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Minimum Set Cover Problem
• We are given the ground set{1, . . . , n} = [n] and
m subsetsSj ⊆ [n] for j = 1, . . . ,m.

• Each setSj has an associated weightwj ≥ 0.
• The goal is to choose a collection of sets indexed

by C ⊆ {1, . . . ,m} = [m] such that[n] = ∪j∈CSj

and minimize
∑

j∈C wj.

• Let∆ = maxj∈[m] |Sj| be the maximal cardinality
of a set in the instance. For each elementi ∈ [n],
let ki = |{Sj : i ∈ Sj, j ∈ [m]}| be the number of
sets in the instance containing the elementi ∈ [n]
and letk = maxi∈[n] ki.
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Very Short History
• The natural greedy algorithm has performance

guaranteeln∆ + 1 due to Johnson [1974],
Lovasz [1975], Chvatal [1979].

• For anyǫ > 0, we cannot do better than
(1− ε) lnn unlessNP ⊆ DTIME(nlogn) due
to Feige (1998) (∆, k ≈ n in the reduction).
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Very Short History
• Another well-known type of algorithms

(primal-dual or local ratio) has performance
guaranteek due to Hochbaum [1982],
Bar-Yehuda and Even [1981].

• Khot and Regev [2003] showed that there is no
k − ε approximation algorithm under UGC for
constantk.
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Nevertheless
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Figure 1: Approximation Factor by Classical Algo-

rithms.

• Considerρ(k) = min{k, ln∆ + 1}.
• That is the performance guarantee of classical

algorithms as a function ofk.
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Our Results
• Randomized LP Rounding approximation

algorithm with performance guarantee

R(k) = (k − 1)(1− e−
ln∆

k−1 ) + 1.
• Note, thatR(k) < ρ(k) = min{k, ln∆ + 1} for

all k andR(k) ≈ ρ(k) whenk << ln∆ or
k >> ln∆.

• In particular, whenk = ln∆ + 1, our algorithm
has performance guarantee(1− e−1) ln∆ + 1.

• Fork = θ(log∆), we show an LP integrality gap
of k(1− e−

ln∆

k − δ) for any constantδ > 0.
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Our Results
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Figure 2: Comparison ofρ(k) with the LP Rounding

Approximation for growing parameter∆.
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Summary of known hardness
factors

Range ofk Hard. Factor Assumption Reference

k: arb. large const. k − ε UGC KR[2003]

O((log log∆)1/c) k − 1− ε nO(log logn) DGKR[2005]

O((log∆)1/c) k/2− ε nO(log logn) DGKR[2005]

k = θ(log∆) Ω(log1−ε∆) npoly(log n) KS[2008]

k = θ(log∆) Ω
(

log∆
(log log∆)2

)

npoly(log n) This work.

k = Ω((log∆)c) Ω(log∆) nO(log logn) LY[1994]

k = Ω(2log
1−ε ∆) Ω(log∆) P 6= NP RS[2007]

k = Ω(∆γ) (1− ε) ln∆ nO(log logn) Feige[1998]
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Standard LP

min
∑

j∈[m]

wjxj, (1)

∑

j:i∈Sj

xj ≥ 1, ∀i ∈ [n], (2)

xj ≥ 0, ∀j ∈ [m]. (3)

LetLP ∗ be the optimal value of the linear
programming relaxation andx∗j , j ∈ [m] be the
optimal fractional solution found by the LP solver.
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Randomized Rounding
• Let α = 1− e−

ln∆

k−1 . Definepj = min{1, αk · x∗j}

for each setSj, j ∈ [m].
• Choose the setSj with probabilitypj

independently at random. LetR1 be the indices
of sets chosen by our random procedure.

• Let Ir be the set of the elements that are still not
covered.

• Each element inIr chooses the cheapest set in
our instance that covers it. LetR2 be the set of
indices of such sets coveringIr.

• Our algorithm outputsR1 ∪R2 as the final
solution.
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Analysis
• E[

∑

j∈R1
wj] =

∑

j∈[m]wjpj ≤ k(1−e−
ln∆

k−1 )LP ∗.

• For eachi ∈ [n], let ji be the index such that
wji = minj∈[m]:i∈Sj

wj andW =
∑

i∈[n]wji. Then

W =
∑

i∈[n]

wji ≤
∑

i∈[n]

wji

∑

j:i∈Sj

x∗j

≤
∑

i∈[n]

∑

j:i∈Sj

wjx
∗
j ≤ ∆ · LP ∗.

• We estimatePr[i ∈ Ir]. If pj = 1 for at least one
set such thati ∈ Sj thenPr[i ∈ Ir] = 0.
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Analysis
Otherwise,pj = αk · x∗j for all setsSj such thati ∈ Sj

and

Pr[i ∈ Ir] =
∏

j|i∈Sj

(1− pj) ≤

(

1−

∑

j|i∈Sj
pj

ki

)ki

≤

(

1−

∑

j|i∈Sj
pj

k

)k

=

(

1−

∑

j|i∈Sj
αk · x∗j

k

)k

≤ (1− α)k =
1

∆k/(k−1)
.
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Analysis
• Therefore, by linearity of expectation, the

expected weight of the sets inR2 can be
estimated above by

∑n
i=1wjiPr[i ∈ Ir] ≤

W/∆k/(k−1) ≤ LP ∗/∆1/(k−1).
• Overall, the expected cost of the approximate

solution is upper bounded above by
(

k(1− e−
ln∆

k−1 ) +
1

∆1/(k−1)

)

LP ∗

=
(

(k − 1)(1− e−
ln∆

k−1 ) + 1
)

LP ∗
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Integrality Gap Instance
• Given a ground set ofn elements andm = nε

sets.
• Fix an arbitrary constantc > 0 andk = c · lnn.
• Each elementi ∈ [m] independently at random

choosesk sets out of possiblem sets.
• Each setSj for j ∈ [m] consists of elements that

chose that set.
• Let Iε be the resulting random instance of the

minimum set cover problem.
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Analysis
• The fractional solutionx′j = 1/k for all j ∈ [m]

is feasible. Therefore,LP ∗ ≤ m/k.
• Fix an arbitrary collection of sets indexed by
C ⊆ [m] such that|C| = (1− e−1/c − δ)m.

• Probability that anyi ∈ [n] is not covered byC is

(

(e−1/c+δ)m
k

)

(

m
k

) =
k−1
∏

i=0

(e−1/c + δ)m− i

m− i

≥ (e−1/c + δ/2)k

=
(1 + e1/cδ/2)c lnn

n
= n−(1−Fc,δ),
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Analysis
• whereFc,δ = c ln(1 + δe1/c/2) is a constant

depending onc andδ. We assume thatδ is small
enough thatFc,δ ∈ (0, 1).

• Probability that alln elements are covered byC is
at most

(

1− n−(1−Fc,δ)
)n

≤ e−nFc,δ
.

• The total number of choices for the index setC is
at most2m = 2n

ε

.
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Analysis
• Therefore, by the union bound, the probability

that there exists a feasible index setC is at most

e−nFc,δ
2n

ε

≤ en
ε−nFc,δ

.

• Chooseε = Fc,δ/2. With probability at least

1− en
ε−nFc,δ one needs to choose at least

(1− e−1/c − δ)m sets into any feasible integral
solution.
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Open Problems
• In the case whenk ≈ log∆, can we design an

approximation algorithm for the Minimum Set
Cover Problem with performance guarantee
o(log∆)?

• The best known upper bound is from our
algorithm. The best known complexity lower

bound isΩ
(

log∆
(log log∆)2

)

.

• One must use stronger math. programming lower
bounds: SDP?, Lasserre hierarchy?
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Submodular Set Cover 1
• Find a set cover indexed by the setC ⊆ [m] such

thatf(C) is minimized.
• Iwata, Nagano [2009] introduced the problem

and designed ak-approximation algorithm. And
showed that there is no polynomial time
approximation algorithm with performance
guarantee better thano(n/ log2 log n).
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Submodular Set Cover 2
• Wolsey [1982] introduced the following problem.
• We are given a set[m] and a monotone

submodular functionf : 2[m] → R+ find a
collection of indicesC ⊆ [m] minimizing
∑

j∈C cj such thatf(C) = f([m]).

• He proved that the greedy algorithm has

performance guaranteeln
(

∑m
j=1 f({j})

)

+ 1.
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Submodular Set Cover 3
• Kamiyama [2011] combined two models, i.e. we

have an arbitrary submodular objectiveg and
monotone submodular functionf .

• He designed an algorithm with performance
guarantee

max
S⊆[m]:f(S)<f([m])

∑

j∈[m]\S fS({j})

fS([m] \ S)

wherefS(X) = f(S ∪X)− f(S).
• Fujito [2000] had an analogous algorithm and

guarantee for the Wolsey’s special case.
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Submodular Set Cover 4
• Hayrapetyan, Swamy, and Tardos [2005]

introduced the following generalization.
• We are given a set cover instance and a monotone

submodular functionhj(T ) for each setSj. Find
a set coverC and subsetsTj ⊆ Sj covering the
ground set, minimizing

∑

j∈C hj(Tj).

• Hayrapetyan, Swamy, and Tardos claim that a
variant of greedy and primal-dual gives
performance ratios similar to the classical ones.

• Chudak and Nagano [2007] designed algorithms
to solve continuous relaxation of this problem.
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Submodular Set Cover 5

min
∑

j∈[m]

wjxj, (4)

∑

j:i∈Sj

xj ≥ zi, ∀i ∈ [n], (5)

∑

i∈S

zi ≥ f(S), ∀S ⊆ [n], (6)

0 ≤ zi ≤ 1, ∀i ∈ [n], (7)
xj ≥ 0, ∀j ∈ [m]. (8)

The classical problem is whenf(S) = |S|. The
problem is interesting withf(S) is submodular or
supermodular.
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