New and Improved Bounds for the Minimum Set Cover Problem

Rishi Saket (IBM) Maxim Sviridenko (University of Warwick)

New and Improved Bounds for the Minimum Set Cover Problem -p. 1/23

Minimum Set Cover Problem

- We are given the ground set $\{1, \ldots, n\} = [n]$ and m subsets $S_j \subseteq [n]$ for $j = 1, \ldots, m$.
- Each set S_j has an associated weight $w_j \ge 0$.
- The goal is to choose a collection of sets indexed by $C \subseteq \{1, \ldots, m\} = [m]$ such that $[n] = \bigcup_{j \in C} S_j$ and minimize $\sum_{j \in C} w_j$.
- Let ∆ = max_{j∈[m]} |S_j| be the maximal cardinality of a set in the instance. For each element i ∈ [n], let k_i = |{S_j : i ∈ S_j, j ∈ [m]}| be the number of sets in the instance containing the element i ∈ [n] and let k = max_{i∈[n]} k_i.

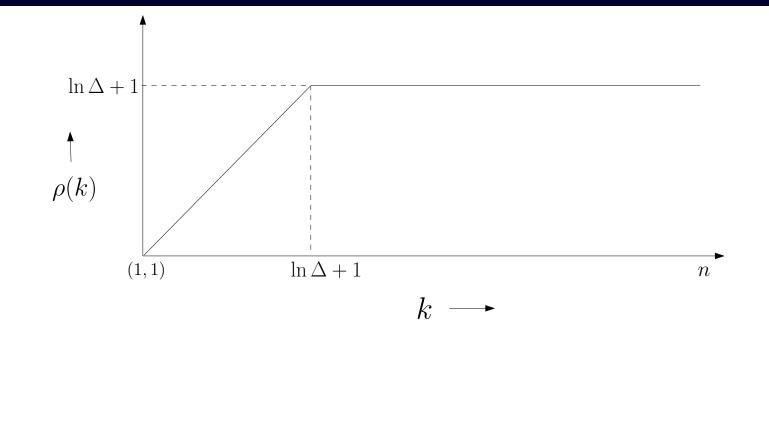
Very Short History

- The natural greedy algorithm has performance guarantee $\ln \Delta + 1$ due to Johnson [1974], Lovasz [1975], Chvatal [1979].
- For any $\epsilon > 0$, we cannot do better than $(1 - \varepsilon) \ln n$ unless $NP \subseteq DTIME(n^{\log n})$ due to Feige (1998) ($\Delta, k \approx n$ in the reduction).

Very Short History

- Another well-known type of algorithms (primal-dual or local ratio) has performance guarantee k due to Hochbaum [1982], Bar-Yehuda and Even [1981].
- Khot and Regev [2003] showed that there is no k - ε approximation algorithm under UGC for constant k.

Nevertheless

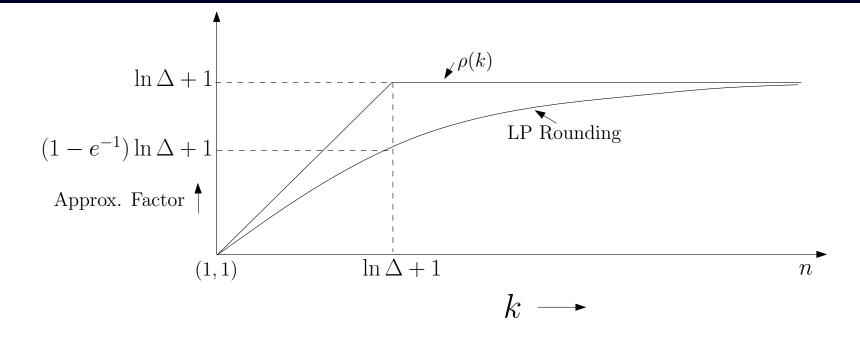


- Consider $\rho(k) = \min\{k, \ln \Delta + 1\}.$
- That is the performance guarantee of classical algorithms as a function of k.

Our Results

- Randomized LP Rounding approximation algorithm with performance guarantee $R(k) = (k-1)(1 - e^{-\frac{\ln \Delta}{k-1}}) + 1.$
- Note, that $R(k) < \rho(k) = \min\{k, \ln \Delta + 1\}$ for all k and $R(k) \approx \rho(k)$ when $k << \ln \Delta$ or $k >> \ln \Delta$.
- In particular, when $k = \ln \Delta + 1$, our algorithm has performance guarantee $(1 e^{-1}) \ln \Delta + 1$.
- For $k = \theta(\log \Delta)$, we show an LP integrality gap of $k(1 - e^{-\frac{\ln \Delta}{k}} - \delta)$ for any constant $\delta > 0$.

Our Results



New and Improved Bounds for the Minimum Set Cover Problem – p. 7/23

Summary of known hardness factors

Range of k	Hard. Factor	Assumption	Reference
k: arb. large const.	k-arepsilon	UGC	KR[2003]
$O((\log \log \Delta)^{1/c})$	$k-1-\varepsilon$	$n^{O(\log \log n)}$	DGKR[2005]
$O((\log \Delta)^{1/c})$	$k/2-\varepsilon$	$n^{O(\log \log n)}$	DGKR[2005]
$k = \theta(\log \Delta)$	$\Omega(\log^{1-\varepsilon} \Delta)$	$n^{\operatorname{poly}(\log n)}$	KS[2008]
$k = \theta(\log \Delta)$	$\Omega\left(\frac{\log\Delta}{(\log\log\Delta)^2}\right)$	$n^{\operatorname{poly}(\log n)}$	This work.
$k = \Omega((\log \Delta)^c)$	$\Omega(\log \Delta)$	$n^{O(\log \log n)}$	LY[1994]
$k = \Omega(2^{\log^{1-\varepsilon} \Delta})$	$\Omega(\log \Delta)$	$P \neq NP$	RS[2007]
$k = \Omega(\Delta^{\gamma})$	$(1-\varepsilon)\ln\Delta$	$n^{O(\log \log n)}$	Feige[1998]

Standard LP

$$\min \sum_{j \in [m]} w_j x_j, \qquad (1)$$

$$\sum_{j:i \in S_j} x_j \ge 1, \quad \forall i \in [n], \qquad (2)$$

$$x_j \ge 0, \quad \forall j \in [m]. \qquad (3)$$

Let LP^* be the optimal value of the linear programming relaxation and $x_j^*, j \in [m]$ be the optimal fractional solution found by the LP solver.

Randomized Rounding

- Let $\alpha = 1 e^{-\frac{\ln \Delta}{k-1}}$. Define $p_j = \min\{1, \alpha k \cdot x_j^*\}$ for each set $S_j, j \in [m]$.
- Choose the set S_j with probability p_j independently at random. Let R_1 be the indices of sets chosen by our random procedure.
- Let I^r be the set of the elements that are still not covered.
- Each element in I^r chooses the cheapest set in our instance that covers it. Let R_2 be the set of indices of such sets covering I_r .
- Our algorithm outputs $R_1 \cup R_2$ as the final solution.

•
$$E[\sum_{j \in R_1} w_j] = \sum_{j \in [m]} w_j p_j \le k(1 - e^{-\frac{\ln \Delta}{k-1}})LP^*.$$

• For each $i \in [n]$, let j_i be the index such that $w_{j_i} = \min_{j \in [m]: i \in S_j} w_j$ and $W = \sum_{i \in [n]} w_{j_i}$. Then

$$W = \sum_{i \in [n]} w_{j_i} \leq \sum_{i \in [n]} w_{j_i} \sum_{j:i \in S_j} x_j^*$$
$$\leq \sum_{i \in [n]} \sum_{j:i \in S_j} w_j x_j^* \leq \Delta \cdot LP^*.$$

• We estimate $Pr[i \in I^r]$. If $p_j = 1$ for at least one set such that $i \in S_j$ then $Pr[i \in I^r] = 0$.

Otherwise, $p_j = \alpha k \cdot x_j^*$ for all sets S_j such that $i \in S_j$ and

$$Pr[i \in I^{r}] = \prod_{j|i \in S_{j}} (1 - p_{j}) \leq \left(1 - \frac{\sum_{j|i \in S_{j}} p_{j}}{k_{i}}\right)^{k_{i}}$$
$$\leq \left(1 - \frac{\sum_{j|i \in S_{j}} p_{j}}{k}\right)^{k}$$
$$= \left(1 - \frac{\sum_{j|i \in S_{j}} \alpha k \cdot x_{j}^{*}}{k}\right)^{k}$$
$$\leq (1 - \alpha)^{k} = \frac{1}{\sqrt{k/(k-1)}}.$$

New and Improved Bounds for the Minimum Set Cover Problem -p, 12/23

- Therefore, by linearity of expectation, the expected weight of the sets in R_2 can be estimated above by $\sum_{i=1}^{n} w_{j_i} Pr[i \in I^r] \leq W/\Delta^{k/(k-1)} \leq LP^*/\Delta^{1/(k-1)}$.
- Overall, the expected cost of the approximate solution is upper bounded above by

$$\left(k(1 - e^{-\frac{\ln\Delta}{k-1}}) + \frac{1}{\Delta^{1/(k-1)}}\right) LP^*$$
$$= \left((k-1)(1 - e^{-\frac{\ln\Delta}{k-1}}) + 1\right) LP^*$$

Integrality Gap Instance

- Given a ground set of n elements and $m = n^{\varepsilon}$ sets.
- Fix an arbitrary constant c > 0 and $k = c \cdot \ln n$.
- Each element $i \in [m]$ independently at random chooses k sets out of possible m sets.
- Each set S_j for j ∈ [m] consists of elements that chose that set.
- Let \$\mathcal{I}_{\varepsilon}\$ be the resulting random instance of the minimum set cover problem.

- The fractional solution x'_j = 1/k for all j ∈ [m] is feasible. Therefore, LP* ≤ m/k.
- Fix an arbitrary collection of sets indexed by $C \subseteq [m]$ such that $|C| = (1 e^{-1/c} \delta)m$.
- Probability that any $i \in [n]$ is not covered by \mathcal{C} is

$$\frac{\binom{(e^{-1/c}+\delta)m}{k}}{\binom{m}{k}} = \prod_{i=0}^{k-1} \frac{(e^{-1/c}+\delta)m-i}{m-i}$$
$$\geq (e^{-1/c}+\delta/2)^k$$
$$= \frac{(1+e^{1/c}\delta/2)^{c\ln n}}{n} = n^{-(1-F_{c,\delta})},$$

- where $F_{c,\delta} = c \ln(1 + \delta e^{1/c}/2)$ is a constant depending on c and δ . We assume that δ is small enough that $F_{c,\delta} \in (0, 1)$.
- Probability that all n elements are covered by \mathcal{C} is at most

$$\left(1 - n^{-(1 - F_{c,\delta})}\right)^n \le e^{-n^{F_{c,\delta}}}.$$

• The total number of choices for the index set C is at most $2^m = 2^{n^{\varepsilon}}$.

• Therefore, by the union bound, the probability that there exists a feasible index set C is at most

$$e^{-n^{F_{c,\delta}}}2^{n^{\varepsilon}} \le e^{n^{\varepsilon}-n^{F_{c,\delta}}}$$

• Choose $\varepsilon = F_{c,\delta}/2$. With probability at least $1 - e^{n^{\varepsilon} - n^{F_{c,\delta}}}$ one needs to choose at least $(1 - e^{-1/c} - \delta)m$ sets into any feasible integral solution.

Open Problems

- In the case when $k \approx \log \Delta$, can we design an approximation algorithm for the Minimum Set Cover Problem with performance guarantee $o(\log \Delta)$?
- The best known upper bound is from our algorithm. The best known complexity lower bound is $\Omega\left(\frac{\log \Delta}{(\log \log \Delta)^2}\right)$.
- One must use stronger math. programming lower bounds: SDP?, Lasserre hierarchy?

- Find a set cover indexed by the set $C \subseteq [m]$ such that f(C) is minimized.
- Iwata, Nagano [2009] introduced the problem and designed a k-approximation algorithm. And showed that there is no polynomial time approximation algorithm with performance guarantee better than $o(n/\log^2 \log n)$.

- Wolsey [1982] introduced the following problem.
- We are given a set [m] and a monotone submodular function f : 2^[m] → R₊ find a collection of indices C ⊆ [m] minimizing ∑_{j∈C} c_j such that f(C) = f([m]).
- He proved that the greedy algorithm has performance guarantee $\ln\left(\sum_{j=1}^{m} f(\{j\})\right) + 1$.

- Kamiyama [2011] combined two models, i.e. we have an arbitrary submodular objective g and monotone submodular function f.
- He designed an algorithm with performance guarantee

$$\max_{S \subseteq [m]: f(S) < f([m])} \frac{\sum_{j \in [m] \setminus S} f_S(\{j\})}{f_S([m] \setminus S)}$$

where $f_S(X) = f(S \cup X) - f(S)$.

• Fujito [2000] had an analogous algorithm and guarantee for the Wolsey's special case.

- Hayrapetyan, Swamy, and Tardos [2005] introduced the following generalization.
- We are given a set cover instance and a monotone submodular function $h_j(T)$ for each set S_j . Find a set cover C and subsets $T_j \subseteq S_j$ covering the ground set, minimizing $\sum_{j \in C} h_j(T_j)$.
- Hayrapetyan, Swamy, and Tardos claim that a variant of greedy and primal-dual gives performance ratios similar to the classical ones.
- Chudak and Nagano [2007] designed algorithms to solve continuous relaxation of this problem.

$$\min \sum_{j \in [m]} w_j x_j, \qquad (4)$$

$$\sum_{j:i \in S_j} x_j \ge z_i, \quad \forall i \in [n], \qquad (5)$$

$$\sum_{i \in S} z_i \ge f(S), \quad \forall S \subseteq [n], \qquad (6)$$

$$0 \le z_i \le 1, \quad \forall i \in [n], \qquad (7)$$

$$x_j \ge 0, \quad \forall j \in [m]. \qquad (8)$$

The classical problem is when f(S) = |S|. The problem is interesting with f(S) is submodular or supermodular.