

(Walter, Taubig, & Luth, 2010)

Abstract— Localization and mapping algorithms can allow a

robot to navigate well in an unknown environment. However,

whether such algorithms enhance any specific robot mission is

currently a matter for empirical validation. In this paper we

apply our MissionLab/VIPARS mission design and verification

approach to an autonomous robot mission that uses

probabilistic localization software.

Two approaches to modeling probabilistic localization for

verification are presented: a high-level approach, and a sample-

based approach which allows run-time code to be embedded in

verification. Verification and experimental validation results

are presented for two waypoint missions using each method,

demonstrating the accuracy of verification, and both are

compared with verification of an odometry-only mission, to

show the mission-specific benefit of localization.

I. INTRODUCTION

One of the most impactful recent developments in
robotics has been efficient mapping and localization
algorithms [1]: Techniques whereby a robot can use
information from its sensors to construct a map of its
environment and, at the same time, determine its location
with respect to this map. These tools can allow a robot to
navigate more effectively in an environment of a-priori
unknown geometry. However, whether such algorithms
enhance any specific robot mission is currently a matter for
empirical validation.

Formal verification can be used as a design tool to
determine whether a piece of robot software will function as
desired without having to execute the software physically.
The field has made significant strides in recent years with the
development of model-checking [2] and SMT engines [3].
However, it can at best produce an approximation of robot
performance, due to the undecidability of the underlying
verification problem. A crucial issue therefore in selecting a
verification approach is to understand what aspects of the
robot software problem to focus on. Behavior-based robot
programming is an important tool in autonomous robotics
because it can yield programs that are robust to uncertainty
about exactly what environment the robots will face during
execution. For this reason, verification of behavior-based
robot programs has become a topic of interest [4] [5] [6], and
we focus on that approach here. In recent work [7], we have
integrated probabilistic methods with behavior-based

*This research is supported by the Defense Threat Reduction Agency,

Basic Research Award #HDTRA1-11-1-0038.
D.M. Lyons, F. Tang and P. Tang are with the Dept. of Computer &

Information Science, Fordham University, Bronx NY 10458, USA (Ph:
718-817-4485, Fx: 718-817-4488, Em: dlyons@cis.fordham.edu).

R.C. Arkin, S. Jiang and M. O’Brien are with the Mobile Robotics

Laboratory, Georgia Institute of Technology, GA 30332, USA (Em:
arkin@cc.gatech.edu).

approaches; this is the first time to our knowledge that a
formal V&V method has been applied to such a system.

In research work for the Defense Threat Reduction
Agency, we have developed an efficient approach to
verification of behavior-based multi-robot software that
includes a probabilistic environment model [8]. Rather than
addressing purely computational verification problems such
as absence of deadlock or absence of run-time errors [9] [10],
or verifying software generated control signals without
consideration of the physical platform [11], our work focuses
on the interactions of the mission software with a complex
and uncertain environment model. While verification
approaches that leverage automated theorem proving and
SMT frequently do employ models of the environment [12],
in those approaches verification may not be completely
automated, and uncertainty may not be included [13],
whereas we have established both of these as requirements.

In this paper we address the problem of automatic
verification of behavior-based software that includes a
probabilistic localization component, for the first time to our
knowledge. This is challenging because it would appear to be
necessary to show that localization will generate an improved
estimate of the actual physical location of the robot for all
map geometries that offer sufficient information. Certainly
this requires an environment model, separate from the
software model, that includes the physical location of the
robot, the geometry of the map, and the relationship between
these and the sensor measurements. Uncertainty in physical
location (at the least) needs to be modeled. However,
verifying over all possible environment models, or even a
sizeable subset of this deemed to have sufficient information
for effective localization, is combinatorially challenging.

Our approach is somewhat different: We argue that the
purpose of localization is to improve mission performance,
and so our approach is to generate performance results for a
behavior-based mission [7] with and without localization,
thereby verifying whether including localization has been of
value to the mission performance criteria. This is in direct
contrast to just evaluating the accuracy of localization,
without regard to whether it helped the mission in which it
was included. Furthermore, while we are verifying any
potential execution of the mission software, we verify all
those potential executions for a single map. We will conducte
mission verification using a map generated by a probabilistic
algorithm.

The platform that we use for verification is the
MissionLab mission design toolkit [15] with the VIPARS
mission verification module [8]. Robot missions are
constructed using the MissionLab GUI, and can be

Formal Performance Guarantees for

Behavior-based Localization Missions*

D. M. Lyons Senior Member, IEEE, R. C. Arkin Fellow, IEEE, S. Jiang Student Member, IEEE,

M. O’Brien, F. Tang, P. Tang

mailto:arkin@cc.gatech.edu

autotranslated [16] to the formal representation used in
VIPARS for verification. We also close the loop by
comparing verification results with experimental validation
for the mission. In this paper, MissionLab is used to generate
a mission that executes on a Pioneer 3-At robot equipped
with SICK laser sensor running under ROS and using AMCL
[17] for localization. We explore two ways to represent
localization during verification. One approach just represents
the functionality of localization at a high level. A second
approach uses the actual ROS AMCL code during the
verification process. Results for each of these approaches is
presented and compared with experimental validation results.

II. SYSTEM ARCHITECTURE

As robots grow in complexity along with their task
demands, so do the opportunities for their failures and the
difficulty to foresee those failures. Poor judgments of robot
capabilities have led to failures of many robotic systems [18].
Furthermore, critical emergency response missions are
typically characterized by a stringent window of opportunity
for successful action. Therefore, it is imperative that the
performance of robotic systems be guaranteed before mission
execution. The goal of our research is to provide such
performance guarantees, which mission operators can use to
make the appropriate decision regarding robot deployments.
The result of our research effort is a verification framework
VIPARS, which provides the performance guarantee for a
given mission based on how well the specified performance
criteria are satisfied by the given control program, robot, and
the environment models.

Figure 1: System Architecture (reproduced from [14])

The verification framework, VIPARS [8], is built upon
MissionLab [15], a behavior-based robot mission
specification environment (Fig. 1). MissionLab provides a
usability-tested graphical programming interface, where the
robot’s program is specified in the form of a finite state
automaton (FSA), assembled from a library of primitive
behaviors. The output of VIPARS is the performance
guarantee, currently quantified as probability distributions,
that describes the likelihood of mission success. This output
effectively forms a feedback loop that allows the mission
operator to take preemptive measures against potential
mission failures. While we have examined the performance
guarantees of various robotic missions using VIPARS, this
paper extends the capability of the verification framework to
address the verification of probabilistic behaviors [7] – i.e.,

robot behaviors whose underlying algorithms are
probabilistic (e.g., SLAM).

III. ENVIRONMENT MODEL FOR LOCALIZATION

In prior work [8] [14] [16], Lyons et al. designed a
probabilistic framework for verifying the performance of
autonomous behavior-based robot missions in uncertain
environments. The behavior-based mission is specified in
MissionLab [15] and is translated from MissionLab’s
internal presentation to a process-algebra notation PARS
(Process Algebra for Robot Schemas). Environment models
are also processes in this notation and we proposed that a
standardized set of environment models could be used to
capture different classes of environment (e.g., motion
uncertainty [8]; obstacle uncertainty [14]).

A. Automatic Verification with VIPARS

A behavior-based program and its environment is modeled
in PARS as a set of interconnected, recurrent processes.
Summarizing from [8]: a process 𝑷 is written as:

𝑷〈𝒖𝟏, … , 𝒖𝒏〉(𝒊𝟏, … , 𝒊𝒋)(𝒐𝟏, … , 𝒐𝒌)〈𝒗𝟏, … , 𝒗𝒎〉 (1)

where u1,…,un are the initial values for the process variables,
i1,…,ij and o1,…,ok are input and output port connections,
and v1,…,vm are final result values of the process. Processes
compute results from initial values, but may also be
influenced by any communications that occur over port
connections (points of interaction between a controller and
its environment model). Process variables can be of a variety
of data types and can be random variables.

 Processes are defined compositionally as combinations
of other processes using composition operators: parallel (‘|’),
disabling (‘#’) and sequential (‘;’). Bounded recursion is
captured using tail-recursive (TR) process definitions,
written for example:

𝐏〈𝑥〉 = 𝐐〈𝑥〉〈𝑦〉 ; 𝐏〈𝑦〉 (2)
A variable flow function (fP) is associated with each 𝐏 that

maps the values of variables at the start of each recursive
step to those at the end. The flow-function for atomic
processes are specified a-priori, and those for composite
process are built up from the flow functions of components.

The system to be verified is expressed as the parallel,
communicating composition (Sys) of robot controller (Ctr)
and environment model processes, (Env) e.g.:

Sysr1,r2

= Ctrr1(a)(b) | Envr2(b)(a)
= Sys’r1,r2 ; Sys fSys(r1,r2) 

(3)

fSys (r1,r2) = (fSys,r1 (r1,r2), fSys,r2 (r1,r2)) (4)

In eq. (3), the input of Ctr is connected to the output of Env,
(a), and the output of Env is connected to the input of Ctr,
(b). In [8] we develop an interleaving theorem and
associated algorithm Sysgen with linear computational
complexity, by which the parallel, connected network of
process on the top line of eq. (3) can be converted to the TR
process on the second line, and from which a system flow
function, e.g. (4), can be automatically extracted. When r1
and r2 are random variables, eq. (4) relates random values at
time t to those at t+1. These are the basis of a Dynamic
Bayesian Network (DBN) [19] used to carry out filtering,
forward propagation of probability distributions.

fSys,r1 (r1,t ,r2,t) = P(r1,t+1 |r1,t , r2,t) (5)

Random variables are represented as multivariate mixtures

of Gaussians, and operations on random variables are

automatically translated by VIPARS into operations on

distributions [20]. Although [8] discusses more complicated

performance guarantees, we basically restrict our attention to

the guarantee that a mission will achieve some criterion on

environment variables (usually a spatial accuracy for a

waypoint goal and/or a temporal requirement for achieving

the mission) with probability greater than a threshold before

a time-limit has expired. We demonstrated that this approach

is fast and accurate when validated against physical

executions (e.g., most recently [14]).

The system process Sys for the localization mission is

shown in eq. (6).

 Sys = (Mission (clp, clh, cl)(cv) |
 Mapsysmap()(cm) |
 LocalizationD0(cp,co,ch,cl,cm)(clp,clh) |
 MB_Laserms, mo ,lo(cm,cp,ch)(cl)) |

 RobotP0,H0(cv)(cp, ch, co) . (6)

The Mission process is the translation of the waypoint

mission in Section II, and is fundamentally similar to all

prior waypoint missions we have verified and validated.

Robot is the environment model, capturing the motion and

odometry error and interactions with obstacles, also

fundamentally similar to our prior work.
However, there are three new processes: In the behavior-

based localization approach [7], the obstacle avoidance
‘sensor’ gets its information from the map, rather than
directly from measuring sensory input. Map makes mapping
information available on its output cm; MB_Laser uses the
map to generate map-based laser data on its output cl, and
Localization implements a localization method using the map
and laser inputs. The output of Localization, clp, is the
localized position used by the Mission process. Thus the
probabilistic map replaces the direct sensor measurements
typically used in behavior-based control.

B. Map Representation

A key difference between this localization mission and
prior missions to which we have applied our verification
approach [8] [14] [16] is the map and the role in plays in the
obstacle avoidance behavior and in localization. The Map
process in (1) contains a map data structure. Variables in a
PARS process definition can be random variables or
variables with certain values. Random variables are
represented as Mixtures of Gaussians distributions (MG). If a

~ MG(CM), for CM={(i, i, wi) | i 1…m} the set of the
mixture parameters (means, variances, weights), then ai refers

to mixture member N(i, i,), and w(ai)=wi are the mixture
weights, where ∑ 𝑤𝑖

𝑚
𝑖=1 = 1, and CMG(x; CM)=

∑ 𝑤𝑖𝑁(𝑥; 𝜇𝑖, Σ𝑖)𝑚
𝑖=1 . The mixture size is written | a | = m.

Map information – the locations and geometry of
obstacles, walls and other physical aspects of the mission
environment – can be directly represented using this model.
The interactions of the map with the robot and map-based
‘sensor’ is analyzed in VIPARS by measuring the overlap
between random variable distributions [14]. The advantage of
this approach to representing physical geometry is that there
is no restriction on the spatial location or extent of obstacles,

and finer precision of modeling can be obtained at the cost of
adding more mixture members (Fig. 2).

An indexed mixture of Gaussians is a mixture of
Gaussians distribution a ~ MG(CM) together with an index
set I. The mixture is restricted as follows:

 a[x]  ai where (ai) = x  I, i 1…m.

 (ai)  I, for all i 1…m; a only contains members

indexed by I.

 For any x I, |{a[x]}|  1; a has at most one member

for each index.

We define w[x] and [x] similarly to a[x] to label
member weights and covariances. A map is defined as a
indexed bivariate mixture of Gaussians where

I=[0…X][0..Y] and where each member is a Gaussian

kernel with covariance [x,y]=m
2I, and where m represents

the map resolution. This corresponds somewhat intuitively
with an occupancy grid representation, where w[x,y] is
related to probability of occupancy for the location (x,y).

During verification, the location random variable (the
connection cp in (6)) represents the location of the robot for
all possible executions. It’s relevant to compare this with the
representation of robot location in a localization algorithm:
the representation there may be also be a random variable,
but the interpretation is different. In any single execution, the
robot can really only be at a single physical location; the
localization distribution is an estimate of this. In verification,
the objective is not to find the single most likely location, but
to propagate the effects of being at all locations. Rather than
using a ray trace algorithm to determine how each location is
supported by sensor readings and refining the position
estimate based on that, the ray trace algorithm is used by the
MB_Laser process to gather all possible sensor readings that
can arise due to the robot location distribution.

IV. MODELING LOCALIZATION

A common approach to verification is to manually
implement the algorithm to be verified in a formal
framework. Of course, this implementation may not represent
the actual code; Published descriptions, even for widely
known algorithms, have been shown to contain errors [21]. It
also means that verification requires a huge investment of
expertise and manpower [11]. Our prior work takes a

Figure 2: Example VIPARS Map Representation

different approach: Mission designers work directly in the
MissionLab design toolkit, and their software can be
automatically translated to PARS [16]. The approach is
predicated on being able to provide a library of atomic
behaviors that have been expressed in PARS already. So, to
include a localization behavior in verification, it is necessary
to build a model of the MissionLab implementation in PARS.
But this is basically following the same flawed verification
approach just discussed. We use two new approaches to this
problem and we will evaluate both in our validation trials.

The first approach involves modeling localization at a
high level: modeling not the actual collection of sensory data
that produces improved position estimates, but just position
estimates that improve with time according to some
parameterization. This has the advantage that different
localization algorithms can be included in verification by just
changing the parameterization, not requiring as many hours
of expert effort as implementing a new localization algorithm
directly in the formal framework. It has the disadvantage that
it decouples the localization from predicted sensor
measurements, and may miss the effect of measurements that
greatly improve or degrade the localization estimate.

The second approach involves the incorporation of
existing localization code directly into the VIPARS
verification algorithm. The main difficulty here is that
localization code is designed to execute a single instance of a
robot mission, whereas VIPARS is probabilistically
reasoning about all executions that are possible given the a-
priori environment model information. Including existing
code within a verification framework is possible in some
model-checking tools – for example SPIN 4.0 allows C code
to be embedded in a Promela model1 and the code is

1 http://spinroot.com

executed as an atomic transition within SPIN. Our approach
is to consider the embedded code to be capable of
transforming a sample from a PARS random variable, and we
define a framework for sampling and reconstructing variable
distributions. This approach has the advantage of using the
actual code that will get executed by the robot at run-time for
the mission. It has the disadvantage of potentially
lengthening verification times, since multiple samples need to
be evaluated for a representative result.

A. High-level Model Approach

Localization starts with the odometry estimate of position
at time step t, q(t) ~ MG. Through comparisons of sensory
returns and the map, it refines the odometry estimate,
bringing it closer to the actual position of the robot at time t,
p(t) ~ MG. At any time, therefore the localization position is
some combination of the odometry and the actual position:

ℓ(t) = (1-k(t)) p(t) + k(t) q(t) (7)

where k(t) [0,1] is a time varying gain with k(t0)=1.0,
forcing localization to start with just the odometry estimate.
The improvement of localization with time is modeled by a
monotonic decreasing dynamics for k:

k(t+t)= tc k(t) (8)

For time constant tc [0,1] determined from calibration
measurements of the localization algorithm to be verified.

B. Sampling Approach

Consider that the C++ program (in fact, the ROS AMCL
localization code) we want to add to a mission is P. A PARS
process wrapper for P is built, so the code behaves like a

‘black box’ process Pxy. Then, like every PARS process,
it has an associated flow function fP(x)=(y) which is
calculated by VIPARS. However, when P is called, it will
map one input value x to an output, y; only one possible
execution of P, whereas verification has to check all possible
executions. So this approach to embedding P doesn’t work,
but, embedded code can only be called in this way.

Our approach is to define an extension to the flow
function fP from the process/program P: the mixture extended
flow function FP takes a random variable x as input and
produces a random variable y as output. It samples the input
distribution x and calls fP on the samples, and reconstructs the
output distribution mixture p(y | x)= FP(x) from the result.
This approach has the advantage of allowing existing code to
be easily folded into PARS processes. It has the disadvantage
of requiring multiple executions of the embedded code per
verification step, and ultimately sample size and execution
time will need to be weighed against desired accuracy.

Definition 1. Let fP(x)=y be the flow-function for the code

to be embedded in verification, defined only by executing

that code. Let x, y ~MG(CM) be random variables over the

type of the variables x, y which we denote T. The mixture

extended flow function (MEF) FP is defined as follows.

 fP: TT, where y=fP(x), for x, yT,

 FP: MGMG, where y = FP(x), for x, yMG (where

MG is the set of all MG), and

 where we define y=x

 except (yi) = fP((xi)) for all xi in x, and

 where (yi) is calculated as follows:

o 'j = fP(si) for si a sample of the input xi

Figure 3: VIPARS-ROS Architecture

o (yi)= ∑ 𝑁(𝑠𝑗;(x𝑖),(x𝑖)) ((𝜇′𝑗 − (y𝑖))
2

)𝑘
𝑗=1

The MEF preserves number of members (|y|=|x|). Each mean

is transformed directly (yi) = fP((xi)), requiring multiple

executions of the embedded code. Finally, each variance is

calculated by carrying out further sample executions for

each member 'j = fP(si).

C. Embedding ROS AMCL Localization

The localization algorithm used in this paper was
Adaptive Monte Carlo Sampling (AMCL) [22] as
implemented in ROS. In the sampling approach, the DBN
filtering engine of VIPARS issued requests to a ROS-based
AMCL server to evaluate the MEF function from Definition
1 for Localization. The interaction is shown in Fig. 3:
Whenever the flow function for the Localization process
needed to be evaluated on a position random variable, the
position variable was sent from the DBN filtering engine
(LHS, Fig. 3) via a pipe to a concurrently running ROS
system (RHS, Fig. 3). The STDR simulator node was
instructed to move the robot to the appropriate position, and
localization data collected from the AMCL node. For
simplicity, the MEF function was restricted to single member
variables, and rather than calculating the variance by
evaluating multiple samples, only the mean value was
transformed and the variance calculated by convolving the

mean with a zero-mean distribution N(0, s). This simplified
the hysteresis issue with calling AMCL. The hysteresis
challenge in fully implementing Definition 1 for AMCL is
discussed in the Conclusion.

V. VERIFICATION AND VALIDATION

To assess the effectiveness of the verification in providing
performance guarantees for probabilistic robot behaviors, we
present two waypoint missions, where the robot is tasked to
navigate through a series of waypoints toward a goal with
behaviors that are based on probabilistic algorithms. The
general assessment process consists of three steps: 1)
verification – use VIPARS to generate a performance
guarantee for the mission with respect to some specified
performance criteria, 2) validation – conduct experimental
trials of the mission with a real robot, 3) evaluation –
compare the predicted performance generated by VIPARS
with the actual performance of the robot.

The waypoint missions are illustrated in Figure 4. The
mission proceeds with robot starting at (2, 2) and navigates
by following a series of waypoint to the goal locations at
(11.7, 12.5) and (1.0, 7.3) respectively for each mission. The
behavior of the robot for Mission-B (Fig. 4a) is shown in Fig.
5, which was created in MissionLab in the form of a FSA.
The robot FSA consists of a series of GoToGuarded and Spin
behaviors, whose transitions are prompted by AtGoal and
HasTurned triggers. The behavioral FSA for Mission-A is
similar to the one shown in Fig. 5, and is omitted for brevity.

In contrast to the behaviors we had examined in our prior
work, presently the behaviors have leveraged the
probabilistic robotic algorithms to improve mission
performance. However, these probabilistic behaviors present
new verification challenges we have not addressed
previously. Specifically, the perceptual schemas of
MoveToGuarded and AvoidObstacles, two of the constituent

primitive behaviors of the high-level GoToGuarded behavior,
are augmented with a SLAM-based spatial map [7]. The
MoveToGuarded primitive behavior drives the robot to a
specified location with a radius of velocity dropoff around
the goal. Instead of using odometry for localization, the
perceptual schema of MoveToGuarded is replaced with the
adaptive Monte Carlo localization (AMCL) algorithm [17].
This probabilistic localization algorithm takes the robot
odometry and an a-priori acquired map as inputs, and outputs
an estimated pose of the robot along with a covariance matrix
representing the uncertainty of the estimated pose.
Furthermore, the AvoidObstacles behavior uses the spatial
map to generate repulsion vectors instead of using direct
sensory reading from the laser scanner. The perceptual
schema of the AvoidObstacles is modified to turn the spatial
map into a pseudo laser scans of the environment through
beam tracing within the occupancy map. As a result, the
GoToGuarded behavior utilizes perceptual information (i.e.,
robot pose and obstacles) generated by probabilistic
algorithms to generate motor response while navigating
through the waypoints.

a. Waypoints Mission A b. Waypoints Mission B

Figure 4: Waypoint Missions for Verification and Validation

Figure 5: Behavioral FSA for Mission-B
Performance criteria are mission specifications that a

robotic system needs to meet. The criteria for the waypoint

missions are:

 Rmax – maximum radius of spatial deviation allowed
from the goal

 Tmax – maximum allowable mission completion time

Moreover, each waypoint mission is considered successful
only when both performance criteria are met. Thus, the
overall mission success is defined as:

Success = (r≤Rmax) and (t ≤Tmax) (9)

where 𝑟 is the robot’s relative distance to its goal location and

t is the time the robot to finish a mission. The objective of

VIPARS is then to verify how well these performance criteria

are satisfied by the combination of the robot, its behavioral

FSA, and the operating environment.

A. Verification

Both verification approaches were applied to both
waypoint missions. For the high-level approach, Localization
in eq. (6) implemented (7), (8) with the gain parameter from
(8), tc = 0.99. This value was empirically determined from
experimentation ROS AMCL running on a Pioneer 3-AT
robot carrying out short waypoint missions (not the same
waypoint missions on which verification was performed).

The sample-based approach implemented the architecture
of Figure 3 using ROS version Indigo. For implementation
reasons, the AMCL parameter min_update_d2 (translation
required before update) was set differently between the real
robot (validation) and the ROS STDR3 robot (verification).
During validation, it was set to the default value of 0.2,
whereas in verification, it was set to 0.001. In the VIPARS-
ROS system, requests are sent discretely to move the STDR
robot to positions and localization updates requested
immediately. Thus AMCL only updated per time step of the
VIPARS DBN filtering. The update parameter only affects
latency in this case.

A third, odometry only version of the mission was also
run through verification for the purpose of comparing with
both localization methods, and determining whether
localization helped or hindered the mission. No additional
validation was done on the odometry only version since that
would replicate our prior work with verification of waypoint
missions.

The results of carrying out verification using both
approaches with both waypoint missions was a set of
performance graphs (as described in [14]) showing the
predicted performance of the missions with respect to the
performance criteria (9).

B. Validation

Validation experiments of the waypoint missions are
conducted to illustrate that VIPARS’ predicted performance
of the mission is consistent with the robot’s actual
performance. The robot used for the experimental trials is the
Pioneer 3-AT, a four-wheeled skid-steered mobile robot. The
robot is also equipped with a forward-facing SICK laser
scanner. The complete validation experiment consists of 50
trial runs for each waypoint mission respectively, which
resulted in a total of 100 trial runs. Snapshots of the waypoint
mission B are shown in Figure 6. Mission success is defined
by how well the performance criteria (9) are met. Thus, for
each trial, the following performance variables were
measured:

 t – Mission completion time
 r – Robot’s relative distance to its goal location

2 http://wiki.ros.org/amcl
3 http://wiki.ros.org/stdr_simulator

a. Robot moving toward

1st waypoint

b. Robot moving toward

2nd waypoint

d. Robot moving toward

goal location

c. Robot after turning a

corner

Figure 6: Snapshots of Validation for Mission-B

C. Verification vs. Validation (V&V)

Verification and validation are conducted independently
by our two research groups, and the results are not shared
until the final comparison stage. Figure 7 shows the results of
verification and validation of the waypoint missions. The
performance guarantee is quantified as a probability
distribution that represents the robot mission’s likelihood for
success. These results also serve as the basis for performance
feedback; and how this information should ultimately be
presented to the mission operator was investigated in our
recent human subjects study [23].

Figure 7 shows the validation results of the performance
guarantees for the two waypoint missions. These results are
obtained with the sampling-based model of the probabilistic
localization as described in Section IV. Figs. 7a and 7c show
the V&V results for the spatial criteria P(r≤Rmax), the
probability that the robot arrives within Rmax radius of its goal
location. Figs. 7b and 7d show the comparisons for the time
criteria P(t ≤ Tmax), the probability that the waypoint
mission is completed under the time limit, Tmax. The results
illustrate that the VIPARS verification of performance
guarantees are consistent with the outcomes from
experimental validation. The V&V results can be divided into
three regions for further interpretation: High Confidence
(Unsuccessful), Uncertain, and High Confidence (Successful)
regions. The High Confidence (Unsuccessful) is the region of
near zero verification error and the mission has a zero
probability of success. The Uncertain region is the region
where verification error is significantly greater than zero and
the probability of mission success is between 0 and 1.0. As a
result, the robot is not guaranteed to succeed with the
mission. The High Confidence (Successful) is region of near
zero verification error and the mission is guaranteed to
succeed with probability of 1.0. Consequently, the mission
operator’s decision for robot deployment can be based on
which region of the mission criteria fall into. For instance, if
the specified performance criterion falls within the
Unsuccessful region (e.g., Rmax=0.5m), the operator can either
abort the mission or modify mission parameters (e.g., design
a new robot controller).

a. Mission A Spatial Criterion

P(r≤Rmax)

b. Mission A Time Criterion

P(t≤Tmax)

c. Mission B Spatial Criterion

P(r≤Rmax)

d. Mission B Time Criterion

P(t≤Tmax)

Figure 7: Results of VIPARS Verification and Experimental
Validation of Spatial and Time Performance Criteria for Waypoint
Missions A and B. Figures 6a & 6b show the V&V results of spatial
and time performance respectively for Mission-A, where the results
are divided into three regions based the performance guarantees:
High Confidence (Unsuccessful), Uncertain, and High Confidence
(Successful). Figures 6c and 6d show the V&V results of Mission-B.

The overall mission success (Eq. 4) is defined in terms of
both spatial and time criteria. Thus, we examined further in
Figs. 8 and 9 the effects of various combinations of spatial
and time criteria (Rmax and Tmax) on the mission success and
verification error. The results can also be used to answer
queries regarding the performance guarantee for a specific
combination of Tmax and Rmax. Fig. 8 shows the effects of the
time criterion Tmax on the V&V results of the spatial criterion
P(r≤Rmax) for Mission A. While the Tmax’s in both of its high
confidence regions (Fig. 7b) have no effect on the
verification error for P(r ≤ Rmax), Tmax’s that are in the
Uncertain region (e.g., Tmax= 415 sec) incur significant
verification errors. For instance, for Tmax=415sec, VIPARS
predicted a success probability of 0.18, while the robot was
actually successful 76% of the time in experimental trials.

Figure 8: V&V of Spatial Criterion at various Tmax for Mission A

Figure. 9: V&V of Time Criterion at various Rmax for Mission A

Fig. 9 shows the effects of the spatial criterion Rmax on the
V&V results of the time criterion P(t≤Tmax). While similar
observations can be made here as in Fig. 8, in this case,
Rmax’s have much less impact on the verification error of
P(t≤Tmax) due to VIPARS’s accuracy in predicting the spatial
performance of mission even in the uncertain region (as
shown in Fig. 7a). Nonetheless, missions with performance
criteria in the Uncertain regions should generally be avoided.

Lastly, we have also examined the different verification
results of VIPARS based on how the probabilistic
localization mechanism is modeled: sampling-based and
high-level model-based (as described previously in Section
IV). Moreover, these results are also compared to the
verification result for the case when only odometry
information is used for localization. The odometry-only
version was 100% unsuccessful during verification;
conclusive proof that localization is an asset to the mission.
Just for the purpose of comparison, odometry-only graphs
were generated with VIPARS ignoring obstacle collisions.
These verification results are shown in Figs. 10-11 along with
the validation result for Mission-A. While the verification
results for different localization modeling approaches are
comparable for the time criterion (Fig. 10), the performance
guarantee based on the sampling-based model is more closely
aligned with the validation result for both spatial and time
criteria.

Figure 10: V&V of Time Criterion and Models of Localization

Figure 11: V&V of Spatial Criterion and Models of Localization

VI. CONCLUSION

Localization and mapping techniques intuitively offer
advantages for robots navigating in unknown environments.
This paper has applied our work in the design and
verification of autonomous behavior based robot missions to
the problem of determining whether there is a mission-
specific benefit to using localization, that is, whether the
mission is carried out better because of localization. The
MissionLab/VIPARS mission design and verification
approach was extended to handle two approaches to
modeling localization: a high-level approach in which only
position estimate improvement is modeled, and a sample-
based approach, in which the run-time localization code is
embedded in verification. Extensive experimental validation
is reported for two different waypoint missions using
localization. The discussion of Figures 10 and 11 indicates
that the sample-based approach yields the more accurate
estimate, even for the sampling simplification made in this
paper. Furthermore, VIPARS provides conclusive support
(Fig. 11) for the initial intuition that localization was an asset
to mission performance by predicting 100% failure of the
non-odometry mission.

To completely implement the mixture extended function
of Definition 1 for the sampling-based approach, the full
motion history for each sample request would need to be sent
to the STDR node and AMCL reset between samples. The
ability to cache these multiple sensory histories would
improve computation time, but at the cost of directly
instrumenting AMCL – a step we were avoiding for reasons
discussed in the paper.

Future work will involve applying MissionLab/VIPARS to
heterogeneous missions that include characterizing human
operators, and application of VIPARS to the autogeneration
of missions

VII. REFERENCES

[1] T. Bailey and H. Durrant-Whyte, "Simultaneous Localization
and Mapping (DLAM): Party I, II," IEEE Robotics and
Automation Magazine, June, September 2006.

[2] R. Jhala and R. Majumdar, "Software Model Checking," ACM
Computing Surveys, 41(4) 2009.

[3] L. DeMoura and N. Bjorner, "Satisfiability Modulo Theories:
Introduction and applications," CACM, 54(9) pp. 54-67, 2012.

[4] A. Cowley and C. Taylor, "Towards Language-Based
Verification of Robot Behaviors," IEEE/RSJ Int. Conf on Int.
Rob. & Sys. (IROS) 2011.

[5] M. Proetzsch, K. Berns, T. Schuele and K. Schneider,
"FORMAL VERIFICATION OF SAFETY BEHAVIOURS OF
THE OUTDOOR ROBOT RAVON," 4th Int. Conf. on Inf.,
Automation and Control, Dortmund, Germany, 2007.

[6] Ropertz, T. and R. Berns., "Verification of behavior-based
networks-using satisfiability modulo theories," in ISR/Robotik
2014; 41st International Symposium on Robotics, 2014.

[7] S. Jiang and R. Arkin, "SLAM-Based Spatial Memory for
Behavior-Based Robots," in 11th IFAC Symposium on Robot
Control (SYROCO), Salvador, Brazil, 2015.

[8] D. Lyons, R. Arkin, S. Jiang, T.-L. Liu and P. Nirmal,
"Performance Verification for Behavior-based Robot
Missions," IEEE Trans. on Robotics, vol. 31, no. 3, 2015.

[9] P. Trojanek and K. Eder, "Verification and testing of mobile
robot navigation algorithms," IEEE/RSJ Int. Conf on Int. Rob.
& Sys. (IROS), Chicago, 2014.

[10] D. Walter, H. Taubig and C. Luth, "Experiences in Applying
Formal Verification in Robotics," in 29th Int. Conf. on
Computer Safety, Rel. and Security, Vienna Austria, 2010.

[11] M. Kim, K.-C. Kang and H. Lee, "Formal Verification of Robot
Movements - a Case Study on Home Service Robot SHR100,"
in IEEE Int. Conf. Robotics and Automation, 2005.

[12] L. Li, Z. Shi, Y. Guan, C. Zhao and J. H. Zhang, "Formal
Verification of a Collision-Free Algorithm for a Dual-Arm
Robot in HOL4," IEEE Int. Conf. on Rob. & Aut., Hong Kong,
2014.

[13] M. Webster, C. Dixon, M. Fischer, M. Salem, J. Saunders, K.-
L. Koay and K. Dautenhahn, "Formal Verification of an
Autonomous Personal Robotic Assistant," AAAI Symp.
Modeling in Human-machine Sys: Challenges for Formal
Verification, Stanford CA, 2014.

[14] D. Lyons, R. Arkin, S. Jiang, D. Harrington, F. Tang and P.
Tang, "Probabilistic Verification of Multi-Robot Missions in
Uncertain Environments," IEEE Int. Conf. on Tools with AI,
Vietro sul Mare, Italy, 2015.

[15] D. MacKenzie, R. Arkin and R. Cameron, "Multiagent Mission
Specification and Execution," Autonomous Robots, 4(1) pp. 29-
52, 1997.

[16] M. O'Brien, R. Arkin, D. Harrington, D. Lyons and S. Jiang,
"Automatic Verification of Autonomous Robot Missions," 4th
Int. Conf. on Simulation, Modelling and Prog. for Aut. Robots,
Bergamo, Italy, 2014.

[17] F. Dellaert, D. Fox, W. Burgard and S. Thrun, " Monte Carlo
localization for mobile robots," IEEE Int. Conf. on Rob. & Aut.,
Detroit, 1999.

[18] J. Brahman, "Verification and Analysis of Goal-Based Hybrid
Control Systems," P.D. Thesis, CalTech, Pasadena CA, 2009.

[19] S. Russel & P. Norvig, Artificial Intelligence, Prentice-Hall,
2010.

[20] D. Lyons, R. Arkin, T.-L. Liu, S. Jiang and P. Nirmal,
"Verifying Performance for Autonomous Robot Missions with
Uncertainty," IFAC Intelligent Vehicle Symposium, Gold Coast
Australia, 2013.

[21] A. Zaks and R. Joshi, "Verifying Multi-threaded C programs
with SPIN," 15th International SPIN Workshop, Los Angeles
CA, 2008.

[22] D. Fox, "KLD–Sampling: Adaptive Particle Filters," in Neural
Information Processing Systems 14 (NIPS), Vancouver Canada,
2001.

[23] M. O'Brien and R. Arkin, "An Analysis of Displays for
Probabilistic Robotic Mission Verification Results," 7th Int.
Conf. App. Human Factors & Ergon., Las Vegas NV, 2016.

