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ABSTRACT 
A rigid (micro) robot mounted serially to the tip of a 

long, flexible (macro) manipulator is often used to increase 
reach capability, but flexibility in the macromanipulator can 
interfere with positioning accuracy. A rigid manipulator 
attached to a flexible but un actuated base was used to study 
a scheme to achieve positioning of the micromanipulator 
combined with enhanced vibration damping of the base. 
Ineltial interaction forces and torques acting between the 
robot and its base were modeled and studied to determine 
how to use them to damp the vibration. One issue is that 
there are locations in the workspace where the rigid robot 
loses its ability to create interactions in one or more degrees 
of freedom. These "ineltial singularities" are functions of 
the rigid robot's joint variables. A performance index was 
developed to predict the ability of the rigid robot to damp 
vibrations and will help ensure the robot is operating in joint 
space configurations favorable for inertial damping. It is 
shown that when the performance index is used along with 
the appropriate choice of feedback gains, the inertia effects, 
or those directly due to accelerating the robot's links, have 
the greatest influence on the interactions. By commanding 
the robot link's accelerations propOitional to the base 
velocity, vibration energy will be removed from the system. 
This signal is then added to the rigid robot's position control 
signal. Simulations of a three-degree of freedom 
anthropomorphic rigid robot mounted on a flexible base 
were developed and show the effectiveness of the control 
scheme. In addition, results from two degree of freedom 

vibration damping are included. 

INTRODUCTION 
The objective of this research was to develop a 

combined position and enhanced vibration control scheme 
for a rigid manipulator attached to a flexible base. The 
configuration is similar to a macro/micro manipulator 
(Figure 1), which has links that are long and lightweight 
with a rigid robot attached its end link. 
Macro/micromanipulators are desirable for celtain uses 
because the macromanipulator can provide long reach 
capability while the rigid robot can be used for fine-tuned 
positioning. They are often used to perform tasks that 
human may be incapable of doing or that are dangerous for 
humans. One application is in the nuclear industry where 
macro/micromanipulators are used to remove nuclear waste 
fi'om underground storage tanks [1]. Another growing 
application is in space, where long reach capability is 
needed but weight is crucial [2-4]. 

One problem with the use of macro/micromanipulators 
is that vibrations can easily be induced in the flexible robot, 
either due to movement of the robot itself or by external 
disturbances. The many degrees of freedom involved make 
control of the coupled system a complex task. This research 
considers the analogous problem of a flexible base 
manipulator (Figure 2), where the base motion is due to 
flexibility at the tip of a macromanipulator in a fixed joint 
configuration. Many researchers have addressed control 
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Figure 1 
Macro/micromanipulator 

schemes for macro/micromanipulators. One area involves 
determining trajectories that will avoid inducing vibrations 
[3,5]; however these schemes are not useful for controlling 
the vibration once it occurs. The macromanipulator 
actuators are not the best option for vibration damping due 
to the high bandwidths required and non-collocation of the 
actuators and the end point vibration. The use of the rigid 
manipulator to damp vibrations in the macromanipulator has 
proven to be a promising area [6-8]. 

The micromanipulator produces inertial forces and 
torques that serve as disturbances to the macromanipulator 
under decoupled control. When controlled properly, these 
inertial forces can be used as damping forces and applied 
directly to the tip of the flexible manipulator. On the one 
hand, if the motion of the micromanipulator or combined 
system is completely prescribed by the task at hand, this 
method is not usable. However, under circumstances where 
the task will allow small movements of the rigid robot to 
damp the vibration, this technique can be very effective. 
The controlled interaction forces are collocated with the 
vibration at the tip of the macromanipulator, and the rigid 
robot can respond quickly to create large inertial forces. 
This method requires no hardware modifications other than 
some type of measurement of the vibration. 

SYSTEM MODEL AND INERTIAL SINGULARITIES 
The flexible base represents a multi-link flexible 

manipulator. There are many references available on 
modeling flexible systems [4,9]. Regardless of the method 
used, the impo11ant properties for this work are inertia (M, 
J), damping (C), and stiffness (K) estimates. It is assumed 
the model takes the form: 

"' .............................. '-............... , 
~ Distributed " 
"" Macromanipulator " 
" Properties ~ 
" M,J,K,Kr,C,Cr " 
~ .................................................. "" 

Figure 2 
Flexible Base Manipulator 

M (q) ii + C (q ) q + K (q ) q = Q (1) 

Since the macromanipulator's joints are locked, q represents 
the flexible states and consists of a finite number of modes 
of interest. The mass, damping, and stiffness matrices can 
be linearized and assumed approximately constant about an 
operating point, q. The applied interaction forces and 
torques generated by the rigid robot are the generalized 
forces, Q. 

A recursive Newton-Euler method, commonly used to 
develop joint torque equations for rigid robots [11], was 
used to find the interaction forces and torques. The elastic 
states of the macromanipulator affect the micromanipulator 
by moving its base in Ca11esian space (Figure 2). These 
become boundary conditions on the first link's rotational 
velocities and translational and rotational accelerations and 
are propagated forward to the other links. The general form 
of these equations is: 

FIF = B j(9)9 + N jC9,6/3) + C j(9)q + N jcCq,q,9,6) C2a) 

T IF = B"O(9)9 + N,OC9,6i6 j)+ C"O(9)q + N,OcCq,q,9,6) C2b) 

T = B,,(9)9 + N"C9,6 i6 j) + C,,(9)q + N"c Cq,q,9,6) C2c) 

e represents the rigid robot j oint variables. Bf, B,o, Cf, and 
Cto represent inertia effects of the micro and macro 
manipulators while the remaining terms in 2a and 2b 
represent nonlinear and gravitational effects. The third 
equation is the typical joint torque equation with extra 
coupling terms. Often actuator dynamics or other effects 
dominate the robot performance, so this equation could take 
other forms; however for this work it is assumed the 
relationship between the applied torques and joint positions 
is known and controllable. These equations were developed 
for anthropomorphic, spherical, wrist, 
anthropomorphic/wrist, and spherical/wrist robot 
configurations. The ability of this method to predict the 
interaction forces and torques was verified experimentally 
through the use of a six-degree-of freedom force/torque 
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sensor mounted at the base of a 3 DOF anthropomorphic 
rigid robot. . 

The focus of our analysis will be on the controllable 
rigid robot effects, or those terms that are only functions of 
S. Bf and Bto are inertia-like matrices but they are, in 
general, not symmetric or positive definite (the inertia 
matrix for the coupled system is). These are important for 
two reasons. First, the rigid robot must have enough inertia 
to effectively apply interaction forces and torques to the 
macromanipulator. The ratio of the rigid inertia effects to 
flexible inertia becomes an important part of the 
performance index. Second, there are locations in the 
workspace where they become singular, which presents a 
problem since these matrices are inverted in the control 
scheme. However, the more important problem is that these 
"inertial singularities" represent physical limitations in that 
an inertial force or torque cannot be created in one or more 
degrees of freedom. 

As an example, consider a three-degree of freedom 
anthropomorphic robot (configuration shown in Figure 2) .. 
By considering the variation of the Bf matrix throughout the 
workspace, a few important features become apparent 
(Figure 3). These singularities consist of some of the 
kinematic singularities plus additional dynamically singular 
configurations. These are driven by the columns ofBfwhen 
the matrix contains: 
I) Linearly dependent columns. This indicates that the 

forces created by two or more joints are parallel. For 
the anthropomorphic robot this scenario occurs when 
the last two joints are aligned. This also corresponds to 
a kinematic singularity, when the velocities generated 
by the two links are parallel. These are not a major 
concern since these would not be normal operating 
locations. 

2) A column of zeros. This indicates a location in the 
workspace where the motion of a joint cannot create 
any interaction forces. This occurs when the system 
center of mass is aligned along an axis of rotation. 
These inertial singularities depend on the location of 
the center of mass of the system. 

The interaction force and torque performance is driven by 
the joint space configuration of the robot, which provides an 
opportunity to use this measure in the performance index to 
select joint space configurations best suited for inertial 
damping. 

The nonlinear rigid robot effects (Nf, Nto) may become 
significant in certain workspace regions. However, with the 
prop~r choice of vibration control feedback gains, the 
amplItude of the commanded joint motion can be limited to 
ensure the inertia effects remain dominant. Under these 
conditions, the nonlinear and gravitational effects can be 
linearized about an operating point. Thus the most 
important dynamics take the form: 

[

Mf+Af(9) Bui(9) 

Aro(9) J + B",rO(9) 

BJ(9) B;o(9) 

Figure 3 
Variation of Anthropomorphic Interaction Force 

Here the translational (Xf) and rotational (Sf) flexible 
dynamics are summations of the flexible states, q. 

CONTROL GAINS 
The goal of this section is to establish a range of 

vibration control feedback gains, K, to ensure vibration 
energy is removed from the system. This involves 
establishing an upper limit that will prescribe joint 
amplitudes such that the joint accelerations are greater than 
the joint velocities, hence limiting the significance of the 
nonlinear effects. In addition, a lower limit is established to 
ensure higher system modes will be damped. 

The overall control schematic is shown in Figure 4. It 
is assumed the PID position controller is designed separately 
for rigid robot control and is not discussed here. The rigid 
robot model is given by equation 2c, the coupled rigid/flex 
dynamics are given by equations 2a and 2b, and the flexible 
manipulator is modeled by equation 1. 

Assuming the robot is not operating about a singularity 
point, the vibration controller will prescribe the joint 
accelerations as follows: 

9=-IDC9,9)CKx) (4) 
ID is an inverse dynamics term designed to cancel the 
significant rigid robot dynamics. K is a diagonal matrix of 
gains, where K j is the gain for the ilh vibrational degree of 
freedom. With the limits on gains described below the 
inertia effects are expected to be most significant. The 'final 
vibration controller takes the form: 

't = - B r C 9 ) B- 1 C 9 )C K x ) 

B(9)=[B r C9) a ] 
a B ro (9) 

(Sa) 

CSb) 
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Figure 4 
Combined Position/Base Vibration Controller 

It is assumed the rigid joint positions, e, are measured and 
available for use in the control scheme. There should also 
be a minimum value established for the determinant of the 
inertia matrix to prevent it from being inverted when the 
robot is passing through a singularity point. This essentially 
switches off the vibration controller when passing through 
singularity points. 

Before proceeding, a few comments should be made. 
First, the control scheme takes advantage of the fact that the 
base vibrations are of relatively high frequency compared to 
the rigid robot motion required to perform a task. This 
takes advantage of the separation of bandwidths, or time 
constants, between the position and vibration control loops, 
and is not addressed further here (more detail can be found 
in [12]). When this is the case, increasing vibration 
feedback gain, K, results in a direct increase in 
macromanipulator damping. However, it is important to 
check the validity of this assumption for the specific 
application. Second, it may be desirable in some cases to 
provide feedback proportional to the velocity and position, 
akin to an ideal vibration absorber. This can give more 
flexibility in improving system damping but requires 
additional measurements or manipulation of vibration data. 
However, the general form of the controller as well as 
guidelines for choosing feedback gains will remain the same 
for either form. 

The general form of the interaction forces and torques 
are given by equations 2a and 2b. To add the most damping 
to the system, the goal is to control the interaction forces and 
torques directly proportional to the base velocity. The 
directly controllable effects are given by the first two terms 
in each equation. If the robot is damping about an operating 
point and the resulting joint motion is kept relatively small, 
the nonlinear effects can be assumed negligible. 

Assuming harmonic base vibration of mode i, the 
prescribed joint accelerations and velocities for the joints 
will be harmonic and take the form: 

Xi = Xi sin OJlt 
.. I -e = -B- (e)KiXiOJi cos OJ/ 

e = -B-I(e)KIXlsinOJ/ (6) 

Here is it assumed the inertia matrix can be linearized and is 
approximately constant about an operating point. The 
feedback gains will be selected to ensure this is a reasonable 
assumption. 

The maximum amplitude of the prescribed joint motion 
will occur during the first few cycles of vibration damping 
and for each joint can be written as: 

IBjl = KIB~~-I XI == A 
I 

(7) 

It is clear that an upper limit to the feedback gains is 
necessary, if for no other reason than to ensure the joint 
motion remains inside the allowable workspace or to prevent 
actuator saturation. Another consideration is the ratio of the 
inertia forces (functions of the joint accelerations), to the 
nonlinear forces (functions of the square of the joint 
velocities): 

lejl AOJI
2 1 

leJI = A2OJ
I
2 = A (8) 

The maximum amplitude of joint motion, A, can be 
limited to ensure the joint accelerations will be larger than 
the joint velocities. The obvious upper limit is A<l rad, 
although there may be more restrictive limits due other 
considerations. The gains should be limited such that: 

OJ I min B (e ) min 
K. < A ~ 

I X I max "...-co.se-
The true multi degree-of-freedomhS more complex, of 

course. The inertia and force effects also very throughout 
the workspace since Br, Bto, Nr, and Nto are all functions of 
e. However, the above limit will help reduce the 
significance of the nonlinear effects, even when in 
workspace locations where they can become large. Note 
the ratio improves with decreasing amplitude, which 
increases the effectiveness of the scheme as the vibration is 
damped. A rule of thumb that appears to work well in 
simulation is to let A=Bmin=l. If this is too restrictive, a 
more exact determination of acceptable Bmin and maximum 
amplitudes may be necessary. 

Nevertheless, the nonlinear forces will still be 
commanded along with the damping forces. The lower limit 
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on the control gains is established by considering a worst
case scenario where the nonlinear effects excite a mode of 
the flexible system. The goal here is to ensure net energy 
removal from the system. 

Assuming an initial disturbance excites a fundamental 
mode of the flexible system, the net energy dissipated by the 
damping controller over one cycle of vibration is [10]: 

(10) 

This holds regardless of whether velocity feedback alone is 
used or if velocity and position feedback is used. The 
nonlinear forces take the form (the same applies to the 
nonlinear torques): 

Considering these as harmonic inputs to the system, let Y 
be the amplitude of the nonlinear force and X2 the ampl~ 
of the resuTfmg vil5raliun~efine-il1e firsHiarmonic'oIthe 
rundamental rrequencyas;-" 

aJ;=2aJ; 

x2 = X2 cos(pj;t - ¢) (12) 

The rate of change of energy into the system and net energy 
added over one cycle of vibration becomes: 

dW = _ Y cos 0); tX 2 sine 0); t - ¢ ) 
dt 

llW;n = YX 2 sin ¢1C 

y 2 sin ¢1C 

L 

where ron is the frequency of the flexible system mode(s). It 
is assumed some amount of damping, 1;;, is initially in the 
system. The net energy dissipated over one cycle by the 
vibration controller is: 

AW K X2-· - K;y
2

aJ;7r 
'-' ollf = - ; 2 aJ;7r = 2 

L 
(14) 

The worst-case scenario occurs when the nonlinear 
harmonic.motion excites one of the modes of the system. In 
this case, to ensure net energy dissipation: 

llW out + 11 Win < 0 

Ki > 2(; aJ i 

Limiting the gains to the range: 

ll1min 2Si1l1 max<Kj <-
Xi max 

(15) 

(16 

O{lf-0~'S ,,\.(~., ~ ~ 

will ensur~':~:::~~'::---:~:-l~~~:"~~ 
velocities, h~einertia-effects-wiH-also-be-'I;;~eF?t 
will also ensure there is enough damping available for 
higher modes of vibration (if a concern) to successfully 
remove vibration energy if they are excited. 

PERFORMANCE INDEX 
The performance index will be used to predict the 

expected effectiveness of the inertial control scheme. It 
needs to not only include a check for singularity points but 
also include other effects, such as the macromanipulator to 
micromanipulator inertia comparison and limits on 
allowable joint accelerations. The following performance 
index will provide this measure. The most important 
features come from the inertia terms in the equations of 
motion (3). 

PI = [xTU(9fwrU(9)xr1[tVB(e/W;.B(e)9] 
x = [maximum flexible system accelerations] 

e = [maximum rigid robot accelerations] 

IB(9f B(9)1 
W, = ----L

1B
-( 9-)7-' B-( 9...!...(-ax 

(17) 

B is defined in equation 5b. Kfi represents 
macromanipulator stiffness in the ith direction. 

This provides a direct measure of the available inertial 
forces and torques since the result is a weighted combination 
of the square of their sum. The weighting matrices are 
needed to include some important additional considerations. 
The inverse of the flexible robot's stiffuesses were chosen 
for the macromanipulator's weighting matrix to reduce the 
weighting in stiffer directions or with higher frequency 
vibration. The stiffness was chosen because it represents 
elastic bending energy of the system; less energy is needed 
to damp vibration in stiff directions. The rigid weighting 
matrix penalizes operation near inertial singularity regions. 
Finally, different limits on joint rates can be accounted for 
via the maximum acceleration vectors. This could be 
important if the robot's joint accelerations have bandwidth 
limitations or actuator saturation, which may impact the 
effectiveness of this technique. On the other hand, if the 
robot can accelerate rapidly it will be more effective. 

It is important to note that the performance index varies 
only with rigid robot joint configuration. Thus, not only will 
this measure predict, in general, the ability of the technique 
to be useful for a given macro/micromanipulator, it can also 
be used to choose the best inverse kinematics solution for 
the rigid robot for ineliial damping. A quick measure to 
determine how near a singularity point the robot is operating 
is to calculate /B T B/. This can be used real-time, if desired, 
to ensure the robot operates in workspace regions best suited 
for ineliial damping. 
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Figure 5 
Macro/Micromanipulator 

Experimental Testbed 

SIMULATIONS 
Simulations were created in Matlab Simulink for a 

three-degree of freedom anthropomorphic robot mounted on 
a flexible base. The configuration is similar to an 
experimental testbed at Georgia Tech (Figure 5), which 
consists of a rigid robot mounted to the tip of a flexible 
beam. The flexible base was modeled using a recursive 
Lagrangian technique with an assumed modes method 
described in [9]. Two modes of transverse vibration were 
assumed in each planar direction and one torsional mode to 
allow up to five degrees offreedom of vibration. This yields 
the mass and stiffuess properties; structural damping 
estimates were determined from modal testing. The resulting 
equations of motion take the form of equation (1) with 
approximately constant matrices. The rigid robot was 
modeled using the Newton-Euler method described 
previously. The rigid robot and flex/rigid robot dynamic 
models include both inertia and nonlinear rigid robot terms 
(Nr, Nto, and Nt) in order to ensure assumptions made 
regarding the dominance of the ineliia effects are valid. 
The fundamental modes of the x and y directions were 
chosen at 1.4 Hz (x) and 1.8 Hz (y), approximately those 
observed on the experimental testbed, while the higher 
modes and torsional modes were estimated from beam 
theory. 

The first set of simulations was intended to verify that, 
with the proper selection of feedback control gains, the 
controller could successfully damp all modes of base 
vibration. In these simulations, note the rigid robot only has 
three degrees of freedom while the macromanipulator model 
has five degrees of freedom of vibration. A disturbance is 
applied in all three directions at t=.1 second, clearly exciting 
both fundamental and second modes (Figure 6). The 
controller was tested in a configuration where nonlinear 
effects were expected to be large [0°,70°,_70°], as defined in 
Figure 2, and disturbances were applied to all three 
directions. The resulting base vibration is shown with and 

Figure 6 
Simulated Base Vibration Due to Applied Disturbance 

without the vibration controller. The feedback gains were 
chosen close to the upper limited prescribed by equation 16 
to provide maximum damping performance for all modes. 

The second goal was to test the ability of the 
performance index to predict damping performance. In this 
case, point-to-point rigid robot motion was commanded to 
simulate the robot end effector following a square trajectory. 
The performance index was used to choose the best inverse 
dynamics track for inertial damping. The two trajectories 
are shown in Table 1. 

Table 1 
Comparison of Simulated Trajectories Following 

End Point Square Trajectory 
End .4 -.2 -.2 .2 .4 

Point(m) .4 .4 -.2 -.2 .4 
.4 .4 .4 .4 .4 

Trajectory 45° 116.57° -135° _45° 45° 
I 84.75° 89.61° 87.51° 87.51° 84.75° 

60.02° 82.84° 104.49° 104.49° 60.02° 
Trajectory 45° 116.57° _135° -45° 45° 

2 24.72° 7.16° -16.98° -16.98° 24.72° 
-60.0° -82.84° -104.5° -104.5° -60.0° 

The reSUlting joint motion and base vibration can be 
seen in Figures 7 and 8. The comparisons are with vibration 
control using the inverse kinematics path preferable for 
inertial damping (as quantified by the perfonnance index), 
using the alternate path, and without vibration control. Note 
the other two inverse dynamics solutions yield identical 
results since in the case of the anthropomorphic robot the 
inertial damping performance only varies with the 
configuration of joints 2 and 3 

The obvious trade-off is that the joint position is 
affected when under inertial damping control as can clearly 

6 



Figure 7 
Simulated Point-to-Point Joint Motion 

Figure 8 
Simulated Base Vibration 
Due to Rigid Robot Motion 

be seen in Figure 7. This is especially pronounced at the 
beginning and end of each leg, which is expected since the 
joint accelerations are largest when the robot starts and stops 
motion. The motion, however, is used to quickly damp the 
vibration. The other tradeoff is the increased amplitude of 
vibration induced by moving into the better joint 
configurations. This is expected since these regions allow 
more coupling, which also allows the robot to create larger 
disturbances. The tradeoff is that these regions allow for the 
more effective coupling to damp the vibration more quickly. 

EXPERIMENTAL WORK 
Two degree of freedom macro/micromanipulator 

damping control has been demonstrated in limited 
configurations [6,7,12-14]. The experimental testbed shown 

Figure 9 
Experimental Inertial Damping 

Performance Using Two Different Inverse 
Kinematic Solutions 

Figure 10 
Experimental Inertial Damping 

Performance 

in Figure 5 does not provide enough degrees of freedom to 
adequately test the controller completely. However, it did 
provide a good testbed for the performance index and its use 
to avoid regions of poor inertial damping performance. 
Figure 9 compares inertial damping performance of the 
anthropomorphic robot shown in Figure 5 in two difference 
inverse kinematic configurations. The configuration of the 
robot shown did not allow for dramatic results since the last 
link is short and has little inertia. Here the disturbanc$ is,] 
applied at approximately 2 seconds. The inbrtial damping . 
controller works well in both cases to remove energy from 
the system; it works better in the predicted good 
configuration. In other workspace locations, the scheme can 
be seen to be even more effective (Figure 10). Modifications 
have been completed to extend the macro manipulator to a 
two-link configuration, providing multi-degrees of freedom 
of tip vibration. An additional three-degree offreedom wrist 
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has also been added to the robot, providing a six degree of 
freedom micromanipulator. 

CONCLUSIONS 
This paper presented research in developing a control 

scheme to provide position and enhanced vibration damping 
of a macro/micro manipulator. The configuration of a rigid 
manipulator attached to a flexible base was presented as a 
similar configuration. Methods of modeling the system 
were described along with a description of inertial 
singularities. A performance index was developed to predict 
the inertial damping performance of a particular 
macro/micromanipulator configuration. It was shown that it 
can also be used to ensure the robot operates in regions 
better suited for inertial damping. In addition, guidelines on 
choosing vibration controller feedback gains to ensure 
proper operation of the control scheme were presented. 
Simulation and experimental results were presented 
demonstrating the effectiveness of the control scheme to 
damp vibration. Future work will include extending 
simulations to a two link flexible manipulator with a rigid 
six-degree of freedom micromanipulator and experimental 
work on a similar testbed. 
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