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SUMMARY

The purpose of this stﬁdy is té develop a pfocedure for synthe-
sizing the optimum contrel fer a plant with a. known stﬁucture but with
varying parameters which will permit a priofi constraints on the system's:
sensitivity to plant parameter changes to be imposed.

The basic problem arises from the fact that conventienal eptimi-
zation schemes assume the plant parameters are fixed. The controller
_derived from these schemes may prove to be unsatisfactory if the plant
parameters de, in fact, vary from their neminal values.

The sensitivity problem exists because of the natural tendency of -
the piant-parameters to vary. This wvariance could be caused by enviren-
mental changes, ageing, or the inherent stochastic nature of the param-
eter.

The approach'of this study is to consider low sensitivity to be a
figure of merit for the system similar to low system error, high speed
of response, low input energy requirements, etc.

In order that the synthesis method be applicable to a wide cléss
of problems, both linear and non-linear, time-domain variational tech-
niques are emﬁloyed. The plant equation(é) establishing the basic rela-
tions between the plant input and output are assumed to be known.

The sensitivity of a system may be described'as_the degree to
which some state variable of the system, usually the system output,
varies under changes in the values of the plapt parameters. Mathemat= -

ically, this sensitivity could be described by a sensitivity ceefficient




defined as the'partial derivative of the output with respect to a paf—
ticular plant parameter of interest. In general, this sensitivity éo—_
efficient will be a function of the parameter and of time and gives an
instantaneous measure of the variance of-fhe output per a small change

in the parameter value. If X is the plant cutput-and u is the sensitivi-

: %
ty coefficient, then u = = where q is the parameter of interest.

o9q

Beforg an optimization scheme can be applied to the problem, a
 measure of sensitivity must be. devised which can be included in a per-
formance index or constrained to meet the requirements of a particular_
preblem, Several sensitivity measﬁres based on thé'éensitiﬁity coeffi—
-'cientgu(tjqj-areﬁﬁresented'and discussed. In general, these sepsitivity
measures-aésume a form similar to the commoﬁJmeasures of:e;bor, Y-S
integral square errer, maximum error magnitude in a given time range,
gtC. | |

In order to incerperate the sensitivity measure into the optimi-
zation procedure, a relation between the sensitivity coefficient and the
dynamics of the plant system must-be established. This is accomplished .
by means of the sensitivity equations. The sensitivity equations are
formed by differentiating fhe-given plant equation(s) with respect to
the parameter of interest. If the plant is of eorder n, the result i3 an
expanded system of order 2n censisting of the plant-eqﬁations and the
sensitivity equations derived from them. This 2n system can.be thought
of as a set of natural constraints on the sensitivity optimizatioﬁ
prﬁblem.

An additional constraint may be applied te the problem bf'reé'

stricting the sensitivity measure to lie below some predetermined value.




An alternate technigque for including sensitivity_restrictions-in
the problem is to add the weighted sensitivity measure to the usual per-
formance functienal of the system. The.effect of tﬁis'technique-is to
balance sensitivity against other cost functionals of the system using
some a priori weighting scheme.: The more Heavily the_sensifiqity meas-
ure- is weighted the less sensitive the system resulting frem the optimi-
gatien becomes. This reduction in sensitivity is, of course, gained at
the expense of an increase in the ethef cést'functibhs of the system. ‘

The sensitivity optimization problem has thus been put_;nto a'fefmz
wﬁich is amenable to solution by several well-known variétidnél tech-
niques, e.g., Pentryagin's and Bellman's.optimizétion-méthods. L

Application of Pontryagin's method requires the solutiag'ofia
4n efder.twe~peint beundary value preblem. Methods for solution of
typical boundary value problems are discusééd in the studyQ

Applicaticen of Bellman's methed requires the solutien ef partial
differential equatiens which in turn leads to an n{2n+l) order initial
ﬁalue preblem. - ?

Assumptioﬁs required in the_@erivation-ef.the synthesis methed
limit its application to the class of problems where:

ax 1 9x
(1) The appreximatien — = - is walid.

8q  3q
(2) The performance index evaluated for the eoptimum input
is continucus in all parameters throughout their range
of variatien.

{(3) The plant parameters remain constant during a given plant

"but but are assumed to vary from run to run.




®i

.The overall.éffect of (1) and (2) above is to restrict the permis-
sible range of parameter variation. - |

Various examples which demonstrate the salient features of the
method are presented and diacussed.. A general result for the linear -

plant with quadratic performance . index is determined.




CHAPTER 1
INTRODUCTION

Definition of the Ppreblem

The basic problem under study arises from the fact that cenven-
tional schemes for control system optimization, which assume that the
parameters of the centrolled plant- are fixed, may yield unsatisfactory
results if the plant parameters vary from their qeminéi valués. .fhe
purpose of this study is to deve}op‘a procédure-for synthesizing the
optimum controller for a plant with a known structure but variable-
pafameters. "Optimum" is defined in such é way“thét low sensitivity te
plant parameter changes becomes a figure of.merit'fer_the-syStem similar
te leow error, high speed of response, or low energy demand at the input.
The result of the cptimization scheme is a system which haé reduced.
sensitivity to plant parameter changes and is "optimum" in some sense
defined by the performance index and the censtraints en the preblem.
Either the performance index includes a measure of the system's sensi-
tivity to plant paf-ameter changes, or a priori constraints on the
system's sensiFivity are impoesed.

The plant itself is a physical system cemposed of %arieus physi-
. cél componénts, such as motors, amplifiers, passive_eleﬁents, ete. The
plant parameters are quantities such as moments of inertia, capacitance,
resistance, inductance, amplifier gains, initial conditiens on variables

within the system, etc.




In Figure 1, a bleck diagram of a plant and its contrﬁlief_is
sﬁewn. The deuble arfows, denoting vector quantities in general, show
the flow frem input to eutput. The output X is tﬁus dependent upen the
particular centrol functien z_selected..'

- To phrase the problem in concrete ferms,3given'a plant with an
inpuf vector y and an output vecter x, the relations between y and x

being known, find the optimum input § such that seme performance func-

tional of v is extremized. Having determined §s @ contreller for the

plant can be inferred,
The performance functienal will cen't_ain some measure of the
- system's sensitivity or constraintg Onlthe.syéfem'é sensitivit& will be
imposed. Thus, the optimizatiéﬁ ﬁiil-fené eithe? té'bglapce-thé system's
sgnsitivity against other system perfermance criteria or te constrain the
system's sensitivity to lie below some value.. |
In érder that the procedure be applicable to a ﬁiée éléss.of
plants, both .linear and nen-linear, a vafiatienal_timefdomain approach

will be emploved.

The General Optimization Problem

Before considering the sensitivity aspects of the problem, the
basic naturé of the eptimization problem will be reviewed.

In order to optimize a contreller for a plant, "eptimum' mhst
first be defined. This definition is made by the selectien of a partic-
ular performance index or performance functional of y. A typical form

for such a performance index in control system work would be:




T

i<

w\/ |

o ¥
Control
T N
Function : )5 Plant
Generator - rdB :
dentroller) :
k= f(x,y,t)

Figure 1. Block Diagram of Plant and Controller.




T :
Iyl = [ Fix,g,t) dt + G(x(T))
t .

o]

The system is said to be eoptimum when an'input functien § has been
determined such that the functienal J[yl} is minimum or maximum. The

functional J[XJ is often called a cost functional and is generally mini-

mized. A typical pérformance index might include measures of system
error, input energy or time of respense, depending upen what was impor-
tant in a particular problem. A'ccmmOn ﬁerfqrménce index: is the so-called

quadratic performance index, defined as:

T
Iyl = [ (xePxe yeoy) At
t

<]

where P and Q are symmetric poéitive definite matrices. Obvibusly, there
must be a functional -dependence of J[y] on the selectien of y or there
woeuld be no problem; that is, if J[xj did net change for different values
of y, no minimum éould be obtained and no optimum value for y would
exist.

The plant.equations impese natural constraints in the feorm of
relations between-E_énd y. Additional constraints depending-on the re-

quirements of a particular problem might be imposed; for example,

gl <su

or xl(il) = M2




—

where Hl and H2 are known constants. Again, obviously, there must be a
nen-trivial relatioﬁ between a constraint imposed and the inherent dynam-
iecs of the system, or else the constraint would not affect the solution
ef the problem, Mathematically, the additional coﬁstraihts must tend to
increase the performance functiénal te be minimized, - |

The -optimization problem as phrased above is amenable te solution

. by a variety of known methods. Three major appreaches te the preblem

are:
1. Utilizatien of the classical calculus of variaticns. -
2. Utilizatien of the maximum principle of Pontryagin _(8,10_)..
3. Utilizatien of the dynamic pregramming appreach of Bellman
(17,18).
Utilization of the classical calculus .of variatiens pr‘esehts difficulties

vhen discentinucus functiens are admitted to the class eof acceptable con-

trol functiens. Utilization of Pontryagin's maximum principle admits

discontinuifies, but reguires the solution of a two-point boundary prob-
lem. The'dynémié programming approach requires the solution of partial-
differential equatiens which in turn leads te a one-point boundary value
preblem. Existing eptimization schemes (Pentryagin's or Bellman's) will
be used in a modified form in the solution of the basic ﬁroblem presented
by this study. An outline of PoﬁtryaginfS'and Bellman's method are found
in Appendices I and II. The classical calculus of variations appreach is

well-documented in the literature.




The Sensitivity Problem

The sensitivity problem exists because of the natural tendency of
the parameters of a physical system to vary from their nominal values.

This variance could be caused by aging, environmental changes, or the in-

-herent stochastic nature of the parameter. These parametric variations

will cause variations in the dynamic characteristics of the plant. A

system's sensitivity can be defined as the degree to which these para-
metric variations affect the performance of the system. A system with

low sensitivity is one in which parametric variations cause only slight

or insignificant changes in some desiréd quantity, e.g., the plant out-

:puty the plant transfer function, the performance index of the system.

Thus, if consistency of the desired quantity for repeated runs of the
plant is important, as in the case for.most dynamic systems, a system
with low sensitivity is desirable,

Most optimization schemes for the synthesis of control systems

disregard the sensitivity problem; that is, these schemes assume the

parameters of the plant are fixed.  If the plant parameters de in fact

vary, fhezresulting system could well prove unsatisfactery from a sensi-
fivity point of view since the controller inferred by the optimization
scheme is dependent upon the assumed values pf the -plant parameters,
Thus, an "optimum" input which minimizes the performance functienal fbr

nominal values of the parameters may preduce values of the performance

- functional which are no longer minimum when the parameters change slight-

ly. Coenstraints applied to the design of the system assuming the plaﬂt_
parameters are at their neminal values may not be met if the parameters

change théir values.

7




It is fhE'approach of this study to také these sensitivity re-
strictions:into consideration beforehand in the system. design, thus
insuring an.optimum system based on 511 constraints imposed, including
sensitivity. L .

Before a system‘S;éensitiv;ty can be discussed quantitatively,
seme suitable measure of sensitivity”muétlbe defined. This ‘measure
could be based on various mathematical descriptions of_éénsitivity found -
in-the.liferature. Cnce d valid sensitivify ﬁeaSﬁre haé been established,

system sensitivity becemes a quantity which can be used in design, analy-

~sis eor comparison of systems.

Two important.mathématical descriptions of a system's sensitivity
are found in the literature. They are the classical sensitivity function
of Bede (1) and others .and the sensitivity ceefficient of Temovic (12).

.The classical sensitivity function is simply a normalized measure

~of thezchange-in_sdme desired quantity with respect te the change in some

system.parameter. If T is the desired quantity and q is a parameter, the
classical sensitivity functien is given by:
T. AT ,q_9q., 4Tl

Sq Bk AR R~ (for small variations)

Since this sensitivity measure is normalized, it yields what might .
be called an absolute measure of a system's sensitivity. It is particu-
larly well-suited for analysis and design iﬁ the freﬁuéncy dpmaiﬁ. It
has recently been employed by Dorato (3), who discusseé the deviation of-

the performance index with respect to plant parameters in the optimum




control problem and by Cruz and Perkins (4,5) who have introduced the

concept of comparative sensitivity, for which the deviatien of some de-

- sired quantity, e.g., a transfer functien, with respect. to plant par&mf'

eter changes is compared for more than. one implementation (open leop vs.

closed loop) of the control scheme. ‘Tﬁey demonstrate the general
superiority of the closed léop scheme. 

Examples of-aesign based on classical sensitivity concepts inciudé
the work of Mazer (13) and Fleischer (14). Both Mazer and Fleischer
assume linear feedback systems (freguency demain) and therefore, their
work would .ﬁot apply directly to the appreach taken in this study.

An alternate description of system sensitivity and one that will

" be used in this study as a basis for design is the sensitivity coeffi-

cient of Temevic (12). The sensitivity coefficient is an unnormalized
measure of the change in some desired quantity with respect to the change
in some system parameters. Again, if T is the desired quantity and q is

a parameter of the plant, the sensitivity coefficient is defined by

AT _ 4T (for small changes in q)

ultsa) = 7= 35

-

This description of sensitivity provides a simple means of-defin;
ing sensitivity in the time-domain. As will be shown in Chapter II,
there is a natural, simple relatien between the sensitivity coefficient
and the plant equations. Also, useful and relatively simple sensitivity
measures based on u{t;q) can be constructed. These measures are.illus_

trated in Chapter III.




Thé General-Apprqégh?tg the Prob;em_

The general approach to the sei;tion té-the synfhééis.ﬁ;ébiem'
phrased above will be as follows: |

First, relations between the sensitivity coefficients and the
inherent dynamics of the plant will bé_established;.

'Seéend; senéitivity measures based on the_sensifivity'ceefficiemm
and satisfying the requirements of a particular synthesis problem will be
constructed.

Third, the sensitivity measures will be included in a performance

-index er constrained to meet the requirements of a particular probliem.

Fourth, cenventional optimization techniques will be applied to

the resulting optimizatien problem.
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CHAPTER II
THE SENSITIVITY EQUATICNS

In this chapter, the relations between the sensitivity ceefficient
and the fundamental plant relations are established. This relation is
described by the sensitivity equation(s) associated with a particular

plant.

Définition of the.Sensitivity @déffidfgnt €12)

Let the vector x be the output of a particular\plant_and be the
quantity ef_intefest insefaf asgsenﬁitivify is concéfned,t In other words
We are concerned with_the'sensitivity of the outpﬁt* tg;piant parameter
changes. The plant parameters in 'ques-tion could be physi.c;l Yconstants"
of the planf having some nominal value or the initial cenditiens on the
plant state variables. In general, x is a functieﬁ of time and the plant

. parameters, i.e.,
x = x(t,q)

where q is a particular plant parameter of interest.

* Henceforth in this study, we will consider the output x to
- be the quantity of interest, although as far as the methods outlined
below are concerned, the sensitivity of any quantity of .the system

could be handled. _
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Then -
Ax = }_!_(t,q'i-ﬁq) - x(t,Q) 3 ot assumed- to '1;e fi:;_ed.;

and

ax - 2(t.qtaq) - 5(t,q)'
A X _
u(t,q) = lim — = lim" ' :
agr0 B4 ags0 4q
A aﬁ('t_sQ)

or u(t,q) = 5

For small changes of the parameter or regions of the domain of.

q where x is linear in q

» B Ax
u(t,q) = ﬁ'” 2q

The -Plant and Sensitivity Equations (12)

Consider a system of plant equations written in vector form:
x = £6,y,0.8), () = x | (2.1)

where x is an n vector and f-is continuous in &ll arguments.
' If both sides of this gystem of equations are differentiated with
respect to q, a plant parameter of interest, a new system of equations

called the sensitivity equations results,




Thus:
d&  df
i T3
‘But
-dg' 5 I a-Bx_ 5 -
TR TG Taw L

‘assuming the order of differentiation can be reversed.

By the chain rule,

3f dx Of 3y af

.a_i TR T T _""3-q,'

Since y, the input te the system, is some éktérnally generdted

: : Iy
function and net a function of the plant parameters, 30 - 0, and the

& :
second term on the right vanishes.  Thus the sensitivity equation

becomes:

12

* The optimum input ¥ is dependent upon the nominal values of
the plant parameters, but ence determined does not vary if .the plant
parameters change. Thus # is noet a function of the particular values
of the plant parameters, and '

g
3q

=0 .
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3f  of

'l._.‘l_z @E'}' -B'—q- (2t2)
af . Bfl 3f1
axl sz 3xn
af 8f2 3f2
axl 3x2 an

1=

(n x n matrix)

=115

where

of 3f af
~ R
Bgl Bx2 an

If the plant had a single inpurland single output, the plant equa--

tion could be written:

(n)
FO Xy 0y %y %, %, ¥, ty q) = 0

where F is éontinueus in all arguments.

Again differentiating with respect to q to obtain the sensitivity

equation
(n)
9F  3x ., OF 3% . 9F 9% _ OF ax , OF _
(n) —3q +...+§-§-§€ gi—'a—a-i-é;ﬁ-'l'ﬁ-o (2.3)
Ix
ain) ® ax, (@) -
noting that 55_—-= ——E{§E0 = u , equation (2.3) becomes:




-
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) o
aF oF aF . 3F _ aF
- 3,&“)_ ‘U ... ﬁﬁ'l’ a—;{-u+ ol E— (2.4)

Either forms (2.2) or (2.4) are acceptable forms 6f the Sensifivity
equation(s).

A general assumption made iﬁ deriving.(2.2) or (2.4) was that for
a particular input y or y the solutiené to the plant equations are ana-.
lytically dependent on the paramefer in question, .IHSQfar'asithe param-

eter q represents.an initial condition on x or some other parameter of

- the plant system whose variance dees not increase the original order of

the plant system, the conditions fer analytical dependence of the selu-
tions on q are known. it_is known from the theory of differential equa-
tions that the solutions of the plant equations depend continuously on
the initiﬁl cbnditions and'otﬁer pafamefers since F itself-depénds
continueusly on q (12). 'Welshall assuﬁe, henceforth, that variation of
the parametefs do;s-nét increase the order:ef the plant system.

S¢ far, we have assumed that a-single varying plant parameter is
of interest. The conéepts outlined -above are easily exténded to cases
Where seVerai plant parameters are of interest to the problem. Let qy be -
a set offm_such plant parameters, i=1,2,...m, Then a set of sensitivity
equations éan-be obtained from the plant equations, .If the plapt equa-

tions are'of the form
k= F(Xs 9150550040 5t)

the sensitivity equations become:




of
'ﬁ'.=-:u.+af . i=1,2...m
—i 9K =4 qu B

' 'ai_
where i, = — .
~ If the plant equation is of the form

(n) . _
F(X, ooo,ﬁ"x’.x,y,gl’qzuooqm) = 0 Y

the sensitivity equations become:

(n) ' .
aF _ oF .,  3F, oF _ _ 9dF
a&n) u, + .0+ 53»& + ] + 5§'ui = aqi N

i-= 1,2...17_1

where u, = — ,
e u,

Initial Conditions on the.Seﬁsifivity Coefficients

In assigning values to the initial conditions on'ui or

15

(2.5)

(2.8)

{n)

ui, we must

distinguish between two cases: The case for which the parameter'of

interest a is an initial cendition[dh'thg,plént_and the case

for which

it is not, If qi_is not.an initial condition on seme plant.state vapri-

ox

able, it is clear that — (t ) = u.(t_ ) = 0. That is, since
aqi o =170

the. initial

values -of E_are'fixed, the change in x per chamnge in the parameter evalu-

ated at t, must be zeroc. Similarly, if the plant equation is

(2.86), the initial conditions on the sensitivity coefficients

in form

are:
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If % is an initial condition on some state variable, séy X s the
situation is somewhat'different=
From (2.1}
) %, = fk('xl',xz...xn,x_,t,qi) (2.7

where q = xk(to). Integrating (2.7) with respect to t yields:

% = x(t)+ [ £ dt =q + [ £ dt (2.8)
' t t . .
_ o G -

Differentiating (2.8) with respect to qk yields:

Bxk : t

9
w = ==z 1+ —(f £ dt)

% qu aqk t k
Evaluating W at t s t, s
=t :
d "o 3 _
uk(‘to) =z ] -a'q(-{ fk dt) = 1 +_ﬁ;(0) =1

Summarizing the above discussion:

w6 =0 ifq; # xlt)

uk(to) 1 ifq, ='xk(to)

I
e ]
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If the plant equations are in form (2.6)

(n) ' (n)
ui(to) =0 if qi # X(to.)

(n) (n)
ui(to) =1 | if q; = -x(to)
An Example

Consider the plant system governed by

% -a(l-x) x+x=y  x(o)

[0}
»”

(2.9)

n
5a

x{o)

The sensitivity equations of this system with respect to two
parameters q, and_"q2 where q, = aand q, = x will be derived.

Differentiating (2.9) first with respect to q; yields:

1, - a(l-x2)u + a(2x)ku, - (1-x2)% + u = 0

or 6, ~ all-x")a) + (1 + 2axiou, = (1-x7)%k (2.10)
with 0, (0) = 4 (0) = 0 (u, = X
' 1 1 1 aqi

Differentiating (2.9) with respect to q, yields:
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' 2. . . _
ﬂ2 - a(l-x )u2 + a(2x)% u, tu, = 0
or a, - a(l-x23ﬁ2 + (1423x8)u, = 0 (2.11)
with u.(0) = 1 and 4,(0) = © (ﬁ = 3%

Equations (2.10) and (2.11) are the sensitivity equations of the system

with initial conditions as shown.
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CHAPTER III
SENSITIVITY MEASURES

In this chapter, the problem of deﬁeloping a quantitative measure
~of the sensitivity of a physical system to plant parameter changes is
discussed., Several reasonable measures of sensitivity applicable to
particular problems are cgonstructed and their use in performance indices

" or as constraints is discussed.

General Discussion of Sensitivity Measures

The problem of devising a useful measure of the sensitivity of
a system is analogous to the problem of measuring other cost functions
of the system; for example, the system error. There are a variety of
wayé errcr might be measured, each applicable to particular situations.
These error measures would include the mean square error, the integral
square error, the integral of the absolute value of the error, the in—
stantaneous magnitude of the error at a particular time T, the maximum
value of the error magnitudé over a given time range -and others. The
choice of the particular error measure would depend upon what aspect of
the error was important in a particular problem.

In a similar manner, the choice of a sensitivity measure depends
upon what aspects of sensitivity are important in particular problems

or situations.
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Examples of Sensitivity Measures

Denotiﬁg the general sensitivity measure.by U (a functional of
the input.y), the following are examples of various measures which .
would be.appropriate-in.the given situations:

1. Assume that it is important that.thé output x {single ocutput
system) be consistently the same at time T for repeated runs of the
plant, despite the variation of some plant parameter q. A measure of

the system's sensitivity in this case might be:
U= [u(T.q)

The sensitivity of the system at other times, t # T, is ignored. If

(ql, q2) represents the possible range of parameter variation and

%), |

u = %E.whepe bq = q - q,s U = ——=— . This measure is illustrated
d laq|  [t=T |

graphically in Figure 2.

2. Assume that it is impertant thaf the actual value of x be
close to the nominal value of x over a given time range (to, T) despitel
plant parameter variation. A reasonable sensitivity measure in this case

would be:

U= max |u(t,q)|
(tO.’T)

Here importance is placed on the maximum deviation of x from its nominal

value. This measure could be used when it was required that the maximum




Figure 2.

The magnitude of this distance divided by
Aq represents U = |u(T,q)| . '

] e e e e e e

Graphical Representation of Sengitivity Measure U ='|u(T,q)I.

I¢
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deviation of x over (t_, T) be bounded. If q is one limit of parameter
variation and 4, the nominal value-of the parameter and if u 2.%2- where

Aq = q - qc,_then.

fxpex |
U = max . Tr;-ll—
(to,T) “| aq]

This measure islilluétrated graphically in:Figure_3;

3. Assume it is important that.the integral square average va1ue
of deviaticns of x from its nﬁminai value be small. This typé of average
weights large deviations more heavily than small deviations. In this

case, a reasonable sensitivity measure would be:

T
U= [ ul(t,q) dt

t
o

4, Other sensitivity measures applicable to particular situa-

tions might be:

T
[ Ju(t,q)| at

a. U=
t
o
T
b U=/ u-Rudt
T
o

General case of 3, above; R is symmetric positive definite matrix.




Figure 3,

The magnitude of this distance divided by
Aq represents U = max |u(t,q)]|.
' (tO,T)

Graphical Representation of Sensitivity Measure U =

“max
(tOgT)

.
I
t
I
|
[
l
|
t
|
T

+ v

|u(taq)l*

£Z
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Cases ;., 2., and 3., above are regarded as-thé-most generally
appropriate measures from the point-of_ﬁiew of -engineering usefulness and
mathematical tractability.

From the discussion above, a few general remarks on sensitivity
measures may be made. |

First, the.sensitivity meaéure is always zero or positive.

Second, the larger the sensitivity measure, the mere sensitive a
particular system is to plant parameter changes in éome sense, defined

by the measure,

In other words, the sensitivity measure is anether cost functional

that can be used to evaluate a system. It might be thought of as a type.
of error measure where the "error" is the deviation from the neminal
value of the eoutput caused by parameter varviation instead of the devia-

tion of the nominal value of the output from the desired value.

Applying the Sensitivity Measure to the Optimizatian Problem

The sepsitivity_measure can enter the optimization preblem in one
of two ways. Either the sensitivity:measure is included in the perform-
ance functional of the system or the sensitivity measure is constrained
to lie below some value determined by the nature of the problem.

If the sensitivity measure-is included in the performance func--
tional to be minimized, sensitivity consideratiens will be balanced
against -other typical cost functionals (errver, input:energy, etc.) asso-

%
ciated with the. preblem. - The performance functienal can be thought of

% There is no realistic problem where the sole object of the. -
optimization scheme is to minimize sensitivity. Obviously, the system
must be required to do something other than be . insensitive to parameter
changes. An inert system would have a sensitivity measure of zero.




25

as consisting of two parfs;-the cost functional'that-measures how well
the sysfem performs its designed task for nominal_values of the plant
parameférs and the sensitivity cost. functional whiéh measures the devia-
tion of the oﬁtpﬁf from its nominal values cauéed by parameter.variation.
The performance.fﬁnctional could then be.the weighted sum of the two,

For example:

T
Jlyl = [ F(x,y,t) dt + v U(T)
t

o]

T
where f F(x,y,t) dt
t

e]

is the measure of the systems performance without censidering sensi-
tivity, U(T) is the sensitivity measure, and vy is a wéighting factor.,
If the sensitivity measure is constrained to lie below some pre-
determined value, the system is merely optimized with respect to its
usual -cost functional with this added sensitivity constraint. Fer

example:

T
Jlyl = [ F(x,y,t) dt, U(T) £ M
+.

o

where M is a predetermined constant.
Although these two methods of intreducing the sensitivity measure

inte the optimizatien problem differ basically in intent, the .actual.
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mathematical problem of sclutien is quite similar. If the sensitivity
measure is censtrained, a new performance  functienal is'formed'by multi-
plying the sensitivity measure by an undetermined coefficient, say A,

and adding it to the original performance functienal, i.e.,

Jl[XJ Jhy] + AU(T)

T
| F(x,y,t) dt + AUCT)
t -

H

o]

The optimizatien scheme is then applied. The additienal relatien U(T) =
“ .

M permits the evaluation of A. The only mathematical difference between
the two methods is that in the first X is known beforehand; in the

secend; A is implied from the additional relation U(T) = M.

Engineering Estimates on Sensitivity Constraints:

Une of the advantages of using the sensitivity coefficient
u{t,q) as a basis for establishing sensitivity measures is the ease with
which practical a priori sensitivity constfaints can be estimated and
constructed. This estimating technique will be demonétrated using a
single output system and a siﬁgle_parameter ef interest.

Let & be the system output when q = qg, the nominal value of the

plant parameter. Let X be the system output when q # 4, Then

# If U(T) is a valid sensitivity measure, one which causes Jlyl
to be montenically non-decreasing as M decreases, the inequality
U(T} < M can be replaced. by the equality U(T) = M.,
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dx-_ . xR
E" = - . (3.1)

for small variations of the parameter near q_ or in the neighborheod of

4, where x is linear in q. Thus,
X -~ & = Aqu (3.2)

Suppose théueQPQCtéd range of ‘g from its nominal value is knoewn

from the physical natuare of the parameter and the conditions of the prob-

lem and that this ‘range is such that -(3.7) aﬁblies. In effect, Aq in

(3.2) is thus knewn.

Consider now several examples of how constraints on various sensi-

tivity measures might be applied in particular preblems.

ExaEEle One

Assume the maximum deviatien of x from & caused by parameter

variations.at a_par#icular time T is to be kept below some value M,
[%(T) - R(T)| <M

From (3.2):
| Aq w(T)) <M,

yielding the sensitivity constraint
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M
lag]

UCT) = Ju(T)| <

Example Two’
Assume the maximum deviation of x from & caused by parameter vari-

ations over some time interval (0,T) is to be kept below some value M.

Max |x - &| < M
(0,T)
From (3.2):
Max |Aq||u] s M - ,
0,T)
ory 2] wax [u] < M

L]

implying the sensitivity censtraint:

U(T) = Max |u] < "
(0,T) ‘5Q|

Example Three

Assume the RMS average of the deviation of x from % caused by
plant parameter variations over seme time interval (0,T) is to be kept

below some value M,




T )
.lf

/=1 (x —2) S M
'TO

T 2 2
or, ' J (x-2)% dat < M°T
or from (3,2):
T :
(80)? [ wZat < ¥r
0 .
implying the sensitivity constraint:
T C 2
U = [ vlar 5 L
0 (Aq)

Example Four.

Multlple constralnts can be handled 51m11arly.

29 -

(3.3)

Suppose the maxlmum dev1atlon 1n the velocity of the . output ]i-k|

caused by plant parameter changes must be kept below some value N over

the time range (0,T) while at the same time the constraint of Examp le

‘Three above is applied,

Differentiating (3.2) with respect to t yields:

(3.4)
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but ' max. i-ﬂl <N
(0,T)
From (3.4), |aq| max [4] < N
(0,T)

implying the sensitivity constraint:

U (T) = Maxi|a| <
(0,T) {aq|
T - 2
and from (3.3) U (1) = f u?dt ¢ 2 T2
o (4q)

Thus there are iwo constraints te be applied to the optimization problem.




P
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CHAPTER IV
THE SYNTHESIS METHOD

In this chapter, the generel synthesis methed for ept1m121ng the
contreller fer a knewn plant structure is eutllned. Sensitivity con-
sideraticns enter the problem through the 1nclu510n of some sensitivity
measﬁre in the system performance index or threugh ccnstralnts applied to
appreprlate sensitivity measures. General stablllty considerations are

dlscussed and the . 1mpllcatlons of various assumptions explored,

The Basic Approach

The basic feature of this optimization_seheme, which eermits the
problem.as originally phrased in Chapter I to be solved, is the augmen-
tatioe of the plant vector differential equation with ene or mere vector
sefs of sensitivity equations derived from the plant equatione.

To phrase the original problem again: Given a plant with input.y

and output x_with x (t ) = x_ and a performance functional
P P o —Ppo

-J[XJ = [ P(x_, t)dt +yU
_ 0

or JLy] f F(x s¥,t)dt with U < M
0 -P

where U is some sensitivity measure based on_ui(t,qi), Y is a weighting
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facter and M is a predetermined constant, determine y = ¢ such that J[y]
is a minimum.

Then

-;Ep = f-p(}ip’y-’t)’

an nth order vector plant equation with

® (t) = Epo
A o, .
and ST op T Bq 83 (%557,1; 41

a set.of nth order sensitivity equatiens with Ei(to) U where the set
Qs> i=1,2...m, are the m plant parameters of interest in the problem and
Q4,0 1=1,2...m, are their nominal values.

Now define the (m+l)n order vector X:

[
e

[ D



then

f (x 1)
'P("P’:b

gl(ﬁp sUsY T )

[Xe .
i

By(%, 20ys¥st) £ £(x,y,t)

gm(ﬁp au_m a:f_st )

The veétcr % is seen to be a system sta%e vector whosé elements include
the output and the sensitivity coefficients.

The vector function f is assumed to be evaluated at q; = 9o the
nominal values of the parameters. The effects of this assumption are
discussed below.

The problem is now in the Form of the general optimization problem
phrased in Chapter I and is therefore amenable to solution by . Pontryagin's
or Bellman's methods (See Appendix I and IX). These methéds, applied to

the problem, will yield the optimum control function ¥.

Stability Considerations

In this section, the stability of the optimized system is dis-
cussed. The optimum input as synthesized above is assumed to be applied

to the plant input. The sense in which the optimized system is stable or

unstable is defined. _ -

For autonomous (unforced) systems, conventienal system stability
criteria are defined in terms of the behavior of the state variables as t
becomes infinite. For non-autonemeus {(forced) systems, the system can be

said to be stable, if for every bounded input, the output is bounded (19).
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- The type of systems considered here can be considered-te be noﬁ-
autonomous in the time range (tG,T) and autonemous in the time range
(Ty*). In ether words the driving funcetion y is removed at T and the
system operates in. its unforced mode.

$ince, for a realizable physical system, the eutput is bounded for
a bounded input over a finite time range, however large, the only sta-
bility question remaining is the stability of-the system after the con--
trol peried (to,T).

This is determined-by the“auténemous beﬁavior of the plant. Since
Wwe are, in general, conéerned with nen-linear plants, fhé-autohomous
stability of the piant.will beldepeﬁdent upen the.péiﬁt-in the phase-
parameter space that the. state variéblés and’the plantzﬁébameters are
located when the control period terminates.

Te illustrate, let the output X be an n dimensional vector and
let there be m parameters 4y i-1,2...m, of interest, each lying within
a fixed neighborhood, Qo £ € q- Theﬁ there exists an n+m dimen-
sional space Q, consisting of all possible vaiues of x(T)} and q;+ In
general, this space can be divided into- two parts-;the region in which
the plant is stable under some definition of autenomous stability and
the region in which it is unstable.. If at t = T; the peiﬁt-defined by
the state variables x(T) and the plant parameters 5 is lecated in the
stable region of @, the system can be said te be stable. If it is
located in the unstable region, the system can be said to be. unstable.

Thus, the,qﬁestien of stability as fap as this methed is cen-
cerned is determined by the autonomous stability of the plant itself.

Sevéral methods of analyzing the stability of autonomous systems are
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found in the literature (19). _ -

Assumptions and Limitatiens

In this section, the effects df variéus implicit and explicit
assumptions made above will be discussed and the resulting limitations"
on the synthesis methed explored.

An important assumptlon made in phra31ng the optlmlzatlen problem

above was that the plant and sensitivity equatlons were evaluated at the

nominal values .of ‘the parameters, q = q This.assumption Was neces-

ie”
sary in order that a definite z.result from the optlmlzatlon scheme.,
Thus, the contrel function-§ reSultlng frcm the optlmizatlon scheme mlght
be said to be truly “eptimum" only when the parameters are nominal. The
question naturally arises, in what sense, if_any; is 9 an optiﬁum when
the plant parameters are not at their ﬁominal values. This question is
obviously important since thé sensitivity'problem would not exist if the
parameters were fixed. |

“Let 5 be the value of the performance index when_z_=-ilas_deter-
mined by the 0ptimizati®n scheme, 5 ='JE£]f Let jl be the value of the "
performance index when ¥ = ¥,» some ather control fgnction. For defi-
niteness, assume ¥i is the contrel function obtained by an optimization
'&isregarding all sensitivity considerations.  Both E'and jl now - can be

considered to be functions of the plant parameters Q'

e 3

= j(qi,qz.;.qm)

3y = 310q0505 00 00)
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Assume that both j and j, are continuous in all plant parameters
in the region of parameter space defined by the expected range of param-
eter variation. 1In particular, j and jl are céntinuous_at PR P

This assumption is easily met by typical physical systems.

If a non-trivial sensitivity preblem is under censideration, then:

](qlo ’(:120‘ . ’qmo) < jl(qu ‘)q20- . oq_mo)

from the definition of § and zi;

Then, arguing from the centinﬁit'y of 5 and ‘jl,_there exists a
neighborhood of CPP Nl(qio), such that 5-< jl for any value of 9 in
Nl; Further, there exists a nieghborheod N2(qio) such that 3 evaluated
for each value of qi'in N2 is less than jl'evaluatéd for any value of
9; in N2. These neighberhoods are illustrated in Figure 4 for the single

parameter case.

If the region of parametric space defined by the expected range of

parametric variatien lies within either Nl or Nz’ the contrel functien 4

may still be called optimum despite parameter variation. If the eXpected .

range of parameter variation lies within Nl,‘g(qi.) < gl(qi.); ie., §is
better 'than-)_f1 for ghy particqlar‘set'Of parameter values. ]If the ex-
pected range of parameter variations lies within N2;'§(qi.) j(qik);
i,e., z_is better than XQ where any two sets of-parameterjvalues have

been selected for comparisen., Since y, could be the control function

derived from any reasonable optimization scheme, ¥ coeuld be called the

optimum despite parametric variation as long as the range of parametric




T

Figure 4. Variation of Performance Indices with Parameter Changes.

LE
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variation is small enough. This is assumed to be the case when applying
the above described synthesis procedure.
Another assumption made in deriving thefsynthesis procedure and

de#ising sensitivity measures that also serves to restrict the allowable

Ix ax
range of parameter variation is. that sé;-z e or that x is approxi-
i i

mately lipear in qi.over:the region of the parametric range of interest.
The centrol function § as determined by the synthesis procedure will
deviate from the true optimum to the degree that this assumption is not
met .. |
Since the plant parameters are assumed to remain constant through-
eutea:givenvcontrol'periéd,'the'syﬁthesiS“procedure is applicable to the
class of problems iﬁ whiéh ﬁniformity of the output is important for
repeated runs of the plant, despite variations in the ﬁlant parameters

from run.-to run.
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CHAPTER V
THE LINEAR PLANT WITH QUADRATIC PERFORMANCE INDEX

In this chapter, an importént_ppecial case.of thelgénerélisensi—
tivity problem in contrel system optimization is considered. This is
the case where the plant is linear and the performancé indéx is in the
so-called quadratic_form.

Consider the case where there is a single varying plant parameter
of interest q.

The n order plant equations are of the form

where | : Ep(to) = (5.1)

A is an n x'n matrix and B is a k ® n matrix, where k is the order
of y. Any or all of the elements of both A and B could be functions of
the plant parameter q. Differentiating (5.1) with respect to q yields

the sensitivity-equationsf

1= Au + A + B : 5.2
a=har Ay, ¥ By, 5.2).

where Eﬁto) :’Eo




and where _ _
9a,, 33, fa,
3q aq L I aq
8a,, 3a,, a),
A :.@.— = Bq aq o aq
q aq LN I.t. L2 B ] L]
Banl Ban2 Bann
aq g "7 8q.
and- _ _
9, 'abl:.2 3b.,
.—155— g 't g
90,1 b, 9D,
_ 9B _ ?q g "' g
B = — =
q aq - - - - L 3 - a &
., 3, b
3q 3ag -’ 3q

The. quadratic performance functional is of the form:

T : _
Jly] = ) (%P}_':p + y_*Qi).dt + v U(T)

t
e

Let U(T), the sensitivity measure, also be in quadratic form,
i.e.,
T

Y U(T) = [ (uRw) dt

T
o .

40
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or Iyl =[G Pay ot ey v wRy) dr G

t
o

where P, Q, and R are positive definite symmetric matrices and determine

the weig'hting'of_ the cost furidtionals.’

Form the vector X!

X
P
}_{h =
b3
then (5.1) and (5.2) can be written-
X = Cx + Dy R CHY:
with-
x_(t ) X
o “po
_:_c_(to) = =
u(t ) u
where C is the 2n matrix:
A | ¢
¢z ===~ ——-
A A
a |
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and D is the k x 2n matrix:

The performance functional (5.3) can be .written

T : . .
Jlyl = f (x+Tx + y-Qy) dt (5.5)
Y '
- where
:P_.' |:-"0.
T=|-=-—+—=|a2nx2n symmetric matrix

0 ’ R

The problem now has become to find % such that

T :
Iyl = [ (x°Tx + yQy) dt
t
o

- is minimum with the constraining equation
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(Matrices C and D are assumed to be evaluated. at q=q,. The effect of
this assumption is discussed in Qhaptgr Iv.)

Either Pontryéginfs-or_Bellman's method may now be applied to the
eptimization problem (See Appendices I andvli)ﬂ

Applicatien of Pontryagin's method yields- the fdllowing set of

equations to be solved:

pTp + 20 = 0 . (5.6)
T _

b=-Cp+2Tx : - (5.7)

% =Cx +D§ . ' (5.8)

with Eﬁto) = X and EﬂT) =0, where p is an auxiliary variable inherent
in this eptimization scheme. This is 4n order two-point linear boundary
value problem which can be solved by a variety of known methods (See
Appendix III).

If Q is non-singular matrix, (5.56) becomes
g=-12Qp - (5.9)
Substituting this value of § in (5.8) yields
T

2= ox-1/2 007D p C(5.10)

Equations (5.7) and (5.10) are now solved simultaneously for p.
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The optimum contrel input } is then found from equatien (5.9).

Bellman's Method.

Application of Bellman's method (See Appendix II) yields the fol-.

lewing partial differential equation to be ‘solved, assuming Q is nen-

singular:

3S | e T, =. 1T =z o= _
v = Tx*x + C V§§ x - 1/ D@ "D VxS-VxS (5.11)
o me D . T |
with 8(x,t=0) = 0, where S(x,t) = minimum [f x+*Tx + y+*Qy dt]l, (Y is. the
_ " yeY t :
set of admissible inputs) and t = T - t. °
'Fa‘s;
axl
38
ax '
where v 3 i 2 s @ 2n vector
% .
3§
fx2n
-1 .T . =
and $§=-1/2Q°D VS8 (5.12)

as a result of the minimization operation.

Assuming solution of the form:

8(x,t) = 5(t) x°x ,
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where S(t) is a symmetric 2n x 2n matrix. Then

22 - 8(6) xex | (5.13)
at
and - V.S = 25(t)x - (5.14)

Substituting (5.13) and (5.14) into (5.11) yields:

s

x*x = Tx*x + 2CSx° --STDQ DSxx (5.15)

with 8(t=0) x+x = 0.
Equating like coefficients of the various products of elements of
X, the above separation of variables yields an initial value problem with

(2n+1)n ordinary differential equations. This problem is solved for

S(t). The optimal control input y is then found __fr-om'equatien (5.12):

17T

$=12QDVS5S - (5.12)
= pTs(t)x ¢ . | (5.16)
= K(t) x

where K(t) = ¢ D S(t) Thus

~

y = Kl(t)gc_p + K2(t)9_
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where

If T » », K(t) becomes a cohstant matrix, since é(g) = §{T-t) =
§(=) must equal zero and equation (5.15) becomes -a set.cf {(2n+1)n alge;
braic equationé in the elements ‘of.§.

if i,is desired as é fﬁnqtipniéf?fimé'élphe,'g_can be eliminated
between (5.16) and (5.8) and the resulting_differentia; equations solved
for i, h

Similarly after determining i’ang}the resu;taqt_dutput % utilizing
Pontryagin's method, the parameter t can qften.be eliminated between i_
and X yielding i;as a function.of the input 5::

Thus, the two methods are basically equivalent.

Multi-Parameter Case

The optimiﬁation method applied to the single parameter case above
can easily be extended to the case where there are several varying plant
paraﬁeters of interest.

Let q; be a set of m plant parameters, i = 1,2,...m.

If the plant equations are given by gp = Aﬁé + By, a set of sensi-
tivity equations can be determined by successive differentiation of the

plant equations with respect to Qy5 Qpee Gy




Then
-}
where u, = —
=4 3q,
i
Then
where

91 = AE& + Aqlip +-Bql
u, = Au2 + qux + qui
%=A%+A %+§ ¥y
e
-
Let 2{_= 22 s
u
Zm
i=%ﬁDL
] | -
A A 0 Il 0
L S R L
A'Iol'A H 0
Ll
:—ﬂ:‘f—“4 —_--
A 0 0 A
[ |

© (m+l)n vector

(m+1l)n
x
{m+1)n

matrix

y7

(5.17)




48

and

-7

D = . "k x (m+l)n matrix

Assuming a pérformance index of the form:

T

Jly] =£ EP.PEP t YOyt w cRiuy v cRou, +oael b R ou)dt

2 "2
o

P, Q, RJ.-_ synunetr'ic positive matrices

i=1,2,..m

T .
Iyl = f x°Tx + y+Qy dt ) (5.18)
to
[ l | ]
_________ __ | (otin
. |R |0 ||0
x®
1
R P SR |
where = l | || (m+1l)n
| 0 0 R, 0
____\.__,J____ H ] symmetric
- _—l_""r’_- || - positive matrix
0 4] 0 Rm
L | K .,
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Equations (5.17) and (5.18) are seen to be in the identical form
as that for the single parameter case and the discussion above carries

over intact,




S0

CHAPTER VI
EXAMPLES

In this chapter, various simple examples of the application of
the general synthesis method are presented. The purpose of these exam-
ples is to illustrate the problem-solving procedures and to show the
effects of sensitivity restrictions on the optimization problem. Example
Cne is an analytic solution; the rest of the exampies are computer solu-
tions, In Example One, the solution will be discussed in some detail.

In the rest of the examples, the problem wili be.posed, éxplained, and

the scolution presented.

EXaQEie-Oﬁe o
This is an -example with a simple single-order linear plant and

a quadratic performance index.

Given the plant. equaticn:

%X + ¢cx = ky ' (6.1)

with ={0) = X, = 1.
Let ¢ and k be, in general, functions of a.single plant parameter

q. Let the measure of sensitivity be

T 2 ax
U(T) = [ udt where u{t,q) = B .
0 q
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Let the performance index be the weighted sum of an error/energy cost

functional V(T) and the sensitivity measure U(T):

Jlyd = VW(T) + y U(T)

T . T
f x? + Byzdt + v f u2dt
0 0

T
[ %%+ 8y° + v W2at (6.2)
0

B and y are weighting factors_whiéh assign the relative importance of
error, energy and sensitivity.

The problem is to find y = ; such that (6.2) is minimized.

From the manner in which the performance index is constructed and
from the initial conditions on %, it may be inferred that the objective
is to drive the output from its initial value, x(O) =1, to ﬁero in.such.
a way that J[y] is miﬁimized.

Equation (S.l) is differentiated with respect to q to yield the

sensitivity equation:

G+cu=ky-cx : (6.3
qY d : : )

where k= ox
q 23q
Qe




with u(0}) = o,
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Letting'xi-;.x and x, = U evaluatiqg e,'k,'cq and kq at g = 4

2
{6.1) and (6.3) can be written

RRR

= - cqgl.+ koy . =

s
L]

277 Cqo%1 T C*p t kqoy

or =
*
x = = . Cx +
*2
where -
-c 0
0 .
c = and D
qo 0

Applying Pontryagin's method, we form the

Appendix I):

.2 a2 2 _
x3 v X + By + Y, = f3
then:
. A n+l=3 sfj where pS(T) =
Py © .Z' Pj IX,
j=1 i and pl(T) =

Dy

new equation (See

(6.4)

(6.5)

(6.6)




Form H = E'_f_

pl = copl + cqop2 + 2xl

e,
»
1]

cop2 + 27x2

Py = 0, 1mply1ng pa(t) = -1

=Py (- e %) +ky) tpy(- TR e I K
+ patxi + By2 + ng)
%lh: 0 =kp, + 1<qop2 + QBpag
= kopl + kqop2 - 2By
kopl + kqop2
y =

Recapitulating pertinent

28

equations above:
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(6.7)

- (6.8)

v)
(&)

(6.9)




5y

n
=

Xg T omeo¥ Ry | x,(0)
%, Teq %) - ¢ x, + kqoy x2(0) = 0
Pp = ¢p; ¥ §q0p2-+ Qxl pl(T) =0 3 {6.10)
P, = ¢ P, + 2Yx2 _ pQ(T) =0
kopl_+ kq P,

- o -

y = _ - |
28 /

Thus we are confronted with the sélutioh of a EOurtH order tﬁo~
point boundary value problem. This problem is solved.fOP two special
cases below. |
{ase One
Let q = ¢, k is not a function of q.

Assume T - oo,

Then kq = 0, ¢ = 1 and set (6.10) becomes:

(o] Q.
<
AT ST
ig = - %) -.cox2
By = e py + Py 2% r'_ e

p2 é cop2-+ 27x2

;*kopl

28

Combining set (6.11) into a single d.e. in Py
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k2 k2 Yk2

By (2c ¥ -oﬁ + [c?(c + -—a + =2p, = 0

The four roots of the characteristic equation are:

; ' 2
K2 K Ky
t o2 4 O (=2 - &
o 2B 28 B

Discarding the"positive.roots to meet boundary cendition pl(T) =

0 (T »~ =), the solution is of the form:

Py = Me + Ne (6.12)

vwhere a, b = J/// //// 28 -

From Set.(s.ll)Vit can be seen that X)s X,

forms to (6.12). Applying the initial conditiens xl(O) = 0 and xé(o) =

hJ
Iow

and y have similar

and solving for the undetermiﬁed c6n$taﬁts yields the follewing solution:

¢ -a| =-at c - -bt
= x o=z=- |2 le 4 |Z—le
- 1 a-b - a-b
o
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ul= _ 1 (e-at_e—bt)
- 2 a-b
c=c :
o)
_A_“ 1 _.2 -at'_ _ 2 =bt
y=ys= k-__—o(a-b) [(co a)’ e (co b) ™ e i (6.13)

To demonstrate the results of this sensitivity optimization, let

the fellowing values be assigned to the plant parameters:

Q
K =72
o
g =1

Let us compare the results when sensitivity is not considered;
ie., v = 0 and when it is (y > 0, say'y_= E%J.

When ¥y = 0, the corresponding ; is applied to the plant and the
parameter c ﬁermitted to vary about c, = .707 in the range (.6, .8).
Since ; is uniquely determined by equation (6.13), x(t) and u(t) can be-

determined from equations (6.1) and (6.3) for each value of ¢ and the

error/energy cost functional V = f x2 + Byzdf and the sensitivity mea-
w 0

sure U= | u2dt determined. Values of V and U for various values of
0

the parameter c are found in Table 1 below:

R

b
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Table 1. Values of Vand U for vy = 0

c v U
.600 ' .375 .180
Cy T .707 .355 .118
.800 TS| .087
Repeating this process for vy ='f%3:Table 2 below can be con- 5
structed:
Table 2. Values of V and U for y = &
c v U :
' i
600 .379 117 f
c, T -707 .361 .0833 }
: !
.800 .350 .0652 :
!
Thus we see thaf the sensitivity measure U when y = f%— has been

reduced by an average of about 30 per cent while the errer/energy cost
index V has been increased about 2 per cent. If sensitivity were an

important consideration in this example, this would appear tc be a good !

exchange.
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Anaother method of exhibiting the results of the sensitivity op-
timization would be to plot the output x for various values of the
parameter ¢ when the weighting of the sensitivity measure aésumes dif-
ferent values. In Figures 5 and 6, the output x is éhown for vy = 0 and
g- while ¢ changes from .6 to .B8. The curves for y = %—(Figurg 6)
exhibit a marked "squeezing together" or improved consistency when com-
pared with the curves for y = 0 (Figure 5).

In Figure 7, the optimum inputs ; are plotted for varicus values
of }. In Figure.e; the sensitivity coefficients u(t.co) are plotted fﬁr
Yy = 0 and g—.

Case Two
Let 9@ = k3 ¢ is not a function of q.

Assume T =+ «= ,

Then ¢ = 0 and k = 1 and set (6.10) becomes:
qo0 qo

) = -oex ¢t koy xl(p) =1
Xy = - e X, Ty _ x2(0) =0
P; S cpy t 2xl pl(T) =0
p2 = cop2 + 2yx2 PQ(T) = 0
_KPL v Py
y_——-———-—.——
2B

Selving this . set of differential equatiens in a manner similar

to Case One yields solutions of the form:




Figure 5,

: g

3 £ -
seqC

Plant Output for Variocus Parameter Values with y = 0, Example 1, Case 1.
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Figure 7. Optimum Input, Example 1, Case 1.
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-0.44
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Figure 8. The Sensitivity Coefficient, u(t,co), Example 1, Case 1.
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Me ot + Ne 3T

for the.variablgs'pl? P, Xp» %, and y '

T
: J//,c 5 A ko + ¥
where as= o B

'Applying.the initial conditions xl(D) = 1 and xz(o) = 0 yields the

solutions.

Yy —5—— e ' (6.14)

Again, in order to illustrate the results of the sensitivity
optimization, the output x is plétted in Figures 9 and 10 for y = 0 and
Yy = %— while the forward gain k is allowed to vary between 1.8 and 2.2,
with ¢, = 707, B =1 and ko =.2. The outpﬁt curves when y = %— lie
- ¢loser together than when vy = 0 indicating a reduction in the system's

sensitivity to plant parameter changes. Figure 11 shows plots of ys the




sec

Figure 9. Plant Output for Variqus Parameter Values with y = 0, Example 1, Case 1.

h9




Figure 10. Plant Output for Various Parameter Values with y =

21, Example 1, Case 2.




Figure 11.

Optimum Inpuf, Example 1, Case 2.
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optimum control function, for y = 0 and 7/2.

Example Two
This example is similar to Example One, except that a different

sensitivity measure is used. In this problem,

U = max |u(t,q)]
(0,T)

- Given the plant equation:
X+ex =y, x(0)=1 (6.15)

and with ¢ being the parameter of interest. ILet

LI 2
Iyl = [ * + By“)ar + yuery - (6.16)
0

The problem is to find y so that J[ly] is minimized.
Differentiating (6.15) with respect to ¢ yields the sensitivity

equation:
G+ cu=-x (6.17)

Letting x = ¥;s U= x, and evaluating at ¢ = Sy equations (6.16) and

(6.17) can be written:




1
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e
ir

15 TS %t y

hin
"
§
o
]

-~ ¥ =,
i

Using Pontryagin's method:

2 2 .
1+By + v U(t)

e
H
~

Consider the function U(T) = ﬁax|ﬁ(t)]. Assume u(t) is a meno-
{0,T)

tonically non-increasing negative function over the time range (0,t)

where t is the time at which u(t) reaches its first minimum. (This

assumption is motivated by the behavior of u(t) in Example One and will

be shown te be true in the solutien to this example.) Further assume

that {u(t)| is at its maximum over (0,T) at t = ¢, Then:

and for T <t < T, U(t)

Thus

and

for 0 <t <1, Uit) = - u(t)

|u(t)| = a constant.

1

U(t) = - A(t) = - xz(t)'= CRy + Xy O <t <7

. 2 2
= . <
_x3 xl + By' + chz + yxl, ) 0 <t T
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= x7 + By2 + 0, T<t<T

Applying Pontryagin's method, we obtain the following set of

equations:

xl = - coxl + y
Ry 77 6%y = ¥
P, = ¢ Py + Py t 2xl + ¥, ' 0 <t <1
= ¢ Py + P, + 2xl, T<t<T 5 (6.18)
P, = ep, * . ¥,s. o<t
= C Py T <t «<T
-
y 28
A
with xl(O) =1 pl(T) =0
x2(0) =90 pQ(T) =0

The set of equations (6.18) can be easily mechanized on an analog
computer, Solutions for e, .F 1, B = %-.énd for y = 0 and y = 5 witﬁ
T + « are shown in Figures 12 through 15. In Figures 12 and 13, the out-
put x is_plotted for values -of the paramefer~c between .9 and 1.1, with
¥ = 0 and Y.= 5. As in Example One, the putéut curves are closer to-

gether for y = 5 indicating reduced sensitivity to_piant parameter

changes, In Figure 14, the optimum input y is plotted for vy = 0 and 5.
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Figure 12. Plant Output for Various Parameter Values with Yy = 0, Example 2.
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Fipgure 13. Plant Output for

Various Parameter Values with y = 5, Example 2.

TL




sep 1.5
N
l
=
|
i
Figure 14. Optimum Input, Example 2. 3
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In Figure 15, the éensitivity coefficient, u(t,co) is plotted for y = 0
and 5. The assumption above regarding the behavior of u(t) is seen to

be confirmed.

Example Three

This example has a second-order linear plant with a quadratic
performance index. The object of the control is to drive the output to
zero while minimizing the performance index.

The plant equation is:

 + bk + cx = ky with =x(0)

n
[

(6.19)

1]
)

and %(0)

The parameter of interest is the forward gain k. ' The performance
index is:
T

Jlyl = f (x2 + 6y2 +'Yu2)dt
0

Differentiating equation (6.19) with respect to k yields the

sensitivity equation:

]
o

i+bl+ceu=y with u(0) (6.20)

]
<

and 0(0)

Equations (6.19) and (6,20) can be written in state variable form

with % = X109 R = X5, U = Rgs U = X as. follows:




(y=5)

i~ 0.5 - 1.0 sec

1.5

-0.3 4

Figure 15. The Sensitivity Coefficient, u(t,co), Example 2.
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S
X = %, xl(O)?=wl
X, ==bx, - cx. + k x,{0) =0 :
2 2 175 2 S (6.21)
XS = X, XB(O) =0
%, = - by, - CR, + y. xu(ﬂ) = 0 )

Applying Pentryagin's method {See Appendix 1) yields the following_

additional set of equatiens:

P, = cp, + 2xl pl(T) =0
B, = - p, + bp p,{(T) =0
2 1 2 2 ) (6.22)
Py = cp, t 27x3 PS(T) =0
Py =~ Py *+ bp, p,(T) =0
Ky TRy |
y= —— -
2R A

The follewing numerical values are assigned to various constants

te obtain typical selutions:

Selutions to the two-point boundary value problem posed in (6.21)

and (6.22) using the above values are shown in Figures 16 through 18.




o8]
0.504

0,254

T 0.254 -

-0, 50+

.._ 73189?9£16.; Plant Output  for Various Parameter Values with y = 0, Example 3.
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0.257
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Figure 17. Plant Output for Various Parameter Values with y = 7.5, Example 3.
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Figur'é 18. Optimum I.hpu't, Bxampie 3.
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The eutput x is pletted for various vélués.ef'k* ﬁifh'the sensitivity
weightiné factor v =.0_1n Figure 16 and-with ¥y = 7.5 in'Eigureﬂi7.
Again, the output cufﬁe;.shew the éharacteristic cbmpression when the
sgnsitivify weighting fﬁctor in increased. LThe:eptihum input ; is plot-

ted in Figure 18 fer y = 0 and 7.5.

Example Four

This is an example ef a preblem where the output is te be driven
from its ipitial value of zere to some predetermined value at a particu-
lar time T with minimum energy at the input. It is desired that the out-
put x at t'= T be consistently the same despite variation of a plant
paraﬁeter. A first-order linear plant is used and the sensitivity mea-
sure [u(T)| constrained to be zero. For comparisen purposes, the problem
is re-selved with the constraint.remeved.

The plant equatien is:
k= -cx+y x(0) = 0

with'¢, the parameter of interest the sensitivity equatien is:

U=~ cu-x
T 2
Jyl=[ y%at
0
% The curve for k = k_ = 2 is omitted for clarity. This curve

lies between the twe curves sﬁown.
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with the constraint U= Iu(T,co)[ = 0

Application of Pentryagin's method with a constraint, vields the follow-

ing two-point boundary value problem:

xl = - coxl +y ' xl S Ky x2 = u
Ky = = Co¥y T Xy ' xl(G) =0

Py = cPp *+ P, | X (T) = %,

P, = ¢.P, x2(0) =0

p
! : -
Y-T_ X-2(T)-0
Let T =1 sec, X, = 1l and e, = 1, to permit a definite selution. .

With these values, the plots in Figures 19 and 21 are obtained.

Figure 19 shews the plant output for various values of the param-
eter ¢ with the cptimum input ; applied. Despite variations in c, the
value of x at t = T remains the éame. This demonstfates the effect of
the constraint, |u(T,c )| = o.

The eptimum input ;Mis shown in Figure 21.

For comparison, let us re-solve the probleﬁ_with the sensitivity

constraint removed. Applicatien of Pontryagin's method yields the fol-

lowing simple two-point boundary value problem:

X, T - e % +y xl(O) =0
P; = epy x (1) = %y =1
T-= 1 seec, ¢g = 1
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Figure 19. Plant Output for Various Parameter Values with |u(T)| =0,

Example 4.
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Figure 20. Plant Output for Various Parameter Values
Without Sensitivity Constraint, Example 4.
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Figure 21, Optimum Input, Example u.
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Solving this problem.yields the curves in Figures 20 and 21;

Figure 20 shews the plant_dutp@t“fef various'vélues'ef ¢ with the
new optimum input ; applied. Vafiations cf ¢ iﬁ'this case preduce pror.
nounced variatiens in the %alue of the-eufpuf xat t =7T. Thus, if it
ﬁere'important-that x(T}.be consistently the same, this system could.be_'
unsatisfactory but the syétem above, with the sensitivity constraint ap-

plied, would be satisfactory. Figure 21 shows the unconstrained optimum.

input y.

Example Five

This is an example of the synthesis method applied to a simple
nen-~linear problem.
A quadratic performance index is used.

The plant equation is:

%+ cx - ax’ = ky, x(0}) = %

with ¢ the parameter of interest.

The sensitivity equation is:

4+ .cu- 3dx2u +x =0, u(0) = 0
oy |
Iyl = [ %% + gy? + yulat
0.

Applicatien of Pontryagin's methed (Appendix I) yields the follow-
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ing two-point boundary value problem to be solved:

3

Xy = -cx ¢t dxl + ky. .xl T Xy X, T U
k. = - cx. + 3dx. °x.. -
2 072 1 ¥ 7%
- 2 -
ﬁl =cpy - del P, + P, - delx2p2 +.2xl
* - 2 i
Py = cPy - del P, +.2yx2
LY
Y= 38
xl(o) = %
x2(0) =0
pl(T) =0
pg(T)=0
. 10 ' ' L
With e, = 0.5, B = T s d=4,k=1,T=3 and X, = 0.4, the

selutiens te this problem are shown ih.Figufe% éé fhréuéh o

In Figure 22, the plant output x(t) is shown for various values
of the parameter c when y = 0 (i.e., no sensitivify considerations) and
the corresponding optimum input ; is applied. Iﬁ Figure 23, the output
is shown when y = % and the corresponding input ; is applied. Comparing.
the curves, we note the improved consistency; i.e., reduced sepsitivity

when the sensitivity measure is weighted. In Figure 24, the optimum in-

puts y{t) are plotted for both cases, y = 0 and v = 4,

e e S S




Figure 22, The Plant Qutput for Various Parameter Values with Yy = 0, Example 5.
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Figure 23, The Plant Output for Various Parameter Values with y = 4, Example 5.
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Figure 24.

Optimum Input, Example 5.
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ExéEBle Six

This is an example of the synthesis method applied to a second-

erder nen-linear plant. It is desired to find the input which will drive

the output frem.some initial value to a preselected final value with
miniﬁum energy at the input. The sensitivity measure |u(T)| is to 5e
censfrained-egual to zero at the final time T.. In other words, we . desire
consistency of the output at t = T, For comparisoﬁ_pﬁrposes, the ﬁroblem
is re-sclved without the sensitivity constraint. The parémeter of
interest will be the initial condition on the output 2.

The plant equation is a form of the so-called "Duffing equation™:

3

¥+ bk + ox - dx (6.23}

n
b

L]
-

with x(0) = X x(0)

The parameter of interest is X with the nominal value X,

Differentiating equatien (6.23) with respect ta %, yields the

sensitivity equation:
1} * 2 ) _
.U+ butcu - 3dxus=o0

with w(@) = 1 and W(0) = 0.

Let the desired final value of x(t) be

%(T) = XT
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with the constraint U = Iu(T,xeo)l = 0.
Using the performance index
T .

Iyl = [ y?at
]

. and applying Pontryagin's method with censtraints (Appendix I), we obtain

the following two-peint boundary problem to be solved:

1l
b
-
"
1
whe
-
o
]
c
-
»
1]
ol
-

Letting % 2 3 4
X1 = X,
%, = ~ bx, - +odx, 0+
2 " IR T TR
*3 7 %y
X, =-bx, - ex, + 3dx 2 % 3
®y y 3 1
P, = ¢p, - 3dx 2p - 6dx.x.p
1 2 - 12 173%u
Pp = TPy * PRy
P, = ¢p, - 3dx 2p
3 4 1Py

Py = = Pyt PPy

_ P2
¥y =3
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with: xl(O) = X x2(0) = R
xl(T),= ®p x2(T) = ko
x3(0) =1 ' xS(T) = 0
xu(O)_= 0 Pu(T) =0
Using the fellowing numerical values:
b= 0,5 ¢ = 1.0 d= 1.0
x = 2 X = 0 T = 3.16 sec,
(o a] Q
XT = .5 )(T = 1

the selutions shown in Figures 25 and 27 are obtained.
In Figure 25, with the optimum input y applied, the output x is

plotted for several values of the initial conditien - The values of

x(T) exhibit little or no variation despite the changes in initial condi-

tions.

In Figure 27, the optimum input is shown.

For comparison, the problem is new re-solved with the sensitivity
constraint removed. Applying Pontryagin's method yields the follewing

tweo-point beundary value problem:

With Xy T Xy x2 é X .
Xl = Xz

X, = - bx., - ex. + dx 3 + v

2 2 T % 1 7Y
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Figure 25. Plant Output for Various Initial Conditions with U = 0, Example 6.
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Figure 26. Plant Output for Various Ihitial Cohdi‘tion's, U Unconstrained, Example 6.
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Optimum Input, Example 6.
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- _ 2 _
. Pl-— cp2 del p2 6dx

1%2Pu
By = - Py + bp,
P
¥y =
where xi(O) = 300. x2(0) = *o
xl(T) =%, | o xz(T) = iT

Using_the same numerical values as in the censtrained example
above, the solutions sﬁowu in Figures 26 and 27 are obtained,

In Figure 26, with the new optimum ; applied, the output x is
again plotted for several values of the initial conditien X+ A pro-
nounced variation in x(T) is noticed when compared with the outputs x(T)
in thé constrained case. Thus, the system where:U-is constrained to

equai‘zero, is clearly better if it were important that x(T) be insensi-

tive to changes in the initial conditions.

-~

In Figure 27, the optimum y for the uncenstrained case is Plotted.
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CHAPTER VII
CONCLUSIONS

In the preceding chapters, a synthesis methoed for determining the
optimum centrol vector for a éléss of sensitivity problems has been pre-
sented. The class of problems to which it is applicable.is the one in
which:

1. The plant.parameters remain constant throughaut a given plant

run.

2, . Plant pafametef,variatien is small enough te permit the ap-

proximation:

T LMk
qu Aqi
3. The perfofmance index for the system is continuous in all
parameters at the neminal value of the parameters,
‘For this class of problems, a.control vectorli_can be determined
which is optimal in the sense defined in Chaptqr I?. |
.Th'e methed requires the selection of a.éensifivi*_ty measire based

. 9 X
on the sensitivity coefficients,-ul = 55;-. This sensitivity measure is
: i

weighted and included in some performance functional or constrained in

some manner appropriate to a particular problem.

The plant system of equations is augmented with the corresponding
set.of sensitivity equatioms, introducing the variables, u; inte the set

of constraining equations. Conventional optimization techniques are then
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applied to the resulting problem.

The synthesis method has been applied above in Chaptef V te the

generél linéar plant case with quadratic performance index and to

Several examples in Chaﬁter VI. These exampleé illustrate both the

application of the method to particular problems and typical results.
IThe.significancé gn@ limitations of the procedure have_been_

examined in Chépter IV above.

o ok
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‘ APPENDIX 1
PONTRYAGIN'S METHOD (8,10)

‘In this apéendix, an optimizafien scheme based on the maximum
prinaiple of Pontryagin is_diacussed.

Pontryagin's method is similar to classical variatienal eptlmlza-.
tion techn:.ques, but has the advantage that dlsccmtinueus contreol fune-

tiens can be handled more.easily.

The General Optimization'Problem'

The general coptimization preblem can be stated as follows:

_The plant relations are defined by

|

= f(x,y,t), (A-1.1)

where x is an n vecter with gﬁto) = Eo'

The perfeormance functional te¢ be minimized is

T
Iyl = [ F(x,y,t) dt. (A-1,2)

t
o)

Now define x (t) as follows.

X _'_]-_(t) & f F(x,y,t)dt t <t «<T

t
©

o ' . L e m iy St -




Then X 41(8) = Flx,y,t)

(T)

H)
]

and : Jly) 1

Define:

»x

Hi=3

s an n+l vecter

|

{rh 2
ne=

and

Then frem (A-1.1) amnd (A-1.3):

f(é_gy_s t)

| o2
n

100

(A-1.3)

(A-1.4)
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10
20

with . x(t-) = |[°*

no

The problem becomes now to find\i.= iﬂt) such that X 41D is
minimized_suhject_te equations {A-1.4%) which éct as natural constraints.
Thé optimum control funetibnli is.aSSumed to be selected froﬁ a given
class Y of-acceptable cbmparison fUHctiens.'

Some'genefality can Be added by letting the functional to-be

extremized be:

which includes the above problem as the special case where a; = b,
i=1,2...n and a . =1

The classical.calculus of ﬁariationé can be applied_te the above
problem to place in evidence thetsalient features of the maximum princi-
ple for. the restricted case where Y is the.class éf functions with con-
tinueus first derivatives.

The extension to the discontinuocus case will be stated without

-proof and illustrated thfough examples. A complete proof can be found




-in-(l@)..

Rewrite A;l.5 as:

102

T ntl _ n+l ’ -
s=f ‘.Z a %, (t)dt +.,Z a, %, (t))
: t_  1=1 - i=1 :

Q.

Using'the_calculus_

‘The EuleréLagrange

. a _
Lx. - EE'(Lk.) = 0s

} ]
and L - - (L,)=o0
Yy 7

Perfbrming the indicated operations

Lagrange equations become:

of variations, we form the Lagrangian:

n+l S
= ‘I a k. + Ae(x-f)

1=1

n+l ) .
= izl (aixi + Ai(xi - fi) (Afl.ﬁ)'

equations for this system are:

_ 9L _ oL

where Ly Taxy ALyt
3 ] J J

IRERE i Y3

on equation (A-1.6) the Euler-

(4-1.7)
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n’ .
‘and | - 1A =0 o (A-1.8)

j=1,2...n+l

If nofgddifioﬁal;eﬁd constraints éxistiat*t = T, T being regarded

as fixed, the natural boundary conditions, determined from transversality

relatiens, become:
a, = —'Ai(T) (A-1.9)

Now let pj(t) = Aj(t) and define the Hamiltenian H as

- ' « il
H(x,p,t) = p*f = ) pifi(x,x',t) _ {(A-1.10)

i=1

then the augmented pPlant equatien (A-1.4) can be written as

Xi = '5';- 1= l,2.l..,n+l
1
and equation (A-1.7) as:

- BH »
p' s —_— ) l = l,z...,n‘f'l
i Bxi

5H n+l 3f.

Slnce — = equation (A-1.8) yields:
o; X L P 3y , eq y

S |
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Summarizing the abeve discussion, we can state the foliowing
theopem:
If the control vector y = y(t), with'y belonging to the

class of functlons with continuous first derlvatlves, is optimal for

n+l
= 7 aixi(T) then there exists a vector p(t) such that
i=l . . A
ntl o . |
l.. By = - Z P 5%, —~3L for y=y. i=1,2...,n+l.
ont+l _ :
2. H-= z pifi(fﬁz?t) has a stationary value for
i=l o
- SH nfl Bf]
l— y’ l.8., —— y = P. —_— = .
CETE SR

Poneragin's Maximum Principle

The abeve theorem is essentially a statement of Pontryagin's maxi-
mum principle in a restricted form. The requirement that y have continu-
ous first derivatives is unnecessary if statement 2. of the above theorem
is modified to read simply:

n+l

H = Z P: £, (x,z,t) has a maximum over Y for y(t) = iﬁf}.
i=1 _
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Thus Pentryagin's maximum principle is simply a movre general form

of the theorem above and can be stated as follows:
n+l

If the contrel y(t) = y(t) is optimal for S = z aixi(T), then
- i=1
there exists a vecter p(t) such that
n+l af. T A
1, P; = - Z Py ——J-a for y = y (A-1.11)
j=1 3]
ntl _ :
2. H = ] p.f.(x,y,t) (A-1.12)
i=y *t 7T -

has a maximum over Y for y(t) = y(t), where Y is the class of control
functions from which ¥ is to be selected, Ordinarily Y is the class of

‘plecewise centinuous functions.

3. p(T) = -a - (A-1.13)

It is to be noted that Pontryagin's maxiﬁum principle as stated
deals enly with necessary conditions for optimality as does fhe classical
calculus of variation approach. The question of sufficiency is far more
complex and beyond the scope of this discussion, For a discussion of.
sufficient_conditiens, see (10), |

Application of Pontryagin's methed-y’ieids ti\e follewing two-point
boundary preblem defined by equation (A-1.4), (A-1.12) and (A-1.13).

§~_= i(_:;_,y_,t), where g:_(to) = (A-1.4%)

X
—o




[
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n+l  af, . _
Py * Z j %, > where ?i(T) =
i=1,2...,n+1
or | B = h(x,p,y,t), where p(T) = -~ a (A=1.1u)

An additional relation between y and X, p which permits the prob-

lem to be Sol?ed-can be obtained from the maximizing of H = pf . Sub-

stituting the value of y thus ebtalned in (A-1.4%) and (A-1.14) yields the

typlcal two—pound boundary value problem discussed in Appendix II1I:

2 = r(z,t) -vwhere z =

[
1]

and zi(to) =%, (t ) 1,2...,0+%1

[N
n

ﬁi(T) = pi(T) N+2,... 42042

ExamEles

The following examples are presented to show the applications of

Pontryagin's method to particular control prcohlems,

Example One
k= -cx+y, where x(0) = X {the plant equation)




107

; |
Iyd = [ (P+yD)ac
0 )

Y: the set of inputs, y, with continuous first derivatives

.Then: _ Xy = - cxl_+ v
s 2 2
X, 2% " +y
s = alxl + 32x2 =.x2(T);' ;al = 0, 32 = 1
H = Ef% = p.{ - ex.+y) { P, (x 2I+ y2)
- 1 1l ' 2°71

_ _ - P
'a;'_-O—pl_'l- 2p2y or y—-552—
T Eﬁ_ = - 2
P17 7o T %P1 T PP,
. _ 3H _ . .
by = % f 0 <+ P, 18 & constant
but S PQ(T) =-a 3 -1, thus p,(t) = -1

Summary )= - % *y xl(O) = X
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Py=py v py(T) =0
gt P
%, 2

Solving these equations yields y = y(t), the optimum input.

Exaggle Twe -

X=-cx+y _ x(0) = X (the plant equation)
. T'2
Iyl =/ x“at ,
0

¥: the set of inputs, y,which are piecewise continuous and |yl.5 M.

X =-ex ty
X, = x% 2
2 M
8 = a,x) *agx, = x2(T); a, = 0, a, = 1

b o
1]

. ' ' 2
pi( - ax; +y)+ Py¥y

- 2
ax,py +-ply + Pyxy

Maximizing H over Y, it is clear that H is maximum when -
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yizM sign Py*

. . AH _ ) A .
by, = - 5;;—— 0 o P, 15 a constant
but Py(T) =~ a,=-1, thus py({t) = -1

Summary :
ﬁl =-cx) ty, xl(o) = x
ﬁi_; cp, = 2%,p, = cp1f+ 2%, pl(Tl = 0
y=Hsignpi

Solving these equations yields y = y(t), the optimum input.

Example Three

General Case, Lineab Plant with Quadratic Performance Index.

Cx + Dy, where X is an n vector,

% =
and ¥y is an n vector.
t = i triz.
x(t) = x, C is an n x n matrix

D is an m x n matrix.




- ——— ————_ ..

110

T |
Iyl = [ (x-Px + g-qy)dt

t
o

P, Q are symmetric positive matrices

then o R, TRDPE Gy
n+l
xn+l(T) = Jy]J =8 = .E a;%,;(T)
i=1
ai =0, i = ;._,2..,.11, an-!-]_ =1,

H = E’('C£+ Dy) + p_ . (xpx + yQu); ig an n vector

Let Y be the class of z_ﬁith'continuous first derivatives.

Applying Pontryagin's principle, using vector notation:

. T .
p=-L[cp+2p, Px]

Pn+l =0 . Po+1 ls constapt
but pn+l(T) =-a. . -1, thus pn+l(t? = -1
To maximize H:
oH T '
— =0 = -1.
3y or D'p + QQX 0 - {A-1.15)




111

Summary :

X =Cx + pg_ Eﬁto) =X, (A-l.lﬁ)
. T '

p=Cp+ 2Px : p{T) = 0

DTE-P 2Q1_= 0

If Q is non-singular, equation (A-1.15) can be written:

v =_% Q_lDTR . (A-1.17)

Substitutiﬁg this value for y in (A-1.16) yields the following

two-point boundary value problem:

12T .
€t -~ 5 DQ "D'py 2t ) = x

EZ
i

- CTB+ IQPE; | p(T) = 0

[
it

After solution of the problem for p, y = x;is determined from

{A-1.17),

End Censtraints

Pontryagin's maximum principle as outlined in equatiens (A-1.11)
through (A-1.13) can be modi fied slightly to permit the inclusion of ad-

ditional constraints of the form:
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g(x(T)) = 0

in the eptimizatien problem. (Note: This is the typical form that con-
straints en the sensitivity measure assume in the sensitivity'optimiza-
tion preblem.)

The modification required is that equation (A-1.13) which assigns

the final values to p (i.e., pi(T) = - ai) is changed to read:
m 9g. '
p;(T) = -3 - jzi xj_g('r) _laxi | (A-1.18)

where m is the order of g (m < n) and Ajg(T) are arbitrary multipliers.

' This relation together with the original constraint equations,

g(x(T)) = 0, permit evaluation of the end conditions on E_and the multi-
liers A, (T).
P JS( .
' If the elements of g are functions of a single element of

x(T); i.e.,
g, (x(T)) = g (x(T))

where xk(T) is any element of x(T), the practical effect of this modi-
fication in the resulting boundary value problem is to replace the end
condltl_on(s)}pk(T) = - akwrith the end coidition gk(xk(T).) = 0.

Equation (A-1.18) is similar to the result cbtained for handling

end constraints in the c¢lassical calculus of variatiens.
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Final Time T Variable

Thus far we have assumed that the preblem final time T was a fixed.
known constant. Addition of a new relation to equations (A-1.11) through

(A-1.13) permits the final time T to be variable. This relation is:

n+l

_E p; (T)E,

£, (x(T),y(T),F) = W(T) = O for y = §(t)
i=1 |

Again, this result is similar to that obtained with the classical

calculus of variations for this situation.
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APPENDIX II
BELLMAN'S METHOD

This appendix discusses the dynamic programming approach of Bell-

" man to the optimization problem.

Principle of Optimality -

Dynamic pfogfamming is a result of the application of the prin-
ciple of optimality which states in essence that any portion of an
optimum trajectory is alse an optimum trajectory. Thus, if x(t) is an
optimum-trajectory starting at-gﬂto) and terminating at x(T) and passing

through the intermediate points gﬁtl) =X and §§t2) = Xy then the

optimal trajectory from X, to %, is identical to the portiocn of the

original optimum trajectory lying between x, and x,.

Application to the Optimization Problem

Consider the control problem:

k= E(x,y,t) (the plant equation)

with . Ejto) = X
T
and | Iyl = [ F(x,y,t)at
. : : t .
=]

The objective is to find y = y(t) such that Jlyl is a minimum,
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-~

y{(t) assumed to exist and belong to some class Y.

Let g(ﬁo’td) = J[y1; i.e., the value of J[y] evaluated along the

. eptimum tfajectory from Ejtb) te x(T), where the bar over § indicates

evaluation along the optimum trazjectory.

. T
'§(§9.t0) = min [f F(x,y)dt]
XEY t0

According to the optimality principle, this is the same as

_ T _
8(x,t) = min [f F(x,y,t)dat]. _ (A-2.1)
ye¥ t

~where t_ <t < T and x = %(t).

'Equation (A-2.1) can be written

_ t+AL T _ _
S(x,t) = min [f Flx,y,t)dt + [ F(x,y,t)dt] (A-2.2)
- oyeY ot ' t+At

Again, according te the optimality principle this equation (A-2.2)

can be written:

_ t+At - _
§(x,t) = min (] F(x,y,t)dt + 5(x + Ax, t + At)]
yeY¥ t : :

where X + ﬁg;éigft + At).
Assuming F is centinueus in t and 3 has partial derivatives with

respect to each element of X and t and applying the mean value theorem.
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for integrals:

S(x,t) = min[F(z,zéf) At + 5(x + 4, t + at)] (4~2.3)
ysY
. t=tl

for some time t. where t < t

1 1.5 t + At.

Expanding 8(x + 4x, t + 4t) in a Taylor's series about (x,t) and

neglecting second and higher order terms:

38(x,t)
ot

N

d
177

S(x + 8x, t 4+ 8t) = §(x,t) + At +

i

axi (A-2.4)

W
s
7|

Noting that §(§3t) and %%-are independent of ¥ and may thus be

taken "outside of the minimization operation, substitution of equation

(A-2.4) into (A-2.3) yields:

- &t = min [F(x,y,t)|at + § 5 bx. ]
= X, i
It yeY i
t=tl

Dividing by At and taking limit as 4t » 0 yields:

38(x,1)

n -
- = min [FGoy,t) + ] £-4 (4-2.5)
ot yeY i=l "1
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-

r
[751)

o
jrad]

ol
]

i
e
]

Letting 9 §

Q>
o

|

o
£

and neting that g_:'£ﬁ§329t)-ffom'thg_basiC'plant'eqﬁafien, equation

(4=2,5) becomes

38(x,t) '
- ———— = min [F(x_z_,t) + V S f(x,x,t)] : © (A=2.6) .
at yeY : '

Performing the minimization eperation iﬁdicated,yields a partial

differential equation in 3S:

38(x,t) R
- = F(X,y,t} + v ,z}t) (4-2.7)
at

where y is the function that minimizes F(x,y,t) + v Se£(x,y,t) with

boundary conditions established by the definition of § as §(x )| = o.

t=T
The minimizatien procedure also establlshes an additional relation

between X_and F, £, and ng which permits solution of (A-2.7);

For example, if Y is the class of functions such that yi has con-

tinueus first derivatives, the minimization procedure yields:

aF(x,y,t) n B§ af. ,x,t)
—_— 03 | Oy 0
ayi Jg ax By

1%




-
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It is sometimes convenient to invert'thé.time,scale by the substi-

tution t = T - t, putting the boundary conditions at t = 0.

Summary

Summarizing the above discussion: If y =y(t) € Y is optimal for
T : . : .
Iyl ={ F(x,y,t)dt subject to the plant equations:

LI .

o]

i =-_£(§;,\f_,t)-, x(t)) = %

i. The - funétional F(EEXJt)-* ngbf.is a minimum- for y = y(t),

o
o e
o 3o

= F(R,y,T-t) + vﬁ?-ggglﬁT-;) (A-2.8) .

with + = T .- t, and §(x,t=0) = 0.

An:ExaEEle

T
Iyl = [ (%% + yD)at
0

Y: the set of inputs, y, with continuous first derivatives, Then

- _ = _ 3§ _ 2 2 e f = e
=% X, ?5? 5;:3_ F = Xty | and f = £ cxX, ty

Equation (A-2.8) becomes:




é?-: min_[xl2 +_y2'+ %E_.(- exX + y)]f'
It yeY *1

The minimization operation yields

2y + =—= 0

Xy
or So.1 3%
: 2 3xl

Substituting this value in (4-2.9) yields

with boundary conditiens §(xl, t = Q) =0,

Assume selution of the form:

§(§)t) = 8(t) x'x
= 8(t) x12
38 _ oy
5;;1- = QS(t)Kl

Equatien (A-2.11) becomes.

119

(A-2.9)

(A-2.10)

(A-2.11)

(A-2.12)
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202 2 L2 2,02
S(t)xl = %" - 205(t) ) -8 (t)xl

or | CS(t) = 1 - 208(t) - 82(%) | (A-2.13)

with $(0) = o,
This ordinary differential equation is solved for S(t), and v

determined from (A-2.10)and (A-2.12):

ey =1 88 _ ..
y(t) = 5 -a-; = S(t)xl_
er y(t) = - S(T‘—.t)xl (A-2.14)

If T > » and system is to be stable, S(t) = 0 and equation (4-2.13).
becomes an algebraic equation in S; i.e., $ is some constant.

If y is desired as a function of time alone, eliminate x between

equation  (A-2.1%) and the original plant equation.
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APPENDIX IIT
THE TWO-PQINT BOUNDARY VALUE PROBLEM

This appendix describes the manner in which the twe-point bound-
ary value (TPBV) problem resulting from conventienal optimization pro-
cedures can be sclved.

The-TPBV problem arises frequently in optimization problems.

In particular, it arises inherently from the application of Pontryagin's
methed to the original optimizatian problem pesed in Chapter I, Its

typical form is as follows:

Given é_= (z,t), where z is an n vector - (A-3.1)

with zi(T) = i= 1,2...m

iT?

1)

and zi(O) =z i=mtl,...n

10°
Find zi(t) for all t, 0 <t < T, i=1,2...n.

The selution zi(t).could be immediately obtained if the values
 zi(0), i=1],2...mwere available. If zi(O), i=1,2...m are known,
the problem becomes an ordinary initlal value problem, Thus, we will
consider the prcblem selved once zi(O), i=1,2,..m are determined.

For low order systems; particularly -if equation (A-3.1) is linear,
analytic solutions can sometimes be obtained. Example One in Chapter VI

is an example of a fourth order linear TPBV problem which can be solved

analytically.
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However, for.higher order or nen-linear systems, a computer
solution is often required.

Ifm is-smali, say m < 4, solutions on the analog computer can
. often be obtained. The general approach is to make successive guesses at
the values of zi(o), is= 1,2...m until the boundary conditions zi(T) =
270 i =1,2...m are met, By noting the manner in which zi(T).varies
when changes iﬁ zi(O) are made, an algerithm can often be devised for

successive selections of zi(O) that cause z;(T) to converge to z, The

iT*
particular algorithm is, of course, only applicablé to a pafticular
problgm.

A more formal analeg computer technique is based on the construc-—
tion of a composite error function of the final values zi(T).

Let Zop be the desired final values and Zi(T) the actual final

values for a particular set of guesses of zi(o), i=1,2...m. Then form

the_éémposite error'funétion E, easily mechanized on the analeg computer,

v ' 2
E =-i§i Ai(zi(T) - ZiT)
o
o _
E= ) A |24(T) = Z; o)

i=]

where Ai is a set of errer weighting facters.
After an original set of guesses of zi(o) i=1,2...m, E is
measured.. Then a.single initial condition .on z; is adjusted for succes-

sive computer runs until E is minimized. The process is repeated for
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r

each initial condition. If the error function is not then zero, or below
some prescribed accuracy criterion, a new series of adjustments is made.
The precedure is_cqntinuéd until the error function is within satisfactory
limits, at which time the-pno@lemﬁis-said:to'be‘solved. Figure 28 shows
.a computer circuit fﬁr measﬁriné.ﬁ. II |

Examples Two through‘Six in7thapter.VItwere solved en fhe analog
computer., \

Another genefal approééh.fo £Hejpreblem"is the -application of
numerical -analysis techniques, with a view toward solving the problem on
a digital computer. One such techﬁique is outlined below (20,21).

Given the TPBV problem:

z = f(z,t), where z is an n vector, (A-3.1)
with Ei(T) ® 2,00 13=1,2...m
and gi(o) =z, o, 1= mtl,...n

the problem is to select the components of z(0) which are not specified;
i.e., zi(o), i =1,2.,.m, so that the conditions at t = T are ;atisfied.
Warner's technique (21) is as follows:
Let Vi, i = 1,2...m be the unknown starting values for z(t) which
are functions of the desired fipal values zi(T) =z, T, i=1,2...m
Thus:

v '(A-3.2j

17 Vi (Zipezgpee iz 0)




o,
(2,02 (T))

Figure 28. Analog Computer Circuit for Evaluating E(z(T)).

het
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Now, assume an initial guess for Vi, Call it v,  and correspond-

1l

ing to this initial guess, the final value of zi;is called 20 Define

A : . N . ' .
GZil = 24y -z Then expand equation (A-3.2) in a Taylor's series

gbout the guess Vit
m BVi '
Vl = v, - jzl 5;;;— 8z 1 F (hlghgr order terms) (A-3.3)

8z, ' (A-3.3)

We now make an additional set of m gﬁesses for Vi. Each guess is

of the form of (A-3.3):

m . .
Ve, = V. + X = 5§z,
i2 i j=1 szT j2
? avi
V,. = V., + _ 8z,
‘i3 | i 71 aij 33
? avi . .
V. =V, + T 8z, {A-3.4)
i(m+1) i 351 aij jlmt+l)

The above sets of equatiens (A-3.,3 and A-3.4) may be conveniently

placed in matrix form as shown below:




’_ . o T r _
1 Gzll- 6221 - szl Vl | V2 . Vm
av., = av av
1 2 m
1 bz bz A ses G2z _ ..
12 22 m2 leT leT leT
. '3Vl _BVm
Vosziimery SZowmry 0 SZmemen) 52 't 't 32
mT mT
Vi1 Vo1 ottt Yml
V12 V22 L) Vm2 ..

vl(mtl)= s e Voomel)

L 1

The first matrix on.fhe left is evaluated by m+l integrations
of equation (A-3.1) using the guesses in the right hand matrix as initial
conditions.

Since V. are the best starting values (at least to first order) of

Zss i=1,2...m, we soclve the matrix equation (A-3.5) for Vi’ i=1,2...m.
This requires an inversion of the first matrix on the left and a partial
v, '
——— do not have to be
9z,

_ T _
evaluated. The Vi thus determined are the "best" set of guesses avail-

matrix multiplication. MNote that the partials

able.
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The general procedure now is to replace the "worst".set of guesses
by the "best" set Vi and repeat the process until some predetermined
.accuracy level has been reached.

The "worst" set of guesses will be defined as the set with the
gfeatest error where the error may be calenlated in one of several ways;

e.g., letting Ek be the error associated with the set of guesses V!

v 2
B = izl (625,
or
m
i * igl 162,

After determining which error is the largest, say Ek; we replace
the row ik in the right hand matrix with the values Vi, i=1,2...m,

and determine a new set of 52i I =1,2...m, by a single integration

k’
of equation (A-3.5).

Another matrix inversion and partial matrix multiplicafion deter-
mines a better estimate of the starting values Vi’ i.=_;,2...m and the
process is repeated until Ek<:§ﬁn,aniapriori exit criterion.

The advantage of this method is that integration is traded for
matrix inversion, a good.trade in.most;computers, . Convergence con-

siderations are briefly discussed elsewheve (21) but no serious problems

are evident.
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