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Minimum Set Cover Problem

- We are given the ground sét, ..., n} = |n| and
m subsetsS; C [n|forj=1,...,m

» Each setS; has an associated weight > 0.

» The goal Is to choose a collection of sets indexed
byC C {1,...,m} = |m] such thain| = U,ccS5,;

and minimizey ;. w;

* Let A = max;cp,, |S;| be the maximal cardinality
of a set in the mstance For each elemeat|n|,
letk; =[{S, : ¢ € S;,j € [m|}| be the number of

sets in the instance containing the elemeat|n|
and letk = max;cp, ;.
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Very Short History

« The natural greedy algorithm has performance

guaranteén A + 1 due to Johnson [1974],
Lovasz [1975], Chvatal [1979].

* For anye > 0, we cannot do better than

(1 —¢)Inn unlessNP C DTIME(n'°¢") due
to Feige (1998)A\, k ~ n In the reduction).
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Very Short History

* Another well-known type of algorithms
(primal-dual or local ratio) has performance
guarantee& due to Hochbaum [1982],
Bar-Yehuda and Even [1981].

« Khot and Regev [2003] showed that there is no

k — ¢ approximation algorithm under UGC for
constant.
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Nevertheless

« Considerp(k) = min{k,In A + 1}.

» That is the performance guarantee of classical
algorithms as a function d.
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Our Results

Randomized LP Rounding approximation
algorithm with performance guarantee

In A

R(k)=(k—1)(1 —e *1)+ 1.

Note, thatR(k) < p(k) = min{k,In A + 1} for
all k andR(k) ~ p(k) whenk << In A or
k >> In A.

n particular, wherk = In A + 1, our algorithm
nas performance guarantge— ¢ ) In A + 1.
~ork = f(log A), we show an LP integrality gap

In A

of k(1 —e &= — ¢) for any constang > 0.
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Our Results

InA+1

(1—eHInA+1

Approx. Factor T




Summary of Known haradness

factors

Range ofk Hard. Factor | Assumption| Reference

k. arb. large const| k—e¢ UGC KR[2003]
O((log log A)Y/¢) k—1—c¢ nOUoglogn) | DGKR[2005]
O((log A)1/¢) k/2—¢ nOUoglogn) | DGKR[2005]

k= 0(log A) Q(log' ¢ A) nPollogn) KS[2008]

k= 0(log A) Q ( (1055 gAA)Q) nPologn) This work.

k= Q((log A)°) Q(log A) nOUoglogn) LY[1994]

k= Q(2los’ " 4) Q(log A) P+£NP RS[2007]
k= Q(AY) (1 —¢)lnA | nOleslesn) | Feige[1998]
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Standard LP

Z z; >1, Vie|n|,

x; > 0, V€ [m]

Let LP* be the optimal value of the linear
programming relaxation antk, j € [m] be the

optimal fractional solution found by the LP solver.
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Randomized Rounding

In A

Leta =1 — e #1. Definep; = min{1, ok - 2}
for each seb;, j € [m].

Choose the sei; with probability p;

iIndependently at random. L&, be the indices
of sets chosen by our random procedure.

Let /" be the set of the elements that are still not
covered.

Each element id” chooses the cheapest set In
our Instance that covers it. L&}, be the set of
Indices of such sets coveridg.

Our algorithm outputs?; U Rs as the final
solution.

New and Improved Bounds for the Minimum Set Cover Problem How 3




Analysis

In A

o BYjep, wil = X jepm wipy < k(1—e ) LP"
« For each € |n], let j; be the index such that

wj;, = Milje(m).ies; wj @MW = ), w;,. Then
W = Zw] SZUJ] Z :1:
€[n] JiES;
< > >1w]:1: < A.LP"
n| j:1€S;

» We estimatePr|i € ["]. If p; = 1 for at least one
set such that € S; thenPr|i € I"] = 0.

New and Improved Bounds for the Minimum Set Cover Problem K23




Analysis

Otherwisep; = «k - x; for all setsS; such that € S;
and

Prliel"] = H (1—p;) < (1 Zii];%pj> |

jlies;

k

“ k
(1 ij‘esgo‘k'%')
k

1
k_
(=) = Tma
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Analysis

« Therefore, by linearity of expectation, the
expected weight of the sets ¥y can be

estimated above by )", w; Pr[i € I"] <
W/Ak/(k—l) < LP*/AI/(k—l)

« Overall, the expected cost of the approximate
solution is upper bounded above by

In

_hA, 1 §
(k(l — € k_l) i Al/(kl)) LP

- ((k (1 — e BT 4 1) LP*
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Integrality Gap Instance

Given a ground set ot elements andh = n°
sets.

Fix an arbitrary constant > 0 andk = ¢ - Inn.

Each element € |m| independently at random
chooses: sets out of possible: sets.

Each setS; for j € [m] consists of elements that
chose that set.

Let Z. be the resulting random instance of the
minimum set cover problem.
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Analysis
» The fractional solutionr’;, = 1/k for all j € [m]
is feasible. Thereford, P* < m/k.
* Fix an arbitrary collection of sets indexed by
C C [m] such thatC| = (1 — e /¢ — §)m.
 Probability that any € [n] is not covered by is

((6—1/;:—5)771,) ~ kl_[l (6_1/C 4 5)m _
(TIZ) i—0 m—1

(6_1/C 4 5/2)k

(

1 1/(:5 2\¢clnn
(f

IV

—(1-F,5)

)
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Analysis

 whereF,.; = cIn(1 + de'/¢/2) is a constant
depending omr ando. We assume thatis small
enough that,. s € (0,1).

* Probabillity that all» elements are covered IByis
at most

(1 B n(ch,(;))" < o—n'ed

 The total number of choices for the index 8at
at most2™ = 2™
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Analysis

« Therefore, by the union bound, the probability
that there exists a feasible index €at at most

F F
-n 0’6 n€ ns_n C,(S
e 2" <e :

» Choose: = F, /2. With probability at least

1 — e”””’s—””LFC"S one needs to choose at least
(1 — e~ '/¢ — §)m sets into any feasible integral
solution.

New and Improved Bounds for the Minimum Set Cover Problem Ei23




Open Problems

 In the case wheh ~ log A, can we design an
approximation algorithm for the Minimum Set
Cover Problem with performance guarantee

o(log A)?

e The best known upper bound is from our
algorithm. The best known complexity lower

bound isQ( log & >

(loglog A)?

« One must use stronger math. programming lower
bounds: SDP?, Lasserre hierarchy?
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Submodular Set Cover 1

 Find a set cover indexed by the g€ |m| such
that f(C) is minimized.

 |lwata, Nagano [2009] introduced the problem
and designed A-approximation algorithm. And

showed that there Is no polynomial time
approximation algorithm with performance

guarantee better tharin / log” logn).
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Submodular Set Cover 2

« Wolsey [1982] introduced the following problem.

- We are given a setn| and a monotone

submodular functiorf : 2™ — R, find a
collection of indice€” C |m] minimizing

> _icc ¢ such thatf(C) = f([m]).
« He proved that the greedy algorithm has
performance guarantée (27;1 f({j})) + 1.
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Submodular Set Cover 3

« Kamiyama [2011] combined two models, I.e. we
have an arbitrary submodular objectiyand
monotone submodular functigh

« He designed an algorithm with performance
guarantee

. > _jeimps Jsi})
sciml:f(S)<f(m)  fs([m] \ S)

wherefs(X) = f(SUX) — f(5).

 Fujito [2000] had an analogous algorithm and
guarantee for the Wolsey’s special case.
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Submodular Set Cover 4

« Hayrapetyan, Swamy, and Tardos [2005]
Introduced the following generalization.

« \WWe are given a set cover instance and a monoton
submodular functior,;(7") for each set;. Find
a set covet and subsetSs”ﬂ7 C S, covering the

ground set, minimizing _;_. 1 (Tj).

« Hayrapetyan, Swamy, and Tardos claim that a
variant of greedy and primal-dual gives
performance ratios similar to the classical ones.

« Chudak and Nagano [2007] designed algorithms
to solve continuous relaxation of this problem.
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Submodular Set Cover 5

jE€[m]
Z T; > %, Vi€ |n],
JUES;
€S
0<2z <1, Vi€ln],

x; > 0, Vje€ [m]

The classical problem is whef{S) = |S|. The

problem is interesting witlf (.5') is submodular or
supermodular.
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