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Abstract— Localization and mapping algorithms can allow a 

robot to navigate well in an unknown environment. However, 

whether such algorithms enhance any specific robot mission is 

currently a matter for empirical validation. In this paper we 

apply our MissionLab/VIPARS mission design and verification 

approach to an autonomous robot mission that uses 

probabilistic localization software. 

Two approaches to modeling probabilistic localization for 

verification are presented: a high-level approach, and a sample-

based approach which allows run-time code to be embedded in 

verification. Verification and experimental validation results 

are presented for two waypoint missions using each method, 

demonstrating the accuracy of verification, and both are 

compared with verification of an odometry-only mission, to 

show the mission-specific benefit of localization. 

I. INTRODUCTION 

One of the most impactful recent developments in 
robotics has been efficient mapping and localization 
algorithms [1]: Techniques whereby a robot can use 
information from its sensors to construct a map of its 
environment and, at the same time, determine its location 
with respect to this map. These tools can allow a robot to 
navigate more effectively in an environment of a-priori 
unknown geometry. However, whether such algorithms 
enhance any specific robot mission is currently a matter for 
empirical validation.  

Formal verification can be used as a design tool to 
determine whether a piece of robot software will function as 
desired without having to execute the software physically. 
The field has made significant strides in recent years with the 
development of model-checking [2] and SMT engines [3]. 
However, it can at best produce an approximation of robot 
performance, due to the undecidability of the underlying 
verification problem. A crucial issue therefore in selecting a 
verification approach is to understand what aspects of the 
robot software problem to focus on. Behavior-based robot 
programming is an important tool in autonomous robotics 
because it can yield programs that are robust to uncertainty 
about exactly what environment the robots will face during 
execution. For this reason, verification of behavior-based 
robot programs has become a topic of interest [4] [5] [6], and 
we focus on that approach here. In recent work [7], we have 
integrated probabilistic methods with behavior-based 
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approaches; this is the first time to our knowledge that a 
formal V&V method has been applied to such a system. 

In research work for the Defense Threat Reduction 
Agency, we have developed an efficient approach to 
verification of behavior-based multi-robot software that 
includes a probabilistic environment model [8]. Rather than 
addressing purely computational verification problems such 
as absence of deadlock or absence of run-time errors [9] [10], 
or verifying software generated control signals without 
consideration of the physical platform [11], our work focuses 
on the interactions of the mission software with a complex 
and uncertain environment model. While verification 
approaches that leverage automated theorem proving and 
SMT frequently do employ models of the environment [12], 
in those approaches verification may not be completely 
automated, and uncertainty may not be included [13], 
whereas we have established both of these as requirements. 

In this paper we address the problem of automatic 
verification of behavior-based software that includes a 
probabilistic localization component, for the first time to our 
knowledge. This is challenging because it would appear to be 
necessary to show that localization will generate an improved 
estimate of the actual physical location of the robot for all 
map geometries that offer sufficient information. Certainly 
this requires an environment model, separate from the 
software model, that includes the physical location of the 
robot, the geometry of the map, and the relationship between 
these and the sensor measurements. Uncertainty in physical 
location (at the least) needs to be modeled. However, 
verifying over all possible environment models, or even a 
sizeable subset of this deemed to have sufficient information 
for effective localization, is combinatorially challenging.  

Our approach is somewhat different: We argue that the 
purpose of localization is to improve mission performance, 
and so our approach is to generate performance results for a 
behavior-based mission [7] with and without localization, 
thereby verifying whether including localization has been of 
value to the mission performance criteria. This is in direct 
contrast to just evaluating the accuracy of localization, 
without regard to whether it helped the mission in which it 
was included. Furthermore, while we are verifying any 
potential execution of the mission software, we verify all 
those potential executions for a single map. We will conducte 
mission verification using a map generated by a probabilistic 
algorithm. 

The platform that we use for verification is the 
MissionLab mission design toolkit [15] with the VIPARS 
mission verification module [8]. Robot missions are 
constructed using the MissionLab GUI, and can be 
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autotranslated [16] to the formal representation used in 
VIPARS for verification. We also close the loop by 
comparing verification results with experimental validation 
for the mission. In this paper, MissionLab is used to generate 
a mission that executes on a Pioneer 3-At robot equipped 
with SICK laser sensor running under ROS and using AMCL 
[17] for localization. We explore two ways to represent 
localization during verification. One approach just represents 
the functionality of localization at a high level. A second 
approach uses the actual ROS AMCL code during the 
verification process. Results for each of these approaches is 
presented and compared with experimental validation results. 

II. SYSTEM ARCHITECTURE 

As robots grow in complexity along with their task 
demands, so do the opportunities for their failures and the 
difficulty to foresee those failures. Poor judgments of robot 
capabilities have led to failures of many robotic systems [18]. 
Furthermore, critical emergency response missions are 
typically characterized by a stringent window of opportunity 
for successful action. Therefore, it is imperative that the 
performance of robotic systems be guaranteed before mission 
execution. The goal of our research is to provide such 
performance guarantees, which mission operators can use to 
make the appropriate decision regarding robot deployments. 
The result of our research effort is a verification framework 
VIPARS, which provides the performance guarantee for a 
given mission based on how well the specified performance 
criteria are satisfied by the given control program, robot, and 
the environment models.  

 

Figure 1: System Architecture (reproduced from [14]) 

The verification framework, VIPARS [8], is built upon 
MissionLab [15], a behavior-based robot mission 
specification environment (Fig. 1). MissionLab provides a 
usability-tested graphical programming interface, where the 
robot’s program is specified in the form of a finite state 
automaton (FSA), assembled from a library of primitive 
behaviors. The output of VIPARS is the performance 
guarantee, currently quantified as probability distributions, 
that describes the likelihood of mission success. This output 
effectively forms a feedback loop that allows the mission 
operator to take preemptive measures against potential 
mission failures. While we have examined the performance 
guarantees of various robotic missions using VIPARS, this 
paper extends the capability of the verification framework to 
address the verification of probabilistic behaviors [7] – i.e., 

robot behaviors whose underlying algorithms are 
probabilistic (e.g., SLAM). 

III. ENVIRONMENT MODEL FOR LOCALIZATION 

In prior work [8] [14] [16], Lyons et al. designed a 
probabilistic framework for verifying the performance of 
autonomous behavior-based robot missions in uncertain 
environments. The behavior-based mission is specified in 
MissionLab [15] and is translated from MissionLab’s 
internal presentation to a process-algebra notation PARS 
(Process Algebra for Robot Schemas). Environment models 
are also processes in this notation and we proposed that a 
standardized set of environment models could be used to 
capture different classes of environment (e.g., motion 
uncertainty [8]; obstacle uncertainty [14]). 

A. Automatic Verification with VIPARS 

A behavior-based program and its environment is modeled 
in PARS as a set of interconnected, recurrent processes. 
Summarizing from [8]: a process 𝑷 is written as: 

𝑷〈𝒖𝟏, … , 𝒖𝒏〉(𝒊𝟏, … , 𝒊𝒋)(𝒐𝟏, … , 𝒐𝒌)〈𝒗𝟏, … , 𝒗𝒎〉 (1) 

where u1,…,un are the initial values for the process variables, 
i1,…,ij and o1,…,ok are input and output port connections, 
and v1,…,vm are final result values of the process. Processes 
compute results from initial values, but may also be 
influenced by any communications that occur over port 
connections (points of interaction between a controller and 
its environment model). Process variables can be of a variety 
of data types and can be random variables. 

 Processes are defined compositionally as combinations 
of other processes using composition operators: parallel (‘|’), 
disabling (‘#’) and sequential (‘;’). Bounded recursion is 
captured using tail-recursive (TR) process definitions, 
written for example: 

𝐏〈𝑥〉  = 𝐐〈𝑥〉〈𝑦〉 ; 𝐏〈𝑦〉 (2) 
A variable flow function (fP) is associated with each 𝐏 that 

maps the values of variables at the start of each recursive 
step to those at the end. The flow-function for atomic 
processes are specified a-priori, and those for composite 
process are built up from the flow functions of components. 

The system to be verified is expressed as the parallel, 
communicating composition (Sys) of robot controller (Ctr) 
and environment model processes, (Env) e.g.: 

Sysr1,r2     
                    

=  Ctrr1(a)(b) |   Envr2(b)(a) 
=  Sys’r1,r2 ; Sys fSys(r1,r2)  

(3) 

fSys (r1,r2)  = ( fSys,r1 (r1,r2),  fSys,r2 (r1,r2)  ) (4) 

In eq. (3), the input of Ctr is connected to the output of Env, 
(a), and the output of Env is connected to the input of Ctr, 
(b). In [8] we develop an interleaving theorem and 
associated algorithm Sysgen with linear computational 
complexity, by which the parallel, connected network of 
process on the top line of eq. (3) can be converted to the TR 
process on the second line, and from which a system flow 
function, e.g. (4), can be automatically extracted. When r1 
and r2 are random variables, eq. (4) relates random values at 
time t to those at t+1. These are the basis of a Dynamic 
Bayesian Network (DBN) [19] used to carry out filtering, 
forward propagation of probability distributions.  

fSys,r1 (r1,t ,r2,t ) = P(r1,t+1 |r1,t , r2,t )  (5) 



  

Random variables are represented as multivariate mixtures 

of Gaussians, and operations on random variables are 

automatically translated by VIPARS into operations on 

distributions [20]. Although [8] discusses more complicated 

performance guarantees, we basically restrict our attention to 

the guarantee that a mission will achieve some criterion on 

environment variables (usually a spatial accuracy for a 

waypoint goal and/or a temporal requirement for achieving 

the mission) with probability greater than a threshold before 

a time-limit has expired. We demonstrated that this approach 

is fast and accurate when validated against physical 

executions (e.g., most recently [14]).  

The system process Sys for the localization mission is 

shown in eq. (6). 

   Sys =  (  Mission (clp, clh, cl)(cv)         | 
       Mapsysmap()(cm)            | 
       LocalizationD0(cp,co,ch,cl,cm)(clp,clh) | 
       MB_Laserms, mo ,lo(cm,cp,ch)(cl) )   | 

         RobotP0,H0(cv)(cp, ch, co) .             (6) 

The Mission process is the translation of the waypoint 

mission in Section II, and is fundamentally similar to all 

prior waypoint missions we have verified and validated. 

Robot is the environment model, capturing the motion and 

odometry error and interactions with obstacles, also 

fundamentally similar to our prior work.  
However, there are three new processes: In the behavior-

based localization approach [7], the obstacle avoidance 
‘sensor’ gets its information from the map, rather than 
directly from measuring sensory input. Map makes mapping 
information available on its output cm; MB_Laser uses the 
map to generate map-based laser data on its output cl, and 
Localization implements a localization method using the map 
and laser inputs. The output of Localization, clp, is the 
localized position used by the Mission process. Thus the 
probabilistic map replaces the direct sensor measurements 
typically used in behavior-based control. 

B. Map Representation 

A key difference between this localization mission and 
prior missions to which we have applied our verification 
approach [8] [14] [16] is the map and the role in plays in the 
obstacle avoidance behavior and in localization. The Map 
process in (1) contains a map data structure. Variables in a 
PARS process definition can be random variables or 
variables with certain values. Random variables are 
represented as Mixtures of Gaussians distributions (MG). If a 

~ MG(CM), for CM={(i, i, wi) | i 1…m} the set of the 
mixture parameters (means, variances, weights), then ai refers 

to mixture member N(i, i,), and w(ai)=wi are the mixture 
weights, where ∑ 𝑤𝑖

𝑚
𝑖=1 = 1, and CMG(x; CM)= 

∑ 𝑤𝑖𝑁(𝑥; 𝜇𝑖, Σ𝑖)𝑚
𝑖=1 . The mixture size is written | a | = m. 

Map information – the locations and geometry of 
obstacles, walls and other physical aspects of the mission 
environment – can be directly represented using this model. 
The interactions of the map with the robot and map-based 
‘sensor’ is analyzed in VIPARS by measuring the overlap 
between random variable distributions [14]. The advantage of 
this approach to representing physical geometry is that there 
is no restriction on the spatial location or extent of obstacles, 

and finer precision of modeling can be obtained at the cost of 
adding more mixture members (Fig. 2).  

An indexed mixture of Gaussians is a mixture of 
Gaussians distribution a ~ MG(CM) together with an index 
set I. The mixture is restricted as follows: 

 a[x]  ai where (ai) = x  I,  i 1…m. 

 (ai)  I, for all i 1…m; a only contains members 

indexed by I. 

 For any x I, |{a[x]}|  1; a has at most one member 

for each index. 

We define w[x] and [x] similarly to a[x] to label 
member weights and covariances. A map is defined as a 
indexed bivariate mixture of Gaussians where 

I=[0…X][0..Y] and where each member is a Gaussian 

kernel with covariance [x,y]=m
2I, and where m represents 

the map resolution. This corresponds somewhat intuitively 
with an occupancy grid representation, where w[x,y] is 
related to probability of occupancy for the location (x,y). 

During verification, the location random variable (the 
connection cp in (6)) represents the location of the robot for 
all possible executions. It’s relevant to compare this with the 
representation of robot location in a localization algorithm: 
the representation there may be also be a random variable, 
but the interpretation is different. In any single execution, the 
robot can really only be at a single physical location; the 
localization distribution is an estimate of this. In verification, 
the objective is not to find the single most likely location, but 
to propagate the effects of being at all locations. Rather than 
using a ray trace algorithm to determine how each location is 
supported by sensor readings and refining the position 
estimate based on that, the ray trace algorithm is used by the 
MB_Laser process to gather all possible sensor readings that 
can arise due to the robot location distribution. 

IV. MODELING LOCALIZATION 

A common approach to verification is to manually 
implement the algorithm to be verified in a formal 
framework. Of course, this implementation may not represent 
the actual code; Published descriptions, even for widely 
known algorithms, have been shown to contain errors [21]. It 
also means that verification requires a huge investment of 
expertise and manpower [11]. Our prior work takes a 

 
Figure 2: Example VIPARS Map Representation 



  

different approach: Mission designers work directly in the 
MissionLab design toolkit, and their software can be 
automatically translated to PARS [16]. The approach is 
predicated on being able to provide a library of atomic 
behaviors that have been expressed in PARS already. So, to 
include a localization behavior in verification, it is necessary 
to build a model of the MissionLab implementation in PARS. 
But this is basically following the same flawed verification 
approach just discussed. We use two new approaches to this 
problem and we will evaluate both in our validation trials. 

The first approach involves modeling localization at a 
high level: modeling not the actual collection of sensory data 
that produces improved position estimates, but just position 
estimates that improve with time according to some 
parameterization. This has the advantage that different 
localization algorithms can be included in verification by just 
changing the parameterization, not requiring as many hours 
of expert effort as implementing a new localization algorithm 
directly in the formal framework. It has the disadvantage that 
it decouples the localization from predicted sensor 
measurements, and may miss the effect of measurements that 
greatly improve or degrade the localization estimate. 

The second approach involves the incorporation of 
existing localization code directly into the VIPARS 
verification algorithm. The main difficulty here is that 
localization code is designed to execute a single instance of a 
robot mission, whereas VIPARS is probabilistically 
reasoning about all executions that are possible given the a-
priori environment model information. Including existing 
code within a verification framework is possible in some 
model-checking tools – for example SPIN 4.0 allows C code 
to be embedded in a Promela model1 and the code is 
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executed as an atomic transition within SPIN. Our approach 
is to consider the embedded code to be capable of 
transforming a sample from a PARS random variable, and we 
define a framework for sampling and reconstructing variable 
distributions. This approach has the advantage of using the 
actual code that will get executed by the robot at run-time for 
the mission. It has the disadvantage of potentially 
lengthening verification times, since multiple samples need to 
be evaluated for a representative result. 

A. High-level Model Approach 

Localization starts with the odometry estimate of position 
at time step t, q(t) ~ MG. Through comparisons of sensory 
returns and the map, it refines the odometry estimate, 
bringing it closer to the actual position of the robot at time t, 
p(t) ~ MG.  At any time, therefore the localization position is 
some combination of the odometry and the actual position: 

ℓ(t) = (1-k(t)) p(t) + k(t) q(t) (7) 

where k(t) [0,1] is a time varying gain with k(t0)=1.0, 
forcing localization to start with just the odometry estimate. 
The improvement of localization with time is modeled by a 
monotonic decreasing dynamics for k: 

k(t+t)= tc k(t) (8) 

For time constant tc [0,1] determined from calibration 
measurements of the localization algorithm to be verified. 

B. Sampling Approach 

Consider that the C++ program (in fact, the ROS AMCL 
localization code) we want to add to a mission is P. A PARS 
process wrapper for P is built, so the code behaves like a 

‘black box’ process Pxy. Then, like every PARS process, 
it has an associated flow function fP(x)=(y) which is 
calculated by VIPARS. However, when P is called, it will 
map one input value x to an output, y; only one possible 
execution of P, whereas verification has to check all possible 
executions. So this approach to embedding P doesn’t work, 
but, embedded code can only be called in this way. 

Our approach is to define an extension to the flow 
function fP from the process/program P: the mixture extended 
flow function FP takes a random variable x as input and 
produces a random variable y as output. It samples the input 
distribution x and calls fP on the samples, and reconstructs the 
output distribution mixture p( y | x )= FP(x)  from the result. 
This approach has the advantage of allowing existing code to 
be easily folded into PARS processes. It has the disadvantage 
of requiring multiple executions of the embedded code per 
verification step, and ultimately sample size and execution 
time will need to be weighed against desired accuracy.  

Definition 1. Let fP(x)=y be the flow-function for the code 

to be embedded in verification, defined only by executing 

that code. Let x, y ~MG(CM) be random variables over the 

type of the variables x, y which we denote T. The mixture 

extended flow function (MEF) FP is defined as follows. 

 fP: TT, where y=fP(x), for x, yT, 

 FP: MGMG, where y = FP(x), for x, yMG (where 

MG is the set of all MG), and  

 where we define y=x  

 except (yi) = fP((xi)) for all xi in x, and 

 where (yi)  is calculated as follows: 

o 'j = fP(si) for si a sample of the input xi 

 
Figure 3: VIPARS-ROS Architecture 



  

o (yi)= ∑ 𝑁(𝑠𝑗;(x𝑖),(x𝑖)) ((𝜇′𝑗 − (y𝑖))
2

)𝑘
𝑗=1  

The MEF preserves number of members (|y|=|x|). Each mean 

is transformed directly (yi) = fP((xi)), requiring multiple 

executions of the embedded code. Finally, each variance is 

calculated by carrying out further sample executions for 

each member 'j = fP(si). 

C. Embedding ROS AMCL Localization 

The localization algorithm used in this paper was 
Adaptive Monte Carlo Sampling (AMCL) [22] as 
implemented in ROS. In the sampling approach, the DBN 
filtering engine of VIPARS issued requests to a ROS-based 
AMCL server to evaluate the MEF function from Definition 
1 for Localization. The interaction is shown in Fig. 3: 
Whenever the flow function for the Localization process 
needed to be evaluated on a position random variable, the 
position variable was sent from the DBN filtering engine 
(LHS, Fig. 3) via a pipe to a concurrently running ROS 
system (RHS, Fig. 3). The STDR simulator node was 
instructed to move the robot to the appropriate position, and 
localization data collected from the AMCL node. For 
simplicity, the MEF function was restricted to single member 
variables, and rather than calculating the variance by 
evaluating multiple samples, only the mean value was 
transformed and the variance calculated by convolving the 

mean with a zero-mean distribution N(0, s). This simplified 
the hysteresis issue with calling AMCL. The hysteresis 
challenge in fully implementing Definition 1 for AMCL is 
discussed in the Conclusion. 

V. VERIFICATION AND VALIDATION 

To assess the effectiveness of the verification in providing 
performance guarantees for probabilistic robot behaviors, we 
present two waypoint missions, where the robot is tasked to 
navigate through a series of waypoints toward a goal with 
behaviors that are based on probabilistic algorithms. The 
general assessment process consists of three steps: 1) 
verification – use VIPARS to generate a performance 
guarantee for the mission with respect to some specified 
performance criteria, 2) validation – conduct experimental 
trials of the mission with a real robot, 3) evaluation – 
compare the predicted performance generated by VIPARS 
with the actual performance of the robot.  

The waypoint missions are illustrated in Figure 4. The 
mission proceeds with robot starting at (2, 2) and navigates 
by following a series of waypoint to the goal locations at 
(11.7, 12.5) and (1.0, 7.3) respectively for each mission. The 
behavior of the robot for Mission-B (Fig. 4a) is shown in Fig. 
5, which was created in MissionLab in the form of a FSA. 
The robot FSA consists of a series of GoToGuarded and Spin 
behaviors, whose transitions are prompted by AtGoal and 
HasTurned triggers. The behavioral FSA for Mission-A is 
similar to the one shown in Fig. 5, and is omitted for brevity. 

In contrast to the behaviors we had examined in our prior 
work, presently the behaviors have leveraged the 
probabilistic robotic algorithms to improve mission 
performance. However, these probabilistic behaviors present 
new verification challenges we have not addressed 
previously. Specifically, the perceptual schemas of 
MoveToGuarded and AvoidObstacles, two of the constituent 

primitive behaviors of the high-level GoToGuarded behavior, 
are augmented with a SLAM-based spatial map [7]. The 
MoveToGuarded primitive behavior drives the robot to a 
specified location with a radius of velocity dropoff around 
the goal. Instead of using odometry for localization, the 
perceptual schema of MoveToGuarded is replaced with the 
adaptive Monte Carlo localization (AMCL) algorithm [17]. 
This probabilistic localization algorithm takes the robot 
odometry and an a-priori acquired map as inputs, and outputs 
an estimated pose of the robot along with a covariance matrix 
representing the uncertainty of the estimated pose. 
Furthermore, the AvoidObstacles behavior uses the spatial 
map to generate repulsion vectors instead of using direct 
sensory reading from the laser scanner. The perceptual 
schema of the AvoidObstacles is modified to turn the spatial 
map into a pseudo laser scans of the environment through 
beam tracing within the occupancy map. As a result, the 
GoToGuarded behavior utilizes perceptual information (i.e., 
robot pose and obstacles) generated by probabilistic 
algorithms to generate motor response while navigating 
through the waypoints.  

  
a. Waypoints Mission A b. Waypoints Mission B 

Figure 4: Waypoint Missions for Verification and Validation  

 

Figure 5: Behavioral FSA for Mission-B 
Performance criteria are mission specifications that a 

robotic system needs to meet. The criteria for the waypoint 

missions are: 

 Rmax – maximum radius of spatial deviation allowed 
from the goal 

 Tmax – maximum allowable mission completion time 

Moreover, each waypoint mission is considered successful 
only when both performance criteria are met. Thus, the 
overall mission success is defined as:  



  

Success = (r≤Rmax) and (t ≤Tmax) (9) 

where 𝑟 is the robot’s relative distance to its goal location and 

t is the time the robot to finish a mission. The objective of 

VIPARS is then to verify how well these performance criteria 

are satisfied by the combination of the robot, its behavioral 

FSA, and the operating environment. 

A. Verification 

Both verification approaches were applied to both 
waypoint missions. For the high-level approach, Localization 
in eq. (6) implemented (7), (8) with the gain parameter from 
(8),  tc = 0.99. This value was empirically determined from 
experimentation ROS AMCL running on a Pioneer 3-AT 
robot carrying out short waypoint missions (not the same 
waypoint missions on which verification was performed). 

The sample-based approach implemented the architecture 
of Figure 3 using ROS version Indigo. For implementation 
reasons, the AMCL parameter min_update_d2 (translation 
required before update) was set differently between the real 
robot (validation) and the ROS STDR3 robot (verification). 
During validation, it was set to the default value of 0.2, 
whereas in verification,  it was set to 0.001. In the VIPARS-
ROS system, requests are sent discretely to move the STDR 
robot to positions and localization updates requested 
immediately. Thus AMCL only updated per time step of the 
VIPARS DBN filtering. The update parameter only affects 
latency in this case.  

A third, odometry only version of the mission was also 
run through verification for the purpose of comparing with 
both localization methods, and determining whether 
localization helped or hindered the mission. No additional 
validation was done on the odometry only version since that 
would replicate our prior work with verification of waypoint 
missions.  

The results of carrying out verification using both 
approaches with both waypoint missions was a set of 
performance graphs (as described in [14]) showing the 
predicted performance of the missions with respect to the 
performance criteria (9). 

B. Validation 

Validation experiments of the waypoint missions are 
conducted to illustrate that VIPARS’ predicted performance 
of the mission is consistent with the robot’s actual 
performance. The robot used for the experimental trials is the 
Pioneer 3-AT, a four-wheeled skid-steered mobile robot. The 
robot is also equipped with a forward-facing SICK laser 
scanner. The complete validation experiment consists of 50 
trial runs for each waypoint mission respectively, which 
resulted in a total of 100 trial runs. Snapshots of the waypoint 
mission B are shown in Figure 6. Mission success is defined 
by how well the performance criteria (9) are met. Thus, for 
each trial, the following performance variables were 
measured: 

 t – Mission completion time 
 r – Robot’s relative distance to its goal location  

 
2 http://wiki.ros.org/amcl 
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a. Robot moving toward 

1st waypoint 

b. Robot moving toward 

2nd waypoint 

  
d. Robot moving toward 

goal location 

c. Robot after turning a 

corner 

Figure 6: Snapshots of Validation for Mission-B 

C. Verification vs. Validation (V&V) 

Verification and validation are conducted independently 
by our two research groups, and the results are not shared 
until the final comparison stage. Figure 7 shows the results of 
verification and validation of the waypoint missions. The 
performance guarantee is quantified as a probability 
distribution that represents the robot mission’s likelihood for 
success. These results also serve as the basis for performance 
feedback; and how this information should ultimately be 
presented to the mission operator was investigated in our 
recent human subjects study [23]. 

Figure 7 shows the validation results of the performance 
guarantees for the two waypoint missions. These results are 
obtained with the sampling-based model of the probabilistic 
localization as described in Section IV. Figs. 7a and 7c show 
the V&V results for the spatial criteria P(r≤Rmax), the 
probability that the robot arrives within Rmax radius of its goal 
location. Figs. 7b and 7d show the comparisons for the time 
criteria P(t ≤ Tmax), the probability that the waypoint 
mission is completed under the time limit, Tmax. The results 
illustrate that the VIPARS verification of performance 
guarantees are consistent with the outcomes from 
experimental validation. The V&V results can be divided into 
three regions for further interpretation: High Confidence 
(Unsuccessful), Uncertain, and High Confidence (Successful) 
regions. The High Confidence (Unsuccessful) is the region of 
near zero verification error and the mission has a zero 
probability of success. The Uncertain region is the region 
where verification error is significantly greater than zero and 
the probability of mission success is between 0 and 1.0. As a 
result, the robot is not guaranteed to succeed with the 
mission. The High Confidence (Successful) is region of near 
zero verification error and the mission is guaranteed to 
succeed with probability of 1.0. Consequently, the mission 
operator’s decision for robot deployment can be based on 
which region of the mission criteria fall into. For instance, if 
the specified performance criterion falls within the 
Unsuccessful region (e.g., Rmax=0.5m), the operator can either 
abort the mission or modify mission parameters (e.g., design 
a new robot controller).  



  

  
a. Mission A Spatial Criterion 

P(r≤Rmax) 

b. Mission A Time Criterion 

P(t≤Tmax) 

  
c. Mission B Spatial Criterion 
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d. Mission B Time Criterion 
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Figure 7: Results of VIPARS Verification and Experimental 
Validation of Spatial and Time Performance Criteria for Waypoint 
Missions A and B. Figures 6a & 6b show the V&V results of spatial 
and time performance respectively for Mission-A, where the results 
are divided into three regions based the performance guarantees: 
High Confidence (Unsuccessful), Uncertain, and High Confidence 
(Successful). Figures 6c and 6d show the V&V results of Mission-B. 

The overall mission success (Eq. 4) is defined in terms of 
both spatial and time criteria. Thus, we examined further in 
Figs. 8 and 9 the effects of various combinations of spatial 
and time criteria (Rmax and Tmax) on the mission success and 
verification error. The results can also be used to answer 
queries regarding the performance guarantee for a specific 
combination of Tmax and Rmax. Fig. 8 shows the effects of the 
time criterion Tmax on the V&V results of the spatial criterion 
P(r≤Rmax) for Mission A. While the Tmax’s in both of its high 
confidence regions (Fig. 7b) have no effect on the 
verification error for P(r ≤ Rmax), Tmax’s that are in the 
Uncertain region (e.g., Tmax= 415 sec) incur significant 
verification errors. For instance, for Tmax=415sec, VIPARS 
predicted a success probability of 0.18, while the robot was 
actually successful 76% of the time in experimental trials.  

 

Figure 8: V&V of Spatial Criterion at various Tmax for Mission A 

 

Figure. 9: V&V of Time Criterion at various Rmax for Mission A 

Fig. 9 shows the effects of the spatial criterion Rmax on the 
V&V results of the time criterion P(t≤Tmax). While similar 
observations can be made here as in Fig. 8, in this case, 
Rmax’s have much less impact on the verification error of 
P(t≤Tmax) due to VIPARS’s accuracy in predicting the spatial 
performance of mission even in the uncertain region (as 
shown in Fig. 7a). Nonetheless, missions with performance 
criteria in the Uncertain regions should generally be avoided. 

Lastly, we have also examined the different verification 
results of VIPARS based on how the probabilistic 
localization mechanism is modeled: sampling-based and 
high-level model-based (as described previously in Section 
IV). Moreover, these results are also compared to the 
verification result for the case when only odometry 
information is used for localization.  The odometry-only 
version was 100% unsuccessful during verification; 
conclusive proof that localization is an asset to the mission. 
Just for the purpose of comparison, odometry-only graphs 
were generated with VIPARS ignoring obstacle collisions.  
These verification results are shown in Figs. 10-11 along with 
the validation result for Mission-A. While the verification 
results for different localization modeling approaches are 
comparable for the time criterion (Fig. 10), the performance 
guarantee based on the sampling-based model is more closely 
aligned with the validation result for both spatial and time 
criteria.  

 

Figure 10: V&V of Time Criterion and Models of Localization 



  

 
Figure 11: V&V of Spatial Criterion and Models of Localization 

VI. CONCLUSION 

Localization and mapping techniques intuitively offer 
advantages for robots navigating in unknown environments. 
This paper has applied our work in the design and 
verification of autonomous behavior based robot missions to 
the problem of determining whether there is a mission-
specific benefit to using localization, that is, whether the 
mission is carried out better because of localization. The 
MissionLab/VIPARS mission design and verification 
approach was extended to handle two approaches to 
modeling localization: a high-level approach in which only 
position estimate improvement is modeled, and a sample-
based approach, in which the run-time localization code is 
embedded in verification. Extensive experimental validation 
is reported for two different waypoint missions using 
localization. The discussion of Figures 10 and 11 indicates 
that the sample-based approach yields the more accurate 
estimate, even for the sampling simplification made in this 
paper. Furthermore, VIPARS provides conclusive support 
(Fig. 11) for the initial intuition that localization was an asset 
to mission performance by predicting 100% failure of the 
non-odometry mission. 

To completely implement the mixture extended function 
of Definition 1 for the sampling-based approach, the full 
motion history for each sample request would need to be sent 
to the STDR node and AMCL reset between samples. The 
ability to cache these multiple sensory histories would 
improve computation time, but at the cost of directly 
instrumenting AMCL – a step we were avoiding for reasons 
discussed in the paper. 

Future work will involve applying MissionLab/VIPARS to 
heterogeneous missions that include characterizing human 
operators, and application of VIPARS to the autogeneration 
of missions 
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