
BEHAVIOR-BASED MODEL PREDICTIVE CONTROL FOR
NETWORKED MULTI-AGENT SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Greg N. Droge

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2014

Copyright c© 2014 by Greg N. Droge

BEHAVIOR-BASED MODEL PREDICTIVE CONTROL FOR
NETWORKED MULTI-AGENT SYSTEMS

Approved by:

Professor Magnus Egerstedt, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Yorai Wardi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Jeff Shamma
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Charles Kemp
Department of Biomedical Engineering
Georgia Institute of Technology

Professor David Taylor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 28 March 2014

To my wife and children,

Without whom I would not be

who I am today.

iii

ACKNOWLEDGEMENTS

I would first like to acknowledge my adviser, Dr. Magnus Egerstedt, for his continuous

support and example over the past several years. I will forever be grateful for his help and

encouragement in my research endeavors and for the love of learning that he has instilled

in me. Not only has he been an incredible help in guiding me through my research, but has

been a tremendous example in the way he treats others and maintains his family life.

I am grateful for the members of the GRITS lab for their helpful insights and discus-

sions which led me through my research. They are truly a set of great minds, some of the

brightest people I have known. I am grateful for their friendship and help for the past sev-

eral years. They have been an irreplaceable group of people, allowing me to bounce ideas

off of them as well as get inspiration for possible avenues of work.

Most of all, I would like to thank my incredibly wife for her love and support and for

my children for being helping me to stay focused on the more important things in life each

day when I go home. They are amazing. I truly would not be the person I am today without

my family, the most important part of my life.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xv

I BACKGROUND . 1

1.1 Distributed Optimization . 1

1.1.1 Distributed Optimization Formulation 2

1.1.2 Existing Methods for Distributed Optimization 3

1.2 Model Predictive Control . 5

1.2.1 Dual-mode MPC . 6

1.2.2 Computation of Optimal Control Trajectories 7

1.3 Behavior-based Model Predictive Control 8

1.3.1 Behavior-based MPC Background 9

1.3.2 Motion Control and Behavior-based MPC 10

1.3.3 The Dynamic Window Approach to Navigation 11

1.4 Distributed Multi-Agent MPC . 13

1.5 Organization . 15

II PROPORTIONAL-INTEGRAL DISTRIBUTED OPTIMIZATION FOR NET-
WORKED SYSTEMS WITH STATIC TOPOLOGIES 16

2.1 Introducing the Constrained Optimization Problem 17

2.1.1 Problem Formulation . 18

2.1.2 Networked Multi-Agent Systems 19

2.1.3 PI Control as Gradient Method for Constrained Optimization . . . 21

2.1.4 PI Performance Metrics . 24

2.2 Dual Decomposition . 25

v

2.2.1 Dual-Decomposition for Networked Systems 25

2.2.2 Integral Control . 29

2.2.3 Distributed Implementation . 30

2.2.4 Example . 31

2.3 Consensus Based Distributed Optimization 32

2.3.1 Consensus Based Algorithm . 32

2.3.2 Consensus Method and Constrained Optimization 34

2.3.3 Example . 35

2.4 PI Distributed Optimization . 36

2.4.1 PI Distributed Optimization Algorithm 36

2.4.2 Connections to PI Control . 38

2.4.3 Example . 39

2.4.4 Scalable Multi-Agent Formulation 40

2.4.5 PI Distributed Optimization of a Non-Convex Function 44

2.5 Conclusion . 48

III PROPORTIONAL-INTEGRAL DISTRIBUTED OPTIMIZATION FOR NET-
WORKED SYSTEMS WITH SWITCHING TOPOLOGIES 50

3.1 Network Multi-agent Systems with Switching Topologies 51

3.2 Alternative Proof of Convergence for Static Topologies 52

3.3 Extending Convergence for Dynamic Topologies 54

3.4 Index-free PI Distributed Optimization 55

3.5 Example: Formation Control . 58

3.6 Conclusion . 61

IV BEHAVIOR-BASED MPC . 63

4.1 Behavior-based MPC Formulation . 64

4.1.1 MPC Framework . 65

4.1.2 First Order Optimality Conditions 66

4.2 Example: Vector-field Orbiting for Nonholonomic Vehicle 69

4.2.1 Non-Linear Unicycle Control . 69

vi

4.2.2 Partials for Cost Optimization 72

4.2.3 Orbit Example . 73

4.3 Example: Vector-field Navigation for Inverted Pendulum Robot 75

4.3.1 Inverted Pendulum Robot . 77

4.3.2 Straight Path Following . 80

4.3.3 Navigation Examples . 82

4.4 Conclusion . 86

V DUAL-MODE DYNAMIC WINDOW APPROACH TO NAVIGATION . . . 87

5.1 Dual-mode Arc-based MPC . 88

5.1.1 Dual-mode Arc-baseed MPC Algorithm 88

5.1.2 Convergence . 91

5.1.3 Behavior-based Optimization . 96

5.2 Control and Costs for Unicycle Motion Model 100

5.2.1 Reference Following Control . 100

5.2.2 Cost Definition . 102

5.3 Case Study: Magellan Robot . 104

5.3.1 First Order Model . 104

5.3.2 Reference Following Control . 105

5.3.3 Results . 107

5.4 Case Study: Inverted Pendulum Robot 109

5.4.1 Control Laws . 109

5.4.2 Maintaining Balance . 111

5.4.3 Results . 112

5.5 Conclusion . 113

VI MULTI-AGENT DISTRIBUTED BEHAVIOR-BASED MPC 114

6.1 Preliminaries . 115

6.1.1 Problem Definition . 115

6.1.2 Communication of Trajectories 116

vii

6.1.3 Notation . 117

6.2 Multi-agent Distributed Parameterized MPC 118

6.2.1 Gradients . 118

6.2.2 MPC Framework . 120

6.3 Induced Information Structure . 120

6.4 Example . 123

6.5 Conclusion . 125

VII DISTRIBUTED VIRTUAL LEADER FORMATION CONTROL 127

7.1 Virtual Leader Formation Control Background 128

7.2 Arc-based Leader-follower Control . 130

7.2.1 Epsilon-tracking Formation Control 130

7.2.2 Perfect Tracking Using Approximate Control 135

7.2.3 Obstacle Avoidance Control . 137

7.3 Virtual Leader Behavior-based MPC . 138

7.3.1 Virtual Leader Algorithm . 138

7.3.2 A Note on Information Topology 140

7.3.3 Cost Definition . 141

7.4 Results . 142

7.4.1 Measuring Formation Performance 142

7.4.2 Virtual Leader Formation Results 144

7.5 Conclusion . 146

REFERENCES . 148

viii

LIST OF TABLES

1 The results of performing proportional, integral, and PI distributed opti-
mization for the convex optimization problem 32

2 The results of performing proportional, integral, and PI distributed opti-
mization with each agent optimizing over the full state vector. 44

3 The results of performing proportional, integral, and PI distributed opti-
mization with each agent optimizing over a subset of the state vector. . . . 45

4 The results of performing proportional, integral, and PI distributed opti-
mization with θ2 = π

4
. 48

5 The results of performing proportional, integral, and PI distributed opti-
mization with θ2 = 3π

4
. 48

6 This table shows the resulting parameters as well as the average and stan-
dard deviation of distances for each simulation. The nominal distance, dN ,
refers to the distance from agent’s starting position to their nominal posi-
tion. The travel distance, dT , is how far the agents actually traveled to reach
formation. 60

7 This table defines the symbols used in the dynamics of the two-wheel in-
verted pendulum robot. The numeric values are given in [42]. 79

ix

LIST OF FIGURES

1 This figure shows the results of using the cost f(z) = (x1 − 1)2 + (x2 +
1)2. Left: Dotted line shows the equality constraint and the arrows show
the gradient and projected gradient. Right: Result of performing the PI
gradient method for optimization given in (13). The trajectory of the two
states is shown ending in the final condition denoted by the solid circle and
the constraint is shown as a dotted line. The arrows show the final gradient
and Lagrange multiplier multiplied by the constraint. As expected, these
are equal in magnitude, but opposite in direction. 22

2 This figure depicts the “Line” network structure used for the examples in
Sections 2.2, 2.3, and 2.4 . 31

3 This figure shows the results from the convex optimization example using
dual-decomposition . 32

4 This figure shows the result of optimizing using consensus for the problem
given in (27) for both a constant and fading value for kG on the left and
right respectively . 35

5 This figure shows the results from the convex optimization example using
PI distributed optimization . 40

6 This figure depicts the “Ring” network structure used in Section 2.4.4 . . . 43

7 This figures shows the results of applying the formulation of Sections 2.2,
2.3, and 2.4 on the top row and 2.4.4 bottom row to solve the problem in
(42). The left, middle, and right images of each row correspond to consen-
sus, dual-decomposition, and PI distributed optimization techniques. The
results shown are for variable 10. The solutions in the top row require 20
versions of this variable to converge to the optimal value where the solu-
tions in the bottom row require only 3. 44

8 From left to right in each row, this figure shows the cost, consensus, dual-
decomposition, and PI distributed optimization methods applied to the prob-
lem in (43). The top row corresponds to results when θ = π

4
and the bottom

row corresponds to θ = 3π
4

. The axis label z corresponds to each agents
version of the variable, kG is the gain on the gradient for the consensus
method, and µ is the Lagrange multiplier for the other methods. 46

9 The task of moving into formation can be defined as finding a translation
(τ), rotation (θ), and scaling (γ) from the nominal formation, shown in the
upper left, to the desired position of the agents,shown in the bottom right. . 50

x

10 This figure shows the optimal point to the cost f(z) = (x11 − 1)2 + (x21 +

1)2 with constraint x11 = x21. The unconstrained gradient, ∂f
∂z

T
(z∗), is

balanced by the vector ∂h
∂z

T
(z∗)λ∗ . 56

11 On the top left is shown snapshots of the agents while converging to the
diamond formation. On the bottom left is shown the resulting diamond and
line formations. The lines between agents show the communication topol-
ogy and the bottom left of each figure is shown the nominal configuration.
On the right is shown each agents’ version of γ while converging to the
diamond formation. Other variables are not shown as this plot is indicative
of the convergence characteristics of the variables in each simulation. . . . 60

12 This figure shows 60 agents assigned to spell out the word ‘GRITS’. On
the left is shown the initial positions and on the right is the final position. . . 61

13 The images show the result of different gains on an orbiting vector field.
The left image shows the result of gains that move the robot directly to-
wards the orbit and the middle shows the result of gains that very smoothly
transition into orbit. The right image shows the resulting distance and ori-
entation of starting at the same point and executing the direct and smooth
vector fields as well as the result of adapting the vector field using behavior-
based MPC. 64

14 This figures shows a diagram of the states of a unicycle robot. (x1, x2) gives
the position and ψ gives the orientation. 70

15 This figure shows different snapshots in time of the adaptation of the vector-
field given in equation (86). A series of two behavior was executed at
each time instant, each being an implementation of the control law in (84)
with different parameters for the vector field. The robot is shown with its
planned trajectory extending from it in each case. The middle two images
are actually the same time instance where the middle-left image shows the
vector field produced in the first time window and the middle-right image
shows the vector field produced in the second time window. 75

16 This figure shows the costs associated with different numbers of switches
with each behavior executing the control law in (84) with different param-
eters. The costs are normalized so that the largest cost is scaled to one. . . . 75

17 On the left is shown the line and orbit vector fields. On the right is shown
an example of the vector fields being concatenated together to guide the
robot on a path through the environment. 76

18 Shown is a diagram of the inverted pendulum robot with the symbols de-
fined in Table 7. 78

xi

19 This figure shows the definition of a line through a point p and with a given
angle ψ. It also shows the coordinate frame of the line used to create a line
following vector field. 81

20 The trajectory and underlying orbits for the vector field navigation exam-
ples are shown above. 84

21 Above are shown three states during the vector field navigation of the en-
vironments shown in Figure 20. 84

22 On the left is shown the average computation time per gradient step while
executing the figure-eight shown in Figure 21. On the right is shown the
normalized cost per gradient step of a figure-eight. The cost is normalized
so that no optimization has a cost of 1. 85

23 This figure shows an example of a dual-mode arc-based trajectory. The
robot is shown as a triangle with a planned trajectory extending from it.
The trajectory is created from three arc-based controllers appended back to
back with a reference tracking controller at the end. The different portions
of the trajectory are differentiated by color and line styles. A reference
trajectory is also shown as a dashed line. 89

24 On the left is shown a contour plot of a cost when choosing a single (v, ω)
pair. Shown on the contour plot are 20 points tested along a circle of radius
1 with a line connecting each point to a collision free pair of velocities
executing the same arc, with a different speed. On the top-right is shown
the initial arcs before scaling and on the bottom-right is shown the arcs
after scaling with α = .8. The straight lines denote walls. 98

25 This figure demonstrates possible behaviors based on arc-based control.
From left to right is shown a single arc, arc then reference follower, turning,
and point-to-point behaviors. In each image the robot is represented as
a triangle, with the resulting trajectory extending from it. The arcs are
differentiated through color and line style, with the final reference tracking
mode denoted as a solid line at the end of the trajectory (only visible in the
arc-then-reference behavior). The straight lines denote walls. 99

26 Shown is a diagram of a two-wheeled robot with the ε-point to be controlled.101

27 Shown is a picture of the IRobot Magellan-pro. 104

28 The left two images show the two environments completely mapped with
the Magellan in the center. The right two images show the Magellan ex-
ecuting Algorithm 2. As the Magellan approaches the goal, the map is
erased so that the Magellan can traverse the next environment as if it were
unknown. 108

xii

29 This figure shows results from the reference tracking control, optimization
without gradient descent, and various times allowed for gradient-based op-
timization. From left to right is shown the total cost (normalized so that
the reference tracking cost equals one), average execution time for a loop
of Algorithm 2, and the average velocity for a window time excluding ac-
celeration and deceleration periods. On both the middle and right plots is
shown the standard deviation for each trial. 108

30 On the left is shown an executed path through the environment. The right
three images show the robot and current map at different positions along
the trajectory. The robot is shown as a triangle. The line extending from it
is the trajectory created by the arc-based MPC framework. 112

31 This figure shows results for the inverted pendulum robot using the refer-
ence tracking control, optimization without gradient descent, and various
times allowed for gradient-based optimization. From left to right is shown
the total cost (normalized so that the reference tracking cost equals one),
average execution time for a loop of Algorithm 2, and average and maxi-
mum tilt angle for each trial. 112

32 This figure shows how dynamic dependencies make the required commu-
nication increase as needed information propagates through the edges in
dynamic dependency graph. Cost dependence (Gc), dynamic dependence
(Gd), and the induced information graph (GI) are shown in red, blue, and
green respectively . 123

33 This illustrates the utility of the proposed MPC framework. From left to
right is shown GI , the starting configuration, result of agents not negotiat-
ing, and the result of agents using dual-decomposition to negotiate. The
result of consensus with constant step size is not shown as it is very simi-
lar to using dual-decomposition. The result of consensus with diminishing
step-size is not shown as it does not converge. 124

34 This figures shows each agents opinion of what the velocity should be
of the blue colored agent. From left to right are the results from dual-
decomposition, consensus with constant step-size, PI, and no distributed
optimization. 125

35 This figure shows the resulting cost versus time for each of the four simula-
tions, namely, distributed optimization using dual-decomposition, the con-
sensus based method with constant step-size, the consensus method with
diminishing step size, and no distributed optimization. 125

36 This diagram shows the leader position, ql, and orientation, ψl, the actual
and desired follower positions, qf and qfd , and orientations, ψf and ψfd as
well as the actual and desired follower ε-points, qfε and qfdε . The leader
position and desired follower position are located on circles as the motion
of each will be on circles with the same center, but different radii. 131

xiii

37 The left and right images show the desired orientation of the follower for
ω < 0 and ω > 0 respectively. The arrow-heads on the circles denote the
direction of motion around the circle. 133

38 This figure shows the set of all positions that could satisfy qfε = qfdε . The
set forms a circle of radius ε, with qfd lying on the circle and ψfd pointing
towards the center of the circle. 136

39 The left and middle images show the Lyapunov function, V , given in (145),
as well as its derivative, V̇ . V is plotted as a solid line and V̇ is plotted as a
dotted line. The left image shows the results for vfd = .5, ε = .1, and ωfd =
5 and the middle shows results for vfd = .5, ε = .1, and ωfd = 100. The
right image shows convergence times for the values in the middle image for
all possible deviations in orientation, showing that V may be conservative. . 137

40 This figure shows the actual positions of the agents plotted as circles with
solid lines, the desired positions using the global variables as circles with
dotted lines, and the desired positions using the process in Section 7.4.1 as
solid circles. 143

41 This figure shows the results from the equal gain trial (i.e. ρ1 = ρ2 =
ρ3 = ρ4 = 1) for the line formation on the top row and GT formation on
the bottom row. The left most image shows the initial environment and
nominal positions of the agents. The right three images show zoomed in
images of the agents at different points in the environment. The agents are
shown as triangles, the obstacles are shown as solid circles, the waypoints
are shown as dotted circles, and the trajectory of the leader agent around
the environment is plotted as a solid line. 145

42 This figure shows the formation error for the line formation on the top
row and the GT formation on the bottom row. On the left is shown the
maximum and average distance for each agent for ρ1 = ρ2 = ρ3 = ρ4 = 1.
On the right is shown a bar graph with the maximum and average distance
for both trials. The left set of bars corresponds to the results from leader-
only control (i.e. ρ1 = ρ2 = ρ3 = 0, ρ4 = 1). The right set of bars
corresponds to the results from using ρ1 = ρ2 = ρ3 = ρ4 = 1. The value
for the maximum distance in the leader-only control trial was 1.23 for the
line formation and 0.497 for the GT formation. 146

xiv

SUMMARY

We present a motion control framework which allows a group of robots to work together

to decide upon their motions by minimizing a collective cost without any central computing

component or any one agent performing a large portion of the computation. When develop-

ing distributed control algorithms, care must be taken to respect the limited computational

capacity of each agent as well as respect the information and communication constraints of

the network. To address these issues, we develop a distributed, behavior-based model pre-

dictive control (MPC) framework which alleviates the computational difficulties present in

many distributed MPC frameworks, while respecting the communication and information

constraints of the network. In developing the multi-agent control framework, we make three

contributions. First, we develop a distributed optimization technique which respects the dy-

namic communication restraints of the network, converges to a collective minimum of the

cost, and has transients suitable for robot motion control. Second, we develop a behavior-

based MPC framework to control the motion of a single-agent and apply the framework to

robot navigation. The third contribution is to combine the concepts of distributed optimiza-

tion and behavior-based MPC to develop the mentioned multi-agent behavior-based MPC

algorithm suitable for multi-robot motion control.

xv

CHAPTER I

BACKGROUND

This chapter introduces the background material necessary for a concise development of a

behavior-based approach for model predictive control of multi-agent systems. As a funda-

mental component in the behavior-based MPC is the optimization, the chapter begins with

an introduction to existing distributed optimization techniques in Section 1.1. Focus is then

shifted to address MPC. An overview of a general optimal control-based MPC framework

is given in Section 1.2, followed with background on the behavior-based approach in Sec-

tion 1.3. We then discuss different techniques that have been employed for multi-agent

MPC in Section 1.4. The chapter ends with a brief outline of the remainder of the thesis.

1.1 Distributed Optimization

We begin our discussion by considering the problem of having multiple agents optimize

over a number of parameters in a distributed fashion. The distributed element requires

agents to work together without any one agent doing the bulk of the work. The problem

is complicated due to the fact that the optimization must be done while respecting the

communication restraints present in the underlying communication network. Distributed

parameter optimization forms a key element of our research as the multi-agent behavior-

based MPC formulation developed in the thesis will require agents to solve a distributed

parameter optimization problem.

Focus is given to gradient-based methods for distributed optimization as they are read-

ily applicable to the MPC scenario. Multi-agent MPC will require each agent to simulate

its state as well as its neighbors’ states into the future in order to optimize its actions and

form an opinion on its neighbors’ actions. By limiting the method of distributed optimiza-

tion to a gradient-based method, each agent will only be required to simulate the states

1

into the future once at each time step. This will more readily permit the agents to meet

computational and communication restraints present when executing in real-time.

1.1.1 Distributed Optimization Formulation

We address the distributed optimization methods in terms of the problem formulation pre-

sented in [61] and continued in [45, 88, 89, 84, 26, 46]. Specifically, assume that the

function to be optimized is a summation of convex costs, i.e.

min
x

N∑
i=1

fi(x), (1)

where x ∈ Rn is the parameter vector being optimized, N is the number of agents, and

agent i only knows its individual cost, fi(x). The individual costs can be derived naturally

from a distributed problem as done in [68] for resource allocation, or can be “designed”

as done, for example, in [39, 18], where a central cost is split into separable components

which are then assigned to the individual agents.

To be able to establish convergence to the collective minimum, certain convexity as-

sumptions are made on the cost. Namely, each individual agents’ cost, fi, must be convex

in x, while the summation,
∑N

i=1 fi(x), must be strictly-convex (see, for example, [5] for

a thorough overview of convex functions and their properties). Without the assumptions

on convexity, convergence is not guaranteed, although additional assumptions about local

convexity may be made to ensure that agents converge to some local minimum.

For sake of clarifying the notation, one key point must be stressed. To perform dis-

tributed optimization, each agent will maintain its “own version” of the variables, denoted

as xi ∈ Rn, with the constraint that xi = xj ∀ i, j ∈ {1, ..., N}. This will allow (1) to be

expressed as

min
xi,i=1,...,N

N∑
i=1

fi(xi). (2)

s.t. xi = xj ∀ i, j ∈ {1, ..., N}

To perform the optimization in a distributed manner, the equality constraints are relaxed.

Algorithms differ in the manner that they force agents to return to the constraint set.

2

1.1.2 Existing Methods for Distributed Optimization

While many classifications of distributed optimization algorithms may exist, a distinction

has recently been made in both [90] and [45] that distributed optimization techniques can

be divided between two categories: consensus-based gradient methods and decomposition

or primal-dual methods.

The consensus-based approach is characterized by algorithms where, at each time step,

every agent takes a gradient step along with an averaging or consensus step, e.g. [45, 88,

61, 89]. This concept was first developed in discrete time for dynamic networks in [61],

for discrete-time random networks in [52], and recently extended to continuous-time static

networks in [45]. Communication restraints introduced by the network are satisfied as each

agent need only know its own cost and the parameter vector maintained by neighboring

agents. The gradient step guides the agents to the optimal point, while the consensus step

is exploited as a means of bringing agents into agreement.

While elegant in its simplicity, the consensus-based method can be slow to converge to

the collective optimum [45, 88, 61]. This is due to the fact that the influence of the gra-

dient step must go to zero as time goes to infinity in order for agents to reach agreement.

However, [45] has shown that with a constant step-size, the centroid will converge to the

optimum value with very desirable transient characteristics. Therefore, strategies have been

developed in [45] and [61] which give tradeoffs between optimality and convergence rate.

Alternatively, [88, 89, 27] have extended the method using a different consensus equation

which will allow for better convergence characteristics at the cost of additional communi-

cation.

In contrast, decomposition methods distributedly reach agreement by exploiting the

dual of the problem, e.g. [85, 74, 75], which requires the added collaborative update of

pricing or dual variables, e.g. [62, 53, 5]. By solving the dual problem, the constraint is

3

relaxed and a max min optimization technique is used to solve for both the original vari-

ables as well as their respective Lagrange multipliers. Of particular interest is the decom-

position method for multi-agent systems presented in [85], along with the gradient-based

solution for dual problems first presented in [3]. When combined, these methods allow

for a gradient-based multi-agent distributed optimization technique that, for simplicity, we

refer to as dual-decomposition.

Despite the fact that dual-decomposition is guaranteed to achieve the collective opti-

mal value, it has been shown to have poor transient convergence characteristics, such as

oscillation [88, 75, 23]. This is not surprising as oscillation has been observed to be a char-

acteristic of dual-formulations in general, e.g. [6]. Apart from undesirable convergence

characteristics, it is not clear how to interpret Lagrange multipliers for dynamic networks

when agents move into, and out of, communication range with each other.

A possibly third classification of distributed optimization algorithms is emerging which

can be seen as combining aspects from both the consensus and decomposition methods. A

method was presented in [88] as a consensus-based method using an alternative consensus

equation. It was later shown in [89] for undirected networks, and [27] for directed networks,

that this method combines aspects from both consensus and decomposition methods. The

method is guaranteed to reach the optimal solution with constant gains, but requires agents

to communicate both their opinions of the parameters as well as a vector of Lagrange

multipliers. It has also been developed assuming static communication topologies.

A major contribution of our work is to design a distributed optimization framework for

dynamic networks which has the desirable transient characteristics of the consensus-based

approach as well as the convergence guarantees of the dual-decomposition approach. The

dynamic aspect allows agents to move about the environment and change with whom they

can communicate. Also, this is done without the need for shuffling an extra Lagrange

multiplier vector between agents.

4

1.2 Model Predictive Control

We now shift focus to model predictive control for the remainder of the Chapter. First

for the single agent case and then for the multi-agent case. We first introduce the general

concept of MPC in this section, a behavior-based approach to MPC in Section 1.3, and a

brief background on MPC for multi-agent systems in 1.4.

MPC is a method of control which allows the benefits of the, typically open-loop, op-

timal control solution to be realized while adding feedback into the optimization. This

method was first introduced in industrial applications where engineers desired to capitalize

on the benefit of optimal control being able to handle state and input constraints, but needed

feedback to deal with uncertainties present in the processes [56]. As this method became

successful, it caught the eye of the academic community, which has now introduced meth-

ods and conditions to ensure convergence and stability of the underlying dynamic system.

In this section we will give a brief overview of the MPC algorithm, but the reader is en-

couraged to see [56] which provides an extensive review of the history and theory behind

MPC.

At each iteration of an MPC algorithm a cost is minimized to find the optimal control

over a certain horizon. We denote the time at which the optimization takes place as t0 and

the length of the horizon as ∆. To explicitly account for the fact that MPC requires the

system to simulate forward in time, we introduce a double notation for time: x(t; t0)1 and

u(t; t0) are simulated at time t0 to be the state and input at time t. Note that x(t; t) and

u(t; t) denote the actual state and input at time t. It is assumed that x(t; t0) ∈ X ⊂ Rn

and u(t; t0) ∈ U ⊂ Rm with the dynamics denoted as ẋ(t; t0) = f(x(t; t0), u(t; t0)). The

1Note that we use different notation when discussing distributed optimization and MPC to reflect the nota-
tion in the literature for each. In Chapters 2 and 3 where distributed optimization is discussed, x represents a
parameter vector and f represents a cost. In the rest of the thesis, x represents a state, f represents dynamics,
J , L, and Ψ represent costs, and θ is used to represent a parameter vector.

5

optimization problem can then be written in the following, generalized form:

min
u(·;t0)

∫ t0+∆

t0

L
(
x(t; t0), u(t; t0)

)
dt+ Ψ(x(t0 + ∆; t0)), (3)

s.t ẋ(t; t0) = f(x(t; t0), u(t; t0)), x(t0 + ∆; t0) ∈ Xf ,

where Xf ⊂ X is a terminal constraint set and x(t0; t0) is known. With this setup in hand,

the MPC Algorithm can be stated as follows:

Model Predictive Control

1. Minimize (3) with respect to the control u(t; t0) ∀ t ∈
[
t0, t0 + ∆

]
.

2. Apply u(t0; t0) to the system.

3. Repeat at the following time instant.

This setup represents the constrained, nonlinear, continuous-time case, e.g. [56, 35, 58].

Other variants include linear dynamics, additional constraints, and/or discretization of the

cost and dynamics. Also, as a note on implementation, step 2 states the ideal case where

the cost is minimized at each time instant, but in actuality the control found in step 1 is

applied for a small amount of time.

While intuitively this cost minimization may seem to guide the system in a desirable

fashion, stability is not necessarily guaranteed. For the nonlinear case, different techniques

for proving stability almost invariably use the cost in (3) as a Control Lyapunov function to

stabilize the system to a set of goal states, e.g. [56, 35]. In such an evaluation, conditions

are given on the terminal cost, terminal constraints, and often the existence of a control law

which can be used to maintain the system in the goal state once the goal state has been

reached (or is close to being reached), e.g. [56, 58, 54].

1.2.1 Dual-mode MPC

As control laws can often be defined to stabilize the system in a region around the desired

goal state, a common technique known as dual-mode MPC utilizes a stabilizing control

6

law to help ensure stability in the MPC formulation, e.g. [56, 58, 71, 54]. It is assumed

that a controller, u = κf (x), exists which will render the desired equilibrium locally sta-

ble. Without loss of generality, we assume this point to be the origin. The way κf (x) is

incorporated is through an interplay between κf (x), Xf , and the cost to give asymptotic

stability of the origin. We present the conditions on these components, given in [56], for

sake of completeness:

B1) Xf closed

B2) κf (x) ∈ U , ∀x ∈ Xf

B3) Xf is positively invariant under ẋ = f(x, κf (x))

B4) ∂Ψ
∂x

(x)f(x, κf (x)) + L(x, κf (x)) < 0 ∀ x ∈ Xf , x 6= 0

along with modest conditions on the dynamics (i.e. continuity, uniqueness of solutions, etc,

e.g. [56, 12]).

The method is called “dual-mode” MPC as an optimal control mode of operation is

combined with a stabilizing control mode of operation; although the stabilizing controller

is never actually used to control the system. Intuitively, the controller is useful for a couple

of reasons. Condition B3 allows the controller to be used as a hot start for optimization

as, at the current optimization time, the solution from the previous time appended with

the control generated by the terminal mode will satisfy the input and terminal constraints.

Also, condition B4 states that the cost forms a CLF when using the terminal controller,

making convergence somewhat expected.

1.2.2 Computation of Optimal Control Trajectories

Finally, once stability guarantees are met, the system must be able to accomplish the needed

minimization at each time step. There are two groups of methods which are often used to

solve for the optimal control trajectory. The first involves solving a two point boundary

value problem where some of the differential equations depend on the known initial state,

7

and the rest depend on the terminal cost and constraint, e.g. [43, 11]. Another family

of methods known as “Direct Methods” involve approximating the state and/or control

trajectories with other functions which may be easier to evaluate and apply to optimization

methods, e.g. [11, 16]. However, even Direct Methods may not always sufficiently ease the

burden of computing the optimal control solution at each time instant, e.g. [1], in which

case other methods for simplification must be applied.

1.3 Behavior-based Model Predictive Control

As computation of an optimal solution at each time instant can be prohibitive, the state

trajectory generation can be outsourced to behaviors designed to accomplish the desired

task. While behavior-based control schemes constitute an entire class of robotic control

paradigms [2], we will only consider those behaviors which can be considered as param-

eterized feedback control laws. In other words, we assume that under a behavior-based

approach, the dynamics can be expressed as:

ẋ(t; t0) = f
(
x(t; t0), κ(x(t; t0), θ)

)
, (4)

where κ(x, θ) is a controller and θ is a vector of parameters.

Utilizing this form of behaviors, a wealth of different control applications can be built

upon which all use some form of parameterized control. Examples include schema-based

behaviors [2], gait design for robotic snakes [86] and legged locomotion [36], orbiting for

unmanned aerial vehicles [63], ground vehicle obstacle avoidance [41], and even potential

fields methods which are used in a wide variety of robotic motion applications [48, 76],

just to name a few.

By using a behavior-based approach, the optimization is done over the switch times

and parameters. This replaces an infinite dimensional control trajectory optimization prob-

lem with a finite dimensional parameter optimization problem. While there are numerous

approximation techniques for solving the MPC problem, (see [1, 13] and the references

8

therein), two are presented in Section 1.3.1. They are closely related to our work and pro-

vide a background on which our contributions can be seen. As the behavior-based MPC

framework is developed for robot motion control, we then discuss in Section 1.3.2 how the

behavior-based approach fits into the motion control paradigm. We end this section with

a discussion of a specific navigation algorithm which will be extended in Chapter 5 as an

example of behavior-based MPC.

1.3.1 Behavior-based MPC Background

The approach given in [13] is related to the method we develop as it utilizes pre-designed

control laws at its core. The approach builds upon a technique presented in [87] where the

nonlinear model to be fit to a linear parameter-varying model and control laws are designed

to stabilize the linear system in different regions of the state space. After this has been

done off-line, MPC is then used on-line as a tool to find optimal deviations from the output

of these control laws. By so doing, the optimization is reduced to solving a QP problem.

However, the cost to be minimized is restricted to a cost on the norm of the deviation from

the original control input, which may be a limiting factor when applied to navigation. Also,

the full nonlinear dynamics are not considered during the optimization.

The authors in [32] and [92] give an alternative method which is quite related to the

proposed method. The basic idea being that a previously designed control law can be tuned

on-line using MPC to achieve a desired result. This is fundamentally different from [13]

in that instead of tuning the output from the control, the actual control law is tuned. The

affects of tuning will be taken into account as the full dynamic model is considered in the

optimization.

While the method we propose is closely related to that found in [32, 92], several con-

tributions are made to the existing work. First, an analytic form to the gradient will be

derived, whereas [32] uses a numerical approximations to the gradient and [92] proposes

9

using methods such as pattern search and genetic algorithms. Second, switch time opti-

mization techniques will be included to allow for multiple modes to be considered. This

will permit this technique to be more readily applicable to hybrid control scenarios. Fi-

nally, a dual-mode approach, closely related to dual-mode MPC will be given to establish

stability guarantees.

1.3.2 Motion Control and Behavior-based MPC

As the proposed method for behavior-based MPC is being developed to control robot mo-

tions, it is important to address where it will fit in terms of the motion control literature.

Robot motion control design often consists of two interdependent pieces: planning of a tra-

jectory and execution of the plan. There is a large spectrum of different techniques which

range from addressing these pieces separately to executing them simultaneously.

On one end of the motion control spectrum is deliberative planning where a series of

actions to take a robot from an initial state to a goal state is first planned and then acted

upon. This encompasses a vast array of different planning methods. Some, such as graph

based methods like Dijstra’s algorithm and its derivatives, e.g. [47, 14], consist of finding

an optimal path, but often suffer from the curse of dimensionality. Other approaches, such

as sampling based methods, e.g. [14, 48], sacrifice a degree of optimality but are often

able to significantly reduce the planning time, especially on higher dimensional spaces.

However, these methods do not entirely solve the curse of dimensionality, and often neglect

the dynamics of the robot [48].

On the other end of the motion control spectrum lie reactive planners. These types

of planners decide upon an action based almost entirely upon local information. This in-

corporates a wide range of concepts from vector field approaches, e.g. [48, 2, 63, 76] to

Lyapunov based control laws, e.g. [77]. The common thread being the ability to quickly

compute a reaction to the current information available to the robot.

Often, reactive and deliberative planners are used together to leverage capabilities from

10

each. For example, reactive planners can be used when a robot is in a precarious situation

and the deliberative planner is not quick enough to avoid danger, e.g. [14, 48]. They may

also be used to accommodate the dynamics as in way-point following, e.g. [4]. It is in

the context of reactive planners working in collaboration with deliberative planners that we

present the behavior-based MPC framework.

Behavior-based MPC could be considered a “glue” between a reactive controller stabi-

lizing the dynamics and a deliberative plan directing the robot. Chapter 5 gives an example

where a dual-mode approach to behavior-based MPC provides guarantees for convergence

to a goal location while considering the full dynamics of the robot. It allows the delibera-

tive planner to plan on the position space of the robot, avoiding the curse of dimensionality.

The behaviors, or control laws, consider the full dynamics of the vehicle and are able to

guarantee obstacle avoidance. The framework fits into a widely accepted paradigm for de-

composing trajectory tracking into path-planning and execution, e.g. [29, 4]. This paradigm

has even become the standard formulation in the navigation package of the increasing pop-

ular robot operating system (ROS), [72], where a global navigator finds a path and a local

navigator follows that path.

1.3.3 The Dynamic Window Approach to Navigation

For a navigation algorithm to be successfully applied in unknown environments, it is es-

sential to have guarantees on both obstacle avoidance and progression towards the goal lo-

cation. These guarantees need to take the dynamic constraints of the vehicle into account,

especially as the speed of the vehicle increases, e.g. [29, 82]. Moreover, the navigation

scheme cannot consume too much computational power as the robot must perform other

tasks, such as process sensor information and map the environment. To incorporate all of

these demands, we build upon the dynamic window approach (DWA) presented in [24],

which possesses all of the mentioned qualities, albeit without a guarantee of progression

towards the goal (as noted, for example, in [64, 7, 82]).

11

DWA provides a direct way of incorporating dynamic constraints for fast navigation

through an unknown environment, but lacks general convergence guarantees, [24, 64, 7].

The basic concept of the DWA algorithm first presented in [24] is, at each time step, to

choose an arc for the robot to execute based on some predefined cost. This directly deals

with the dynamic constraints of the vehicle as most wheeled vehicles contain a nonholo-

nomic constraint which can be expressed using the unicycle motion model, e.g. [48]:
ẋ1

ẋ2

ψ̇3

 =


v cos(ψ)

v sin(ψ)

ω

 , (5)

where (x1, x2) is the two dimensional position of the robot, ψ is the orientation, and v and

ω are the translational and rotational velocities of the vehicle. Thus, arc-based motions are

natural for most wheeled mobile platforms as they can be realized by commanding constant

values for v and ω.

Commanding constant v and ω values has two advantages worth mentioning. First the

(v, ω) pair can be chosen such that the transients due to the real dynamics of the vehicle

can be ignored after a small window of time. This allows for quick simulation into the

future to ensure obstacles are avoided. Second, by choosing to execute the (v, ω) pair over

the simulated horizon, instead of solving for a trajectory of inputs on that horizon (as is

typical in MPC), the computational burden is greatly reduced, [24, 19, 69]. Thus, DWA

is able to guarantee obstacle avoidance while taking into account the dynamic constraints

without imposing unreasonable computational burdens. These benefits have lead DWA to

be a default “local planner” in the increasingly popular robot operating system’s (ROS)

navigation package, [72].

The term “local planner” is used as DWA does not incorporate information about the

connectivity of the free space when planning its action, [7]. As such, it is known to get

stuck in local minima, noted, for example, in [64, 7, 82]. To modify the algorithm to

have guarantees of convergence, [64] utilized a control scheme based on incorporating

12

navigation functions into the cost and used MPC stability techniques to ensure convergence

to the goal. The navigation functions were chosen as they allow the cost to form CLF. They

also provide an intuitive worst-case scenario: the worst the robot will do is simply follow

the navigation function to the goal.

DWA is the focus of Chapter 5 as it provides an excellent example where dual-mode

MPC concepts can be incorporated into the behavior-based MPC framework to ensure con-

vergence of a DWA-like algorithm. By combining an arc-based controller with a terminal

reference-tracking controller, information about the connectivity of the free space to the

goal can be realized with a generic path-planner instead of the need for navigation func-

tions. A guarantee on the convergence to the goal location is established based on properties

of the reference tracking controller and conditions imposed on the cost.

1.4 Distributed Multi-Agent MPC

Distributed multi-agent MPC introduces an added level of difficulty to the MPC problem

as network communication constraints must be taken into account while optimizing. This

difficulty is compounded by the fact that the predictive element of MPC requires the ability

of an agent to communicate or simulate neighboring agents’ trajectories into the future.

Additionally, to achieve optimality, agents must generally be able to influence neighbors’

trajectories, not solely a vector of parameters as discussed in Section 1.1 for distributed

optimization. The basis of several different formulations for multi-agent MPC is to address

one or both of these problems.

In [10], authors present a method for distributed MPC. At each time step, agents itera-

tively broadcast their planned trajectory and control, optimize their own trajectory accord-

ing to the communicated trajectories from all other agents, and then repeat the process until

convergence. Under convexity conditions and linear dynamics, this method will guarantee

an optimal solution. However, it comes at the cost of a large amount of communication at

each time instant.

13

To mitigate the difficulty of optimizing the trajectory of neighboring agents, a method

was developed in [20] and extended in [21]. The basic idea behind this method is to have

agents communicate their trajectories before the optimization step. Then, an additional

cost is added to each agents’ individual cost to penalize deviation from the trajectories that

the agents’ told neighbors they would execute. This cost eliminates the need to repeatedly

communicate trajectories at each time instant, albeit at a possible sacrifice to optimality.

The authors in [28, 75] propose a method for multi-agent, distributed MPC for agents

executing linear dynamics in discrete time. The algorithm involves reformulating each

agents dynamics and introducing pricing variables corresponding to the influence that

agents have on each other. In this way, the number of times that agents are required to

share state and control vectors at each iteration can be reduced while maintaining optimal-

ity and stability guarantees.

In [15], authors evaluated the decomposition and design of MPC formulations for linear

systems with decoupled control. A discussion is given on the design of the costs and

constraints such that stability and convergence guarantees are met for the collective system

while respecting the communication topology of the underlying network. The methods

were extended in [38] to include coupled control as well as a form of dynamic topology. It

is important to note that distributed optimization must be employed between neighboring

agents to solve for the control trajectories, requiring communication of entire trajectories,

albeit only between neighboring agents.

In an attempt to overcome the difficulty of communicating trajectories, authors in [39]

have presented a method where agents communicate only initial conditions. They are able

to do this by introducing constraints on what agents are permitted to do. Agents then solve

the optimal control problem assuming neighboring agents are working to minimize the

same cost. Again, stability is established, but at the cost of optimality.

Finally, is it worth mentioning that an entire class of hierarchical methods also exist

which do not strictly conform to the outlined multi-agent MPC architecture, e.g. [79, 80,

14

83]. These methods concentrate on the distributed optimal control of interconnected sys-

tems with distributed computing components which exhibit a hierarchy of knowledge and

decision making. In particular, both [80] and [83] assume linear system dynamics and ex-

ploit the properties of the dynamics to formulate sound methods of respecting the hierarchy

to come to a collective minimum.

By capitalizing on a behavior-based approach to MPC, we develop a method which

relies on agents executing primitive, parameterized behaviors, with the optimization being

done over the parameters. Agents are able to simulate each others trajectories after com-

municating solely the initial conditions and the parameters used in the behaviors. Agents

are also able to influence each others trajectories by performing distributed parameter op-

timization. Moreover, each agent need only share information with neighboring agents

defined by the underlying communication network, thereby respecting the communication

constraints imposed by the network.

1.5 Organization

Each of the three key contributions are discussed and developed in the following chapters.

We begin with a development of a new distributed optimization method for static commu-

nication topologies in Chapter 2, and extend it to dynamic topologies in Chapter 3. The

focus is then shifted to developing the behavior-based MPC formulation. Chapters 4 and

5 discuss the behavior-based MPC formulation for the single agent scenario. Chapter 4

details the formulation of the behavior-based MPC approach, including gradient strategies

and vector field examples. Chapter 5 gives an extended example where a dual-mode formu-

lation is utilize to prove convergence when quickly navigating an unknown environment.

Chapters 6 and 7 detail the development for the behavior-based MPC formulation for mul-

tiple agents. Chapter 6 gives a detailed derivation of the algorithm. Chapter 7 presents an

example of a virtual leader approach to multi-agent formation control.

15

CHAPTER II

PROPORTIONAL-INTEGRAL DISTRIBUTED OPTIMIZATION

FOR NETWORKED SYSTEMS WITH STATIC TOPOLOGIES

In general, tasks solved by multi-agent systems pose challenging problems as they require

the agents to realize collective objectives using solely information local to each agent in the

communication network, e.g. [57, 59]. Additionally, many real-world examples compli-

cate task completion as they require agents to move about the environment, changing which

agents can communicate. To give structure to the problem, tasks are often defined in terms

of a cost, where task completion corresponds to minimizing the cost, e.g. [59]. Therefore,

this chapter focuses on the development of a distributed optimization technique which al-

lows a system of agents to converge to a collective minimum under static communication

topologies. Chapter 3 will extend this work to cope with dynamic topologies.

The distributed optimization framework developed in this chapter and the next prove

to be an essential component to the multi-agent behavior-based MPC algorithm developed

in subsequent chapters. The reason being is that the behavior-based approach changes

required optimization problem into a parameter optimization problem. This allows dis-

tributed parameter optimization to be directly applied to solve the behavior-based MPC

algorithm.

As mentioned in Section 1.1 distributed optimization techniques have recently been

categorized into consensus methods and dual methods. In this chapter, we show that

the consensus-based and decomposition gradient algorithms are actually very closely re-

lated when examined in context of the underlying constrained optimization problem that is

solved by these methods. Specifically, we formulate both the dual-decomposition method

16

in [85] and the consensus-based method in [45] in control theoretic terms to draw paral-

lels and gain intuition behind why they can naturally be joined together. In fact, it will

become apparent that dual-decomposition is very closely related to integral (I) control, and

the consensus method is closely related to proportional (P) control.

The relation to proportional and integral control explains the effects of using such meth-

ods. Much like integral control, dual-decomposition is notorious for being oscillatory, but

guarantees convergence to the constraint, e.g. [88, 75]. Similar to proportional control,

the consensus-based methods with constant gains are much more damped in their tran-

sient response, but do not converge. To achieve convergence, a diminishing stepsize on the

gradient is necessary, but also slows down settling times, [45, 88, 61].

The main contribution made in this chapter is to combine these two methods to form a

new, proportional-integral (PI) distributed optimization method. The constrained optimiza-

tion problem being solved is first examined in Section 2.1 to give necessary background

and intuition to the approach taken. Sections 2.2 and 2.3 examine two existing distributed

optimization techniques under the constrained optimization approach. Section 2.4 then

presents a new PI distributed optimization approach for fixed topologies, formulated by

combining the approaches mentioned in Sections 2.2 and 2.3. The chapter ends with con-

cluding remarks in Section 2.5.

2.1 Introducing the Constrained Optimization Problem

This section introduces the background information necessary to characterize PI distributed

optimization and give intuition behind its formulation. It begins with the formulation of

the distributed optimization problem that is addressed in this chapter. Following this, the

graph-based model of the multi-agent network will be introduced. Gradient-based con-

strained optimization is then discussed from a high level viewpoint to develop intuition

about the underlying relationship between dual-decomposition and the consensus based

method. As similarities to PI control will become readily apparent, this section ends with

17

a brief introduction of the PI control metrics that are used to compare these methods.

2.1.1 Problem Formulation

As mentioned in Section 1.1, we present the distributed optimization problem in the same

formulation as [61, 45, 88, 89, 84, 26, 46]. Specifically, assume that the function to be

optimized is a summation of strictly-convex costs, i.e.

min
x

N∑
i=1

fi(x), (6)

where x ∈ Rn is the parameter vector being optimized, N is the number of agents, and

agent i only knows its individual cost, fi(x).1

To be able to establish convergence to the collective minimum certain convexity as-

sumptions are made on the cost. Note that a convex function is defined as a function that

satisfies:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (7)

where 0 < θ < 1. A function is strictly-convex if strict inequality holds in (7) (see,

for example, [5] for a thorough overview of convex functions and their properties). The

following assumptions about the costs are used throughout the paper:

Assumption 1. fi(x) : Rn → R, i ∈ {1, ..., N}, are convex, twice continuously dif-

ferentiable functions and the summation
∑N

i=1 fi(x) is strictly-convex, twice continuously

differntiable function.

Assumption 2. The solution f ∗ = minx
∑N

i=1 fi(x) and respective optimal parameter

vector, x∗, exist and are finite.

Remark 1. We note that the differentiability assumption has been relaxed in many of the

references to address subgradient optimization. However, we do not concern ourselves with

relaxing this assumption as it does not add to the development of the paper.

1Note again that to maintain consistent notation with the distributed optimization literature, we use a
different notation than in other chapters. When discussing MPC, x will correspond to the state vector and f
will denote a dynamic function.

18

Once again, for sake of clarifying the notation, one key point must be stressed. To per-

form distributed optimization, each agent will maintain its “own version” of the variables,

denoted as xi ∈ Rn, with the constraint that xi = xj ∀ i, j ∈ {1, ..., N}. This will allow (1)

to be expressed as

min
xi,i=1,...,N

N∑
i=1

fi(xi). (8)

s.t. xi = xj ∀ i, j ∈ {1, ..., N}

To perform the optimization in a distributed manner, the equality constraints are relaxed.

Algorithms differ in the manner that they force agents to return to the constraint set.

While much of the work on distributed optimization has been developed in discrete-time

formulations, which are amenable for implementation, e.g. [90, 61, 85, 51], a great deal of

work recently has been made in continuous-time [45, 88, 89, 74, 75, 46, 26]. Continuous-

time analysis has proven useful as it allows Lyapunov stability conditions to be directly

applied to the update-equations for convergence analysis. It also allows for an intuitive

connection between the optimization algorithm proposed in this paper and proportional-

integral control. Moreover, a discretization of the framework proposed in this paper does

not pose a significant contribution. The proportional element has been evaluated in discrete

time in [61] and the integral element has been evaluated in discrete time in [85, 74, 75].

Furthermore, a closely related PI distributed optimization algorithm developed in [88, 89,

26] (discussed further in Section 2.4.1) was discretized in [88].

2.1.2 Networked Multi-Agent Systems

We now introduce the terminology and properties of multi-agent systems that will be used

to formulate the distributed optimization algorithms and discuss their convergence. The

term “agent” is used to refer to a computing component and it is assumed that agents

only communicate with each other through a defined, static network topology. This is

representative of a great number of different multi-agent systems, from communication

networks to teams of robots, e.g. [57, 81, 75].

19

The interconnections of the network are represented through an undirected graph G(V , E).

The set of nodes, V , is defined such that vi ∈ V corresponds to agent i. Communication

constraints are represented through the set of edges in the graph, E ⊆ V × V , where

(vi, vj) ∈ E iff agents i and j can directly communicate. The number of agents is then

given by |V| = N and the number of communication links is given by |E| = M . To

prove convergence of the distributed optimization methods, the following assumption on

the graph topology is made:

Assumption 3. The graph G(V , E) is connected.

Associated with this graph are two important, and related matrices. The first is the

incidence matrix, D ∈ RN×M which is formed by arbitrarily assigning an orientation to

each edge and can be defined as

D = [dik] =


1 edge k points to node i

−1 edge k originates at node i

0 otherwise

. (9)

The second matrix, the graph Laplacian, is closely related to D and can be defined as

L = LT = DDT ∈ RN×N . Note that the resulting values for the elements of L are

independent of the orientation assigned to each edge, [57].

We utilize both the incidence matrix and the graph Laplacian to form larger, aggregate

matrices to incorporate the fact that each agent will be maintaining an entire vector of val-

ues. First, let xij denote the jth element of xi, zj , [x1j, x2j, ..., xNj]
T is the combination

of all the jth elements, and z , [zT1 , ..., z
T
n]T ∈ RNn is the aggregate state vector. The

aggregate matrices can then be written as D , In ⊗D and L , In ⊗ L. This notation ex-

presses the concept that an aggregate graph is formed where there are n replicas of G, each

corresponding to one of the elements of the vector being optimized. The aggregate graph

will not be connected, but have n connected components, given Assumption 3. Therefore,

the aggregate Laplacian will have the following properties (see, for example, [57]):

20

1. L = LT = DDT

2. L � 0

3. The eigenvectors associated with the zero eigenvalues of the aggregate Laplacian are

α⊗ 1, where α ∈ Rn

4. If ż = −Lz, the solution, z̄ = z(t) as t −→∞, will be the projection of z(0) onto the

set α ⊗ 1 for α ∈ Rn. Moreover, the vector −Lz will point along a line orthogonal

to the set {α⊗ 1|α ∈ Rn}.

One further property that will be exploited throughout the paper comes from the in-

cidence matrix. The constraint in (2) that xi = xj ∀ i, j ∈ {1, ..., N} can be written as

DT z = 0. This can be verified by first considering the scalar case where n = 1 and D = D.

DT z = 0 will enforce that xk1 − xk2 = 0, where k1 and k2 correspond to the verticies

associated with edge k. Then through Assumption 3, xi = xj ∀ i, j ∈ {1, ..., N}. The

same argument can be extended to n > 1 case by noting that DT z =


DT z1

...

DT zn

.

Finally, this notation allows the distributed optimization problem to be presented in a

compact form:

min
z
f(z)

s.t. h(z) = 0.

(10)

where f(z) =
∑N

i=1 fi(xi) and h(z) = DT z.

2.1.3 PI Control as Gradient Method for Constrained Optimization

We now take note of the structure of (10) to give intuition to the relationship between the

gradient methods presented in Sections 2.2 and 2.3. The development in this section will

not dwell on the details of constrained optimization, as it has been a widely studied area,

21

x
1

x 2

−2.5 −2 −1.5 −1
−2.2

−2

−1.8

−1.6

−1.4

−1.2

x
1

x 2

−2 0 2
−3

−2

−1

0

1

2

3

Figure 1: This figure shows the results of using the cost f(z) = (x1−1)2 +(x2 +1)2. Left:
Dotted line shows the equality constraint and the arrows show the gradient and projected
gradient. Right: Result of performing the PI gradient method for optimization given in
(13). The trajectory of the two states is shown ending in the final condition denoted by
the solid circle and the constraint is shown as a dotted line. The arrows show the final
gradient and Lagrange multiplier multiplied by the constraint. As expected, these are equal
in magnitude, but opposite in direction.

e.g. [53, 5]. Rather, it will be focused on forming a control law to return the state to the

constraint set when the constraints are relaxed.

Without constraints, a gradient method for optimization of the problem would simply

take the form ż = −kG ∂f∂z
T

, where kG ∈ R+ is some gain. However, when the optimization

includes constraints, the update to the variables being optimized cannot be in any arbitrary

direction. The update can only occur in a direction that will allow the state to continue to

satisfy the constraint. As the constraints in (10) are linear, this involves taking the gradient

and projecting it onto the constraint space, as shown in Figure 1.

It should be noted that the difference between an unconstrained gradient and a con-

strained gradient could be written in terms of the addition of a term perpendicular to the

constraint set. This could be expressed as ∂f
∂z

+ λT ∂h
∂z

= ∂f
∂z

+ λTDT . The dynamics of the

resulting optimization would then be

ż = −kG(
∂f

∂z

T

+ Dλ(t)). (11)

However, computing λ(t) in a distributed fashion could be difficult as it may require knowl-

edge from the entire network.

22

Alternatively, if the gradient method is permitted to violate the constraint, control terms

can be added to guide the state back to the constraint at the optimal point. The first term

we consider is a term proportional to the error from the constraint. Allow λ(t) = kP
kG
e(t)

where e(t) = DT z(t) is the error at each edge of the graph. This can be seen to be a logical

choice because, as mentioned in Section 2.1.2, −De(t) = −Lz(t) will point along a line

orthogonal to the constraint set. In other words, it points in the right direction, but with

possibly the wrong magnitude. This gives the dynamics

ż = −kG
∂f

∂z
(z)− kPDe(t) = −kG

∂f

∂z
(z)− kPLz(t). (12)

As will be discussed in Section 2.3, the similarity of (12) to proportional control is perpet-

uated in that the steady-state solution will have a constant error from the desired optimal

point. Basically, the effort produced by introducing an error term proportional to the devi-

ation from the constraint will fall short of the needed effort to drive the state all of the way

to the constraint set.

To compensate for the steady state error, it is common to add an integral term to the

control, e.g. [25]. This would lead to a λ(t) of the form λ(t) = kP
kG
e(t) + kI

kG

∫ t
t0
e(s)ds.

Over time, the integral term will build up the necessary effort to reach the constraint. With

this additional term, the dynamics of the system can be expressed as

ż = −kG
∂f

∂z

T

−D
(
kP e(t)+kI

∫ t

t0

e(s)ds
)

= −kG
∂f

∂z

T

−kPLT z−kIL
∫ t

t0

z(s)ds. (13)

It will be shown in Section 2.4 that under Assumptions 1, 2, and 3, the dynamics in (13)

will indeed converge to a collective minimum, as shown in Figure 1.

While this method for obtaining a gradient strategy to arrive at the desired optimal

value may seem somewhat trivial or ad-hoc, it will be seen in Section 2.2 that the dual-

decomposition distributed optimization method will exactly correspond to adding an inte-

gral term. Similarly, in Section 2.3, it is shown that the consensus-based method will be

exactly the proportional term. Therefore, we combine the two methods in Section 2.4 to

form a PI distributed optimization method.

23

2.1.4 PI Performance Metrics

As the distributed control laws developed throughout the remainder of this paper are closely

related to proportional and integral control laws, we give a brief introduction to the perfor-

mance metrics that will be employed for comparison. These metrics are important as there

really is no single metric which best determines which control law is most suitable. For

example, as discussed in [25], proportional control can converge quickly, but may result

in a steady-state error. As the proportional gain is increased, the steady-state error will

typically decrease up to the point where the system becomes unstable. On the other hand,

integral control can be introduced to eliminate steady-state error, but dampening will be

decreased and this will result in greater oscillation, overshoot, and slower convergence.

To say that one method is “better” would required a reference to a specific application.

To be able to judge which method is more suitable for the given application, the following

performance metrics, typical for classic control evaluation (e.g. [25]), are used:

• Percent overshoot (Mp): The percentage of the distance that the state overshoots the

final value, given as xmax−xf
xf−x0

× 100.

• Settling time (t10 and t1): Time it takes for the state to converge to within 10 percent

and 1 percent of the final value. For example, t10 is the smallest t such that .9 xf
xf−x0

<

x(t) < 1.1
xf

xf−x0
∀ t > t10.

• Percent error (% error): The percentage of error from the optimal value (|x
∗−xf |
xf−x0

×

100).

where x0 is the initial value, xf is the final value, and xmax is the maximum value reached.

For simplicity, we have assumed xmax ≥ xf > x0. As these values are measures of scalar

states, the worst case over all agents will be presented in each evaluation.

Also note that numerical results depend upon the value of the gains and initial condi-

tions. To allow for a fair comparison between examples throughout the paper, all gains

24

(kG, kP , and kI) are assigned a value of 1. Similarly, all initial conditions are assigned a

value of 0, unless otherwise stated.

2.2 Dual Decomposition

This section introduces the concept of gradient-based distributed optimization through the

introduction of dual-decomposition, which has been used in a variety of different applica-

tions, e.g. [68, 88, 85, 18, 75, 28]. Notation, examples, and proofs are given which will

allow for a concise development of the distributed optimization methods in Sections 2.3

and 2.4.

As already mentioned, dual-decomposition will be akin to integral control for con-

strained optimization. However, to provide intuition as to the origins and the theoretical

underpinnings of this method, it is presented here in a more typical fashion relying upon

the theory of dual-optimization, e.g. [53, 5]. The formulation introduced here is closely

related to that found in [85], except that we use Uzawa’s saddle point method, [3], to update

both the parameters and dual variables simultaneously. This permits a continuous-time for-

mulation where Lyapunov methods can be readily applied to establish convergence. After

presenting the algorithm, the relation to integral control will be evaluated. This section will

end with a distributed implementation and a numerical example.

2.2.1 Dual-Decomposition for Networked Systems

The basic idea behind dual decomposition is to introduce n copies of the variables, with the

constraint that the copies be equal. The dual is then formed to relax the added constraints

and a max min optimization technique is used to solve the dual problem. In this paper,

we use a gradient method introduced in [3] for saddle point finding. This will allow for a

distributed solution to the problem where each agent uses only local information defined

by the network graph, G.

The dual problem to (2) can be formed by introducing a Lagrange multiplier vector,

25

µk ∈ Rn, k = 1, ...,M , for each edge in G. It can be written as:

max
µk,k=1,...,M

min
xi,i=1,...,N

{
kG

N∑
i=1

fi(xi) + k′I

M∑
k=1

µTk (xk1 − xk2)
}

(14)

where, again, the subscripts k1 and k2 correspond to the agents which make up the kth

edge and kG, k′I > 0 are constant gains. Note that due to the constraint equaling zero, k′I

has no influence and kG scales the cost, but does not change the location of the optimal

point. Equation (14) can be simplified by forming an aggregate Lagrange multiplier vector,

µ ∈ RMn, in the same fashion that the aggregate state, z, was formed. This allows us to

reintroduce the constraint as DT z = 0 and rewrite (14) as:

max
µ

min
z
F (z, µ) = kGf(z) + k′Iz

TDµ. (15)

To solve this max-min problem, we use a technique first developed in [3] for saddle

point finding and has more recently gained attention for its applicability to distributed opti-

mization, e.g. [88, 89, 75, 74]. The basic idea behind this approach is that dynamics can be

assigned to the variables being optimized and convergence can be established using control

methods such as Lyapunov stability.

For a saddle point finding problem, where F (z, µ) is strictly-convex in z and strictly

concave in µ, [3] shows that applying the dynamics

ż = −∂F
∂z

T

, µ̇ =
∂F

∂µ

T

, (16)

the system will converge asymptotically to the saddle point. Taking the partials of (15), the

dynamics can be expressed as:

ż = −kG
∂f

∂z

T

− k′IDµ (17)

µ̇ = k′IDT z. (18)

However, we note that (15) is not strictly concave in µ, rather, it is linear. This requires fur-

ther evaluation, which is done in the proofs of Theorems 1 and 2. While there exist proofs

26

for dual-decomposition, e.g. [68, 23], we present an alternative proof here to show the rela-

tionship of dual-decomposition to the underlying constrained optimization problem. This

will allow us to easily extend these proofs in Section 2.4 for the PI distributed optimization

method that will be developed. The proofs use the same Lyapunov candidate function as

[74, 23] to prove convergence, but differ in the application of Lasalle’s invariance principal

and the proof that the equilibrium reached is the collective minimum.

Theorem 1. Given Assumptions 1, 2, and 3 as well as the dynamics in (17) and (18), the

saddle point (ż, µ̇) = (0, 0) is globally asymptotically stable.

Proof. Using the candidate Lyapunov function V = 1
2
(żT ż + µ̇T µ̇), V̇ can be written as:

V̇ = żT z̈ + µ̇T µ̈ = −żT
(
kG
∂2f

∂z2
ż + k′IDµ̇

)
+k′I µ̇

TDT ż

= −kGżT
∂2f

∂z2
ż = −żTH(z)ż ≤ 0 ∀ż, µ̇

(19)

where H(z) = kG
∂2f
∂z2
� 0 due to strict convexity given by Assumption 1. As there is no

dependence upon µ̇ in V̇ , LaSalle’s invariance principle must be used to show convergence

to (ż, µ̇) = (0, 0).

Let the set where V̇ = 0 be denoted as

S = {(ż, µ̇)|V̇ = 0} = {(ż = 0, µ̇ ∈ RMn)} (20)

To see that that the only solution in which the complete state (ż, µ̇) can remain in S is the

equilibrium (0, 0), use the fact that to stay in S ⇒ ż = 0 ∀t⇒ z̈ = 0. From this we see

that

z̈ = −H(z)ż − k′IDµ̇ = −kIDDT z = −kILz = 0,

where k′2I = kI . For the connected graph, the only z such that −Lz = 0 is z = α ⊗ 1,

α ∈ Rn. This shows two things:

1. xi = xj ∀i, j which means that the agents reach consensus.

27

2. µ̇ = k′IDT (α⊗ 1) = 0 which shows that the only possible value for µ̇ which stays in

S is µ̇ = 0.

Since V is radially unbounded, this completes the proof.

Theorem 2. Given Assumptions 1, 2, and 3 as well as the dynamics in (17) and (18), the

saddle point (ż, µ̇) = (0, 0) corresponds to the collective minimum.

Proof. To validate that a feasible solution is a local extremum, z∗, of a constrained opti-

mization problem it is sufficient to show that z∗ corresponds to a regular point (i.e. rows of

∂h
∂z

(z∗) are linearly independent) and there exists λ∗ such that

0 =
∂f

∂z
(z∗) + λ∗T

∂h

∂z
(21)

where h(z) = 0 is the constraint and f(z) is the cost, (see [53] for a discussion on local

extremum and regular points). Due to Assumption 1, the only extremum is the collective

minimum. Therefore, this proof is performed in two steps. First, we show that the saddle

point corresponds to a feasible point satisfying (21), then we show that the saddle point is

indeed a regular point.

The proof of Theorem 1 showed that (ż, µ̇) = (0, 0) implies that consensus is reached.

Thus, the constraints are satisfied and the saddle point is feasible. Also, by noting that

∂h
∂z

= DT for the problem at hand, (17) gives us

ż = 0 = −kG
∂f

∂z

T

− k′I
∂h

∂z

T

µ⇒ 0 = kG
∂f

∂z
+ k′Iµ

T ∂h

∂z
. (22)

Allowing λ =
k′I
kG
µ, (21) is satisfied.

The saddle point must now be shown to be a regular point. To do so, we show that

the convergent point is a regular point to the problem in which edges are removed from

G to form a minimum spanning tree (for undirected graphs, a minimum spanning tree is

a connected graph with N nodes and N − 1 edges, e.g. [57]). Due to Assumption 3, a

minimum spanning tree, GT , exists such that ET ⊂ E . The saddle point is shown to be

28

regular by first showing that the representation of the constraints using GT , i.e. DT
T z = 0,

is linearly independent and then showing that if a λ can be found to satisfy (21) for G, a λT

can be found to satisfy (21) for GT .

Let DT ∈ RN×N−1 be the incidence matrix associated with GT . The graph Laplacian

for a connected graph with N nodes always has rank N − 1, [57]. Therefore, DT has full

rank, which for n = 1, gives that DT
T z = 0 is a linearly independent set of constraints. For

n > 1, DT = In ⊗DT , and, as noted in Section 2.1.2, DT
T z =


DT
T z1

...

DT
T zn

 which will also be

linearly independent.

Without loss of generality, we can assume that D =

[
DT DR

]
where DR containts

the “redundant” edges not contained in GT . Since DT has the same rank as D, the columns

in DR can be expressed as linear combinations of the columns of DT . In other words,

DR = DT δ, where δ ∈ RN−1×M−N+1.

Without loss of generality, we can assume the elements in z have been rearranged to

write D =

[
DT DR

]
, where DR = In ⊗ DR. Since DR = DT δ, DR can be expressed

as DT∆, where ∆ = 1 ⊗ δ. We can separate λ as λ =

λ′
λ′′

 which allows us to write

Dλ = DTλ
′+DRλ

′′ = DTλ
′+DT∆λ′′. Therefore, if a λ is found such that (21) is satisfied

for G, λT can be defined as λT = λ′ + ∆λ′′. Thus, the solution is a regular point for the

constraint DT
T z = 0.

2.2.2 Integral Control

With the optimization framework in hand, the loop can be closed on the discussion begun

in Section 2.1.3 by relating the dynamics in (17) and (18) to integral control. Note that the

Lagrange multiplier, µ, can be expressed as follows (assuming µ(t0) = 0):

µ(t) =

∫ t

t0

µ̇(τ)dτ =

∫ t

t0

k′IDT z(τ)dτ = k′IDT

∫ t

t0

z(τ)dτ. (23)

29

This allows ż to be expressed as:

ż(t) = −kG
∂f

∂z

T

− kIDDT

∫ t

t0

z(τ)dτ = −kG
∂f

∂z

T

− kIL
∫ t

t0

z(τ)dτ, (24)

which gives the same result obtained in (13) assuming kP = 0. After closer inspection of

(18), one can see that the Lagrange multiplier, µ is indeed the integral of the weighted error

referred to in Section 2.1.3.

2.2.3 Distributed Implementation

While the analysis of this method has been performed from the point of view of the entire

system, its utility as a distributed optimization technique would be questionable if it were

not possible for the algorithm to be executed by each agent using only local information.

Therefore, we now present the algorithm in terms of implementation of a single agent and

discuss the information and communication requirements.

Equations (17) and (18) can be written in terms of execution by a single agent, i, as

follows:

ẋi = −kG
∂fi
∂x

T

(xi)− k′I
∑
j∈Ni

µji , (25)

µ̇ji = k′I(xi − xj), (26)

where for simplification we have introduced the Lagrange multiplier variables µji = −µij =

di,kijµkij where kij is the edge connecting agents i and j and it is assumed that µk(0) = 0,

k = 1, ...,M .2 Note thatNi denotes agent i’s neighborhood set, or agents with which agent

i can communicate. By inspection, agent i can compute ẋi and µ̇ji ∀ j ∈ Ni using only

its own state and the states of its neighbors. Therefore, we emphasize that the only piece

of information that an agent needs to communicate with its neighbors is its version of the

state vector.

2By uniqueness of solutions to differential equations, µ̇j
i (t) = −µ̇i

j(t) ∀t

30

1 2 3

Figure 2: This figure depicts the “Line” network structure used for the examples in Sections
2.2, 2.3, and 2.4

2.2.4 Example

To illustrate behaviors typical of dual decomposition, we give a numerical example. Let

the individual costs be defined as follows:

f1(x1) = (x11 − 1)2 +
1

3
(x11 − x12)2,

f2(x2) = (x22 − 3)2 +
1

3
(x21 − x22)2,

f3(x3) = (x31 − 6)2 +
1

3
(x31 − x32)2.

(27)

where xi =

[
xi1 xi2

]T
and the network structure takes the form of the line graph shown

in Figure 2. In other words, agents 1 and 2 as well as 2 and 3 can communicate, but agents

1 and 3 cannot. The collective cost is given by
∑3

i=1 fi(xi), where x1 = x2 = x3, has the

optimal solution of x∗ =

[
3.4 3.2

]T
.

Figure 3 and Table 1 show the results of employing these dynamics. As seen in Fig-

ure 3, there is oscillation in the solution as the different agents communicate and vary

their values. This oscillation is quite typical of dual-decomposition [74], and it will be

seen that the oscillation increases with an increase in problem complexity and number of

agents in Sections 2.4.4 and 2.4.5. Table 1 shows that the I control (corresponding to dual-

decomposition) has a large overshooot and slower settling times when compared with the P

and PI control laws (which are discussed in Sections 2.3 and 2.4). This is to be expected as

the integral term will decrease the dampening of the system [25]. Moreover, as expected,

Table 1 shows that there is zero steady-state error when using dual decomposition.

31

Table 1: The results of performing proportional, integral, and PI distributed optimization
for the convex optimization problem

P: γ = 1 P: γ = 1
1+.1t

I PI
M 0.11% 34.66% 24.24% 14.95%
t10 3.54 103.73 5.61 5.14
t1 6.66 869.32 15.04 13.19

% error 43.58% 1.97% 0% 0%

0 5 10 15
0

5
x 1

0 5 10 15
0

5

x 2

0 5 10 15
−10

0

10

Time (sec)

µ

Figure 3: This figure shows the results from the convex optimization example using dual-
decomposition

2.3 Consensus Based Distributed Optimization

This section introduces the consensus-based distributed optimization technique, first out-

lined in [61], which will give the proportional component in the new PI distributed opti-

mization method. After formulating the algorithm in terms of notation presented in previ-

ous sections, characteristics of the convergence are discussed in terms of the constrained

optimization problem. This section will end by resuming the example started in the previ-

ous section to present a comparison between the distributed optimization methods.

2.3.1 Consensus Based Algorithm

While originally given in discrete time, we present the consensus based distributed opti-

mization problem in continuous time as done in [45] to maintain consistent notation. In

stark contrast to the development of dual-decomposition, the consensus-based method was

not designed from existing optimization methods. Rather, it was directly developed for net-

worked, multi-agent systems. The foundation of this concept is that the consensus equation,

32

a core equation in many multi-agent designs, e.g. [57, 66, 34], can be used to force agree-

ment between different agents. Therefore, the basic idea is for each agent to combine a step

in the gradient direction with a step in the direction of consensus.

As the consensus method was developed for the multi-agent scenario, it can immedi-

ately be expressed in a distributed fashion as

ẋi = −kG
∂fi
∂x

(xi)−
∑
j∈Ni

αij(xi − xj), (28)

where αij is the weighting that agent i associates with the edge of the graph connecting

itself to agent j. Assuming equal weighting on all edges, i.e. αij = kP ∀ (vi, vj) ∈ E , the

consensus based method can be stated for the aggregate state dynamics as:

ż = −kPLz − kG
∂f

∂z

T

. (29)

From this expression of the aggregate dynamics, we immediately see that the consensus

term is the proportional term given in (13).

We do not present a proof of this method as it does not add to the development in this

paper. For the discrete-time analog to (29), using a diminishing or adaptive step-size rule3

for determining kG at each iteration of the optimization would cause the agents to converge

to the optimal value. For the continuous case, [45] proves that agents can come arbitrarily

close to the optimum by choosing kG
kP

to be “sufficiently small.”

The diminishing step-size condition has been observed to be a possible deterrent of

quick convergence of the algorithm, e.g. [88, 61, 89]. To balance a tradeoff between

convergence and optimality, [61] proposed a scheme of changing kG during execution to

get closer to the optimal point. The basic idea is that a constant gain often will result in

the state approaching a steady-state value in relatively few steps. Once the state is “close

enough” to the steady-state then the gain is changed to zero to allow the agents to reach

3Section 2.3 is the only section which consideres the gain kG to be time-varying. Throughout the rest of
the paper, all gains (kG, kI , and kP) are considered constant.

33

consensus. They prove that the longer the agents wait to switch to the zero gain, the closer

they will come to the optimal value, but will suffer in convergence rate.

2.3.2 Consensus Method and Constrained Optimization

We now examine this tradeoff further in terms of the underlying constrained optimization

problem given in Section 2.1.3. This will give insight into the effect of the contribution of

the proportional term and the benefit of including an integral term, which is done in Section

2.4.

To perform this analysis, assume that z̄ is the steady-state result of executing (29) as

t −→∞. Such a z̄ is known to exist due to the analysis in [45]. At z̄, (29) will give

ż = 0 = −kPLz̄ − kG
∂f

∂z

T

(z̄)⇒ 0 =
kP
kG

Lz̄ +
∂f

∂z

T

(z̄). (30)

Using the fact that L = LT = DDT , (30) can be expressed as 0 = ∂f
∂z

+ kP
kG
z̄TDDT . Now,

let λT = kP
kG
z̄TD and recall that ∂h

∂z
= DT , where h(z) = 0 is the equality constraint. This

gives 0 = ∂f
∂z

+ λT ∂h
∂z

as in (21). While this satisfies part of the condition for determining

an extreme point, z̄ will not be optimal as consensus will not be reached, resulting in the

constraints not being met, [45].

As discussed in Section 2.1.2, Lz will always point along lines perpendicular to the con-

straint set. This means that z̄ will be a point where ∂f
∂z

(z̄) points along a line perpendicular

to the constraint set. Now, let z̄′ = z(t) as t −→ ∞ where ż = −Lz and z(0) = z̄. Since

Lz points directly to the constraint set, z̄′ will be the point of intersection of the constraint

set orthogonal to z̄. Therefore, if f(z) is such that the gradient will always point directly

at the unconstrained optimal point, then the result of the optimization strategy proposed

in [61] can converge arbitrarily close to the optimal value. An example of such a convex

function is shown in Figure 1.

More important to our discussion is that a constantly weighted consensus term will not

have enough control authority to pull the state of the system all of the way to the optimal

point. However, it will help to guide the state to, and maintain it on, a line in which the

34

0 5 10 15
0

5

x 1

0 5 10 15
0

5
x 2

0 5 10 15
0
1
2

Time (sec)

γ

0 500 1000
0

5

x 1

0 500 1000
0

5

x 2

0 500 1000
0

0.5
1

Time (sec)

γ

Figure 4: This figure shows the result of optimizing using consensus for the problem given
in (27) for both a constant and fading value for kG on the left and right respectively

only additional control effort need be in the direction of consensus. This further motivates

the choice of adding an integral control term.

2.3.3 Example

We continue the example started in Section 2.2 using the consensus-based distributed op-

timization. Two scenarios are shown for the gain: kG = 1 which violates the diminishing

or adaptive gain requirement and kG = 1
1+.1t

which satisfies the requirement. The results

are shown in Figure 4 and Table 1. The constant gain example exhibits the very desirable

attribute of quick convergence, however suffers in performance as the values do not con-

verge and the optimal value is not reached. On the other hand, the fading gain example

shows that the optimal values can be achieved, but convergence suffers as expected. Both

exhibit the desirable attribute of very little oscillation in the solution, however, the fading

gain does show a significant increase in overshoot.

Remark 2. In presenting examples throughout the remainder of the paper, the results from

both a constant and a diminishing gain will be shown. We do this instead of trying to

tune the “stopping” criteria given in [61]. The result of a constant gain will emphasize

the possible convergence rate and a diminishing gain will emphasize the ability to reach

optimality.

35

2.4 PI Distributed Optimization

In Sections 2.2 and 2.3, dual decomposition and the consensus method for distributed op-

timization were introduced and the parallel to integral and proportional control laws was

seen. In this section, we show that these two methods can be combined to create a new dis-

tributed optimization method which is guaranteed to converge to the collective minimum,

much like integral control can be added to proportional control to achieve zero steady-state

error with good convergence properties.

This section begins by developing the PI distributed optimization method and proving

that it converges to the collective minimum. The relationship to PI control is then discussed

and the example of the previous two sections is finished.

2.4.1 PI Distributed Optimization Algorithm

The PI distributed optimization algorithm is formed by noting that the dual-decomposition

method discussed in Section 2.2 shares similar structure with the consensus method dis-

cussed in Section 2.3. Each has a gradient term along with an additional term added to

enforce equality between agents. Dual-decomposition guarantees convergence to the goal,

but has an undesirable transient, oscillatory behavior. On the other hand, the consensus

method does not converge under constant gains, but has a much more damped transient

response. Therefore, we join the two methods in a desire to achieve the benefits of each.

Combining equations (17) and (18) with (29), the aggregate dynamics can be expressed

as

ż = −kG
∂f

∂z

T

− kPLz − k′IDµ

µ̇ = k′IDT z.

(31)

Similarly, (25) and (26) can be combined with (28) to get a distributed implementation

as follows:

ẋi = −kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)− k′I
∑
j∈Ni

µji . (32)

36

µ̇ji = k′I(xi − xj) (33)

where we again define µji as in (26). As in Sections 2.2 and 2.3, the only information

exchange required between agents is the exchange of the state vectors between neighboring

agents.

To show convergence to the collective minimum, we give the following two theorems.

Theorem 3. Given Assumptions 1, 2, and 3 as well as the dynamics in (31), the saddle

point (ż, µ̇) = (0, 0) is globally asymptotically stable.

Proof. The same proof can be used as was used in Theorem 1 with two modifications.

1. H(z) = kG
∂2f
∂z2

+ kPL, but H(z) � 0 still holds.

2. z̈ = −kG ∂
2f
∂z2
ż − kPLż − k′IDµ̇ which when ż = 0 still simplifies to z̈ = −k′IDµ̇

Theorem 4. Given Assumptions 1, 2, and 3 as well as the dynamics in (31), the saddle

point (ż, µ̇) = (0, 0) corresponds to the collective minimum.

Proof. The same proof can be used as was used in Theorem 2 by noting for a feasible

solution, Lz = 0. This will give the same equation for ż as given in (22).

The proofs of Theorems 3 and 4 basically show that adding the consensus term does

not break the convergence properties of the dual-decomposition method of Section 2.2, but

do nothing to speak of the benefit of adding the consensus term. To see the benefit of the

consensus term, consider the following problem:

min
z
kGf(z) +

kP
2
zTLz. (34)

s.t. k′IDT z = 0

This is the same problem as given in (10), but with the addition of a term proportional to the

square of the constraint (recall DDT = L). Adding the square of the constraint is known

37

as the augmented Lagrangian method, which has been shown to add dampening to the dual

optimization problem, improving convergence, (see [6] for a discussion and analysis of the

augmented Lagrangian).

Following the same method to develop dynamic update laws as in Section 2.2, the

following dual optimization problem would be solved:

max
µ

min
z

(
kGf(z) + k′Iz

TDµ+
kP
2
zTLz

)
, (35)

with the resulting dynamics being the same as (31). Thus, adding in a consensus term

corresponds to modifying the problem to solve the augmented Lagrangian, producing the

desired dampening effect without modifying the guarantee of convergence.

2.4.2 Connections to PI Control

As with the previous two distributed optimization techniques, we note the similarity of this

distributed optimization framework with a PI control framework. The Lagrange multiplier,

µ, can be expressed in the same form as done in (23). Thus, the following expression for ż

can be obtained:

ż(t) = −kG
∂f

∂z

T

− kIL
∫ t

t0

z(τ)dτ − kPLz(t). (36)

This is the same equation that was derived for a PI control law in Section 2.1.3. We can

therefore expect to see properties of PI control such as increased overshoot resulting from

decreased dampening of the proportional control, zero steady-state error due to the integral

term (which has already been proved), and faster settling time than pure integral control,

e.g. [25].

While there exist many distributed optimization techniques, e.g. [68, 90, 45, 88, 89, 85],

it is important to note the similarity of the method in this section to that presented in [88]

and extended in [89, 26]. While the development of the algorithm in [88] is different than

the development in this paper, it can be expressed as using the augmented Lagrangian to

solve the following problem:

min
z
f(z), (37)

38

s.t. Lz = 0

where the resulting dynamics can be expressed as

ż = −∂f
∂z

T

(z(t))− Lz(t)− Lµ(t), (38)

µ̇ = Lz, (39)

and now µ ∈ RNn as opposed to µ ∈ RMn as before. The only difference between this

method and the method we have developed is simply that the constraint is expressed in

terms of the graph Laplacian instead of the incidence matrix. This would result in an

equation similar to (36), except with an L2 term instead of an L term in front of the integral.

While this may seem like a small difference, due to the fact that we have utilized dual-

decomposition in the development of the integral term, we form a PI distributed optimiza-

tion technique which requires half of the communication that the technique developed in

[88] requires. This can be seen from the fact that the incidence matrix, used in dual-

decomposition, allows each agent to update the necessary values of µ using only local

information. However, using the Laplacian matrix to express the constraint forms an L2

term which requires that either each agent knows their neighbors’ neighbors’ states or each

neighbor must additionally communicate µi at each optimization step.

2.4.3 Example

We continue the example in (27) using the newly derived dynamics. In Figure 5, it is

apparent that the PI optimization is able to achieve zero error while converging quickly

and with little oscillation. Furthermore, Table 1 shows that settling time and overshoot are

in between the values of pure proportional and pure integral control, as expected. These

attributes will be emphasized in the examples in the following sections as more complex

problems are presented.

39

0 5 10 15
0

5

x 1

0 5 10 15
0

5

x 2

0 5 10 15
−5

0
5

Time (sec)

µ

Figure 5: This figure shows the results from the convex optimization example using PI
distributed optimization

2.4.4 Scalable Multi-Agent Formulation

Up until this point, we have presented the algorithms in terms of a framework where each

agent keeps its own version of the entire state vector as done in previous works, e.g. [45,

88, 61, 85]. This is not necessary if some of the agents’ individual costs do not depend

upon all of the elements of the parameter vector being optimized. An example of this will

be shown at the end of the section where each agent introduces more parameters to be

optimized, typical in multi-robot scenarios, e.g. [39, 18, 75, 20]. However, each agents’

cost depends solely on the parameters introduced by its neighbors. In such a situation, it is

not necessary for each agent to keep track of the entire parameter vector and, in fact, doing

so is not scalable to large numbers of agents.

In this section, we address this in a similar fashion to [89] and show that it fits quite

naturally into the framework of the previous sections. First, it is shown that even with the

reduction of parameters the previous theorems still hold. Then, the reduction of parameters

will lead to a slight reformulation of the PI distributed optimization algorithm. Finally, we

end this section with an example where drastic improvement in convergence is achieved by

reducing the number of variables that each agent must maintain.

40

2.4.4.1 Eliminating Unneeded Variables

When each agent does not have an opinion about a parameter in the parameter vector,

the problem can be simplified to eliminate redundancies. Similar to [89], let Ij = {i|fi
depends on the element j} be the set of agents which depend on element j with car-

dinality Nj = |Ij|. As agents no longer needs to keep track of the entire vector, the

definition of zj needs to be slightly modified to zj , vec[xij]i∈Ij ∈ RNi , a subset of

the elements originally contained in zj . Now, the aggregate vector can be defined as

z =

[
zT1 ... zTn

]T
∈ RN1+...+Nn .

Let the induced subgraphs, Gi(Vi, Ei), be defined as Vi = {vj ∈ V|j ∈ Ii} ⊆ V and

Ei = {(vi, vj) ∈ E|vi, vj ∈ Vi}. Finally, the following assumption is made to allow for

convergence

Assumption 4. Gi is connected ∀i ∈ {1, ..., N}.

Note that, given Assumption 3, Assumption 4 is not limiting. If there exists i s.t. Gi
is not connected, one needs only to extend Gi to contain nodes originally in G that will

connect the different connected components of Gi.

Along this same line of reasoning, we briefly touch upon a topic of study which is out

of the scope of this paper, but worth mentioning. There may be simple cases in which

choosing Gi such that it is connected with the smallest number of vertices possible will not

result in the fastest convergence to the collective minimum. There has been much work

done on the convergence of the consensus equation and the network topology plays a key

role in determining the convergence rate [57, 66, 34]. Therefore, to achieve the fastest

performance, selection of the sub-graph for each variable could be more complicated than

simply choosing the minimally connected sub-graph.

In any case, given Gi, the corresponding incidence matrix, Di ∈ RNi×Mi , where Mi =

|Ei|, and graph Laplacian, Li ∈ RNi×Ni , can be defined. This allows for the definition of

the aggregate matrices D , diag(D1, ..., Dn) and L = diag(L1, ..., Ln). These aggregate

41

matrices will continue to exhibit the same properties mentioned in Section 2.1.2 as they

can still be expressed as n connected components of a graph. The only difference is that

the connected components do not have the same structure. As these properties still hold,

Theorems 1 through 4 will also hold using the newly defined augmented matrices and

addition of Assumption 4.

2.4.4.2 Distributed Implementation

While the aggregate dynamics of the multi-agent system can be expressed without any

change, the dynamics executed by each agent will change slightly due to the fact that each

variable in the parameter vector will have a different set of agents that are maintaining a

version of it. We express the dynamics of a single variable as follows:

ẋij = −kG
∂fi
∂xij

− kP
∑

k∈{Ni∩Ij}

(xij − xkj)− k′I
∑

k∈{Ni∩Ij}

µki,j (40)

µ̇ki,j = k′I(xij − xkj). (41)

Note that the algorithms in Sections 2.2 and 2.3 can be achieved by setting kP = 0 and

k′I = 0 respectively. Again, we see that each agent is able to execute this algorithm using

local information and only communicating its version of the parameters being optimized

with its neighbors.

2.4.4.3 Ring Example

We now present an example in which scaling down the number of parameters that each

agent worries about drastically improves the performance of the system. Consider the

“Ring” network depicted in Figure 6 where each agent can communicate with agents to

each side. In this example, each agent has a variable that “belongs” to it and it wants to

balance having its value be close to its neighbors’ value as well as a nominal value. This

can be expressed in the form of the following quadratic cost:

fi = (xi,i−1 − xii)2 + (xii − xdi)2 + (xii − xi,i+1)2 (42)

42

Figure 6: This figure depicts the “Ring” network structure used in Section 2.4.4

where xdi = i is the desired value.

Note that for the formulation in Sections 2.2, 2.3, and 2.4, each agent would have had

to keep track of N = 20 variables, corresponding to the aggregate state vector having 400

elements. However, this is greatly reduced by following the formulation in this section.

Each agent will only need to keep track of 3 variables with a total of 60 variables in the

aggregate state vector.

The results of both representations of the state can be seen in Figure 7 and Tables 2

and 3. Significant improvement can be seen across the board in terms of settling time for

reducing the number of variables. Moreover, the overshoot is drastically improved for both

the I and PI distributed optimization methods. Related to overshoot, it is seen in Figure 7

that the oscillation is drastically reduced for dual-decomposition.

One final observation about the performance of the PI distributed optimization tech-

nique is noteworthy. This example demonstrates the performance of the system when a

larger number of variables is in question. We see in Table 2 that the PI distributed opti-

mization significantly outperforms the other methods in terms of convergence. There is

a drastic improvement over the dual-decomposition method in terms of overshoot and os-

cillation as well as an improvement over the consensus method in terms of steady-state

error.

Again, we emphasize that this is an extreme example meant to demonstrate the possible

utility of reducing the number of variables that each agent deals with. Conclusions should

43

0 20 40
0

5

10

Time (sec)
0 20 40

0

5

10

Time (sec)
0 20 40

0

5

10

Time (sec)

0 5 10 15
0

5

10

Time (sec)
0 5 10 15

0

5

10

Time (sec)
0 5 10 15

0

5

10

Time (sec)

Figure 7: This figures shows the results of applying the formulation of Sections 2.2, 2.3, and
2.4 on the top row and 2.4.4 bottom row to solve the problem in (42). The left, middle, and
right images of each row correspond to consensus, dual-decomposition, and PI distributed
optimization techniques. The results shown are for variable 10. The solutions in the top
row require 20 versions of this variable to converge to the optimal value where the solutions
in the bottom row require only 3.

Table 2: The results of performing proportional, integral, and PI distributed optimization
with each agent optimizing over the full state vector.

P: γ = 1 P: γ = 1
1+.1t

I PI
M 0.1% 0.12% 37.5% 7.9%
t10 120.8 659.42 115.28 29.78
t1 226.58 4884.8 542.71 83.02

% error 55.4% 0.92% 0% 0%

not be drawn beyond the notion that this may be beneficial as there may be instances in

which scaling back as much as possible would not be beneficial.

2.4.5 PI Distributed Optimization of a Non-Convex Function

In this section, we make one further contribution to PI distributed optimization. Up until

this point, we have concerned ourselves solely with the optimization of a convex function,

but it may well be the case that the desired function to be optimized is non-convex and a

local minimum will suffice. We first show that, under an assumption of local-convexity, the

PI distributed optimization method will converge to a local minimum. This is then followed

44

Table 3: The results of performing proportional, integral, and PI distributed optimization
with each agent optimizing over a subset of the state vector.

P: γ = 1 P: γ = 1
1+.1t

I PI
M 0.1% 35.15% 7.12% 4.51%
t10 5.2 82.85 6.12 6.03
t1 9.47 692.57 12.78 12.33

% error 57.48% 5.3% 0% 0%

with an example of such a minimization.

2.4.5.1 Non-Convex Optimization

While not always true, many non-convex functions are defined such that the cost is strictly-

convex on many subsets of the parameter space. We refer to these subsets as local strictly-

convex regions. An example of such a function is shown in Figure 8. Such functions are

suitable for gradient-based methods where the methods will guide the parameters to a local

minimum of the cost. The purpose of this section is to give conditions under which the

gradient-based distributed optimization techniques will converge.

Two assumptions are now given:

Assumption 5. The function being optimized,
∑N

i=1 fi(x), has local strictly-convex re-

gions.

Assumption 6. There exists a time such that the parameter vector is in a local strictly-

convex region of f(z) =
∑N

i=1 fi(xi) while the Lagrange multiplier is simultaneously in

the corresponding local concave region of the dual function.

These assumptions basically tell us that the function must be well-suited to gradient

techniques for optimization and that the initial guess for the parameters must be sufficiently

good. There may, in fact, be a trade-off between these two criteria, i.e. a function that has

smaller regions of local convexity may require a better initial guess for the parameters.

Assumption 6 is feasible for all locally strictly-convex regions of functions satisfying

Assumption 5. This comes from the theory of local duality for equality constraints which

45

−5 0 5
−6

−4

−2

0

2

4

6

x value

co
st 0 2 4 6 8

−2

−1

0

z

0 2 4 6 8
0

1

2

Time (sec)

k G

0 2 4 6 8
−2

−1

0

z

0 2 4 6 8
0

1

2

Time (sec)

µ

0 2 4 6 8
−2

−1

0

z

0 2 4 6 8
0

1

2

Time (sec)

µ

−5 0 5
−3

−2

−1

0

1

2

3

x value

co
st 0 5 10

−4
−2

0
2
4

z
0 5 10

0

1

2

Time (sec)
k G

0 5 10
−4
−2

0
2
4

z

0 5 10
−10

0

10

Time (sec)

µ

0 5 10
−4
−2

0
2
4

z

0 5 10
−5

0

5

Time (sec)

µ

Figure 8: From left to right in each row, this figure shows the cost, consensus, dual-
decomposition, and PI distributed optimization methods applied to the problem in (43).
The top row corresponds to results when θ = π

4
and the bottom row corresponds to θ = 3π

4
.

The axis label z corresponds to each agents version of the variable, kG is the gain on the
gradient for the consensus method, and µ is the Lagrange multiplier for the other methods.

guarantees that there is a local maximum in the dual function corresponding to each local

minimum in the primal function. Moreover, there is zero duality gap between the local

minimum and maximum, e.g. [53]. With this fact and assumptions in mind, we now

present a theorem for the convergence of the PI distributed optimization algorithm.

Theorem 5. Given Assumptions 3, 4, 5, and 6, a system executing the dynamics for the PI

distributed optimization algorithm in (31) will converge to a local minimum.

Proof. The proof of Theorem 3 will hold for local asymptotic stability due to the fact that

H(z) � 0 in a region around the local minimum. Similarly, the proof for Theorem 4 will

hold for a local minimum in a strictly-convex region.

2.4.5.2 Example

We present two examples illustrating the ability of the PI distributed optimization frame-

work to come to a local minimum. Both examples consider the case where there are two

46

agents minimizing the summation of the following functions

f1(x) = .1x+ 3 sin(x)

f2(x) = .1x+ 3 sin(x+ θ).

(43)

While the true minimum would be x −→ −∞, there exists an abundance of periodic local

minimum, to which the optimization could converge.

In the first example we set θ = π
4

and show the results in Figure 8 and Table 4. The

initial conditions are
[
x1(0) x2(0) µ(0)

]
=

[
.5 .25 0

]
and satisfy Assumption 6. The

results are very similar with respect to those in the convex examples in that the same trends

in oscillation, overshoot, percent error, and settling time are seen.

There is one result, not related to the non-convexity of the problem, which deserves

mention. Although the PI optimization has a smaller value for t10 than dual-decomposition,

the value for t1 is greater. This shows that absolute convergence to the final value is not

guaranteed to be faster in the PI method versus dual-decomposition. This can again be ex-

plained with a relation to PI control. Depending on the gains, kG, kI , kP , The proportional

term may cause the state to quickly approach a steady-state value. However, in doing so, it

may not give as much time for the integral term to have built up the necessary summation

in error and therefore the integral term may take longer to build up a large enough value to

push the state closer to the desired steady-state.

In the second example we set θ = 3π
4

with the same initial conditions and show the

results in Figure 8 and Table 5. In this case, the initial conditions do not satisfy Assumption

6, but provide some interesting results. The consensus method with constant gain converges

to a much worse parameter vector than before. This is due to the fact that the parameters

are pulled strongly in different directions as they were initialized close to two separate local

minima. However, even more interesting is the result of dual-decomposition as Assumption

6 is never satisfied. In Figure 8, it can be seen that the values oscillate between two different

local minima and the Lagrange multiplier is never able to make them converge. In contrast,

PI distributed optimization is able to converge due to the increased dampening provided

47

Table 4: The results of performing proportional, integral, and PI distributed optimization
with θ2 = π

4

P: γ = 1 P: γ = 1
1+.1t

I PI
M 0% 10.08% 10.2% 6.57%
t10 1.016 1.89 1.77 1.42
t1 1.8 223.81 4.01 5.99

% error 10.3% 0% 0% 0%

Table 5: The results of performing proportional, integral, and PI distributed optimization
with θ2 = 3π

4

Non-convex 3π
4

P: γ = 1 P: γ = 1
1+.1t

I PI
M 1.1% 4.97% - 26.37%
t10 0.72 51.51 - 7.2
t1 1.34 475.64 - 10.48

% error 62.08% 0% - 0%

by the proportional term. Thus, while initially Assumption 6 is not satisfied, it quickly

becomes satisfied and the parameters converge to a local minimum.

We note that PI distributed optimization will not guarantee convergence to a local min-

imum if Assumption 6 is not initially satisfied. This can be seen by increasing the scalar

multiplying the linear term in each function in (43). This effectively reduces the size of the

local-convex regions and there is a point in which the PI distributed optimization method

will no longer converge. However, it can be expected that the increased dampening, due to

the addition of the proportional term, will help in situations such as this where oscillating

between different solutions is a potential problem.

2.5 Conclusion

We have developed a new, PI distributed optimization method through the combination of

dual decomposition and the consensus method for distributed optimization. This has been

done by noting the similarity of the methods when considering the underlying constrained

optimization problem. This new method is able to achieve desirable properties from both of

the previous methods. Namely, faster convergence and dampening due to the proportional

48

term, originating from the consensus based method, and zero steady-state error from the

integral term, originating from dual-decomposition. It was also seen that, under local con-

vexity assumptions, that the PI distributed optimization method is capable of converging to

a local minimum in situations when dual-decomposition was not.

49

CHAPTER III

PROPORTIONAL-INTEGRAL DISTRIBUTED OPTIMIZATION

FOR NETWORKED SYSTEMS WITH SWITCHING

TOPOLOGIES

In the previous chapter, a PI distributed optimization technique was developed which cap-

tures the desirable transient response from consensus approach and the desirable conver-

gence guarantees of the decomposition approach. This PI distributed optimization tech-

nique could be applied to provide a framework for agents to collaboratively solve a number

of tasks. Consider, for example, the formation control problem depicted in Figure 9. To suc-

cessfully solve the problem, agents must collaborate to determine the translation, rotation,

and scaling of the formation while simultaneously moving into their respective positions.

The developed PI distributed optimization technique will allow for a damped response

for the agents’ motion, when compared to decomposition methods, with a guarantee of

convergence. However, an essential aspect to consider is that while agents are moving,

they may move into or out of communication range with different agents. To make the PI

distributed optimization technique developed in the previous chapter applicable to a more

Figure 9: The task of moving into formation can be defined as finding a translation (τ),
rotation (θ), and scaling (γ) from the nominal formation, shown in the upper left, to the
desired position of the agents,shown in the bottom right.

50

general setting, this chapter will extend the approach to switching topologies.

This is done by first adding an element of time into the notation presented for multi-

agent networked systems in 3.1. Then, using a newly defined incidence matrix, an alter-

native proof of convergence is given in Section 3.2 for static topologies which is readily

extended to dynamic topologies in Section 3.3. However, the formulation of the algorithm

will be seen to be undesirable as it will require each agent to maintain the contribution all

other agents have ever made to the variables being optimized. Therefore, Section 3.4 will

reformulate the algorithm to eliminate this undesirable aspect. In Section 3.5 we return to

the formation control example depicted in Figure 9 and conclude the Chapter in Section

3.6.

3.1 Network Multi-agent Systems with Switching Topologies

The communication topology at time t can be represented as an undirected graph, G(V , Ei(t)),

where the node vl ∈ V corresponds to agent l and the edge-set, Ei(t) ⊆ Ea = {V×V} corre-

sponds to agents which can communicate. For sake of simplicity, Ei(t) will be denoted as Ei.

Let the index set of all possible graph topologies be denoted by I , such that Ei ⊆ Ea,∀i ∈ I .

In a similar fashion, let the index set of all possible connected topologies be denoted as

Ic ⊂ I , such that the graph G(V , Ei) is connected ∀i ∈ Ic. The final assumption used to

ensure convergence can now be stated:

Assumption 7. Let the graph at time t be given as G(V , Ei(t)) where i(t) ∈ Ic ∀t. In other

words, the graph is always connected.

We know redefine the incidence matrix to account for edges in the graph being added

and removed. Allow the elements, ej ∈ Ea j ∈ J = 1, ..., |Ea|, to be indexed with the set

51

J . The incidence matrix, Di ∈ R|V|×|Ea|, is then defined for graph G(V , Ei), such that

Di = [dkj] =



1 if ej ∈ Ei and vk is the head of

ej, j ∈ J

−1 if ej ∈ Ei and vk is the tail of

ej, j ∈ J

0 otherwise

(44)

In other words, column j in Di is dedicated to edge ej ∈ Ea and is only non-zero if ej ∈ Ei.

Denote the incidence matrix as defined in (9) for graph Gi as Di.

Note that the new definition of the incidence matrix does not affect the Laplacian ma-

trix. In other words, Li = DiD
T
i = DiDTi . To show this, without loss of generality assume

that the only non-zero entries in Di are the first columns. Di can then be written as Di =

[Di 0]. Formulating Li we see that Li = DiDTi = [Di 0]

DT
i

0

 = DiD
T
i + 0T0 = DiD

T
i .

As before, we form aggregate matrices as Di , In ⊗Di and Li , In ⊗ Li, where In is

the n × n identity matrix. Note that, for static topologies, the development in Section 2.1

through 2.4 could be done with the redefined incidence matrix without changing any of the

arguments.

3.2 Alternative Proof of Convergence for Static Topologies

Under static topologies, the proofs given for convergence in Theorems 3 and 4 hold, even

with the newly defined incidence matrix. However, the Lyapunov function used in the

proofs depends on the dynamics of the system which in turn depend on the incidence ma-

trix. As the incidence matrix changes each time the topology changes, the proof of conver-

gence does not easily extend to the switching topology scenario. Therefore, the proof to the

following theorem uses a Lyaponov function independent of the dynamics and is extended

to dynamic topologies in Section 3.3.

52

Theorem 6. Given that G(V , Ei) forms a static, connected graph and Assumptions 1 and 2

hold, the dynamics given in (31) will cause (z, µ) to converge to the optimal values of the

dual problem, (z∗, µ∗), defined by

max
µ

min
z

(f ′(z) + µTDT
i z) (45)

Proof. We note that the notation and structure of the proof follow very closely the proof

presented in [89]. It was shown in Theorem 4 that at equilibrium ż = 0, µ̇ = 0 corresponds

to the optimal values, (z∗, µ∗). Define z̃ = z − z∗, µ̃ = µ − µ∗ and the function f ′(z) =

kGf(z) + kP
2
zTLiz. Note that due to Assumption 1 and the fact that Li � 0 ⇒ zTLiz is

convex, f ′(z) is strictly convex, (see [5] for properties of convex functions). The dynamics

for the newly introduced variables, (z̃, µ̃), can be expressed as

˙̃z = ż − ż∗

= −∂f
′

∂z

T

(z)− k′IDiµ+
∂f ′

∂z

T

(z∗) + k′IDiµ
∗

= −∂f
′

∂z

T

(z) +
∂f ′

∂z

T

(z∗)− k′IDiµ̃

˙̃µ = µ̇− µ̇∗ = k′IDT
i z − k′IDT

i z
∗ = k′IDT

i z̃.

(46)

Now, consider the candidate Lyapunov function

V (z̃, µ̃) =
1

2
z̃T z̃ +

1

2
µ̃T µ̃, (47)

which allows the time derivative to be written as

V̇ (z̃, µ̃) = z̃T ˙̃z + µ̃T ˙̃µ

= z̃T
(∂f ′
∂z

T

(z) +
∂f ′

∂z

T

(z∗)− k′IDiµ̃
)

+ k′I µ̃
TDT

i z̃

= −z̃T ∂f
′

∂z

T

(z) + z̃T
∂f ′

∂z

T

(z∗).

(48)

To examine V̇ , we pull upon the global under-estimator property of convex functions, e.g.

[89, 5], which states:

g(y) ≥ g(x) +
∂g

∂x

T

(x)(y − x) ∀x, y, (49)

53

with strict inequality when g is strictly convex. From the global under-estimator property,

the time derivative of the Lyapunov function can be written as:

V̇ (z̃, µ̃) = −∂f
∂z

′
(z)z̃ +

∂f

∂z

′
(z∗)z̃

< f ′(z∗)− f ′(z) + f ′(z)− f ′(z∗)

= 0

(50)

So, in other words V (z̃, µ̃) is always non-increasing. LaSalle’s invariance theorem can then

be invoked [40]. Denote the smallest invariant set, V0 = {(z̃, µ̃)|V̇ = 0} = {(0, µ),∀µ}.

In V0, z = z∗ ⇒ ż = z̈ = 0. Note that z̈ = −kG ∂f∂z
T
ż − kPLiż − k′IDiµ̇ = −kIDiDT

i z =

−kILiz = 0 which implies z = α ⊗ 1 where α ∈ Rn and µ̇ = DT
i z = 0. Therefore, the

control law converges.

3.3 Extending Convergence for Dynamic Topologies

The key factor that allows for a convergence proof for dynamic topologies is the redefinition

of the incidence matrix in (44). It allows µ to remain the same size and be continuous across

switch times, in turn allowing V to be continuous across switch times. This is due to the

fact that the dimension and meaning of the elements of µ are directly dependent upon the

dimension and ordering of the columns of the incidence matrix, as is evident in (31). Since

(44) has a specific column dedicated to each possible edge, the elements in µ will always

correspond to the integral of the error across the corresponding edge and the dimension of

µ will never change, neither of which is true using the typical definition of the incidence

matrix.

One final assumption concerning dwell time is required before giving a theroem about

convergence. It is adapted from Assumption 3 in [31] to fit the multi-agent scenario:

Assumption 8. There exists τ > 0 such that for every T ≥ 0 a positive integer i can be

found for which ti+1 − τ ≥ ti ≥ T , where ti denotes the ith switch time. In other words,

54

the system persistently encounters intervals of length at least τ > 0 where the network

topology remains unchanged.

Theorem 7. Given that Assumptions 1, 2, 7, and 8 hold, the dynamics given in (31) will

cause (z, µ) to converge to the optimal values, (z∗, µ∗), defined by (45).

Proof. To show convergence, we invoke the LaSalle invariance principle for hybrid systems

stated in Theorem 7 of [31]. To do so, the system must satisfy four conditions. Theorem 6

satisfies the first two conditions which require each set of dynamics for the switched system

(corresponding to different network topologies in our case) to have a weak Lyapunov func-

tion which can be shown to converge to the equilibrium. The third condition concerns dwell

time and is satisfied by Assumption 8. The final condition concerns non-increasing values

for the Lyapunov functions across switching, which is trivially satisfied as all topologies

have a common Lyapunov function.

3.4 Index-free PI Distributed Optimization

While the previous section proved that the dynamic update law given in (31) will converge

to the optimal value, it is important to note that the individual dynamics given in (32) form

an undesirable solution. The reason being is that the dynamic update law requires each

agent to “remember” the individual contribution that every other agent has made to the

integral of the error. To create an index free solution, we take a step back and evaluate the

problem being solved in (10).

The structure of (10) is nothing more than a convex optimization with a linear con-

straint. It is well know, e.g. [53], that such a problem will have a solution satisfy (21).

In taking a closer look at (21), the true value needing to be solved for is a vector which

“offsets” the gradient, ∂f
∂z

, at the optimal value, as shown in Figure 10. In other words,

0 =
∂f

∂z
(z∗) + νT , (51)

where in actuality νT = λ∗T ∂h
∂z

.

55

Figure 10: This figure shows the optimal point to the cost f(z) = (x11 − 1)2 + (x21 + 1)2

with constraint x11 = x21. The unconstrained gradient, ∂f
∂z

T
(z∗), is balanced by the vector

∂h
∂z

T
(z∗)λ∗

In some sense, the distributed optimization algorithm consists of the agents working

together to share information in order to collectively learn the value of ν. Thus, this leads

to the idea of re-formulating the distributed optimization algorithm in terms of ν as follows:

ż = −kG
∂f

∂z

T

− kPLiz − ν (52)

where the dynamics for ν can be written as

ν̇ = kILiz. (53)

In the same manner as done in (32), the aggregate dynamics can be split up between

the agents in a distributed fashion as follows:

ẋi = −kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)− νi

ν̇i = kI
∑
j∈Ni

(xi − xj).
(54)

It is important to note that we have removed the agent indexing present in (32) In (54),

agent i no longer needs to keep track of agent j’s contribution, rather agent i need only

keep track of the aggregate contribution to the error by its neighbors. A theorem is now

given about the convergence of the newly formed dynamic update law:

56

Theorem 8. Given that Assumptions 1, 2, 7, and 8 hold, the dynamics given in (53) and

(54) will cause z to converge to the optimal value, z∗, defined by

min
z
f(z)

s.t. xi =xj∀i, j ∈ [1, ..., N]

Proof. The proof of the theorem hinges upon the fact that the state dynamics, ż(t), for

the aggregate state and ẋi(t) for individual agents remain the same. Thus, given the same

initial conditions and uniqueness of solutions the states will remain unchanged under the

new dynamics.

Previously we had

µ̇ = k′IDT
i z

ż = −kG
∂f

∂z

T

− kPLiz − k′IDiµ

= −kG
∂f

∂z

T

− kPLiz − k′IDi

∫ t

0

k′IDT
i z(s)ds

= −kG
∂f

∂z

T

− kPLiz − kILi
∫ t

0

z(s)ds

(55)

and corresponding agent state dynamics

µ̇ji =k′I(xi − xj)

ẋi =− kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)− k′I
∑
j∈Ni

µji

=− kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)−

kI
∑
j∈Ni

∫ t

0

(xi(s)− xj(s))ds.

(56)

The newly formed dynamics can be stated in a similar fashion:

ν̇ = kILiz

ż = −kG
∂f

∂z

T

− kPLiz − ν

= −kG
∂f

∂z

T

− kPLiz −
∫ t

0

kILiz(s)ds

= −kG
∂f

∂z

T

− kPLiz − kILi
∫ t

0

z(s)ds

(57)

57

which is the same as (55). Similarly, the individual agent states can be written as

ν̇i =kI
∑
j∈Ni

(xi − xj)

ẋi =− kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)− νi

=− kG
∂fi
∂x

T

(xi)− kP
∑
j∈Ni

(xi − xj)−

kI
∑
j∈Ni

∫ t

0

(xi(s)− xj(s))ds

(58)

which is the same as (56). Therefore, because the dynamics for z remain unchanged, z

will converge to z∗. Also, note that because z converges to z∗, ν̇ −→ 0 from the fact that

Liz∗ = 0.

One final note worth making is that the arguments made in Section 2.4.4 for making

the distributed optimization problem scalable still hold. As the arguments are the same, we

simply state the modified dynamics for agent i’s version of variable j as:

ẋij = −kG
∂fi
∂xij

− kP
∑

k∈{Ni∩Ij}

(xij − xkj)− νi,j

ν̇i,j = kI
∑

k∈{Ni∩Ij}

(xij − xkj).
(59)

Basically, this results in each variable only being maintained and updated by the agents

which actually have an opinion about the variable.

3.5 Example: Formation Control

To demonstrate the ability for PI distributed optimization to achieve a collective objective

utilizing local information, this section introduces an example of formation control. The

method for formation control in this section is based upon a relative state formulation, e.g.

[57]. The basic idea being that a formation control problem can be defined by a nominal

position for each agent, yi ∈ R2. The agents must come to an agreement upon a translation,

58

τ ∈ R2, from the nominal position as well as a possible rotation, θ ∈ R, about the nominal

origin.

While [57] then introduces methods based on feedback control on relative displace-

ments between neighboring agents in the formation, we show that distributed optimization

can be utilized to solve for the various parameters. Therefore, agents can choose a dis-

placement, rotation, as well as a scaling (γ ∈ R+) (as depicted in Figure 9) using solely

information available to each agent in the network.

To choose the parameters, x = [τT , θ, γ]T , the agents perform PI distributed optimiza-

tion. The cost assigned to each agent takes the form

fi(xi(t)) =
1

2
||qi(t)− qdi(t)||2 + k(γi(t)− 1)2 (60)

where qi(t) ∈ R2 is agent i’s position at time t, k is a weight on the scaling, and qdi(t) ∈ R2

is the desired position of agent i. Assuming that the nominal formation is defined with the

center at the origin, qdi(t) can be expressed as

qdi(t) = R(θi(t))γi(t)yi + τi(t), (61)

where R ∈ R2×2 is a rotation matrix. Each variable in (60) and (61) is written as a function

of time to emphasize that the variables are continually being updated.

The cost defined in (60) has two terms to guide the selection of the parameters. The first

term penalizes the distance between the current position and desired position. The second

term penalizes deviation from unit scaling where k is only non-zero for the final example

where proper scaling is important to see the spelling of the word. Note that (60) is only

locally convex, so agents will converge to some local minima.

While agents are optimizing they are also moving towards their respective desired po-

sition. Using integrator dynamics, q̇i(t) = ui(t), for each agent, the feedback law

ui(t) = qdi(t)− qi(t), (62)

is used to move towards the desired position. It is also assumed that the underlying graph

59

0 5 10 15 20
0.8

0.85

0.9

0.95

1

γ

Time(s)

Figure 11: On the top left is shown snapshots of the agents while converging to the dia-
mond formation. On the bottom left is shown the resulting diamond and line formations.
The lines between agents show the communication topology and the bottom left of each
figure is shown the nominal configuration. On the right is shown each agents’ version of γ
while converging to the diamond formation. Other variables are not shown as this plot is
indicative of the convergence characteristics of the variables in each simulation.

Table 6: This table shows the resulting parameters as well as the average and standard
deviation of distances for each simulation. The nominal distance, dN , refers to the distance
from agent’s starting position to their nominal position. The travel distance, dT , is how far
the agents actually traveled to reach formation.

τ γ θ dN Ave dN Std dT Ave dT Std
Line (2.12, 2.60) 0.25 4.97 4.03 0.98 1.28 0.67

Diamond (2.09, 2.39) 0.89 2.12 3.35 2.11 1.49 0.57
GRITS (1.44, 2.27) 0.98 -1.53 3.12 1.46 2.07 1.00

topology is a δ-disk graph, e.g. [57], where agents i and j are only able to communicate at

time t if ‖qi(t)− qj(t)‖ ≤ δ.

Three formations are shown to demonstrate the ability for the agents to come to an

agreement by minimizing the collective cost using PI distributed optimization. The first

two examples are shown in Figure 11 where agents form a diamond and a line formation.

To demonstrate the ability to specify arbitrary formations, the third formation has the agents

spell out GRITS (the acronym for Georgia Robotics and Intelligent Systems), as shown in

Figure 12.

A comparison between the nominal formation and the optimized formation of the dis-

tance each agent was required to travel is shown in Table 6. All three examples show a

60

Figure 12: This figure shows 60 agents assigned to spell out the word ‘GRITS’. On the left
is shown the initial positions and on the right is the final position.

significant decrease in both the average distance and standard deviation of the distance that

each agent was required to travel.

3.6 Conclusion

We have extended the PI distributed optimization method presented in Chapter 2 to account

for dynamic topologies. This has been accomplished by redefining the incidence matrix to

have a column dedicated to each edge, making it possible to define a Lyapunov function

that is continuous across switching topologies. However, the adjustment of the incidence

matrix makes the actual implementation undesirable as it requires agents to remember the

contribution every other agent has ever made to its error. By re-examining the underlying

constrained optimization problem, it was shown that it was possible to reformulate the

algorithm so agents solely keep track of the aggregate contribution of their neighbors.

We examined an example of formation control to demonstrate the ability of PI dis-

tributed optimization to cope with changing communication topologies while maintaining

convergence properties. Agents simultaneously moved and optimized and were able to

61

come to agreement on several parameters in order to determine where the formation would

end up. On average each agent traveled less than they would have had to in order to get to

the nominal position and the distance traveled by one agent was much closer to that traveled

by another.

62

CHAPTER IV

BEHAVIOR-BASED MPC

We now shift our focus from distributed optimization to develop behavior-based MPC. It

is logical that for the proposed method to work well for the motion control of multiple-

agents, it must work well for the control of a single agent’s motion. Thus, this chapter and

the next focus on the development of the behavior-based MPC method for a single agent.

The methods and concepts introduced in these chapters are then used in Chapters 6 and 7

for the development of a multi-agent behavior-based MPC framework.

As a motivating example for a behavior-based approach to MPC, consider the problem

of having a non-holonomic robot settle to a circular orbit. It is entirely imaginable that a

cost could be designed to allow a typical MPC algorithm to find the optimal trajectory at

each time instant to allow an agent to fall into orbit. However, it is not always necessary

for an optimization framework to reinvent the wheel. Control laws exist which can already

produce desirable trajectories for the robot. Instead of having the optimization framework

come up with an entire trajectory of control inputs, it can tweak a few parameters to get the

desired result.

An example of such a control law for orbiting is shown in Figure 13. To come into orbit,

the robot can follow a circular limit cycle, as developed in [63, 4, 41]. The convergence

rate of the limit cycle can then be tuned online. When the robot is far away from the limit

cycle, it is beneficial to head straight towards the limit cycle. When the robot comes close,

it can switch to less aggressive parameters which allow it to converge nicely and avoid

oscillations. Illustrated in Figure 13 is the depiction of both the aggressive and smooth

vector fields, along with the results achieved by using a behavior-based MPC approach to

tune the parameters on-line.

63

0 5 10 15 20
0

20

40

D
is

ta
nc

e

direct
smooth
optimal

0 5 10 15 20
−5

0

5

O
rie

nt
at

io
n

(r
ad

)

Time (s)

Figure 13: The images show the result of different gains on an orbiting vector field. The
left image shows the result of gains that move the robot directly towards the orbit and the
middle shows the result of gains that very smoothly transition into orbit. The right image
shows the resulting distance and orientation of starting at the same point and executing
the direct and smooth vector fields as well as the result of adapting the vector field using
behavior-based MPC.

This chapter begins by detailing the behavior-based MPC framework for the general

setting in Section 4.1. The example in Figure 13 is then expounded upon in Section 4.2.

A more complex example detailing the use of multiple behaviors being used in series to

navigate through an environment is then presented in Section 4.3. The method is applied

to an inverted pendulum robot which must maintain balance while navigating. The chapter

ends with some concluding remarks in Section 4.4.

4.1 Behavior-based MPC Formulation

As outlined in Sections 1.2.2 and 1.3, applying MPC to a robotic system may be difficult

as MPC can be computational intensive. This section presents a framework which adds

a level of abstraction by introducing parameterized feedback laws to generate the robot’s

state trajectory. This allows for the exchange of a possibly computationally burdensome

optimization problem for a problem involving the optimization of a few parameters, less

than ten in each of the examples in the following sections. This section introduces the MPC

formulation and then gives the first order necessary conditions for optimality which can be

used in gradient strategies to find the parameters at each time step.

64

4.1.1 MPC Framework

To reduce computational complexity inherent to MPC, tunable feedback control laws can

be utilized to generate state trajectories and the parameters can be optimized to achieve

the desired result. Moreover, in order to accomplish a desired task it may be desirable

to have the robot execute a string of such control laws. This string can be written as

(κ0, τ0), (κ1, τ1), ..., (κN , τN), where τi indicates the time when the robot will switch from

executing the control law κi−1 to the control law κi. This allows the robot dynamics to be

expressed as1

ẋ = f
(
x(t; t0), κi(x(t; t0), θi)

)
for τi ≤ t < τi+1, (63)

which we simplify as

ẋ = fi(x(t; t0), θi) for τi ≤ t < τi+1. (64)

To choose both the parameters of each feedback law as well as the time instances to

switch between feedback laws, we build upon results from switch time optimization (e.g.,

[22, 55]). Also, a key point to note is that the environment is not completely known at the

time of optimization, denoted as t0. To explicitly represent this fact, the known environ-

mental data is denoted as, O(t0), is included as a term in the instantaneous cost. The cost

to be minimized is written as:

J(τ, θ) =

∫ t0+∆

t0

L(x(t; t0), θ, O(t0))dt+ Ψ((x(τN+1; t0), θ) (65)

s.t. ẋ = fi(x(t; t0), θi) for τi ≤ t < τi+1,

where τ = [τ0, ..., τN+1]T , θ = [θT1 , ..., θ
T
N]T , and ∆ denotes the time horizon of optimiza-

tion. Note that we actually do not optimize with respect to the first and last elements of τ ,

rather we fix them as τ0 = t0 and τN+1 = t0 + ∆. To denote that the parameters only enter

1We again remind the reader that we change the notation to reflect the the notation present in much of
the literature. In Chapters 2 and 3 where distributed optimization was discussed, x represented a parameter
vector and f represented a cost. In the remainder of the work, x represents a state, f represents dynamics, J ,
L, and Ψ represent costs, and θ is used to represent a parameter vector.

65

the cost for the time period over which they are used, the instantaneous cost can be written

as:

L
(
x(t; t0), θ, Ofree(t0)

)
= Li

(
x(t; t0), θi, Bfree(t0)

)
for τi ≤ t < τi+1.

By formulating this cost, we can define our MPC strategy as in Algorithm 1. Step 1 of

the Multi-Modal Parameterized MPC algorithm states the ideal case where (65) would be

minimized. However, we have found (and a similar conclusion was reached in [32]) that

taking a small number of gradient steps is sufficient; further reducing the computational

burden on the robot. As a further matter of implementation, the optimization can not be

done instantaneously. Step 2 explicitly allows a time period of δexecute seconds to allow for

an appropriate amount of time to be allocated to the optimization step.

Algorithm 1 Multi-Modal Parameterized MPC

1. Minimize (65) with respect to the parameters, θ, and the switch times, τ .

2. Apply the feedback laws for a period of δexecute seconds.

3. Repeat.

A further note must be made on the optimization step of the algorithm. We consider

each parameter to be optimized to have upper and lower bounds to allow for stability guar-

antees. As the resulting Khun-Tucker conditions are trivial (see [17] for an example of

such Khun-Tucker conditions), these limits come with little computational cost and will be

ignored in the derivation of the gradients. The conditions basically say that if the update of

a gradient step leaves the parameter outside the bounds then the parameter should be set to

the closest limit.

4.1.2 First Order Optimality Conditions

In order to minimize (65) with respect to the desired variables, the first order necessary

conditions for optimality are now presented. These conditions can be used with gradient

descent methods for optimization (see, for example [5]). In Section 4.2 and 4.3, these

66

gradients will be used with an Armijo step size to allow for quick descent (see [70] for

a detailed analysis of the Armijo step size). This will allow for favorable results to be

achieved with relatively few gradient steps performed by the robot.

Theorem 9. The first order necessary conditions of optimality of (65) with respect to the

switch times, τi, and the parameter vectors, θi, are given by

∂J

∂τi
=
(
Li−1 − Li + λT (fi−1 − fi)

)
= 0, (66)

∂J

∂θi
= ξi(τi) = 0, (67)

where

λ̇ = −∂Li
∂x

T

− ∂f

∂x

T

λ, for τi ≤ t < τi+1, i = 0, ..., N (68)

λ(τN+1) =
∂Ψ

∂x
(x(τN+1))

ξ̇i = −∂Li
∂θi

T

− ∂f

∂θi

T

λ, ξi(τi+1) =
∂Ψ

∂θi
(69)

Remark 3. Due to the fact that the dynamics of the state, x, do not depend on the costates,

λ and ξi, the gradients for all of variables can be calculated by simulating the state forward

in time and then simulating the costates backward in time. This alleviates the main difficulty

of solving a two-point boundary value problem where the state also depends on the costate,

making the step of forward simulation difficult.

Proof. The proof of Theorem 9 follows standard variational methods similar to those used

for other switch time optimization problems, e.g., [22, 55]. Note that for a concise devel-

opment, we remove all of the time indexing on the variables inside the integrals and use a

single time indexing for the terminal cost. We first augment (65) with the dynamics:

Ĵ(τ, θ) =
N∑
i=0

∫ τi+1

τi

(
Li(x, θi, O(t0)) + λT (fi(x, θi)− ẋ)

)
dt+ Ψ(x(τN+1), θ) (70)

67

Now, the switch times and parameter vectors are varied as τ → τ + εv and θ → θ + εγ

which causes the state to vary as x→ x+ εη. Including this variation as well as separating

the integral term into three parts we can write

Ĵ(τ + εv, θ + εγ) =
N∑
i=0

[∫ τi+1

τi

(
Li(...) + λT (fi(...)− ẋ− εη̇)

)
dt+ (71)

∫ τi+1+εvi+1

τi+1

(
Li(...) + λT (fi(...)− ẋ− εη̇)

)
dt−

∫ τi+εvi

τi

(
Li(...) + λT (fi(...)− ẋ− εη̇)

)
dt

]
+ Ψ(x(τN+1) + εη(τN+1), θ + εγ)

where (...) = (x + εη, θi + εγi). Note that without the variation, the cost could have been

written as

Ĵ(τ, θ) =
N∑
i=0

[∫ τi+1

τi

(
Li(x, θi) + λT (fi(x, θi)− ẋ)

)
dt+ (72)

∫ τi+1+εvi+1

τi+1

(
Li+1(x, θi+1) + λT (fi+1(x, θi+1)− ẋ)

)
dt−

∫ τi+εvi

τi

(
Li(x, θi) + λT (fi(x, θi)− ẋ)

)
dt

]
+ Ψ(x(τN+1), θ)

Now, subtract Ĵ(τ + εv, θ − εγ)− Ĵ(τ, θ), take the Taylor expansion, invoke the mean

value theorem on integrals where ε appears in the limit of integration, use integration by

parts on the λT η̇ term, and simplify algebraically to write

1

ε

(
Ĵ(τ + εv, θ − εγ)− Ĵ(τ, θ)

)
=

N∑
i=0

[∫ τi+1

τi

(∂Li
∂x

+ λT
∂f

∂x
+ λ̇T

)
ηdt+ (73)

∫ τi+1

τi

(∂Li
∂θi

+ λT
∂f

∂θi

)
dtγi + vi+1

(
Li − Li+1 + λT (fi − fi+1)

)
|τi+1

]
+

N∑
i=1

∂Ψ

∂θi
γi +

∂Ψ

∂x
η|τN+1

Allowing λ to be defined as in (68) and ξi to be defined as

ξi(t) =

∫ τi+1

t

(∂Li
∂θi

+ λT
∂f

∂θi

)
ds+

∂Ψ

∂θi
, (74)

68

equation (73) can be simplified as

1

ε

(
Ĵ(τ + εv, θ − εγ)− Ĵ(τ, θ)

)
= (75)

=
N∑
i=0

(
ξi(τi)γi + vi+1

(
Li − Li+1 + λT (fi − fi+1)

)
|τi+1

)
which gives the partials in (66) and (67). The dynamics given in (69) can be obtained by

differentiating (74) with respect to t. A very similar proof of the variation in the negative

direction yields the same result.

4.2 Example: Vector-field Orbiting for Nonholonomic Vehicle

To illustrate the utility of the MPC approach presented in the previous section, we present

a control method amenable to the proposed framework which will allow a nonholonomic

mobile robot to follow a vector field. This has an array of applications as vector field

approaches are the basis of many control schemes for mobile robots, e.g. [2, 63, 41, 48,

76]. More importantly, this provides for a good example for the MPC framework as the

behavior is able to overcome the nonholonomic constraints and the MPC scheme is able

to optimize over the parameters of the behaviors. We will proceed by outlining the control

law, giving optimality conditions necessary for use with Theorem 9, and ending with an

example utilizing the MPC framework for orbiting.

4.2.1 Non-Linear Unicycle Control

To account for the motion constraint present in mobile platforms, we utilize the unicycle

motion model which is a common method used to model planar motion in mobile robotic

platforms, e.g., [41, 48]. Figure 14 shows a diagram of a typical unicycle robot where the

69

ψ

x2

x1

(x1, x2)

Figure 14: This figures shows a diagram of the states of a unicycle robot. (x1, x2) gives the
position and ψ gives the orientation.

state dynamics are given as:2

ẋ =


v cos(ψ)

v sin(ψ)

ω

 , (76)

and v and w correspond to the input translational and rotational velocities of the vehicle,

respectively.

One common method of making a unicycle robot follow a vector field is to use a

proportional-derivative (PD) control, e.g., [41]. However, due to the differential term, this

type of control is difficult to use in optimization as the partial derivative of the control is

needed. Therefore, we present a nonlinear unicycle control which is capable of following

a vector field while being easily incorporated into our optimization framework.

To do so, we give an alternate expression for the unicycle dynamics which makes our

controller very simple to express. The unicycle dynamics given in (76), with control input

u =

[
v ω

]T
, can be rewritten in Cartesian coordinates as

ṗ = vh

ḣ = ωJh

(77)

2Note that for a concise development, when we are not speaking of MPC, we remove the time indexing
or use solely a single time index when clarity is needed (i.e. x(t) = x(t; t)).

70

where p =

[
x1 x2

]T
, h =

[
cos(ψ) sin(ψ)

]T
, and

J =

0 −1

1 0

 (78)

is the 90-degree rotation matrix. The state space of (77) is X , R2×S1 – the plane (which

represents positions), together with the circle (which represents orientations).

Given a compact workspace Ω ⊂ R2 containing the origin, together with positive defi-

nite,3 continuously-differentiable function U : Ω→ R, we define the controller,

ω = −kω(gradU)TJh

v = −kv(gradU)Th

(79)

where kω, kv > 0 are arbitrary constants.

The controller, (79), globally asymptotically stabilizes the robot to the origin of the

workspace, without regard to the robot’s orientation. This is stated formally by the next

theorem:

Theorem 10 (Unicycle Stabilization). Let Ω ⊂ R2 be a compact set (the workspace), and

U : Ω → R a positive definite, continuously-differentiable scalar field. Then (79) globally

stabilizes the dynamics in (77) to the set X0 , {(p, h) ∈ R2 × S1 | p = 0}.

Proof: The proof uses LaSalle’s Theorem, and the candidate Lyapunov function,

X 3 (p, h) −→
V

U(p) ; (80)

i.e., we treat U , which is a function defined only on the workspace Ω, as a function V on

the entire state space X = Ω× S1.

Differentiating V in time and substituting from (77) and (79), we obtain

V̇ = −kv 〈gradU, h〉2 ≤ 0 , (81)

3This positive-definiteness requirement can be omitted, in which case stabilization to a local minima is
guaranteed.

71

so the nonincreasing-Lyapunov-value condition of LaSalle’s Theorem is satisfied. We will

denote by E the set of states where (81) holds.

Moreover, V̇ = 0 only when gradU ⊥ h, in which case (79) implies

|ω| = kω|| gradU || (82)

and ẋ 6= 0 (so long as || gradU || 6= 0). Consequently, X0 is not just positively-invariant,

but also the largest positively-invariant set in E, and by LaSalle’s Theorem is the positive

limit set of (77) under the controller (79).

This shows that the control law will follow a gradient field to a minima. For a general

vector field, where u ∈ R2 is an element of that field, we can modify (79) to follow the

vector field as

ω = −kω‖u‖ sin(φ)

v = −kv‖u‖ cos(φ),

(83)

where φ = atan2(u2, u1)− ψ. This can be found by noting that Jh ⊥ h and the use of the

definition of the inner product (i.e. 〈a, b〉 = ‖a‖‖b‖ cos(ψ)).

4.2.2 Partials for Cost Optimization

While the given unicycle control is able to follow a vector field, it is also important in this

context for its ability to easily be incorporated into the optimization framework presented

in Section 4.1. To make this clear, we set kv = kω = 1 and give the control in the form of

(64) as

f(x, θ) =


‖u(x, θ, O)‖ cos(φ) cos(ψ)

‖u(x, θ, O)‖ cos(φ) sin(ψ)

‖u(x, θ, O)‖ sin(φ)

 . (84)

Since u is an element of a vector field, it can be a function of the state, x, the environmental

data present to the robot, O, as well as a vector of parameters, θ.

Defining the control as such allows us to write the following theorem which can then

be used to find the optimal parameters at each time step in conjunction with Theorem 9 and

72

a definition of the vector field.

Theorem 11. The partial of (84) with respect to a parameter γ, where γ can be xi or an

element of θi given in (65), is given as

∂f

∂γ
=


∂v
∂γ

cos(ψ)− v sin(ψ)∂ψ
∂γ

∂v
∂γ

sin(ψ) + v cos(ψ)∂ψ
∂γ

∂w
∂γ

 , (85)

where
∂v

∂γ
=

1

‖u‖u
TR(φ)

∂u

∂γ
+ ‖u‖ sin(φ)

∂ψ

∂γ
,

∂w

∂γ
=

1

‖u‖u
TR(φ− π

2
)
∂u

∂γ
− ‖u‖ cos(φ)

∂ψ

∂γ
,

R(φ) =

cos(φ) − sin(φ)

sin(φ) cos(φ)

 ,
and v = ‖u‖ cos(φ).

Proof. The derivation comes directly from taking the partial derivative with respect to (84)

and algebraic simplification using rotation matrices.

4.2.3 Orbit Example

To demonstrate the ability of the MPC framework presented in Section 4.1 to optimize the

parameters of the behavior, we continue the orbiting example starting in the introduction

of this chapter. Orbiting is often accomplished by having the vehicle follow a vector field

that creates a stable limit cycle [63, 41]. As such, we parameterize the control law given in

[41] to allow our method to adapt the vector field online and express it as

u(x) = gs

 γ ωorb

−ωorb γ

 x̂, (86)

where

γ = glc

(
r2 − ‖x̂‖2

)
,

73

x̂ = xp − c, xp =

[
x1 x2

]
is the two-dimensional position of the robot, c ∈ R2 is the

center of the orbit, gs ∈ R is a gain on the speed, glc ∈ R is a gain on convergence to the

limit cycle, ωorb ∈ R is the desired frequency of the orbit, and r ∈ R is the radius of the

orbit. To adapt the vector field using our MPC scheme we allow the parameter vector to be

optimized to be θ =

[
gs glc ωorb r

]
.

The goal we set to accomplish is to approach a desired orbit while maintaining a given

velocity, vd, and with as little angular velocity as possible. Therefore we define our instan-

taneous cost as

Li =
ρ1

2
(v − vd)2 +

ρ2

2
ω2, (87)

and our terminal cost as

Ψ =
ρ3

2

(
‖x− c‖ − r

)2
, (88)

and set Φ = 0. To optimize the parameters, we use the gradients given in Section 4.1.2,

along with an Armijo step-size for the gradient step. We found that we could take five steps

in approximately 0.02 seconds, and used δexecute = 0.02.

Figures 13, 15, and 16 illustrate the result of using the MPC framework to adapt the

parameters in order to minimize the cost. Figure 13 shows a comparison between two

hand-tuned sets of parameters for the orbiting control and the parameters adapted using

the behavior-based MPC approach. It is seen that the behavior-based approach is able to

achieve quick convergence to the orbit as well as a smooth transition into a less aggressive

set a parameters to avoid a jittery orbiting behavior.

We were also able to see improvement as we used a string of behaviors where each

behavior was the orbiting behavior with separate parameters to be optimized. Figure 15

shows the results of using two behaviors. It illustrates the ability of the behavior-based

approach to anticipate the need for a change of variables as the robot reached the point

where it began circling. Figure 16 shows the resulting cost of increasing the number of

behaviors. While intuitively it may seem that with each additional behavior the cost should

74

Figure 15: This figure shows different snapshots in time of the adaptation of the vector-field
given in equation (86). A series of two behavior was executed at each time instant, each
being an implementation of the control law in (84) with different parameters for the vector
field. The robot is shown with its planned trajectory extending from it in each case. The
middle two images are actually the same time instance where the middle-left image shows
the vector field produced in the first time window and the middle-right image shows the
vector field produced in the second time window.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of Switches

N
or

m
al

iz
ed

 C
os

t

Figure 16: This figure shows the costs associated with different numbers of switches with
each behavior executing the control law in (84) with different parameters. The costs are
normalized so that the largest cost is scaled to one.

be reduced, this is not the case. Each additional switch time to be optimized introduces non-

convexities in the cost, which causes the gradient descent strategy employed to get stuck in

local minima. Overcoming these local minima is a contribution presented in Chapter 5.

4.3 Example: Vector-field Navigation for Inverted Pendulum Robot

We now expand on the capabilities of the behavior-based MPC scheme to present an exam-

ple where a string of behaviors is used to perform the desired task on a robot with a complex

motion model. The MPC scheme is illustrated through the control of a two-wheeled non-

holonomic inverted pendulum robot. This provides an example where consideration of the

75

Figure 17: On the left is shown the line and orbit vector fields. On the right is shown
an example of the vector fields being concatenated together to guide the robot on a path
through the environment.

dynamics of the system is very important when planning for the action. Not only must the

planner consider the nonholonomic constraints, which limit the robot’s possible movement,

it must also maintain balance and an awareness that the robot is unable to have instanta-

neous changes in velocity when avoiding obstacles. This example is representative of a

large host of mobile platforms which face similar nonholonomic constraints and/or must

consider stability when planning actions.

To control the inverted pendulum robot, we adapt a navigation scheme presented in

[63, 4] in which a string of vector fields can be used to navigate a complicated environ-

ment, as shown in Figure 17. By using the behavior-based MPC formulation, both the

parameters associated with a predefined sequence of vector fields as well as the time to

switch between each can be optimized. This example alludes to a possible general control

scheme (expanded upon in Chapter 5) in which deliberative planning is done on a lower

dimensional space, ignoring the full dynamics of the system (which is often the case, e.g.

[4, 48, 63, 64]), and the parameterized MPC adapts low level control laws to achieve a

desirable result. Thus, the deliberative planner can influence the MPC scheme through the

choice of cost and schedule of control laws, and the MPC scheme can adapt certain param-

eters while taking into account the full dynamic model of the system to ensure success.

76

The remainder of this section proceeds as follows: In Section 4.3.1.1, a model for the

inverted pendulum is presented and a control law is designed to be able to control the robot

through desired translational and rotational velocity commands. This allows for the vector

field control in Section 4.2.1 to be employed. A line following vector field is then designed

in Section 4.3.2 to compliment the orbiting vector field already designed. The section ends

giving two examples employing the navigation approach combined with the behavior-based

MPC algorithm.

4.3.1 Inverted Pendulum Robot

The dynamics and feedback control law for the two-wheeled inverted pendulum robot

which will be used to illustrate the utility of the MPC-scheme in the following sections

are now introduced. The reason for using this robot model as an example is that the dif-

ficulties and complexities associated with its control are representative of those associated

with many mobile platforms. The nonholonomic constraints are similar to the constraints

present when modeling planar motion in mobile robotic platforms such as cars, differen-

tial drive systems, and unmanned aerial vehicles (UAV) e.g., [41, 48]. Also, balancing

considerations are similar to stability issues encountered in other vehicles such as UAVs

[4]. Using a full dynamic model instead of a kinematic model allows us to incorporate the

fact that the desired velocities cannot be instantaneously controlled. Thus, the methods of

motion planning considered in this chapter could be applied to a large class of systems.

4.3.1.1 Dynamics of Two-Wheel Inverted Pendulum

To design a model that will incorporate the stability concerns of a two-wheel inverted pen-

dulum robot while also being amenable to common navigation methods, we adjoin the

kinematic unicycle motion model in (76), with the dynamics derived in [42]. The kinematic

model of the unicycle captures the nonholonomic constraint introduced by the wheels and

the dynamics presented in [42] consider the dynamic effects of the input torques on the

orientation and balance of the robot. The dynamic models can be joined together as the

77

φ

ψ
x1

x2R
d L

Figure 18: Shown is a diagram of the inverted pendulum robot with the symbols defined in
Table 7.

translational and rotational velocities of the unicycle model are states of the inverted pen-

dulum. The first state given in [42] can be removed as it corresponds to the distance traveled

by the robot and does not appear in the dynamic equations. The full state of the robot can

be expressed as:

x =

[
x1 x2 v ψ ψ̇ φ φ̇

]T
, (89)

where x1, x2, v, and ψ are defined as before and φ is the tilt angle from the vertical, as

depicted in Figure 18. This allows the dynamics of the system to be expressed as

ẋ = f(x, u) =

[
v cos(ψ) v sin(ψ) v̇ ψ̇ ψ̈ φ̇ φ̈

]T
(90)

where v̇, ψ̈, and φ̈ are obtained from the following equations

3(mc +ms)v̇ −msd cos(φ)φ̈+msd sin(φ)(φ̇2 + ψ̇2) = − 1

R
(α + β), (91)

(
(3L2 +

1

2R2
)mc +msd

2 sin2(φ) + I2

)
ψ̈ +msd

2 sin(φ) cos(φ)ψ̇φ̇ =
L

R
(α− β), (92)

msd cos(φ)v̇ + (−msd
2 − I3)φ̈+msd

2 sin(φ) cos(φ)φ̇2 +msgd sin(φ) = α + β. (93)

The symbols are defined in Table 7, and the input vector is defined as u =

[
α β

]T
.

4.3.1.2 Velocity Controller

As we now have a formulation of the dynamics of the system, we design a feedback control

law that will allow us to control the robot with the same inputs as used for the control of

78

Table 7: This table defines the symbols used in the dynamics of the two-wheel inverted
pendulum robot. The numeric values are given in [42].

Table of Symbols
mc Mass of wheel
ms Mass of body
d Distance from center of wheel axis to center of gravity
L Half the distance between the wheels
R Radius of wheels
I2 Rotational inertia of the body about the x3 axis
I3 Rotational inertia of the body about the axel
α. β Wheel Torques

a robot executing the unicycle kinematics. This fits into the form of the dynamics given

in (4), where the tunable parameters are the desired translational and rotation velocities.

It also allows for control methodologies similar to those used for unicycle kinematics, but

that are tuned on-line using the parameterized MPC to consider the full dynamics.

To create this feedback law, we use linear quadratic (LQ) control with infinite horizon,

e.g. [9]. As this is a highly developed control methodology, the details are not presented

here except to mention that it requires a linear system, which is now derived. When (90) is

linearized about x = 0 and u = 0, it produces a system which is not completely controllable

(see [8] for details on controllability of linear systems and linearization). Since the goal is

to control the velocities, the system can be linearized around a subset of the states which

are completely controllable. Namely, let z be defined as z =

[
v ψ̇ φ φ̇

]T
and linearize

about z = 0 and u = 0 to obtain

δ̇z =



0 0 a13 0

0 0 0 0

0 0 0 1

0 0 a43 0


δz +



b11 b12

b21 b22

0 0

b41 b42


δu (94)

a13 =
d2gm2

s

2d2m2
s + 3mcd2ms + 3I3ms + 3I3mc

= 2.1639,

a43 =
3dgm2

s + 3dgmcms

(2d2m2
s + 3mcd2ms + 3I3ms + 3I3mc)

= 72.4858,

79

b11 = − msd
2 +Rmsd+ I3

R(2d2m2
s + 3mcd2ms + 3I3ms + 3I3mc)

= −1.6687,

b21 =
2LR

6mcL2R2 + 2I2R2 +mc

= 0.0290,

b41 = − 3Rmc + 3Rms + dms

R(2d2m2
s + 3mcd2ms + 3I3ms + 3I3mc)

= −24.1514,

b12 = b11, b22 = −b21, and b42 = b41. We note that similar constructions were done in

[42, 60] without the removal of the states χ and ψ.

To control the translational and rotational velocities, the following change of state can

be made

δ̂z = δz −
[
vd ωd 0 0

]T
, (95)

where vd and ωd are the desired translational and rotational velocities, respectively. After

some algebra it can be seen that the dynamics of the new linear system can be expressed as
˙̂
δz = Aδ̂z +Bu, where A and B are the matrices in (94).

As this system is completely controllable, an LQ feedback matrix can be used, e.g. [9],

to design a control law which will be locally exponentially stable to the desired velocities,

e.g. [40]. The linear control law on the nonlinear system is guaranteed to have a region of

convergence around the equilibrium, [40]. Experimentally, it was found that if ‖vd − v‖ ≤

.8m
s

, the system would always maintain balance.

4.3.2 Straight Path Following

An approach to path following using vector fields was presented in [63] and later modified

in [4]. The basic idea being that trajectory tracking, which assigns a desired position to a

given instance in time, can present problems when disturbances, such as wind, deter a UAV

from being at the desired location. If the trajectory is not updated, then the UAV could

over-correct in attempting to follow the predefined trajectory. In many instances, the time

component is not a necessary element of the desired vehicle motion. In such a case, path

planning, as opposed to trajectory planning, is more desirable. This drops the assignment

of a specific time value to a position.

80

p ψ

x1

x2

x

Figure 19: This figure shows the definition of a line through a point p and with a given angle
ψ. It also shows the coordinate frame of the line used to create a line following vector field.

In [4, 63] a method was presented in which the path could be followed and disturbances

overcome by defining vector fields for the robot to follow. Specifically, simple vector fields

could be executed in a predefined sequence to produce the desired path. We now develop a

vector field to allow the robot to follow a straight line in the plane to be used in conjunction

with the orbiting vector field developed in Section 4.2.3 (as shown in Figure 17).

Note that a line in a plane can be defined by

{x : x = p+ k

[
sinψ cosψ

]T
, ∀ k ∈ R} (96)

where p ∈ R2 is a point on the line and ψ ∈ [−π, π] is the angle from the x1 axis, as shown

in Figure 19. To create a vector field that will stabilize a vehicle to the line, a coordinate

transform can first be performed to define a frame where p is the origin and the x1 axis

points along the line, also illustrated in Figure 19. The desired angle of travel, ψd, can then

be determined in the new coordinate frame using a sigmoid function, where at an infinite

distance the vector field would point directly towards the line and at a close distance it

points along the line. This desired angle can be defined as

ψd =
π

2

(
1− 2

1 + e−add

)
, (97)

s.t. d =

[
0 1

]
R(−ψ)(x− p),

R(ψ) =

cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)


With the desired direction of travel in the transformed frame, a unit vector can be trans-

formed back to the original frame. This vector is then scaled by the desired velocity and

81

can be expressed as

u = vdR(ψ)

cos(ψd)

sin(ψd)

 , (98)

where u is the vector in the vector field and R is the rotation matrix defined in (97). The

parameters that can be adapted in the parameterized MPC approach are ad and vd which

affect the desired slope of the field and translational velocity respectively.

4.3.3 Navigation Examples

We now present examples where a pre-planned series of vector fields can be adapted on-

line through the behavior-based MPC approach to account for the full dynamics of the

inverted pendulum robot. To follow these vector fields, the vector field following controller

presented in Section 4.2.1 is used to produce desired velocity values for the inverted pendu-

lum control law presented in Section 4.3.1.2. The behavior-based MPC algorithm is used

to optimize over the time to switch between vector fields as well as the parameters that will

be best for the execution of the desired path. Two examples are provided to illustrate the

application of this control method, namely executing a figure-eight and navigating through

corridors.

The method we take to have the robot execute this problem is to work with two modes at

a time. For example, in the figure-eight execution, the robot starts off following a straight

line vector field. While executing this control, it optimizes over the time to switch to

the orbiting field as well as the parameters associated with each controller. Once it has

switched to the orbiting vector field, we then append the second straight path mode and the

robot must optimize over the time to switch to the second straight path mode along with the

parameters associated with both controllers. This process is repeated each time the robot

switches to a new mode.

To optimize over the variables, a cost can be created which penalizes deviation from

the desired vector field, maintains a given velocity, v̄, avoids the obstacles, and penalizes

82

large tilt angle. The instantaneous cost portion of this cost can be expressed as

Li =
ρ1

2
dist(xp)

2 + ρ2

Ns∑
i=1

r(xp, oi) +
ρ3

2
φ2 +

ρ4

2
(v − v̄)2, (99)

where dist(x) is defined as is d in (97) for the follow line mode and as the first term in

(100) for the orbit mode. The terminal cost for the orbit mode is defined as

Ψo =
ρ5

2

(
‖xp − c‖ − r

)2
+
ρ6

2
(vd1 − vd2)2, (100)

and the terminal cost for the line-follow mode is defined as

Ψl =
ρ5

2
‖xp − rl‖2 +

ρ6

2
(vd1 − vd2)2, (101)

where vd1 is the desired velocity from the first mode and vd2 is that of the second mode. In

the navigation example, we use the terminal cost associated with the second mode to en-

courage progress along the path. In the figure-eight example, we alternate between the final

costs associated with each orbit once the robot passes the top or bottom of the figure-eight.

This encourages the robot to always be trying to go into orbit around the obstacles and pro-

duces the figure-eight trajectory. The second term in the terminal costs helps maintain the

same velocity between switches to avoid large tilt angles resulting from large deviations in

the desired velocities.

The results of each simulation can be seen in Figures 20 and 21 which show that the

robot was successfully able to traverse the desired paths while maintaining balance. This

is shown as that the robot was able switch between and converge to the desired vector

fields while navigating through the environments. Moreover, Figure 21 shows that the

robot was again able to maintain balance by slowly varying the translational velocity in

order to maintain a small tilt angle. This illustrates the ability of the MPC scheme to adapt

parameters and follow a scheduled set of modes while considering the full dynamic model

of the system.

The computational burden associated with this MPC approach can be seen in Figure 22

which shows the average time of performing the parameterized MPC optimization at each

83

Figure 20: The trajectory and underlying orbits for the vector field navigation examples are
shown above.

0 50 100 150
−1

0

1

2

3

Time (s)

v (m/s)

ψ̇ (rad/sec)
φ (rad)

0 50 100 150
−1

0

1

2

3

Time (s)

v (m/s)
ψ̇ (rad/sec)
φ (rad)

Figure 21: Above are shown three states during the vector field navigation of the environ-
ments shown in Figure 20.

time step for the figure-eight trajectory when a certain number of gradient steps is allowed.

An appropriate value for δexecute in step 2 of Algorithm 1 can be selected as 0.05 for two or

three steps or 0.1 for up to twenty steps. An interesting note to make is that the optimization

converges quite quickly. The optimization time for twenty steps is only slightly larger than

the optimization time for five steps, meaning that the Armijo step algorithm did not require

all the allowed optimization steps.

To see the utility of the parameterized MPC approach we show the cost associated with

different numbers of gradient steps in Figure 22. The usefulness of the parameterized MPC

84

1 2 3 5 20
0

0.02

0.04

0.06

0.08

Gradient Steps

T
im

e
(s

)

0 1 2 3 5 20
0

0.2

0.4

0.6

0.8

1

Gradient Steps

C
os

t

Figure 22: On the left is shown the average computation time per gradient step while
executing the figure-eight shown in Figure 21. On the right is shown the normalized cost
per gradient step of a figure-eight. The cost is normalized so that no optimization has a cost
of 1.

approach is seen as it outperforms the case where no gradient steps are taken (ie hand-tuned

control laws with fixed switch times are used). Using a single gradient step, the total cost

is reduced by approximately 40%, with up to 60% reduction achieved with twenty steps.

Remark 4. A Note on Stability: In the example of the previous section, stability was

ensured through placing limitations on the allowable commanded velocities. Due to a

finite execution time enforced by δexecute, and the fact that switching between control laws

occurred infrequently, the inverted pendulum was able to maintain balance. To apply the

behavior based approach to other situations or vehicles, stability may not be as easily

maintained.

As we are using an approach based on concatenating control laws, hybrid control tech-

niques for finding appropriate Lyapunov functions, e.g. [49], could be employed, although

this may not always be a trivial task. We can, however, use MPC techniques to ensure sta-

bility. In Chapter 5, an extensive example is given which uses a dual-mode MPC approach

to ensure stability when navigating an unknown environment. Similar to the examples in

this chapter, stability will come from the underlying control laws used for motion control,

with additional conditions on both the costs and control laws being employed.

85

4.4 Conclusion

In this paper we have presented an MPC strategy which utilizes the ability of feedback

control laws to create desirable trajectories, exchanging a two-point boundary value op-

timization problem for a parameter optimization problem. The versatility of this method

was demonstrated through two different examples where robots adapted vector fields as

a method of motion control. Both examples showed the ability of the robot to adapt the

parameters of the control laws on-line to achieve the desired result.

86

CHAPTER V

DUAL-MODE DYNAMIC WINDOW APPROACH TO

NAVIGATION

We build upon the behavior-based MPC formulation developed in the previous chapter to

demonstrate its ability to be a viable component in a motion planning framework. Vehi-

cle motion planning in unknown environments forms an integral part of robotics and is

arguably a solved problem under certain conditions, e.g. [47, 2, 48, 29]. However, when

stability becomes an issue, e.g. at high speeds, or when optimality considerations are to be

taken into account, the problem is not yet solved. Even when the environment is completely

known in advance, optimal solutions can be difficult to compute as dynamic constraints,

such as acceleration and motion limitations, must be considered, especially as the speed of

the robot increases, e.g. [29, 82].

In [29] it was noted that analytic solutions to the optimal motion planning problem

are only computable for the most simple of cases, which leads to the need for approxi-

mation algorithms for pretty much any realistic scenario. The difficulty associated with

incorporating dynamic constraints is compounded in unknown environments as a solution

must be repeatedly computed to take new environmental data into account. In this chapter,

we address this very issue by combining DWA with a fast, deliberative planner through a

dual-mode behavior-based MPC construction.

As mentioned in Section 1.3.3, DWA provides a direct way of incorporating dynamic

constraints for fast navigation through an unknown environment, but lacks general con-

vergence guarantees, [24, 64, 7]. In a way, one can think of the modification for DWA

presented in [64] as adding a deliberative component to DWA, albeit a very specific delib-

erative component. The contribution of this chapter is a generalization of this idea, and,

87

similar to [64], we capatilize on existing theory of MPC to provide guarantees of con-

vergence; instead of navigation functions, the deliberative component is allowed to be a

generic path-planner. Thus, a “global planner” finds a path, giving guarantees such as com-

pleteness, e.g. [48], and the MPC framework takes into account the full dynamic model of

the system to give guarantees of convergence to the goal location.

The remainder of the chapter will proceed as follows: The dual-mode arc-based MPC

approach is detailed in Section 5.1. Implementation details are given in Sections 5.2 and

5.3 for an Irobot Magellan-pro. It is shown to successfully run at 80% of its maximum

velocity, while traversing tight corridors in an unknown environment despite the robots

severely limited computational resources and sluggish dynamics. A further demonstration

of the ability of the framework to deal with complicated dynamics, while maintaining the

convergence guarantees, is presented in Section 5.4 through a simulation of an inverted

pendulum robot. The chapter ends with concluding remarks in Section 5.5.

5.1 Dual-mode Arc-based MPC

The proposed dual-mode arc-based MPC algorithm builds upon DWA by using a dual-

mode MPC approach to incorporate a reference tracking controller to ensure that the robot

converges to some goal position while incorporating dynamic constraints. This section

develops the dual-mode approach by first presenting the algorithm, giving a convergence

theorem, and then discussing how a behavior-based approach can be used as part of the

optimization.

5.1.1 Dual-mode Arc-baseed MPC Algorithm

As the dual-mode arc-based MPC algorithim is an example of the behavior-based MPC

framework presented in Chapter 4, many of the details are very similar. We review the basic

setup here for sake of clarity. It is assumed that the robot will execute a given sequence of

control laws, denoted as (κ0, τ0), (κ1, τ1), ..., (κN , τN), where τi indicates the time when the

system will switch from executing the control law κi−1 to the control law κi. Each control

88

law is a function of the state and a tunable vector of parameters, written as κi(x(t; t0), θi).

This allows the system dynamics to be written as ẋ(t; t0) = f(x(t; t0), κi(x(t; t0), θi) for

τi ≤ t < τi+1.

In the proposed algorithm, we assume that the unicycle motion model in (5) forms part

of the state dynamics where v and ω are either the inputs, as in (5), or additional states

of the system. The first N controllers in the sequence regulate the dynamics to desired

constant velocities, with the parameter vector being the desired velocities on that interval,

i.e. θi = [vi, ωi]
T for i = 0, ..., N − 1. The final control law is designed to track a

reference trajectory, yd(t) ∈ R2. There is no need for a parameter vector, so we deviate

from the original notation and write the final controller as κN(x(t), yd(t)), where the time

index is included to denote that yd(t) is time varying. An example of a possible trajectory

is illustrated in Figure 23 where three arc-based controllers are executed back to back with

a reference tracking controller at the end.

The reference trajectory is produced by planning a path to the goal location, ygoal ∈ R2,

and creating a continuous mapping from time to a position on the path. In the examples

presented in Sections 5.3 and 5.4, the path planning is done using A∗. Mapping from time

to position is done by respecting translational velocity constraints. However, we note that

Figure 23: This figure shows an example of a dual-mode arc-based trajectory. The robot is
shown as a triangle with a planned trajectory extending from it. The trajectory is created
from three arc-based controllers appended back to back with a reference tracking controller
at the end. The different portions of the trajectory are differentiated by color and line styles.
A reference trajectory is also shown as a dashed line.

89

this is merely an example and not essential to the formulation of the algorithm.

To explicitly represent details specific to the arc-based MPC algorithm, the cost is

slightly modified from (65). A key point to note is that the environment is not com-

pletely known at the time of optimization. So the set of free or unexplored positions,

Bfree(t0) ⊂ R21, is included as a term in the instantaneous cost. The final change made is

to explicitly represent the fact that the terminal cost depends upon the reference trajectory

where y(t; t0) = h(x(t; t0)) ∈ R2 is the position of the robot that is expected to follow the

reference trajectory. The optimization problem can be written to incorporate these changes

as:

min
τ,θ

J(τ, θ) =

∫ t0+∆

t0

L
(
x(t; t0), θ, Bfree(t0)

)
dt+ Ψ

(
y(τN+1; t0), yd(τN+1)

)
, (102)

s.t. ẋ(t; t0) =


f
(
x(t; t0), κi(x(t; t0), θi)

)
τi ≤ t < τi+1, i = 0, ..., N − 1

f
(
x(t; t0), κi(x(t; t0), yd(t))

)
τN ≤ t < τN+1

where τ = [τ0, ..., τN+1]T , and θ = [θT1 , ..., θ
T
N−1]T . Note that we actually do not optimize

with respect to the first and last elements of τ , rather we fix them as τ0 = t0 and τN+1 =

t0 + ∆. To denote that the parameters only enter the cost for the time period over which

they are used, the instantaneous cost can be written as:

L
(
x(t; t0), θ, Bfree(t0)

)
=


Li
(
x(t; t0), θi, Bfree(t0)

)
τi ≤ t < τi+1, i = 0, ..., N − 1

LN
(
x(t; t0), Bfree(t0)

)
τN ≤ t < τN+1

.

We make one final note on obstacle avoidance before stating the dual-mode arc-based

MPC algorithm. Previously unseen obstacles may render the desired reference trajectory

or previously found parameters invalid due to an unforseen collision. For the scenarios

presented in Sections 5.3 and 5.4, it is conceivable that an obstacle avoidance controller,

κavoid(x), could consist of steering away from obstacles while slowing down as fast as

1We useBfree(t0) as opposed toO(t0) (used previously) to explicitly denote the fact that the information
being incorporated about the environment is the two-dimensional set of free states.

90

possible. The dynamic models allow angular velocities or accelerations to be controlled

independent of the control of the translational velocities or accelerations. The angular

velocities or accelerations are also quite responsive.

However, we have found the design of such an avoidance control law unnecessary.

A number of predefined parameters defining different arc-based motions can be utilized.

As will be discussed in detail in Section 5.1.3, these parameters can be quickly modified

to ensure collision avoidance. To incorporate either the design of an obstacle avoidance

controller or a method of quickly searching the parameter space, the following assumption

is given:

Assumption 9. (Collision Avoidance) If a collision is detected at time t0 to occur at time

tc > t0 for either yd(tc) or y(tc; t0), there exists one of the following:

1. A control law, κavoid(x), which will guarantee obstacle avoidance.

2. Parameters can be quickly found such that y(t; t0) is collision-free ∀ t ∈ [t0, t0 +∆].

The dual-mode arc-based MPC algorithm is now stated in Algorithm 2.

5.1.2 Convergence

We now show that, under Algorithm 2, the robot will converge to the goal location, ygoal.

An underlying assumption is made that the desired reference trajectory leads to the goal

location in finite time, i.e. ∃ tg s.t. yd(t) = ygoal ∀t ≥ tg. Convergence is then established

by ensuring that Algorithm 2 has certain tracking abilities for t < tg and making dual-mode

MPC arguments for t ≥ tg. This section discusses these two aspects of convergence and

then gives a theorem about the overall convergence of the algorithm.

5.1.2.1 Sufficient Tracking of Reference Trajectory

The idea of “sufficient tracking” is to ensure that after step 4 of Algorithm 2, the robot plans

on getting within δ of the reference trajectory (i.e. y(t0 + ∆; t0) ∈ Bδ(yd(t0 + ∆))) and

91

Algorithm 2 Dual-mode Arc-based MPC

1. Initialize:

(a) Plan path from y(t0; t0) to ygoal and assign mapping from time to position to
form yd(t).

(b) Set τ0 = ... = τN = t0 .

2. If collision is detected along yd(t) or y(t; t0) for t ∈ [t0, t0 + ∆]:

(a) Cost barriers in terminal cost are dropped.

(b) Trivial parameters are set (or κavoid employed).

(c) New parameters are executed until new path has been planned.

(d) Assign mapping to form yd(t).

3. Initialize Parameters θ and τ :

(a) Test previous values of θ and τ .

(b) Test a variety of predefined values for θ and τ .

(c) Choose parameters from steps 3a and 3b which result in lowest cost .

4. Minimize J(θ, τ) with respect to θ and τ , using parameters from 3c as an initializa-
tion.

5. Execute control sequence for δexecute seconds.

6. Repeat steps 2 through 6 (incrementing t0 by δexecute).

92

collisions are avoided (i.e. y(t; t0) ∈ Bfree(t0) ∀t ∈ [t0, t0 + ∆]). To clearly express this

concept, allow a solution (θ, τ, x0) at time t0 to consist of the parameters and switch times

mentioned in (65) along with an initial condition x(t0; t0) = x0. The idea of “sufficient

tracking” is encoded through the definition of an admissible solution:

Definition 1. (Admissible Solution) A solution, (τ, θ, x0), is said to be admissible at time t0

if simulating ẋ(t; t0) = f
(
x(t; t0), κi(x(t; t0), θi)

)
for τi ≤ t < τi+1 with initial condition

x(t0; t0) = x0 results in y(t; t0) ∈ Bfree(t0) ∀t ∈ [t0, t0+∆] and y(t0+∆; t0) ∈ Bδ(yd(t0+

∆)).

Similar to dual-mode MPC, conditions on both the cost and final control are employed

to ensure that step 4 of Algorithm 2 is always initialized with an admissible solution and

always results in an admissible solution. These conditions are given through the following

assumptions:

Assumption 10. (Collision Barrier) The instantaneous cost, L : Rn × RM × Bfree 7→ R,

forms a cost barrier to collisions such thatL(x, θ, Bfree) −→∞ as dist
(
h(x),Bcfree

)
0,

∀θ, where dist(y,B) denotes the distance from point y to the set B.

Assumption 11. (Terminal Barrier) The terminal cost, Ψ : R2 × R2 7→ R, forms a cost

barrier around yd(t0 + ∆) such that Ψ(y, yd) −→∞ as dist
(
y,Bcδ(yd)

)
0.

Assumption 12. (Trajectory Tracking) If yd(t) is collision free ∀ t ≥ t0 and y(τN ; t0) ∈

Bδ(yd(τN)), then computing x(t; t0) using the dynamics ẋ(t; t0) = f
(
x, κN(x(t; t0), yd(t))

)
, t ≥

τN will result in y(t; t0) ∈ Bfree(t0) ∀t ≥ τN and y(t; t0) ∈ Bδ(yd(t)) ∀t ≥ τN + δexecute.

Note that in Assumption 12, δexecute can be used to give the final control law sufficient

time to converge to a necessary region of the state-space before it is required to have excel-

lent tracking abilities. Together, these three assumptions allow for a statement of sufficient

tracking of the reference trajectory, as given in the following theorem:

93

Theorem 12. Given Assumptions 10, 11, and 12, if Step 4 of Algorithm 2 is initialized with

an admissible solution at time ts and yd(t) is collision free ∀t ≥ ts, at each future iteration

of Algorithm 2, step 4 will produce parameters θ and τ resulting in an admissible solution.

Proof. Due to Assumptions 10 and 11, the minimization of (65) will produce an admissible

solution if it is initialized with an admissible solution. The reason being that an admissible

solution will result in a finite cost while an inadmissible solution will result in an infinte

cost. As an admissible solution will result from the optimization step, at the following

iteration, step 3a of Algorithm 2 will produce an admissible initialization to step 4. This

can be seen to be the case as, after executing the solution from the previous iteration for

δexecute, the robot will be planning on using the final control for the last δexecute seconds of

the new time horizon, resulting in an admissible solution due to Assumption 12.

5.1.2.2 Convergence to Goal Location

Assuming that yd(t) = ygoal, ∀t ≥ tg and Bfree(t) is constant ∀t ≥ tg, dual-mode MPC can

be employed to ensure convergence to ygoal. The terminal region can be given as Bδ(ygoal)

and the reference tracking control, κN(x, yd), can be used as the stabilizing controller.

Together with the costs, κN(x, yd) can be designed to satisfy B1 through B4 once yd(t) =

ygoal. With an additional assumption on the instantaneous cost, a theorem on convergence

can then be state:

Assumption 13. (Zero Instantaneous Cost) The instantaneous cost is zero when y ∈

Bδ(ygoal) and greater than or equal to zero elsewhere.

Theorem 13. Assuming yd(t) = ygoal, Bfree(t) is constant, and Conditions B1 through B4

are satisfied using κf (x) = κN(x, ygoal), y(t) will converge asymptotically to ygoal.

Proof. The development of stability in [12] can be closely followed to show asymptotic

convergence. Equation (65) can be evaluated as a discrete time candidate Lyapunov func-

tion, i.e. V (t0) = J(τ, θ, t0), where the time indexing is added to denote the cost as a

94

function of time. The difference in V after one time step can be written as

∆V =V (t+ δexecute)− V (t)

=

∫ t+∆+δexecute

t+δexecute

L(x(s; t+ δexecute), θ, Bfree)ds+ Ψ(y(t+ ∆ + δexecute, ygoal))

−
∫ t+∆

t

L(x(s; t), θ, Bfree)ds−Ψ(y(t+ ∆, ygoal))

,

(103)

where we have writtenBfree without time indexing to denote that it is constant. The integral

terms can be simplified by examining several of the presented conditions. Condition B3

states that κN maintains y ∈ Bδ(ygoal) if y enters Bδ(ygoal), which is by definition a property

of an admissible solution once yd(t) = ygoal. Also, assuming no perturbations, x(s; t) =

x(s; t+δ) ∀s ≥ t+δ when the parameters are maintained the same. Assumption 13 can then

be employed to state that L(x(s; t+δexecute), θ, Bfree) = 0 for s ∈ [t+∆, t+∆+δexecute].

This allows the integral terms to mostly cancel out, leaving:

∆V = Ψ(y(t+ ∆ + δexecute, ygoal))−
∫ t+δexecute

t

L(x(s; t), θ, Bfree)ds−Ψ(y(t+ ∆, ygoal))

(104)

Again employing Assumption 13, which states that L ≥ 0, along with Condition B4 which

states that Ψ is decreasing when using κN , the result can be simplified further as:

∆V ≤ Ψ(y(t+ ∆ + δexecute, ygoal))−Ψ(y(t+ ∆, ygoal)) ≤ 0 (105)

where strict inequality holds for all y 6= ygoal. Then, using a discrete time version of

LaSalle’s invariance principle, [33], the system will converge to the set {x|h(x) = ygoal},

showing asymptotic convergence to the goal location.

5.1.2.3 Convergence of the Dual-mode Arc-based MPC Algorithm

The previous two sections discuss the convergence of Algorithm 2 assuming that the refer-

ence trajectory is collision free. One final assumption is made which will allow us to state

a theorem on the convergence of the dual-mode arc-based MPC algorithm.

95

Assumption 14. (Known Admissible Solution) After re-planning yd(t) in step 2d of Algo-

rithm 2, an admissible solution can be found.

Due to the tracking assumption in Assumption 12 and the fact that we can use fast

path planners, Assumption 14 is not limiting. An admissible solution can almost always

be found by setting the switch times to equal t0, as in step 1b. However, we note that with

the initialization step discussed in detail in Section 5.1.3, better parameters can typically

be found. We now state the convergence theorem:

Theorem 14. Given Assumptions 9 through 14 and that conditions B1 through B4 hold

once yd(t) = ygoal, executing Algorithm 2 will cause y(t) = ygoal without collision where

asymptotic convergence is achieved once yd(t) = ygoal.

Proof. Assumption 9 ensures that if a collision is detected due to a previously unseen

obstacle, the robot can replan a path while avoiding any obstacles. Due to Assumption 14,

Theorem 12 will then hold true for the new trajectory, guiding the robot towards the goal

location until either yd(t) = ygoal or another collision is detected. If yd(t) = ygoal, then

Theorem 13 can be applied. If a collision is detected then the process is repeated. If the

path planner is complete, eventually the robot will explore the environment enough such

that a collision free path is found, if it exists.

5.1.3 Behavior-based Optimization

In Section 4.1.2, gradients were derived for the behavior-based approach. However, it is

important to note that the cost to be minimized is subject to local minima caused by both

the environment and the switched-time optimization. To avoid getting stuck in undesirable

local minima, a behavior-based approach capitalizing on arc-based motion primitives can

be used to find a good initialization for the gradient-based optimization. This behavior-

based approach for initialization is also useful as a technique for avoiding obstacles in step

2b of Algorithm 2.

96

When introducing the DWA algorithm, it was noted in [24] that a single arc was used

due to the complexity of searching the parameter space when more than one arc is used.

While a grid-based discretized search of the parameter space, as done in [24, 82, 7], would

lead to a significant increase in computation when adding additional arcs, arc-based motion

can be exploited to reduce the search space. To exploit the arc-based motion, an analytic

solution to the unicycle model in (5) is given in the following Theorem:

Theorem 15. Assuming v and ω are constant, the solution to (5) can be expressed as

x1(t) =
v

ω

(
sin(ψ(t))− sin(ψ30)

)
+ x10 x1(t) = cos(ψ30)vt+ x10

x2(t) =
v

ω

(
cos(ψ30)− cos(ψ(t))

)
+ x20 x2(t) = sin(ψ30)vt+ x20

ψ(t) = ωt+ ψ30 ψ(t) = ψ30

for ω 6= 0 and for ω = 0 on the left and right respectively.

Proof. The proof follows from uniqueness of solutions to differential equations. Taking

the time-derivative of the given equations for ω 6= 0 and ω = 0, respectively, will result in

the original unicycle model.

Theorem 15 can be used to quickly compute collision free trajectories when a collision

has been detected. This is detailed in the following theorem:

Theorem 16. Assuming the following:

1. The unicycle model for the dynamics in (5) is used with initial condition x(0) = x0.

2. The state trajectory, x(t) is formed using velocities (vi, ωi) for τi ≤ t < τi+1, where,

without loss of generality, τ0 = 0.

3. The time of first collision is given by tc > 0.

If a scaled trajectory, xs(t) with xs(0) = x0, is found by using the velocities (svi, sωi) for

τi
s
< t < τi+1

s
, where s = α tc

∆
and 0 < α < 1. The following holds true:

97

1. xs(t) = x(st)

2. xs(t) is collision free for t ∈ [0, ∆]

Proof. A proof can be obtained by applying Theorem 15 on each interval for the original

and scaled variables, and seeing algebraically that the resulting scaled trajectory, xs(t) =

x(st). Note that if tc is the time of the first collision then x(s∆) = x(αtc) will be a point

on the original trajectory before the collision as α < 1. Thus, xs(t) will be collision free ∀

t ∈ [0 ∆].

Applying Theorem 16, a robot with unicycle dynamics can quickly avoid collisions by

slowing down appropriately. This is seen through the illustrations shown in Figure 24. It

shows the trajectories resulting from the arcs before and after scaling as well as the results

of scaling on the cost contour map. It illustrates that each velocity pair that produces a col-

lision can immediately be mapped into the collision free region by scaling. It is important

to note that this method is effectively used on robots with more complicated dynamic mod-

els in Sections 5.3 and 5.4 as they use controllers designed to quickly converge to constant

velocities.

The concept of scaling can be employed to perform a quick search of the parameter

v

ω

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

Figure 24: On the left is shown a contour plot of a cost when choosing a single (v, ω)
pair. Shown on the contour plot are 20 points tested along a circle of radius 1 with a line
connecting each point to a collision free pair of velocities executing the same arc, with a
different speed. On the top-right is shown the initial arcs before scaling and on the bottom-
right is shown the arcs after scaling with α = .8. The straight lines denote walls.

98

Figure 25: This figure demonstrates possible behaviors based on arc-based control. From
left to right is shown a single arc, arc then reference follower, turning, and point-to-point
behaviors. In each image the robot is represented as a triangle, with the resulting trajectory
extending from it. The arcs are differentiated through color and line style, with the final
reference tracking mode denoted as a solid line at the end of the trajectory (only visible in
the arc-then-reference behavior). The straight lines denote walls.

space using a behavior-based approach. Multiple arcs can be placed back-to-back to create

a desired behavior. Several examples of such behaviors that we found to be useful are

illustrated in Figure 25. The illustrated examples consist of the following behaviors:

• Single-arc behavior: all arcs are given the same velocities and τN = τN+1.

• Arc-then-reference behavior: same as single-arc except τN < τN+1 .

• Turn behavior: ω0 = 0 and the remaining arcs are designed to make a ninety-degree

turn.

• Point-to-point behavior: using solutions to Theorem 15, arcs can be computed to

navigate between any two points.

A quick search of the parameter space can then be accomplished by testing various itera-

tions of each behavior. For the first two behaviors, a number of arcs with different curvature

can be tested (we found 20 to work quite well). For the turn behavior, both clockwise and

counter-clockwise turns can be tested as well as different lengths for the first, straight mode

(we found 5 lengths to work well). Finally, the point-to-point behavior can be used by ex-

tracting desired points from the reference trajectory. As the behaviors are based on arcs,

scaling can be used to quickly present a collision free trajectory as an option for initializa-

tion of the optimization step.

99

5.2 Control and Costs for Unicycle Motion Model

The unicycle model for motion in (5) provides a basic example where considering the

nonholonomic constraints of a mobile robot becomes important. Simply planning in the

position space is not sufficient as a robot with such a model is not capable of moving

orthogonal to its direction of motion. It is also a useful model to examine as control laws

can be designed for robots with more complicated dynamics which, after transients die out,

cause the robot to move as if its dynamic model were the unicycle model. Results are not

given in this section, but a reference trajectory tracking control law and costs are developed

which are then used as a basis for the control and costs developed in Sections 5.3 and 5.4.

5.2.1 Reference Following Control

To define a valid control law to be used as the final mode, it is necessary that it satisfy the

conditions imposed in Section 5.1. These conditions are the tracking condition in Assump-

tion 12 as well as the dual-Mode MPC conditions in B3 and B4. Condition B1 is satisfied

by choice of goal location, and B2 is trivially satisfied as no constraints have been put on

the inputs.

To define a reference following control law satisfying these conditions, the concept of

approximate ε-diffeomorphism presented in [67] is utilized. The idea being that, while the

center of the robot has a nonholonomic constraint, a point directly in front of the robot

does not. So, instead of controlling the actual position of the robot, the final control law

will control

y =

x1

x2

+ ε

cos(ψ)

sin(ψ)

 ,
where ε > 0 is some pre-defined parameter as shown in Figure 26. Note that to simplify

notation, we drop the time indexing on state, input, and reference variables throughout the

remainder of the paper, except when required for sake of clarity.

100

ψ

x2

x1

(x1, x2)

{

ǫ

yǫ

Figure 26: Shown is a diagram of a two-wheeled robot with the ε-point to be controlled.

A simplification of the development in [67] (i.e. controlling velocities instead of ac-

celerations) leads to ẏ = uε, where the inputs of the unicycle system can be solved for

algebraically as v
ω

 =

1 0

0 1
ε


 cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

uε. (106)

To control the unicycle to track a reference trajectory, the following controller can be used:

uε(t) = κNε(y(t), yd(t)) = ẏd + kp(yd − y) (107)

where kp > 0 is constant and κN(x, yd) is given by combining (106) and (107) to obtain the

commanded velocities. A theorem is now given on the satisfaction of the tracking condition

of the control law.

Theorem 17. The control law in (107) satisfies Assumption 12.

Proof. The proof is accomplished by showing that V (y(t)) = 1
2
||yd(t) − y(t)||2 is a

Lyapunov function. As such, V̇ will be shown to always be decreasing. Therefore, if

κN(x(t), yd(t)) is executed starting at time τN and y(τN) ∈ Bδ(yd(τN)), then y(t) ∈

Bδ(yd(t)) ∀t ≥ τN as the distance between yd(t) and y(t) will always be decreasing as

time increases.

V (t) can be seen to be decreasing by evaluating the time derivative:

V̇ = (yd−y)T (ẏd− ẏ) = (yd−y)T (ẏd−uε) = −kp(yd−y)T (yd−y) < 0 ∀yd 6= y (108)

101

To show that the control law will satisfy condition B3 and B4, an assumption on the

terminal cost is made and a theorem is stated.

Assumption 15. (Terminal Cost Convexity) The terminal cost is strictly convex in y with a

unique minimum located at y = ygoal.

Theorem 18. Given Assumptions 13 and 15, Ψ(y(t), ygoal) satisfies B3 and B4 once yd(t) =

ygoal when using the feedback control law κN .

Proof. In the terminal region, yd(t) = ygoal is constant which allows (107) to be reduced

to κNε(y(t)) = kp(ygoal − y). The proof of Theorem 17 shows that Bδ(ygoal) is invariant

under κNε , satisfying B3. To evaluate B4, Ψ(y(t)) needs to be evaluated as a candidate

control-Lyapunov function under the control κNε . The time derivative can be evaluated as

Ψ̇ =
∂Ψ

∂y
(y)ẏ = kp

∂Ψ

∂y
(y)(yd − y) < kp(Ψ(y) +

∂Ψ

∂y
(yd − y)) (109)

as Ψ(y) ≥ 0 with strict inequality ∀y 6= yd due to Assumption 15. Using the global

underestimator property of convex functions, we can further state:

Ψ̇ < kp(Ψ(yd)) = 0 (110)

Therefore, Ψ̇ < 0 ∀y 6= yd and B4 is satisfied.

5.2.2 Cost Definition

To define valid costs for the dual-mode arc-based MPC algorithm, the costs must satisfy

several conditions in terms of the ε-point, y. The terminal cost must satisfy two conditions:

1. Assumption 11 gives a condition of a barrier around the reference position.

2. Assumption 15 and B4 give a condition on the convexity.

Similarly, the instantaneous costs must satisfy two conditions:

1. Assumption 10 requires the instantaneous cost to form a barrier to collisions.

102

2. Assumption 13 requires the instantaneous cost to approach zero as y −→ Bδ(ygoal).

The terminal cost is defined as:

Ψ(x(t), yd(t)) =
ρ4

2
||y(t)− yd(t)||2 + ρ5(− log(

dist(y(t),Bδ(yd(t))
δ

)). (111)

As both terms in Ψ(x(t), yd(t)) are strictly convex with minimum at y = yd, Assump-

tions 15 and B4 are satisfied. Moreover, Assumption 11 is satisfied as Ψ is defined as a

log-barrier. Note that while the first term seems to be redundant, it is used to help find

parameters in step 2 of Algorithm 2 when the terminal barrier cost is removed.

The instantaneous cost is used to ensure obstacle avoidance while moving at a desirable

speed, vd. To represent the obstacles we use a grid-based map where Nobs is the number of

occupied grid points within a radius of dmax of the robot. It is assumed that the occupied

grid points are available at time t as o1(t), ..., oNobs(t), where oi(t) ∈ R2. This allows the

cost to be written as

L(x(t), θi, Bfree(t0)) = Lgoal(||y(t)−ygoalε||)
(ρ1

2
(vd−v(t))2+

ρ2

2
ω(t)2

)
+
ρ3

2

Nobs∑
i

Lavoid(||y−oi(t)||)

(112)

where

Lgoal(d) =


2

1+e−a(d−δ)
− 1 d ≥ δ

0 d < δ

Lavoid(d) =


−a log(d− dmin) + a log(dmax − dmin) dmin < d ≤ dmax

∞ d ≤ dmin

0 d > dmax

ρi > 0 is a weight, and dmin is the minimum allowed distance from an occupied grid cell

to the robot.

The term Lgoal is provided to smoothly reduce the influence of the instantaneous cost

around the goal to satisfy Assumption 13 for the first two terms in the cost. Note, to

completely satisfy these two assumptions, the goal position needs to be defined such that

103

the goal is at least dmax + δ from the nearest obstacle so Lavoid is also zero in the terminal

region. By inspection, the log-barrier cost Lavoid satisfies Assumption 10.

5.3 Case Study: Magellan Robot

The unicycle motion model and control presented in Section 5.2 can be used when the

convergence time to the desired velocities is negligible. However, it is often the case that

dynamic limitations cannot be ignored, especially as the speed of the robot increases. The

Irobot Magellan-Pro, shown in Figure 27, presents an excellent example of such a sce-

nario. We have observed the maximum translational acceleration to be approximately .1m
s

,

which becomes a significant factor in avoiding obstacles when traveling near the maximum

velocity of 1m
s

.

The Magellan is also a prime candidate to demonstrate the dual-mode arc-based MPC

algorithm due to its relatively limited computational capabilities. It has a Pentium III 850

Mhz processor, which is limited when compared to the state of the art. To develop the dual-

mode arc-based MPC algorithm for the Magellan, this section begins with an explanation

of the dynamic model to be used, develops a control law for reference tracking, and ends

with experimental results.

5.3.1 First Order Model

While the kinematic constraints of the Magellan can be written as the unicycle model in (5),

the velocities cannot be instantaneously realized. The Magellan-pro robot has an on-board

Figure 27: Shown is a picture of the IRobot Magellan-pro.

104

control which accepts velocity commands and limits accelerations. Thus, similar to [44],

which modeled a UAV with a similar on-board control, we utilize a first order model on the

velocity inputs written as follows:

f(x) =



ẋ1

ẋ2

ψ̇

v̇

ω̇


=



v cos(ψ)

v sin(ψ)

ω

a1v + b1u1

a2ω + b2u2


, (113)

s.t. |v̇| ≤ amax, |ω̇| ≤ αmax

where ai, bi, amax, and αmax are constants.

5.3.2 Reference Following Control

To use the dual-mode arc-based MPC algorithm, two control laws must be defined: a con-

trol law to regulate the system to desired, constant velocities, and a controller to be used

for reference tracking. The control law used to converge to desired, constant velocities is

formed using an LQ approach, e.g. [9]. As this is a highly developed control methodology,

the details are not presented. Rather, we focus our attention on the reference tracking con-

trol as it must satisfy the conditions imposed in Section 5.1. These conditions are given as

the tracking condition in Assumption 12 as well as the dual-Mode MPC conditions given

in B2, B3, and B4. Again, condition B1 is satisfied by choice of goal location.

To form a control law, we first ignore the acceleration constraints and control the veloc-

ities and then examine the control law to see when it can be employed. Let ev̄ be the error

between v̄ = [v, ω]T and the desired velocities, denoted as v̄d. Let the control be defined as

follows

uv̄ =

[
u1 u2

]T
= B−1

(
˙̄vd − Av̄d

)
− kvev̄, (114)

v̄d =

1 0

0 1
ε


 cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

uε, (115)

105

A =

a1 0

0 a2

 , B =

b1 0

0 b2

 ,

˙̄vd =

−ω sin(ψ) ω cos(ψ)

−ω cos(ψ)
ε

−ω sin(ψ)
ε

uε +

cos(ψ) sin(ψ)

− sin(ψ)
ε

cos(ψ)
ε

 u̇ε, (116)

where uε is defined as in (107), and

u̇ε = ẍdε + k(ẋdε − y).

The time derivative of ev̄ can then be written as ėv̄ = (A − Bkv)ev̄ = Ãev̄ where kv

is a matrix of gains used for feedback. Thus, the error in velocities is exponentially stable

to zero. As the desired velocities converge, the system behaves as the unicycle model of

Section 5.2. To ensure that the required conditions are met, two additional assumptions are

made:

Assumption 16. The desired reference trajectory accelerations must be bounded below the

acceleration limitations of the Magellan-pro robot.

Assumption 17. The velocities at time τN are sufficiently close to the desired velocities to

allow convergence within δexecute seconds .

Assumption 16 corresponds to a condition that the time mapping must satisfy the trans-

lational acceleration constraint and a condition on the curvature of the path must satisfy

the rotational acceleration constraint. Assumption 17 presents a relationship between the

velocities at time τN , δexecute, and the convergence rate of the control, directly affected

by choice of kv in (114). Assumption 17 could be guaranteed through the introduction of

additional cost barriers on the velocities. In practice, we have seen this to be unnecessary

by choosing vd = ||ẏd(τN)|| for the final arc in the initialization step discussed in Section

5.1.3 and noting that ω converges quite quickly.

106

5.3.3 Results

To present the results for the implementation of the dual-mode arc-based MPC algorithm

on the Magellan Pro robot, we perform a mix of simulation and actual implementation,

where the desired velocity was set at .9 m
s

, 90% of the Magellan’s top speed. A simulated

environment was projected onto the floor and the robot navigated through the environment

as shown in Figure 28. To allow for high speeds, the environment continuously switched

between two predefined environments. Along with a simulated environment, a simulated

laser scanner is used as a sensor. The laser scanner takes 100 measurements ranging from

ψ− π
2

to ψ+ π
2
. The robot is interfaced to a mapping algorithm through the ROS navigation

package, using an A∗ planning algorithm to find desired paths and the dual-mode arc-based

MPC algorithm to follow the planned path.

To perform optimization, the techniques from Section 5.1.3 were employed. The NLopt

optimization library, [37], together with the gradients in [19], were used to perform the

gradient-based portion of the optimization. To test the efficacy of the different portions of

the algorithm, several trials were run. First, the tracking control was run by itself, then the

arc-based algorithm was performed without the gradient descent, and finally the gradient

descent was incorporated and the remaining trials consisted of varying the alloted time for

gradient descent (a parameter available in the NLopt library).

It is important to note that the tracking controller resulted in multiple collisions when

running near the maximum velocity of the Magellan. This is quite possibly due to modeling

errors, which are amplified at the top speeds. This was not a hindrance to the other trials as

the tracking controller was never actually executed, due to the behavior-based initialization

step to the optimization. Thus, for a fair comparison, the results for pure tracking control

were obtained from simulation.

Results to the different trials are shown in Figure 29. Using solely the behavior-based

portion of the optimization, the cost was reduced by 50% when compared to the reference

107

Figure 28: The left two images show the two environments completely mapped with the
Magellan in the center. The right two images show the Magellan executing Algorithm 2.
As the Magellan approaches the goal, the map is erased so that the Magellan can traverse
the next environment as if it were unknown.

0

0.5

1

T
ot

al
 C

os
t

Tra
ck

ing

No
Gra

die
nt

0.
01

 s

0.
02

 s

0.
05

 s
0.

1
s

0.
13

 s

0.
15

 s

0.
18

 s
0.05

0.1

0.15

0.2

Lo
op

 ti
m

e
(s

)

Tra
ck

ing

No
Gra

die
nt

0.
01

 s

0.
02

 s

0.
05

 s
0.

1
s

0.
13

 s

0.
15

 s

0.
18

 s
0.4

0.6

0.8

Tra
ck

ing

No
Gra

die
nt

0.
01

 s

0.
02

 s

0.
05

 s
0.

1
s

0.
13

 s

0.
15

 s

0.
18

 s

V
el

oc
ity

 (
m

/s
)

Figure 29: This figure shows results from the reference tracking control, optimization with-
out gradient descent, and various times allowed for gradient-based optimization. From left
to right is shown the total cost (normalized so that the reference tracking cost equals one),
average execution time for a loop of Algorithm 2, and the average velocity for a window
time excluding acceleration and deceleration periods. On both the middle and right plots is
shown the standard deviation for each trial.

tracking control, with up to a 75% reduction in cost by including the gradient-based opti-

mization. It can also be seen that there was no loss in average velocity when comparing the

trajectory tracker with the arc-based MPC results. The highest average velocity seen being

92% of the desired .9m
s

, despite the corridors being less than twice the width of the robot.

While one may expect to see the resulting overall cost to monotonically decrease with

allowed optimization, this is not always the case. As the allowed gradient-descent time

approaches δexecute = .2 seconds, the actual time to execute an iteration of Algorithm 2

increasingly exceeds δexecute, causing undesirable results. Also, while it is true that the cost

at each time instant will decrease with increased optimization time, when considering the

aggregate cost, this need not be the case. As the information available to the robot is limited,

what may seem good at one point in time may prove to have been a poor choice at a future

time. Thus, the costs shown in Figure 29 are those of local minima and cannot be truly

108

compared beyond the point of noticing the trend that small time allowed for optimization

appears to yield good results.

5.4 Case Study: Inverted Pendulum Robot

We now examine the problem of performing dual-mode arc-based MPC on the model of

an inverted pendulum robot discussed in Section 4.3.1. This provides an example where

consideration of the dynamics of the system is very important when planning for the action.

Not only must the planner consider the nonholonomic constraints, it must also maintain

balance. The arc-based MPC algorithm is applied to account for the complicated dynamics

while maintaining stability and convergence guarantees. In this section we first develop a

reference tracking control law for the inverted pendulum robot, discuss stability, and then

present simulation results.

5.4.1 Control Laws

Two control laws must be defined to apply the dual-mode arc-based MPC algorithm. The

first is a constant velocity control, which was designed in Section 4.3.1.2. The second is a

reference following controller, which is the focus of this section.

As part of the development of the constant velocity control, a linearization of a subset

of the states was performed to produce a controllable state vector with linear dynamics.

From this linearization, the state vector, δz = [v, ω, φ, φ̇]T can be further divided into

states to control the translational velocity, zv = [v, φ, φ̇]T and the rotational velocity, ω.

The two state vectors can be controlled separately by allowing the control inputs to be:

u1 = (α + β), u2 = (α− β). (117)

To control a time varying velocity, a potential problem arises as the same input must be

used to both stabilize the pendulum and control the velocity. To overcome this, we control

the tilt angle, which can in turn be used to control the velocity. This is made possible due

to the fact that the tilt angle is much more responsive and that we can define the reference

109

trajectory to maintain nearly constant translational acceleration. It is also worth noting

that it is much easier to maintain stability of the pendulum by controlling the tilt angle to

a desired value without any feedback on the velocity. The feedback on the velocity will

come in the form of adjusting the desired tilt angle.

As controlling the desired tilt angle directly affects the translational acceleration, we

slightly modify the approach for controlling yε given in Section 5.2. Instead of controlling

ẏ, ÿ is controlled as ÿ = uε. This corresponds to the formulation for control presented in

[67], namely

uε(t) = ẏd + kp(yd − y) + kd(ẏd − ẏε), (118)

where kd and kp are constants. Similar to (116), the desired accelerations, ˙̄vd = [v̇d ω̇d]
T ,

can be written as:

˙̄vd =

−ω sin(ψ) ω cos(ψ)

−ω cos(ψ)
ε

−ω sin(ψ)
ε

 ẏ +

cos(ψ) sin(ψ)

− sin(ψ)
ε

cos(ψ)
ε

uε. (119)

Given the desired accelerations, we allow the inverted pendulum control to take the form

u1 = −kφeφ −
a43

b41

φd

u2 =
ω̇d
b21

(120)

where

φd =
b41a13

a2
13b41 − b11a43

v̇d,

eφ =

φ− φd
φ̇


and kφ is a feedback matrix. Assuming constant acceleration, the dynamics of the error for

the linearized system becomes

ėφ = (

 0 1

a43 0

−
 0

b41

 kφ)eφ,

110

which has exponential convergence rates to the desired tilt angle. Similar to the develop-

ment in Section 5.3.2, Assumptions 16 and 17 can be made to ensure the convergence to

the desired reference trajectory. Similarly, to ensure that the control law can converge to the

necessary characteristics within δexecute seconds, a cost barrier could be introduced. How-

ever, in the same fashion as mentioned in Section 5.3.2, we found that with the initialization

step, this was not needed in practice.

5.4.2 Maintaining Balance

To ensure that the pendulum robot maintains balance, we analyze both the stability of

the control law presented in the previous section as well as the ability for Algorithm 2

to maintain balance. While the previous section considered the linearized dynamics, this

section considers the balancing on the full, nonlinear dynamics.

Under an assumption that v̇d is constant, we can utilize the Lyapunov function V =

1
2
eTφPeφ and evaluate numerically the space such that V̇ = eTφP ėφ < 0. Using the feedback

gain matrix kφ = [−8.5223 − .9922] and

P =

2.8929 0.0037

0.0037 .0210

 ,
we found that V̇ < 0 ∀ eφ 6= 0 for |φ| ≤ .5, |φ̇| < 5, and extreme initial conditions(i.e.

values greater than we ever observed) of v = 2.0 and ω̇ = 2 for all |φd| ≤ 0.35. To ensure

stability, we place a bound on the desired tilt angle such that |φd| < .25.

To ensure that the robot will maintain balance while executing Algorithm 2, a barrier

cost is introduced as part of the instantaneous cost. The barrier cost takes the form:

−ρ6 log
(φ2

max − φ(t)2

φ2
max

)
, (121)

where φmax = .5 is the maximum allowable tilt angle and ρ6 is a constant. This barrier cost

will not permit step 4 of Algorithm 2 to produce a solution with a resulting φ(t) > φmax for

some t ∈ [t0, t0+∆] if it is initialized with a solution that satisfies the constraint. Moreover,

111

Figure 30: On the left is shown an executed path through the environment. The right three
images show the robot and current map at different positions along the trajectory. The robot
is shown as a triangle. The line extending from it is the trajectory created by the arc-based
MPC framework.

0

0.5

1

T
ot

al
 C

os
t

Tra
ck

ing

No
Gra

die
nt

0.
00

1
s

0.
01

 s

0.
02

 s

0.
05

 s
0.

1
s

0.
13

 s

0.
15

 s

0.
18

 s
0

0.1

0.2

Lo
op

 ti
m

e
(s

)

Tra
ck

ing

No
Gra

die
nt

0.
00

1
s

0.
01

 s

0.
02

 s

0.
05

 s
0.

1
s

0.
13

 s

0.
15

 s

0.
18

 s
0

0.2

0.4

T
ilt

 (
ra

d)

Tra
ck

ing

No
Gra

die
nt

0.
00

1
s

0.
01

 s

0.
02

 s

0.
05

 s
0.

1
s

0.
13

 s

0.
15

 s

0.
18

 s

Figure 31: This figure shows results for the inverted pendulum robot using the refer-
ence tracking control, optimization without gradient descent, and various times allowed
for gradient-based optimization. From left to right is shown the total cost (normalized so
that the reference tracking cost equals one), average execution time for a loop of Algorithm
2, and average and maximum tilt angle for each trial.

the final control given in (120) will present an admissible solution with φ(t) < φmax ∀t ∈

[t0, t0 + ∆] at the next iteration of the algorithm. All other costs discussed in Section 5.2.2

remain the same.

5.4.3 Results

We utilize the inverted pendulum robot to demonstrate the ability of dual-mode arc-based

MPC to take a complicated dynamic model into account and ensure stability. Results were

obtained on a simulation of the inverted pendulum robot through the environment shown

in Figure 30 using a dual-core i7 2.67 GHz processor. The mapping and visualization was

again performed using ROS, with a simulated laser range finder giving data to ROS to

form the map. As before, several trials were performed to evaluate the performance of the

dual-mode arc-based MPC algorithm.

Each trial consisted of navigating to a series of waypoints throughout the environment,

112

with an A∗ path planner being used to plan two dimensional paths between waypoints. The

robot was given a desired speed of 1m
s

, with each trial having the robot approach that speed

between waypoints (not shown for sake of brevity). The trials included using the reference

tracking control, arc-based MPC without gradient descent, and using several limits on the

allowed time for gradient descent. Results are shown in Figure 31.

Several trends can be observed on the results. Similar to before, the behavior-based

portion of the optimization significantly reduces the cost when compared to the reference

tracking control. The inclusion of a gradient-based optimization step provides even better

results. By observing the loop time versus time allotted for gradient descent, it is apparent

that convergence of the optimization at each time step is achieved rather quickly despite the

complicated dynamic model. The average time to execute a loop of Algorithm 2 is less than

1
2
δexecute, even as the alloted time approaches δexecute. Most important to the development

of this section, the robot maintained balance. The maximum tilt angle in each trial is below

the tilt constraint, with the average being much smaller.

5.5 Conclusion

In this chapter we have developed a dual-mode arc-based MPC algorithm which ensures

obstacle avoidance and guarantees convergence to a desired goal location despite compli-

cated dynamic models. Dynamic motion constraints, limited accelerations, and stability

concerns were considered in the examples without imposing unreasonable computational

demands. The algorithm was applied to a decade old Irobot Magellan-pro, which main-

tained an average of 80% of its top speed while navigating through corridors less than

twice the robot’s width without collision. The ability of the algorithm to deal with more

complicated dynamics, including stability concerns, was illustrated through the example of

an inverted pendulum robot where it reached high speeds while traversing a complicated

environment without exceeding a pre-specified maximum tilt angle.

113

CHAPTER VI

MULTI-AGENT DISTRIBUTED BEHAVIOR-BASED MPC

In this chapter, we combine concepts from distributed optimization with the behavior-based

MPC to create a multi-agent behavior-based MPC formulation. The motion control frame-

work allows a group of robots to work together to decide upon the motions by minimizing a

cost. Agents are able to cooperatively optimize without any central computing component

or any one agent performing a large portion of the computation.

As discussed in Section 1.4, two difficulties arise when extending MPC formulations to

the multi-agent scenario. First, each agent must be able to either communicate or simulate

neighboring agents actions. Second, a way must be formulated in which agents can influ-

ence the actions of neighboring agents in order to come to a collective minimum. It will be

shown in this chapter that a behavior-based approach allows agents to simulate neighbor-

ing agents actions after communicating a small number of parameters. Also, agents will be

able to influence each other by using parameter optimization techniques to optimize over

these parameters.

In other words, the behavior-based MPC approach alleviates some of the main difficul-

ties associated with distributed MPC by changing the problem into a distributed parameter

optimization problem. However, a key element which makes multi-agent behavior-based

MPC different from typical distributed parameter optimization is that a typical MPC cost

not only depends on the current state, but on future states. Care must be taken to ensure

that an agent is able to simulate other agents’ state forward in time using solely information

local to it in the network.

114

In this chapter we present the details of the multi-agent behavior-based MPC, address-

ing each of the mentioned areas of difficulty. In the next section we formulate prelimi-

naries for multi-agent parameterized MPC and discuss how it allows agents to overcome

communication difficulties. Section 6.2 will then detail how distributed optimization can

be used to negotiate on future trajectories. In section 6.3, information requirements will be

discussed to determine if a given network of communication is sufficient to perform dis-

tributed behavior-based MPC. The chapter will end with a simple example in Section 6.4

and concluding remarks in Section 6.5.

6.1 Preliminaries

This section will introduce the basic concept of multi-agent behavior-based MPC. This will

be done by explicitly outlining the problem solved by the formulation. The ability for this

method to overcome communication difficulties will then be addressed. Finally, notation

used throughout the remainder of the chapter will be introduced.

6.1.1 Problem Definition

To explicitly represent the multi-agent scenario, assume that each agent’s dynamics are of

the form ẋi(t) = fi(xi(t), ui(t)), where xi(t) is the state and ui(t) is the control input

of agent i at time t. Also, assume that each agent will execute a feedback law of the

form κi(xi(t), x
d
−i(t), θi) where xd−i(t) is a set of the states upon which agent i’s dynamics

depend and θi is a vector of tunable parameters. Without loss of generality, this will allow

the dynamics to be expressed as:

ẋi(t) = fi(xi(t), x
d
−i(t), θi). (122)

In order to chose θi at each time instant, we consider the following general form for the

collective cost to be minimized at each time step:

J =
N∑
i=1

Ji, (123)

115

where Ji is the cost assigned to agent i and takes the form

Ji =

∫ tf

t0

Li(xi(t; t0), xc−i(t; t0), θc−i)dt+ (124)

Ψi(xi(tf ; t0), xc−i(tf ; t0‘), θc−i),

subject to (122), where xc−i represents the set of agents that agent i is coupled to through

its cost, θc−i is the parameter vectors corresponding to those agents, t0 is the initial time,

tf = t0 + ∆, and ∆ is the time horizon being evaluated.

The division of the cost is left to the designer of the system. A method proposed in

[81] recommends separating the cost into components which are not additively separable.

However, the authors of [39] mention that adding extra terms in the cost can improve the

results. For example, if the non-separable Ji was dependent on both xj and xk, then it may

be good for convergence to also assign agent i any terms in J which deal exclusively with

xj and xk. This will allow agent i to better model agents j and k.

The problem to be solved consists of a distributed optimization where agents must

collaboratively minimize the summation of costs with respect to the parameter vectors and

switch times. In other words, the problem takes the form:

min
θ
J(θ).

6.1.2 Communication of Trajectories

A key aspect of this formulation is the ability for agents to communicate entire trajectories

by solely communicating a number of parameters. This is possible as the trajectory of

each agent will be determined by its parameter vector, initial conditions, and the feedback

control law it is executing. Therefore, to communicate a trajectory to a neighbor, an agent

need only communicate these three pieces of information. The neighboring agent will then

be able to calculate the trajectory of its neighbor by simulating it forward in time. Thus,

there is an inherent tradeoff between communication and computation.

116

6.1.3 Notation

With the problem to be solved in mind, we outline the notation to be used throughout the

chapter. First note that, as discussed in Chapter 2, distributed optimization requires each

agent to have a local version of all the variables associated with the agents to which it is

coupled. As such, we use the subscripts aij to denote agent i’s version of agent j’s variable

a.

There are several groups of agents that each agent must keep track of. Denote N d
i ≡

{j : ∂fi
∂xj
6= 0} as the agents to which agent i is dynamically coupled. Similarly,N d

−i ≡ {j :

∂fj
∂xi
6= 0} denotes the agents that are dynamically coupled to agent i. The agents to which

agent i is coupled to through cost is denoted as N c
i ≡ {j : ∂Li

∂xj
6= 0 or ∂Ψi

∂xj
6= 0}. The cost

dependencies and dynamic dependencies are evaluated in Section 6.3 to determine set of

agents from which agent i will require information, denoted as N I
i .

Furthermore, we can represent cost and dynamic dependencies through directed graph

structures which will induce an undirected information dependency graph. We use Gc(V,Ec)

to denote a graph where the node vi corresponds to agent xi and a directed edge (vj, vi) ∈

Ec iff j ∈ N c
i . Similarly we use Gd(V,Ed) to denote the dynamic dependency graph where

(vj, vi) ∈ Ed iff j ∈ N d
i . In Section 6.3 we will then give conditions on Gc and Gd which

will induce an undirected information graph GI(V,EI) where an edge (vi, vj) ∈ EI exists

iff it is necessary for agents i and j to exchange information, thus building the set N I
i . An

example of these three graphs is shown in Figure 32.

Each agent must also keep track of a number of state vectors. Allow xij(t; t0) to be the

state of agent j at time t as simulated by agent i at time t0. Denote agent i’s versions of

the states agent j depends on through agent j’s dynamics as xdi,−j(t; t0) ≡ {xik(t; t0) : k ∈

N d
j }. Similarly, denote agent i’s versions of the states agent j depends on through agent j’s

costs as xci,−j(t; t0) ≡ {xik(t; t0) : k ∈ N c
j }. As each agent requires a vector of parameters

in its control law, denote θij as agent i’s version of agent j’s parameter vector. Finally, fj

denotes the dynamics used to compute xij .

117

For simplicity in presentation, we employ a number of abbreviations to the presented

notation. xij or xij(t) refers to xij(t; t0). xdi,−j or xci,−j is used to refer to xdi,−j(t; t0) or

xci,−j(t; t0) respectively. fij is used to refer to fj(xij(t, t0), xdi,−j(t; t0), θij). And also, θ̄i ≡

{θij : j = 1, ..., N}: is used to denote all of the parameter vectors that agent i could depend

on.

6.2 Multi-agent Distributed Parameterized MPC

The previous section presented problem formulation for multi-agent parameterized MPC

and addressed how using parameterized feedback laws can facilitate the communication of

trajectories between agents. In this section, it is shown that the use of these parameterized

feedback laws also facilitates the negotiation between agents, allowing them to arrive at

a collective minima. We begin by giving the gradients and end with a summary of the

distributed parameterized MPC algorithm.

6.2.1 Gradients

As seen in the development of PI distributed optimization in Chapters 2 and 3, agents will

be able to use the gradients of their individual costs to be able to collaborate with neighbors

in the minimization of the collective cost. As such, we now provide a theorem giving the

gradients used for optimization.

Theorem 19. Given a cost Ji of the form in (124), the gradient of Ji with respect to θij is

given as
∂Ji
∂θij

= ξTij(t0) (125)

where

ξ̇ =
∂Li
∂θij

T

− ∂fij
∂θij

T

λij; ξ(tf) =
∂Ψi

∂θij

T

(tf) (126)

λ̇ij = − ∂Li
∂xij

T

−
∑
k∈N d−j

∂fik
∂xij

T

λik; (127)

λij(tf) =
∂Ψi

∂xij

T

(tf)

118

Proof. We first augment (124) with the dynamics and write it as

Ĵi(θ̄i) =

∫ tf

t0

(
Li(xii(t), x

c
i,−i(t), θ

c
i,−i)+ (128)

N∑
j=1

λij
(
fij(xij(t), x

d
i,−j(t), θi,j)− ẋij

))
dt+

Ψi(xii(tf), x
c
i,−i(tf), θ

c
i,−i).

Now, vary θij → θij+εγij which causes the state to vary as xij → xij+εηij . After applying

traditional variational principles (e.g., [43]) and rearranging terms we can write

1

ε

(
Ji(θ̄i + εγ̄i)− Ji(θ̄i)

)
= (129)

=
N∑
j=1

[∫ tf

t0

((∂Li
∂xij

+
N∑
k=1

λTik
∂fik
∂xij

+ λ̇Tij

)
ηij+

(∂Li
∂θij

+ λTij
∂fij
∂θij

)
γij

)
dt+

∂Ψi

∂θij
(tf)γij

−λTijηij|
tf
t0 +

∂Ψi

∂xij
(tf)ηij(tf)

]
+ o(ε).

Note that ∂fij
∂xik

= 0 ∀ k /∈ N d
j and ηij(t0) = 0. Then allow λ to be defined as (127). This

permits the gradient for θij to be expressed as

∂Ji
∂θij

=

∫ tf

t0

(∂Li
∂θij

+ λTij
∂fij
θij

)
ds+

∂Ψi

∂θij
(tf). (130)

Allowing ξij to be defined as

ξTij(t) =

∫ tf

t

(∂Li
∂θij

+ λTij
∂fij
θij

)
ds+

∂Ψi

∂θij
(tf). (131)

We can differentiate (131) with respect to t to obtain the dynamics in (126) and the gradient

in (125).

119

6.2.2 MPC Framework

Having addressed distributed optimization in Chapters 2 and 3 as well presented the gra-

dients in the previous section, we have two of the pieces needed in order to outline the

multi-agent parameterized MPC algorithm below. The final piece, N I
i , will be given in the

next section.

Before we introduce the algorithm, we mention a detail concerning the implementation.

Agents will be simultaneously optimizing and moving. They actually optimize over values

to be used in the future. Thus, when communicating, they communicate a future initial

position and parameters they expect to be using beginning at a future point in time. The

optimization occurs over a period of δexecute seconds, at which point the agents update the

parameters to execute. We denote the variables that agents are using for movement as θ̄ii

and state the multi-agent behavior-based MPC algorithm in Algorithm 3.

Algorithm 3 Multi-agent Behavior-based MPC

1. Initialize:

• Set t0 to t+ δexecute, where t is current time.

2. Agent i communicates following to each agent j ∈ N I
i :

• Initial state xii(t0; t), where t is current time.

• Parameter vectors θij and θii .

3. Agents use distributed optimization to update variables and Lagrange multipliers.

4. Repeat steps 2 and 3 until t = t0.

5. Agent i updates parameters: θ̄ii = θii.

6. Process repeated starting at step 1.

6.3 Induced Information Structure

While the previous sections have discussed the setup of the parameterized MPC scheme,

this section will address whether or not a given network of communication will be capable

120

of performing the distributed MPC scheme. Specifically, information requirements will be

derived to determine whether or not the agents are capable of performing the algorithm

with the information available to them in the network.

An information exchange between two agents will be necessary if either agent has an

opinion about the other agent. This is expressed mathematically by determining whether

or not each agent always has a non-zero gradient with respect to the variables associated

with the other agent. Thus, the following theorem and corollary express the information

required by each agent in the network.

Theorem 20. ∂Ji
∂θij

= 0 for general costs and dynamics iff ∀ k ∈ N c
i there is no directed

path in Gd pointing from vj to vk.

Corollary 1. Evaluating GI presented in Section 6.1.3, one result of this theorem is that

j ∈ N I
i iff one of the following conditions hold:

1. ∃k ∈ N c
i such that there is a path pointing from vj to vk in Gd.

2. ∃l ∈ N c
j such that there is a path pointing from vi to vl in Gd.

Proof. We expressly evaluate the costate λij(t) given in (127) as the arguments stating

when λij = 0 ∀t will likewise show that ξij(t) = 0 ∀t. First, note that the costate from

(127) can be written as

λij(t) = Φij(t, tf)λij(tf) +

∫ tf

t

Φij(tf , s)Bj(s)ds, (132)

where the state transition matrix, Φij(tf , t) holds the property

d

dt
Φij(tf , t) = Aj(t)Φij(tf , t),

Bj(t) = − ∂Li
∂xij

T

−
∑

k∈N d−j−{j}

∂fik
∂xij

T

λik,

and A(t) =
∂fij
∂xij

. This can be verified using properties of the state transition matrix (e.g.,

[8]) and uniqueness of solutions to differential equations (assuming Lipshitz conditions

hold), e.g, [40].

121

The proof comes in two parts. We first prove that if ∃k ∈ N c
i such that a directed path

pointing from vj to vk exists in Gd then ∂Ji
∂θij
6= 0 for general dynamics and costs. We then

prove that if such a path does not exist then ∂Ji
∂θij

= 0.

For the first part, we assume that ∃k ∈ N c
i such that there exists a path pointing from vj

to vk. We re-label the path of nodes as {vσ1 , ..., vσm} such that xiσ1 = xij and xiσm = xik.

We also choose the path such that ∂Li
∂xiσl

= 0 ∀l 6= m. By definition of a path pointing from

vσ1 to vσm in Gd, we note that
∂fiσl+1

∂xiσl
6= 0, for general dynamics.

We give a proof by induction: we show that if λiσl+1
6= 0 ⇒ λiσl 6= 0. We will then

show that λiσm 6= 0 which completes the proof of the first part. By assumption, λiσl+1
6= 0

and
∂fiσl+1

∂xiσl
6= 0 which means that

∂fiσl+1

∂xiσl

T

λiσl+1
6= 0. This implies that Bl(t) 6= 0 ⇒

λil 6= 0 ⇒ ∂Ji
∂θil
6= 0. We note that σm is defined such that ∂Li

∂xiσm
6= 0 ⇒ Bm(t) 6= 0 ⇒

λiσm 6= 0 which completes the first part of the proof.

For the second part of the proof we assume that there does not exist a k ∈ N c
i such that

a path exists in Gd from vj to vk and prove that ∂Ji
∂θij

= 0. We define the set of indices that

agent j connects to as J = {l : ∃ path from vj to vl in Gd}. For all l ∈ J we can simplify

(132) as

λij(t) =

∫ tf

t

Φij(tf , s)Bj(s)ds, (133)

where

Bj(t) = −
∑

k∈N d−j−{j}

∂fik
∂xij

T

λik.

Therefore, the only way for λil(t) 6= 0 is if ∃s > t such that Bl(s) 6= 0.

We now prove by contradiction that if λil(t) = 0 ∀t ∈ (a, b) and ∀l ∈ J then λil = 0

∀t ≤ a and ∀l ∈ J. Assume that λil(t) = 0 ∀t ∈ (a, b) and ∀l ∈ J, but λim(a) 6= 0. This

implies that ∃τ > a such that Bm(τ) 6= 0. However, this is a contradiction as Bm(τ) 6= 0

⇒ ∃k ∈ N d
−m ⊂ J such that λik(τ) 6= 0. Now, note that we define λil = 0 ∀l ∈ J and

t ∈ [tf ,∞)⇒ ∂Ji
∂θij

= 0 which completes the second part of the proof.

This shows the detrimental effect of dynamic dependence in multi-agent distributed

122

Figure 32: This figure shows how dynamic dependencies make the required communica-
tion increase as needed information propagates through the edges in dynamic dependency
graph. Cost dependence (Gc), dynamic dependence (Gd), and the induced information
graph (GI) are shown in red, blue, and green respectively

MPC. Dynamic dependencies induce the need for information from other agents. For ex-

ample, if agent i depends dynamically on agent j and agent j depends dynamically on

agent k, then agent i will have an opinion about agent k. Figure 32 shows a simple case

where one agent requires information from the entire system despite having no dynamic

dependence itself. On the other hand, when there are no dynamic dependencies, the in-

formation graph is simply the undirected cost graph. Therefore, when coupling between

agents is done only through the costs, it permits the amount of information required to be

a function of the separability of the collective cost.

6.4 Example

The task we set out to accomplish is to have the agents spread out on a circular orbit while

maintaining a certain velocity. Assuming integrator dynamics, i.e. ẋ = u, the agents can

achieve orbiting by following a vector field. We again utilized the orbiting vector field from

Chapter 4 given in (86) and illustrated in Figure 13. We set the desired convergence rate in

(86) as a constant and have agents solely optimize over each their commanded velocity.

To maximize distance between agents while maintaining a desired speed each agent is

assigned the following cost:

Ji =

∫ tf

t0

ρ1

2
(θi − vd)2dt+ ρ2

∑
j∈N c

∑
k∈N c,k 6=j

exp
(
−ρ3(xj − xk)T (xj − xk)

)
(134)

where ρ1 through ρ3 are weights. This cost will allow each agent to adjust it’s speed so

123

that, at the end of the time window, it is as far away from its neighbors as possible.

This example was simulated under four different distributed optimization scenarios:

dual-decomposition, consensus-based with a constant step-size, PI, and no negotiation (i.e.

agents solely use their own cost for gradient descent). In each scenario, the agents ef-

fectively used δexecute = 0 in Algorithm 3 to illustrate the convergence qualities of the

distributed optimization algorithms and to show that very little optimization time can be

used to achieve desirable results.

The results of the simulations can be seen in Figures 33, 34 and 35. When not using a

distributed optimization technique, the agents are not able to spread out effectively. They

are essentially performing a greedy optimization, doing what seems best for them without

any concern for the collective whole. Because of the communication topology, adjacent

agents cannot see each other and thus act without knowing that they are getting close to

each other.

Much better results are seen when using distributed optimization. Despite not being

able to see or speak to neighboring agents, agents in the network help each other to avoid

getting close to each other and effectively spread out around the circle. Similar convergence

characteristics to the examples in Chapters 2 and 3 are observed. The consensus method has

a damped convergence with the optimal not reached, dual-decomposition has an oscillatory

Figure 33: This illustrates the utility of the proposed MPC framework. From left to right
is shown GI , the starting configuration, result of agents not negotiating, and the result of
agents using dual-decomposition to negotiate. The result of consensus with constant step
size is not shown as it is very similar to using dual-decomposition. The result of consensus
with diminishing step-size is not shown as it does not converge.

124

0 10 20

2

3

4

5

Time(s)
0 10 20

2

3

4

5

Time(s)
0 10 20

2

3

4

5

Time(s)
0 10 20

2

3

4

5

Time(s)

Figure 34: This figures shows each agents opinion of what the velocity should be of the
blue colored agent. From left to right are the results from dual-decomposition, consensus
with constant step-size, PI, and no distributed optimization.

0 5 10 15 20
15

20

25

30

Time(s)

C
os

t

Dual
Consensus
PI
No Opt

Figure 35: This figure shows the resulting cost versus time for each of the four simulations,
namely, distributed optimization using dual-decomposition, the consensus based method
with constant step-size, the consensus method with diminishing step size, and no distributed
optimization.

response, and PI technique oscillates until agreement at which time its convergence looks

very similar to the consensus method.

6.5 Conclusion

In this chapter we have presented a framework based on parameterized feedback control

laws for performing distributed MPC of networked multi-agent systems. This allows for the

communication and optimization of state trajectories in a distributed manner. To perform

distributed MPC we characterized the information necessary for each agent to perform the

optimization at each step and found that dynamic dependencies cause required information

between agents to propagate down dynamic dependencies whereas cost dependencies did

125

not. We presented an example using this framework which showed that the performance

can be greatly improved versus a greedy approach without negotiation.

126

CHAPTER VII

DISTRIBUTED VIRTUAL LEADER FORMATION CONTROL

Formation control could be considered a canonical problem in multi-agent systems. Solv-

ing the formation control problem requires agents to work together in a distributed manner

to cooperatively produce a desired, collective outcome. A successful moving formation

control framework must consider the motion constraints of both the individual agents and

the collective whole while respecting the communication constraints imposed by the net-

work.

In this chapter we present a moving formation control example as the culmination of

the concepts presented in previous chapters. In Chapter 3, formation control was discussed

in terms of a distributed optimization problem. Agents optimized over different parameters

that affect the structure of the formation allowing for a desirable collective outcome for a

stationary formation. In Chapter 6, a behavior-based MPC framework was established to

allow agents to consider their future states and adapt parameters appropriately. In Chapter

5, arc-based motions were discussed as a possible motion primitive for natural movement

of a wheeled robot.

We combine these aspects to develop a virtual-leader formation control example. The

virtual-leader executes an arc-based motion which can be exploited by follower agents to

stay in position while the formation moves. Agents in the network negotiate over both

the motion of the virtual leader and the parameters affecting the structure of the forma-

tion. Thus, the movement and structure of the network is maintained in a completely de-

centralized fashion. Network communication restraints are respected and no single agent

performs a significant amount of the computation. Using the behavior-based multi-agent

MPC framework, agents simulate their own and neighboring agents’ actions into the future

127

to better maintain the structure of the formation while avoiding collisions with obstacles.

To present the distributed virtual leader approach to formation control, the remainder

of the Chapter will proceed as follows: After a brief introduction to leader-based formation

control in Section 7.1, the behavior to be executed by the individual agents will be devel-

oped in Section 7.2. Then, in Section 7.3, the interactions between agents and the control of

the collective formation will be discussed. The chapter will end with an example in Section

7.4 and concluding remarks in Section 7.5.

7.1 Virtual Leader Formation Control Background

As the formation control problem includes many intriguing difficulties, many approaches

have been developed. In this section we discuss three classes of formation control problems

which directly affect our virtual-leader approach.

The first class to be considered consists of local or relative approaches. The formation

can be defined in terms of local interactions between agents, such as inter-agent distances

(see, for example, [57, 59, 30] and the references therein). Once the agents know where

they should be relative to neighboring agents, control laws can be designed to ensure that

the agents settle into the correct position. The approach has the advantage that agents need

not know where they are. They solely rely on information local to them, such as distance to

neighboring agents. However, an apriori analysis of the network must be made to ensure the

desired structure of the formation is maintained. Basically, each agent must have enough

interactions with neighboring agents to maintain its position rigid inside the structure of

the formation.

Relaxing the conditions on the underlying graph structure often comes at the cost of

requiring global position measurement (see, for example [50] and the references therein),

which is the approach taken in this chapter. Methods of course exist for relaxing global

position requirements. In [50], knowledge of a leader’s motion along with the relative

position of the leader with respect to an agent is enough for that agent to maintain its correct

128

position in the formation. Generalizing this idea, it is also conceivable that distributed

estimation, e.g. [78, 73], could be utilized to have only a number of informed agents,

although this is out of the scope of the presented work.

The second approach we consider as a background for our work is that of leader based

control. One or more agents can be informed with global position information and act ac-

cordingly, e.g. [57]. Other agents then use controllers designed to follow the leader agents.

To be able to incorporate the performance of the agents in maintaining the formation struc-

ture, both [65] and [91] developed constructions where a virtual leader and structure is

introduced to the system. The virtual leader is basically a central computing component

capable of communicating with all agents in the network. The virtual structure is not unlike

the construction in Chapter 3 where knowledge of the virtual leader position and orientation

allows agents to move into a desired position in the formation. In this fashion, feedback

can be introduced into the moving formation as the virtual leader can design its motion to

accommodate each individual agent.

The final approach we consider is that of an MPC framework (see for example [39] and

the references therein). In [39], agents cooperatively perform MPC to minimize the error

between relative distances and desired displacements. The MPC formulation allows for a

wide array of motions by the agents and the collective whole. Guarantees, such as collision

avoidance, are provided through constraints in the optimization problem. Adaptability was

a key factor emphasized in [39] as they argued that local control laws are difficult to update

on the fly.

We incorporate aspects from each of these approaches to design a behavior-based MPC

framework. First, control laws are designed to ensure agents converge to their respective

position in the network relative to a leader agent. To avoid a central computing component,

we use a virtual leader controlled through distributed optimization. Behavior-based MPC

is employed to control the motions of the agents through parameters affecting the structure

of the formation as well as parameters controlling the motion of the virtual leader.

129

7.2 Arc-based Leader-follower Control

A behavior-based design allows the system to act collectively as a whole without a need for

excessive communication. A key element in the behavior-based MPC formulation is the

underlying behavior that agents will be executing. To implement a virtual leader behavior-

based MPC formulation, this section focuses on the design of the behavior to be used by

each agent to maintain its desired position in the network.

To design a leader-follower control, we take concepts from Chapter 5 in which arc-

based motion is exploited to simplify the motion problem. In this section, a controller will

be designed to allow a follower agent to stay in formation with a leader that is executing a

constant arc motion. The control law will be developed using the diffeomorphism control

approach presented in Chapter 5 for reference following. This immediately allows for a

proof of ε-tracking of the desired position. We then show that the designed control can

actually achieve perfect tracking. As a final aspect to the behavior-based motion control

design, a term is included for obstacle avoidance.

7.2.1 Epsilon-tracking Formation Control

To define the desired ε-tracking controller for a follower agent, we first examine the motion

of the leader agent. The desired follower motion can then be derived. From the follower

agent’s desired motion, the desired motion of the ε-point can be defined which will lead

to the definition of an ε-tracking controller. A diagram is provided in Figure 36 for the

different positions and motions being considered.

7.2.1.1 Leader Motion

The leader is defined such that it has a position, ql1, and orientation, ψl. It is assumed

that the leader agent executes an arc motion with the unicycle motion model in (5). We

1Note that we use a slight change of notation in this chapter due to the fact that there are various positions
to keep track of. Thus, we use q to denote a position with subscripts to distinguish between positions. We
continue to use ψ to denote orientation, with the subscripts again used to clarify which orientation.

130

ψl

ql
qfd

qfdǫ

ψfd

qf

ψf

qfǫ

Figure 36: This diagram shows the leader position, ql, and orientation, ψl, the actual and
desired follower positions, qf and qfd , and orientations, ψf and ψfd as well as the actual and
desired follower ε-points, qfε and qfdε . The leader position and desired follower position
are located on circles as the motion of each will be on circles with the same center, but
different radii.

redefine the unicycle motion model using a unit vector hψ = [cos(ψ), sin(ψ]T , to denote

the direction of motion as this will permit a concise development of the follower motion.

This allows the motion of the leader to be defined as q̇l
ψ̇l

 =

vlhψl
ωl

 , (135)

where vl > 0 and ωl denote the translational and rotational velocities of the leader agent.

As depicted in Figure 36, executing constant vl and ωl corresponds to the leader exe-

cuting a circular motion. The radius of the circle can be written as ρl = vl
|ωl|

, with a center

located at

c =
vl
ωl
Jhθl + ql, (136)

J =

0 −1

1 0

 ,
where J corresponds to the ninety degree rotation matrix. The center, c, can be directly

extracted using the solution to the unicycle motion model in Theorem 15 of Chapter 5.

131

7.2.1.2 Desired Follower Motion

Associated with the follower agent is both its actual and desired positions, written as qf

and qfd , respectively, with corresponding orientations ψf and ψfd . It is assumed that the

follower agent also has a unicycle motion model with velocities vf and ωf . In this section

we focus on the desired motion of the follower agent, with a discussion of the actual motion

in Section 7.2.1.4.

A relationship between the leader position and the desired follower position can be

defined using a number of parameters to represent the structure of the formation. As dis-

cussed in Chapter 3, the formation can be defined in terms of a rotation, scaling, nominal

follower position, and translation. To incorporate the virtual leader into the formation, its

orientation is considered part of the rotation and its position is considered as the translation.

This allows the desired follower position to be defined as

qdf = R(ψl + Ψ)γτf + ql, (137)

where Ψ is a scalar affecting the rotation of the formation with respect to the leader, γ is a

scalar representing the scaling of the formation, and τf is the nominal position of follower

agent when the leader is at the origin and ψl = 0.

Assuming that τf , γ, Ψ, vl, and ωl are all constant, the desired position of the follower

agent will always be located at a constant offset from the leaders point of view. This cor-

responds to the desired position making one circular loop around the center of the leader’s

circle each time the leader makes one loop, although it may loop at a different radius. As

the desired position is moving around a circle, the desired orientation can immediately be

computed. Define the angle off the x-axis pointing to the center of the circle from qfd as

φfd = atan2(c2 − qfd2 , c1 − qfd1). The desired orientation of the follower can be extracted

by rotating φfd by ±π
2
, depending on which way the leader is moving around the circle.

132

This allows the orientation to be expressed as

ψdf =


ψl ωl = 0

−sign(ωl)
π
2

+ φfd otherwise
. (138)

Note that the sign(ωl) term in the calculation of ψdf accounts for the direction of orbit

around the center point, as depicted in Figure 37.

As the desired position of the follower agent is also moving around a circle, the motion

of the desired follower position can be defined as executing a unicycle motion model with

constant translational and rotation velocities, denoted as vfd and ωfd . The value for ωfd can

immediately be deduced from the fact that the desired position is moving around a circle

at the same frequency as the leader agent. As the orientation is always perpendicular to

the circle, the desired orientation of the follower changes at the same rate of the leader, i.e.

ωfd = ωl. The translational velocity of the follower agent can then be extracted from the

radius of curvature and the rotational velocity as

vfd =


vl ωl = 0

ρfd|ωl| otherwise
, (139)

where ρfd denotes the radius of the circle and can be calculated as ρdf = ||qdf − c||, which

is constant for constant ωl and vl. Similar to the leader motion defined in (135), the desired

ψfd = φfd + π
2

qfd
φfd

ωl > 0

ψfd = φfd + π
2

qfd

φfd

ωl < 0

Figure 37: The left and right images show the desired orientation of the follower for ω < 0
and ω > 0 respectively. The arrow-heads on the circles denote the direction of motion
around the circle.

133

follower motion can be written as: q̇fd
ψ̇fd

 =

vfdhψfd
ωfd

 . (140)

7.2.1.3 Desired ε-point Motion

Recalling the discussion in Section 5.2.1, the center of the robot has a non-holonomic

constraint, but a point directly in front of the center of the robot has no such constraint

(refer to Figure 26 of Chapter 5 for an illustration of the relationship between the actual

point and ε-point). For this reason, it is important to define the motion of a point directly in

front of the desired position, referred to as the desired ε-point.

The positions of the desired ε-point is denoted qfdε . It can be expressed in terms of qfd

and ψfd as:

qfdε = qfd + εhψfd .

The motion of the desired ε-point is denoted as q̇fdε . Noting that ḣψ = ωJhψ, the desired

motion of the ε-point can be written as:

q̇dfε = vdfhfd + εωfdJhfd . (141)

Also, note that q̈dfε is used in a proof of convergence, so (141) can be differentiated to

obtain:

q̈dfε = vdfωdfJhfd − εω2
fd
hfd . (142)

7.2.1.4 ε-Point Control

We are now ready to define the desired control law to be used as the leader-follower be-

havior. The same control scheme in Chapter 5 is followed to control the desired ε-point.

Denote the position of the ε-point as qfε . It can be calculated from the position and orien-

tation of the follower as:

qfε = qf + εhψf .

134

As discussed in Section 5.2.1, assuming a unicycle motion model allows the time derivative

of the ε-point to be directly controlled. A proportional control law can then be used to

ensure ε-tracking of the desired trajectory. As a review, this means that the ε-point will

converge at an exponential rate to its desired trajectory, causing the robot to converge to a

distance of ε away from the trajectory. We give the control law again using the notation

presented in this chapter:

q̇fε = q̇dfε + kp(qdfε − qfε), (143)

The commanded velocities for the follower agent can be calculated directly from q̇fε as:vf
ωf

 =

1 0

0 1
ε


 cos(ψf) sin(ψf)

− sin(ψf) cos(ψf)

 q̇fε , (144)

where vf and ωf are the commanded translational and rotational velocities of the follower

agent.

7.2.2 Perfect Tracking Using Approximate Control

As previously mentioned, the controller in (143) will achieve ε-tracking of qfdε (t). This

results in the actually position of the robot, qf (t), to converge at an exponential rate to a

distance of ε away from qfdε (t). Due to the fact that we have designed qdε(t) to be a distance

of ε away from the desired point of the robot, this gives us a guarantee that the robot will

converge to within 2ε of its desired position on the reference trajectory, still achieving ε-

tracking, albeit at a distance of 2ε. We now show that, despite the fact that the robot is

using an approximate-diffeomorphism controller, it can actually achieve perfect tracking.

As the robot achieves ε-tracking, the set of possible positions of the robot at time t forms

a circle of radius ε around the point qfε(t), as depicted in Figure 38. As mentioned, the worst

possible position at any given time for the robot would be a distance of 2ε from the desired

point, qfd(t). But qfd(t) also exists on the circle, making it possible that qf (t) = qfd(t).

Since we know that the position of the robot will converge to the circle with its orien-

tation pointed towards the center, we need only to evaluate the orientation of the robot in

135

qfd

qfdǫ

ǫ ψfd

Figure 38: This figure shows the set of all positions that could satisfy qfε = qfdε . The set
forms a circle of radius ε, with qfd lying on the circle and ψfd pointing towards the center
of the circle.

the constraint set. The reason being is that each value of ψf ∈ [−π, π) will correspond

to a unique point on the circle. So if ψf (t) = ψfd(t) then we know that qf (t) = qfd(t).

Therefore, we evaluate the following candidate Lyapunov function:

V = −h′ψfhψfd + 1, (145)

which is zero for ψf (t) = ψfd(t) and positive for ψf (t) − ψfd(t) ∈ (−π
2
, π

2
). Taking the

time derivative of V we obtain:

V̇ = −ḣ′ψfhψfd − h
′
ψf
ḣψfd

= −ωf (Jhψf)′hψfd − ωfdh
′
ψf
Jhψfd

= −ωfh′ψfJ
′hψfd − ωfdh

′
ψf
Jhψfd

= −1

ε
(Jhψf)

′qdεh
′
ψf
J ′hψfd − ωfdh

′
ψf
Jhψfd

= −1

ε
(Jhψf)

′(vfdhψfd + εωfdJhψfd)h′ψfJ
′hψfd − ωfdh

′
ψf
Jhψfd

= −vfd
ε

(h′ψfJ
′hψfd)2 + (1− h′ψfhψfd)ωfdh

′
ψf
J ′hψfd

(146)

The first term is always negative, but the second term is not. However, we can capitalize

on the fact that h′ψfhψfd ≈ 1 around ψf = ψfd . So, for some region around ψf = ψfd ,

V ≤ 0 with strict inequality for ψf 6= ψfd . Thus, the
vfd
ε

term will dominate for some

region around the origin and the bigger the value of
vfd
ε

in comparison to ωfd , the larger the

region of convergence.

136

−2 0 2
−15

−10

−5

0

5

θ
f
 − θ

d
 (rad)

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

θ
f
 − θ

d
 (rad) 0 2 4 6

0

0.5

1

1.5

2

2.5

3

Initial orientation difference (rad)

C
on

ve
rg

en
ce

 T
im

e
(s

)

Figure 39: The left and middle images show the Lyapunov function, V , given in (145), as
well as its derivative, V̇ . V is plotted as a solid line and V̇ is plotted as a dotted line. The
left image shows the results for vfd = .5, ε = .1, and ωfd = 5 and the middle shows results
for vfd = .5, ε = .1, and ωfd = 100. The right image shows convergence times for the
values in the middle image for all possible deviations in orientation, showing that V may
be conservative.

Depicted in Figure 39 is the Lyapunov function V and its time derivative V̇ for values

of vfd = .5, ε = .1, and ωfd = 5. Note that ωfd = 5 is quite extreme compared to what

was seen in the experiments. The region of convergence derived from V for the mentioned

values is ψf − ψfd ∈ [−1.79, π). We note that the region of convergence determined by

V also seems quite conservative. For the very extreme case of ωfd = 100, vfd = .5, and

ε = .1, Figure 39 also depicts the time for convergence to within 1% of the desired value

for ψf − ψfd ∈ [−π, π]. Convergence is always achieved.

7.2.3 Obstacle Avoidance Control

Much like we have capitalized on behavior-based design to ensure an agent can follow an-

other, we can also use behavior-based design to ensure that the agents avoid obstacles. The

overall obstacle avoidance scheme will include a term in the cost for agents to avoid getting

near obstacles, but we include a term in the controller as somewhat of an “emergency” mea-

sure for when the gradient-based optimization does not have all agents completely avoid

the obstacles.

To avoid obstacles, we use the vector-field approach given in [2] in conjunction with

the ε-point controller discussed in the previous sections. We assume there are Nobs circular

137

obstacles of radius R, where the two-dimensional center points are available to each agent

as o1, ..., oNobs . The controller assumes a sphere of influence, S, around the obstacle where

the avoidance behavior will influence the motion of the robot. The avoidance controller for

the follower agent can then be stated as:

uavoid =

Nobs∑
j=1

A(||qf − oj||)(qf − oj), (147)

where

A(d) =


0 d > S

S−d
S−R d ≤ S

.

With the obstacle avoidance behavior in hand, we can define the overall behavior of

each robot in the network. The obstacle avoidance behavior is combined with the follower

behavior developed in previous sections. This allows the overall behavior which each fol-

lower robot will execute to be written as:

q̇fε = q̇dfε + kp(qdfε − qfε) +

Nobs∑
j=1

A(||qf − oj||)(qf − oj), (148)

where the input velocity commands can be obtained from q̇fε using (144).

7.3 Virtual Leader Behavior-based MPC

With the behavior-based approach to leader tracking in the previous section, we are now

ready to discuss the interactions between the agents in the network. We first discuss the dif-

ferent parameters that each agent will need to keep track of, which will lead to a statement

of the algorithm to be employed. We then discuss two details important for determining

the agents’ interactions: the cost to be minimized and the communication topology.

7.3.1 Virtual Leader Algorithm

To implement the virtual leader approach, agents need to communicate and negotiate over

various parameters. The parameters to negotiate upon are those that define the structure

and movement of the formation. Namely, agent i must maintain a vector of parameters,

138

ψi = [Ψi, γi, vil, ωil]
T , where the subscript i denotes that the variable is maintained by

agent i, Ψ and γ are the rotation and scaling of the formation, and (vl, ωl) is the velocity

pair that defines the motion of the virtual leader.

We note that, while the network of agents can find desirable values for vl and ωl in the

absence of obstacles, in the presence of obstacles, a very undesirable local minimum exists.

Namely, to avoid obstacles, the agents can simply stop moving. Thus, in the examples in

Section 7.4.2, vl is held constant and the agents solely steer the virtual leader using ωl.

Beyond the distributed optimization of the mentioned parameters, agents must also

come to agreement about the initial position and orientation of the leader, ql0 and ψl0 re-

spectively. While these could potentially be variables to be optimized, we found that simply

performing consensus (i.e. the proportional component of PI distributed optimization) over

the initial conditions provided better results . Performing consensus requires each agent

to also maintain its own version of the leader’s initial conditions, denoted as ql0i and ψl0i .

Beyond parameters to be negotiated, each agent must also communicate its initial state,

which we denote as x0i .

One key note to make is that the optimization and execution is performed simultanously.

In other words, agents optimize for δexecute seconds on future values. If the time that op-

timization is started is denoted as t0, agents are optimizing over the parameters that will

begin to be executed at time t0 + δexecute. This allows δexecute to be chosen such that the

optimization has a chance to converge before the parameters are employed. We emphasize

that for agents to move in unison, they must be in strict agreement on the virtual leader

motion and the parameters influencing the structure of the formation.

To account for the difference between variables being optimized and variables being

executed, we again use the added notation ψ̄i, v̄il, ω̄il, q̄il, ψ̄il to denote the values actually

being executed by the agent. The behavior-based virtual leader MPC algorithm can now

be stated in Algorithm 4. While the algorithm is simply a specific implementation of Al-

gorithm 3, we present it here for added clarity, giving the notation specific to the virtual

139

leader approach.

Algorithm 4 Behavior-based Virtual Leader MPC

1. Initialize t0 = t+ δexecute where t is current time.

2. Agents communicate parameters with neighboring agents:

(a) Formation structure and movement: ψi, γi, ωil (and optionally vil).

(b) Virtual leader initial conditions: qil, ψil.

(c) Agent initial conditions: x0i = xi(t0; t).

3. Update parameters:

(a) Update ψi, γi, ωil using distributed optimization.

(b) Update qil, ψil using consensus.

4. Repeat steps 2 and 3 until t = t0.

5. Set ψ̄i = ψi, v̄il = vil, ω̄il = ωil, q̄il = qil, ψ̄il = ψil.

6. Repeat steps 1 through 5.

7.3.2 A Note on Information Topology

One of the essential factors to consider in behavior-based MPC for multi-agent systems is

the information that each agent requires. In Section 6.3, required information in the net-

work was discussed in terms of cost and dynamic dependencies. Issues arise as undesirable

information dependencies can occur from having agent i’s cost depend on an agent j and

then agent j’s dynamics depend on agent k, with whom agent i cannot communicate.

The only dynamic dependency that exists in the proposed virtual leader approach is a

dependency between each agent and the virtual leader. If the virtual leader were a real

agent, all agents would require a communication link between themselves and the leader.

However, since the virtual leader is an artifact of distributed optimization, each agent need

only communicate with the agents that form part of its cost.

Since the virtual leader has no dynamic dependencies, it then stops any “flow” of addi-

tional required information. This allows us to use the set of indices for which agent i has

140

information, i.e. N I
i from Chapter 6, as the typical definition of a neighborhood set, i.e.

[57]. In other words, j ∈ N I
i iff agent j and agent i are able to communicate.

7.3.3 Cost Definition

An essential aspect to maintaining the structural integrity and desirable movement of the

formation comes through the definition of the cost. Similar to the DWA discussed in Sec-

tion 1.3.3 and developed in [24], we include terms in the cost to avoid obstacles (in our case

for all agents) while encouraging the orientation of the virtual leader to point towards the

goal location at the end of the optimization horizon. We also include a term in the terminal

cost to penalize deviation from the desired structure of the formation.

One further note is necessary before introducing the costs. Cost barriers, as presented in

Chapter 5 for collision avoidance and reference tracking, are not suitable for the gradient-

based distributed optimization. The reason being that, while presented in continuous time

in Chapters 2 and 3, actual implementation must be discretized. To discretize a similar dis-

tributed optimization algorithm, [88] used a small gain theorem which requires the gradient

to be bounded. Cost barriers, on the other hand, have an unbounded gradient, so they must

be avoided.

To encourage keeping distance away from obstacles, the instantaneous portion of the

cost consists of an exponential cost on proximity to obstacles. For faster convergence

of the optimization, agents also include their neighboring agents in the cost. Thus, the

instantaneous cost is defined as:

Li = −ρ1

2

∑
j∈N Ii

Nobs∑
k=1

(qij(t; t0)− ok)T
a 0

0 a

 (qij(t)− ok) (149)

where ρ1 is a weight, a is a scalar which directly affects the radius of influence of the cost,

and qij(t; t0) is agent i’s version of agent j’s position at time t computed at time t0. Note

that this cost allows the influence of the obstacle to be accounted for in the cost before

the agent gets so close that the obstacle avoidance behavior kicks in. Thus it encourages

141

obstacle avoidance while the obstacle avoid behavior ensures avoidance.

The terminal cost is designed to both maintain the structure of the formation as well

as encourage progression towards the goal. The first term penalizes deviation from a de-

sired scaling, the second penalizes deviation from agents desired position, and the third

encourages the leader to point towards the goal location. The cost can be written as:

Ψi =
ρ2

2
(γi − 1)2 +

ρ3

2

∑
j∈N Ii

||qij(t0 + ∆; t0)− qijd(t0 + ∆; t0)||2

+
ρ4

2
(ψil(t0 + ∆; t0)− ψild(t0 + ∆; t0))2,

(150)

where qijd(t0 + ∆; t0) is agent i’s version of what agent j’s desired position should be

using agent i’s version of the leader’s variables and ψild(t0 + ∆; t0) is the orientation that

would point from qil(t0 + ∆; t0) to the goal position. Care must be taken to ensure that

(ψil(t0 + ∆; t0)− ψild(t0 + ∆; t0)) ∈ [−π, π).

Many more costs are conceivable, such as costs on velocities, and positions, etc. In

particular, in the absence of obstacles, we found that the cost 1
2
||qil− qgoal||2 was particular

useful in helping to regulate vl so that the leader agent converged to the goal location,

qgoal. In the presence of obstacles, we found a constant leader velocity and the mentioned

orientation cost to work quite well in guiding the virtual leader.

7.4 Results
7.4.1 Measuring Formation Performance

To compare results between different trials, we evaluate the distance of each agent from its

position in the formation. However, the measure of distance from an agent’s position to its

desired position in the formation is not well-defined. It is complicated by the fact that the

agents use the rotation and scaling of the formation to adapt their motion.

Figure 40 shows an example of the current position of each agent plotted along side

the positions resulting from the global variables. A naive comparison would be to sum the

distances of each agent to its desired position. However, despite the fact that the agents

142

Figure 40: This figure shows the actual positions of the agents plotted as circles with solid
lines, the desired positions using the global variables as circles with dotted lines, and the
desired positions using the process in Section 7.4.1 as solid circles.

are not in their “desired positions” they are obviously very close to executing a line, as

they are supposed to be doing. Therefore, to measure the deviation of the agents from the

formation, we post-process the data to find values for the scaling, rotation, and center of

the formation which better fit the actual positions of the agents.

The scaling, rotation, and center of the formation can be computed using post-processing

by examining three agents. First, a value for the scaling can be found by examining the dis-

tance between two agents and comparing it with the nominal distance. In other words, let

the nominal distance between agents i and j be denoted as d̄ij = ||yi − yj|| and the actual

distance as dij = ||xi − xj||. An estimate for the scaling, as seen between i and j, can be

found as

γ̂ij =
dij
d̄ij
.

The estimate for the scaling, γ̂, as seen between three agents is just taken to be the average

of the scaling between each pair of agents.

The estimate of the position of the origin of the formation, q̂l, can be found by com-

puting the point closest to the three circles with centers at xi, xj , and xk and radii γ̂||yi||,

γ̂||yj||, and γ̂||yj||. Ideally there would be a unique intersection point between the three

circles, however, error in γ̂ and agent position makes this not the case.

From the center position of the formation and the scaling, the rotation of the formation

can then be found. Allow φnomi to denote the angle from the x-axis to yi, and φi to be

the angle off the x-axis to xi with q̂l being the origin. The estimate of the rotation of

the formation according to agent i can be calculated as ψ̂i = φi − φnomi . The estimate,

143

ψ̂, according the three agents is then the average, with care being taken to ensure ψ̂i ∈

[−π, π).

At each point in time, we evaluate all combinations of three agents. For each set of

three agents, the estimated parameters are extracted and the distance from all agents to the

desired position in the formation is computed using the estimates of the parameters. The

parameters selected for that particular point in time are chosen to be the parameters which

result in the lowest median distance from agents to their computed desired position. The

median is used, as opposed to the average, in an effort to remove the affect from agents

that are actually out of formation. As a measure of distance to formation, we then use the

average and maximum distance of any agent to its position in the formation.

The results of using the outlined process to find the desired positions of the agents is

shown in Figure 40. The desired positions match the actual positions of the agents much

better than simply using the global variables as a measure. This allows a truer measure of

whether or not the agents are in formation.

7.4.2 Virtual Leader Formation Results

To present an example of the virtual-leader behavior-based MPC framework, we present

two sets of trials. The two sets consist of agents forming a line formation and a GT forma-

tion (similar to the Georgia Tech logo). In each trial, agents used distributed optimization to

solve for ωl, γ, and ψ. The only centralized aspect of the trials was the occasional broadcast

of a new goal position for the leader, enabling the agents to traverse the entire environment

through a waypoint navigation approach.

We emphasize that the most important aspect for the agents to maintain the structure

of the formation is that within δexecute the disagreement between agents must be small.

In each trial, the gains for distributed optimization were set as kg = .1, kp = 2.5, and

kI = 1.5. Together with the costs in Section 7.3.3 and a value of δexecute = 0.4, the

distributed optimization had sufficient amount of time to achieve sufficient agreement.

144

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

1.5 2 2.5 3 3.5 4 4.5 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

3 3.5 4 4.5 5 5.5 6 6.5

2

2.5

3

3.5

4

4.5

5

5.5

−1 −0.5 0 0.5 1 1.5 2 2.5

3

3.5

4

4.5

5

5.5

6

6.5

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

1.5 2 2.5 3 3.5 4 4.5 5

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 4.5 5 5.5 6 6.5 7 7.5

1.5

2

2.5

3

3.5

4

4.5

5

−1.5 −1 −0.5 0 0.5 1 1.5 2

3

3.5

4

4.5

5

5.5

6

6.5

Figure 41: This figure shows the results from the equal gain trial (i.e. ρ1 = ρ2 = ρ3 =
ρ4 = 1) for the line formation on the top row and GT formation on the bottom row. The left
most image shows the initial environment and nominal positions of the agents. The right
three images show zoomed in images of the agents at different points in the environment.
The agents are shown as triangles, the obstacles are shown as solid circles, the waypoints
are shown as dotted circles, and the trajectory of the leader agent around the environment
is plotted as a solid line.

Each formation was run for two trials. The first trial consisted of the agents controlling

only the leader velocity, without regard to the structure of the formation. This was achieved

by setting ρ1 = ρ2 = ρ3 = 0 and ρ4 = 1. The second trial consisted of setting ρ1 = ρ2 =

ρ3 = 1. Basically a trial without tuning the costs.

We present the line as it shows the ability for agents to maintain a formation without

an underlying rigid structure. It is also highly rotationally variant, meaning as the line is

rotated it can move very differently between obstacles. In Figure 41, it is seen that the line

is able to use both the rotation and scaling parameters to navigate around obstacles while

maintaining the structure of the formation. Figure 42 shows that without tuning the costs,

a large reduction in both the maximum distance and average distance is attained.

The GT formation presents an example showing the ability for agents to maintain arbi-

trary structures. It is different from the line formation in that the structure of the formation

renders rotation much less useful. Figure 41 shows a resulting path of the formation as well

as multiple instances. The GT structure mainly used the scaling to avoid obstacles and ωl

145

0 20 40 60
0

0.05

0.1

0.15

0.2

Time (s)

D
is

ta
nc

e
(m

)

0

0.1

0.2

0.3

0.4

0.5

D
is

ta
nc

e
(m

)
0 20 40 60

0

0.05

0.1

0.15

0.2

0.25

Time (s)

D
is

ta
nc

e
(m

)

0

0.1

0.2

0.3

0.4

0.5

D
is

ta
nc

e
(m

)

Figure 42: This figure shows the formation error for the line formation on the top row
and the GT formation on the bottom row. On the left is shown the maximum and average
distance for each agent for ρ1 = ρ2 = ρ3 = ρ4 = 1. On the right is shown a bar graph
with the maximum and average distance for both trials. The left set of bars corresponds to
the results from leader-only control (i.e. ρ1 = ρ2 = ρ3 = 0, ρ4 = 1). The right set of bars
corresponds to the results from using ρ1 = ρ2 = ρ3 = ρ4 = 1. The value for the maximum
distance in the leader-only control trial was 1.23 for the line formation and 0.497 for the
GT formation.

to steer around them. Figure 42 again shows a large reduction in the error without tuning

the costs.

Both examples show the ability of the controller discussed in Section 7.2 to keep agents

in formation. The trials used a value of ε = 0.1, but the average distance from agents to the

desired position is far less than ε.

7.5 Conclusion

In this Chapter, a distributed virtual-leader formation control was developed as a culmi-

nation of many of the concepts presented in previous chapters. In particular it provided a

146

detailed example of the multi-agent behavior-based MPC approach presented in Chapter

6. The basic elements of the approach, an underlying behavior, costs, and an evaluation

of the communication dependencies were examined. Through the introduction of the opti-

mization framework presented with behavior-based MPC, the agents were able to maintain

formation, moving throughout an environment while keeping the structure of the formation

in tact.

147

REFERENCES

[1] ANGELI, D., CASAVOLA, A., and MOSCA, E., “Constrained predictive control of
nonlinear plants via polytopic linear system embedding,” International Journal of
Robust and Nonlinear Control, vol. 10, no. 13, pp. 1091–1103, 2000.

[2] ARKIN, R., Behavior-based robotics. The MIT Press, 1998.

[3] ARROW, K., HURWICZ, L., and UZAWA, H., Studies in Nonlinear Programming.
Stanford University Press, Stanford, CA, 1958.

[4] BEARD, R. and MCLAIN, T., Small unmanned aircraft: Theory and practice. Prince-
ton University Press, 2012.

[5] BOYD, S., Convex Optimization. Cambridge University Press, 2004.

[6] BOYD, S., PARIKH, N., CHU, E., PELEATO, B., and ECKSTEIN, J., “Distributed op-
timization and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[7] BROCK, O. and KHATIB, O., “High-speed navigation using the global dynamic
window approach,” in International Conference on Robotics and Automation,
Proceedings, vol. 1, pp. 341–346, IEEE, 1999.

[8] BROGAN, W. L., Modern Control Theory. New York: Quantum Publishers, 1974.

[9] BRYSON, A. and HO, Y., Applied optimal control: optimization, estimation, and
control. Hemisphere Publications, 1975.

[10] CAMPONOGARA, E., JIA, D., KROGH, B. H., and TALUKDAR, S., “Distributed
model predictive control,” Control Systems, vol. 22, no. 1, pp. 44–52, 2002.

[11] CANNON, M., “Efficient nonlinear model predictive control algorithms,” Annual
Reviews in Control, vol. 28, no. 2, pp. 229–237, 2004.

[12] CHEN, H. and ALLGÖWER, F., “A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205–
1217, 1998.

[13] CHISCI, L., FALUGI, P., and ZAPPA, G., “Gain-scheduling mpc of nonlinear sys-
tems,” International Journal of Robust and Nonlinear Control, vol. 13, no. 3-4,
pp. 295–308, 2003.

[14] CHOSET, H., LYNCH, K., HUTCHINSON, S., KANTOR, G., BURGARD, W.,
KAVRAKI, L., and THRUN, S., Principles of robot motion: theory, algorithms, and
implementations. MIT press, 2005.

148

[15] CONTE, C., VOELLMY, N. R., ZEILINGER, M. N., MORARI, M., and JONES,
C. N., “Distributed synthesis and control of constrained linear systems,” in American
Control Conference (ACC), pp. 6017–6022, IEEE, 2012.

[16] DIEHL, M., FERREAU, H., and HAVERBEKE, N., “Efficient numerical methods for
nonlinear mpc and moving horizon estimation,” Nonlinear Model Predictive Control,
pp. 391–417, 2009.

[17] DROGE, G. and EGERSTEDT, M., “Adaptive time horizon optimization in model
predictive control,” in American Control Conference (ACC), pp. 1843–1848, IEEE,
2011.

[18] DROGE, G. and EGERSTEDT, M., “Distributed parameterized model predictive con-
trol of networked multi-agent systems,” American Control Conference (ACC), 2013.

[19] DROGE, G., KINGSTON, P., and EGERSTEDT, M., “Behavior-based switch-time mpc
for mobile robots,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2012.

[20] DUNBAR, W. and MURRAY, R., “Distributed receding horizon control for multi-
vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549–558, 2006.

[21] DUNBAR, W. B., “Distributed receding horizon control of dynamically coupled non-
linear systems,” Transactions on Automatic Control, vol. 52, no. 7, pp. 1249–1263,
2007.

[22] EGERSTEDT, M., WARDI, Y., and DELMOTTE, F., “Optimal control of switching
times in switched dynamical systems,” in Proceedings. 42nd IEEE Conference on
Decision and Control, vol. 3, pp. 2138 – 2143 Vol.3, dec. 2003.

[23] FEIJER, D. and PAGANINI, F., “Stability of primal-dual gradient dynamics and appli-
cations to network optimization,” Automatica, vol. 46, no. 12, pp. 1974–1981, 2010.

[24] FOX, D., BURGARD, W., and THRUN, S., “The dynamic window approach to colli-
sion avoidance,” Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[25] G F, F., POWELL, J., and EMAMI-NAEINI, A., “Feedback control of dynamic sys-
tems,” 2001.

[26] GHARESIFARD, B. and CORTÉS, J., “Continuous-time distributed convex optimiza-
tion on weight-balanced digraphs,” in IEEE 51st Annual Conference on Decision and
Control (CDC), pp. 7451–7456, IEEE, 2012.

[27] GHARESIFARD, B. and CORTÉS, J., “Distributed continuous-time convex optimiza-
tion on weight-balanced digraphs,” IEEE Transactions on Automatic Control, To ap-
pear. Preprint available at http://arxiv.org/abs/1204.0304.

[28] GISELSSON, P. and RANTZER, A., “Distributed model predictive control with subop-
timality and stability guarantees,” in 49th IEEE Conference on Decision and Control,
pp. 7272–7277, 2010.

149

[29] GOERZEN, C., KONG, Z., and METTLER, B., “A survey of motion planning algo-
rithms from the perspective of autonomous uav guidance,” Journal of Intelligent and
Robotic Systems, vol. 57, no. 1-4, pp. 65–100, 2010.

[30] GOUVEA, J. A., LIZARRALDE, F., and HSU, L., “Formation control of dynamic
nonholonomic mobile robots with curvature constraints via potential functions,” in
American Control Conference (ACC), pp. 3039–3044, IEEE, 2013.

[31] HESPANHA, J. P., LIBERZON, D., ANGELI, D., and SONTAG, E. D., “Nonlinear
norm-observability notions and stability of switched systems,” IEEE Transactions on
Automatic Control, vol. 50, no. 2, pp. 154–168, 2005.

[32] HOWARD, T., GREEN, C., and KELLY, A., “Receding horizon model-predictive con-
trol for mobile robot navigation of intricate paths,” in Field and Service Robotics,
pp. 69–78, Springer, 2010.

[33] HURT, J., “Some stability theorems for ordinary difference equations,” SIAM Journal
on Numerical Analysis, vol. 4, no. 4, pp. 582–596, 1967.

[34] JADBABAIE, A., LIN, J., and MORSE, A., “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 988–1001, 2003.

[35] JADBABAIE, A., YU, J., and HAUSER, J., “Unconstrained receding-horizon con-
trol of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 46, no. 5,
pp. 776–783, 2001.

[36] JAN, A. and IJSPEERT, “Central pattern generators for locomotion control in animals
and robots: A review,” Neural Networks, vol. 21, no. 4, pp. 642 – 653, 2008.

[37] JOHNSON, S. G., “The nlopt nonlinear-optimization package.”

[38] JONES, C., PU, Y., RIVERSO, S., FERRARI-TRECATE, G., ZEILINGER, M. N., and
OTHERS, “Plug and play distributed model predictive control based on distributed
invariance and optimization,” in The 52nd Conference on Decision and Control, 2013.

[39] KEVICZKY, T., BORRELLI, F., and BALAS, G., “Decentralized receding horizon
control for large scale dynamically decoupled systems,” Automatica, vol. 42, no. 12,
pp. 2105–2115, 2006.

[40] KHALIL, H., Nonlinear systems. 3rd ed. Prentice hall, 2002.

[41] KIM, D. and KIM, J., “A real-time limit-cycle navigation method for fast mo-
bile robots and its application to robot soccer,” Robotics and Autonomous Systems,
vol. 42, no. 1, pp. 17–30, 2003.

[42] KIM, Y., KIM, S., and KWAK, Y., “Dynamic analysis of a nonholonomic two-
wheeled inverted pendulum robot,” Journal of Intelligent & Robotic Systems, vol. 44,
no. 1, pp. 25–46, 2005.

150

[43] KIRK, D., Optimal control theory: an introduction. Dover Publications, 2004.

[44] KRAJNÍK, T., VONÁSEK, V., FIŠER, D., and FAIGL, J., “Ar-drone as a platform for
robotic research and education,” in Research and Education in Robotics-EUROBOT
2011, pp. 172–186, Springer, 2011.

[45] KVATERNIK, K. and PAVEL, L., “A continuous-time decentralized optimization
scheme with positivity constraints,” in IEEE Conference on Decision and Control,
2012.

[46] KVATERNIK, K. and PAVEL, L., “Lyapunov analysis of a distributed optimiza-
tion scheme,” in 5th International Conference on Network Games, Control and
Optimization (NetGCooP), IEEE, 2011.

[47] LATOMBE, J., Robot motion planning. Springer, 1990.

[48] LAVELL, S. M., Planning Algorithms. Cambridge: Cambridge University Press,
2006.

[49] LIBERZON, D., Switching in systems and control. Springer, 2003.

[50] LIU, T. and JIANG, Z.-P., “A nonlinear small-gain approach to distributed formation
control of nonholonomic mobile robots,” in American Control Conference (ACC),
pp. 3051–3056, IEEE, 2013.

[51] LOBEL, I. and OZDAGLAR, A., “Distributed subgradient methods over random
networks,” in Proceedings of Allerton Conference on Communication, Control,
Computation, 2008.

[52] LOBEL, I. and OZDAGLAR, A., “Distributed subgradient methods for convex opti-
mization over random networks,” Automatic Control, IEEE Transactions on, vol. 56,
no. 6, pp. 1291–1306, 2011.

[53] LUENBERGER, D. and YE, Y., Linear and nonlinear programming (3rd ed.), vol. 116.
Springer, 2008.

[54] MANIATOPOULOS, S., PANAGOU, D., and KYRIAKOPOULOS, K. J., “Model pre-
dictive control for the navigation of a nonholonomic vehicle with field-of-view con-
straints,” in American Control Conference (ACC), pp. 3967–3972, IEEE, 2013.

[55] MARTIN, P. and EGERSTEDT, M., “Optimization of multi-agent motion programs
with applications to robotic marionettes,” Hybrid Systems: Computation and Control,
pp. 262–275, 2009.

[56] MAYNE, D., RAWLINGS, J., RAO, C., and SCOKAERT, P., “Constrained model pre-
dictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814,
2000.

[57] MESBAHI, M. and EGERSTEDT, M., Graph theoretic methods in multiagent
networks. Princeton Univerisity Press, 2010.

151

[58] MICHALSKA, H. and MAYNE, D., “Robust receding horizon control of constrained
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 38, no. 11,
pp. 1623–1633, 1993.

[59] MURRAY, R. M., “Recent research in cooperative control of multivehicle sys-
tems,” Transactions-American Society of Mechanical Enginerers Journal of Dynamic
Systems Measurement and Control, vol. 129, no. 5, p. 571, 2007.

[60] NAWAWI, S., OSMAN, J., and JOHARI, H., “Control of two-wheels inverted pen-
dulum mobile robot using full order sliding mode control,” in Proc. of the Conf. on
Man-Machine Systems, 2006.

[61] NEDIC, A. and OZDAGLAR, A., “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,
2009.

[62] NEDIC, A. and OZDAGLAR, A., “Subgradient methods for saddle-point problems,”
Journal of optimization theory and applications, vol. 142, no. 1, pp. 205–228, 2009.

[63] NELSON, D., BARBER, D., MCLAIN, T., and BEARD, R., “Vector field path fol-
lowing for miniature air vehicles,” IEEE Transactions on Robotics, vol. 23, no. 3,
pp. 519–529, 2007.

[64] OGREN, P. and LEONARD, N., “A convergent dynamic window approach to obstacle
avoidance,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 188–195, 2005.

[65] OGREN, P., FIORELLI, E., and LEONARD, N. E., “Cooperative control of mo-
bile sensor networks: Adaptive gradient climbing in a distributed environment,”
Automatic Control, IEEE Transactions on, vol. 49, no. 8, pp. 1292–1302, 2004.

[66] OLFATI-SABER, R. and MURRAY, R., “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520–1533, 2004.

[67] OLFATISABER, R., “Near-identity diffeomorphisms and exponential ε-tracking and
ε-stabilization of first-order nonholonomic se (2) vehicles,” in Proceedings of the
American Control Conference, vol. 6, pp. 4690–4695, IEEE, 2002.

[68] PALOMAR, D. and ELDAR, Y., Convex optimization in signal processing and
communications. Cambridge University Press, 2010.

[69] PARK, J. J., JOHNSON, C., and KUIPERS, B., “Robot navigation with model predic-
tive equilibrium point control,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4945–4952, IEEE, 2012.

[70] POLAK, E., Optimization: algorithms and consistent approximations, vol. 7. Springer
New York, 1997.

152

[71] PRIMBS, J. A., NEVISTIĆ, V., and DOYLE, J. C., “Nonlinear optimal control: A con-
trol lyapunov function and receding horizon perspective,” Asian Journal of Control,
vol. 1, no. 1, pp. 14–24, 1999.

[72] QUIGLEY, M., CONLEY, K., GERKEY, B., FAUST, J., FOOTE, T., LEIBS, J.,
WHEELER, R., and NG, A. Y., “Ros: an open-source robot operating system,” in
ICRA workshop on open source software, vol. 3, 2009.

[73] RAM, S. S., VEERAVALLI, V. V., and NEDIC, A., “Distributed and recursive param-
eter estimation in parametrized linear state-space models,” Automatic Control, IEEE
Transactions on, vol. 55, no. 2, pp. 488–492, 2010.

[74] RANTZER, A., “On prize mechanisms in linear quadratic team theory,” in 46th IEEE
Conference on Decision and Control, pp. 1112–1116, 2007.

[75] RANTZER, A., “Dynamic dual decomposition for distributed control,” in American
Control Conference, pp. 884–888, 2009.

[76] RIMON, E. and KODITSCHEK, D., “Exact robot navigation using artificial potential
functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501–
518, 1992.

[77] SAUNDERS, J. and BEARD, R., “Reactive vision based obstacle avoidance with cam-
era field of view constraints,” in Guidance, Navigation, and Control Conference,
2008.

[78] SAYED, A. H., TU, S.-Y., CHEN, J., ZHAO, X., and TOWFIC, Z. J., “Diffusion
strategies for adaptation and learning over networks: An examination of distributed
strategies and network behavior,” Signal Processing Magazine, IEEE, vol. 30, no. 3,
pp. 155–171, 2013.

[79] SCATTOLINI, R., “Architectures for distributed and hierarchical model predictive
control–a review,” Journal of Process Control, vol. 19, no. 5, pp. 723–731, 2009.

[80] SHAH, P. and PARRILO, P., “An optimal controller architecture for poset-causal sys-
tems,” Arxiv preprint arXiv:1111.7221, 2011.

[81] SHAMMA, J., Cooperative control of distributed multi-agent systems. Wiley Online
Library, 2007.

[82] STACHNISS, C. and BURGARD, W., “An integrated approach to goal-directed obsta-
cle avoidance under dynamic constraints for dynamic environments,” in International
Conference on Intelligent Robots and Systems, vol. 1, pp. 508–513, IEEE, 2002.

[83] STEWART, B. T., VENKAT, A. N., RAWLINGS, J. B., WRIGHT, S. J., and PANNOC-
CHIA, G., “Cooperative distributed model predictive control,” Systems and Control
Letters, vol. 59, no. 8, pp. 460–469, 2010.

153

[84] SUNDHAR RAM, S., NEDIĆ, A., and VEERAVALLI, V., “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal of optimization
theory and applications, vol. 147, no. 3, pp. 516–545, 2010.

[85] TERELIUS, H., TOPCU, U., and MURRAY, R., “Decentralized multi-agent optimiza-
tion via dual decomposition,” in KTH, Automatic Control, IFAC, 2011.

[86] TESCH, M., LIPKIN, K., BROWN, I., HATTON, R., PECK, A., REMBISZ, J., and
CHOSET, H., “Parameterized and scripted gaits for modular snake robots,” Advanced
Robotics, vol. 23, no. 9, pp. 1131–1158, 2009.

[87] TU, K.-H. and SHAMMA, J. S., “Nonlinear gain-scheduled control design using set-
valued methods,” in American Control Conference, 1998. Proceedings of the 1998,
vol. 2, pp. 1195–1199, IEEE, 1998.

[88] WANG, J. and ELIA, N., “Control approach to distributed optimization,” in 48th
Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pp. 557–561, 2010.

[89] WANG, J. and ELIA, N., “A control perspective for centralized and distributed con-
vex optimization,” in 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC), 2011.

[90] WEI, E. and OZDAGLAR, A., “Distributed alternating direction method of multipli-
ers,” in IEEE Conference on Decision and Control, 2012.

[91] YOUNG, B. J., BEARD, R. W., and KELSEY, J. M., “A control scheme for im-
proving multi-vehicle formation maneuvers,” in American Control Conference, 2001.
Proceedings of the 2001, vol. 2, pp. 704–709, IEEE, 2001.

[92] ZEGEYE, S., DE SCHUTTER, B., HELLENDOORN, J., and BREUNESSE, E., “Pa-
rameterized mpc to reduce dispersion of road traffic emissions,” in American Control
Conference (ACC), pp. 4428–4433, IEEE, 2011.

154

