
An Environment to Support User Interface Evaluation Using
Synchronized Video and Event Trace Recording

Albert N. Badre, Scott E. Hudson, and Paulo J. Santos

Graphics, Visualization, and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

ABSTRACT

This paper presents a simple but very powerful
technique to support user interface evaluation
along with a prototype open environment Ñ
I-Observe, the Interface OBServation, Evaluation,
Recording, and Visualization Environment Ñ
which supports a preliminary implementation of
this technique. This technique operates by
recording user interface sessions in multiple
modalities, both as a trace of interesting events and
through video images. It then provides tools to
allow the user interface evaluator to combine these
modalities, analyzing the event stream to search
for patterns of interesting or important user
actions, then using the recorded timestamps
associated with these actions to present only the
sections of the video recording of interest. This
allows, for example, all places where the user
invokes a help system or a particular command to
be observed without requiring the evaluator to
manually search the recording or sit through long
sessions of unrelated interactions. By combining
the precise recording of automatic event trace
capture with the rich contextual information that
can be captured in a video and audio recording,
this technique allows analyses to be performed that
would not be practical with either media alone.

Keywords: User Interface Evaluation, Evaluation
Support Tools, Event Trace Logging, Video-
Based User Interface Evaluation Techniques.
INTRODUCTION

In the last decade a great deal of effort has been
devoted to developing tools such as user interface
design support systems [Harts90], user interface
management systems (UIMS) [Fole88, Myer89,

 This work was supported in part by the National Science
Foundation under grant IRI-9015407, the Center for
Information Management Research under the IUCRC
program, and a grant from Sun MicroSystems.

Olse89], and user interface toolkits [McCo88,
Myer90, Lint87], to reduce the cost of producing
high quality user interfaces. A central goal of
many of these systems has been to make user
interface construction economical enough so that
true iterative design could be applied in practice.
As a result, most of this effort has concentrated on
the design and implementation phases of
development. However, comparatively little work
has been done on tools to support the user
interface evaluation task which is also a key
component of an iterative design approach (notable
exceptions being [Buxt83, Olse88]). This paper
considers a simple but very powerful technique to
support evaluation by combining video-based
evaluation techniques with analysis of
automatically recorded event traces.

Video recording is a common and important
technique in usability studies. In controlled
experiment settings, subjects are filmed during the
experiment sessions. The recorded video is then
reviewed, annotated, codified, and analyzed.
Similarly in field studies, video is collected from
actual usage and analyzed later to isolate user
interface problems or to study particular
phenomena.

Video offers a number of advantages including
recording of the entire context of an interaction
(e.g., use of documentation, environmental
distractions, etc.), the ability to hear verbal or
thinking-aloud style comments [Lewi82] made by
the user, and simply the ability to see exactly what
the user is doing at a given point.

Unfortunately, the task of reviewing video
recordings and annotating them is an expensive
and time-consuming endeavor Ñ particularly
when field studies involving many hours of usage
need to be considered. In addition, the precision
with which a human observer can detect and

2

record events from a video sequence is limited
(e.g. it would not normally be possible to
determine to the millisecond how much delay
occurred between keystrokes in a textual
interface). As a result, these factors limit the kinds
of analysis that can be carried out based on video
recorded data.

On the other hand, event trace recordings allow
very precise information to be gathered. Event
traces Ñ consisting of both base input events and
synthetic events which indicate interface or
application code action Ñ are relatively easy to
capture and can normally be recorded with fairly
precise timing information (e.g., with timestamps
indicating precisely when the event occurred). In
addition, since event traces can be recorded
automatically and unobtrusively, the recording is
guaranteed to be accurate and comprehensive. As
a result, evaluation techniques based on analytical
models (see for example [John90]) can be
employed.

2000150010005000
0

200

400

600

800

1000

1200

Time (ms)

Figure 1. Distribution of "Think-Time" Delays

As an example of this sort of technique, Figure 1
shows the results of an analysis we performed "by
hand" (i.e., with a long series of AWK [Aho79]
scripts) before beginning development of the I-
Observe environment. This graph shows data
collected from the Apple Info-Booth Kiosk
presented at CHI '89 and distributed on CD-ROM
[Solo90]. In this example we were interested in
the distribution of times between the point at
which a new screenful of information was
presented and the point at which the user acted on
that information by pressing a key or mouse
button.

The distribution that was obtained was not what
was expected. In particular, the distribution

contained a fairly high percentage of very small
delays that were counter to our initial intuition.
After a long series of additional analyses we
hypothesized and partially verified that this
anomalous spike was due to a particular common
user action where a series of cards showing the
pictures of conference attendees were "flipped
through" very quickly by rapidly clicking the
mouse button.

With the aid of better visualization, and
particularly with the use of synchronized video
data, this kind of analysis would have been
dramatically easier and could have been performed
in minutes rather than hours. In particular, we
might have been able to select the region of the
distribution that was unexpected and turn directly
to corresponding segments of the video to
determine the nature of the interactions involved

Tools supported by the I-Observe evaluation
environment are designed to do precisely this sort
of work. They are intended to combine the
advantages of both the analytically strong event
recording and the semantically rich video data. In
particular, precise information from the event trace
can be analyzed and searched for patterns of
activity. Based on selections made in the event
trace, the richer contextual information of the
video media can be used. This richer source of
information can allow the evaluator to gain a more
precise understanding of what the user was doing
(and perhaps why). For example, the video data
can record the nature of external behavior (actions
that do not involve direct interaction with the
computer) such as reading the screen, consulting
the manual, thinking, or answering the phone,
which by definition cannot be captured in the event
trace. This knowledge can in turn be used to
refine the selection process or to insert additional
information into the event stream for further
analysis.

RELATED WORK

The work described here builds on a number of
techniques appearing elsewhere, attempting to
combine them in a way that makes new analysis
and evaluation approaches possible. For example,
keystroke and other low level logging or event
trace tools have been popular with usability
researchers for a long time (see for example,
[Good85]). With the advent of graphical user
interfaces, logging has become more elaborate, for
it now has to record not just keystrokes but also

3

spatial information such as mouse clicks, and
mouse trajectories. Several tools have appeared
recently which record events in graphical user
interfaces such as [Badr91, Korn90].

Some user interface management systems have
also provided logging capabilities. For example,
one early UIMS [Buxt83] provided event logging
and analysis as a central feature of the system.
Since UIMSs (or UI toolkits) are in control of the
interaction and have semantic knowledge of the
state of the application and interface, they can
produce logs at a higher level, and include with
each event important context information. An
example of this approach can be found in the
MIKE system [Olse88]. A stand-alone tool which
provides a range of techniques for analysis of
event traces is also described in [Sioc91].

A number of tools to support video based
annotation and evaluation have been produced as
well. These systems assist evaluators in replaying
and annotating video recordings of sessions.
Most integrate the functions of VCR control panel
with an annotation mechanism which allows
humans to recognize and mark the time of
significant events. Once the annotations have been
entered, the evaluator may use them as index
marks to the video: the VTR controller may roll
the tape to a previously annotated position, and
replay the related segment. VideoNoter [Trig89,
Rosc90], U-Test [Kenn89], and the Virtual VCR
[Buxt90] are examples of tools that allow some
form of video indexing. The EVA system
[Mack89a, Mack89b] goes further by providing
synchronized display of logged events. However,
events, or patterns of events, cannot be used as a
basis for search and selection of video segments.

Finally in the most closely related previous work,
a system which supports selection and display of
video segments using patterns of events was
demonstrated at CHI '92 [Hamm92]. However
few technical details are available and the stand-
alone system did not support an evaluator's
interface, extensible environment, or any form of
analysis tools.

ARCHITECTURE AND IMPLEMENTATION

The I-Observe prototype environment takes an
open approach Ñ it supports a loosely connected
set of (semi-)independent programs which can be

combined to carry out evaluation tasks. These
independent programs communicate using a
simple common data representation. Four major
classes of system components are supported by
the environment: data collection systems, selection
tools, analysis tools, and visualization tools.
These components fit into an overall architecture
as illustrated in Figure 2. Because of the open
approach taken, each component of the system can
be easily replaced or extended to meet specific
evaluation needs, and a variety of different tools
can be employed to meet particular needs. A
typical use of the environment is shown in Figure
3. Here a pattern matching process is used to
identify interesting segments in the video
recording which are then viewed by the evaluator
(without sitting through the more voluminous
uninteresting portions).

Data collection system components are responsible
for capturing event stream and other data which
forms the subject of evaluation. This data is
stored in a file using the common (text based) data
format for easy manipulation by other tools. The
current prototype uses the CHIME data collection
system [Badr91]. This system works with any X
window system [Sche86] application by
interposing between the window server and the
client application. Each event that passes from the
server to the client is recorded with a timestamp.
In addition to the CHIME system, a new data
collection system embedded in the Artkit user
interface toolkit [Henr90] is also under
development. This collection system will allow
higher level information to be collected and related
back to the software driving the interface.

In addition to event stream recording, the
environment also supports simultaneous recording
on a read-write optical video disk as well as the
alternative of a video tape recorder. Use of a
video disk offers the advantage of rapid random
access for playback during evaluation. However,
this equipment is still relatively expensive and has
somewhat limited recording capacity. Video tape
offers a less expensive option. While the
sequential nature of the recording may produce
significant delays in playback when selected
sequences are far apart, our experience indicates
that this does not occur too frequently and that
video tape is still a viable option.

4

Analysis

UI Common
Data

Representation

Data Collection

Analysis
Code

Visualization
ToolsSynch

Chime
Artkit

Etc...

Video Disk

VCR

Selection
Method

Analysis
Tool

Selection
Tool

Visualization

Visualization
ToolsVisualization

Tool

Evaluator's
Interface

Figure 2. I-Observe System Architecture

Data Collection Analysis

Synch

Video Disk

VCR

Visualization

UI Event Stream
Record

Pattern
Matching

Selected
Intervals

Evaluator's
Interface

UI

Figure 3. Typical Usage of the Environment

For video tape recording, our system employs a
high-end VTR which is capable of single-frame
accurate positioning using time code information
recorded directly on the video tape. However, our
initial experience indicates that, unless multiple
video streams must be displayed in a synchronized
fashion, single-frame accuracy is not essential and
in many cases adequate results could probably be
obtained using any VTR capable of program
controlled positioning to within 1/4 to 1/2 second.

Analysis components of the environment support
both selection and analysis tools. Selection tools
allow the interface evaluator to identify sets of
interesting user actions, while analysis tools are
designed to support calculations on the data and

synthesis of new data elements. The prototype
environment currently provides a single powerful
selection tool based on a pattern recognition
system which searches the event stream for
patterns of actions in the form of extended regular
expressions.

As illustrated in Figure 4, this tool provides an
easy to use visual language for expressing
patterns. This language allows patterns to be
constructed without explicit programming using a
notation very similar to syntax-diagrams
(sometimes called "railroad-track" diagrams). For
example, the pattern shown in Figure 4 selects all
sequences where either the evaluator had placed a
particular annotation in the event stream, or the
user had invoked the "Help" command

5

Figure 4. The Pattern Specification Interface

Figure 5. The Time Line Interface and Playback Controller

immediately after the "Align" command (found via
its position in a particular menu)

In general, the system allows any predicate
(expressible in C) over the fields contained in a
single event record to be matched as atomic items.
Each match predicate is represented by a named
icon in the visual language. The window in the
lower portion of Figure 4 provides a mechanism
for constructing new custom match predicates and
installing them in the scrolling palette at the left.

These items can then be edited into a complete
syntax diagram by dragging and snapping them
together with looping and alternation constructs.

When searches are requested, the syntax diagram
patterns are automatically compiled into equivalent
regular expressions encoded in a textual notation
and passed to the pattern matching subsystem.
The use of this textual notation as an intermediate
form allows the system to be easily extended to

6

support new tools which automatically generate
patterns.

The textual notation for regular expressions is
compiled into a non-deterministic finite state
machine [Aho86] for pattern matching. A non-
deterministic machine must be used since the
predicates which take on the role of the alphabet in
this situation are not necessarily disjoint in the
events that they match. After removing empty
transitions for this non-deterministic machine, the
system uses it to search the event stream, returning
the set of intervals (start and end events) matched
by the pattern. These intervals can then be passed
to a visualization tool within the environment.

In the current prototype, the environment supports
a visualization tool for selection and playback of
video sequences based on selected intervals (e.g.
the intervals identified by the pattern matching
tool). The system takes each interval sequence
and extracts the timestamps from the selected
events. Overlapping intervals are then merged, a
minimum interval time is imposed to ensure that
sequences are long enough to view, and a short
user-defined pre-roll and post-roll time is added to
each interval so that the action being viewed is
shown with at least some context. Finally, the set
of selected intervals are displayed in a timeline
interface as shown in Figure 5.

This interface is used as the basis for interactive
control of synchronized video playback. The
evaluator can zoom in and out of the timeline using
the special two-part slider shown in the center of
Figure 5. Within the zoomed view a region for
display can be selected and VCR-like controls at
the bottom can be used to interactively control
video playback.

To display a particular video sequence, the
visualization tool simply calculates the time code
corresponding to the timestamp of the start event,
sends commands to move the disk or tape to that
position, and directs the device to play until the
time code corresponding to the end event of the
interval is reached.

NEW ANALYSIS TECHNIQUES

In this section we consider in detail an example
analysis that makes use of the combined
advantages of precise event trace recording and the
rich information that can be recorded on video in a

way that would not be possible in either media
alone.

This example is based on analysis of chunking
behavior. There is ample experimental evidence
that people represent and manipulate information
in coherent units we call chunks. Further, studies
such as [Chas73, Reit76, Badr82a, Badr82b]
strongly suggest that the size and content of a
mental chunk is revealed through characteristic
patterns of behavior. When performing a task, a
person typically engages in a series of actions
followed by a pause, indicating the boundary
between two chunks.

Chunking behavior can be interesting for a number
of reasons. For example, it can be predictive of a
user's ability on a scale of expertise. Novices will
form smaller chunks, with fewer elements per
chunk. As a user progresses and becomes more
expert, the duration of the inter-chunk pauses
becomes shorter, less frequent, and less variable
[Badr82a]. Consequently, determination of the
user's chunks, their components, sizes, and
complexity can be useful in answering a range of
experimental and practical questions.

In one experiment, we are analyzing pauses and
flurries of activity to identify and characterize user
chunks. However, analysis of the sort we need
for this experiment cannot be performed with
either pure video or pure event analysis techniques
alone. Since the timing of actions and pauses is
critical in this analysis, the analytical accuracy that
can be attained from the event recording is a must.
However, for this experiment, we also needed to
classify what the user was doing, both during the
chunk, and during the pause. Since this includes
actions outside direct interaction with input
devices, as well as a classification of fairly abstract
human behavior, at least some of this information
could not possibly be attained from the event
stream alone.

The facilities provided by the I-Observe system are
well suited to this problem. The pattern matching
and analysis capabilities can be used to identify
and characterize chunking behavior analytically
based on frequency and duration of activity and
pauses. This information can then be used to
control a very targeted presentation of the video
recording Ñ showing only the actions of interest
with a small amount of context Ñ in order to
classify the nature of the activity during selected
chunks (e.g., as waiting for the system, observing

7

system operation, problem solving, movement
from device to device, distraction, etc.).

By combining the analytical analysis possible with
the timestamped event recording with the more
informal, but still critical, analysis of the video
information, the I-Observe environment offers a
unique opportunity for perfecting and validating
these chunk based analysis techniques and allows
analyses which could not have been done using
one recording media alone.

FUTURE WORK

The environment described in this paper represents
a basic framework into which a series of tools will
eventually be placed. For example, we are
currently exploring several event recording
systems that operate at different levels of
"intrusion". These range from toolkit independent
systems, such as CHIME, which can record from
any X window system application, but provides
only low level events, up to systems embedded in
a particular toolkit, that can record much higher
level actions. In addition we are exploring new
visualization techniques for event streams, and
analysis results, as well as techniques for
combining these visualizations with synchronized
video playback.

CONCLUSION

This paper has presented a new open user interface
evaluation environment supporting the simple but
very powerful technique of capturing user
interface sessions both as a stream of events and
as a synchronized video recording. Using pattern
matching and analysis tools, this event stream can
be used to select interesting or relevant user
actions. These selections can then be used to drive
the display of corresponding sections of the video
tape. This technique allows evaluators to use the
rich information provided by video recording in a
highly targeted fashion. For example, all
invocations of a particularly troubling command
could be viewed without requiring the evaluator to
sit through hours of irrelevant interaction. With
this technique, it should be possible to use existing
evaluation strategies more easily and to develop
new evaluation methods that were not previously
practical using either pure video or event trace
recording alone.

REFERENCES

[Aho 79] Aho, A., Kernighan, B. and
Weinberger, P., ÒAWK Ñ A Pattern
Matching and Scanning LanguageÓ,
Software Ñ Practice and Experience,
9(4), pp. 267-280, 1979.

[Aho86] Aho, A., V., Sethi, R., and Ullman,
J. D., Compilers: Principles,
Techniques, and Tools, Addison-
Wesley Publishing Company,
Reading Mass, 1986.

[Badr82a] Badre, A., ÒSelecting and
representing information structures for
visual presentationÓ, I E E E
Transactions on Man, System, and
Cybernetics, pp. 495Ð504, 1982.

[Badr82b] Badre, A., ÒDesigning chunks for
sequentially displayed informationÓ,
in Badre and Shneiderman, eds.,
Directions in Human/Computer
Interaction, Ablex, 1982.

[Badr91] Badre, A.N., and Santos, P.J., ÒA
knowledge-based system for
capturing humanÐcomputer interaction
events: CHIME Ñ Observations and
IssuesÓ, Georgia Institute of
Technology technical report GIT-
GVU-91-21, 1991.

[Buxt83] Buxton, W., Lamb, M., Sherman,
D., and Smith, K., ÒTowards a
Comprehensive User Interface
Management SystemÓ, Proceedings of
SIGGRAPH '83, pp. 35-42, 1983.

[Buxt90] Buxton, W. and Moran, T.,
"EuroPARC's Integrated Interactive
Intermedia Facility (IIIF): Early
Experiences", in Gibbs, S. and
Verrijn-Stuart, A. A. (eds), Multi-
User Interfaces and Applications,
North-Holland, pp. 11-34, 1990.

[Chas73] Chase, W., and Simon, H.,
ÒPerception in ChessÓ, Cognitive
Psychology, vol. 4, pp. 55Ð81, 1973.

8

[Fole88] Foley, J., Gibbs, C., Kim, W., and
Kovacevic, S., ÒA knowledge-based
user interface management systemÓ,
Proceedings of CHI'88, pp. 67-72,
1988.

[Good85] Good, M., ÒThe Use of Logging Data
in the Design of a New Text EditorÓ,
Proceedings of the CHI'85
Conference on Human Factors in
Computing Systems (1985), pp. 93Ð
97.

[Hamm92] Hammontree, M. L., Hendrickson, J.
and Hensley, B. W., "Integrated Data
Capture and Analysis Tools for
Research and Testing on Graphical
User Interfaces" (Demonstration),
Proceedings the CHI '92, pp. 431-
432, 1992.

[Harts90] Hartson, H. R. , Siochi, A., and Hix,
D., ÒThe UAN: A User-Oriented
Represen ta t ion fo r Di rec t
Manipulation Interface DesignsÓ,
ACM Transactions on Information
Systems, 8(3), pp. 181-203, July
1990.

[Henr90] Henry, T., Hudson, S and Newell,
G., ÒIntegrating Gesture and
Snapping into a User Interface
ToolkitÓ, Proceedings of the ACM
Symposium on User Interface
Software and Technology, pp. 112-
122, 1990.

[John90] John, B., ÒExtensions of GOMS
analyses to expert performance
requiring perception of dynamic and
auditory informationÓ, Proceedings of
CHI'90, pp. 107-115, 1990.

[Kenn89] Kennedy, S. "Using Video in the
BNR Usability Lab", S I G C H I
Bulletin, 21(2), October 1989, pp.
92-95.

[Korn90] Kornbrot, D, Macleod, M., Diaper,
G., Gilmore, D., Cockton, G., and
Shackel, B., "Monitoring and
Analysis of Hypermedia Navigation",
Proceedings of INTERACT '90,
1990, pp. 401-406.

[Lewi82] Lewis, C. and Mack R., "Learning to
Use a Text Processing System:
Evidence from "Thinking Aloud"
Protocols", Proceedings of Human
Factors in Computer Systems, 1982,
pp. 387-392.

[Lint87] Linton, M.A., and Calder, P.R., ÒThe
design and implementation of
InterViewsÓ, Proceedings of
USENIX Assoc ia t ion C++
Workshop, pp. 256-267, 1987.

[Mack89a] Mackay, W. E. and Davenport, G.,
"Virtual Video Editing in Interactive
Multimedia Applications", Com-
munications of the ACM, 32(7), July
1989, pp. 802-810.

[Mack89b] Mackay, W. E., "EVA: An
Experimental Video Annotator for
Symbolic Analysis", S I G C H I
Bulletin, 21(2), October 1989, pp.
68-71.

[McCo88] McCormack, J. and Asente, J., ÒAn
Overview of the X ToolkitÓ,
Proceedings of the ACM SIGGRAPH
Symposium on User Interface
Software, pp. 46-55, 1988.

[Myer89] Myers, B.A., ÒUser Interface Tools:
Introduction and SurveyÓ, I E E E
Software, 6(1), pp. 15-23, November
1990.

[Myer90] Myers, B.A., Giuse, D.A.,
Dannenberg, R.B., Vander Zanden,
B., Kosbie, D.S., Pervin, E.,
Mickish, A., and Marchal, P.,
ÒComprehensive support for
graphical, highly-interactive user
interfaces: the Garnet user interface
development environmentÓ, IEEE
C o m p u t e r , 2 3 (11), pp. 71-85,
November 1990.

[Olse88] Olsen, D. R., and Halversen, B. W.,
ÒInterface Usage Measurements in a
User Interface Management SystemÓ,
In Proceedings of ACM SIGGRAPH
Symposium on User Interface
Software (Banff, Alberta, Canada,
Oct. 17Ð19). ACM Press, 1988, pp.
102Ð108.

9

[Olse89] Olsen, D., ÒA Programming
Language Basis for User Interface
ManagementÓ, Proceedings of
CHI'89, pp. 171-176, 1989.

[Reit76] Reitman, J., ÒSkilled perception in
Go: Deducing memory structures
from interÐresponse timesÓ, Cognitive
Psychology, vol. 8, pp. 336Ð377,
1976.

[Rosc90] Roschelle, J., Pea, R., & Trigg, R.,
ÒVideoNoter: a Tool for Exploratory
Video AnalysisÓ, IRL Technical
Report IRL90-0021, March 1990.

[Sche86] Scheifler, R. W. and Gettys J., "The
X Window System", A C M
Transactions on Graphics, v5, April
1986, pp. 79-109.

[Sioc91] Siochi, A. C., and Ehrich, R. W.,
"Computer Analysis of User
Interfaces Based on Repetition in
Transcripts of User Sessions", ACM
Transactions on Information Systems,
v9 n 4, October 1991, pp. 309-35.

[Solo90] Solomon, G., et al., "CHI'89 Info
Booth", CD-ROM containing user
interface usage trace data, Apple
Computer Inc., 1990.

[Trig89] Trigg, R., ÒComputer Support for
Transcribing Recorded ActivityÓ, in
SIGCHI Bulletin 21(2), October
1989.

