
Page 1

PhD Proposal – Idris Hsi – Page 1

College of Computing Technical Report

CHARACTERIZING THE CONCEPTUAL COHERENCE OF
COMPUTING APPLICATIONS USING ONTOLOGICAL EXCAVATION

by

Idris Hsi

Georgia Institute of Technology
May 2004

Copyright © 2004 by Idris Hsi

Page 2

PhD Proposal – Idris Hsi – Page 2

Abstract
We are investigating metrics for measuring the usefulness of computing applications relative to a
specific use context. We define “usefulness” as “the extent to which an application’s features
succeed in assisting a set of users to achieve a set of goals, relative to the amount of effort
required to engage those features.” We define a feature as a user-accessible behavior or service
implemented by a computing application. Computing applications embody and operationalize a
set of concepts that correlate to concepts in the domain of the user. The degree to which the
application’s concepts and the user’s concepts agree is its conceptual fitness. We believe that
applications with high conceptual fitness to a particular use context will also be perceived as
useful by the users in this context. We have chosen in this work to study the problem of
measuring conceptual fitness from the application side using conceptual coherence as our unit of
interest.

Conceptual coherence is an attribute of conceptual integrity, described by Fred Brooks as the
property of a system designed under a unified and coordinated set of design ideas. It is the
property of a computing application that measures the degree to which that application’s
concepts are tightly related. In previous work, we established that applications have core
concepts – concepts that are essential to defining that application’s features. An application will
have a low conceptual coherence if it possesses a disproportionate number of non-core
(peripheral) concepts. We intend to show that the conceptual coherence of an application
determines its perceived usefulness to its users, and features with only tangential relationships to
an application are less likely to be used and reduce that application’s conceptual coherence.

The set of concepts and relationships contained in an application can be said to be its ontology.
We have developed methods for the black-box reverse engineering (excavation) of a computing
application’s ontology from the user interface and use techniques from the user interface and use
techniques from graph theory to identify the core concepts of an application and its teleons –
tightly connected functional subgroups within the ontology. We have also developed a technique
called use case silhouetting which measures the ontological coverage, the number of concepts
activated by a use case or set of use cases, and the relative importance of a concept to a set of use
cases as a first approximation of conceptual fitness. We have applied these techniques to four
small applications: the Windows 95/98 CD Player, the Palm Pilot Scheduler, Microsoft Notepad,
and the Protocol Calculator / Calendar.

We propose to perform two exploratory studies and one confirmatory one. Our first exploratory
study will excavate and analyze the ontologies from three large systems – Microsoft Powerpoint
2000, Microsoft Word 2000, and Yahoo Instant Messenger 5.5. Our second study will obtain use
cases from an independently written instruction manual (the “for Dummies” series). We will use
these to develop use case silhouettes on our excavated obtained from Dr. Joanna McGrenere in
her study on adaptable interfaces. We will show that the user preferences expressed by her
subjects correlate to data obtained from our ontological analysis and use case silhouettes of
Word.

Page 3

PhD Proposal – Idris Hsi – Page 3

Table of Contents
ABSTRACT ..2

TABLE OF CONTENTS..3

1 INTRODUCTION...7

1.1 CONCEPTUAL INTEGRITY ..7
1.2 PROBLEM DOMAINS AND SOFTWARE ONTOLOGIES ..7
1.3 USEFULNESS ..8
1.4 THE RESEARCH PROBLEM...8

2 STUDYING THE FEATURE EVOLUTION OF SOFTWARE11

2.1 SOFTWARE EVOLUTION AND FEATURE AGGREGATION ..11
2.2 THE FEATURE EVOLUTION OF MICROSOFT WORD ...13

3 ONTOLOGICAL EXCAVATION...16

3.1 THE MORPHOLOGICAL MAP..16
3.2 EXCAVATING THE ONTOLOGY...17

4 ONTOLOGICAL ANALYSIS..20

4.1.1 Core Concepts and Betweenness Centrality ...20
4.1.2 Teleons and K-cores ..21

4.2 CASE STUDIES OF ONTOLOGICAL EXCAVATION ...22
4.2.1 Core Concept Identification ...22
4.2.2 Teleon Identification ..23

5 CONCEPTUAL COHERENCE AND ONTOLOGICAL STRUCTURE24

5.1 COHERENT APPLICATIONS ..24
5.2 METRICS FOR COHERENCE..25
5.3 ONTOLOGICAL STRUCTURES ...27

5.3.1 The Reef Structure ...27
5.3.2 The Toolbox Structure..28
5.3.3 The Urban Structure ..29
5.3.4 Ontological Structures and Computing Applications..29

6 USE CASE SILHOUETTES...31

7 RESEARCH FRAMEWORK...34

8 PROPOSAL...36

8.1 STUDY 1: RECOVER ONTOLOGIES FOR THREE LARGE AND EVOLVED SYSTEMS...............36
8.1.1 Ontological Structure Identification...37
8.1.2 Teleons and Features ...37
8.1.3 Conceptual Coherence...37
8.1.4 Potential Research Difficulties...37

8.2 STUDY 2: DEVELOP USE CASE SILHOUETTE FOR SYSTEMS FROM STUDY 1.39
8.2.1 Validating Ontological Coverage...39

Page 4

PhD Proposal – Idris Hsi – Page 4

8.2.2 Use Cases and Conceptual Coverage...39
8.2.3 Potential Research Difficulties...40

8.3 STUDY 3: MAP USABILITY DATA TO A SYSTEM...41
8.3.1 Usage centrality and ontological centrality..41
8.3.2 Conceptual coherence and actual usage...41
8.3.3 Applying ontological data to usability studies ..41
8.3.4 Potential Research Difficulties...41

9 BACKGROUND WORK..43

9.1 USEFULNESS AND USABILITY..43
9.1.1 Software Quality ..43
9.1.2 User Interface Design and Usability Engineering ..43
9.1.3 Empirical Methods and Requirements Gathering ...44
9.1.4 End-User Analysis ...44

9.2 SOFTWARE EVOLUTION ..44
9.3 FEATURES AND SERVICES ...45

9.3.1 What is a Feature?...45
9.3.2 Feature-based Engineering techniques ..45
9.3.3 Function Point Analysis ...45

9.4 REVERSE ENGINEERING AND PROGRAM UNDERSTANDING ...46
9.4.1 Program Comprehension and Reverse Engineering ...46
9.4.2 Black Box Reverse Engineering ...46
9.4.3 Domain Analysis and Reverse Engineering ..46

9.5 INTERFACE MODELS AND RECOVERY..47
9.5.1 User Interface Representations ..47
9.5.2 Automated Recovery of User Interfaces..47

9.6 ONTOLOGIES ..47
9.7 GRAPH ANALYSIS TOOLS..47

9.7.1 Centrality Metrics ..47
9.7.2 Cluster Analysis ...48

9.8 USE CASE SILHOUETTES ...48

10 EXPECTED RESEARCH CONTRIBUTIONS...49

10.1 SUMMARY OF MAJOR CONTRIBUTIONS ...49
10.2 SUMMARY OF MINOR CONTRIBUTIONS..49
10.3 OTHER CONTRIBUTIONS ...49

11 PLAN OF COMPLETION ...51

11.1 BASIC SCHEDULE ...51
11.2 OPTIMIZED SCHEDULE FOR PUBLISHING ..51
11.3 PROJECTED CHAPTERS IN DISSERTATION TO BE WRITTEN ...52

12 GLOSSARY...53

13 BIBLIOGRAPHY ...59

APPENDIX 1 – INTRODUCTION TO THE CASE STUDIES..67

APPENDIX 2 – THE WINDOWS 95/98 CD PLAYER CASE STUDY................................68

Page 5

PhD Proposal – Idris Hsi – Page 5

2.1 INTRODUCTION...68
2.2 ONTOLOGICAL ANALYSIS ...68

2.2.1 Core Concepts Identified..68
2.2.2 Subgroups Identified ..69
2.2.3 Statistics ..69

2.3 THE USE CASE SILHOUETTE..70
2.3.1 Ontological Coverage by Use Case..70
2.3.2 Concept Frequency Across Use Cases ...71

2.4 MORPHOLOGY..72
2.5 ONTOLOGY ..74

2.5.1 Concepts in Application ...74
2.6 CONCLUSION..75

APPENDIX 3 – PALM PILOT SCHEDULER CASE STUDY ..76

3.1 INTRODUCTION...76
3.2 ONTOLOGICAL ANALYSIS ...76

3.2.1 Core Concepts Identified..76
3.2.2 Teleons Identified...78
3.2.3 Statistics ..78

3.3 THE USE CASE SILHOUETTE..78
3.4 ONTOLOGY ..79

3.4.1 Concepts in Application ...79
3.5 CONCLUSION..80

APPENDIX 4 – PROTOCOL CALENDAR / CALCULATOR CASE STUDY81

4.1 INTRODUCTION...81
4.2 MODELING ISSUES ..81
4.3 ONTOLOGICAL ANALYSIS ...82

4.3.1 Core Concepts Identified..82
4.3.2 Concepts Organized By Subgroup (Toolkit Ontological Structure).....................84
4.3.3 Teleons Identified...85
4.3.4 Statistics ..86

4.4 THE USE CASE SILHOUETTE..88
4.4.1 Ontological Coverage by Use Case..88
4.4.2 Concept Frequency Across Use Cases ...89

4.5 MORPHOLOGY..90
4.6 ONTOLOGY ..91

4.6.1 Concepts in Application ...91
4.7 CONCLUSION..92

APPENDIX 5 – MICROSOFT NOTEPAD CASE STUDY ..93

5.1 INTRODUCTION...93
5.2 MODELING ISSUES ..93
5.3 ONTOLOGICAL ANALYSIS ...93

5.3.1 Core Concepts Identified..93
5.3.2 Teleons Identified...96
5.3.3 Statistics ..97

Page 6

PhD Proposal – Idris Hsi – Page 6

5.4 THE USE CASE SILHOUETTE..98
5.4.1 Ontological Coverage by Use Case..98
5.4.2 Concept Frequency Across Use Cases ...99

5.5 MORPHOLOGY..101
5.6 ONTOLOGY ..105

5.6.1 Concepts in Application ...105
5.7 CONCLUSION..107

APPENDIX 6 – MS NOTEPAD CASE STUDY 2 ...108

6.1 INTRODUCTION...108
6.2 MODELING ISSUES ..108

6.2.1 Core Concepts Identified..109
6.2.2 Teleons Identified...110
6.2.3 Statistics ..110
6.2.4 Conclusion...110

Page 7

PhD Proposal – Idris Hsi – Page 7

1 Introduction

1.1 Conceptual Integrity

In his book, The Mythical-Man Month, Fred Brooks described a desirable quality of software that
he called conceptual integrity. This property arises from a system that demonstrates design
qualities that could only have been engineered under a unified vision of that system.

“I will contend that conceptual integrity is the most important consideration in
system design. It is better to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas, than to have one that contains
many good but independent and uncoordinated ideas.” [37]

Brooks describes how conceptual integrity can be seen in the design of a computing application’s
architecture, user interface, and functionality. He used the example of a cathedral at Reims in
France as an example of a structure with such conceptual integrity that it invokes joy in the
beholder. In architecture, Alexander observed this sense of coherence, aesthetic, and integrity in
smaller integrated units of landscape and architectural features that he cataloged into what he
called a pattern language [3, 4]. In computer science, design attributes that suggest similar
notions of conceptual integrity have been qualified in items like code [141, 142] and the “bad
smells” judgments used to identify awkward code [70], design patterns in software architectures
[72], open source systems such as Linux [179], user interfaces [37, 60, 162], and web pages
[199]. In architecture, conceptual integrity measures the extent to which the designer unified the
building’s purpose or concept with the constraints of structure and material. Buildings and cities
are designed for mostly one basic purpose: so that their inhabitants can live and work in them.
Computing applications have many different purposes but they still require a good design to
perform their functions well. But unlike buildings or cities, which have physical constraints that
guide their form and composition, the conceptual integrity of computing applications can be
much harder to perceive, design, or engineer.

1.2 Problem Domains and Software Ontologies

Applications are engineered to solve problems in specific use contexts. A use context consists of
the external physical (or virtual) environment that contains the computing application and its
users, the goals that the combined computing application/user system wishes to achieve, and the
various nuances (business rules, customer demand, user and system capabilities) that govern the
operation and performance of both environment and goal completion. For example, the use
context of a bank customer database consists of the bank itself, the systems that manage and
store the database, the employees charged with maintaining the stored information, and the rules
and procedures established by bank management for storing and distributing the data. All use
contexts exist within a problem domain. Arango and Prieto-Díaz state that a problem domain is a
collection of items of real-world information that has “deep or comprehensive relationships
among the items of information” and a community that has a stake in solving those problems
[11]. Software that has been designed to function in the use context and the problem domain will
possess a set of concepts and relationships that we call an ontology [35, 67, 81, 147, 203, 204].

The ontology of a computing application can be said to be its theory of the real world. The
concepts it embodies determine and structure its features, which we define as the user-accessible

Page 8

PhD Proposal – Idris Hsi – Page 8

behaviors and services implemented by the system. Now, Brooks argues that software must make
a computer easy to use.

“Because ease of use is the purpose, this ratio of function to conceptual complexity
is the ultimate test of system design. Neither function alone nor simplicity alone defines
a good design.” [37]

Ultimately, users evaluate software on its ability to help them to achieve their goals, whether
these goals are entertainment, productivity, scientific, or industrial. Thus, software engineers
should be primarily interested in ensuring that their creations have a high level of usefulness.

1.3 Usefulness

We define usefulness as the extent to which an application succeeds in assisting a set of users to
achieve a set of goals, relative to the amount of effort required to engage those features. We
distinguish usefulness from usability which is an integral but subordinate attribute of usefulness.
A useful application with poor usability can still enable users to achieve their goals albeit with
great difficulty. An application with little or no usefulness can be extremely usable but cannot
help the users to achieve their goals. Developing useful software requires that developers
understand what their users are trying to do in a specific use context and encode that knowledge
into the design. Yet an application must possess enough features to be useful to its users but
without becoming too complex: a design tradeoff between functional power and conciseness.
The features are accessed by the users of the system through its user interface or morphology,
which is the external presentation of the software. Thus what the software is, how it is presented
to the users, and how it functions must ultimately be determined by its ontology. If its ontology
does not match the user’s understanding of the problem domain then the application will fail. If
the ontology has been modeled incorrectly, relative to the problem domain, then the most
advanced techniques in program design, development, and testing will not be able to produce a
useful computing application. In other words, the usefulness of a computing application is
determined by the conceptual fitness of its ontology to the domain of the user.

A method for measuring the conceptual fitness of an application’s ontology to the domain of a
use context would allow us to measure the actual and potential usefulness of an application,
possibly prior to development. However, measuring conceptual fitness requires both a
comprehensive model of the application’s ontology as well as an equivalent and comparable
model of the user’s domain. For this research, we chose to address only the problem of modeling
the application’s ontology and to leave the full solution of measuring conceptual fitness to future
work.

1.4 The Research Problem

We have stated the following:

• Conceptual integrity is a desirable quality in computing applications and is evidenced by
a well-designed software architecture, user interface, and feature set.

• Computing applications are developed to be useful to their users and to behave in specific
problem domains.

• These applications encode the user’s domain in a set of concepts and relationships that
we call an ontology.

Page 9

PhD Proposal – Idris Hsi – Page 9

• The concepts in the ontology determine what features the software implements.
• The degree to which the ontology matches the problem domain of its users is its

conceptual fitness.
• An application possessing high conceptual fitness is more likely to be useful than one

with a low conceptual fitness.
• The morphology, architecture, and code must necessarily implement the features

articulated by the ontology.
• Thus, the ontology is the single most important factor in the conceptual integrity of the

application.

The quality of conceptual integrity encompasses much more than the application’s ontology and
includes other aspects of the application such as its architecture, user interface, and functionality.
However, as we argue that these other aspects must necessarily derive from the ontology, we
must ask ourselves what an ontology with conceptual integrity exhibits in its design, structure, or
composition. The answer can be derived from the idea of conceptual fitness.

In thinking about problem domains such as meeting scheduling, banking, or telephony, we can
infer that each of these have a set of concepts that define them. Meetings require participants,
scheduling procedures, and a reason to meet. Banking involves financial transactions, customers,
and fees. Telephony offers communication services through specific media to connect people to
each other. However, some domain descriptions for specific use contexts will include seemingly
optional concepts. For example, an alarm that reminds the user of an impending meeting might
be helpful but may or may not belong to the defining set of concepts that articulate a meeting
scheduling domain. Banks may offer investment advice to their customers, something that may
or may not be a central concept in banking. Telephony services can include features like vanity
numbers or opinion poll numbers [210], which go beyond basic call connections. These kinds of
concepts may be one step removed from a defining set of concepts. If meeting scheduling
incorporated types of meetings such as birthdays or anniversaries, generalizing it to events, is it
still a meeting scheduler, in the strict sense of a business meeting? If banking services began to
include advice about real estate and home ownership or insurance, is it still strictly banking?
Some cell phones now include digital cameras in their feature sets that allow you to take pictures
and send them to a recipient. Is this still telephony? Since technology evolves with the
requirements of its users, these services or the systems implementing these services are probably
still exhibiting a high conceptual fitness by maintaining a correspondence between its ontology
and the user’s problem domain. However, an ontology that has too many concepts one or two
steps removed from its essential concepts may have lost conceptual integrity. Such an ontology
no longer expresses a single, unified idea but multiple ideas that do not necessarily relate to one
another.

We define a quality of the ontology that contributes to the application’s overall conceptual
integrity that we call conceptual coherence. Conceptual coherence measures the degree to which
a computing application’s concepts are tightly related. We believe that applications with low
conceptual coherence will be perceived as possessing less usefulness than their potential
suggests and that features with only tangential relationships to those features essential to an
application reduce that application’s conceptual coherence. This intuition was derived from our
observations of many commercial systems where each new version adds features and the

Page 10

PhD Proposal – Idris Hsi – Page 10

complaints from users and reviewers about how these additions hindered their use or enjoyment
of the application. We decided to began our investigation by studying software evolution to
determine how an application’s features changed over time.

Page 11

PhD Proposal – Idris Hsi – Page 11

2 Studying the Feature Evolution of Software

2.1 Software Evolution and Feature Aggregation

Software evolution refers to the process of growth and change over the lifetime of the software
during its maintenance phase. Perry characterizes these changes into three categories [166]:

• corrections – repairs to errors in the code
• improvements – optimizations to performance, usability, maintainability, and so on.
• enhancements – additions of new features, generally visible to the users of the system.

Software tends to go through many iterations of development and enhancement, evolving over
time as dictated by the competitive demands of the marketplace and in accordance with
Lehman’s Law of Software Evolution that states that a computing application (specifically what
he calls an E-type program) “must be continually adapted else it becomes progressively less
satisfactory” [128]. Ultimately, software must satisfy its users whether its role is to entertain, to
facilitate intellectual activities, or to produce work products. Because these goals are embedded
in real world contexts, software engineers must contend with two issues in the development and
evolution of these systems.

First, specifying and designing such systems so that the embedded domain model has sufficient
fidelity to operationalize the services desired by the customers and users of the system is an
immensely complicated process for requirements developers [6, 20, 53, 100, 105, 134, 172, 176].
Second, the real world also changes over time. Organizational goals change as do procedures and
processes. Introducing new technologies also perturb the original domain as users learn and
adapt their own behaviors to these new tools [104, 180]. These changes cause the software’s
model of the world to fall out of step with the actual world [129]. The first two categories of
evolutionary changes, corrections and enhancements, simply improve an application’s ability to
implement its current domain model. To change that model requires that it be enhanced. Usually,
this enhancement is accomplished by adding features to the application [38, 130, 143, 207]. We
call this process feature aggregation although it is also called, more critically, feature creep and
creeping featurism [162].

Does software actually become more useful over time? Do these enhancements improve its
usefulness to its users? An engineering expectation might be that they do. Artifacts such as forks,
pencils, paper clips, and bookcases are adapted over time until they have a stable set of
optimized features that allow them to perform their function well [167, 169-171]. Forks develop
extra tines, pencils acquired a wood casing around their lead interiors, paper clips changed in
shape and length, and bookcases develop movable shelves. Large and seemingly immutable
structures such as buildings are adapted and improved over time to meet the needs of their
inhabitants [36]. Even structures that are not inherently adaptable, like bridges, will see new
design improvements with each new construction as technology improves and engineers learn
from the failures of past efforts [168]. Thus, in engineering disciplines, development techniques
improve over time and later generations have better designs and more functional stability than
the earlier ones. Software is adapted to optimize its functions but it also adds more features as it
evolves – something that is difficult to do to a physical construct. Adding features allows each
successive version to perform more functions and gives its users more services. From a

Page 12

PhD Proposal – Idris Hsi – Page 12

consumer’s point of view, one could argue that given the choice between two equivalently priced
versions of software, the one with more features will be more attractive because of its potential
usefulness. What is unclear is whether this type of evolution, driven by a combination of
industrial, marketing, and consumer pressures, has truly made computing applications more
useful to their users.

There have been studies to suggest that this form of software evolution does not necessarily
produce a new version with increased fitness. A seminal study conducted by Lehman and Belady
on the IBM OS360 showed that as that the system aged, it becomes less stable over time [129].
This decrease in stability made the software more difficult to maintain as its code became more
complex. Lehman’s Laws of Software Evolution argue that programs must continue to grow in
functionality to maintain user satisfaction. At later stages in their evolution, they become more
difficult to enhance because of their growing complexity [128, 129]. Thus, from a software
engineering perspective, adding features becomes a two-edged sword in that features have to be
added but they add to the complexity of the system making it increasingly more difficult to adapt
and improve.

From the user’s perspective, a certain point in an application’s evolution, as has been noted in
both the academic and popular literature, its user population begins to complain about the
difficulty they have with the latest version [15, 74, 144, 146]. These difficulties include
applications having too many features, automated features that are not desired, and problems
with navigating the user interfaces to find the desired features [37, 126, 157, 161, 162]. Users
describe such systems as bloated. We formally define bloat as the description applied to
applications when it possesses a disproportionate number of unnecessary features that interfere
with normal or desired interactions with the application. The application has lost conceptual
fitness by embodying more concepts than are desired by its users.

Evolving computing applications by adding features can also result in difficulties for developers.
Researchers in telephony have identified what they call the feature interaction problem where
proposed features contradict or interfere with existing features [34, 43, 210]. This reflects a
tension between the changing services desired by the customer and the established ontology of
the software as encoded by developers. Techniques are being devised to accommodate or reduce
the introduction of features which conflict with existing functionality [42, 124]. Nevertheless,
this problem seems to hint at the idea that application ontologies may have actual limits to their
growth at least as far as usefulness is concerned.

It would seem that from these studies that computing applications do not become more useful
over time, or that improvements to their usefulness have different costs and implications than
one might expect from then engineering or architecting of a physical construct. We may
conclude that evolving programs in such a manner implies an entropic process as the system
decreases in stability over its lifetime [182]. Nevertheless, by studying software ontologies, we
may learn what makes them prone to entropy and decreased stability. Specifically, if software is
becoming less stable as features are added to them, we may be able to detect this process by
studying the diachronic variation (variation over time) of its concepts and to examine
applications that have been through several generations to see whether they exhibit increased
complexity and decreased coherence in their ontologies.

Page 13

PhD Proposal – Idris Hsi – Page 13

2.2 The Feature Evolution of Microsoft Word

To study the ideas of ontology and the evolution of an application’s conceptual coherence, we
began with the following questions:

• How do computing applications evolve their features over time?
• How does the evolution of a computing application affect its perceived usefulness?

Work in design evolution by Henri Petroski show that tools evolve and improve over time over
many iterations through combinations of design failure, optimization, and cultural co-evolution
[168, 169]. We could make the general claim that “all tools improve with each successful
version.” However, software lacks the physical constraints and single-minded design of artifacts
studied by Petroski. Thus, we needed to study the service evolution of a computing application to
learn what happens. We analyzed three versions of Microsoft Word (MS Word 2.0, MS Word
95, MS Word 97) using features as our unit of analysis [98]. In this study, we treated features as
units of software function or usefulness. Using the user-accessible elements of the applications,
we tracked the evolution of their feature architectures. We used the following tripartite view in
our analysis:

• The morphological view is the user-visible analog for feature architecture of the source code
content of a software architecture. It consists of the user-interface composition and
navigation structure.

• The functional view is the description of what the features do. A thorough analysis of
functionality would require a detailed model of interactions based on data flow or control
abstractions. In this research, we restrict ourselves to enumerating operations, the activities
that the system performs.

• The object view is a description of the subject-matter of the feature. Like an object model
produced during software design or an information model for database design, the object
view consists of static relationships between objects in the problem domain. In the case of the
feature architecture, however, the objects are derived from user-visible phenomena,
especially the user interface components from the morphological view. The objects in the
feature architecture may be correlated with the objects underlying the implementation if it is
object-oriented or the data structures and files if it is not, but they need not be. Again, it is the
problem domain that makes the products’ objects appropriate or inappropriate, not the fact
that they are to be recovered from the code.

We also coined the term teleon to label a cluster of related concepts systematically derived from
our object view. Using black-box reverse engineering methods, we treated elements of the
morphology as portals to the underlying operations and objects and built representations for each
view for each version of MS Word.

In our analysis, we discovered the following:
• Word’s morphology increased in depth and complexity over time. However, these changes

were driven primarily by changes and enhancements to the objects. The number of operations
also increased over time. While this also correlated to the number of objects added to each
version, there were no discernable patterns to how this occurred.

Page 14

PhD Proposal – Idris Hsi – Page 14

• Objects from previous versions remained the same despite changes to the overall object view.
Features did not disappear from a new version with one or two exceptions (in which they
migrated outside the application). Thus, older features become more entrenched over time
and develop more operations and morphological elements that activate them.

• Teleons were added in “clumps” to the periphery of the object view. Rather than an even
pattern of growth where teleons acquired concepts and grew larger, like the annular rings of a
tree, new teleons with new concepts and operations were added to the previous set of
features. The list of teleons identified in Word 2.0, Word 95, and Word 97 can be found in
Table 1.

Table 1 – Conceptual Evolution of the Document Teleons in MS Word

Word 2.0 Teleons Word 95 – New
Teleons

Word 97 - New Teleons

Annotation Caption 3D Direction
Border Cross-Reference 3D Lighting
Character Database 3D Object
Column Drawing 3D Surface
Document Drawing Object Comment
Envelope Font Font Animation
Field Font Effects HTML Document
Font Style Font Underline OCX Object
Footer Form Field
Footnote Heading
Frame List
Header Note
Index Numbering
Line Numbering Revisions
Object Table of Authorities
Page Table of Figures
Paragraph
Picture
Section
Shading
Style
Summary Info
Tab Alignment
Table
Table Cell
Table of Contents
Tabs
Word

From these findings, we arrived at the following conclusions:
• MS Word evolved most noticeably by adding new features to the previous version’s set.
• The user interface or morphology is an inadequate point of analysis for understanding an

application’s complexity or usefulness. Morphologies are driven by the application’s
underlying theory. Morphological complexity can affect ease of access or activation of
certain operations, but the application’s overall usefulness is determined by the concepts it
contains and implements.

• Older features may remain because they define the application or to preserve compatibility
with other applications. In MS Word, if a fundamental word processing concept such as
“word” or “paragraph” were to disappear in the next version, then it would no longer be a
word processor.

• ‘Bloat’ results when adding newer features interferes with access to older features.

Page 15

PhD Proposal – Idris Hsi – Page 15

Finding that older features persisted in Word suggested that all applications, new or evolved,
have an ontological foundation composed of concepts necessary for the definition of those
applications. We also believed that if applications do consist of organized clusters of concepts
that compose features that these can be identified from their ontologies.

Page 16

PhD Proposal – Idris Hsi – Page 16

3 Ontological Excavation

We developed a technique called ontological excavation to reverse-engineer the ontology from
the morphology [99]. Ontological excavation uses black-box techniques; the ontology is reverse
engineered from the user interface of the application rather than the source code. Black box
reverse engineering allows us to identify just the concepts visible to the user rather than the
concepts relevant to the application’s implementation. The basic steps of ontological excavation
are:

1. Model the user interface in a morphological map of the application’s interactors,
displays, and containers.

2. Generate a list of morphological elements.
3. For each element, identify the concepts (entity types and attributes) that it invokes.
4. Through dynamic interaction with the application, identify the relationships between the

concepts.
5. Model the concepts and relationships into a semantic network representing the

application’s ontology.

3.1 The Morphological Map

All applications have a morphology, the external interface elements of the system that give its
users access to the implemented functionality. In interactive systems, the morphology is the user
interface. The components comprising the morphology represent windows or portals through the
external “shell” of the application to the underlying ontology. Through systematic interaction
with the application’s outer shell, we can identify or “excavate” the concepts and the basic
relationships between those concepts and model them in a semantic network. In most computing
applications, the morphology is the user interface.

We model the user interface in a morphological map. This map consists of the interface’s
interactive elements or interactors (e.g. buttons, text fields, check boxes), containers, a
morphological element that contains and structures interactors (e.g. windows, dialog boxes,
toolbars), and displays, morphological elements that present both static and dynamic data about
the computing application’s states to the user. Figure 1 shows the Windows 95/98 CD Player
application along with examples of containers, interactors and displays.

Figure 1 – Examples of containers, interactors, and displays from the Windows 95/98 CD Player

Containers

Interactors

Displays
CD Status Display

Play Button

File Edit … ...

Menu Bar

Main Toolbar

Track Drop-Down
List

We build this map by traversing and activating all the user interface elements in a systematic,
depth-first fashion. Each element is represented by a visual icon and given information

Page 17

PhD Proposal – Idris Hsi – Page 17

corresponding to its label in the user interface. These visual icons are linked using arrows to
show either their container (e.g. a toolbar containing buttons) or their point of activation (e.g. a
menu item opening a dialogue box). A portion of the Windows 95/98 CD Player morphology is
shown in Figure 2.

Figure 2 – Part of the menu bar in the Windows 95/98 CD Player Morphology.

CD Player

Main MB:
Disc M

Main MB:
View M

Main MB:
Options M

Main MB:
Help M

D
is

c
M

: E
di

t
P

la
yl

is
t M

I

D
is

c
M

: E
xi

t M
I

V
ie

w
 M

: T
oo

lb
ar

C
M

I

V
ie

w
 M

: D
is

c/
Tr

ac
k

In
fo

 C
M

I

V
ie

w
 M

: S
ta

tu
s

B
ar

 C
M

I

V
ie

w
 M

: T
ra

ck
Ti

m
e

E
la

ps
ed

C
M

I

V
ie

w
 M

: T
ra

ck
Ti

m
e

R
em

ai
ni

ng
C

M
I

O
pt

io
ns

 M
:

R
an

do
m

 O
rd

er
C

M
I

O
pt

io
ns

 M
:

M
ul

tid
is

c
P

la
y

C
M

I

O
pt

io
ns

 M
:

C
on

tin
uo

us
P

la
y

C
M

I

O
pt

io
ns

 M
: I

nt
ro

P
la

y
C

M
I

O
pt

io
ns

 M
:

P
re

fe
re

nc
es

 M
I

H
el

p
M

: H
el

p
To

pi
cs

 M
I

H
el

p
M

: A
bo

ut
C

D
 P

la
ye

r
M

I

V
ie

w
 M

: V
ol

um
e

C
on

tr
ol

 M
I

Main MB

V
ie

w
 M

: D
is

c
Ti

m
e

R
em

ai
ni

ng
C

M
I

Morphological elements that can be identified as specific to the computer or operating system
running the application are not modeled. These include things such as keys on a keyboard,
mouse movements, file handling, or printing capabilities. This also includes all functions and
supporting applications that operate independently of the one being studied. For example, the
Windows 95/98 CD Player does have a volume command but it activates the Volume Control
dialog box of the operating system so we will not model this in the CD Player’s morphology.
Naturally, if we were excavating the ontology of the operating system itself, we would have to
model these things. Ideally, we would like to model only those things within the scope of what
we consider to be the morphology of the application being studied; a distinction which can blur
when applications begin accessing other items such as web pages.

These elements, their labels, and their interconnections are modeled in a diagram using
Microsoft Visio as the drawing tool. Currently, the reconstruction of the morphology into Visio
is a manual process.

3.2 Excavating the Ontology

There are text-based ontological notations designed to support data modeling and database
exchange activities, such as Ontolingua [80], CLASSIC [35], and CYC [135]. There are also
representations for modeling concepts in computing applications, such as entity-relationship
(ER) diagrams [17, 25, 46, 76], object-role models (ORM)[88, 159, 200], and object-oriented
(OO) diagrams [28, 29, 64, 183]. We have chosen to model our recovered ontologies as a simple
semantic network of concepts and relationships [185] [188] [18] [160]. The basic structure of a
network, semantic or otherwise, consists of nodes and edges allowing us to use graph algorithms
to identify key elements in the ontology. Also, our simple model can be refined into any of the
aforementioned models for software developers.

Using the morphological map as an information source, we first identify the concepts indicated
by the labels attached to those elements, looking for noun phrases and the indirect objects
implied by verbs, a process borrowed from object-oriented analysis methods [28, 183]. For

Page 18

PhD Proposal – Idris Hsi – Page 18

example, a “File Menu” implies that there is a concept of “File”. A “Font” dialog box informs
the concept “Font Size”. In cases where a noun does not exist in the label, concept identification
requires interaction with the system. For example, “Play” on a CD Player plays a “Track” on a
“Disc”. Once we identify a concept, we determine whether it is an entity type, attribute, or
instance.

• An entity is a thing that can be distinctly identified [46]. A set of entities that share a set
of attributes is an entity type [61]. Example: In Figure 3, Disc and Track are entity types.

• An attribute is an intrinsic property of a thing in the real world [203]. Basically, it is a
concept that lacks independent existence except as a property of an entity type. Example:
In Figure 3, Track Name and Track Number are attributes of Track.

• An instance is a concrete manifestation of an entity type [29].

We model attributes as nodes in our network rather than collapse them into the entity types as
one would do in an object model. This is similar to the methods used in NIAM (Natural language
Information Analysis Method) [200] and ORM (Object Role Modeling) [87, 159]. For example,
a “Disc” in the CD Player has an “Artist” and a “Title” as seen in Figure 3. In our observations
of Microsoft Word’s evolution, we noticed several times that concepts that might have been
modeled as attributes in one version would become full fledged entity types in the next.
Modeling attributes in this manner allows us to make better comparisons of growth and
complexity across application versions and examples.

Instances are refined into entity types and do not appear in the ontology. For subtypes, we first
identify or name the parent entity type from the common features amongst the subtypes then
model it using the ‘is-a’ relationship. These concepts are named using the labels from the
morphology. In the cases where the name is unavailable from the morphology or correct
modeling requires us to name a concept, we use brackets ([]) around the concept name. In the
CD Player, we obtained the concept of Disc from the morphology but created the subtype
Current Disc to account for the difference between the general concept of CDs and the CD that is
currently being played by the application (as shown in Figure 3).

Figure 3 – Ontology for the Windows 95/98 CD Player

Disc

Artist Title

[Current Disc]

Drive

Track

Track Name

Track
Number

[Current
Track]

[Playing_or_
Paused]

has-a has-a

has-a

has-a

has-a

has-a

has-a

is-a

is-a

Playlist

has-a

Available Tracks Of

Custom Playlist Of

Track Time
Elapsed

Track Time
Remaining

Track Time

Playlist Time
Remaining

has-a
has-a
has-a

has-a

[Play Mode]

Random
Order

Continuous
Order

Intro Mode

has-a

has-a
has-a

has-a

has-a
Intro Play

Length

has-a

After identifying the concepts from the morphology, we identify the relationships between them
by interacting with the system and by reconstructing them from observations of both static

Page 19

PhD Proposal – Idris Hsi – Page 19

information and dynamic behavior. For constructing a semantic network, we use the basic
relationships from object modeling: associations, generalization (is-a), and aggregation (has-a)
[29].

• association – A structural relationship that specifies that things of one type are connected
to things (concepts) of another type. We use associations to indicate an interaction
between concepts. In Figure 3, a Playlist can be the Custom Playlist of the Current Disc
or displays the Available Tracks of the Current Disc.

• generalization – A relationship between a kind of thing (parent or superclass) and a more
specific kind of that thing (type, child, or subclass). A subtype is a specialization of an
entity type. In OO, generalization suggests inheritance where a child inherits the
properties of the parent. We use this relationship (and generate the corresponding entity
types and attributes) when it becomes clear that several objects have the same
characteristics or when we need to infer an entity type to account for an observed
behavior. For example, in Figure 3, Current Track is a kind of Track. We chose to model
Current Track as the track being played because all Tracks on a CD cannot be played at
the same time. Thus, we had to make a distinction between an entity type, Track, that has
a name and a number on the CD, and the Current Track, which has a duration and can be
played or paused.

• aggregation (has-a) – A whole/part relationship where one class of entity types
represents a larger thing which consists of smaller things. Aggregations are denoted by a
‘has-a’ relationship in the semantic network. For example, in the CD Player (Figure 3), a
Playlist possesses the concepts Track and Playlist Time Remaining. In our modeling
conventions, we break the traditional convention of requiring both things to have
independent identities in the case of attributes. However, attributes are not permitted to
have has-a relationships with other concepts.

In other diagrammatic methods, we would also show constraints on these relationships such as
cardinality (the number of elements in a set) or dependencies (a semantic relationship between
two things) [17, 28] but we chose not to model them because they were not essential to our
analysis. We also model these relationships in our diagrams as directed edges between the
concepts for the sake of readability but do not use digraph algorithms in our analysis. It turns out
that modeling ontologies as a directed graph produces too many isolates and components that
confound the analysis. It was also not clear from our survey of modeling methods that the
directed arrows were meaningful from a graph or network standpoint and served only to enhance
readability for software developers. Currently the process of excavating the ontology from the
morphology and producing the ontological diagram in Microsoft Visio is a manual process.

Page 20

PhD Proposal – Idris Hsi – Page 20

4 Ontological Analysis

To analyze ontologies, we identified techniques from graph theory, specifically those used in
social network analysis [205] to identify the following items:

• Core concepts and peripheral concepts; a core concept is essential to the application’s

ontology while a peripheral one is not. We identify these using node betweenness centrality
measures [205].

• Teleons; Since a teleon is a collection of related concepts, we believed that their structural
dependencies will be evident in the graph that represents the ontology. We identify teleons
using a k-core analysis.

We wrote a Visual Basic macro for Visio that refines a graph into an adjacency matrix that could
be read by an application called UCINET, a tool for social network analysis [31]. The social and
behavioral science communities model relationships between social entity types as social
networks. Social network analysis methods apply algorithms from graph theory to identify both
patterns and variables in the structural relationships of these networks [205]. By treating the
concepts in our semantic networks as social entities in a social network, we can use the tools in
UCINET for our analysis.

4.1.1 Core Concepts and Betweenness Centrality
In our Microsoft Word study, we observed that older concepts tended to remain unchanged
through successive versions. This implied that certain concepts may be integral to that
application. Remove the ‘paragraph’ or ‘word’ concept from a word processor’s ontology and
you may have crippled its ability to implement many features. Remove something like
‘hyperlinks’ or ‘graphics and you may not be able to compose web pages but you can still
generate other types of documents. We call the integral concepts core concepts. In our semantic
network, we believed that the core concepts would be ones that are the most central in the graph.

Prestige or centrality measures in social network theory are used to identify individuals who
have importance relative to the other members of the network. Betweenness centrality measures
the number of shortest paths that use a particular node. It computes a normalized value between
0 and 100 where 100 means that the node lies on all shortest paths between all pairs of nodes. In
our semantic model, a path between two concepts indicated a potential interaction or dependency
at the ontological level. Naturally, the longer the path, the lower the probability that the two
concepts are related. But over time, certain concepts can migrate in the ontology or develop new
relationships to nearby concepts. An example of an evolved relationship can be found in the Win
95/98 CD Player where a Disc has a Title and an Artist while a Track has a Track Name. Tracks,
therefore, do not have Artists. However, in modern media players, tracks can actually be
assigned different Artists names while a Current CD being transferred to MP3 files still has an
Artist.

Other centrality measures from social network theory include:

• Degree Centrality measures the number of edges on a node. The more edges on a node,
the higher the centrality.

• Closeness Centrality measures the average distance from that node to all other nodes. The
closer the node to all other nodes, the higher its centrality.

Page 21

PhD Proposal – Idris Hsi – Page 21

• Information Centrality measures the information contained in all paths originating with a
specific node.

• Eigenvector Centrality measures the centrality of a node relative to the importance of its
surrounding nodes.

We applied these measures to at least three different ontologies and determined that betweenness
centrality measures not only had the lowest sensitivity to small errors in the model but returned
what we considered to be the most intuitively correct core concepts in the graph. It also had the
additional benefit of ignoring attributes (modeled as leaf nodes) in the analysis.

Figure 4 – A comparison of centrality measures on the concepts in the Notepad ontology. Concepts were sorted in ascending order based
on the values returned by the method – y-axis is the normalized centrality value. The x-axis would normally have been the numeric label

for the concepts but, since the data sets were sorted independently, it is meaningless in this graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree
Closeness
Betweenness
Eigenvector
Information

Figure 4 shows the results of one of our comparisons. Knowing from visual inspection of the
graph that some concepts should have a higher prestige than others, we were looking for a
characteristic curve that would allow us to determine a threshold centrality for deciding where
core concepts began. Degree and closeness centralities produced very flat measures across all
concepts. While betweenness, eigenvector, and information centrality plots showed distinct
curve, we also saw in our analysis that betweenness tended to return concepts that made more
sense. For example, using the eigenvector centrality measure on the Palm Pilot scheduler showed
that Start Time and End Time were more important concepts than Time or Alarm. Because the
eigenvector centrality of a particular node depends on the importance of its neighbors, that node
can develop an enhanced measure simply by being incident upon several prominent nodes.
Information centrality had similar problems with proximities to prominent nodes. We chose
betweenness centrality as the best measure for identifying core concepts in a graph.

4.1.2 Teleons and K-cores
From our Microsoft Word study, we knew that certain concepts were more interrelated than
others. For example, Table, Column, Row, and Cell had a strong conceptual interrelationship.
What we wanted was a method for identifying tightly related subgraphs of nodes in our ontology.
These types of subgraphs have been described in graph theory and include cliques (a maximal,

Page 22

PhD Proposal – Idris Hsi – Page 22

complete subgraph of three or more nodes) and n-cliques (a maximal subgraph in which the
largest geodesic distance between any pair of nodes is no greater than n) [49, 184]. It turns out
that the mathematical restrictiveness on subgroup membership did not lend itself to obtaining
meaningful results on our ontologies. For example, Notepad would return five different cliques
which were permutations of Alignment, [Header/Footer Code], and Left / Right / and Center
Alignment Codes. We decided to use a k-core analysis [205]. A k-core is a maximal, induced
subgraph such that each node in the subgraph has edges connecting it to k or more nodes.
Wasserman and Faust describe it as useful for exposing regions of the graph where you were
likely to find other subgraphs such as cliques. We hoped the k-cores would reveal teleons similar
to those we identified in our previous study.

4.2 Case Studies of Ontological Excavation

We applied our models and techniques to four applications: Windows 95/98 CD Player, Palm
Pilot Scheduler, Microsoft Notepad, and the Protocol Calculator/Calendar device (see
Appendices 2, 3, 4, and 5 for descriptions and data from our studies).

4.2.1 Core Concept Identification
After examining our data, we settled on an arbitrary betweenness threshold of 7.0 as the cutoff
point between core and peripheral concepts. In several of our case studies, that value seemed to
be the difference between a core concept and a concept that supported a core concept. We do not
claim any significance to that value as yet and acknowledge room for debate. More empirical
studies may confirm or disprove the usefulness of this threshold. Nevertheless, we were able to
identify the following core concepts from these applications:

Table 2 – Core Concepts found in the case studies. Concepts are listed in order of their betweenness centrality values

Application Candidate Core Concepts
CD Player [Current Track], [Play Mode], Track, Disc, [Current Disc], Playlist
Palm Pilot
Scheduler

Event, Date, To Do Item, Hot Synch, Day, Month, Time, Alarm, Repetition, Note, Every

Notepad Page Setup, Font [Setting], Paper, Text, Paper Size, Font, Script, Header, Footer, [Configuration], [Header/Footer
Code], Margins, Alignment, Font Style

Protocol
Calculator /
Calendar

[Time Zone], Time, Home Time

The Protocol Calculator / Calendar actually had multiple components (isolated subgraphs) in its
ontology. We performed a separate analysis on each subgraph and obtained the following core
concepts per subgraph:

Table 3 – Core concepts found in Protocol Calculator / Calendar. Note: Subgraph 4 only has 2 nodes.

Subgraph Core Concepts
1 Date, Month, Year, Calendar
2 [Time Zone], Time, Home Time, [Time Display Mode], Alarm Time, Alarm
3 [Mathematical Operation]
4 Currency Exchange [Calculator], Exchange Rate *

We believe that our use of betweenness centrality to the excavated ontologies succeeded in
identifying candidate concepts that could be argued to be core concepts in their respective
applications. In the case of the Protocol Calculator / Calendar device, we identified four
independent subgroups in the ontology and only three core concepts. Within those subgroups,
our analysis revealed core concepts that define each of them respectively.

Page 23

PhD Proposal – Idris Hsi – Page 23

4.2.2 Teleon Identification
The k-core analysis was able to identify the following subgroups in our sample applications:

Table 4 – CD Player Teleons Identified by K-Core Analysis

k-value Concepts in Subgroup
2 [Current Track], [Play Mode], Track, Disc, [Current Disc], Playlist

Table 5 – Palm Pilot Scheduler Teleons Identified by K-Core Analysis

k-
value Concepts in Teleon

2
PurgeUnits, Week, Month, Every, Today, Day, Preferences, End Date, Repetition, Schedule, Year, Date, Due Date, All
Occurrences, Current Occurrences, Event, To Do Item, Is Private, Start Time, End Time, Alarm, Alarm Units, Hour, Minute,
Backup Copy, Note, Event Problem, Synch Problem, To Do Problem, To Do List, Hot Synch, Time, Application

Table 6 – MS Notepad Teleons Identified by K-Core Analysis

k value Concepts in the core
3 Text, Header, Footer, File Name, Page, Number, Date, Time
2 (a) Header/Footer Code, Left/Right/Center Alignment, Alignment (of Header/Footer)
2 (b) File, Current File, [Configuration], Line, Word, Font [Setting], Page Setup, Document, Page

Table 7 – Protocol Calendar / Calculator Teleons Identified by K-Core Analysis

k-value Concepts in Teleon
2 Date, Month, Year, Calendar
2 Alarm, Alarm Time, Count Down Timer, Hour, Minute, Second, Sound, Time,

The CD player’s 2-core consists of those concepts which are entity types in the ontology. The
Scheduler’s ontology has such a large number of concepts in its 2-core to the point where it is
nearly indistinguishable from the ontology itself. The Notepad and the Calendar / Calculator
ontologies produced interesting results. The Notepad ontology had one large cluster which could
be broken into 3 distinct k-cores. The concepts in the 3-Core all concern Text, which we
expected would be the case since MS Notepad is a text editor. The concepts in the 2-cores
involve Header/Footer Codes and File Handling / Document Format, respectively. Thus, the k-
core technique shows that MS Notepad has Text, Header / Footer Management, and File
Handling and Document Formatting features. The Calendar / Calculator device had two 2-cores
related to the calendar date and timekeeping. However, it did not show that the device also had a
countdown timer, a calculator and a currency exchange calculator.

While k-cores did not reveal teleons at the granularity that would have revealed features at the
morphological level, it did show interesting relationships amongst the concepts in these
applications.

Page 24

PhD Proposal – Idris Hsi – Page 24

5 Conceptual Coherence and Ontological Structure

From our studies of Microsoft Word and from our case studies of these small applications, we
have developed techniques for excavating the ontology of a computing application and for
analyzing these ontologies. We have proposed that conceptual coherence measures the degree to
which a computing application’s concepts are tightly related and that it can be used to assess the
application’s usefulness. In this section we will describe and motivate these ideas further. We
will also show potential metrics for measuring conceptual coherence and the results that we
obtained from our case studies.

5.1 Coherent Applications

The classical view of concepts, derived from Aristotelian philosophy, asserts that concepts can
be defined by providing a set of necessary and sufficient attributes that belong to that concept.
However, this classical view failed to take into account functional features or disjunctive
concepts. [185]. In addition, Wittgenstein argued that concepts cannot be defined concretely by
their features because many of these concepts have not been concretely defined and therefore
lack these defining features. Using empirical examples such as “games”, he showed how games
could be difficult to categorize by their attributes. For example, the concept of a “game” for a
professional athlete has very different attributes than the concept of a “game” to a child. An
athlete sees games as a job and “playing the game” as work. A child sees games as entertainment
and “playing the game” as fun. Therefore, the classical view proves inadequate in categorizing
concepts [208].

Nevertheless, concepts in computing applications are engineered using this classical view of
concepts. These concepts are designed and implemented with a specific set of attributes. Within
the bounds of an application’s ontology, concepts have a very specific design and meaning.
However, their implementation can have many variations and mutations. A concept with the
same name in a different application may have very different attributes. In addition, their
equivalent concepts in the real world often lack concrete definitions and can change meanings
depending on the use context. Categorizing applications into specific families by their common
features can be difficult because of these variations. Certainly, broad categories are possible,
such as Jackson’s problem frames [105]. Jackson describes broad categories of applications by
their objectives. For example, the workpieces problem frame characterizes situations where a
workpiece (a piece of material) is being modified by a tool to produce a desired artifact. Specific
categories within these broad categories are harder to qualify.

Some application families have such a small set of features that they are easy to define
concretely. The Windows 95/98 CD Player does not have functions having to do with anything
other than managing the playing of CDs. The Windows 2000 CD Player adds features for
downloading track titles from the Internet. If we added the ability to play MP3 files or download
them from the Internet, then intuitively, we may argue that it is no longer just a CD Player. It has
become less coherent. Other application families have such a large set of features that they are
immediately difficult to define concretely. For example, if we wished to characterize a word
processing family we might identify a candidate word processor and determine its essential
concepts as a first approximation. In our evolution study, we saw that all versions of Microsoft
Word possessed features that concern text editing and formatting, things that would belong to a
domain that we might call word processor. However, later versions included graphics, graphical

Page 25

PhD Proposal – Idris Hsi – Page 25

layout, HTML editing, and Web page controls. The current version of Microsoft Word can be
argued to still have the essential features of a word processor but also the features of a Web page
editor and a desktop publisher. Its conceptual coherence has decreased over time because of its
multiple feature sets. This decreased conceptual coherence has contributed to its users’
perceptions of bloat.

5.2 Metrics for Coherence

While we believe, intuitively, that conceptual coherence is a property of all applications, we
would like a means for quantifying it in our ontologies. We have identified the following
candidate metrics that can be used to measure the conceptual coherence of applications.

• Core Concept Percentage – We expect that an ontology with a disproportionate number
of core concepts relative to the rest of the ontology has a structure possessing many
interdependencies amongst the concepts.

• Average Centrality – Our centrality measures identify those concepts with a high number
of dependencies. However, an ontology can have many concepts on the periphery, with
some ties to core concepts, that have a non-zero centrality value but not high enough to
be considered as a core concept. These may be supporting concepts. An ontology with a
small number of core concepts but a large number of concepts that directly support core
concepts may have a high coherence.

• Network Density – Density is the number of edges in a graph divided by the number of
possible edges. Since edges in our graph signify relationships between concepts, then a
graph with a large density may indicate a higher conceptual coherence.

We applied these metrics to the applications chosen for our case studies and found the following
(Table 8):

Table 8 – Comparison of Coherence Metrics

 Core Concept % Core Concept %
(w/o attributes)

Average
Centrality

Network
Density

Windows 95/98 CD Player 30 100 9.60 .11
Palm Pilot Scheduler 17 23 4.22 .05
Microsoft Notepad 18 19 4.83 .03

Protocol Calculator / Calendar 6 6 1.97 .04

The CD Player shows the highest values across all metrics which seems to indicate that it has the
highest conceptual coherence while the Calculator / Calendar has the lowest values. Intuitively,
this would seem to make sense as the CD Player just plays CDs while the Protocol device tells
the time in sixteen different time zones and has a countdown timer, alarm, calculator, and
currency exchange calculator. We also looked at several different versions of the Notepad
ontology summarized in Table 9.

Table 9 – Comparison of Coherence Metrics across versions of the Notepad Ontology

 Core Concept % Core Concept %
(w/o attributes)

Average
Centrality

Network
Density

Microsoft Notepad, v.1 18 19 4.48 .03
Microsoft Notepad, v.1 (No Paper or Scripts) 20 21 4.83 .04

Microsoft Notepad, v.2 21 25 5.42 .03

We first collected metrics on Notepad’s ontology then removed concepts related to types of
Paper and types of Scripts because we were testing how a concept with many subtypes on the
periphery could affect the overall ontology. The second version shows a higher conceptual

Page 26

PhD Proposal – Idris Hsi – Page 26

coherence across all three measures. We then reconstructed the ontology, correcting some of our
modeling assumptions. The second version of Notepad’s ontology has 26 fewer concepts and
attributes than the first version and shows a higher conceptual coherence than either of the other
versions. (Details on how the second version was derived can be found in Appendix 6.)

In our first modeling pass, we decided to be strict about how we applied black box methods and
in the absence of information from either the user interface or from the help files, we simply
modeled items that we found in a list of scripts and paper sizes as concepts in the ontology. Since
no other concept depended on them, they ended up being modeled as leaf nodes, giving their
parent concepts, Script and Size, a high centrality value. When we removed these peripheral
concepts, Notepad’s overall conceptual coherence increased as we predicted. In the second
version of the ontology, we made a number of corrections to our modeling assumptions. In spite
of the large number of concepts removed relative to the ontology, we still identified most of the
same core concepts and the same teleons. What our reification did accomplish, according to our
metrics, is produce an ontology with a higher conceptual coherence than the original.

We next studied the Protocol Calculator / Calendar device in depth. The results of this
comparison can be found in Table 10.

Table 10 – Comparison of Coherence Metrics across ontologies of the Protocol Calculator / Calendar (* The Currency Exchange
Calculator subgraph only has 2 nodes)

 Core Concept % Core Concept %
(w/o attributes)

Average
Centrality

Network
Density

Protocol Calculator / Calendar 6 % 6 % 1.97 .04
Protocol Calculator / Calendar (No Time Zones) 6 % 6 % 1.34 .06

Calendar Subgroup 80 % 80 % 20.00 .50
Time Subgroup 20 % 20 % 7.99 .07

Time Subgroup (No Time Zones) 43 % 43 % 13.64 .18
Calculator Subgroup 10 % 10 % 9.09 .18

Currency Exchange Calculator * 100 %* 100 %* 0.00* 1.00*

After analyzing the excavated ontology, we generated a modified version of the ontology where
we removed the time zones as concepts and found that the average centrality actually decreased
across the application while the density increased. This implied that the entire ontology became
less coherent with the removal of these concepts. However, because the ontology actually had
four different subgroups, We then applied the metrics to each of the four distinct subgroups of
the device’s ontology, performing a second analysis on the Time subgroup without the time zone
concepts. Each of the subgroups showed a much higher coherence than the overall application
with the Calendar Subgroup showing the highest coherence of any of the ontologies examined so
far. The Time Subgroup also showed a higher coherence without the time zone concepts. The
Time subgroup not only contains the basic concepts for expressing time but the concepts for
setting the alarm and the countdown timer. Thus, we would expect it to have a lower conceptual
coherence than the Calendar subgroup but still have a high conceptual coherence since all its
concepts are still fundamentally tied to timekeeping. The Currency Exchange Calculator
ontology is a strange case because it only has two concepts in its subgraph but is included for the
sake of completeness.

We have claimed that high conceptual coherence correlates to usefulness. However, we still lack
the data to be able to say exactly what thresholds for any of the metrics indicate a high

Page 27

PhD Proposal – Idris Hsi – Page 27

coherence. While the CD Player and individual subgraphs within the Protocol Calculator /
Calendar device show higher values for conceptual coherence relative to the other applications,
and we are comfortable claiming from intuition that these applications are conceptually coherent,
we still cannot say whether the other applications have a high or low coherence. We suspect that
they are coherent but possess a number of peripheral features that keep them from exhibiting
high coherence. Specifically, the Palm Pilot Scheduler has many concepts for synching the data
with an external application and for backing up the data, and Notepad, ostensibly a text editor,
has many concepts related to printing. With more empirical studies, we may be able to qualify
these metrics further and identify which one of the candidate metrics measures conceptual
coherence the best. Correlating high conceptual coherence to usefulness will require a separate
set of empirical studies.

5.3 Ontological Structures

From our case studies of ontological excavation, we have observed some distinct characteristics
in the recovered ontologies, such as the CD Player’s central cluster of core concepts surrounded
by attributes, the Protocol Calculator / Calendar’s multiple subgroups within its ontology, and
Notepad’s multiple teleons. We also noticed a possible correlation between these characteristics
and the conceptual coherence metrics for their respective applications. These observations
suggest that applications may be categorized by their ontological structures. These structures
exhibit common forms that likely emerge from design and evolution. We present three
hypothetical archetypical ontological structures: the Reef Structure, the Toolbox Structure, and
the Urban Structure.

5.3.1 The Reef Structure
A Reef structure represents a system that implements a tightly related set of concepts, possessing
a high conceptual coherence. Many metaphors exist that could express the idea of a unified set of
concepts constructed around a central architecture. We chose a biological one to account for the
evolutionary behaviors that we have observed in the ontologies of single purpose applications.
Coral reefs are ecosystems built on a skeleton of calcium deposits created by tiny creatures
called coral. This skeleton provides a habitat for many species that each play a role in
maintaining the reef environment. Over time, the reef can grow and develop a very rich and
stable biological system [14]. A Reef ontological structure has a central structure that not only
supports itself but also a number of other entity types that contribute to the overall system.

A Reef-like computing application has an endoskeleton of core services and layers of peripheral
services that are supported by the endoskeleton. For example, a spell-checker for a word
processor is a peripheral service. Spell checkers could not exist independently of changes for text
that has to be spelled correctly. Figure 5 shows an abstract ontology for what we would expect to
find in a Reef Structure application – a skeleton of core concepts with some supporting ones on
the periphery.

Figure 5 – Reef Structure of Conceptual Coherence

Page 28

PhD Proposal – Idris Hsi – Page 28

Simply stated, this application does one basic thing. It may have services that aid in the
achievement of that central goal but these services could be removed without much loss to the
overall application. Arguably, most applications begin as reefs – tools built for a single purpose.
Over time, applications with well-defined goals or constrained domains may evolve by acquiring
new features but they only tend to acquire those features that can directly support and enhance
the existing ones. We believe that examples of Reef workpiece applications include PowerPoint
(essentially just a presentation generator), Adobe Photoshop (a bitmap editor), and TurboTax (a
financial management tool designed to produce tax documents). Most small applications and
games, like CD Players, Solitaire, Calendars, Clocks, and so on are also Reef structures. An
example of a Reef ontological structure can be found in Appendix 2 which describes the case
study for the Microsoft Windows 95/98 CD Player application.

5.3.2 The Toolbox Structure
A toolbox that you might find in a home is a collection of tools that have different affordances
for specialized tasks. Hammers, screwdrivers, and pliers all contribute to different sorts of tasks
but one usually does not use every tool in a toolbox to accomplish a task. A Toolbox structure
(Figure 6) has a collection of conceptually unrelated and lightly related ontologies that have been
assembled for reasons of convenience or design under a single morphology.

Figure 6 – Toolbox Structure of Conceptual Coherence

The tools in a toolbox collectively support a broader category of goals such as resource
management, information management, or media playing. Over time, a Toolbox may collect
more tools, enhance the capabilities of its existing tools, or begin merging the tools by
combining their functions. Examples of Toolbox model workpiece computing applications
include RealOne Player (a media player that supports CD playing, CD burning, Internet radio,
web browsing, and MP3 management) and Yahoo! Instant Messenger (ostensibly a instant
messaging tool that also delivers information such as weather, stocks, auctions, and news). The
overall Toolbox structure will have less conceptual coherence by definition but will be
structurally coherent within each individual tool. An example of a Toolbox ontological structure
can be found in Appendix 4 which is a case study of the Protocol Calculator / Calendar device.

Page 29

PhD Proposal – Idris Hsi – Page 29

5.3.3 The Urban Structure
Urban areas in cities are often divided into large neighborhoods that compete for influence,
income, resources, business, and desirable populations of people. Sometimes neighborhoods will
fragment into smaller zones. Other times, neighborhoods will subsume other less successful
neighborhoods. The collective urban environment may be easy to identify on a map but the
subordinate areas within that region may not be.

Figure 7 – The Urban Structure of Conceptual Coherence

The Urban Structure (Figure 7) results when an application has acquired features that cause its
ontology to lose conceptual coherence. Large clusters of features may merge, blurring the
boundaries between some services, or fracture, causing others to become more isolated and
independent of the computing application. We expect the ontology of an Urban application to
contain competing clusters of core concepts (multiple and unrelated teleons that have similar
sizes and influences on the ontology). It differs from the Toolbox Structure in that these core
concepts are connected to each other. A Toolbox can have large independent clusters of
ontologies because, in practice, each cluster represents a tool that is used independently.

The Urban Structure can result from a design that had poorly articulated or confused
requirements. It also might have begun as a Reef or Toolbox model but over time had evolved by
growing in size and functionality to acquire new customers that have different and occasionally
conflicting, requirements for this application. Over its lifetime, such an application may be
perceived to be more bloated by users who find themselves using smaller and smaller
percentages of the overall system with each release. Examples of Urban workpiece computing
applications include Microsoft Word and Microsoft Excel. An example of an Urban ontological
structure can be found in Appendix 5 which describes the Microsoft Windows Notepad
application.

5.3.4 Ontological Structures and Computing Applications
While still hypothetical, these archetypical ontological structures have interesting implications
for aiding designers in designing and enhancing their applications. If this and future research
show a correlation between usefulness and conceptual coherence, then one could imagine design
heuristics encouraging adoption of the Reef or Toolbox ontological structures as a framework for
organizing domain concepts in the ontology of an application prior to developing the software
architecture. Bloat could be detected in the ontology by detecting Urban ontological structures in
existing applications and in the ontologies of future application versions before proposed features
are added. In applications with a close correspondence between its concepts and the underlying
software architecture, software maintenance activities could include ontological grafting and
pruning; adding teleons to the ontology or removing them to preserve conceptual coherence. For
example, if a computing application is found to have an Urban ontological structure, one could

Page 30

PhD Proposal – Idris Hsi – Page 30

preserve the stability and enhance the maintainability of the application by pruning one of the
competing clusters of core concepts and creating a separate application that contributes services
without sharing morphologies. These potential represent tremendous payoffs in improving
software usefulness and in reducing unnecessary effort at the development stage.

Page 31

PhD Proposal – Idris Hsi – Page 31

6 Use Case Silhouettes

We know that a gap exists between potential and actual usage of an application. An application
can be conceptually coherent in its ontology without being useful in a given context. However,
we believe that applications that have a high conceptual coherence will have a higher conceptual
fitness than a similar application with a low conceptual coherence assuming that their features
are appropriate for that use context. This is simply because the application with high conceptual
coherence is less likely to have concepts that go unused in that particular use context. To
examine the relationship between conceptual coherence and usefulness relative to a specific use
context, we have developed a technique called use case silhouetting that takes a set of use cases
and measures the amount of ontological coverage by those use cases.

When the services of a computing application are engaged by its users, it uses or invokes
concepts in its ontology. Ontological coverage measures the percentage of the ontology covered
by those concepts for the desired unit of analysis. For example, one could measure the amount of
ontological coverage for a given user’s actions, a scenario, a goal, a specific task, an
organization, and so on. We can also measure the importance of these individual concepts by
examining the frequency by which they are activated. If we find that the unit of analysis has a
high ontological coverage, we could infer that the application has a high usefulness insofar as its
conceptual correspondence is concerned. We refer to the process of collecting data on concept
frequency as silhouetting.

Figure 8 – The Silhouette Metaphor

The application’s morphology (e.g. the user interface) provides affordances that permit access to
the services. Viewed another way, these morphological elements provide portals in the ‘skin’ of
the application through which the underlying conceptual model can be seen. Activating
particular elements in the morphology casts a ‘silhouette’ on the concepts below where only
specific concepts are highlighted as we show in Figure 8. While any of the units of analysis that
we have mentioned would be appropriate for measuring ontological coverage, we have selected
use cases as our source of data.

Use cases come from the Unified Software Process where they are used to express requirements
and guide developers in the design, construction, and testing of the system [109].

“A use case specifies a sequence of actions, including variants, that the system can
perform and that yields an observable result of value to a particular actor.” [109]

Page 32

PhD Proposal – Idris Hsi – Page 32

In software development, specifically in the requirements phase, the developer will gather
narratives from users and structure them into these use cases. By using use case silhouettes, we
can measure the ontological coverage for a proposed system for each use case and for a set of use
cases that reflect a specific scenario, user, or set of requirements.

A use case silhouette is developed by recording the number of times a concept is referenced in a
particular use case. This can be done in a number of ways. For high level use cases, where the
interface is not mentioned, we can simply examine the concepts activated at each step of the use
case. For example, a use case action that says “The customer requests a transaction slip from the
system.” tells us that the ‘customer’, ‘transaction’, and ‘transaction slip’ concepts have been
activated by the as-yet nonexistent user interface. For low level use cases that explicitly describe
how the user interface is activated, we simply account for each morphological element
mentioned in the sequence of actions and trace the concepts that they invoke. For example, a use
case action that says “To change the size of a character, on the Formatting toolbar, click a point
size in the Font Size box.” invokes the concepts ‘character’, ‘font’, and ‘point size’ through the
morphological elements Formatting Toolbar and Font Size Drop Down Box.

Here is sample text from one of the use cases of the Windows 95/98 CD Player (CDs: storing
track titles):

���������	��
���
�
�������������� ���
������	���	�������

1. Make sure your CD is in the drive.
2. On the Disc menu, click Edit Play List.
3. In Artist, type the artist's name.
4. In Title, type the title of your CD.
5. In Available Tracks, click the track whose name you want to store.

From this use case, we identified the morphological elements Disc Menu, Edit Play List Menu
Item, Disc Settings Dialog Box, Artist Text Field, Title Text Field, and Available Tracks List.
From these elements we identified the concepts Disc, Artist, Title, Track (2 times), Track
Number, and Playlist (3 times).

We can learn the following from use case silhouettes:

• The total amount of ontological coverage provided by a set of use cases. – Assuming that
the use case set provides a complete set of usages by a user or a specific use context,
what is the percent of ontological coverage reached? If the coverage is low, then the
application may not have high usefulness for this set of use cases.

• The parts of an ontology that are covered by those use cases and to what degree. – A set
of use cases may emphasize certain parts of an ontology over others. Even though all
concepts may eventually be engaged, some concepts may see more silhouetting than
others. These may correspond to the core concepts of the application or indicate concepts
that are important only to that set of use cases.

• The amount of ontological coverage by a particular use case. – An individual use case
may have low or high engagement with the application’s ontology, measured by the
number of concepts, especially core concepts, that it activates. A frequently used use case
with high engagement with an application must be considered carefully during design

Page 33

PhD Proposal – Idris Hsi – Page 33

because the concepts that it uses could affect the overall ontology even if those concepts
lack importance by the structural measures of centrality.

• The importance of a particular concept relative to a set of use cases. – A concept
frequently invoked by the use cases may or may not have structural importance in the
ontology. In either case, its design will impact the performance of those use cases.

Each use case describes a goal that the user wants to achieve and the sequence of actions
performed on the morphological elements of an application required to achieve this goal.
Because ontological excavation links each morphological element to a set of concepts, we can
count the concepts activated across all the use cases to collect statistical data of activation
frequency. This data allows us to measure both general and specific ontological coverage.
General ontological coverage looks at how many concepts in the ontology were activated by a
set of use cases. Specific ontological coverage examines how often each concept was activated
by a use case to determine a concept’s relative importance in the ontology for that given set of
use cases.

Examples of use case silhouettes and their analysis can be found for the Windows 95/98 CD
Player, Microsoft Notepad and the Protocol Calendar/Calculator in Appendix 2, 4, and 5. No use
cases were available for the Palm Pilot Scheduler.

Page 34

PhD Proposal – Idris Hsi – Page 34

7 Research Framework

We summarize our research framework for studying the usefulness of computing applications,
the abstraction that we will use to model them, and the hypotheses which we wish to investigate.

We begin with the following claims:
• Features are the user-accessible behaviors and services implemented by a computing

application. We distinguish these from system-level modifications and services which
implement or optimize the behaviors at the user level but are not seen or accessed by the
user.

• Computing applications have a view of the domain which is expressed by its features to its
users. This theory consists of concepts and relationships that we model in an ontology.

• An application’s ontology is accessed by its users through its user interface. In this work, we
call this interface the morphology of an application.

• Each application has a set of concepts essential to defining that application’s feature set and
identity. We call them core concepts. All other concepts are considered to be peripheral in
the ontology.

• Ontologies have subgroups of strongly related concepts which we call teleons.
• Usefulness is a function of an application’s conceptual fitness – the degree to which an

application’s ontology matches the domain of the user.

We use the following abstractions to model computing applications:

• An application model consists of a morphology and an ontology where the elements that

compose the morphology serve as portals to the underlying concepts and relationships of the
ontology.

• We model an application’s morphology as a graph of user interface interactors, displays, and
containers where edges trace paths of access and activation.

• We model an application’s ontology as a semantic network similar to an entity-relationship
diagram. This graph models the concepts, consisting of entity types and attributes, as nodes
and relationships modeled as edges.

We analyze the ontologies to identify the following:
• Core concepts – concepts that play a prominent role in the structure of the ontology.
• Teleons – tightly linked subgroups of concepts.

We also develop use case silhouettes on our applications to identify the following:
• The ontological coverage of a use case set – the percentage of concepts activated in the

ontology by the use cases.
• The concepts of the ontology that are activated by the use cases.
• The importance of each use case relative to the concepts it invokes.
• The concepts that are important to those use cases.

We make the following claims.

Page 35

PhD Proposal – Idris Hsi – Page 35

• Application ontologies have a quality that we call conceptual coherence. Conceptual
coherence measures the degree to which a computing application’s concepts are tightly
related.

• Applications, based on how they were designed and evolved, have growth patterns that
produce an ontological structure that affects their conceptual coherence. We conjecture three
archetypical structures: Reef, Toolbox, and Urban.

• Applications with high conceptual coherence are more likely to be perceived as useful to
their users.

• Application usefulness can be measured with a combination of conceptual coherence
measures, for a general approximation, and use case silhouettes, for an approximation
relative to a specific use context.

Our central thesis is:
• The conceptual coherence of an application determines its perceived usefulness to its users

and features with only tangential relationships to those features essential to an application are
less likely to be used and reduce that application’s conceptual coherence.

We will now propose three studies to study these claims. Because of the theoretical nature of this
work, the first two studies will be exploratory where we will gather empirical data on some large
systems. Our last study will be confirmatory where we will use usability data gathered and
validated by another researcher to validate some of our claims.

Page 36

PhD Proposal – Idris Hsi – Page 36

8 Proposal

We plan to undertake the three following studies to further explore and validate our models of
computing applications, their features, and underlying ontologies.

8.1 Study 1: Recover ontologies for three large and evolved systems.

Our first study will be exploratory and will serve two basic purposes: to test the scalability of our
methods and to supply us with data that we can use for later study. We will excavate the
ontologies for three different systems. Each of these systems was selected for its feature
complexity, evolutionary age (number of versions that it has generated), and observed
resemblance to one of three ontological structures that we proposed in Section 5.3: Reef,
Toolbox, and Urban. Because we were going to choose the systems by our intuitions about their
underlying conceptual structure, we identified characteristics that could be used as normalized
selection criteria to avoid further bias in our analysis. The systems we chose have similar ages,
evolutionarily speaking, and thus have feature sets with sizes and complexities commensurate
with this age. We have also chosen well-known commercial off-the-shelf (COTS) applications
that belong to the workpieces problem frame [105] so that they have conceptual continuity in
their external presentation and in the features that they provide. We have chosen to study the
following systems:

A) Microsoft Word 2000 – Word 2000 is a logical choice for our current studies because despite
having many versions in its history, it still remains one of the more popular examples of bloated
software ([74], [144-146]). Our previous study surveying three of those versions showed a
central cluster of concepts consisting of text processing features overlaid by newer features
which include graphics and Internet support capabilities [98]. We anticipate that Word 2000 has
low conceptual coherence and resembles an Urban ontological structure.

B) Microsoft Powerpoint 2000 – Powerpoint 2000 is primarily a tool for giving presentations
making it a potential Reef structure. While it does possess mechanisms that can be exploited to
other ends (we have seen Bob Balzer turn Powerpoint into a software development environment
by using .COM listeners [16]), we believe Powerpoint will reveal an ontology that contains a
primary cluster of core concepts related to presentations and slides and supporting concepts such
as graphics and animations as smaller ontological clusters connected to it – characteristic of a
Reef ontological structure. While there are many single purpose applications on the market, we
have also chosen Powerpoint because, like Word, it is also published by Microsoft. Microsoft
Office products have been collectively derided for bloat and feature creep so, in anticipation of
criticisms that we only chose Microsoft Word, the company’s most famous product for ‘bloat’ as
a straw man, we include another Microsoft product which we anticipate will be found to have
high conceptual coherence.

C) Yahoo! Instant Messenger 5.6 – Instant messaging applications, programs that allow two or
more users to send text messages to one another instantaneously, have been around almost since
the inception of the Internet. Over time they have become much more sophisticated, both in
implementation and delivery, and more diverse in the information that they deliver. Yahoo! IM is
in wide use and has developed a number of extra features such as Weather, News, Stock Alerts,
and Sports. It also has the benefit of being relatively simple in structure and unencumbered by
advertisements unlike ICQ, AOL Messenger, and MSN Messenger. It has groups of features that

Page 37

PhD Proposal – Idris Hsi – Page 37

are both functionally and conceptually distinct from each other, making Yahoo! IM a potentially
good example of a Toolbox application.

In addition to the empirical data that this study will provide to answer later questions, we wish to
answer the following exploratory questions:

• Do these systems reveal distinct ontological structures?
• Do these large systems reveal teleons that map to known features?
• What do the ontologies reveal about the conceptual coherence of these applications?

8.1.1 Ontological Structure Identification
We have claimed that applications can be mapped to at least three ontological structures but
reached this number from observation and logic. While our earlier small case studies showed at
least one ontology, the Protocol Calculator / Calendar, that resemble a Toolbox, we have yet to
show convincingly that the CD Player is a Reef or that Notepad is an Urban Structure or that
there is any true structural differences between the two. We would like to identify the structural
characteristics of ontologies that would allow us to map them to these structures.

8.1.2 Teleons and Features
Some of our intuitions that led to our work on teleons came from observing the conceptual
relationships in features like Tables and Text in word processing. We would like to see whether
extracting teleons from these large applications will reveal tight clusters of related concepts that
match known features at the user level.

8.1.3 Conceptual Coherence
We have identified some preliminary thresholds for high and low conceptual coherence in our
earlier case studies. However, our examples of high conceptual coherence are unconvincing due
to the size of the ontologies and may simply be a structural function of a small and tightly
interrelated ontology. We hope to find either that Powerpoint has a high conceptual coherence or
that some of the ‘tools’ in Yahoo IM have a high coherence and that these examples possess a
large enough set of concepts to be more convincing. Alternatively, we may find that none of
these programs exhibit a high conceptual coherence which would still be acceptable due to their
large size and late evolution. Nevertheless, we would like to have more data points to develop
this metric further.

8.1.4 Potential Research Difficulties
We have anticipated these potential difficulties with the work and analysis:
• Similarity of Applications – While we suspect that MS Powerpoint has a different

evolutionary history, its ontology may be too similar to that of MS Word due to its history of
being sold as a suite of applications. There may be objections to researching a second
Microsoft application. Alternative Reef-like applications that have the similar properties
(size, evolutionary history) are Macromedia Freehand, Adobe Photoshop, and Quicken 2002.

• Application size and complexity may hinder excavation. – Each application has hidden or
buried features. In the Microsoft products, both applications share packages that are installed
from the Office suite and it may not be clear which parts of the ontology belong to the overall
suite as opposed to the individual application. In Yahoo! IM, parts of the application invoke
external web pages which blur the distinction between where the application boundaries sit.
Also, some of Yahoo!’s features belong to very large domains. For example, sports scores

Page 38

PhD Proposal – Idris Hsi – Page 38

link to pages that describe the team or athlete in question. To save time and to avoid having
to model the extensive domains underlying the simple system, we will probably need to
make a distinction between concepts that are relevant to the use of the application and
concepts which define the external domain that the application supports. For example, we
will model the concepts of ‘sport’, ‘team’, and ‘athlete’ but not necessarily ‘season’ or ‘field
goal’ as the latter concepts cannot be directly accessed through the Yahoo! IM application.

• Ontologies may not map to proposed conceptual structures. – While we expect to find that
these applications match our proposed structures, it is also possible that they will not match
or will lack the ontological elements that will allow us to draw these conclusions. This may
be especially true of Reef and Urban structures where there may exist a fine line between an
ontology possessing a large cluster of core concepts and an ontology that has multiple
groups. It may also be possible that Word 2000 may indeed have multiple core concepts but
that they cannot be identified using our methods.

Page 39

PhD Proposal – Idris Hsi – Page 39

8.2 Study 2: Develop use case silhouette for systems from Study 1.

In Study 1, we will have excavated ontologies from three systems and made some claims about
the importance of the concepts within those ontologies. In Study 2, using a set of independently
derived use cases, we will develop use case silhouettes for the excavated ontologies. We have
chosen to obtain use cases from books describing how to use the applications from Study 1. To
reduce the variability associated with authorship and approach, we have selected all the books
from the for Dummies series in the hope that the style and series editing have ensured continuity
across them. The books are:

• Word 2000 for Dummies by Dan Gookin
• Powerpoint 2000 for Dummies by Doug Lowe
• Yahoo! for Dummies by Brad Hill

Each book is broken down into chapters that describe how to use specific functions. In our case
studies (see Appendices), we used help files and instruction sheets as our source of use cases.
Instructions from these sources usually describe the sequence of morphological elements needed
to activate a particular feature of an application. Another potential source of use cases would
naturally be human experts familiar with these systems. We intentionally avoided choosing this
route to reduce the variability in our analysis. These books already represent a snapshot of expert
knowledge. By using a static source, we reduce both the likelihood that we will miss use cases
(which is very likely if we were simply conducting interviews) and the likelihood that these use
cases have been described incorrectly. This also provides an independent source that can be used
to review our methodology and data.

From this analysis, we will answer the following questions:

• Do the silhouettes show ontological coverage that parallels the core and peripheral concepts

identified by structural metrics? Are there peripheral concepts that appear in the same
number of use cases or more as core concepts?

• Do the silhouettes show coverage corresponding to the teleons identified by structural
metrics?

8.2.1 Validating Ontological Coverage
In our previous work, we hypothesized that core concepts have low sensitivity to modeling errors
because they tend to possess many relationships and dependencies to other concepts [99].
Likewise, for use case silhouettes, we hypothesize that core concepts will be invoked more often
than peripheral ones in a set of use cases, provided that the set represents a significant percentage
of the total number of potential use cases that can be associated with a particular computing
application. We are also interested in finding concepts that were declared to be peripheral by our
mathematical methods but which appear frequently across the use cases. Such concepts may
point to differences between theoretical models of system usage and models of actual usage.

8.2.2 Use Cases and Conceptual Coverage
We expect that some use cases will have a higher conceptual coverage than others, suggesting
that they may be major use cases for that application or have a high complexity. We also believe
that use cases that require a disproportionate number of core concepts will be those that may be
used most frequently in actual use.

Page 40

PhD Proposal – Idris Hsi – Page 40

8.2.3 Potential Research Difficulties
We have anticipated these potential difficulties with the work and analysis:
• Systematic errors in morphology / ontology linking – Use case silhouettes assume that an

application’s morphology invokes the underlying ontology. Therefore each morphological
element reveals one or more concepts in the ontology. If a frequently-used morphological
element across all the use cases has not been correctly linked to the concepts it reveals then
this will produce errors in the analysis.

• Analysis sensitivity to use case selection – Use case silhouettes are sensitive to the set of use
cases chosen and how those use cases have been described. As articulated above, a use case
may be extensive because the task itself is complex. Thus the number of concepts expressed
in a single use case or even a subgroup of the use cases may skew the overall analysis.
Likewise, the books we have chosen may have chapters dealing with difficult or non-obvious
features delivered by the application that will produce more use cases than chapters dealing
with ordinary usage.

• Fidelity with respect to actual usage – Use case silhouettes give relatively equal weight to
each unique use case. They do not account with the frequency with which the use case is
actually invoked during actual use. This may produce an analysis that inaccurately reflects
the importance of a particular concept.

• Difficulty of the work – We expect this study to be the most labor intensive of the three
studies because of the number of potential use cases in the books.

Page 41

PhD Proposal – Idris Hsi – Page 41

8.3 Study 3: Map usability data to a system

The excavation and analysis of ontologies in COTS applications has thus far been isolated from
issues of actual human users and usage. Since ‘bloat’ and ‘feature creep’ are terms that depend
on perception, it is necessary that we tie our ideas of conceptual coherence and ontological
coverage back to actual use. In Study 3, we have obtained usability data that Dr. Joanna
McGrenere gathered for her PhD thesis [145]. McGrenere surveyed a pool of Word 2000 users
using screen shots and questionnaires and had them evaluate which ‘functions’ they recognized
or were likely to use in their everyday work. She selected the 265 functions from the first-level
functions on the default interface. We intend to map this data to our excavated ontologies to
answer the following questions:

• Is there a correlation between the functions that users purport to need and the core concepts

of a system?
• What is the coverage of the used functions relative to the overall ontology?
• How useful are these ontological representations for answering questions about ‘bloat’ and

usefulness?

8.3.1 Usage centrality and ontological centrality
In theory, because core concepts represent those concepts essential to a computing application, it
seems reasonable to believe that their appearance in actual practice would be unavoidable.
Therefore, we expect to find a correlation between the functions actually used and the core
concepts of a system.

8.3.2 Conceptual coherence and actual usage
If ‘bloat’ and ‘feature creep’ are perceptions that an application has delivered more functions
than would otherwise be ordinarily used then we expect the user data for Word 2000 to reveal
that only a fraction of the total number of features are known and utilized. As McGrenere’s
population gave answers in her questionnaire that suggested that they found Microsoft Word
2000 to be ‘bloated’, we would expect that those functions that they declared to be frequently
used will produce a small ontological coverage relative to the whole ontology. We recognize that
this is a partial ‘straw man’ argument because computing applications may have Zipf’s Law
characteristics where 10% of the features are invoked 90% of the time [89]. We wish to learn the
actual percentage of concepts used and the percentage of core and peripheral clusters covered by
used concepts. Lastly, by combining this user data and our own analysis, we would like to be
able to provide another perspective on McGrenere’s adaptable interfaces which offered users a
pared-down morphology for Word 2000.

8.3.3 Applying ontological data to usability studies
In future work, the findings from our research will have to be correlated to domain models taken
from actual use and user data. Usefulness is also a combined measure of both relevance and
efficiency. To address the latter point, our work will have to integrate data from previous and
current studies on usability. We would like this study to show that data from a usability study can
be used in conjunction with our ontological data to further our understanding of software design
and its relationship to usage.

8.3.4 Potential Research Difficulties
We have anticipated these potential difficulties with the work and analysis:

Page 42

PhD Proposal – Idris Hsi – Page 42

• Data sensitivity to selection of user population – While McGrenere’s study covered a diverse
population of users, it was not large enough to be considered a statistically significant sample
of Microsoft Word users – something which would have been expensive to obtain and study.
Thus, it may be that only a subset of the core concepts will be mentioned by the users or that
some peripheral concepts will be found to be more prominent in McGrenere’s user data.
Different user populations with varying expertise and objectives will produce varying usage
profiles. For example, one would expect a population of academic researchers to have
different weights on certain word processing concepts than a population of lawyers. We will
have to reexamine her user population during the analysis.

• Mapping qualitative data to analysis – McGrenere’s data takes the form of questionnaire
data which asks users to rate something as “familiar and unfamiliar” then “used regularly,
used irregularly, and not used”. We may need to conduct two separate analyses on this data:
one for familiarity and one for frequency of use. It is not currently clear whether these
measures should be combined to produce a more general valuation for mapping to the
ontology.

• Service coverage – McGrenere identified 265 ‘functions’ that she used in her study. Since
these functions were selected from the first-level functions on the default interface they do
not cover the entire set of morphological elements. Thus, it is very likely that the concepts
invoked by these functions will not cover the set of concepts that were identified in Study 1.
However, it may be possible that these functions do provide a sufficiently large set to allow
an in-depth analysis.

• Lack of similar data for other applications – For the sake of completeness, this study should
also include similar analyses from studies of these other applications. However, McGrenere’s
work represents the most thorough analysis of Word 2000. We have been unable to find
similar studies for Powerpoint or Yahoo! IM. Lacking this detail, it may seem reasonable to
expect that we would conduct our own user study but we believe that this is best left to future
work.

Page 43

PhD Proposal – Idris Hsi – Page 43

9 Background Work

The following sections outline the ideas and technologies that contributed to this work.

9.1 Usefulness and Usability

We have proposed that conceptual coherence can be used to measure the usefulness of a
computing application. Software developers have approached this problem from the perspective
of improving software quality through testing activities and formal methods, user interface
design and usability engineering, applying empirical methods to requirements development, and
end-user evaluations to measure perceived usefulness.

9.1.1 Software Quality
Software developers tend to focus on the engineering aspects of system development taking the
perspective that usefulness can be ensured by building what the customer requests. These
requests are collected by requirements engineers and refined into requirements specifications
[53, 106]. Software testing activities measures the conformity of the system design and
correctness of implementation to these specifications [24]. Specifically, they measure the
precision and correctness with which the system adheres to the customer’s requirements using
verification and validation testing activities throughout the development process. Verification
activities test whether the product conforms to the specifications derived from the customer
requirements and validation activities test whether developers are “building the right product”
[177]. Theoretically, validation activities should ensure usefulness for the customer. However,
Sommerville argues that validation activities cannot be performed on requirements specifications
due to the lack of a frame of reference.

“The main problem of requirements validation is that there is nothing against which the
system can be validated. A design or a program may be validated using the
specification. However, there is no way to demonstrate that a requirements
specification is correct. The validation process can only increase your confidence that
the specification represents a system which will meet the real needs of the system
customer.” [187]

Because of this lack of a reliable framework, the validation of computing applications has been
limited to systems such as embedded systems that can be tested using formal methods and
quantifiable testing techniques [2, 97, 209]. Formal methods can produce formal specifications
that can be validated by inspection, assuming that the requirements are clear and the
specifications are well organized [107]. During the requirements process, a formal method can
clarify the informal statements made by customers [206] or provide reasoning techniques to
identify inconsistencies or gaps in the specifications [33]. However, these formal methods
assume clarity, consistency, and domain understanding from the customers and are therefore
primarily verification and not validation activities. Thus, while software engineering techniques
exist that can test whether the developing system conforms to the software’s “blueprint”, the
requirements specifications, no techniques exist to determine if there are fundamental gaps or
errors in the specifications themselves.

9.1.2 User Interface Design and Usability Engineering
The other software development activities that attempts to ensure usefulness are user interface
design and usability testing [60, 95]. Usability engineering focuses on the correspondence
between the user interfaces of a computing system and the user’s conceptual models of how the

Page 44

PhD Proposal – Idris Hsi – Page 44

tasks should be performed. The techniques used by usability engineers include task analysis, user
testing, iterative design, participatory design, and prototyping [157, 158]. However, these
activities simply seek to ensure that the user can access the features of the software as efficiently
as possible and that the external presentation of the software matches the user’s understanding of
these features. Again, these are engineering concerns and assume that the functionality of the
software has been precisely articulated by the end users of the system.

9.1.3 Empirical Methods and Requirements Gathering
Researchers and developers have recognized that the requirements form the templates used to
design and implement the eventual system have to be written from a thorough understanding of
the user’s domain and that this understanding can only be gained from interactions with the
actual users in their working environment [50, 163, 173, 176, 186]. A number of empirical
techniques have been developed to derive user requirements directly from the use context. These
include incorporating ethnographic methods [77, 102], contextual design [26, 27, 96], intent-
based specifications [136], and inquiry-based analysis [175]. In the human-machine systems
area, ecological interface design and ecological task analysis use empirical studies of the work
domain to improve the design of user interfaces [68, 122, 201, 202].

9.1.4 End-User Analysis
Information systems researchers consider usefulness in the context of perceived usefulness
defined as “the degree to which a person believes that a particular system would enhance his or
her job performance” and perceived ease of use, which he defines as “the degree to which a
person believes that using a particular system would be free of effort” [1, 54]. Techniques for
assessing the usefulness of a particular system consist of end-user interviews and surveys [1, 54,
55, 73, 119, 127].

9.2 Software Evolution

Software evolution research began with the seminal work of Lehman and Belady who studied the
evolution of the IBM OS360 operating system. They tracked size of the system over time by the
number of modules and found that it became increasingly unstable as developers added
functionality to the basic system as part of normal maintenance activities. From this, Lehman
derived his Laws of Software Evolution [128]. Since then, there have been many similar studies
of software evolution, tracking changes to system elements such as source code, number of
modules, and overall stability [9, 19, 41, 75, 78, 121]. There have also been many studies
showing how software should or could be evolved to achieve goals such as greater stability,
fewer errors, and improved maintainability [12, 13, 20, 45, 52, 112, 113, 138, 151, 164, 165].
While this research has contributed to our understanding of software’s internal composition as it
is adapted over time, we still know very little about how enhancements to software affect the
users of the system.

There have only been two studies that have attempted to track the evolution of software by its
feature enhancements: a study of telephony conducted by Antón and Potts [7, 8] and a study of
Microsoft Word by Hsi and Potts [98]. A study by Godfrey on the evolution of the Linux system
did track growth by the major subsystems but studied this through lines of code rather than
changes to functionality or ontology [75]. Lehman is currently developing a theory of software
evolution that accounts for feature evolution through feedback loops in the global software
process [131-133].

Page 45

PhD Proposal – Idris Hsi – Page 45

9.3 Features and Services

The word “feature” is a useful term for referring to an application’s services. Czarnecki and
Eisnecker point out that features are a natural way to express concepts because they correspond
to “chunks” used in human memory [52]. Chunking, or clustering, groups concepts and make
them easier to remember [44].

9.3.1 What is a Feature?
“Features” have different meanings depending on the perspective or stage of software
development that its used. At the requirements stage, features are clustering of individual
requirements that describe a “cohesive, identifiable unit of functionality.” [196, 197] or part of a
specification that “a user perceives as having a self-contained functional role.” [85]. Developers
view features as simpler units of functionality [142]. For example, Cusumano and Selby – in
describing Microsoft’s culture – say the following:

“The features in Microsoft products are relatively independent units of functionality
visible to end users. They are like building blocks, especially for applications products.
Examples are printing, automatically selecting a column of numbers and adding them,
or providing an interface to a particular vendor’s hardware device. Features in systems
products, such as Windows NT or Windows 95, are often less visible to the end user;
Microsoft and other companies sometimes simply call these ‘functions’.” [51]

In system development, features are sometimes perceived as “packages of incrementally added
functionality”, describing how feature enhancements are added in stages to a system.[34, 42, 43].

9.3.2 Feature-based Engineering techniques
Several software development techniques use features as their unit of development. These
include feature engineering [196, 197], Feature-Oriented Domain Analysis (FODA) [79, 117],
Feature-Oriented Reuse Method (FORM) [118], Feature Oriented Programming (FOP) [22, 23],
and generative programming [52]. The general structure of these methods is to identify features
in the problem domain, refine the concepts expressed by these features, and develop the
supporting design and architectures around these features.

Product lines and product families are another software engineering method that uses features as
an organizing principle for development. One paper defines a product line as having a reusable
infrastructure of shared behaviors and services and allows the construction of many family
members [59]. Another paper defines product families as “sets of products that share
architectural properties, features, code, components, middleware, or requirements. [125]” While
these terms seem to be interchangeable or depend on granularity,
features are used in both cases to develop a shared infrastructure for reuse [125, 139, 194].

9.3.3 Function Point Analysis
Function point analysis is a metric that measures the size of systems based on those system
attributes perceivable by users. It abstracts all features into five types of components: external
inputs, outputs, inquiries, external interfaces to other systems, and the logical internal files.
These components can be further classified by their complexity [195]. Function points have been
shown to be useful for effort and cost estimation [114, 120]. However, these metrics have also
been criticized for oversimplification and relevance to technology [111].

Page 46

PhD Proposal – Idris Hsi – Page 46

9.4 Reverse Engineering and Program Understanding

9.4.1 Program Comprehension and Reverse Engineering
Our method for ontological excavation is an activity of program comprehension – “the process of
acquiring knowledge about a computer program [181].” Specifically, our excavation methods are
a type of reverse engineering defined by Chikofsky and Cross as “the process of analyzing a
subject system to identify the system’s components and their interrelationships and create
representations of the system in another form or at a higher level of abstraction. [47]” Rugaber
describes five gaps that complicate the conceptual understanding of programs [181]:

• The gap between a problem from some application domain and a solution to it in some
programming language.

• The gap between the concrete world of physical machines and computer programs and
the abstract world of high-level descriptions.

• The gap between the desired coherent and highly structured description of a system as
originally envisioned by its designers and the actual system whose structure may have
disintegrated over time.

• The gap between the hierarchical world of programs and the associational nature of
human cognition.

• The gap between the bottom-up analysis of source code and the top-down synthesis of the
description of the application.

Ontological excavation addresses the first three of these gaps but only indirectly as we use black
box reverse engineering methods to reverse engineer the domain of the system as opposed to
white box methods that directly examine the system’s implementation.

9.4.2 Black Box Reverse Engineering
Black box reverse engineering follows the tradition of other qualitative research methods such as
those in ecological psychology, ethnography, and cognitive anthropology. These methods are
designed to develop an understanding of a subject’s domain by analyzing their use of language
and artifacts in the subject’s environment. These contextual or naturalistic approaches, as
opposed to abstractionist or laboratory approaches, take the perspective that human behavior is
grounded in an environment and context and that they can only be properly understood in that
context [103, 108, 155, 156]. These methods also stress that their application be performed with
the absence of preconceived notions about what will be discovered [137, 189]. Our black box
reverse engineering techniques are grounded in this tradition. By treating the computing
application as the unit of analysis, and referencing domain knowledge directly from the
application whenever possible, we can construct the ontology as encoded in the application.

9.4.3 Domain Analysis and Reverse Engineering
Understanding the domain descriptions from either a computing application or from work
products developed through user interactions seem to be an important prerequisite to building (or
reverse-engineering) a useful computing application. Previous work in domain analysis and
reverse engineering has developed methods for extracting the domain from program
documentation [5], requirements specifications [77], code [48, 58], and interviews with domain
experts [10]. Of these techniques, code domain analysis might be the best method for automating

Page 47

PhD Proposal – Idris Hsi – Page 47

ontological excavation but code itself contains a meta-domain with concepts and relationships
that concern software engineering and programming.

9.5 Interface Models and Recovery

9.5.1 User Interface Representations
We adopted our morphological elements taxonomy from the Swing component framework in
Java [192]. Besides the standard graphical user interface (GUI) methods [60, 95], there are a
variety of alternative user interface representation techniques that include state transition
networks, application frameworks, and context-free grammars [152, 154].

9.5.2 Automated Recovery of User Interfaces
There have been a number of approaches for reverse-engineering user interface models for the
purposes of reuse and testing. MORPH, the Model-Oriented Reengineering Process of Human-
Computer Interfaces, uses static code analysis and recovers interface designs from character-
oriented user interface designs and transforms them to graphical user interfaces [153] using an
abstraction hierarchy based on Foley’s basic interaction techniques [69]. CelLEST reverse
engineers legacy interfaces based on user interactions and the construction of a GUI or a web
interface from these interactions [190, 191]. GUITAR is a system for testing GUIs that
automatically generates a GUI representation through interaction with the application. The GUI
is represented as a graph with nodes consisting of window states. Windows are modeled as a set
of widgets (e.g. buttons, labels, text fields) that comprise the window, its properties, and the
values associated with those properties. It also distinguishes between modal and modeless
windows [150].

9.6 Ontologies

Traditionally, ontology is “a branch of philosophy dealing with the a priori nature of reality”
[39, 40, 82]. In computer science, the word ontology is used to describe a set of concepts or
representation of these concepts for domain and data modeling. However, the grounding
provided by the philosophical formalisms have been used to refine and concretize data modeling
formalisms [82-84, 204]. Ontologies in computer science have been designed for representing
knowledge in intelligent systems [21] and exchanging data between knowledge databases used in
applications such as web searches and e-commerce [32, 35, 80, 81, 135, 148, 149].

9.7 Graph Analysis Tools

9.7.1 Centrality Metrics
Our semantic network is a graph – a mathematical structure consisting of nodes that are
connected by edges. Graphs are well understood structures in both mathematics [90, 91] and
computer science[49, 184]. The set of graph tools that we adopted for our work come primarily
from social network theory although similar algorithms have been used to analyze the design and
evolution of architectural structures and cities. Hillier used graph algorithms on the intersections
of street maps to derive the transit patterns of its inhabitants [93, 94]. Social Network theorists
use graph measurements that they call prestige measures. Prestige measures assess the
importance of a node relative to the rest of a graph. For example, one mathematically simple
measure counts the number of edges incident to a node (or in- and out-degrees in a directed
graph). This degree centrality may find a person in a social network who is important because
they possess many connections to other individuals. These techniques have been used to study

Page 48

PhD Proposal – Idris Hsi – Page 48

situations like the relationships of the Medici families and their marriages to other families
during the Italian Renaissance [205].

9.7.2 Cluster Analysis
We used a k-core analysis to identify teleons in our ontologies. This method belong to a class of
techniques called data clustering that are used to identify significant subgroups in a dataset or
graph [86, 110]. Besides those applications to social network theory [30], these techniques have
been applied to information recognition [110], Web topologies [101], and the reverse
engineering of objects from legacy code [198].

9.8 Use Case Silhouettes

The idea for use case silhouetting came from reading studies in cognitive neuroscience which
examined the electroencephalograms [71], X-Ray computed tomography, or Magnetic
Resonance Images (MRI) [178] of subjects performing certain cognitive tasks to identify which
regions of the brain became active during this process. Since we were interested in identifying
those concepts which became active during a task, it seemed reasonable to adopt a similar
approach to visualizing the active portions of an application’s ontology. In cognitive
neuropsychology and cognitive neuroscience, subjects are given tasks to perform designed to
invoke cognitive behaviors such as visualization or memory retention and recall [66]. Since we
wished to identify concepts which might be invoked during actual usage, it seemed reasonable to
turn to an activity based model for our data and to use the application morphology as the input
into the system.

Use Cases are part of the Unified Software Process (USP) [109] and describe “a sequence of
actions, including variants, that a system performs to yield an observable result of value to an
actor. [29]” They are related to a class of techniques in requirements engineering called scenario-
based requirements engineering [116, 174, 193]. Scenarios describe a sample procedure or
execution of a system by presenting specific, concrete episodes. These narratives, gathered from
users [53, 175, 176], can then aid in requirements gathering tasks such as goal and obstacle
identification.

Our use case silhouette methodology has similarities to user interface analysis techniques such as
GOMS (Goals, Operators, Methods, Selection) [44], task analysis [60], run-time behavior and
system logs to track user behaviors [62, 63], sequence models [27], and cognitive walkthroughs
[60, 157]. The general objective of these techniques is to identify or verify a sequence of actions
that the user will use to perform a task that will contribute to the completion of a goal. In
software engineering, our technique is strongly related to El-Ramly and Stroulia’s work on using
system-level traces of user interactions to develop requirements [62, 63]. Use case silhouetting
relies on tracing a sequence of activities specified by a use case to determine which concepts are
invoked in the ontology. Certainly, in future work, use case silhouetting could be combined with
usability testing techniques, such as those using user interface events [92], to apply ontological
coverage as a metric for measuring usefulness or usability.

Page 49

PhD Proposal – Idris Hsi – Page 49

10 Expected Research Contributions

Our main contribution will be to demonstrate that a property which we call conceptual
coherence, can be measured and analyzed from the ontology of a computing application, that it
can be tied directly to perceptions of usefulness, and that it is negatively affected by the presence
of too many features that contain peripheral concepts.

10.1 Summary of Major Contributions

• A theory of software ontology and conceptual coherence as an aspect of conceptual
integrity.

• Methodology for ontological excavation – the black box reverse engineering of a
software ontology – enables us to determine those concepts encoded into the system that
are visible and accessible to users of the system.

• Domain-independent analysis methods for identifying the core concepts of an application
– those concepts that are essential to the definition and function of that application.

• A theory of software features and their expression at the ontological level in the form of
teleons.

• Domain-independent analysis methods for identifying a teleon in an ontology.
• Methodology for measuring the ontological coverage of a set of use cases using use case

silhouetting.
• A method for identifying features for an application allowing us to study the synchronic

variation of these features across applications and their diachronic variation across
application versions.

10.2 Summary of Minor Contributions

• A model of the user interface that we call a morphological map that can be used to
measure the activation cost of a concept.

• A software ontology model that can be enhanced and adapted to more robust models for
design.

• A supergraph that shows the relationships of morphological elements to concepts.
• A bipartite graph allowing analysis of the relationship between morphological elements

and its concepts.
• Graph metrics obtained from social network theory that can be used to identify critical

concepts in an ontology or software architecture.
• Three case studies of well-known applications that will produce ontologies and

morphological maps for each of them.
• A method for mapping usability data to the morphology and ontology of an application as

an approximation of conceptual fitness.

10.3 Other Contributions

These are potential applications of our research findings that we will pursue further in the
dissertation research.

• Method for assessing the potential success of a software system prior to delivery to a
set of customers.

Page 50

PhD Proposal – Idris Hsi – Page 50

• Techniques for component-based design around a central system that implements
only the core concepts required by a specific use context. The resulting architecture
may be more amenable to dynamic adaptation based on user demand.

• An alternate design methodology for user interfaces using the ontology and use case
silhouetting as a guideline for assigning elements to minimize activation cost to user.

• Method for measuring the potential usability of a system from the relationship of an
application’s morphology to its ontology.

• Recommendations for developers for identifying core features of system and to
measure conceptual coherence for purposes of feature-set control. [143]

• Method for experimental modifications to a software’s ontology to increase or reduce
prominence of various concepts to determine potential impact of that conceptual
model to the overall system. This can also be applied to the addition (ontological
grafting) or subtraction (ontological pruning) of new concepts.

• A taxonomy of features and computing applications that can be used to provide a
clearer categorization scheme for computing applications and a development resource
for designing them.

Page 51

PhD Proposal – Idris Hsi – Page 51

11 Plan of Completion

There are two plans here. The first conforms, more or less, to the studies outlined in Section 8.
The second is optimized towards obtaining publishable results for upcoming conferences.

11.1 Basic Schedule

Task description Estimated Time
Study 1: Exploratory study on large systems
Excavate ontology of Powerpoint 2 weeks
Analyze Powerpoint ontology 2 days
Excavate Ontology of Yahoo Messenger 3 weeks
Analyze Yahoo Messenger ontology 2 days
Excavate ontology of Word 3 weeks
Analyze Word ontology 2 days

Study 2: Develop use case silhouettes
Develop use case silhouette of Powerpoint 1 week
Develop use case silhouette of Yahoo Messenger 1 week
Develop use case silhouette of Word 1 week
Analyze use case silhouettes against respective ontology analyses 1 day

Study 3: Map usability data to system
Map McGrenere’s data to morphology and ontology of Word 2 days
Analyze data for results 1 day

11.2 Optimized Schedule for Publishing

Task description Estimated Time
Excavate ontology of Word 3 weeks
Analyze Word ontology 2 days
Develop use case silhouette of Word 1 week
Map McGrenere’s data to morphology and ontology of Word 2 days
Analyze data for results 1 day

Excavate ontology of Powerpoint 2 weeks
Analyze Powerpoint ontology 2 days
Develop use case silhouette of Powerpoint 1 week

Excavate Ontology of Yahoo Messenger 3 weeks
Analyze Yahoo Messenger ontology 2 days
Develop use case silhouette of Yahoo Messenger 1 week

Analyze use case silhouettes against respective ontology analyses 1 day

Page 52

PhD Proposal – Idris Hsi – Page 52

11.3 Projected Chapters in dissertation to be written

• Background Work – Will likely require enhancements to current papers and descriptions in
the proposal.

• Methodology Section: Surveying the Morphology – In depth descriptions of the
methodologies and heuristics used to develop the morphological map.

• Methodology Section: Excavating the Ontology – In depth descriptions of the black box and
conceptual modeling techniques used to identify and model concepts and relationships from
the morphological map.

• Methodology Section: Ontological Analysis – In depth descriptions of the analysis techniques
used to study the ontology.

• Methodology Section: Use Case Silhouetting – In depth description of the use case silhouette
methodology.

• Threats to Validity in Ontological Excavation and Use Case Silhouetting – Describes the
sources of variability in the methods used in this study. Where appropriate, includes data
from experimental studies, performed prior to proposal, that test the rigor of the analysis.

• Feature Growth and Morphological Complexity – Describes relationship of feature evolution
and the morphological complexity of the system.

• Computing Ecosystems and Use Niches – Describes use contexts in the context of computing
ecosystems and their individual use niches to motivate the biological metaphor of fitness.

• Future Work

Page 53

PhD Proposal – Idris Hsi – Page 53

12 Glossary

Underlined words denote terms that were coined or re-defined for this specific research.

activation cost The amount of effort required by a user to access a service provided the
application

actor A type of user of a computing system. [109]

adaptation

The process of changing attributes and behaviors of something to better
suit a specific context. In biology, it also describes a physiological attribute
of a species that improves its fitness relative to an element of the
surrounding ecosystem. [56, 57]

aggregation

A whole/part relationship where one class of entity types represents a
larger thing which consists of smaller things. Denoted by a ‘has-a’
relationship. [29]. In our modeling conventions, we break the traditional
convention of requiring both things to have independent identities in the
case of attributes. However, attributes themselves are not permitted to have
has-a relationships.

association A structural relationship that specifies that elements of one type are
connected to elements (concepts) of another type. [29]

attribute
An intrinsic property of a thing in the real world. [203] In our model of an
application ontology, an attribute lacks independent existence except as a
property of an entity type.

betweenness
centrality

A prestige measure that measures the number of geodesics between all
pairs of nodes in the graph that use a particular node. The higher the
centrality measure, the more other nodes depend on that node. Because
leaf nodes only serve as start and end points for paths, they automatically
have a betweenness value of 0. [205]

bipartite graph
A graph in which the nodes can be partitioned into two subsets such that
edges always connected nodes taken from the different subsets. Bipartite
graphs are used to model two-mode networks. [205]

black box reverse
engineering

The recovery of some computing application domain model, behavior, or
attribute without reference to the code used to implement that computing
application.

bloat
The term used to describe a computing application possessing a
disproportionate number of unnecessary services that interfere with the
normal or desired use of this application.

closeness centrality A prestige measure that measures the average distance from a subject node
to all other nodes. [205]

computing
application

Any device or system that uses some form of computation to accomplish a
goal. Also the term that can refer to ‘application’, ‘computing artifact’,
‘software’, ‘software application’, and ‘software system’.

Page 54

PhD Proposal – Idris Hsi – Page 54

concept A generalized idea of a thing or class of things. [185] In our model of an
application ontology, either an entity type or an attribute can be a concept.

conceptual
coherence

A property of a computing application measuring the degree to which the
concepts contained within its ontology are tightly related.

conceptual fitness The property of a computing application that assesses how well its
ontology matches the domain of the use context in which it is being used.

conceptual
integrity

The property of a system designed under a unified and coordinated set of
design ideas. [37]

container A morphological element that contains and structures interactors [99]

core concept A concept that is essential to defining a computing application’s feature set
and identity. [99]

correction A software maintenance activity that applies repairs to errors in the code
[166]

customer The purchaser of the computing application. Not necessarily the user of the
application.

degree centrality
A prestige measure that uses the number of edges on a node (its degree). A
value of 1.0 on a scale of 0.0 to 1.0 means the node has edges leading to all
other nodes in the graph. [205]

density The number of edges in a graph divided by the possible number of edges.
Also called network density. [31]

diachronic
variation Variation across time – usually in reference to evolution or development.

digraph A directed graph. [205]

display A morphological element that makes both static and dynamic data about
the computing application’s states available to the user. [99]

domain model
“A definition of the entities, operations, events, and relationships that
abstract commonalities or regularities in a domain, together with a
classification of these.” [10]

ecosystem

“An ecosystem is a system of interacting species in a particular
environment.” [123]. Defines a system of interest where the granularity
could be the object of study (like a species) or a set of arbitrary conditions.
[140]

eigenvector
centrality

A prestige measure that measures the centrality of a node relative to the
importance of its surrounding nodes. [205]

enhancement A software maintenance activity that adds new features, generally visible
to the users of the system. [166]

entity A “thing” that can be distinctly identified. [46]

entity type A set of entities that have the same attributes. [61]

Page 55

PhD Proposal – Idris Hsi – Page 55

E-type program A software system that solves a problem or implements a computer
application in the real world. [129]

evolution

The process of change over a period of time. In the biological sense,
evolution refers to the physiological changes that a species experiences
through the process of mutation, natural selection, and reproduction. [56,
57]

feature A user-accessible behavior or service implemented by a computing
application.

feature
aggregation

An evolutionary behavior of a computing application where it acquires
new features at every stage of release.

feature creep or
creeping featurism

The “tendency to add to the number of features that a device can do, often
extending the number beyond all reason.” [162]

fitness
Attribute of an entity that assesses its ability to inhabit a specific context.
In biology, fitness describes the ability of an organism or a species to
survive long enough to reproduce.

generalization
A relationship between a kind of entity type (parent or superclass) and a
more specific kind of that entity type (type, child, or subclass). Denoted by
an “is-a” relationship. [29]

geodesic The shortest path between a pair of nodes. [205]

improvement
A software maintenance activity that applies an optimization to
performance, usability, maintenance, or other nonfunctional properties of a
computing application. [166]

instance A concrete manifestation of an entity type [29].

information
centrality

A prestige measure that measures the information contained in all paths
originating with a specific node. [205]

interactor A morphological element that can be directly accessed or manipulated by
the user of a system. [99]

k-core A connected, maximal, induced subgraph of nodes such that each node has
a minimum degree greater than equal to k [65].

morphological
element

A component that forms the structure of a computing application’s
morphology.

morphological map A graph modeling the elements that compose the morphology of a
computing application and their relationships to each other. [99]

morphology The external presentation of a computing application consisting of those
elements that are both user accessible and percievable.

niche A place and functions that a species has in an ecosystem

ontological
coverage

A metric that measures the proportion of the ontology covered by a set of
concepts.

ontological The process of using black box reverse engineering to recover a computing

Page 56

PhD Proposal – Idris Hsi – Page 56

excavation application’s ontology. [99]

ontological
grafting

The process of adding concepts or a set of concepts and their relationships
to an ontology.

ontological
pruning

The process of removing concepts or a set of concepts and their
relationships from an ontology.

ontological
structure

A structural pattern in the ontology that organizes the concepts and their
relationships.

ontology
A representation of set of concepts used for domain or data modeling. [35,
67, 81, 147, 203, 204]. Also the study of being – of existence and its
relationship to nonexistence [123].

operations The activities that a system performs.

perceived ease of
use

The degree to which a person believes that using a particular system is free
of effort [54]

perceived
usefulness

The degree to which a person believes that a particular system could
enhance his or her job performance [54]

peripheral concept A concept which is considered optional to an application’s definition. [99]

portal A mapping from the morphology of a computing application to a concept
or set of concepts in the ontology. [98]

prestige measure A prestige measure assesses the importance of a node relative to the rest of
a graph. [205]

problem domain

A collection of items of real-world information that have the following
characteristics: 1) “deep or comprehensive relationships among the items
of information are suspected or postulated with respect to some class of
problems” and 2) the problems are perceived as significant by the
members of the community. [10]

problem frame A diagram that describes the class, characteristics of the problem domain,
and a central concern for a class of problems. [105]

reef ontological
structure

An ontological structure with a core that exists not only to support itself
but also a number of other entity types that contribute to the overall
system.

relationship A reference or association that exists between entity types. [61]

requirement A description of how a system should behave or a description of a system
property or attribute. [187]

semantic network

The collection of all the relationships that concepts have to other concepts
[188]. Semantic networks are the first ontology models to make use of
graphical formalism and were developed as psychological models of
human memory [18] [185]. Generically speaking, they are graphical
representations of a body of facts [160].

service A service is an operation or series of operations performed by an
application that performs a task for a user.

Page 57

PhD Proposal – Idris Hsi – Page 57

application that performs a task for a user.

social network A graph or network that encapsulates people or social groups and their
relationships to one another. [205]

software evolution
The process of adapting a computing application or system during the
software maintenance phase of its development. Also the description of the
changes that software experiences over its lifetime.

software product
family

“A set of products that share architectural properties, features, code,
components, middleware, or requirements.” [139]

software product
line

“A set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way.” [115]

subtype A subtype is a specialization of an entity type [29].

superpositioned
graph (supergraph)

A graph containing a computing application’s morphological map, the
ontology, and the interconnections that link a morphological element
(portal) to the concepts that it reveals. Used to derive the bipartite graph of
morphological elements and concepts.

synchronic
variation

The variation of features across different entities of the same type within
the same time frame.

teleon
An identifiable substructure of an ontology that suggests features at the
user level. Consists of a set of concepts that have strong interrelationships.
[98]

toolbox ontological
structure

A Toolbox structure has a collection of conceptually unrelated and lightly
related ontologies that have been assembled for reasons of convenience or
design under a single morphology.

urban ontological
structure

An ontological structure with multiple clusters of core concepts that are
loosely connected to each other.

usability An attribute of an application that measures how much effort is required to
activate an affordance or service provided by that application.

use case
“A use case specifies a sequence of actions, including variants, that the
system can perform and that yields an observable result of value to a
particular actor.” [109]

use case coverage A metric for the proportion of concepts in an ontology covered by a set of
use cases.

use case silhouette The set of concepts that have been activated or illuminated by a set of use
cases or a sequence of morphological element activations.

use context
The external physical (or virtual) environment that contains a computing
application and its users, the goals that the combined computing
application/user system wishes to achieve, and the various nuances
(business rules, customer demand, user and system capabilities) that

Page 58

PhD Proposal – Idris Hsi – Page 58

govern the operation and performance of both environment and goal
completion.

use ontology The use ontology consists of only those concepts that are actually used in a
specific use context.

usefulness
The extent to which an application succeeds in assisting a set of users to
achieve a set of goals, relative to the amount of effort required to engage
those features

user The person, group of people, or entity that uses a computing application.

workpieces
problem

“A problem of developing a tool to support creation and editing of text or
other machine-readable objects.” [105]

Page 59

PhD Proposal – Idris Hsi – Page 59

13 Bibliography
[1] D. Adams, R. R. Nelson, and P. A. Todd, "Perceived Usefulness, Ease of Use, and Usage of Information

Technology: A Replication," MIS Quarterly, pp. 227-247, 1992.
[2] W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky, "Validation, Verification, and Testing of Computer

Software," ACM Computing Surveys, vol. 14, pp. 159-192, 1982.
[3] C. Alexander, The Timeless Way of Building. New York, NY: Oxford University Press, 1979.
[4] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Buildings, Construction. New

York, NY: Oxford University Press, 1977.
[5] N. Anquetil, "Characterizing the informal knowledge contained in systems," presented at Eight Working

Conference on Reverse Engineering, Stuttgart, Germany, 2001.
[6] A. I. Antón, "Goal-Based Requirements Analysis," presented at International Conference on Requirements

Engineering, 1996.
[7] A. I. Antón and C. Potts, "Functional Paleontology: System Evolution as the User Sees It," presented at

23rd International Conference on Software Engineering, Toronto, Canada, 2001.
[8] A. I. Antón and C. Potts, "Requirements Engineering in the Long-Term: Fifty Years of Telephony Feature

Evolution," presented at International Conference on Software Engineering, Toronto, ON, 2001.
[9] M. Aoyama, "Continuous and Discontinuous Software Evolution: Aspects of Software Evolution across

Multiple Product Lines," presented at 4th International Workshop on Principles of Software Evolution,
Vienna, Australia, 2001.

[10] G. Arango, "Domain Analysis Methods," in Software Reusability, W. Schafer, R. Priéto-Diaz, and M.
Matsumoto, Eds. Chichester, England: Ellis Horwood, 1994, pp. 17-49.

[11] G. Arango and R. Prieto-Díaz, "Domain Analysis Concepts and Research directions," in Domain Analysis
and Software Systems Modeling, R. Priéto-Diaz and G. Arango, Eds. Los Alamitos, CA: IEEE Computer
Society Press, 1991, pp. 9-26.

[12] L. J. Arthur, Rapid Evolutionary Development. New York, NY: John Wiley & Sons, 1992.
[13] L. J. Arthur, Software Evolution: The Software Maintenance Challenge. New York, NY: John Wiley and

Sons, 1988.
[14] D. Attenborough, The Living Planet: A Portrait of the Earth. Boston, MA: Little, Brown and Company,

1985.
[15] R. Baecker, K. Booth, S. Jovicic, J. McGrenere, and G. Moore, "Reducing the Gap Between What Users

Know and What They Need to Know," presented at ACM Conference on Universal Usability 2000, 2000.
[16] B. Balzer, "Living With COTS," presented at International Conference on Software Engineering, Orlando,

FL, 2002.
[17] R. Barker, CASE*Method: Entity-Relationship Modelling. New York, NY: Addison-Wesley, 1990.
[18] A. Barr and E. A. Feigenbaum, "The Handbook of Artificial Intelligence," vol. 1. New York , NY:

Addison-Wesley, 1989.
[19] E. Barry, S. Slaughter, and C. F. Kemerer, "An Empirical Analysis of Software Evolution Profiles and

Outcomes," presented at 20th International Conference on Information Systems, Charlotte, North Carolina,
1999.

[20] D. Barstow and G. Arango, "Designing Software for Customization and Evolution," 1991.
[21] J. A. Bateman, "Ontology Construction and Natural Language," presented at Workshop on Formal

Ontology in Conceptual Analysis and Knowledge Representation, PAdova, 1993.
[22] D. Batory, "A Tutorial on Feature Oriented Programming and Product Lines," presented at International

Conference on Software Engineering, Portland, Oregon, 2003.
[23] D. Batory, C. Johnson, B. Macdonald, and D. Von Heeder, "Achieving Extensibility Through Product-

Lines and Domain-Specific Languages: A Case Study," ACM Transactions on Software Engineering and
Methodology, vol. 11, pp. 191-214, 2002.

[24] B. Beizer, Software Testing Techniques, 2nd ed. New York, NY: Van Nostrand Reinhold, 1990.
[25] D. Benyon, T. Green, and D. Bental, Conceptual Modeling for User Interface Development. London:

Springer-Verlag, 1999.
[26] H. Beyer and K. Holtzblatt, "Apprenticing with the Customer," Communications of the ACM, vol. 38, pp.

45-52, 1995.
[27] H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-Centered Systems. San Francisco:

Morgan-Kaufmann Publishers, Inc., 1998.

Page 60

PhD Proposal – Idris Hsi – Page 60

[28] G. Booch, Object-Oriented Analysis and Design. Reading, MA: The Benjamin/Cummings Publishing
Company, Inc., 1994.

[29] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide. Reading, MA:
Addison-Wesley, 1999.

[30] S. P. Borgatti and M. G. Everett, "Models of Core/Periphery Structures," Social Networks, pp. 375-395,
1999.

[31] S. P. Borgatti, M. G. Everett, and L. C. Freeman, UCINET 5.0 Version 1.00: Analytic Technologies, 1999.
[32] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick, "CLASSIC: A Structural Data Model

for Objects," presented at SIGMOD International Conference on Management of Data, Portland, Oregon,
1989.

[33] J. P. Bowen and M. G. Hinchey, "Seven More Myths of Formal Methods," IEEE Software, vol. 12, pp. 34-
41, 1995.

[34] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E. Herman, and Y.-J. Lin, "The Feature
Interaction Problem in Telecommunications Systems," presented at Seventh International Conference on
Software Engineering for Telecommunication Switching Systems, Bournemouth, UK, 1989.

[35] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Resnick, "Living with CLASSIC:
When and How to Use a KL-ONE-Like Language," in Principles of Semantic Networks, J. Sowa, Ed.:
Morgan Kaufmann Publishers, 1990.

[36] S. Brand, How Buildings Learn. New York, NY: Penguin Books, 1994.
[37] F. Brooks, The Mythical Man-Month. Reading, MA: Addison-Wesley, 1995.
[38] K. Brooks, "Dancing with digital interface complexity: a story approach," IEEE Multimedia, vol. 9, pp. 8-

11, 2002.
[39] M. Bunge, Ontology I: the Furniture of the World, vol. 3. New York, NY: D. Reidel Publishing Co., Inc.,

1977.
[40] M. Bunge, Ontology II: A World of Systems, vol. 4. New York, NY: D. Reidel Publishing Co., Inc., 1979.
[41] E. Burd, S. Bardley, and J. Davey, "Studying the process of software change: an analysis of software

evolution," presented at Seventh Working Conference on Reverse Engineering, Brisbane, Qld. Australia,
2000.

[42] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen, "Towards a Feature
Interaction Benchmark for IN and Beyond," IEEE Communications Magazine, vol. 31, pp. 64-69, 1993.

[43] E. J. Cameron and H. Velthuijsen, "Feature Interactions in Telecommunications Systems," IEEE
Communications Magazine, vol. 31, pp. 18-23, 1993.

[44] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human-Computer Interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1983.

[45] E. Chang, E. Gautama, and T. S. Dillon, "Extended Activity Diagrams for Adaptive Workflow
Modellling," presented at Fourth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, 2001.

[46] P. P. Chen, "The Entity-Relationship Model - Toward a Unified View of Data," ACM Transactions on
Database Systems, vol. 1, pp. 9-36, 1976.

[47] E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery: A Taxonomy," IEEE
Software, vol. 7, pp. 13-17, 1990.

[48] R. Clayton, S. Rugaber, and L. Wills, "Dowsing: A Tool Framework for Domain-Oriented Browsing of
Software Artifacts," presented at 13th IEEE International Conference on Automated software Engineering,
1998.

[49] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridget, MA: MIT Press,
1994.

[50] B. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the Software Design Process for Large Systems,"
Communications of the ACM, vol. 31, pp. 1268-1287, 1988.

[51] M. A. Cusumano and R. W. Selby, Microsoft Secrets. New York, NY: The Free Press, 1995.
[52] K. a. E. Czarnecki, Ulrich W., Generative Programming: Methods, Tools, and Applications. Boston, MA:

Addison-Wesley, 2000.
[53] A. M. Davis, Software Requirements Analysis and Specification. Englewood Cliffs, NJ: Prentice-Hall,

1991.
[54] F. D. Davis, "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information

Technology," MIS Quarterly, pp. 318-339, 1989.

Page 61

PhD Proposal – Idris Hsi – Page 61

[55] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, "User Acceptance of Computer Technology: A
Comparison of Two Theoretical Models," Management Science, vol. 35, pp. 982-1003, 1989.

[56] R. Dawkins, The Blind Watchmaker. New York: W.W. Norton and Company, 1987.
[57] R. Dawkins, The Selfish Gene. New York: Oxford University Press, 1989.
[58] J. M. DeBaud, B. Moopen, and S. Rugaber, "Domain Analysis and Reverse Engineering," presented at

International Conference on Software Maintenance, Victoria, British Columbia, Canada, 1994.
[59] J.-M. DeBaud and K. Schmid, "A Systematic Approach to Derive the Scope of Software Product Lines,"

presented at International Conference of Software Engineering, Los Angeles, CA, 1999.
[60] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interaction. New York, NY: Prentice-Hall,

1993.
[61] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems. New York, NY: Addison-Wesley, 1994.
[62] M. El-Ramly, E. Stroulia, and P. Sorenson, "From Run-time Behavior to Usage Scenarios: An Interaction-

Pattern Mining Approach," presented at 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Alberta, Canada, 2002.

[63] M. El-Ramly, E. Stroulia, and P. Sorenson, "Recovering Software Requirements from System-User
Interaction Traces," presented at 14th International Conference on Software Engineering and Knowledge
Engineering, Ischia, Italy, 2002.

[64] D. W. Embley, B. D. Kurtz, and S. N. Woodfield, Object-Oriented Systems Analysis: A Model-Driven
Approach. Englewood Cliffs, NJ: Prentice-Hall, 1992.

[65] M. G. Everett and S. P. Borgatti, "Peripheries of Cohesive Subsets," Social Networks, pp. 397-407, 1999.
[66] M. W. Eysenck and M. T. Keane, Cognitive Psychology: A Student's Handbook. East Sussex, UK:

Lawrence Erlbaum Associates Ltd., 1992.
[67] R. d. A. Falbo, G. Guizzardi, and K. C. Duarte, "An Ontological Approach to Domain Engineering,"

presented at International Conference on Software Engineering and Knowledge Engineering (SEKE'02),
Ischia, Italy, 2002.

[68] J. M. Flach, "The Ecology of Human-Machine Systems I: Introduction," Ecological Psychology, vol. 2, pp.
191-205, 1990.

[69] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice,
Second ed. Reading, MA: Addison-Wesley, 1990.

[70] M. Fowler, Refactoring. Reading, MA: Addsion-Wesley, 1999.
[71] W. J. Freeman, "The Physiology of Perception," Scientific American, vol. 264, pp. 78-85, 1991.
[72] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software. Reading, MA: Addison-Wesley, 1994.
[73] D. Gefen and M. Keil, "The Impact of Developer Responsiveness on Perceptions of Usefulness and Ease of

Use: An Extension of the Technology Acceptance Model," The DATA BASE for Advances in Information
Systems, vol. 29, pp. 35-49, 1998.

[74] W. W. Gibbs, "Taking Computers to Task," in Scientific American, vol. 277, 1997, pp. 82-89.
[75] M. W. Godfrey and Q. Tu, "Evolution in Open Source Software: A Case Study," presented at International

Conference on Software Maintenance, San Jose, CA, 2000.
[76] T. R. G. Green and D. R. Benyon, "The Skull Beneath The Skin: Entity-Relationship Models of

Information Artefacts," International Journal of Human-Computer Studies, vol. 44, pp. 801-828, 1996.
[77] S. J. Greenspan, J. Mylopoulos, and A. Borgida, "Capturing More World Knowledge in the Requirements

Specification," in Domain Analysis and Software Systems Modeling, R. Priéto-Diaz and G. Arango, Eds.
Los Alamitos, CA: IEEE Computer Society Press, 1991, pp. 53-62.

[78] R. M. Greenwood, B. Warboys, R. Harrison, and P. Henderson, "An Empirical Study of the Evolution of a
Software System," presented at 13th IEEE Conference on Automated Software Engineering, Honolulu, HI,
1998.

[79] M. L. Griss, J. Favaro, and M. d'Alessandro, "Integrating Feature Modeling with the RSEB," presented at
Fifth International Conference on Software Reuse, 1998.

[80] T. R. Gruber, "Ontolingua: A Mechanism to Support Portable Ontologies," Stanford University, Technical
Report June 1992 1992.

[81] T. R. Gruber, "Toward Principles for the Design of Ontologies Used for Knowledge sharing," in Formal
Ontology in Conceptual Analysis and Knowledge Representation, N. Guarino and R. Poli, Eds.: Kluwer
Academic Publishers, 1993.

[82] N. Guarino, "Formal Ontology, Conceptual Analysis, and Knowledge Representation," International
Journal of Human-Computer Studies, vol. 43, pp. 625-640, 1995.

Page 62

PhD Proposal – Idris Hsi – Page 62

[83] N. Guarino and C. Welty, "Ontological Analysis of Taxonomic Relationships," presented at ER-2000: The
19th International Conference on Conceptual Modeling, USA, 2000.

[84] N. Guarino and C. Welty, "Towards a Methodology for Ontology-based Model Engineering," presented at
ECOOP-2000 Workshop on Model Engineering, 2000.

[85] S. Guerra, M. Ryan, and A. Sernadas, "Feature-Oriented Specifications," School of Computer Science,
University of Birmingham, Technical Report Nov 1996 1996.

[86] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, "On Clustering Validation Techniques," Journal of
Intelligent Information Systems, vol. 17, pp. 107-145, 2001.

[87] T. Halpin, Conceptual Schema and Relational Database Design, 2nd ed. Sydney, AUS: Prentice Hall,
1995.

[88] T. Halpin, "Data modeling in UML and ORM revisited," presented at International Workshop on
Evaluation of Modeling Methods in Systems Analysis and Design, Heidelberg, Germany, 1999.

[89] S. J. Hanson, R. E. Kraut, and J. M. Farber, "Interface Design and Multivariate Analysis of UNIX
Command Use," ACM Transactions on Office Information Systems, vol. 2, pp. 42-57, 1984.

[90] F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed
Graphs. New York, NY: John Wiley and Sons, 1965.

[91] F. Harary and E. M. Palmer, Graphical Enumeration. New York, NY: Academic Press, 1973.
[92] D. M. Hilbert and D. F. Redmiles, "Extracting Usability Information from User Interface Events," ACM

Computing Surveys, vol. 32, pp. 384-421, 2000.
[93] B. Hillier, Space is the Machine: A Configurational Theory of Architecture. Cambridge, UK: Cambridge

University Press, 1996.
[94] B. Hillier and J. Hanson, The Social Logic of Space. Cambridge, UK: Cambridge University Press, 1984.
[95] D. Hix and H. R. Hartson, Developing User Interfaces. New York, NY: John Wiley and Sons, 1993.
[96] K. Holtzblatt and H. Beyer, "Making Customer-Centered Design Work For Teams," Communications of

the ACM, vol. 36, pp. 92-103, 1993.
[97] W. E. Howden, "Validation of Scientific Programs," ACM Computing Surveys, vol. 14, pp. 193-227, 1982.
[98] I. Hsi and C. Potts, "Studying the Evolution and Enhancement of Software Features," presented at Intl.

Conf. Software Maintenance, San Jose, CA, 2000.
[99] I. Hsi, C. Potts, and M. Moore, "Ontological Excavation: Unearthing the core concepts of the application,"

presented at Working Conference on Reverse Engineering, Victoria, Canada, 2003.
[100] P. Hsia, A. Davis, and D. Kung, "Status Report: Requirements Engineering," IEEE Software, vol. 11, pp.

12-16, 1993.
[101] X. Huang and W. Lai, "Identification of clusters in the Web graph based on link topology," presented at

Seventh International Database Engineering and Applications Symposium, 2003.
[102] J. Hughes, J. O'Brien, T. Rodden, M. Rouncefield, and I. Sommerfield, "Presenting Ethnography in the

Requirements Process," presented at 2nd IEEE International Symposium on Requirements Engineering,
1995.

[103] E. Hutchins, Cognition in the Wild. Cambridge, MA: MIT Press, 1995.
[104] S. Iacono and R. Kling, "Computerization, Office Routines, and Changes in Clerical Work," in

Computerization and Controversy: Value Conflicts and Social Choices, R. Kling, Ed., 2nd ed. New York,
NY: Academic Press, 1996, pp. 309-315.

[105] M. Jackson, Problem Frames: Analyzing and Structuring Software Development Problems. New York,
NY: Addison-Wesley, 2001.

[106] M. Jackson, Software Requirements and Specifications: A Lexicon of Practice, Principles, and Prejudices.
New York, NY: Addison-Wesley, 1995.

[107] J. Jacky, The Way of Z: Practical Programming with Formal Methods. New York, NY: Cambridge
University Press, 1997.

[108] E. Jacob, "Qualitative Research Traditions: A Review," Review of Educational Research, vol. 57, pp. 1-50,
1987.

[109] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process. Reading, MA:
Addison-Wesley, 1999.

[110] A. K. Jain, M. N. Murty, and P. J. Flynn, "Data Clustering: A Review," ACM Computing Surveys, vol. 31,
pp. 264-323, 1999.

[111] D. R. Jeffery, G. C. Low, and M. Barnes, "A Comparison of Function Point Counting Techniques," IEEE
Transactions on Software Engineering, vol. 19, pp. 529-532, 1993.

Page 63

PhD Proposal – Idris Hsi – Page 63

[112] I. John, D. Muthig, P. Sody, and E. Tolzmann, "Efficient and Systematic Software Evolution Through
Domain Analysis," presented at IEEE Joint International Conference on Requirements Engineering
(RE'02), 2002.

[113] W. L. Johnson and M. Feather, "Building an Evolution Transformation Library," presented at 12th
International Conference on Software Engineering, Nice, France, 1990.

[114] C. Jones, Assessment and Control of Software Risks. Upper Saddle River, NJ: Prentice-Hall, Inc., 1994.
[115] L. G. Jones and A. L. Soule, "Software Process Improvement and Product Line Practice: CMMI and the

Framework for Software Product Line Practice," Carnegie Mellon, Pittsburgh, PA CMU/SEI-2002-TN-
012, 2002.

[116] H. Kaindl, "An Integration of Scenarios with their Purposes in Task Modeling," presented at Designing
Interactive Systems: Processes, Practices, Methods, and Techniques, Ann Arbor, MI, 1995.

[117] K. C. Kang, "Feature-Oriented Development of Applications for a Domain," presented at Fifth
International Conference on Software Reuse, 1998.

[118] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented Product Line Engineering," IEEE Software, vol. 19,
pp. 58-65, 2002.

[119] M. Keil, P. Beranek, and B. Konsynski, "Usefulness and ease of use: field study evidence regarding task
considerations," Decision Support Systems, vol. 13, pp. 75-91, 1995.

[120] C. F. Kemerer, "An Empirical Validation of Software Cost Estimation Models," Communications of the
ACM, vol. 30, pp. 416-429, 1987.

[121] C. F. Kemerer and S. Slaughter, "An Empirical Approach to Studying Software Evolution," IEEE
Transactions on Software Engineering, vol. 25, pp. 493-509, 1999.

[122] A. Kirlik, Requirements for Psychological Models to Support Design: Towards Ecological Task Analysis,
vol. 1. Hillsdale, NJ: Lawrence Erlbaum, 1995.

[123] H. Kohl, From Archetuype to Zetigeist. Boston, MA: Little, Brown and Company, 1992.
[124] M. Kolberg, E. Magill, D. Marples, and S. Tsang, "Feature Interactions in Services for Internet Personal

Appliances," presented at IEEE International Conference on Communications, 2002.
[125] J. Kuusela and J. Savolainen, "Requirements Engineering for Product Families," presented at 22nd

International Conference on Software Engineering, Limerick, Ireland, 2000.
[126] B. Laurel, "The Art of Human-Computer Interface Design," B. Laurel, Ed. Reading, MA: Addison-Wesley,

1990.
[127] A. L. Lederer, "The Role of Ease of Use, Usefulness, and Attitude in the Prediction of World Wide Web

Usage," presented at ACM SIGCPR conference on Computer Personnel REsearch, Boston, MA, 1998.
[128] M. Lehman, "Laws of software evolution revisited," presented at 5th European Workshop on Software

Process Technology, Nancy, France, 1996.
[129] M. Lehman and L. Belady, Program Evolution: Processes of Software Change, 1st ed. Orlando: Academic

Press,inc., 1985.
[130] M. M. Lehman, "Software's Future: Managing Evolution," IEEE Software, vol. 15, pp. 40-44, 1998.
[131] M. M. Lehman, D. E. Perry, and J. F. Ramil, "Implications of evolution metrics on software maintenance,"

presented at International Conference on Software Maintenance, Bethesda, MD, 1998.
[132] M. M. Lehman and J. F. Ramil, "The Impact of Feedback in the Global Software Process," presented at

Workshop on Software Process Simulation and Modeling (ProSim '98), Silver Falls, OR, 1998.
[133] M. M. Lehman, J. F. Ramil, P. D. Wemick, D. E. Perry, and W. M. Turski, "Metrics and Laws of Software

Evolution - The Nineties View," presented at Fourth International Software Metrics Symposium,
Albuquerque, NM, 1997.

[134] T. R. Leishman and D. A. Cook, "Requirements Risks Can Drown Software Projects," Crosstalk, vol. 15,
pp. 4-8, 2002.

[135] D. B. Lenat, "CYC: A Large-Scale Investment in Knowledge Infrastructure," Communications of the ACM,
vol. 38, pp. 33-48, 1995.

[136] N. G. Leveson, "Intent Specifications: An Approach to Building Human-Centered Specifications," IEEE
Transcations on Software Engineering, vol. 26, pp. 15-35, 2000.

[137] Y. S. Lincoln and E. G. Guba, Naturalistic Inquiry. London, UK: Sage Publications, 1985.
[138] Luqi, "A Graph Model for Software Evolution," IEEE Transactions On Software Engineering, vol. 16, pp.

917-927, 1990.
[139] A. Maccari, "Experiences in Assessing Product Family Software Architecture for Evolution," presented at

24th International Conference on Software Engineering, 2002.

Page 64

PhD Proposal – Idris Hsi – Page 64

[140] A. Mackenzie, A. S. Ball, and S. R. Virdee, Instant Notes in Ecology. Oxford: BIOS Scientific Publishers
Ltd, 1998.

[141] S. Maguire, Writing Solid Code. Redmond, WA: Microsoft Press, 1993.
[142] S. McConnell, Code Complete. Redmond, WA: Microsoft Press, 1993.
[143] S. McConnell, Rapid Development. Redmond, WA: Microsoft Press, 1996.
[144] J. McGrenere, ""Bloat": The Objective and Subjective Dimensions," presented at Computer Human

Interaction 2000 (CHI 2000), 2000.
[145] J. McGrenere, R. M. Baecker, and K. S. Booth, "An Evaluation of a Multiple Interface Design Solution for

Bloated Software," presented at CHI 2002, Minneapolis, MN, 2001.
[146] J. McGrenere and G. Moore, "Are We All In The Same "Bloat"?," presented at Graphics Interface 2000,

Montreal, 2000.
[147] D. L. McGuinness, "Conceptual Modeling for Distributed Ontology Environments," presented at The Eight

International Conference on Conceptual Structures Logical, Linguistic, and Computational Issues,
Darmstadt, Germany, 2000.

[148] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, "The Chimaera Ontology Environment," presented at
Seventeenth National Conference on Artificial Intelligence, Austin, Texas, 2000.

[149] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, "An Environment for Merging and Testing Large
Ontologies," presented at Seventh International Conference on Principles of Knowledge Representation and
Reasoning (KR2000), Breckenridge, Colorado, 2000.

[150] A. Memon, I. Banerjee, and A. Nagarajan, "GUI Ripping: Reverse Engineering of Graphical User
Interfaces for Testing," presented at Tenth Working Conference on Reverse Engineering, Victoria, BC
Canada, 2003.

[151] T. Mens and S. Demeyer, "Future Trends in Software Evolution Metrics," presented at 4th International
Workshop on Principles of Software Evolution, Vienna, Austria, 2002.

[152] M. Moore, "A Survey of Representations for Recovering User Interface Specifications in Reengineering,"
College of Computing, Georgia Institute of Technology, Atlanta, GA July 16, 1996 1996.

[153] M. Moore, "User Interface Reengineering," in College of Computing. Atlanta, GA: Georgia Institute of
Technology., 1998.

[154] B. A. Myers, "User Interface Software Tools," ACM Transactions on Computer-Human Interaction, vol. 2,
pp. 64-103, 1995.

[155] B. A. Nardi, "Studying Context: A Comparison of Activity Theory, Situated Action Models, and
Distributed Cognition," in Context and Consciousness: Activity Theory and Human-Computer Interaction,
B. A. Nardi, Ed. Cambridge, MA: MIT Press, 1996, pp. 69-102.

[156] B. A. Nardi and V. L. O'Day, Information Ecologies: Using Technology with Heart, Reprint Edition ed.
Cambridge, MA: MIT Press, 2000.

[157] J. Nielsen, Usability Engineering. Cambridge, MA: Academic Press, 1993.
[158] J. Nielsen, "The Usability Engineering Life Cycle," IEEE Computer, vol. 25, pp. 12-22, 1992.
[159] G. M. Nijssen and T. A. Halpin, Conceptual Schema and Relational Database Design. New York: Prentice

Hall, 1989.
[160] N. J. Nilsson, Principles of Artifical Intelligence. Palo Alto, CA: Tioga Publishing Company, 1980.
[161] D. Norman, The Invisible Computer. Cambridge, MA: MIT Press, 1998.
[162] D. A. Norman, The Design of Everyday Things. New York, NY: Doubleday, 1988.
[163] B. Nuseibeh and S. Easterbrook, "Requirements Engineering: A Roadmap," presented at Proceedings of the

22nd International Conference on Software Engineering, Limerick, Ireland, 2000.
[164] P. Oreizy, "A Flexible Approach to Decentralized Software Evolution," presented at 1999 International

Conference on Software Engineering, Los Angeles, CA, 1999.
[165] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. S.

Rosenblum, and A. L. Worl, "An Architecture-based Approach to Self-adaptive Software," IEEE
Intelligent Systems, vol. 14, pp. 54-62, 1999.

[166] D. E. Perry, "Dimensions of Software Evolution," presented at International Conference on Software
Maintenance, Victoria, BC Canada, 1994.

[167] H. Petroski, The Book on the Book. New York: Alfred A. Knopf, 1999.
[168] H. Petroski, Design Paradigms: Case Histories of Error and Judgment in Engineering. Cambridge:

Cambridge University Press, 1994.
[169] H. Petroski, The Evolution of Useful Things, 1 ed. New York: Vintage Books, 1992.

Page 65

PhD Proposal – Idris Hsi – Page 65

[170] H. Petroski, Invention by Design: How Engineers Get From Thought to Thing. Cambridge, MA: Harvard
University Press, 1996.

[171] H. Petroski, The Pencil: A History of Design and Circumstance. New York, NY: Alfred A. Knopf, 1992.
[172] C. Potts, "Requirements Models in Context," presented at 3rd International Symposium on Requirements

Engineering (RE'97), Annapolis, MD, 1997.
[173] C. Potts, "Software Engineering Research Revisited," IEEE Software, vol. 10, pp. 19-26, 1993.
[174] C. Potts, "Using Schematic Scenarios to Understand User Needs," presented at Designing Interactive

Systems: Processes, Practices, Methods, and Techniques, Ann Arbor, MI, 1995.
[175] C. Potts, A. Anton, and K. Takahashi, "Inquiry-Based Requirements Analysis," in IEEE Software, vol. 2,

1994, pp. 21-32.
[176] C. Potts and I. Hsi, "Abstraction and context in requirements engineering: Toward a Synthesis," Annals of

Software Engineering, vol. 3, pp. 23-61, 1997.
[177] R. S. Pressman, Software Engineering: A Practitioner's Approach, 4th ed. New York, NY: McGraw Hill,

1997.
[178] M. E. Raichle, "Visualizing the Mind," Scientific American, vol. 270, pp. 58-64, 1994.
[179] E. S. Raymond, The Cathedral and the Bazaar. Sebastopol, CA: O'Reilly and Associates, 1999.
[180] E. M. Rogers, Diffusion of Innovation, 4th ed. New York: The Free Press, 1995.
[181] S. Rugaber, "Program Comprehension," Encyclopedia of Computer Science and Technology, vol. 35, pp.

341-368, 1995.
[182] S. Rugaber and M. Guzdial, "Ectropic Software," presented at Workshop on Software Change and

Evolution, Los Angeles, CA, 1999.
[183] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-oriented Modeling and Design.

Englewood Cliffs, NJ: Prentice-Hall, 1991.
[184] R. Sedgewick, Algorithms in C: Part 5, 3rd ed. New York, NY: Addison-Wesley, 2002.
[185] E. E. Smith and D. L. Medin, Categories and Concepts. Cambridge, MA: Harvard University Press, 1981.
[186] I. Sommerville, T. Rodden, P. Sawyer, R. Bentley, and M. Twidale, "Integrating Ethnography Into The

Requirements Engineering Process," presented at IEEE International Symposium on Requirements
Engineering, San Diego, CA, 1992.

[187] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide. New York, NY: John
Wiley and Sons, 1997.

[188] J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-
Wesley, 1984.

[189] J. P. Spradley, The Ethnographic Interview. New York, NY: Harcourt Brace Jovanovich College
Publishers, 1979.

[190] E. Stroulia, M. El-Ramly, and P. Sorenson, "From Legacy to Web through Interaction Modeling,"
presented at International Conference on Software Maintenance, Montréal, Canada, 2002.

[191] E. Stroulia and R. V. Kapoor, "Reverse Engineering Interaction Plans for Legacy Interface Migration,"
presented at 4th International Conference on Computer Aided Design of User Interfaces, Valenciennes,
France, 2002.

[192] Sun Microsystems,"A Visual Index to the Swing Components,"From, available at
http://java.sun.com/docs/books/tutorial/uiswing/components/components.html, 2004.

[193] A. Sutcliffe, Maiden, Minocha, and Manuel, "Supporting Scenario-based Requirements Engineering,"
IEEE Transactions on Software Engineering, vol. 24, pp. 1072-1088, 1998.

[194] S. M. Sutton, Jr. and L. J. Osterweil, "Product Families and Process Families," presented at 10th
International Software Process Workshop, Dijon, France, 1996.

[195] C. R. Symons, "Function Point Analysis: Difficulties and Improvements," IEEE Transactions on Software
Engineering, vol. 14, pp. 2-11, 1988.

[196] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, "A Conceptual Basis for Feature Engineering,"
Journal of Systems and Software, vol. 49, pp. 3-15, 1999.

[197] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, "Feature Engineering," presented at Ninth
International Workshop on Software Specification and Design, 1998.

[198] A. van Duresen and T. Kuipers, "Identifying Objects Using Cluster and Concept Analysis," presented at
International Conference on Software Engineering, Los Angeles, 1999.

[199] D. K. Van Duyne, J. A. Landay, and J. Hong, The Design of Sites. New York, NY: Addison-Wesley, 2003.

Page 66

PhD Proposal – Idris Hsi – Page 66

[200] G. M. A. Verheijen and J. Van Bekkum, "NIAM: An Information Analysis Method," in Information
Systems Design Methodologies, T. W. Olle, H. G. Sol, and A. A. Verrijn-Stuart, Eds. Amsterdam: North-
Holland Publishing Company, 1982.

[201] K. J. Vicente, "A Few Implications of an Ecological Approach to Human Factors," Human Factors Society
Bulletin, vol. 33, pp. 1-4, 1990.

[202] K. J. Vicente and J. Rasmussen, "The Ecology of Human-Machine Systems II: Mediating "Direct
Perception" in Complex Work Domains," Ecological Psychology, vol. 2, pp. 207-249, 19990.

[203] Y. Wand, V. C. Storey, and R. Weber, "An Ontological Analysis of the Relationship Construct in
Conceptual Modeling," ACM Transactions on Database Systems, vol. 24, pp. 494-528, 1999.

[204] Y. Wand and R. Y. Wang, "Anchoring Data Quality Dimensions in Ontological Foundations,"
Communications of the ACM, vol. 39, pp. 86-95, 1996.

[205] S. Wasserman and K. Faust, Social Network Analysis. Cambridge: Cambridge University Press, 1994.
[206] J. M. Wing, "A Specifier's Introduction to Formal Methods," IEEE Computer, vol. 23, pp. 8,10-22,24, !990.
[207] N. Wirth, "A Plea for Lean Software," IEEE Computer, vol. 28, pp. 64-68, 1995.
[208] L. Wittgenstein, Philosophical Investigations. Oxford: Basil Blackwell, 1953.
[209] K. Yue, "Validating System Requirements by Functional Decomposition and Dynamic Analysis,"

presented at 11th International Conference on Software Engineering, Pittsburgh, PA, 1989.
[210] P. Zave, "Feature Interactions and Formal Specifications in Telecommunications," Computer, vol. 26, pp.

20-28, 30, 1993.

Page 67

PhD Proposal – Idris Hsi – Page 67

Appendix 1 – Introduction to the Case Studies

The following Appendices contain the case studies applying ontological excavation and use case
silhouetting to the following applications:

• Appendix 2 – Windows 95/98 CD Player
• Appendix 3 – Palm Pilot 2000 Scheduler
• Appendix 4 – Protocol Calendar / Calculator
• Appendix 5 – Microsoft Notepad

Appendix 6 contains a follow-up case study to Microsoft Notepad where we made substantial
changes to the ontology that we recovered.

The case studies have the following subsections:

• Introduction – Describes the application and its general purpose.
• Modeling Issues – During the course of ontological excavation, we encounter potential

modeling issues which may affect our analysis. We describe them here.
• Ontological Analysis – This summarizes our findings after analyzing the ontology – a list

of core concepts* ordered by centrality value, teleons that we identified, and a list of
metrics that we measured from the ontology.

• The Use Case Silhouette – This summarizes our findings from developing a use case
silhouette on the application from a set of use case obtained from that application’s help
files.

• Morphology – This shows a figure of the application’s morphological map (or a portion
of the map) and a list of elements in the morphological map. The diagrams are often very
large (spanning several pages) and are not intended to be readable in this document).

• Ontology – This shows a figure of the application’s ontology and a list of concepts in the
ontology.

• Conclusion – We highlight the relevant findings from the case study and draw some
conclusions from our results.

* Some of the concepts are in brackets (‘[]’s). We use brackets in the cases where the name is
unavailable from the morphology or correct modeling requires us to name a concept.

Page 68

PhD Proposal – Idris Hsi – Page 68

Appendix 2 – The Windows 95/98 CD Player Case Study

2.1 Introduction

This appendix describes the results of the ontological excavation, ontological analysis, and use
case silhouette analysis of the Windows 95/98 CD Player. The Windows CD Player (Figure 9)
allows the user to play CDs, to manage information about that CD, which has to be entered
manually by the user, and to manage custom playlists.

Figure 9 – The Win 95/98 CD Player

2.2 Ontological Analysis

Below is a summary of the findings from the ontological analysis. They include the following
information:

• List of core concepts and their centrality values.
• Subgroups identified by k-core analysis
• Statistics of the ontology

2.2.1 Core Concepts Identified
Core concepts are those concepts essential to that application’s ontology. Table 11 shows a list of
the concepts identified in the ontology of the application. Values have a range from 0 to 100
where 100 means that the concept has connections to all other concepts in the ontology and 0
means the concept is either an isolate or a leaf node in the ontology. Core concepts have a
centrality value greater than or equal to 7.0 and have been italicized.

Table 11 – CD Player Concepts ordered by Centrality Value

Concept Name Centrality Description

[Current Track] 48.7 The track being played

[Play Mode] 44.7 The settings applied to how the current disc is to be played

Track 36.6 A playable unit on a compact disc

Disc 28.7 The compact disc

[Current Disc] 23.4 The compact disc currently being played

Playlist 19.5 The list of tracks in the order that they should be played

Artist 0 The name of the artist associated with the CD

Title 0 The title of the CD

Drive 0 The drive where the current CD resides

Random Order 0 A play setting that causes tracks of a playlist to be played randomly

Continuous Order 0 A play setting that causes tracks of a playlist to be played continuously

Intro Mode 0 A setting that plays a few seconds of a track

Page 69

PhD Proposal – Idris Hsi – Page 69

Concept Name Centrality Description

Track Name 0 The name of the track

Track Number 0 The number of the track on the CD

[Playing_or_Paused] 0 Whether the track is currently playing or is paused

Intro Play Length 0 The number of seconds for intro mode

Track Time Elapsed 0 The amount of time that a track has been playing

Track Time Remaining 0 The amount of time left on a playing track

Track Time 0 The total duration of a track

Total Playtime 0 The total playtime of a playlist

Playlist Time Remaining 0 The amount of time left on a playlist.

2.2.2 Subgroups Identified
Subgroups of concepts may suggest teleons. We used a k-core analysis to identify potential
teleons in the ontology. A k-core is a connected, maximal, induced subgraph of nodes such that
each node has a minimum degree greater than equal to k. Subgroups identified in the application
are listed by their k-value in Table 12 along with the concepts contained in that subgroup.

Table 12 – CD Player Subgroups Identified by K-Core Analysis

k-value Concepts in Subgroup
2 [Current Track], [Play Mode], Track, Disc, [Current Disc], Playlist

2.2.3 Statistics
The following table (Table 13) lists the overall composition of the ontology.

Table 13 – CD Player Ontological Metrics

of entity types: 6
of attributes: 14
of nodes in ontology: 20
of core concepts in ontology: 6
% of total ontology covered by core concepts: 30%
% of total ontology covered by peripheral concepts: 70%
% of ontology (no attributes) covered by core concepts: 100%
% of ontology (no attributes) covered by peripheral concepts: 0
Average centrality of concepts 9.60
Density (number of edges divided by total number of possible edges) .11

Page 70

PhD Proposal – Idris Hsi – Page 70

2.3 The Use Case Silhouette

The use case silhouette process takes a set of use cases and uses them to obtain statistics such as
the number of concepts present in the ontology and the amount of ontological coverage by those
concepts. These findings are summarized in Table 14.

Table 14 – CD Player Use Case Silhouette Statistics

Source Help file associated with application
of use cases: 23
concepts invoked: 16
ontological coverage: 80%

2.3.1 Ontological Coverage by Use Case
Table 15 lists the number of concepts, the number of unique concepts activated in each use case,
and the coverage of the unique concepts with respect to the overall ontology. It also measures the
proportion of core concepts found in that use case (including repeated references).

Table 15 – CD Player – Use Case Overview

Name # of
concepts

of unique
concepts

% of
ontology

%
core concepts

1 adding Tracks to Play lists 6 5 24% 50%

2 back button 1 1 5% 100%

3 CD-Rom Drives, using multiple 2 2 10% 0%

4 CDs: changing tricks 2 1 5% 100%

5 CDs: pausing 4 2 10% 50%

6 CDs: play lists 6 6 29% 44%

7 CDs: storing track titles 6 6 29% 38%

8 changing: settings 6 6 29% 17%

9 clearing play lists 3 3 14% 67%

10 deleting tracks from play lists 4 3 14% 50%

11 ejecting CDs 1 1 5% 100%

12 forward button 1 1 5% 100%

13 moving between tracks 2 2 10% 100%

14 multidisc play 1 1 5% 0%

15 next track 1 1 5% 100%

16 options 6 6 29% 60%

17 previous track 1 1 5% 100%

18 random order 1 2 10% 50%

19 resetting play lists 5 2 10% 100%

20 resuming play 2 2 10% 50%

21 rewinding 1 1 5% 100%

22 skipping tracks 2 1 5% 100%

23 stop a CD 1 1 5% 100%

Page 71

PhD Proposal – Idris Hsi – Page 71

2.3.2 Concept Frequency Across Use Cases
Concept frequency looks at how often a concept is accessed across all the use cases and how
often it is accessed against all the concepts invoked by all of the use cases. These are
summarized in Table 16. Concept frequency is used to compare against a concept’s centrality
measures to see whether it retains its importance in the set of use cases. Presumably, a
discrepancy would indicate that a concept with structural importance but lacking importance
relative to actual usage needs to be made more prominent in the morphology, less prominent in
the ontology, or is a symptom of a discontinuity between the system’s model of usage and the
goals of its users.

Table 16 – CD Player Frequency of Concept appearance in use case set. Core concepts are italicized.

Name

Times
Access

ed

% of
Total # of
concepts
invoked

Playlist 18 26 %

[Current Track] 10 14 %

[Current Disc] 8 11 %

Track 8 11 %

[Play Mode] 7 6 %

Artist 4 6 %

Title 3 4 %

Track Name 3 4 %

[Playing_or_Paused] 3 4 %

Track Number 2 3 %

Disc 1 1 %

Name

Times
Access

ed

% of
Total # of
concepts
invoked

Drive 1 1 %

Random Order 1 1 %

Intro Play Length 1 1 %

Track Time Elapsed 1 1 %

Track Time Remaining 1 1 %

Track Time 1 1 %

Continuous Order 0 0 %

Intro Mode 0 0 %

Total Playtime 0 0 %

Playlist Time Remaining 0 0 %

Page 72

PhD Proposal – Idris Hsi – Page 72

2.4 Morphology
Figure 10 – CD Player Morphological Map

C
D

 P
la

ye
r

M
ai

n
M

B
: D

is
c

M
M

ai
n

M
B:

 V
ie

w
 M

M
ai

n
M

B
: O

pt
io

ns
 M

M
ai

n
M

B:
 H

el
p

M

Disc M: Edit Playlist
MI

Disc M: Exit MI

View M: Toolbar
CMI

View M: Disc/
Track Info CMI

View M: Status
Bar CMI

View M: Track
Time Elapsed CMI

View M: Track Time
Remaining CMI

Options M:
Random Order

CMI
Options M:

Multidisc Play CMI
Options M:

Continuous Play
CMI

Options M: Intro
Play CMI

Options M:
Preferences MI

Help M: Help Topics
MI

Help M: About CD
Player MI

View M: Volume
Control MI

P
la

y
C

on
tro

l W

M
ai

n
TB

M
W

: A
rti

st
 /

D
riv

e
D

D
M

W
: T

ra
ck

D
D

M
W

: [
C

D
] D

M
W

: P
la

y
BM

W
: P

au
se

 BM
W

: S
to

p
B

M
W

: P
re

vi
ou

s
Tr

ac
k

B
M

W
: S

ki
p

B
ac

kw
ar

ds
 B

M
W

: S
ki

p
Fo

rw
ar

ds
 B

M
W

: N
ex

t T
ra

ck
B

M
W

: E
je

ct
 B

tn

M
ai

n
TB

: E
di

t
Pl

ay
lis

t B
M

ai
nT

B:
 T

ra
ck

Ti
m

e
E

la
ps

ed
 B

M
ai

nT
B:

 T
ra

ck
Ti

m
e

R
em

ai
ni

ng
B

M
ai

nT
B

: D
is

c
Ti

m
e

R
em

ai
ni

ng
B

M
ai

nT
B:

 R
an

do
m

T
ra

ck
 O

rd
er

 B
M

ai
nT

B
: M

ul
ti

D
is

c
Pl

ay
 B

M
ai

nT
B

:
C

on
tin

uo
us

 P
la

y
B

M
ai

nT
B

: I
nt

ro
P

la
y

B

\

M
W

: T
itl

e
D

D
is

c
S

et
tin

gs
 D

B

D
is

c
Se

tti
ng

s
D

B:
[D

riv
e]

 D

D
is

c
Se

tti
ng

s
D

B
: A

rti
st

 T
F

D
is

c
Se

tti
ng

s
D

B
: T

itl
e

TF
D

is
c

S
et

tin
gs

 D
B

:
P

la
y

Li
st

 D

D
is

c
S

et
tin

gs
 D

B
:

Ad
d

B
D

is
c

S
et

tin
gs

 D
B:

R
em

ov
e

B
D

is
c

S
et

tin
gs

 D
B

:
C

le
ar

 A
ll

B
D

is
c

Se
tti

ng
s

D
B

:
R

es
et

 B
D

is
c

Se
tti

ng
s

D
B:

[A
va

ila
bl

e
Tr

ac
ks

] D

D
is

c
Se

tti
ng

s
D

B
: T

ra
ck

 T
F

D
is

c
S

et
tin

gs
 D

B
:

S
et

 N
am

e
B

D
is

c
S

et
tin

gs
 D

B
:

O
K

B
D

is
c

S
et

tin
gs

 D
B

:
C

an
ce

l B

Pr
ef

er
en

ce
s

D
B

P
re

fe
re

nc
es

 D
B:

S
to

p
C

D
 P

la
yi

ng
 o

n
E

xi
t C

B

P
re

fe
re

nc
es

D
B

: S
av

e
S

et
tin

gs
 o

n
Ex

it
C

B

Pr
ef

er
en

ce
s

D
B:

 S
ho

w
 T

oo
l

Ti
ps

 C
B

P
re

fe
re

nc
es

 D
B:

 In
tro

P
la

y
Le

ng
th

 L
Pr

ef
er

en
ce

s
D

B:
 C

D
D

M
ai

n
M

B

View M: Disc Time
Remaining CMI

P
re

fe
re

nc
es

D
B

: S
m

al
l F

on
t

R
B

P
re

fe
re

nc
es

D
B:

 L
ar

ge
 F

on
t

R
B

Page 73

PhD Proposal – Idris Hsi – Page 73

Figure 10 shows the morphological map of the application. Table 17 contains a list of the
following morphological elements. They are numbered by the order that they were placed into
the diagram.

Table 17 – CD Player Morphological Elements

Name of Morphological Element

1 CD Player

2 Main MB: Disc M

3 Main MB: View M

4 Main MB: Options M

5 Main MB: Help M

6 Disc M: Edit Playlist MI

7 Disc M: Exit MI

8 View M: Toolbar CMI

9 View M: Disc/Track Info CMI

10 View M: Status Bar CMI

11 View M: Track Time Elapsed CMI

12 View M: Track Time Remaining CMI

13 Options M: Random Order CMI

14 Options M: Multidisc Play CMI

15 Options M: Continuous Play CMI

16 Options M: Intro Play CMI

17 Options M: Preferences MI

18 Help M: Help Topics MI

19 Help M: About CD Player MI

20 View M: Volume Control MI

21 Play Control W

22 Main TB

23 MW: Artist / Drive DD

24 MW: Track DD

25 MW: [CD] D

26 MW: Play B

27 MW: Pause B

28 MW: Stop B

29 MW: Previous Track B

30 MW: Skip Backwards B

31 MW: Skip Forwards B

32 MW: Next Track B

33 MW: Eject Btn

34 Main TB: Edit Playlist B

Name of Morphological Element

35 MainTB: Track Time Elapsed B

36 MainTB: Track Time Remaining B

37 MainTB: Disc Time Remaining B

38 MainTB: Random Track Order B

39 MainTB: Multi Disc Play B

40 MainTB: Continuous Play B

41 MainTB: Intro Play B

42 MW: Title D

43 Disc Settings DB

44 Disc Settings DB: [Drive] D

45 Disc Settings DB: Artist TF

46 Disc Settings DB: Title TF

47 Disc Settings DB: Play List D

48 Disc Settings DB: Add B

49 Disc Settings DB: Remove B

50 Disc Settings DB: Clear All B

51 Disc Settings DB: Reset B

52 Disc Settings DB: [Available Tracks] D

53 Disc Settings DB: Track TF

54 Disc Settings DB: Set Name B

55 Disc Settings DB: OK B

56 Disc Settings DB: Cancel B

57 Preferences DB

58 Preferences DB: Stop CD Playing on Exit CB

59 Preferences DB: Save Settings on Exit CB

60 Preferences DB: Show Tool Tips CB

61 Preferences DB: Intro Play Length L

62 Preferences DB: CD D

63 Main MB

64 View M: Disc Time Remaining CMI

65 Preferences DB: Small Font RB

66 Preferences DB: Large Font RB

Page 74

PhD Proposal – Idris Hsi – Page 74

2.5 Ontology
Figure 11 – CD Player Ontology

Disc

Artist Title

[Current Disc]

Drive

Track

Track Name

Track Number

[Current Track]

[Playing_or_Paused]

has-a has-a

has-a

has-a

has-a

has-a

has-a

is-a

is-a

Playlist

has-a

Available Tracks Of

Custom Playlist Of

Track Time Elapsed

Track Time
Remaining

Track Time

Playlist Time
Remaining

has-a

has-a

has-a

has-a

[Play Mode]

Random Order

Continuous Order

Intro Mode

has-a

has-a

has-a

has-a

has-aIntro Play Length

has-a

Figure 11 shows the ontology for the application. Table 18 shows a list of the concepts identified
in the ontology. They are numbered by the order that they were placed into the diagram and
identified as an Entity type or an Attribute (attributes are concepts that lack independent identity
from the connected entity type)

2.5.1 Concepts in Application
Table 18 – CD Player Ontological Elements. The letter E indicates the concept is an Entity type. The letter A indicates the concept is an

Attribute.

Concepts Type

1 Disc E

2 Artist A

3 Title A

4 Current Disc E

5 Drive A

6 Play Mode E

7 Random Order A

8 Continuous Order A

9 Intro Mode A

10 Track E

11 Track Name A

Concepts Type

12 Track Number A

13 Current Track E

14 Playing_or_Paused A

15 Playlist E

16 Intro Play Length A

17 Track Time Elapsed A

18 Track Time Remaining A

19 Track Time A

20 Total Playtime A

21 Playlist Time Remaining A

Page 75

PhD Proposal – Idris Hsi – Page 75

2.6 Conclusion

The CD Player has a very simple ontology where all the entity types are also core concepts. As a
result, it demonstrates a very high conceptual coherence across all the metrics and seems to be a
good candidate for a Reef ontological structure. The centrality metrics show Current Track to be
most important concept in the graph, which we expect given that a user playing a CD is likely to
be most interested in the track currently playing. However, the use case silhouettes show Playlist
to be the most important concept. We attribute this to the number of use cases in the Help files
that involve Playlist. Managing the playlist of for the CD requires a lot of steps. However, the
playlist use cases only invoke 44% of the core concepts which show that it this use case is less
likely to be used than any of the other use cases that are composed entirely of core concepts.

Page 76

PhD Proposal – Idris Hsi – Page 76

Appendix 3 – Palm Pilot Scheduler Case Study

3.1 Introduction

This appendix describes the results of the ontological excavation, ontological analysis, and use
case silhouette analysis of the Palm Pilot Scheduler. The Palm Pilot Scheduler lived on the Palm
Pilot 2000 and provided its user with features such as event scheduling, alarms, and
synchronization with other applications. The ontology was recovered by Colin Potts. Missing
from this analysis are the morphological map and use case silhouettes as those methods were
developed after the recovery of this ontology.

3.2 Ontological Analysis

Below is a summary of the findings from the ontological analysis. They include the following
information:

• List of core concepts and their centrality values.
• Subgroups identified by k-core analysis
• Statistics of the ontology

3.2.1 Core Concepts Identified
Core concepts are those concepts essential to that application’s ontology. Table 19 shows a list of
the concepts identified in the ontology of the application. Values have a range from 0 to 100
where 100 means that the concept has connections to all other concepts in the ontology and 0
means the concept is either an isolate or a leaf node in the ontology. Core concepts have a
centrality value greater than or equal to 7.0 and have been italicized.

Table 19 – Palm Pilot Scheduler Concepts ordered by Centrality Value

Concept Name Value Description

Event 46.2 A schedulable item

Date 29.7 The day, month, and year of the event

To Do Item 29.7 A task that needs to be completed

Hot Synch 18.9 Dynamic synchronization with another computer

Day 16.4 A day of the month

Month 14.2 A month of the year

Time 11.6 Hour, Minute, Second

Alarm 10.6 A timed alert for events

Repetition 9.5 A setting

Note 7.0 Text describing the event or to-do list

Every 6.5 A repetition setting for events that take place on the same day of the week

Start Time 5.0 The start time of the item

End Time 5.0 The end time of the item

Application 4.8 The application synching with Scheduler

Alarm Units 3.9 The time settings for the alarm

PurgeUnits 3.8 The time settings for the monthly memory purges

Priority 3.5 The importance of the item

Synch Status 3.5 The progress of the synchronization

Due Date 3.4 The date a to-do item must be completed

To Do List 2.8 The list of tasks that need to be completed

Synch Problem 2.0 A notification that an error has occurred during synchronization

Page 77

PhD Proposal – Idris Hsi – Page 77

Concept Name Value Description

To Do Problem 1.2 An error notification with synching a to-do problem

Event Problem 1.1 An error notification with synching an event problem

Today 0.8 The current day

Week 0.6 The current week of the month

Preferences 0.6 Preference settings for the scheduler

Schedule 0.5 The settings for a repetition.

End Date 0.4 The day that an event stops repeating

Hour 0.4 The hour of the day

Minute 0.4 The minute of the hour

Year 0.3 The year of interest

Backup Copy 0.3 Backup copies for Event and To-Do Item

Purge 0 The scheduled event that clears finished events and tasks from memory

Month Number 0 The number of a month of the year

Month Name 0 The name of a month of the year

Frequency 0 The interval with which an event repeats

Day Number 0 The day of a month by number

Day Name 0 The name of a day by week

All Occurrences 0 A setting that determines whether an event repeats for all instances of that event

Current Occurrences 0 A setting that determines whether a change affects the current occurrence of the event.

OneThruFive 0 The range of a priority setting.

ToDoItemName 0 The name of a to-do item.

Event Name 0 The name of an event

Is Due 0 An attribute of a to-do item.

Is Private 0 Determines whether an event or to-do item is visible to other people

Note Topic 0 The heading that describes a note.

Is Scheduled 0 Whether an event is scheduled or not.

Is Preset 0 Whether an alarm is preset to announce any event or task

Latency 0 How long an alarm sounds before being shut off

Is Unfiled 0 Whether a task has been filed or not

Category 0 What group a task belongs to.

Is Done 0 Whether a task is finished or not.

Content 0 The information contained in a note.

AM PM 0 Whether an hour is a AM or PM.

Five Minutes 0 An interval for setting times

Date Book 0 The item in an application that stores synch data from the Scheduler

Last Hot Synch 0 The time the scheduler last synchronized its data with an external application

Is OK 0 The status of a synchronization.

Page 78

PhD Proposal – Idris Hsi – Page 78

3.2.2 Teleons Identified
Teleons suggest morphological features. We used a k-core analysis to identify potential teleons
in the ontology. A k-core is a connected, maximal, induced subgraph of nodes such that each
node has a minimum degree greater than equal to k. Teleons identified in the application are
listed by their k-value in Table 20 along with the concepts contained in that subgraph.

Table 20 – Palm Pilot Scheduler Teleons Identified by K-Core Analysis

k-
value Concepts in Teleon

2
PurgeUnits, Week, Month, Every, Today, Day, Preferences, End Date, Repetition, Schedule, Year, Date, Due Date, All
Occurrences, Current Occurrences, Event, To Do Item, Is Private, Start Time, End Time, Alarm, Alarm Units, Hour, Minute,
Backup Copy, Note, Event Problem, Synch Problem, To Do Problem, To Do List, Hot Synch, Time, Application

3.2.3 Statistics
The following table (Table 21) lists the overall composition of the ontology.

Table 21 – Palm Pilot Scheduler Ontological Metrics

of entity types: 43
of attributes: 16
of nodes in ontology: 58
of core concepts in ontology: 10
% of total ontology covered by core concepts: 17 %
% of total ontology covered by peripheral concepts: 83 %
% of ontology (no attributes) covered by core concepts: 23 %
% of ontology (no attributes) covered by peripheral concepts: 77 %
Average centrality of concepts 4.22
Density (number of edges divided by total number of possible edges) .05

3.3 The Use Case Silhouette

The use case silhouette process takes a set of use cases and uses them to obtain statistics such as
the number of concepts present in the ontology and the amount of ontological coverage by those
concepts. No use cases were available for this application.

Page 79

PhD Proposal – Idris Hsi – Page 79

3.4 Ontology
Figure 12 – Palm Pilot Scheduler Ontology

Purge

PurgeUnits
Week

Month Number

Month Name

Frequency

Month
Every

Today

Day

Day Number

Day Name

Preferences

End Date

Repetition
Schedule

Year

Date
Due Date

All Occurrences
Current

Occurrences

OneThruFive

ToDoItemName
Event Name

Event

Priority

Is Due

To Do Item

Is Private

Note Topic

Start Time

End Time

Is Scheduled
Alarm

Alarm Units

Is Preset

Latency

Hour

Minute

Is Unfiled

Category

Is Done

Backup Copy

Content

Note

Event Problem

Synch Problem

To Do Problem

To Do List

Hot Synch

Time AM PM

Five Minutes

Application

Date Book

Last Hot Synch

Is OK

Synch Status

has-a

has-a

has-a

has-a
has-a

is-a
has-a

has-a

has-a

has-a

has-a

has-a
is-a

<assoc>

is-a

has-ahas-a
has-a

has-a
has-a

has-a

has-a

has-a
is-a

has-a

has-a

has-a

has-ahas-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

is-a
has-a

is-a

has-a

has-a

has-a

has-a

has-a
is-a

has-ahas-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

is-a

is-a

has-a

has-a

has-a

has-ahas-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a
has-a

has-a

has-ahas-a

has-a

has-a

has-a

has-a

Figure 12 shows the ontology for the application. Table 22 shows a list of the concepts identified
in the ontology. They are numbered by the order that they were placed into the diagram and
identified as an Entity Type or an Attribute (attributes are concepts that lack independent identity
from the connected entity type)

3.4.1 Concepts in Application
Table 22 – Palm Pilot Scheduler Ontological Elements. The letter E indicates the concept is an Entity type. The letter A indicates the

concept is an Attribute.

Concept Type

1 Purge E

2 PurgeUnits E

3 Week E

4 Month Number A

5 Month Name A

6 Frequency A

7 Month E

8 Every E

9 Today E

10 Day E

Concept Type

11 Day Number E

12 Day Name E

13 Preferences E

14 End Date E

15 Repetition E

16 Schedule E

17 Year E

18 Date E

19 Due Date E

20 All Occurrences E

Page 80

PhD Proposal – Idris Hsi – Page 80

Concept Type

21 Current Occurrences E

22 OneThruFive E

23 ToDoItemName E

24 Event Name A

25 Event E

26 Priority E

27 Is Due A

28 To Do Item E

29 Is Private A

30 Note Topic E

31 Start Time A

32 End Time A

33 Is Scheduled A

34 Alarm E

35 Alarm Units E

36 Is Preset A

37 Latency A

38 Hour E

39 Minute E

40 Is Unfiled A

Concept Type

41 Category E

42 Is Done A

43 Backup Copy E

44 Content E

45 Note E

46 Event Problem E

47 Synch Problem E

48 To Do Problem E

49 To Do List E

50 Hot Synch E

51 Time E

52 AM PM A

53 Five Minutes A

54 Application E

55 Date Book E

56 Last Hot Synch E

57 Is OK A

58 Synch Status E

3.5 Conclusion

The Palm Pilot Scheduler was recovered using a slightly different modeling and recovery
process than the other three applications covered in these case studies. What makes it interesting
is the degree to which its concepts are interrelated such that the teleon analysis revealed one very
large k-core. We expected that features such as synching the database with an external computer
would have been more distinct in the ontology. The Scheduler also shows a lower conceptual
coherence across all measures than CD Player, possibly due to the complexity of the scheduling
model that it embodies. Based on the concepts it embodies, we believe Scheduler to have a Reef
ontological structure but with the potential to become an Urban one given its complexity.

Page 81

PhD Proposal – Idris Hsi – Page 81

Appendix 4 – Protocol Calendar / Calculator Case Study

4.1 Introduction

This appendix describes the results of the ontological excavation, ontological analysis, and use
case silhouette analysis of the Protocol Calendar / Calculator. The Protocol Calendar / Calculator
(Figure 13) is a device that implements an alarm clock, calendar, calculator, currency exchange
calculator, and countdown timer. The clock also allows its users to view times in sixteen
different time zones.

Figure 13 – The Protocol Calendar / Calculator

4.2 Modeling Issues

The Protocol Calendar / Calculator has a Toolkit Ontological Structure. We performed the
standard analysis plus a series of analyses for each subgroup. We asked ourselves whether the
Time Zones should be modeled as entity types or instances (and they clearly could not be
modeled as attributes of Time Zone as they do have independent existence). From a certain
perspective, they are clearly instances as they have proper names and are not really generalizable
(what is a type of “New York Time Zone”?). In the instance case, we simply ignore them in the
ontology. An argument for modeling them as entity types is that they seem to be specifically
chosen and, in the spirit of both black box and anthropological methods, we should consider
them as important to the ontology of the device. For completeness, we present first the concepts
modeled with Time Zones as first order objects and then the concepts and centrality values
without Time Zones. We also modeled the calculator loosely. For example, a Calculator

Page 82

PhD Proposal – Idris Hsi – Page 82

implements Mathematical Operations such as Addition but nowhere in the ontology does it
mention the ontology of the addition operation or that it is performed on numbers. We chose not
to recover or re-derive the ontology of arithmetic and felt that our representations were
sufficient. However, if one wanted to distinguish an ordinary financial calculator from a
scientific one, it might be necessary to model the actual mathematical concepts that each
embodies. Lastly, we modeled the Currency Exchange calculator as being independent of the
actual calculator since it seemed to be a separate feature even though it is probably implemented
through the embedded system of the calculator.

4.3 Ontological Analysis

Below is a summary of the findings from the ontological analysis. They include the following
information:

• List of core concepts and their centrality values.
• Subgroups identified by k-core analysis
• Statistics of the ontology

4.3.1 Core Concepts Identified
Core concepts are those concepts essential to that application’s ontology. Table 23 shows a list of
the concepts identified in the ontology of the application. Values have a range from 0 to 100
where 100 means that the concept has connections to all other concepts in the ontology and 0
means the concept is either an isolate or a leaf node in the ontology. Core concepts have a
centrality value greater than or equal to 7.0 and have been italicized.

Table 23 – Protocol Calendar / Calculator Concepts ordered by Centrality Value

Concept Centrality Description

[Time Zone] 30.3 One of the 24 longitudinal segments of the planet specifying an hour of time.

Time 21.3 hour : minute : second

Home Time 18.9 The time zone where the user of the device currently resides

[Time Display Mode] 5.1 The setting that determines whether the AM/PM or 24-hour time display is used

Alarm Time 4.9 The time that an alarm will sound

[Mathematical Operation] 4.2 An operation performed by the calculator

Alarm 3.2 The alarm concept including time of activation, sound, and whether it is on or not.

Count Down Timer 2.2 A timer that is set to a time quantity and sounds an alarm when that time has elapsed.

Hour 1.2 Sixty minutes

Minute 1.2 Sixty seconds

Second 1.2 Smallest unit of time.

Sound 0.5 A specific sequence of notes.

Date 0.3 The day and month.

Month 0.1 One of the 12 months in a year

Year 0.1 Unit of time specifying the interval for the planet to make one full rotation around the Sun

Calendar 0 The display that shows the current month and year.

New York [Time Zone] 0 The time zone of New York

12-hr Time Display 0 A setting that displays the time as having an AM and PM setting.

24-hr Time Display 0 A setting that displays the time as a 24 hour increment

[Addition Operation] 0 The ‘+’ operation

[Division Operation] 0 The ‘÷’ operation

Page 83

PhD Proposal – Idris Hsi – Page 83

Concept Centrality Description

[Equals Operation] 0 The ‘=’ operation

[Memory Subtract Operation] 0 The ‘M-‘ operation

[Memory Recall Operation] 0 The ‘MRC’ operation – recalls the currently

[Memory Save/Add Operation] 0 The ‘M+’ operation – saves a number or adds a number to the quantity previously saved

[Multiplication Operation] 0 The ‘×’ operation

[Percent Operation] 0 The ‘%’ operation

[Subtraction Operation] 0 The ‘-‘ operation

Alarm OnOrOff 0 A setting that determines whether an alarm is active or not.

Bangkok [Time Zone] 0 The time zone of Bangkok

Cairo [Time Zone] 0 The time zone of Cairo

Calculator 0 A device that performs mathematical operations on numbers

Chicago [Time Zone] 0 The time zone of Chicago

Currency Exchange [Calculator] 0 The calculation that converts one currency into another currency.

Denver [Time Zone] 0 The time zone of Denver

Exchange Rate 0 The numerical value used to calculate the value of one currency against another one.

Hong Kong [Time Zone] 0 The time zone of Hong Kong

Honolulu [Time Zone] 0 The time zone of Honolulu

Karachi [Time Zone] 0 The time zone of Karachi

London [Time Zone] 0 The time zone of London

Los Angeles [Time Zone] 0 The time zone of Los Angeles

Moscow [Time Zone] 0 The time zone of Moscow

Paris [Time Zone] 0 The time zone of Paris

Rio De Janeiro [Time Zone] 0 The time zone of Rio de Janeiro

Sydney [Time Zone] 0 The time zone of Sydney

Tokyo [Time Zone] 0 The time zone of Tokyo

Wellington [Time Zone] 0 The time zone of Wellington

Day 0 An increment of time that has a duration of 24 hours.

We performed a second analysis on the ontology to see what effect removing the concepts that
described the sixteen time zones would have on the other concepts. Table 24 shows the results.
Removing these concepts had the effect of lowering the overall centrality values for any of the
concepts that concerned time.

Table 24 – Protocol Calendar / Calculator Concepts ordered by Centrality Value without Time Zones

Concept Centrality

Time 11.7

[Mathematical Operation] 9.7

[Time Display Mode] 4.9

Alarm Time 3.5

Alarm 3.2

Home Time 2.6

Count Down Timer 2.6

Sound 1.1

Hour 0.8

Minute 0.8

Concept Centrality

Second 0.8

Date 0.8

Month 0.2

Year 0.2

Calendar 0.1

12-hr Time Display 0

24-hr Time Display 0

[Addition Operation] 0

[Division Operation] 0

[Equals Operation] 0

Page 84

PhD Proposal – Idris Hsi – Page 84

Concept Centrality

[Memory Subtract Operation] 0

[Memory Recall Operation] 0

[Memory Save/Add Operation] 0

[Multiplication Operation] 0

[Percent Operation] 0

[Subtraction Operation] 0

Concept Centrality

Alarm OnOrOff 0

Calculator 0

Currency Exchange[Calculator] 0

Exchange Rate 0

[Time Zone] 0

Day 0

4.3.2 Concepts Organized By Subgroup (Toolkit Ontological Structure)
We identified this application as a toolkit – an application possessing several subgroups of
concepts that are disconnected from one another. Below we list the subgroups and their concepts
identified in the ontology. Specifically, we present the centrality values of the subgroup of
concepts composing the Calendar (Table 25), Clock / Timer / Alarm (with Time Zones) (Table
26), Clock / Timer / Alarm (without Time Zones) (Table 27), Calculator (Table 28), and the
Currency Exchange calculator (Table 29), respectively.

Table 25 – Protocol Calendar / Calculator – Calendar Subgroup Concepts ordered by Centrality Value

Concept Centrality

Date 58.3

Month 16.7

Year 16.7

Calendar 8.3

Day 0

Table 26 – Protocol Calendar / Calculator – Time / Timer Subgroup Concepts ordered by Centrality Value

Concept Centrality

[Time Zone] 80.8

Time 56.7

Home Time 50.2

[Time Display Mode] 13.5

Alarm Time 12.9

Alarm 8.5

Count Down Timer 5.9

Hour 3.2

Minute 3.2

Second 3.2

Sound 1.3

New York [Time Zone] 0

12-hr Time Display 0

24-hr Time Display 0

Alarm OnOrOff 0

Concept Centrality

Bangkok [Time Zone] 0

Cairo [Time Zone] 0

Chicago [Time Zone] 0

Denver [Time Zone] 0

Hong Kong [Time Zone] 0

Honolulu [Time Zone] 0

Karachi [Time Zone] 0

London [Time Zone] 0

Los Angeles [Time Zone] 0

Moscow [Time Zone] 0

Paris [Time Zone] 0

Rio De Janeiro [Time Zone] 0

Sydney [Time Zone] 0

Tokyo [Time Zone] 0

30 Wellington [Time Zone] 0

Page 85

PhD Proposal – Idris Hsi – Page 85

Table 27 – Protocol Calendar / Calculator – Time / Timer Subgroup (no Time Zones) Concepts ordered by Centrality Value

Concept Centrality

Time 69.6

[Time Display Mode] 29.5

Alarm Time 21.2

Alarm 18.9

Home Time 15.4

Count Down Timer 15.4

Sound 6.7

Hour 4.8

Minute 4.8

Second 4.8

12-hr Time Display 0

24-hr Time Display 0

Alarm OnOrOff 0

[Time Zone] 0

Table 28 – Protocol Calendar / Calculator Concepts – Calculator Subgroup – ordered by Centrality Value

Concept Centrality

[Mathematical Operation] 100

[Addition Operation] 0

[Division Operation] 0

[Equals Operation] 0

[Memory Subtract Operation] 0

[Memory Recall Operation] 0

[Memory Save/Add Operation] 0

[Multiplication Operation] 0

[Percent Operation] 0

[Subtraction Operation] 0

 Calculator 0

Table 29 – Protocol Calendar / Calculator Concepts – Currency Exchange Calculator Subgroup – ordered by Centrality Value

Concept Centrality

Currency Exchange [Calculator] 0

Exchange Rate 0

4.3.3 Teleons Identified
Teleons suggest morphological features. We used a k-core analysis to identify potential teleons
in the ontology. A k-core is a connected, maximal, induced subgraph of nodes such that each
node has a minimum degree greater than equal to k. Teleons identified in the application are
listed by their k-value in Table 30 along with the concepts contained in that subgraph.

Table 30 – Protocol Calendar / Calculator Teleons Identified by K-Core Analysis

k-value Concepts in Teleon
2 Date, Month, Year, Calendar
2 Alarm, Alarm Time, Count Down Timer, Hour, Minute, Second, Sound, Time,

Page 86

PhD Proposal – Idris Hsi – Page 86

4.3.4 Statistics
Table 31 lists the overall composition of the ontology. Table 32 lists the composition of the
ontology without the Time Zone entity types. We also include the statistics for the individual
subgroups in Tables 44-48.

Table 31 – Protocol Calendar / Calculator Ontological Metrics

of entity types: 47
of attributes: 1
of nodes in ontology: 48
of core concepts in ontology: 3
% of total ontology covered by core concepts: 6 %
% of total ontology covered by peripheral concepts: 94 %
% of ontology (no attributes) covered by core concepts: 6 %
% of ontology (no attributes) covered by peripheral concepts: 94 %
Average centrality of concepts 1.97
Density (number of edges divided by total number of possible edges) .04

Table 32 – Protocol Calendar / Calculator Ontological Metrics – No Time Zone

of entity types: 32
of attributes: 1
of nodes in ontology: 33
of core concepts in ontology: 2
% of total ontology covered by core concepts: 6 %
% of total ontology covered by peripheral concepts: 94 %
% of ontology (no attributes) covered by core concepts: 6 %
% of ontology (no attributes) covered by peripheral concepts: 94 %
Average centrality of concepts 1.34
Density (number of edges divided by total number of possible edges) .06

Table 33 – Protocol Calendar / Calculator Ontological Metrics – Calendar Subgroup

of entity types in subgroup: 5
of nodes in subgroup ontology: 5
of core concepts in subgroup ontology: 4
% of total ontology covered by subgroup: 10 %
% of total ontology (no time zones) covered by subgroup: 16 %
% of subgroup ontology covered by core concepts w/in subgroup: 80 %
% of subgroup ontology covered by peripheral concepts w/in subgroup: 20 %
Average centrality of concepts 20.0
Density (number of edges divided by total number of possible edges) .50

Table 34 – Protocol Calendar / Calculator Ontological Metrics – Time Subgroup

of entity types in subgroup: 29
of nodes in subgroup ontology: 30
of core concepts in subgroup ontology: 6
% of total ontology covered by subgroup: 63 %
% of subgroup ontology covered by core concepts w/in subgroup: 20 %
% of subgroup ontology covered by peripheral concepts w/in subgroup: 80 %
Average centrality of concepts 7.99
Density (number of edges divided by total number of possible edges) .07

Table 35 – Protocol Calendar / Calculator Ontological Metrics – Time Subgroup – no Time Zones

of entity types in subgroup: 13
of nodes in subgroup ontology: 14
of core concepts in subgroup ontology: 6
% of total ontology covered by subgroup: 44 %
% of subgroup ontology covered by core concepts w/in subgroup: 43 %
% of subgroup ontology covered by peripheral concepts w/in subgroup: 57 %
Average centrality of concept 13.64
Density (number of edges divided by total number of possible edges) .18

Page 87

PhD Proposal – Idris Hsi – Page 87

Table 36 – Protocol Calendar / Calculator Ontological Metrics – Calculator Subgroup

of entity types in subgroup: 11
of nodes in subgroup ontology: 11
of core concepts in subgroup ontology: 1
% of total ontology covered by subgroup: 21%
% of total ontology (no time zones) covered by subgroup: 31%
% of subgroup ontology covered by core concepts w/in subgroup: 10 %
% of subgroup ontology covered by peripheral concepts w/in subgroup: 90 %
Average centrality of concept 9.09
Density (number of edges divided by total number of possible edges) .18

Table 37 – Protocol Calendar / Calculator Ontological Metrics – Currency Exchange Calculator Subgroup

of entity types in subgroup: 2
of nodes in subgroup ontology: 2
of core concepts in subgroup ontology: 0
% of total ontology covered by subgroup: 4 %
% of total ontology (no time zones) covered by subgroup: 6 %
% of subgroup ontology covered by core concepts w/in subgroup: 0 %
% of subgroup ontology covered by peripheral concepts w/in subgroup: 100 %
Average centrality of concept 0
Density (number of edges divided by total number of possible edges) 1.00

Page 88

PhD Proposal – Idris Hsi – Page 88

4.4 The Use Case Silhouette

The use case silhouette process takes a set of use cases and uses them to obtain statistics such as
the number of concepts present in the ontology and the amount of ontological coverage by those
concepts. These findings are summarized in Table 38.

Table 38 – Protocol Calendar / Calculator Use Case Silhouette Statistics

Source Instructions included with device
of use cases: 11
concepts invoked: 48
ontological coverage: 100%

4.4.1 Ontological Coverage by Use Case
Table 39 lists the number of concepts, the number of unique concepts activated in each use case,
and the coverage of the unique concepts with respect to the overall ontology. It also measures the
proportion of core concepts found in that use case (including repeated references). Because the
application has also been identified as a Toolkit, the table also includes a breakdown of the use
cases by subgroup including the ontological coverage of the use case concepts within the
subgroup. In the case of the Time subgroup, we also included an analysis without the sixteen
time zones.

Table 39 – Protocol Calendar / Calculator – Use Case Overview

Name # of
concepts

of
unique

concepts

% of
ontology

%
ontology
no Time

Zone

% core
concepts Subgroup

%
Subgroup
Ontology

%
Subgroup
Ontology
/ No Time

Zone
1 Calendar Setting 7 5 10 % 16 % 0 % Calendar 100 % N/A

2 Calendar / Time Setting Mode 30 13 27 % 41 % 15 % Calendar /
Time

37 % 68 %

3 Set HOME TIME 33 18 38 % 2 % 11 % Time 60 % 95 %

4 Set Count-Down Timer 12 4 8 % 13 % 0 % Time 13 % 21 %

5 Start / Stop / Zero Count-Down Timer 3 1 2 % 3 % 0 % Time 3 % 5 %

6 Set Alarm 10 5 10 % 16 % 0 % Time 17 % 26 %

7 Turn Alarm On / Off 1 1 2 % 3 % 0 % Time 3 % 5 %

8 Set Alarm Sound 2 2 2 % 6 % 0 % Time 7 % 11 %

9 Calculator 16 11 23 % 34 % 0 % Calculator 100% N/A

10 Currency Exchange Calculator 3 2 2 % 6 % 0 % Currency
Exchange 100% N/A

11 Set Keytone On / Off 1 1 2 % 3 % 0 % Time 3% 5 %

Page 89

PhD Proposal – Idris Hsi – Page 89

4.4.2 Concept Frequency Across Use Cases
Concept frequency looks at how often a concept is accessed across all the use cases and how
often it is accessed against all the concepts invoked by all of the use cases. These are
summarized in Table 40. Concept frequency is used to compare against a concept’s centrality
measures to see whether it retains its importance in the set of use cases. Presumably, a
discrepancy would indicate that a concept with structural importance but lacking importance
relative to actual usage needs to be made more prominent in the morphology, less prominent in
the ontology, or is a symptom of a discontinuity between the system’s model of usage and the
goals of its users.

Table 40 – Protocol Calendar / Calculator Frequency of Concept appearance in use case set. Core concepts are italicized.

Name
Times
Accessed

% of
Total #

of
concepts
invoked

[Time Zone] 16 13%

Count Down Timer 9 8%

Hour 7 6%

Minute 7 6%

Second 7 6%

[Mathematical Operation] 6 5%

Month 6 5%

Time 5 4%

Year 5 4%

Alarm 3 3%

Date 3 3%

Calendar 3 3%

Day 3 3%

Home Time 2 2%

[Time Display Mode] 2 2%

Alarm Time 2 2%

Exchange Rate 2 2%

Sound 2 2%

New York [Time Zone] 1 1%

12-hr Time Display 1 1%

24-hr Time Display 1 1%

[Addition Operation] 1 1%

[Division Operation] 1 1%

[Equals Operation] 1 1%
[Memory Subtract
Operation] 1 1%

Name
Times
Accessed

% of
Total #

of
concepts
invoked

[Memory Recall Operation] 1 1%
[Memory Save/Add
Operation] 1 1%

[Multiplication Operation] 1 1%

[Percent Operation] 1 1%

[Subtraction Operation] 1 1%

Alarm OnOrOff 1 1%

Bangkok [Time Zone] 1 1%

Cairo [Time Zone] 1 1%

Calculator 1 1%

Chicago [Time Zone] 1 1%
Currency Exchange
[Calculator] 1 1%

Denver [Time Zone] 1 1%

Hong Kong [Time Zone] 1 1%

Honolulu [Time Zone] 1 1%

Karachi [Time Zone] 1 1%

London [Time Zone] 1 1%

Los Angeles [Time Zone] 1 1%

Moscow [Time Zone] 1 1%

Paris [Time Zone] 1 1%

Rio De Janeiro [Time Zone] 1 1%

Sydney [Time Zone] 1 1%

Tokyo [Time Zone] 1 1%

Wellington [Time Zone] 1 1%

Page 90

PhD Proposal – Idris Hsi – Page 90

4.5 Morphology
Figure 14 – Protocol Calendar / Calculator Morphological Map

Calculator_Calendar_
Device

Main D

Main D: [Year] IF Main D: [Month/
Date] IF

Main D: Calendar
IF

Main D: [Time] IF

7 / London B 8 / Paris B 9 / Cairo B ÷ / Moscow B

4 / Karachi B 5 / Bangkok B6 / Hong Kong B X / Tokyo B

1 / Sydney B 2 / Wellington B3 / Honolulu B - / Los Angeles B

0 / Denver B . / Chicago B
= / 12/24 / New

York B
+ / Rio De
Janeiro B

[up-triangle] / M+
B

Set [Euro] /
[Music Note] B $ / [Euro] B CE B AC B

[down-triangle] /
M- B Set / MRC B Time B % / Timer B Alarm B

 [Calculator /
Currency

Exchange Mode]
MW

 [Count Down
Timer Mode] MW

Main D: [Alarm
Icon] IF

 [Set Alarm Mode]
MW

[Calculation] IF [Timer] IF

[Sound Number] IF [Alarm Time] IF

[Calculator Mode]
MW

[Calculation] IF

Figure 14 shows the morphological map of the application. Table 41 contains a list of the
following morphological elements. They are numbered by the order that they were placed into
the diagram.

Table 41 – Protocol Calendar / Calculator Morphological Elements

Name

1 Calculator_Calendar_Device

2 Main D

3 Main D: [Year] IF

4 Main D: [Month/Date] IF

5 Main D: Calendar IF

6 Main D: [Time] IF

7 7 / London B

8 8 / Paris B

9 9 / Cairo B

10 ÷ / Moscow B

11 4 / Karachi B

12 5 / Bangkok B

13 6 / Hong Kong B

14 X / Tokyo B

15 1 / Sydney B

16 2 / Wellington B

17 3 / Honolulu B

18 - / Los Angeles B

19 0 / Denver B

20 . / Chicago B

21 = / 12/24 / New York B

22 + / Rio De Janeiro B

23 [up-triangle] / M+ B

24 Set [Euro] / [Music Note] B

25 $ / [Euro] B

26 CE B

27 AC B

28 [down-triangle] / M- B

29 Set / MRC B

30 Time B

31 % / Timer B

32 Alarm B

33 [Calculator / Currency Exchange Mode] MW

34 [Count Down Timer Mode] MW

35 Main D: [Alarm Icon] IF

36 [Set Alarm Mode] MW

37 [Calculation] IF

38 [Timer] IF

39 [Sound Number] IF

40 [Alarm Time] IF

Page 91

PhD Proposal – Idris Hsi – Page 91

4.6 Ontology
Figure 15 – Protocol Calendar / Calculator Ontology

Home Time

New York [Time
Zone]

12-hr Time Display 24-hr Time Display

[Time Display Mode]

[Addition Operation]

[Division Operation]

[Equals Operation]

[Memory Subtract
Operation]

[Memory Recall
Operation]

[Memory Save/Add
Operation]

[Multiplication
Operation]

[Percent Operation]

[Subtraction
Operation]

[Mathematical
Operation]

Alarm

Alarm OnOrOff

Alarm Time

Bangkok [Time
Zone]

Cairo [Time Zone]

Calculator

Chicago [Time
Zone]

Count Down Timer

Currency Exchange
[Calculator]

Date Denver [Time Zone]

Exchange Rate

Hong Kong [Time
Zone]

Honolulu [Time
Zone]

Hour

Karachi [Time Zone]

London [Time Zone]

Los Angeles [Time
Zone]

Minute

Month

Moscow [Time
Zone]

Paris [Time Zone]

Rio De Janeiro
[Time Zone]

Second

Sound

Sydney [Time Zone]

Time

[Time Zone]

Tokyo [Time Zone]

Wellington [Time
Zone]

Year

is-a is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-ais-a

Calendar

Day

has-a

has-a

has-a
has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

is-a

has-a

is-a

Applieshas-a

Figure 15 – Protocol Calendar / Calculator Ontology shows the ontology for the application.
Table 42 shows a list of the concepts identified in the ontology. They are numbered by the order
that they were placed into the diagram and identified as an Entity Type or an Attribute (attributes
are concepts that lack independent identity from the connected entity type).

4.6.1 Concepts in Application
Table 42 – Protocol Calendar / Calculator Ontological Elements. The letter E indicates the concept is an Entity Type. The letter A

indicates the concept is an Attribute.

Concept Name Type

1 Home Time E

2 New York [Time Zone] E

3 12-hr Time Display E

4 24-hr Time Display E

5 [Time Display Mode] E

6 [Addition Operation] E

7 [Division Operation] E

8 [Equals Operation] E

9 [Memory Subtract Operation] E

10 [Memory Recall Operation] E

11 [Memory Save/Add Operation] E

12 [Multiplication Operation] E

13 [Percent Operation] E

14 [Subtraction Operation] E

15 [Mathematical Operation] E

16 Alarm E

17 Alarm OnOrOff A

18 Alarm Time E

Concept Name Type

19 Bangkok [Time Zone] E

20 Cairo [Time Zone] E

21 Calculator E

22 Chicago [Time Zone] E

23 Count Down Timer E

24 Currency Exchange [Calculator] E

25 Date E

26 Denver [Time Zone] E

27 Exchange Rate E

28 Hong Kong [Time Zone] E

29 Honolulu [Time Zone] E

30 Hour E

31 Karachi [Time Zone] E

32 London [Time Zone] E

33 Los Angeles [Time Zone] E

34 Minute E

35 Month E

36 Moscow [Time Zone] E

Page 92

PhD Proposal – Idris Hsi – Page 92

Concept Name Type

37 Paris [Time Zone] E

38 Rio De Janeiro [Time Zone] E

39 Second E

40 Sound E

41 Sydney [Time Zone] E

42 Time E

Concept Name Type

43 [Time Zone] E

44 Tokyo [Time Zone] E

45 Wellington [Time Zone] E

46 Year E

47 Calendar E

48 Day E

4.7 Conclusion

We studied the Protocol Calendar / Calculator for two reasons: to show that our methodologies
could be performed on computing applications that were not desktop applications and to have an
example of an application with several distinct ontologies encapsulated in a common
morphology. As our ontology shows, the Protocol Calendar / Calculator has a Toolbox
ontological structure. We were also pleased to see that the ontology has a very low conceptual
coherence across all measures but that each subgroup showed a high conceptual coherence. In
future versions, we could see developers adding a scheduling system to the device, linking up the
Calendar and Time subgroups. The Calculator and Currency Exchange ontologies would still be
separate in the ontology but this modification (and changes to the Calculator such as adding
more scientific operations) could eventually turn the ontology into an Urban ontological structure
where the Scheduling and Calculating concepts compete for space in the limited morphology.

Page 93

PhD Proposal – Idris Hsi – Page 93

Appendix 5 – Microsoft Notepad Case Study

5.1 Introduction

This appendix describes the results of the ontological excavation, ontological analysis, and use
case silhouette analysis of the Microsoft Notepad. MS Notepad (Figure 16) is a text editor that
comes with the Windows operating systems. Notepad accepts a variety of types of text files in
different encodings and displays and prints a document using application settings that are applied
to every text file read by Notepad. These display and print settings do not get saved with the
program.

Figure 16 – MS Notepad application

5.2 Modeling Issues

One modeling issue worth noting is our separation of the notions of the Current File containing
the text and the Document displayed in the Notepad application itself since they have different
properties. Another modeling decision we made concerned the Header / Footer codes and their
relationships to items such as Page number. We chose to model the (optional) relationship
showing that Headers and Footers can contain the text that describes the File Name, Page
Number, Current Time, and so on. We did not link the actual codes to their respective items. We
also did two analyses – one including the various scripts that Notepad can interpret (Greek,
Arabic, Hebrew, etc) and paper sizes (A4, Legal, Letter, etc) and one without. Concepts
discovered late in the analysis (during the Use Case Silhouette) but not included here include:
Window and Encoding.

5.3 Ontological Analysis

Below is a summary of the findings from the ontological analysis. They include the following
information:

• List of core concepts and their centrality values.
• Subgroups identified by k-core analysis
• Statistics of the ontology

5.3.1 Core Concepts Identified
Core concepts are those concepts essential to that application’s ontology. Table 43 shows a list of
the concepts identified in the ontology of the application. Values have a range from 0 to 100
where 100 means that the concept has connections to all other concepts in the ontology and 0
means the concept is either an isolate or a leaf node in the ontology. Core concepts have a
centrality value greater than or equal to 7.0 and have been italicized.

Page 94

PhD Proposal – Idris Hsi – Page 94

Table 43 – MS Notepad Concepts ordered by Centrality Value

Concept Name Value Description

Page Setup 51.5 The configuration for how a page should be printed.

Font [Setting] 39.6 The settings for the font of the display

Paper 31.7 The medium of printing – settings determine size and source

Text 29.0 A sequence of characters and symbols

Size 25.5 The size of the paper that the document will be printed to

Font 23.8 The typeface, size, and style used to display text in the document.

Script 23.3 The type of script encoding for the current file.

Header 19.4 Text that is found at the top of a page.

Footer 19.4 Text that is found at the bottom of a page.

[Header/Footer Code] 17.6 Codes that determine how text is formatted in the header or footer

[Configuration] 17.0 The settings of the Notepad application that determine how a current file is displayed on screen

Margins 12.0 The intervals between the text and the edge of a page

Alignment 10.5 The setting of text in a margin that determines where it is lined up in a page

Font Style 9.7 The font setting that determines whether character is Regular, Bold, Italic, or Bold Italic

Current File 7.2 The file currently being viewed or edited by the Notepad application

Document 5.0 The current file as displayed and printed by the Notepad application

Source 4.9 The setting of a printer that determines where its paper source will be.

Orientation 4.9 The setting of a page that determines whether it is aligned vertically or horizontally

Line 2.5 A set of characters on a page separated by carriage returns.

Character 2.5 A symbol token.

Date 2.4 Text displaying the month, day, and year

Time 2.4 Text displaying the hour, minute, and second.

File Name 1.5 The name of the current file.

Page Number 1.4 The number designating a page in the document

Word [Token] 1.3 A string of text separated by spaces

Log 0.4 A setting that causes the current date and time to be inserted at the end of a document on
opening

Current Date 0.2 The current date according to the computer clock inserted into the document as text

Current Time 0.2 The current time according to the computer clock inserted into the document as text

Left Alignment Code 0.2 A code that formats the text in a header or footer to be aligned to the left side of the page

Right Alignment Code 0.2 A code that formats the text in a header or footer to be aligned to the right side of the page

Center Alignment Code 0.2 A code that formats the text in a header or footer to be aligned in the center of the page

File 0.1 The text in its electronically encoded form

Page 0 A section of the document that can be printed to a piece of paper.

Case 0 The case (lower or upper) of a character

[Font] Sample 0 A set of sample characters displaying a typeface and style

Font Size 0 The height of a character measured in points.

Bold 0 A type of font style

Italic 0 A type of font style

Bold Italic 0 A type of font style

Regular 0 A type of font style

Greek 0 A type of script

Western 0 A type of script

Arabic 0 A type of script

Page 95

PhD Proposal – Idris Hsi – Page 95

Concept Name Value Description

Turkish 0 A type of script

Hebrew 0 A type of script

Baltic 0 A type of script

Central European 0 A type of script

Cyrillic 0 A type of script

Vietnamese 0 A type of script

Mac 0 A type of script

Line Number 0 The number for a line in a document

A4 Small 0 A type of paper

US Letter 0 A type of paper

US Legal Small 0 A type of paper

US Legal 0 A type of paper

US Letter Small 0 A type of paper

A4 0 A type of paper

Com 10 Envelope Center Fed 0 A type of paper

B5 0 A type of paper

Letter 0 A type of paper

Legal 0 A type of paper

Monarch Envelope Center Feed 0 A type of paper

Manual 0 Designates the source of paper as the printer’s manual feed slot

Cassette Feed 0 Designates the source of paper as the printer’s cassette

Portrait 0 A vertical orientation of a page for printing

Landscape 0 A horizontal orientation of a page for printing

Inches 0 A unit of measurement used to determine margin distances

Left Margin 0 A specified distance between the text and the left edge of the paper.

Right Margin 0 A specified distance between the text and the right edge of the paper.

Top Margin 0 A specified distance between the text and the top edge of the paper.

Bottom Margin 0 A specified distance between the text and the bottom edge of the paper.

File Name Code 0 A code that allows printing the file name in a header or footer

Date Code 0 A code that allows printing the current date in a header or footer

Time Code 0 A code that allows printing the current time in a header or footer

Page Number Code 0 A code that allows printing the page number in a header or footer

Ampersand Code 0 A code that allows printing the ‘&’ symbol in a header or footer

Left Alignment 0 A setting that aligns text on the left side of the page

Right Alignment 0 A setting that aligns text on the right side of the page

Center Alignment 0 A setting that aligns text in the middle of the page

Ampersand 0 The & symbol

Printer 0 The device that prints a document

Extension 0 The text code put on the first line of a document to enable a log.

Page 96

PhD Proposal – Idris Hsi – Page 96

We performed a second analysis on the ontology (Table 44) without the concepts that are types
of Scripts or Size (paper sizes) to see how concepts with many types affected the rest of the
ontology. As expected, Script and Size no longer registered as core concepts and the concepts
that they had relationships with also decreased in centrality. What was not expected is how little
the other concepts were affected by this change.

Table 44 – MS Notepad Concepts ordered by Centrality Value (no Size or Scripts)

Concept Name Value

Page Setup 45.2

Text 32.5

Font [Setting] 27.9

Header 23.8

Footer 23.8

[Header/Footer Code] 23.2

Margins 16.1

Alignment 13.9

Font Style 13.0

Paper 12.8

[Configuration] 9.3

Current File 9.2

Source 6.6

Orientation 6.6

Document 5.6

Line 3.4

Character 3.3

Font 3.3

Date 3.2

Time 3.2

File Name 2.1

Page Number 2.0

Word [Token] 1.9

Log 0.7

Current Date 0.4

Current Time 0.4

Left Alignment Code 0.3

Right Alignment Code 0.3

Center Alignment Code 0.3

File 0.1

Page 0.1

Case 0

Concept Name Value

[Font] Sample 0

Font Size 0

Bold 0

Italic 0

Bold Italic 0

Regular 0

Script 0

Line Number 0

Size 0

Manual 0

Cassette Feed 0

Portrait 0

Landscape 0

Inches 0

Left Margin 0

Right Margin 0

Top Margin 0

Bottom Margin 0

File Name Code 0

Date Code 0

Time Code 0

Page Number Code 0

Ampersand Code 0

Left Alignment 0

Right Alignment 0

Center Alignment 0

Ampersand 0

Printer 0

Extension 0

5.3.2 Teleons Identified
Teleons suggest morphological features. We used a k-core analysis to identify potential teleons
in the ontology. A k-core is a connected, maximal, induced subgraph of nodes such that each
node has a minimum degree greater than equal to k. Teleons identified in the application are
listed by their k-value in Table 45 along with the concepts contained in that subgraph. Table 46
shows the analysis without the Size or Script types.

Page 97

PhD Proposal – Idris Hsi – Page 97

Table 45 – MS Notepad Teleons Identified by K-Core Analysis

k-
value Concepts in Teleon

3 Text, Header, Footer, File Name, Page Number, Date, Time
2 Header / Footer Code, Left / Right / Center Alignment, Alignment of (Header / Footer)
2 File, Current File, [Configuration], Font [Setting], Line, Word [Token], Page Setup, Document, Page, Log, Extension, Current

Date, Current Time

Table 46 – MS Notepad Teleons Identified by K-Core Analysis, no Script or Size types (no change to Teleons)

k-
value Concepts in Teleon

3 Text, Header, Footer, File Name, Page Number, Date, Time
2 Header / Footer Code, Left / Right / Center Alignment, Alignment of (Header / Footer)
2 File, Current File, [Configuration], Font [Setting], Line, Word [Token], Page Setup, Document, Page, Log, Extension, Current

Date, Current Time

5.3.3 Statistics
The following table (Table 47) lists the overall composition of the ontology. Table 48 has the
statistics of the ontology without Script or Size types.

Table 47 – MS Notepad Ontological Metrics

of entity types: 78
of attributes: 4
of nodes in ontology: 82
of core concepts in ontology: 15
% of total ontology covered by core concepts: 18 %
% of total ontology covered by peripheral concepts: 72 %
% of ontology (no attributes) covered by core concepts: 19 %
% of ontology (no attributes) covered by peripheral concepts: 71 %
Average centrality of concepts 4.48
Density (number of edges divided by total number of possible edges) .03

Table 48 – MS Notepad Ontological Metrics (no Scripts or Size types)

of entity types: 57
of attributes: 4
of nodes in ontology: 61
of core concepts in ontology: 12
% of total ontology covered by core concepts: 20 %
% of total ontology covered by peripheral concepts: 80 %
% of ontology (no attributes) covered by core concepts: 21 %
% of ontology (no attributes) covered by peripheral concepts: 79 %
Average centrality of concepts 4.83
Density (number of edges divided by total number of possible edges) .04

Page 98

PhD Proposal – Idris Hsi – Page 98

5.4 The Use Case Silhouette

The use case silhouette process takes a set of use cases and uses them to obtain statistics such as
the number of concepts present in the ontology and the amount of ontological coverage by those
concepts. These findings are summarized in Table 49.

Table 49 – MS Notepad Use Case Silhouette Statistics

Source Help files of Notepad Application
of use cases: 32
concepts invoked: 66
ontological coverage: 80%

5.4.1 Ontological Coverage by Use Case
Table 50 lists the number of concepts activated in each use case and their coverage with respect
to the overall ontology. It also shows the proportion of the use case’s concepts that are core
concepts.

Table 50 – MS Notepad – Use Case Overview

Use Case Name # of
Concepts

of
Unique

Concepts

% of
ontology

% core
concepts

1 adding a log 7 7 9% 0%

2 adding page numbers 8 8 10% 63%

3 aligning headers and footers 11 11 13% 36%

4 change margins of a printed document 4 4 5% 25%

5 change page setup 17 11 13% 36%

6 change paper source 5 5 6% 20%

7 change size of paper 3 3 4% 67%

8 changing fonts 10 10 12% 30%

9 character sets 11 11 13% 9%

10 copying text 2 2 2% 100%

11 creating headers and footers 25 25 30% 20%

12 cutting text 2 2 2% 100%

13 deleting text 2 2 2% 100%

14 editing text 2 2 2% 100%

15 find specifc characters or words 3 3 4% 67%

16 finding / going to specific lines 3 3 4% 33%

17 globally replacing text 3 3 4% 67%

18 inserting ampersands 5 5 6% 60%

19 inserting date and time 6 6 7% 33%

20 inserting file names 5 5 6% 60%

21 inserting text 2 2 2% 100%

22 landscape page orientation 4 4 5% 25%

23 moving text 2 2 2% 100%

24 page orientation 5 5 6% 20%

25 pasting text 2 2 2% 100%

26 portrait page orientation 4 4 5% 25%

27 print document 2 2 2% 0%

Page 99

PhD Proposal – Idris Hsi – Page 99

Use Case Name # of
Concepts

of
Unique

Concepts

% of
ontology

% core
concepts

28 printer settings 3 3 4% 0%

29 replacing specific characters or words 3 3 4% 67%

30 samples of fonts, viewing 2 2 2% 50%

31 saving documents 1 1 1% 100%

32 wrap text to window size 2 2 2% 0%

5.4.2 Concept Frequency Across Use Cases
Concept frequency looks at how often a concept is accessed across all the use cases and how
often it is accessed against all the concepts invoked by all of the use cases. These are
summarized in Table 51. Concept frequency is used to compare against a concept’s centrality
measures to see whether it retains its importance in the set of use cases. Presumably, a
discrepancy would indicate that a concept with structural importance but lacking importance
relative to actual usage needs to be made more prominent in the morphology, less prominent in
the ontology, or is a symptom of a discontinuity between the system’s model of usage and the
goals of its users.

Table 51 – MS Notepad Frequency of Concept appearance in use case set. Core concepts are italicized.

Name
Times
Accessed

% of Total # of
concepts invoked

Document 16 10%

Text 15 9%

Current File 13 8%

Page Setup 12 7%

[Configuration] 4 2%

Case 4 2%

Orientation 4 2%

[Header/Footer Code] 4 2%

Source 3 2%

Portrait 3 2%

Landscape 3 2%

Printer 3 2%

Current Date 3 2%

Current Time 3 2%

Font [Setting] 2 1%

[Font] Sample 2 1%

Font 2 1%

Script 2 1%

Size 2 1%

Manual 2 1%

Cassette Feed 2 1%

Margins 2 1%

Inches 2 1%

Left Margin 2 1%

Header 2 1%

Name
Times
Accessed

% of Total # of
concepts invoked

Footer 2 1%

File Name Code 2 1%

Ampersand Code 2 1%

Alignment 2 1%

Left Alignment Code 2 1%

Right Alignment Code 2 1%

Center Alignment Code 2 1%

Left Alignment 2 1%

Right Alignment 2 1%

Center Alignment 2 1%

Date 2 1%

Time 2 1%

Page Number 2 1%

Font Style 1 1%

Font Size 1 1%

Bold 1 1%

Italic 1 1%

Bold Italic 1 1%

Regular 1 1%

Greek 1 1%

Western 1 1%

Arabic 1 1%

Turkish 1 1%

Hebrew 1 1%

Baltic 1 1%

Page 100

PhD Proposal – Idris Hsi – Page 100

Name
Times
Accessed

% of Total # of
concepts invoked

Central European 1 1%

Cyrillic 1 1%

Vietnamese 1 1%

Line 1 1%

Line Number 1 1%

Word [Token] 1 1%

Paper 1 1%

Right Margin 1 1%

Top Margin 1 1%

Bottom Margin 1 1%

File Name 1 1%

Date Code 1 1%

Time Code 1 1%

Page Number Code 1 1%

Ampersand 1 1%

Extension 1 1%

Name
Times
Accessed

% of Total # of
concepts invoked

File 0 0%

Character 0 0%

Mac 0 0%

A4 Small 0 0%

US Letter 0 0%

US Legal Small 0 0%

US Legal 0 0%

US Letter Small 0 0%

A4 0 0%

Com 10 Envelope Center Fed 0 0%

B5 0 0%

Letter 0 0%

Legal 0 0%

Monarch Envelope Center Feed 0 0%

Page 0 0%

Log 0 0%

Page 101

PhD Proposal – Idris Hsi – Page 101

5.5 Morphology
Figure 17 – A portion of the MS Notepad Morphological Map

Notepad

File Edit … ...

Main M

Main M: File M

Fi
le

 M
: N

ew
 M

I

Fi
le

 M
: O

pe
n

M
I

F
ile

 M
: S

a
ve

 M
I

Fi
le

 M
: S

av
e

A
s

M
I

Fi
le

 M
: P

ag
e

S
et

up
 M

I

Open DB

Open DB: History
B

Open DB:
Desktop B

Open DB: My
Documents B

Open DB: My
Computer B

Open DB: My
Network Places

B

Open DB:
[Location List]

DD

Open DB: Go to
Last Folder
Visited B

Open DB: Up
Directory B

Open DB: New
Folder B

Open DB: Folder
Display Options

DD Open DB: File List
L

Open DB: File
Name DD

Open DB: File
Type DD

Open DB: Open
B Cancel B

History F Desktop F My Documents F My Computer F My Network Places F

[Location List]
DD: History LI

[Location List]
DD: Desktop LI
[Location List]

DD: My
Documents LI[Location List]

DD: My Computer
LI

[Location List]
DD: <Drives> LI
[Location List]

DD: My Network
Places LI

<Drive> F

Folder Display
Options DD:
Large Icons

RB

Folder Display
Options DD:
Small Icons

RB

Folder Display
Options DD:

List RB

Folder Display
Options DD:
Details RB

Folder Display
Options DD:
Thumbnails

RB

File Name DD:
<Previous File> LI

File Type DD: *.txt
LI

File Type DD: All
Files LI

Save As DB

Save As DB:
History B

Save As DB:
Desktop B

Save As DB: My
Documents B

Save As DB: My
Computer B

Save As: My
Network Places

B

Save As DB:
[Location List]

DD

Save As DB: Go
to Last Folder

Visited B

Save As DB: Up
Directory B

Save As DB:
New Folder B

Save As DB:
Folder Display
Options DD Save As DB: File

List L

Save As DB: File
Name DD

Save As DB: File
Type DD

Save As DB:
Save B Cancel B

[Location List]
DD: History LI

[Location List]
DD: Desktop LI
[Location List]

DD: My
Documents LI[Location List]

DD: My Computer
LI

[Location List]
DD: <Drives> LI
[Location List]

DD: My Network
Places LI

Folder Display
Options DD:
Large Icons

RB

Folder Display
Options DD:
Small Icons

RB

Folder Display
Options DD:

List RB

Folder Display
Options DD:
Details RB

Folder Display
Options DD:
Thumbnails

RB

File Name DD:
<Previous File> LI

File Type DD: *.txt
LI

File Type DD: All
Files LI

Page Setup DB

Page Setup DB:
Paper - Size DD

Page Setup DB:
Paper - Source

DD

Page Setup
DB:

Orientation -
Portrait RB

Page Setup
DB:

Orientation -
Landscape RB

Page Setup
DB: Margins
(inches) - Left

TF

Page Setup
DB: Margins
(inches) -
Right TF

Page Setup
DB: Margins
(inches) - Top

TF

Page Setup
DB: Margins
(inches) -
Bottom TF

Page Setup DB:
Preview D

Page Setup
DB: Header TF

Page Setup
DB: Footer TF

Page Setup DB:
OK B

Page Setup DB:
Cancel B

Page Setup DB:
Printer B

Size DD: A4
Small LI

Size DD: US
Letter LI

Size DD: US
Legal Small LI

Size DD: US
Legal LI

Size DD: Monarch
Envelope Center

Fed LI

Size DD: Letter LI

Size DD: Legal LI

Size DD: A4 LI

Size DD: Com 10
Envelope Center

Fed LI

Size DD: B5 LI

Size DD: US
Letter Small LI

Source DD:
Automatically

Select LI
Source DD:
Cassette LI

Source DD:
Manual Feed LI

Page Setup -
Printer DB

Page Setup -
Printer DB: Name

DD

Page Setup -
Printer DB:

Properties... B Page Setup -
Printer DB: Printer

D

Printer ID: Status
IF

Printer ID: Type IF

Printer ID: Where
IF

Printer ID:
Comment IF

Page Setup
Printer DB:

Network… B

Page Setup
Printer DB: OK B

Page Setup
Printer DB:
Cancel B

<Printer> Document
Properties DB

<Printer> Document
Properties DB:

Layout TP

<Printer> Document
Properties DB:
Paper / Quality

TP

<Printer>
Document

Properties DB:
OK B

<Printer>
Document

Properties DB:
Cancel B

[Document]
Layout TP:

(Orientation)
Portrait RB

[Document]
Layout TP:

(Orientation):
Landscape RB

[Document]
Layout TP:

(Orientation):
Rotated

Landscape RB

[Document]
Layout TP:

(Page Order) -
Front to Back

RB

[Document]
Layout TP:

(Page Order) -
Back to Front

RB

[Document]Layou
t TP: Pages Per

Sheet DD [Document]Layout
TP: [Preview] D

[Document]
Layout TP:

Advanced B

Paper / Quality
TP: (Tray

Selection) Paper
Source DD

Paper Source DD:
Automatically

Select LI
Paper Source DD:

Paper / Quality
TP: Advanced B

Connect to Printer
DB

Connect to
Printer DB:
Printer TF

Connect to
Printer DB:
Expand by
Default CB Connect to Printer

DB: Shared Printers
ID

Connect to Printer
DB: Printer

Information ID

Printer Information
ID: Comment IF

Printer Information
ID: Status IF

Printer Information
ID: Documents

Waiting IF

Connect to
Printer DB: OK B

Connect to
Printer DB:
Cancel B

[Print]
General TP:

(Select
Printer) L

[Print] General TP:
(Select Printer) ID

[Print] General
TP: Print to file

CB

[Print] General
TP: Find Printer

B

(Select Printer) ID:
Status IF

(Select Printer) ID:
Location IF

(Select Printer) ID:
Comment IF

(Select Printer) L:
Add Printer LI

(Select Printer) L:
<Printer> LI

K
File M: New MI

KS

K
File M: Open

MI KS

K
File M:: Save

MI KS

K
File M: Save As

MI KS

Figure 17 shows a portion of the morphological map of the application. The actual map spans
several pages and will be made available outside this document. Table 52 contains a list of the
following morphological elements. They are numbered by the order that they were placed into
the diagram.

Table 52 – MS Notepad Morphological Elements

Name

1 Notepad

2 Main W

3 Main M

4 Main M: File M

5 Main M: Edit M

6 Main M: Format M

7 Main M: Help M

8 File M: New MI

9 File M: Open MI

10 File M: Save MI

11 File M: Save As MI

12 File M: Page Setup MI

13 File M: Print MI

14 Open DB

15 Open DB: History B

16 Open DB: Desktop B

17 Open DB: My Documents B

18 Open DB: My Computer B

19 Open DB: My Network Places B

20 Open DB: [Location List] DD

21 Open DB: Go to Last Folder Visited B

22 Open DB: Up Directory B

23 Open DB: New Folder B

Name

24 Open DB: Folder Display Options DD

25 Open DB: File List L

26 Open DB: File Name DD

27 Open DB: File Type DD

28 Open DB: Open B

29 Cancel B

30 History F

31 Desktop F

32 My Documents F

33 My Computer F

34 My Network Places F

35 [Location List] DD: History LI

36 [Location List] DD: Desktop LI

37 [Location List] DD: My Documents LI

38 [Location List] DD: My Computer LI

39 [Location List] DD: <Drives> LI

40 [Location List] DD: My Network Places LI

41 <Drive> F

42 Folder Display Options DD: Large Icons RB

43 Folder Display Options DD: Small Icons RB

44 Folder Display Options DD: List RB

45 Folder Display Options DD: Details RB

46 Folder Display Options DD: Thumbnails RB

Page 102

PhD Proposal – Idris Hsi – Page 102

Name

47 File Name DD: <Previous File> LI

48 File Type DD: *.txt LI

49 File Type DD: All Files LI

50 Save As DB

51 Save As DB: History B

52 Save As DB: Desktop B

53 Save As DB: My Documents B

54 Save As DB: My Computer B

55 Save As: My Network Places B

56 Save As DB: [Location List] DD

57 Save As DB: Go to Last Folder Visited B

58 Save As DB: Up Directory B

59 Save As DB: New Folder B

60 Save As DB: Folder Display Options DD

61 Save As DB: File List L

62 Save As DB: File Name DD

63 Save As DB: File Type DD

64 Save As DB: Save B

65 Cancel B

66 [Location List] DD: History LI

67 [Location List] DD: Desktop LI

68 [Location List] DD: My Documents LI

69 [Location List] DD: My Computer LI

70 [Location List] DD: <Drives> LI

71 [Location List] DD: My Network Places LI

72 Folder Display Options DD: Large Icons RB

73 Folder Display Options DD: Small Icons RB

74 Folder Display Options DD: List RB

75 Folder Display Options DD: Details RB

76 Folder Display Options DD: Thumbnails RB

77 File Name DD: <Previous File> LI

78 File Type DD: *.txt LI

79 File Type DD: All Files LI

80 Page Setup DB

81 Page Setup DB: Paper - Size DD

82 Page Setup DB: Paper - Source DD

83 Page Setup DB: Orientation - Portrait RB

84 Page Setup DB: Orientation - Landscape RB

85 Page Setup DB: Margins (inches) - Left TF

86 Page Setup DB: Margins (inches) - Right TF

87 Page Setup DB: Margins (inches) - Top TF

88 Page Setup DB: Margins (inches) - Bottom TF

89 Page Setup DB: Preview D

90 Page Setup DB: Header TF

91 Page Setup DB: Footer TF

Name

92 Page Setup DB: OK B

93 Page Setup DB: Cancel B

94 Page Setup DB: Printer B

95 Size DD: A4 Small LI

96 Size DD: US Letter LI

97 Size DD: US Legal Small LI

98 Size DD: US Legal LI

99 Size DD: Monarch Envelope Center Fed LI

100 Size DD: Letter LI

101 Size DD: Legal LI

102 Size DD: A4 LI

103 Size DD: Com 10 Envelope Center Fed LI

104 Size DD: B5 LI

105 Size DD: US Letter Small LI

106 Source DD: Automatically Select LI

107 Source DD: Cassette LI

108 Source DD: Manual Feed LI

109 Page Setup - Printer DB

110 Page Setup - Printer DB: Name DD

111 Page Setup - Printer DB: Properties... B

112 Page Setup - Printer DB: Printer D

113 Printer ID: Status IF

114 Printer ID: Type IF

115 Printer ID: Where IF

116 Printer ID: Comment IF

117 Page Setup Printer DB: Network… B

118 Page Setup Printer DB: OK B

119 Page Setup Printer DB: Cancel B

120 <Printer> Document Properties DB

121 <Printer> Document Properties DB: Layout TP

122 <Printer> Document Properties DB: Paper / Quality TP

123 <Printer> Document Properties DB: OK B

124 <Printer> Document Properties DB: Cancel B

125 [Document] Layout TP: (Orientation) Portrait RB

126 [Document] Layout TP: (Orientation): Landscape RB

127 [Document] Layout TP: (Orientation): Rotated Landscape RB

128 [Document] Layout TP: (Page Order) - Front to Back RB

129 [Document] Layout TP: (Page Order) - Back to Front RB

130 [Document]Layout TP: Pages Per Sheet DD

131 [Document]Layout TP: [Preview] D

132 [Document] Layout TP: Advanced B

133 Paper / Quality TP: (Tray Selection) Paper Source DD

134 Paper Source DD: Automatically Select LI

135 Paper Source DD: Cassette LI

136 Paper Source DD: Manual Feed LI

Page 103

PhD Proposal – Idris Hsi – Page 103

Name

137 Paper / Quality TP: Advanced B

138 <Printer> Advanced Options DB

139 <Printer> Advanced Options DB: [Printer Options] L

140 [Printer Options List]: Paper / Output LI

141 [Printer Options List]: Graphic LI

142 [Printer Options List]: Document Options LI

143 Paper / Output LI Paper Size DD

144 Paper Output LI: Copy Count LI

145 Graphic LI: Scaling LI

146 Graphic LI: TrueTypeFont [Option] LI

147 Document Options LI: Advanced Printing Features LI

148 Document Options LI: PostScript Options LI

149 PostScript Options LI: PostScript Output Option LI

150 PostScript Options LI: TrueType Font Download Option LI

151 PostScript Options LI: Send PostScript Error Handler LI

152 PostScript Options LI: Compress bitmaps LI

153 PostScript Options LI: Mirrored Output

154 PostScript Options LI: Negative Output LI

155 <Printer> Advanced Options DB: OK B

156 <Printer> Advanced Options DB: Cancel B

157 Size DD: A4 Small LI

158 Size DD: US Letter LI

159 Size DD: US Legal Small LI

160 Size DD: US Legal LI

161 Size DD: Monarch Envelope Center Fed LI

162 Size DD: Letter LI

163 Size DD: Legal LI

164 Size DD: A4 LI

165 Size DD: Com 10 Envelope Center Fed LI

166 Size DD: B5 LI

167 Size DD: US Letter Small LI

168 Connect to Printer DB

169 Connect to Printer DB: Printer TF

170 Connect to Printer DB: Expand by Default CB

171 Connect to Printer DB: Shared Printers ID

172 Connect to Printer DB: Printer Information ID

173 Printer Information ID: Comment IF

174 Printer Information ID: Status IF

175 Printer Information ID: Documents Waiting IF

176 Connect to Printer DB: OK B

177 Connect to Printer DB: Cancel B

178 Print DB

179 Print DB: General TP

180 Print DB: Print B

181 Print DB: Cancel B

Name

182 Print DB: Apply B

183 [Print] General TP: (Select Printer) L

184 [Print] General TP: (Select Printer) ID

185 [Print] General TP: Print to file CB

186 [Print] General TP: Find Printer B

187 [Print] General TP: (Page Range) All RB

188 [Print] General TP: (Page Range) Selection RB

189 [Print] General TP: (Page Range) Current Page RB

190 [Print] General TP: (Page Range) Pages RB

191 [Print] General TP: (Page Range) Pages TF

192 [Print] General TP: Number of Copies TF

193 [Print] General TP: Collate CB

194 (Select Printer) ID: Status IF

195 (Select Printer) ID: Location IF

196 (Select Printer) ID: Comment IF

197 (Select Printer) L: Add Printer LI

198 (Select Printer) L: <Printer> LI

199 File M: Exit MI

200 Edit M: Undo MI

201 Edit M: Cut MI

202 Edit M: Copy MI

203 Edit M: Paste MI

204 Edit M: Delete MI

205 Edit M: Find MI

206 Find DB

207 Find DB: Find what TF

208 Find DB: Match case CB

209 Find DB: (Direction) Up RB

210 Find DB: (Direction) Down RB

211 Find DB: Find Next B

212 Find DB: Cancel B

213 Edit M: Find Next MI

214 Edit M: Replace MI

215 Replace DB

216 Replace DB: Find what TF

217 Replace DB: Replace with TF

218 Replace DB: Find Next B

219 Replace DB: Replace B

220 Replace DB: Replace All B

221 Replace DB: Cancel B

222 Replace DB: Match case CB

223 Edit M: Goto MI

224 Goto line DB

225 Goto line DB: [Line #] TF

226 Goto line DB: OK B

Page 104

PhD Proposal – Idris Hsi – Page 104

Name

227 Goto line DB: Cancel B

228 Edit M: Select All MI

229 Edit M: Time/Date MI

230 Format M: Word Wrap MI

231 Format M: Font MI

232 Font DB

233 Font DB: Font L

234 Font DB: Font Style L

235 Font DB: Size L

236 Font DB: Sample D

237 Font DB: Script DD

238 Font DB: OK B

239 Font DB: Cancel B

240 Font L: LI

241 Font Style L: Regular LI

242 Font Style L: Italic LI

243 Font Style L: Bold LI

244 Font Style L: Bold Italic LI

245 Size L: [Point Size] LI

246 Script DD: Western LI

247 Script DD: Greek LI

248 Help M: Help Topics MI

249 Help M: About Notepad MI

250 Main W: [Text]

251 Main W: VSB

Name

252 File M: New MI KS

253 File M: Open MI KS

254 File M:: Save MI KS

255 File M: Save As MI KS

256 File M: Print MI KS

257 Edit M: Undo MI KS

258 Edit M: Cut MI KS

259 Edit M: Copy MI KS

260 Edit M: Paste MI KS

261 Edit M: Delete MI KS

262 Edit M: Find All MI KS

263 Edit M: Find Next MI KS

264 Edit M: Replace MI KS

265 Edit M: Goto MI KS

266 Edit M: Select All MI KS

267 Edit M: Time / Date KS

268 Script DD: Hebrew LI

269 Script DD: Arabic LI

270 Script DD: Turkish LI

271 Script DD: Baltic LI

272 Script DD: Central European LI

273 Script DD: Cyrillic LI

274 Script DD: Vietnamese LI

275 Script DD: Mac LI

276 Main W: HSB

Page 105

PhD Proposal – Idris Hsi – Page 105

5.6 Ontology
Figure 18 – MS Notepad Ontology

File

Current File

[Configuration]

Text

Character

Case

has-a

is-a

has-a

has-a

is-a

Font Style

Font [Setting]

[Font] SampleFont Size

Bold

Italic

Bold Italic

Regular

is-a

is-a

is-a

is-a

has-a has-a has-a

Font

Script

Greek

Western

Arabic

Turkish

Hebrew

Baltic

Central European

Cyrillic

Vietnamese

Mac

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

has-a

has-a

Line

Line Number

Word [Token]

has-a

has-a

has-a

is-a

Page Setup

Displayed With

has-a

Paper

Size

A4 Small

US Letter

US Legal Small

US Legal

US Letter Small

A4

Com 10 Envelope
Center Fed

B5

Letter

Legal

Monarch Envelope
Center Feed

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

has-a

has-a

has-a

Source

has-a

Manual Cassette Feed

is-a is-a

Orientation

Portrait Landscape

has-a

is-a is-a

Margins

Inches Left Margin

Right Margin

Top Margin

Bottom Margin

has-a

is-a

is-a

is-a

is-a

is-a

Header

Footer

has-a

has-a

[Header/Footer
Code]

File Name
has-aFile Name Code

Date Code

Time Code

Page Number Code

Ampersand Code

Alignment

Left Alignment Code

Right Alignment
Code

Center Alignment
Code

has-a

has-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a has-a

has-a

has-a

has-a

Left Alignment

Right Alignment

Center Alignment

is-a

is-a

is-a

Modifies

Modifies

Modifies

Date

Timeis-a

is-a

Document

Page

Page Number

Printed To

has-a

has-a

is-a

has-a

Ampersand

has-a

has-a

has-a

has-a

has-a

has-a

has-a

has-a

Printer

has-a

has-a

Log

has-a

Extension

has-a

is-a

Current Date

Current Time

has-a

has-a

is-a

is-a

Figure 18 shows the ontology for the application. Table 53 shows a list of the concepts identified
in the ontology. They are numbered by the order that they were placed into the diagram and
identified as an Entity Type or an Attribute (attributes are concepts that lack independent identity
from the connected entity type).

5.6.1 Concepts in Application
Table 53 – MS Notepad Ontological Elements. The letter E indicates the concept is an Entity Type. The letter A indicates the concept is

an Attribute.

Concept Name Type

1 File E

2 Current File E

3 [Configuration] E

4 Text E

5 Character E

6 Case A

7 Font Style E

Concept Name Type

8 Font [Setting] E

9 [Font] Sample E

10 Font Size A

11 Bold E

12 Italic E

13 Bold Italic E

14 Regular E

Page 106

PhD Proposal – Idris Hsi – Page 106

Concept Name Type

15 Font E

16 Script E

17 Greek E

18 Western E

19 Arabic E

20 Turkish E

21 Hebrew E

22 Baltic E

23 Central European E

24 Cyrillic E

25 Vietnamese E

26 Mac E

27 Line E

28 Line Number A

29 Word [Token] E

30 Page Setup E

31 Paper E

32 Size E

33 A4 Small E

34 US Letter E

35 US Legal Small E

36 US Legal E

37 US Letter Small E

38 A4 E

39 Com 10 Envelope Center Fed E

40 B5 E

41 Letter E

42 Legal E

43 Monarch Envelope Center Feed E

44 Source E

45 Manual E

46 Cassette Feed E

47 Orientation E

48 Portrait E

49 Landscape E

Concept Name Type

50 Margins E

51 Inches A

52 Left Margin E

53 Right Margin E

54 Top Margin E

55 Bottom Margin E

56 Header E

57 Footer E

58 [Header/Footer Code] E

59 File Name E

60 File Name Code E

61 Date Code E

62 Time Code E

63 Page Number Code E

64 Ampersand Code E

65 Alignment E

66 Left Alignment Code E

67 Right Alignment Code E

68 Center Alignment Code E

69 Left Alignment E

70 Right Alignment E

71 Center Alignment E

72 Date E

73 Time E

74 Document E

75 Page E

76 Page Number E

77 Ampersand E

78 Printer E

79 Log E

80 Extension E

81 Current Date E

82 Current Time E

Page 107

PhD Proposal – Idris Hsi – Page 107

5.7 Conclusion

We believed Notepad to be ontologically equivalent to vi on UNIX systems and were surprised
when our excavation revealed a number of concepts concerning the visual appearance of the text
in the application and how the document will look on printing. The teleons in the ontology show
three basic features: text editing and management, file handling and application configuration,
and header / footer management. While we know that developers probably consider these major
groups to be composed of multiple features, we believe that there is evidence that suggests the
usefulness of teleons in identifying major groups of functionality in an application. We believe
Notepad has an Urban ontological structure where the text processing features are competing
with the features that support the viewing and printing configuration of the file. This is somewhat
confirmed by our use case silhouettes which showed that many of the use cases with high
ontological coverage concern these secondary functions.

Page 108

PhD Proposal – Idris Hsi – Page 108

Appendix 6 – MS Notepad Case Study 2

6.1 Introduction

This appendix describes the results of the ontological excavation, ontological analysis, and use
case silhouette analysis of the Microsoft Notepad (v. 5). MS Notepad (Figure 19) is a text editor
that comes with the Windows operating systems. This is a refinement of the original case study
(Appendix 5) with modifications to the modeling.

Figure 19 – MS Notepad application

6.2 Modeling Issues

The following changes were made from the previous analysis to enhance the correctness of the
model with respect to traditional modeling conventions and to test assumptions about core
concepts and conceptual subgroups and sensitivity of our analysis to modeling. Some of these
changes resulted after reflection on the ‘black box’ methods used to obtain the information,
producing refinement to the procedures. The following changes were made:
• Proper names were removed from the analysis. This included entity types such as types of

Scripts and Paper Sizes which were declared to be instances of their parent class.
• Entity types that did not have an independent identity were refined into attributes of their

parent class. For example, in Font Style, we had modeled Regular, Italic, Bold, and Bold
Italic as their own entity types. However, these do not have any meaning except in the
context of the setting of the display fonts. We turned these into attributes that expressed state
(e.g. RegularOrItalicOrBoldOrBoldItalic).

• Current Date and Current Time were collapsed into Date and Time as Notepad only inserts
the most current date and time. Any other date and time in the document is simply considered
to be part of the text.

The following differences were identified in the new model from the old model:
• Most of the core concepts remained but reordered themselves. For example, Text moved

from 4th to 2nd place.
• Font Style, Size, and Script dropped out of the core concept set.
• Source (source of the paper for printing) with two types of sources was added to the list of

core concepts.
• [Header / Footer Code] moved up significantly on the list.

Page 109

PhD Proposal – Idris Hsi – Page 109

6.2.1 Core Concepts Identified
Table 54 shows a list of the core concepts (and some of the concepts under the cutoff point)
identified in the ontology of MS Notepad in the original and second versions.

Table 54 – MS Notepad Concepts ordered by Centrality Value. Version 1 is on the left, Version 2 is on the right.

Concept Name (v.1) Value Concept Name
(v.2) Value

Page Setup 51.5 Page Setup 41.7

Font [Setting] 39.6 Text 35.2

Paper 31.7 [Header/Footer
Code] 27.7

Text 29.0 Font [Setting] 26.7

Size 25.5 Header 23.9

Font 23.8 Footer 23.9

Script 23.3 Paper 15.3

Header 19.4 Alignment 8.9

Footer 19.4 Current File 8.7

[Header/Footer Code] 17.6 [Configuration] 8.2

[Configuration] 17.0 Font 7.9

Margins 12.0 Source 7.9

Alignment 10.5 Margins 7.9

Font Style 9.7 Document 5.4

Current File 7.2 Line 4.1

Document 5.0 Character 4.0

Source 5.0 Font Style 4.0

Orientation 5.0 Orientation 4.0

Line 2.5 File Name 2.5

Character 2.5 Page Number 2.4

Date 2.4 Word [Token] 2.3

Time 2.4 Current Date 1.4

File Name 1.5 Current Time 1.4

Page Number 1.4 Log 0.3

Word [Token] 1.3 Left Alignment
Code 0.2

Log 0.4 Right Alignment
Code

0.2

Current Date 0.2 Center
Alignment Code 0.2

Current Time 0.2 File 0.1

Left Alignment Code 0.2 Page 0.1

Right Alignment Code 0.2

Center Alignment Code 0.2

File 0.1

Page 0

Page 110

PhD Proposal – Idris Hsi – Page 110

6.2.2 Teleons Identified
There were virtually no changes to the teleons identified in Version 1 (Table 55) from Version 2
(Table 56). Date and Time became Current Date and Current Time in the new version.

Table 55 – MS Notepad Teleons Identified by K-Core Analysis – Version 1

k-
value

Concepts in Teleon

3 Text, Header, Footer, File Name, Page Number, Date, Time
2 Header / Footer Code, Left / Right / Center Alignment, Alignment of (Header / Footer)
2 File, Current File, [Configuration], Font [Setting], Line, Word [Token], Page Setup, Document, Page, Log, Extension, Current

Date, Current Time

Table 56 – MS Notepad Teleons Identified by K-Core Analysis – Version 2

k-value Concepts in Teleon
3 Text, Header, Footer, File Name, Page Number, Current Date, Current Time
2 Header / Footer Code, Left / Right / Center Alignment, Alignment of (Header / Footer)
2 File, Current File, [Configuration], Font [Setting], Line, Word [Token], Page Setup, Document, Page, Log, Extension

6.2.3 Statistics
The following tables (Table 57 and Table 58) show an overview of the two ontologies.

Table 57 – MS Notepad Ontological Metrics – Version 1

of entity types: 78
of attributes: 4
of nodes in ontology: 82
of core concepts in ontology: 15
% of total ontology covered by core concepts: 18 %
% of total ontology covered by peripheral concepts: 72 %
% of ontology (no attributes) covered by core concepts: 19 %
% of ontology (no attributes) covered by peripheral concepts: 71 %
Average centrality of concepts 4.48
Density (number of edges divided by total number of possible edges .03

Table 58 – MS Notepad Ontological Metrics – Version 2

of entity types: 51
of attributes: 10
of nodes in ontology: 61
of core concepts in ontology: 13
% of total ontology covered by core concepts: 21 %
% of total ontology covered by peripheral concepts: 79 %
% of ontology (no attributes) covered by core concepts: 25 %
% of ontology (no attributes) covered by peripheral concepts: 75 %
Average centrality of concepts 5.42
Density (number of edges divided by total number of possible edges .03

6.2.4 Conclusion
Core concepts and teleons seem to be fairly robust to large changes to the ontology (removing or
redefining 27 nodes). Virtually no changes were made to the teleons identified. Most of the same
basic concepts remained the same with some dropping out of the analysis as they lost their
connecting nodes. Some of the ordering of the core concepts also changed after the modeling
modification, arguably showing a cleaner analysis of Notepad. Both ontologies show Notepad to
be a text editor but one primarily structured around the presentation and printing of text. A
further refinement could also remove the printing functions from Notepad’s ontology as these are
functions common to all Windows applications. This would remove items such as Paper, Source,
Manual, and Cassette Feed. However, we are fairly confident that this refinement would have a
negligible effect on the current list.

