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SUMMARY

The introduction of the modern computer has been a boon to myriad scientific commu-

nities. Scientific experiment can be categorized into the categories of physical experiment

and thought experiment. In the chemical arena, these thought experiments are now able to

be tested for validity through advanced semi-empirical and ab initio computational meth-

ods. Theoretical chemistry continues to increase in efficacy, and the spread of classical,

wavefunction, and density functional methods into experimental communities is now un-

deniable. An aspiration of computational chemistry is to provide predictive power to lower

the number of physical experiments that need to be performed. This is especially impor-

tant when systems arise that are difficult to study experimentally. This has the possibility to

lower financial and environmental costs, in addition to reducing the time needed to perform

physical experiments.

Here, methods to computationally study solvent effects and crystal lattice energies are

reported on. Both of these physical properties have substantial relevance to human-focused

enterprises such as targeted drug design. For example, drugs are often delivered in solid,

crystalline form and must dissolve into molecular form prior to being pharmaceutically

active. Although the specific research reported on here does not use systems directly related

to such applications, it is posited that fundamental advances in computational methods for

computing physical properties for arbitrary systems will contribute to solving problems in

drug design, material development, and biomolecule recognition.

xiii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Computational Theory

The fundamental tool in computational research is the theory. Herein, both classical and

quantum mechanical theories are studied and developed. Although the rigorous theoretical

frameworks for both classical and quantum mechanics have been established for centuries

and decades, respectively, there is still active development in the application and implemen-

tation of these frameworks to many particle, chemically relevant systems. Brief descrip-

tions of the frameworks of MM and QM follow. The overarching goal of both methods is to

provide quantities that can be compared to experimental results for predictive or descriptive

power. Examples of such quantities include the positions of atoms in a system, the dipole

moment of a molecule, or the permeability of a membrane.

1.1.1 Molecular Mechanics

In order to calculate properties from the principles of molecular mechanics, Newtonian

physics is used. In MM, a potential energy function is defined (Equation 1.1) whereby a

potential energy surface can be generated; the terms, in order, correspond to stretching,

bending, torsion, Van der Waals, electrostatic, and “cross” forces.

U = Estr + Ebend + Etors + EV DW + Eel + Ecross (1.1)

Each of these terms is computed according to Newton’s Laws. For example, Estr is

computed using the Taylor series for displacement about an equilibrium point (i.e. Hooke’s

law when truncated to second order): Estr = kab(rab − r0,ab)2, where kab is a constant and

rab is the distance between particles at points a and b with r0 corresponding to the equilib-
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rium interparticle distance. The usage of these parameters kab and r0,ab is a quintessential

aspect of MM. In MM jargon, the set of all parameters such as kab is known as a force field

(FF).

Molecular mechanics operates under the assumption that an arbitrary chemical system

can be modeled by analogy to a more general system for which these parameters are al-

ready known. Depending on the granularity of the FF, any particular chemical motif (e.g.

functional group) may have one or several parameters. For example, there may be only

one parameter for a C=O stretch (kCO) which would mean that the C=O stretch force con-

stant is equivalent in aldehydes, ketones, carboxylic acids, etc., or there could be individual

parameters for each of these different functional groups (kCO, ald, kCO, ket, kCO, carb acid).

This granularity is defined by the number of atom types available for any given element.

In order to run a MM simulation, then, the atom types for each atom in the system must be

known such that parameters can for constants such as kab can be assigned to calculate the

force at each particle.

Using the equation for the potential energy for our MM system (Equation 1.1), the

forces on every particle can be computed (note the introduction of bold variables to sym-

bolize vectors):

F = −∇U. (1.2)

From Newton’s second law, F = ma, the acceleration of each of these particles is given

by the force impinging on this particle divided by that particle’s mass. Once the accelera-

tion is known, the trajectory of the particle can be computed. Additional corrections can be

added to modify the trajectory to account for conditions such as temperature and pressure,

but theoretical details on the implementation of such aspects of MM simulations is outside

of this work’s scope.

An aspect of MM critical to note is that all of the parameters relevant to the system

encoded in the FF are known prior to the beginning of the simulation. Therefore, the com-
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putational cost in performing MM simulations is in integrating the equations of motion.

This allows very large systems to be studied by MM, where very large in the computational

arena means over one million individual atoms. With systems of this size, dynamic proper-

ties are able to be visualized such as water molecules flowing through a membrane channel

or a protein folding into its secondary structure from an unfolded state. Additionally, sta-

tistical behavior of a system can be detected due to the modeling of the effect of thermal

energy on a system.

1.1.2 Quantum Mechanics

Calculating properties according to the laws of quantum mechanics is another important

area of computational chemistry. Quantum chemistry includes many levels of theory, but

here only wavefunction and density functional (DFT) methods are described.

As in molecular mechanics, a key focus of QM is the calculation of energies. How-

ever, the focus described here is the calculation of electronic energies, the energies owing

to the particular configuration of electrons in a system. In MM, the electronic energy is

accounted for through the force field’s parameters, but in QM the energy is computed from

first principles (ab initio). The equation governing energy in QM is Schrödinger’s equation,

Hψ = Eψ, (1.3)

where H is the Hamiltonian, ψ is the wavefunction, and E is the energy. The Hamiltonian

is described in matrix mechanics by a matrix, thus this equation defines an eigenvalue

problem. In QM, the computational difficulty lies in finding the solution to this equation.

Depending on the exact method employed (wavefunction versus density functional), the

form of the electronic HamiltonianH will change. For wavefunction methods (i.e. Hartree-

Fock, Möller-Plesset perturbation theory, coupled cluster theory, etc.), the Hamiltonian is

based on a potential energy function dependent on two particle interactions through the 1
rab

term. In density functional methods, this potential energy term is replaced by a term that
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is a function of electron density. This allows larger systems to be studied by DFT than

may be studied by wavefunction methods as all operators in the electronic Hamiltonian

can be represented by one electron operators unlike the two electron electrostatic potential

operator in Hartree-Fock methods.

Unlike MM where all the parameters governing a system are known before the calcu-

lation begins, the QM methods described here require all of the terms (operators) in the

Hamiltonian to be computed in order to find the electronic energy. This means that QM

calculations require more computations to be performed than MM calculations, and for

identical systems, a lesser number of atoms can be included in QM calculations. Generally,

the number of atoms in a QM simulation are on the tens to hundreds scale. Additionally,

the trajectory of particles is more commonly computed for MM simulations than for QM

simulations, and dynamic properties such as vibrational frequencies require more effort to

compute.

1.2 Computational Chemistry Software

In computational chemistry, both commercial and open source software packages exist.

Here, all computations are performed using free and open source software. The molecular

mechanics program OpenMM[1] is used, and it is compatible with many force fields. Ad-

ditionally, it has several benefits such as allowing arbitrary potential energy functions to be

added to the potential energy function (Equation 1.1), offering several types of integrators

for the equations of motion, and having well written, graphics processor unit (GPU) opti-

mized code. For QM calculations, the Psi4 package[2] was used. Psi4 has a large number

of density-fitted methods which speed up computation, and the frozen natural orbit coupled

cluster with single, double, and perturbative triple excitations (FNO-CCSD(T)) is very fast

as well.

From a software development perspective, both of these packages have efficient code-

bases written in C++ as well as easy to use interfaces written in Python. Being written

4



in the same programming languages enables easier passing of data between these soft-

wares. Although not formally computational chemistry software, there are many useful

and well-funded modules written for Python that are able to be used in harmony with Psi4

and OpenMM such as SciPy, NumPy, and NetworkX.
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CHAPTER 2

PARALLEL MM AND QM SIMULATIONS

From even a cursory consideration of computational theory, it is evident that large systems

are the domain of MM, and small systems can be treated through MM or QM simulations.

When QM theory can be applied to a system, it almost invariably yields superior results

to MM. For many years, the goal of applying QM and MM simultaneously (QM/MM) has

been pursued, and this methodology is implemented in several software packages. Here,

a new approach to tackling unified QM and MM simulations is studied in the context of

modeling explicit solvation.

2.1 Theory and Methodology

In QM/MM, the principal difficulty lies in accommodating the boundary between the com-

ponents of the system treated quantum mechanically versus classically. An example rele-

vant to the research discussed here would be modeling a benzene molecule in an aqueous

solution. Chemical intuition would indicate that for understanding solvation of the nonpo-

lar benzene molecule in a polar aqueous solution, the interaction between water molecules

in the solvation sphere and the benzene molecule should be treated quantum mechani-

cally whereas water molecules outside of the solvation sphere could be treated classically

through an atomistic simulation (explicit solvent) or perhaps even using a solvent model

such as the polarizable continuum model (PCM).[3] However, description of where the

boundary between quantum and classical mechanics should be applied in the system is not

always clear.

Here, an alternative to the traditional QM/MM scheme is proposed and tested. The

accuracy of single point energy calculations from quantum mechanics and the ability to

perform rapid dynamics simulations of larger system from molecular mechanics are both
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maintained. However, to avoid the issue of embedding the QM system into the MM system

as in traditional QM/MM, the simulations are performed separately from one another. Dy-

namics simulations are performed in OpenMM in order to generate fluctuations in the struc-

ture, and single point energies (here, DFT, but any level of theory is applicable) are com-

puted along this trajectory of structures using Psi4. By calculating large numbers of single

point energies for different conformations along this trajectory, thermodynamic properties

should be able to be computed using statistical mechanics. For example, the electronic

enthalpy should be able to be computed by taking the Boltzmann averaged energy of the

electronic energies of these conformations’ single point QM energies.

In order to carry out this new approach, first the issue of sharing information between

separate programs (Psi4 and OpenMM) needed to be dealt with. While passing information

between these programs at the broadest level is facile due to both programs having wrappers

written in Python, the issue that needs to be confronted is that the information required by

a MM simulation is markedly different from that required by a QM simulation.

As introduced in Section 1.1, the potential energy function in MM simulations relies on

knowing parameters for the individual energy terms in Equation 1.1. For known systems,

molecular mechanics programs often can assign parameters based on the structure as read

in from a Protein Data Bank (PDB) file. For example, this works well for proteins, nucleic

acids, lipids, and some small molecules such as guanidine or water. However, quantum

mechanics simulations only need the Cartesian coordinates and atomic numbers of involved

atoms in order to run a simulation. Thus, when starting from a QM calculation, all of these

parameters for the MM simulation need to be identified and assigned. In MM, there are

several force fields which all define different rules for assigning atom types. Some of these

force fields have software which enables automatic assignment of atom types to a system

based on only the geometry of the system. However, at the time of initiation of this project,

there was no unified software that could assign atom types for multiple different force

fields (this software now exists independently of this project, thus work in this direction
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has been stopped). Existing atom type assignment programs can be found for the General

Amber Force Field (GAFF),[4] the CHARMM General Force Field (CGenFF),[5] and the

Optimized Potentials for Liquid Simulations (OPLS) force fields.[6]

The goal of this project was to create a program to identify functional groups and larger

chemical motifs (e.g. aminos acids) in order to be able to assign atom types to any arbitrary

system for any arbitrary force field. Once the functional groups were identified for every

atom in a system, then a mapping between functional group and atom type in any force field

would allow assignment of atom types. The difficulty with implementing this algorithm is

that each force field has a different granularity; for some force fields, there may be 3 carbon

atom types for carbonyl carbons, and for others there may be 8 atom types for this type of

carbon.

2.2 Implementation of Atom Typing Algorithm

In order to address this problem, molecular systems were represented as mathematical

graphs where each atom in a molecule is represented by a node and each bond is repre-

sented by an edge. However, the notion of what constitutes a chemical bond is also variable

depending on the force field. This is due to the difficulty of finding bond order from data

that only includes interatomic distances. Various schemes exist to calculate bond order in

this situation, and different force field atom type identification algorithms adopt different

standards. Once bond orders are identified, properties such as the number of atoms con-

nected to each atom, the existence of conjugation at this atom, or the presence of a cyclic

arrangement of atoms including this atom can be computed. From these properties, func-

tional groups can be identified. Upon identification, the nodes (atoms) involved in this

functional group can be assigned to a new, single node corresponding to the functional

group. This reduces the size of the graph. Iterations of this strategy, forming larger and

larger functional groups, leads to assignment of the most specific functional group possible

to each atom and enables atom types to be assigned to individual atoms.
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Figure 2.1: An example of the graph reduction strategy reducing phenyl, alkenyl, and amide
groups into reduced notes. The reduction in size and complexity of the graphs is visually
apparent.

Table 2.1: The percentage of atom types equal to those assigned by Antechamber is shown
along with the percentage of molecules where every single atom type was assigned equiva-
lently. The Rx200 database has 200 pharmaceutical molecules, and the IQmol database has
approximately 250 general small molecules covering all of the standard functional groups.

Rx200 IQmol Database

Atom Types Correct (%) >90 >90
Molecules Correct (%) ≈25 ≈40

To simplify the first version of this atom type assignment program, the GAFF was

targeted. Results of this graph reduction strategy are seen in Figure 2.1. Upon visual

inspection, it is clear that the graph has been reduced in size and that functional groups

are now identified. In the translation to atom types from functional groups, accuracy is

assessed by comparison to Antechamber,[7] the GAFF atom type assignment program, in

Table 2.1.

Upon testing our new implementation with the reference Antechamber implementation,

it is clear that there are discrepancies especially for the percentage of molecules that have

all of their atom types assigned correctly (Table 2.1). The importance of assigning all atom

types correctly is that occasionally if an incorrect atom type is assigned, multi-atom type

properties will become grossly erroneous. For example, the harmonic angle bend term

(Ebend in Equation 1.1) relies on three separate atom type parameters. The force field does
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Figure 2.2: Pyrrolidine-1,4-diketone.

not typically provide parameters for every possible combination of three atom types be-

cause they are typically not all chemically relevant. However, in one instance an incorrect

atom type in the chloroform molecule led to a non-tetrahedral structure because there was

no restriction on the angles between chlorine atoms due to missing harmonic bend param-

eters. This leads to extreme errors in the subsequent calculations. The percentage of atom

types correct for both Rx200 and IQmol is very promising, though. In some cases, achiev-

ing a perfect 100% is ostensibly not desirable. For example, the Antechamber program

assigns the atom type of ha, or a hydrogen on an aromatic carbon, for the hydrogen atoms

in the ethylene molecule. It is unlikely that any chemist would ever describe the hydrogen

atoms in ethylene to be on aromatic carbons. Our implementation assigns the hc atom type

which is hydrogen on a general carbon atom. In this case, choices made by the Antecham-

ber program can occasionally seem arbitrary or even wrong. Due to the degeneracy of

potential atom type choices, occasionally a choice does need to be made to decide between

two atom types that both fit the chemistry of the molecule. In this case, it is very difficult

to match with the Antechamber program because there seems to be no perfect metric for

making decisions in instances such as this.

At present, the SMIRNOFF program[8] has been released by another group based on

the same idea of assigning atom types for any arbitrary force field. This program has

the advantage over my implementation of both funding and number — development of

Smirnoff includes several developers and is supported by a multi-site NSF grant. Thus, for
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atom type assignment in simulation workflows, programs other than that developed my me

are currently used.

2.3 QM-MM Calculations Through the Psi4-OpenMM Interface

After solving the problem of assigning atom types to arbitrary molecules with only struc-

tural information available, the problem of transferring data from the MM and QM pro-

grams to one another was next in line. Apart from atom types, the other information re-

quired by an MM program to perform a simulation is the connectivity of the atoms (which

atoms are bonded to each other — this is solved during the atom type assignment proce-

dure) and the partial charges on each atom. The assignment of partial charges can be done

through several charge partioning schemes, but each force field maintains its own recom-

mendations on how charges are to be computed. Two common approaches are through the

Restrained Electrostatic Potential (RESP)[9] scheme or the AM1-BCC scheme.[10] The

RESP protocol is implemented in Psi4, and RESP charges are typically of higher accuracy

than those generated by AM1-BCC.

After generation of all of these missing descriptors, data can be passed between MM

and QM programs. Here, an oepn source interface for passing data between OpenMM

and Psi4 was developed. The interface allows simple inputs from the user to access all of

the functionality of both OpenMM and Psi4. A MM calculation to find the trajectory of a

system can be performed in OpenMM, and the structures found can be directly transferred

to Psi4 for calculation of quantum mechanical energies and properties.

2.4 Studying Solvent Effects in Shimizu Torsion Balances

To demonstrate an application of performing these parallel, independent QM-MM calcula-

tions and develop new methodology, a torsion balance system (Figure 2.3) synthesized by

the Shimizu group to study interactions between C-H bonds and arene π electron density

was targeted.[11] This system has previously been studied in the Sherrill group by Trent
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Figure 2.3: One of the torsion balance molecules studied due to its solvent dependent
rotamer equilibrium.

Parker without explicit solvent molecules in the calculations.[12] Study of this system in

relation to solvent effects is motivated by the fact that quantum mechanical calculations

for the difference in electronic energy between the open and closed rotamer conformations

(Figure 2.5). From NMR studies of the equilibrium population of each rotamer, the Gibbs

Free Energy was able to be calculated as +0.31 kcal/mol favoring the open conformation.

When solvent effects are ignored and gas phase single point B3LYP-D3 calculations with

the aug-cc-pVDZ basis set are performed on the open and closed conformations, an en-

thalpic difference of -0.56 kcal/mol is calculated, favoring the closed conformation. There-

fore, entropic effects must be at play in favoring the open conformation.

One contributor to entropy in the solvated system (Figure 2.4 ) is the increased freedom

of motion of the methoxy substituent as well as the increased number of solvent bind-

ing sites in the open conformation. Through performing a large number of calculations

on various torsion balance-solvent (chloroform) interactions, the entropy can be predicted

based on statistical mechanics principles. However, not enough computations have been

performed yet in order to estimate the entropy of this system. However, identification of

important torsion balance-chloroform interactions did occur. In Figure 2.6, the conforma-
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Figure 2.4: Example of the automatic addition of solvent (here, chloroform) to a simulation.

tions identified by molecular mechanics trajectories with the lowest quantum mechanical

B3LYP-D3 electronic energy are visualized. In these systems, the Boltzmann averaged

difference in electronic energy is -1.58 kcal/mol. This leads to prediction of preference for

the closed rotamer, contrary to experiment. Thus, QM computations with a larger number

of chloroform molecules are needed. QM computations with up to 5 chloroform molecules

included were calculated, but no improvement in the predicted population of each rotamer

state was seen. However, Boltzmann averaging of the electronic energy of each rotamer

state for the torsion balance without any chloroforms present in the QM single point en-

ergies led to a small shift towards predicting the correct equilibrium populations, with the

difference in electronic energy being -0.54 kcal/mol (Figure 2.7) versus -0.56 kcal/mol

difference seen above for only the minimum energy conformers. Clearly, more study of

solvent effects as well as further development of this methodology to predict entropy val-

ues is needed.
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Figure 2.5: Three dimensional views of the closed (left) and open (right) conformations of
a Shimizu torsion balance molecule.

Figure 2.6: Important interactions between chloroform and the torsion balance identified
by QM-MM methods. These interactions represent the torsion balance-chloroform interac-
tion with the strongest binding energy as computed by B3LYP-D3 with the aug-cc-pVDZ
basis. Both interactions represent a balance between chloroform C-H to arene π system
and chloroform C-H to carbonyl oxygen bonding.
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Figure 2.7: An example of data generated from MM-QM calculations. 400 MM and QM
calculations are reported in each plot; the horizontal lines represent the Boltzmann averaged
energy of each system. The systems under study here is the Shimizu torsion balance shown
above. It is studied in explicit microsolvation using chloroform. The energies in these
plots are for the torsion balance alone, although the exact configurations are influenced
by interactions with solvent. The blue and red traces are QM energies, and the green and
orange traces are MM energies (shifted arbitrarily).

2.5 Conclusion

A new interface between the open source software programs Psi4 and OpenMM has been

made. As part of this development, the undertaking of developing a new atom typing was

begun. However, a NSF funded project with similar atom typing goals has supplanted this

effort.

Using this new interface, calculations on a molecular torsion balance have also been

started in order to identify important chloroform-torsion balance interactions that may fa-

vor one rotamer over another.These preliminary calculations have succeeded in identifying

several strongly favorable chloroform-torsion balance interactions. If this methodology

allows the relative populations of rotamers to be predicted accurately with reference to

experimental values, this new QM-MM approach will be useful for studying many other

molecular systems with explicit solvent. However, better development of this method to

compute entropy values is needed.
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CHAPTER 3

BENCHMARKING OF THE MANY BODY EXPANSION FOR REDUCING

CRYSTAL LATTICE ENERGY COMPUTATIONAL COST

Finding the crystal lattice energy of solid materials is an important application of compu-

tational chemistry. In the application of drug delivery, drug molecules are often delivered

as solid, crystalline material. Inside the target organism, this crystalline material must dis-

solve prior to becoming pharmaceutically active. The lattice energy of the crystal is a key

parameter in determining the kinetics of dissolution.

As unit cells in crystal structures often contain a large number of atoms relative to stan-

dard quantum chemistry system sizes, the method chosen to compute lattice energies must

be highly efficient such that the computation is tractable. One method that may enable

reduced computational cost is the many body expansion. The many body expansion rep-

resents the interaction energy of a system by analyzing the 1, 2, ...,M-body contributions

to the interaction energy of the total system. By finding the order m with m <M where

the interaction energy of the system stabilizes to the interaction energy computed account-

ing for allM-body interactions, calculations of the total interaction energy and thus lattice

energy can be accelerated. This is especially true as m is typically much less thanM; for

a system of 100 molecules, it is unlikely that concerted interactions between more than 3

individual molecules contribute strongly to the system’s interaction energy based on chem-

ical intuition. Here, a particular formalism of the many body expansion, the Valiron-Meyer

Functional Counterpoise correction (VMFC) is tested in order to find the general order m

where the interaction energy converges to theM-body interaction energy. Previous studies

have assumed an order m equal to 3, and some studies have investigated this quantitatively

with trimer systems. Here, 14 pentamer geometries (Figure 3.1) are studied; further, these

pentamer geometries cover the fundamental intermolecular forces: dispersion, electrostat-
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9. Formamide

11. Hydrogen Fluoride

1. Acetic Acid 2. Ammonia 3. Argon 5. Methane

6. Carbon Dioxide 7. CO2 P42/mnm 8. Cyanamide 10. Ice Ic

12. Ice Ih 13. Ice II 14. Urea

4. Ethene

Figure 3.1: The 14 pentamer systems under study; the labeling of each system from 1–
14 is propagated throughout the figures in this chapter. Additionally, the color scheme is
maintained. The color scheme is based on the primary intermolecular interaction in the
system according to SAPT0 (see Figure 3.2) — cooler colors are for systems dominated by
dispersion forces, and warmer colors for those dominated by electrostatics.

ics, induction. Gold standard benchmark calculations using density fitted frozen natural

orbital coupled cluster with single, double, and perturbative triple excitation (DF-FNO-

CCSD(T)) calculations are presented in addition to density functional theory calculations

(DFT) for comparison.

3.1 Theory

To introduce the idea of the many body expansion, first the notion of an “interaction energy”

must be introduced. The simplest example of an intermolecular interaction is the interaction

between two molecules — a dimeric interaction (note that the language of dimer, trimer,

m-mer will be used here to refer to 2, 3,m interacting molecules with no constraint on these

molecules being equivalent). To compute the energy of this intermolecular interaction, the

energies of the dimer system as well as each monomer will be needed. Then, the interaction
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Figure 3.2: SAPT0/jun-cc-pvdz breakdown of the induction (Ind), electrostatics (Elst), and
dispersion (Disp) components of the intermolecular interactions in the pentamer systems.
Numbering is from Figure 3.1. Blue and magenta lines demarcate dispersion, mixed, and
electrostatics dominant systems. The “monomers” making up the “dimer” required for the
SAPT0 are a single molecule from the pentamer as one “monomer” and the other four
molecules as the other “monomer.”
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energy ∆EIJ can be defined for the dimer IJ composed of monomers I and J ,

∆EIJ = EIJ − EI − EJ , (3.1)

where EFk
is the energy of the fragments in the set Fk (here IJ , I , and J , respectively)

where

E =
M∑
I=1

EI +
MC2∑
I<J

∆EIJ +
MC3∑

I<J<K

∆EIJK + · · ·+ ∆EIJK···M , (3.2a)

∆EIJK =EIJK −∆EIJ −∆EIK −∆EJK − EI − EJ − EK . (3.2b)

For systems of size greater than 2, there exist different formalisms to account for the con-

tribution to the interaction energy from M-mer interactions where m > 2. One such

formalism is the many body expansion (Equation 3.2a). The many body expansion is sim-

ply a generalization of the interaction energy for a dimer (Equation 3.1) where the trimer,

tetramer, ...,M-mer interaction energies are as represented in Equation 3.2b

εM =
M∑
k=1

MCk∑
Fk∈Pk(M)

∆EFk
. (3.3a)

∆EFk
=EFk

(Fk)−
k−1∑
`=1

kC∑̀
F`∈P`(Fk)

∆EF`
(Fk) (3.3b)

The shortcoming of the many body expansion in this form is that it does not correct for basis

set superposition error (BSSE) when the m-body correction to the interaction energy is

computed as in Equation 3.2b. For the extensive theoretical argument for why BSSE is not

accounted for, refer to a paper preceding this project by Richard.[13] However, when the

m-body correction is written as in Equation 3.3b, the interaction energy computed is BSSE

free and referred to as the Valiron and Mayer functional counterpoise correction (VMFC).
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Note the change in notation in Equation 3.3b — the ∆E terms in this equation now include

a term in parentheses, Fk, which corresponds to the set of k fragments contributing basis

functions to the set of l fragments contributing nuclei and electrons. Note that the set k can

be larger than the set l; the number of fragments k contributing basis functions is equal to

the size of the m-body correction to the interaction energy being computed. This confers

an advantage to the VMFC, however, as the maximum value ofm necessary to compute the

interaction energy of the system ofM fragments is often much lower thanM, m <<M.

Often computations on a system of M fragments require at least one computation to be

performed where allM fragments are contributing basis functions; here, onlym fragments

contribute basis functions for the m-body correction to the interaction energy. This enables

an enormous reduction to the size of the computation in exchange for an increase in the

number of individual, smaller calculations. Therefore, for applications such as computing

crystal lattice energies where there may be hundreds or more fragments, this approach is

highly appealing. Providing evidence for what value of m, the truncation order, is suitable

for replicating the total M-body energy is thus crucial such that accurate usage of the

truncated VMFC approach is feasible. These truncated VMFC energies will be referred

to as VMFC(m), where m is the equal to the largest m-body correction to the interaction

energy.

3.2 Methodology

All electronic structure computations have been performed using density-fitted (DF), frozen

natural orbital (FNO) coupled-cluster with single, double, and perturbative triple exci-

tations [DF-FNO-CCSD(T)][14, 15] as implemented in Psi4. The correlation consistent

basis sets aug-cc-pVXZ with X = D,T,Q, 5 are used and abbreviated aXZ. Using Hel-

gaker CBS extrapolation of the correlation energy[16] we expect our results to be of gold-

standard quality. Here, the correlation energy often refers to either the MP2 interaction

energy alone,

20



δMP2 = Etotal,MP2 − Etotal,SCF , (3.4)

or for DF-FNO-CCSD(T), only the coupled cluster contribution to the correlation en-

ergy,

δ
CCSD(T )
MP2 = Etotal,DF−FNO−CCSD(T ) − Etotal,MP2. (3.5)

The total DF-FNO-CCSD(T) correlation energy is the sum of the δMP2 correlation

energy (Equation 3.4) and the δCCSD(T )
MP2 correlation energy (Equation 3.5).

Even with the cost savings of the DF and FNO approximations, DF-FNO-CCSD(T)

is still too prohibitively expensive to be applied to systems much larger than the pen-

tamers considered here. In an effort to test the convergence of the MBE for density func-

tional methods as well, we will also consider the accuracy of several functionals, namely

B3LYP[17, 18], B2PLYP[19], M05-2X[20], ωPBE, ωB97X-D[21]. B3LYP, B2PLYP, and

ωPBE use Grimme’s D3 dispersion correction[22]; B2PLYP additionally employees Becke-

Johnson dampening[23]. These DFTs have been selected based on previous calibration

studies by our group.[24] Geometries as well as details pertaining to how the geometries

were obtained are available in the appendix.

In addition to these levels of theory chosen for benchmarking analysis, symmetry adapted

perturbation theory (SAPT) was also employed without intramonomer electron correlation

(SAPT0) with the jun-cc-pVDZ basis set. SAPT allows the the components of the in-

teraction energy — electrostatics, dispersion, induction, and exchange repulsion — to be

calculated. The usage here is to verify that the systems chosen for study cover a diverse

range of interaction motifs. The truncation of the fluctuation potential to the zeroth order

(i.e. the usage of SAPT0) is not expected to change the qualitative conclusions about which
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Table 3.1: Benchmark interaction energies (kcal mol−1) at the SCF/a5Z + δMP2/a[Q, 5]Z +
δ
CCSD(T )
MP2 /aXZ level of theory. Non-additivem-body contributions to the interaction energy

are computed using the VMFC procedure, and their sum is the overall VMFC(5) interaction
energy.
ID X m = 2 m = 3 m = 4 m = 5 VMFC(5) IE

1 D -14.039 ± 0.697 0.119 ± 0.024 -0.013 ± 0.018 0.0 ± 0.007 -13.933 ± 0.745
2 Q -13.003 ± 0.145 -0.284 ± 0.019 0.015 ± 0.012 -0.001 ± 0.006 -13.272 ± 0.182
3 Q -2.285 ± 0.216 0.056 ± 0.004 -0.005 ± 0.001 0.002 ± 0.001 -2.231 ± 0.222
4 D -4.487 ± 0.092 0.091 ± 0.003 0.001 ± 0.001 -0.0 ± 0.003 -4.396 ± 0.1
5 Q -2.484 ± 0.048 0.057 ± 0.015 -0.002 ± 0.005 -0.0 ± 0.002 -2.429 ± 0.07
6 T -8.46 ± 0.238 0.01 ± 0.007 0.007 ± 0.005 -0.0 ± 0.0 -8.443 ± 0.25
7 T 27.218 ± 1.599 -2.149 ± 0.036 0.055 ± 0.017 0.003 ± 0.006 25.127 ± 1.659
8 T -26.773 ± 0.341 0.625 ± 0.025 -0.219 ± 0.001 0.012 ± 0.003 -26.355 ± 0.369
9 D -36.807 ± 0.835 0.902 ± 0.026 -0.082 ± 0.018 -0.001 ± 0.006 -35.987 ± 0.886
10 Q -0.006 ± 0.113 0.192 ± 0.023 0.003 ± 0.001 0.002 ± 0.001 0.191 ± 0.139
11 Q 2.344 ± 0.115 0.19 ± 0.035 0.009 ± 0.019 -0.007 ± 0.001 2.536 ± 0.17
12 Q -13.477 ± 0.206 0.132 ± 0.013 0.074 ± 0.018 -0.004 ± 0.008 -13.275 ± 0.246
13 Q -17.234 ± 0.337 0.014 ± 0.009 0.328 ± 0.001 -0.001 ± 0.001 -16.892 ± 0.348
14 D -40.341 ± 0.863 -2.339 ± 0.024 0.102 ± 0.018 0.001 ± 0.006 -42.577 ± 0.911

component of the IE is dominant.

3.3 Results and Discussion

In order to compute benchmark values for the pentamers listed in Figure 3.1, DF-FNO-

CCSD(T) was used to compute the energies of the VMFC. Additionally, extrapolations to

the complete basis set (CBS) limit were performed for the SCF, MP2, and coupled cluster

components of the DF-FNO-CCSD(T) energy such that the total energy is SCF/a[Q,5]Z +

δMP2/a[Q, 5]Z + δCCSD(T )
MP2 /aXZ where terms in square brackets indicate the basis sets used

in the CBS extrapolation. Values for X are listed in Table 3.1. While the precise benchmark

energies will be useful for future studies where highly accurate interaction energies for pen-

tamers are required (to our knowledge, no such database exists), here the most interesting

aspect is the magnitude of the m-body corrections. The relative size of m-body corrections

to the interaction energy is studied in Figure 3.3. For convenience, a quantity called the

truncation error T (m) is defined to quantify the difference in the energy computed using a
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Figure 3.3: Truncation errors, T (m) (Equation 3.6), due to truncating the many-body
expansion at m-bodies vs the full VMFC(5) result, for the benchmark method, VMFC-
corrected SCF/a5Z + δMP2/a[Q,a5]Z + δCCSD(T )

MP2 /aXZ (values of X in Table 3.1). T (5) = 0
by definition. Individual systems are labeled by their numbers in Figure 3.1.

truncated VMFC versus the entire VMFC series,

T (m) = E(m)− E(M). (3.6)

Figure 3.3 displays the important finding that by m = 3, the truncation error is less than

0.5 kcal mol−1, and by m = 4, the truncation error is below 0.1kcal mol−1. This indicates

that truncating the VMFC to m = 3 is a viable option for reducing computational cost

while maintaining accuracy. In the full manuscript, it is also demonstrated that this con-

vergence behavior is maintained for SCF, the δMP2 correlation energy, and the δCCSD(T )
MP2

correlation energy.[25] This should not be surprising as any errors manifested in these in-

dividual components would also be seen in the benchmark data. As calculations on solid

state crystalline materials are often carried out using DFT, a study on the truncation errors

of various functionals was also performed. In Figure 3.4, it is seen that there is similar

convergence behavior to the benchmark method; by m = 3, the truncation error is below

0.5 kcal mol−1. Another interesting feature is that all of the DFT functionals converge at
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Figure 3.4: Truncation errors, T (m) (Equation 3.6), in VMFC-corrected DFT interaction
energies due to truncating the many-body expansion at orderm. DFT methods are the same
as in previous panels. Individual systems are labeled by their numbers in Figure 3.1.
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approximately the same rate with respect to the number of m-body interactions needed.

This is not necessarily a given as the exact makeup of DFT functionals with respect to the

weighting of exact exchange, MP2 correlation energy (B2PLYP), and other components is

not constant between the functionals.

Identifying and proving that the truncation order of m = 3 or m = 4, depending on

the reduction in truncation error desired, is one of the most important findings of this work.

The breadth of intermolecular interactions covered by our test set (Figure 3.2) indicates

that this truncation order should be general to any chemical system. The only concern for

a loss of generality would be in large, extended systems where induction through multiple,

separate, adjacent fragments is important. An example of such a system could be an-

thracene interacting with ethanol as a solute-solvent type interaction; the ethanol is much

smaller than the anthracene, so several ethanol molecules would be interacting with the

anthracene. However, the generalized many body expansion has shown that this should not

be a problem.[26]

After considering the issue of minimizing truncation order, a second component to

leveraging the many body expansion for facilitating larger calculations is identifying ways

to maintain accuracy while lowering computational cost. One such method is to compute

different terms of the many body expansion (i.e. the 2-body, 3-body, etc correction to the

interaction energy) with different levels of theory. For example, the 2-body term could be

computed with a high level of theory while higher order terms could be computed with

DFT. In order to know when such approaches are efficacious, the accuracy of each method

considered here compared to the benchmark method must be considered. For the full data

set, see the manuscript for this project.[25] Here, the comparison between the accuracy of

each DFT functional versus the benchmark, DF-FNO-CCSD(T) CBS extrapolated, values

is presented for each m-body correction (Figure 3.5). From the comparison of DFT and

benchmark VMFC values, it is seen that the 3-body correction on average (gray horizontal

bars in the boxplots) contains less than 0.5 kcal mol−1 of error versus the benchmark. Note
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Figure 3.5: Errors in VMFC-corrected DFT values for non-additivem-body interaction en-
ergies vs benchmark values. Individual systems are labeled by their numbers in Figure 3.1.
Boxplots show the first, second(median), and third quartiles as horizontal lines on the box,
and the whiskers extend outside the box to 1.5 times the interquartile range (IQR). The
mean is shown as a thick horizontal gray line.
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that at m = 3, the truncation error T (m) is of this same magnitude for both DFT and

the benchmark method. Therefore, the substitution of DFT for coupled cluster or MP2 3-

body corrections to the interaction energy should introduce little if any more error than the

truncation error already introduces. However, 2-body corrections have a larger magnitude

of error and should be calculated with higher levels of theory as the dimer calculations are

small and the largest contribution to the total interaction energy comes from the 2-body

interaction.

Using this finding, alternative, multi-method VMFC schemes for computing the in-

teraction energy of the pentamer systems in Figure 3.1 were proposed. In Figure 3.6), it

is seen that some of these hybrid approaches yield excellent results in comparison to the

benchmark method at drastically reduced computational cost. For example, hybrid 3 strikes

an excellent balance of accuracy and diminished computational cost. Instead of using large

basis sets like aTZ or aQZ for the coupled cluster component, the aDZ basis set is used.

Additionally, the a[Q,5]Z CBS extrapolated MP2 components is reduced to a[T,Q]Z CBS

extrapolated values for the 2-body correction to the interaction energy. Although MP2 en-

ergies are known to be slow to converge to a stable energy with respect to basis set size, this

does not manifest itself in the form of large errors here. Finally, the VMFC is truncated to

m = 3 for hybrid 3. Although no timing studies were performed here, the speedup in using

hybrid 3 versus the benchmark values could be at least 10 times faster. Thus, using the

knowledge that the many body expansion can be truncated at order 3 with minimal loss in

accuracy as well as the data presented here to determine the loss in accuracy upon replacing

expensive calculations with calculations using lower levels of theory, there is promise that

the VMFC can be used to compute accurate interaction energies for large systems in less

time than through alternative approaches.

27



Figure 3.6: Interaction energies are calculated using various quantum chemistry methods
in tandem as compound approaches. They are presented versus the VMFC(5) benchmark
values; the values shown are X-E where E is the VMFC(5) value. B2PLYP-D3BJ inter-
action energies were included to show the accuracy of DFT alone, with this functional
standing out in Figure 3.5 as being exemplary. Hybrid 1 is the 2-body VMFC term from
the benchmark data with 3- and 4-body B3LYP-D3. Hybrid 2 is SCF/aQZ + δMP2/a[T,Q]Z
+ δ

CCSD(T )
MP2 /aDZ, with the simple interaction energy shown. Hybrid 3 is also SCF/aQZ +

δMP2/a[T,Q]Z + δCCSD(T )
MP2 /aDZ, but only for the VMFC 2-body term; the three body VMFC

term is only MP2/aDZ, and the VMFC series is truncated here. Hybrid 4 is the benchmark
2-body VMFC term with 3- and 4-body VMFC terms from MP2/aTZ and the 5-body term
truncated.
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3.4 Conclusion

A truncation order of m = 3 has been shown to be appropriate for reducing truncation

errors in the VMFC form of the many body expansion to below 0.5 kcal mol−1 for general

chemical systems across SCF, MP2, FNO-CCSD(T), and DFT levels of theory. The gen-

erality of this finding is supported by the wide variety of intermolecular interaction motifs

found in our test set and confirmed by symmetry adapted perturbation theory (3.2). Based

on the accuracy of various reduced cost methods such as DFT or performing calculations

with smaller basis set sizes, several hybrid methods are proposed. These methods often

maintain the sub 0.5 kcal mol−1 accuracy with respect to benchmark values while reducing

the computational cost by a figure on the order of magnitude of 10-fold. Finally, all of

the data from this study is provided as Python data structures which enables easy analysis

for other applications.[25] This data includes gold-standard level interaction energies for

pentamer systems; to our knowledge, no benchmark set of pentamer structures at this level

of theory currently exists.
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CHAPTER 4

CONCLUSION

One critical problem motivating both of these projects is the dissolution of a crystalline

solid in solution; controlling this physical behavior is critical for modulating the kinetics of

the transition of drug molecules in vivo from their solid form to the active molecular form.

In order to reach such a goal, atomistic solvation models and methods to compute single

point energies of large systems will be necessary. This thesis presents studies into both of

these areas.

In order to compute free energy, entropy is needed. To this end, a new approach for

linking molecular mechanics and quantum mechanics calculations was explored. Instead

of embedding potentials between MM into QM calculations and vice versa, MM was used

as a tool to assess the distribution of conformations of a solute molecule in atomistic sol-

vent. This molecular mechanics trajectory then was used to compute accurate single point

energies using DFT in order to correct the potential energy surface. Although still underde-

veloped, the progress made here will hopefully inspire future developments. The creation

of an interface between the programs Psi4 and OpenMM will make integration of QM and

MM calculations into a uniform workflow more facile, and its development was driven by

this project.

With regards to lattice energy, using the Valiron and Mayer functional counterpoise

correction to reduce computational cost for computing the interaction energy of a system

of fragments was studied. Although it had been hypothesized and often taken for granted

that the VMFC could be truncated to m = 3, here this was demonstrated as true for a

system of 14 chemically diverse small molecule pentamer crystal structures. Truncating the

VMFC can enable enormous reductions in computational cost as behemoth calculations are

replaced by a larger number of small, readily tractable calculations. The VMFC formalism
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enables these smaller computations on a reduced set of fragments from the supersystem

to be computed in the basis set of only these fragments. Therefore, for a system of 1,000

fragments, if a truncation order of 3 is used, the largest computation required is one where

the basis set functions are only contributed to by 3 fragments versus 1,000.

In addition to establishing this truncation order, hybrid methods that accurately repro-

duce the benchmark VMFC(5) values are tested. For one hybrid method, SCF/aQZ +

δMP2/a[T,Q]Z + δCCSD(T )
MP2 /aDZ for the 2-body term and MP2/aDZ for the 3-body term, an

average error of less than 0.5 kcal mol−1 versus the benchmark was found. For this hybrid

method, it is expected that the reduction in computational cost is on the order of 50-fold.

Therefore, when combining an appropriately reduced level of theory and a well chosen

truncation order, computing the interaction energy for large systems becomes possible.

It is the hope that developments such as the parallel MM and QM simulations as well

as the VMFC benchmarking study presented here will contribute to attaining the goal of

predicting critical physical properties from first principles.
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APPENDIX A

GENERATION OF PENTAMER STRUCTURES

The main test set comprises the 14 numbered systems used for the testing of the many

body expansion. In cases where the system name may be ambiguous (the ice systems, for

example), the system name used in calculations is provided. The clusters of acetic acid,

ammonia, low pressure carbon dioxide, cyanamide, formamide, and urea are taken from

the C21 dataset.[27] All of the other geometries were generated using crystallographic

information files (CIF) found using the crystallography open database (COD). Using the

provided CIF files, the free program Mercury was used in order to expand the crystal struc-

ture using the fragments closest to the origin. Typically, this means that an entire unit cell

was not generated as the unit cell often contains more than 5 molecules.

For four structures from the COD, hydrogens had to be added to the structures as the

CIF files did not contain them (often hydrogens are not included for structures generated

using X-ray diffraction because hydrogens interact weakly with X-rays). These were ethy-

lene, methane, hydrogen fluoride, and water in the IC crystal structure. Hydrogens were

added using the babel program.[28]
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