_{j}^{\prime}\right)\right|>\left|V\left(C_{j}\right)\right|$, contradicting the choice of A that $\left(|V(B)|,\left|V\left(B^{1}\right)\right|, \ldots,\left|V\left(B^{n}\right)\right|,\left|V\left(C_{1}\right)\right|, \ldots,\left|V\left(C_{m}\right)\right|\right)$ is maximal with respect to the lexicographic ordering.

So $m=1$. If $n=0$, we are done. So assume $n \geq 1$. Let $\{z\}=V(B) \cap V\left(B^{n}\right)$. Since G is 5 -connected, $\left|N_{G}\left(B^{n}-z\right) \cap V(A)\right| \geq 2$. Let $x, y \in V(A) \cap N_{G}\left(B^{n}-z\right)$ such that $A\left[a_{1}, x\right) \cap N_{G}\left(B^{n}-z\right)=\emptyset$ and $A\left(y, a_{2}\right] \cap N_{G}\left(B^{n}-z\right)=\emptyset$, and let P be an induced $x-y$ path in $G\left[V\left(B^{n}-z\right) \cup\{x, y\}\right]$. Take $A^{\prime}=A\left[a_{1}, x\right] \cup P \cup A\left[y, a_{2}\right]$ and B^{\prime} be the block of $G-A^{\prime}$ containing $\left\{b_{1}, b_{2}\right\}$.

Suppose G has edges from distinct vertices of B to $A(x, y)$. Then, $G-A^{\prime}$ has block containing B and a subpath of $A(x, y)$. So A^{\prime} contradicts the choice of A.

Hence, since G is 5 -connected, G has an edge from $A(x, y)$ to B^{i} for some $i \in[n-1]$. We choose minimum such i. Then, either (1) $G-A^{\prime}$ has a block containing B and part of $B^{i} \cup A(x, y)$, or (2) B is a block of $G-A^{\prime}, B^{1}, \ldots, B^{i-1}$ are B-bridges of $G-A^{\prime}$, and B^{i} is properly contained in a B-bridge of $G-A^{\prime}$. Thus, A^{\prime} contradicts the choice of A.

On the other hand, it is straightforward to see that feasibility implies the existence of such three paths in 5-connected graphs.

Corollary 2.1.3. For any 5 -connected graph G and any distinct vertices $a_{1}, a_{2}, b_{1}, b_{2}$ of G, the following statements are equivalent:
(i) There exist three pairwise independent paths A, B_{1}, B_{2} such that A is from a_{1} to a_{2} and B_{i} is from b_{1} to b_{2} for both $i \in[2]$.
(ii) $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

Hence, for the rest of the thesis, we also call $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ feasible if G is 5connected and one can find three pairwise independent paths A, B_{1}, B_{2} such that A is from a_{1} to a_{2} and B_{i} is from b_{1} to b_{2} for both $i \in[2]$.

Another consequence of Lemma 2.1.2 is the following result that $\alpha(1,2)=5$ (see Table 1.1).

Corollary 2.1.4. For any 5-connected graph G and any distinct vertices a_{1}, a_{2}, b of G, $G-b$ contains an $a_{1}-a_{2}$ path P such that $G-P$ is 2 -connected.

Proof. Since G is 5 connected, by Menger's Theorem, there exist two independent $a_{1}-a_{2}$ paths P_{1}, P_{2} in $G-b$. By Menger's Theorem again, there exist 5 paths from b to $V\left(P_{1} \cup P_{2}\right)$, with only b in common. By Pigeonhole Principle, two of the paths, say Q_{1}, Q_{2}, are from b to $P_{i}\left(a_{1}, a_{2}\right)$ for some $i \in[2]$. Let B be the block of $G-P_{3-i}$ containing $Q_{1} \cup Q_{2}$. By the same proof in Lemma 2.1.2, G contains an $a_{1}-a_{2}$ path P^{\prime} such that $G-P^{\prime}$ is 2-connected and $G-P^{\prime}$ contains $Q_{1} \cup Q_{2}$. Since $b \in V\left(Q_{1} \cup Q_{2}\right), P^{\prime} \subseteq G-b$ and we are done.

2.2 Characterization of 2-linked graphs

A result we use often is a characterization of 2-linked graphs, proved independently by Seymour [19], Shiloach [20], Thomassen [24], and Chakravarti and Robertson [17].

A more general result on finding k disjoint paths can be found in [18] by Robertson and Seymour in their monumental project on graph minors over a series of papers.

To state Seymour's version on 2-linked graphs, we introduce several concepts.
A 3-planar graph (G, \mathcal{A}) consists of a graph G and a set $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint subsets of $V(G)($ let $\mathcal{A}=\varnothing$ when $k=0)$ such that
(i) for $i \neq j, N_{G}\left(A_{i}\right) \cap A_{j}=\varnothing$,
(ii) for $1 \leq i \leq k,\left|N_{G}\left(A_{i}\right)\right| \leq 3$, and
(iii) if $p(G, \mathcal{A})$ denotes the graph obtained from G by (for each i) deleting A_{i} and adding edges joining every pair of distinct vertices in $N_{G}\left(A_{i}\right)$, then $p(G, \mathcal{A})$ can be drawn in the plane without crossing edges.

If, in addition, $b_{1}, b_{2}, \ldots, b_{n}$ are vertices in G such that $b_{i} \notin A$ for $i \in[n]$ and $A \in \mathcal{A}$, $p(G, \mathcal{A})$ can be drawn in a closed disk with no edge crossings, and $b_{1}, b_{2}, \ldots, b_{n}$ occur on the boundary of the disk in this cyclic order, then we say that $\left(G, \mathcal{A}, b_{1}, b_{2}, \ldots, b_{n}\right)$ is 3 -planar. If there is no need to specify \mathcal{A}, we may simply say that $\left(G, b_{1}, b_{2}, \ldots, b_{n}\right)$ is 3 -planar. If $\mathcal{A}=\emptyset$, we say that $\left(G, b_{0}, b_{1}, \ldots, b_{n}\right)$ is planar. If G is planar and is drawn in a closed disk with no edge crossings, for any subgraph $H \subseteq G$, we say (G, H) is planar if all vertices and edges of H are contained in the boundary of the disk, in which case H needs to be the union of disjoint paths.

Now, we can state Seymour's characterization on 2-linked graphs.
Lemma 2.2.1 (Seymour, 1980). Let G be a graph with distinct vertices $x_{1}, x_{2}, x_{3}, x_{4}$. Then either $\left(G, x_{1}, x_{2}, x_{3}, x_{4}\right)$ is 3-planar, or G has disjoint paths from x_{1}, x_{2} to x_{3}, x_{4}, respectively.

2.3 Characterization of graphs with special three paths

While there is no known generalization of the above result to three paths with fixed ends (see Conjecture 1.4.1 of Thomassen), Yu [27,28, 29] characterized graphs G in which any
three disjoint paths from $\{a, b, c\} \subseteq V(G)$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(G)$ must contain a path from b to b^{\prime}. To state this result, we need to describe rungs and ladders.

Let G be a graph, $\{a, b, c\} \subseteq V(G)$, and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(G)$. (Here, a, b, c are pairwise distinct, and $a^{\prime}, b^{\prime}, c^{\prime}$ are pairwise distinct.) Suppose $\{a, b, c\} \neq\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, and assume that G has no separation $\left(G_{1}, G_{2}\right)$ such that $\left|V\left(G_{1} \cap G_{2}\right)\right| \leq 3,\{a, b, c\} \subseteq V\left(G_{1}\right)$, and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$. We say that $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung if one of the following holds up to symmetry between $\{a, b, c\}$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, relabeling a and c, and relabeling a^{\prime} and c^{\prime} :
(1) $b=b^{\prime}$ or $\{a, c\}=\left\{a^{\prime}, c^{\prime}\right\}$.
(2) $a=a^{\prime}$ and $\left(G-a, c, c^{\prime}, b^{\prime}, b\right)$ is 3-planar.
(3) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$ and $\left(G, a^{\prime}, b^{\prime}, c^{\prime}, c, b, a\right)$ is 3-planar.
(4) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset, G$ has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\{x\}$, and $\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar.
(5) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $\{z, b\}$, and $\left(G_{1}+b z, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar, $\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{2}, c, c^{\prime}, z, b\right)$ is 3-planar.
(6) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, and there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of G such that $G=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\{u, z\}, V\left(G_{c} \cap M\right)=\{p, q\}$, $V\left(G_{a} \cap G_{c}\right)=\emptyset$, and $\left\{a, a^{\prime}, b^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}, b\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, z, u\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, q\right)$ are 3-planar.
(7) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, and there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of G such that $G=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\left\{b, b^{\prime}, q\right\}, V\left(G_{c} \cap M\right)=\left\{b, b^{\prime}, p\right\}$, $V\left(G_{a} \cap G_{c}\right)=\left\{b, b^{\prime}\right\},\left\{a, a^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, q, b\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, b^{\prime}\right)$ are 3-planar.

See Figure 2.1 for illustration of all types of rungs.
Let L be a graph and let R_{1}, \ldots, R_{m} be edge disjoint subgraphs of L such that
(i) $\left(R_{i},\left(x_{i-1}, v_{i-1}, y_{i-1}\right),\left(x_{i}, v_{i}, y_{i}\right)\right)$ is a rung for each $i \in[m]$,

Figure 2.1: All types of rungs
(ii) $V\left(R_{i} \cap R_{j}\right)=\left\{x_{i}, v_{i}, y_{i}\right\} \cap\left\{x_{j-1}, v_{j-1}, y_{j-1}\right\}$ for $i, j \in[m]$ with $i<j$,
(iii) for any $i, j \in[m] \cup\{0\}$, if $x_{i}=x_{j}$ then $x_{k}=x_{i}$ for all $i \leq k \leq j$, if $v_{i}=v_{j}$ then $v_{k}=v_{i}$ for all $i \leq k \leq j$, and if $y_{i}=y_{j}$ then $y_{k}=y_{i}$ for all $i \leq k \leq j$, and
(iv) $L=\left(\bigcup_{i=1}^{m} R_{i}\right)+S$, where S consists of those edges of L each of which has both ends in $\left\{x_{i}, v_{i}, y_{i}\right\}$ for some $i \in[m] \cup\{0\}$.

Then $\left(L,\left(x_{0}, v_{0}, y_{0}\right),\left(x_{m}, v_{m}, y_{m}\right)\right)$ is a ladder with rungs $\left(R_{i},\left(x_{i-1}, v_{i-1}, y_{i-1}\right)\right.$, $\left.\left(x_{i}, v_{i}, y_{i}\right)\right), i \in[m]$, or simply, a ladder along $v_{0} \ldots v_{m}$. See Figure 2.2 for an example of ladder L. Note that in this example, edge $x_{j} v_{j}$ and edge $x_{j} y_{j}$ are in S.

Figure 2.2: Example of ladder L

By definition, for any rung $\left(R_{i},\left(x_{i-1}, v_{i-1}, y_{i-1}\right), \quad\left(x_{i}, v_{i}, y_{i}\right)\right), \quad R_{i}$ has three disjoint paths from $\left\{x_{i-1}, v_{i-1}, y_{i-1}\right\}$ to $\left\{x_{i}, v_{i}, y_{i}\right\}$. So for any ladder $\left(L,\left(x_{0}, v_{0}, y_{0}\right),\left(x_{m}, v_{m}, y_{m}\right)\right), L$ has three disjoint paths from $\left\{x_{0}, v_{0}, y_{0}\right\}$ to $\left\{x_{m}, v_{m}, y_{m}\right\}$.

For a sequence W, the reduced sequence of W is the sequence obtained from W by removing all but one consecutive identical elements. For example, the reduced sequence of $a a a b c c a$ is $a b c a$. We can now state the main result in [27, 28, 29].

Lemma 2.3.1 ([27, 28, 29]). Let G be a graph, $\{a, b, c\} \subseteq V(G)$, and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(G)$ such that $\{a, b, c\} \neq\left\{a^{\prime}, b,{ }^{\prime} c^{\prime}\right\}$. Then any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must include a path from b to b^{\prime} if, and only if, one of the following statements holds:
(i) G has a separation $\left(G_{1}, G_{2}\right)$ of order at most 2 such that $\{a, b, c\} \subseteq V\left(G_{1}\right)$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$.
(ii) $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a ladder.
(iii) G has a separation (J, L) such that $V(J \cap L)=\left\{w_{0}, \ldots, w_{n}\right\}$, $\left(J, w_{0}, \ldots, w_{n}\right)$ is 3-planar, $\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(L),\left(L,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a ladder along a sequence $v_{0} \ldots v_{m}$, where $v_{0}=b, v_{m}=b^{\prime}$, and $w_{0} \ldots w_{n}$ is the reduced sequence of $v_{0} \ldots v_{m}$.

Figure 2.3: Structure (iii) of Yu's characterization for graph G

See Figure 2.3 for structure (iii) of Lemma 2.3.1, where L is a ladder (see Figure 2.2). Note that structure (ii) of the theorem is when $J=\emptyset$.

To help readers familiarize with the above concepts and for later applications, we prove the following properties of rungs.

Proposition 2.3.2. For any rung $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$, the following statements hold:
(i) $\{a, b, c\}$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ are independent sets in G.
(ii) For any $x \in\{a, b, c\} \triangle\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}, N_{G}(x) \neq \emptyset$. When $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, $\left|N_{G}(x)\right| \geq 2$.
(iii) Suppose $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$ or $\left|\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right|=5$ and $b \neq b^{\prime}$. Then, for any $x \in\left\{b, b^{\prime}\right\}, N_{G}(x) \cap\left\{a, c, a^{\prime}, c^{\prime}\right\}=\emptyset$. Moreover, any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively.

Proof. Suppose (i) fails and without loss of generality, let $e \in E(G[\{a, b, c\}])$. Let $G_{1}=$ $(\{a, b, c\},\{e\})$ and $G_{2}=G-e$. Then $\left(G_{1}, G_{2}\right)$ is a separation in G contradicting the definition of a rung. Hence, (i) holds.

To prove (ii), let $x \in\{a, b, c\} \triangle\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ and, without loss of generality, assume $x \in$ $\{a, b, c\} \backslash\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Then, $N_{G}(x) \neq \emptyset$; otherwise $\{a, b, c\} \backslash\{x\}$ is a 2-cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, contradicting the definition of a rung. Now suppose $\{a, b, c\} \cap$ $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$. If $\left|N_{G}(x)\right|=1$ then $(\{a, b, c\} \backslash\{x\}) \cup N_{G}(x)$ is a 3-cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, contradicting the definition of a rung. So $\left|N_{G}(x)\right| \geq 2$.

We now prove (iii). First, suppose $\left|\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right|=5$ and $b \neq b^{\prime}$. By symmetry, we may assume $a=a^{\prime}$ and $\left(G-a, b, b^{\prime}, c^{\prime}, c\right)$ is 3-planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. Now, $b a^{\prime} \notin E(G)$ by (i) as $a=a^{\prime}$, and $b c^{\prime} \notin E(G)$ as $\left\{a, b, c^{\prime}\right\}$ cannot be a cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Similarly, $b^{\prime} c, b^{\prime} a \notin E(G)$.

It remains to consider the case when $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset . \quad$ Then $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung of type (3)-(7).

First, assume that $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of Type (3). Then $\left(G, a, b, c, c^{\prime}, b^{\prime}, a^{\prime}\right)$ is 3planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. Now, $b a^{\prime}, b c^{\prime}, b^{\prime} a, b^{\prime} c \notin E(G)$. For, otherwise, by symmetry, assume $b c^{\prime} \in E(G)$. Then, $\left\{a, b, c^{\prime}\right\}$ is a 3-cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction.

Next, assume $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of Type (4). Then G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\{x\},\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from
$\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. Now, we prove $b a^{\prime}, b c^{\prime}, b^{\prime} a, b^{\prime} c \notin E(G)$. By structure of $G, b c^{\prime}, b^{\prime} c \notin E(G)$. So, by symmetry, suppose $b a^{\prime} \in E(G)$. Then, $\left\{a^{\prime}, b, c\right\}$ is a 3 -cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction.

Suppose $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of Type (5). Then G has a 2 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\{x, b\},\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{1}+\right.$ $\left.x b, a, a^{\prime}, b^{\prime}, b\right)$ and ($\left.G_{2}, c, c^{\prime}, x, b\right)$ are 3-planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. Now, we prove $b a^{\prime}, b c^{\prime}, b^{\prime} a, b^{\prime} c \notin E(G)$. By structure of $G, b^{\prime} c \notin E(G)$. If $b c^{\prime} \in E(G)$, then $\left\{a, b, c^{\prime}\right\}$ is a 3 -cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction. So, by symmetry, assume $b a^{\prime} \in E(G)$. Then, $\left\{a^{\prime}, b, c\right\}$ is a 3 -cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction.

Now assume $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of Type (6). Then there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of G such that $G=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\{u, z\}$, $V\left(G_{c} \cap M\right)=\{p, q\}, V\left(G_{a} \cap G_{c}\right)=\emptyset,\left\{a, a^{\prime}, b^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}, b\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, z, u\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, q\right)$ are 3-planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. Now, we prove $b a^{\prime}, b c^{\prime}, b^{\prime} a, b^{\prime} c \notin E(G)$. By structure of $G, b a^{\prime}, b^{\prime} c \notin E(G)$. So, by symmetry, suppose $b c^{\prime} \in E(G)$. Then, $\left\{a, b, c^{\prime}\right\}$ is a 3 -cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction.

Finally, assume $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of Type (7). Then there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of R such that $G=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\left\{b, b^{\prime}, q\right\}$, $V\left(G_{c} \cap M\right)=\left\{b, b^{\prime}, p\right\}, V\left(G_{a} \cap G_{c}\right)=\left\{b, b^{\prime}\right\},\left\{a, a^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, q, b\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, b^{\prime}\right)$ are 3-planar. By applying Lemma 2.2.1, we see that any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. Now, we prove $b a^{\prime}, b c^{\prime}, b^{\prime} a, b^{\prime} c \notin E(G)$. For, otherwise, by symmetry, assume $b c^{\prime} \in E(G)$. Then, $\left\{a, b, c^{\prime}\right\}$ is a 3 -cut in G separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a
contradiction.

CHAPTER 3

FRAMES AND CONSTRAINTS

Let G be a graph and $a_{1}, a_{2}, b_{2}, b_{2} \in V(G)$ be distinct. Recall that by Corollary 2.1.3 in Chapter 2, ($\left.G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible if G contains three pairwise independent paths A, B_{1}, B_{2}, such that A is from a_{1} to a_{2}, and B_{i} is from b_{1} to b_{2} for $i \in[2]$.

Our main Theorem 1.3.1 gives a structural result on infeasible 8-connected graphs. In this chapter, we give the decomposition of G into edge disjoint subgraphs A_{1}, A_{2} and H. Suppose ($G, a_{1}, a_{2}, b_{1}, b_{2}$) is infeasible.

In section 3.1, we find the subgraphs A_{1}, A_{2}, H in G, and prove that A_{1} and A_{2} are both planar by applying Lemma 2.2.1 on 2-linked graphs.

In section 3.2, by choosing favorite A_{1} and A_{2} and applying Lemma 2.3.1 on three special paths, we show that there exists $w \in V(H)$ such that $H-w$ is a ladder of rungs.

We give an illustration of the structure of G in Figure 3.1.

3.1 Frame and its properties

For any three independent $b_{1}-b_{2}$ paths B_{1}, B_{2}, B_{3} in $G-\left\{a_{1}, a_{2}\right\}$, we use $A_{i}\left(B_{1} \cup B_{2} \cup\right.$ $\left.B_{3}\right)$, for $i \in[2]$, to denote the $\left(B_{1} \cup B_{2} \cup B_{3}\right)$-bridge of G containing a_{i}.

We say that B_{1}, B_{2}, B_{3} form a frame in ($G, a_{1}, a_{2}, b_{1}, b_{2}$), if they satisfy (C1)-(C4), up to relabeling a_{1} and a_{2} and relabeling b_{1} and b_{2}.
(C1) B_{1}, B_{2}, B_{3} are independent induced $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$,
(C2) $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has all its attachments on B_{3},
(C3) $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has attachments on both $B_{1}\left(b_{1}, b_{2}\right)$ and $B_{2}\left(b_{1}, b_{2}\right)$, and
(C 4$)$ subject to $(\mathrm{C} 1)-(\mathrm{C} 3), A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ is maximal.

In this section, we prove the existence of such a frame in 8-connected infeasible graphs, as well as some related properties. Since G is 8 -connected, by Theorem 2.1.1, there exist three independent $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$. Take such three paths B_{1}, B_{2}, B_{3} to be induced; so (C1) holds.

Now, we show that (C2) holds for any three independent $b_{1}-b_{2}$ paths B_{1}, B_{2}, B_{3} in $G-\left\{a_{1}, a_{2}\right\}$.

Lemma 3.1.1. Suppose $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible and B_{1}, B_{2}, B_{3} are three independent $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$. Then there exist $i \in[2]$ and $j \in[3]$ such that $A_{i}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has all its attachements contained in B_{j}.

Proof. For, suppose such i, j do not exist. Then there exists some $k \in[2]$ such that, for $s \in[2], A_{s}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has an attachement $a_{s}^{\prime} \in V\left(B_{k}\left(b_{1}, b_{2}\right)\right)$. Let Q_{s} denote an $a_{s}-a_{s}^{\prime}$ path in $A_{s}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ internally disjoint from $B_{1} \cup B_{2} \cup B_{3}$. Without loss of generality, let $k=1$. Then $B_{2}, B_{3}, Q_{1} \cup B_{1}\left[a_{1}^{\prime}, a_{2}^{\prime}\right] \cup Q_{2}$ show that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

Next, we show that if B_{1}, B_{2}, B_{3} satisfy $(\mathrm{C} 1)-(\mathrm{C} 3)$, then $\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \cup B_{3}, B_{3}+$ $\left.a_{2}\right)$ is planar.

Lemma 3.1.2. Suppose $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible and G is 4 -connected, and suppose B_{1}, B_{2}, B_{3} are independent $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$. For any $i \in[2]$ and $j \in[3]$, if $A_{i}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cap\left(B_{1} \cup B_{2} \cup B_{3}\right) \subseteq B_{j}$ and $A_{3-i}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ intersects $B_{k}\left(b_{1}, b_{2}\right)$ for both $k \in[3] \backslash\{j\}$, then $\left(A_{i}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{j}, B_{j}+a_{i}\right)$ is planar.

Proof. Without loss of generality, we may assume $i=1$ and $j=3$. Let H be the graph obtained from G by contracting $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)$ to a single vertex w.

Suppose there exist disjoint paths P_{1}, P_{2} in H from b_{1}, a_{1} to b_{2}, w, respectively. Let $w^{\prime} \in$ $N(w) \cap V\left(P_{2}\right) \subseteq V\left(B_{3}\right)$. By symmetry between B_{1} and B_{2}, we may assume that G has a path Q from w^{\prime} to B_{1} and internally disjoint from $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{1} \cup B_{2} \cup B_{3}$. Since $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has attachments on $B_{1}\left(b_{1}, b_{2}\right)$, it contains an $a_{2}-w^{\prime}$ path, say P, internally
disjoint from $B_{1} \cup B_{2} \cup B_{3}$. Now $\left(P_{2}-w\right) \cup Q \cup B_{1}\left(b_{1}, b_{2}\right) \cup P$ contains an $a_{1}-a_{2}$ path independent of P_{1} and B_{2}, which, together with P_{1} and B_{2}, shows that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

So such paths P_{1}, P_{2} do not exist in H. By Lemma 2.2.1, $\left(H, \mathcal{A},\left\{w, b_{1}, a_{1}, b_{2}\right\}\right)$ is 3planar, where \mathcal{A} is a collection of disjoint subsets of $V(H) \backslash\left\{w, b_{1}, a_{1}, b_{2}\right\}$. If $\mathcal{A}=\emptyset$, we are done. Hence we may assume there exists $A \in \mathcal{A}$. Since $\left|N_{H}(A)\right| \leq 3$ and G is 4-connected, $V\left(B_{3}\right) \cap A \neq \emptyset$. Therefore, $w \in N_{H}(A)$ and, thus, $\left|N_{H}(A) \cap V\left(B_{3}\right)\right|=2$. Hence, $H[A] \subseteq$ B_{3} by definition of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ and B_{3}. This implies $\left(H\left[A \cup N_{H}(A)\right], N_{H}(A)\right)$ is planar for all $A \in \mathcal{A}$. Hence, $\left(A_{i}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{j}, B_{j}+a_{i}\right)$ is planar.

Before we prove the existence of a frame, we need the following lemma for 8-connected graphs when $\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right), B_{3}+a_{1}\right)$ is planar.

Lemma 3.1.3. Suppose $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible and G is 8 -connected. Let B_{1}, B_{2}, B_{3} be three independent induced $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$ such that $\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right), B_{3}+\right.$ $\left.a_{1}\right)$ is planar. Then there exists $w \in V\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \cap V\left(B_{3}\left(b_{1}, b_{2}\right)\right)$ such that w is not contained in any 3-cut of $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)-\left\{a_{2}\right\}$ separating b_{1} from b_{2}. Proof. For convenience, let $A_{1}:=A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ and $H=G-\left(A_{1}-B_{3}\right)-\left\{a_{2}\right\}$. Suppose such w does not exist. Then every vertex in $V\left(A_{1}\right) \cap V\left(B_{3}\left(b_{1}, b_{2}\right)\right)$ is contained in a 3-cut of H separating b_{1} from b_{2}. Let $V\left(A_{1}\right) \cap V\left(B_{3}\left(b_{1}, b_{2}\right)\right)=\left\{w_{1}, \ldots, w_{m}\right\}$ such that $b_{1}, w_{1}, \ldots, w_{m}, b_{2}$ occur on B_{3} in order. For $i \in[m]$, let $u_{i} \in V\left(B_{1}\left(b_{1}, b_{2}\right)\right), v_{i} \in$ $V\left(B_{2}\left(b_{1}, b_{2}\right)\right)$ such that $T_{i}:=\left\{u_{i}, v_{i}, w_{i}\right\}$ is a 3 -cut of H separating b_{1} from b_{2}. We may assume that
(1) for all $i \in[m-1], b_{1}, u_{i}, u_{i+1}, b_{2}$ occur on B_{1} in order and $b_{1}, v_{i}, v_{i+1}, b_{2}$ occur on B_{2} in order.

To see this, we choose T_{i} such that the T_{i}-bridge of H containing b_{1}, denoted by H_{i}, is minimal. Suppose (1) fails. Then by symmetry between B_{1} and B_{2}, we may assume that for some $i, b_{1}, u_{i+1}, u_{i}, b_{2}$ are in order on B_{1}.

First, suppose $b_{1}, v_{i}, v_{i+1}, b_{2}$ occur on B_{2} in order. By the choice of $\left\{u_{i}, v_{i}, w_{i}\right\}$, $\left\{u_{i+1}, v_{i}, w_{i}\right\}$ is not a cut in H separating b_{1} from b_{2}. Hence, there exists a $b_{1}-u_{i}$ path P in $H_{i}-\left\{u_{i+1}, v_{i}, w_{i}\right\}$. But then $P \cup B_{1}\left[u_{i}, b_{2}\right]$ is a $b_{1}-b_{2}$ path in $H-T_{i+1}$, a contradiction.

Now assume that $b_{1}, v_{i+1}, v_{i}, b_{2}$ are in order on B_{2}. By the choice of $\left\{u_{i}, v_{i}, w_{i}\right\}$, $\left\{u_{i+1}, v_{i+1}, w_{i}\right\}$ is not a cut in H separating b_{1} from b_{2}. So there exists a $b_{1}-w_{i+1}$ path Q in $H_{i+1}-\left\{u_{i+1}, v_{i+1}, w_{i}\right\}$. But again, $Q \cup B_{1}\left[w_{i+1}, b_{2}\right]$ is a $b_{1}-b_{2}$ path in $H-T_{i}$, a contradiction.
(2) $V(H)=\left\{b_{1}, b_{2}\right\} \cup\left(\bigcup_{i \in[m]} T_{i}\right)$.

Otherwise suppose there exists $x \in V(H)$ such that $x \notin\left\{b_{1}, b_{2}\right\} \cup\left(\bigcup_{i \in[m]} T_{i}\right)$. Then, x is not contained in the T_{1}-bridge of H containing b_{1}; as otherwise, $T_{1} \cup\left\{b_{1}, a_{2}\right\}$ is a 5 -cut in G separating x from b_{2}, a contradiction. Similarly, x is not contained in the T_{m}-bridge of H containing b_{2}. Hence, there exists $i \in[m]$ such that x is contained in both the $T_{i+1^{-}}$ bridge of H containing b_{1} and the T_{i}-bridge of H containing b_{2}. Now $T_{i} \cup T_{i+1} \cup\left\{a_{2}\right\}$ is a cut in G of order at most 7 and separates x from $\left\{a_{1}, a_{2}\right\}$, a contradiction.

Since $d_{G}\left(b_{i}\right) \geq 8$ for both $i \in[2]$, it follows from (2) that
(3) $d_{A_{1}}\left(b_{i}\right) \geq 5$ for $i \in[2]$.
(4) There exists $i \in[m]$ such that $d_{H}\left(w_{i}\right) \geq 7$.

Suppose for a contradiction, $d_{H}\left(w_{i}\right)<7$ for all $i \in[m]$. Then, since G is 8 -connected, $d_{A_{1}}\left(w_{i}\right) \geq 2$ for all $i \in[m]$.

Let H^{\prime} be the graph obtained from $A_{1} \cup B_{3}$ by adding a new vertex a and an edge from a to each vertex in B_{3}. Then, $\left(H^{\prime}, a_{1}, b_{1}, a, b_{2}\right)$ is planar. We take an embedding of H^{\prime} in the plane such that a_{1}, b_{1}, a, b_{2} occur on the outer cycle of H^{\prime} in clockwise order. Let $F\left(H^{\prime}\right)$ denote the set of faces of H^{\prime}. For convenience, for the rest proof of the lemma, we write $d(x):=d_{H^{\prime}}(x)$ for $x \in V\left(H^{\prime}\right) \cup F\left(H^{\prime}\right)$. When $x \in F\left(H^{\prime}\right), d(x)$ is the number of edges incident to x.

Note that $d(a)=\left|V\left(B_{3}\right)\right|, d(w) \geq 5$ for all $w \in V\left(B_{3}\right)$, and $d(v) \geq 8$ for all $v \in$ $V\left(A_{1}-B_{3}\right)$. Moreover, $d(a) \geq 8$; otherwise $V\left(B_{3}\right)$ is a cut of size ≤ 7 in G separating a_{1} from a_{2}, a contradiction.

We now apply the discharging method to H^{\prime}. First, define $\sigma(x):=d(x)-4$ as the charge of x for all $x \in V\left(H^{\prime}\right) \cup F\left(H^{\prime}\right)$. Then, $\sigma(x) \geq-1$ for all $x \in F\left(H^{\prime}\right), \sigma(x) \geq 1$ for all $x \in V\left(B_{3}\right)$, and $\sigma(x) \geq 4$ for all $x \in V\left(A_{1}-B_{3}\right) \cup\{a\}$. So $\sigma(x)<0$ only if $x \in F\left(H^{\prime}\right)$ is a triangular face of H^{\prime}. By Euler's formula,

$$
\sum_{x \in V\left(H^{\prime}\right) \cup F\left(H^{\prime}\right)} \sigma(x)=-8 .
$$

Next, we move charges from vertices to faces as follows: For every $v \in V\left(H^{\prime}-B_{3}\right)$, we discharge $\frac{d(v)-4}{d(v)} \geq \frac{1}{2}$ (since $d(v) \geq 8$) from v to each of the triangular faces of H^{\prime} incident to v. So the new charge $\tau(v)$ for each vertex v satisfies

$$
\tau(v) \geq \sigma(v)-(d(v)-4) \geq 0
$$

and the new charge $\tau(f)$ for each triangular face f with at most one vertex on B_{3} satisfies

$$
\tau(f) \geq \sigma(f)+2 \cdot \frac{1}{2} \geq 0
$$

For each $w \in V\left(B_{3}\right)$, we perform the discharging as follows. If $d(w) \geq 6$, we discharge $\frac{d(w)-4}{d(w)} \geq \frac{1}{3}$ from w to each of the triangular faces incident to w; the new charge of w is

$$
\tau(w) \geq \sigma(w)-(d(w)-4) \geq 0
$$

If $d(w)=5$, we discharge $\frac{1}{4}$ from w to each triangular face f incident to w and having two
vertices from B_{3} (there are at most four such faces); so the new charge of w is

$$
\tau(w) \geq \sigma(w)-4 \cdot \frac{1}{4}=1-1=0
$$

Now, consider any traingular face f with two vertices on $B_{3} . f$ gets at least $\frac{1}{2}$ from its vertex in $V\left(A_{1}-B_{3}\right)$ and $\frac{1}{4}$ from each of its vertices in $V\left(B_{3}\right)$. So the new charge of f is

$$
\tau(f) \geq \sigma(f)+\frac{1}{2}+2 \cdot \frac{1}{4}=0
$$

Note that the infinity face of H^{\prime}, say f_{0}, is incident to at least 4 vertices, so $\tau\left(f_{0}\right) \geq 0$. Thus, $\sum_{x \in V\left(H^{\prime}\right) \cup F\left(H^{\prime}\right)} \tau(x) \geq 0$. Since the total charge is preserved, we have

$$
0 \leq \sum_{x \in V\left(H^{\prime}\right) \cup F\left(H^{\prime}\right)} \tau(x)=\sum_{x \in V\left(H^{\prime}\right) \cup F\left(H^{\prime}\right)} \sigma(x)=-8,
$$

a contradiction. So we have (4).
By (4), let $j \in[m]$ be such that $d_{H}\left(w_{j}\right) \geq 7$. By (2) and the pigeonhole principal, $\left|V\left(B_{i}\left(b_{1}, b_{2}\right)\right) \cap N_{G}\left(w_{j}\right)\right| \geq 3$ for some $i \in[2]$. By symmetry, assume $\mid V\left(B_{1}\left(b_{1}, b_{2}\right)\right) \cap$ $N_{G}\left(w_{j}\right) \mid \geq 3$.
(5) $N_{G}\left(w_{j}\right) \cap V\left(B_{1}\right)=\left\{u_{j-1}, u_{j}, u_{j+1}\right\}$ is disjoint from $\left\{b_{1}, b_{2}\right\}$ and u_{j-1}, u_{j}, u_{j+1} are pairwise distinct, $N_{G}\left(u_{j}\right) \cap V\left(B_{2}\right) \subseteq\left\{v_{j-1}, v_{j}, v_{j+1}\right\}, N_{G}\left(u_{j}\right) \cap V\left(B_{3}\right) \subseteq$ $\left\{w_{j-1}, w_{j}, w_{j+1}\right\}$, and if w_{j-1}, w_{j}, w_{j+1} are pairwise distinct then $N_{G}\left(v_{j}\right) \cap V\left(B_{1}\right) \subseteq$ $\left\{u_{j-1}, u_{j}, u_{j+1}\right\}$.

Let $x \in N_{G}\left(w_{j}\right) \cap V\left(B_{1}\right)$. If $x \in V\left(B\left(u_{j+1}, b_{2}\right]\right)$ then $w_{j} x$ contradicts the existence of the 3-cut T_{j+1} of H; and if $x \in V\left(B_{1}\left[b_{1}, u_{j-1}\right)\right)$ then $w_{j} x$ contradicts the existence of the 3-cut T_{i-1} of H. So by (2), $N_{G}\left(w_{j}\right) \cap V\left(B_{1}\right)=\left\{u_{j-1}, u_{j}, u_{j+1}\right\}$, and u_{j-1}, u_{j}, u_{j+1} are pairwise distinct.

Now, consider $N_{G}\left(u_{j}\right)$. Clearly, $b_{1}, b_{2} \notin N_{G}\left(u_{j}\right)$ as B_{1} is induced path in G.

Since u_{j-1}, u_{j}, u_{j+1} are pairwise distinct, similar arguments in last paragraph shows $N_{G}\left(u_{j}\right) \cap V\left(B_{2}\right) \subseteq\left\{v_{j-1}, v_{j}, v_{j+1}\right\}$ and $N_{G}\left(u_{j}\right) \cap V\left(B_{3}\right) \subseteq\left\{w_{j-1}, w_{j}, w_{j+1}\right\}$. Similarly, if w_{j-1}, w_{j}, w_{j+1} are pairwise distinct then $N_{G}\left(v_{j}\right) \cap V\left(B_{1}\right) \subseteq\left\{u_{j-1}, u_{j}, u_{j+1}\right\}$.
(6) $a_{2} \notin N_{G}\left(u_{j}\right)$.

Suppose $u_{j} a_{2} \in E(G)$. Then, $N_{G}\left(u_{j}\right) \cap V\left(B_{3}\right)=\left\{w_{j}\right\}$. Otherwise there exists $w_{l} \in V\left(B_{3}\left(b_{1}, b_{2}\right)\right)-\left\{w_{j}\right\}$ such that $u_{j} w_{l} \in E(G)$. By symmetry, we may assume $l<j$. Let P be a $w_{l}-a_{1}$ path in A_{1} independent of B_{3}. Then, $P^{\prime}=P \cup w_{l} u_{j} a_{2}$ is an $a_{1}-a_{2}$ path, and, $B_{1}\left[b_{1}, u_{j-1}\right] \cup u_{j-1} w_{j} \cup B_{3}\left[w_{j}, b_{2}\right]$ and B_{2} are two disjoint $b_{1}-b_{2}$ paths in $G-P^{\prime}$, showing that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction. But then, by (2), $d_{G}\left(u_{j}\right) \leq$ $\left|\left\{u_{j-1}, u_{j+1}, v_{j-1}, v_{j}, v_{j+1}, w_{j}, a_{2}\right\}\right| \leq 7$, a contradiction.

By (5) and (6), $N_{G}\left(u_{j}\right)=\left\{u_{j-1}, u_{j+1}, w_{j-1}, w_{j}, w_{j+1}, v_{j-1}, v_{j}, v_{j+1}\right\}$. Note that $a_{2} \in$ $N_{G}\left(v_{j}\right)$, to avoid 7 -cut $\left\{u_{j-1}, u_{j+1}, w_{j-1}, w_{j}, w_{j+1}, v_{j-1}, v_{j+1}\right\}$ in G separating $\left\{u_{j}, v_{j}\right\}$ from $\left\{b_{1}, b_{2}\right\}$. Since $d_{G}\left(v_{j}\right) \geq 8$, there exists $w_{l} \in V\left(B_{3}\left(b_{1}, b_{2}\right)\right) \backslash\left\{w_{j}\right\}$ such that $v_{j} w_{l} \in$ $E(G)$. By symmetry, we may assume $l<j$. Let P be a $w_{l}-a_{1}$ path in A_{1} independent of B_{3}. Then, $P^{\prime}=P \cup w_{l} v_{j} a_{2}$ is an $a_{1}-a_{2}$ path, and $B_{1}\left[b_{1}, u_{j-1}\right] \cup u_{j-1} w_{j} \cup B_{3}\left[w_{j}, b_{2}\right]$ and $B_{2}\left[b_{1}, v_{j-1}\right] \cup v_{j-1} u_{j} \cup B_{1}\left[u_{j}, b_{2}\right]$ are two independent $b_{1}-b_{2}$ paths in $G-P^{\prime}$. This shows that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

Corollary 3.1.4. Suppose $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible and G is 8 -connected. Then $G-$ $\left\{a_{1}, a_{2}\right\}$ contains three independent induced $b_{1}-b_{2}$ paths B_{1}, B_{2}, B_{3} such that for some $i \in[2], A_{i}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has all its attachments contained in B_{3} and $A_{3-i}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has attachments on both $B_{1}\left(b_{1}, b_{2}\right)$ and $B_{2}\left(b_{1}, b_{2}\right)$.

Proof. Let B_{1}, B_{2}, B_{3} be three independent induced $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$. Choose B_{1}, B_{2}, B_{3} so that $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ is maximal.

We may assume that $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has all its attachments on B_{3}. For, otherwise, since $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible, $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has all its attachments on B_{j} for exactly one $j \in[2]$. Then by relabeling, we see that B_{1}, B_{2}, B_{3} are desired paths.

Let $H:=G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)-a_{2}$,. By the maximality of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$, we see that each $w \in V\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \cap V\left(B_{3}\left(b_{1}, b_{2}\right)\right)$ is contained in a 3-cut in H separating b_{1} from b_{2}.

Let G^{\prime} be obtained from $G-a_{2}$ by contracting $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{3}\right)$ to a single vertex a_{2}^{\prime}. Suppose G^{\prime} contains disjoint paths Q_{a}, Q_{b} from a_{1}, b_{1} to a_{2}^{\prime}, b_{2}, respectively. Then the independent $b_{1}-b_{2}$ paths B_{1}, B_{2}, Q_{b} give the desired paths, as $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible and $A_{1}\left(B_{1} \cup B_{2} \cup Q_{b}\right)$ has attachments on both Q_{b} and $B_{1}\left(b_{1}, b_{2}\right) \cup B_{2}\left(b_{1}, b_{2}\right)$.

So, such paths do not exist in G^{\prime}. Hence, by Lemma 2.2.1, $\left(G^{\prime}, \mathcal{A}, a_{1}, b_{1}, a_{2}^{\prime}, b_{2}\right)$ is 3-planar, where \mathcal{A} is a collection of disjoint subsets of $V\left(G^{\prime}\right) \backslash\left\{a_{1}, b_{1}, a_{2}^{\prime}, b_{2}\right\}$.

We claim that $\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{3}, B_{3}+a_{1}\right)$ is planar. If $\mathcal{A}=\emptyset$, we are done. Hence we may assume there exists $A \in \mathcal{A}$. Since $\left|N_{G^{\prime}}(A)\right| \leq 3$ and G is 8-connected, $V\left(B_{3}\right) \cap A \neq \emptyset$. Therefore, $a_{2}^{\prime} \in N_{G^{\prime}}(A)$ and, thus, $\left|N_{G^{\prime}}(A) \cap V\left(B_{3}\right)\right|=2$. Hence, $G^{\prime}[A] \subseteq$ B_{3} by definition of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ and B_{3}. This implies $\left(G^{\prime}\left[A \cup N_{G^{\prime}}(A)\right], N_{G^{\prime}}(A)\right)$ is planar for all $A \in \mathcal{A}$. $\mathrm{So}\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup B_{3}, B_{3}+a_{1}\right)$ is planar.

This is a contradiction to Lemma 3.1.3.

Hence, by Corollary 3.1.4, we may choose three independent $b_{1}-b_{2}$ paths B_{1}, B_{2}, B_{3} in $G-\left\{a_{1}, a_{2}\right\}$ which satisfy $(\mathbf{C} 1)-(\mathbf{C} 4)$. Moreover, by Lemma 3.1.2, $\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right), B_{3}+\right.$ $\left.a_{1}\right)$ is planar. Let

$$
S:=V\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \cap V\left(B_{3}\right)
$$

By Lemma 3.1.3, there exists $w \in S \backslash\left\{b_{1}, b_{2}\right\}$ such that $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)-$ $\left\{a_{2}, w\right\}$ has three independent $b_{1}-b_{2}$ paths P_{1}, P_{2}, P_{3}.

3.2 Ladders and rungs

In this section, we show that $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)-\left\{a_{2}, w\right\}$ can be obtained from a plane graph and a ladder (which consists of rungs as defined in section 2.3) by gluing them along a path.

Let $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ be the $\left(P_{1} \cup P_{2} \cup P_{3}\right)$-bridge of G containing a_{2}. We choose $B_{1}, B_{2}, B_{3}, w, P_{1}, P_{2}, P_{3}$, such that
(C5) subject to $(\mathrm{C} 1)-(\mathrm{C} 4), A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ is maximal.

By the maximality of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ (see (C4)), all attachments of $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ are contained in exactly one of P_{1}, P_{2}, P_{3}, as otherwise, if $A_{1}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on at least two of P_{i} 's for $i \in[3],\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible; and if $A_{1}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments only on one P_{j} for some $j \in[3], P_{1}, P_{2}, P_{3}, w$ would contradict the choice of B_{1}, B_{2}, B_{3}, w. So we may assume that
(C6) subject to (C1)-(C5), all attachments of $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ on $P_{1} \cup P_{2} \cup P_{3}$ are contained in P_{3}.

Let

$$
H=G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(B_{3}-w\right)\right)-\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)-P_{3}\right) .
$$

Label the vertices in $V\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)\right) \cap V\left(P_{3}\right)$ as u_{1}, \ldots, u_{m} in order from b_{1} to b_{2}. Then by the maximality of $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ (see (C5)), each u_{i} is in a 3-cut of H separating b_{1} from b_{2}.

Lemma 3.2.1. For $i \in[m]$, there are 3-cuts $T_{i}=\left\{u_{i}, v_{i}, w_{i}\right\}$ in H separating b_{1} from b_{2} such that $b_{1}, u_{1}, \ldots, u_{m}, b_{2}$ occur on P_{3} in order, $b_{1}, v_{1}, \ldots, v_{m}, b_{2}$ occur on P_{2} in order, and $b_{1}, w_{1}, \ldots, w_{m}, b_{2}$ occur on P_{1} in order.

Proof. The proof is the same as (1) in the proof of Lemma 3.1.3.

Let H_{1} denote the T_{1}-bridge of H containing b_{1}, and H_{m+1} denote the T_{m}-bridge of H containing b_{2}. Let $\operatorname{Int}\left(H_{1}\right)=V\left(H_{1}\right) \backslash\left(T_{1} \cup\left\{b_{1}\right\}\right)$ and $\operatorname{Int}\left(H_{m+1}\right)=V\left(H_{m+1}\right) \backslash$ $\left(T_{m} \cup\left\{b_{2}\right\}\right)$. For $i \in[m] \backslash\{1\}$, let H_{i} denote the union of those $\left(T_{i-1} \cup T_{i}\right)$-bridges of H containing the subpaths of P_{j} between T_{i-1} and T_{i} for $j \in[3]$.

Lemma 3.2.2. For $i \in[m] \backslash\{1\}$, any three disjoint paths in H_{i} from T_{i-1} to T_{i} contains a $u_{i-1}-u_{i}$ path.

Proof. Suppose for some $i \in[m] \backslash\{1\}, H_{i}$ has three disjoints paths Q_{u}, Q_{v}, Q_{w} from $u_{i-1}, v_{i-1}, w_{i-1}$, respectively, to T_{i}, with no $u_{i-1}-u_{i}$ path. Then, $u_{i} \in V\left(Q_{v} \cup Q_{w}\right)$. Let $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ be formed by taking the union of Q_{u}, Q_{v}, Q_{w}, respectively, with the subpaths of P_{1}, P_{2}, P_{3} outside of H_{i}. We may assume that $P_{1}^{\prime} \supseteq Q_{u}$ and P_{2}^{\prime} contains Q_{v} (if $u_{i} \in$ $\left.V\left(Q_{v}\right)\right)$ or Q_{w} (if $u_{i} \in V\left(Q_{w}\right)$). Then, $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are three independent $b_{1}-b_{2}$ paths in $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)-\left\{a_{2}, w\right\}$ such that $A_{2}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ has attachments on P_{1}^{\prime} and P_{2}^{\prime}. Hence, $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, w$ contradict the choice of B_{1}, B_{2}, B_{3}, w, or $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

Thus, by Lemma 2.3.1, $H_{i}=J_{i} \cup L_{i}$, where J_{i} is planar and L_{i} is a ladder from $\left(v_{i-1}, u_{i-1}, w_{i-1}\right)$ to $\left(v_{i}, u_{i}, w_{i}\right)$. Let

$$
L^{*}=H_{1} \cup H_{m+1} \cup\left(\bigcup_{i=2}^{m} L_{i}\right) .
$$

We further choose P_{1}, P_{2}, P_{3} such that
(C7) subject to (C1)-(C6), $\left(P_{1} \cup P_{2} \cup P_{3}\right) \cap H_{i} \subseteq L_{i}$ for $i \in[m] \backslash\{1\}$ (and hence, $\left.P_{1} \cup P_{2} \cup P_{3} \subseteq L^{*}\right)$, and $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right):=A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J_{2} \cup \ldots \cup J_{m}$ is maximal.

See the following Figure 3.1 for an illustration for all the above results.
The following observation will be convenient.

Observation 3.2.3. There exists no path in H from $S \backslash\left\{b_{1}, b_{2}\right\}$ to $P_{3}\left(b_{1}, b_{2}\right)$ disjoint from $P_{1} \cup P_{2}$.

Proof. For, suppose Q is a path between $s \in S \backslash\left\{b_{1}, b_{2}\right\}$ and $t \in V\left(P_{3}\left(b_{1}, b_{2}\right)\right)$ internally disjoint from $P_{1} \cup P_{2}$. We may further assume Q is independent of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cup$

Figure 3.1: Structure of infeasible $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$
$A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$. Note that $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ contains an $a_{1}-s$ path independent of H. Let $b \in V\left(P_{3}\left(b_{1}, b_{2}\right)\right) \cap V\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)\right)$. Then $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ contains a $a_{2}-b$ path Q_{2} independent of P_{3}. Now $Q_{1} \cup Q \cup P_{3}(t, b) \cup Q_{2}$ is an $a_{1}-a_{2}$ path disjoint from $P_{1} \cup P_{2}$. This shows that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

We conclude this section with a useful lemma concerning the rungs $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ in L^{*} with $|\partial R|=6$ or $|\partial R|=5$ and $b \neq b^{\prime}$.

Lemma 3.2.4. $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ in L^{*} with $|\partial R|=6$ or $|\partial R|=5$ and $b \neq b^{\prime}$. Then
(a) any three disjoint paths in R from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must be from a, b, cto $a^{\prime}, b^{\prime}, c^{\prime}$, respectively, and
(b) there are disjoint induced paths P_{a}, P_{c} in $R-\left\{b, b^{\prime}\right\}$ from a, c to a^{\prime}, c^{\prime}, respectively, such that $R-\left(P_{a} \cup P_{c}\right)$ is connected and $S \cap V(R) \subseteq V\left(P_{a} \cup P_{c}\right)$.

Proof. By (iii) of Proposition 2.3.2, we have (a). So there are disjoint induced paths P_{a}, P_{c} in $R-\left\{b, b^{\prime}\right\}$ from a, c to a^{\prime}, c^{\prime}, respectively, such that $\left\{b, b^{\prime}\right\}$ is contained in a $\left(P_{a} \cup P_{c}\right)$ bridge of R, say R_{b}. Note that $(S \cup N(w)) \cap V\left(R_{b}\right)=\emptyset$ by Observation 3.2.3.

To prove (b), let us assume by symmetry that if $|\partial R|=5$ then $a=a^{\prime}$. If R_{b} is the only component of $R-\left(P_{a} \cup P_{c}\right)$ then (b) holds; for otherwise ($G, a_{1}, a_{2}, b_{1}, b_{2}$) would be feasible as $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on $P_{3}\left(b_{1}, b_{2}\right)$. For any component X of $R-\left(P_{a} \cup P_{c}\right)$ with $X \neq R_{b}$, it follows from 3-planarity of R or $R-a^{\prime}$ (when $a=a^{\prime}$) that we may assume X has neighbors only on P_{c} unless $a=a^{\prime}$. Moreover, the two neighbors of X on P_{c} that are furtherest apart form a cut (with a if $a=a^{\prime}$) in R, and these two neighbors might be the same.

Hence, let $\left\{y_{i}, z_{i}\right\}$ be the cut of size at most 2 in R (or $R-a$ when $a=a^{\prime}$) separating R_{b} from $P_{c}\left[y_{i}, z_{i}\right]$ and at least one vertex of $R-\left(P_{a} \cup P_{c}\right)$, such that $P_{c}\left[y_{i}, z_{i}\right]$ are maximal. Then by planarity, we may assume that $c, y_{1}, z_{1}, \ldots, y_{t}, z_{t}, c^{\prime}$ occur on P_{c} in order. Let X_{i} denote the union of $P\left[y_{i}, z_{i}\right]$ and all $\left(P_{a} \cup P_{c}\right)$-bridges of R with all attachments contained in $P_{c}\left[y_{i}, z_{i}\right]$ (or $P_{c}\left[y_{i}, z_{i}\right]+a$ if $a=a^{\prime}$). Let $X_{i}^{*}=R\left[X_{i}+w\right]$ and $\operatorname{Int}\left(X_{i}^{*}\right)=V\left(X_{i}^{*}\right) \backslash$ $\left\{a, w, y_{i}, z_{i}\right\}$. Note that $X_{i}^{*}-\left(P_{a} \cup P_{c}\right) \neq \emptyset$; so $V\left(B_{3}\right) \cap \operatorname{Int}\left(X_{i}^{*}\right) \neq \emptyset$ (to avoid the cut $\left.\left\{a, w, y_{i} . z_{i}\right\}\right)$. Let $r_{1}, r_{2} \in V\left(B_{3}\right) \cap\left\{a, w, y_{i}, z_{i}\right\}$ with $N\left(r_{i}\right) \cap \operatorname{Int}\left(X_{i}^{*}\right) \neq \emptyset$ for $i \in[2]$, such that $B_{3}\left[r_{1}, r_{2}\right]$ is maximal.

First, we claim that $\left\{r_{1}, r_{2}\right\} \neq\left\{y_{i}, z_{i}\right\}$ for $i \in[t]$. For, suppose $\left\{r_{1}, r_{2}\right\}=\left\{y_{i}, z_{i}\right\}$ for some $i \in[t]$. Then $B_{i} \cap \operatorname{Int}\left(X_{i}^{*}\right)=\emptyset$ for $i \in[2]$. If there exists $s \in\left(S \cap \operatorname{Int}\left(X_{i}^{*}\right)\right) \backslash$ $V\left(P_{c}\left[y_{i}, z_{i}\right]\right)$ then letting $B_{3}^{\prime}:=\left(B_{3}-B_{3}\left(y_{i}, z_{i}\right)\right) \cup P_{c}\left[y_{i}, z_{i}\right]$ we see that $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$, contradicting (C4). So $S \cap \operatorname{Int}\left(X_{i}^{*}\right) \subseteq V\left(P_{c}\left[y_{i}, z_{i}\right]\right)$. Now let Y be a $\left(P_{a} \cup P_{c}\right)$-bridge of R contained in X_{i}^{*} and $y, z \in V(Y) \cap V\left(P_{a} \cup P_{c}\right)$ with $P_{c}[y, z]$ maximal, such that no other $\left(P_{a} \cup P_{c}\right)$-bridges of R has attachments in $P_{c}(y, z)$. Note Y is well defined because of planarity. Now there exists $s \in S \cap V\left(P_{c}(y, z)\right)$ to avoid the cut $\{a, w, y, z\}$. Let B_{3}^{\prime} denote the union of $\left(B_{3}-B_{3}(y, z)\right)$ and an induced $y-z$ path in $Y-V\left(P_{c}(y, z)\right)$. Then $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$, contradicting (C4).

Thus, for any $i \in[t]$, we have $w^{\prime} \in \operatorname{Int}\left(X_{i}^{*}\right)$, or $a=a^{\prime}$ and B_{3} enters $\operatorname{Int}\left(X_{i}^{*}\right)$ at a; for, otherwise, $B_{3} \cap X_{i}^{*}$ would be a $y_{i}-z_{i}$ path. This, in particular, implies $t \leq 2$.

Case 1. $a \neq a^{\prime}$.
Then $t=1$. First, suppose $S \cap \operatorname{Int}(R) \subseteq V\left(X_{1}^{*}\right)$. Let R^{\prime} be obtained from $R^{*}-$ $\operatorname{Int}\left(X_{1}^{*}\right)$ by adding edges $\left\{a b, b c, y_{1} z_{1}, c^{\prime} b^{\prime}, b^{\prime} a^{\prime}\right\}$ (or $\left\{a b, b c, c^{\prime} b^{\prime}, b^{\prime} a^{\prime}\right\}$ when $y_{1}=z_{1}$), as well as edges from w to $K:=\left\{a, b, c, y_{1}, z_{1}, c^{\prime}, b^{\prime}, a^{\prime}\right\}$. Then R^{\prime} is a planar graph. Let $k=$ $|K|$ and $m=\left|V\left(R^{\prime}\right) \backslash(K \cup\{w\})\right|$. By the Hand-shaking lemma and Euler's formula, we see that $k \times 4+k+8\left(\left|V\left(R^{\prime}\right)\right|-k-1\right) \leq 6\left|V\left(R^{\prime}\right)\right|-12$, which implies $\left|V\left(R^{\prime}\right)\right| \leq 3 k / 2-2$. So $m \leq 3 k / 2-2-(k+1)=k / 2-3 \leq 1$. This implies that there exists $u \in \operatorname{Int}(R)$ such that $N_{R}(u)=K$. (Note $N(w) \cap V\left(R_{b}\right)=\emptyset$ as $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible.) By planarity of $R,\{a, u, c\}$ is a cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction.

Now, suppose there exists $s \in S \cap \operatorname{Int}(R)$ and $s \notin V\left(X_{1}^{*}\right)$. By symmetry, assume $s \in V\left(P_{c}\left(c, y_{1}\right)\right)$. We choose such s with $P_{c}[c, s]$ minimal. We consider the paths $B_{i} \cap$ R for $i \in[3]$. If we can find disjoint paths in $R^{*}-s$ linking the same ends of $B_{i} \cap$ R^{*} for $i \in[3]$, then by replacing $B_{i} \cap \operatorname{Int}(R)$ with such paths in $R^{*}-s$, we obtain independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ such that $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+$ s, contradicting (C4). So such paths do not exist. Hence by 3-planarity of ($R, a, b, c, c^{\prime}, b^{\prime} a^{\prime}$) we see that R has a 4-cut $\left\{s, v_{1}, v_{2}, a^{\prime}\right\}$ separating $\{a, b, c\}$ from $\left\{y_{1}, a^{\prime}, b,{ }^{\prime} c^{\prime}\right\} \cup V\left(X_{1}^{*}\right)$. Let R^{\prime} denote the $\left\{w, s, v_{1}, v_{2}, a^{\prime}\right\}$-bridge of R^{*} containing $\{a, b, c\}$ and assume notation is chosen so that $\left(R^{\prime}-w, a, b, c, s, v_{1}, v_{2}, a^{\prime}\right)$ is planar. Let $R^{\prime \prime}$ be obtained from R^{\prime} by adding edges in $\left\{a b, b c, s v_{1}, v_{1} v_{2}, v_{2} a^{\prime}\right\}$, as well as edges from w to all vertices in $K:=$ $\left\{a, b, c, s, v_{1}, v_{2}, a^{\prime}\right\}$. Let $k:=|K|$ and $m:=\left|V\left(R^{\prime \prime}\right) \backslash(K \cup\{w\})\right|$. By Hand-shaking lemma and Euler's formula, we see that $k \times 4+k+8\left(\left|V\left(R^{\prime \prime}\right)\right|-k-1\right) \leq 6\left|V\left(R^{\prime \prime}\right)\right|-12$, which implies $\left|V\left(R^{\prime \prime}\right)\right| \leq 3 k / 2-3$. So $m \leq 3 k / 2-3-(k+1)=k / 2-3 \leq 1 / 2$. This leads to a contradiction to (ii) of Proposition 2.3.2.

Case 2. $a=a^{\prime}$ and $t=1$.
Suppose $S \cap\left(\operatorname{Int}(R) \backslash V\left(X_{1}^{*}\right)\right)=\emptyset$. Let R^{\prime} be obtained from $R^{*}-a-\left(X_{1}^{*}-\left\{y_{1}, z_{1}\right\}\right)$ by adding edges $b c, b^{\prime} c^{\prime}$ and $y_{1} z_{1}$ if $y_{1} \neq z_{1}$, as well as edges from w to all vertices in $K:=\left\{b, b^{\prime}, c, c^{\prime}, y_{1}, z_{1}\right\}$. Let $k=|K|$ and $m=\left|V\left(R^{\prime}\right) \backslash(K \cup\{w\})\right|$. By Hand-shaking
lemma and Euler's formula, we see that $4 \times k+k+7\left(\left|V\left(R^{\prime}\right)\right|-k-1\right) \leq 6\left|V\left(R^{\prime}\right)\right|-12$, which implies $\left|V\left(R^{\prime}\right)\right| \leq 2 k-5$. Thus, $m \leq k-6$, Since $k \leq 6, V\left(R^{\prime}\right)=K$. This leads to a contradiction to (ii) of Proposition 2.3.2.

Now assume there exists $s \in S \cap \operatorname{Int}(R)$ and $s \notin i n V\left(X_{1}^{*}\right)$. By symmetry, assume $s \in V\left(P_{c}\left(c, y_{1}\right)\right)$. We choose such s with $P_{c}[c, s]$ minimal. We consider the paths $B_{i} \cap R^{*}$ for $i \in[3]$. If we can find disjoint paths in $R^{*}-s$ linking the same ends of $B_{i} \cap R^{*}$ then by replacing $B_{i} \cap \operatorname{Int}(R)$ with such paths in $R^{*}-s$, we obtain independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ such that $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$, contradicting (C4). So such paths do not exist. Hence by 3-planarity of $\left(R-a, b, c, c^{\prime}, b^{\prime}\right)$ we see that $R-a$ has a 3 -cut $\left\{s, v_{1}, v_{2}\right\}$ separating $\{b, c\}$ from $\left\{y_{1}, b,{ }^{\prime} c^{\prime}\right\}$. Let R^{\prime} denote the $\left\{w, s, v_{1}, v_{2}\right\}$-bridge of $R-a$ containing $\{b, c\}$ and assume notation is chosen so that $\left(R^{\prime}-w, b, c, s, v_{1}, v_{2}\right)$ is planar.

Let $R^{\prime \prime}$ be obtained from R^{\prime} by adding edges $\left\{b c, s v_{1}, v_{1} v_{2}\right\}$, as well as edges from w to all vertices in $K:=\left\{b, c, s, v_{1}, v_{2}\right\}$. let $k:=|K|$ and $m:=\left|V\left(R^{\prime \prime}\right) \backslash(K \cup\{w\})\right|$. By Hand-shaking lemma and Euler's formula, we see that $k \times 4+k+7\left(\left|V\left(R^{\prime \prime}\right)\right|-k-1\right) \leq$ $6\left|V\left(R^{\prime \prime}\right)\right|-12$, which implies $\left|V\left(R^{\prime \prime}\right)\right| \leq 2 k-5$. So $m \leq k-6<0$, a contradiction.

Case 3. $a=a^{\prime}$ and $t=2$.
Then since $B_{3} \cap \operatorname{Int}\left(X_{i}^{*}\right) \neq \emptyset$ cannot be a $y_{i}-z_{i}$ path for $i \in[2]$, we see that B_{3} enters $\operatorname{Int}\left(X_{1}^{*}\right)$ at a and leaves $\operatorname{Int}\left(X_{2}^{*}\right)$ at w. Thus $S \cap \operatorname{Int}(R) \subseteq V\left(X_{1}^{*}\right) \cup V\left(P_{c}\left[z_{1}, y_{2}\right]\right) \cup V\left(X_{2}^{*}\right)$.

Suppose $S \cap \operatorname{Int}(R) \subseteq V\left(X_{1}^{*} \cup X_{2}^{*}\right)$. Let R^{\prime} be obtained from $R^{*}-a-\left(X_{1}^{*}-\right.$ $\left.\left\{y_{1}, z_{1}\right\}\right)-\left(X_{2}^{*}-\left\{y_{2}, z_{2}\right\}\right)$ by adding edges $b c, b^{\prime} c^{\prime}$ and $y_{i} z_{i}$ for $i \in[2]$ with $y_{i} \neq z_{i}$, as well as edges from w to all vertices in $K:=\left\{b, b^{\prime}, c, c^{\prime}, y_{1}, z_{1}, y_{2}, z_{2}\right\}$. Let $k=|K|$ and $m=\left|V\left(R^{\prime}\right) \backslash(K \cup\{w\})\right|$. By Hand-shaking lemma and Euler's formula, we see that $4 \times k+k+7\left(\left|V\left(R^{\prime}\right)\right|-k-1\right) \leq 6\left|V\left(R^{\prime}\right)\right|-12$, which implies $\left|V\left(R^{\prime}\right)\right| \leq 2 k-5$. So $m \leq k-6 \leq 2$. Using planarity of $R^{\prime}-w$ and every vertex inside $R^{\prime}-(K \cup\{w\})$ has degree at least 7 , we see that $m=1$ and the only vertex in $V\left(R^{\prime}\right) \backslash(K \cup\{w\})$, say u, is adjacent to both b and b^{\prime} (and $b b^{\prime} \in E(G)$) by (ii) of Proposition 2.3.2. Hence, by letting
$P_{3}^{\prime}=\left(P_{3}-b b^{\prime}\right) \cup b u b^{\prime}$, we see that $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}^{\prime}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right)+b b^{\prime}$. Hence, $B_{1}, B_{2}, B_{3}, w, P_{1}, P_{2}, P_{3}^{\prime}$ contradict (C7).

Now assume there exists $s \in S \cap V\left(P_{c}\left(z_{1}, y_{2}\right)\right)$. We choose such s with $P_{c}\left[z_{1}, s\right]$ minimal. We consider the paths $B_{i} \cap R^{*}$ for $i \in[3]$. If we can find disjoint paths in $R^{*}-s$ linking the same ends of $B_{i} \cap R^{*}$, then by replacing $B_{i} \cap \operatorname{Int}(R)$ with such disjoint paths in $R^{*}-s$, we obtain independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ such that $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$, contradicting (C 4$)$. So such paths do not exist. Hence by 3-planarity of $\left(R-a, b, c, c^{\prime}, b^{\prime}\right)$ we see that $R-a$ has a 3 -cut $\left\{s, v_{1}, v_{2}\right\}$ separating $\{b, c\} \cup V\left(X_{1}^{*}\right)$ from $\left\{b,{ }^{\prime} c^{\prime}\right\} \cup V\left(X_{2}^{*}\right)$. Let R^{\prime} denote the graph obtained from the $\left\{w, s, v_{1}, v_{2}\right\}$-bridge of $R^{*}-a$ containing $\{b, c\}$ by deleting $\operatorname{Int}\left(X_{1}^{*}\right)$, and assume notation is chosen so that $\left(R^{\prime}-w, b, c, y_{1}, z_{1}, s, v_{1}, v_{2}\right)$ is planar.

Let $R^{\prime \prime}$ be obtained from R^{\prime} by adding edges in $\left\{b c, s v_{1}, v_{1} v_{2}\right\}$ and $y_{1} z_{1}$ (if $y_{1} \neq z_{1}$), as well as edges from u to all vertices in $K:=\left\{b, c, y_{1}, z_{1}, s, v_{1}, v_{2}\right\}$. Let $k=|K|$ and $m:=\left|V\left(R^{\prime \prime}\right) \backslash(K \cup\{w\})\right|$. By Hand-shaking lemma and Euler's formula, we see that $k \times 4+k+7\left(\left|V\left(R^{\prime \prime}\right)\right|-k-1\right) \leq 6\left|V\left(R^{\prime \prime}\right)\right|-12$, which implies $\left|V\left(R^{\prime \prime}\right)\right| \leq 2 k-5$. Hence $m \leq k-6 \leq 1$. By planarity and (ii) of Proposition 2.3.2, we have $m=1$. So the unique vertex in $V\left(R^{\prime}\right) \backslash\left\{b, c, s, v_{1}, v_{2}, u\right\} \cup\left\{y_{1}, z_{1}\right\}$, say u, must be adjacent to w. However, this means $N(w) \cap V\left(R_{b}\right) \neq \emptyset$, a contradiction.

CHAPTER 4 RUNGS INTERSECTING THREE SPECIAL PATHS

For any rung $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$, let $\partial R=\left\{a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right\}$ and $\operatorname{Int}(R)=V(R) \backslash$ ∂R. In this chapter, we consider the rungs R in L^{*} such that $\operatorname{Int}(R) \cap V\left(B_{i}\right) \neq \emptyset$ for all $i \in[3]$, including H_{1} and H_{m+1}, and prove that only H_{1} or H_{m+1} could intersect all three paths.

First, in section 4.1, we prove a technical lemma that will be used to deal with such rungs. In section 4.2, we use Lemma 4.1.1 to obtain structure results of H_{1} and H_{m+1} in subsection 4.2.1, and that of the other rungs R in subsection 4.2.2. Last in Lemma 4.2.3, we show that such rungs do not exist except when they are contained in $H_{1} \cup H_{m+1}$ or when $|\partial R|=5$ and $b=b^{\prime}$.

Let $w^{\prime}, w^{\prime \prime} \in N(w) \cap V\left(B_{3}\right)$ such that $b_{1}, w^{\prime}, w, w^{\prime \prime}, b_{2}$ occur on B_{3} in order.

4.1 Technical lemma

In this section, we prove a technical lemma to deal with rungs intersecting B_{i} for all $i \in[3]$.

Lemma 4.1.1. Let $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ be a 3-cut of L^{*} with $b^{\prime} \in V\left(P_{3}\right)$ and separating $\left\{b_{1}, w^{\prime}\right\}$ from $\left\{b_{2}, w^{\prime \prime}\right\}$, let R denote the $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$-bridge of L^{*} containing $\left\{b_{1}, w^{\prime}\right\}$, and let $R^{*}=$ $R+\{w, w x: x \in N(w) \cap V(R)\}$. Suppose there exists $w^{*} \in S \cap V\left(B_{3}\left(b_{1}, w^{\prime}\right]\right)$ such that $R^{*}-w^{*}$ contains three independent paths Q_{a}, Q_{c}, Q_{w} from b_{1} to $a^{\prime}, c^{\prime}, w$, respectively, such that $b^{\prime} \in V\left(Q_{a}\right)$, or $Q_{a} \cap P_{3}$ is a subpath of $P_{3}\left[b_{1}, b^{\prime}\right]$ and the $\left(Q_{a} \cup Q_{c} \cup Q_{w}\right)$-bridge of R^{*} containing b^{\prime} has an attachment on Q_{a}. Suppose $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on both $P_{3}\left(b_{1}, b^{\prime}\right]$ and $P_{3}\left(b^{\prime}, b_{2}\right)$.

Then L^{*} has a 3-cut $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ with $b^{\prime \prime} \in V\left(P_{3}\right)$ separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup(N(w) \cap$
$\left.V\left(L^{*}\right)\right)$ from b_{2}, and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has no attachment in $P_{3}\left(b^{\prime}, b^{\prime \prime}\right)$. Moreover, if $R^{\prime \prime}$ denotes the graph obtained from H by deleting the components of $L^{*}-\left(\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\} \cup\right.$ $\left.\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)$ containing b_{1} or b_{2} then $R^{\prime \prime}=J^{\prime \prime} \cup L^{\prime \prime}$ with $b^{\prime} \in V\left(J^{\prime \prime}-L^{\prime \prime}\right),\left(J^{\prime \prime}, J^{\prime \prime} \cap L^{\prime \prime}\right)$ planar, $J^{\prime \prime} \cap L^{\prime \prime}$ is an $a^{\prime}-b^{\prime \prime}$ path, and $L^{\prime \prime}$ a ladder from $\left\{a^{\prime}, c^{\prime}, w\right\}$ to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ along $J^{\prime \prime} \cap L^{\prime \prime}$.

Proof. Let $a^{\prime \prime}=b^{\prime \prime}=c^{\prime \prime}=b_{2}$ if L^{*} has no 3-cut separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from b_{2}, and otherwise let $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ be a 3-cut of L^{*} separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup(N(w) \cap$ $\left.V\left(L^{*}\right)\right)$ from b_{2} and let $b^{\prime \prime} \in V\left(P_{3}\right)$. Moreover, let R^{\prime} denote the graph obtained from L^{*} by deleting the components of $L^{*}-\left(\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)$ containing b_{1} or b_{2}, and choose $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ to minimize R^{\prime}. By the choice of R^{\prime}, R^{\prime} has no cut of size at most 3 separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$. Let $R_{v}=R^{\prime}+\left\{v, w, v a^{\prime}, v b^{\prime}, w x: x \in\right.$ $\left.N(w) \cap V\left(R^{\prime}\right)\right\}$, where v is a new vertex.

Note that R_{v} contains three independent paths from v, c^{\prime}, w, respectively, to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$. For, otherwise, R_{v} has a cut T of size at most 2 separating $\left\{v, c^{\prime}, w\right\}$ from $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$. Then $v \in T$ as, otherwise, T would separate $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$, a contradiction. Moreover, $w \notin T$ because of the existence of three independent paths $P_{i} \cap R^{\prime}, i \in[3]$, in R^{\prime}. Now $\left\{b^{\prime}, a^{\prime}\right\} \cup(T \backslash\{v\})$ is a 3-cut in L^{*} contradicting the choice of $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ (i.e., the minimality of R^{\prime}).

We claim that $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has no attachment on $P_{3}\left(b^{\prime}, b^{\prime \prime}\right)$ (and, hence, $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ is a cut in $\left.L^{*}\right)$. For, otherwise, there exists $b^{*} \in V\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)\right) \cap V\left(P_{3}\left(b^{\prime}, b^{\prime \prime}\right)\right)$, and we choose b^{*} so that $P_{3}\left[b^{*}, b^{\prime \prime}\right]$ is minimal. Note that b^{*} is contained in a 3 -cut $\left\{a^{*}, b^{*}, c^{*}\right\}$ of L^{*} separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ from $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$. Let M denote the graph obtained from L^{*} by deleting the components of $L^{*}-\left(\left\{a^{*}, b^{*}, c^{*}\right\} \cup\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}\right)$ containing b_{1} or b_{2}, and let $M^{*}=M+\{w, w x: x \in N(w) \cap V(M)\}$. By the choice of $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ (minimality of $\left.R^{\prime}\right), w$ has a neighbor in $V\left(M^{*}\right) \backslash\left\{a^{*}, b^{*}, c^{*}\right\}$. By the choice of $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ again, $M^{*}-b^{*}$ contains independent paths P_{a}, P_{c}, P_{w} from a^{*}, c^{*}, w, respectively, to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$. Now we obtain three independent $b_{1}-b_{2}$ paths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ from $Q_{a} \cup Q_{c} \cup Q_{w} \cup P_{a} \cup P_{c} \cup P_{w},\left(P_{1} \cup\right.$
$\left.P_{2}\right) \cap\left(R^{\prime}-\left(M-\left\{a^{\prime}, c^{\prime}\right\}\right)\right.$, and three independent paths from b_{2} to $a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$, respectively, in the $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$-bridge of L^{*} containing b_{2}. Then $B_{1}, B_{2}, B_{3}, w^{*}, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ contradict $(\mathrm{C} 5)$, as $A_{2}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ contains $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)+b^{*}$.

We further claim that any three disjoint paths in R_{v} from $\left\{v, c^{\prime}, w\right\}$ to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ must contain a $v-b^{\prime \prime}$ path. For, suppose P_{v}, P_{c}, P_{w} are disjoint paths in R_{v} from v, c^{\prime}, w, respectively, to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ with no $v-b^{\prime \prime}$ path. Then $b^{\prime \prime} \in V\left(P_{c}\right)$ or $b^{\prime \prime} \in V\left(P_{w}\right)$. If $b^{\prime \prime} \in V\left(P_{w}\right)$, let $v^{\prime} \in\left\{b^{\prime}, a^{\prime}\right\}$ such that $v^{\prime} \in V\left(P_{v}\right)$. Then, there is an $a_{1}-a_{2}$ path in union of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(B_{3}-w\right), P_{w}$ and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)-P_{3}\left[b_{1}, b^{\prime}\right]\left(\right.$ as $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachment on $P_{3}\left(b^{\prime}, b_{2}\right)$), which is independent from the two $b_{1}-b_{2}$ paths obtained from two independent paths from b_{1} to $\left\{v^{\prime}, c^{\prime}\right\}$ (subpaths of $P_{1} \cup P_{2} \cup P_{3}$), $P_{v}-v, P_{c}$, and the two independent paths from b_{2} to $\left\{a^{\prime \prime}, c^{\prime \prime}\right\}$ (subpaths of $P_{1} \cup P_{2} \cup P_{3}$). So ($G, a_{1}, a_{2}, b_{1}, b_{2}$) is feasible. Thus, $b^{\prime \prime} \in V\left(P_{c}\right)$. By symmetry, assume $c^{\prime \prime} \in V\left(P_{v}\right)$ and $a^{\prime \prime} \in V\left(P_{w}\right)$. If $a^{\prime} \in V\left(P_{v}\right)$, let $Q_{a}^{\prime}=Q_{a}$; otherwise if $b^{\prime} \in V\left(P_{v}\right)$, let Q_{a}^{\prime} be the $b_{1}-b^{\prime}$ path in union of Q_{a} and the $\left(Q_{a} \cup Q_{c} \cup Q_{w}\right)$-bridge of R^{*} containing b^{\prime}. Then we obtain three independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ in $H-w^{*}$ from $Q_{a}^{\prime} \cup Q_{c} \cup Q_{w} \cup\left(P_{v}-v\right) \cup P_{c} \cup P_{w}$ and the three independent paths from b_{2} to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ (subpaths of $\left.B_{1}, B_{2}, B_{3}\right)$, such that, $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+w^{*}$ and $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has attachments on both B_{1}^{\prime} and B_{2}^{\prime} (by assumption on Q_{a}). So $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, w^{*}$ contradict (C4).

Hence, by applying Lemma 2.3.1 to $\left(R_{v},\left(w, v, c^{\prime}\right),\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)\right)$, we see that $R_{v}=J_{v} \cup$ L_{v}, where L_{v} is a ladder from $\left(w, v, c^{\prime}\right)$ to $\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ and $\left(J_{v}, J_{v} \cap L_{v}\right)$ is planar.

Case 1. $J_{v} \subseteq L_{v}$.
Then by the choice of R^{\prime}, L_{v} is a single rung. By relabeling $a^{\prime \prime}$ and $c^{\prime \prime}$ if necessary, we may assume $c^{\prime}=a^{\prime \prime}$ when $c^{\prime} \in\left\{a^{\prime \prime}, c^{\prime \prime}\right\}$. Then, since $v, w \notin\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$, it follows from definition of rungs that either $c^{\prime} \neq a^{\prime \prime}$ and $\left(L_{v}, w, v, c^{\prime}, a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ is 3-planar, or $c^{\prime}=a^{\prime \prime}$ and $\left(L_{v}-c^{\prime}, w, v, b^{\prime \prime}, c^{\prime \prime}\right)$ is 3-planar.

Hence, because of P_{1}, P_{2}, P_{3} and the choice of $R^{\prime}, R^{\prime}-b^{\prime}$ contains three disjoint paths P_{a}, P_{c}, P_{w} from $a^{\prime}, c^{\prime}, w$ to $b^{\prime \prime}, a^{\prime \prime}, c^{\prime \prime}$, respectively. Now these three paths, $Q_{a} \cup Q_{c} \cup Q_{w}$,
and $\left(P_{1} \cup P_{2} \cup P_{3}\right)-\left(\left(R^{*}-a^{\prime \prime}\right)+\operatorname{Int}\left(R^{\prime}\right)\right)$ form three independent $b_{1}-b_{2}$ paths X_{1}, X_{2}, X_{3} in $H-w^{*}$ such that $a^{\prime} \in V\left(X_{1}\right), c^{\prime} \in V\left(X_{2}\right)$, and $w \in V\left(X_{3}\right)$. Note that $A_{1}\left(X_{1} \cup X_{2} \cup X_{3}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+w^{*}$.

If $A_{2}\left(X_{1} \cup X_{2} \cup X_{3}\right)$ has attachments on both X_{1} and X_{2} then $X_{1}, X_{2}, X_{3}, w^{*}$ contradict (C4), or all attachment of $A_{1}\left(X_{1} \cup X_{2} \cup X_{2}\right)$ are on X_{3}, then $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible with X_{1}, X_{2} and an $a_{1}-a_{2}$ path in union of X_{3} and $A_{1}\left(X_{1} \cup X_{2} \cup X_{2}\right)$. So assume $A_{2}\left(X_{1}, X_{2}, X_{3}\right)$ has all its attachments on X_{1}. Then the $\left(P_{a} \cup P_{c} \cup P_{w}\right)$-bridge of $R_{v}-v$ containing b^{\prime}, say $J^{\prime \prime}$, has all its attachments in P_{a}. By choosing P_{a}, P_{c}, P_{w} to maximize $J^{\prime \prime}$ and by the planarity of L_{v} (when $|\partial R|=6$) or $L_{v}-c^{\prime}$ when $|\partial R|=5$), we see that $J^{\prime \prime}$ and $L^{\prime \prime}:=\left(R_{v}-v\right)-\left(J^{\prime \prime}-P_{a}\right)$ satisfies the conclusion of the lemma.

Case 2. $J_{v}-L_{v} \neq \emptyset$.
By the minimality of R^{\prime}, we see that the boundary of J_{v} has a path from v to $b^{\prime \prime}$ and avoiding $L_{v}-\left\{v, b^{\prime \prime}\right\}$, which we denote by Q. Note $b^{\prime} \in V(Q)$ or $a^{\prime} \in V(Q)$. If $b^{\prime} \in V(Q)$ then $R^{\prime \prime}=R_{v}-v, J^{\prime \prime}=J_{v}-v$ and $L^{\prime \prime}=L_{v}-v$ satisfy the conclusion. So assume $a \in V(Q)$.

We claim that $R_{v}-Q-w$ contains disjoint paths B_{b}, B_{c} from b^{\prime}, c^{\prime}, respectively, to $\left\{a^{\prime \prime}, c^{\prime \prime}\right\}$; for otherwise, there is a cut vertex t in $R_{v}-Q-w$ separating $\left\{b, c^{\prime}\right\}$ from $\left\{a^{\prime \prime}, c^{\prime \prime}\right\}$. However, this contradicts the existence of the disjoint paths $P_{i} \cap\left(R_{v}-w\right), i \in[3]$.

Now $\left(P_{1} \cup P_{2} \cup P_{3}\right)-\operatorname{Int}\left(R^{\prime}\right)$, and $(Q-v) \cup B_{b} \cup B_{c}$ give three independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ in L^{*}, such that $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+w$ and $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ attaches to two of $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}\left(\right.$ as $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on both $P_{3}\left(b_{1}, b^{\prime}\right]$ and $\left.P_{3}\left(b^{\prime}, b_{2}\right)\right)$. Hence, either $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, or $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, w$ contradict (C4).

4.2 Structures

In this section, we apply Lemma 4.1.1 to obtain structures for H_{1} and H_{m+1} and rungs R in L^{*} not contained in $H_{1} \cup H_{m+1}$. Then, in Lemma 4.2.4, we conclude that only H_{1} or
H_{m+1} could intersect all three paths.

4.2.1 $\quad H_{1}$ and H_{m+1}

First, consider H_{1} and H_{m+1} in L^{*}.
Lemma 4.2.1. If $B_{i} \cap \operatorname{Int}\left(H_{1}\right) \neq \emptyset$ for $i \in[3]$ and if $w^{\prime} \in V\left(H_{1}\right) \backslash T_{1}$ and $w^{\prime \prime} \notin V\left(H_{1}\right)$, then, there exists $w^{*} \in S \cap\left(V\left(H_{1}\right) \backslash\left(T_{1} \cup\left\{b_{1}\right\}\right)\right)$ such that,
(a) for each $s \in S \cap V\left(B_{3}\left(b_{1}, w^{*}\right]\right)$, s is contained in a 3-cut of $H_{1}^{*}:=H_{1}+\{w$, wv : $\left.v \in N(w) \cap \operatorname{Int}\left(H_{1}\right)\right\}$ separating b_{1} from $T_{1} \cup\{w\}$, and
(b) for each $s \in S \cap V\left(B_{3}\left(w^{*}, w\right)\right)$, s is contained in a 3-cut of H_{1}^{*} separating $\left\{b_{1}, x_{3}\right\}$ from $\left\{w, x_{1}, x_{2}\right\}$, where for $i \in[2], x_{i}$ denotes the end of $B_{i} \cap H_{1}$ other than b_{1}, and $x_{3} \in T_{1} \backslash\left\{x_{1}, x_{2}\right\}$.

The same holds for H_{m+1} and b_{2}.

Proof. By symmetry, we prove the assertion for H_{1}. By definition, $B_{i} \cap H_{1}^{*}, i \in[3]$, are paths in H_{1} from b_{1} to $\left\{u_{1}, v_{1}, w_{1}, w\right\}$ with only b_{1} in common. Let $w^{*} \in S \cap\left(V\left(H_{1}\right) \backslash\left(T_{1} \cup\right.\right.$ $\left.\left.\left\{b_{1}\right\}\right)\right)$ such that w^{*} is contained in some 3-cut T of H_{1}^{*} separating b_{1} from $T_{1} \cup\{w\}$; and if such w^{*} does not exist we set $w^{*}=b_{1}$. We choose w^{*} such that $B_{3}\left[b_{1}, w^{*}\right]$ is maximal. Let H_{1}^{\prime} denote the T-bridge of H_{1}^{*} containing b_{1} (with $V\left(H_{1}^{\prime}\right)=\left\{b_{1}\right\}$ if $w^{*}=b_{1}$).

We claim that for any $s \in S \cap V\left(B_{3}\left(b_{1}, w^{*}\right)\right), s$ is contained in some 3-cut of H_{1}^{\prime} separating b_{1} from T. For, otherwise, $H_{1}^{\prime}-s$ contains independent paths from b_{1} to T with only b_{1} in common. Now these three paths and $B_{i}-\left(H_{1}^{\prime}-T\right)$ for $i \in[3]$ form three independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ in $H-s$ such that $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$ and $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has attachments on both B_{1}^{\prime} and B_{2}^{\prime}. Hence, $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ contradict (C4).

Now let $s \in S \cap V\left(B_{3}\left(w^{*}, w\right)\right)$ be arbitrary. By the choice of w^{*}, s is not contained in any 3 -cut of H_{1}^{*} separating b_{1} from $T_{1} \cup\{w\}$. For $i \in[2]$, let x_{i} be the end of $B_{i} \cap H_{1}$ other than b_{1}. Thus, $x_{1}, x_{2} \in T_{1}$, and let $x_{3} \in T_{1} \backslash\left\{x_{1}, x_{2}\right\}$.

If $H_{1}^{*}-s$ contains no independent paths from b_{1} to x_{1}, x_{2}, w, respectively, then s is contained in a 3 -cut T^{\prime} of H_{1}^{*} separating b_{1} from $\left\{x_{1}, x_{2}, w\right\}$. Since T^{\prime} cannot separate b_{1} from $T_{1} \cup\{w\}, T^{\prime}$ must separate $\left\{b_{1}, x_{3}\right\}$ from $\left\{w, x_{1}, x_{2}\right\}$.

So assume that $H_{1}^{*}-s$ contains independent paths Q_{1}, Q_{2}, Q_{3} from b_{1} to x_{1}, x_{2}, w, respectively. These paths, $B_{3}\left[w, b_{2}\right]$, and the parts of B_{1}, B_{2} outside H_{1} form three independent $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ in $H-s$. Since $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$ and $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has attachments on both B_{1} and B_{2}, it follows from (C4) that $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has all its attachments on $Q_{i}+b_{2}$ for exactly one $i \in[2]$, and that $V\left(A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \cap V\left(B_{3-i}\right) \subseteq V\left(H_{1}\right)$. So $u_{1} \notin V\left(B_{1} \cup B_{2} \cup B_{3}\right), u_{1} \in$ $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$, and $\left\{x_{1}, x_{2}\right\}=\left\{v_{1}, w_{1}\right\}$.

Thus, we may apply Lemma 4.1 .1 with the cut T_{1} as $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ and u_{1} as b^{\prime}. So L^{*} has a 3-cut $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ with $b^{\prime \prime} \in V\left(P_{3}\right)$ separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from b_{2}, and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has no attachment in $P_{3}\left(b^{\prime}, b^{\prime \prime}\right)$. Moreover, if $R^{\prime \prime}$ denotes the graph obtained from H by deleting the components of $L^{*}-\left(\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)$ containing b_{1} or b_{2}, then $R^{\prime \prime}=J^{\prime \prime} \cup L^{\prime \prime}$ with $b^{\prime} \in V\left(J^{\prime \prime}-L^{\prime \prime}\right)$, where $\left(J^{\prime \prime}, J^{\prime \prime} \cap L^{\prime \prime}\right)$ is planar, $J^{\prime \prime} \cap L^{\prime \prime}$ is an $a^{\prime}-b^{\prime \prime}$ path, and $L^{\prime \prime}$ is a ladder from $\left\{a^{\prime}, c^{\prime}, w\right\}$ to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ along $J^{\prime \prime} \cap L^{\prime \prime}$. Let $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ be three independent $b_{1}-b_{2}$ paths in $H-w^{*}$ obtained from $Q_{1} \cup Q_{2} \cup Q_{3}$, three disjoint paths in $L^{\prime \prime}$ from $\left\{v_{1}, w_{1}, w\right\}$ to $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$, and the subpaths of $P_{i}, i \in[3]$, from $\left\{a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right\}$ to b_{2}. Since $b^{\prime}=u_{1} \in V\left(A_{2}\left(B_{1}, B_{2}, B_{3}\right)\right)$, we see that $A_{2}^{\prime}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J^{\prime \prime}$. Thus, $B_{1}, B_{2}, B_{3}, w^{*}, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ contradict (C7).

4.2.2 Rungs not in $H_{1} \cup H_{m+1}$

Next, consider rungs $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ not contained in $H_{1} \cup H_{m+1}$. First, we show results of such rungs R with $w^{\prime} \in \operatorname{Int}(R)$ and $w^{\prime \prime} \notin V(R)$. We discuss them in two cases: $|\partial R|=5$ and $b=b^{\prime}$ in Lemma 4.2.2, and $|\partial R|=6$ or $|\partial R|=5$ and $b \neq b^{\prime}$ in Lemma 4.2.3.

Lemma 4.2.2. Suppose $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung in L^{*} such that $R \nsubseteq H_{1} \cup H_{m+1}$
and $\left|\left\{w^{\prime}, w^{\prime \prime}\right\} \cap \operatorname{Int}(R)\right|=1=\left|\left\{w^{\prime}, w^{\prime \prime}\right\} \cap V(R)\right|$. Moreover, assume that $b=b^{\prime}$ and $V\left(B_{i}\right) \cap \operatorname{Int}(R) \neq \emptyset$ for $i \in[3]$. Then, for all $s \in S \cap \operatorname{Int}(R)$, s is contained in a 3-cut of $R^{*}=R+\{w, w v: v \in N(w) \cap \operatorname{Int}(R)\}$ separating $\{a, b, c\}$ from $\left\{a^{\prime}, c^{\prime}, w\right\}$, or for all $s \in S \cap \operatorname{Int}(R)$, s is contained in a 3-cut of R^{*} separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ from $\{a, c, w\}$,

Proof. By symmetry, let $w^{\prime} \in \operatorname{Int}(R)$ and $w^{\prime \prime} \notin V(R)$, and we may assume that $b_{1}, w^{\prime}, w^{\prime \prime}, b_{2}$ occur on B_{3} in order. Note that $b \in V\left(P_{3}\right)$, and we may assume that $a \in$ $V\left(P_{2}\right)$, and $c \in V\left(P_{1}\right)$. Suppose for a contradiction that there exists some $w^{1} \in S \cap \operatorname{Int}(R)$ such that $R^{*}-w^{1}$ contains disjoint paths Q_{a}, Q_{b}, Q_{c} from a, b, c, respectively, to $\left\{a^{\prime}, c^{\prime}, w\right\}$.

Observe that $w \notin V\left(Q_{b}\right)$. For otherwise, by replacing $\left(P_{1} \cup P_{2}\right) \cap R$ with $Q_{a} \cup Q_{c}$, we obtain from P_{1}, P_{2} independent $b_{1}-b_{2}$ paths P_{1}^{\prime} and P_{2}^{\prime} such that $G-\left(P_{1}^{\prime} \cup P_{2}^{\prime}\right)$ contains an $a_{1}-a_{2}$ path. This shows that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

Hence, by symmetry, we may assume that $a^{\prime} \in V\left(Q_{b}\right), c^{\prime} \in V\left(Q_{a}\right)$, and $w \in V\left(Q_{c}\right)$. Let K denote the $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$-bridge of L^{*} containing $\left\{b_{1}, w^{\prime}\right\}$, and let $K^{*}=K+\{w, w x$: $x \in N(w) \cap V(K)\}$. Then $Q_{a}, Q_{b}, Q_{c}, P_{1}\left[b_{1}, c\right], P_{2}\left[b_{1}, a\right]$, and $P_{3}\left[b_{1}, b\right]$ form three independent paths $Q_{a}^{1}, Q_{c}^{1}, Q_{w}^{1}$ in $K^{*}-w^{1}$ from b_{1} to $a^{\prime}, c^{\prime}, w$, respectively, with $b \in V\left(Q_{a}^{\prime}\right)$. Hence, $Q_{a}^{1} \cap P_{3}=P_{3}\left[b_{1}, b\right]$.

Since $R \nsubseteq H_{1} \cup H_{m+1}, A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has an attachment on both $P_{3}\left(b_{1}, b\right]$ and $P_{3}\left(b, b_{2}\right)$. Since $b \in V\left(Q_{a}^{\prime}\right)$, we may apply Lemma 4.1 .1 with the paths $Q_{a}^{1}, Q_{c}^{1}, Q_{w}^{1}$. So L^{*} has a 3-cut $\left\{a^{2}, b^{2}, c^{2}\right\}$ with $b^{2} \in V\left(P_{3}\right)$ separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from b_{2}, and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has no attachment in $P_{3}\left(b^{\prime}, b^{2}\right)$. Moreover, if R^{2} denotes the graph obtained from H by deleting the components of $L^{*}-\left(\left\{a^{2}, b^{2}, c^{2}\right\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)$ containing b_{1} or b_{2}, then $R^{2}=J^{2} \cup L^{2}$ with $b^{\prime} \in V\left(J^{2}-L^{2}\right)$, where $\left(J^{2}, J^{2} \cap L^{2}\right)$ is planar, $J^{2} \cap L^{2}$ is an $a^{\prime}-b^{2}$ path, and L^{2} is a ladder from $\left(c^{\prime}, a^{\prime}, w\right)$ to $\left(a^{2}, b^{2}, c^{2}\right)$ along the path $J^{2} \cap L^{2}$. Note that L^{2} contains three disjoint paths $P_{a}^{2}, P_{c}^{2}, P_{w}^{2}$ from $a^{\prime}, c^{\prime}, w$, respectively, to $\left\{a^{2}, b^{2}, c^{2}\right\}$, with $P_{a}^{2}=J^{2} \cap L^{2}$.

If $N(w) \cap V\left(R^{*} \backslash\{a, b, c\}\right)=\emptyset$ then let $P_{1}^{2}, P_{2}^{2}, P_{3}^{2}$ be three independent $b_{1}-b_{2}$ paths in $H-w^{*}$ obtained from $Q_{a}^{1} \cup Q_{c}^{1} \cup Q_{w}^{1}, P_{a}^{2} \cup P_{c}^{2} \cup P_{w}^{2}$, and the subpaths of $P_{i}, i \in$ [3],
from $\left\{a^{2}, b^{2}, c^{2}\right\}$ to b_{2}. We see that $A_{2}^{\prime}\left(P_{1}^{2} \cup P_{2}^{2} \cup P_{3}^{2}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J^{2}$; so $B_{1}, B_{2}, B_{3}, w^{1}, P_{1}^{2}, P_{2}^{2}, P_{3}^{2}$ contradict (C7).

So assume $N(w) \cap V\left(R^{*} \backslash\{a, b, c\}\right) \neq \emptyset$.
We may assume that there exists $w^{2} \in S \cap \operatorname{Int}(R)$ such that $R^{*}-w^{2}$ contains disjoint paths $Q_{a}^{2}, Q_{b}^{2}, Q_{c}^{2}$ from $a^{\prime}, b^{\prime}, c^{\prime}$, respectively, to $\{a, c, w\}$; otherwise the assertion of the lemma holds. Hence, we may apply the same argument as above with respect to R and b_{1}, and conclude that L^{*} has a 3-cut $\left\{a^{1}, b^{1}, c^{1}\right\}$ with $b^{1} \in V\left(P_{3}\right)$ separating $\{a, b, c\} \cup$ $\left(N(w) \cap V\left(L^{*}\right)\right)$ from b_{1}, and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has no attachment in $P_{3}\left(b, b^{1}\right)$. Moreover, if R^{1} denotes the graph obtained from H by deleting the components of $L^{*}-\left(\left\{a^{1}, b^{1}, c^{1}\right\} \cup\right.$ $\{a, b, c\})$ containing b_{1} or b_{2} then $R^{1}=J^{1} \cup L^{1}$ with $b \in V\left(J^{1}-L^{1}\right)$, where $\left(J^{1}, J^{1} \cap L^{1}\right)$ is planar, $J^{1} \cap L^{1}$ is an a - b^{1} path, and L^{1} is a ladder from (c, a, w) to $\left(a^{1}, b^{1}, c^{1}\right)$ along $J^{1} \cap L^{1}$. Note that L^{1} contains three disjoint paths $P_{a}^{1}, P_{c}^{1}, P_{w}^{1}$ from a, c, w, respectively, to $\left\{a^{1}, b^{1}, c^{1}\right\}$, with $P_{a}^{1}=J^{1} \cap L^{1}$.

If $R-b$ has disjoint paths from a, c to c^{\prime}, a^{\prime}, respectively, then, by definition of rung, these paths can be chosen to avoid some $s \in S \cap \operatorname{Int}(R)$. So these two paths, $P_{a}^{i} \cup P_{c}^{i} \cup P_{w}^{i}$, $i \in[2]$, and subpaths of $P_{j}, j \in[3]$, from b_{i} to $\left\{a^{i}, b^{i}, c^{i}\right\}$, form three independent b_{1} b_{2} paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$. We can show that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible or there exists $s \in$ $S \cap \operatorname{Int}(R)$ such that $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, s$ contradict (C4).

Thus, $\left(R-b, a, a^{\prime}, c^{\prime}, c\right)$ is planar. Let X_{a}, X_{c} denote the disjoint paths in $R-b$ from a, c to a^{\prime}, c^{\prime}, respectively, such that $X_{a} \cup X_{c}$ is contained in the outer walk of $R-a$. Then $S \cap \operatorname{Int}(R) \subseteq V\left(X_{c}\right)$ by $(\mathrm{C} 4)$. Moreover, $\left(R, a, b, a^{\prime}, c^{\prime}, c\right)$ is 3-planar. For, otherwise, there exists $s \in S \cap V\left(P_{c}\left(c, c^{\prime}\right)\right)$ such that $R-s$ has disjoint paths from c, s to a^{\prime}, b, respectively, or disjoint paths from c^{\prime}, s to a, b, respectively. The $b-s$ path can be used to find an $a_{1}-a_{2}$ path that is disjoint from two $b_{1}-b_{2}$ paths using the other paths. So $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

Let $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ be three independent $b_{1}-b_{2}$ paths in H obtained from $X_{a} \cup X_{c}, P_{a}^{i} \cup P_{c}^{i} \cup P_{w}^{i}$ (for $i \in[2]$), and the subpaths of $P_{j}, j \in[3]$, from $\left\{a^{i}, b^{i}, c^{i}\right\}$ to b_{i} (for $i \in[2]$). We see that
$A_{2}^{\prime}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J^{1} \cup J^{2}$. Thus, either $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, or for some $s \in S \cap \operatorname{Int}(R), B_{1}, B_{2}, B_{3}, s, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ contradict (C7).

Lemma 4.2.3. Suppose $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung in L^{*} such that $|\partial R|=6$ or $|\partial R|=5$ and $b \neq b^{\prime}, R \nsubseteq H_{1} \cup H_{m+1}$, and $\left|\left\{w^{\prime}, w^{\prime \prime}\right\} \cap \operatorname{Int}(R)\right|=1=\left|\left\{w^{\prime}, w^{\prime \prime}\right\} \cap V(R)\right|$. Then there exists $i \in[2]$ such that $V\left(B_{i}\right) \cap \operatorname{Int}(R)=\emptyset$.

Proof. By symmetry, let $w^{\prime} \in \operatorname{Int}(R)$ and $w^{\prime \prime} \notin V(R)$, and assume that $b_{1}, w^{\prime}, w^{\prime \prime}, b_{2}$ occur on B_{3} in order. Note that $b, b^{\prime} \in V\left(P_{3}\right)$ and, since $R \nsubseteq H_{1} \cup H_{m+1}, A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on both $P\left(b_{1}, b\right]$ and $P\left[b^{\prime}, b_{2}\right)$. Since $|\partial R|=6$ or $|\partial R|=5$ and $b \neq b^{\prime}$, it follows from (b) of Lemma 3.2.4 (with appropriate relabeling) that R contains induced paths P_{a}, P_{c} from a, c to a^{\prime}, c^{\prime}, respectively, such that $R-\left(P_{a} \cup P_{c}\right)$ is connected and contains $\left\{b, b^{\prime}\right\}$, and $S \cap \operatorname{Int}(R) \subseteq V\left(P_{a} \cup P_{c}\right)$. Let $R^{*}=H[R+w]$. We claim that
(1) $N(w) \cap V(R) \subseteq V\left(P_{a} \cup P_{c}\right)$.

For otherwise, $R^{*}-\left(P_{a} \cup P_{c}\right)$ contains a path P_{w} from w to $\left\{b, b^{\prime}\right\}$. Let $P_{1}^{\prime}, P_{2}^{\prime}$ be the $b_{1}-b_{2}$ paths in L^{*} obtained from P_{1}, P_{2} by replacing $\left(P_{1} \cup P_{2}\right) \cap R$ with $P_{a} \cup P_{c}$. Since $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on both $P_{3}\left(b_{1}, b\right]$ and $P_{3}\left[b^{\prime}, b_{2}\right),\left(R^{*}-\left(P_{a} \cup P_{c}\right)\right) \cup\left(A_{1}\left(B_{1} \cup\right.\right.$ $\left.\left.B_{2} \cup B_{3}\right)-\left(B_{3}-w\right)\right) \cup\left(A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup\left(P_{3}\left(b_{1}, b_{2}\right)-R\right) \cup P_{w}\right.$ contains an $a_{1}-a_{2}$ path independent of $P_{1}^{\prime}, P_{2}^{\prime}$. This shows that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

By symmetry, let $w^{\prime} \in V\left(P_{c}\right)$. Then $c \neq c^{\prime}$. Suppose the assertion of the lemma fails, i.e., $V\left(B_{i}\right) \cap \operatorname{Int}(R) \neq \emptyset$ for $i \in[3]$. Then by planarity of $\left(R, a, b, c, c^{\prime}, b^{\prime}, a^{\prime}\right)$ or $\left(R-a, b, c, c^{\prime}, b^{\prime}\right), S \cap \operatorname{Int}(R) \subseteq V\left(P_{c}\left(c, c^{\prime}\right)\right)$. Let $s \in S \cap V\left(P_{c}\left(c, w^{\prime}\right)\right)$ with $P_{c}[c, s]$ minimal.
(2) s is not contained in any cut of R^{*} of order at most 3 separating $\left\{a, a^{\prime}, b, c\right\}$ from $\left\{b^{\prime}, c^{\prime}, w\right\}$.

For, suppose R^{*} has a 3-cut containing s, say $\left\{s, v_{1}, v_{2}\right\}$, separating $\left\{a, a^{\prime}, b, c\right\}$ from $\left\{b^{\prime}, c^{\prime}, w\right\}$.

First, assume $a=a^{\prime}$. Let K denote the $\left\{s, v_{1}, v_{2}\right\}$-bridge of R^{*} containing $\{a, b, c\}$. By choosing notation of v_{1} and v_{2}, we may assume that (K, b, c, s, v_{1}, v_{2}) is planar. Let K^{\prime} be obtained from $K+\left\{b c, s v_{1}, v_{1} v_{2}\right\}$ by adding a new vertex v and edges from v to all of $\left\{b, c, s, v_{1}, v_{2}\right\}$. Then by Hand-shaking lemma and Euler's formula, $5 \times 4+5+7\left(\left|V\left(K^{\prime}\right)\right|-\right.$ $6) \leq 6\left|V\left(K^{\prime}\right)\right|-12$. This implies $\left|V\left(K^{\prime}\right)\right| \leq 5$, a contradiction.

Now consider the case when $a \neq a^{\prime}$. Let K denote the $\left\{s, v_{1}, v_{2}\right\}$-bridge of R^{*} containing $\left\{a, a^{\prime}, b, c\right\}$. By choosing notation of v_{1} and v_{2}, we may assume that $\left(K, a, b, c, s, v_{1}, v_{2}, c^{\prime}\right)$ is planar. Let K^{\prime} be obtained from $K+\left\{a b, b c, s v_{1}, v_{1} v_{2}, v_{2} a^{\prime}\right\}$ by adding a new vertex v and edges from v to all of $\left\{a, b, c, s, v_{1}, v_{2}, a^{\prime}\right\}$. Then by Handshaking lemma and Euler's formula, $7 \times 4+7+8\left(\left|V\left(K^{\prime}\right)\right|-8\right) \leq 6\left|V\left(K^{\prime}\right)\right|-12$. This implies $\left|V\left(K^{\prime}\right)\right| \leq 10$. Hence, $U:=V(K) \backslash\left\{a, b, c, s, v_{1}, v_{2}, a^{\prime}\right\}$ contains at most two vertices. Since each vertex in U must have degree at least 8 and $U \cap N(w)=\emptyset$ by (1), we have $|U|=2$. However, this contradicts the planarity of $\left(R, a, b, c, c^{\prime}, b^{\prime}, a^{\prime}\right)$.

We claim that
(3) $a=a^{\prime}$.

For, suppose $a \neq a^{\prime}$. Then ($\left.R, a, b, c, c^{\prime}, b^{\prime}, a^{\prime}\right)$ is planar. Thus, $B_{3} \cap R^{*}$ must be a $c-w$ path, and $B_{1} \cap R^{*}$ and $B_{2} \cap R^{*}$ must be an $a-\left\{a^{\prime}, b^{\prime}\right\}$ path and a $b-\left\{b^{\prime}, c^{\prime}\right\}$ path. By (2) and planarity of R, we see that $R^{*}-s$ contains disjoint induced paths $B_{a}^{\prime}, B_{b}^{\prime}, B_{c}^{\prime}$ connecting the ends of $B_{1} \cap R^{*}, B_{2} \cap R^{*}, B_{3} \cap R^{*}$, respectively. Thus, by replacing $B_{1} \cap R^{*}, B_{2} \cap R^{*}, B_{3} \cap R^{*}$ with $B_{a}^{\prime}, B_{b}^{\prime}, B_{c}^{\prime}$, we obtain from B_{1}, B_{2}, B_{3} three independent induced $b_{1}-b_{2}$ paths $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$. Since $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ has attachments on both B_{1} and B_{2} and has no attachment in $\operatorname{Int}(R), A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has attachments on both B_{1}^{\prime} and B_{2}^{\prime}. Clearly, $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$. So $B_{1}^{\prime}, B_{2}^{\prime} B_{3}^{\prime}$ contradicts (C4).

By (3), $\left(R-a, b, c, c^{\prime}, c^{\prime}\right)$ is planar. Hence, by (2), $\left(R^{*}-a\right)-s$ contains disjoint paths B_{b}^{2}, B_{c}^{2} from b, c to c^{\prime}, w, respectively. Note that B_{b}^{2}, B_{c}^{2} and the subpaths of P_{i}, $i \in[3]$, between b_{1} and $\{a, b, c\}$ form three independent induced paths $Q_{a}^{2}, Q_{c}^{2}, Q_{w}^{2}$ from b_{1}
to a, c^{\prime}, w, respectively. Moreover, we see that $Q_{c}^{2} \cap P_{3}$ contains $P_{3}\left[b_{1}, b\right]$ and has has an attachment of $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)-b_{1}$. Note that $b^{\prime} \in V\left(Q_{c}^{2}\right)$ or the $\left(Q_{a}^{2} \cup Q_{c}^{2} \cup Q_{w}^{2}\right) \cap R^{*}$ bridge of R^{*} containing b^{\prime} has an attachment in Q_{c}^{2}. We can now apply Lemma 4.1.1 to obtain a 3-cut $\left\{a^{2}, b^{2}, c^{2}\right\}$ in L^{*} separating $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from b_{2}. Moreover, if R^{2} denotes the graph obtained from H by deleting the components of $L^{*}-\left(\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cup\right.$ $\left.\left\{a^{2}, b^{2}, c^{2}\right\}\right)$ containing b_{1} or b_{2}, then $R^{2}=J^{2} \cup L^{2}$ with $b^{\prime} \in V\left(J^{2}-L^{2}\right)$, where $\left(J^{2}, J^{2} \cap\right.$ $\left.L^{2}\right)$ is planar, $J^{2} \cap L^{2}$ is an $c^{\prime}-b^{2}$ path, and L^{2} is a ladder from $\left(a^{\prime}, c^{\prime}, w\right)$ to $\left(a^{2}, b^{2}, c^{2}\right)$ along $J^{2} \cap L^{2}$. Moreover, $L^{2}-J^{2}$ has disjoint paths from $\{a, w\}$ to $\left\{a^{2}, c^{2}\right\}$ which, we may assume, are P_{a}^{2}, P_{w}^{2} from a, w to a^{2}, c^{2}, respectively.

Let L_{1} denote the $\{a, b, c\}$-bridge of L^{*} containing H_{1}.
Case 1. $N(w) \cap V\left(L_{1}-\{a, b, c\}\right)=\emptyset$.
Let P_{b} be the $b-c^{\prime}$ path in the boundary of $R-a$ containing b^{\prime} but not c. Suppose P_{b} is an induced path. Then let $P_{3}^{\prime}:=P_{3}\left[b_{1}, b\right] \cup P_{b} \cup\left(J^{2} \cap L^{2}\right) \cup P_{3}\left[b^{2}, b_{2}\right]$, and let $P_{1}^{\prime}, P_{2}^{\prime}$ be obtained from P_{1}, P_{2} by replacing $\left(P_{1} \cup P_{2}\right) \cap\left(R \cup R^{2}\right)$ with $P_{a}^{2}, B_{c} \cup P_{w}^{2}$. We see that $A_{2}^{\prime}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J^{2}$; so $B_{1}, B_{2}, B_{3}, s, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ contradict (C7).

Hence, P_{b} is not an induced path. Thus, let $x y \in E(G) \backslash E\left(P_{b}\right)$ with $x, y \in V\left(P_{b}\right)$. Choose x, y with $P_{b}[x, y]$ maximal. To avoid the cut set $\{x, y, w, a, b\}$ in G, we may assume that $x b^{\prime}, b^{\prime} y \in E\left(P_{b}\right)$ and x, b^{\prime}, y occur on P_{b} in this order. Let $P_{3}^{\prime}:=P_{3}\left[b_{1}, b\right] \cup\left(P_{b}[b, x] \cup\right.$ $\left.x y \cup P_{b}\left[y, c^{\prime}\right]\right) \cup\left(J^{2} \cap L^{2}\right) \cup P_{3}\left[b^{2}, b_{2}\right]$. Let $P_{1}^{\prime}, P_{2}^{\prime}$ be defined as above.

If $b^{\prime} a \notin E(G)$, then we see that $A_{2}^{\prime}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J^{2}$; so $B_{1}, B_{2}, B_{3}, s, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ contradict (C7). Thus, $b^{\prime} a \in E(G)$. By symmetry between a^{2} and c^{2}, let $P_{c}^{\prime}, P_{w}^{\prime}$ be disjoint induced paths in $L^{2}-\left\{a, b^{2}\right\}$ from c, w to a^{2}, c^{2}, respectively. Let $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ be obtained from $\left(P_{1} \cup P_{2} \cup P_{3}\right)-\left(\left(R \cup R^{2}\right)-\left\{a, b, c, a^{2}, b^{2}, c^{2}\right\}\right.$ by adding $\left(P_{b}[b, x] \cup x y \cup P_{b}\left[y, c^{\prime}\right]\right) \cup P_{c}^{\prime}, a b^{\prime} \cup\left(J^{2}-\left(L^{2}-b^{2}\right)\right), B_{c} \cup P_{w}^{\prime}$. By choosing notation, we may assume $w \in V\left(B_{3}^{\prime}\right), P_{3}\left[b_{1}, b\right] \subseteq B_{1}^{\prime}$, and $P_{3}\left[b^{2}, b_{2}\right]+a \subseteq B_{2}^{\prime}$. Now $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has attachments on both B_{1}^{\prime} and B_{2}^{\prime}. Clearly, $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$;
so $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ contradict (C 4$)$.
Case 2. $N(w) \cap V\left(L_{1}-\{a, b, c\}\right)=\emptyset$.
Then consider disjoint paths B_{b}^{1}, B_{c}^{1} in $\left(R^{*}-a\right)-s$ from b^{\prime}, c^{\prime} to c, w, respectively, which exists by planarity of $\left(R-a, b, c, c^{\prime}, b^{\prime}\right)$. Now B_{b}^{1}, B_{c}^{1} and the subpaths of $P_{i}, i \in[3]$, between b_{2} and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ form three independent induced paths $Q_{a}^{1}, Q_{c}^{1}, Q_{w}^{1}$ from b_{2} to a, c, w, respectively. Moreover, we see that $Q_{c}^{1} \cap P_{3}$ contains $P_{3}\left[b_{2}, b^{\prime}\right]$ and has an attachment of $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)-b_{2}$. We can now apply Lemma 4.1.1 to obtain a 3 -cut $\left\{a^{1}, b^{1}, c^{1}\right\}$ in L^{*} separating $\{a, b, c\} \cup\left(N(w) \cap V\left(L^{*}\right)\right)$ from b_{1}. Moreover, if R^{1} denotes the graph obtained from H by deleting the components of $L^{*}-\left(\{a, b, c\} \cup\left\{a^{1}, b^{1}, c^{1}\right\}\right)$ containing b_{1} or b_{2}, then $R^{1}=J^{1} \cup L^{1}$ with $b \in V\left(J^{1}-L^{1}\right)$, where $\left(J^{1}, J^{1} \cap L^{1}\right)$ is planar, $J^{1} \cap L^{1}$ is an $c-b^{1}$ path, and L^{1} is a ladder from (a, c, w) to $\left(a^{1}, b^{1}, c^{1}\right)$ along $J^{1} \cap L^{1}$. Note, $L^{1}-J^{1}$ has disjoint paths from $\{a, w\}$ to $\left\{a^{1}, c^{1}\right\}$ which, we may assume, are P_{a}^{1}, P_{w}^{1} from a, w to a^{1}, c^{1}, respectively.

Let Q denote an induced $c-c^{\prime}$ path with $V(Q)$ contained in the boundary of $R-a$ disjoint from $P_{c}\left(c, c^{\prime}\right)$. Let $P_{3}^{\prime}=P_{3}\left[b_{1}, b^{1}\right] \cup\left(J^{1} \cap L^{1}\right) \cup Q \cup\left(J^{2} \cap L^{2}\right) \cup P_{3}\left[b^{2}, b_{2}\right]$, and let $P_{1}^{\prime}, P_{2}^{\prime}$ be the $b_{1}-b_{2}$ paths obtained from $P_{1} \cup P_{2}$ by replacing $\left(P_{1} \cup P_{2}\right) \cap\left(R^{1} \cup R^{2}\right)$ with $P_{a}^{1} \cup P_{a}^{2}$ and $P_{w}^{1} \cup P_{w}^{2}$. We see that $A_{2}^{\prime}\left(P_{1}^{\prime} \cup P_{2}^{\prime} \cup P_{3}^{\prime}\right)$ contains $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup J^{1} \cup J^{2} ;$ so $B_{1}, B_{2}, B_{3}, s, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ contradict (C7).

We conclude this section with the following result.

Lemma 4.2.4. Let $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ be a rung in L^{*} with $R \nsubseteq H_{1} \cup H_{m+1}$ and $b \neq b^{\prime}$. Then there exists $i \in[2]$ such that $\operatorname{Int}(R) \cap V\left(B_{i}\right)=\emptyset$.

Proof. Suppose $\operatorname{Int}(R) \cap V\left(B_{i}\right) \neq \emptyset$ for $i \in[2]$. Then, since G is 8 -connected, $S \cap \operatorname{Int}(R) \neq \emptyset$ and, hence, $V\left(B_{3}\right) \cap \operatorname{Int}(R) \neq \emptyset$. Since $R \nsubseteq H_{1} \cup H_{m+1}$, it follows from Lemma 4.2.3 that $w^{\prime}, w^{\prime \prime} \in V(R)$ or $\left\{w^{\prime}, w^{\prime \prime}\right\} \cap \operatorname{Int}(R)=\emptyset$. Hence, $|\partial R|=6$. By Lemma 3.2.4, let P_{a}, P_{c} be the induced paths in R from a, c to a^{\prime}, c^{\prime}, respectively, such that $R-\left(P_{a} \cap P_{c}\right)$ is connected and contains $\left\{b, b^{\prime}\right\}$. Note that $N(w) \cap \operatorname{Int}(R) \subseteq V\left(P_{a} \cup P_{c}\right)$;
as otherwise $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ would be feasible.
Suppose $\left\{w^{\prime}, w^{\prime \prime}\right\} \cap \operatorname{Int}(R)=\emptyset$ or $B_{3} \cap R \subseteq P_{a}$ or $B_{3} \cap R \subseteq P_{c}$. Then $B_{i} \cap R, i \in[3]$, are $\{a, b, c\}-\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ paths. By Lemma 3.2.4, we may assume that $B_{1} \cap R=P_{a}$ and $B_{3} \cap R=P_{c}$. So there exists $s \in S \cap V\left(P_{c}\left(c, c^{\prime}\right)\right)$. By definition of rung, R has no 3-cut separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Hence, $R-s$ has three disjoint paths Q_{a}, Q_{b}, Q_{c} from a, b, c, respectively, to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. By Lemma 3.2.4 again, $a^{\prime} \in V\left(Q_{a}\right), b^{\prime} \in V\left(Q_{b}\right)$, and $c^{\prime} \in V\left(Q_{c}\right)$. For each $i \in[3]$, let B_{i}^{\prime} be obtained from B_{i} by replacing $B_{i} \cap R$ with one of Q_{a}, Q_{b}, Q_{c}. Now $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$, and $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has attachments on both B_{1}^{\prime} and B_{2}^{\prime} (as $R \nsubseteq H_{1} \cup H_{m+1}$). So $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$, w contradict (C4).

Hence, we may assume $w^{\prime} \in V\left(P_{a}\right)$, and $w^{\prime \prime} \in V\left(P_{c}\right)$. Choose $w_{a} \in N(w) \cap V\left(P_{a}\right)$ with $P_{a}\left[a, w_{a}\right]$ minimal, and choose $w_{c} \in N(w) \cap V\left(P_{c}\right)$ with $P_{c}\left[w_{c}, c^{\prime}\right]$ minimal. Note that $S \cap \operatorname{Int}(R) \subseteq V\left(P_{a}\left[a, w_{a}\right]\right) \cup V\left(P_{c}\left[w_{c}, c^{\prime}\right]\right)$. For otherwise, we could modify B_{3} by replacing $B_{3}\left(w_{a}, w_{c}\right)$ with $w_{a} w w_{c}$ to obtain a new $b_{1}-b_{2}$ path B_{3}^{\prime}. Now $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ and some vertex $s \in S \cap \operatorname{Int}(R)$. Moreover, $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on both B_{1}^{\prime} and B_{2}^{\prime}. So $B_{1}, B_{2}, B_{3}^{\prime}, s$ contradict (C4).

Suppose there exists $s \in S$ with $s \in V\left(P_{a}\left(a, w_{a}\right)\right) \cup V\left(P_{c}\left(w_{c}, c^{\prime}\right)\right)$. By symmetry, assume $s \in V\left(P_{c}\left(w_{c}, c^{\prime}\right)\right)$. Since R has no 3-cut separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}, R-$ $\left(P_{a}\left[w_{a} a^{\prime}\right] \cup P_{c}\left[c, w_{c}\right]\right)-s$ contains two disjoint paths Q_{a}, Q_{b} from a, b to b^{\prime}, c^{\prime}, respectively. Without loss of generality, we may assume $a, a^{\prime} \in V\left(P_{1}\right)$ and $c, c^{\prime} \in V\left(P_{2}\right)$. Let $B_{1}^{\prime}=$ $P_{1}\left[b_{1}, a\right] \cup Q_{a} \cup P_{3}\left[b^{\prime}, b_{2}\right], B_{2}^{\prime}=P_{3}\left[b_{1}, b\right] \cup Q_{b} \cup P_{1}\left[c^{\prime}, b_{2}\right], B_{3}^{\prime}=P_{2}\left[b_{1}, c\right] \cup P_{c}\left[c, w_{c}\right] \cup$ $w_{c} w w_{a} \cup P_{a}\left[w_{a}, a^{\prime}\right] \cup P_{1}\left[a^{\prime}, b_{2}\right]$. Now $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ are independent $b_{1}-b_{2}$ paths. Moreover, $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s$, and $A_{2}^{\prime}\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has attachments on both B_{1} and B_{2} (as $R \nsubseteq H_{1} \cup H_{m+1}$), contradicting (C4).

Thus, $S \cap\left(V\left(P_{a}\left(a, w_{a}\right)\right) \cup V\left(P_{c}\left(w_{c}, c^{\prime}\right)\right)\right)=\emptyset$. This implies that $S \cap \operatorname{Int}(R) \subseteq$ $\left\{w_{a}, w_{c}\right\}$. Let R^{*} be the plane graph obtained from $G[R+w]$ by adding $b a, b c, b^{\prime} a^{\prime}, b^{\prime} c^{\prime}$ and all edges from w to $V\left(P_{a} \cup P_{c}\right) \cup\left\{b, b^{\prime}\right\}$. Now $\left|E\left(R^{*}\right)\right| \geq 8\left(\left|R^{*}\right|-8\right)+6 \times 4+2 \times 5=$ $8\left|R^{*}\right|-30$. So $8\left|R^{*}\right|-30 \leq 6\left|R^{*}\right|-12$. This implies $\left|R^{*}\right| \leq 9$, a contradiction as
$|N(b) \cap \operatorname{Int}(R)| \geq 2$ by (ii) of Proposition 2.3.2.

CHAPTER 5

STRUCTURE OF OTHER RUNGS

In this chapter, we consider rungs R in L^{*} such that $\operatorname{Int}(R) \cap B_{i}=\emptyset$ for some $i \in[2]$.
First, in section 5.1, we prove technical lemmas for separation $\left(G^{\prime}, G^{\prime \prime}\right)$ of $G-\left(A_{1}\left(B_{1} \cup\right.\right.$ $\left.\left.B_{2} \cup B_{3}\right)-B_{3}\right)$ in which $B_{i} \cap\left(G^{\prime}-G^{\prime \prime}\right)=\emptyset$ for some $i \in[2]$. Then, we deal with H_{1}, H_{m+1} in subsection 5.2.1 and all other rungs in subsection 5.2.2.

For $x, y \in V\left(B_{j}\right)$ for some $j \in[3]$, we denote $x \preceq y$ if $B_{j}\left[b_{1}, x\right] \subseteq B_{j}\left[b_{1}, y\right]$; and $x \prec y$ if $x \preceq y$ and $x \neq y$.

5.1 Technical lemmas

We begin by showing that for any rung R in L^{*} or for H_{1}, H_{m+1}, if neither B_{1} nor B_{2} intersects $\operatorname{Int}(R)$ or $\operatorname{Int}\left(H_{1}\right)$, or $\operatorname{Int}\left(H_{m+1}\right)$, then $\operatorname{Int}(R), \operatorname{Int}\left(H_{1}\right), \operatorname{Int}\left(H_{m+1}\right) \subseteq S$. For convenience, we prove a more general statement in terms of separations in $G-\left(A_{1}\left(B_{1} \cup\right.\right.$ $\left.\left.B_{2} \cup B_{3}\right)-B_{3}\right)$.

Lemma 5.1.1. Suppose $\left(G^{\prime}, G^{\prime \prime}\right)$ is a separation of $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)$ such that $\left|V\left(G^{\prime} \cap G^{\prime \prime}\right)\right| \leq 7, V\left(G^{\prime}-G^{\prime \prime}\right) \neq \emptyset$, and $V\left(G^{\prime \prime}-G^{\prime}\right) \neq \emptyset$. Suppose $V\left(G^{\prime}-G^{\prime \prime}\right) \cap$ $V\left(B_{1} \cup B_{2}\right)=\emptyset$. Then $V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq S$.

Proof. Note $S \cap V\left(G^{\prime}-G^{\prime \prime}\right) \neq \emptyset$; otherwise $V\left(G^{\prime} \cap G^{\prime \prime}\right)$ is a cut of G contradicting the $(8, S)$-connectivity. Let $r_{1}, r_{2} \in V\left(B_{3}\right) \cap V\left(G^{\prime} \cap G^{\prime \prime}\right)$ be such that $B_{3}\left[r_{1}, r_{2}\right]$ is maximal. Note that it is possible $B_{3}\left[r_{1}, r_{2}\right] \nsubseteq G^{\prime}$.

Suppose $V\left(G^{\prime}-G^{\prime \prime}\right) \nsubseteq S$ and let X be an S-bridge of $G^{\prime}-\left(V\left(G^{\prime} \cap G^{\prime \prime}\right) \backslash\left\{r_{1}, r_{2}\right\}\right)$ with $X-S \neq \emptyset$. Let $x_{1}, x_{2} \in V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)$ such that $B_{3}\left[x_{1}, x_{2}\right]$ is maximal. Then $\left|V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right| \geq 3$; otherwise, $\left(V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right) \cup\left(V\left(G^{\prime} \cap G^{\prime \prime}\right) \backslash\left\{r_{1}, r_{2}\right\}\right)$
is a cut of G separating $V(X) \backslash\left(S \cup\left\{r_{1}, r_{2}\right\}\right)$ from $V\left(G^{\prime \prime}-G^{\prime}\right)$, a contradiction to the $(8, S)$-connectivity of G.

Hence, there exists $s \in V\left(B_{3}\left(x_{1}, x_{2}\right)\right) \cap S$. Let A be any induced $x_{1}-x_{2}$ path in $X-s$, and $B_{3}^{\prime}=\left(B_{3}-B_{3}\left(x_{1}, x_{2}\right)\right) \cup Q$. Then $B_{1}, B_{2}, B_{3}^{\prime}$ are independent $b_{1}-b_{2}$ paths in G such that $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+w$ and $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ attaches to both B_{1} and B_{2}, a contradiction.

Next, we consider rungs R when $\operatorname{Int}(R) \cap B_{i}=\emptyset$ for exactly one $i \in[2]$. Again we prove statements in terms of separations in $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)$. We first show that all internal vertices are in $V\left(B_{i}\right) \cup S$ in Lemma 5.1.2. Then, we give structural results of such rungs in Lemma 5.1.3.

Lemma 5.1.2. Suppose $\left(G^{\prime}, G^{\prime \prime}\right)$ is a separation of $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)$ such that $\left|V\left(G^{\prime} \cap G^{\prime \prime}\right)\right| \leq 7, V\left(G^{\prime}-G^{\prime \prime}\right) \neq \emptyset$, and $V\left(G^{\prime \prime}-G^{\prime}\right) \neq \emptyset$. Let $i \in[2]$ such that $V\left(G^{\prime}-G^{\prime \prime}\right) \cap V\left(B_{i}\right) \neq \emptyset$, and $V\left(G^{\prime}-G^{\prime \prime}\right) \cap V\left(B_{3-i}\right)=\emptyset$. Then $V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq V\left(B_{i}\right) \cup S$. Proof. Note $S \cap V\left(G^{\prime}-G^{\prime \prime}\right) \neq \emptyset$; otherwise $V\left(G^{\prime} \cap G^{\prime \prime}\right)$ is a cut of G contradicting the $(8, S)$-connectivity of G. Let $r_{1}, r_{2} \in V\left(B_{3}\right) \cap V\left(G^{\prime} \cap G^{\prime \prime}\right)$ and $t_{1}, t_{2} \in V\left(B_{i}\right) \cap V\left(G^{\prime} \cap G^{\prime \prime}\right)$ be such that $B_{3}\left[r_{1}, r_{2}\right]$ and $B_{i}\left[t_{1}, t_{2}\right]$ are maximal. For convenience, let $G^{*}=G^{\prime}-\left(V\left(G^{\prime} \cap\right.\right.$ $\left.\left.G^{\prime \prime}\right) \backslash\left\{r_{1}, r_{2}, t_{1}, t_{2}\right\}\right)$. We may assume $r_{1} \prec r_{2}$ and $t_{1} \prec t_{2}$.

Suppose for a contradiction, $V\left(G^{\prime}-G^{\prime \prime}\right) \backslash\left(V\left(B_{i}\right) \cup S\right) \neq \emptyset$. Then G^{*} has a $\left(\left(B_{i} \cup\right.\right.$ $S) \cap G^{*}$)-bridge X such that $V(X) \backslash\left(V\left(B_{i}\right) \cup S\right) \neq \emptyset$. Choose X and modify $B_{i} \cap G^{*}$ (if necessary) so that
(1) $\left|V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right|$ is maximal, and
(2) subject to (1), X is maximal.

Let $x_{1}, x_{2} \in V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)$ with $B_{3}\left[x_{1}, x_{2}\right]$ maximal, and let $x_{1} \prec x_{2}$. We claim that
(3) $\left|V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right| \leq 2$.

For, otherwise, there exists $s \in V(X) \cap V\left(B_{3}\left(x_{1}, x_{2}\right)\right) \cap S$. Let Q be any induced $x_{1}-x_{2}$ path in $X-\left(B_{i}+\left(S \backslash\left\{x_{1}, x_{2}\right\}\right)\right)$, and let $B_{3}^{\prime}=\left(B_{3}-B_{3}\left(x_{1}, x_{2}\right)\right) \cup Q$. Then $B_{1}, B_{2}, B_{3}^{\prime}$ are independent $b_{1}-b_{2}$ paths in $G-\left\{a_{1}, a_{2}\right\}$ such that $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup\right.$ $\left.B_{2} \cup B_{3}\right)+s$ and $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}^{\prime}\right)$ attaches to both B_{1} and B_{2}, a contradiction.

By (3), $V\left(B_{3}\left(x_{1}, x_{2}\right)\right) \cap S=\emptyset$; so we may choose B_{3} such that
(4) $B_{3}\left[x_{1}, x_{2}\right] \subseteq X$.

Then, $\left|V\left(X \cap B_{i}\right)\right| \geq 2$; otherwise by (3), $V\left(X \cap B_{i}\right) \cup\left(V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right) \cup$ $\left(V\left(G^{\prime} \cap G^{\prime \prime}\right) \backslash\left\{r_{1}, r_{2}, t_{1}, t_{2}\right\}\right)$ is a cut in G of size ≤ 7 separating $V\left(X-\left(B_{i} \backslash S\right)\right.$ from $G^{\prime \prime}-G^{\prime}$, contradicting the $(8, S)$ connectivity of G. Let $y_{1}, y_{2} \in V\left(X \cap B_{i}\right)$ with $y_{1} \prec y_{2}$ such that $B_{i}\left[y_{1}, y_{2}\right]$ is maximal. Then
(5) G^{*} has no path from $B_{i}\left(y_{1}, y_{2}\right)$ to $B_{i}-B_{i}\left[y_{1}, y_{2}\right]$ and internally disjoint from $B_{i} \cup B_{3}$.

For otherwise, let Q be an induced path in G^{*} from $z_{1} \in V\left(B_{i}\left(y_{1}, y_{2}\right)\right)$ to $z_{2} \in V\left(B_{i}-\right.$ $\left.B_{i}\left[y_{1}, y_{2}\right]\right)$, and let B_{i}^{\prime} be an induced $b_{1}-b_{2}$ path in $\left(B_{i}-B_{i}\left(z_{1}, z_{2}\right)\right) \cup Q$. Then, the $\left(\left(B_{i}^{\prime} \cup\right.\right.$ $S) \cap G^{*}$-bridge of G^{*} containing X also contains z_{2}, contradicting (2).
(6) $\left|V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right| \geq 1$.

For, suppose $V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)=\emptyset$. Then by (1), no $\left(\left(B_{i} \cup S\right) \cap G^{*}\right)$-bridge of G^{*} has attachment in $S \cup\left\{r_{1}, r_{2}\right\}$. Hence by (5) and since $S \cap V\left(G^{*}\right) \subseteq V\left(B_{3}\right)$, there exists an induced path Q^{\prime} in G^{*} from some vertex $y \in V\left(B_{i}\left(y_{1}, y_{2}\right)\right)$ to some vertex $s \in$ $\left(S \cup\left\{r_{1}, r_{2}\right\}\right) \cap V\left(G^{*}\right)$, internally disjoint from $X \cup B_{i}+S$. Let $Q^{\prime \prime}$ be an induced $y_{1}-y_{2}$ path in $X-B_{i}\left(y_{1}, y_{2}\right)$ and $B_{i}^{\prime \prime}:=\left(B_{i}-B_{i}\left(y_{1}, y_{2}\right)\right) \cup Q^{\prime \prime}$. Then, the $\left(\left(B_{i}^{\prime \prime} \cup S\right) \cap G^{*}\right)$-bridge of G^{*} containing Q^{\prime} also contains s, contradicting (1).

By (3) and (6), we have two cases.
Case 1. $\left|V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right|=2$.

Since $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \cup\left(V\left(G^{\prime} \cap G^{\prime \prime}\right) \backslash\left\{r_{1}, r_{2}, t_{1}, t_{2}\right\}\right)$ is not a cut in G separating $X-$ $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ from $G^{\prime \prime}-G^{\prime}$, it follows from (5) that there is a $y_{3}-x_{3}$ path Q in G^{*} internally disjoint from $X \cup B_{i}+S$, with $y_{3} \in V\left(B_{i}\left(y_{1}, y_{2}\right)\right)$ and $x_{3} \in V\left(B_{3}\right)$. Since $B_{3} \cap B_{i} \subseteq$ $\left\{b_{1}, b_{2}\right\}$, if $B_{3} \cap Q \neq \emptyset$ then x_{3} may be chosen so that $x_{3} \in\left(S \cup\left\{r_{1}, r_{2}\right\}\right) \backslash\left\{x_{1}, x_{2}\right\}$.

Note that $x_{j} \in V\left(B_{3}\left(x_{3-j}, x_{3}\right)\right)$ for some $j \in[2]$, and thus, $x_{j} \in S$. By symmetry, we may assume $j=2$ and $x_{1} \prec x_{2} \prec x_{3}$, and that there exists $z \in V\left(A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right) \cap\right.$ $\left.B_{i}\left[b_{1}, y_{2}\right)\right)$. Let Q^{\prime} be any $x_{1}-y_{2}$ path in $X-y_{3}$ internally disjoint from $B_{i} \cup S$.

Then, the following paths show that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible: $B_{3-i}, B_{3}\left[b_{1}, x_{1}\right] \cup Q^{\prime} \cup$ $B_{i}\left[y_{2}, b_{2}\right]$, and an $a_{1}-a_{2}$ path in the union of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(B_{3}-x_{3}\right), B_{i}\left[z, y_{3}\right] \cup Q \cup$ $B_{3}\left[x_{3}, x_{2}\right]$, and $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(\left(B_{1} \cup B_{2}\right)-z\right)$.

Case 2. $\left|V(X) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right|=1$.
So $x_{1}=x_{2}$. Since $\left\{x_{1}, y_{1}, y_{2}\right\} \cup\left(V\left(G^{\prime} \cap G^{\prime \prime}\right) \backslash\left\{r_{1}, r_{2}, t_{1}, t_{2}\right\}\right)$ is not a cut in G separating $X-\left\{x_{1}, y_{1}, y_{2}\right\}$ from $G^{\prime \prime}-G^{\prime}$, it follows from (5) that there exist disjoint paths Q_{1}, Q_{2} from $z_{1}, z_{2} \in V\left(B_{i}\left(y_{1}, y_{2}\right)\right)$ to $x_{2}, x_{3} \in V\left(B_{3}-x_{1}\right)$, respectively, internally disjoint from $X \cup B_{i}+S$. We may choose $x_{2}, x_{3} \in\left(S \cup\left\{r_{1}, r_{2}\right\}\right) \backslash\left\{x_{1}\right\}$. (If Q_{1}, Q_{2} intersect $B_{3}-S$ then we obtain a new bridge contradicting (1).) Since the order of z_{1}, z_{2} will not matter in the rest of our argument, we may assume $x_{1} \prec x_{2} \prec x_{3}$ or $x_{2} \prec x_{1} \prec x_{3}$.

First, suppose $x_{1} \prec x_{2} \prec x_{3}$. Let Q be an induced $x_{1}-y_{2}$ path in X independent of B_{i}, and let $B_{i}^{\prime}=B_{i}\left[b_{1}, z_{2}\right] \cup Q_{2} \cup B_{3}\left[x_{3}, b_{2}\right]$ and $B_{3}^{\prime}=B\left[b_{1}, x_{1}\right] \cup Q \cup B_{i}\left[y_{2}, b_{2}\right]$. Note that $A_{2}\left(B_{3-i} \cup B_{i}^{\prime} \cup B_{3}^{\prime}\right)$ attaches to B_{3-i} as well as B_{i}^{\prime} or B_{3}^{\prime}. If $A_{2}\left(B_{3-i} \cup B_{i}^{\prime} \cup B_{3}^{\prime}\right)$ attaches to B_{3}^{\prime} then, since $x_{1} \in S$, we see that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible. If $A_{2}\left(B_{3-i} \cup B_{i}^{\prime} \cup\right.$ $\left.B_{3}^{\prime}\right)$ attaches to B_{i}^{\prime} then $B_{3-I}, B_{i}^{\prime}, B_{3}^{\prime}, x_{1}$ contradict (C4) as $A_{1}\left(B_{3-i} \cup B_{i}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+x_{1}$.

Now suppose $x_{2} \prec x_{1} \prec x_{3}$. Let Y be an induced $y_{1}-y_{2}$ path in $X-x_{1}$ independent of B_{i}, let $B_{3}^{\prime}=B_{3}\left[b_{1}, x_{2}\right] \cup Q_{1} \cup B_{i}\left[z_{1}, z_{2}\right] \cup Q_{2} \cup B_{3}\left[x_{3}, b_{2}\right]$ and let $B_{i}^{\prime}=B_{i}\left[b_{1}, y_{1}\right] \cup Y \cup$ $B_{i}\left[y_{2}, b_{2}\right]$. Then $A_{1}\left(B_{3-i} \cup B_{i}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+x_{1}$. So $B_{3-i}, B_{i}^{\prime}, B_{3}^{\prime}, x_{1}$ contradict (C4).

Lemma 5.1.3. Suppose $\left(G^{\prime}, G^{\prime \prime}\right)$ is a separation of $G-\left(A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-B_{3}\right)$ such that $\left|V\left(G^{\prime} \cap G^{\prime \prime}\right)\right| \leq 7, V\left(G^{\prime}-G^{\prime \prime}\right) \neq \emptyset$ and $V\left(G^{\prime \prime}-G^{\prime}\right) \neq \emptyset$. Suppose for some $i \in[2], V\left(G^{\prime}-G^{\prime \prime}\right) \cap V\left(B_{i}\right) \neq \emptyset$, and $V\left(G^{\prime}-G^{\prime \prime}\right) \cap V\left(B_{3-i}\right)=\emptyset$. Let $r_{1}, r_{2} \in$ $V\left(G^{\prime} \cap G^{\prime \prime} \cap B_{3}\right)$ and $t_{1}, t_{2} \in V\left(G^{\prime} \cap G^{\prime \prime} \cap B_{i}\right)$ such that $B_{3}\left[r_{1}, r_{2}\right]$ and $B_{i}\left[t_{1}, t_{2}\right]$ are maximal, and $N_{G^{\prime}-G^{\prime \prime}}\left(r_{j}\right) \cap S \neq \emptyset$ for both $j \in[2]$. Let $V^{\prime}=V\left(G^{\prime} \cap G^{\prime \prime}\right) \backslash\left(\left\{r_{1}, r_{2}\right\} \cup V\left(B_{i}\right)\right)$.

Then, for some e with $e=\emptyset$ or $e \in E\left(G^{\prime}-V^{\prime}\right)$ incident to either r_{1} or r_{2}, if $x_{j} y_{j} \in$ $E\left(G^{\prime}-V^{\prime}\right) \backslash\left(E\left(B_{i} \cup B_{3}\right) \cup\{e\}\right)$ with $x_{j} \in V\left(B_{i}\right)$ and $y_{j} \in V\left(B_{3}\right)$ for $j \in[2]$, then $x_{1} \preceq x_{2}$ implies $y_{1} \preceq y_{2}$.

Proof. By Lemma 5.1.2, $V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq V\left(B_{i}\right) \cup S$. Thus, $G^{*}:=G^{\prime}-V^{\prime}$ is obtained from $G^{*} \cap\left(B_{i}\left[t_{1}, t_{2}\right] \cup B_{3}\left[r_{1}, r_{2}\right]\right)$ by adding edges with one end in B_{i} and the other end in B_{3}. For any distinct $x_{1}, x_{2} \in V\left(B_{i} \cap G^{*}\right)$ and distinct $y_{1}, y_{2} \in V\left(B_{3} \cap G^{*}\right)$, we say $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is a cross if $x_{1} \prec x_{2}, y_{1} \prec y_{2}$ and $x_{1} y_{2}, x_{2} y_{1} \in E\left(G^{*}\right)$. If there is no cross, lemma holds with $e=\emptyset$. So assume there is a cross.

For any cross $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, we have $S \cap V\left(B_{3}\left[b_{k}, y_{k}\right]\right)=\emptyset$ for some $k \in[2]$. For otherwise, both $b_{1}-b_{2}$ paths $B_{i}^{\prime}:=B_{i}\left[b_{1}, x_{1}\right] \cup\left\{x_{1} y_{2}\right\} \cup B_{3}\left[y_{2}, b_{2}\right], B_{3}^{\prime}:=B_{3}\left[b_{1}, y_{1}\right] \cup$ $\left\{y_{1} x_{2}\right\} \cup B_{i}\left[x_{2}, b_{2}\right]$ have an internal vertex in $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$. Since $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ attaches to B_{3-i} and one of B_{i}^{\prime} or B_{3}^{\prime}, we see that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

Thus, since $V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq V\left(B_{i}\right) \cup S$, we have, for any cross $\left(x_{1}, x_{2}, y_{1}, y_{2}\right), y_{j}=r_{j} \notin$ S for some $j \in[2]$. For convenience, let $t_{1} \prec t_{2}$ and $r_{1} \prec r_{2}$.

Next, we show that, for any cross $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, if $y_{1}=r_{1}$ then $B_{i}\left(t_{1}, x_{2}\right)=\emptyset$, and if $y_{2}=r_{2}$ then $B_{i}\left(t_{2}, x_{1}\right)=\emptyset$. For, otherwise, suppose $y_{1}=r_{1}$ and there exists $x \in V\left(B_{i}\left(t_{1}, x_{2}\right)\right)$. Since B_{i} is induced and G is 8 -connected, $\left|N_{G^{*}}(x) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)\right| \geq 3 ;$ so let $s_{1}, s_{2}, s_{3} \in N_{G^{*}}(x) \cap\left(S \cup\left\{r_{1}, r_{2}\right\}\right)$ with $s_{1} \prec s_{2} \prec s_{3}$. Then $s_{2} \in S \backslash\left\{r_{1}, r_{2}\right\}$. Let $B_{3-i}^{\prime}=B_{3-i}, B_{i}^{\prime}:=B_{i}\left[b_{1}, x\right] \cup\left\{x s_{3}\right\} \cup B_{3}\left[s_{3}, b_{2}\right]$, and $B_{3}^{\prime}:=B_{3}\left[b_{1}, y_{1}\right] \cup\left\{y_{1} x_{2}\right\} \cup B_{i}\left[x_{2}, b_{2}\right]$. Then we see that $A_{2}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ has attachments on B_{3-i}^{\prime} and one of B_{i}^{\prime} and B_{3}^{\prime}, and $A_{1}\left(B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}\right)$ contains $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)+s_{2}$. It is easy to see that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible or $B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, s_{2}$ contradict (C4).

Now let $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ be a cross with $y_{1}=r_{1} \notin S$, and we further choose this cross to maximize $B_{i}\left[t_{1}, x_{2}\right]$. By above, we see that $V\left(B\left[t_{1}, x_{2}\right]\right)=\left\{x_{1}, x_{2}\right\}$. If all crosses use the edge $y_{1} x_{2}$, then the assertion of the lemma holds with $e=y_{1} x_{2}$. So assume there is a cross $\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right)$ with $y_{1}^{\prime} x_{2}^{\prime} \neq y_{1} x_{2}$. Then $y_{1}^{\prime} \neq y_{1}$. Hence, $y_{1}^{\prime} \in S$ and $y_{2}^{\prime}=r_{2} \notin S$. This implies that $V\left(B_{i}\left[x_{1}^{\prime}, t_{2}\right]\right)=\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$. Note that $x_{1}^{\prime} \neq x_{1}$ and $x_{2}^{\prime} \neq x_{2}$ (as $V\left(B_{i}\right) \cap V\left(G^{\prime}-G^{\prime \prime}\right) \neq \emptyset$). Thus, $x_{2} \prec x_{1}^{\prime}$. By the maximality of $B_{i}\left[t_{1}, x_{2}\right]$, we see that $y_{2} \neq y_{1}^{\prime}$.

Let $B_{i}^{\prime}:=B_{i}\left[b_{1}, x_{1}\right] \cup\left\{x_{1} y_{2}\right\} \cup B_{3}\left[y_{2}, y_{1}^{\prime}\right] \cup\left\{y_{1}^{\prime} x_{2}^{\prime}\right\} \cup B_{i}\left[x_{2}^{\prime}, b_{2}\right]$ and $B_{3}^{\prime}:=B_{3}\left[b_{1}, r_{1}\right] \cup$ $\left\{r_{1} x_{2}\right\} \cup B_{i}\left[x_{2}, x_{1}^{\prime}\right] \cup\left\{x_{1}^{\prime} r_{2}\right] \cup B_{3}\left[r_{2}, b_{2}\right]$. Then, both $B_{i}^{\prime}\left(t_{1}, t_{2}\right)$ and $A_{2}\left(B_{1} \cup B_{2} \cup B_{3}\right)$ contains y_{1}^{\prime} and y_{2}; so $G-\left(B_{3}^{\prime} \cup B_{3-i}\right)$ has an $a_{1}-a_{2}$ path, showing that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

5.2 Structures

In this section, we use technical lemmas from previous section to give structural results of H_{1}, H_{m+1} and rungs $R \in L^{*}$ not contained in $H_{1} \cup H_{m+1}$.

5.2.1 $\quad H_{1}$ and H_{m+1}

First, we consider H_{1}, H_{m+1} when $\operatorname{Int}\left(H_{1}\right), \operatorname{Int}\left(H_{m+1}\right)$ intersects B_{i} for at most one $i \in[2]$.

Lemma 5.2.1. If $B_{i} \cap \operatorname{Int}\left(H_{1}\right) \neq \emptyset$ for at most one $i \in[2]$, then one of the following holds:
(a) $\operatorname{Int}\left(H_{1}\right) \subseteq S$.
(b) $\operatorname{Int}\left(H_{1}\right) \subseteq V\left(B_{i}\right) \cup S$ for some $i \in[2]$ and the following holds:

- Let $G^{\prime}:=G\left[V\left(H_{1}\right) \cup\{w\}\right] ;$ let $r_{1}, r_{2} \in V\left(B_{3}\right) \cap\left(T_{1} \cup\left\{w, b_{1}\right\}\right)$ and $t_{1}, t_{1} \in$ $V\left(B_{i}\right) \cap\left(T_{1} \cup\left\{w, b_{1}\right\}\right)$ such that $N\left(r_{j}\right) \cap S \cap \operatorname{Int}\left(H_{1}\right) \neq \emptyset$ for both $j \in[2]$ and subject to this, $B_{3}\left[r_{1}, r_{2}\right]$ and $B_{i}\left[t_{1}, t_{2}\right]$ are maximal; let $V^{\prime}=\left(T_{1} \cup\left\{w, b_{1}\right\}\right) \backslash$
$\left(\left\{r_{1}, r_{2}\right\} \cup V\left(B_{i}\right)\right)$. Then, there exists e with $e=\emptyset$ or e incident to either r_{1} or r_{2}, such that, if $x_{j} y_{j} \in E\left(G^{\prime}-V^{\prime}-e\right) \backslash E\left(B_{i} \cup B_{3}\right)$ with $x_{j} \in V\left(B_{i}\right)$ and $y_{j} \in V\left(B_{3}\right)$ for $j \in[2]$, then $x_{1} \preceq x_{2}$ implies $y_{1} \preceq y_{2}$.

The same holds for H_{m+1} and b_{2}.

Proof. If $\operatorname{Int}\left(H_{1}\right)=\emptyset$ then (a) holds. So assume $\operatorname{Int}\left(H_{1}\right) \neq \emptyset$. Then $\left|S \cap \operatorname{Int}\left(H_{1}\right)\right| \geq 3$; otherwise $T_{1} \cup\left\{w, b_{1}\right\} \cup\left(S \cap \operatorname{Int}\left(H_{1}\right)\right)$ is a cut in G of size ≤ 7 separating $\operatorname{Int}\left(H_{1}\right)$ from b_{2}, contradicting the $(8, S)$-connectivity of G.

Suppose $V\left(B_{1} \cup B_{2}\right) \cap \operatorname{Int}\left(H_{1}\right)=\emptyset$. Let $G^{\prime}:=G\left[V\left(H_{1}\right) \cup\{w\}\right]$ and $G^{\prime \prime}:=G-$ $\operatorname{Int}\left(H_{1}\right)-E\left(G\left[T_{1} \cup\left\{w, b_{1}\right\}\right]\right)$. Then, by Lemma 5.1.1, $\operatorname{Int}\left(H_{1}\right)=V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq S$, and thus, (a) holds.

So $V\left(B_{i}\right) \cap \operatorname{Int}\left(H_{1}\right) \neq \emptyset$ for some $i \in[2]$ and $V\left(B_{3-i}\right) \cap \operatorname{Int}\left(H_{1}\right)=\emptyset$. By Lemma 5.1.2 with $G^{\prime}:=G\left[V\left(H_{1}\right) \cup\{w\}\right]$ and $G^{\prime \prime}:=G-\operatorname{Int}\left(H_{1}\right)-E\left(G\left[T_{1} \cup\left\{w, b_{1}\right\}\right]\right), \operatorname{Int}\left(H_{1}\right) \subseteq$ $V\left(B_{i}\right) \cup S$.

Let $r_{1}, r_{2} \in V\left(B_{3}\right) \cap\left(T_{1} \cup\left\{w, b_{1}\right\}\right)$ and $t_{1}, t_{1} \in V\left(B_{i}\right) \cap\left(T_{1} \cup\left\{w, b_{1}\right\}\right)$ such that $N\left(r_{j}\right) \cap S \cap \operatorname{Int}\left(H_{1}\right) \neq \emptyset$ for both $j \in[2]$ and subject to this, $B_{3}\left[r_{1}, r_{2}\right]$ and $B_{i}\left[t_{1}, t_{2}\right]$ are maximal. Let $V^{\prime}=\left(T_{1} \cup\left\{w, b_{1}\right\}\right) \backslash\left\{r_{1}, r_{2}, t_{1}, t_{2}\right\}$. Then, $G^{\prime}-V^{\prime}=G\left[V\left(B_{3}\left[r_{1}, r_{2}\right] \cup\right.\right.$ $\left.\left.B_{i}\left[t_{1}, t_{2}\right]\right)\right]$, and (b) follows from Lemma 5.1.3.

5.2.2 Rungs not in $H_{1} \cup H_{m+1}$

We now consider rungs R in L^{*} such that $R \nsubseteq H_{1} \cup H_{m+1}$. First, we show that if a rung R is 3-planar then R is planar, except in a very special situation which can occur in at most twice in all rungs of L^{*}.

Corollary 5.2.2. Suppose ($\left.R^{\prime}, R^{\prime \prime}\right)$ is a separation of rung R in L^{*} such that $\left|V\left(R^{\prime} \cap R^{\prime \prime}\right)\right| \leq$ 3 and $\partial R \subseteq V\left(R^{\prime}\right)$. Then,
(a) $\left(R^{\prime \prime}, V\left(R^{\prime} \cap R^{\prime \prime}\right)\right)$ is planar, or
(b) $\left.\left\{w^{\prime}, w^{\prime \prime}\right\} \cap V\left(R^{\prime \prime}-R^{\prime}\right)\right) \neq \emptyset$ and $\left\{w^{\prime}, w^{\prime \prime}\right\} \nsubseteq V\left(R^{\prime \prime}\right),\left|V\left(R^{\prime} \cap R^{\prime \prime}\right)\right|=3, R^{\prime \prime}-R^{\prime} \neq \emptyset$, $V\left(R^{\prime \prime}-R^{\prime}\right) \subseteq B_{i} \cup S$ for some $i \in[2]$ and there exists $e=\emptyset$ or e has one end in $V\left(R^{\prime} \cap R^{\prime \prime}\right)$ such that $\left(R^{\prime \prime}-e, V\left(R^{\prime} \cap R^{\prime \prime}\right)\right)$ is planar.

Proof. Note that $V\left(R^{\prime \prime}-R^{\prime}\right) \cap S \neq \emptyset$ as G os 8 -connected. Suppose $\mid V\left(R^{\prime} \cap R^{\prime \prime}\right) \cap$ $V\left(B_{3}\right) \mid \geq 2$. Since $\left|V\left(R^{\prime} \cap R^{\prime \prime}\right)\right| \leq 3, V\left(R^{\prime \prime}-R^{\prime}\right) \cap V\left(B_{1} \cup B_{2}\right)=\emptyset$. Let $G^{\prime}:=R^{\prime \prime}$ and $G^{\prime \prime}:=G\left[V(G) \backslash V\left(R^{\prime \prime}-R^{\prime}\right)\right]$. Then, $\left|V\left(G^{\prime} \cap G^{\prime \prime}\right)\right| \leq 3$ and $V\left(G^{\prime}-G^{\prime \prime}\right) \cap V\left(B_{1} \cup B_{2}\right)=\emptyset$. By Lemma 5.1.1, $V\left(R^{\prime \prime}-R^{\prime}\right)=V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq S$, and thus, $R^{\prime \prime}-R^{\prime}$ is a subpath of B_{3}. Now, $R^{\prime \prime}-B_{3}=\emptyset$ or is a single vertex, and hence, $\left(R^{\prime \prime}, V\left(R^{\prime} \cap R^{\prime \prime}\right)\right)$ is planar and (a) holds.

Now, assume $\left|V\left(R^{\prime} \cap R^{\prime \prime} \cap B_{3}\right)\right|=1$. Then, $\left\{w^{\prime}, w^{\prime \prime}\right\} \cap V\left(R^{\prime \prime}-R^{\prime}\right) \neq \emptyset$ and $\left\{w^{\prime}, w^{\prime \prime}\right\} \nsubseteq$ $V\left(R^{\prime \prime}\right)$. Let $G^{\prime}:=G\left[V\left(R^{\prime \prime}\right) \cup\{w\}\right]$ and $G^{\prime \prime}:=G-\left(R^{\prime \prime}-R^{\prime}\right)-E\left(G\left[V\left(R^{\prime} \cap R^{\prime \prime}\right) \cup\{w\}\right]\right)$.

If $V\left(R^{\prime \prime}-R^{\prime}\right) \cap V\left(B_{1} \cup B_{2}\right)=\emptyset$, then by Lemma 5.1.1, $V\left(R^{\prime \prime}-R^{\prime}\right)=V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq S$, and thus, $R^{\prime \prime}-R^{\prime}$ is a subpath of B_{3}. Now, $V\left(R^{\prime \prime}-B_{3}\right)$ is a set of two vertices (in $\left.V\left(R^{\prime} \cap R^{\prime \prime}\right)\right)$ and, hence, $\left(R^{\prime \prime}, V\left(R^{\prime} \cap R^{\prime \prime}\right)\right)$ is planar.

So $V\left(R^{\prime \prime}-R^{\prime}\right) \cap V\left(B_{1} \cup B_{2}\right) \neq \emptyset$. Indeed, there exists unique $i \in[2]$ such that $V\left(R^{\prime \prime}-R^{\prime}\right) \cap V\left(B_{i}\right) \neq \emptyset$. Then, $\left|V\left(G^{\prime} \cap G^{\prime \prime}\right)\right|=\left|V\left(R^{\prime} \cap R^{\prime \prime}\right) \cup\{w\}\right|=4, V\left(G^{\prime}-\right.$ $\left.G^{\prime \prime}\right) \cap V\left(B_{i}\right) \neq \emptyset$, and $V\left(G^{\prime}-G^{\prime \prime}\right) \cap V\left(B_{3-i}\right)=\emptyset$. By Lemma 5.1.2, $V\left(G^{\prime}-G^{\prime \prime}\right)=$ $V\left(R^{\prime \prime}-R^{\prime}\right) \subseteq\left(V\left(B_{i}\right) \cup S\right) \backslash\{w\}$. Hence, (b) follows from Lemma 5.1.3.

Next, we make the following observation to be used.

Observation 5.2.3. $(N(w) \cup S) \cap V\left(P_{3}\left(b_{1}, b_{2}\right)\right)=\emptyset$.
Proof. For, suppose there exists $v \in(N(w) \cup S) \cap V\left(P_{3}\left(b_{1}, b_{2}\right)\right)$. If $v \in S$, then let Q_{1} be an $a_{1}-a_{2}$ path in the union of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(B_{3}-v\right)$ and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup P_{3}\left(b_{1}, b_{2}\right)$; and if $v \in N(w)$ then let Q_{2} be an $a_{1}-a_{2}$ path in the union of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right)-\left(B_{3}-w\right),\{w v\}$ and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right) \cup P_{3}\left(b_{1}, b_{2}\right)$. Now, P_{1}, P_{2} and Q_{1} or Q_{2} show that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible.

Now, we show structures for all rungs R in L^{*} with $\operatorname{Int}(R) \cap B_{j}=\emptyset$ for some $j \in[2]$ in Lemma 5.2.4.

Lemma 5.2.4. For any rung $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ in L^{*} with $R \nsubseteq H_{1} \cup H_{m+1}$ and $\operatorname{Int}(R) \cap B_{j} \neq \emptyset$ for at most one $j \in[2],|\partial R| \leq 5$ and one of the following holds:
(a) $\operatorname{Int}(R) \subseteq S$, and if $|\partial R|=5$ then $b=b^{\prime}$, or
(b) $b=b^{\prime}$ and, for some $i \in[2], V\left(B_{i}\right) \cap \operatorname{Int}(R) \neq \emptyset$ and $\operatorname{Int}(R) \subseteq V\left(B_{i}\right) \cup S$. Moreover, let $r_{1}, r_{2} \in\left(V\left(B_{3}\right) \cap \partial R\right) \cup\{w\}$ with $N_{\text {Int }(R)}\left(r_{j}\right) \cap S \neq \emptyset$ for $j \in[2]$, and let $t_{1}, t_{2} \in V\left(B_{i}\right) \cap \partial R$ such that $B_{3}\left[r_{1}, r_{2}\right]$ and $B_{i}\left[t_{1}, t_{2}\right]$ are maximal. Let $R^{*}=R+\{w, w v: v \in V(R)\}$ and $V^{\prime}=\partial R \backslash\left(\left\{r_{1}, r_{2}\right\} \cup V\left(B_{i}\right)\right)$. Then, there exists e with $e=\emptyset$ or $e \in E\left(R^{*}\right)$ incident to either r_{1} or r_{2}, such that, if $x_{j} y_{j} \in$ $E\left(R^{*}-V^{\prime}\right) \backslash\left(E\left(B_{i} \cup B_{3}\right) \cup\{e\}\right)$ with $x_{j} \in V\left(B_{i}\right)$ and $y_{j} \in V\left(B_{3}\right)$, for $j \in[2]$, then $x_{1} \preceq x_{2}$ implies $y_{1} \preceq y_{2}$.

Proof. Suppose $S \cap \operatorname{Int}(R)=\emptyset$. Then $\operatorname{Int}(R)=\emptyset$ to avoid the cut $\partial R \cup\{w\}$ in G (of size ≤ 7). By (ii) and (iii) of Proposition 2.3.2, if $|\partial R|=6$ or $|\partial R|=5$ and $b \neq b^{\prime}$, $N_{\text {Int }(R)}(b) \neq \emptyset$. So for $\operatorname{Int}(R)=\emptyset,|\partial R| \leq 5$ and if $|\partial R|=5$ then $b=b^{\prime}$.

Now, assume $\operatorname{Int}(R) \neq \emptyset$. First, suppose $V\left(B_{1} \cup B_{2}\right) \cap \operatorname{Int}(R)=\emptyset$. Let $G^{\prime}:=$ $G[V(R) \cup\{w\}]$ and $G^{\prime \prime}:=G-\operatorname{Int}(R)-E(G[\partial R])$. Then, by Lemma 5.1.1, $\operatorname{Int}(R)=$ $V\left(G^{\prime}-G^{\prime \prime}\right) \subseteq S$. Assume (a) fails. Then, $|\partial R|=5$ and $b \neq b^{\prime}$ or $|\partial R|=6$. By (b) of Lemma 3.2.4, let P_{a}, P_{c} be disjoint paths in $R-\left\{b, b^{\prime}\right\}$ from a, c to a^{\prime}, c^{\prime}, respectively, such that $R-\left(P_{a} \cup P_{c}\right)$ is connected and contains $\left\{b, b^{\prime}\right\}$. Then, $\operatorname{Int}(R) \subseteq P_{a} \cup P_{c}$; otherwise by replacing $\left(P_{1} \cup P_{2}\right) \cap R$ with $P_{a} \cup P_{c}$, we obtain from P_{1}, P_{2} independent $b_{1}-b_{2}$ paths P_{1}^{\prime} and P_{2}^{\prime} such that $G-\left(P_{1}^{\prime} \cup P_{2}^{\prime}\right)$ contains an $a_{1}-a_{2}$ paths, which shows that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction. By (ii) and (iii) of Proposition 2.3.2, $N(b) \cap \operatorname{Int}(R) \neq \emptyset$. So by symmetry, assume there exists $s \in N_{\operatorname{Int}(R)}(b) \cap V\left(P_{c}\right)$. Then, $\{a, b, s\}$ is a 3-cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, contradicting the definition of rung.

So $V\left(B_{i}\right) \cap \operatorname{Int}(R) \neq \emptyset$ for some $i \in[2]$. Hence $V\left(B_{3-i}\right) \cap \operatorname{Int}(R)=\emptyset$. By Lemma 5.1.2, with $G^{\prime}:=G[V(R) \cup\{w\}]$ and $G^{\prime \prime}:=G-\operatorname{Int}(R)-E(G[\partial R])$, we obtain $\operatorname{Int}(R) \subseteq V\left(B_{i}\right) \cup S$. By Observation 5.2.3, we see that $\left\{b, b^{\prime}\right\}$ has no neighbors in $S \cap \operatorname{Int}(R)$. Thus, $\left\{b, b^{\prime}\right\} \cap\left\{r_{1}, r_{2}\right\}=\emptyset$ by definition of r_{1} and r_{2}. By Lemma 5.1.3, to prove (b), we need to show $b=b^{\prime}$. Suppose for a contradiction $b \neq b^{\prime}$.

First, consider that case when $|\partial R|=4$. Then, $\left\{b, b^{\prime}\right\} \cap\left\{t_{1}, t_{2}\right\} \neq \emptyset$ and at least one of the vertices in $\left\{b, b^{\prime}\right\} \cap\left\{t_{1}, t_{2}\right\}$, say $b=t_{1}$, has a neighbor v such that $v \in V\left(B_{i}\right) \cap \operatorname{Int}(R)$ and $v b \in E\left(B_{i}\right)$. Let $s \in N(v) \cap \operatorname{Int}(R) \cap S$, which exists since B_{i} is induced and G is 8-connected. Now, there is an $a_{1}-a_{2}$ path in the union of $A_{1}\left(B_{1} \cup B_{2} \cup B_{3}\right), b v s, P_{3}\left(b_{1}, b_{2}\right)$ and $A_{2}\left(P_{1} \cup P_{2} \cup P_{3}\right)$, which is disjoint from $b_{1}-b_{2}$ paths P_{1}, P_{2}. So $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is feasible, a contradiction.

Now assume $|\partial R| \geq 5$. Then $|\partial R|=5$ and $b \neq b^{\prime}$ or $|\partial R|=6$. When $|\partial R|=5$, we may assume $\left(R-a, b, b^{\prime} c, c^{\prime}\right)$ is planar. By (b) of Lemma 3.2.4, let P_{a}, P_{c} be disjoint paths in $R-\left\{b, b^{\prime}\right\}$ from a, c to a^{\prime}, c^{\prime}, respectively, such that $R-\left(P_{a} \cup P_{c}\right)$ is connected and contains $\left\{b, b^{\prime}\right\}$. As before, $\operatorname{Int}(R) \cap S \subseteq V\left(P_{a} \cup P_{c}\right)$ (as otherwise, $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ would be feasible) and $N_{\text {Int }(R)}(b) \cap V\left(P_{a} \cup P_{c}\right)=\emptyset$. Then, by (iii) of Proposition 2.3.2 and by Observation 5.2.3, $N_{\text {Int }(R)}(b) \cap V\left(B_{i}\right) \neq \emptyset$. Let $v \in N_{\text {Int }(R)}(b) \cap V\left(B_{i}\right)$. Since B_{i} is induced, $\left|N(v) \cap V\left(B_{i}\right)\right|=2$. Since G is 8 -connected and $N(v) \subseteq V^{\prime} \cup V\left(B_{i}\right) \cup\left\{r_{1}, r_{2}\right\} \cup(\operatorname{Int}(R) \cap S)$, there exists $s \in N(v) \cap \operatorname{Int}(R) \cap S$. By 3-planarity and since $\operatorname{Int}(R) \subseteq V\left(B_{i}\right) \cup S,\{a, v, s\}$ or $\left\{a^{\prime}, v, s\right\}$ is a 3-cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, contradicting the definition of rung.

CHAPTER 6
 A 7-CONNECTED EXAMPLE

In this chapter, we give a 7 -connected graph G with distinct vertices $a_{1}, a_{2}, b_{1}, b_{2} \in$ $V(G)$ such that $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is infeasible. As shown below, G is obtained by gluing H in Figure 6.1 and A_{1} in Figure 6.2 together along the $b_{1}-b_{2}$ path B_{3}.

Figure 6.1: H with $m=7\left(7^{4}-2\right)+3=7^{5}-11$

Figure 6.2: A_{1}

As shown in Figure 6.1, B_{1}, B_{2}, B_{3} are 3 independent $b_{1}-b_{2}$ paths. H is the graph with $V(H)=\left\{a_{2}, b_{1}, b_{2}, w_{-1}, w_{0}, w_{m+1}, u_{i}, v_{i}, w_{i}: i \in[m]\right\}$ and $E(H)=\bigcup_{i \in[3]} E\left(B_{i}\right) \cup\left\{a_{2} x:\right.$ $\left.x \in V\left(B_{1} \cup B_{2}\right)\right\} \cup\left\{u_{j} v_{j}, u_{j} w_{j}, v_{j} w_{j}, u_{j} v_{j+1}, v_{j} u_{j+1}, w_{j} u_{j+1}, w_{j} v_{j+1}: j \in[m-1]\right\} \cup$ $\left\{w_{-1} u_{1}, w_{-1} v_{1}, w_{0} u_{1}, w_{0} v_{1}, w_{m+1} u_{m}, w_{m+1} v_{m}\right\}$, where $m=7^{5}-11$.

We construct A_{1} as in Figure 6.2, S_{i} 's are the horizontal paths from $b_{1}, w_{-1}, w_{0}, w_{1}, w_{2}$ to $b_{2}, w_{m+1}, w_{m}, w_{m-1}, w_{m-2}$, respectively for $i \in[5]$. So $V\left(A_{1}\right)=\left\{a_{1}\right\} \cup \bigcup_{i \in[5]} V\left(S_{i}\right)$. For each $i \in[5]$, let x_{j}^{i} be the j-th vertex from left to right on S_{i}. For any vertex $x \in$ $V\left(S_{i}\right) \backslash\left\{w_{1}, w_{m-1}\right\}$ where $i \in\{0\} \cup[4],\left|N_{S_{i+1}}(x)\right|=7$.

In the following sections, we show that G is infeasible and 7 -connected.

6.1 Infeasibility

Suppose G is feasible and let P be the $a_{1}-a_{2}$ path such that there exist two independent $b_{1}-b_{2}$ paths Q_{1}, Q_{2} in $G-P$. Denote $T_{i}=\left\{u_{i}, v_{i}, w_{i}\right\}$ for $i \in[m]$.

Now, let $w_{j} \in V(P)$ be such that $V\left(P\left[a_{2}, w_{j}\right)\right) \cap V\left(B_{3}\right)=\emptyset$. Since $P \cap S_{i} \neq \emptyset$ for all $i \in[5],\left|\left(V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right) \cap T_{k}\right|=2$ for $k \in\{j, j+1\}$. Let $x \in N_{P\left[a_{2}, w_{j}\right)}\left(w_{j}\right)$. Then, $x \in\left\{u_{i}, v_{i} \mid i \in\{j, j+1\}\right\}$. Suppose $x \in\left\{u_{j}, v_{j}\right\}$. Then, $\left|V(P) \cap T_{j}\right|=2$, and thus, $\left|\left(V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right) \cap T_{j}\right|=1$, a contradiction.

So $x \in\left\{u_{j+1}, v_{j+1}\right\}$. Since $w_{j+1} u_{j}, w_{j+1} v_{j} \notin E(G),\left(V\left(Q_{1}\right) \cup V\left(Q_{2}\right)\right) \cap T_{j+1}=$ $\left\{u_{j+1}, v_{j+1}\right\} \backslash\{x\}$, a contradiction.

Hence, $\left(G, a_{1}, a_{2}, b_{1}, b_{2}\right)$ is indeed infeasible.

6.2 7-connectivity

Suppose not, let T be a minimum cut of G. Then, $|T| \leq 6$. Note that with our construction, $V(H) \cap V\left(A_{1}\right)=V\left(B_{3}\right)$. For simplicity, paths will be represented as sequences of vertices with consecutive vertices adjacent. For path P and $u, v \in V(P)$, we denote $u P v$ be the subpath of P from u to v. For vertices u, v, w such that $u v, v w$ are edges, we use $u v w$ to denote the $v-w$ path of length 2 .

Claim 6.2.1. All components of $G-T$ intersect $V\left(B_{3}\right)$.

Proof. Suppose for a contradiction, there exists a component C of $G-T$ such that $V(C) \cap$ $V\left(B_{3}\right)=\emptyset$. Then, $V(C) \subseteq V\left(H-B_{3}\right)$ or $V(C) \subseteq V\left(A_{1}-B_{3}\right)$.

First, suppose $V(C) \subseteq V\left(A_{1}-B_{3}\right)$. Then, there exists $x_{j} \in V(C) \cap V\left(S_{j}\right)$ for some $0 \leq j \leq 4$. For any $j \leq i \leq 4$ and $x_{i} \in V(C) \cap V\left(S_{i}\right)$, since $\left|N_{S_{i+1}}\left(x_{i}\right)\right|=7>|T|$, there exists $x_{i+1} \in V(C) \cap N_{S_{i+1}}\left(x_{i}\right)$. Hence, there exists $x_{5} \in V(C) \cap V\left(S_{5}\right)$, a contradiction.

So $C \subseteq V\left(H-B_{3}\right)$. Clearly, $C \neq H-B_{3}$; otherwise $V\left(B_{3}\right) \subseteq V(T)$, a contradiction. We claim that $a_{2} \notin C$. Suppose $a_{2} \in C$. Since $a_{2} \in N_{H}(x)$ for all $x \in V\left(B_{1} \cup B_{2}\right)$, $\left|N_{C}\left(a_{2}\right)\right| \geq \operatorname{deg}\left(a_{2}\right)-|T|=2 m+2-6=2 m-4$. Since $N_{C}\left(a_{2}\right) \backslash T \subseteq V\left(B_{1} \cup B_{2}\right)$, $\left|N_{B_{3}}(C)\right| \geq \frac{\left|N_{C}\left(a_{2}\right) \backslash T\right|}{2} \geq m-2>|T|$, a contradiction.

Hence there exists $x \in V(C)$ and $y \in V\left(H-B_{3}\right) \backslash V(C)$. Since $u_{i} v_{i}, u_{j} u_{j+1} \in$ $E(H)$ for all $i \in[m]$ and $j \in[m-1],\{x, y\} \neq\left\{u_{i}, v_{i}\right\}$ and $\{x, y\} \neq$ $\left\{u_{j}, u_{j+1}\right\}$. By symmetry and without loss of generality, $\{x, y\}=\left\{u_{i}, u_{j}\right\}$ for some $1 \leq i<i+1<j \leq m$. But, there exist the following 7 independent $u_{i}-u_{j}$ paths in $G: u_{i} a_{2} u_{j}, u_{i} B_{1} u_{j}, u_{i} v_{i+1} B_{2} v_{j-1} u_{j}, u_{i} w_{i} B_{3} w_{j-1} u_{j}, u_{i} B_{1} b_{1} S_{1} b_{2} B_{1} u_{j}$, $u_{i} v_{i} B_{2} v_{1} w_{-1} S_{2} w_{m+1} v_{m} B_{2} v_{j} u_{j}, u_{i} w_{i-1} B_{3} w_{0} S_{3} w_{m} B_{3} w_{j} u_{j}$.

By Claim 6.2.1, there exist $x, y \in V\left(B_{3}\right)$ such that x, y belongs to different components of $G-T$. Note that $x y \notin E\left(B_{3}\right)$. But we can find 7 independent $x-y$ paths in all cases as the following, which leads to a contradiction:

Case 1. $x=b_{1}, y=w_{0}$.
The 7 independent $x-y$ paths are: $b_{1} a_{2} v_{2} w_{1} w_{0}, b_{1} u_{1} w_{0}, b_{1} v_{1} w_{0}, b_{1} B_{3} w_{0}, b_{1} x_{2}^{2} x_{2.7}^{3} S_{3} w_{0}$, $b_{1} x_{3}^{2} x_{3 \cdot 7}^{3} x_{3 \cdot 7^{2}}^{4} S_{4} x_{3}^{4} w_{0}, b_{1} S_{1} b_{2} B_{3} x_{7}^{5} x_{2}^{4} w_{0}$.

Case 2. $x=b_{1}, y=w_{i}$ for $i \in[m-1]$.
The 7 independent $x-y$ paths are: $b_{1} a_{2} u_{i+1} w_{i}, b_{1} B_{1} u_{i} w_{i}, b_{2} B_{2} v_{i} w_{i}, b_{1} B_{3} w_{i}$, $b_{1} x_{2}^{2} x_{2.7}^{3} x_{2.7}^{4} S_{4} s w_{i}$ where $\{s\}=N_{S_{4}}\left(w_{i}\right), b_{1} x_{3}^{2} x_{3.7}^{3} S_{3} w_{m} B_{3} w_{i}, b_{1} S_{1} b_{2} B_{2} v_{i+1} w_{i}$.

Case 3. $x=b_{1}, y=w_{i}$ for $i \in\{m, m+1\}$.
The 7 independent $x-y$ paths are: $\quad b_{1} a_{2} u_{m} w_{i}, \quad b_{1} B_{1} u_{m-1} w_{m-1} B_{3} w_{i}$, $b_{1} B_{2} v_{m} w_{i}, \quad b_{1} a_{1} b_{2} B_{3} w_{i}, \quad b_{1} S_{1} x_{6}^{1} x_{6.7}^{2} x_{6.72}^{3} S_{3} w_{m} \quad$ or $\quad b_{1} S_{1} x_{6}^{1} x_{6.7}^{2} S_{2} w_{m+1}$,
$b_{1} x_{3}^{2} x_{3 \cdot 7}^{3} x_{3 \cdot 7^{2}}^{4} S_{4} x_{7^{4}-3}^{4} w_{m}$ or $b_{1} x_{3}^{2} x_{3 \cdot 7}^{3} S_{3} x_{7^{3}-3}^{3} w_{m+1}, b_{1} x_{2}^{2} x_{2 \cdot 7}^{3} x_{2 \cdot 7^{2}}^{4} x_{7\left(2 \cdot 7^{2}-1\right)}^{5} S_{5} w_{m-2} x_{7^{4}-1}^{4} w_{m}$ or $b_{1} x_{2}^{2} x_{2 \cdot 7}^{3} x_{2 \cdot 7^{2}}^{4} S_{4} x_{7\left(7^{3}-1\right)}^{4} x_{7^{3}-1}^{3} w_{m+1}$.

Case 4. $x=b_{1}, y=b_{2}$.
The 7 independent $x-y$ paths are: $b_{1} a_{2} b_{2}, b_{1} B_{1} b_{2}, b_{1} B_{2} b_{2}, b_{1} B_{3} b_{2}, b_{1} a_{0} b_{2}, b_{1} S_{1} b_{2}$, $b_{1} x_{2}^{2} S_{2} x_{7^{2}-1}^{2} b_{2}$.

Case 5. $x=w_{i}, y=w_{j}$ where $i \in\{-1,0\}$ and $j \in[m-1]$.
The 7 independent $x-y$ paths are: $w_{i} u_{1} a_{2} u_{j+1} w_{j}, w_{i} v_{1} B_{2} v_{j} w_{j}, w_{i} B_{3} w_{1} u_{2} B_{1} u_{j} w_{j}$, $w_{i} B_{3} b_{1} S_{1} b_{2} B_{2} v_{j+1} w_{j}, w_{-1} S_{2} w_{m+1} B_{3} w_{j}$ or $w_{0} S_{3} w_{m} B_{3} w_{j}, w_{-1} x_{3}^{3} x_{3.7}^{4} S_{4} s w_{j}$ or $w_{0} x_{3}^{4} S_{4} s w_{j}$ where $\{s\}=N_{S_{4}}\left(w_{j}\right), w_{-1} x_{2}^{3} x_{2 \cdot 7}^{4} S_{4} x_{2}^{4} w_{2} B_{3} w_{j}$ or $w_{0} x_{2}^{4} w_{2} B_{3} w_{j}$.

Case 6. $x=w_{i}, y=w_{j}$ where $i \in\{-1,0\}$ and $j \in\{m, m+1\}$.
The 7 independent $x-y$ paths are: $w_{i} u_{1} a_{2} u_{m} w_{j}, w_{i} B_{3} w_{1} u_{2} B_{1} u_{m-1} w_{m-1} B_{3} w_{j}$, $w_{i} v_{1} B_{2} v_{m} w_{j}$, $w_{i} B_{3} b_{1} S_{1} b_{2} B_{3} w_{j}$, and the other three paths are X_{1}, X_{2}, X_{3}, where $\left\{X_{1}, X_{2}, X_{3}\right\}$ is one of the following: $\left\{w_{-1} x_{4}^{3} S_{3} w_{m}, w_{-1} x_{3}^{3} x_{3 \cdot 7}^{4} S_{4} x_{7^{4}-2}^{4} w_{m}, w_{-1} x_{2}^{3} x_{2 \cdot 7}^{4} x_{7(2 \cdot 7-1)}^{5} S_{5} w_{m-2} x_{7^{4}-1}^{4} w_{m}\right\}$, $\left\{w_{-1} S_{2} w_{m+1}, w_{-1} x_{4}^{3} S_{3} x_{7^{3}-3}^{3} w_{m+1}, w_{-1} x_{3}^{3} x_{3 \cdot 7}^{4} S_{4} x_{7\left(7^{3}-1\right)}^{4} x_{7^{3}-1}^{3} w_{m+1}\right\}$, $\left\{w_{0} S_{3} w_{m}, w_{0} x_{3}^{4} S_{4} x_{7^{4}-2}^{4} w_{m}, w_{0} x_{2}^{4} x_{7}^{5} S_{5} w_{m-2} x_{7^{4}-1}^{4} w_{m}\right\}, \quad$ or $\left\{w_{0} S_{3} x_{7^{3}-3}^{3} w_{m+1}, w_{0} x_{3}^{4} S_{4} x_{7\left(7^{3}-2\right)}^{4} x_{7^{3}-2}^{3} w_{m+1}, w_{0} x_{2}^{4} x_{7}^{5} S_{5} x_{7\left(7\left(7^{3}-1\right)-1\right)}^{5} x_{7\left(7^{3}-1\right)}^{4} x_{7^{3}-1}^{3} w_{m+1}\right\}$.

Case 7. $x=w_{i}, y=b_{2}$ where $i \in\{-1,0\}$.
The 7 independent $x-y$ paths are: $w_{i} u_{1} a_{2} b_{2}, w_{i} v_{1} B_{2} b_{2}, w_{i} B_{3} w_{1} u_{2} B_{1} b_{2}, w_{i} B_{3} b_{1} a_{1} b_{2}$, and the other three paths are X_{1}, X_{2}, X_{3}, where $\left\{X_{1}, X_{2}, X_{3}\right\}$ is one of the following: $\quad\left\{w_{-1} S_{2} x_{7^{2}-2}^{2} b_{2}, w_{-1} x_{3}^{3} S_{3} x_{7\left(7^{2}-1\right)}^{3} x_{7^{2}-1}^{2} b_{2}, w_{-1} x_{2}^{3} x_{2 \cdot 7}^{4} x_{7(2 \cdot 7-1)}^{5} B_{3} b_{2}\right\} \quad$ or $\left\{w_{0} S_{3} x_{7\left(7^{2}-2\right)}^{3} x_{7^{2}-2}^{2} b_{2}, w_{0} x_{3}^{4} S_{4} x_{7^{2}\left(7^{2}-1\right)}^{4} x_{7\left(7^{2}-1\right)}^{3} x_{7^{2}-1}^{2} b_{2}, w_{0} x_{2}^{4} x_{7}^{5} B_{3} b_{2}\right\}$.

Case 8. $x=w_{i}, y=w_{j}$ for $1 \leq i<i+1<j \leq m-1$.
The 7 independent $x-y$ paths are: $w_{i} u_{i} a_{2} u_{j+1} w_{j}, w_{i} u_{i+1} B_{1} u_{j} w_{j}, w_{i} v_{i+1} B_{2} v_{j} w_{j}$, $w_{i} B_{3} w_{j}, w_{i} v_{i} B_{2} b_{1} S_{1} b_{2} B_{2} v_{j+1} w_{j}, w_{i} B_{3} w_{0} S_{3} w_{m} B_{3} w_{j}, w_{i} s S_{4} t w_{j}$ where $\{s\}=N_{S_{4}}\left(w_{i}\right)$ and $\{t\}=N_{S_{4}}\left(w_{j}\right)$.

Case 9. $x=w_{i}, y=w_{j}$ where $i \in[m-1]$ and $j \in\{m, m+1\}$.

Note that $\{x, y\} \neq\left\{w_{m-1}, w_{m}\right\}$. The 7 independent $x-y$ paths are: $w_{i} u_{i} a_{2} u_{m} w_{j}$, $w_{i} u_{i+1} B_{1} u_{m-1} w_{m-1} B_{3} w_{j}, w_{i} v_{i+1} B_{2} v_{m} w_{j}, w_{i} v_{i} B_{2} b_{1} S_{1} b_{2} B_{3} w_{j}, w_{i} B_{3} w_{-1} S_{2} w_{m+1}\left(w_{m}\right)$, $w_{i} B_{3} w_{m-2} x_{7^{4}-1}^{4} w_{m}\left(w_{m+1}\right), w_{i} s S_{4} x_{7^{4}-2}^{4} w_{m}$ or $w_{i} s S_{4} x_{7\left(7^{3}-2\right)}^{4} x_{7^{3}-2}^{3} w_{m+1}$ where $\{s\}=$ $N_{S_{4}}\left(w_{i}\right)$.

Case 10. $x=w_{i}, y=b_{2}$ for $i \in[m-1]$.
The 7 independent $x-y$ paths are: $w_{i} u_{i} a_{2} b_{2}, w_{i} u_{i+1} B_{1} b_{2}, w_{i} v_{i+1} B_{2} b_{2}, w_{i} B_{3} b_{2}$, $w_{i} v_{i} B_{2} b_{1} S_{1} b_{2}, w_{i} B_{3} w_{-1} S_{2} x_{7^{2}-3}^{2} b_{2}, w_{i} s S_{4} x_{7^{2}\left(7^{2}-2\right)}^{4} x_{7\left(7^{2}-2\right)}^{3} x_{7^{2}-2}^{2} b_{2}$ where $\{s\}=N_{S_{4}}\left(w_{i}\right)$.

Case 11. $x=w_{m}, y=b_{2}$.
The 7 independent $x-y$ paths are: $w_{m} u_{m} b_{2}, w_{m} v_{m} b_{2}, w_{m} B_{3} b_{2}, w_{m} w_{m-1} u_{m-1} a_{2} b_{2}$, $w_{m} x_{7^{4}-1}^{4} w_{m-2} B_{3} b_{1} S_{1} b_{2}, w_{m} x_{7^{4}-2}^{4} S_{4} x_{7^{2}\left(7^{2}-2\right)}^{4} x_{7\left(7^{2}-2\right)}^{3} x_{7^{2}-2}^{2} b_{2}, w_{m} S_{3} x_{7\left(7^{2}-1\right)}^{3} x_{7^{2}-1}^{2} b_{2}$.

Hence, G is a 7 -connected infeasible example as desired.

REFERENCES

[1] B. Bollobás and A. Thomason, "Highly linked graphs," Combinatorica, vol. 16, no. 3, pp. 313-320, 1996.
[2] J. A. Bondy and U. S. R. Murty, Graph theory, ser. Graduate Texts in Mathematics. Springer, New York, 2008, vol. 244, pp. xii+651, ISBN: 978-1-84628-969-9.
[3] G. Chen, R. J. Gould, and X. Yu, "Graph connectivity after path removal," Combinatorica, vol. 23, no. 2, pp. 185-203, 2003.
[4] M. Devos, K. Nurse, Y. Qian, and P. Wollan, Private communication.
[5] R. Diestel, Graph theory, Fifth, ser. Graduate Texts in Mathematics. Springer, Berlin, 2017, vol. 173, pp. xviii+428, ISBN: 978-3-662-53621-6.
[6] D. He, Y. Wang, and X. Yu, "The Kelmans-Seymour conjecture I: Special separations," J. Combin. Theory Ser. B, vol. 144, pp. 197-224, 2020.
[7] ——, "The Kelmans-Seymour conjecture II: 2-vertices in K_{4}^{-}," J. Combin. Theory Ser. B, vol. 144, pp. 225-264, 2020.
[8] _-, "The Kelmans-Seymour conjecture III: 3-vertices in K_{4}^{-}," J. Combin. Theory Ser. B, vol. 144, pp. 265-308, 2020.
[9] _—, "The Kelmans-Seymour conjecture IV: A proof," J. Combin. Theory Ser. B, vol. 144, pp. 309-358, 2020.
[10] H. A. Jung, "Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen," Math. Ann., vol. 187, pp. 95-103, 1970.
[11] K.-i. Kawarabayashi, O. Lee, and X. Yu, "Non-separating paths in 4-connected graphs," Ann. Comb., vol. 9, no. 1, pp. 47-56, 2005.
[12] A. Kostochka and G. Yu, "An extremal problem for H-linked graphs," J. Graph Theory, vol. 50, no. 4, pp. 321-339, 2005.
[13] M. Kriesell, "Induced paths in 5-connected graphs," J. Graph Theory, vol. 36, no. 1, pp. 52-58, 2001.
[14] R. Liu, M. Rolek, D. C. Stephens, D. Ye, and G. Yu, "Connectivity for kite-linked graphs," SIAM J. Discrete Math., vol. 35, no. 1, pp. 431-446, 2021.
[15] L. Lovász, "Problems in recent advances in graph theory (ed. m.fiedler)," 1975.
[16] K. Menger, "Zur allgemeinen kurventheorie," Fundamenta Mathematicae, vol. 10, no. 1, pp. 96-115, 1927.
[17] N. Robertson and K. Chakravarti, "Covering three edges with a bond in a nonseparable graph," Ann. Discrete Math., vol. 8, p. 247, 1980.
[18] N. Robertson and P. D. Seymour, "Graph minors. XIII. The disjoint paths problem," J. Combin. Theory Ser. B, vol. 63, no. 1, pp. 65-110, 1995.
[19] P. Seymour, "Disjoint paths in graphs," Discrete Math., vol. 29, no. 3, pp. 293-309, 1980.
[20] Y. Shiloach, "A polynomial solution to the undirected two paths problem," J. Assoc. Comput. Mach., vol. 27, no. 3, pp. 445-456, 1980.
[21] R. Thomas and P. Wollan, "An improved linear edge bound for graph linkages," European J. Combin., vol. 26, no. 3-4, pp. 309-324, 2005.
[22] ——, "The extremal function for 3-linked graphs," J. Combin. Theory Ser. B, vol. 98, no. 5, pp. 939-971, 2008.
[23] R. Thomas, S. Xie, and X. Yu, "6-connected graphs are two-three linked," Doctoral thesis, Georgia institute of Technology, 2019.
[24] C. Thomassen, "2-linked graphs," European J. Combin., vol. 1, no. 4, pp. 371-378, 1980.
[25] W. T. Tutte, "How to draw a graph," Proc. London Math. Soc. (3), vol. 13, pp. 743767, 1963.
[26] P. Wollan, "Bridges in highly connected graphs," SIAM J. Discrete Math., vol. 24, no. 4, pp. 1731-1741, 2010.
[27] X. Yu, "Disjoint paths in graphs. I. 3-planar graphs and basic obstructions," Ann. Comb., vol. 7, no. 1, pp. 89-103, 2003.
[28] ——, "Disjoint paths in graphs. II. A special case," Ann. Comb., vol. 7, no. 1, pp. 105-126, 2003.
[29] ——, "Disjoint paths in graphs. III. Characterization," Ann. Comb., vol. 7, no. 2, pp. 229-246, 2003.

[^0]: ${ }^{1}$ Paul Wollan: Private communication

