

Perspective on Connector Tests to ANSI C119.4 & IEEE 404

Presented by: Thomas J. Parker

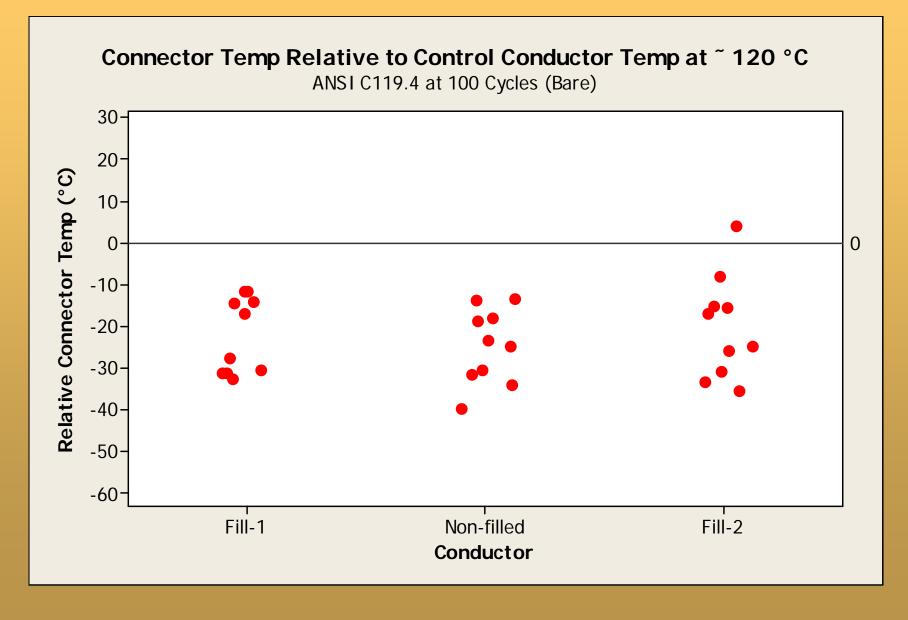
Introduction

- Results previously reported at ICC have indicated there may be a problem with connectors installed on filled strand conductors.
- The NEETRAC membership is sponsoring work to investigate the effect(s) that filled strand conductor has on connector performance.
- Test methods applied:
 - IEEE 404 in-air heat rise and cyclic aging of medium voltage joints at different temperatures
 - ANSI C119.4 current cycle submersion tests of connectors
- Test samples included:
 - Conductor with non-filled and different types of filled strand materials
 - Different connectors and joints
 - Wire-brushed and not wire-brushed connections

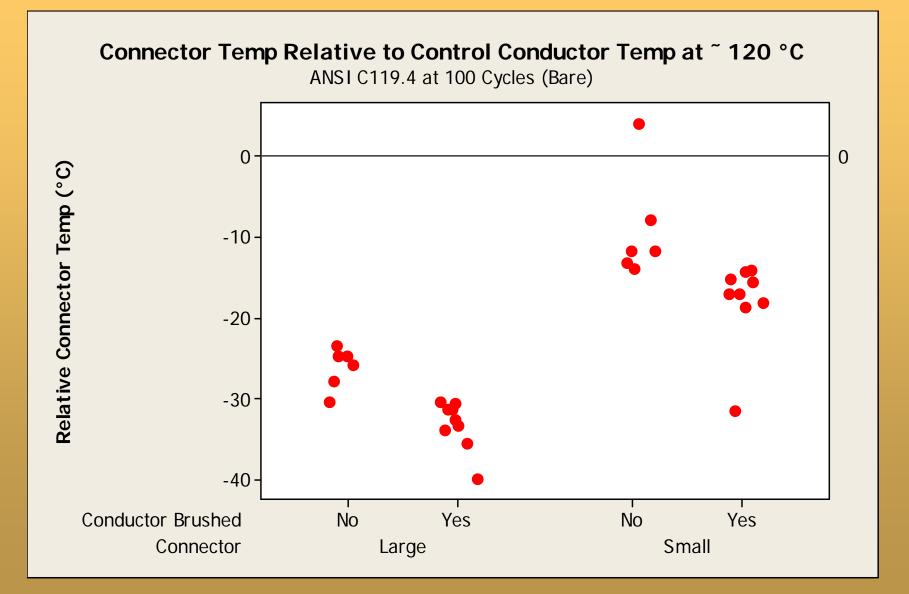

Project Advisors

Company	Individuals
3M	Bill Taylor
Ameren	Harry Hayes
American Electric Power	Doug Fitchett, Carol Liu, Austin McMillion
Baltimore Gas & Electric	John Spence
Borealis Compounds LLC	Dominic Kung
Cooper Power Systems	Andy Lemminger
Dominion-Virginia Power	Steve Boles
Dow Chemical Company	Yimsan Gau
Duke-Energy	Jon Carter, Chris Fletcher
Exelon	Jim Crane, John Hans, Dan Zoladz
NSTAR Electric and Gas	Vanessa Dube, Ruvani Nagage
Oncor Electric Delivery	Richie Harp
Prysmian Cables and Systems	Chris Amick
South Carolina Electric & Gas	Mark Furtick
Southern Company	Tim Wall
Southwire	Kim Knuckles, Joe McAuliffe, Nick Ware
Thomas & Betts	Matt Cawood, Jim Zahnen
Tyco / Raychem	Alexander Bulza, Miguel Contreras

ANSI C119.4 Test Samples


- Conductor : 1/0 AWG Class B Compressed 1350 AI 3/4 HD
 - -Without Filled Strand Material, Non-filled
 - -Filled Strand Material, Fill-1
 - -Filled Strand Material, Fill-2
- Connectors : Two different 1/0 AWG Compression Sleeve Connectors (crimped using recommended die with three crimps per side according to manufacturer instructions)
 - —Small : ≈ 2.15 inches long and 0.65 inch diameter
 - -Large : \approx 3 inches long and 0.90 inch diameter

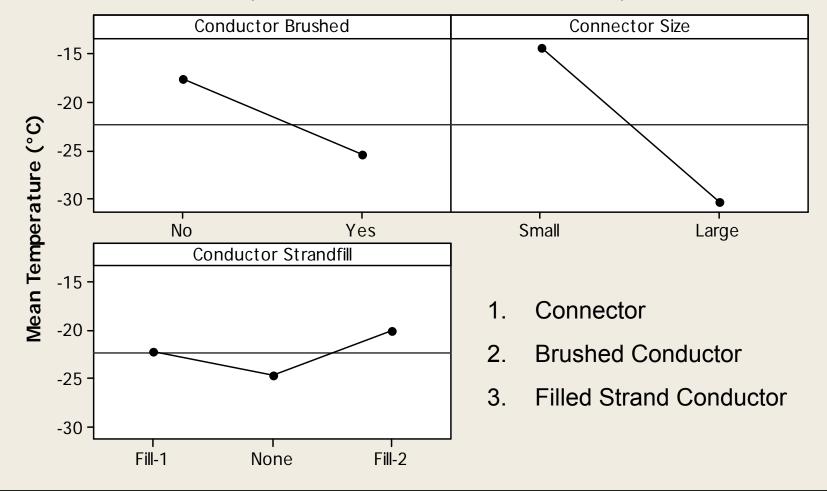
ANSI C119.4 CCST (Current Cycle Submersion Test)



- 18 Samples in Test Loop A
 - Three replicates per condition conductor wire brushed
- 12 Samples in Test Loop B
 - Two replicates per condition conductor **not** wire brushed
- Samples all properly installed
- 100 cycles 1 hour current ON, ½ hour current OFF

ANSI C119.4 CCST Results

ANSI C119.4 CCST Results

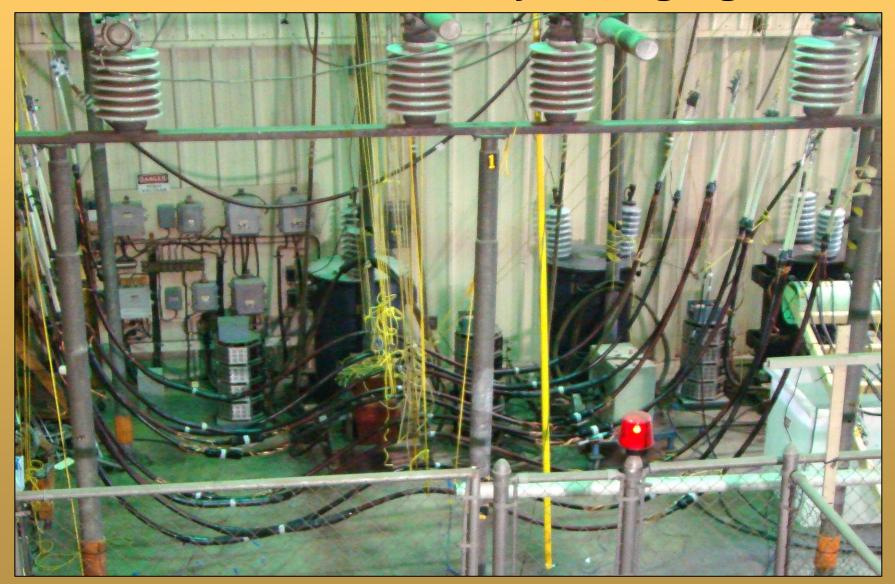

ANSI C119.4 CCST Results Analysis of Variance (ANOVA) Relative Connector Temperature

Factor	Levels	Values
Connector	2	Small, Large
Brushed Conductor	2	No, Yes
Stand Filled Conductor	3	Non-filled, Fill-1, Fill-2
Source	Р	Significance
<u>Source</u> Connector	P 0.000	<u>Significance</u> >99.9%
	-	

ANSI C119.4 CCST Results

Main Effects Plot for Relative Connector Temp - BARE

Temperature Means at ~ 120 °C Conductor Temp

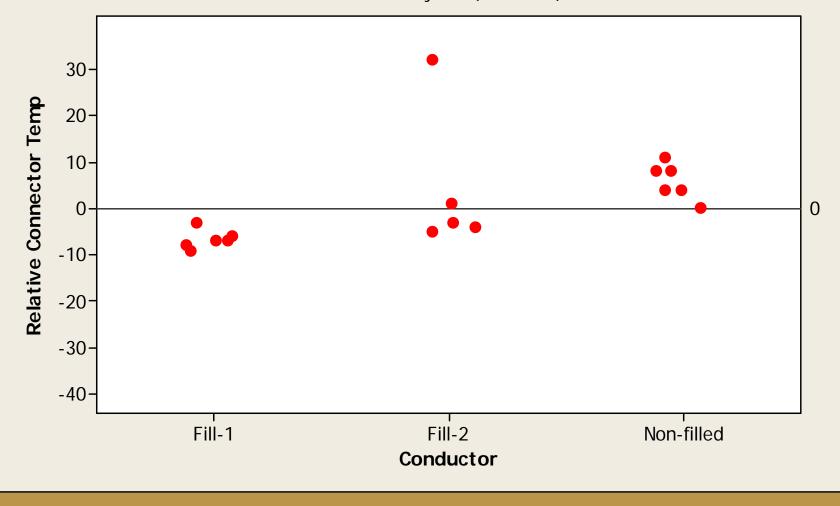

IEEE 404 Test Samples

- Cable : 25 kV, 260 mil TRXLPE, 16 #14 AWG Concentric Neutrals, Encapsulating LLDPE Jacket
 - -Without Filled Strand Material, Non-filled
 - -Filled Strand Material, Fill-1
 - -Filled Strand Material, Fill-2
- Joints : Two different 1/0 AWG, 25 kV rated joints (joint kits came with the same connectors previously described)
 - -Joint A : Cold-shrink, small connector
 - -Joint B : Molded, large connector

IEEE 404 In-Air Cyclic Aging

- 18 samples in one loop
 - Conductor WAS wire brushed before connector installation on two replicates per condition
 - Conductor WAS NOT wire brushed before connector installation on one replicate per condition
- 37 cycles have been completed 8 hours current on / 16 hours current off

IEEE 404 In-Air Cyclic Aging



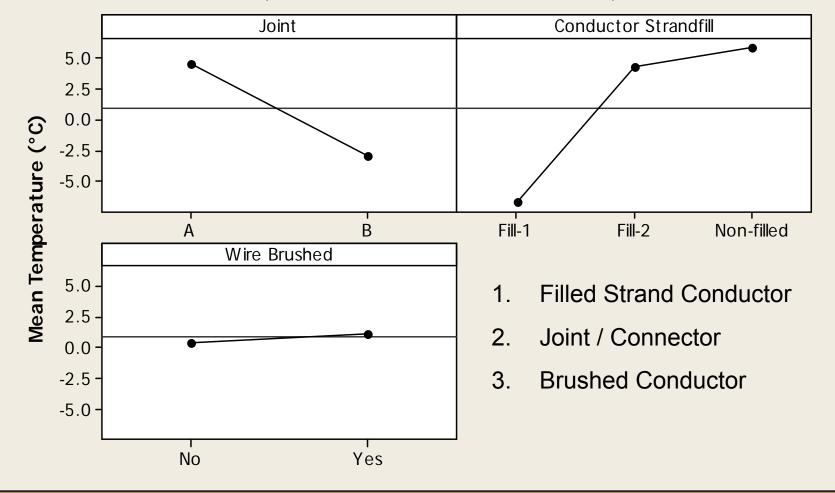
IEEE 404 In-Air Cyclic Aging

Load Cycle History

Cycles	Target Conductor Temperature (°C)	Comments	
1-24	90	IEEE Std. 404 load cycles (in air) with voltage applied	
-	-	Thermocouples installed on joint connector through hole drilled in joint housing. No test voltage applied fo remainder of testing.	
25-30	90	Seven samples found to be exceeding the control conductor temperature at cycle 25. One was removed after 29 cycles because it was exceeding 130 °C.	
31-37	105	Ten samples now found to be exceeding the control conductor temperature at cycle 31 after increasing control conductor temperature to 105 °C.	

Connector Temp Relative to Control Conductor Temp of 90 °C IEEE 404 at 30 Cycles (Insulated)

Connector Temp Relative to Control Conductor Temp of 90 °C IEEE 404 at 30 Cycles (Insulated) 30-**Relative Connector Temp** 20-10-0 0 -10-Joint Α В Α В В Α **Conductor Strandfill** Fill-1 Fill-2 Non-filled


Connector Temp Relative to Conductor Temp of 105 °C IEEE 404 at 31 Cycles (Insulated) 30-20-**Relative Connector Temp** 10-0. 0 -10--20--30--40-Fill-1 Fill-2 Non-filled Conductor

IEEE 404 In-Air Cyclic Aging Results Analysis of Variance (ANOVA) for 90 °C Control Conductor Temperature

Factor	Levels	Values
Joint / Connector	2	A, B
Brushed Conductor	2	No, Yes
Filled Strand Conductor	3	Non-filled, Fill-1, Fill-2
Source	Р	Significance
Source Joint / Connector	P 0.110	<u>Significance</u> 89%

Main Effects Plot for Relative Connector Temp of Joint

Temperature Means at 90 °C Conductor Temp

Main Effects for Connector Temperature

Significance of Effect	ANSI C119.4 CCS Bare Conductor and Connectors	IEEE 404 In-Air Cyclic Aging of Medium Voltage Insulated Cable and Joints
1(Most)	Connector	Filled Stand Conductor
2	Brushed Conductor	Joint / Connector
3 (Least)	Filled Strand Conductor	Brushed Conductor

Temperature Results

- ANSI C119.4 CCST
 1 out of 30 exceeded conductor temperature (3.3%)*
- IEEE 404 at 90 °C
 7 out of 18 exceeded conductor temperature (38.9%)
- IEEE 404 at 105 °C
 10 out of 18 exceeded conductor temperature (55.6%)

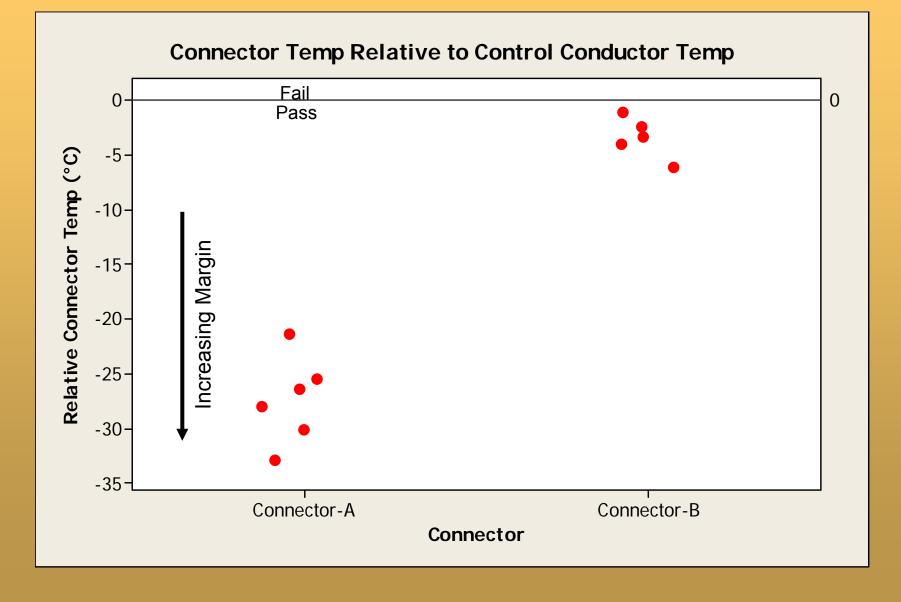
NOTE: * Two failures based on resistance criteria.

What did we learn?

- Filled Strand <u>always</u> affects connector temperatures to some extent, but the impact is different depending on the circumstances.
- The impact of filled strand is
 - Third in significance for the ANSI C119.4 CCS test (bare connectors), but
 - Most significant for IEEE 404 Cyclic Aging style tests (insulated connectors).
- Filled Strand appears to hurt performance with bare connectors, but may sometimes help performance with insulated connectors.

What did we learn?

- Connectors run hotter in insulated tests than in bare tests for the combinations tested
- Other factors affect connector performance, such as:
 The choice of connector used
 Wire brushing the conductor before installing
 - wire brushing the conductor before installing connectors
- Tests on bare connectors and conductor may not necessarily be sufficient to qualify connectors for use in medium voltage (insulated) systems.


What do we not know?

- We do not know about other:
 - -Connectors or joints
 - -Filled Strand compounds
 - -Long Term vs. Short Term Performance
- We have not looked at the effect of:
 - Different connectors with the same joint
 - -Incorrect installation of connectors

Additional Food for Thought

 Tests in existing Standards may not be sufficient to make an informed choice of the best connector for a given application (existing requirements are pass / fail only)

ANSI C119 Pass / Fail vs. Margin

Questions?