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SUMMARY

An oscillator subjected to an externally applied signal may
become synchronized by the applied signal if the frequency of the sig-
nal is near enocugh to the natural frequency of the oscillator, and if
the emplitude of the applied signel 1s of sufficient magnitude. When
the oscillator is synchronized, the natural or free-running fregquency
of the oscillator is suppressed and the output frequency of the oscil-
lator is equal to the frequency of the externally applied synchronizing
signal. However, seldom in actual application is the externally applied
signal a single sinusoidal signal. In most cases the input consist of
the synchroniﬁing signal and either other sinusoidal Interfering signals
or ncise. A synchronized oscillator will provide discrimination against
the interference even though the interfering frequency is very near the
synchronizing fregquency.

This investigation is concerned with the influence on the output
of a synchronized oscillator with either discrete signal interference or
noise applied along with the synchronizing signal. The interference is
considered small relative to the synchronizing signal. For the case of
a single discrete signal interference, expressions have been determined
for the amplitude of the synchronizing signal in the output, for the ampli-
tude in the output at the frequency of the input interfering signal, and
for the amplitude at the generated frequency resulting from intermodula-
tion between the interfering signal and the synchronizing frequency.

With multiple discrete interfering signals applied, expressions were



xiii

obtained fo? the output with two tyrpes of oscillator circuits. The
results obtained for multiple discrete interfering signals were used
to predict the output when the input was narrow-band noise.

The determination of the output effects of one discrete inter-

fering frequency is based on Adler's equation. Adler's equation,

ag
at

= (“iﬁhb) = o sin B, is a nonlinear differentisl equation involving
the phase angle P Dbetween the synchronizing signal and the voltage
returned to the input from the fegdback network, the free-running fre-
quency ub of the oscillator, the synchronizing signal frequency ui,
and one-half the bandwidth of synchronizetion QE' The nonlinear ampli-
tude characteristic of the active device does not explicitly appear in
the differential equation, however, the imposed conditions require oper-
ation in a region of relatively severe amplitude limiting. The effect
of the freguency sensitive elements is reflected in an associated phase
shift but not in a variation of amplitude. The solution to Adler's
equation will yield an equation for P which reaches a constant value
in the limit if w, > ui - W oor ié a periodic function of time when

W, <'“ﬁ - W If an interfering signal is applied along with the syn-
chronizing signal and the oscillator is synchronized, the phase angle P
will consist of a constant magnitude Bo and a time-varying component
Bl. The time-varying component resuits in & frequéncy—modulation effect
which is reflected in the instantaneous frequency and en amplitude-modu-
lation effect resulting from the dependence of the voltage returned from
the feedback network on 51. The amplitude modulation resulting is also

a function of the amplitude-limiting characteristic.

The instantaneous phase of the returned voltage is the sum of the
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angle Bl between the effective synchronizing vcltage and the returned
voltage, the angle 6 Dbetween the synchronizing signal and the interfering
signal and “it the instantaneous angle of the synchronizing voltage.

This instantaneous phase angle yilelds an effective narrow-band frequency-

modulation spectrum. Alsc the angle P along with the amplitude

17
limiting characteristic, determines the amplitude variation of the
returned voltage. The combination of these two types of modulation
resulting from the interfering signal yields the amplitude of the inter-
ference in the output. Since Adler's equation requires rather sharp
amplitude limiting, the main contribution to the interference ampli-
tude is from the frequency-modulation effect.

This development based on Adler's equation places in evidence
the effects résulting from one discrete interfering signal externally
applied along with the synchronizing signal. The conclusions to be
drawn from this analysis are:

(1) The perturbation in the instantaneous phase from an inter-
fering signal results in a combination of freguency and amplitude modu-
lation.

(2) A synchronized oscillator provides discrimination against
an interfering signal even without consideration of amplitude attenua-
tion from the frequency sensitive elements.

(3) The discriminétion against interfering signals is & minimum
at the frequency of the synchronizing signael. In an analysis thet in-
cluded the frequency selectivity the minimum woulc be shifted toward
the free-running frequency.

() The discrimination with the synchronizing frequency equal to



the free-running frequency approaches 6 db with the interfering signal
frequency very near the synchronizing frequency.

(5) Under conditions of sharp amplitude limiting and without
inclusion of the attenuation resulting from frequency selectivity, the
generated interference term at ui-éél is approximately egqual to the
interference at the input interfering fregquency &i+621“

(6) With the synchronizing frequency near the edge of the syn-
chronization bandwidth and é?l small, the interference may experience
gain instead of discrimination.

The development based on Adler's equation was applied to the
condition of multiple discrete input signals. Also, the solution to
the differential equation of an oscillator with cubic nonliﬁearity was

found for the case of multiple discrete input interfering signals. In

e 2
both approaches witk1(&;; rn¥> << Vl, where r 1 is the ratio of the
=2

input interfering voltage Vn to the input synchronizing voltage Vl,
it was found that the interfering amplitudes in the output of importance
resulted from the intermodulation between the input interfering signals
and the synchronizing signal.

An approximate method, based on the conclusions reached with
multiple interfering signals, was determined to find the noise YVoltage
spectral density in the oﬁtput of' a synchronized oscillator. This method
is based on the approximetion of a narrow-band noise spectrum by a con-
tinuous frequency band of independent discrete signals which yields the
same power as the noise spectrum. The consideration of the input noise

as narrow-band is Jjustified because of the response of the oscillator
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which is effectively a narrow-band device. From the conclusicons reached
with multiple discrete interfering signals on the input, the output noise
voltage spectral density can be predicted from the equations developed
for one discrete interfering signal.

If the input to & synchreonized oscillator consists of a continu-
oué spectrum of discrete sinusoidal signals centered about the synchroni-
zing frequency, then there will exist a pair of input signals equally
spaced above and below the synchronizing freguency, for example one at
uh-éhl and one at ui+anl. Since each input interfering signal gener-
ates an interfering signal in the output, resulting from the intermodu-
lation with the synchronizing signal, the total voltage at any frequency
(ui_éhl) will be the square-root of the sum of the squares of the voltage
resulting froﬁ the input interference at that frequency (ui"éhl) and the
voltage caused by the intermodulation from an input freguency (ui+ahl)
equally spaced on the opposite side of w . This form of addition of the
voltage results because of the noise representation by discrete signals.
Therefore, the cutput noise voltage spectral density may be predicted from
the equation derived for a discrete signal interference or by experimen-
tally determining the input/output functional relation.

The experimental results verified with gooc agreement the predic-

tions from calculations.



CHAPTER I
INTRODUCTION

Interference effects in oscillators both from dizcrete signals
and from noise, have been considered'by'a number of investigators.
Gartens (1), Edson (2), Mullen (3), énd Golay (4) have considered noise
in oscillators that were free-runmning, that is, not subjected to a syn-
chronizing signal. Garstens (1) presents a method for estimating the
nonlinear noise contributions in an oscilletor at low levels of oscil-
lation. His approach uses the differential equation of the oscillator
with the van der Pol (8) type nonlinearity. An approximate solution is
obtained by linearizing the differential eguation and cobtaining a par-
ticular solution with one of the noise components, represented as a sin-
usoid, as the forcing function. By superposition and the use of the
power spectrum of a cubic nonlinearity, the nonlinear contribution is
found.

The time and spectral distributions of noise effects in typical
oscillators are derived by Edson (2). These spectral distributions are
derived for the build-up of oscillaticns and for sustained oscillations.

The effects on self-excited oscillators of broad-band noise at or
near the oscillator frequency is considered by Mullen (3). The results
show that the noise output from noise bands around the oscillatdr fre-
guency is composed of an additive noise of the shape of the oscillator

resonant circuit and a very small FM broadening of the oscillator line.



Golay (4) has analyzed a two-terminal oscillator, with noise pres-
ent as an RLC circuit in which a negative resistance, in parallel wii
R, has a slowly varying megnitude which is proporticnal to the mean
square voltage across it. Expressions are derived for the frequency
departure from the free-running value and for the bandwidth of the ther-
mal noise generated in R.

The use of & synchronized oscillator as a filter hag been considered
by several authors (5,6). One of the advantages is that the unwanted
signal may be very close to the synchronizing signal and still suffer
considerable discrimination provided the unwanted signal is somswhat,
less in amplitude than the wanted signal. Secondly, the wanted or syn-
chronizing signal may vary slightly in frequency around the free-running
frequency of the oscillator and still provide discrimination against
unwanted signals. It is very difficult %o design a passive filter cir-
cuit to accomplish equivalent discrimination for the two cases mentioned.

Tucker and Jamieson (5) have considered the discrimination in a
synchronized oscillator due to nonlinearity in the regenerative circuit
by assuming the frequency selective element in the feedback path to have
flat amplitude regponse and uniform phase shift. These restrictions,
when applied to an oscillator with a freguency selective element pres-
ent, limits the interfering fregquencies to a narrow band near the oscil-
lator free-running frequency or *o an oscillator with amplitude charac-
teristic practically independent of freguency. Therefore, this paper
is mainly concerned with non-linear effects on discrimination.

The treatment of Spence and Boothroyd (6) to the problem of inter-

fering signals in a synchronized oscillatar overcomss the limitation due



to neglect of the frequency response in Tucker and Jamieson's considera-
tion. Spence and Bocthroyd use the differential equation of an cscilla-
tor with van der Pol (8) type nonlinearity and with two forcing functions.
This approach includes the frequency selective elements in the solution.
However, Sperce and Boothroyd treat the case of enly one discrets fre-
quency interfering signal.

Rytov (7) considers noise in oscillators tkat have small nonlinear-
ity; that is, approximately conservative oscillators. Calculations of
amplitude and phaée fluctuations, in the steady state, are accomplished
by expanding the oscillator equation in terms of a small parameter. Since
the oscillator is approximately conservative, it is Jjustifiable to use
for the solution of the oscillatcor a method involving expansion in a smail
parameter, Syﬁbolic differential equations containing random functions
which describe the fluctuations are used in conjunction with methods of
correlation theory. The small parameter determines slow variations of
amplitude and phase both directly and inmdirectly. Indirectly the small
parameter determines amplitude and phase variations through "slow" time,
which is the product of the small parameter and real time. The explicis
dependence of the function in the differential eguation which contains
the discrete forcing function and the nonlinear relation is assumed tc
be periodic with pericd 2x. The random force part of the differential
equation is considered to consist of an in-phase ccmponent apd a perpendicu~
lar component in relation to the synchronized oscillator output. A solu-
tion is assumed for a cubic nonlinearity with the third harmonic terms
multiplied by the small parameter. Rytov (7) finds for the case where

the continuous spectrum is relatively weak, corresponding to a. large



signal to noise ratio, and with the synchronization frequency at the
center of the bandwidth of synchronization, the continuous noise spec-
trum in the output has the form of a resonance curve with respect to the
normalized frequency.

The investigation in the following chapters is concerned with the
interference terms in the output of 8 synchronized oscillator when the
interfering components, discrete frequencies or noise, are introduced
along with the synchronizing signal. The investigation mekes use of
Adler's (9) equation and of van der Pol's (8) equation. The solutions
obtained to these equations, for discrete signal interference, are
extended to predict the noise spectral density in the output when the
input noise spectral density is known. Both mathematical and experi-
mental results are included.

Chapter II reviews some basic theory concerning the synchronization
of oscillators by sinusoidal synchronizing signals. Specifically, refer-
ences (8,9) are discussed in detail as they form the basis of the later
mathematical development.

Chapter III reviews papers (5,6) which deal with the problem of
interference occurring in a synchronized oscillator and the use of Adler's
equation with varying synchronizing signals as discussed by Jones (11).

In Chapter IV the mathematical development of the equations for an
oscillator subjected to interfering signals along with the sinusocidal
synchronizing signel is pressented.

The results of Chapter IV to a single discrete interfering signal
are extended to the consideration of multiple signals and ncise in Chap-

ter V. The solution of the differential equation, with cubic nonlinearity,



to multiple signals and noise is also considered in this chapter.
Experimental results and circuits employed are presented and dis-
cussed in Chapter VI.

Chapter VII gives the summary and conclusions of the research.



CHAPTER II
REVIEW OF SYNCHRONIZATION OF AN OSCILLATOR

An oscillator subjected to an external signal, under certain con-
ditions, may have its own free-running frequency suppressed anﬁ the fre-
guency of opération becomes equal to the external signal., When this
occurs the oscillator is sald to be synchronized. Two analyses of an

oscillator subjected to an external signal will be considered in this

chapter. The two methods are due to Adler (9) and van der Pol (8).

Adler's Equation

Adler (9) investigated locking or synchronizing in oscillators
when the synchronizing frequency was close to the free-running oscilla-
tor frequency. Another requirement on the oscillator was that the
response of the oscillator not be governed by the past history of the
circuit; that 1s, slow variations in bilas were not allowed. Also the
synchronizing signal must be small with respect to the free-running
emplitude of oscillation. The latter condition allows neglect of the
amplitude variations when the oscillator operates in a flat or near
flat portion of the limiting characteristic.

A block diagram representation of an oscilletor of the feedback
type as analyzed by Adler is shown in Figure 1.

In Figure 1, the externally applied voltage 1is Vl and in the

manner applied, it can be seen that



Amplifier Limiter Feedback Network

@

v

Figure 1. Block Diagrem of a Feedback Oscilletor with a
Synchronizing Signal Applied.

(1)

Vv = V_+V
r

g 1

If the frequency of Vr is w and the freguency of Vl is w
then the freguency of Vg will have a frequency-modulated characteristic
with its varistion occurring around w. Neglecting this variation of
frequency of V , a phasor diagram as in Figure 2 may be drawn. In

this phasor diagram the angle P 1s measured with respect to Vr and

if Vl’ the synchronizing voltage, is considered to be stationary at w

dp
at

will be positive if w < W, -

Figure 2. Phasor Diagram of an Oscillator Subjected
to a Synchronizing Signal.



It the synchronizing frequency is relatively near the free-running
frequency, then the phase, ¢, may be taeken as a linear function of fre-
quency. Just how close the synchronizing frequercy must be to the free-
running frequency is detefmined by the Q of the passive elements in
the feedback network. When the oscilletor meets these conditions, the

phase shift ¢ may be expressed as

¢ = K¢ - ub) . (2)

Alsc from Figure 2, & relation for ¢ in terms of the voltages

may be obtained as

Vl Vl
sin ¢ = - 5= sin («B) =g sin B . (3)
) &

Since Vl< < Vg’ equation (3) may be written

‘T‘.IH“-'.
[

o = sin B. (4)

m

Introducing w, into equation (2) and equating to ¢ from equa-

tion (4) gives

oy

vg sin B = K, [(w- wi) + (ui - “b)] . (57

The rate of change of B with time, in terms of the radian fre-

quencies, may be found from Figure 2 as

8oa (w-w. (6)



Substitution of equation (6) into (5) and rearranging yields

d—B' = ( [V} - ) - V‘L
dt [o) 1 Vv K
g ¢

sin B . (7}

When synchronization occurs, é% = 0, and the limits of wy fo
synchronization may be cbtained from equation (7) by substituting the

limits of sin B =+ 1. These limits for wy become

or in terms of the difference radian frequency L

-

1 VL
u}c-—-(ul}—m):imp (9)

Equation (7) then becomes with the substitution of (9) and the

definition of

Ko™ =Yy s (10)

SE =y, - kE sin B . (ll)

This equation (11) represents the instantaneous variation of the

frequency of Vr from the synchronizing frequency, w This equation

l.
applies to variable values for éio and w, @as well as for constant
values. This characteristic of Adler's equation will be used in later

sections.
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van der Pol's BEquation

Van der Pol (8), in his very important contribution to oscilla-
tor theory, developed a nugLinuur difterential equation which applies to
a wide range of oscillator types. Depending on the nonlinearity, it
gives the solution for near sinusuidal as well ag relaxation type oscil-
lators., The differential equation for an oscillator with one degree of

freedom and without any external forcing function applied is typically,

o ]
Sy WS Tared 14 dy=0 s (12)
2 dt 0
dt

The nonlinearity lis included in the term f£(v).

If the oscillator circuit is subjected to a time-varying forcing
function, then the right side of equation (12) is altered by the addition
of the differential of this time function. The amplitude of the added

term is proportional to the magnitude of the forcing function, as fol-

lows:

na

L. aTa
d v ¥ j[f(\"'):[

2 dt

uf']
+ wv = whA sin wt . (13)
at ¥ ok

L

The equivalent circuit of one of the oscillator circuits used in
the experimental work is shown In Figure 3. This circuit uses a trans-
istor as the active element and therefore the forcing function is shown
as a current source,

Summation of currents at either node yields

i

. 1 y dv
-Il gin Qﬁt =¥ ‘/det + C Ttrt £{v). (1k4)



i=-Il cos Lult C/]\) v L £:C

Figure 3. Two-terminal Oscillator with
current Forcing Functilon,

Congtant -

I {the current In the nonlinear conductance is glven by

g_:xl- 1 j
iIl v+ 7'v7

then equation (13) becomes

b
/ﬂvdt +C —— tg - a'v + '’ = -1, cos Wt . (16)

Differentiating equation (14) wikh respect to

coefficient of the highest order differential unity,
d v a ,v al ¥t 3 v I] 1.
Zitmm-c it iter T

o
i—-—f
OE
0
(‘Jl
.

Lime and making the

gives

sin wlt 5 173

(18)



and incorporating these definitions in equation (17) gives an equation
of the form of equation (13).
Thus,

4

e,
dt

mn

(_av + 7‘;5) + L\};V = W A1 sin wt . (19)

QII =2
cH

o

¥

=

The solution to this equation may be obtained by assuming a solution in
the form of a Fourier series. UFor a first order approximation the higher
harmonic terms are neglected. Thé amplitudes of the sinusolds in *the solu-
tlon are assumed to be slowly varying functions of time in order to allow
the stability of the solutlons to be determined.

A solution is assumed as

v = a(t) sin wt + b (t) sin w, ¢ }'bz(t) cos wt e (20)

1 1 i

With an assumed solution in the form of equation (20), it is possible to
generalize the solution for the amplitiudes to find the condition for syn-
chronization to ocecur; the value of the free-running amplitude; and “he
variation of bl and b2 with frequency. Substitution of the agsumed

solution (20) into (19) with the condition that the following inequalities

exist;
d << wa, by << uibl’ b, << wb, (21)
n- <l < LT << . - e =
B BN By By W @B, B R0y

yields the following differential equations:

2

2a‘-a+7[15;a2+—5-(b1_+b§)3=0, (22)

2
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3 .
}~a%gl+fnﬂw2w

=4

+ Ebi) -uA, (23)

(A

I
(®]

2 7 ' 2 2
25, + bp(ug - qi) - O w4 % thybﬁ[bl + 2b2) = (24)
Equation (22) is independent of frequency and can be used to determine

free-running amplitude of cscillaticn with bl = b, = 0 and also the
[

. ; g 2 ; . :
minimum value of b7 + b when synchronization of the oscillator is
. [
stable, Sicce with by = b, = 9, defdt = 0 In equation (22) because

the output will have a single constant frequency w0 the equation becomes

catgles =0, (25)
wa\Z2

This is the amplitude of oscillation with the forcing function equal to

Solving equation (22) [or the amplitude at freguency W, s yields

2 4 e 2
SR 2(bz + be) . (26)
For "a" +to equal zero
2
a8
.2 2 ., Lo 0
D.L S5 b,_-) f '5'; = 5 ’ (2?)
or 1
=

Equation (27) represents one of the stability requirements of the oscillla-

tor. The output of the oscillator at the synchronizing frequency must be
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equal to or greater than . The other stability requirement is

Dlo®

represented on Figure L4 and applies at frequencies very near the free-
running frequency.
When the oscillator is neither synchronized nor free-running equa-

2-

The main interest in this development is the synchronizeé case,

tions (22, 23, 24) may be solved for a, bl’ and b

a = 0, giving from equations (23, 24)

2 2 3 2 2 rE
-bl(uo - Lul) - dbeu.i + T wly(b2+2bl) = -.AJOAl » (28)
and
bg(mi - m?'_) - G‘-blwl +-E- wler(bi + Ebg) = 0 . (29)

Since equations (28, 29) represent the condition of the oscilla-
tor with only a single frequency output present, the time rate of change

of amplitudes o, and b, have been set equal to zero.

The stability of the solutions tc the equations (23, 24) may be

determined by replacing 0, and bE by blO + Sbl and b20 + 5b2,

where Sbl and 6b2 represent variations about constant values b10

and b This substitution gives linear differential egquations involving

20"
Bbl and 6b2. The stability is indicated by the roots of these equa-
tions.

Another method described by Minorsky (10) and credited to Andronow
and Witt permits a closer connection with the representation of the oscil-

lator differential equation in the phese plane. From equations (23, 24)

is found


phe.se

15

db, (bl,bg) -wA + by (u - wl) + ab, TI wlbgy(b + 268 1) £46)
do. Q(o.,0.) 2 f2 3 2 '
2 1’72 -bg(wo - ul) + Qb w - wlybl(bl + 2b2)
dbl
Values of EE_ in the blb2 -plane will give flow lines which will

converge or diverge from singuler points in the phase plane with time,
depending on the nature of the stability of the point in question. The
location of these singular points may be found when bl and b2 are
constant, which results in P(bl’bEJ = Q(bl’be) = 0. To establish the

stability of the singular points b, and bE in equation (30) are

1
replaced by blo + Bbl and boc 1 6b2 and the roots of the equations
a(sb, ) d(8b,)
obtained for e end __Ef;- are examined for stability require-

ments. For equation (30) the results are éhown in Figure 4, where the
crogs-hatched reglon represents the unstable region.

Figure 4 shows not only the boundary of the unstable region but
also shows the variation of the output in the stable region with varila-
tion of synchronizing frequency and for different values of Input syn-
chronizing signal amplitude, which is reflected in Fl. The equatioﬁ for

the response curves is
A 2 2
0l

and the region of instability includes the area Py < 0.5 and the area

within the ellipse

EAbl 2
(2 & {1 % pyIKLs ) =0, (32)
2 2
bl +D ALw_ 2
where p, = ___?__E and F§ = (= a; 2
a o
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2.0

7,

0.6 =04 -0.2 0 AlO O.h 0.6
o
Figure 4. Variation of the Output in a Synchronized
Oscillator as the Frequency of the
Synchronizing Signal Varies.

i
1- T -
(8]

The solutions, shown in Figure 4, are accomplished with the following

&

approximations in equations (28, 29):

2
1l o

and



These approximations require

not to cause inaccuracy. -

W to be very near

W
O

in order

17
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CHAPTER I1II

SYNCHRONIZATION WHEN THE FORCING FUNCTION IS

NOT A SINGLE CONSTANT FEEQUENCY SINUSOID

Effects on the Output Caused by Nonlinearity with

Multiple Forcing Functions

One approach to the investigation of an oscillator subjected to
a synchronizing signal that includes interfering terms is presented by
Tucker and Jamieson (5). Their paper is concerned with the effect of the
nonlinearity resulting from the amplifier-limiter section of the oscilla-

tor with a block diagram as shown in Figure 5.

Amplifier-Limiter - Feedback Network

’\ [}(v )
g " ng

Figure 5. Block Diasgram of a Feedback Oscillator with
Synchronizing Signal Applied.

(v )=8a. +a.v +a.v <.
(g) L 2 g 38

If the input-output characteristic of the amplifier-limiter 1is

expressed as a power series through the cubic term, then

A 2 3
A alvg + aevg + ajvg ‘ (34)
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With multiple input signals v _ 1is expressed as
&

= | 208 et COE i - ) s a i = - 3
v, Vg lcos wt + Tog uO%(ul Alejt + kS - coa(wl Aln}t], (35)

where vg is the instantanecus voltage applied to the grid of the ampli-

fier-limiter, v ig the output of the amplifier-limiter, and »r = n i
a ng  V_
g
With this input signal, the output of the amplifier-limiter
becomes
n
" 3 LQZE e ot
v, = E—:-.l‘v’g + &5vé§ (E = Fmg)l cos w, (%)
m=1
n
L % - | vosm ]
\ L i - .. = _
+Z a.nglqg 4 ai'rl LE . & % +? ]}co...(wl Alq)t

n-1n

=

2 ) " + A )
+ .515\! 2 1%{ . [:cos by (.slq o ¥

g=1 m=q+L
+ cos (w + /'\".Lq_ - &m)t tocos (w = &LLq - &lm)t]

n-2 n-l n
" S ;

+ EJ z Z ajvg X5 ToetnaTeg [co'a(w + A, - %s)t

g=l Mm=q+l s=mtl

+ cos (w = Alq + A, - &M)t + cos(w - Big = B Alﬂ)t]

1m
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This equation (36) gives the magnitudes in the output at the
various input frequencies and at the generated frequencies because of
the nonlinearity.

If only Vg ces uit is censidered to be a coherent signal in
equation (35) and all the remaining terms are considered to become equal
and infinite in number (n—«), then these terms may be taken as the noise
input. The result of taking all the discrete signals at the input with

the exception of v, as noige, yields for the ocutput noise,

1

where (SNJin iz the signal to noise voltage ratio at the input, Vﬁo

is the rms output noise voltage and Vﬁi iz the rms input noise voltage.

This equation (37) expresses the effect of the nonlinearity of
the amplifier-limiter on the output with & coherent signal and noise on
the input.

To apply these results to an oscillator, Tucker and Jamieson
assumed the feedback network to have flat amplitude response and zero
phase shift over the band of interest. The external signal Vl is
assumed to contalin only difference freguencies W= Alm and that the
sum freguencies wy + Alm are generated by the nonlinearity of the cir-
cuit.

The final equation relating the signal/noise ratio at the grid to

the signal/noise at the input is given by


amp.iifier-lim.iter

21

(sN) (SN)g (28]
Tgﬁ)ln ) 1 -8 2 [i . g ?
-8 ~2a [V(a)]" (14
T - ( (SN)E)
1
X -:L ’
9 2 Sk 6 2 2
L+ e [Vg(“l)] 1+ = - - )
g g

where Vg(ui) is the grid voltage of frequency w, with regeneration,

L
and must be calculated from an additional relationship which is not an
explicit function of Vi. Thé signalfnoise voltage ratio on the grid is
represented by (SN)g and the input sigral/noise voltage ratio by (SN)in.
This analysis by Tucker and Jamieson points out the dominant role
played by the nonlinearity in suppression of interference in an oscilla-
tor. The result, however, i In a rather inconvenient form and does not

include effects of phase shift or amplitude response in the feedback net-—

work.

Use of van der Pol's Equaticn for Discrete

Signal Interference

The consideration of an oscillator with two forcing functions
and the behavior of the oscillator described by a differential equation
of the van der Pol type is made by Spence and Boothroyd (6). The dif-

ferential equation for this case is

12 L g
T aE

jol}
=

3 2
(- v + 7v§) twyv = A1q§ sin “it T A, a? sin “@t . (%9)

Do

dt

Experimental knowledge of the output from an oscillator of this
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type indicates the important amplitudes in the output are at frequencies
Wy sy and Qui - e Therefore, the equation of the output is

assumed in the form

v(t) = bl(t) sin wlt - bg(t) cos uit (40)
+ bﬁ(t) sin w,t 4 bq(tJ cos ht
+ b5('t) gin (wj_ + 5312) + bé{t) cos (ml + Ale)t,

where

Since thesge output terms are all related to the frequencies in
the forcing function, either a phase angle must be included, or, as is
done in equation (40), a sine and cosine term must be included for each
frequency. The megnitudes (b's) are considered to be slowly varying
functions of time.

Because of the large number of guantities that result when equa-
tion (40) is substituted into equation (39), a degree of relative mag-
nitude of the guantities is specified in order to simplify the solution.

Spence and Boothroyd (6) classify these magnitudes intoc three groupings

nmnon n

"small," "very small" and "small of third order.” In order to specify
the order of smallness the following four assumptions are made:

(a) The oscillator output is considered sinusoidal.

(b) w and w, arenear w_.

(¢c) The amplitudes at w, and (“i + AlQ) are of an order

smaller than those at “i'



(d) The maximum values b, end b, are of the same order of
magnitude as ao.

When eguation (40) is substitutel into equation (329), six linear
differential equations are found by retaining only terms containing fre-
guencies Wy Wy and W) + &12, and equating the coefficients of the
sine and cosine of wt, wt, and (uﬁ + éjg)t' Only the terms that are

small to the least two orders are retained in each equation. The follow-

ing equations result:

2B, + 0,(28,.) - %, (L - py) =0, (41)
) A
26, - hl(EAOl) s ab2(1 - pl) = - ™ S -Ajw (42)
255 < bu(2&02) - abj(l - Epl) +Obop, + Wgpy = 0, (43)
A2<u2
28, - b5(2éb2) - 0oy (1 - 2p)) - Oogp, +0bo = -"TEE 2 - Ay, (bk)
. =0 (45)
2b5 + 2b6(2a01 - &02) = amB(l - 2pl) + omjos + o) oy, 2

256 - 2bb(2a01 - ng) - ab6(1 - 2pl) - Ooyp + Qo,p = 0, (46)

where

be—b? 2b. b,
i W s - R S
Pg = a2 » Pp ® aE—_ ’ o m - Y%k n *
9] Q

Solutions to these eguations iIn the steady-state gives for the

normzalized-squared amplitudes

2 . o
49?001 + py (L - Dl) = Fi § (&)
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2
o 15
25 1
,05 - _': -ﬁ-—— » (1}9)
where
A A Be 4 b°
_ m “m ~ *n P - ( n"o f' _ en-l 2n
Imn a o > “m ) » Pp 5.
Q a
0
and
2 Y- - 2 . 2
D= [(ogp)” + (1 - 2p))" J[(Hoy; - 205,)" + (L - 20 )7 ]
N

¢ 2 JE’.
-+ Py - apl [2002(4001 = EUOE) + (1 = Qpl} ] :

Equation (47) is the same equation as determined without the in-
terference term at frequency Wy that 1s, with the assumptions made,
the amplitude in the output at the synchronizing freguency 1s unchanged
because of interference.

Equation (48) gives the normalized-squared smplitude in the out-
put at fregquency W, « It ig & linear function of the lnput interfering
slgnsl as long as the essumptions are valid.

The component in the output generated by the nonlinearity 1g
expressed by equation (49). Note that 1t is also & linear function of

the input interfering signal.

Adler's Equation with Variable Frequency

Synchronizing Signals

Joneg (11) applied Adler's equation to an oscillator synchronized
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by a frequency-modulated sypchronizing signal. The differential equa-
tion of the oscillator with a sinusvidal frequency-modulated signal,

using Adler's approach, is

8o

=Msin (wt+ Q) - w sin B, (50)

where M ig the maximum varistilon of the input sigral frequency from
the free-running value and § 1is an arbitrary phese angle.

A solution for £ 1u assumed as
= [PY i ) -\ sin S g oA 2 a3 B P
B B.L sin wmt' + b;.g in Juw, + 5:? co _wm‘t' (51)

Solutions for the maximum angles B B, and B, are accom-
{

5
plished by substitution into equation (50), yielding for the resulting

1
frequency
we o+ [2Jl(f31j + ﬁﬁJz(Bl)] sin (sg)
- Bgd,(B)) cos w4 E?JE(Bl) + f%Jo(ﬁlJ] sin 3w t

+ By [1/2 Bs35(B)) - J()(Bl)] cos 3wt -

{8

Other solutions are sccomplished by Jones (11) which include the
variation of w, resulting from variations in amplitude of the grid
voltage caused by the nonlinearity of the open-loop response curve and
also resulting from amplitude variations caused by frequency sensitive

elements.
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CHAPTER IV

EFFECTS ON THE OUTPUT OF A SYNCHRONIZED

OSCILIATOR BY INTFRFERING SIGNALS

The output of an oscillator is determined by the nonlinearity of
the circuit; by the feedback network characteristic, and by the external
signals applied. When the oscillator is synchronized, it is possible to
obtain a high degree of discrimination agsinst interfering signals accom-
panying the synchronizing signal. This discrimination, that is, propor-
tionately smaller interfering signals in the oubput than in the iInput,
may be appreciable even though the frequency of the interference is very
close to that of the synchronizing Irequency.

In solutions for oscillators, whether isolated or synchronized, a
compromise usually must be made between completeness of selution and com-
plexity of the solution. Completely general solutions to nonlinear cir-
cuits are in most cases quite complex, if not impossible. However, with
restrictions which meet practical conditions, and simplifications which
result from these restrictions, useful results may be obtained. In the
analyses to follow, the signal to interference ratic is considered to be

large.

Mathematical Development

Based on Adler's Equation

Adler's (9) equation is dimensionally in terms of radian frequency.

The interest here is in amplitudes, therefore, the analysis involves a


iria.de
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conversion of the instantaneous frequency determined from an equation

based on Adler to the resulting amplitudes.

Effect of Interference on Instantaneous Frequency of an Oscillator

An escillator subjected to two input signals is represented in

Figure 6.

Amplifier-Limiter ———————| Feedback Network

v ¥ G(Vg) 1/

Figure 6. Block Diagram of an Oscillator With
Two Externally Applied Signals.

From Figure 6 the following relations between voltages may be

written:
Vv =V_ G(v
r g (g) E ’ (53)
and
W e o+ A s (54)

where equation (54) is a relation between instantaneous volitages.
Let the voltage v, be the synchronizing vecltage and let Vs
be the interfering voltage on the ingut.

The equations for v. and V., are taken as
o

(55)
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and
o = V, cos wt = v, cos (ui + éél)t 5 (56)
where Aél ig the difference in radian frequency between w, and w5 s
By =Wy - w o (57)

A phasor diagram indicating megnitude and phase relations between
the voltages is shown in Figure 7. If the phasor Vl is considered to
be stationary at a frequency @) tren the other phasors have frequen-

cies as shown.

The fregquency W, is the instanteneous frequency of vi.
N ¢

Figure 7. Phasor Diagram for an Oscillater with Synchronizing
and Interfering Voltages.

The phasor Vi is the phagor combination cf Vl and V2. As an

instantaneous value, the effective externally applied signal becomes

T C‘(
vy =V, cos wt +V, cos (w + A?l)t . (58)
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Expansion of the cosine function involving the sum, (ml + Aaljt,

and combination of sine and cosine terms of uit yields

VO
L = 1 — C - V, si si .
vy =V, cos w, (1 + T, cos A?lt) V, sin wt sin 4, % (59)
This equation (59) maey be written as
vi = Vi(t) cos (mlt-+ elt}l, (60)
where
1
s g 22 ,
1E) = (Vl + V, cos 21') + (-Vé sin Aélu} ’ (61)
i
- N ]
= [+ V. + 2V, V, cos A, 4)7
and

1 V2 gin Aélt
Vl + VE CcOos aPlt

Q(t) = tan (62)

If the synchronizing voltage is much larger than the interfering

voltege, Vi >> Vg , equations (61) and (62) reduce to

t

Vl(t) =V, +V, cos A%, (63)
and
IJ’E
8(t) = v-l- sin &t . (6k4)

Equation (60) may now be written

\

vi = (Vl + V,, cos éélt) cos (“it + V% sin &,y t). (65)
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Therefore, for interfering signals of relatively small magnitudes,
the effect on the synchronizing voltage is & combination of amplitude
and freqguency modulation.

Referring again to the phasor diagram, Figure 7, the relations

between rate of change of angles and frequencies are noted as

%% = (wi - ui) - (W= ui) P (66)
and
%—%: (i.di - LulJ . (67)

The instantansous frequency w can be found from equations (66) and

(67) as

de d
‘”““’1+Tﬁ'£" (68)
The rate of change of the angle pB is
gﬁ:( "‘-U)‘f"d—a-. (69)
at - " at
if %% = 0 in equation (66), this reduces to the same relation as occurs

in deriving Adler's eguation.
The angle ¢ in Figure T between Vr and Vg represents the

Wo

angle of lead of V_ with respect to vg., I e 3 |wo - W that

2& ll}
is, if one-half the bandwidth of the oscillator is much larger than the

difference in the free-running and syachronizing frequency, then ¢ can

be considered a linear function of frequency,

o =K (w=-uw). (70)



31
From Figure 7,

sin ¢ = - — sin(-B) . (71)

For operation where the product K@(w - ubJ is small, then

Vt
sin ¢ = ¢ =-v£ sin B . (72)
g

The condition for KdJ to be small requires low Q of the feedback
network. When the synchronizing frequency is limited to a range near the

free running freguency, ‘w - wl is small.

9]

Substitution of equation (63) into (72) gives

(vl + v, cos abLtJ _
§ = - sin B . : (73)
g

Equating equations (70) and (73) yields

(V. + V. cos &..t)
K¢[Ew - ml) - {ub - ui)] st § oL B . (74)

g

The combination of equations (64, 69) and (74) results in

V. v AN

ap _ 1 - - & 2l 2
E{': = &LO - —ﬂ- (l + -‘v——* ces &glt) S1n B + T co8s A?ltj (75)
68 B L
where
Blo= 9 = 4% - (76)
_ pa— apg
For the condition of no interference, V2 = 0, and T 0, the

oscillator is synchronized, with P having & constant value dependent on

the circuit parameters and relative voltages that exist. Imposing the
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conditions Vé = 0 and %% = 0 on equation (75) reduces this equation to

.
A _
Do~ gy siaB =0, (77)
o'g
or
Ay
sin B = > , (78)
£ %

KV
No's
where BO is the constant value of the angle, without interference,
when synchronization occurs.
Since the limits of the sine function ark £1, the limits of

&10 to satisfy equation (77) becomes

Lo ™ Y =t g (79)

Therefore, the limits of the synchronization bandwidth are twc,
or, by is one~-half the bandwidth of synchronization without interfer-

ENce,
Incorporating equation (79) in equation (75) gives
ap v AV}

2 Yo p1'p
o éiO -, (1 + ﬁz cos A?lt) gin P + T, cos H,,% . (80)

Equation (80) represents the variation with time of the angle p of
an oscillator subjected to a relatively large signal plus an interfering
signal of small amplitude. It is reasonable then to assume that B will
consist of a constant value, corresponding to the synchronizing voltage,

and a time-varying part resulting from the perturbation caused by


sTnchron.1sat.ion
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V. cos

A (wl + Aél)to Therefore B may be taken as the sum of B , the

[®]

constant value, and Bl, tne time varying components Then,

B=B, +5B - (81)

With P defined as in equaticn (81), equation (80) yields

ag_ B, Vs | Yz
=t = Q0 wo (L 4 T cos A,,%) sin (B + B+ 4y, ' cos AEfL(SE)

Expanding sin (ﬁo + B,) by a trigonometric identity and noting

]
that because of the assumption VE S VT and B

e

L being a very small

angle, there results

sin (BO + ;‘31) = Bin B, t B cos B . (8%)
dp
Alzo, 5?9 = C, s&ince P _ 1is the constant part of the sclubion

for p. Therefore,

dp v
«--—--l = ) (1 e 8 air (3 s S £
4= AIO - mc(i + Vl cos &Elt)(mln B, * ﬁl o8 po) (84)
'I'frfj
+ éﬁl ﬁz 208 Aéli a

Since &5 - w, sin By = 0 {from equation (TT) s

dp v V,
- -w B, cos B (L + = ces A t) - w a sin B cos At (85)
dt e | Q Vl 21 c V] o] 21
Vg
By G098 B
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ap

The resulting equation (85) for EEE is a linear differential

equation with varying coefficients. An exact sclubicn for this equation
may be found. However, from experimental results the voltages at the
higher sum and difference terms in the output such as Wy * 2&21,
w + 5A21, ceo Aare negligible., The voltages at the sum and difference
frequencies in the output, which are negligible, result from the higher
harmonic terms in the solution of equation (85). Therefore to simplify
the solution of equation (85), since the desired solution is the steady-
state part and the higher harmonics are to be neglected, a solution is

assumed as

= s L a1 o 3
Sl Bl cos bélt + BE in ﬁEL (86)

The asgsumed solution has the same angular velocity as the forcing func-
tion of equation (85) because the steady-state solution is being sought.
The constants in the assumed solution are evaluated by substitution of
equation (86) into (85) and, using a method based on the principle of
harmonic balance, these constants are adjusted to maks the assumed solu-
tion fit the equation az well as possible. Terms of frequency other
than the fundamertal are neglected in this first order approximation.
Both sine and cosine functions are included bo account for possible phase
shift.

The result of substituting equation (86) into (85) and equating

like time functions of the fundamental freguency yields

L B, cos B_, (87)




and
P FAT Vv
2L . . 212 2
B2 --——-w = —Bl 6{o}] ﬁo + ‘H} - -"j:"" sin 53
c il i
Sclutions for Bl and 52 are
i o i B \
. cos BO (AEl , Sir ﬂO;
1 2 2 2 4
Qél + W cos LO
and
v L - 39
B, =4 2. (cb* e 5 ﬁo) (58)
2 ALV T ET B e
ol T By UE Py
Since
AN
. 10
sin p_= 0, (89)
c
and
e
& 2 .2
(UJI_. - Ajo)
cos p. = - =
0 w 2
(5
equation (88) becomes
L
2 2 2
- o A
Vo (B - )4 = &)
B, = ‘ z] ] (90)
1 Vl &2 -+ (ré Ag )
21 Ye T 10
and
. 21 (Ba1 = A10)
2 V. 2 2 Z "
& é?l ¥ (&E - AIOJ

Therefore,

35



l
v, (8, - &) [(w e "\10 cos &, + A& sin Azl‘t;]
f_)) = e— . (91)
1 Vl 2 " u? é“
1 e ™ P
The equation for wt may now be found from the integration of
ap
a6 1
hi# oy *aE ¢ gF - (92)
Thue,
wh = mlt + 2 - Bl . (93)
Substitution of equations (64) and (91l) gives for wt,
v (&, = A 4)
wt.=wt+-£ainﬂgt[l- 2L A}OAE,]; (94)
& Vl 3 & 2 n P A |
Sy ¥ G, ~ikgg
Vo = By0) 2 -
= n (w-/_\l)‘cosal?t.
v (af L 2 el ) C 0 )
iy F L, = Ay

The instanteneous value for the voltage feedback is
v, =V, cos uh . (95)

r

wt from equation (94) contains time-varying sinusoidal

Since
terms, the result, when substituted into equation (95), is sideband terms
The cosine function may be

of the frequency-modulation type.

a d
roury U.}l
written in shortened form &s

(wt + x sin At - y cos At (96)

2

wtk = cos

where



2.

v ‘ i 3 - 5
_B (81 - 808, ] ) ! (85, - B10)%; (
BT IR R AEJ“rEJ. e o M o)
= %1t We “ T L * Ppn, ~ Vg
and
1 1
; 2 2 : ) 2 2
Vo (B = &) - &) 1 . (B, - 810)(3 - B1) (98)
A SN B _] 21 T » A9
5 T e e
with
v A A
_ g T _ 210
ral =i 'fj:"' 3 821 = wc 3 and alo ™ "{;"” g (99)

The trigonometric expansion of equation (96) and the substitutions

for functions that yield Bessel functions gives for cos wt,

cos wh = cos wtb [(Jo(x) + 2J§(x) cos &, b + ...)(JO (¥) (100)
= 2J2(y) cos 24,.% + ces) + (2Jl(x) sin &t
+ 2J_(x) sin 305, + ...)(EJl(y) cos A, % - 2J.:,}(y)
cos 30,6 + ssn)] ~ gin w, [(‘EJl(x) sin &t
+ 2J5(x) sin 34, + ...)(JD(yJ = 2J2(y) cos 20t + sia)
- (JO(X) - 2J2(x) cos 24,.% + ...)(EJl(yJ cos At

. 2J5(y) cos 34,.t + ...)] 5

Examination of the arguments, x and y, of the Bessel function

indicate there are conmbinations of 5]0 and 621 which yield large values
o

. . . S X .
of the arguments. Graphls showing a fzmily of curves for = and =
21 21
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as B is varied, are shown in Figures 8

for constant values of 510, 51

and G.

Examination of the curves in Figures 8 and 9 indicate that the

values of -;E— and :E_ are reasonably well behsved; that is, their
21 21
megnitudes do not reach extremely large values until combinations of

and small values of |§ occur at the same

! o1 |

time. This indicates that the arguments of the Bessel functions reach

large values of l&

large values when the synchronizing frequency is near the edge of the band
of synchronization and the interfering signal is quite near the synchroni-
zing frequency. This condition corresponds to the borderline of stability
and is of little practical interest.

For values of |610| £ 0.9, |x| <1.0 and |y| <2.2, since the
requirement on the development of the equations has been rgl << 1, then
the arguments of the Bessel functions will be small with the limitation on

|8 The Bessel function expansions in equation (99) may be truncated

lO"
after the first term yielding,

cos ut = cos wt [(3,(x) I,(y) + (23, (x) sin £,8)(23 () (101)
cos a?lt)] - sin wt [KEJl(xJ sin A?lt(Jo(y))
-(3,(2)) (23, (y) cos &,.t)] -

Also the Bessel functions may be replaced by the first term in their

series expansion giving for the first pair of sidebands,
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Figure 8. Variation of X with &,..
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4 - o X . LB Y Afa 100
cos wh cos wlt sin ult ]_72 5T sin &glt 25T co3 &Eltj (102)

X ;
= cos wt -3 [cos (ui - ﬁel)t - cos (°ﬁ + &EL)ﬂ]

“fr
role

3
[sin (wl + Agl)t + sin (ml &21;1:] .

~om equation (10l) it can be zeen that the interfering sigral
has caused the equivalent of narrow-band frequency modulation. The

most important assumption is the restriction on the interfering to signal

v,
el .
ratio, that is, [}v: << l. For 0.9% IS,OI §-l, the approximations

used for the Bessel functions are not valid and caleculation In this region
would require retention of the Bessel functions. However, cross-products
between terms as in equation (100) would contribute to the lower order

sidebands and an analysis in this interval of [& would become im-

ol
practically lengthy.

Effect on the Amplitude of an Oscillator Resulting from Interference

Adler stipulated in his derivation that the amplitude variation
of Vg and Vr resulting from Vl was small in comparison to Vl.
This was due to the application of a small external signal compared to
Vg and to the operation of most oscillators in almost flat part of the

amplitude-limiting characteristic. Neglecting the amplitude modulation

entirely results In an equation for v, as follows:

(cos (ui - A?l)t - COoS (wl + Aél)t) (103)

rol &

< Gi R -
Jr &= Jr[cos wlt

—-

+ % (sin (w +4,)t + sin (o -4, 8] .

The vaoltage feedback Vr is taken as the free-rumning grid voltage


ampl.itude-limi.ting

L1

v in equation (103).

a3
In order for the analysis to be complete, even though the contri-
bution is small, some account should be made of the amplitude variation.
Since the amplitude variation of vr is smell because of the inequality
Vé L Vg, a linear approximetion to the open-loop gain curve may be used.

A typical curve for an oscillator thet satisfies Adler's conditions

has a relatively sharp limiting characteristic and iz as shown in Figure

1.6 L

o — S — d— —— i ———— i S — i —— ——"

‘I'O /

e e e o e o m—— ——— — -

Q 1.0 r
go

Figure 10. Open-loop Amplitude Characteristic of an Oscillator
(Normalized with respect to the frec-running
voltage amplitude, V’O)n

A tangent drawn to the curve at rgo = 1.0, will have an equation
]
= 1 [ .
Fro %o+(“ Yﬁhg) (10k)
=r (L-r )+r



42

Solving for rgo gives

o S 2 10
- P (105)
ro
From the phasor diagram, Figure 7,
1 = + ! =] = i 1 =GB ) [
fg V.+ V] cosB=V_ + V] co (ao +B) (106)

Expanding the sum of angles by trigonometric identity; mposing
the condition that p 1is small; and substituting for Vi frem equa-

tion (63) gives for equation (106),

&= s 54 ¢
Vg Vr + (V + V cos Ab* (cos BO B. gin ﬁo) q (107)

it

or normalizing with respect to VO and substituting for functions of 50,

1.

. , e 4
Yo = Tpo ¥ (Frg ¥ Tpg €05 A 0)( L1 - 810]7 - BB ) - (108)

From equations (105, 108)

1 - 7!

ro e
ro= 1+ — (2 T 255 CoB Aglt)([l - 87,15 - BB ), (109)

le

|.-.

where 51 is the value stated in equation (91). Incorporating Bl in

equation (109) and neglecting higher harmonic terms yields

1
t . e - B
| L=Ts 2 B ooProte1(®1 = B1od|
r.= 14 ——p— o (1 « 8-} T (110
ro r 10 10 & 2
ro 2(1 + 85, - 8 )
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ol o FacProer®®e - B) |
20T T R L2 21
L 21 ~ %10
| Faluotea(®or < 8o |
Y~ e
= % %21 = P10

Effect on the Output Including Both Amplitude and Frequency Effects of

Interference

The effects on the output due to variation of freguency is ex-
pressed by equation (103). The effects resulting from the amplitude
variations causad by the amplitude limiting characteristic are expressed
by equation (110). The product of thece two equations (103, 110) yields
the total effect of interference on the output of an oscillator that meets
the restrictions set forth. The combination and solution of thege two

equations are included in the Appendix A. The final equations are nor-

malized with reapect to VO and terms are retained through Wy * E&bl.
Vi
The individual termg for ?L are as follows:
o
L
V (w ) 1, & ) 4
@ o B 1o 4 2 32 [ P
-_—v----— a2 ult = {l + ("—'—rﬂr—'“'—) [ [_L = Bl:)) k_‘_() - \xll)
o ro
i . B ~
TpP10%21 a1 - B10] I
QD 08 L\Jl 3
1
where
2 e
Di % Lo B = B 4 (112)
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V (UJl) L - B r
8 i & o & hle] 2l 1. ~
S S {2 ( 08 )D] 81 - B10d|F1cProer(t - (113)
8,105, _ 8y i g "10°10 21[21 1]
D 20 © D
1 1
2 .
(L - 610)‘1} sin wt o,
: 1
Vota ¥ 4,0 1-1x
S a1 1 - )
7 0S8 (L.U + /:321}1'; = é* [(—-T—.!—EEL) (l - 5 ) ( 20 (llh)
Q - T ro
& - . g B ; 1
71081671 o181 ) —_ (85,5518, ) "rc(‘”l)l
o TRl T D v
L 1 0
cos (m SAS )“ 4
V((ﬂj-i-[.\_) - [5 ] - Lt
gt 1 ¥ Al J 701 82,81
= sin (u. + f_\. ) L 1 —'—7— (115)
D (™
Ly ¥
B, B 4 (1 -8 9° <5 (w ) )| stn(u #8.)
T90°10°21 104 A s e B
v (w, -850 s [ Zapt -
o - Py o a2 nd o )
T soe LapbgyJo =g |Farilb5)" (5 (16
£10 8107 8179 0l j i [®,1-8,] 521)
D, B 2 s D
i 1
v (w) ]
—E-\-‘-}—-J cos (w - B, )t "

o
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V (@ ~4.) £ 18, <8 ]
T A _ 1 | "pa¥21™%10
VC sin (wl - AEl)‘t o [ X (rlo'é 0691 (117)
- ; B[}
lLar A~ = V(w)
ro £ @ ¥l .
L———W ] k(L - B o )J sin (w-Ayq )t
Iro o
V(0 +24,,) L [rert " % |
T cos (w +24,))t = f AR {1-874)" 7] (218
(o 16%10P21%10] . Y (1 - 851 [851-810]
20 T D, 21 D
ji 5 L
5 [6..+8. ]°
i S r - =t
10°10%21P21"%10 " .
+ Dg ) cos (w + aﬂzl)t P
V (o + 20,)  (Terr ) x,, [6,,-8. 4]
s T =) b £ A T ro’ 2121710 Frias
v 1 21 I r D

5 6’3 D 7
[—r B, . B_.r {'l . 21[:__1 ]_\:'-]) d {r‘B}. ) .

Lo 10721 21 Dl 10 ( 20

T10°10%21 (851810 o Lo B B B
_D wd |JJ1 T L&gl 3

1

\r’{:(ml - 2&21) .:as(wl-eae_l)t = - VS{uJIJrEaE.L) :os(ui-?a?l)t ,  (120)

|
and

{Q}L-a%l) sin(ml-EA,al}t = Vs(ml+2A, sin( -,_Am)t s (121)

These equations (l11-121) reflect both the frequency-modulation

effect and the amplitude-modulation effect on the output due to the
v
interfering signal. The summation of these equations gives ?E . As
o}
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Lo

would be expected the effect due tc¢ the slope of the amplitude-limiting
characteristic has a minor effect when the limiting charascteristic is
flat or near flat, which is required for reasonavle amplitude gtability.
The inclusion of the amplitude-mcdulation effect does reflect the unequal
magnitudes between the interference term in the output at the frequency
of the input interference and the interference image, that 1s, at

W o- Aél' Without the amplitude modulation effect these interference
terms would be predicted to have equal amplitudes (equation 103). Com-
puter calculations based on these equations indicate the Wy t Qﬁél
terms are negligible compared to the Wy + A?l terms. This is expected
ai?pe their generation 1s entirely due to the amplitude-modulation effect
wh{ch has comparatively mincr overall effect, The sine function at Wy
also proved to be negligible compered to the cosine function. Its value
was never greater than 0.06 per cent of the cosine function amplitude for
the calculated values.

Curves showing the dilscrimination to the w + AEl term are
graphed in Figure 11. The discriminetion is defined as the ratio of the
gain of the desired signal to the gain of the interfering signal. These
curves show the discrimination as 620 is varied. Each curve is for a
constant value of 610 and r;o. The reason that all the curves do not
heve a common intersection on the y-axls is due to a difference in out-
put at W for the different conditions. The minimum discrimination
occurs et the location of the synchronizing frequency in each case. In
an analysis where the frequency selectivity 1s important these minimums

are ghifted teward 610 = 0., Also of interest for the & . = =0.9 curves

10

is the existence of a negative discrimination or gain for the Interfering
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Figure 11. Discrimination to the Interfering Signal.
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signal of between one and two decibels. Curves having the same magni-

tude for B and r but of oppozite sign in B are mirror images

10 ;o 10
about the y-axis. The change in r}o causes an approximately vertical
shift in the discrimination curves, with the greater discrimination occur-
ring for the larger vaiue of r;oj refleching lesz effect due to ampli-
tude modulation.

Figure 12 shows the ratio of the interfererce in %he output at
the input interfering frequency to the interference in the ocutput at the
frequency w - AEL as .610 is varied. For the value r;o = 0.9 there
ig very little difference in the two zideband terms and the difference is
practically unaffected by the location of the synchronizing frequency.

The inequality 1s greater for the lower values of r;o and has a more
pronounced change with the synchronlzing freguency.

The interference at uy + 621 and at w = Abl as 590 is varied
is shown in Figure 13 for constant velues of 610 and r;c. These curves
roint out the difference in amplitudes of the two interference components
and also the location of each with respect to the normslized frequency.
The curves for w - 612 components are epproximately the same as the
curves for W 4 &12 components shifted downward and rotated shout the
constant value of 621 = 810'

The effect of the variation of the synchronizing frequency on the
interference output amplitude is shown by the curves of Figure 1lh. If
the interferernce is located at 620 = (0, +there is little effect as ®

is varied. However, as the interference moves away from W, s the mag-

10

nitude increases when 610 approaches 520 and may reach a value where

the ocutput ratio of signal to Interference iz greater than the input sig-

nal to interference ratio.
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CHAPTER V

EXTENSION OF EQUATIONS TO MULTIPLE SIGNALS AND NOISE

Multiple Signals Applied to Adler's Equations

In the preceding chapter equaticns were derived for determination
of the output when the inpuf consisted of a synchronizing signal and
one interfering sigrnal. When multiple signals are applied the procedure
is similar but the restrictions placed on magnitudes must be redefined.
Let the externally applied voltage to an oscillator of the type

in Figure 6 be

vi=V, €08 wi +V, cos (w +4,,)8+7V

P~ =

cos (LI)-J- +&1l)tﬂ ‘i LR ] (-1.22)

m
i i v -4 Faps 1
vy = Z Vx‘_ cog /_\Illb cos wt - z vV, sin Anlt sin wt, (123)
=1 n=2

in which f_\.ll = Q.

Equation (123) may be shown &s a phasor diagram with dots designa-
ting the ends of the phasors representing the interference terms. Such a
diagram is Figure 15.

The circle centered at the end of Vl represents the maximum
length of the phasor summation of the interfering terms. If the square
of perpendicular component, (J.TE sin Agl'l; - V‘j sin %lt 5 5wy o opeh

less than the horizontal compenent then the resultant amplitude of Vl
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Figure 15, Phasor Diagram of Synchronizing Signal and
Multiple Interfering Signals.

and the interfering terms may be taken as

m
V=V 4 Z Vocos A Lt (124 )
and the angle 8(t) can be approximated

L, v
o(t) = z -‘)—r—l sin &t . (125)
A )
n=2 )

Stated analytically the restrictlon discussed and now imposed is

m 2

m
E%rq<z %Q «<1. (126)
1

Therefore
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The angle ¢ between the phasors Vr and Vg (see Figure T)

becomes

b = n=2 sin f'3 - (1‘28)

Again, as for the single discrete interfering signal ¢ 1is taken
as a linear relation of frequency, ¢ ='K¢ (W - ub). The rate of change
.. 4B _ , 46
of B is = (wl-w} o e
By use of equations (125, 128),

m

ap !

——— - 8 b )si A .

3%z = Yo wc(l + Z r , ©0 énlb)rln g +Z r 8, cos A .t (129)
n=2 n=2

Since the oscillator is assumed synchronized, the perturbation
caused by the interfering signals will be about a constant angle Bo'
Therefore, P = BO + Bl, where ﬁl ig the small angle resulting from

the perturbations. Replacing B Dby 50 + E:l in equation (129) and

ap
. ) . o .
recalling that T 0; that A:LO - W sin BO = 0; and that since f.':l
is a very small angle sin (BO + Bl) = gin ﬁo + ﬁl cos ﬁo, equation

(129) may be reduced to

o

ap,

T = - 9 ocos B, (Lt Z Pl 208 BBy (130)
n=2

m

m
A
-+ (Z r , cos &nl )(--mC sin E’o +z Anl) .

n=2 n=2
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A sclution is now assumed for B. containing only terms of funda—

1

mental frequency as

Im
51 = ZJ[pgn-l cos & .t + B, sin ahlﬁj. (131)

n=2

Substitution of ﬁl from equation (13%1) into (130) and evaluation
of the constants for this order of approximation from only the fundamental

terms gives for the equations needed to determine the B; 3

m m m m
L | Tl TR |
= i ( a i
z Eznﬁnl - wc: o8 Bo‘ Z‘ Ben-l) t (Z ﬁknl Ldc: Bl Bo)( Zrnl)’ (152J
n=2 n=2 n=2 n=2
and
m m
T i""‘l
- Zk L ke T 'Bo (,[’_J BEn) : (133)
n=2 n=2

1
1. 88 )5
701(8yp = By )L - By, ol
T I ) (13
bt By = B
and
B & rnlcanl)(snl = 610) (135)
2n 1 4 2 62 ’ 35
+ 851 - B0
o g
where anl = :}E— and n is an integer larger than 1, n= 2, 3, «.s
c

Therefore,
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= ) 2
B, = 2: 1 10 {1 = 5 )¥ cos &t + 8 p sin A Lt . (136)
1+ 5 - e = :

n=2

ag
. de L
The radian freguency of Vr is u and = wy + -t ek

The integral of w with respect to time yields wt = wlt + 6 - wl.
The eguaticn for the voltage V. returned from the feedback net-

work is expressed as vr-= Vr cos wh. Exemination of cos wt with the

substitutions for €6 and Bl gives,

3 r (6nl lO)
cos wt = cos wt + E: r.q sin ﬂhlt - = (137)

L # 6nl - %0

_ l _
<l - 610] cos A.alt + Bnl sin &‘nlt>:l} .

Equation (137) may be written,

cos wt = cos (ait + ZL E&Lsin Ahlt - ¥y, cos Anltj) i (128)
n=2
where
T (B = B, )8
nl 10" nl
nl 10
and
L
2,2
(5n1 - 510)(1 - 610)
y_ =7 . (140)
n nl 1 4 62 _ a2
nl 10

m
( E: rnl)g <<1 end [8,,| < 0.9 this equation (138) for
n=2
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cos wt may be reduced as shown in Appendix B to

m
X
" 4 _n . - g -
cos uwt = cos wt + Ei{iﬁ [}os(wl + 4,0t - cos (w éhl)ﬁi} (141)
n=2

m
N
n
y g VAN ¥ = il "
¥ Z { 2 [ Hl(wi " nlJ* * fin (wl nl)ﬂ}
n=2

The effect of the amplitude-limiting characteristic may be shown

(Appendix B) to be

L - rig 2 ”3 VO Bigtn%y
= l = o ¥ e Sl S }
Bas = 2 | Mgy (1 < 18) ][- /., T8 :I (1h2)
ro
- N==2
1 -1 -]i &,
ro 2 12 N
- - ~og A
T ) (1 - 8,) (Z [(Fao = T10%10%n1%0] <05 %1t
&e n=2
! o
_ oy, 5 () 6 . sin A& %)
- ( 10 )flolo(L 1°n°n1 5% Tm1*/ o
n==
where
8 , -0
_°n1 " 10 = 2 2
z, = —*D'—-——n and D =148 ; - By (1k3)
Ve
The product of equation (141) and (143) to obtain 7 18 acconm-
o v
plished in Appendix B, giving as the individual terms of V—r’
o
J L
v (wl) 1L-r = -
e TO \/ - 2 \e
-—-—-—-Vo cos wlt = {l + [(—_—_T]ro )(_ - Olo) ][I‘lo (llill-)

o
_Z "n0%107n1 (81 - 510)] fon ugh
Dn
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Vs(wl) . 1, % P B ( nl
e gt e g Z{( rltorcj ) (145)
n=2 -

-5..)

(@'aio] ';no ) 10%10" nl By

_ (Bnl“alo)ﬁnlrnl o g
10710 D _ " 1" &

n

V m l cos wl +£§l {( a1 [l - nl ]‘0 nl]) (146)

V
) G’ 61() (rno

161001 [Pa1~210] i

.l'\)L_.l

" 1
V (wth ) sin(wts )t = 3 c+—.-—“ ) r (RL10)0 )
s Ej_ nl 8 1" nl 10 167 nl D, nl

V. 1
5. 48 J{18° )2 v (@)
. rn_—[( nl lgn 10 ]( cvol )}sm(mlm

5 )8
vV (w g l) cos(m -8 1 %{( lO nl“ ) 148)
o B 1 "
& ( = I‘O)(l 5:]2. )2 (rno lODLO nl nl lO }
0 n

cos (w; - Anl)t.

and



c)9

!
Tt ¥y B o o (B eB, )8
{} (—“TEE) 10710 né nl. 10" nl (149)

ro n

2
e ) (8 <8 Y182 )2 AV (w) )
+[n n Dn LVO )}sj’_{l (ml-An T

The output amplitude at the frequency w

the sum of the gquares of the sine and cosine terms of frequency. The

. o %3
Vs(:?"aﬁl) Blnlig -4/t =5

is the square=-root of

normalized amplitude of the cosine component is approximately one; whereas,
since the square of the sine component will be much less than one, its

contribution to the output at w, may be neglected. The amplitude of

1
the cosine term for the multiple signals has a form similar to that
for the amplitude for one discrete interfering signal. The term from

equation (144),

K rnoalornl(anl_BlO)
‘10 - 2D ’
n=2 n
may be written as
m 2 . X
N R S LA e )
SEs I EDP !
n=2 g
m
. ., L Ty 5 = | ‘ -~ 2 -
It can be shown that with IBLOI $ 0.9 and ( EJ ‘nl) << 1, the sec-
=7

ond term in the brackets is much less than 1. Therefore the amplitude of
the cosine function, which is also the output at frequency ui (neglecting
the amplitude of sine component), is approximately the same with one or
with more than one interfering signal applied. The other equations for

the output interference are seen to be exactly the same as for the dis-

crete case with the amplitude of the cosine function unchanged.
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2
Therefore, with (Z rnl) << 1 the output due to multiple
n=2

discrete signals is as if each were independent of the other. The out-
put from each interfering signal may be found by considering its inter-
action with only the synchronizing signsal.

In the preceding analysis the dependence of the output amplitude
on frequency was controlled, as far as the oscillator circuit elements
were concerned, by the linear relation of the angle ¢ to frequency.
This analysis did not include the amplitude variation due to frequency
sensitive elements of the circuit. Even without this freguency selec-
tivity the terms of importance are found to be the first order sideband
terms. It is to be expected that in an analysis which included the fre-
quency selectivity the terms of interest will be the first order side-
bands. Therefore, in an analysis using the differential equation of the
van der Pol type, which includes the frequency-sensitive elements, the
preceding analysis may be used as & guide for determining the output

terms.

Multiple Signals Applied to &an Oscillator Described

by van der Pol's Equation

The differential equation describing the behavior cof an oscilla-

tor with & cubic nonlinearity and with multiple forcing functions is

m
- at + 3P + By Z in (w40t (150)

where the An's are related to the forcing functions, with constant
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current sources, as A = and A [ = w = .
> 2 Tl N Wy

The restrictions on the order of magnitudes of the different com-
ponents, if placed on the ocutputs, may require lese restrictive conditions
at the input because of the freguency selectivity of the circuit. It is
posgsible for the interfering signal at the input to be larger than the
synchronizing signal if it is relatively far from the free-running fre-
quency of the oscillator. However, one of the interests in developing
the equations for the output 1is the effect of noise accompanying the sig-
nal where the signal-to-noise ratio is relatively large. Therefore, the
input amplitudes at the interfering frequencies are assumed much smaller
than the amplitude of the synchronizing signal. DBecause of frequency
selectivity the ratio of synchronizing signal to interference on the out-
put will in most cases be larger +than the corresponding ratio on the
input. Since the nonlinearity is cubic the harmonic frequency generated
will be of third order. Also there will be a number of frequencies gen-
erated due to intermodulation products. The third harmonic terms will
suffer gsevere discrimiration because of frequency selectivity and there-
fore may be neglected. DBased on the preceding analysis and on experi-
mental observations, the frequencies in the output which will be of inter-
est are at Wy W + AEl’ and at W - éhl' However, the restrictions
required to ellow neglect of certain terms may be derived by considering
the result of applying an assumed solution to a cubic nonlinearity. Since
the extension of this method 1s to be applied to the case of noise, in
the limit the number of signels must be allowed to approach infinity and

the power spectrum is of interest. Therefore, for purposes of establishing
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relative powers, the phase angles may be omitted.

Assume a voltage v given as

I
0

v = bf[cos wt Z r . CO8 (tu1 - &Jn)t’] ’ (151)
=l

with hf the maximum value of the voltage at W s applied to a cubie

nonlinearity, Then, vj becomes

v = bf, [cos5 wt + 3 cos® w & (Z r ¢ COS (“i - &m)t) (152)
- n=1
Y
+3 cos wt (Z r_ » cos [ml = &ln)-t,)?- + (Z‘ e
n=1 n=1

cos (wl - Aln)t){l.

1f terms that fall outside the pass-band are neglected and terms

of the same frequency are collected,

z
. I b; {g E_ i 2}__, rif] cos w b (153)
n=1
= n
+ % Z‘ [2 of + r;if' + 2 (Z 1“qf) r f‘] cos(ml-Aln}t
n=1 g=1
a#n
EI
+ 15: ( rnf) cos (w + &ln)t
n=1
o
+2 () %) cos (w - 28 )t
T O 1 1n
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m-1 m
3 Z A, +A )t
t5 ) T elqr Ecos wy =B, A 1q )t + cos (@
n=1 g=n+l

+ cos (wl - Alq - Aln)t:]

m-2 m-]

Z ZA y TnefqfTst [COS (“J]_‘Aln &l f‘A J’G

n=1 g=n+l s=qg-+l

ol

+ cos (w -4, -A +£=ln)t+cos(

i 1q 1s g < +Alq_)g'

Ry 1s 1n

An accounting of the number of terms at each frequency shows m
1
A - ~ BR. ¥ 2 -
terms for w +48, , w -4, end w -24 ; 5o 1) terms for
frequencies involving two deltas, and % m(n - 1)(m - 2) terms involving
three deltas.

Now, on a power basls the power for each of the frequencies is as

follows:

wy ‘E'? b? (1 + Lmrif - L&I'nfm ), (154)

.9 6 2 2 o8 2 5 -1
! -&ln ) Embf “nr ([2 * rnf] t b I‘nf[g i r11£]+ e rnf)’ (155)

LML T L (156)

w 28 t2mt o, (157)
wlialnralq:%m(m-l)b?rif, (158)
WAL A A 1%9 m(m-1)(m - 2) bf ;f (159)
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Since the output interference terms with relatively large input
signal to interference ratio is proporticnal to the inpﬁt, it is'possi-

ble to allow m to approach a very large value and to allow all rnf‘s

to become equal and very small, for noise representation, in such a way

that mrif is proportionel to the input noise voltage ratio (SN)€n“

Then, {(m rif)lfé can be equated to]/k(SN)in, with the expectation that

in a synchronized oscillator k > 1. Substitution of (SN)iD into equa-

tions (154 - 159) yields,

9 .6
w i f Pp (Lt gt )= g bpy (160)
K (aN)7, k (sN)
o - By R e b 11‘—2-}—2—2*”1}21{1* > |(361)
kK~ (SN) k™ (8N); K (SN}i
h‘ & 9'b6 1
nf Tk "f ké(SN)in :
“1+A1n:I§‘b§ — (162)
(V)
6 r |
9 nf
w, = 2 - b, ———— , (163)
1 T8y P Yr kE(SN)in
w t A EA % b? - (164)
=3 1 k;'(sw)iir |
R L (165)
AL R PR B e

in
The approximations are based on (SN)in > 10.

Comparing the power at w o Aﬁn plus that at + Aln to the

g
sum of powers at w - ealn, w * Aﬁﬂ_t Ala’ and w4, % &lq % éis
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in
6 6 2
b b Or
£ 9 9 o nf 81 1
( 2+ >> o + (166)
Pt ¢ B FarE BT ey
in i i
i - ) s
B )t

in

Under the restrictions imposed, terms contributing to the ampli-
tude at the fundamental frequency that invelve product terms other then
bl and b2 may be neglected. At the frequency w o= &ln’ amplitudes
that involve the square of bl or b2 and one of the interfering com-
ponents predominate. The assumed solution may be considered as a close
approximation since terms generated that wers not included in the assumed

solution are negligibly small.

assumed solution evaluated by & method similar to the principle of har-

monic balance. The aszumed solution is

m

7= o A T
v E: {}2n-1 gin (ui + th)t + b2n cos <hﬁ + Anl)t (167)

ne=1
+ dEn—l sin (ui - &nl)t +d, cos (ui - Ahl)t:} .

In order to make all terms have the same limits on the summation
indices, dl = d2 = Q0 and All = 0. The amplitudes in equations (167)
are assumed to be glowly verying which will allow testing of the stability

of the equations.
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The term in the differential equation due to the cubic nonlinearity
causes generation of a large number of terms with an input as assumed.
The process of solution is to substitute the assumed expressipn for Vv
into the differential equation and to equate like functions of time.
There will occur terms of different order of magnitude in this substitu-
tion and the solution will be greatly simplified if terms which may be
neglected, are neglected as early in the development as possible. To help
with this procedure the following assumptions are made:

(a) The interfering frequencies are not far different from the
free running frequency (“i + Ahl = ui).

(b) The amplitudes of the individual interference terms in the
output are much less than the amplitudes at the synchronizing frequency.

(¢) The components of the synchronizing signal in the output is
of the same order amplitude as the free-running amplitude.

(d) The variation of the amplitudes with time occurs relatively
slowly.

The substitution and solution for these equations are carried out

in Appendix C and thkey are,

2bl + 24

o1 Pp - %y (L -p) =0, (168)

¥ ) . {
2B, - 28, by - Ob, (L-p)) =40, (169)

2y, 1+ 2[Rgy - 81 Pop Oy (1 2p) +dy g0 tpppE O (170)

A = 2[;01 B ni]b2n—lmub2n(l - 2py) tdy, gPpdaPg = - Apu, (171)

2d2n-l * 2[&01 * &nﬂdEn B C{dEn—l(J“ i gpl) * b211~lps T PopPy = 95 =)
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and

2a, - 2[ag + 4 Jdy 4 - 094, (1= 20)) - 05005 t P 1Py = O (173)

where,
AOl = W - Wy, (174)
Ahl = = wﬁ ,
‘ o)
bf + b;
0, = ~——m——— 3
1 2
a
o]
2 2
bl - b2
DS T mne 5 3
a
o]
Eblb2
Pm = =3 2
&
0
and

nw2, 54 wi, 1,

In the manner of van der Pol, the amplitudes of the components are
considered constant in the steady state, thus all the derivatives become
equal to zero.

Equations (168, 169) are independent of all amplitudes except

bl and b2 and, therefore, may be solved for these two components,

5 = 2801 A1%
(i~
li-AOl + a2(1 - pl)

5 (175)

and
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afl - pl)Alwo

b )2 . (176)

i S T 2]
! -
Hszl + o (1 Py

Squaring bl and b2, adding and dividing by a‘g gives the

normalized amplitude. An implicit equation for Py is as follows:
2 B, 2 e
ll'aol pl + p‘|_ (-L - Dl) = El 2 (lTT)
where
& A A2w£i
g, = -—O-:—L and F° = -—}-—9
oL [7 1 aE
o}

The solution of the other amplitudes are more complicated than for

bl and  Dj. However, equations (170, 171, 172, 173) gives four independent

equations in b’an-l’ b2n’ Ay, _q» @nd dEn' The golution of each will
involve amplitudes of bl -and b2 and constants of the oscillator.
In determinant form the solution of b'”‘n ] becomes
¢ £ AOIL”AnL] Pm Ps
% oh l'2pl) “Pg Py
-al-p
0 P 2{801%4,1] (1-2p,)
. 0] -0y - l-2pl) -2 &Ol-l-&nl (176)
2n-1 ’
-%(1-2p, ) . @01_“3}1';] P Py
=2 [&Ol-&nﬂ -(1-2p,) "Pg P
Ps Pry 2[Bgrtay ] -%(1-2p,)
P =Py -%(1-2p, ) -2 ‘&of‘!‘\‘nﬂ
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Solutiors of b and d proceed from a determinant

d ;
2n’ “2n-1 20,
such as (178). Combination of corresponding sine and cosine amplitudes

to give the normalized squared amplitudes yield equations as follows:

- 2
N F2 l{'(go]_ —}Unl.* + (l - EDI) (‘!79)
Pro © *n D ™
Il
2
42 By
Pra = Fp = (180)

wWhere
o
O
. _ _2n-l on (181)
Lnb B &LE 5
o}
o 2
d .
2n-1 t dQn
Pa © = !
G a
o
A w
H ... RO
“n b aﬁ.a F
and

D, = [Min + (L - 2pl)9'][j+(c'ol + “:;1)2 + (1 - 2p1)2]

L ) , 2
R 2"1[“011(“01 tog) + 1 -20)7]

The stability of the scluticns for b, and b the sine and

1 2?
cosine components of the synchronizing voltage in the output, can be
accomplished by the method of Andronow and Witt as presented in Minorsky's

(10) book. The equations (168) and (159) ere in the form
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b, = P(bl, bg) §

and

b = Q(bl: bg) 2

N

aud may be taken as variables in the phase plane. The condition for

bl = b2 = 0, corresponds to steady-state and the solution for bl and

bE are as found in equations (175) and (176). To determine the stabil-
ity of this point of operation the amplitudes are allowed to take on

incremental variations about constant values.

by =Dbs+ §and b, =Db,,+¢€, (182)

1 1 20

where blO and b20 are the coordinates in the blb2 - plane of *+he

gingular point.

Replacement cof bl and b? by these definitions in equations

(152) and (153) yields,

: (b, #0)° + (b gte)”
= - 1 1, s 1
2(blo + g) - 2&Ol(b20 + €) i a(blo+g) o a2 2("85)
Q
E
. \ (b gt) T+ (b te)
2(b + €) = +cébl(blo+§, + a(bgﬁiel 1 - 2 -Aw . (184)
o
Since blO and bEO are zero, the eguations reduce to
: b?.o * bgo
= - L o e ——r e
2t byt2Bs1 ) + By [q = (185)
o
2 .2 2
20b. b bT b 12D
10720 _ 10 20 7710
+ ("gﬁbl - ag )L 7 ag ( = a2 ) 2
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2

b?o % bEO
28 = by4(285)) + by |1 - — | Ay, (18)
6]
> > >
20b. b S, + b= + 2b
10°20 ) 10 * Pog 20
- 2 [ ot )
=) a
o 0

; p 2 2 2 ;
where terms involving €, €, ... and e, (&7, ... are neglected.

The terms involving only blO and bPO are %ero by equations (168) and

(169) with 610 and 600 zero. The equations for i and € then

become
o P
- = ‘-D:‘L_O
o = (mzanl - &pm)e + a(l - Py - 2 )¢, (187)
fa_o
and
2
. Eb’io
0

The rature of the singular point is determined by the roots of the

characteristic equation determined from

2
e B -
ghe = 8y e 1 T8 Pa
(9]
=0, (-L89)
a 2b2
(A - = P G 20
0L "2 "m E(L w B 5 )-8
o

giving the equation,

2 . 2
§” - 20(1 - Epl) + (1 pl)(; - 3pl) + 8, =0 (190)
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Now for the system to be stable the roots of equation (190) must
have negative real parts. This process may be accomplished by examining
the last term in equation (190), which is the sum of the roots to deter-
mine necessary conditions that it not give a saddle point region. If the
roots are real with opposite sign then & saddle point region results. A
necessary condition then for the singular point not to be a saddle point

is

(1“‘ = pl)(l - 5[31) - k'g(a)l g 0 . (191)

With the condition expressed by equation (191l) imposed then for

the roods to have negative real parts the condition

B0l - 2p ) 8 O (192)

L
must be met. The regions imposed by these equations are Indicatsd in
Figure 16,

Since the interfering signals are limited to small perturbations
about the synchronizing voltage output, in this analysis, the solutions
for these compornents can be expected to yleld stable operation of the
escillator except when the gyachronizing voltage is near the borderline
between stable and unstable regions. The effect of the interference is
to enlarge, slightly, the area of unstable operation.

Under the assumed conditions equations (179) and (180) are inde-
pendent of all inputs except those at the synchronizing frequency and
the iaput at frequenecy Wy + éhl' For each input interfering term there
exists an output at the frequency of the input wy + Aml and at W - P

] nl?

as shown in Figure 17.
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Figure 16. Response Curves of an Oscillator Showing
Regions of Imstability.

The ratio of the squared amplitude at wl + &nl to the squared

auplitude of its image about w, 1s by equations (179) and (180)

~

> 5
™ g r = i
Pib blogy + 09)" + (1 - 2p)

o =
nd p{

The effect of 951 and p, on this ratio is shown in Figure 18.
Note that for a given synchronizing signel output, the curves
showing the ratio of ppb/pqd, are shifted on the frequency axis without

change of shape when the location of the synchronizing frequency is changed.
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Figure 17. Spectrum in the Qutput with Two Interference
Signals Applied to the Inpukb.
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Figure 18. Ratio of Amplitud: of Interfering Term in the
Qutput at wl-mnl to the Amplitude at wl-iﬁnln



However, the magnitudes of =ach component doeg change with synchronizing

frequency. If the discrimination iz defined

o

s the ratio of the gain at

the synchronizing frequency ioc the gain at w + A curves sucih &s

1 n 17
shown in Figure 19 are obtained. To get an idea of the relative magni-
tudes of synchronizing signal to the generated sideband term this term

is treated ag if it were a direct result of the interfering input. The

equations used for this calculation are

1
g
(py) r,
G ek acianns (19%)
1 =
(o)
and
- (py) . B
Ya T TF, I°
= 2
( nd)

The curves in Figure 19 show the effect of the gynchronizing sig-
nal output and synchronlzing signal frequency on the interference and

]

imsge frequency terms. As the megnitude of is increased the discrime

Pz
ination for given conditions decreased, reflecting an incresased Llimiting
effect due to the nonlinearity with increase in amplitude.

The variation with interference smplitude at the location of the

synchronizing freguency is varied as shown in Figure 20. These curves

are with constant input of the synchronizing signal.

Consideration of Noise Accompanying the Synchronizing Frequency

When a sinusoidal signal accompanied by noise iz applied to a non-
=3 s & X
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Figure 19. Discriminstion for Several Values of
o1 and p, as Ot 1s Veried.

linear device, the output power spectral density will contain terms due
to products of the signal; due to products of the sigral and noise com-

ponents; and due to products of noise components. Expressed symbolically

(W) + 0 (0) , (195)

where G is the power spectral density in watts per cycle.
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Figure 20. Variation of Interfering Amplituies

with 910* Input at fl Constant.

Under the action of a synchronizing signal, an cscillstor acts
ag 8 narrow-band filter about the oscillator frequency. The bandwidth
of this filtering action is approximately 6’ where Q 1is the quality
factor of the oscillator considering the regeneration, and w is the
frequency of oscillation. Therefore, terms of eguation (195) which fall
outside this narrow-band need not be considered, for example, all except
one of the terms from Gsxs(m} will be out of the pass-band. Therefore,

with white noise, whose frequency spectrum includes the narrow-band cf
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the oscillator, may be considered to be narrow-band noise centered
about the synchronizing signal as pictured in Figure 21.

It has been shown (12) thet a continuous power-density spectrum
of noise may be approximated by discrete sinusolds yielding the same
total power. Figure 22 a, b illustrates this approximetion and indi-
cetes the power spectrum with all the power shown on the positive fre-
quency axis.

The power contained in an incremental frequency band df 1is the
same in the approximation as in the actual spectrum. The implicit assump-
tion here is that the noise in any band df is independent of all noise

componants in other bands. Each discrate signal may then be expressed as

v, =V cos (L-Jl + L\nl)t ; (196)
The value of Vi is
2
Va
==, 4af, (197)

where nn 1s the noise power spectral density in wattg/cps.
With the addition of a slnusoidal synchronizing signal the total

effects of signal and noise on the Input becomes,

I

v = Vl cos wt + E: v, cos (Qﬂ - Ahl)t . (198)

n=2
m-—» o

In preceding sections of this chapter it has been shown that the
mein contribution in the output of a synchronized oscillator, subjected

to interfering signels, occurred at the frequency of the interfering signal
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Figure 21, Representation of the Approximate Input to
an Cscillator; Sine Wave Plus Noise.
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Flgure 22. Noise Power Spectrum. (&) Power-density Spectrum,

(b) Discrete Signal Approximation.

and at the image of this frequency sbout the synchronizing frequency.
With comnftinuous spectrum centered about the synchronilzation signal
frequency the anelyrnls based on discrete signals predicts an overlapping

of amplitudes. Theee amplitudes in noise consideration are taken as
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independent and must be combined on a mean sgquare basis to cbtain power.

Figure 2% shows the variation of amplitude with Aho at + éhl the

=,

input interfering frequency and at w o~ éh the image about wy of

1
ml + Ahl'
Voltage
LLLl+ﬂ'nl
ml-&nl
fl=fo
= f
£

0

Figure 23, Variation of Amplitude at wy = ﬁhl and at
w - Fay with A . Input Constant.
nl no

To demonstrate the overlapping that occurs in the continuous spec-
trum consider Figure 2L4. The series of diagrams show the result when two
signals representing noise are spaced equally in frequency about the syn-

chronizing frequency one signal higher and one lower than w . Fig-

N 1

ure 24 ¢, d show the input-output relation when the input signal is abl
above Wy . The input-output with both the signals in 24 a, ¢ applied is
shown in 2k e, f. The addition in Figure 24k f is on a mean-square basis
since the inputs are representations of narrow-band noise.
Now from Filgure 23 it is possible to formalize the relation between
the discrete signal approximation and the actual nolse power spectrum as
e 2
— =7, df and = Ny 4f (199)

oy =
=
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Figure 24. Effects on the Output of Interfering Signals Representing
Noise Equally Spaced About the Synchronizing Frequency.



where An is the maximum amplitude of cne of the discrete interfering
terms and ., ig the noise spectral density at the same frequency as
A L]
n

From the p iously determined rzalations that give curves such

as graphed ir Figure 2% 1t 15 possible Lo express

rof §

2 7 o3
[oon-s + 220) = ¥y f1p 80) A (200

and

[ om-1 t dhm] » £ &n.L) Ap 7 (2na)

where Am is the input st a frequency w - &,‘w that is, equally but

dd by

oppositely srpaced aboutb fl from the frequency with amplitude A o ‘The
i ) , an resgult f t oar cated ath PaY
magnitudes dEm-* nd dgm esul rom Am but are located a w.L h 1

The mean sguared amplitude in the output at , ¥ Anl may be

found as
> o 2 o [¥Ays Ty nlJAn:lg
Bopei # 0oy t85, 5 +d5, = 5 (202)
[‘h' (A'| 2 f'] ;| A 1 )AEJE
+ = "Q n‘- — L3

Equation (202) gives the power in the region df of the output and with

this representation of noise gives

o 2
A A
+ L 2
g, ariy = [ulan, £, 0,01° 22+ (v Ay, £, 8,0)7 57 \=55)

or
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) 2 g |
(K, df‘}fr : I:ml,r(Al, £ Anl)] n, af + [¥'(a,, £, Aﬂlj_] n, df. (204)

Then from equation (204) it can be seen that given the input
noise spectral density, the output noise spectral dengity may be found
from a knowledge of the reletion between the discrete inputs and the
discrete output interfering signals. In the developments concerned
with multiple signals it was shown, under the assumptions made, that the
output due to any interfering input was determined by that input and the
synchronizing frequency input. Therefore, to obtain the functlonal rela-
tions of equation (204) it is only necessary to consider one interfering
signal. Experimentally this relation cen be obtained by one sigral source
of varieble frequency for the interfering term.

To cbtain the total nolse power in the output, integration of equa-
tion (204) i1s required. Grephical mesns may he used for thls integration

if the functional relation ls obtained experimentally.



CHAPTER VI

EXPERIMENTAL RESULTS

The object of the experimental work iz to obssrve the =ffect on
the output by discrehe interfering signals and by ncisze. Two cseillator
types are used. One of the oscillatnrs meets the reguiremenis imposed
by the analysis of Chapter IV and the cther satisfies the cubic non-lin-
earity reguirement of the differential equation of the van der Pol type.

Tests on an Oscillator thet Satisfies Adler's Conditions

The conditions set forth in fthe derivation of the equations in
Chapter IV were

(a) phase-shift approximately a Linear function of frequency,

(b) V, <<V, synchronizing signal much less than the free-running
amplitude,

(c) the response of the circuit more rapid than the difference in
gynchronizing and oszcillator frequency,

(d) mnegligible change in amplitudes of the oscillator due to
addition of the synchronizing voltage.

Condition (b) may also satisfy (d), howesver (d) implies a fairly sharp
limiting characteristic of the csciliator.

The oscillater used is basically a tuned plate oscillator. To con-
trol the limiting charscteristic a double Zener diode was added in the
plate circuit of the 68N7. The slope of the amplitude characteristic was
controlled by the variable resigtance in geries with the doubls Zener

diode. For réo = 0.9 this resistance was 2000 ohms. The cathode follower



is for isolation and a low impedance measuring point. In order to avoid
slow bias adjustments, fixed bias was used on both the grids. The fre-

guency of operation was approximately 10 kilocycles.

+ 250 volts
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Figure 25. Schematic Diagram of a Feedback
Oscillator Circuit.

From equation (9) the bandwidth of synchronization is

If this curve of @, versus Vl yields a linear relation symmetrically
placed about W,y the oscillator phase shift may be assumed linear in
the operating range. A curve showing this relation is included as Figure
26.

The open-loop emplitude limiting characteristic was measured by

breaking the circuit at the input to the amplifier-limiter triode and
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Figure 26. Synchronization Bandwidth as a Function
of Synchronizing Voltage.
measuring the output at the cathode of the cathode follower. The slope
of the limiting characteristic in the operating renge can be controlled
by the resistance in series with the Zener diode. A typical curve for
the open loop characteristic is shown in Figure 27.

The synchronizing signal and the interfering signels were applied
in series with the grid circult through the use of a transformer. The
100K resistors were used between the input terminals and the primary of
the transformer to prevent interaction of the signal generators. To mea-

sure frequencies a Berkley EPUT meter was used. The Inputs and outputs
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were measured with a GR 236A Wave Analyzer. The resulting input-output
data with T;O equal to 0.9 and for three locations of the synchronizing
frequency relative to the free-running frequency are included in Figure

28." One curve with rio equal to 0.5 and &lO = 0 is also included in

Figure 28,
/,/
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Figure 27. Open-loop Amplitude Characteristic

The data showing the effect of the slope of the open-loop ampli-
tude characteristic on the ratio of the amplitude at Wy + A?l to the
amplitude at w - aél is includea with the calculated curves in Figure
29. The sidebands, resulting from the interfering input signal, at

Ly P éél and W= £ﬁl approach equality as the slope of the amplitude-
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Figure 29. Ratio of the Amplitude at W + APL to the
Amplitude at W - Aél asz 610 ig Varied.

1

limiting characteristic decreases. If r ., were equal to unity, then,

the sidebands would be equal in magnitude. The variation in these curves
for different values of 521 is very slight, therefore, these curves are
representative for all values of 621.
The variation of the amplitudes of the two interference terms in

the output is included in Figure 30. These curves are normelized with
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Figure 30. Normalized Voltage Amplitudes of the Interference
in the OQutput as 620 Varies.
respect to the free-running voltage amplitude of the oscillator. The
value of this free-running voltage emplitude, in this circuit, was
approximately 4.0 volts. The synchronizing voltage input was one-tenth
the free-running voltage and the interferernce voltage was one-twentieth
the synchronizing voltage.

To experimentally observe the input/output noise spectral density
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ratio, the GR Wave Analyzer was used. This wave analyzer has an effec-
tive noise bandwidth of 4.0 cps. However, the magnitude of the noise
bandwidth was not important to the measurement. The fact that the band-
width was constant in the band of frequencies used for the measurements
made this instrument serve the noise measurement requirement. By tuning
the wave analyzer to maximum indication on the output meter with a voltage
from an audio oscillator applied, the center frequency of the 4.0 cps
bardwidth of the wave analyzer céuld be established. The freguency of
the audio oscillator was determined by use of the EPUT meter. The noise
generator used in the tests was a GR 13200-B. For the tests on this
oscillator the input noise in the 4.0 cps band of the wave analyzer was
set to give five millivolts rms. The noise generator was used on the 20
kilocycle range. Measurements were made on the input and the output for
each frequency setting. The average reading of the output meter of the
wave analyzer was recorded as the rms noise voltage for a 4.0 cps band-
width. The ratio of the input-output data for the noilse is compared to
the predicted ratio as calculated from the input/output data for discrete

signals in Figure 31.

Results from van der Pol Type Oscillator

To obtain experimental results to verify the analysis based on
van der Pol's equation an oscillator with a schematic diagram as shown
in Figure 32 was used.

The transistor used in this circuit was a 2N1038 p-n-p alloy-
Junction germanium medium power transistor.

In order to insure linear operation of the transistor, the bias

was adjusted to give linear input/output relations and the amplitude of
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Figure 31. Comparison of the Input OulLput Noise Ratio
to the Predicted Ratio from Discrete
Signal Equations.
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Figure 22. Schematic Diegram of Grounded-bese Tuned
Collector Trensistor Oscillator.
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oscillation was limited to a small amplitude. The free-running amplitude
of oscillation was approximately 0.4 volts. The cubic nonlinearity desired
was obtained by adding a diode circuit in parallel with the oscillator
resonant circuit. This circuit consisted of two 1N46Ll semi-conductor
diodes back-to-back. This arrangement eliminated the even power terms

in the power series expansion of the total current to the diodes. The
magnitude of the series resistance in the diode circuit could theoreti-
cally, at least, be determined to eliminate the fifth power in the series
expansion of the total current to the diodes. However, it was found that
experimental adjustment of this resistance to give regults comparable to
the calculated values of cutput voltage variation with synchronizing fre-
gquency did not agree with the calculated value to eliminste the fifth power
term. The values of RE and RD were ad justed experimentally to make

the operation of the oscillator agree closely with the calculated response
curve. One of the calculated response curves was chosen to check the
oscillator performance. This response curve specified the value of Fl.

The magnitude of pl, determined from F was obtained by adjustment

l)
of the amplitude of the synchronizing signal. Then, RD was varied to

make the value of Fl calculated from the circuit components agree with

the value of Fl for the response curve. The series emitter resistance

wag adjusted to make the frequency at the point of instability agree with

the calculated value. Since the adjustments of R, and RD were inter-

E
acting, readjustments continued until the oscillator performance agreed
with the calculated performence. The equations used to check the per-

formance of the oscillator were as follows:
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2
- IF Vv
F _ QBAI - lRRo L Rv (205)
- e = 3]
I: Ca a, (R RO) CH (100k. )
and
W (ui-ub)CRRo
g === F-R = ((.Jl-wo)cav " (206)

where R is the resistance of the osc¢illator resonant circuit while in

a free-running condition; RO is the value of the resistance across the
resonant circuit that will stop free-running oscillatidns; aT is the
emitter to collector current gain of the transistor, taken as one in this
circuit; and Rv is the equivalent of RRO/RuRO. The experimental pro-
cedure to determine o was to parallel the resonant circuit by a variable
resistance Rv and lower its value until oscillations ceased, then, l/Rv
can be shown to equal Q& C. The implicit assumption is that @ does not
change with amplitude of cscillation. The experimental and calculeted
response curve for this oscillator is shown in Figure 33.

The discrimination against an interfering signal as the frequency
of the interference is varied is shown in Figure 34. This graph includes
the interference output at the frequency wy *+ AEl as well as the fre-
quency w - ‘32.1_' The effect of the location of the synchronizing fre-
gquency relative to the free-running frequency is also shown.

The noise measurements were made in the same manner as for the
circuit in Figure 25. The results of these measurements are displayed
in Figures 35 and 36. Each of these figures show the comparison of the
noise measurements to the predicted input/output roise spectral density

ratio from discrete signal measured values.
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Figure 33. Calculated and Measured Values for the Response
Curve of the Test Oscillator.
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The bandwidth of synchronization for the transistor oscillator was

wider than that of the vacuum-tube oscillator for the range of used.

B,
This wider bandwidth of synchronization allowed advantageous use of a
Singer-Metrics Panalyzor Model SB-12b. The Panalyzor gives a visual dis-
play of the spectrum. Since this model of the Panalyzor was intended for
use at higher frequencies than the 10 kc. fregquency of the test oscillator,
the cutput from the oscillator was used to amplitude modulate a signal

of approximately 490 kc. from a Measurements Corp. 65-B Standard Signal
Generator. One of the sidebands resulting from this modulation was exam-
ined on the Panalyzor, since it contained the ocutput information of the

test oscillator. The resulting photographs are shown in Figure 37. Fig-

ure 37 a, b are multiple exposure pictures showing the output at wy T éél
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and - as the frequency of the input interference is varied.
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Figure 37a is for = -0.5 with a linear scale on the vertical axis.

%0

- . < ” ; y -
The larger amplitudes are at W + ﬁ?l Figure 37b is with 910 0 and

the vertical scale 1s in decibels. The interference in the output at

w + ébl is on the high-frequency side of the synchronizing signal and

the output at Wy

the independence of the amplitude at one interfering signal when & second

- é?l on the low frequency side. Figure 37c, d shows
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Figure 35. Input/Output Noise Spectral Density Ratio Compared
to the Predicted Value from Discrete Signal
Measurement. Synchronizing Frequency Equal
to Free-running Frequency.
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interfering signal is added. The only change from c¢ to d was the

addition of the second interfering signal on the ianput.
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Figure 37e, £ show the effect of the locatlon of the synchronizing sig-
nal on the output noise spectrum. Figure 37e 1s with a log scale on

the vertical axis. The markers are at 800 cps;

p, = 2.0; a_ = 0.38
volts(rms); and 0,5 = 0. Figure 37f ras a linear vertical scale; the
markers are at *1 kc. about f; Py = Tas B, = 0.38 volts(rms); and

glo = =1l.0.
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Figure 37. Photographs of Effects on the Output
Produced by Interference and Noise.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

This investigation of the influence of noise and interference on
the output of a synchronized oscillator includes a development of equa-
tions for the determination of the output interfersnce when one discrete
interfering signal is externally applied to the cscillator along with the
synchronizing signal, a consideration of the effect on the outpult when
multiple discrete interfering signals accompany the synchronizing signal,
an application of the results obtained with multiple input interfering
signals to the determinaticon of the noise voltage spectral density in the
output with noisze applied to the input along with the synchronizing sig-
nal, and experimental verification of the theory developed.

The determination of the outpul effects of one discrete interfering
frequency is based on Adler's equation. Adler's equation, %% = (ui—ub)
-ab sin B, 1s a nonlinear differential equation involving the phase angle
B between the synchronizing signal and the voltage returned to the in-
put from the feedback network; the free-running frequency W of the
oscillator; the synchronizing signal frequency W, 5 and one-half the band-
width of synchronization W, e The nonlinear amplitude characteristic of
the active device does not explicitly appear in the differential equation,
however, the imposed conditions require operation in a region of relatively
severe amplitude limiting. The effect of the frequency sensitive elements
is reflected in an associated phase shift but not in a variation of ampli-

tude. The solution to Adler's equation will yield an equation for f
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which approaches a constant value in the limit if w, > W - w or is a
periodic funchion of time when w, < wl - ube If an interfering signal

iz applied along with the synchronizing signel and the oscillator is syn-
chronized, the phase angle B will consist of a constant magnitude ﬁo

and a time-varying component B The time-varying component B, results

1°
in & freguency-modulation effect which is reflected in the instantaneous
frequency and an amplitude-modulation effect resulting from the dependence
of the voltage returned from the feedtack network on Bla The amplitude
modulation resulting is alsc a funchtion of the amplitude-limiting char-
acteristic.

An electric clrcult analogous to the equation for 51 is shown

in Figure 38,

1 L
5 2.7 ) B3 P
rEl[wr:-AlO] =y &121’ t""CHAZLO-]
I AAN VA
(ﬁﬁlfﬁiﬁjrel cos Aélt 1 henry

Py

Figure 35. Electrical Circuit Analog Satisfying

the Equation for ﬁl,

When the synchronizing voltage is egual to one-half the bandwidth of

synchronization, éiO = L.y then the resistances in Figure 38 become

(A, =& Jr.. sin At
zero and Bl " o ot & aéL e For A = élO’ the fime-varying

T e

compornent 51 reduces to zero.
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The instantaneous phase of the returned voltage is the sum of the

angle B, between the effective synchronizing voltage and the returned

1
voltage, the angle 6 between the synchronizing signal and the interfer-
ing signal, and wlt the instantaneous angle of the synchronizing volt-
age. This instantaneous phase angle yields an effective narrow-band
frequency-modulation spectrum. Also the angle f., along with the
amplitude-limiting characteristic, determines the amplitude variation

of the returned voltags. The combination of these two typss of medula-
tion resulting from the interfering signal yields the amplitude of the
interference in the oubput. Since Adler's eguation requires rather sharp
amplitude limiting, the main contribution to the interference amplitude
is from the frequency-modulation effect.

This development based on Adler's equation places in evidence the
effects regulting from one discrete interfering signal externally applied
along with the synchronizing signal. The conclusions to be drawn from this
analysis are:

(1) The perturbation in the instantancous phase from an interfer-
ing signal resulte in a combination of frequency and amplitude modulation.

(2) A synchronized oscillator provides discrimination against an
interfering signal even without consideration of amplitude attenuation
from the freguency sensitive elements.

(3) The digcriminetion against interfering signals is a minimum
at the frequency of the synchronizing signal. In en analysis that in-

cluded the frequency selectivity the minimum discrimination would be

shifted toward the free-running frequency.

(4) The discrimination with the synchronizing equal to the free-
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running frequency approaches 6 db with the interfering signal frequency
very near the synchronizing frequency.

(5) Under conditions of sherp amplitude limiting and without
inclusion of the attenuation EESLlLln$ from frequency selectivity, the

generated interference term at W o= é?l is arproximately equal to the

interference at the input interfering frequency By

S
(6) With the synchronizing frequency near the edge of the sym-

2"

chronization handwidth and A4 small, the interference may experience

(48]
[

gain instead of discriminatio

The devalopment based on Adler's eguation was applisd 4o the con-
dition of multiple discrete input signals. Also, the sclution to the dif-
ferential equation of an cscillator with cubic nonlinearity was found for

the cage of multiple discrete input interfering sigrals. In both approaches
m 2

<< 1, where r_. 1is the ratio of the inpuit Interfering

voltage Vr to the Input synchronizing voltage V it was found that
.5

li’
the interfering amplitudes in the output of importance resulted from the
intermodulation between the iaput interfering signals and the gynchronilzing
gignal.

An approximate method, based on the conclusions reached with mule
tiple interfering signals, was determined to find the noise voltage spec-
tral density in the output of & synchronized oscillator. This method is
based on the approximation of & narrow-band noise spectrum by a continuous
frequency band of Independent discrete signals which yields the same
noise power in a small frequency increment as the input nolse spectrum.

The consideration of the input noise ss narrow-band is Justified bhecause
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of the response of the oscillator which is effectively a narrow-band
device. From the conclusionz reached with multiple discrete interfering
signals on the input, the output noise voltage spectral density can be
predicted from the equations developed for one discrete interfering
signal,

If the inpuf to a synchronized oscillator consists of a continue
ous spectrum of discrete sinusoldal signals centered aboubt the syn-
chronizing frequency, then there will exist & pair of input signals
equally spaced above and below the synchronizing frequency, for example
one at Wy = &nl and one at wy + ﬁ.q_l" Since each input interfering
signal generates an interfering signal, resulting from the intermodula-
tion with the synchronizing signal, the total voltage at any frequency
(ul - ﬂhl) will be the square-root of the sum of the squares of the
voltage resulting from the ianput interference at that frequency (ml - énl)
and the voltage caused by the intermocdulaetion from an input freguency
(ai + Ahl) equally spaced on the opposite side of wy This form of
addition of the voltage results because of Gthe nolise representation by
discrete signals. Therefore, the output noise voltage spectral density
may be predicted from the equations derived for a discrete signal inter-
ference or by experimentally determining the Input output functional rela-
tion.

The experimental results verified with good agreement the predic-

tions from calculations.


wi.ll

105

APPENDIX A
From equations (103, 110)
1
1 L 2 E
= {1 4 (l'rro )[r (1-82)2 - Ta0%21°10{ 10100 (8518 ) (A1)
v, 7 10 10 2D,
1
1 2
(182 2 T P11 (80181 X85 ) o A
-810) - D, 08 Dy
r, o, .r. _(8.,=-0. )8
10710 21'°21™"107 21 “{ o 5B
- Dl sin éblt cos wlt
E:os l)t_cos (» +&nl)ﬂ »}—-—Eam w. -|-[_\2

t sin (@ - %l)ﬂ }

To simplify the solution of this equation (Al) make the following

replacements:
1
1 2
1= pro -
o D (162 )2 - 7052181001 510) (8,1-915) (45
=F 8 P T T10 V010 2 ’
ro . 1
1
1 , L <242
g = i (tpl B T1 %1071 (801~ ) (1-81 )
= TaprY19¢ < D. ’
and
. T10%10%21 (%1 = 810/%1
% 5

Then, (Al) becomes
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v

vi_ ={1 + x|:1' + Z cos A0t = W sin L\Elt]}{cos w 't (A3)

% [cos (w=0,,)t = cos(w+a, )t] + g- [sin(w 8,0t
+sin (w - A.?l)t]} .

Multiplying gives

= (1+XY) cos wt (Ak)

S
L

+ XZ cos w,t cos A"lt

- (14 X¥) %[cos (u_L - Ael)t - cos (w + AZJ.JQ

+ (1 + XY) :[u;uw (w + 8,06 +sin (o Aal)c]

- & . . (L - cou
- X7 = [co.s At cos (wl Ac"'l}t cos Azlt cos m +0 _L);l]

o

wl-]- ) 1:|

e WX;:{.'- gin A .t co
= 2

[6)]

{t “”.L) gin ﬁ;alt co
+ %2 L[ cos &t sin (Lu_ m) + cos AEl't sin m)l-‘- )1]

2 2L

- X £ [stn A, % sin (w+48,,)6 + sin 4,6 sin (w-0,.)%].

ke
=

Expanding and collecting terms yields,

<

” T | ;
v,,; o (_]_ + XY) cos (‘_,lt - 5 (WX.X ¥ XZY) sin {A}lt (AS)

(XZ + x(1 + XY)) cos (u B, ) ;(XE.’.-X(:L'P’XY cos ( -A21

-t
rof =

+ % (WX + y(14+XY)) sin (w+8,,)t + % (Wity(14XY)) sin(w =0, )t
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+ %(xz;c + Wxy) [cos (w + 28, )t - cos(w - eagl)t].

+ (- + Xzy)[sia(ey + 28,0t + sin(w - 28,,)8].

Substitutions for the symbols X, Y, 4, W yields equations (111-121).
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APPENDIX B

Equation (138) may be expandedl to

m m
cos wt = cos wt + cos [(Z x sin L\nlt)][cos ( ¥, cos Anltﬂ (B1)
n=2 n=2
m m :
- sin wit sin [(Z x gin Anltﬂ[cos (Z v, cos /_\.nlt)]
n=2 n=2
- & m
+ sin ult cos| ( X sin Anltj[sm (Z v, cos &nltﬂ
= n=2 n=2
+ cos wt sin L.,( x sin Anltj[sm (Z, ¥, cos Anlt)] .
n=2 n=2
X, NS
The individual terms of 'i':—— and ;n__ will have ‘the same characteris-
nl nl

tics as shown in Figures 8 and 9.

If the limits on |810| are again imposed, that is, 0.9 £ l810|§ ; A

*n In *n In
then — and — will be limited to the values — < — < 2.2. If
S r 3 r
nl nl nl nl
*n In
these limits are designated ( }-—-—) max. and ( ?_) max. then the expansion
nl nl

of the terms are as follows:
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m m .
cos (z x_ sin A lt) S cos [(Z “nl)( rni) max] (B2)
n==2 n=2

r'nl-) (rl,
n=2 n=¢2
m
7.
= (Z I‘nl)(———) max ®aw @
Al nL

Since (Z rnl)2 << 1, the first term in the series expansion of
n=2

the equations in (B2) may be used to simplify equation (Bl), giving

cos wt = cos wlt - sin wt (

[>Is

x sin /_\nlt) (B3)
2

Ik

[



m m
i AN 3
+sin wt (Z y, cos n]-t) + cos wlt (z x sin L\.nlt)
n=2

n=2

Neglecting the last term in equation (B3) because it involves

the product of two small values and expanding gives

cos wh = cos wt - 3 { [cos(ml-zi\ M - cos ml-i-f_\ )t]} (Bk4)

m
+% Z{yn Esin (ul % &nl)t * sin(wl B &nl)t:]}
" n=2

The lineer approximetion to the amplitude curve, equation 109 now

becomes, with the substitution of B, from equation (136)

m
lr'

1.
1 A a2 )2
ro=1i% (—r— )(rlO r o CO8 nlt) (1- lOJ (B5)
Tro
n=2
%‘ i
2 \2
- 84 (L‘ r (1 - 610) cos A t+&lsm5nlt]
n=2

: 2 2
— and Dn—J.+5nl—5

Since the inclusion of the effect from the amplitude-limiting char-

acteristic for a single discrete interfering signal produced relatively

small changes in the output interference terms, it is reasonable to exclude

110



111

the higher harmonic terms and cross-modulation terms that occur in equa-

tion (B5).
Then,
1 I
1-r! 7 B. .r
ro 2 \2 ) ~10nl™n
Tro = 1 [(_F'_ )(1-810) ][rlo 'Z "no T2 :l (BT
ro
n=2
l-r;'o :?]:'
+ (——)(1 - 6 Z cos A t
( Lo )( ( [no lO 10"nl ]
Lt} Z
-—-T—-ro)rb (Zr 2 8 . sin & _t)
2 1610 nl n nl nl =
n=2

To simplify the combination of equations (B4) and (B7) make the

following substitutions in (B7):

% ok Y10 2 % s 5]_O]:‘nlz:n
1+ Z. wq =1+ l:(—?,-—)(l - 510) }l}lo -Z IEes i P (B8)

re

N l_r;-c: '2-1;
- A
Z quos Aqlt (——,—-rro ¥ 6 Z [ 1o J_Orblzn] cos nlt)’
q=2
and
G l'rx'*o z
; _ / 5 i .
Z I, oo do b = = 2 716810 *Z Ti1%0n 818 Ay b)
g=2 n=2
Therefore,
RS
= - A in . &
Tie = 1 +2J (wq + Xq cos qlt + YQ_ sin &qlt) (B9)
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To find o ,

o

m

v
= {l +z (Wq + Xq cos _&qlt + Yq sin ,Aql.t }{:os mlt (B10)

-<1|.Ls

(9] q=2

m

+ -217 z X [:cos (m.]. + L\nl)t - cos (wl - Anl)t]

n=2

m

1 ; i
t 3 Z Yn sin (ul + Ahl)t + sin (wl = Anl)t]}.
n=2

Terms of frequency @ and (ml * Anl) which result from this

product occur when ¢q = n, and may be found as,

V (w) =

<L eoe .wlt = (1 + Wn) coe wt, (B11)
© n=2

v (hi) B

g S8 Wk w2 | Xy -Yx ) sin wt, (B12)
A o - n%e [n n n n] it

1 vc(ml)
V(e +4 ]) cos(uﬁ-+&nl)t ® = E(xn)( 7
0

\
o

1 Vc(wl)
v (Ea:fa L) stn(ws o= 5 (¥, + (yn)(T]sm(u,lmnl)t, (B14)

v (w)
v (f:h-& ]) cos(ui-&nl)t = -;—'-[-(xn)( cvml ) + Xn:l coa(ml-&nl)t, (B15)
Vo .

Vo (w)
V, (wy-8 )sin(w -8 ) )t = %[} T+ (yn)(——g-vi—]ain( w -8,)t, (B16)
; o]
Vo °

) + xﬂcos(wlmnl)t, (B13)
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where n =2, 3, ... 1.

m
m
&0
Again the restriction (Z rnl)‘“ << 1, allows neglect of sideband

n=2

terms of higher order than the first and also of the cross-modulation

products.
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APPENDIX C

The differential equation (150) for the oscillator is

ol
. . 2 2 2
Voar+ 3w + WV = Z A W sin (mi + Anl)t, (c1)

n=1

end the assumed solution is

m

= $ A npy o

v 24 (bEn-l sin (ui + Anl,t + b, cos (ui + &hl)t (c2)
n=

|

! f 5
+ d2n-l sin (u - Anl)t + dEn cos (w - Anl)t),
where
d., =d. =0eand A, =0 . (c3)

To conserve space, the following simplifying definitions are made:

(Ck)

cos (ml + Anl)'b Clyn

sin (@ + 4,0t = S,

|

e (wl b '{}':rll)t e

[l
fex

B3 (9] =~ it = By

Taking the first derivative yields

n
s Z [P2n-1 Sin * Pano1 (908910014 (cs5)
n=1
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* b2n Cl+n 'b2n (hi - &hl) sl+n

tdon1 Sin Tann(w - 8) Gy

T dop Crp %o (Lﬁ nﬁ Jq]

The second derivative gives

m
E: En—l l+n * 2b ui ¥ A Cl+n (c6)
n=1 ;

= bpq (o #8907 8y + by Co

‘ 2
=20, (e +80) S =By (0 +4,)7 0y

) s, +24

2n-1 S1-n "8y C

on-1 (@ = 81) €y

2 -m -
- d2n—l(ui - A'nl) Sy F %y Cug T dEn(wl h &hl)sl—n

- dyy () - ﬁhlje Cin ]

Squaring v gives

l L[qu-l 23-1 ].+q :L+5 (c7)

g=1 s=1

T b2q-l b28 Sl+q_ cl%s

¥ bzq o8 Cl-l-q_ Cl+s
¥ Bs0-1 Uit Prig Piee

= c
T 20541 93¢ B4 C1g



116

* 2b2q dES-l Cl-l-q Sl-s

* 2b2q dEs Cl+q Cl-s

T Soaal Yoeni By Bl

% d2q dES Cl—q Cl—s

t2d, )4y 8 o O g ] .

In forming the product v v, consideration of equation (C5)
indicates the first derivatives may be neglected in v. This also applies
to the term &¥., The first derivative terms result from substitution in

v, -Qv, and 57§v2. If all terms in each are divided by k4Q, typical

o u 2 2
) . . % Y | « + b%D, bdd a<d
terms involving b or d will be Wi oo b; - d, az— SF— »

respectively. Then as far es the Tirst derivative terms are concerned,
the ones derived from v will predominate., Therefore, it is Jjustifieble

to neglect the first derivative terms in %, then ﬁve gives

"

n=l q

>

m
E: 2n 1 L+ﬂ.{ 2q-l 25~ lsl+q 1+s (c8)

1l s8=1

+ 2b2q_l b, Sl+q_ 8146 ¥ }

- Coptty )05 8 {Poy 11P6-15140 5145 72P2q 17265140 514
toane yt (o = 4) dp 1C) (P2q-1 P25-1 Sitq Site

T 205 1 Pag B14q St T LY
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In each of the products of equation (C3) there is involved the

product of three sinusoids. These products may be expanded as follows:

1
C:!in Cliq Cl.ts =T (Chniqis + Ch:qtsin + Clisﬁntq * Cﬁtniqis }’ (c9)
where

C5tniqis = cos (5git + ahl + Ahl + &él)' (c10)
S.. . 8., C =l(-c +C +C +C . (c11)
ltn"l+q lts & tntqts Ltgtstn ltstntq §tn-_+q:s}

1 = l

S140°14q%14s T ¥ <Fliniqis " Siiqestn T Sitstneg T s§in¢q;s }' (c12)
S...8..,.8 w s ils + S + 8 - 8 . (c13)
1#n°1+q”1xs ~ L { lin+qts l+qtstn lteintq f.iniq_is)

Since the third harmonic terms are out of the pass band, the fourth
terms in each expansion (C9, Cll, C1l2, Cl3) may be neglected. For sinu-
gsoidal terms such as cos (ul + é.xl)t and sin(ul + Axl)t to result from
equations (C9, Cll, Cl2, Cl3) it is necessary that one of the summation
indices be equal to x and the other two equal to each other, for example,
n=x,and q = 8. To obtain all the resulting terms requires considera-
tion of all combinations of n, q, 8 except for the special case where
negs=35s=X. 0fall the terms resulting when two of the indices are
equal the largest amplitudes occur when they are egual to unity. In this

2. 2 2 2

1Py bgbx’ bldx’ or b2dx' When two

indices are egqual but not equal unity then the amplitude product will

case the amplitude will be b

involve all interference output amplitudes. Since by definition all "d's”

are interference amplitudes, then terms involving two or more "d's" are
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very small. Reference to the original assumption that the square of the
sum of interference components in the output is much less than the square
of the synchronizing signal in the output, these terms which result when
two of the indices are not equal to unity may be neglected. Actually,
this approximation is less stringent than the original because it involves
the sum of squares.

In summary, to obtain the output at a frequency (w % Akl)’

(a) set one index to X, equate the other two to unity end con-
sider all combinetions of the indices (1,1,x).

(b) Neglect all products which involve more than one "d".

When two of the indices are set equal to unity, the associated
difference frequency, 4, becomes All which is equal to zero.

A typicel amplitude term for cos (ui % &kl)t ocbtalned from equa-

tion (C8) becomes

1 2 1 2
3 (w + 8,005, 07 +5 (0 +8,9) by, 105 + bbby, (C1%)

1 . 1 . 1
t3 Py g FE 9bPds, - BB, - Wy By bLds

1 .2 1 2
o R LA P L D S R Bq) Pdsy

b
1 _ 2x-1l .2 2 2x-1
-3 (e = 8) bibd, = (0 + A, )(—5 I+t =

a
2 2 2x
) o blbej i

In & similaer manner the coefficient for the sin (ui + Akl)t term

is found as

b a a
2x 2 2 2x=-1 . 2x 2 2
(w +4,) [’ =5 (8] + B5) « === 03b, g™ (B] - be)] - (C15)



file:///4hx-l

" The coefficient of the cos(ui - Akl)t term is

a
.:x- 2x-1 2 2
(0 - a,) E: -b]+—-—(b ) + —5— b] +715),

and for the sin (ui - ékl)t term

ex 2

(w - 2 - )e—an P2x-1 (b)by) = == (b5 +b3))-

The above equations were found by taking all combinations of (1,1,x

119

(C16)

(C17)

¥is

This gives correct solution for all values of x except x = 1. For

X =1, the solutions must be divided by three.

The complete solution for \'rva then becomes

e = % [bl(biirbg)] cos wt - % be(bi + bg) (c18)
z ((“’1*& el Pon-1 [P don-1 [bl _ .ng
n=2
g m
+ _‘g_r_; b,b, cos{ﬁ+anl)'t # z ((wl%n ) [b1+b ]
n=2
a m
i, 22 =g B T [b ]}sin(wlmnl)t + Z {(wpa,)
n=2
& ]
P2n-1 [:b - = blb F it (b?_+b§))} cos(w -8 ;)%
m
Z((u}l-ﬂ )( [b 2'1 o,b, - n (b2 T#o )}
n=2

in (ml - Anl)t' .
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m

Ll - L3 2 I
Combination of terms from V, - Cv, 5yvv2, WV and E{:‘Anu§51n
n=1

(Qﬁ + éhl]t for like time functions and retaining only the larger terms
yields, equating cos mlt terms

. 2 , 3y 2 0 2
2 byw ~bow - Obywy + S @by (bl+b2) + Wb, = 0, (C19)

and sin u&t terms

- bl + Oow -2 yub,(bE + b2) + b, = A «E,  (CR0)
g g =F TWEsARy * s 01 1% s

I

2

which become

; ) ) i .
2b; +285b, - & (L -p) =0, (ca1)
. -Alwg
20, - 28,0y - Oby, (1 - pl) = y = - Ajw (c22)
with
2 2
2(w. - w) -
28, = ii = Pagﬁ, (ca3)
be + bg
a
@]
and
2 lLa ,
8y =3 - (C25)
Also equating cos(w + éhl)t terms
- # _ . _ (_)
By o B [pbl 81] Pan - ®pny (2 2p,) (c26)

t 91 Py gy Py =0
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where

o, - b 2b.b
1 2 12
|(35=--———----a2 ¥ pm=Ta y 808 n =2, 3, ssey M. (027)
(o} o}

Similarly from sin (w, + .&nl)t terms

- - s iR
b, - 2(&01 = Anl) L ab2n(1 c.pl) (ce8)
Flona B~ Yon Py - Anmo *

Equating cos (_ui - Anl)t terms gives

2d, 1 T B8y +8,)d, - 0dy o (1 -200) +By 5 Py (ca9)
it bEnpm il
and finally from the sin(;ul & &nl)t terms,
f')‘ - B s - - e -
2dyy = 2 [Bp + 8,7) Ban1 = Bpy(L - 201) = b0, (¢30)
e b2n-l Pn = @
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