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SUMMARY 

 

Block copolymer (BCP) directed self-assembly (DSA) is a process widely studied 

for the patterning processes in the coming generations of integrated circuit (IC) 

fabrication. BCP-DSA takes advantage of a BCPs natural ability to phase separate at the 

nanometer length scale and aligns them to lower resolution patterns created by traditional 

lithographic techniques such that the desired IC patterns can be created. A coarse-grained 

polymer model was created to investigate BCP-DSA. By using a coarse-grained model 

and treating multiple monomers as a point particle simulation time can be significantly 

reduced without sacrificing as much accuracy as older mean field models. In chapters 2 

and 3 this model, and methods that are necessary to its use, are described.  

Two of the major hurdles to BCP-DSA implementation are line roughness and 

defect density. Chapter 4 considered the effect of guiding layer properties. Guiding lines 

with various correlated and anti-correlated roughnesses showed that very significant 

guiding roughness is required to have any effect on the BCP film. In chapter 5 it was 

found that both line edge roughness (LER) and line width roughness (LWR) increase 

approximately linearly with increasing PDI, up to ~ 45% of the monodisperse value at 

PDI = 1.5. Mechanisms of compensation for increase A-A and B-B roughness were 

considered, and when the volume fraction of individual chains was allowed to vary, 

similar results were found when considering the PDI of the block as opposed to the PDI 

of the entire system.  In chapter 6, a sharp increase in LER and LWR in aligned BCP 
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patterns was found for low χN values compared to older models. This sharp increase will 

likely preclude the use of low χN materials in BCP-DSA processes.  

Defect density in a BCP-DSA sample can be explained due to either a small free 

energy difference between the defective and the defect free state, or by kinetic trapping of 

defects. Both aspects were considered. Chapter 7 introduces a method to calculated free 

energy differences and applies it to changes in BCP domain size and to measurements of 

the ODT. Chapter 8 applied thermodynamic integration to measure the free energy of a 

common defective state relative to the defect free state under various material and 

guiding layer conditions. It is found that χ, not χN as some previously thought, is the best 

determiner of defect free energy. Chapter 9 considered the kinetic aspects of defect 

healing as a function of χ and N and delves into the pathways of healing a common 

defect. An exponential increase in the energy barrier to defect formation was found with 

χN. 

In chapter 10, a method for increasing the efficiency of sampling activated states 

in molecular dynamics simulations of polymer systems called protracted colored noise 

dynamics (PCND) is described. By applying a time correlated random force along the 

backbone of the polymer chain, chain movement was encouraged without significant 

perturbation of the free energy of the system. An increase in defect heal rate of 4 orders 

of magnitude was found as compared to the results from chapter 9 without PCND, and 

littler perturbation of the properties of a given state was found.  

Finally, chapter 11 considered the effect that linking together diblock copolymers 

to form tri, tetra, or penta block copolymers has on domain size and the ODT. A 
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depression in the minimum pitch possible could be achieved using multiblocks, but the 

effect was small. The distribution of chain conformations of multiblocks through a 

lamellar morphology was also studied.   
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CHAPTER 1 

BACKGROUND 

1.1. Integrated Circuit Fabrication and Lithography 

Integrated circuits (ICs), and the microelectronic devices that are based on them 

are ubiquitous all over the world today. Though the transistor was first created by Bell 

Labs in 1947,
1
 and the first IC was produced in the late 50’s by both Jack Kilby at Texas 

Instruments and Robert Noyce at Fairchild Semiconductor, the information age did not 

truly take hold until the late 1960’s and 1970’s when ICs left the realm of military and 

government use only and entered the commercial realm with the introduction of devices 

such as the home computer. The reason that microelectronic devices changed the world 

was because of the exponential increase in computing power over time along with the 

exponential decrease in the cost for such devices. Gordon Moore, co-founder of the Intel 

Corporation, forecasted that the number of transistors per area in an integrated circuit 

would double every two years (plotted in Figure 1.1
2
), and his prediction has held true 

since he made the prediction in 1975.
3-5

 The critical advancements that made such a 

scaling, and such an impact, possible are primarily advancements in micro and 

nanolithography, that is, the technique used to define the circuit features in silicon 

wafers.
6
 The pace at which the lithographic community has advanced IC fabrication is 

staggering, but new challenges have arisen that threaten to slow or end such progress. In 

order to pack so many transistors onto a single chip, the dimensions of the smallest parts 
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of the transistors must shrink, requiring the smallest feature that can be patterned via 

lithographic techniques to shrink with it.  

 

 

Figure 1.1. Moore’s law demonstrated by data from Intel Corporation. The 

black line corresponds to a doubling of the transistor count every two 

years.
2
 

The lithographic techniques, namely optical lithographic techniques, that made 

early progress in increasing computing power possible are the same fundamental 

techniques that are still used today in IC fabrication. In optical lithography a layer of 

photoresist, a photosensitive polymer, is coated on top of a silicon wafer coated with a 

film of functional material. A photomask is used to selectively expose light to the 

photoresist. The photoresist reacts to the light and undergoes a solubility change in the 

exposed regions, and a solvent is used to selectively remove either the exposed or 
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unexposed regions. This process is described in Figure 1.2. The minimum feature size 

(critical dimension or CD) of this process is determined by
7
: 

 𝐶𝐷 = 𝑘1
𝜆

𝑁𝐴
 1.1 

where λ is the exposure wavelength, k1 is a process dependent factor theoretically limited 

at 0.25, but usually practically limited at ~ 0.4,
8
 and NA is the numerical aperture of the 

final lens. Equation 1.1 indicates that the critical dimension of such a process can be 

reduced by either reducing the wavelength of light used to expose the photoresist, or by 

increasing the numerical aperture; however, the depth of focus degrades much more 

rapidly by increasing the numerical aperture than by reducing wavelength which has 

caused the industry to focus on reducing CD by decreasing wavelength. Feature size has 

been steadily reduced by decreasing the wavelength of exposure since the 1970’s starting 

with “g-line” (436 nm) and then followed by “h-line” (405 nm), “i-line” (365 nm), KrF 

laser (248 nm), and ArF laser (193 nm).
7,9

 After the 193 nm exposure wavelength had run 

its course, the next logical step was projected to use 157 nm light, but these techniques 

ultimately failed.
10

 To compensate, immersion lithography, where the air gap between the 

lens and the silicon wafer is replaced by a high refractive index liquid was used.
11

 This 

worked by increasing the numerical aperture.
7
 When this technique reached the end of its 

life cycle, a technique called double patterning was introduced. In this technique, two 

exposures are made on the same wafer, patterning twice the number of lines in the same 

area.
11

 As traditional techniques have failed, new techniques have risen up to take their 
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place. But what is next? What is the new technology that will take the place of the older 

methods?  

 

 

Figure 1.2. Depiction of the lithographic process. Light is exposed to a 

photoresist which undergoes a solubility change and is selectively 

removed using a solvent.
12

 

The first thought someone might have is to try to reduce the wavelength, and this 

is what many in the community are trying to do. The next reduction in wavelength that is 

commonly worked on is a reduction to 13.5 nm, known as extreme ultraviolet (EUV). 

EUV lithography was originally intended for use in 2009
13

, but it has been plagued with 

difficulties and is still not used in an industrial process. The primary difficulty that EUV 

has faced is the difficulty of delivering enough power to the wafer to achieve efficient 

throughput.
14

 This difficulty is multifaceted. 13.5 nm wavelength light is a relatively high 
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power wavelength, meaning that each photon that is generated requires are large amount 

of energy, and improved throughput in optical lithography requires more photons, so 

more energy is required to achieve acceptable throughput. In addition, the methods used 

to produce EUV radiation emit the radiation in all directions and so require more 

focusing which results in lost photons.
15

 Finally, 13.5 nm wavelength light cannot be 

focused using a traditional lens but must instead be focused using mirrors. These mirrors 

must be made of layers of molybdenum and silicon or other similar layered materials, all 

of which are only ~ 70% reflective of EUV wavelengths.
16-19 

When tools require ~ 10 

mirrors to focus light and each of those mirrors is only 70% reflective, only about 3% of 

the light originally collected from the source actually reaches the wafer. All of these 

troubles combined amount to serious issues with EUV throughput.  

A number of alternative lithographic techniques have emerged in response to the 

problems that EUV lithography continuous to face. Such methods include: multiple e-

beam direct write,
20

 nanoimprint,
21

 and block copolymer directed self assembly. This last 

technique has been shown to be very promising and will be the focus of this work. 

1.2. Block Copolymers and Directed Self-Assembly 

1.2.1. Block Copolymer Basics 

 Block copolymers are composed of chemically dissimilar polymer chains that are 

covalently linked. Because of the low entropy of mixing, polymer blends are generally 

immiscible and macroscopically phase separate, but block copolymers are limited by the 

copolymer chain dimensions. They cannot macroscopically phase separate because each 
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block of one polymer type is covalently linked to a block of a different polymer type. The 

length scale of this phase separation is determined by the size of the chain, typically ~ 5 – 

20 nm in size, ideal for the coming generations of integrated circuits.
22

 While a variety of 

block copolymers with a number of different combinations of monomer types are 

possible, linear diblock copolymers, which contains two types of polymers connected at a 

single junction, is the most commonly studied and the most likely candidate for use in IC 

fabrication. Such diblock copolymers will self-assemble into arrays of nanometer sized 

domains when heated above their glass transition temperature. The bulk phase behavior 

of such polymer has been extensively studied by multiple groups, both experimentally 

and theoretically.
23-26

  Morphologies from spherical to cylindrical to gyroidal to lamellar 

are obtainable and are generally understood to depend on the volume fraction of the 

blocks of the BCP and the product of the degree of polymerization (N) and the Flory-

Huggins interaction parameter (χ). The Flory-Huggins χ parameter describes the strength 

of interactions between the two blocks: a high χ means the blocks interact very weakly 

and therefore favor phase separation, and a low χ means the bock interact strongly and 

favor mixing. This is shown by the phase diagram as described by mean-field 

calculations as is shown in Figure 1.3.
27-31

 The phase is primarily determined by the block 

volume fraction (commonly referred to as fA or φA), while the order-disorder transition 

(ODT) is determined by a combination of the block volume fraction and the product χN. 

The ODT is found to be at χN ~ 10.5 for fA = 0.5, though as will be seen later, this is true 

only for very ideal cases.
32-34 

For the purposes of IC fabrication, the lamellar morphology 

is of primary interest because they resemble the line and space patterns formed by 

traditional optical lithography. Cylinder forming BCPs are also of interest for the specific 
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purpose of forming or rectifying vias (connections between layers in the IC)
35,36 

and for 

bit patterned media fabrication
37

. 

 

Figure 1.3. Mean-field block copolymer phase diagram and images of 

various possible morphologies: Close Packed Spheres (CPS), Body 

Centered Cubic Spheres (S), Hexagonally Close Packed Cylinders (C), 

Gyroid (G), and Lamellae (L). Adapted from Bates and Fredrickson.
27

 

It is important to note that the smallest feature size a BCP is capable of forming is 

limited by the ODT. The size of a BCP domain is determined primarily by N (though χ 

and the stiffness of a polymer play a small role). This means that the feature size in a 

BCP is shrunk by reducing N. As N is decreased, χN decreases, so decreasing N will 
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eventually lead to too small a χN value which will cause the BCP to mix. This means that 

the smallest pitch that a BCP can form is limited by χ; a higher χ allows N to be reduced 

further before the system mixes. PS-b-PMMA forms a minimum pitch of about 17 nm at 

the ODT. A plot showing the minimum pitch as a function of χ assuming the 

homopolymers have similar stiffness is shown in Figure 1.4 on a semi-log scale. In order 

to achieve significant reductions in minimum pitch, χ must be significantly increased; an 

order of magnitude increase in χ from 0.04 (PS-b-PMMA) to 0.4 yields a decrease in 

minimum pitch from ~17 nm to ~5.5 nm, and this assumes that BCP-DSA processes will 

work at the ODT. In order to reach 10 nm pitch, a χ of ~ 0.12 is required. However, it is 

much more likely that a χN well above the ODT will be required for effective BCP-DSA 

processes, so the true useable minimum pitch will be well above this value. If the 

required value of χN is 20 (a fairly low estimate) then a χ of ~ 0.36 is required (about an 

order of magnitude higher than the oft studied PS-b-PMMA). If a χN of 40 is required (a 

rather high estimate) then a χ of  ~ 0.71 is required to reach a pitch of 10 nm. Because of 

this, development of high χ materials is a focus of many in the BCP-DSA community. 
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Figure 1.4. Minimum pitch as a function of χ assuming polystyrene like 

stiffness. Different curves refer to assuming a different minimum χN value 

for effective DSA processes. 

1.2.2. Directing BCP Self-Assembly 

As stated before, BCPs phase separate on the length scale of interest for IC 

fabrication, but without any direction or alignment cues, a thin film of lamellae forming 

BCP will form what is called a fingerprint pattern as seen in Figure 1.5, which is not 

useful. In order to overcome this limitation, BCPs are externally directed, generally by 

some pre-patterned underlayer, though BCPs have also been aligned using electric 

fields
38

 and shear
39

. BCP alignment generally falls into two categories: chemoepitaxy, 

shown in Figure 1.6, and graphoepitaxy, shown in Figure 1.7, though some hybrid 

methods have been recently introduced.
40,41
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Figure 1.5. Image of fingerprint in a simulated BCP. 

 

Figure 1.6. Example schematic of a chemoepitaxial process. 

 

Figure 1.7. Example schematic of a graphoepitaxial process. 

In chemoepitaxy, conventional optical lithography is used to define a chemical 

pattern in the underlayer. The BCP is then coated and annealed, either by heating the 

BCP above the glass transition temperature (Tg) of the polymer, or by incorporating 
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solvent vapor into the BCP film and thereby depress the Tg of the polymer system,
42

 or 

some combination of the two
43

; this allows the BCP to self-assemble and align to the 

guiding layer. One common method is to have a so-called pinning stripe that is 

preferential to one of the block of the BCP, and a wider so-called background stripe that 

is relatively neutral to both blocks of the BCP. The pinning stripe pins one block (say the 

"A" block) in place and then the remaining B and A domains  lay over the background 

stripe. The alignment propagates from the A block pinned to the pinning stripe to the 

adjacent blocks. Figure 1.6 shows a 1:3 pattern, that is, the pinning stripe defined by 

conventional lithography has width equal to the width of a block in the BCP, and the 

neutral stripe has a width equal to three times the width of a block in the BCP, leading to 

BCP pattern that is twice the density of the pattern made by optical lithography (a 2x 

density multiplying process), as shown in Figure 1.6. Higher density multiplying 

processes can also be used, such as a 3x density multiplying process that has a 1:5 pattern 

with a neutral stripe five times the width of one of the BCP blocks. One example of a 

process using this method of guidance is the Liu-Nealey (LiNe) process.
44

 After the 

pattern has been formed by the BCP, one of the blocks is removed via a selective etch or 

some other selective removal process, resulting in a line and space pattern which can then 

be used in subsequent IC fab steps. 

Similar to chemoepitaxy, graphoepitaxy uses conventional lithography to define a 

guiding layer, but instead of defining a chemical contrast it defines a topographical 

contrast. The BCP aligns to the walls and alignment propagates into the middle of the 

space between the aligning walls. After removing one of the blocks via an etch or some 

other selective removal, the pitch is again reduced from the original pitch of the optical 
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lithographic pattern, but only in the area between the guiding walls. The guiding walls 

themselves (which can be many times wider than the BCP blocks) are not modified and 

so the pitch is not changed in that region. Figure 1.7 uses a wall that is the same size as 

one of the block of the BCP, but this is not typical as such walls are usually much wider 

than the blocks. These wide walls amount to wasted space in an IC pattern and so 

chemoepitaxy is generally the preferred method.  

1.3. Challenges in BCP-DSA 

According to the keynote paper at the 2015 SPIE Advanced Lithography: 

Alternative Lithographic Technologies conference: "For consideration as a 

manufacturing method, BCP-DSA must generate a pattern with equivalent or improved 

(A) pattern quality in terms of line CD and roughness and (B) defect density."
45

 Studying 

the causes and methods for controlling these properties is a major focus of this thesis.  

1.3.1. Line Roughness 

Line roughness comes in two varieties: line edge roughness (LER) and line width 

roughness (LWR). LER refers to variations in a line edge away from a straight line while 

LWR refers to variations in width along the length of the line as seen in Figure 1.8. It has 

been shown that LWR is more important than LER when considering device performance 

at current length scales,
46-48

 but because the two are so closely related (in traditional 

lithographic systems LWR is generally equal to √2𝐿𝐸𝑅)
49

 and the same types of 

phenomena cause each, they are both commonly studied. LER and LWR are both 

commonly reported as 3σ values, that is they are reported as 3 times the standard 



 13  

 

deviation of either the deviation from a straight line edge (LER) or 3 times the standard 

deviation from a uniform line width (LWR). 

 

Figure 1.8. Top–down schematic of (a) LER and (b) LWR. LER is the 

deviation from a straight line edge, and LWR is the deviation from a 

uniform line width. 

According to the International Technology Roadmap for Semiconductors,
50

 for 

the 11 nm CD node, 3σLWR must be below 0.9 nm, well below the 2.5 nm to 3 nm that 

current best practices reach in PS-b-PMMA.
51

 In the 90’s, Semenov studied the 

roughness of BCPs in the strong segregation limit (that is, when χN is high).
52,53 

However, until recently, not much study has been done on line roughness in the context 

of BCP-DSA. Portions of this work will consider the effect of material properties and 

processing conditions on LER and LWR in BCP-DSA. 

1.3.2. Defectivity 

Defectivity is probably the primary limitation of BCP-DSA. Though much work 

has been done to reduce defectivity in BCP-DSA, defectivity is still on the order of tens 

of defects per cm
2 

in the best processes.
54

 This is still orders of magnitude above the 
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desired defect density of 0.01 defects per cm
2
.
50

 Defects are still rampant in many 

demonstrated process flows, and though understanding is increasing as to the 

fundamental causes of these defects, there is still a long way to go towards a complete 

understanding.
55,56

 As can be seen in Figure 1.9 which shows the defect density of an 

IMEC process
54

 over the 2013 year of study, defectivity still struggles to improve. 

Previous studies have calculated the free energy of defects in laterally confined systems 

(that is graphoepitaxy guiding), and in chemically aligned systems as a function of 

guiding linewidth but there are still a great many factors involved in defect formation that 

are not yet well understood.
55-57

 There are two possible causes for such high defectivity: 

the free energy difference between the defective and the defect free state is small enough 

that the equilibrium concentration of defects is simply above the desired density, or 

defects are being kinetically trapped during the annealing step. The defect density can be 

related to the defect free energy via Equation 1.2.
55

 

 𝑛𝑑 = 𝑎−2 exp (
−𝐸𝑑𝑒𝑓𝑒𝑐𝑡

𝑘𝑇
) 1.2 

The parameter a is the size of the defect. Because the defect density depends 

exponentially on the defect free energy, an accurate calculation of this value is critical to 

understanding anticipated defect levels in DSA processes.  Both defect free energy and 

kinetics of defect healing will be investigated in this work.  
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Figure 1.9. Plot of defect density over time for an IMEC process from 

March 2013 to February 2014.
54

 Defect density is slow to improve. 

1.4. Modeling of BCPs and BCP-DSA 

 The standard model and theory for the simulation and study of block copolymers 

has for decades been the Gaussian model and self-consistent field theory, also called 

mean-field theory.
58

 It was first extended to BCPs in 1975 by Helfand.
59,60

 In this theory, 

diblock copolymers are treated as elastic threads that must fill space uniformly and which 

interact with an unfavorable contact energy. Instead of modeling all chains at once, the 

interactions are replaced by fields which represent the total time averaged interactions 

experienced by individual A and B segments, as seen in Figure 1.10. This makes the 

calculations extremely efficient with only a minimal cost in accuracy. Because time 

averaged fields are used, fluctuations at the interface are ignored.  When χN is large and 

structures are very well ordered then the fields are large compared to the interfacial 
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fluctuations and the model is accurate. Near the ODT the fluctuations are strong enough 

to affect the chain configurations, and accuracy is significantly diminished.  

 

Figure 1.10. Mean-field theory models focus on a single molecule and 

models the interactions by two static fields, one for the A blocks, and one 

for the B blocks.  

These models and their derivatives are responsible for almost all of the modeling 

of BCP systems since the 1970’s until recently. It was mean field models that developed 

the phase diagram shown in Figure 1.3 and yielded valuable insight into BCP phase 

separation. In 1980 Leibler developed an analytical approximation to the full mean theory 

for use in weakly-segregated melts commonly referred to as weak-segregation theory.
61

 

This model provided a nice explanation of the structure of the mean-field phase diagram 

near the ODT, and yielded mixed state scattering functions which are still used today to 

measure χ.
62,63

 However, the weak-segregation theory becomes inaccurate in the demixed 
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state above χN ~ 12,
64

 and even in this region the mean field model is inaccurate. 

Eventually, fluctuation corrections were made to this model improving its accuracy,
65

 but 

evidence now suggests even with the corrections the weak-segregation theory is 

inaccurate in the demixed state.
58,66

  

In 1985 Semenov developed a theory for an analytical analysis in the strong 

segregation regime.
52,53,67

 When χN is very large, the A and B blocks are so stretched that 

they can be modeled as essentially straight chains perpendicular to the interface. This 

theory, generally called strong segregation theory (SST), gives similar phase boundaries 

as the full mean field calculations and indicates that the more complex phases such as the 

gyroidal phase are unstable, consistent with experiment.
68-70 

So far, researchers have 

considered corrections for the junction entropy,
52,71 

chain end entropy
72

, chain 

fluctuations,
73

 and interface overcrowding
74

. However, direct comparisons with SCFT at 

χN ~ 1000 suggest that the strong-segregation limit is still not fully understood.
75

 Perhaps 

more importantly, most BCPs are studied when χN < 100 and SST is very inaccurate at 

these segregation.  

Mean-field and self-consistent field theory methods have been used for decades 

and provided valuable insight into BCP fundamentals. Today mean-field models are still 

commonly used to study BCPs in a variety of arenas, even with its fundamental 

inaccuracies near the ODT. However, in recent years, new models have been developed 

to compensate for the shortcomings of mean-field and self-consistent field theories. 

One method that has recently become more popular is the coarse-graining of BCP 

polymer systems. Instead of reducing calculations by modeling the interactions as a time 
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averaged field, the calculations of the many-body problem are reduced by lumping 

together multiple atoms as a single entity. This results in a significant reduction in 

calculations over a full atomistic or sub-atomistic representation of these chains, but a 

significant increase in calculations over the older mean-field models. This has been 

possible because of great increases in computing power available to researchers in recent 

years. Once coarse-grained, both Monte Carlo methods
76

 and molecular dynamics (MD) 

methods
77-79

 are used. Whether Monte Carlo methods or MD methods are used, these 

coarse-grained models are fundamentally more accurate than mean-field models because 

they include all relevant fluctuations. The only error that will exist is due to the errors 

associated with coarse-graining, which includes both the inherent spatial averaging and 

the development of accurate interaction potentials. In general, these errors are small, 

especially compared to the previously discussed mean-field models. This work uses a 

coarse-grained model and MD calculations to study BCP-DSA.  

Molecular dynamics is essentially a very large initial value problem where 

Newton’s equations of motions are solved through time. In the microcanonical or NVE 

ensemble, the number of molecules (N), volume (V), and energy (E) are kept constant. 

This corresponds to an adiabatic system. In this ensemble the governing differential 

equation is:  

 𝐹(𝑥) = 𝑚�̇�(𝑡) = −∇𝑈(𝑥) 
1.3 

where F is the force on the particles with position x, m is mass, t is time, v is the velocity, 

and U is the potential energy. Given some initial set of positions and velocities, the 

positions are integrated through time using a method such as the Velocity-Verlet 
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method.
80

 However, simulating systems that are not adiabatic would be greatly 

advantageous. Other common ensembles include the canonical ensemble (NVT) and the 

isothermal-isobaric ensemble (NPT).  

In the NVT ensemble the number of particles (N), volume (V), and temperature 

(T) are kept constant. In this case the energy of endothermic and exothermic processes 

are exchanged with a heat sink. Common thermostats for NVT simulations include the   

Nosé-Hoover thermostat
81

, the Berendsen thermostat
82,83

, and the Andersen thermostat
84

.  

In the NPT ensemble the number of particles (N), pressure (P), and temperature 

(T) are kept constant. This ensemble uses both a thermostat and a barostat. The barostat 

must change the volume of the box as the pressure changes. Barostats include the 

Berendsen barostat, the Nosé-Hoover barostat, the Parrinello-Rahman barostat
85

, and the 

Martyna-Tobias-Klein barostat
86

. 

One other model for simulating BCPs worth noting is the so called single-chain in 

mean field (SCMF) model.
87,88

 This model is a combination of mean field and coarse 

grained MC or MD methods. Polymer chains are explicitly modeled as in the MD and 

MC techniques described above, but these chains act in response to a field that is 

periodically updated based on the modeled chains. The chains are explicitly modeled but 

do not directly interact. This method tries to reduce the impact of the inaccuracies of 

mean-field models, but does not go as far as complete MC or MD methods. Because of 

this, and its slightly more complicated implementation, it is less commonly used than 

either the mean-field models or the coarse-grained MC and MD models.  
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BCPs have been studied using various models since the 1970s, most notably via 

mean-field methods. These methods are computationally efficient, but suffer a loss of 

fluctuations and so exhibit inaccuracies, especially near the ODT. In order to overcome 

these shortcomings, and because of the advent of increased availability of computing 

power, coarse grained MC and MD models have become more common. A coarse 

grained MD model is used in this work.  
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CHAPTER 2 

COARSE-GRAINED MODEL 

Directed self-assembly (DSA) of block copolymers (BCPs) is a promising 

technique for producing sub-30 nm pitch regular patterns and the development of these 

DSA techniques could benefit greatly from computer simulation of such methods.
1-5

 

Many theories and simulations have been used to study block copolymers already, with a 

great deal of work focusing on the order disorder transition (ODT), the order-order 

transitions between various morphologies such as hexagonally packed cylinders, or 

lamellae, and the spacing between the various structural units that make up a 

morphology. Leibler used mean-field theory to predict the phase diagram for a di-block 

copolymer system, which Helfand, and later Fredrickson, improved to include 

fluctuations.
6-8

 This change brought the product of χ (the Flory-Huggins interactions 

parameter) and N (the degree of polymerization) at the ODT and the periodic spacing 

prediction into agreement with experiment in the weak segregation regime, where the 

drive to phase separate is small. Others developed various mean-field and self-consistent 

field theory (SCFT) to study the strong segregation regime where the drive to phase 

separate is large.
9,10

 Simulation methods such as mean field and self-consistent field 

theory suffer from a number of limitations, especially the exclusion of fluctuations, that 

affect their accuracy and their level of detail. Simulation methods that include 

fluctuations, such as molecular dynamics (MD) methods often use unrealistic potentials 

such as purely repulsive or non-interacting potentials for unlike monomers, and/or are 

very slow.
 11,12 

By combining molecular dynamics and realistic potentials, a model can 
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potentially provide more accurate simulations of the inherent polymer behavior, 

dynamics, and equilibrium states without a need to guess modes of molecular movement 

(as is necessary for Monte Carlo methods). This is especially true for polymer systems 

that have very different densities or interaction strengths, as is the case for almost all real 

polymer systems. The effects of mismatched density or interaction strength on the 

behavior of the BCP is not well understood, therefore a model that can handle these 

differences is valuable. We have developed a novel model for simulation of BCP 

behavior and DSA processes based on molecular dynamics of coarse-grained polymer 

chains simulated using graphics processing units (GPUs) to perform the calculations. 
 

 

Figure 2.1. Description of coarse graining of polymer. Some number of 

monomers, corresponding to the statistical segment length, are modeled as 

a single bead and linked tougher.  

The polymers consist of a bead-spring type system where a single bead 

corresponds to multiple monomers as shown in Figure 2.1. This coarse graining can 

result in simulations ~100-200 times faster than atomistic simulations, depending on the 
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scale of coarse graining used in the polymer model. In addition, this work uses graphics 

processing units (GPUs) to perform the calculations. This is very effective because of the 

natural parallelizability of MD simulations. Using HOOMD-Blue simulations can run up 

to 200 times faster on a GPU enabled computer as compared to a standard desktop 

computer.
13,14

 By combining the two speed gains from coarse graining the simulation and 

using GPUs for the calculations, the simulation executes at speeds 40,000 times faster 

than conventional atomistic simulations and approaches the speed of other more 

commonly used simulation techniques for BCPs. The purpose of this chapter is to more 

fully describe the model, describe commonly used techniques, and compare the model 

with other existing models. In this chapter, I describe a method to measure the pitch of an 

off-lattice BCP model, a method to determine the ODT of the off-lattice MD system, and 

a method to calculate χ for that same system.  

2.1. Coarse Grained Model  

 We modeled polymers by grouping a number of monomers into a single bead, as 

shown in Figure 2.1. Each bead, when modeling a real polymer, corresponded to 

approximately a statistical segment length of that polymer. To verify this, fully periodic 

atomistic simulations of various polymers were run using the software Molecular 

Operating Environment (MOE) and Equation 2.1 was fit to the resulting state.
15

 

 〈𝑐𝑜𝑠(휃)〉 = 𝑒−𝑘 𝑘𝑝⁄  2.1 

θ is the angle between the vector defining the direction of the polymer chain at any given 

monomer  and the vector defining the direction of the polymer chain k monomers away. 
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kp is the statistical segment length in number of monomers. The vector defining the 

direction of the polymer chain at some monomer i is the vector from the center of mass of 

monomer i-1, to the center of mass of monomer i+1. The resulting data is shown in 

Figure 2.2 for various polymers of interest and the resulting fit parameters are shown in 

Table 2.1. For most of this work, a statistical segment length corresponding to 4 

monomers was chosen as it best matched the polymers of interest.  

 

 

Figure 2.2. Plot of 〈𝑐𝑜𝑠휃〉 as a function of monomeric separation. θ is the 

angle between the vector defining the direction of the polymer chain at 

any given monomer  and the vector defining the direction of the polymer 

chain k monomers away. 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

<
 c

o
sθ

 >
 

k (Number of Monomers Away) 

PS

PMMA

PHOST



31 

 

Table 2.1.Table of fit parameters of Equation 2.1 to the data in Figure 2.2. 

 PS PMMA PHOST 

K
p 

(monomers) 2.85 4.02 4.14 

 

Each coarse grained bead interacts via three potentials, a stretching potential that 

acts between two bonded beads, an optional angle potential that acts between every set of 

three consecutively bonded beads, and a non-bonded potential that affects all beads that 

are not bonded and are not two bonds apart. This is illustrated in Figure 2.3 and the 

equations used are shown in Equations 2.2 - 2.4.  

 𝐸𝑠𝑡𝑟(𝑟) = 𝑘𝑠𝑡𝑟(𝑟 − 𝐿)2 2.2 

 𝐸𝑎𝑛𝑔(𝑟) = 𝑘𝑎𝑛𝑔(𝑎 − 𝐴)2 2.3 
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2.4 

The stretching potential (Equation 2.2) has a harmonic form and tethers the beads 

together. kstr is the strength of the harmonic oscillator,  r is the distance between bonded 

beads, and L the equilibrium distance of the given bond. The angle potential (Equation 

2.3) also has a harmonic form and is used primarily to prevent collapse of the polymer 

chain, where kang is the strength of the harmonic oscillator, a is the angle of three 

collinear beads, and A the equilibrium angle. In some cases when beads that are separated 

by 2 bonds (bead i and bead i+2) interact via the non-bonded potential, crystallization of 
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polymers theoretically amorphous polymers occurred. For this reason, instead of the 1-3 

beads interacting via the non-bonded potential an angle potential was introduced which 

has been shown to give realistic chain statistics. If there was no direct interaction between 

beads separated by two bonds then there beads would often overlap to increase density 

and increase non-bonded interaction; however, this is unrealistic so the angle potential 

was used. Equation 2.4 gives the non-bonded potential where εij is the strength of 

interaction between type i and type j beads, σij is the equilibrium distance between bead 

type i and bead type j, and r is the actual distance between the two beads. This is similar 

to a Lennard-Jones potential, but softer and broader because the exponents are 8 and 4 

instead of 12 and 6, which works well for such a coarsely grained system.  

 

Figure 2.3. The three potentials used in this model. Estr corresponds to the 

energy of bond stretching, Eang corresponds to the energy of angle 

bending, and Enon-bonded refers to the energy of the non-bonded interactions. 

This potential set was then used in HOOMD-Blue, using GPUs and the Nosé-

Hoover thermostat for constant volume and temperature, or the Nosé-Hoover thermostat 
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and the Anderson barostat for constant pressure and temperature simulations. Generally, 

only diblock copolymers were considered, but it is quite simple to extend the model to 

higher order block copolymers (e.g. triblock copolymers), as well as star polymers or 

other non-linear polymers. Generally, one of two simulation builds was used: either a 

bulk simulation where the system is periodic in all three dimensions or a thin film 

simulation where the system is periodic in the x and y dimension, but not the in z 

dimension. The bulk simulations were built by placing the first bead on a chain randomly 

in space. Subsequent beads on that chain were built at the equilibrium angle and bond 

length in a random direction, simulating a random walk. The thin film simulations 

contained two parts: the underlayer and the BCP film. The underlayer was built using the 

same beads that constitute the film.  The underlayer was built to model a brush with the 

bottom-most bead of the chain, i.e. the one in contact with the hypothetical substrate, 

fixed in space.  This condition corresponds to the brush polymer chains being tethered to 

a substrate such as silicon.  The tethered bead chains were placed on a square lattice 15 Å 

apart in the x and y directions.  Brushes tethered closer than this distance formed an 

unrealistic density wave (large oscillations in density) in the BCP film near the film-

underlayer interface. In addition, the BCP film had no apparent interpenetration of the 

BCP into the underlayer.  Brushes tethered further than 15 Å distance led to BCP chains 

quickly penetrating completely through the underlayer no matter how long the brush 

chains were made which is unrealistic since in a real system a brush is tethered to a hard 

surface which prevents this. A plot demonstrating these issues is shown in Figure 2.4 and 

related pictures from instances of the simulations are shown in Figure 2.5.  The length of 

the underlayer chains used was six beads.  Fewer than six beads per chain again resulted 
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in density waves in the BCP film near the film interface because the fixed underlayer 

beads at the substrate surface were not sufficiently shielded from the film, which leads to 

changes the packing structure of the film beads.  Another layer of fixed beads was placed 

below the brush to act as a hard surface and prevent inversion of the brush. The 

patterning of these underlayers was done by setting the beads in the underlayer chains as 

either A or B as a function of position. 

 

Figure 2.4. Density as a function of depth through the simulation. 

Different spacing of the tethered points in the underlayer give different 

density profiles. When the spacing is too low, density waves propagate 

from the interface before leveling off to bulk density. 
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Figure 2.5. Images of simulation with various underlayer chain spacings. 

The film is colored blue and the underlayer brush (with artifical wafer) is 

colored red. The film is a homopolymer film. a) 25 Å spacings result in a 

very low density underlayer and penetration of the film beyond the bottom 

of the underlayer. b) 15 Å spacings result in some penetration, but it does 

not penetrate through the entire brush. c) 10 Å spacings result in a poor 

interface and no interpenetration. For this work, and intermediate spacing 

of 15 Å was used. 
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2.1.1. Parameterization of Coarse Grained Model 

The six parameters that can be manipulated in the three potential sets must be 

parameterized in order to reproduce real polymer properties. The segment stretching and 

angle terms can be fit to match rigorous atomistic simulation results or to match 

experimental Rg values. The atomistic and coarse grained models were compared by 

calculating an equivalent coarse grain location for the atomistic simulation. The center of 

mass of each group of monomers that constituted a bead in the coarse grained model was 

taken as the equivalent coarse grained bead location.  As seen in Figure 2.6, which plots 

histograms of atomistic and mesoscale bonds and angle distributions for PS and the 

coarse grained equivalent, good agreement between the two simulations was obtained 

regarding bead to bead distance and the angles between each bead. The non-bonded 

interaction can be fit to experimental density, which is primarily controlled by σ, and 

cohesive energy density, which is primarily controlled by ε. The effects of each non-

bonded parameter are largely separable, but some fine tuning over the entire set is 

required for very good accuracy.  
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Figure 2.6. Bond and angle distributions for atomistic and mesoscale 

simulations of PS.  

For many studies, it is more desirable to study an idealized system than a realistic 

system. For this purpose we choose a set of parameters that resulted in realistic densities, 

cohesive energy densities, and angle and bond length distribution similar to that of 

polystyrene. To investigate a BCP system, the same potentials are used for both the A 

and B polymers. The A-B interaction potentials are identical to the homopolymer 

potentials, except for the non-bonded scalar εAB. A difference in this value from the 

homopolymer values (εAA and εBB) accounts for the existence of χ in a system. Further 

discussion of this interaction is included in section 2.3. This model can then be perturbed 

by varying the parameters in Table 2.2 in order to study the effects density, cohesive 

energy density, stiffness, or other polymer properties have on different BCP systems. The 

exact parameters used in the symmetric potential, that is, a system where polymer A has 

the same parameters as polymer B, is found in Table 2.2.  
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Table 2.2. Potentials used for generic, symmetric, BCP.  

 
L 

(Å) 

kstr 

(kcal/(mol*nm
2
) 

A 

(rad) 

kang 

(kcal/(mol*rad
2
) 

σij 

(Å) 

εij 

(kcal/mol) 

A Hompolymer 8.2 100 2𝜋/3 5 12.6 0.5 

B Homopolymer 8.2 100 2𝜋/3 5 12.6 0.5 

A-B 8.2 100 2𝜋/3 5 12.6 Determined by χ 

 

2.2. Measuring Pitch 

It is necessary to be able to measure the size of the structures formed when 

studying BCP structures and alignment. In order match a guiding layer’s repeat distance 

with the BCPs natural repeat distance, or to look at the effects of deviations in the 

underlayer away from that distance, the natural pitch of the BCP must be measured.  

In simulations of block copolymers, the structure factor S(q) can be evaluated 

from the Fourier transform of the radial pair distribution function.  The structure factor 

provides equivalent information to the pattern observed in a small-angle scattering 

experiment such as small-angle x-ray scattering (SAXS) and small-angle neutron 

scattering (SANS).
6
  Small-angle scattering is commonly used to evaluate a number of 

properties of the system such as the BCP domain size based on the position of the peak 

maximum, q*.
16-20

 S(q) is calculated using Faber-Ziman methods in Equation 2.5 where 

the pair distribution function is denoted by g(r).
21-23

 representative plot of S(q) is shown 

in Figure 2.7.  



39 

 

 𝑆(𝑞) − 1 = 4𝜋𝜌0∫ 𝑟2
𝑠𝑖𝑛 𝑞𝑟

𝑞𝑟
[𝑔(𝑟) − 1]𝑑𝑟

∞

0

 2.5 

 

Figure 2.7. Representative plot of S(q). The location of the largest peak 

corresponds to the pitch of the BCP system.  

The q location of the largest peak corresponds to the repeat distance of the 

polymer as given in Equation 2.6.  

 𝐿0 =
2𝜋

𝑞∗
 

2.6 

It is common to use modification functions to improve the evaluation of the 

integral in scattering since one cannot evaluate the integral to infinity. The smaller peaks 

in Figure 2.7 correspond to such errors. One of the most commonly applied modification 

functions is the Lorch window function: sin(πr/R)/(πr/R)
24

 used as outlined in Du et. al.
25

 

This produces Equation 2.7.  
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 𝑆(𝑞) − 1 = 4𝜋𝜌0∫
𝑠𝑖𝑛 𝑞𝑟

𝑞𝑟
[𝑔(𝑟) − 1]

𝑠𝑖𝑛(𝜋𝑟/𝑅)

𝜋𝑟/𝑅
𝑑𝑟

𝑅

0

 2.7 

Applying this produces a positive spectra with only one obvious dominant peak as seen in 

Figure 2.8. Although use of the Lorch window function improves the look of the spectra 

and likely its quantitative accuracy, it is not needed to simply obtain the position of the 

strongest peak. 

 

Figure 2.8. Representative plot comparing the raw S(q) calculation to that 

including the Lorch window function. 

Whether using the Lorch window function or not this method is effective, but the 

limited integration lengths we could achieve relative to the domain size of the systems, 

especially for large domain systems results in some error. In order to account for the error 

associated with these limited integration lengths, systems were built at various known 

repeat distances and S(q) was calculated for various integration lengths. Plotting the error 
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(defined in Equation 2.8) as a function of Dmeasured/Rmax (Rmax is the limit of the S(q) 

integration in Equations 2.5 and 2.7) yields a single curve as shown in Figure 2.9. The fit 

to this data is used as a correction factor in subsequent measurements of unknown repeat 

distances. In general, values of Rmax that are much greater than Dmeasured are used so that 

the error is relatively small.  

 %𝐸𝑟𝑟𝑜𝑟 =
𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐷

𝐷
× 100 2.8 

 

Figure 2.9. Plot of the measurement error vs. measured dimension / 

integration length. This calculated error is used to correct measurements of 

unknown natural pitches in BCP systems.  

2.3. Measuring χ 

A very common way to experimentally measure χ is by fitting scattering results to 

Liebler’s theory for BCP scattering.
26,27

 Because Leibler’s random phase approximation 
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(RPA) theory is only valid in the mixed phase, measurements are either made at high 

temperatures and extrapolated into the demixed phase or measurements are taken at small 

chain lengths and then the χ value measured is applied to larger chains. A similar method 

is used in our simulations. The structure factor from Liebler’s theory in the mixed state is 

fit and extrapolated to the demixed state. Instead of extrapolating via temperature or via 

chain length, both of which have their own set of assumptions, the extrapolation is 

performed in εAB. A similar approach is taken by Medapuram et al.
28

 A full explanation is 

given below. 

χ is defined by Equation 2.9 by Flory.
29

 

 𝜒 = 𝑧∆𝑤/𝑘𝑇 2.9 

where z is the coordination number, Δw is the exchange energy, k is the Boltzmann 

constant, and T is the temperature of the system. The exchange energy, Δw, is defined by 

Equation 2.10 as the energy penalty for replacing an A-A or a B-B interaction with an A-

B interaction. 

 𝛥𝑤 = 𝑤𝐴𝐵 −
1

2
(𝑤𝐴𝐴 + 𝑤𝐵𝐵) 2.10 

wij is the interaction energy between an i bead and a j bead. Since the interaction energy 

in this model is defined by the non-bonded potential parameter ε, Δw can be defined for 

our system by Equation 2.11 
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 𝛥𝑤 = 휀𝐴𝐵 −
1

2
(휀𝐴𝐴 + 휀𝐵𝐵) 2.11 

This shows that Δw scales linearly with changes in εAB. As long as the density of the A-B 

interface does not significantly perturb the system, z, coordination number (the number of 

beads a single bead interacts with), will remain a constant. Since kT is a constant, χ is will  

scale linearly with εAB until z is perturbed by density variations at the A-B interface.    

 Liebler’s theory is defined by Equation 2.12 (explanations and definition of F can 

be found in Liebler’s work).
6
 

 𝑆𝑇𝑜𝑡(𝑞) =
𝑁

𝐹(𝑞, 𝜑𝐴) − 2𝜒𝑁
 2.12 

N is the degree of polymerization and is known. φA is the volume fraction of the A block 

and is also known. a and χ are the parameters fit to the BCP structure factor. STot(q) used 

in Equation 2.12 combines the S(q) values calculated from all pair distribution functions. 

There are three methods of calculating of STot(q) found in literature: the Faber – Ziman  

method
21,22,23

,
 

 the Ashcroft – Langreth method,
21,23-32

 and the Bhatia – Thornton 

method
23,33

. Which should be used to match Leibler’s random phase approximation 

theory? The Faber – Ziman method is calculated via Equation 2.13 where ρ0 is the 

monomer density and gij is the pair distribution function calculated between i and j 

components.
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 𝑆𝑖𝑗(𝑞) = 1 + 4𝜋𝜌0∫ 𝑟2
𝑠𝑖𝑛 𝑞𝑟

𝑞𝑟
[𝑔𝑖𝑗(𝑟) − 1]𝑑𝑟

∞

0

 2.13 

This results in three different structure factors: SAA, SBB, and SAB. Faber – Ziman uses 

Equation 2.14 to calculate the total structure factor.  

 𝑆𝑇𝑜𝑡(𝑞) =∑𝑐𝑖𝑐𝑗𝑏𝑖𝑏𝑗[𝑆𝑖𝑗(𝑞) − 1]

𝑛

𝑖,𝑗

 2.14 

where ci is the normalized concentration of atoms i (ci = ni/ntotal, which is equivalent to fA 

or φA in Flory nomenclature) and bi is the neutron or X-ray scattering length of species i. 

However, bi is not well defined for our system, which is problematic. Ashcroft and 

Langreth define STot(q) using equations 2.15 and 2.16 where δ is the Kronecker delta. 

 𝑆𝑖𝑗
𝐴𝐿(𝑞) = 𝛿𝑖𝑗 + (𝑐𝑖𝑐𝑗)

1/2
∫

𝑠𝑖𝑛 𝑞𝑟

𝑞𝑟
𝑟2(𝑔𝑖𝑗(𝑟) − 1)𝑑𝑟

∞

0

 2.15 

 𝑆𝑇𝑜𝑡(𝑞) =
∑ 𝑏𝑖𝑏𝑗(𝑐𝑖𝑐𝑗)

1/2
[𝑆𝑖𝑗

𝐴𝐿(𝑞) + 1]𝑖,𝑗

∑ 𝑐𝑖𝑏𝑖
2

𝑖

 2.16 

Again, bi is not well defined for our system. Additionally, the Ashcroft – Langreth 

method is much less commonly used in literature. Bhatia and Thornton define Sij(q) using 

Faber – Ziman formalism (Equation 2.13), but define three different ways of calculating 

the overall S(q) as defined in Equations 2.17 - 2.19.  
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 𝑆𝑁𝑁(𝑞) = 𝑐𝑖
2𝑆𝑖𝑖(𝑞) + 𝑐𝑗

2𝑆𝑗𝑗(𝑞) + 2𝑐𝑖𝑐𝑗𝑆𝑖𝑗(𝑞) 2.17 

 𝑆𝐶𝐶(𝑞) = 𝑐𝑖𝑐𝑗 [1 + 𝑐𝑖𝑐𝑗 (𝑆𝑖𝑖(𝑞) + 𝑆𝑗𝑗(𝑞) + 2𝑆𝑖𝑗(𝑞))] 2.18 

 𝑆𝑁𝐶(𝑞) = 𝑐𝑖𝑐𝑗 [𝑐𝑖 (𝑆𝑖𝑖(𝑞) − 𝑆𝑖𝑗(𝑞)) − 𝑐𝑗 (𝑆𝑗𝑗(𝑞) − 𝑆𝑖𝑗(𝑞))] 2.19 

SNN(q) is the number-number partial structure factor. It allows a global description of the 

structure of a solid, that is, the repartition of the experimental scattering centers, but the 

nature of the chemical species spread in the scattering centers is not considered. SCC(q) is 

the concentration-concentration partial structure factor. It describes the chemical order in 

the material. SNC(q) is the number-concentration partial structure factor. This gives a 

correlation between the scattering centers and the chemical species that occupy them. In 

the case of an ideal mixture, SNC(q) = 0 and all the structural information is given in 

SNN(q). Because we care about the chemical repartitioning of the A and B beads, SCC(q) is 

the appropriate structure factor to use.  McCarty et al. agrees and uses SCC(q) to find χ.
34

  

SCC(q) (Equation 2.18) is fit to Leibler’s theory (Equation 2.12)
6
 in the mixed 

state for multiple values of εAB. A representative plot of the fit is shown in Figure 2.10. 

The results of this fitting are shown in Figure 2.11, which plots χ versus ε0 – εAB, where ε0 

= εAA = εBB for the symmetric system as shown here, for N = 128 monomers, φA = 0.25 

and εAA = εBB = 0.5 kcal/mol. When ε0 – εAB = 0, then χ is by definition 0 because the A 

and B beads are energetically interchangeable; there is no difference between them 

except by label. Because of this, when fitting χ vs. ε0 – εAB the intercept is fixed at 0 

because it must be so by definition. The slope of this fit is equal to z (the number of 
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nearest neighbors) in Equation 2.9, because ε0 – εAB is equal to Δw in the case where the A 

block and B block are identical (Equation 2.10), as is the case here. 

 

Figure 2.10. Representative fit of Liebler’s theory to our simulation 

results.  

 

Figure 2.11. Representative plot of χ vs. ε0 - εAB for N = 128 and φA = 0.25.  
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The slope of the fits, (z), for φA = 0.5 as a function of N are shown in Figure 2.12. 

When N ≥ 128, z is constant at 6. For lower N values, the shown fit is taken. An N 

dependence on χ at short chain lengths is expected from mean field calculations
35

 and 

verified experimentally
36

. The slope of the fits, (z), for φA < 0.25 and N ≥ 128 are found 

in Figure 2.13. It was found that the volume fraction had no noticeable effect until φA < 

0.25. Figure 2.13 is only valid for N ≥ 128 because it does not account for the change in z 

as a function of N at low N. Similar plots could be generated for lower N, but such 

simulations would result in BCPs where one block is very small (< 6 beads per block) 

which would likely have significant deviations from the random coil approximation and 

so were not of great interest. For N > 256 very long simulations times are required and no 

such chains were used in this work, except in very high PDI cases where a small fraction 

of the chains exceed 256 monomers in length. An N dependence on χ at short chain 

lengths is expected from mean field calculations
37

 and verified experimentally
38

. χ is also 

expected to vary with volume fraction from mean field calculations.
39

 Figure 2.13 and 

Figure 2.12 give the z values required to calculate χ for any N, φA, or εAB given the 

parameters in Table 2.2. These z values, combined with Equation 2.9, allow us to 

calculate the χ value for any  ε0 - εAB. 
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Figure 2.12. Plot of z values found for fA = 0.5 as a function of N. For N < 

115, the shown fit is used. Above this value, z is constant at 6. 

 

 

Figure 2.13. Plot of z values found as a function of volume fraction for N 

≥ 128.  
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It would be possible to fit χ to ε0 – εAB to S(q) using the corrections made by 

Fredrickson and Helfand,
37 

but their corrections fail at low N where all our simulations 

operate and which is of interest in BCP lithography. In addition, even when N is large 

enough, the corrections made by Fredrickson and Helfand will only affect values very 

close to the ODT and so would not significantly affect the values shown in Figure 2.11 

through Figure 2.13. It would extend figures like Figure 2.11 close to the ODT (for large 

N), the linear fit would not change significantly.  

2.4. Measuring ODT 

If any quantitative parameter is used to identify the ODT, it must at least be 

consistent with the qualitative visual observation of the ODT. While two different 

methods of observing the ODT will be discussed for a range of simulation conditions and 

degrees of polymerization, it is informative to visually compare a single common set of 

simulation results to each of the methodologies. Figure 2.14 shows images of a 

simulation using the symmetric forcefield for N = 32 as AB interaction strength εAB 

changes from weak (Figure 2.14a, εAB = 0.2) to strong (Figure 2.14f, εAB = 0.5).  Since the 

AB interaction strength is inversely proportional to the driving force to phase separate 

(Equations 2.9 - 2.11), this series goes from large χ to smaller χ.  The system appears to 

undergo a visible transition from ordered to disordered between εAB = 0.36 (Figure 2.14c) 

and εAB = 0.37 (Figure 2.14d).  It also qualitatively matches the expected trends with 

interaction strength above and below the ODT.  At weaker interactions, it is enthalpically 

more favorable for each phase to associate with itself rather than each other so the system 

phase separates with relatively sharp interfaces.  When the AB interaction is stronger 
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(Figure 2.14c), the system still phase separates, but the enthalpic penalty for unlike 

interactions is less so the system has less sharp interfaces.  At some point as the AB 

interaction strengthens, the enthalpic penalty for unlike interactions is not strong enough 

to overcome the entropic benefit of mixing, and the system mixes (Figure 2.14d and 

Figure 2.14e).  Since the two homopolymers used in this forcefield are identical (εAA = 

εBB = 0.5), the system is fully mixed when εAB = 0.5 (Figure 2.14f), which is where χ = 0 

as discussed in the previous chapter.   

 

 

Figure 2.14.  Bulk BCP structure after 100 ns simulation time for 

increasing εAB (decreasing χ), (a) εAB = 0.2, (b) εAB = 0.3, (c) εAB = 0.36, (d) 

εAB = 0.37, (e) εAB = 0.4, (f) εAB = 0.5, χ = 0. 

In simulations of block copolymers, the structure factor S(q) can be evaluated 

from the Fourier transform of the radial pair distribution function via Equations 2.5 or 

2.7.  The structure factor provides equivalent information to the pattern observed in a 

small-angle scattering experiment such as small-angle x-ray scattering (SAXS) and 

small-angle neutron scattering (SANS).  Small-angle scattering is commonly used to 

evaluate a number of properties of the system such as the BCP domain size based on the 

position of the peak maximum, q*.
16-20

  The width of the peak can be used to provide a 

qualitative observation of the ODT.
6,16,40

  However, this does not provide a sufficiently 
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quantitative descriptor for observation of the ODT, especially for simulations.  This is 

because the simulation size will have a strong effect on the width of the peak and errors 

associated with a relatively small upper limit of the integral in Equation 2.7 can have a 

strong effect on the peak width.  It is also complicated by the requirement to choose a 

peak shape (e.g. Gaussian, Lorentzian, etc.) with which to fit the width in a system where 

the shape of the peak can potentially change whether the system is ordered or mixed.
41

  

The intensity of the peak, I(q*) for scattering experiments and S(q*) from the structure 

factor, is a better descriptor in that it does not have to be fit by an arbitrary function and 

should be more sensitive to changes in structure.
16-19

 Thus, the first descriptor that is 

discussed as a method for determination of ODT will be the intensity of peak of the 

structure factor S(q*). 

The SAXS peak intensity has been previously used experimentally to determine 

ODT temperature for different molecular weights of poly(oxyethylene)-

poly(oxybutylene) diblock copolymers.
41

 Data from this study is shown in Figure 2.15.  

In the experimental study, the peak intensity was studied as a function of temperature.  At 

high temperatures the system is mixed, but as the sample is cooled χ increases.  The peak 

intensity is a nearly constant at temperatures where the system is mixed, but rapidly 

jumps to a much larger value at the ODT as the sample is cooled.  Further cooling the 

sample in the ordered state shows a slowly increasing peak intensity as χ further 

increases.  Identification of the ODT temperature by the rapid jump in scattering intensity 

was shown to give equivalent results to identification of the ODT temperature by 

conventional rheological measurements.  The maximum intensity of the structure factor 
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S(q*) should therefore give equivalent accuracy for identification of the ODT with 

changing interaction strength in simulation. 

 

Figure 2.15.  Changes in the scattering peak height for 

poly(oxyethylene)-poly(oxybutylene) diblock copolymers. A sharp 

increase in peak height is seen at the ODT. Data from Mai et al.
41

  

The structure factor for a BCP simulation with N = 32 at different values of εAB is 

shown in Figure 2.16; these results are directly extracted from the series of simulations 

shown in Figure 2.14.  Figure 2.16a shows the full structure factor while Figure 2.16b 

shows just the peak height S(q*).  The full structure factor shows the expected behavior.  

The well separated structures at small εAB show strong sharp peaks corresponding to the 

domains of the BCP.  As the interaction strength between A and B segments increases, 

the peaks become weaker and broader as the interface between domains becomes more 

diffuse.  Peaks are still observed below the visual ODT of εAB = 0.37 (Figure 2.14) 

because of the correlation hole effect
6
 and become very weak nearing the homogeneously 
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mixed state.  Considering the change in peak height in Figure 2.16b, there is an obvious 

jump in S(q*) as the system crosses the ODT and a slowly increasing peak intensity in the 

ordered phase as the AB interaction decreases; both results are fully consistent with the 

experimental results shown in Figure 2.15.  What appears different from the experimental 

result is that there is a reasonable increase in the peak intensity even in the disordered 

phase at εAB > 0.37. 

The increase in intensity in the disordered phase is fully consistent with Leibler 

theory
6
 , and so should not be unexpected.  The major difference between the experiment 

and our simulation results is likely due to the small system size in our simulation.  The 

experimental scattering is the result of measurements over a volume that is likely microns 

to millimeters in length, while our experiments are only run on simulations that are 

nanometers in length.  The radial pair distribution function can only be evaluated up to a 

distance r that is the smallest simulation box dimension divided by the square root of two.  

As a result, the upper limit on the integral in Equation 2.7 used to calculate the structure 

factor is limited to this same r value.  Since the integration is only over a few periods 

(with one period being roughly 10-20 nm), the intensity of the scattering peak is 

relatively small, while in the experiment the periodicity may persist for microns and is 

included in the scattering spectra. 
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Figure 2.16.  Changes in the structure factor for a BCP with N = 32 for 

different values of the AB interaction strength εAB (a) the full structure 

factor; (b) the peak intensity of the structure factor S(q*). 

To demonstrate the effect of system size on intensity of the measured scattering 

spectra, the equivalent simulation as was run in two different simulation box sizes.  The 

previous results were obtained from a simulation with an initially built simulation box of 

20 nm per side; additional simulations were run using boxes of 45 nm per side.  

Increasing the simulation box size allows integration to higher values of Rmax in Equation 

2.7 which should allow for a slightly better match to the experimental results.  Figure 

2.17 shows a comparison for the peak intensity of the structure factor for the 20 nm and 

45 nm boxes.  As expected, the intensity of the peak in the ordered regime is much higher 

for the bigger box size, and the ODT appears much more like a step change as seen in the 

experimental results.  Even bigger box sizes could potentially be run; however, there is 

always the tradeoff between simulation run time and the required level of accuracy.   
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Figure 2.17.  Effect of system size on structure factor peak intensity, 

closed symbols are for cubic simulation with 20 nm per dimension, open 

symbols are for simulation with 45 nm per dimension. 

While box size does create a difference in the magnitude of S(q*) as a function of 

box size, the location of the ODT (the point of highest magnitude derivative), is identical 

in each simulation. In Figure 2.17, this is found to be at εAB = 0.36 in both simulations 

using a three point central difference method to calculate derivatives. More accurate 

calculations can be found by using a finer εAB spacing.  

2.5. Comparison with Mean-Field Theory 

In order to verify our model, we compared results from our model with some well 

accepted results from mean-field calculations.  The phase diagram described by mean 

field is a well-known result that has been used and accepted for decades.
42

 We compare 

our results using the symmetric potential (Table 2.2) with that of mean field in Figure 

2.18. Because our model yields an elevated ODT because of the inclusion of fluctuation 
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effects, the ODT at fA = 0.5 is scaled to match mean field results. Excellent agreement is 

found between the coarse-grained model result and the mean field result.  

 

Figure 2.18. Comparison of our simulation results with the mean field 

phase diagram from Bates and Fredrickson
42

 

Our model was also compared with mean-field data for concentration profiles as 

done by Matsen and Bates in Figure 2.19.
43

 Boxes were created that were 1*L0 by 4*L0 

by 4*L0 for a degree of polymerization of 64 using the symmetric potential at various χN 

values. The beads were then binned using 0.1 nm wide bins in the dimension 

perpendicular to the lamellae and number fraction (equivalent to volume fraction) was 

calculated. As can be seen in Figure 2.25, there is very good agreement in the 

composition profiles. The interfacial width (w) was also compared and is shown in Figure 

2.20. The SCFT results were calculated using a full SCFT treatment while the SST 

(strong segregation theory) results are calculated by Equations 2.20 and 2.21.
43
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𝐷

𝑎𝑁1/2
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3𝜋4
)
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 2.20 

 
𝑤
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)

1
3
] 

2.21 

Our results match the SCFT results well. At lower χN, the deviation between SST and the 

full SCFT calculation increases, and our model follows the SCFT calculation as expected.  

 

 

Figure 2.19. Comparison of average volume fraction through a single 

domain for SCFT and our model. The results match well.  
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Figure 2.20. Comparison of the interfacial width (w) as a function of χN 

with SCFT and strong segregation theory (SST) calculations.
43

 There is 

good agreement throughout with SCFT, while SST agrees until χN is low, 

at which the assumptions in SST fail.  

 The domain scaling from this simulation is also compared with that of Shull’s 

mean-field analysis
44

 and with experimental PS-PMMA domains as extracted from 

literature
45-60

. As seen in Figure 2.21, the domain scaling with χN matches that of the 

mean-field analysis over a large range of χN from ~12 to ~ 100 and probably beyond. 

Experimental PS-b-PMMA results also match our results. Our results match these well 

tested results in all three regimes; the weak, intermediate, and the strong regimes. Our 

model matches well known and tested theories in three different ways; ODT location, 

concentration profile/interfacial width, and domain size scaling.  
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Figure 2.21. Comparison of pitches from our symmetric BCP model, 

Shull’s mean-field calculation of pitch,
44

 and experimental measurements 

of PS-b-PMMA
45-60

. Good agreement is found at low, medium, and high 

χN.  
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CHAPTER 3 

IMPACT OF PERIODIC CELL DIMENSIONS ON ALLOWABLE 

LAMELLAR DOMAIN SIZES: APPLICATION TO BLOCK 

COPOLYMER MICRO-PHASE SEPARATION 

It is common in computer simulations to use periodic boundaries conditions to 

approximate bulk material behavior. A simple formula is derived that allows direct 

calculation of all defect free lamellae pitches that are possible in given rectangular cell 

dimensions. It is found that in some cases the allowed lamellae repeat distances are 

restricted even when the cell edge dimensions are large relative to the lamellar repeat 

distance. Using elongated periodic cells that have edge lengths with the least number of 

common factors increases the density of allowable pitches. Using a coarse-grained BCP 

model, the impact of such boundary condition matching is verified in lamellae forming 

block copolymer simulations. By taking into account the periodic cell edge dimension 

restrictions using the methodology developed in this work, researchers can intelligently 

choose simulation dimensions that minimize the impact of periodic boundary conditions 

on the most energetically favorable equilibrium states for lamellae forming systems. 

3.1. Introduction 

Computer simulations using a variety of modeling techniques, ranging from 

exquisitely detailed density functional theory (DFT) and atomistically detailed molecular 

dynamics (MD) to continuum methods such as mean field techniques, have become 

extremely useful tools for understanding and predicting the behavior and properties of a 
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wide variety of material systems. The recent Materials Genome Initiative (MGI) is 

predicated on the fact that substantially faster cycle times in moving from basic materials 

research to material applications can be achieved by tightly coupling material simulation 

and modeling with more traditional experimental materials science and engineering 

methods. However, even with modern computational tools and computer capabilities, 

memory limitations and the large calculation times required for detailed simulations still 

limits our ability to perform large volume macroscopic simulations of materials using 

atomistically detailed methods such as molecular dynamics. Therefore, it is extremely 

common to perform many such “bulk” material simulations using periodic boundary 

conditions in which a finite size simulation volume, commonly referred to as a periodic 

cell, is effectively translated into an infinite volume such that the presence of interfaces 

can be avoided and bulk material behavior can be approximated. It is well known that 

simulation volume size effects can occur, and it is common in amorphous material 

simulations to test for such effects by performing simulations at different simulation 

volume sizes and checking for consistent results.
1,2

 However, amorphous materials 

represent only a fraction of the spectrum of useful engineering material systems. In 

general, non-amorphous systems pose more challenges in terms of their proper 

representation in periodic cell simulation volumes. Unfortunately, less attention has been 

given to the special challenges encountered in such non-amorphous systems due to the 

variety of different material system configurations that are important. Furthermore, as a 

result of initiatives like MGI, amazing advances in computing power (e.g. the advent of 

graphics processor unit or GPU-based computing), and improvements in and 

commercialization of user-friendly molecular modeling software, molecular simulations 
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are becoming ubiquitous in science and engineering. Such easy access to these modeling 

tools, their increased utility and more wide-spread use, and their adoption by scientists 

and engineers who may not have extensive experience in molecular simulations provides 

strong motivation for additional work on understanding the conditions under which 

molecular simulations achieve the desired goal of accurate representation of material 

thermophysical properties. This paper addresses this issue of understanding the 

conditions under which molecular simulations using repeating boundary conditions can 

properly represent material systems that exhibit formation of layered lamellae such as in 

the case of lamellae-forming block copolymers.  

As mentioned earlier, special care must be taken in understanding the impact of 

periodic boundary condition simulations when the material system to be simulated 

exhibits ordered or crystalline behavior, since boundary condition matching at the 

repeating boundaries places limits on the number of possible configurations in a 

particular set of simulation volume dimensions.
3
 One such application for molecular 

simulations in which periodic material structures are important is in the study of the 

micro-phase separation of block copolymers. Even relatively simple diblock copolymers 

can exhibit rich phase behaviors and produce nanostructured materials that are impacting 

a variety of fields in applications ranging from nanopatterning of integrated circuits to 

active nanostructured materials for solar energy harvesting. While the individual polymer 

chains in these block copolymers maintain a high level of disorder and have characteristic 

dimensions only on the order of 10 nanometers or less typically, the overall micro-phase 

separated system can exhibit long range order in a variety of phase morphologies 

including lamellar, cylindrical, and gyroidal forms with much larger characteristic 
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dimensions.
4
 These systems have been studied via mean field simulations since the 

1980’s,
5
 but in recent years various Monte Carlo and molecular dynamics models using 

periodic boundaries are becoming more prevalent
6,7

. When the simulation dimensions are 

not significantly larger than the periodicity of the micro-phase separated morphology, it 

is known that the pitch of repeating structures and morphology of such system can be 

affected.
3,8-14

 Because the effect is geometric in nature, other systems which form 

periodic order, such as some crystalline polymers,
15

 will also have similar such 

limitations. In the case of block copolymer simulations, some researchers have ignored 

these finite simulation volume size effects, assuming that the restriction and effect on 

material behavior is not large since multiple possible orientations of the periodic structure 

in the simulation volume are perceived to allow a sufficient density of possible micro-

phase periodicities.
3
 Without actually knowing the degree to which possible lamellae 

dimensions or other periodic spacings are constrained in small simulation volume sizes, it 

is impossible to tell if a given simulation volume size will perturb the thermodynamics of 

the system significantly and thereby introduce unnecessary errors of unknown magnitude 

into the equilibrium states calculated from such simulations. Therefore, researchers have 

also in some instances used advanced simulation dimension search algorithms based on 

optimization techniques that allow a simulation volume size to change in order to 

mitigate these finite size effects.
16,17

 However, these methods do not handle all situations 

effectively, particularly in the case where multiple minima or maxima are present in the 

objective function being optimized in such simulation dimension search algorithms.
16

 

Advanced simulation dimension search methods also come at the expense of increased 

simulation time, with the time penalty being directly affected by the type of optimization 
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method chosen and its convergence behavior. Finally, these search methods also are 

inherently more complex than standard simulation methods and are not generally 

available in commercial simulation tools. A third approach that could be employed is to 

simply use a simulation volume with dimensions that are much larger than the repeat 

distances expected in the simulation and assume that such volumes allow for essentially 

all possible periodic configurations. However, larger systems have the major drawback of 

significantly increased computation time and memory usage, especially when the 

periodic repeat distance is large compared to conventional molecular dynamics 

simulation volume sizes. This problem of blind use of large simulation volumes is 

particularly troublesome in block copolymer simulations where the periodicities of 

interest in various micro-phases are multiples of the characteristic macromolecular length 

scale and can easily be on the order of 10 nm to 100 nm. There has, to our knowledge, 

been no published method that allows easy determination of the impact of periodic cell 

dimensions on the number of allowed lamellae states and their characteristic dimensions.  

In order to better understand this problem and provide a simple set of rules to 

guide selection of optimal periodic cell dimensions for a given simulation, a method is 

developed in this paper that allows for calculation of the possible non-defective repeat 

distances for lamellar structures in periodic rectangular solid simulation volumes. This 

method is demonstrated in the context of selecting simulation volume dimensions for a 

lamellae-forming block copolymer simulation and it is shown that such finite size effects 

can be important depending on the specifics of the simulation size and lamellar repeat 

distance. Using the ability to calculate the allowable lamellae dimensions in a given 

simulation volume, it is shown that finite volume effects can be mitigated not only by an 
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increase in total volume, but by intelligent choice of simulation volume dimensions. It is 

shown that elongated simulation volumes are particularly useful in increasing the density 

of allowable lamellae repeat dimensions. The methods presented here allow one to 

quickly and intelligently choose dimensions that do not significantly affect lamella 

formation, do not have the large computation costs of very large simulations, and do not 

have the complexity of advanced simulation dimension search algorithms.  

3.2. Calculation of Allowed Lamellar Domain Size 

The challenge with simulating any material system that exhibits periodic ordering 

when using periodic boundary conditions on the simulation volume, as is commonly done 

in MD and Monte Carlo methods, is that not all repeat distances and dimensions for a 

particular morphology can fit into a single periodic cell size without requiring formation 

of a defect. This is due to the fact that use of repeating or periodic boundary conditions 

on the simulation volume requires that the locations of material domains formed in the 

volume match in location at opposing boundaries of the simulation volume since they are 

effectively in physical contact. This symmetry constraint places energetic limitations on 

the particular states that a material can take on in a given simulation volume size and 

shape. In order to better understand these constraints, consideration is first given to 

perhaps the simplest case, formation of a layered lamellae structure in a rectangular solid 

simulation volume for cases where the lamellae align parallel to one of the simulation 

volume edge planes. 

It is trivial to define the largest repeat distance that can fit into a 3D rectangular 

solid simulation volume since it is simply equal to the length of the longest edge of the 
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volume. By dividing this single coordinate into an integer number of evenly spaced 

lengths, smaller repeat distances can be accommodated, as seen in Figure 3.1. Let us refer 

to the number of divisions that a simulation volume edge is broken into as n. A lamellar 

phase, if single crystal in nature, can only repeat in one dimension, so this division could 

take place along any of the three simulation dimensions. If we do not consider any 

possible tilting of lamellae with respect to edge planes of the simulation volume (which 

will be considered later), then this results in Equation 3.1:  

 𝑃 = 𝐷𝑙/𝑛 3.1 

where P is the pitch for n repeated lamellae in a simulation with a side length of Dl, 

where n is a positive integer. A simulation may be divided along any side, not just its 

longest side, so Dl can have up to three different values for given set of dimensions. 

Considering this fact alone, a simulation volume whose edge dimensions share fewer 

factors is preferable to a volume whose edge dimensions are all identical (i.e. as in a 

cubic simulation volume) or whose edge dimensions share common factors. This is 

because each factor that is not shared between the edge dimension results in a new 

possible pitch for a lamellae forming system in the volume. For example, a simulation 

that has all three dimensions equal to 12 has possible pitches of 12, 6, 4, 3 …, but a 

simulation that has dimensions of 13, 12, and 11 has possible pitches of 13, 12, 11, 6.5, 6, 

5.5, 4.3, 4, 3.7, 3.25, 3 …. The second set of simulation volume dimensions obviously 

has many more possible pitches than the first simulation above any chosen cutoff value 

for the possible pitch, even though the simulation volume in the second case is actually 

smaller than the first case. However, not all possible pitches have yet been considered 
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since we have only considered the possibility of lamellae forming parallel to one of the 

simulation volume edge planes.  

 

Figure 3.1 Schematic of the division of a simulation volume along the x 

dimension into multiple lamellae, though a similar image could be made 

for the division of a simulation along the y or z dimension. n corresponds 

to the number of divisions. The blue and red areas correspond to the 

subdomains of the lamellae. 

Periodic structures in a material system such as the lamellar phase of a block 

copolymer do not necessarily need to orient parallel to the simulation volume edge 

planes. In reality, the system will equilibrate to the lowest free energy configuration 

available to it (see Figure 3.2). Thus, it is possible that in a lamellar system that the 

lowest free energy configuration may require the lamellae to tilt with respect to 

simulation volume edge axes (i.e. with respect to one or more of the simulation volume 
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edge planes) to create the most favorable pitch configuration. In general, the lowest free 

energy states will also still be ones that form continuous domains across the repeating 

boundaries with the phantom neighboring simulation volumes when using periodic 

repeating boundary conditions. Therefore, only pitches and tilts that create lamellar 

configurations where the domain edges still line up at opposite edge planes of the 

simulation volume will be effectively sampled in such simulations. Failure of the 

lamellae domain edge locations to match position at opposite sides of the simulation 

volume will result in a defect at the boundary at that particular lamellae pitch in the 

chosen simulation volume dimensions, as seen in diagrams in Figure 3.2. In general this 

will be a high energy state for the system and will be represented at the incorrect free 

energy for that pitch. The “true free energy”, i.e. the free energy in a truly infinite size 

simulation without periodic boundaries, as a function of pitch for a periodically ordered 

material is also shown schematically in Figure 3.2.
17

 The tilt angles that do not produce a 

continuous domain across the interface will be higher in free energy than those that do, 

resulting in a series of local minima in the system free energy as a function of pitch (i.e. 

corresponding to some specific tilt angle). Since molecular dynamics and other similar 

simulations converge to a local free energy minimum, and these local free energy minima 

occur when there are continuous domains across the periodic boundary, only those tilts 

that produce continuous domains will be sampled from such periodic simulations and are 

thus considered “allowed” states for the purposes of the discussions and calculations 

presented in this paper. 
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Figure 3.2. Diagram demonstrating allowed (local minima in free energy) 

and disallowed tilts (not local maxima in free energy). Some tilt angles 

result in continuous domain at the boundaries (local minima) while others 

produce discontinuous domains. The tilt angles that produce a defect will 

be significantly higher in energy than those without a defect. A simulation 

will converge to a local minima, and these local minima occur when there 

are continuous domains across the periodic boundary, and so only those 

tilts that produce continuous domains will be considered allowed. 

The interfaces between repeating lamellae (highlighted in yellow in Figure 3.3) 

will be referred to as lamellar interfaces, and their intersections with the simulation 

volume edge boundaries as lamellar vertices (highlighted as yellow circles in Figure 3.3). 

In order for a tilt to produce a continuous domain across the boundary and therefore be 

allowed several boundary matching conditions must be met: (1) the lamellar vertices 

must be in the same position on opposite side of the simulation volume, (2) each lamellar 

interface must connect two lamellar vertices on opposite boundaries, and (3) the lamellar 
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interfaces must all be parallel. This is demonstrated in Figure 3.3 in two dimensions for n 

= 3, and in Figure 3.4 in 3 dimensions for n = 3. In Figure 3.3, the bottom and top 

lamellar vertices have the same x position, fulfilling condition 1. These vertices are 

labeled 0 through 3 on both the bottom and the top. Each vertex on the bottom is 

connected to a vertex on the top via one of a set of lamellar interfaces which are parallel 

to one another, fulfilling conditions 2 and 3.  

 

Figure 3.3. Diagram demonstrating allowed tilts in one dimension. In 

order to produce an allowed pitch: 1) The lamellar vertices (yellow dots) 

must be at the same positions along both the top and bottom boundaries. 2) 

The lamellar interfaces (yellow lines) must connect two vertices on 

opposites boundaries. 3) The interfaces must all be parallel.  i corresponds 
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to the difference between the indices of the vertexes connected by an 

interface and can range from 0 to ∞. A larger i results in a smaller pitch. 

 

Figure 3.4. Diagram demonstrating allowed tilts in two dimensions for n = 

3 and i = 1. Tilts in the second dimension are independent of tilts in the 

first dimension. The same requirements exist for this tilt as the first 

dimensional tilt in order to assume defect free and continuous lamellae. j 

corresponds to the differences between the indices of the vertexes 

connected by an interface between the front and back (z = 0 to z = Dz) of 

the simulation volume and can range from 0 to ∞. A larger j results in a 

smaller pitch. 
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Figure 3.3 shows an example of some possible lamellae configurations for a case 

where the lamellae are rotated with respect to a single axis, i.e. the z-axis in this case. 

Every possible tilt for rotations around a single axis can be described using an integer i, 

where i corresponds to the difference between the indices of the vertices connected by a 

lamellar interface along an opposite set of simulation volume edges defining a plane 

normal to the axis of rotation, i.e. the x-y plane in Figure 3.3. The choice of which edge 

of the plane normal to the axis of rotation is thought of as being divided by the lamellar 

interfaces is an arbitrary choice. In the case of Figure 3.3, the edges parallel to the x-axis 

are chosen. Later, it will be shown that this choice is of no consequence. In Figure 3.3, 

when i is 0, then the 0
th

 vertex on the bottom front edge of the periodic cell is connected 

to the 0
th

 vertex on the top front edge, and when i is 1, then the 0
th

 vertex on the bottom 

front edge is connected to the 1
st
 vertex on the top front edge, and the 1

st
 vertex on the 

bottom front edge is connected to the 2
nd

 vertex on the top front edge and so on. A larger 

i corresponds to greater degree of tilt. There is no limit to i since there is no prohibition to 

a vertex being connected to a vertex many periods away since all boundary matching 

conditions are still met. However, a larger i results in a smaller pitch, so there is some 

practical limit to i above which the pitch is much smaller than the lamellar repeat distance 

of interest. If the tilt was in the opposite direction and vertices on the bottom were 

connected to vertices with lower indexes, then i would be a negative number. However, 

these tilts only produce mirror images of their positive counterparts and so do not add any 

new allowable pitches.  
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Thus far, only a rotation around one axis has been considered. In a three 

dimensional system, it is obvious that rotation around all three axes is possible, but only 

rotation around two axes (i.e. the ones along which the simulation volume was not 

originally divided) will create unique states with different lamellar pitches, as shown in 

Figure 3.4. The system in Figure 3.4 is rotated around both the z-axis (similar to the 

system in Figure 3.3) and the y-axis. The tilt with respect to the second axis of rotation 

must follow the same boundary matching conditions as the tilt with respect to a single 

axis of rotation as discussed earlier. The degree of tilt along a second axis can be 

described by an integer j, where j corresponds to the difference between the indices of the 

vertices connected by a lamellar interface along an opposite set of simulation volume 

edges defining a plane normal to the second axis of rotation, i.e. a plane parallel to the x-z 

plane in Figure 3.4. Because the interfaces must line up across the periodic boundary, all 

the possible tilts are accounted for by allowing i and j to be equal to any two integers that 

are zero or greater. Because every tilt has been considered, as well as every division 

along every axis, all the possible orientations and therefore all the possible pitches in a 

rectangular periodic simulation for defect free lamellae can be described by the 

parameters n, i, j, and the three simulation volume edge dimensions.  

The pitch for every combination of n, i, and j can be calculated by defining two 

adjacent lamellae interfaces as planes and then calculating the distance between those 

planes. Three points are required to define a plane, so given n, i, j, and the three 

simulation volume edge dimensions it is possible to calculate three points on any 
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interface. First, the intersection of an arbitrary lamellae interface with the bottom front 

edge of the simulation volume is defined as the origin (see Figure 3.4), yielding one point 

(P1) on a first lamellae interface plane equal 

 𝑃1 = [0, 0, 0] 3.2 

The intersection of this lamellar interface with the top front edge of the simulation 

volume (i.e. y=Dy, z=0) can be described by the point  

 𝑃2 = [𝑖 ∙
𝐷𝑥
𝑛
, 𝐷𝑦, 0] 3.3 

Finally, the intersection of this lamellar interface with the rear top edge of the 

simulation volume (i.e. at y=Dy, z= Dz ) is: 

 

𝑃3 = [(𝑖 − 𝑗) ∙
𝐷𝑥
𝑛
, 𝐷𝑦, 𝐷𝑧] 3.4 

P1, P2, and P3 define a lamellar interface plane. Since a vector between any two points in 

a plane gives a vector in that plane, we can easily define two vectors in that lamellar 

interface plane by taking the vector from P1 to P2 (𝑉1⃗⃗  ⃗) and the vector from P1 to 

P3(𝑉2⃗⃗  ⃗).  

 𝑉1⃗⃗  ⃗ = (𝑖 ∙
𝐷𝑥
𝑛
) �̂� + (𝐷𝑦)�̂� + (0)�̂� 3.5 
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 𝑉2⃗⃗  ⃗ = ((𝑖 − 𝑗) ∙
𝐷𝑥
𝑛
) �̂� + (𝐷𝑦)�̂� + (𝐷𝑧)�̂� 3.6 

The cross product of these two vectors yields a vector normal to the lamellae interface 

plane.  

 �⃗⃗� = (𝐷𝑦𝐷𝑧)�̂� + (𝐷𝑥𝐷𝑧
𝑖

𝑛
) �̂� + (𝐷𝑥𝐷𝑦

𝑗

𝑛
) �̂� 3.7 

The equation for a plane is: 

 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑖 = 0 3.8 

where a, b, c and d are numerical coefficients. It is also the case that a, b, and c in 

Equation 3.8 define the vector normal to the plane, so by combining Equations 3.7 and 

3.8 values for a, b, and c can be found in terms of parameters describing the simulation 

volume. 

 [𝑎, 𝑏, 𝑐] = [𝐷𝑦𝐷𝑧, 𝐷𝑥𝐷𝑧
𝑖

𝑛
, 𝐷𝑥𝐷𝑦

𝑗

𝑛
] 3.9 

In Equation 3.8, d accounts for the offset distance between parallel planes. Since all the 

lamellar interfacial planes are parallel, a, b, and c are identical for every plane. Since the 

first interfacial lamellar plane goes through [0,0,0], d1 (d for the first interfacial lamellar 

plane) is solved for as 0. The adjacent lamellar interface must go through the point 

[𝐷𝑥/𝑛, 0,0] and so: 
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 𝑑2 = −𝐷𝑥𝐷𝑦𝐷𝑧 𝑛⁄  3.10 

The distance between two parallel planes (P) where the first plane passes through the 

origin is: 

 
𝑃 =

𝑑2

√𝑎2 + 𝑏2 + 𝑐2
 3.11 

Substituting from Equation 3.9 and 3.10 yields: 

 
𝑃 =

𝐷𝑥𝐷𝑦𝐷𝑧 𝑛⁄

√(𝐷𝑦𝐷𝑧)
2
+ (𝐷𝑥𝐷𝑧 ∙ 𝑖/𝑛)2 + (𝐷𝑥𝐷𝑦 ∙ 𝑗/𝑛)

2
 

3.12 

Multiplying Equation 3.12 by n/n yields: 

 
𝑃 =

𝐷𝑥𝐷𝑦𝐷𝑧

√(𝑛 ∙ 𝐷𝑦𝐷𝑧)
2
+ (𝑖 ∙ 𝐷𝑥𝐷𝑧)2 + (𝑗 ∙ 𝐷𝑥𝐷𝑦)

2
 

3.13 

 

In the derivation of Equation 3.13, the x dimension was handled differently than 

the y and z dimensions. In the x dimension, n referred to number of lamellae into which 

the simulation was divided along that axis (that is, the number of lamellae that cross the 

x-axis), while in the y and z dimensions i and j referred to the degree of tilt. This 

difference caused n to be restricted to positive integers while i and j were equal to 

positive integers or zero. Because the x dimension is treated differently, we must re-
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derive Equation 3.13 for the case when the lamellae first divide along the y-axis and then 

rotate in the x and z dimension, and for the case when the lamellae first divide the z-axis 

and then rotate in the x and y dimensions. This amounts to simply switching Dy and Dz 

with Dx in Equation 3.13, resulting in Equation 3.14 and 3.15.  

 
𝑃 =

𝐷𝑥𝐷𝑦𝐷𝑧

√(𝑛 ∙ 𝐷𝑥𝐷𝑧)2 + (𝑖 ∙ 𝐷𝑦𝐷𝑧)
2
+ (𝑗 ∙ 𝐷𝑥𝐷𝑦)

2
 

3.14 

 
𝑃 =

𝐷𝑥𝐷𝑦𝐷𝑧

√(𝑛 ∙ 𝐷𝑥𝐷𝑦)
2
+ (𝑖 ∙ 𝐷𝑥𝐷𝑧)2 + (𝑗 ∙ 𝐷𝑦𝐷𝑧)

2
 

3.15 

Equations 3.13 – 3.15 can be used to calculate all the possible pitches in a box. 

However, when the math is examined more closely, it becomes clear that a single 

equation is all that is necessary. 

Equation 3.14 is the same as Equation 3.13, except that i and n are switched. For 

every value of n, i, and j when i is not zero, they will yield the exact same possible 

pitches. When i is zero, then i and n cannot be switched because this results in n being 

equal to zero. The same is true when we consider Equations 3.13 and 3.15. The only 

difference is that n and j are switched. So, just like Equation 3.13 and 3.14, all pitches are 

calculated in both equations except when j is zero because switching n and j results in n 

being equal to zero, which is impossible. The only pitches that Equations 3.14 and 3.15 

calculate that are not included in Equation 3.13 are those that are excluded because n 

cannot be zero. If we allow n to be zero in Equation 3.13, then Equation 3.14 and 3.15 
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become redundant, thus simplifying the calculation. This can be understood when it is 

recognized that while i and j were defined as the difference between the indices of the 

vertexes connected by an interface, the value of i and j also correspond to the number of 

lamellae that cross the y and z axes respectively, though this may not at first be obvious. 

This is however apparent in both Figure 3.3 and Figure 3.4. A value of zero for i or j 

means that the lamellae are parallel to that dimension. As i and j increase, the number of 

lamellae that cross the y and z axes respectively must increase as well. When i is one, 

then one lamellae (and one lamellar interface) will cross the y axis in the simulation 

volume. In the case of Figure 3.3c, the interface that connects vertex 1 at the top (y = Dy) 

of the simulation to vertex 0 at the bottom of the simulation (y = 0) is the only interface 

that crosses the y-axis. In Figure 3.3d, both the interfaces that start from vertices 1 and 2 

on the top (y = Dy) cross the y axis since. Since they must go two vertices over, two 

interfaces must cross the y-axis. The same follows for the z-axis as j increases and for 

higher values of i and j.  

This means that n = 0 in Equation 3.13 gives a valid pitch, because all this means 

is that the lamellae align parallel to the x-axis and never cross it. In fact, it would perhaps 

be more proper to define three parameters nx, ny, and nz instead of n, i, and j where nx, ny, 

and nz are all integers greater than or equal to zero and are defined as the number of 

divisions the lamellae make along the corresponding axis. This leads to a new equation, 

Equation 3.16: 
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𝑃 =

𝐷𝑥𝐷𝑦𝐷𝑧

√(𝑛𝑥 ∙ 𝐷𝑦𝐷𝑧)
2
+ (𝑛𝑦 ∙ 𝐷𝑥𝐷𝑧)

2
+ (𝑛𝑧 ∙ 𝐷𝑥𝐷𝑦)

2
 

3.16 

where nx, ny, and nz are all integers greater than or equal to zero. This will yield the same 

pitches that Equation 3.13, 3.14, and 3.15 did, except that it is not required to switch Dy 

and Dz with Dx. All the extra pitches that would be calculated by switching Dy and Dz 

with Dx are accounted for because any of nx, ny, and nz may be zero. Of course, they 

cannot all be zero as that yields an infinite pitch and also assumes that the lamellae are 

parallel to all three axes at once, which is impossible.  

Though nx, ny, and nz are not bounded and can in principle go to infinity, they are 

practically limited since the resulting pitch calculated for a set of nx, ny, and nz values 

becomes very small (relative to the simulation dimensions) quickly as nx, ny, and nz 

increase. In practice, it is of no value to calculate possible pitches that are smaller than 

the smallest characteristic dimension of the material being simulated. It is also important 

to remember however that Equation 3.16 calculates the allowed pitches that are possible 

for defect free lamellae. Any lamellae forming material system in which the energy to 

form a defect (e.g. dislocation, etc.) is on the order of the thermal energy in the system 

may form a defect, which would also then allow for additional allowed pitches in a 

particular set of simulation volume dimensions beyond what Equation 3.16 would 

indicate. This is not a concern however, since if defects are possible in a system they only 

increase the number of allowed states for a given simulation volume. 
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3.3. Block Copolymer Simulations 

As mentioned earlier, molecular dynamics simulations of block copolymers is one 

application where use of a periodic cell and periodic boundary conditions could impact 

the simulated equilibrium material structure.  In the case of lamellae forming block 

copolymer simulations as presented here, the concern is that choice of periodic cell 

dimensions could affect the equilibrium lamellae pitch.  To probe this effect and 

demonstrate its importance in such systems, molecular dynamics simulations were 

performed in which micro-phase separation of an initially mixed diblock copolymer was 

studied using a coarse-grained diblock copolymer model.  These simulations were 

performed for polymers of constant degree of polymerization (N) but for varying polymer 

χ values (i.e. the Flory-Huggins interaction parameter).  The choice to study micro-phase 

separation as a function of polymer χ value was made since it is expected from theory 

that the equilibrium lamellae pitch for a diblock copolymer is a function of the copolymer 

χ and N values.  According to previous theoretical treatments by Shull
18

 and Bates and 

coworkers,
19

 the lamellar pitch of lamellae-forming diblock copolymers will vary as χ
1/6

 

in the strong segregation limit (i.e. χN > 40).  As the block copolymer χN value is 

decreased, the dependence on both the polymer χ and N values increases, with the pitch 

scaling with ~χ
0.5

 at χN values approaching the order-disorder transition (ODT).  

Therefore, by simulating diblock copolymers with varying χ values, that change in small 

steps, it should be possible to produce polymer systems with that exhibit small and 

predictable changes in natural lamellae pitch. The pitches of these polymers should form 

a smooth curve as a function of χN,
18

 unless artifacts are introduced by factors such as the 

periodic cell dimensions and their impact on allowed pitches.  Simulations of these 
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lamellae forming polymers in specific periodic cell sizes that restrict the allowable 

pitches should verify the above calculations and highlight the limitations of certain box 

size. These calculations, while applied to lamellae forming BCPs here, should apply to 

any lamellae forming system simulated in a periodic unit cell because the assumptions 

made are geometric in nature and not based on anything specific to BCPs. 

The coarse grained model used has been described elsewhere,
6,20,21

 but will be 

briefly described here. Polymers are coarse-grained by modeling groups of 4 monomers 

(corresponding to a statistical segment length) as individual beads connected by harmonic 

bond potentials. Every group of three sequential bonded beads has a harmonic angle 

potential applied to prevent collapse due to non-bonded interactions.  Every bead pair that 

does not participate in a bond potential or angle potential experiences a non-bonded 

potential similar to a Lennard-Jones (LJ) potential as given in Equation 3.17: 

 
𝐸𝑁𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑 = 휀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟
)
8

− 2(
𝜎𝑖𝑗

𝑟
)
4

] 3.17 

The parameter σij controls the average spacing between non-covalently attached 

beads and therefore has a major effect on controlling density.  The parameter εij controls 

the strength of the non-covalent interactions and therefore has a major effect on 

controlling cohesive energy density (CED).  Since molecular dynamics simulations are 

off-lattice and each parameter can be modified somewhat independently, the density and 

CED for a homopolymer can be set to almost any desired value to represent a real 

polymer.
21

 The segment and angle terms can be fit by running rigorous atomistic 

simulations to determine the equivalent coarse-grained equivalent distributions of 
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segment lengths and angles.  In this case, the parameters for both A and B blocks are set 

to roughly reproduce the density and segment distribution of polystyrene. εAA and εBB are 

set to 0.5 kcal/mol, while σAA and σBB are set to 1.26 nanometers. The equilibrium bond 

length used for both A and B polymers was 0.82 nm, with a harmonic strength of 100 

kcal/mol×nm
2
. The equilibrium angle used for both A and B polymers was 2.094 radians 

(120 degrees) with a harmonic strength of 5 kcal/mol×radian
2
. Simulations were run at 

500 K, a realistic thermal anneal temperature for DSA-BCP systems. A further discussion 

of these parameters can be found elsewhere.
6,22 

The Flory-Huggins χ parameter is set 

using the εAB parameter, which determines the strength of non-bonded interactions 

between unlike polymer beads. When the A-B interaction strength is low relative to the 

A-A and B-B interactions (i.e. εAB is much smaller than εAA and εBB), χ is higher because 

the more favorable A-A and B-B interactions tend to minimize mixing.  When A-B 

interaction strength is comparable to the A-A and B-B interactions, χ is low because there 

is little energy penalty for forming A-B interactions at the cost of A-A and B-B 

interactions.  Thus for our system, the strength of the Flory-Huggins interaction 

parameter χ is related to the magnitude of the difference between εAB and the values of εAA 

and εBB. Details of how this relation is calculated can be found elsewhere and in Chapter 

2 of this work.
23 

 All simulations were run using the HOOMD-Blue software package
24,25 

and visualized in VMD
26

. Because of the natural parallelizability of molecular dynamics 

(MD) simulations as well as the parallel architecture inherent in graphics processing units 

(GPUs), this software package allows a GPU enabled computer to run MD simulations up 

to 200 times faster than a standard desktop computer. Simulations were run in fully 
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periodic, 3D, rectangular unit cells under NVT conditions at the average density of the 

homopolymers. The simulations were initialized by placing chains randomly at the 

equilibrium angle and bond length uniformly in the simulation volume. Two 

minimization steps were used. The first minimization step slowly moves apart beads that 

were randomly placed too close together, and thus have a very strong repulsive 

interaction. The σAA, σBB, and σAB values were initialized at a very small value and then a 

brief minimization was run using the Fast Inertial Relaxation Engine (FIRE) 

minimization algorithm in HOOMD. The σ values were then increased in small steps and 

a short minimization run, until the desired value of σAB (1.26 nm in this case) was 

reached.  Any beads that were too close together are thus gently moved apart as the 

interaction distance between them increases. Once this step is complete, a second, longer 

minimization is run. All simulations then were run for 100 ns at 500 K. 

3.4. Results and Discussion 

Previous simulations in large box sizes revealed that the polymer model described 

above yielded pitches between approximately 10 nm and 14 nm for χN values from 25 to 

65. To demonstrate the accuracy and utility of Equation 3.16, and to investigate the effect 

that different periodic cell dimensions can have on the equilibrium pitch calculated for 

lamellae forming diblock copolymers, two simulation sizes were chosen: a cubic 

simulation with 18 nm sides, and a more elongated simulation with dimension of 36.6 

nm, 13.3 nm, and 12 nm. These dimensions result in simulations of essentially the same 

volume, but with very different allowable pitches. Using Equation 3.16 above, it is found 

that in the range of 10 to 14 nm, the allowable pitches of the 18 nm cube are 10.4 nm and 
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12.7 nm, while the elongated simulation has allowable pitches of 10.0 nm, 10.7 nm, 11.4 

nm, 12 nm, 12.2 nm, 12.5 nm, and 13.3 nm as shown in Table 3.1. Allowable pitches for 

three different simulation sizes between 10 and 14 nm.. The elongated simulation 

volumes will allow more polymers to get closer to their natural pitch because of the better 

sampling of states in the relevant region. Table 3.1. Allowable pitches for three different 

simulation sizes between 10 and 14 nm.also includes allowable pitches for a 36 nm cube 

which is eight times larger by volume than the other two simulations. Even though the 

volume of the 36 nm cube is 8 times larger than the other two simulations, and it has 

approximately three times the number of possible pitches in the relevant region (10-14 

nm) than the smaller cubic periodic cell, it still has fewer allowable pitches than the much 

smaller volume elongated periodic cell simulation.  

Table 3.1. Allowable pitches for three different simulation sizes between 10 and 14 
nm.  

18 nm Cube
a 

10.4 12.7 
     

36 nm Cube
a 

10.4 10.9 11.4 12.0 12.7 
  

Elongated 
Simulation

a,b 10.0 10.7 11.4 12.0 12.2 12.5 13.3 
a
Units shown in nm. 

b
36.6 nm by 13.3 nm by 12 nm. 

 

Domain sizes of the simulation results were calculated from these simulations by 

calculating the structure factor from the radial pair distribution function. The results for 

the 18 nm cube are shown in Figure 3.5, and the results for the elongated simulation (36.6 

nm x 13.3 nm x 12 nm) are shown in Figure 3.6. Simulations that contain defects are 

neglected as the math above assumes a defect free configuration. The dotted red lines are 
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the allowable pitches as calculated above. The green line is the pitch of a lamellae 

forming BCP with a (the statistical length of a polymer repeat unit) equal to 0.761 nm.  

 

Figure 3.5. Resulting pitches for the 18 nm cube (volume = 5832 nm3) 

simulation. The only two pitches measured (blue diamonds) are the two 

pitches calculated in Table 3.1 (red dotted lines). The green line 

corresponds to the calculation of natural pitches for a BCP with a = 0.761 

nm using Shull’s theory.[18] This simulation size causes the resulting 

pitches to deviate from this theory and adopt only the discrete allowed 

pitches.   
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Figure 3.6. Resulting pitches from the 36.6 nm by 13.3 nm by 12 nm 

simulation volume (volume = 5841 nm
3
) which has a very similar volume 

as the used in generating Figure 3.5. Again the measured pitches (blue 

diamonds) align well with the allowed pitches from Table 3.1. Allowable 

pitches for three different simulation sizes between 10 and 14 nm.(shown 

as red dotted lines). However, the existence of many more allowable 

pitches from this rectangular simulation volume produces a curve that 

better matches, as compared to the result shown in Figure 3.5, Shull’s 

theory (green line) which describes the relationship between block 

copolymer lamellae pitch and polymer χN value. 

As can be seen in Figure 3.5 and Figure 3.6, the polymers only form defect-free 

lamellae at pitches that are allowed by the given simulation size. Because the elongated 

simulation has more allowable pitches than the 18 nm cube, the measured pitches form a 

more continuous line, which is more consistent with real BCP behavior. There is some 

noise in the measured pitch primarily due to a finite integration length in the structure 

factor calculation, but the measured pitches still clearly line up with expected pitches in 

every case. In Figure 3.6, the simulation at χN of 50 unexpectedly formed a smaller pitch 

than the simulation at χN of 45. It is likely that the simulation result at a χN of 50 is 
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actually a metastable state that may anneal out given a longer run time. Because the 

allowable pitches are not continuous, and changing pitch requires a rotation of the entire 

simulation, or requires large amounts of beads to move through regions of opposite type 

beads, the energy penalty to transition from one pitch to another is likely very high. This 

may stabilize metastable states.  

Though intelligently picking a non-cubic simulation will often yield a higher 

density of allowable pitches in the relevant region, care needs to be taken to avoid 

unrealistic simulation dimensions. A simulation of dimensions 200 nm by 12 nm by 2.43 

nm has 17 allowable pitches in the range of 10 nm to 14 nm, but a dimension as small as 

2.43 nm is likely to cause problems with chains interacting with other images of 

themselves or approaching the non-bonded potential cut-off distance.  

3.5. Conclusions 

A simple formula was derived to allow calculation of the defect free pitches 

allowed in a rectangular solid simulation volume implemented in repeating boundary 

conditions for a lamellae forming system simply based on the three edge dimensions of 

the solid.  It was found that elongated simulation volumes generally allow a higher 

density of possible pitches than much larger cubic periodic simulations, and that edge 

dimensions that share the least number of common factors are more advantageous.  Large 

cubic simulations still showed significant restrictions on the number of allowed lamellae 

pitches, even at pitches that were on the order of 1/3 of a simulation volume edge length 

or less.  To demonstrate the utility of the formula, block copolymer micro-phase 

separation simulations for a lamellae forming block copolymer system were conducted 
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using a coarse-grained molecular dynamics block copolymer model in conjunction with 

simulation volumes of roughly equivalent volume but different edge dimensions.  It was 

clearly shown in these simulations that intelligently chosen simulation volume edge 

dimensions can greatly increase the number of allowed pitches observed.  This higher 

density of allowed pitches can be very important in determining behavior in which the 

pitch of a lamellae forming system is expected to vary as a function of some independent 

variable, such as the case of block copolymer lamellae pitch variation with N value.  

Choice of simulation volume dimensions using the methodology described in this work 

can also be very advantageous in setting up simulations to determine the “natural” pitch 

for a lamellae forming system for which the pitch is unknown since dimensions can be 

chosen that provide a high density of possible allowed pitches.    
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CHAPTER 4 

EFFECT OF GUIDING LAYER PROPERTIES ON LINE 

ROUGHNESS 

Detailed molecular dynamics simulations have been performed to explore the 

effect of guiding layer properties and errors on resulting directed self-assembly (DSA) 

pattern properties produced in block copolymer (BCP) thin films. Guiding patterns that 

are non-commensurate to the natural BCP pitch are considered, as are guiding lines that 

have correlated or anti-correlated line edge deviations. The process window is detailed 

for non-commensurate line widths.  Guiding lines with various correlated and anti-

correlated roughnesses show that under the high χ conditions used here, very significant 

guiding roughness is required to have any effect on the BCP film, and most of the 

guiding roughness is damped out within 5 nm of the bottom surface of the BCP film. 

Also, pitch sub-division patterns (where the BCP natural periodicity is some integer 

multiple smaller than the guiding pattern periodicity) damp out guiding line roughness 

more easily than pitch replicating patterns where a guiding pattern exists for each line 

formed in the BCP film. 

4.1. Introduction 

In the field of semiconductor manufacturing, directed self-assembly (DSA) using 

block copolymers (BCP) is a promising technique for extending lithographic patterning 

capabilities beyond the limits of current optical lithography tools.  BCP-DSA utilizes the 

natural micro-phase separation properties of BCPs combined with a guiding pattern to 
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create the long-range order required for electronic devices fabrication and the pattern 

registration required to assemble multiple levels on top of one another.  It is enthalpically 

favorable for each polymer block in the BCP to interact with like blocks, but because 

each polymer block is bonded to an unlike block, the domains and patterns formed due to 

the micro-phase separation of the polymer blocks are of limited size.
1
 Depending on the 

relative volume fraction of the two polymer blocks in the copolymer, a variety of 

interesting morphologies including cylindrical, gyroidal, and lamellar phases can be 

formed.  Without outside guidance, BCPs that contain approximately 50% of each of the 

two polymer block types will form lamellae.  When the substrate surface is sufficiently 

neutral in its interaction with both of the polymer block types and the BCP film is coated 

at a thickness that is not commensurate with its natural periodicity, a somewhat 

disordered “fingerprint” pattern will form in the film where the lamellae are oriented 

normal to the substrate surface.  In contrast, when a topographically or chemically 

patterned substrate surface is used specific long or short range order can be induced.
1-3

  

Using 193 nm (or future EUV) lithographic patterning technology, a guiding pattern can 

be made which then can be sub-divided in terms of its dimensions using a subsequent 

BCP-DSA process.  Such a process effectively shrinks the smallest dimension and 

smallest repeat distance in the pattern. There are two main ways in which BCP are 

guided: topographically (referred to as graphoepitaxy) where confinement between two 

walls or in some other shape guides the BCP structure, and chemically (referred to as 

chemoepitaxy) where ideally flat underlayers that are chemically patterned guide the 

BCP assembly. In chemoepitaxy, a common strategy is to form a line that is the width of 

a single polymer block domain that interacts preferentially with one of the two polymer 
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block types which is interlaced with a much wider neutral line.
3-5

 The strongly interacting 

line in the chemoepitaxial guiding layer, or “pinning line”, is the pattern to which the 

BCP aligns.  That alignment is then propagated over the width of the neutral stripe by the 

natural lamellae structure in the BCP.  However, such guiding patterns will not in general 

be perfect, and it is critical to know how the BCP reacts to non-ideal guiding lines.  Line 

edge roughness (LER) and Line Width Roughness (LWR) are two important factors to be 

considered in semiconductor patterns because both negatively affect transistor 

performance, causing variations in transistor speed, current leakage and threshold 

voltage.
6-8

 Subsequently, LER and LWR in the BCP and the guiding pattern are 

important because the roughnesses in the BCP lines will be transferred to some degree 

via etch into the final components of the transistors.  Logically, both the intrinsic 

roughness of the BCP,
9-14

 and the underlayer LER/LWR in the original guiding pattern
15-

20
 would be expected to affect the final BCP LER/LWR roughness. While underlayer 

roughness is important, pitch commensuration is also important.  When the guiding 

pattern pitch and BCP natural pitch does not match, then strange morphologies can occur, 

and it may be possible that even if the correct morphology occurs, that it may roughen 

undesirably.
21

  As seen in Figure 4.1, LER is the deviation from a straight line edge, and 

LWR is the deviation from a uniform line width. In Figure 4.1(a), though the image 

demonstrates a high LER, it actually has an LWR of 0 nm. Figure 4.1(b) shows a high 

LER and LWR. This paper considers both correlated roughness (i.e. a sinusoidal guiding 

stripe) and anti-correlated roughness (i.e. a peristaltic guiding stripe) in pitch replication 

and pitch sub-division patterns and the effects of these guiding patterns on the resulting 

BCP pattern properties. Details of the particular model used here can be found in the 
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modeling section, but in short, a coarse grained molecular dynamics model is used to 

study these effects.
22 

 

Figure 4.1. Top–down schematic of (a) LER and (b) LWR. LER is the 

deviation from a straight line edge, and LWR is the deviation from a 

uniform line width. 

4.2. Modeling 

4.2.1. Coarse Grained Model 

This work has used a coarse grained molecular dynamics model as described 

elsewhere.
22-24

 
 
In brief, the polymers are modeled by representing four monomers 

(corresponding to a statistical segment length) as a single bead. Four monomers were 

chosen because that corresponds approximately to a statistical segment length for 

polystyrene and poly(methyl methacrylate), two types of polymers commonly used in 

BCP-DSA. Grouping a different number of monomers into one bead would approximate 

a different statistical segment length, and change the flexibility of the chain. These beads 

experience three different potentials, a non-bonded potential (similar to a Lennard-Jones 

potential, but made softer and broader by using an 8-4 potential function), a harmonic 
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bond potential (corresponding to stretching or compressing the BCP), and a harmonic 

angle potential (corresponding to bending the BCP).  The non-bonded potential uses the 

form: 
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4.1 

where εij refers to the strength of the interaction between beads of type i and j, σij refers to 

the end of the repulsive shell (that is, the point at which the potential intersects 0), and r 

refers to the distance between the two interacting particles. This potential is attractive 

when beads are close enough together, and repulsive when they are too close. All beads 

undergo this potential as long as they do not also participate in a bond or angle potential. 

Two bead types were used, referred to here as type A and type B, representing two 

different arbitrary monomer types. The potential function parameters for these two bead 

types were set to reproduce polymer properties similar to typical BCP polymers such as 

polystyrene and poly(methyl methacrylate), with a χ value (i.e. the common Flory-

Huggins parameter used as a measure of driving force for micro-phase separation
1
) that 

can easily be changed by modifying the potential function parameters.  The details of the 

block copolymer model and the method used to relate the potential function parameters to 

a χ value are found in Chapter 2. The same potential values that were used elsewhere
25

 

were used here. For the bond potential, the spring constant (kstr) used was 100 

kcal/(mol*nm
2
) and the equilibrium length used was 0.82 nm. For angle potential, the 

spring constant (kang) used was 5 kcal/(mol*nm
2
) and the equilibrium angle used was 

120°. For the non-bonded potential, εAA and εBB were both set at 0.5 kcal/mol and εAB was
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set at 0.3 kcal/mol. All σ values (σAA, σBB and σAB) were set at 1.26 nm. A degree of 

polymerization of 120 was used, resulting in a χN of 91 and a natural pitch of 20 nm.  

All simulations were performed in a thin film state. The x and y dimensions were 

set as periodic while the z direction was set to be effectively non-periodic by setting the 

periodic distance very large compared to the thickness of the polymer film.  That is, the z 

direction is periodic every ~80 nm, but the simulation only takes place within a ~20 nm 

region in the z dimension. So, there is no interaction across the z boundary. The patterned 

thin film simulations contained two parts: the underlayer and the BCP film. The 

underlayer was built using the same beads that constitute the film.  The underlayer was 

built to model a brush with the bottom-most bead of the chain, i.e. the one in contact with 

the hypothetical substrate, fixed in space.  This boundary condition corresponds to the 

brush polymer chains being tethered to a substrate such as silicon.  The tethered bead 

chains were placed on a square lattice 15 Å apart in the x and y directions.  If the beads 

were placed much closer than this distance, then the interface between the underlayer and 

the BCP film was judged as unrealistic since a large density discontinuity existed at the 

interface with large density oscillations occurring in the BCP film near the interface  and 

no apparent interpenetration of the BCP into the underlayer.  If the lattice spacing was set 

much larger than this 15 Å distance, then the BCP chains quickly penetrated completely 

through the underlayer no matter how long the chains composing the underlayer were 

made. In a real system, a brush is tethered to a hard surface (like a Si substrate) which 

prevents this. A plot demonstrating these issues is shown in Figure 4.2 and related 

pictures from instances of the simulations are shown in Figure 4.3.  The length of the 

underlayer chains used for the simulation results reported here was six beads.  Fewer than 



101 

 

six beads per chain again resulted in density waves in the BCP film near the film 

interface because the fixed underlayer beads at the substrate surface were not sufficiently 

shielded from the film.  The fixed nature of these beads changes the packing structure of 

the film beads if not sufficiently shielded by a length of brush.  Another layer of fixed 

beads was placed below the brush to act as a hard surface and prevent inversion of the 

brush. The patterning of these underlayers was done by setting the beads in the 

underlayer chains as either A or B as a function of position. These simulations were 4 

BCP pattern pitches wide and at least 120 nm long, because it was found that at least 100 

nm was required to get accurate roughness measurements.
25 

 Stripes of A or B beads (the 

same beads that make up the BCP film) are used in the underlayer to guide the BCP and 

are set to the desired type and degree of roughness using sine wave boundary functions 

when setting the compositional patterns in the underlayer.  The BCP film was built 

initially mixed; chains were placed at the correct bond length and angle randomly 

through the simulation box through the desired thickness. The underlayer was then placed 

underneath this film. All initial chain building was done in Molecular Operating 

Environment
26

 (MOE) followed by an energy minimization step in MOE.  Subsequently, 

molecular dynamics was performed on these simulation volumes using HOOMD-

Blue.
27,28 

4.2.2. Measurement of line edge roughness (LER) and line width roughness 

(LWR) 

Line edge roughness and line width roughness were measured through the 

thickness of the film.  The beads of one type, e.g. A beads, were binned based on their 
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positions.  A 1 nm square lattice was used for x and y (i.e. a surface lying in the same 

plane as the thin film), to make a map of the number density of beads.  A 1 nm lattice 

spacing was chosen to be comparable to a high resolution SEM image and to get good 

sampling.  In the z direction (through the thickness of the film) a 3.5 nm binning depth 

was used. This allowed the LER to be measured as a function of depth. The bead density 

histograms were then used to define line edges by choosing a particular bead density as a 

cutoff.  This threshold cutoff in bead density was selected as to minimize the roughness 

and match the line edge as inspected visually.  A threshold cutoff of approximately 35% 

of the highest bead number density was deemed optimal in most cases.  LER and LWR 

were then measured from the determined line edges and averaged over ~10 points in time 

after equilibration for ~4 lines per point in time, ultimately yielding roughness values that 

were averaged over ~40 lines. 

 

Figure 4.2. Density as a function of depth through the simulation. 

Different spacing of the tethered points in the underlayer give different 

density profiles. When the spacing is too low, density waves propagate 

from the interface before leveling off to bulk density. 
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Figure 4.3. Images of simulation with various underlayer chain spacings. 

The film is colored blue and the underlayer brush (with artificial wafer) is 

colored red. The film is a homopolymer film. a) 25 Å spacings result in a 

very low density underlayer and penetration of the film beyond the bottom 

of the underlayer. b) 15 Å spacings result in some penetration, but it does 

not penetrate through the entire brush. c) 10 Å spacings result in a poor 

interface and no interpenetration. For this work, and intermediate spacing 

of 15 Å was used. 
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Figure 4.4. Depiction of pinned and unpinned lines. Lines appearing above 

guiding stripes are considered pinned, while lines over neutral stripes are 

considered unpinned. 

4.3. Results and Discussion 

4.3.1. Effect of Guiding Pattern Pitch Mismatch 

The effect of a mismatch between the guiding pattern pitch and natural pitch of 

the BCP was considered for both pitch replicating and pitch halving simulations. Line 

roughness was measured as the underlayer guiding pattern pitch was changed.  Both 

pinned and unpinned lines (as defined in Figure 4.4) were also compared in terms of line 

edge roughness. All simulations were four pitches wide and 8 pitches long. These 

dimensions gave sufficient lengths for measured roughness values to be independent of 

length.
25

  As seen in Figure 4.5, there is a ~2 nm window for the guiding pattern pitch on 

either side of the natural pitch of the BCP where roughness in the BCP pattern is 

unaffected.  For guiding pattern pitches that deviate by a magnitude larger than this, the 

lines do not follow the guiding pitch and instead buckle as seen in Figure 4.6, which is 

consistent with predictions from mean field models such as the Leibler-Ohta-Kawaski 

model.
29

  When the guiding pitch was set below 18nm, there appeared to be a drop in 

roughness, but this is likely a simulation artifact.  Because the BCP lamellae were built 
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aligned to the guiding stripes, they become trapped and are not able to realign to their 

desired pitch easily.  It would likely take some time for larger scale rearrangement to 

occur.  Figure 4.5 also shows that there is little difference between pinned and unpinned 

line roughness, though this may increase with larger degree of pitch sub-division.  

Propagation of roughness is limited to only one line here, and this will only increase with 

larger pitches and levels of pitch sub-division in the guiding patterns.  However, there is a 

measurable difference between pitch replicating and pitch halving roughness, though the 

2nm limit on either side remains the same.  

 

Figure 4.5. Line edge roughness as a function of pitch for both pitch 

replicating guiding layers and pitch halving guiding layers. Between 18 

nm and 21 nm, there is little change in roughness, and above 22nm the 

BCP does not align to the pitch of the guiding pattern.  Below 18nm, there 

seems to be a confinement effect due to simulation specifics. 
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Figure 4.6. Both images show 24 nm guiding pitch pattern with 20 nm 

natural pitch BCP. When the guiding layer pitch is too large, the BCP 

force themselves into their natural pitch in the bulk of the film while being 

pinned at the underlayer. a) All beads shown. b) Only A beads shown.  

4.3.2. Effect of Sinusoidal and Peristaltic Guiding Lines  

Both sinusoidal and peristaltic (see modeling section) guiding lines were 

considered.  These represent systematic roughness and errors in the guiding line, both 

correlated and anti-correlated, that could occur in the patterning process.  Figure 4.7 

shows the line edge roughness and line width roughness through the depth of the film for 

sinusoidal guiding lines for a BCP with a natural pitch of 20 nm and a χN of ~85.  In 

most cases, the underlayer roughness does not significantly affect the LER of the BCP, 

damping out within 5 nm vertical distance away from the brush layer interface.  

However, when both the amplitude and wavelength are large, and the simulation is a 

pitch replicating simulation (that is, the guiding pattern has the same pitch as the BCP 

pattern) the roughness persists throughout the entire film. It may be that as the film 
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thickness increases, this too will damp out further, but this has not yet been studied.  

Pitch halving simulations (which are more like those that would be used in semi-

conductor manufacturing) are more resistant to such underlayer deviations, where even 

very significant underlayer line roughness has little to no effect on the BCP roughness. 

Figure 4.8 shows LER and LWR through thickness for peristaltic guiding lines.  In all 

cases, the guiding pattern makes little difference in the measured roughness after ~5 nm 

of film thickness away from the guiding layer interface.  Based on a comparison of the 

sinusoidal versus the peristaltic guiding pattern results, it appears that BCP patterns are 

more tolerant of fluctuations in guiding line width than fluctuations in line edge position.  

This is consistent with the most common defects where the lines remain roughly the 

correct width throughout, though they branch and twist.  Though the underlayer line 

roughness does not affect the BCP roughness significantly, the effect of these underlayers 

on defectivity was not studied here, so it should not be assumed that any roughness in the 

underlayer can be tolerated without penalty, only that such guiding pattern roughness will 

not likely affect BCP pattern roughness significantly.  
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Figure 4.7. LER and LWR through depth for sinusoidal guiding lines. The 

film surface is located at a depth of 0 nm, and the film-underlayer 

interface is located at 15 nm. A refers to the amplitude and WL the 

wavelength of the underlayer sine wave. LER and LWR as shown are 3 σ. 

In most cases, roughness in the underlayer is mitigated in the first ~5nm. 

a) LER of pitch replicating simulation. When the amplitude and 

wavelength of the guiding stripe are very high relative to the line width (in 

this case the amplitude=35% of line width while the wavelength is 4 times 

the line width) then there is some roughness that persists through 

thickness. b) LWR of pitch replicating simulation. LWR is unaffected 

except perhaps right at the underlayer. c) LER of pitch halving simulation. 

Effects of underlayer are more damped. d) LWR of pitch halving 

simulation.  
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Figure 4.8 LER and LWR through depth for peristaltic guiding lines. The 

film surface is located at a depth of 0 nm, and the film-underlayer 

interface is located at 15 nm. In all cases the roughness is damped out 

within 5 nm of the underlayer. LER and LWR as shown are 3 σ. a) LER of 

pitch replicating simulation. b) LWR of pitch replicating simulation. c) 

LER of pitch halving simulation. d) LWR of pitch halving simulation. 
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4.4. Conclusions 

By using our coarse grained BCP model we have studied the process window for 

pitch mismatch for a high χ system. There is about a 10% window on either side of the 

natural pitch of the BCP, as measured by line roughness, outside of which lines buckle or 

deform. The effect of roughness in the guiding layer pattern on resulting BCP pattern 

roughness was also studied. Only in cases of extreme roughness (i.e. long range 

roughness with total deviations more than one quarter of the BCP pitch, or more than one 

half the guiding pattern line width) was any roughness perpetuated throughout the 

thickness of the BCP film.  Anti-correlated roughness (high LWR patterns) had less 

effect on the BCP line patterns, showing no roughness perpetuation throughout the BCP 

film thickness for any guiding stripe. Finally, BCP DSA processes using pitch sub-

division patterns were more tolerant of guiding layer pattern roughness as compared to 

processes using pitch replication patterns. 
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CHAPTER 5 

EFFECT OF POLYDISPERSITY ON LINE ROUGHNESS 

A coarse-grained molecular dynamics model was used to study the thin film self-

assembly and resulting pattern properties of block copolymer (BCP) systems with various 

molecular weight polydispersities.  Diblock copolymers (i.e. A-b-B type) were simulated 

in an aligned lamellar state, which is one of the most common patterns of potential use 

for integrated circuit fabrication via directed self-assembly of block copolymers.  Effects 

of the polydispersity index (PDI) on feature pitch and interfacial roughness, which are 

critical lithographic parameters that have a direct impact on integrated circuit 

performance, were simulated.  It was found that for a realistic distribution of polymer 

molecular weights, modeled by a Wesslau distribution, both line edge roughness (LER) 

and line width roughness (LWR) increase approximately linearly with increasing PDI, up 

to ~ 45% of the monodisperse value at PDI = 1.5. Mechanisms of compensation for 

increase A-A and B-B roughness were considered. It was found that long and short chain 

positions were not correlated, and that long chains were significantly deformed in shape. 

The increase in LWR was due to the increase in LER and a constant correlation between 

the line edges. Unaligned systems show a correlation between domain width and local 

molecular weight, while systems aligned on an alternating pattern of A and B lines did 

not so any correlation. When the volume fraction of individual chains was allowed to 

vary, similar results were found when considering the PDI of the block as opposed to the 

PDI of the entire system.  
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5.1. Introduction 

Block copolymer (BCP) patterning via directed self-assembly (DSA) has been 

studied for roughly the past decade for potential use in the semiconductor manufacturing 

industry.
1-4

 By using surface features to guide the phase separation of block copolymers 

into structures with long range order, BCP-DSA is a prime candidate for use in sub-20nm 

patterning. These patterning techniques could be used in conjunction with conventional 

193 nm lithography tools, or with newer EUV lithography tools, to transform an initially 

large pitch pattern produced via optical lithography into a much smaller feature pitch 

structure through directed self-assembly of a block copolymer pattern. In such methods, 

the traditional optical lithography tools would be used to form the initial guiding pattern 

to which the BCP would then align, thus allowing pitch subdivision of the primary 

lithographic pattern and creation of ever smaller features.
1-4 

Some effects of 

polydispersity on block copolymer phase separation in the context of semiconductor 

manufacturing have been considered including the effect of PDI on the order-disorder 

transition,
5-7

 and on defectivity in laterally confined lamellae,
8
 but many more effects of 

polydispersity in this context are still unstudied. By using our coarse grained molecular 

dynamics (MD) model,
9
 we have studied the effects of PDI on pitch (feature repeat 

distance) and interfacial roughness in lamellae forming BCPs. Interfacial roughness is 

studied by specifically considering line edge roughness (LER), and line width roughness 

(LWR), relevant parameters in to semiconductor manufacturing industry.  

The pitch of the self-assembled polymer domains must be controlled precisely to 

produce reliable and useful patterns for semiconductor fabrication. When the guiding 
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pattern deviates sufficiently from the natural pitch of the BCP, then the block copolymer 

no longer produces the desired line patterns. Therefore the lithographic guiding pattern 

must precisely adapt a pitch that is a multiple of the block copolymer pitch so the BCP 

will reliably reproduce the targeted feature pitch via alignment with the guiding pattern.
10

 

Roughness, in the form of line edge roughness (LER, which is the standard deviation of 

the actual line edge compared to a linear fit of the edge) and line width roughness (LWR, 

which is the standard deviation of the line width) must also be controlled to ensure device 

success. Roughness in these forms has been shown to result in current leakage, threshold 

voltage deviations, and variations in transistor speed, all of which translate into poor 

device performance.
11

 Some work on BCP directed self-assembly roughness has been 

done,
12-16

 showing that BCP DSA can, under some conditions, repair some of the effects 

of roughness in the guiding pattern, and therefore could be used to control roughness
14

. 

However, the effect of PDI on these values has not been extensively studied and is 

presented here.  

5.2. Models and Methods 

5.2.1. Coarse-Grained Model 

A coarse-grained polymer model has been used and is described in detail 

elsewhere,
9,17

 but a brief description will be given here. Polymers are coarse-grained by 

modeling groups of 4 monomers (corresponding to a statistical segment length) as 

individual beads connected by harmonic bond potentials. Every group of three sequential 

bonded beads has a harmonic angle potential applied to prevent collapse of the polymer 

chain due to non-bonded interactions.  Every bead pair that does not participate in a bond 
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potential or angle potential experiences a non-bonded potential similar to a Lennard-

Jones (LJ) potential as given in Equation 5.1: 

 𝐸𝑁𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑 = 휀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟
)
8

− 2(
𝜎𝑖𝑗

𝑟
)
4

] 5.1 

The parameter σij controls the average spacing between non-covalently attached beads 

and therefore has a major effect on controlling polymer density.  The parameter εij 

controls the strength of the non-covalent interactions and therefore has a major effect on 

controlling the polymer cohesive energy density (CED).  Since molecular dynamics 

simulations are off-lattice and each parameter can be modified somewhat independently, 

the density and CED for a homopolymer can be set to almost any desired value to 

represent the polymer of interest.
18

 The bond and angle terms can be fit by running 

rigorous atomistic simulations to determine the coarse-grained equivalent distributions of 

segment lengths and angles.  In this case, the parameters for both A and B blocks are set 

to approximately reproduce the density, bond and angle distribution of polystyrene. εAA 

and εBB are set to 0.5 kcal/mol, while σAA and σBB are set to 1.26 nanometers. The 

equilibrium bond length used for both A and B polymers was 0.82 nm, with a harmonic 

strength of 100 kcal/mol×nm
2
. The equilibrium angle used for both A and B polymers 

was 2π/3 radians with a harmonic strength of 5 kcal/mol×radian
2
. Simulations were run at 

500 K, a realistic thermal anneal temperature for DSA-BCP systems. Simulations used a 

timestep of 0.05 ps. A further discussion of these parameters can be found elsewhere.
9,19

 

As explained in Chapter 2, we follow experimental methods
20

 and fit the structure 

factor (similar to an x-ray scattering profile) to Leibler’s theory for BCP scattering. This 
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gives a relation for χ as a function of εAB, N, and volume fraction of the A block. In this 

paper, εAB is 0.3 kcal/mol, χ is 1.2, the averaged degree of polymerization is 120 

monomers, χN is approximately 144, and except when otherwise noted every chain has a 

volume fraction of A of 0.5. 

All simulations were run using the HOOMD-Blue software package
21,22 

and 

visualized in VMD
23

. Because of the natural parallelizability of molecular dynamics 

(MD) simulations as well as the parallel architecture inherent in graphics processing units 

(GPUs), this software package allows a GPU enabled computer to run MD simulations up 

to 200 times faster than a standard desktop computer. Three types of simulations were 

carried out in this work: cubic bulk simulations, high aspect ratio bulk simulations, and 

patterned thin film simulations as shown in Figure 5.1. Bulk simulations were carried out 

in a fully periodic 3D rectangular unit cell. The cubic bulk simulations measured 45 nm 

on each side and were used to measure the pitch of the BCP. The simulations were 

initialized by placing chains built at the equilibrium angle and bond length randomly 

throughout the simulation volume. Two minimization steps were used. The first 

minimization step slowly moves apart beads that were randomly placed too close 

together, and thus have a very strong repulsive interaction. To do this, the σAA, σBB, and 

σAB values were initialized at a very small value and then a brief minimization was run 

using the Fire minimizer in HOOMD. The σ values were increased in small steps and 

with a short minimization run at each step, until the desired value of σAB (1.26 nm in this 

case) was reached.  Any beads that initially placed too close are gently moved apart as 

the interaction distance between them increases. Once this step is complete, a second, 

longer minimization is run. All bulk periodic simulations were run for 100 ns at 500 K. 
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Domain sizes are calculated from these simulations by calculating the structure factor 

from the radial pair distribution function. The high aspect ratio bulk simulations are run 

in a periodic box with dimensions 100 nm by 100 nm by 15 nm. These simulations are 

used to view a large area of BCP phase separation.  

The patterned thin film simulations, which are used for LER and LWR 

measurements, contain two parts, the underlayer and the BCP film. The underlayer is 

built using the same beads that constitute the film. It is built to model a brush underlayer, 

an underlayer where short polymer chains are grafted to a hard substrate. In our model, 

the bottommost bead of the chain that composes the underlayer is fixed in space, as it 

would be if tethered to a silicon substrate as described previously. The tethered beads are 

placed on a square lattice 15 Å apart. If the beads are placed much closer than this 

distance, then the interface between the underlayer and the film becomes unrealistic and 

shows density waves (i.e. alternating regions of very high and very low density) and no 

interpenetration between the film and the underlayer. If the lattice spacing is too far apart, 

then the underlayer is simply penetrated all the way through no matter how long the 

chains composing the underlayer are. The length of the underlayer chains are composed 

of six beads. Fewer than six beads per chain again results in density waves at the 

interface because the fixed underlayer beads are not sufficiently shielded from the film.. 

Another layer of fixed beads is placed below the brush to act as a hard surface and 

prevent inversion of the brush. The patterning of these underlayers was done by setting 

the beads in the brush chains as either A or B as a function of their position. For the 

purposes of this work, the underlayer is composed of straight, alternating lines of A and 

B at half the natural pitch of the polymer. This is done to ensure that all measured 
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roughness in the film is due to the BCP itself and not the guiding pattern. These 

simulations were some multiple of the pitch wide (1, 4, 8, and 12 pitches wide), 100 nm 

long (except when otherwise noted), 15 nm thick, and periodic along their width and 

length, though not in height in order to allow a thin film state. The film was built in the 

same manner as the bulk BCP simulations and placed on top of the patterned underlayer. 

The minimization steps are the same as in the bulk simulations. The BCPs are pre-aligned 

by applying an external force field described by: 

 𝑈𝑒𝑥𝑡 = 𝐴 ∙ 𝑡𝑎𝑛ℎ (
cos (

2𝜋𝑥
𝐿 )

2𝜋𝑤
) 

5.2 

where Uext is the potential energy, A is a constant that scales the strength of the potential, 

x is the position in the x-dimension of the simulation box, L is the repeat distance of the 

potential, and w is the width of the interface relative to the pitch. The potential applied to 

B beads is negative of that applied to the A beads. This potential drives the system to be 

pre-aligned to the underlying pattern, which reduces simulation time.  



120 

 

 

Figure 5.1. Images of various simulation types used in this work. A beads 

are shown in white while B beads are shown in cyan. A) Cubic bulk 

simulation.  These simulations are 45 nm cubes, periodic in all three 

dimensions, and are used to find the natural pitch of polymer systems. B) 

High aspect ratio bulk simulation. These simulations are 100 nm by 100 

nm by 15 nm, fully periodic simulation box, and are used to view large 

cross sections of polymer systems at a low computational cost compared 
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to a cubic simulation. C) Short length of a patterned underlayer film 

simulation. These simulations are at least 100 nm long and 15 nm thick on 

average. A 4 pitch wide simulation is shown, but various multiples of the 

natural pitch were used. This simulation is periodic in the x and y 

dimensions, but not in the z dimension, modeling a thin film. The 

underlayer (shown in red and blue instead of white and cyan for clarity) is 

patterned to produce alignment in the overlying polymer system. 

Polydispersity was modeled using a Wesslau distribution.  The Wesslau 

distribution is an empirical distribution model that has been shown to faithfully reproduce 

the weight average molecular weight and polydispersity index (PDI) of linear polymers 

for a large range of molecular weights and distributions.
24  

The Wesslau distribution is 

described by:  

 𝑃(𝑁) =
1

𝑁𝛽𝜋1/2
𝑒𝑥𝑝(−

1

𝛽2
𝑙𝑛2(

𝑁

𝑁0
)) 5.3 

 𝛽 = 𝑙𝑛 (
𝑋𝑤
𝑋𝑛

) 5.4 

 𝑁0 = 𝑋𝑛𝑒𝑥𝑝(
𝛽2

4
) 5.5 

where P(N) is the probability of a chain having a degree of polymerization N, Xw is the 

weight-average degree of polymerization, and Xn is the number-average degree of 

polymerization. 
 
The number of expected chains of length N in a given simulation is 

equal to P(N) multiplied by the total number of chains, which is determined by the 

volume of the box, the density of the polymer (~1.4 beads per nm
3
), and the desired Xn. 
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When a simulation is initially built, the expected number of molecules of each possible 

chain length is calculated and rounded to the nearest integer. The first part of this work 

fixes the A bead fraction of each chain to 0.5. The later part relaxes this restriction and 

applies a Wesslau distribution to each block. These block are then linked together 

randomly resulting in chains that vary in fraction of A.  

 

5.2.2. Measurement of line edge roughness (LER) and line width roughness 

(LWR) 

Roughness of the BCP lamellae was measured in the patterned underlayer thin 

film simulations. The BCP simulation is transformed into a top-down projection in order 

to measure roughness. Because a coarse grained model is used, the visual representation 

of the chains has significantly more empty space than a real polymer would have. A 

Gaussian blur was used to intelligently fill in this space and prevent unrealistic holes 

from appearing in the image. To create a Gaussian blur, each bead is blurred using a 

Gaussian distribution in the plane parallel to the underlayer. The bead location is used as 

the center of the distribution, and 3 pixels (0.3 nm) is used as the standard deviation of 

the distribution. The values of the distributions for all the A beads were summed for each 

point on a 0.1 nm array. This array was converted to a grayscale image where each point 

on the array corresponds to a pixel, and the value at each array point corresponds to the 

brightness of that pixel. The image was normalized so that the highest value 

corresponded to white, and the lowest value to black. The line edges are then identified in 

the grayscale image by the use of a threshold value similar to the way thresholding is 
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done in SEM image analysis of line-space patterns. The threshold was picked to 

qualitatively match the line edge and chose to be 0.275 out of a max of 1. This cutoff was 

used for all LER and LWR measurements. Figure 5.2 shows the transformation from the 

original simulated lamellae to the grayscale image used for roughness measurements. 

Figure 5.2A is a top down view of the simulation visualized in VMD. Figure 5.2B is the 

line after transformation into a Gaussian blurred, grayscale image. Figure 5.2C is the 

grayscale image with the threshold applied as a yellow line.  Patterned underlayer 

simulations are run for 100 ns to allow for good statistics of the roughness measurements. 

As seen in Figure 5.3, LWR converges well before the end of the simulation time, though 

larger PDI did take longer to reach this equilibrium. Roughness measurements are made 

every 1 ns, and roughness measurements over the last 40 ns were averaged. Simulations 

used for the measurement in Figure 5.3 were 1 pitch of the guiding underlayer wide, 300 

nm long, and the block copolymer film is 15 nm thick. Other experiments have shown 

that the LER is a constant when the inspection length, the length over which roughness is 

calculated, is above ~100nm for this particular potential set (see Chapter 6).  
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Figure 5.2 Images of BCP aligned to a patterned underlayer for a PDI of 

1.54 with XN=120 monomers. The entire line was 300 nm long, but only 

150 nm is shown here for clarity. A) A top-down view of the simulation in 

VMD. B) The line transformed using a 0.3 nm Gaussian blur with a pixel 

size of 0.1 nm for only A beads. C) The same Gaussian blurred image with 

a threshold highlighted in yellow denoting the line edge used in the 

calculation of LER and LWR.  
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Figure 5.3. LWR measured at individual timesteps as the simulation runs 

in a patterned underlayer simulation. Roughness levels off after a short 

time. High PDI take longer to equilibrate, but still equilibrate well within 

the simulation time. The jump at very short time occurs because the 

external ordering potential has just been turned off.  

5.2.3. Measurement of chain pair distribution function 

In order to find any correlation between the location of various chain lengths, a 

two dimensional pair distribution function (PDF) was calculated. The distance in the y-z 

plane (the plane parallel to the lamellar interfaces) between every chain centered on 

adjacent lines was calculated. The pairs of chains were then binned based on the distance 

between the chains and the difference in N between the two chains, including only pairs 

that had one chain on either side of XN. The values of the bins at each distance were 

normalized by the total number of pairs that exist at that distance. This results in a set of 

data for each ΔN as a function of distance that elucidates any correlation in position of 

small and large chains.  
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5.2.4. Measurement of line width as a function of local number averaged degree 

of polymerization 

Line width and the local degree of polymerization were measured. The simulation 

is divided into 1 nm long sections along the length of the line. In each section, both the 

average line width is calculated as well as the local number averaged degree of 

polymerization (Xn'.), as defined in Equation 5.6.  

 𝑋𝑛
′ =

𝑛

∑ 1/𝑁𝑖
𝑛
𝑖

 5.6 

n is the number of monomers in the given section, and Ni is the number of beads in the 

chain that bead i is on. The denominator of Equation 5.6 is the number of chains in the 

section in question, allowing for partial chains. For example, if there were two chains, 

one with 100 monomers, and one with 200 monomers, and each had half of the chain in 

the given section, then there would be one entire chain in the section, and the 

denominator would be one. The numerator would be 100*0.5+200*0.5 = 150. So Xn'. 

would be 150/1 = 150. When this is calculated over the entire simulation, it yields the 

overall number averaged degree of polymerization Xn. The local line width is the average 

line width over that 1 nm section. In unaligned simulations, the same analysis was 

performed except that the line width was calculated along a vector perpendicular to the 

line edge. In the aligned system, this direction is already defined by the nature of the 

alignment, but in the unaligned case, the direction perpendicular to the line edge must be 

calculated at every point.  
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5.3. Results and Discussion 

Fully periodic, bulk simulations (45 nm cube) with a χN of 144 and XN of 120 

were run at various PDI values. The pitch was measured by calculating the structure 

factor from the radial pair distribution function. The calculated polymer pitch as a 

function of PDI is shown in Figure 5.4 alongside experimental results using 

poly(ethylene-al-propylene)-b-poly(D,L-lactide) (PEP–PLA) varying the polydispersity 

in the PLA block by Lynd and Hillmyer
25

. Figure 5.4, in agreement with experimental 

results published by Lynd and Hillmyer
25,26

 as well as Matsushita et al.
27

, shows that an 

increase in PDI increases the pitch of a polymer. While this effect is apparent even at low 

PDI, the effect is still relatively small. One possible technique to account for this increase 

in pitch is to blend different batches of polymers that have different number averaged 

molecular weight. Because pitch scales with molecular weight (L~N
2/3

 in the strong 

segregation limit
28

), changing the average molecular weight of a system by blending 

allows one to control the pitch of a polymer system. By adding smaller polymers to these 

distributions, one might be able to lower the average molecular weight of the system 

enough to counteract the increase in pitch associated with the increased PDI. This has 

been conceptually demonstrated and thoroughly discussed elsewhere.
29

 However, 

blending BCP’s of different molecular weights in order to tune the domain size will yield 

a blend with a higher PDI than a monodisperse system at an equivalent pitch, and the 

results of such an increase in PDI (such as increased roughness and defectivity) would 

need to be considered.  
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Figure 5.4. Pitch normalized to the monodisperse pitch. The PEP-b-PLA 

experimental results were obtained by Lynd and Hillmyer
25

 by varying the 

polydispersity in the PLA block at a χN value of ~80. Simulation results 

shown here use a Wesslau distribution and are at a χN of 144. Both data 

sets show that the scaled pitch  increases with PDI at similar rates. 

Patterned thin film simulations were run at various PDI with a χ of 1.2 and Xn of 

polymerization of 120 monomers (resulting in a χN of 144). The width of the simulation 

was set at a multiple of the natural pitch of the polymer at the simulated PDI. For any 

PDI at which the natural pitch was not measured directly, the natural pitch used was 

taken from a linear fit to the data in Figure 5.4. As seen in Figure 5.5A, LER increases 

approximately linearly with PDI. The width of the simulation (in multiples of the natural 

pitch L0) has a significant effect at low PDI, but no clear effect at high PDI (above PDI ~ 

1.3), and increasing simulation size to 4 L0 wide removes any effect above a PDI of 1.1. 
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The effect is due to the correlation forced between line edges and will be discussed in 

further detail later. In the widest simulations (8L0 and 12 L0), LER increased an average 

of 43.5% above its monodisperse value at a PDI of ~1.5 and an average of  13.5% above 

its monodisperse value at a PDI of ~ 1.1 (a PDI value which is generally achievable in 

these types of systems).  Line roughness must be controlled in integrated circuit 

fabrication to prevent current leakage, threshold voltage deviations, and variations in 

transistor speed, all of which result in poor device performance
11

. Using Figure 5.5, the 

roughness benefit for a decrease in PDI can be estimated and  compared to the financial 

and temporal cost of reducing PDI, giving guidance to those designing BCP-DSA 

systems as well as those synthesizing the polymers for these systems. However, other 

important properties of BCPs (including defectivity) may still be affected by PDI and are 

still in need of further study.  

Although both LER and LWR are detrimental to semiconductor device 

performance, LWR is generally considered to have the strongest negative effect on 

device performance.
30

  Here, LWR is higher than LER in all cases and generally 

increases at a similar rate to LER as shown in Figure 5.5B. In this case, the 1 L0 wide 

simulation yielded a lower LWR than the wider simulations, but 4, 8, and 12 L0 wide 

simulations all yielded similar results. In general, high PDI systems show more noise ( as 

in Figure 5.3), and this likely accounts for the spread of data at higher PDI in the 4, 8 and 

12 L0 wide simulations. LWR in the 4, 8, and 12 wide simulations increased average of  

45.1% at a  PDI ~ 1.5, and 11.6% at PDI ~ 1.1, comparable to the increase in LER.  
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Figure 5.5. LER (A) and LWR (B) as a function of PDI and simulation 

size with a Xn of 120 and a χN of 144. Both LER and LWR increase at a 

similar rate as PDI increases. 
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Polydispersity will affect LER and LWR by increasing the roughness at the A-A 

and B-B interfaces (in this middle of the A or B domains). Because chains of different 

length will necessarily extended different distances into the A or B domain, the roughness 

at this interface will increase. Figure 5.6 shows the increase in LER of the A-A domains 

as a function of PDI. This effect is independent of simulation size, and always higher 

than the A-B LER because there is no enthalpic restoring force at the A-A interface. 

Because the simulated polymers here are energetically symmetric (that is, the A-A 

interactions are identical to the B-B interactions), the B-B roughness is affected similarly. 

The polymers must accommodate this increased A-A and B-B roughness in one of three 

ways as shown in Figure 5.7: 1) increased line roughness, 2) correlation of chain lengths 

in adjacent lines (small chains favoring interaction with long chains at the adjacent 

interface and vice versa), and 3) deformation of chain shapes. Figure 5.5 shows that the 

first effect occurs to at least some degree. However, the A-A roughness increases 2.6 

times faster than the A-B roughness (on a normalized basis), so one of the other two 

modes must be important as well.  

 

Figure 5.6. A-A LER as a function of PDI and simulation size.  
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Figure 5.7. Different mechanisms to compensate an for increase in A-A 

and B-B roughness. A) Increasing A-B roughness. B) Correlating short 

and long chains. C) Deforming chains.  

Figure 5.8A shows the probability that the center to center distance (where the 

center is the average position of the center two beads in the chain) of a pair of chains on 

adjacent lines and with a particular difference in chain length (ΔN)  will be found at a 

particular distance in the yz plane (the plane parallel to the lamellae).  This probability is 

shown in the form of a pair distribution function (PDF). Only pairs of chains where one 

pair is shorter than the average and one chain is longer than the average are considered so 

that the expected long-short chain correlation, if it exists, is amplified. If long chains and 

short chains are coordinating to limit the effect on the A-B roughness, this plot should be 

higher at low values of r, but this is not the case: there is no change in the pair 

distribution as a function of distance for any value of ΔN. Therefore, there is no evidence 

that the mechanism as depicted by Figure 5.7B occurs here. Figure 5.8B shows the  
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Figure 5.8.  Pair distribution function for PDI = 1.53 4L0 wide simulation. 

A) Pair distribution function for a variety of ΔN. The PDF is the # of pairs 

of the given ΔN over the total number of pairs of that distance. There is no 

clear dependence of the PDF on distance for any ΔN. B) shows the total 

number of pairs as a function of ΔN. This variations explains the offset for 

each ΔN shown in A) (i.e. there are a greater number of interactions with a 

ΔN of 10 than of 5 and therefore the line for ΔN = 10 is higher in A)).  
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number of interactions that occur for each value of ΔN. It is this relation  that causes the 

ΔN in Figure 5.8A to be at different normalized values.  

The only other way in which increased A-A and B-B roughness caused by 

increased PDI can be accommodated is the deformation of chain shapes at higher PDI. 

This preserves the A-B interface, but is energetically unfavorable for the chains 

themselves. Figure 5.9 shows the average end to end distance of the polymer chain in the 

x dimension as a function of chain length for various polydispersities. The average end to 

end distance in the x dimension for monodisperse systems (at varying Xn) is shown as the 

unperturbed case. Long chains in the polydisperse systems are significantly shortened, 

while short chains are relatively unperturbed. Interestingly, chains are similarly affected 

at both PDI values. The small difference between the two PDI values in Figure 5.9 for 

large N is likely due to the small increase in pitch in case of the large PDI. Overall there 

is less perturbation of chains at smaller PDI values, because there are fewer long chains 

in those cases, but the degree to which a certain chain length is shortened is independent 

of PDI.  Two of the three ways increased A-A and B-B roughness can be accommodated 

in these systems described in Figure 5.7, specifically increased A-B roughness and 

perturbation of chain lengths, are present in the systems studied here. Quantitative 

analysis of the contributions and energetics of these two mechanisms may be addressed 

in future work. 
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Figure 5.9. Chain size in the x dimension as a function of chain length and  

PDI. The PDI = 1 line is half the natural pitch of a monodisperse system at 

the given N determined for the χ value used here. The longer chains are 

clearly perturbed from their natural state.  

It is interesting that the 1 L0 wide simulations exhibited decreased LWR across all 

PDI (though the effect is smaller when PDI is near 1), while LER was only affected at 

low PDI. It is to be expected that narrow simulations would cause increased correlation 

between lines
31,32

, but the change in effect with dispersity may not be so obvious. The 

relationship between LER and LWR can be mathematically shown to be
31

:  

 𝐿𝑊𝑅2 = 𝐿𝐸𝑅𝐴
2 + 𝐿𝐸𝑅𝐵

2 − 2 ∗ 𝐿𝐸𝑅𝐴 ∗ 𝐿𝐸𝑅𝐵 ∗ 𝐶𝐶𝐿𝐸 5.7 

   

where A and B denote to adjacent line edges. CC is Pearson’s correlation coefficient as 

defined by: 
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𝐶𝐶 =

𝑛∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖

√𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)2√𝑛∑𝑦𝑖

2 − (∑𝑦𝑖)2
 

5.8 

n is the number of points in a data set, and x and y define the two components of that data 

set. In this case, n is the number of points that define a line, x is the set of positions 

defining one line edge and y is the set of positions defining the corresponding line edge. 

When CCLE = 1 the two line edges are perfectly correlated, while when  CCLE = 0 the two 

line edges are completely independent, and when CCLE = -1 two line edge are perfectly 

anti-correlated, as shown in Figure 5.10.  

A CCLE of one results in 𝐿𝑊𝑅 = |𝐿𝐸𝑅𝐴 − 𝐿𝐸𝑅𝐵| where LERA and LERB are the 

line edge roughnesses of the two edges that constitute a line. In the case where LERA is 

the same as LERB , which would be generally true for the systems considered here, then 

LWR = 0. A CCLE of 0 results in 𝐿𝑊𝑅 = √𝐿𝐸𝑅𝐴
2 + 𝐿𝐸𝑅𝐵

2 . When LERA is the same as 

LERB then LWR simplifies to √2𝐿𝐸𝑅. This is the case often assumed in traditional 

photolithography.
31

 A CCLE of -1 results in 𝐿𝑊𝑅 = 𝐿𝐸𝑅𝐴 + 𝐿𝐸𝑅𝐵 which simplifies to 

𝐿𝑊𝑅 = 2𝐿𝐸𝑅.  

The correlation coefficient between adjacent line edges for each PDI was 

calculated and is shown in Figure 5.11A. In all cases the CCLE for adjacent interfaces is 

above 0 as opposed to traditional photolithography where it is often assumed to be 0. If a 

fluctuation occurs in one line edge then either there is a change in line width, or the 

opposing line edge must move to match this fluctuation, or some combination of the two. 

Because the lowest free energy state of a BCP system is at a specific pitch, the system 
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will adjust the line edge to prevent the increase in line width. The polymers at each 

interface will interact and adjust to fluctuations to avoid deviations in line width, 

resulting in a correlation between the two interfaces that determine a line. There is no 

apparent dependency of the correlation coefficient of adjacent interfaces on 

polydispersity for simulations that are 4 L0 or more wide. Figure 5.11B shows the 

correlation between lines as a function of the distance between lines for the 12 L0 wide 

simulations and for one representative 4 L0 wide simulation . Lines that are adjacent 

(ΔLine = 1) have a relatively high correlation. By the time the interfaces are 2 or 3 

interfaces apart, the correlation has dropped significantly and is nearly 0. The use of a 

one to one guiding pattern in these simulations likely increases fluctuation dampening 

beyond the BCPs inherent ability by adding an additional restoring force to every 

domain.   

The general decrease in correlation with simulation width explains the general 

increase in LWR with wider simulations (Figure 5.5B); given a constant LER (as seen in 

the high PDI case of Figure 5.5A) decreased correlation mathematically leads to 

increased LWR.  The 1 L0 wide correlation is clearly an artifact of simulation size, but it 

is interesting that an increased PDI shows the ability to decouple the two line edges to 

some degree. The propensity for PDI to do this may be important when studying other 

systems involving PDI. Additionally, this artifact explain the decreased LWR for the 1 L0 

wide simulations. The increased correlation compared to wide simulations 

mathematically depresses the LWR of the 1 L0 wide simulations. 
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Figure 5.10. Line edge correlation coefficient (CCLE) examples.   
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Figure 5.11. A) Correlation coefficient (CCLE) as a function of PDI for 

patterned thin film simulations. B) CCLE as a function of the number of 

interfaces separating the two lines being compared. 
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Figure 5.12 shows top down images of high aspect ratio bulk simulations at 

various PDI. While for lower PDI values, such as in Figure 5.12A and Figure 5.12B the 

lines are roughly uniform in line width and appear to contain fewer terminations. At a 

high PDI of 1.56, seen in Figure 5.12C, variations of line width become clearly evident, 

with the lines bulging and bending much more, especially at the ends of lines. These lines 

also seem to have shorter run lengths than monodisperse systems, but this has not been 

quantitatively studied. It seems that the disparity in chain lengths stabilizes the non-ideal 

formations in the system, such as ends of lamellae or bulges in the system. This could 

translate to higher defectivity in systems with high PDI. 

There appears to be an increase in anti-correlation at increased PDI when there is 

not a guiding underlayer, as can be seen in Figure 5.12C. Figure 5.12D and Figure 5.12E 

break down Figure 5.12C into images showing only chains longer than Xn (Figure 5.12D) 

and chains shorter than Xn (Figure 5.12E). In these images it can be seen that small chains 

localize themselves to the interfaces while larger chains span the whole domain. These 

large chains seem to concentrate the bulk of their mass in the middle of the A or B 

domains, causing their the shape of these chains to be look like a dumbbell, being 

narrower in the center and larger at the ends.. When the small chains and large chains are 

not evenly dispersed (i.e. there is local aggregation of small or large chains), local 

fluctuations in the line width can be observed. The red circle made with a solid line in 

Figure 5.12D and Figure 5.12E shows a region where small chains have aggregated 

leading to a narrower line, while the red circle made with a dashed line shows a region 

where large chains have aggregated, leading to a wider line. Other similar regions are 

also apparent in Figure 5.12D and Figure 5.12E. The increase in domain size or decrease 
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in domain size does not have to be identical in the A and B domains. Locally, the A phase 

(white) may have few large chains, while the B phase (cyan) has an abundance of large 

chains as seen near the circle made with a solid red line in Figure 5.12D and Figure 

5.12E. Of course, the A portion of the large chains has to go somewhere in the A domain, 

thus swelling the A domain somewhere else. This leads to the A phase having different 

variations in width than the B phase which helps produce the bulging, pinching, and 

bending seen in the high PDI systems.  

 

Figure 5.12. Top down views of high aspect ratio bulk simulations. A)-C) 

show images at PDIs of 1, 1.3, and 1.5 respectively. As PDI increases, 

local swelling and pinching of lines due to local variations in chain length 

is apparent. Run length is also decreased as PDI increases. D) and E) show 

the PDI = 1.5 simulation (C) showing only large chains (X > Xn) and 

small chains (X < Xn) respectively.  

Figure 5.12 suggests that the local line width should increase with a change in 

local XN. The line width as a function of local number averaged degree of polymerization 

was calculated for the high aspect ratio bulk simulation with a PDI of 1.56 (Figure 5.12C) 
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and an aligned simulations that was 12 L0 wide and had a PDI of 1.29. Sections of lines in 

the unaligned system very close to branches were excluded as line width becomes hard to 

define. Normalized line width (W/Wave) for both the aligned and unaligned simulations 

are plotted versus local number averaged degree of polymerization in Figure 5.13. There 

is a clear increase in line width of the unaligned system as Xn'. increases. The smallest Xn'. 

values give line widths ~20% (~4.5 nm) smaller than the average line width while the 

largest chains give line widths 10-15% (~2-3.5 nm) higher than the average. The aligned 

system shows little to no correlation between line width and Xn'.. The guiding stripes add a 

large penalty to line width variations and defects that is not present in unaligned system. 

While the unaligned system can swell the domain in one region while reducing the 

domain in another region, the aligned system suffers a significant penalty for doing so 

because of the underlayer. It would be expected that underlayers with more infrequent 

pinning stripes would reduce this penalty, eventually retuning this behavior to the bulk 

simulation.  
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Figure 5.13. Analysis of line width and weight averaged degree of 

polymerization (Xn' ). Data for simulations that are 12 pitches wide on a 

patterned underlayer are shown along with the high aspect ratio bulk 

simulation (no patterned underlayer). 

The results above only consider chains which contain equivalent numbers of A 

and B monomers, but in real systems, the composition of each chain will vary. PDI was 

modeled by creating A blocks using a Wesslau distribution, and B blocks using a 

Wesslau distribution. The chains lengths that result from these distributions are then 

linked together (A blocks with B blocks) randomly. Producing PDI in this way is similar 

to “click chemistry” methods.
33

 One interesting result of producing PDI in this way is 

that when linking together groups of A blocks and B blocks that both have a PDI of 1 + 

D, the resulting polymers will have a PDI of approximately 1+ D/2. In the case where all 

chains are 50% A, small A blocks must be matched with small B blocks and large A 

blocks must be matched with large B blocks, but in the case where the blocks are 

randomly linked, small A blocks get matched with the whole array of B blocks, so the 
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length of many chains is shifted towards the average. 4 simulations that were 4 domains 

wide and 100 nm long were simulated using this method of incorporating polydispersity. 

The PDI of the A and B blocks (Block PDI) used were 1.10 , 1.20 , 1.51 , and 2.26. Each 

simulation linked together A and B blocks with identical PDI, so 4 simulations were 

produced with PDIs (System PDI) of 1.05 , 1.10 , 1.24 , and 1.53. The highest two values 

produced unrealistic results, as seen in Figure 5.14.  Small blocks of A connected to 

larger blocks of B resulted in a large number of beads in the incorrect domain, especially 

at the free interface. Some chains with very large volume fractions of one of the blocks 

may be filtered out with unreacted homopolymer if produced in a real system, but have 

not been removed here. Regardless, the mechanism of LER and LWR increase is clearly 

different in these cases than in the lower PDI cases and in the constant volume fraction 

cases. Such materials would likely present many difficulties before LER and LWR 

became an issue. The measured LER and LWR was significantly higher than all other 

simulations, mostly due to significant blurring of the image by the beads in the wrong 

domain.  

The new results for PDI = 1.05 and 1.10 are plotted in Figure 5.15 alongside the 

data obtained from the distributions that maintained a 50-50 proportion of A and B. The 

data is plotted twice: once using the actually PDI of the system (labeled System PDI), and 

once using the PDI of the blocks before the two blocks were connected to for BCPs 

(labeled Block PDI),. When plotted using the system PDI, there is a clear shift away from 

the data obtained using the fixed volume fraction polymers, in both LER and LWR, and 

in A-A LER. However, when plotted by block PDI, the data aligns very well with the 

previously found results using a fixed volume fraction, for which the system PDI and the 
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block PDI are identical. This suggests that the important dispersity when considering line 

roughness is not the overall system PDI, but the block PDI. This implies that the volume 

fraction of an individual chain does not matter, so long as the volume fraction of that 

chain is not so large or small that effects as seen in Figure 5.14 occur, and that the 

volume fraction of the whole system is constant.  

In these simulations, the A and B blocks were always identical, both in energetics 

and in PDI. Real systems of course are not so symmetric. When one block has a different 

PDI than the other block, then the effect on LER on either side of the line would be 

different. How this translates into overall LER is a question deserving of further study, 

but presumably the appropriate PDI to use would be somewhere in between the block and 

system PDI. These asymmetries may have an effect on correlation and therefore on 

LWR.   

 

Figure 5.14. Images of a BCP with block PDI = 2.26 and a system PDI = 

1.53, showing A) A beads and B) B beads. The large numbers of very 
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small chains and chains who volume fractions are extremely small or large 

results in a large number of beads in the wrong domain and in a wetting 

layer of short chains.  

 

 

Figure 5.15. LER (A) , LWR (B) , and A-A LER (C) including results 

from simulations that have variations in volume fraction for each chain. 

The green 5 point stars plot the data using the PDI of the entire chain. The 

blue 8 point stars plot that data using the PDI of the blocks only. PDI 

calculated either way for the simulations whose chains are all at a volume 

fraction of 0.5 is equal. Using the PDI of the blocks only, the roughness of 

the simulations that allow volume fractions to vary on each chain matches 

the roughness of the simulations where chains are all 50% A.  
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5.4. Conclusions 

A coarse grained molecular dynamics model was used to study the effect of block 

copolymer polydispersity on lamellae pitch, lamellae edge roughness, and local chain 

effects. LER and LWR in block copolymer DSA patterns both increase approximately 

linearly with PDI, increasing about 45% of the monodisperse LER or LWR at a PDI of 

1.5.  it was found that the A-A and B-B interfacial roughness increased significantly with 

increased PDI. Three mechanisms of compensation for the increase in A-A roughness 

were considered: an increase in A-B interfacial roughness, correlation in position of long 

and short chains, and deformation of chain lengths. It was found that long and short 

chains showed no correlation, and that long chains were significantly deformed. The 

increase in LWR was explained by the increase in LER modified by the correlation 

between adjacent line edges. On the guiding layers used here, the correlation between 

line edges decreased rapidly after adjacent line edges. Unaligned systems showed local 

swelling an pinching as a function of local chain length, but the aligned systems showed 

no such correlation between line width and local chain length. Systems were run where 

volume fraction was allowed to vary on each chain. At low PDI (system PDI< 1.25), it 

was the PDI of the individual blocks, not the overall system PDI, that determined LER 

and LWR.  
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CHAPTER 6 

EFFECT OF χ AND N ON LINE ROUGHNESS 

The effect of χN on the block domain interfacial roughness and block domain 

width variation for lamellae forming BCP systems in thin film form was studied using 

molecular dynamics simulations.  This roughness was quantified in particular for the case 

of lamellae oriented perpendicular to a substrate surface in which directed self-assembly 

methods are used to provide long-range order in the system.  The domain interfacial 

roughness was characterized in terms of line edge roughness (LER) at the A-B lamellar 

domain interface as defined by bead density mapping. The block domain width variation 

was characterized in terms of a line width roughness (LWR) of the A and B domains 

again as defined by bead density mapping of the aligned BCP films. These two 

parameters were chosen and quantified since they are particularly important for the 

potential application of block copolymer directed self-assembly in semiconductor 

manufacturing as an enhancement to current optical lithography techniques.  LER and 

LWR behavior at low χN values received particular attention in this work because of the 

lack of prior studies in this area.  Previously, the behavior of LER and LWR at high χN 

values has been probed using analytical techniques based on mean-field Leibler, Ohta, 

and Kawasaki (LOK) models, but these models use assumptions that limit their accuracy 

in the low χN regime. Using a coarse grained molecular dynamics model, this low χN 

region was explored.  A sharp increase in LER and LWR in aligned BCP patterns is 

found for low χN values. A model proposed by Semenov gives similar behavior, but other 

models under estimate at low χN though good agreement is found at high χN values.  
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Using guiding stripes with programmed roughness instead of idealized straight guiding 

stripes does not change the dependence of BCP LER and LWR on χN. 

6.1. Introduction 

Self-assembly of block copolymers (BCPs) has received significant attention in 

recent years in the field of semiconductor manufacturing with the hope that such block 

copolymers could augment existing lithographic technology to help decrease feature 

size.
1
 Directed self-assembly (DSA) uses the natural micro-phase separation properties of  

BCPs, with the help of a guiding layer, to produce the long range order required for 

electronic device fabrication.
1,2,3

 It is enthalpically favorable for each block in the BCP to 

maximize its interaction with like blocks. This would cause homopolymers to bulk phase 

separate, but because each block is bonded to an unlike block, the size of micro-phases 

are limited to the nanometer length scale. Two particular microphases of BCPs are of 

interest in such semiconductor patterning applications, namely lamellar morphologies and 

cylindrical morphologies.  This work focuses in particular on lamellar forming BCP 

systems which enable the production of line-space type patterns that are pervasive in 

semiconductor manufacturing.  Neglecting outside factors, diblock copolymers that 

contain roughly equal volumes of each block will form lamellae.
2
  When coated on a 

sufficiently neutral underlayer, the BCP will form a short range ordered “fingerprint” 

pattern that is still disordered over length scales much larger than the block copolymer 

domain size. However, when a topographical or chemical pattern is created in the 

underlayer, intermediate and long range order can be induced.
3 

Such ordered BCP films 

can be used to shrink the smallest feature dimension that can be achieved using direct 
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optical lithography methods via pitch division.
1 

The two common ways in which BCPs 

are guided are graphoepitaxy, where the polymers are guided via topographic patterns, 

and chemoepitaxy, where the polymers are guided via chemical patterns on ideal flat 

surfaces.
3,4,5

 One common scheme by which BCP are chemically guided is the use of a 

small line that interacts preferentially with one of the blocks, that is adjacent to a much 

wider neutral line.
1 

The strongly interacting line (here called the pinning line) is the 

pattern to which the BCP aligns. The BCP lamellae will naturally align to each other, 

propagating the original pattern over the neutral stripe.  

Regardless of the processes, the BCP lamellae will have some inherent deviations 

from ideally straight lines. In the semiconductor manufacturing field, variations from a 

straight line edge, known as line edge roughness (LER), and variations away from a 

uniform line width, known as line width roughness (LWR), are important to device 

performance.
6,7,8

 They will negatively affect transistor performance by creating variations 

in transistor speed, as well as current leakage and threshold voltage.
6,7,8

 The degree to 

which the copolymer blocks will phase separate is typically described by the product of 

the total polymer degree of polymerization (N) and the enthalpic interaction parameter (χ) 

from Flory-Huggins polymer lattice theory for the particular block copolymer of interest. 

According to mean field theory,
2
 the order-disorder transition for BCPs occurs at χN = 

10.5 (or slightly above this when fluctuations corrections are considered), so the drive to 

phase separate is considered high when χN >> 10.5. To date, most models have focused 

on the strong segregation regime (SSR), where the drive to phase separate (as described 

by the product of  χ and N) is high.
9-16

 When this condition is met, models have had 

success describing LER, but when χN approaches 10.5, less is known about how BCPs 
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will respond. This is an important issue since it advantageous to use lower N values for a 

given block copolymer since a shorter polymer chain leads directly to smaller domain 

sizes and ultimately smaller feature sizes. Thus for any block copolymer, there will 

always be an interest in extending the use of such a polymer to as small a value of χN as 

is possible. This paper presents results for the first time using detailed molecular 

dynamics simulations that show the LER and LWR behavior that is expected in block 

copolymer DSA when χN is not in the SSR. 

6.2. Modeling 

6.2.1. Coarse-Grained Model 

This work has used a coarse grained molecular dynamics model described 

elsewhere.
17-19

 In brief, the polymers are modeled by representing four monomers as a 

single bead. Four monomers were chosen because it corresponds approximately to the 

statistical segment length for polystyrene and poly(methyl methacrylate), two types of 

polymers commonly used in BCP-DSA. Grouping a different number of monomers into 

one bead would approximate a different statistical segment length, and change the 

flexibility of the chain. These beads experience three different potentials, a non-bonded 

potential (similar to a Lennard-Jones potential, but made softer and broader by using an 

8-4 potential function), a harmonic segment potential (corresponding to stretching or 

compressing the BCP), and a harmonic angle potential (corresponding to bending the 

BCP).  The non-bonded potential uses the form 
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where εij refers to the strength of the interaction between beads of type i and j, σij refers to 

the equilibrium distance (that is, the minimum of the potential), and r refers to the 

distance between the two interacting particles. All beads experience this potential as long 

as they do not also participate in a bond or angle potential together (i.e. 1-2, and 1-3 

bonded interactions are not subject to this non-bonded potential). Two bead types were 

used, referred to here as type A and type B, representing two different arbitrary monomer 

types. The potential function parameters for these two bead types were set to reproduce 

polymer properties similar to typical BCP polymers such as polystyrene and poly(methyl 

methacrylate), with a χ value (i.e. the common Flory-Huggins parameter) used as a 

measure of driving force for micro-phase separation that can easily be changed by 

modifying the potential function parameters.  The details of the block copolymer model 

and the method used to relate the potential function parameters to a χ value are found 

elsewhere.
17

 The same potential values that were used elsewhere were used here.
20

 For 

the harmonic segment potential, the spring constant (kstr) used was 100 kcal/(mol nm
2
) 

and the equilibrium length used was 0.82 nm. For angle potential, the spring constant 

(kang) used was 5 kcal/(mol nm
2
) and the equilibrium angle used was 120°. For the non-

bonded potential, εAA and εBB were both set at 0.5 kcal/mol and εAB was varied to change 

χN, as described in Chapter 2. All σ values (σAA, σBB and σAB) were set at 1.26 nm. 

Polymers composed of 144, 120, 96 and 64 monomers were used. Each polymer was 
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composed of two blocks of equal length, one composed of A beads and one composed of 

B beads.  

All simulations were performed in a thin film state in the same manner as 

described elsewhere.
20

 A polymer film 15 nm thick is placed on top of a patterned 

polymer brush underlayer. The simulation is periodic in the x and y dimensions, but not 

in the z dimension so as to allow a thin film configuration. These simulations are four 

BCP domains wide and at least 200 nm long, far longer than the 100 nm necessary to get 

accurate roughness measurements, as shown in Figure 6.1, and wide enough that with this 

underlayer, the periodic boundary has a small effect on roughness measurements
21

. The 

dense guiding layer used here is likely a lower estimate of the true LER and LWR in a 

BCP system, since real processes require a wider, more neutral stripe provides little 

guidance. The BCP film was built initially aligned; beads were built at the correct bond 

lengths and angles and with A beads above the A guiding stripe, and B beads above the B 

guiding stripe. The underlayer was then placed beneath this film. All initial chain 

building was done in Molecular Operating Environment (MOE) followed by an energy 

minimization step in MOE
22

 and in HOOMD-Blue
23,24

. Subsequently, molecular 

dynamics was performed on these simulation volumes using HOOMD-Blue.
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Figure 6.1 LER as a function of inspection length. Above ~ 100 nm, LER 

becomes inspection length independent. 

The underlayer pattern is composed of alternating lines of A and B beads each 

half the width of the natural periodicity of the polymer. Each line is built straight so that 

the measured roughness is due to the natural polymer roughness and not the underlayer. 

However, as it has been demonstrated elsewhere, the BCPs are not strongly affected by 

underlayer pattern roughness.
5,20

  

6.2.2. Measurement of line edge roughness (LER) and line width roughness 

(LWR) 

To measure the roughness through the thickness of the film, the beads of one type 

(e.g. A beads) were binned based on their positions.  A square lattice was used for x and y 

(i.e. a surface lying in the same plane as the thin film), to make a map of the number 

density of beads. In the z direction, a 3.5 nm binning depth was used. Details can be 
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found in the supporting information section. The bead density histograms were then used 

to define line edges by choosing a particular bead density as a cutoff.  This threshold 

cutoff in bead density was selected as to minimize the roughness and match the line edge 

as inspected visually.  A threshold cutoff of approximately 35% of the highest bead 

number density was deemed optimal in most cases.  

To measure the roughness through the thickness of the film, the beads of one type 

(e.g. A beads) were binned based on their positions.  A square lattice was used for x and 

y (i.e. a surface lying in the same plane as the thin film), to make a map of the number 

density of beads. In the z direction, a 3.5 nm binning depth was used. Using different 

binning depths has an effect on measured LER and LWR because averaging over a 

greater number of beads smooths out roughness. Figure 6.2 shows the same state using 

different binning depths, and Figure 6.3A shows LER measurements at various binning 

depths. LER measurements were not taken for a binning depth of 1 nm because some of 

the lines are not continuous at some points, which makes it impossible to define a line 

edge or width at that point. Even though all the images are of the same state, and each is 

centered in the BCP film, merely by averaging over more beads, the roughness clearly 

decreases. To isolate this effect, all simulations used a binning depth of 3.5 nm. This was 

done to be consistent with our previous work which also used a 3.5 nm binning depth to 

look at roughness through the depth of the film. It is important to point out that even 

though the roughness values will change based upon the binning depth, when these 

values are normalized, they collapse onto the same curve, so the overall curvature is the 

same regardless of binning depth. This is shown in Figure 6.3B.  
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Figure 6.2 Images of bead density histograms at various binning depths. 

All images show the same simulation at the same time step. N = 96  χN = 

20. All bins are centered in the z dimension of the film.  
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Figure 6.3 LER and normalized LER as a function of χN at various 

binning depths for N = 96.   (a) 3σ LER. Increasing the binning depth 

decreases the measured roughness because of the smoothing due to the 

averaging through depth that occurs. (b) LER is normalized by LER at χN 

~180. Though a different binning depth shifts the measured roughness, it 

does not change the sharp increase at low χN.  
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6.3. Results and Discussion 

6.3.1. Effect of χN on LER and LWR  

A polymer system was simulated at various χ values by changing the εAB value. 

The system was simulated on a 1:1 patterned brush with lines of A and B where the 

underlayer line widths were equivalent to half the BCP domain. Polymers containing 120 

monomers were used. For χN of 22, the domain size is 12.5 nanometers, for a χN of 70, 

the domain is 16.7 nanometers, and for a χN of 286, the domain is 20.8 nanometers. This 

scenario limits the source of roughness to the BCP itself, and not the pattern, a very 

difficult task to do experimentally at small pitches. By varying χ via the parameter εAB 

and measuring the LER and LWR of the line, we find that LER and LWR are weakly 

dependent on χN above a χN of ~100, but strongly dependent below χN~100 as seen in 

Figure 6.4. At the lowest χN value of 20, the roughness is actually greater than half the 

width of a line. The image of this simulation along with a higher χN simulation for 

comparison is shown in Figure 6.5. This sharp increase as χN drops may prohibit use of 

BCPs at low χN values to achieve small patterned feature sizes using this technology. The 

International Technology Roadmap for Semiconductors
25

 (ITRS) specifies a 3σ LWR 

limit of 0.8 nm for a half pitch of 10 nm. Even with great improvements in etching or 

other methods of line smoothing,
26

 such methods likely cannot heal such roughness 

sufficiently. The model polymer studied here is not inherently able to achieve that 

specification even in the SSR (χN > 100). However, the lowest LER measurments appear 

to be approaching the noise limit of our techniques so that the measurments at very high χ 

may be artifically high, though the effect does not look to be very great. Etch and post-
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processing smoothing techniques have not been considered and may help achieve the 

ITRS specification, and. Other changes, such as smaller segmental lengths (more flexible 

polymers) may also help achieve smaller domain sizes and smaller roughness values. It is 

also possible that using a much larger χ (the maximum χ used here is 2.38) and a smaller 

N would produce lower roughnesses because of the larger interfacial penalty due to the 

high χ, without dramatically increasing χN. Patrone and Gallatin
13

 suggest that a χ value 

perhaps as high as five is necessary to meet specifications.  

 

 

Figure 6.4 LER and LWR as a function of χN. There is a sharp increase in 

roughness as χN approaches the ODT.  
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Figure 6.5 Top down images of lines at a fairly high χN and at a low χN. 

The low χN system shows large deviations in the location of the line 

edges. 

The same simulation was run with chains composed of 144, 96 and 64 monomers. 

As seen in Figure 6.6A, polymer systems with smaller N have a slightly lower roughness 

than polymers with large N, though all chains lengths show a similar overall dependence 

on χN. When this data is plotted as a function of χ (Figure 6.6B) instead of χN, the data 

approximately collapses to a single curve. This may indicate that the roughness is 

probably primarily due to interfacial width, as interfacial width is determined more by χ 

than by N or χN. 
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Figure 6.6 A) LER as a function of χN for various N. All N show a sharp 

decrease as χN approaches the ODT. Smaller N yield slightly smaller 

roughnesses. B) LER is plotted as a function of χ. This collapses the data 

to a single curve. 
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6.3.2. Effect of χN on LER with sinusoidal guiding patterns 

The effect of sinusoidal guiding layers was studied elsewhere, however, the effect 

of changing χ was not tested.
20

 It is conceivable that low χN systems would be less 

strongly tied to the guiding pattern, and so the waves produced by the underlayer could 

damp out more quickly. Conversely, it is also conceivable that high χ systems may cause 

the waves introduced in the system to damp out more quickly because the of energy 

penalty for increased interfacial area between dissimilar blocks. As shown previously, 

sine wave guiding stripes only caused roughness increases for guiding patterns with 

relatively high amplitudes (~35% of the line width) and large wavelengths (~double the 

pitch). For smaller amplitudes or wavelengths, no persistent roughness increase was 

observed. In this work, two different sinusoidal guiding patterns were studied at various 

χN for comparison: a larger the amplitude (3.5 nm) and wavelength (40 nm) worst case 

from the earlier study
20

 and a weaker sinusoidal guiding pattern at half the amplitude 

(1.75 nm) and wavelength (20 nm).  The simulations were four domains wide and 160 

nm long and were built in the same manner as the straight lines in this work. If the 

amplitude of the sine wave is high enough, then it will increase roughness at all χN 

values, but small amplitudes do not increase roughness, as seen in Figure 6.7A. However 

the sine wave strength does not change the relative effect of χN on LER.  Normalizing the 

data to high χN gives the results seen in Figure 6.7B. 
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Figure 6.7 A) 3σ LER for sine wave guiding stripes and straight guiding 

stripes. A corresponds to the amplitude of the sine wave guiding function, 

and WL corresponds to the wavelength of that same function. B) LER 

normalized to value at χN = 125 for sine wave guiding stripes and straight 

guiding stripes. When A=3.5nm and WL=40 nm, there is a persistent 

increase in the roughness through the film. However, this effect is 

proportionally the same for all χN, as can be seen when the data is 

normalized. 
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6.3.3. Comparison to other models  

Semenov developed a theory that can be used to calculate the roughness of BCP 

interfaces.
15,16

 The roughness is broken down into two frequency regimes: the high 

frequency regime which corresponds to the interfacial width and individual chain 

variations, and the low frequency regime which corresponds to thermal fluctuations in the 

polymer. The defined boundary between the two regimes is designated Δ0. The following 

equations describe the theory.  

 ∆0=
2𝑎

√6𝜒
 6.2 

 𝛾0 =
𝑎

𝑣
√
𝜒

6
 6.3 

 ∆= ∆0 [1 +
1.34

(𝜒𝑁)1/3
](ℎ𝑖𝑔ℎ𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) 6.4 

 ⟨𝛿2 ⟩ =
1

2𝜋𝛾0
𝑙𝑛 (

𝑑

∆0
)(𝑙𝑜𝑤𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) 6.5 

 ∆𝑇𝑜𝑡𝑎𝑙= √∆2 + 2𝜋⟨𝛿2 ⟩ 6.6 

a is the statistical segment length, v is the monomer volume, γ0 is the interfacial tension, 

Δ is the high frequency roughness (measured from 0 to Δ0) and δ is the low frequency 

roughness (measured above Δ0). It is instructive to compare the simulation results 
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generated here to this theory.  In order to analyze the simulation data in this fashion, it 

was necessary to calculate a and v for the polymer potential used in this work. In a lattice 

model, a is simply the lattice spacing, but the simulations discussed here do not have a 

lattice, so an effective a must be determined. Shull predicted the pitch of BCPs as a 

function of χ, N, and a for all ranges of χ.
27

 By assuming this model, and that a is 

constant, we can fit an effective a for our model. In this work it was found that an a of 

7.61 Å fits best, so this a was used to compare our data. v must also be defined for the 

simulation results. Since v is not easily ascertained, the v found for polystyrene of 0.17 

nm
3
 is used. 

 
Though this is not completely accurate for this simulation model, only an 

estimate is necessary for comparison here.   

Because the simulation model used in this work combines 4 monomers into a 

single bead, the very highest frequency LER and LWR is not captured using such a 

model. This makes it difficult to account for only a portion of the high frequency LER. 

So, only the low frequency regime of Semenov’s theory was considered when comparing 

the model and simulations. Fortunately, the long wavelength, low frequency roughness is 

much more important for device performance. In order to fairly compare with Semanov’s 

low frequency regime, we needed to eliminate the high frequency contribution to total 

LER in our simulation.  This was done by resizing the minimum pixel size in the image 

to match Semanov’s cutoff for high frequency. This removes all roughness at 

wavelengths smaller than the pixel size, i.e. the high frequency roughness. The high/low 

frequency cutoff changes as a function of χN, so this must be taken into account when 

analyzing the simulation images. The cutoff as a function of χN from Semenov’s work is 

found in Figure 6.8. 
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Figure 6.8 Cutoff between high and low frequency regime from 

Semenov’s theory. 
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When compared with Semenov theory in Figure 6.9 the agreement between the 

theory and simulation results are good when χN is high, but they deviate sharply from one 

another when χN approaches 10.5. Semenov’s model was not intended for use in the low 

χN region, and as one can see, does not capture the increase in roughness at low χN. The 

cause for the difference is likely an underestimation of the cutoff length, which is the 

interfacial thickness. SCFT calculations of interfacial roughness match Semenov’s theory 

(SST) at high χN, but deviate significantly at low χN. This means that the degree to 

which high frequency roughness plays a role is under estimated in Semenov’s theory, as 

is the necessary cutoff length. Assuming that no high frequency roughness is measured is 

almost certainly untrue as can be seen in Figure 6.2. This is probably because Semenov 

severely underestimates the length scale of interfacial roughness at low χN (Figure 2.20). 

Incorporating this interfacial increase may result in a significantly better match between 

models.  
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Figure 6.9 Simulation LER data plotted Semenov low frequency 

roughness theory results at a depth of 7.5 nm, the middle of the film. For 

relatively high χN (>60) there is good agreement between our results and 

Semenov with a gentle increase in LER. However, when χN is small, our 

simulation predicts a much higher LER. 

Patrone and Gallatin also more recently developed a method of calculating LER 

using the Leibler, Ohta, and Kawasaki (LOK) model.
13

 It is an analytical model that 

models roughness in the SSR and uses a perturbative approach to give explicit 

expressions for interface tension, as well as a stretching energy associated with the 

deformation of a polymer at an interface. Using the equations and values given in Patrone 

and Gallatin, their method can be compared to the method used in this work. Using an h 

= 15 nm, N = 120 monomers, a = 0.761 nm, n = 1 interface from guiding line, we 

calculate the results of equation (27) from Patrone and Gallatin and plot them in Figure 

6.10. Because this model is not designed to handle the low χN regime, it also does not 
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capture the sharp increase in roughness below χN= ~ 100. This model results in better 

agreement with our model, but it still under estimates at low χN.  

 

Figure 6.10 Comparison of calculation from Gallatin et al. model and the 

model used in this work. The Gallatin et al. model does not capture the 

dependence on χN for low χN, showing only a very slight increase at low 

χN values. 

6.4. Conclusions 

The dependence of polymer block domain interfacial roughness and domain size 

variation, as measured using the LER and LWR from aligned BCP lamellar thin film 

samples, on the block copolymer χN value was studied using a coarse grained molecular 

dynamics model. It was found that LER and LWR are almost independent of χN at large 

χN values greater than approximately 100.  Below this value, both LER and LWR 

increase sharply with decreasing χN values.  A similar dependence is found even when 

using non-idealized guiding patterns that contain pre-programmed roughness (e.g. 
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guiding stripes with sinusoidal width variation).  Consequently, when using BCP directed 

self-assembly to make integrated circuits, copolymer χN values will likely have to be kept 

well above the ODT if aligned pattern roughness is an important limiting factor.  This 

will limit the minimum feature size achievable using a given block copolymer to values 

much larger than what might considered possible based on order-disorder transition 

considerations only.  When compared with previously published models, good agreement 

is found for the dependence of BCP pattern LER at higher χN values, but these other 

previous models do not capture the increase in roughness at low χN values.  
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CHAPTER 7 

FREE ENERGY DIFFERENCE OF PITCH VARIATION AND 

CALCULATION OF THE ODT USING THERMODYNAMIC 

INTEGRATION  

Thermodynamic integration and the calculations involved in using 

thermodynamic integration in a coarse-grained molecular dynamics model are explained 

was used to measure the energy penalty of altering the pitch of polymers with various χN. 

The minimum free energy occurred at a pitch that corresponded to the calculated natural 

pitch from scattering calculations. The penalty for pitches lower than the natural pitch 

was found to scale with χ and the proportional decrease in pitch, indicating a purely 

enthalpic driving force and resulting in a universal energy penalty curve. The penalty for 

pitches larger than the natural pitch is entropically driven and requires more complex 

calculations. The entropic and enthalpic terms must be separated to investigate such 

behavior. The ODT was also measured in a manner similar to Müller et al.
6
 by 

calculating the free energy in the mixed state and of the demixed state. The intersection 

of these curves is the ODT. The measured ODT depends on the pitch used in the demixed 

calculation. If the pitch is too large, then the χN at the ODT will be over estimated. The 

measurement was taken as a function of pitch and found to approach the expected ODT 

of 10.5 when smaller pitches were used, thus correcting the work by Müller et al.
6
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7.1. Introduction 

Self-consistent field theory (SCFT) has proven useful in calculating the free 

energy of many different states, but it has its limitations. Specifically, SCFT neglects 

thermal fluctuations, which are known to be important near phase transition.
1
 While 

SCFT is well suited for equilibrium properties, capturing the dynamic properties of 

system is more difficult.
2
 These factors, along with a drastic increase in available 

computational power, have led to an increased use of particle based models including 

both Monte Carlo based models and molecular dynamics (MD) based models.
2-4

 In order 

to study polymers, these models must generally be coarse-grained to mitigate the 

significant computational requirements due to the required time and lengths present in 

polymer systems. While particle based methods naturally include fluctuations and are 

often well suited to studying kinetics pathways, accurate calculations of free energy are 

more difficult.
2
 While SCFT inherently calculates the free energy of the system, particle 

based models do not automatically calculate the free energy therefore, if such a 

calculation is desired, the system must be systematically perturbed.. One method to do so 

in MD models is to use thermodynamic integration.
2-10

 In short, the free energy 

difference between two arbitrary states is calculated by defining a reversible 

thermodynamic path between those states and integrating over ensemble-averaged 

enthalpy changes along that defined path. These paths need not be realistic paths and can 

be defined by imagined potentials or coupling parameters. Two useful examples include 

the measurement of the order-disorder transition (ODT) in diblock copolymer melts, and 

the measurement of natural repeat distances in lamellae forming diblock copolymers and 

these measurements will be demonstrated here. While the ODT can be measured in other 
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ways, a clear picture of the associated free energies of the mixed and demixed state can 

be useful when considering parameters that may modify the ODT such as PDI, 

confinement or asymmetry in block interactions. Insight into the exact causes for ODT 

perturbation caused by the aforementioned parameters could be obtained using 

thermodynamic integration that could not be achieved with a simple identification of the 

ODT.  

7.2. Thermodynamic Integration 

The free energy between two states can be calculated by
5-7

 

 ∆𝐹𝐴→𝐵 = ∫ ⟨
𝛿𝐻

𝛿𝑢
⟩ 𝑑𝑢

𝑢𝐵

𝑢𝐴

 7.1 

where u is any parameter that defines a path that is reversible and continuous between 

state A and state B,  H is the Hamiltonian, and the brackets < > denote a thermodynamic 

average. The Hamiltonian is composed of the potential energy as described by the 

interactions between beads (see Chapter 2), the potential energy of external forcefields, 

and a kinetic term K. 

 𝐻 = 𝐸𝐵𝑜𝑛𝑑 + 𝐸𝐴𝑛𝑔 + 𝐸𝑁𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑 + 𝐸𝐸𝑥𝑡 + 𝐾 
7.2 

 𝐾 =∑
𝑝𝑖

2

2𝑚𝑖

𝑁

𝑖=1

 
7.3 

Here, p is the momentum of a bead and m is the mass. Equation 7.1 can be used to find 

the free energy between any two states provided that some reversible and continuous path 
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can be envisioned between the two states. An external potential can be used to take a 

system from one state to another, or a parameter internal to the model (such as εAB or σAA 

(See chapter 2)) can be varied, but abrupt changes in state must be avoided so that 

reversibility is maintained. Multiple steps can be taken in succession, with different 

parameters being varied in each step. Because free energy is a state function, the sum of 

the free energy differences of each step is equal to the free energy difference between the 

initial state and the final state, as described by Equation 7.4.  

 ∆𝐹𝑇𝑜𝑡𝑎𝑙 =∑∆𝐹𝑖
𝑖

 7.4 

This allows multiple parameters to be varied, and more complicated paths between states 

to be taken. This work strives to demonstrate some uses of thermodynamic integration by 

finding the free energy difference between various pitches for a given BCP, as well as the 

effect of pitch on the calculation of the order disorder transition.  

7.2.1. Thermodynamic Integration: Pitch Variations 

In order to calculate the free energy difference between various pitches, a path 

between those pitches, or a path from a one common state to the various pitches is 

required. While it may be possible to envision a continuous, reversible, and direct path 

from one pitch to another via a change in a set of external potentials, it is much simpler to 

execute a path from a disordered state to any arbitrary pitch. Then, knowing the 

difference between every state and a disordered state, the ordered states can be compared 

to each other. To do this, a three branch path is used.  
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The overall scheme of this integration is shown in Figure 1. It consists of 3 

branches; one where an external potential, which orders the system into lamellae, is 

slowly turned on, one where χ is slowly increased, and one where the external potential is 

slowly turned off. The overall free energy is the sum of the free energies of each branch 

(Equation 7.4). The external potential is described by Equation 7.5 and yields a potential 

similar in shape to the composition profile of a lamellar BCP, as shown in Figure 7.2.  

 𝑈𝑒𝑥𝑡 = 𝐴 ∗ 𝑡𝑎𝑛ℎ(
𝑐𝑜𝑠 (

2𝜋𝑥
𝐿 )

2𝜋𝑤
) 7.5 

A is the strength of the potential, x is the position in the x dimension, L is the pitch, and w 

is the width of the interface relative to the pitch. w was chosen by fitting the potential to a 

compositional profile of spontaneously formed lamellae. 

 

 

Figure 7.1. Schematic of the 3 branch method for calculating the free  

energy between the mixed state and demixed state. The first branch 

increases the external potential and phase separates the system. The 

second branch increases χ. Little morphological change occurs during this 

branch. The third branch removes the external potential and achieves the 

final state. Each branch is reversible and so the free energy can be 

calculated over each of them. The total free energy difference is the sum 

of the free energy differences of each branch. 
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Figure 7.2. Compositional profile of simulation results and the external 

potential.  

In branch 1, the parameter A in Equation 7.5 is the parameter over which the 

system is integrated in equation 1. Since the Hamiltonian consists of the potential and 

kinetic energy, <δH/δA> is equal to  <δUext/δA> which is Equation 7.6.  

 ⟨
𝛿𝑈𝑒𝑥𝑡
𝛿𝐴

⟩ = ⟨𝑡𝑎𝑛ℎ (
𝑐𝑜𝑠 (

2𝜋𝑥
𝐿 )

2𝜋𝑤
)⟩ 7.6 

This value is integrated over A from 0 (the potential is off) to some larger value intended 

to be strong enough to produce a desired state in the system. x refers to the positions of 

all the beads in the system and changes in response to the external potential as A is 

changed. In this case, a maximum value of 2.63 for A was chosen. Other values would 
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work as long as the lamellae were clearly formed. A was changed in small increments 

(100 steps in all) and the system was allowed to equilibrate at each step in A for 320,000 

timesteps. Due to the noise in the total energy of the system, at each step in A, after the 

system energy was no longer changing the final values of the total energy were averaged. 

The resulting data was then numerically integrated yielding the free energy difference. 

Figure 7.3 plots the integrand (δUext/δA) and the free energy along branch 1 for the case 

of a 16 nm pitch with an N of 120 monomers. Figure 7.3 shows that there were two 

slopes in the integrand for branch 1. The large initial slope is due to many beads moving 

from an initially mixed state to their correct locations (A beads to the A domain, and B 

beads to the B domain). In other words, this large initial slope is due bulk phase 

separation in the system, which is confirmed with visual observation of the system. Once 

the initial phase separation is completed, there is a smaller slope which corresponds to 

fewer beads moving to their correct domains. During this second section, the morphology 

is essentially formed and the external potential is primarily sharpening the interface. It is 

likely that as long as the maximum potential strength is ≥ ~ 0.5 the results should be 

accurate because this is the point at which the integrand begins to flatten.  The total 

energy of the system at each step in A must be taken at equilibrium, so each step must be 

run slowly enough to allow for equilibrium to be reached. If the equilibration time is too 

small, the path will no longer be reversible, introducing error in the calculation. However, 

long equilibration times cause the simulations to take far too long to be feasibly run. At 

each step in the integration, 320,000 timesteps were used as this was determined to be 

sufficient to eliminate non-equilibrium errors, even during the first regime in Figure 7.3 

where the integrand is changing sharply with small changes in A. A fuller examination of 
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the effect of equilibration time is found in Chapter 8. In cases where the entire simulation 

was performed in a mixed state (used to determine the ODT later), no external potential 

was used and the free energy calculation consisted only of the calculation shown in 

branch 2. 

 

Figure 7.3. Plot of the integrand and free energy of the first branch for N = 

120 and a pitch of 16 nm as a function of the external potential strength, A. 

After this first branch of the integration, the BCP has been ordered by the external 

potential, but χ is still 0. In the second branch of the integration χ will be increased to its 

final value.. In our model, χ is not a parameter, but rather χ is derived from other 

parameters. The primary parameter used to manipulate χ in our system is εAB, the strength 

of the non-bonded potential between unlike beads at their equilibrium distance. The 

relationship between χ and εAB can be calculated as described in Chapter 2 so εAB can be 

varied from its starting condition (a χ of 0) to the value that gives the desired final χ. So, 
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in Equation 7.1 for this branch, u is εAB. The relevant portion of the Hamiltonian (the only 

part containing εAB) is the nonbonded A-B interaction, Equation 7.7.  

 𝐸𝐴𝐵 = 휀𝐴𝐵 [(
𝜎𝐴𝐵
𝑟
)
8

− 2(
𝜎𝐴𝐵
𝑟
)
4

] 7.7 

<δH/δu> is <δEAB/δεAB> which is Equation 7.8.  

 ⟨
𝛿𝐸𝐴𝐵
𝛿휀𝐴𝐵

⟩ = ⟨[(
𝜎𝐴𝐵
𝑟
)
8

− 2(
𝜎𝐴𝐵
𝑟
)
4

]⟩ 7.8 

The resulting integrand and free energy is shown in Figure 7.4 for the case of a 16 

nm pitch with an N of 120 monomers and an external potential strength of A = 2.63. The 

integral is performed from εAB = 0.5 (χN = 0) to εAB = 0.3 (χN = 84.5). There is little 

morphological change along this branch because order was already induced by the 

external potential. This allowed a shorter simulation to be run at each step in εAB since 

each step resulted in a smaller change in state. In this case, 50 steps were taken to vary 

εAB. The integrand is fairly linear since morphological change is primarily limited to 

interfacial straightening, as in Figure 7.3 after phase separation had already occurred. 
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Figure 7.4. Plot of the integrand and free energy of the second branch for 

N = 120, an external potential strength A = 2.63 kcal/mol, and a pitch of 

16 nm as a function of the unlike bead interaction strength, εAB. The 

integral is performed from εAB = 0.5 (χN = 0) to εAB = 0.3 (χN = 84.5). 

The final branch in the integration involves turning the external potential off, 

which will essentially repeat branch 1 of this scheme in reverse. The resulting integrand 

and free energy is shown in Figure 7.5 for the case of a 16 nm pitch with an N of 120 

monomers and a χN of 84.5, integrating from and external potential strength of 2.63 to a 

value of 0. As with branch 2, there is little morphological change so less steps in the 

external potential were required to maintain a reversible path, so 50 steps were used. 

Because the external potential was parameterized as to match the natural interfacial width 

of the BCP (see Figure 7.2), there is very little change in the integrand as the external 

potential is turned off. There is a slight increase in line roughness associated with larger 

wavelength roughness that was damped by the external potential, but the effect is small.  
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Figure 7.5. Plot of the integrand and free energy of the third branch for N 

= 120, χN = 84.5, and a pitch of 16 nm as a function of the external 

potential strength. The integral is performed from a value of A = 2.63 to A 

= 0. 

7.2.2. Thermodynamic Integration: Order-Disorder Transition 

The order-disorder transition (ODT) can be calculated using thermodynamic 

integration by finding the point where the free energy of the mixed state and the phase 

separated state intersect. When these two free energy curves intersect, the lowest free 

energy states switches from the ordered state to the disordered state or vice versa. The 

free energy of the disordered state is easily calculated by performing an integration such 

as the one in Branch 2 of the previous section (except with no external potential), 

beginning with an εAB = 0.5 (χN = 0) and ending with some low value of εAB (higher χN) 

In this case, the simulation will start mixed at a χN of 0 and integrate through an increase 

in χN towards the ODT. The resulting free energy is shown by the red line in Figure 7.6. 

This simulation was run using an N of 120 monomers. The dashed line is an extrapolation 
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in free energy because near the ODT the ordering begins to occur and the disordered 

phase is unstable. The free energy of the ordered state requires more work. The 

calculation cannot begin to be calculated at a χN of 0 because the ordered state is not 

stable there. It must begin at a χN value above the ODT and at a specified pitch. This 

initial value is the difference in free energy between the mixed state and a specified pitch 

and is found using the calculations in the previous section. Next, the free energy can be 

calculated for various values of χN by integrating to lower χN, approaching the ODT. 

This calculation was done at a pitch of 20 nm and is shown in Figure 7.6 by the blue line. 

The dashed line is the extrapolation of this calculation because as the simulation nears the 

ODT, the lamellae become unstable. The intersection of the two curves results in a 

calculation of the ODT at χN = 14.07. This work scales χ to match mean field calculation 

in order to better compare results with previous work using other modes such as SCFT, as 

is used in Müller et al.
6
 This means that the ODT of this model should occur at χN = 10.5 

even though our model includes fluctuations that SCFT does not. The cause for the free 

energy’s over estimation of the ODT was the restriction of the domain size in the ordered 

state when performing the integration. It is only the free energy of that specified domain 

size and the mixed state that is being compared. Therefore, this result means that when 

χN is less than 14.07 for this system, the mixed state is preferable over an ordered state 

with a pitch of 20 nm. If the pitch at which the ODT was calculated was reduced to the 

pitch near the ODT, then this χN at the ODT should converge to ~10.5. Müller and 

Daoulas performed a similar calculation using a Single-Chain-in-Mean-Field (SCMF) 

calculation and also found that finite size effects in the ordered state produced a higher 

than expected χNODT, just as we do.
6
 They did not perform calculation at pitches near the 
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natural pitch at the ODT, and so they could not account for this finite size effect. This 

work will account for that effect and calculate χNODT at various pitches so that the 

dependence of pitch on the calculated χNODT is found and the true χNODT can be found. 

This is a correction of the work done by Müller et al.
6
 and can be extended to other 

systems or models .  

 

 

Figure 7.6. Plot of free energy compared to the χ = 0 mixed state. The red 

line corresponds to the free energy as calculated from the χ = 0 mixed state 

to large χN in the mixed state. The blue line corresponds to the free energy 

calculated from the phase separated state (determined the three branch 

calculation described before) to low χN in the phase separated state. The 

extrapolation of the two lines is shown in dashed lines. The intersection of 

these lines corresponds to the calculated ODT. 
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7.3. Results and Discussion 

7.3.1. Free Energy of Extension or Compression 

The free energy difference between the ordered and disordered states of various 

pitches at various χ values was calculated. Figure 7.7 shows a range of χN values, with a 

constant degree of polymerization of 120 monomers and various χ values. The lowest 

free energy pitch at a given χN value is the natural pitch (L0) of that polymer. It is 

observed that as χN increases the natural pitch increases
11

 and so the minimum in our 

calculation shifts to higher pitches. As a comparison, and to verify our calculations, the 

natural pitch was also measured directly by calculating the structure factor from the radial 

pair distribution function using a simulation that spontaneously phase separated due to χ 

as described in Chapter 2. These simulations were run in 45 nm periodic cubes at 500K 

for 100 ns. Figure 7.8 compares the directly measured natural pitch and the minimum free 

energy pitch as calculated by thermodynamic integration and great agreement across a 

wide range of χN is found.  
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Figure 7.7. Difference in free energy between the final state and a mixed 

state with χ = 0 as a function of pitch and χN for N = 120. 

 

Figure 7.8. Comparison of measured natural pitch using the scattering 

method described in Chapter 2 and the thermodynamic integration method 

used here. Excellent agreement is found.  
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It is also found that the free energy difference between the mixed state and the 

phase separated state increases as χN increases (the higher χN curves are higher up in 

Figure 7.7). This makes sense because the free energy difference between the mixed state 

and the phase separated state is calculated between two different χ values and there is a 

loss of potential energy as χN is increased. To increase χ, εAB is decreased so that the 

interaction between unlike beads is less favorable. This change results in less cohesive 

energy and a smaller enthalpy, yielding a smaller free energy in the phase separated state. 

The value of most importance is perhaps not the shift in the curves away from zero, but in 

the difference between free energies at different pitches. Lower χ values result in a 

flattening of the free energy curve representing a smaller penalty for forming a pitch 

other than L0. For pitches smaller than L0, χ determines the penalty for the extra A-B 

interactions that occur because of the smaller pitch so a smaller χ corresponds to a 

smaller penalty for increased interface, accounting for the flattening of the curve. This 

can be seen more demonstrated more clearly by performing two normalizations on the 

data in Figure 7.7.. The first normalization shifts the difference in free energy such that 

the difference in free energy at the natural pitch of each polymer is 0 (ΔF penalty) and 

normalizes by χ for each polymer. The second normalization divides the abscissa of the 

data by the natural pitch of the polymer (L0) resulting in an x-axis proportional to the 

percent change in the pitch. This change in the pitch is inversely proportional to the A-B 

interfacial area. If the pitch (L) is half of L0 (L/L0 = 0.5) then there is twice as much 

interfacial area in that system than in a system where L is equal to L0. The enthalpic 

penalty for this increased interfacial area, neglecting any stresses due to compressed 

chains, is proportional to χ just as the energy difference between the mixed and demixed 
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state is proportional to χ because χ is the penalty for the extra A-B interactions at the 

interface. These two normalizations result in a universal curve for pitches lower than L0 

as seen in Figure 7.9.  For pitches above L0, it is entropy that increases the free energy 

because the reduction in interfacial area would only result in a larger enthalpic term. The 

form for this is more complicated and so does not result in a universal curve in Figure 

7.9. Further work may yield the exact nature of the entropic increase at pitches larger 

than L0. 

 

Figure 7.9. Free energy penalty normalized by χ plotted as a function of 

L/L0.  
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free energy while above this χN the phase separated state has a lower free energy. The 

phase separated state using in this estimation must be at a set repeat distance, and so the 

comparison is being made between a mixed state and a phase separated state at that 

particular repeat distance. When this set repeat distance is very different from the natural 

repeat distance close to the ODT, then the intersection between the mixed state free 

energy curve and the phase separated state free energy curve may over-estimate the ODT 

as shown in Figure 7.10. Figure 7.10 plots the free energy as a function of χN for 20 nm 

pitch, 26 nm pitch and for the mixed state (which is independent of pitch). The 

intersection of the 26 nm pitch with the mixed state curve occurs at a much higher χN 

than the 20 nm pitch. The curve also cut off right before the intersection with the mixed 

state curve because they will spontaneously start to mix during the free energy 

calculation, thus the need for the short extrapolation. Because the 26 nm pitch is far away 

from the natural pitch near the true ODT (χN = 10.5) the ODT is found at a larger N since 

it is preferable for the system to mix at this high χN than to stay in the highly perturbed 

pitch. For an accurate measure of the ODT, the pitch used for the phase separated case 

needs to be as close to the equilibrium pitch right above the ODT as possible. 
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Figure 7.10. Free energy compared to the mixed χ = 0 case. The Mixed to 

ODT curve is identical to that shown in Figure 7.6. The other curves 

correspond to free energy calculation in the phase separated state at 26 and 

20 nm pitches .  

In order to account for the change effect of the pitch, the phase separated state 

was simulated at various pitches and the estimate of the ODT at each pitch was found. 

These results are shown in Figure 7.11 for a polymer with a degree of polymerization of 

N = 120 and a volume fraction of 50% A beads. When simulated at large pitches, the 

ODT is found at relatively high χN. Low pitches asymptote to approximately the 

expected value of 10.5. This corrects the previous work by Müller et al.
6
 which only 

calculated the ODT at a single pitch and therefore overestimated the ODT.  
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Figure 7.11. χNODT as a function of pitch for N = 120. 

7.4. Conclusions 

Thermodynamic integration was used to measure the energy penalty of altering 

the pitch of polymers with various χN. The minimum free energy occurred at a pitch that 

corresponded to the calculated natural pitch from scattering calculations. The penalty for 

pitches lower than the natural pitch was found to scale with χ and the proportional 

decrease in pitch, indicating a purely enthalpic driving force and resulting in a universal 

energy penalty curve. The penalty for pitches larger than the natural pitch is entropically 

driven and requires more complex calculations. The entropic and enthalpic terms must be 

separated to investigate such behavior. The ODT was also measured in a manner similar 

to Müller et al.
6
 by calculating the free energy in the mixed state and of the demixed 

state. The intersection of these curves is the ODT. The measured ODT depends on the 

pitch used in the demixed calculation. If the pitch is too large, then the χN at the ODT 
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will be over estimated. The measurement was taken as a function of pitch and found to 

approach the expected ODT of 10.5 when smaller pitches were used, thus correcting the 

work by Müller et al.
6
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CHAPTER 8 

FREE ENERGY OF DEFECTS USING THERMODYNAMIC 

INTEGRATION 

Directed self-assembly of block copolymers (BCPs) is a process that has received 

great interest in the field of nano-manufacturing in the past decade, and great strides 

towards forming high quality aligned patterns have been made. But state of the art 

methods still yield defect densities orders of magnitude higher than is necessary in semi-

conductor fabrication. Equilibrium defect density can be measured if the free energy 

difference between a defective and a defect free state is known. The defect free energy of 

a dislocation pair or jog defect, one of the most common defect found in BCP-DSA, is 

calculated via thermodynamic integration using a coarse grained molecular dynamics 

model as a function of χ and N.  It is found that χN is not the best predictor of defect free 

energy and that a single χN value can yield vastly different free energies when χ and N 

are different (though their product is identical). This means that higher χ systems that are 

being produced to allow for smaller feature size DSA will likely have a lower equilibrium 

intrinsic defect density. Measurements of defect densities are reasonable for the oft-

studied PS-PMMA. Defect free energies were measured as a function of defect placement 

relative to the underlayer and as a function of background composition. The effect of 

background composition was unclear but the defect free energy was highly dependent on 

defect location relative to the underlayer. Free energy differences ~ 100 kT were found 

between the three possible defect locations on a 1-3 guiding pattern. The effect of PDI on 

defect free energy was also studied. It was found that PDI significantly reduced defect 
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free energy. Extrapolating form PDI up to 1.5 suggests that the defect will occur in equal 

proportions with a PDI of around 1.6 for this system. It was found that long chains tended 

to concentrate near the defect and stabilize the defect.  

8.1. Introduction 

Directed self-assembly (DSA) of block copolymers (BCPs) is a promising 

technique for producing sub-20 nm pitch regular patterns because of both the propensity 

for BCPs to phase separate at relevant length scales and the ability to guide such patterns 

into long range order using lithographically derived templating layers.
1,2

 Both topological 

and chemical patterns in underlayers can be used to organize the phase separated BCPs 

into specific patterns.
3-5

 Processing techniques for DSA of BCPs are becoming more and 

more effective at producing useful patterns for nanofabrication, but many hurdles must 

still be overcome to achieve low defect aligned patterns for semi-conductor fabrication.  

Defects are still rampant in many demonstrated process flows, and though understanding 

is increasing as to the fundamental causes of these defects, there is still a long way to go 

towards a complete understanding.
6-8

 Previous studies have calculated the free energy of 

defects in laterally confined systems
6
, and in chemically aligned systems as a function of 

guiding linewidth
7
, but there are still a great many factors involved in defect formation 

that are not yet well understood.  

The development of these DSA techniques could benefit greatly from computer 

simulation of such methods, especially in the area of defect modeling because of the 

difficulty of differentiating intrinsic BCP defects from faulty guiding patterns, particle or 

contamination influences, or other defect modes beyond thermodynamically or 
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kinetically trapped microphase separation defects.  Simulations can more easily identify 

the causes of defects and calculate the free energy of defects to yield defect density 

estimates.  Unlike other models, molecular  dynamics (MD) combined with realistic 

potentials for polymer behavior can potentially provide more accurate simulations of the 

inherent polymer  behavior, dynamics, and equilibrium states in microphase separated 

block copolymers without a need to guess modes of molecular movement, as in Monte 

Carlo (MC) methods, and without oversimplifying interatomic  interactions, as in self 

consistent field theory (SCFT). 

Through the use of thermodynamic integration, MD simulations allows for 

calculation of free energy differences between various states, provided a reversible path 

can be envisioned between them.  Using this technique, various equilibrium and 

metastable states can be compared.  Defect free energies (which relate exponentially to 

defect densities
6
) can be calculated as functions of polymer and underlayer properties. 

Defectivity is one of the primary hurdles for implementation of BCP-DSA into 

semiconductor fabrication and defect free energies are critical to guide defectivity 

reduction via processing and patterning techniques. Free energy as a function of system 

properties like pitch, and polymer parameters can also be calculated. These calculations 

can provide insight into ideal and practical best case scenarios for both polymer 

properties and system guiding properties, whereas vast number of experiments would 

have to be run to achieve the same conclusions. 

The defect chosen for study in this work is one of the most common intrinsic BCP 

defects (a defect not caused by poor processing conditions, such as particle defects). 
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These defects are frequently seen both in experimental data and in our own simulations
6-

10
. This defect, called a dislocation pair or a jog defect, is represented in Figure 8.1. They 

will often come with various spacings between the defect pair, but for the purpose of this 

paper, a dislocation pair separated by a single tilted lamellae will be studied. 

 

Figure 8.1. Top down image of the defect type studied in this paper. This 

is a common defect found in literature.
6-10

 

While such defects occur for various pattern types and various polymers, a good 

understanding of how these patterns and polymer properties actually affect defect density 

is lacking. The defect density has been found to be described by: 

 𝑛𝑑 = 𝑎𝑐
−2𝑒𝑥𝑝(−

𝛥𝐹

𝑘𝑡
) 8.1 

where ΔF is the free energy between the defective state and the defect free state, k is 

boltzmann’s constant, and T is the temperature.
7,8,11,12

  Because of the exponential 

dependence of defect levels on the defect free energy ΔF, accurate estimations of this 

parameter are critical to understanding anticipated defect levels in DSA processes.  
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8.2. Model and Methods 

8.2.1. Thermodynamic Integration 

A method similar to DePablo and coworkers
7 

and Mueller and coworkers
13

 was 

used here. The free energy difference between two states can be calculated by the 

equation: 

 ∆𝐹𝑎→𝑏 = ∫ ⟨
𝛿𝐻

𝛿𝑢
⟩ 𝑑𝑢

𝑢𝐵

𝑢𝐴

 
8.2 

H is the Hamiltonian of our model, u is any parameter that can define a continuous, 

thermodynamically reversible path between state A and state B, and the brackets 〈 〉 

denote a thermodynamic average, that is the average value at equilibrium. The states that 

were compared were a dislocation pair or jog defect (Figure 8.1) and a defect free ordered 

lamellae state. In order to compare these states, two simulations were run: one from a 

mixed state to a defect free lamellae state, which yields the free energy between the 

mixed state and the defect free state (ΔFDefect Free - Mixed), and another simulation from a 

mixed state to a defective state, which yields the free energy between a mixed state and a 

defective state (ΔFDefect - Mixed). Then: 

 ΔFDefect - Defect Free = ΔFDefect - Mixed – ΔFDefect Free - Mixed 8.3 

 Instead of trying to define a reversible, continuous path between a well aligned lamellar 

state and a defect free state, it is easier for our model to use two different paths, i.e. a path 

from a mixed state to a lamellar state and a path from a mixed state to a defective state.  
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Figure 8.2. Schematic of the method used to calculate the defect free 

energy. Two simulations are run: one from the mixed to the defective 

state, and one from the mixed to the defect free state. Each of these 

simulations yields the free energy difference between the mixed state and 

the corresponding final state. The difference between the free energies 

calculated in each simulation is the free energy difference between the 

defect and the defect free state. Each simulation contains three branches 

over which a free energy difference is calculated. The first branch orders 

the system from the mixed state using an external potential, the second 

changes χ, and the third turns off the external potential.  

Both ΔFDefect – Mixed and ΔFDefect-Free – Mixed were calculated using three branches of 

the MD simulation. The first branch is used to order the mixed polymers into the desired 

morphology. This was done using an external potential which assigns an energy to beads 

based on their type and position within the simulation. In the case of the defect free state, 

the external potential energy was described by: 
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where A is the strength of the potential, x is the position in the x axis of the bead, w is the 

width of the interface of the potential, and L is the repeat distance of the potential.  The 

defect potential is created using the same equation, except the center portion is rotated 45 

degrees as shown in Figure 8.3 and Equations 9.1 through 9.3.  
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This produces the dislocation pair defect found in both our simulations and in published 

experimental results. The integral from Equation 8.2 was carried out where the reversible 

path (u) is defined by changes in the strength of the external potential, A. This integral, 

which yields ΔF1 from Figure 8.2, is shown in Equations 8.8 and 8.9 for the defect free 

case.  
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 ∆𝐹1 = ∫ ⟨
𝛿𝑈𝑑𝑒𝑓−𝑓𝑟𝑒𝑒

𝛿𝐴
⟩

𝐴𝑚𝑎𝑥

0

𝑑𝐴 = ∫ ⟨
𝑈𝑑𝑒𝑓−𝑓𝑟𝑒𝑒

𝐴
⟩

𝐴𝑚𝑎𝑥

0

𝑑𝐴 
8.8 

  ∆𝐹1 = ∫ ⟨tanh(
𝑐𝑜𝑠 (

2𝜋𝑥
𝐿 )

2𝜋𝑤
)⟩

𝐴𝑚𝑎𝑥

0

𝑑𝐴 
8.9 

where Amax is 2.6. The defective case is identical except that Udef is substituted for Udef-

free. 

The integral was evaluated by numerically increasing A in 100 even steps from 0 

to Amax, which in this case was 2.6. At each step, an MD simulation is run at the new 

value of A until the simulation has equilibrated, and the average value at equilibrium is 

taken and used in integrating Equation 8.9.  In order to determine the amount of time 

required to run the simulation at each step in the ramp up of A, multiple simulations were 

run for various lengths and the free energy integration was performed, as is shown in 

Figure 8.4. Short times showed significant deviations from the results at long times, 

because a short integration time does not allow the system sufficient time to equilibrate, 

making the path irreversible. At long times the simulations are able to reach equilibrium 

at each step, and therefore the path is reversible and the measured free energy approaches 

a constant value. A value of 320,000 timesteps per step in A was found to be sufficient 

and therefore was chosen to be used for the remainder of the paper. In Figure 8.4 initially 

the value of the integrand is close to zero while the system is not well ordered. As the 

system phase separates due to the increasing strength of the external potential, the value 

of the integrand begins to approach a constant value. Figure 8.4 shows a sharp bend at A 
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~ 0.4. At this point the system is mostly already phase separated, and the remainder of the 

simulation primarily consists of decreasing the interfacial roughness of the BCP. 

                                  

Figure 8.3 External potential used to make defect in branch 1 of the 

thermodynamic integration simulation. The potential is the same as the 

well aligned lamellae, except that a region in the center 1.5L0 by 0.75L0 is 

rotated 45 degrees. This rotation gives a good matching to spontaneously 

formed dislocation pair defects and is easily formed.  The B potential is 

the negative of the A potential. 

 

Figure 8.4. Plot of the Integrand of Equation 8.9 as A is increased. As the 

number of timesteps per step in A is increased, the curves converge. A 

value of 320,000 was used to ensure accuracy and reasonable simulation 

times.  
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Once the BCP has been ordered in the first branch of the simulation, χ (which was 

initially kept at zero during the first branch by setting εAB = εAA = εBB) must be increased. 

The starting condition had a χ of 0 so that the initial equilibrium state of the system was a 

well-defined, well mixed state. In our model, χ is controlled by changing only εAB, so εAB -

was varied from 0.5 kcal/mol (χ = 0) to whatever value was desired, allowing the defect 

free energy to be calculated as a function of χ.  Equation 8.2 was then integrated where u 

is now εAB, resulting in Equation 8.10. This results in ΔF2 from Figure 8.2.  

 

∆𝐹2 = ∫ ⟨
𝛿𝑈𝑁𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑

𝛿휀𝐴𝐵
⟩ 𝑑휀𝐴𝐵

𝜀𝐴𝐵_𝐹𝑖𝑛𝑎𝑙

0.5

= ∫ ⟨
𝑈𝑁𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑

휀𝐴𝐵
⟩ 𝑑휀𝐴𝐵

𝜀𝐴𝐵_𝐹𝑖𝑛𝑎𝑙

0.5

 

8.10 

 ∆𝐹2 = ∫ [(
𝜎𝐴𝐵
𝑟
)
8

− 2(
𝜎𝐴𝐵
𝑟
)
4

]
𝜀𝐴𝐵_𝐹𝑖𝑛𝑎𝑙

0.5

𝛿휀𝐴𝐵 8.11 

UNon-bonded  is used because χ is changed via εAB and the non-bonded potential is the 

portion of the Hamiltonian in which εAB appears. The value εAB_Final is the value of εAB 

that yields the desired χ. This value will be less than the value of εAB = 0.5, which yields χ 

= 0. The number of timesteps per step in εAB was varied and the integrand measured as for 

branch 1. The results are found in Figure 8.5. In this case, even very low numbers of 

timesteps per step in εAB yield the same result as very long runs. This is because there is 

little to no overall morphological change in this branch as there was in branch 1. This 

integration was done in 50 steps and run for 40,000 ps for each step in εAB.  
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Figure 8.5 Plot of the Integrand of Equations 8.10 and 8.11 as εAB is 

increased. All values of timesteps per step in εAB yield the same integrand.  

The third and final branch of each simulation gradually turns off the external 

potential. Equation 8.2 was then integrated where u is A as A decreases from 2.6 to 0. 

This is described in Equation 8.12.  

∆𝐹3 = ∫ ⟨tanh(
𝑐𝑜𝑠 (

2𝜋𝑥
𝐿 )

2𝜋𝑤
)⟩

0

𝐴𝑚𝑎𝑥

𝑑𝐴 
8.12 

This is the same as Equation 8.9 except that the integration limits have been switched. 

The same analysis as was done in Figure 8.4 is performed, the results of which are shown 

in Figure 8.6. The integrand of Equation 8.12 was calculated as a function of A as A was 

decreased for various numbers of timesteps per step in A. Very low values of timesteps 

per step in A show significant deviations, but values of 20,000 and greater all produce the 

same integrand. This makes sense because the amount of morphological change is in 
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between that of the first and second branches. The first branch was changed from a mixed 

state to a clear ordered state while the second branch underwent almost no morphological 

change as χ was increased. This third branch, where the external potential is removed but 

χ is kept high, undergoes some minor morphological change as the small inaccuracies of 

the external potential are fixed. This integration was done in 50 steps and run for 40,000 

ps for each step in A.  

 

Figure 8.6. Plot of the Integrand of Equation 8.12 as A is decreased. 

Values of 20,000 timesteps per step in A and higher yielded the same 

integrand.  

The free energies of each of these branches for both the mixed to defect and 
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8.3. Results and Discussion 

8.3.1. Free energy of dislocation pair defects 

In order to decide upon a simulation size for determining the free energy of 

dislocation pairs, various simulation sizes were simulated and the free energies were 

calculated.  Box sizes in the x direction, the dimension perpendicular to the aligned 

lamellae, were restricted to multiples of L0 to preserve periodicity and commensurability 

with the natural pitch of the block copolymer lamellae. Whenever this dimension dropped 

to 3L0 or less, then the defect became severely distorted and free energy could not be 

calculated.  Similar distortions occurred when the y dimension drops to very low 

dimensions. Once the dimensions of the periodic box were greater than or equal to 5L0 in 

the x dimension and 3L0 in the y dimension, there did not seem to be a dependence of 

defect free energy on simulation area as shown in Figure 8.7.  This is very similar to box 

sizes required in the work of Nagpal and coworkers.
7 
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Figure 8.7. Free energy of dislocation pair defect as a function of 

simulation size. Smaller simulation sizes resulted in deformed defects and 

made it impossible to calculate defect free energy. As long as the box size 

was at least 5L0 by 3L0 (area = 2160 nm
2
), the defect free energy did not 

seem to differ greatly.  

In order to determine the effect of N and χ on the free energy of dislocation pairs, 

fully periodic simulations were run with box dimensions of 5L0 by 3L0 in x and y 

dimension by 15 nm in the film depth dimension. L0 dimensions varied from ~8.3 nm to 

~23.1 nm (because of variations in N and χ).  N was varied from 64 monomers to 192 

monomers at various χ values. The results are plotted as a function of χN in Figure 8.8. 

Defect free energy is usually investigated and reported as a function of χN, as is done by 

Takahashi and coworkers.
6
 However, as can be seen in this work, when both N and χ are 

varied the defect free energies do not fall onto a single curve as a function of χN, but in 

fact show great disparities in defect free energy at a single χN.  When the same data is 

plotted as a function of χ (i.e. instead of a function of χN) as in Figure 8.9, the data seems 

to collapse and be better described by a χ dependence only and not χN.  
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Linear extrapolations of the data in Figure 8.8 yields intercepts (where the free 

energy of the defect and defect free state are equal) of χN ~ 2 to ~11, but the data is fairly 

noisy. In addition, value of χN in this work generally stay above a χN of 20, in part 

because defects very near the ODT had a tendency to very quickly heal themselves 

because of the very small barriers to defect healing.
14,15 

In order to produce smaller features, higher χ materials will have to be produced. 

Such materials will likely operate at similar χN values as larger featured processes. At a 

similar χN value but with a lower N and a larger χ, the defect free energy will increase 

and intrinsic defects will decrease. This means that future generations of DSA will likely 

suffer from fewer defect problems for similar quality underlayers. Comparing the 

calculations here to defect densities for a known BCP may be useful. Processes using 

polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA), the most commonly studied 

BCP, have obtained defect densities on the order of 1 defect cm
-2

.
16

  Extrapolating a fit to 

the data in Figure 8.9 to a χ value of 0.04 (approximately the χ for PS-b-PMMA
17

) and 

using Equation 8.1, a defect density of ~ 0.001 defects per cm
2 

is obtained. However, this 

calculation does not account for imperfect guiding layers or imperfect BCPs, both of 

which will decrease defect free energy and increase defectivity, both of which can 

increase defect density by orders of magnitude.
7
 Accounting for imperfect guiding layers 

and polymer and given state of the art achieved defect densities, and the noise in this 

data, this intrinsic defect density of PS-PMMA seems reasonable. Because the 

dependence of defect density on free energy is so strong, even a slight increase in χ and 

therefore in defect free energy results in defect densities that are essentially zero. 
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Figure 8.8 The defect free energy as a function of χN. Overall, ΔF 

increases with χN, but there is a significant change with N. Defect free 

energy approaches 0 as χN approaches the ODT. 

 

Figure 8.9. The defect free energy as a function of χ. Defect free energy 

scales very well with χ with little dependence on N.  
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The above results are obtained using periodic simulations so that the results are 

independent of guiding pattern. In order to explore the effect of guiding layers on defect 

free energy, thin film simulations were run. The effect of defect placement relative to the 

guiding pattern and the composition of the background region in the guiding pattern was 

measured. An underlayer with 2x density multiplication, or a ratio of pinning stripe width 

to background region width of 1:3 was used. These underlayers are composed of a 

pinning stripe that is preferential to one block and is 0.5 L0 wide and a background region 

that is 1.5 L0 wide. The LiNe process uses a similar pattern.
3
 The dislocation pair defect 

can occur at three places on such an underlayer as shown in Figure 8.10. The “1-3A” 

defect is centered on the pinning stripe. The “1-3B” defect has the pinning stripe on the 

edge of the defect. The pinning line is shown under the left side of the defect in Figure 

8.10, but because the defect is symmetric this is identical to putting the stripe under the 

right side of the defect. The “1-3C” defect has the pinning stripes adjacent to both sides 

of the defect but not directly under the defect. Though the pinning stripes change from 

the B block to the A block to the B block in Figure 8.10, the A and B blocks are 

energetically identical so it is merely an expedient to keep the defect unchanged and 

centered in the simulation volume. Defect free energies were calculated on these 

underlayers through various background compositions and the results are shown in 

Figure 8.11 for N = 64, χN = 30, and a film thickness of L0. 
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Figure 8.10. Image of the three possible defect locations on a 1-3 guiding 

pattern. 

The defect location relative to the pinning stripes makes a significant difference in 

the measured free energy. When the pinning stripe is under the center of the defect (“1-

3A” location), the free energy penalty is highest, followed by the pinning stripe being 

under one side of the defect (“1-3B” location) and finally pinning stripes that surround 

the defect (“1-3C” location). This effect can be explained by looking at how many lines 

the pinning stripe is influencing. For the “1-3A” case, the pinning stripe interacts directly 

with one line (the line above it) and indirectly with the two adjacent lines. On the other 

hand, while “1-3B” still directly interacts with one line, it only indirectly interacts with 

one adjacent line which decreases the influence of the pinning stripe on the defect free 

energy. Finally, “1-3C” does not directly influence any lines participating in the defect, 

but indirectly influences two adjacent lines, which further lowers the free energy of the 

defect. The effect of background region composition on the free energy is unclear. 

Different defect types appear to show different dependences but the cause is unclear. 

There is perhaps a subtle effect of background region composition, however this is 

hidden it what appears to be fairly noisy measurements. Regardless, the large differences 
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in free energy as a function of defect placement relative to the underlayer ( ~ 100 kT ) on 

average means that the vast majority of defects will occur between pinning stripes (“1-

3C”) and not over top of them, though it appears that defects may begin to occur with one 

edge over the pinning stripe (“1-3B”) in appreciable numbers on higher background 

compositions. At every background composition the defect have very large penalties to 

form directly over the pinning stripe (“1-3A”). It should also be pointed out that these 

simulations have defect free energies less than half that of their periodic simulation 

counterparts (Compare Figure 8.11 with N = 64 and χN = 35 in Figure 8.8). The 

appearance of the film-underlayer interface and the film-vacuum interface play an 

important role in defect free energy. This may also mean that film thickness plays an 

important role in defect free energy, but more study is necessary.  

 

Figure 8.11. Defect free energy as a function of background composition 

and defect location relative to the underlayer for N = 64, χN = 35, and a 

film thickness of L0. 
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All simulations to this point were run with a PDI of 1, but in practice all BCPs 

have some polydispersity. While it is expected that PDI can increase the defectivity of a 

BCP film, this effect has not been explored. Therefore, the effect that PDI had on defect 

free energy was measured. Simulations using the “1-3B” type underlayer were built for 

various PDI using a Wesslau distribution with chains randomly dispersed through the 

simulation. Each chain was forced to have a volume fraction of 50% A and B. The 

resulting defect free energies are shown in Figure 8.12. There is a significant reduction in 

free energy with increasing PDI, to the extent that the defect free energy may approach or 

cross 0 if PDI were increased further, implying the defective state is as likely (ΔF = 0) or 

more likely (ΔF < 0) than the defect free state at very high PDI. At more commonly used 

PDI values (PDI = 1.1 or 1.2) the drop is still significant. At A PDI of 1.2 the defect free 

energy has dropped almost 40% and would correspond to an orders of magnitude 

increase in defect density.  

 

Figure 8.12. Defect free energy as a function of PDI for N = 64 and χN = 

35. The “B” defect location was used.  
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Two factors have been neglected that should be discussed: 1) The effect of 

variation in volume fraction on each chain has been neglected and may contribute 

significantly to defect free energy and 2) the distribution of long and short chains is 

throughout the simulation volume is somewhat restricted. The effect of volume fraction 

variation is unclear, but it likely that such variations would likely only serve to further 

decrease the defect free energy. Variations in volume fraction have been shown to occur 

at bends in lamellae, and a similar effect may serve to stabilize line ends such as is found 

in this defect and thus stabilize the defect.
18

 The external potential restricts almost all 

movement between lines so that chains are restricted to their original lines. They can 

move along an interface easily, but moving across an interface would be a very rare 

event. If the concentration of one length of chain is different near the defect as compared 

to far away from the defect, this concentration will not be properly sampled. However, in 

order for that effect to be important it must lower free energy, so the calculated free 

energy can be viewed as a maximum.  This means that the values calculated in Figure 

8.12 are likely over estimates of the true defect free energy, and the true free energy 

difference may be even less than shown here. There is reason to believe that long chains 

congregate to the defect center and help stabilize the defect. Figure 8.13 shows a 

representative image of the distribution of long (N > XN) and short (N < XN) chains for 

the PDI = 1.5 simulation from Figure 8.12. The longer chains seem to concentrate at the 

center of the defect. However, the method used to calculate free energy here prevents any 

movement across interfacial boundaries. The external potential inhibits all such motion 

that each line has the same distribution of chain length. If this restriction were removed 

then it is possible that more long chains would concentrate at the defect and further 
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stabilize it. While this restriction cannot be directly removed, the initial distribution of 

chains can be manipulated. Two extra cases were studied: one where long chains (N > 

XN) were initially placed preferentially in the rectangular region containing the defective 

structure, and one where long chains where initially place outside that same rectangular 

region. The region is defined in Figure 8.14. The other chains are randomly distributed 

throughout the simulation. This does create a density gradient, but a running a short 

simulation in the mixed state before starting calculation eliminates this. This will create 

two cases, one where the long chains are more concentrated around the defect, and one 

where they are less concentrated.  

 

Figure 8.13. Distribution of chain lengths for PDI = 1.5, N =64, and χN = 

35. The long chains tend to congregate near the defect. 
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Figure 8.14. Image of locations where long chains (N > XN) were built. 

When initialized near the defect they are placed within the red rectangle. 

When initialized away from the defect they are placed within the yellow 

region outside the red rectangle. 

Figure 8.15 shows the defect free energies of the two cases where the distribution 

of chains lengths was manipulated alongside the results from Figure 8.12. The results are 

close to expected. The simulations where large chains were built away from the defect 

resulted in generally higher defect free energies while the simulations that concentrated 

large chains near the defect resulted in defect free energies similar to or less than the 

randomly place large chain simulations. Thus, large chains near the defect seem to be 

stabilizing the defect resulting in near 0 defect free energies as PDI approaches 1.5 for 

this particular case. How this affects simulations as a function of χ could be an important 

question to answer as root causes for defectivity in BCP-DSA are still not fully 

understood. A more systematic study of the effect of the congregation of long chains near 

the defect and of the effect of volume fraction variation in a polydisperse system are also 

warranted. 
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Figure 8.15. Defect free energy as a function of PDI and long chain 

placement. When the long chains are placed near the defect the defect free 

energy is equal to or lower than the simulations where they were randomly 

placed. When the chains are placed far away from the defect, defect free 

energy is generally higher. 

8.4. Conclusions 

The defect free energy of a dislocation pair or jog defect is calculated via 

thermodynamic integration using a coarse grained molecular dynamics model as a 

function of χ and N.  It is found that χN is not the best predictor of defect free energy and 

that a single χN value can yield vastly different free energies when χ and N are different 

(though their product is identical). This means that higher χ systems that are being 

produced to allow for smaller feature size DSA will likely have a lower equilibrium 

intrinsic defect density. Measurements of defect densities are reasonable for the oft-

studied PS-PMMA. Defect free energies were measured as a function of defect placement 

relative to the underlayer and as a function of background composition. The effect of 
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background composition was unclear but the defect free energy was highly dependent on 

defect location relative to the underlayer. Free energy differences ~ 100 kT were found 

between the three possible defect locations on a 1-3 guiding pattern. The effect of PDI on 

defect free energy was also studied. It was found that PDI significantly reduced defect 

free energy. Extrapolating form PDI up to 1.5 suggests that the defect will occur in equal 

proportions with a PDI of around 1.6 for this system. It was found that long chains tended 

to concentrate near the defect and stabilize the defect.  
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CHAPTER 9 

THE KINETICS OF LAMELLAR BCP DEFECT ANNEALING 

Directed self-assembly of block copolymers (BCPs) is a process that has received 

great interest in the field of nano-manufacturing in the past decade, and great strides 

towards forming high quality aligned patterns have been made. But state of the art 

methods still yield defect densities orders of magnitude higher than is necessary in semi-

conductor fabrication even though free energy calculations suggest that equilibrium 

defect densities are much lower than is necessary for economic semi-conductor 

fabrication. This disparity suggests that the main problem may lie in the kinetics of defect 

removal. This work uses a coarse-grained model to study the rates, pathways, and 

dependencies of healing a common defect to give insight into the fundamental processes 

that control defect healing and give guidance on optimal process conditions for BCP-

DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate 

above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the 

transition state was reached so that the overall rate changed only slightly. The energy 

barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations 

show no change in rate associated with the energy barrier below χN ~ 50, and then show 

an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to 

heal at either the free interface or the BCP-underlayer interface where the increased A-B 

contact area associated with the transition state will be minimized, while the infinitely 

thick films must start healing in the bulk where the A-B contact area is increased. It is 

also found that cooperative chain movement is required for the defect to start healing. 
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9.1. Introduction 

Directed self-assembly of block copolymers (BCPs) is a process that has received 

great interest in the field of nano-manufacturing in the past decade.
1-4

 Surface features in 

a pre-patterned underlayer are used to guide BCPs into arrangements with long range 

order at scales as low as 5 nm.
5
 By augmenting existing 193 nm and coming EUV 

lithographic technologies, BCP directed self-assembly can convert large pitch patterns 

into a much smaller feature size. The conventional lithographic techniques would be used 

to pattern a guiding layer, defined either by a chemical contrast (chemoepitaxy
6-8

) or 

topographical contrast (graphoepitaxy
9-11

), to which the BCP would align. These types of 

patterns and processes have been widely studied, but problems still abound. One major 

problem that still exists is that of defects in the final BCP pattern, even after great effort 

has gone forth into reducing defects.
12

 The defect goal is less than 0.01 defects per cm
2
 

but state of the art techniques still produce BCP based defects orders of magnitude higher 

than this goal.
12,13

 Such high defectivity could be the result of an equilibrium defectivity 

given a particular BCP and guiding pattern, but various models indicate that the 

equilibrium defectivity is, for perfect conditions, orders of magnitude lower than is 

currently being achieved.
14,15

 Though the effects of processing conditions and various 

imperfect underlayers still requires more study, this disparity may point to the 

fundamental issue being dynamic in nature.
16-20

 

While the driver for eliminating defects (the free energy difference between the 

defective and the defect free state) increases with χ,
14

 the mobility of BCP chains 

generally decreases as χN increases. Specifically, in the direction perpendicular to the A-
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B interface, the diffusion constant scales with e
-αχN

.
21,22

 These two competing factors 

would likely lead one to the expectation that χ and χN may have an optimal value at some 

intermediate value between the extremes of very weak incompatibility between the two 

blocks coupled with very high mobility, and very high incompatibility between the two 

blocks coupled with very low mobility; some intermediate χ and χN value might be best. 

This work will use a coarse-grained model to study the rates, pathways, and dependencies 

of healing a common defect to give insight into the fundamental processes that control 

defect healing and give guidance on optimal process conditions for BCP-DSA. 

9.2. Methods 

9.2.1. Defect Annealing Simulations 

Defects were modeled both in simulations periodic in all three dimensions (fully 

periodic), which models an infinitely thick film, and in a thin film on a neutral 

underlayer. In order to analyze the healing rate of defects, a large number of defects (≥13, 

generally ≥ 20) for a variety N and χ values were built and simulated. The time to defect 

annihilation was calculated for each defect and then a rate assigned to that particular set 

of χ, N and simulation type (fully periodic or thin film).  

Fully periodic simulations were built at five times the natural repeat distance of 

the BCP in the x dimension, three times the natural repeat distance of the BCP in the y 

dimension, and at one times the natural repeat distance of the BCP in the z dimension. 

Previous studies have shown that for similar defects, the energy of the defect is not 

affected at dimensions smaller than those chosen here, that is, the simulation box we use 
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is large enough that it does not affect the free energy of the defect.
14,15

 The initial system 

was built by placing beads at the equilibrium angle and bond length in the simulation 

volume. The first bead placed on a chain was placed randomly in the simulation volume. 

Two minimization steps were used. The first minimization step slowly moves apart beads 

that were randomly placed too close together, and thus have a very strong repulsive 

interaction. The σAA, σBB, and σAB values were initialized at a very small value and then a 

brief minimization was run using the FIRE minimizer in HOOMD. The σ values were 

then increased in small steps with a short minimization run at each step, until the desired 

value of σAB (1.26 nm in this case) was reached.  Any beads that were too close together 

were thus gently moved apart as the interaction distance between them increases. Once 

this step was complete, a second, longer minimization was run. From here, the defect was 

built using an external potential running in the NVT ensemble. At this point in the 

simulation χ was set to 0 (by setting εAB equal to εAA and εBB) because inherent phase 

separation in the BCP can work against the ordering caused by the external potential. The 

potential is described by Equations 9.1 - 9.3.  
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9.3 

U is the potential energy, A scales the potential strength, L0 is the natural pitch of 

the BCP system, and w is the width of the A-B interface relative to the pitch. Uout  

approximately matches the shape of the density profile of one of the blocks in a lamellae 

forming BCP.  A value of 0.053 is used for w because it approximately matches the 

interfacial width for the BCP systems used here.  Uin is simply a 45° clockwise rotation of 

the Uout potential with the central region of the simulation. It is this portion of the 

potential that gives rise to the defect. The simulation was run with the external potential 

for 150,000 timesteps with χ = 0, and then for 100,000 timesteps with χ at some positive 

value of interest, resulting in a defect as shown in Figure 9.1. If the step where χ = 0 was 

omitted, then the overall time to the desired morphology was increased. A higher χ 

restricts the movement of beads through unlike sections, increasing the time for the beads 

to move to the correct location under the influence of the external potential.   

 

Figure 9.1. Views of a representative periodic simulation. Periodic 

simulations were periodic in all three dimensions. The defect was built 

using the external potential described by Equations 9.1 – 9.3. 
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Thin film simulations were built in a similar fashion at six times the natural repeat 

distance of the BCP in the x dimension, three times the natural repeat distance of the BCP 

in the y dimension, and various thicknesses in the z dimension. The simulation boxes are 

periodic in the x and y dimensions, simulating an infinitely wide and long film, but not in 

the z dimension, allowing a finite thickness and a free interface at the top of the film. The 

underlayer is built using the same beads that comprise the film. It is built to model a 

brush underlayer; an underlayer where short polymer chains are grafted to a hard 

substrate. The bottommost bead in each chain that is part of the underlayer is fixed in 

space, as if it were bonded to a silicon substrate. Full details regarding the underlayer can 

be found elsewhere.
23,24

 The initial system was built by placing beads at the equilibrium 

angle and bond length in the simulation volume. The first bead placed on a chain was 

placed randomly in the simulation volume restricted to some volume of the simulation 

box 20 or 40 nm tall just above where the underlayer will be built. The resulting system is 

then placed over an underlayer as seen in Figure 9.2. A wall potential is used at the top of 

the film to encourage the film to make contact with the underlayer, and to prevent 

topography in the film. This potential uses the same form as the non-bonded bead to bead 

potential described in Chapter 2. The distance r is defined as the distance from a bead to 

the “wall” at the top of the film. This potential is removed once the external potential is 

turned off.  
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Figure 9.2. Views of a representative thin film simulation. Thin film 

simulations were periodic in the x and y dimensions, but not in the z 

dimension. A) A film is built above an underlayer. This film is then made 

to form a defect using the external potential described by Equations 9.1 

through 9.3. The dotted line shows the location of the wall potential used 

to help the film adhere to initially adhere to the underlayer and to keep the 

film flat during the initial stages. B) and C) show the film adhered to the 

underlayer in the defective state.  

This system is then minimized in the same manner as the periodic simulation and 

simulated for 100,000 timesteps with no external potential and χ = 0. This allows the film 

to remove any high energy states and adhere to the underlayer before the defect is made. 

The external potential is then turned on and the simulation is run for 100,000 timesteps, 

and then χ is set to the desired value and the simulation is run for another 100,000 

timesteps. The external potential does a better job of making the defect with χ = 0 

initially because it is not fighting against any forces in the BCP itself.  Then, the external 

potential is turned off and the simulation is run for some set period of time between 50 
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and 400 ns. Simulations for sets of parameters that yielded slower rates were annealed 

longer to allow for more defects to heal and better statistics to be obtained, but all 

simulations for a given data point were run the same length of time. 

9.2.2. Calculation of Defect Heal Rate 

The alignment fraction (F) of each simulation, as defined in Equation 9.4, was 

used to identify when the defect had healed.  

 𝐹 =
𝐵𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝐵𝑇𝑜𝑡𝑎𝑙
 

9.4 

BCorrect is the number of beads in the expected location, that is, A beads in 

expected A domains and B beads in expected B domains for a perfect lamellar state with 

no roughness. BTotal is the total number of beads. For aligned lamellae such as at the edge 

of the simulations in this study, F is high because the actual morphology only differs 

from the expected by some roughness at the A-B interface.  In the center of the simulation 

containing the defect, F is relatively low because there are A beads where B beads are 

expected and vice versa. To identify when the defect had healed, F was only calculated in 

the three center lines that actually contain the defect (see Figure 9.3) to decrease noise. 

Figure 9.3 shows F through time for N = 64, χN = 45, and a film thickness of 20 nm. 

There is a very clear difference between the defective state and the defect free state. The 

initial drop is caused by an increase in roughness of the line edges that was suppressed by 

the external potential which is turned off time 0.  
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Figure 9.3. Representative plot of the fraction aligned (F) as the defect 

heals. Only the region in the middle of the simulation designated by the 

dotted line was used in the calculation. A cutoff value was assigned for 

each set of N and χN and the defect was deemed annealed when the 

fraction aligned exceeded that value. 

To identify when the defect was annihilated, a cutoff value was used. Because the 

interfacial roughness varies with χ and N, a different cutoff must be set for each set of χ 

and N. The cutoff was set to the average of F over the last 3 ns of all the simulations in 

which a defect healed for that case (that set of χ, N, and simulation type). The heal time 

was then designated as the first point that exceeded that value.  

The defect heal rate was calculated using Equation 9.5: 

 𝑅𝑡𝑜𝑡 =
𝐹𝐻
𝑡𝑎𝑣𝑒

 
9.5 

Rtot is a measure of the total rate of defect healing; it includes both the time before 

the defect begins healing and the time it takes for the defect to heal once the transition 
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has begun.  FH is the fraction of defects healed in the maximum simulation time and tave is 

the mean time to heal of the simulations that did heal within the maximum simulation 

time. In general, FH is one because all of the defects annealed within the simulation time, 

so Rtot is simply the average rate for these simulations to anneal. For the cases where the 

lowest rates were measured, FH is less than one because not all simulations annealed 

during the maximum simulation time that was used.  Since it took a very long time to 

simulate an appreciable amount of defects healing in those cases, the lower FH correctly 

weights the average rate. In particular, high χN periodic simulations showed very low 

rates and so yielded fewer healed defects. Simulation time was increased up to 400 ns, 

but the order of magnitude drops in rates still limits the number of defects that healed in 

the simulation time. The lowest rates had at least 25% of their simulations heal, but 

generally, even in the cases where not all simulations healed, >50% of them did.   

In Figure 9.3, there appear to be two timescales: one timescale over which F is 

relatively flat and which describes the time to pass the transition state (approximately 0 to 

15 ns in Figure 9.3), and one which over which F continuously increases which describes 

the time to completely heal the defect once the transition state has been passed 

(approximately 15 to 28 ns in Figure 9.3). We find that the first time scale varies 

significantly within a single set of parameters, as it is determined by the energy barrier, 

while the second timescale is relatively constant for a single set of parameters. We will 

differentiate these two timescales by fitting the fraction defective over time (Fd) to an 

exponential decay as given in Equation 9.6.   



234 

 

 𝐹𝑑(𝑡) = 𝑒−𝑘(𝑡−𝜏1) 
9.6 

This is plotted in Figure 9.4 for a representative series of simulations. The 

aforementioned time it takes for a defect to heal once healing has started is described by 

the parameter τ1 (see insets in Figure 9.4), while the time to begin healing is described by 

the factor k, in in terms of a time scale, 1/k or τk. The timescale τ1, while important, is 

likely to be of less interest because it will likely be similar to or less than the time it takes 

a disordered BCP film to order, and therefore unlikely to contribute to large numbers of 

metastable defects in BCP systems. This allows us to separate the two relevant timescales 

involved in the healing of these defects. This allows the rate of healing defects to be 

separated into the two relevant timescales. Assuming there are a large enough number of 

defects, one defect will reach its transition state immediately therefore the entirety of the 

time that particular defect heals is equivalent to the time required for the system to 

progress from the transition state to the defect free state, τ1. If no defect begins to heal 

initially, then this unanticipated lag will increase the value of τ1 but will have little effect 

on the value of k.  
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Figure 9.4. Fraction defective (Fd) over time for χN = 35, N = 64 for a film 

thickness of 20 nm. 

9.3. Results and Discussion 

9.3.1. Fully Periodic Simulation 

Fully periodic simulations were run to calculate defect anneal rates for various χ 

and N values. The fully periodic simulations are similar to those done by Takahashi et 

al.
25

 in that the effect of the BCP-vacuum and BCP-underlayer interfaces are essentially 

neglected. In this work there are no such interfaces, while in Takahashi et al., the 

calculations are done in two dimensions and extrapolated to three dimensions, assuming 

no variation through depth.
25

  Figure 9.5A plots the kinetic rates calculated using 

Equation 9.5 as a function of χN and N. Both increased N and χN result in decreased 

anneal rates. There also seems to be a significant drop in rate starting around χN = 30 
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(thought this is clearer in Figure 9.5B). The offset in N can be explained by the difference 

in diffusivity and length scale of the defect as a function of N. In order to heal the defect, 

polymers must diffuse through the domain of unlike type, the size of which is 

proportional to the natural domain size of the polymer. Diffusivity scales with 1/N for 

Rouse chains (the relatively short polymers used here ensure Rouse dynamics), and the 

distance polymer chains must diffuse scales with the domain size of the polymer, (See the 

healing pathway shown in Figure 9.8).  

These effects can be accounted for by defining two characteristic timescales: τR, a 

characteristic kinetic timescale, and τD, a characteristic transport or diffusive timescale.  

 𝜏𝑅 = 1/𝑅𝑡𝑜𝑡 9.7 

 𝜏𝐷 = 𝐿0
2/𝐷 

9.8 

D is the diffusion constant measured in a simulation of homopolymer via mean 

squared displacement (MSD). D is equal to the slope of the MSD of the beads in the 

system at long times divided by 6. L0 is the domain size of the BCP. Figure 9.5B 

compares the timescale of diffusion (τD) to the timescale of defect healing (τR). Large 

values mean that the timescale for diffusion is greater than the timescale of the healing of 

defects. The three data sets found in Figure 9.5B lie nearly on top of one another, 

showing that the differences in the timescale of diffusion explains the change in rate with 

N seen in Figure 5A.  The N = 64 data set does deviate slightly from the other two at low 

χN, but the difference is small and there is more noise in that data set. This noise is 

caused by the relatively large interfacial thickness relative to the domain size, which 
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creates noise in measurements of F, and leads to noisy measurements of tave which 

ultimately introduces noise in the calculated rate.  

The timescale for diffusion can be associated with the time required for a mixed 

BCP to phase separate and initially order. Therefore, it can be inferred from Figure 9.5B 

that at χN values less than about 30, when the timescale for diffusion is larger than the 

timescale for the healing of a defect, the energy barrier to defect healing is not important. 

This is because the time to order the BCP from the initial mixed state is longer than the 

time to remove a defect from the simulation, and therefore little extra anneal time is 

necessary to remove defects, perhaps on the order of the original ordering timescale. As 

χN increases to ~ 35, the two phenomena are at similar timescales; increased time will be 

necessary to remove all the defects from the system. The actual time required will depend 

on the initial concentration of defects after ordering has occurred, which is a difficult 

number to investigate, but significant reduction in defectivity will require anneal times 

much longer than the characteristic timescale for diffusion (τD). Increasing χN above 35 

will cause the necessary annealing time to increase exponentially due to the increase in 

the energy barrier to healing defects, and therefore probably prevent viability.  What the 

initial concentration of defect is, and what it depends on is an important and interesting 

question for BCP researchers, and one that requires more attention in the future. If this 

number is orders of magnitude higher than the desired defectivity, then even when defect 

healing timescales are relatively short, significant anneal time will be required to remove 

them. If, on the other hand, such concentrations are relatively small, then lower defect 

heal rates may be viable. However, even after some optimization of anneal time, 

currently achievable defect densities are still significantly higher than the desired density, 
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and the initial density cannot be lower than the final density, so it is unlikely that initial 

defect concentrations are in fact low. How high these initial concentrations of defects 

truly are, and what affects them, remains an important question. 

 

Figure 9.5. Defect heal rates as a function of χN and N for the periodic 

simulations. A) plots the raw rates. B) plots rates normalized by D/L0
2
. 

The relatively sharp change in slope in Figure 9.5B at χN ~ 30 is interesting and 

the cause for this is not necessarily clear at first. Rtot confounds the time for a defect to 

begin annealing with the time it takes for a defect to finish anneal once it has started; the 

first is primarily associated with an energy barrier, while the second is primarily 

determined by transport. While this overall rate is certainly useful, there is a lot to learn 

from separating out the two effects.  
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By fitting Equation 9.6 to Fd, two parameters, k and τ1, are found. These two 

parameters correlate to the two timescales relevant in this process. 1/k (or τk) is associated 

with the characteristic time to pass over the energy barrier, and τ1 is associated with the 

characteristic time to complete healing process once begun, that is, transport. Separating 

the two portions out results in a clearer look at what the two components, the energy 

barrier and transport limitations, are doing in the process of defect healing. To consider 

the relative importance of the two timescales, Figure 9.6 plots τ1/τk as a function of χN. 

Values above 1 indicate that τ1 is greater than τk, and so transport dominates the overall 

rate, while values below 1 indication that τk is greater than τ1 and so the energy barrier 

dominates the overall rate. Values near 1 indicate both are similarly important. At low 

χN,  τ1/τk is slightly above 1 but begins to decrease such that it passes 1 at about χN  = 25 

and drops well below 1 soon after. This tracks with the change in slope found in Figure 

9.5, where the slope start to rapidly decrease at χN ~ 30, the same approximate value at 

which τ1/τk start to become much less than 1 and the rate begins to be dominated by the 

energy barrier.  
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Figure 9.6 Comparison of the characteristic timescales τ1 and τk. Values 

above 1 indicate that transport has a greater impact on the overall time to 

defect annihilation, whiles values less than 1 indicate that the energy 

barrier has a greater impact.  

Though comparing both timescales is useful to understand the rates obtained in 

Figure 9.5, k by itself is also of interest because it gives more direct information about the 

energy barrier. In addition, it is this portion that will be the primary cause for increased 

anneal time aimed at reducing defectivity. This is because τ1 is likely to be equal to or 

less than the timescale of bulk phase separation and ordering present in any BCP-DSA 

process, since τ1 requites smaller amounts of transport to anneal the defect than the large 

scale transport required to order the bulk BCP. This is seen in our simulations where bulk 

alignment takes longer than the time required to anneal the defect once the energy barrier 

is overcome.  However, the time required to overcome the energy barrier (characterized 

by τk) is often much longer than both.  
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Figure 9.7 plots k as a function of χN. Instead of the change in slope found in 

Figure 9.5, the decrease in rate occurs at all χN and is approximately constant because the 

effects of the two timescales, τ1 and τk that were convoluted in R*tot, are now separated 

such that we only see the effects of τk, the timescale associated with overcoming the 

energy barrier. This rate exponentially decreases with χN over almost all χN, with the 

exception of the χN = 16.6 point for the N = 64 series. This might be explained either by 

the increased noise close to the ODT caused by large interfacial roughness that obscures 

the measurement of F, and therefore of the rates, or by the fact multiple simulations 

spontaneously formed extra defects that had to be removed before the simulation was to 

be considered defect free. As can be seen in Figure 9.7, the rates scale with e
-0.31χN

, e
-

0.29χN
, and e

-0.32χN
 for the N = 64, 96, and 128 data sets respectively. Since all these are run 

at constant temperature, these values tell how the activation energy for defect annealing 

changes with χN.  Given how close these values are to one another, it appears that this 

change in activation energy is constant with N with a value of 0.31χN.   
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Figure 9.7. Rates calculated using exponential fit with exponential fits 

shown. Exponential fit for N = 64 excludes χN = 16.6.  

While these results are limited to this particular polymer and more work would 

need to be done to extend this to the variety of polymers being used for these purposes, 

this relation allows researchers to directly consider the effect of χN on defect annealing 

rate when they are designing and optimizing their processes. A significant increase in the 

energy barrier as a function of χN is found, such that an order of magnitude drop in rate is 

found with an increase in χN of less than 10 (For Rtot, this is true for χN > 30 [Figure 9.5] 

and true at all χN for k [Figure 9.7]), highlighting the need to keep χN low to increase 

defect healing rates. However, in the case of this particular polymer, the energy barrier is 

still sufficiently small at χN < ~30 that the rate is still largely controlled by the timescale 

of polymer rearrangement. The applicability of this fact to other polymers still needs to 

be studied, as these timescales may be different relative to one another in different 

polymer systems.  
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Figure 9.8 shows a series of representative snapshots from a periodic defect 

simulation through time where N = 64 and χN = 31.6. Only the A domains in the center 

region of the simulation are shown for clarity. The defect starts to heal by forming a 

branch of A across the B domain, shown in Figure 9.8B. Defects always began to heal by 

forming a bridge from the A domain to the A domain, not from the B domain to the B 

domain, but they did not appear to favor the left or right side of the defect as the defect is 

symmetric. This is not due to any chemical difference between the A and B blocks, as the 

parameters that guide them are identical, but because of the specific shape of the defect, 

the two lines on the edge of the defect begin healing first and they are composed of A 

beads in this instance. This bridge corresponds to an increase in interfacial area between 

the A and B domains. Figure 9.8 shows this first bridge as forming in the middle of the z 

dimension, but this bridge formed at a variety of points in the z dimension, as the original 

defect as determined by the external potential does not vary in that dimension.  The time 

at which this first branch formed also varies significantly, as is expected in a stochastic 

process such as this. As χN increases, the energy penalty for this extra interfacial area 

increases, and as that penalty increases the occurrence of the bridge becomes less and less 

likely, and so the rate decreases at higher χN.  Once the first bridge is formed the defect 

starts to heal outward from that point on that side of the defect. Typically around the 

same time, though at high χN there is a fairly large delay, a bridge on the other side of the 

defect forms, shown in Figure 9.8C. Finally, the middle strip begins to heal with a B to B 

domain bridge forming which appears as a hole in the A domain shown as in Figure 9.8D. 

The order of these events is consistent across all periodic simulations, including those 
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above and below χN ~ 30, though those at very low χN will often form multiple branches 

between the same domains before the defect is fully healed.  

The formation of this first bridge seems to be associated with the transition state 

of the defect healing pathway. Once this branch has formed, the defect always progressed 

towards healing. However, if this branch had not yet formed there was no obvious way to 

predict when a defect would heal. Occasionally, combinations of χN and N that exhibited 

lower rates (high χN and high N) would get stuck in a smaller defective state where one 

side of the defect had begun to anneal; the simulation apparently reached a metastable 

state at a smaller defect. It may be that there are two energy barriers, but the energy 

barrier of forming the first branch is higher than the energy barrier of forming the second 

branch that finally anneals the whole defect, so that this metastable state where an 

intermediate defect exists is rare. This metastable state may become more apparent and 

more important in large N and χN cases. In some cases, very low χN simulations formed 

larger defects before finally removing the defect. The rates of different sizes of defects 

and the pathways between them could be an important part of the overall defect healing 

picture that deserves more study.  
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Figure 9.8. Views of a representative defect through time as the defect 

anneals (N = 64 and χN = 31.6). Only the A domain in the center region is 

shown for clarity. First a branch forms across one side of the defect, and 

then as that line propagates outward the other side forms a branch and 

soon after a hole forms in the center region. The branches thicken as the 

hole widens until the defect is healed.  

9.3.2. Thin Film Simulations 

In the periodic simulations, it was clear that the rate decreased quickly with 

increasing χN, even after accounting for changes in diffusion and in the size of the defect 

healed. However, it is possible that the interfaces present in thin films play an important 

role in the process of defect healing, so thin films on neutral underlayers were simulated. 

The value of k as function of χN was calculated and is plotted in Figure 9.9A for both 

thin film simulations and periodic simulations. Thin film simulations and periodic 

simulations show similar rates at low χN (χN ~20), but very different rates at high χN. 

While the periodic simulations drop rapidly even at χN values just above 20, the thin film 

simulations are more or less constant until χN ~ 50, above which they drop fairly rapidly, 

which means there is little to no dependence of the energy barrier on χN until χN ~ 50, 

after which the energy barrier increases with χN. Fitting an exponential to the thin film 

rates above χN ~ 50 yields a slope of -0.16 and -0.15 for N = 64 and N = 96 respectively, 

about half that of the periodic simulations which yielded a slope of -0.31 on average, 
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indicating that the time to overcome this energy barrier increases with increasing χN at 

about half the rate in the thin film situation as compared to the periodic simulations. As in 

the periodic case, larger N have a lower rate at which the energy barrier is overcome. 40 

nm thick films (3 – 4 L0) do not overcome the energy barrier at substantially different 

rates as compared to 20 nm (1.5 – 2 L0) thick films. However, as shown by Figure 9.9B, 

the time to heal once the defect has started healing does increase with film thickness. 

There are only two data points for each set, but it would be reasonable to assume that τ1 

would be proportional to film thickness. This  data is consistent with this hypothesis 

because  the τ1 values at 40 nm are close to twice that of the τ1 values at 20 nm. 

Practically, real BCP DSA systems that operate at a χN < 50, which encompasses nearly 

all systems that operate at the length scales of interest (L0 < ~ 25 nm), will see similar 

defect removal rates, and there is no need to go to very low χN values. In applications 

that require much thicker films (orders of magnitude thicker), τ1 values will potentially 

grow so large that this time scale dominates the anneal time such that the total anneal 

time could be much higher, even though k is constant.  
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Figure 9.9. A) Defect healing rates for the thin film simulations plotted 

alongside the periodic simulation rates. Rate are calculated using an 

exponential fit as in Figure 9.4. B) Average τ1 values (time to heal defect 

once the transition state has occurred) as a function of film thickness.  

The cause for the change in rate between periodic and thin film simulations can be 

understood by viewing the defect heal pathway in Figure 9.10. The thin film defect heals 

similarly to the periodic defect, except that the bridges form at the surface of the film. In 

all thin film simulations the bridges form at either the free interface or the film-

underlayer interface. If the bridges were to form in the center of the film, the bridges 

would be completely surrounded by unlike beads, but at the free interface or the film-

underlayer interface, only half of the interfacial area of the bridge is now  in contact with 

unlike beads, lowering the energy penalty. The fact that the extra interfacial area 

associated with the branch is about half of what it is in the periodic case may account for 

the fact that the increase in energy barrier with χN in the thin film case is about half that 

of the periodic case. The energy penalty scales with χN, and would be expected to scale 
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with the added interfacial area, so when that area drops, so does the increase with χN. 

This reduction in the energy penalty yields an apparently constant rate until very high χN 

values are reached at which point it halves the rate at which the barrier increases. 

Figure 9.10 displays the defect healing pathway from beginning to end, but Figure 

9.11 (not the same simulation as Figure 9.10) takes a closer look at the initial formation 

of the bridge as it forms initially. Figure 9.11A and Figure 9.11B are shown to aid the 

viewer in understanding the orientation of the view in Figure 9.11C. Only the BCP film is 

shown, but the underlayer is located beneath the BCP. One side of the defect is viewed at 

an angle such that there is a clear gap between the two parts of the defect that first 

connect in the healing process. This allows a clear view of the width of this gap, and of 

the formation of the first branch as shown in Figure 9.10B. Initially, the interfaces that 

form the sides of the gap are fairly parallel and they will typically stay this way for some 

time. Eventually, one side of the gap will slowly creep towards the other side. There will 

still be a region of B beads between the A domains that are nearing each other. It is clear 

that this is not a single chain, but the cooperation of chains that causes the narrowing of 

the gap near the BCP-underlayer interface, or BCP-vacuum interface, though the final 

formation of the branch may be composed primarily of a single chain as seen in Figure 

9.11C at 31.8 ns. It is also not uncommon for one side of the wall to remain fairly straight 

until the last moment while the other wall bends substantially towards the corresponding 

interface.  

It should be pointed out that only unpatterned underlayers have been used in this 

study, but even on a patterned underlayer, defects are most likely to occur between the 
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pinning stripes, not on top of them, or in the case of graphoepitaxy, near the center of the 

trench, not near the walls. If a pinning stripe is located directly beneath a formed defect, 

the rate at which it heals would certainly be significantly increased so that the defects that 

will be of interest will generally be those that are not located directly over a pinning 

stripe. Most existing techniques for chemoepitaxial or topographic BCP alignment, 

include fairly wide areas between guiding features
26-29

 (at least three domains wide, 

usually five or more) that will allow plenty of area free of pinning stripes for defect 

formation.  

 

Figure 9.10. Views of a representative defect through time as the defect 

anneals in a thin film (N = 64 and χN = 45 with a thickness of 20 nm). 

Only the A beads in the center region are shown for clarity. The pathway 

is similar to that of the periodic simulation, except that the branches that 

initialize the healing in each domain always occur at either the free 

interface or the BCP-underlayer interface.  
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Figure 9.11. Images of the formation of the initial branch in a thin film 

simulation (N = 96, χN = 45, and thickness = 20 nm). A) and B) are 

included to give the viewer a clear idea of the view used in C). A) Uses 

the same rotation and C), while B) gives a better view of the defect as a 

whole. Only the A domains are shown, and the portions highlighted in red 

are excluded from C) in order to make the formation of the branch clearer.   
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9.4. Conclusions 

A coarse grained molecular dynamics model was used to study the rates and 

pathways of defect healing in lamellar block copolymer thin films. Periodic simulations 

showed a sharp decrease in rate as a function of χN for χN  > ~30. A universal rate curve 

for this particular polymer and defect was found when the characteristic time scale for 

diffusion was divided by the characteristic timescale for defect healing. After separating 

the measured rate into contributions from the kinetic limitations to crossing energy 

barrier and transport limitations by fitting an exponential curve to the data, the energy 

barrier was found to increase with 0.31χN on average. Thin film simulations were also 

run, and it was found that the rate contribution from the energy barrier was independent 

of χN below χN ~ 50. Above that value the energy barrier increased at approximately 

0.16χN on average, about half that of the periodic case. In the case of the thin film 

simulations, the defects always began healing at either the free interface or the BCP-

underlayer interface. In these regions the formation of the initial branch would interact 

with approximately half of the unlike beads that it would in the absence of such 

interfaces, probably accounting for the shift in the appearance of the energy barrier away 

from low χN and for the change in slope of the energy barrier as a function of χN. It is 

also found that cooperative chain motion is necessary for this first branch to form and it is 

the penalty for this motion that is responsible for setting the rate at which the energy 

barrier for defect healing increases.  

 

 



252 

 

9.5. References 
 

1 Bencher, C.; Smith, J.; Maio, L.; Cai, C.; Chen, Y.; Cheng, J. Y.; Sanders, D. P.; Tjio, 

M.; Truong, H. D.; Holmes, S.; Hinsberg W. D. "Self-Assembly Patterning for 

sub-15nm Half-Pitch: A Transition from Lab to Fab," Proc. SPIE 2011, 7970, 

70700F. 

2 Cheng, J. Y.; Rettner, C. T.; Sanders, D. P.; Kim, H. C.;  Hinsberg, W. D., "Dense Self-

Assembly on Sparse Chemical Patterns: Rectifying and Multiplying Lithographic 

Patterns Using Block Copolymers," Adv. Mater. 2008, 20, 3155-3158. 

3 Kim, H. C.; Hinsberg, W. D. "Surface patterns from block copolymer self-assembly," J. 

Vac. Sci. Technol. A. 2008, 26, 1369. 

4 Detcheverry, F. A., Nealey, P. F., de Pablo, J. J., Pike, D. Q., and Nagpal, U., 

"Theoretically informed coarse grain simulations of block copolymer melts: 

method and applications," Soft Matter 5, 4858-4865 (2009). 

5 Cushen, J. D.; Otsuka, I.; Bates, C. M.; Halila, S.; Fort, S.; Rochas, C.; Easley, J. A.; 

Rausch, E. L.; Thio, A.; Borsali, R.; Wilson, C. G.; Ellison, C. J. 

"Oligosaccharide/Silicon-Containing Block Copolymers with 5 nm Features for 

Lithographic Applications" ACS Nano 2012, 6, 3424-3433. 

6 Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. 

" Epitaxial self-assembly of block copolymers on lithographically defined 

nanopatterned substrates" Nature 2003, 424, 411. 

7 Stoykovic, M. P.; Kang, H.; Daoulas, K. C.; Liu, G.; Liu, C.; de Pablo, J. J.; Müller, 

M.; Nealey, P. F. " Directed Self-Assembly of Block Copolymers for 

Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit 

Geometries" ACS Nano 2007, 1, 168. 

8 Ruiz, R.; Kang, H.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de 

Pablo, J. J.; Nealey, P. F. " Density Multiplication and Improved Lithography by 

Directed Block Copolymer Assembly" Science 2008, 321, 936. 

9 Segalman, R. A.; Yokoyama, H.; Kramer, E. J. "Graphoepitaxy of Spherical Domain 

Block Copolymer Films" Adv. Mater 2001, 13,1152. 

10 Segalman, R. A. " Patterning with block copolymer thin films," Mater. Sci. Eng. 2005, 

48, 191. 

11 Cheng, J. Y.; Mayes, A. M.; and Ross, C. A. "Nanostructure engineering by templated 

self-assembly of block copolymers," Nat. Mater. 2004, 3, 823. 

 



253 

 

 

12 Gronheid, R.; Delgadillo, P. R.; Pathangi, H.; Heuvel, D.; Pafnell, D.; Chan, B. T.; 

Lee, Y.; Look, L. V.; Cao, Y.; Her, Y.; Lin, G.; Harukawa, R.; Nagaswami, V.; 

D'Urzo, L.; Somervell, M.; Nealey, P. "Defect reduction and defect stability in 

IMEC's 14nm half-pitch chemo-epitaxy DSA flow" Proc. SPIE 2014, 9049, 

904905. 

13 "International technology roadmap for semiconductors," 2013, < http://www.itrs.net/>  

February 2015. 

14 Peters, A. J.; Lawson, R. A.; Nation, B. D.; Ludovice, P. J.; Henderson, C. L. 

"Understanding defects in DSA: calculation of free energies of block copolymer 

DSA systems via thermodynamic integration of a mesoscale block-copolymer 

model" Proc. SPIE 2014,  9049, 90492E. 

15 Nagpal, U.; Müller, M; Nealey, P. F.; de Pablo, J. J. "Free Energy of Defects in 

Ordered Assemblies of Block Copolymer Domains," ACS Macro Lett. 2012, 1, 

418-422. 

16 Campbell, I. P.; Hirokawa, S.; Stoykovich, M. P. “Processing Approaches for the 

Defect Engineering of Lamellar-Forming Block Copolymers in Thin Films” 

Macromolecules 2013, 46, 9599-9608. 

17 Campbell, I. P.; Lau, G. J.; Feaver, J. L.; and Stoykovich, M. P. “Network 

Connectivity and Long-Range Continuity of Lamellar Morphologies in Block 

Copolymer Thin Films” Macromolecules 2012, 45, 1587-1594. 

18 Jeong, J. W.; Hur, Y. H.; Kim, H.; Kim, J. M.; Park, W. I.; Kim, M. J.; Kim, B. J.; 

Jung, Y. S. " Proximity Injection of Plasticizing Molecules to Self-Assembling 

Polymers for Large-Area, Ultrafast Nanopatterning in the Sub-10-nm Regime" 

ACS Nano 2013, 7, 6747-6757. 

19 Son, J. G.; Change, J. B.; Berggren, K. K.; and Ross, C. A. "Assembly of Sub-10-nm 

Block Copolymer Patterns with Mixed Morphology and Period Using Electron 

Irradiation and Solvent Annealing" Nano Lett. 2011, 11,  5079-5084. 

20 Li, W.; Nealey, P. F.; de Pablo, J. J.; Müller, M. "Defect Removal in the Course of 

Directed Self-Assembly is Facilitated in the Vicinity of the Order-Disorder 

Transition" Phys. Rev. Lett. 2014, 113, 168301. 

21 Lodge, T. P.; Hamersky, M. W.; Milhaupt, J. M.; Kannan, R. M.; Dalvi, M. C.; 

Eastman, C. E. "Diffusion in microstructured block copolymer melts," Macromol. 

Symp. 1997, 121, 219. 

 



254 

 

 

22 Lodge, T. P.; Dalvi, M.C. "Mechanisms of Chain Diffusion in Lamellar Block 

Copolymers," Phys. Rev. Lett. 1995, 75, 657. 

23 Lawson, R. A.; Peters, A. J.; Ludovice, P. J.; Henderson, C. L.; "Coarse grained 

molecular dynamics model of block copolymer directed self-assembly" Proc. 

SPIE 2013, 86801, 86801Y. 

24 Peters, A. J.; Lawson, R. A.; Ludovice, P. J.; and Henderson, C. L. "Detailed 

molecular dynamics studies of block copolymer directed self-assembly: Effect of 

guiding layer properties" J. Vac. Sci. Technol. B 2013, 31, 06F302. 

25 Takahashi, H.; Laachi, N.; Delany, K. T.; Hur, S. M.; Weinheimer, C. J.; Shykind, D.; 

Fredrickson, G. H. "Defectivity in Laterally Confined Lamella-Forming Diblock 

Copolymers: Thermodynamic and Kinetic Aspects," Macromolecules 2012, 45, 

6253. 

26 Liu, C.; Nealey, P. F.; Raub, A. K.; Hakeem, P. J.; Brueck, S. R.; Han, E.; Gopalan, P. 

"Integration of block copolymer directed assembly with 193 immersion 

lithography" J. Vac. Sci. Technol. B 2012, 28, C6B30. 

27 Dammel, R. R. "Cost-Effective Sub-20 nm Lithography: Smart Chemicals to the 

Rescue," J. Photopolym. Sci. Technol. 2011, 24, 33-42. 

28 Jeong, S.; Moon, H.; Kim, B. H.; Kim, J. Y.; Yu, J.; Lee, S.; Lee, M. G.; Choi, H.; 

Kim, S. O. "Ultralarge-Area Block Copolymer Lithography Enabled by 

Disposable Photoresist Prepatterning" ACS Nano 2010, 4, 5181-5186. 

29 Cheng, J. Y.; Sanders, D. P.; Truong, H. D.; Harrer, S.; Friz, A.; Holmes, S.; Colburn, 

M.; Hinsberg, W. D. "Simple and Versatile Methods To Integrate Directed Self-

Assembly with Optical Lithography Using a Polarity-Switched Photoresist" ACS 

Nano 2012, 4, 4815-4823. 



255 

 

CHAPTER 10 

PROTRACTED COLORED NOISE DYNAMICS FOR POLYMER 

SYSTEMS 

Block copolymer (BCP) systems are often studied using mean field or self 

consistent field theories because of the comparatively large scales, both in time and 

space, involved. A method for increasing the efficiency of sampling activated states in 

molecular dynamics simulations of polymer systems is described. By applying a time 

correlated random force along the backbone of the polymer chain, chain movement is 

encouraged without significant perturbation of the free energy of the system. This method 

is applied to a coarse-grained MD model in the context of defect healing in an aligned 

thin film system. It was found that PCND increased defect heal rate by 4 orders of 

magnitude. Diffusion is also increased by about an order of magnitude. An investigation 

of the limits of the parameters that describe the random force was undertaken, and a set 

of parameters that both significantly decrease defect heal time and have little effect on 

system properties such as natural pitch and chain statistics was found. A comparison to 

increased temperature annealing was undertaken and it was found that the correlated 

random force was much more effective at sampling over energy barriers. 

10.1. Introduction  

Block copolymer (BCP) systems are often studied using mean field or self 

consistent field theories because of the comparatively large scales, both in time and 

space, involved.
1-4

 Diffusion in polymer systems is orders of magnitude lower than that 
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of many systems based around small molecules requiring large simulation times, and the 

relatively large dimensions of the polymer chains require simulation sizes to be 

significantly larger than those of small molecules. In the past 5-10 years, various coarse 

grained Monte Carlo and molecular dynamics models have been developed to handle the 

shortcoming of the various mean field theories that have been used for decades, namely 

the lack of fluctuations which is known to be important near the order disorder transition 

and in applications such as BCP directed self assembly (DSA).
1,5 

However, such models 

are still severely limited in the time and length scales they can achieve. Even relatively 

short BCPs at realistic χN values often take days or weeks of simulation time to anneal a 

single defect. To anneal a whole array of defects at currently used N and χ values would 

require months or even years of simulation time, an unusable timescale in the study of 

BCP directed self assembly (DSA). Even in other fields, an atomistic or coarse grained 

model of a polymer that can be used on very long time and/or length scales would be 

very useful.  

PCND is a method that increases the fluctuations in a system using time 

correlated stochastic forces in order to increase sampling over energy barriers. Such a 

method, if applied to polymer systems in an intelligent manner, should significantly 

reduce the simulation time required when studying slow transitions such as defect 

removal in BCP systems. PCND has already been developed for use in a Lennard Jones 

glass system. This work applies the ideas behind the LJ-glass version of PCND to 

polymer systems. 
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10.1.1. PCND and Langevin Dynamics 

Paul Langevin developed the original Langevin equation in the early 20
th

 

century.
6
  It was designed to describe Brownian motion, that is, the random motion of a 

particle in a fluid caused by random collisions with other particles. It is based on the idea 

that the mean kinetic energy of a particle should in thermal equilibrium should have a 

value of nkT/2, where n is the number of degrees of freedom for that particle, and that 

there should be two forces acting on a particle of mass m: a fluctuating or random force 

that represents the continuous impacts of molecules of the fluid on the particle, and the 

second which is essentially a viscous drag. The first force should be random but over 

long time average to zero, that is, it should not impart a net force on the particle. 

Combining these two forces into an equation gives the simplified Langevin Equation
6,7

.  

 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
= 휂(𝑡) − 𝑚휁

𝑑𝑥(𝑡)

𝑑𝑡
 10.1 

Equation 10.1 is the simplified Langevin Equation in one dimension, but it can be 

extended to multiple dimensions easily. In Equation 10.1 η(t) is the random force, while 

휁is the frictional coefficient corresponding to the viscous drag. The particle has a position 

of x(t) and a mass of m. The inclusion of a random force (and therefore a random 

variable) is the first example of a stochastic differential equation in literature
7
.  

The generalized Langevin equation was developed in 1960 by Zwanzig
8-10

 who 

did so based on the idea of removing rapidly varying degrees of freedom. Mori later 

refined the derivation.
11,12

 The generalized Langevin equation (GLE) is given in Equation 

10.2 where η(t) is again a stochastic force and which satisfies Equations 10.3 and 10.4. 
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 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
= 휂(𝑡) − 𝑚∫ 휁(𝑡 − 𝑠)

𝑡

0

𝑑𝑥(𝑠)

𝑑𝑡
𝑑𝑠 

10.2 

 〈휂(𝑡)〉 = 0 
10.3 

 〈
𝑑𝑥(0)

𝑑𝑡
휂(𝑡)〉 = 0 10.4 

That is, the average of η(t) over all time is  zero and the correlation between the initial 

velocities and the random force is zero. 휁(t) is a viscous drag coefficient as before and is 

related to η(t) by Equation 10.5.  

 휁(𝑡) =
〈휂(𝑡)휂(0)〉

𝑚𝑘𝑇
 10.5 

This relationship is sometimes described as the second fluctuation-dissipation theorem.
13

 

The generalized Langevin equation can be reduced to the simplified Langevin equation 

by assuming the stochastic forces have an infinitely small correlation time.  

The degree to which this equation can increase fluctuations, and increase phase 

space sampling, is limited. It is the connection between the drag coefficient and the 

random force that limits stochastic fluctuations. The distribution of the random forces can 

be increased by increasing the drag coefficient (see Equation 10.5). Though the average 

of the random force is zero, large rapid forces can be utilized by increasing the width of 

the distribution. However, increasing the drag coefficient too much will result in an over 

damping of the system and ultimately reduce fluctuations.  



259 

 

Protracted colored noise dynamics (PCND) decouples the friction coefficient (ζ) 

and the variance of the stochastic force distribution. This significantly increases 

fluctuations and allows viscous or highly constrained systems to sample phase space 

much more quickly. Instead of mimicking a solvent using stochastic fluctuations, PCND 

increases phase space sampling. By combining this approach with the used of colored 

stochastic noise (that is, not white noise, or noise that does not equally sample all 

frequencies in Fourier space), many different system types, especially systems where 

activated processes are important, can be sample more efficiently.  

The most common type of random force is a Gaussian random force, commonly 

referred to as white noise. This noise can be described by Equations 10.6 and 10.7. 

 〈휂(𝑡)〉 = 0 
10.6 

 〈휂(𝑡1)휂(𝑡2)〉 = 2𝛿(𝑡1 − 𝑡2) 10.7 

Equation 10.6 means that the average of η(t) over time is zero, while Equation 10.7 

describes the variance of the Gaussian distribution and states that there is no time 

correlation for such noise. This white noise is a time uncorrelated force, but in a colored 

noise a time correlated force, can also be used.  

PCND as used by Jenkins,
7
 uses an exponentially time correlated noise (ε(t)) 

using the differential equation described by Equation 10.8 with properties as described by 

Equations 10.9 and 10.10.  
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 휀(𝑡)̇ =
𝛺1 2⁄ 휂(𝑡) − 휀(𝑡)

𝜏
 10.8 

 〈휀(𝑡)〉 = 0 
10.9 

 {〈휀(𝑡)휀(𝑠)〉} =
𝛺

𝜏
𝑒−

|𝑡−𝑠|
𝜏  10.10 

η(t) is the Gaussian white noise as described in Equations 10.6 and 10.7. The curly 

brackets denote averaging over the distribution of initial conditions, the importance of 

which is highlighted by Fox et al.
14

 The root mean square magnitude of the forces are 

given by Ω/τ and the correlation time is given by τ. The distribution of initial values (ε0) 

is given by Equation 10.11.  

 𝑃(휀0) =
1

(
2𝜋𝛺
𝜏

)
𝑒
[−

𝜀0
2

(
2𝛺
𝜏
)
]

 10.11 

These forces were generated, both by Jenkins and in the rest of this work, using the 

algorithm of Fox et al.
14

 The algorithm generates an initial condition ε0 by using the Box 

Mueller algorithm.
15

   

 휀0 = [−
2𝛺

𝜏
ln(𝑎)]

1/2

cos(2𝜋𝑏) 10.12 

The variables a and b are uniformly distributed random numbers between 0 and 1. The 

noise is then integrated through time using Equations 10.13, 10.14, and 10.15.  
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 𝐸 = 𝑒−
𝛥𝑡
𝜏  10.13 

 ℎ = [−
2𝛺(1 − 𝐸2)

𝜏
ln(𝑎)]

1/2

cos(2𝜋𝑏) 10.14 

 휀𝑡+𝛥𝑡 = 𝐸 ∙ 휀𝑡 + ℎ 
10.15 

Again, a and b are uniformly distributed random numbers between 0 and 1. These 

uniformly distributed random numbers are generated every timestep for all 

atoms/beads/spheres/chains for which the stochastic force is being applied.. For the 

simulations in this work, random numbers are generated using a Mersenne Twister
16

 

algorithm for each instance. The algorithm is seeded at the beginning of the simulation 

with the current time in seconds from midnight January 1, 1970 UTC.  

The random force is generated using this algorithm (ε(t)) is substituted into the 

Langevin Equation for the η(t) term. The Nosé-Hoover temperature controller is used for 

all simulations. 

This method has been applied to a Lennard-Jones glass where it was shown to 

drastically reduce the time an LJ-glass took to reach the crystalline state. After a brief 

optimization of parameters, it was shown that using PCND can reduce the system 

relaxation time by a factor of about 3000, while less optimal parameters showed a 

reduction in relaxation time by a factor of about 10, as shown in Figure 10.1 from 

Jenkins.
7 

 To estimate this decrease in relaxation time a linear model is assumed in the 

decrease in potential energy for the simulation with no stochastic noise in Figure 10.1 to 
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the known crystalline potential energy.
7
 In this case, both parameter sets shown caused an 

increase in potential energy before dropping the energy significantly. Though it is not 

clear for the data set where τ = 5 in Figure 10.1, the author claims such in the text.
7
 The 

final energy level is constant for both, though the PCND does add a slight offset that 

scales with the input parameters, increasing the final energy state with higher Ω/τ and τ 

values. It is suggested that a brief simulation without PCND, or a stepping down of 

PCND parameters would remove this offset in energy altogether. Once the crystalline 

state has been reached, the stochastic noise continues to increase fluctuations in the 

system, increase potential energy, but because the system is still in the crystalline state, 

removing these fluctuations should quickly restore the overall system state and potential 

energy to the true value for the crystalline state. 
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Figure 10.1. From Jenkins
7
. Plot of reduced potential energy vs. reduced 

time for two simulations with different PCND parameters and one 

simulation run without PCND. The simulations  with PCND reach the 

equilibrium state significantly faster than the simulation without.  

10.2. Protracted colored noise for polymer systems 

The LJ-glass version increased the intensity and the time correlation of thermal 

fluctuations, but the immediate application of this increase in fluctuations to the polymer 

system may not be useful. Applying an exponentially correlated force on every atom in a 

polymer (or bead in a coarse grained polymer) would increase fluctuations, but perhaps 

not in a way that would ultimately increase diffusivity.  Unless all the atoms in the chain 

by chance happened to fluctuate in the same direction, the stochastic forces may simply 

act on the internal bond and angle energies of the polymer instead of moving the polymer 
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through space. Apply the force identically to all atoms or beads in a chain might work 

better, but would result in unrealistic motion, especially in the case of entangled chains. 

In the limit of many entanglements, it may not move the chains at all and again only act 

on the internal energy of each polymer. Instead, it could be envisioned that applying the 

force along the backbone of the polymer would result in the most realistic movement of 

the chain; essentially the force would encourage a reptation like motion. This work will 

describe PCND for polymer systems and demonstrate its effectiveness in a BCP-DSA 

context, though the results should be useful for any similar polymer system.  

The same coarse grained molecular dynamics model that has been used 

throughout this thesis has been used here. As described earlier, NVT simulations have 

been run using the Nosé-Hoover thermostat algorithm. A stochastic force was applied 

using Equation 10.11 through Equation10.15, which culminate in Equation 10.16 where 

U(x) is the potential energy, ε is the stochastic force, and 휁 is the drag associated with the 

temperature controller.  

 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
= −𝛻𝑈(𝑥) + 휀(𝑡) − 휁(𝑡)

𝑑𝑥(𝑡)

𝑑𝑡
 10.16 

 

The stochastic force ε(t) is calculated via Equations 10.11 through 10.15. This force was 

applied to every interior bead on a chain in the direction of the backbone of the chain. 

This direction was calculated by taking the vector between the two adjacent beads in the 

chain as shown in Figure 10.2. Every interior bead in a single chain experiences a force 

of equal magnitude, but the direction of this force is rotated such that the direction of the 
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force is along the backbone of the chain. While the positive direction of the backbone is 

always from the A end of the chain to the B end of the chain, the force can be negative, 

which is the same as applying a positive force in the reverse direction. The end bead did 

not experience any stochastic force due to PCND. The timescale over which the force 

changes values  is determined by the parameter τ, or the correlation time. The root mean 

square of the force is determined by the parameter Ω/τ. The effect of τ is visualized in 

Figure 10.3 where various series of forces are calculated through time for various τ 

values. The series are offset for clarity. When τ is zero, the noise is completely random, 

and as τ increases, the correlation time of the force increases, that is, the force changes 

directions more gradually. The stochastic force algorithm was programmed into 

HOOMD-blue
17,18

 by modifying the existing code. The random numbers are calculated at 

every timestep using Mersenne Twister
19

 algorithm for each instance at each timestep, 

specifically the MT19937 implementation. The algorithm is seeded with the current time 

in seconds from midnight January 1, 1970 UTC.  

 

Figure 10.2. Visualization of how the stochastic forces are applied in 

polymer PCND. The forces are applied along the backbone of the chain, 

that is, the force on an interior bead is applied along the vector between 

the two adjacent beads. The magnitude of the force is the same for every 

bead on the chain and can change sign with time.  
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Figure 10.3. Representative plot of the magnitude of the force over time 

for a single chain at various values of τ. As τ increases, the force 

magnitude is correlated over longer times. The various τ series are offset 

for clarity. 

The effect that PCND has on the fluctuations in the system can be visualized by 

plotting energy histograms. Figure 10.4 plots energy histograms for simulations with 

PCND (Ω/τ = 0.1 kcal/mol and τ = 1000 ps) and without PCND at two different 

temperatures. Adding PCND to the system keeps the average energy constant, (as is 

required to keep the temperature constant) but the width of the distribution is increased. 

This increase in width results in more high energy beads and polymers, which translates 

into better phase space sampling, that is, energy barriers are sampled over more 

efficiently. Interestingly, the effect of temperature is much greater than the effect of 

PCND on the amount of high energy beads. This might suggest that increasing the 

temperature for a short period of time may be a way to sample over energy barriers, 

however it will be shown later that this is not as effective as PCND.  
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Figure 10.4. Histogram of the potential energy of beads with and without 

PCND at 500K and 600K. The inclusion of PCND slightly widens the 

energy distribution. 

10.3. Applications of PCND for polymer systems 

10.3.1. Increased Diffusion 

The effect of PCND on diffusion was measured. It is expected that increased τ 

and Ω/τ values would increase diffusion. This was measured for homopolymers for which 

N = 64 using the same potential set as used throughout this work for various τ and Ω/τ 

and the results are shown in Figure 10.5. Diffusion as a function of τ seems to fit a power 

law of about τ
0.29

. Small values of τ give significant increases in diffusion but larger 

values yield diminishing returns. The effect of Ω/τ looks to be much more linear. Figure 

10.6 shows the coefficient of the fits shown in Figure 10.5 as a function of Ω/τ, and these 

points seems to fall along a line, but more points are necessary to confirm. PCND clearly 
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provides increased diffusivity. Increasing more than an order of magnitude would require 

very large parameters. 

 

Figure 10.5. Plot of diffusion constant as a function of τ for various Ω/τ 

for N = 64. Diffusion appears to scale with τ
0.29

 at various values for Ω/τ.  
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Figure 10.6. Plot of the fit coefficients from Figure 10.5 as a function of 

Ω/τ. The coefficients, and thus diffusion, appears to scale linearly with 

Ω/τ.  

The stochastic force (ε(t), as described by the parameters Ω/τ and τ)  force (along 

with thermal energy) moves the polymer through the bulk, but the non-bonded potential 

opposes this motion, essentially imposing a drag force. Ω/τ would be considered high 

when it is large compared to the non-bonded interaction strength of the homopolymers. 

However, the strength of Ω/τ is confounded with τ and the length of the polymer chain 

(N). Because every bead on the chain experiences the Ω/τ force, the total force on a chain 

scales with the number of beads. What would be considered a large τ is less clear. 

Previously, a range of τ values were used to find what values would work best,
7
 but 

presumably τ could be compared to the relevant relaxation times of the polymer of 

interest.  
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10.3.2. Increased defect heal rate 

Defect healing rate is used as a measure of the effectiveness of PCND. The defect 

rate was measured using the method described in Chapter 9, but a brief description will 

be given here. A defect was built using an external potential in a fully periodic 

simulations were built at five times the natural repeat distance of the BCP in the x 

dimension, three times the natural repeat distance of the BCP in the y dimension, and at 

one times the natural repeat distance of the BCP in the z dimension. The defect heal rate 

was calculated using Equation 10.17: 

 𝑅𝑠𝑖𝑚 =
𝐹𝐻
𝑡𝑎𝑣𝑒

 
10.17 

Rsim is a measure of the rate of defect healing in the simulation; it includes both 

the time before the defect begins healing and the time it takes for the defect to heal once 

the transition has begun.  This rate should change in response to PCND, but this does not 

indicate a change in the true rate of the modeled system, only in rate recorded in the 

simulation. Without PCND these rates are identical, but because PCND is applied with 

the intention of reducing simulation time, and therefore increase simulation rate, Rsim will 

differ from the intrinsic defect heal rate. FH is the fraction of defects healed in the 

maximum simulation time and tave is the mean time to heal of the simulations that did 

heal within the maximum simulation time. In general, FH is one because all of the defects 

annealed within the simulation time, so Rsim is simply the average rate for these 

simulations to anneal. In the case of T = 600K and T = 700K for χN = 55 and no PCND, 

no simulation healed in 500,000 ps.  
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In order to demonstrate the usefulness of PCND for polymer systems, the effect 

on defect anneal rate was measured and compared to simulations without PCND. The 

results of defect anneal rate without PCND are taken from the chapter 9.Defect heal rates 

for a jog defect are plotted as a function of χN for N = 64. The rate is relatively constant 

for χN < 30 because, as explained in the chapter 9 the simulations in this region are 

limited by the diffusion of mass into the already healing defect, not the initialization of 

the healing process. Above this value, the rate decreases exponentially. In order to clearly 

show the effect that PCND had on the rate of defect healing, defects were run with PCND 

at a χN of 55. Extrapolating the results of the simulations without PCND gives a rate of 

approximately 5x10
-9

 defects / ps. As shown in Figure 10.7A, running the same 

simulations with the addition of PCND with parameters of various Ω/τ for τ = 500 ps, the 

rate of defect healing was drastically increased. In the best case the rate increased more 

than 10,000 times over the extrapolated rate without PCND. Increasing Ω/τ increases 

defect rate because larger Ω/τ values sample more efficiently. It is possible that further 

increase of in Ω/τ would reduce the defect rate even further, but at that point there is 

likely to be deviation in the natural pitch, as will be discussed later. It is worth noting that 

the maximum rate achieved using PCND is very similar to the maximum rate achieved at 

low χN without PCND.  
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Figure 10.7 Plots of the simulated rate of defect healing as a function of 

χN and PCND parameters for N = 64. A) shows defect heal rates as a 

function of χN without PCND alongside rates using PCND at various Ω/τ 

values  for τ = 500 ps and maximum rates at elevated temperatures. All 

PCND sets show a massive increase in rate, ~200 times faster than the 

extrapolated rates that do not use PCND. Increasing temperature does not 

increase the rate as much as PCND does. No defect healed in the given 

time frame for the elevated temperatures and the rate shown is likely 

higher than the real rate. B) shows the defect heal rates as a function of τ 

and Ω/τ. Rate is not sensitive to PCND parameters, though they do look to 

drop as τ nears zero, as would be expected.  

Figure 10.7B plots defect heal rates as a function of τ for various Ω/τ. It appears 

that there may be some peak rate in τ. Larger τ values increase sampling over energy 

barriers and therefore increase defect heal rate, but if that value is too large then pathways 

that do not lead to a healed defect are probed for too long, so time is wasted and the rate 

decreases. It appears that the peak in defect heal rate decreases with increasing Ω/τ, but 

more data is needed. This would make sense because at larger Ω/τ values the time 

required for a certain pathway to be properly probed is decreased, and so τ can be 

decreased so that more pathways are probed more quickly, ultimately reducing the time 

for a defect to heal. 
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One obvious alternative to implementing the PCND process is to temporarily 

increase the temperature of the simulation. As mentioned regarding Figure 10.4, 

increasing the temperature has a greater effect on the number of high energy beads in the 

system. In addition, increasing temperature temporarily is very easy and all platforms are 

capable of doing so with no extra work. However, increasing temperature does not work 

nearly as efficiently as using PCND. Simulation sets were run at three temperatures, 

600K, 700K and 1000K and the rates were measured as before using the same initial 

defects (as would be found in a 500K system) as in the PCND case. The goal is to 

remove the defect and reach the final defect free state. The defect is one that would occur 

in a 500K system, and occurs at the natural pitch of a 500K system. The pitch of the 

guiding layer and the natural pitch polymer used to build the defect is not adjusted to 

accommodate for the changes in pitch associated with temperature. This is because the 

increase in temperature is would be a temporary one used to quickly sample over energy 

barriers in the annealing process. Once the polymer has been able to cross the energy 

barriers, the temperature would then be returned to the base temperature or 500 K. The 

600 and 700K simulations did not produce any measurable results within 500,000 ps. The 

point shown in Figure 10.7 for T = 600 and T= 700 refers to the rate that would be 

measured if each had one defect heal at 500,000.05 ps, that is, one timestep past the end 

of the run. This theoretically would be the maximum rate unless a cascade of defects 

began to heal soon after the end of the run which is unlikely. Even with the cascade 

healing though, the measured rate would only be slightly higher. Regardless, the 

theoretical rate for these simulations is far lower than the rate of the PCND simulations.  
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Simulations were also run at 1000K, but the change in pitch was so immense at 

this temperature that a completely different structure was formed. Instead of healing the 

defect, all of the lines buckled in order to match the significantly lower natural pitch of 

the high temperature simulation, as shown in Figure 10.8. The 600K and 700K simulation 

also showed a slight slanting because of the incommensurability of the natural pitch at the 

elevated temperature as compared to the natural pitch at the original temperature. The 

simulation with PCND shows more fluctuations (as seen in the rougher line edges) than 

the systems without PCND, which is to be expected, but the overall pitch is nearly 

identical and no slanting or buckling can be detected, as seen in Figure 10.8. By including 

PCND with parameters that do not significantly affect the equilibrium state, the rate at 

which defects are sampled over is increased by 4 orders of magnitude.  

 

Figure 10.8. Images of end states of representative simulations. The 

elevated temperatures cause a decrease in pitch which results in a tilt in 

the lamellae. At T = 1000K the tilt is so extreme the lines buckle. At 500K 

under PCND (Ω/τ = 0.1 kcal/mol, τ = 500 ps) there is no tilting because 

the natural pitch remains unchanged. There is increased interfacial 

roughness due to the increased fluctuations. 

The increase in temperature is not as effective as PCND because in PCND all the 

beads on a chain experience a force in a particular direction that is correlated along the 

length of the chain, resulting in one increased mode of movement (reputation). On the 

other hand, the higher energy states reached by increasing temperature increases 
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translation in all directions randomly as well as increasing bond vibrations, resulting in 

less useful fluctuations.  PCND’s motions specifically creates that concerted motion and 

moves individual chains. 

10.3.3. Efficiency of the PCND algorithm 

The effect of PCND on the overall calculation time was also computed. A 

simulation of 15,900 beads in chains 1000 beads long was run and the time spent on each 

part of the calculation was computed using HOOMD’s built in profile option and the 

results are shown in Figure 10.9. The PCND calculation is about 5% of the overall 

calculation time, indicating a relatively efficient process. The other columns in Figure 

10.9 refer to the bond force and energy calculation, the angle force and energy 

calculation, the integration, the Lennard Jones neighbor list calculation, the Lennard 

Jones force and energy calculation, and the overhead of memory transfers and other 

process required by HOOMD’s algorithms. This time will depend on the chain length 

because the force magnitude is calculated once for each chain length; smaller chains will 

take a longer time than longer chains. Fortunately, longer chains will probably benefit 

more since they will generally have larger energy barriers and generally slower kinetics. 

More optimization is probably possible, as this was simply done by a modification of 

existing code and not programmed from scratch. Even in this current method though, 

PCND is fairly efficient.   
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Figure 10.9. Time spent for various calculations during MD simulation in 

HOOMD. PCND account for approximately 5% of the overall calculation 

time when N = 1000. Smaller N will result in an increase in the relative 

time spent calculating the PCND force.  

10.4. Limits of PCND parameters 

PCND parameters in the previous sections were chosen to highlight the 

advantages of PCND. However, the effect that parameters have on the system as a whole 

is an important question. One way to determine what values of τ and Ω/τ are appropriate 

and what values are too large is to find the point at which a BCP loses cohesion under the 

influence of PCND. This point was found for BCPs with a degree of polymerization of 

64, 96 and 128 for a non-bonded interaction strength between unlike beads (εAB) of 0.3. 

This transition is measured using the structure factor with a Lorch window function as 
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calculated using Equation 10.18. 
20,21 

This method was also used to measure the natural 

pitch of the BCP systems as described in Chapter 1.  

 
𝑆(𝑞) − 1 = 4𝜋𝜌0∫

𝑠𝑖𝑛 𝑞𝑟

𝑞𝑟
[𝑔(𝑟) − 1]

𝑠𝑖𝑛(𝜋𝑟/𝑅)

𝜋𝑟/𝑅
𝑑𝑟

𝑅

0

 10.18 

The structure factor is essentially equivalent to the result of a scattering experiment, 

which are often used to measure the ODT is experimental systems.
22-25

 As order is lost, 

there is a significant change in peak height of the scattering intensity, specifically to 

lower peak heights. Here, the structure factor was measured as a function of τ for a given 

Ω/τ for N = 64, 96 and 128. Simulations were run for ~ 50 ns. When there was a 

significant decrease in the peak height, the simulation was considered to have undergone 

a a disordering transition. The structure factor results for N = 64 and Ω/τ = 0.1 kcal/mol 

are shown in Figure 10.10. Adding PCND shrinks the peak of the structure factor due to 

the increase fluctuations, but significant changes in τ show little effect on the scattering 

peak height. However, the small increase from τ = 15,000 ps to τ = 15,250 ps shows a 

very large decrease in peak height. At this point, the cohesion of a single lamellar phase 

is lost and fluctuations dominate, as is corroborated by Figure 10.11. In Figure 10.11, the 

orientation of the lamellae changes, but otherwise the changes are relatively small as τ 

increases to 15,000 ps, but as τ reaches 15,250 ps, the lamellae are clearly beginning to 

disintegrate. This is not the same as a ordered to mixed transition as occurs when χN 

drops too low, but is a different type of transition where the lamellae are constantly 

fluctuating and reorienting, but the phase separation remains. This transition is not 

common in the study of BCP systems and so more work is required to fully understand 
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the nature of this transition. For the work described here it is only important to point out 

that a BCP dominated by fluctuations will be largely useless and so this transition can be 

considered an upper limit of usefulness.  
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Figure 10.10. Representative plot of the structure factor (S(q)) for various 

values of τ for Ω/τ for N = 64. At low τ values, the size and location of the 

peak changes little with τ. However, the small jump from τ = 15,000 ps to 

τ = 15,250 ps results in a sharp decrease in peak height. This sudden drop 

is associated with the ODT and means the BCP is now mixing.  

 

Figure 10.11. Images of the simulations for which the structure factor was 

calculated in Figure 10.10. Rotations and increases in interfacial 

roughness can be seen as τ increases for τ ≤ 15,000 ps, but when τ reaches 

15,250 ps the simulation has started to mix.  
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This transition as a function of Ω/τ and τ is found in Figure 10.12A. Everything to 

the upper right of the lines shown mix, while everything to the lower right still order at 

this value of χ. Large Ω/τ values require smaller τ values to induce mixing. A short, 

strong force is not enough to mix the system, as it does less work and ultimately applies 

less energy towards mixing the system than a strong force applied over time. This leads 

to the result that the mixing curves in Figure 10.12A are dependent on both τ and Ω/τ. It 

is the work done by the stochastic force that causes mixing. As mentioned before 

increasing N increases the total force on the chain because each bead receives the same 

force. Figure 10.12B plots the mixing curve as N ∙ Ω/τ vs. τ. Plotting in this way, the 

transition for each N has very similar values. The small discrepancies may be improved 

by using finer differences in parameters. By scaling Ω/τ by N, the plot is then the overall 

force on the chain vs. the time the force is applied. It is the overall force on the chain that 

appears to be important, not the force on any given bead. The effect of τ on the mixing 

curve seems to be smaller as  τ increases, similar to the diffusion curves. Diffusion 

increases slowly at large τ, which suggests that the ultimate drive to mix may have a 

similar dependence at large τ. More work is required to fully understand the dependence 

of this mixing curve on τ, Ω/τ and N but this gives an idea of the relevant operating range 

for a simple study on the usefulness of PCND for polymers.   
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Figure 10.12. Plot of the disorder transition (but not ordered to mixed 

transition) of a polymer as a function of τ and A) Ω/τ or B) N∙ Ω/τ for 

various N. Parameters above and to the right of the curves, the BCP 

simulation mixes, while parameters below and to the left of the curves the 

BCP simulation phase separated.  

The results in Figure 10.12 only give the absolute limit of parameters that could 

be used. Any values at this limit or beyond will only mix the system and ultimately 

produce useless results, but what effect does this have on the free energy of the system at 

values to do not mix the system? A direct free energy calculation is time consuming and 

fairly difficult, but a proxy, like the effect of PCND parameters on the natural pitch of the 

BCP, is both easier and quicker than the full free energy calculation. The effect that 

PCND had on the natural pitch of the system was measured using the structure factor in 

Equation 10.18. The location of the peak gives the plane to plane repeat distance of the 

polymer as described in Chapter 1. For a lamellar morphology, the plane to plane repeat 

distance is equivalent to the natural pitch of the BCP. The natural pitch of a N = 64 

lamellae forming BCP is shown in Figure 10.13 as a function of τ for various Ω/τ . The 

black line refers to the natural pitch found without PCND and is plotted at all τ values for 

0

4

8

12

16

0 0.1 0.2 0.3

τ
 (

n
s)

 

Ω/τ (kcal/mol) 

N = 64

N = 96

N = 128

A) 

0

2

4

6

8

10

12

14

16

0 10 20

τ
 (

n
s)

 

N ∙ Ω/τ  (#beads ∙ kcal/mol) 

N = 64

N = 96

N = 128

B) 



282 

 

comparison. When τ is low compared to the τ that caused mixing (the points shown go up 

to the largest τ that did not cause mixing), the pitch is only minorly disturbed compared 

to the no PCND case. For example, when τ is ~2000 or below, the measured pitch of the 

Ω/τ is within 3% of the simulation without PCND except at the largest Ω/τ. Larger values 

of Ω/τ have similar behaviors. At higher τ values the deviation is more significant. 

Simulations using PCND should be operated in the region where the pitch is minimally 

affected. The effect that χN has on pitch significantly more than the effect that PCND has 

on pitch. As χN varies from 70 to 10.5 (the ODT), the natural pitch varies from 6.6 nm to 

13.3 nm, far greater than the change in pitch due to PCND shown in Figure 10.13.  

 

Figure 10.13. Plot of measured natural pitch as a function of τ and Ω/τ for 

N = 64. At low values of τ, PCND does not perturb the natural pitch. 

Higher values yield a slight perturbation in pitch.  

The results shown for the kinetic healing rates were chosen as to optimize heal 

rate without significantly perturbing the system as described in Figure 10.12 and Figure 
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10.13. The extra fluctuations in such simulations can be quickly removed by simulating 

without PCND.  

Radius of gyration (Rg), end to end distance (r0), bond length, and bond angle 

were measured for various PCND parameters that did not greatly perturb the natural pitch 

and the results are found in Figure 10.14. Including PCND for the modest parameters 

chosen has a negligible effect on the statistics shown.  
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Figure 10.14. Histograms of A) radius of gyration (Rg), B) bond length, C) 

end to end distance (r0), and D) bond angle for N = 64. PCND makes little 

difference on these statistics for the parameters shown here. 
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10.5. Conclusions 

PCND was adapted for use in a polymer system. Instead of applying an 

independent stochastic force to every bead or atom in a simulation, the stochastic forces 

applied were the same for a given chain, and applied in the direction along the backbone 

of the chain. Some preliminary studies on the effects of PCND and its parameters on 

energy distributions, diffusion, and equilibrium state were done. As expected, a slight 

widening of the distribution of energy was found. It was also found that diffusion 

increased following a power law as τ increased, and apparently linearly as Ω/τ increased. 

An order-disorder transition curve for PCND parameters was generated for BCP’s with 

degrees of polymerization of N = 64 and N = 96. It was found that a combination of τ and 

Ω/τ were required to induce mixing and that the effect of Ω/τ scales with N. The product 

of Ω/τ and N that induces mixing in the system is a constant for a given τ. This indicates 

that it is the force on the overall chain that is important for mixing, not the force on the 

individual. The effect on equilibrium domain size was measured as a proxy for PCND’s 

effect on equilibrium states. There exists a set of parameters that has little to no effect on 

the equilibrium domain size of the polymer system for the systems studied here. As the 

mixed state is approached, there is found to be a decrease in pitch, approximately 12 % of 

the overall pitch at worst. Defect healing rates were calculated as a function of χN. 

Compared to previous results at high χN, PCND increased heal rates by a factor of ~ 

10,000 even for very small parameters for PCND. Larger Ω/τ increased this rate but there 

appeared to be an optimal τ value away from which rate decrease. However, even at non-

optimal values significant increases in rate as compared to the simulation without PCND 

were found. A comparison was made to defect heal rate with temperature increase. It was 
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found that temperature did not increase heal rates nearly as fast as PCND, and the effect 

on equilibrium morphology was greater indicating that PCND is a better tool for 

sampling over energy barriers and better sampling phase space. PCND, as implemented 

in HOOMD, was found to be a relatively efficient process in terms of total CPU (or 

GPU) time. 
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CHAPTER 11 

STUDY ON LINEAR A-B MULTIBLOCK PITCH, ODT, AND CHAIN 

CONFORMATIONS 

11.1. Introduction  

Block copolymers (BCPs) have been used in a variety of applications, including 

adhesive tape, upholstery foam, asphalt additives, and recently, nano-lithography for 

semi-conductor fabrication.
1
 Decades of study have provided great advances in the 

understanding of block copolymers, especially in the case of linear diblock copolymers, 

the simplest form of block copolymer.
1-6

 By using various computer simulation methods, 

including a variety of mean-field theories
7-10

, Monte Carlo methods
11

, and molecular 

dynamics methods
12

, great insight has been made into linear diblock copolymers. Some 

of the more extensively studied topics include the order-disorder transition
13

, order-order 

transitions between various morphologies, the repeat distance between morphological 

units such as cylinders, spheres, or lamellar sheets, the thickness of the interfaces 

between domains
9
. Thin films BCPs have enjoyed extra focus within the past decade or 

so because of their many applications in nanolithography, nano templating, nanoporous 

membranes, and ultra-high density storage media.
3
 While linear dibock copolymers have 

been studied in great detail, and extensions made into triblock copolymers, few have 

focused on multiblock copolymers. The sheer number of possible configurations of 

multiblocks makes studying the entire space a significant challenge. This paper will 

consider simulations of one small subclass of multiblock copolymers, namely, 
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multiblocks formed by the linking together of linear diblock copolymers. Applications 

will focus on those in the semiconductor manufacturing field.  

For diblock copolymers, the order-disorder transition (ODT) is determined by the 

product of χ (the Flory-Huggins interaction parameter) and N, the degree of 

polymerization. Mean-field predictions place the order-disorder transition for a linear 

diblock copolymer  at a χN of 10.5.
7
 The repeat distance of the phase separated domains 

scales with N
2/3

,  and scales with χ
1/6

 when χN is high. When χN is low, these scaling 

powers increase, but the dependence on N is always 0.5 larger than χ.
9
 In the field of 

semi-conductor fabrication a small repeat distance is desirable so that smaller features 

and therefore smaller transistors can be made. The focus of this paper is on linear 

multiblock copolymers containing two types of monomer, A and B types. Higher order 

block copolymers of the type studied here are made by linking smaller order block 

copolymers together. As seen in Figure 11.1, a triblock copolymer (A-B-B-A) is made of 

two di-block copolymers (A-B), and a tetrablock copolymer (A-B-B-A-A-B) is a triblock 

copolymer (A-B-B-A) linked with a diblock copolymer (A-B). Intuitively, this design 

prevents domain size from scaling with N as in diblock copolymers, as the domains will 

be limited by the size of the limited length of like sections in the polymer. This is has 

been shown to be true in the case of such tri-block copolymers experimentally. At the 

same time, increasing N may cause the system to remain above the ODT, even at pitches 

that would normally impossible with a traditional diblock BCP system. The effectiveness, 

or lack thereof of this idea, as well as insightful information into the configurations of 

chains in the phase separated lamellar state will be shown. 
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Figure 11.1. Types of block copolymers simulated in this work. Diblock 

copolymers are typically used in BCP-DSA, but other polymers may allow 

smaller domain sizes by depressed in the effective ODT. 

11.2.  Model 

11.2.1. Coarse Grained Model 

A coarse grained molecular dynamics model as used elsewhere is used here.
12

 The 

polymers are coarse grained by representing four monomers (which corresponds to a 

statistical segment length) as a single bead. Four monomers was chosen because it 

approximately corresponds to the statistical segment length of polystyrene and 

poly(methyl methacrylate) as measured by atomistic simulations. Grouping a different 

number of monomers were grouped together into a single bead allows for different 

statistical segment lengths, and therefore different chain flexibilities to be modeled. Each 

bead experiences three different potentials: a nonbonded potential, a harmonic bond 

potential, and a harmonic angle potential. The non bonded potential is similar to a 

Lennard-Jones potential, but made softer and broader by using an 8-4 potential. It uses 

the form  
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 𝐸(𝑟) = 휀 [(
𝜎𝑖𝑗

𝑟
)
8

− 2(
𝜎𝑖𝑗

𝑟
)
4

] 11.1 

where εij refers to the strength of the interaction between beads of type i and j, r refers to 

the distance between the bead,  and σij refers to the point of lowest energy in the potential. 

Any two beads undergo this potential as long as they do not also participate in a bond or 

angle potential. Two bead types were used as shown in Figure 1, and are referred to as 

type A and type B, each representing a different arbitrary monomer. The potential 

function parameters for these tow bead types were set to reproduce properties similar to 

typical BCPs such as polystyrene and poly(methyl methacrylate) and the χ value of the 

system was manipulated via the εAB parameter. The relationship between χ and εAB was 

determined by assuming the ODT occurred at a χN of 10.5 as calculated by Liebler.
7
 By 

measuring the ODT for a series of chain lengths, a relation between εAB and χ can be 

found. This is analogous to what is done experimentally by several other researchers who 

have measured the different ODT temperatures for different N and used this data to 

extract the χ-T relationship.
14-16

 The full explanation and details of the relation can be 

found elsewhere.
17

 The relation used here is found in Equation 11.2. 

 𝜒 = −7.845휀𝐴𝐵
2 + 4.442휀𝐴𝐵 − 0.2426 

11.2 

The same potential values as used elsewhere were also used here.
12,17

 For the bond 

potential, the spring constant (kstr) used was 100 kcal/(mol*nm
2
) and the equilibrium 

length used was 0.82 nm. For angle potential, the spring constant (kang) used was 5 

kcal/(mol*nm
2
) and the equilibrium angle used was 120°. For the nonbonded potential, 
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εAA and εBB were both set at 0.5 kcal/mol. All r values (σAA, σBB and σAB) were set at 1.26 

nm.  

11.2.2. Measurement of ODT 

The SAXS peak intensity has been previously used experimentally to determine 

ODT temperature for different molecular weights of poly(oxyethylene)-

poly(oxybutylene) diblock copolymers.
14

 Data from this study is shown in Figure 2.15.  

In the experimental study, the peak intensity was studied as a function of temperature.  At 

high temperatures, the system is mixed and as the sample is cooled: χ increases with 

decreasing temperature.  The peak intensity is a nearly constant at temperatures where the 

system is mixed, but rapidly jumps to a much larger value at the ODT as the sample is 

cooled.  Further cooling the sample in the ordered state shows a slowly increasing peak 

intensity as χ further increases.  Identification of the ODT temperature by the rapid jump 

in scattering intensity was shown to give equivalent results to identification of the ODT 

temperature by conventional rheological measurements.  The structure factor S(q*)  

(defined in Equation 11.3) provides equivalent information to the pattern observed in a 

small-angle scattering experiment and so the peak intensity of the structure factor should 

therefore give equivalent accuracy for identification of the ODT with changing 

interaction strength in simulation.
18-20 

 𝑆(𝑞) − 1 = 4𝜋𝜌0∫ 𝑟2
sin 𝑞𝑟

𝑞𝑟
[𝑔(𝑟) − 1]𝑑𝑟

∞

0

 
11.3 
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Figure 11.2.  Changes in the scattering peak height for 

poly(oxyethylene)-poly(oxybutylene) diblock copolymers. A sharp 

increase in peak height is seen at the ODT. Data from Mai et al.
14

  

The structure factor for a BCP simulation with N = 32 at different values of εAB is 

shown in Figure 2.16; these results are directly extracted from the simulations shown in 

Figure 2.14.  Figure 2.16a shows the full structure factor while Figure 2.16b shows just 

the peak intensity S(q*).  The full structure factor shows the expected behavior.  The well 

separated structures at small εAB show strong sharp peaks corresponding to the domains 

of the BCP.  As the interaction strength between A and B segments increases, the peaks 

become weaker and broader as the interface between domains becomes more diffuse.  

Peaks are still observed below the visual ODT of εAB = 0.37 (Figure 2.14) because of the 

correlation hole effect
7
 and become very weak nearing the homogeneously mixed state.  

Considering the change in peak intensity in Figure 2.16b, there is an obvious jump in 

S(q*) as the system crosses the ODT (between εAB = 0.36 and εAB = 0.37)and a slowly 

increasing peak intensity in the ordered phase as the AB interaction decreases; both 
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results are fully consistent with the experimental results.  What appears different from the 

experimental result is that there is a reasonable increase in the peak intensity even in the 

disordered phase at εAB = 0.37 and below. 

The increase in intensity in the disordered phase is fully consistent with Leibler 

theory
7
 , and so should not be unexpected.  The major difference between the experiment 

and our simulation results is likely due to the small system size in our simulation.  The 

experimental scattering is the result of measurements over a volume that is likely microns 

to millimeters in length, while our experiments are only run on simulations that are 

nanometers in length.  The radial pair distribution function can only be evaluated up to a 

distance r that is the smallest simulation box dimension divided by the square root of two.  

As a result, the upper limit on the integral in Equation 11.3 used to calculate the structure 

factor is limited to this same r value.  Since the integration is only over a few periods (10-

20 nm), the intensity of the scattering peak is relatively small, while in the experiment the 

periodicity may persist for microns and is included in the scattering spectra. This causes 

the ODT to be significantly sharper when measured experimentally as compared to 

computationally. However, the transition is still clearer seen in Figure 2.16b and the 

results match those found visually in Figure 2.14. 
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Figure 11.3. Changes in the structure factor for a BCP with N = 32 for 

different values of the AB interaction strength εAB (A) the full structure 

factor; (B) the peak intensity of the structure factor S(q*). 

 

Figure 11.4. Bulk BCP structure after 100 ns simulation time for 

increasing εAB (decreasing χ), (a) εAB = 0.2, (b) εAB = 0.3, (c) εAB = 0.36, 

(d) εAB = 0.37, (e) εAB = 0.4, (f) εAB = 0.5, χ = 0. 

11.2.3. Calculation of Chain Orientation and Statistics 

The radius of gyration (Rg) is commonly used to describe the size of chains in 

polymer systems, but the eigenvalues of the radius of gyration tensor (S) as described by 

Equation 11.4 can provide much more information about the shape and orientation of 

polymer chains in a system.
21

  

0

15

30

45

0 0.1 0.2 0.3

S
(q

) 

q (Å-1) 

0.2
0.3
0.35
0.36
0.37
0.38
0.4
0.45
0.475
0.5

εAB a) 

0

10

20

30

40

0.2 0.3 0.4 0.5

S
(q

*
) 

εAB 

b) 



297 

 

 𝑆 =
1

𝑛
∑𝒔𝒊𝒔𝒊

𝑻 = [

𝑥2̅̅ ̅ 𝑥𝑦̅̅ ̅ 𝑥𝑧̅̅ ̅

𝑥𝑦̅̅ ̅ 𝑦2̅̅ ̅ 𝑦𝑧̅̅ ̅

𝑥𝑧̅̅ ̅ 𝑦𝑧̅̅ ̅ 𝑧2̅̅ ̅
]

𝑛

𝑖=1

 
11.4 

si is the position vector of a coarse-grained bead and the overbar denotes averaging over 

all backbone atoms in the chain. The center of mass of the chain is defined as the origin 

so that si describes coordinates away from the center of mass. Transforming S to a 

principal axis diagonalizes S, and a principal axis system can be chosen such that: 

 𝑆 = [
𝑋2̅̅̅̅ 0 0
0 𝑌2̅̅ ̅ 0
0 0 𝑍2̅̅ ̅

] 
11.5 

 
𝑋2̅̅̅̅ ≥ 𝑌2̅̅ ̅ ≥ 𝑍2̅̅ ̅ 

11.6 

The radius of gyration Rg is then equalk to the square root of the sum of squares of the 

eigenvectors of S, 𝑋2̅̅̅̅  , 𝑌2̅̅ ̅ , and 𝑍2̅̅ ̅ . 

 𝑅𝑔 = √𝑋2̅̅̅̅ + 𝑌2̅̅ ̅ + 𝑍2̅̅ ̅ 11.7 

The values of the eigenvalues of S can give us an idea of the shape of chains in the 

system. For example, if 𝑋2̅̅̅̅ /𝑌2̅̅ ̅ is large, then the chain is extended along a single axis. In 

a phase separated BCP system this is generally an axis fairly perpendicular to the A-B 

interface. Similarly, �̅�,�̅�, and �̅� then describe the size of the chain along is most 

extended axis, along the most extended axis perpendicular to the first, and along the axis 

perpendicular to those two axes respectively. This is shown in Figure 11.5 for a triblock 

(A-B-B-A) copolymer shown in two dimensions.  
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Figure 11.5. Diagram of the �̅�and �̅� components of the radius of gyration.  

11.3.  Results and Discussion 

11.3.1.  Multiblock BCP domain size 

The domain size of BCPs with various numbers of blocks, at various χ values, and 

at two different block lengths were measured. BCPs with 2, 3, 4, and 5 blocks were used 

with block lengths in the diblock of 16 and 32 monomers. As can be seen in Figure 11.6, 

the number of blocks in a polymer chain does not significantly affect the domain size of 

the BCP, consistent with experimental results. A priori it is conceivable that the 

decreased entropy from the extra bonds that the domain size would be slightly increased 

in the larger block systems. The fact that this does not have a significant effect means that 

if this ODT is depressed for BCPs with more blocks, then a smaller pitch would be 

achievable with those BCPs with more blocks. This results has been confirmed 

experimentally in polystyrene-b-poly(metyl methacrylate). 
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Figure 11.6. Plot of measured natural pitch (L0) as a function of εAB and 

number of blocks. (A) shows the results using a diblock of 32 monomers 

and polymers composed of linked N = 32 diblocks. (B) shows the same 

for a diblock of 64 monomers.  

11.3.2. Effect of Multiplicity of blocks on ODT 

 The order-disorder transition was measured via the structure factor for a number 

of N for a number of multiblock polymers. As can be seen in Figure 11.7a, the χN at the 
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ODT increases as the number of blocks increase. However, this is not the value that is of 

greatest concern. In order to determine if the ODT limited pitch in diblock systems can be 

beaten by using triblock (A-B-B-A) or high order multiblock copolymer, a diblock 

equivalent χN must be defined. Instead of using the N for the entire chain, the N for the 

equivalent diblock, that is the length of the first block and half of the second block in a 

triblock or high order multiblock copolymer, is used. This results in: 

 𝑁𝑒𝑞 =
𝑁

𝑏 − 1
 11.8 

where Neq is the diblock equivalent N for a BCP with b blocks. Because a triblock 

copolymer as used here is simply two diblocks linked together, the diblock equivalent Neq 

is half of the true N. A tetrablock copolymer is composed to 3 diblocks linked end to end 

and so the Neq is 1/3 of the true N. This is most clearly seen in Figure 11.1. Bly plotting 

χNeq as a function of b, the number of blocks per chain, a fair comparison between blocks 

of different length can be made. As seen in Figure 11.7b, there is a drop of ~ 1.5 in χNeq 

when a triblock is used, but negligible change after that. This is a very small depression 

of the ODT and will result in a very modest change in ODT limited pitch for a given 

BCP, thus using such polymers is not recommended. The effect of multiblock 

copolymers on other important properties, such as defectivity, are not studied here,, but 

may be worthy of study. Whatever the effect of multiblock copolymers on equilibrium 

defect density, defect will surely heal out much more slowly than the equivalent diblock 

systems both because N is longer, reducing diffusion, and the length of chain that must be 

pulled through an unlike region is significantly larger than in the diblock case. By 
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decreasing the rate at which defects heal, the measured defectivity may increase above 

the diblock equivalent.  

 

Figure 11.7. A) Plot of χNODT (χN at the ODT) as a function of N and 

blocks per chain. B) Plot of χNEq (Neq is the diblock equivalent N) as a 

function of blocks per chain. 
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11.3.3. Chain Conformations 

Diblock copolymers only have one basic conformation in a phase separated state 

as seen in Figure 11.8a. The chain is basically perpendicular to the A-B interface with 

half of the chain in adjacent domains. Triblock copolymers though have two different 

conformations: one that extends across three domains and one that loops back and only 

inhabits two domains. This is shown in Figure 11.8b. The distributions of these two 

conformations is probed by measuring the shape of the chains. 

 The shape of the chains in diblock and multiblock systems was measured using 

the eigenvalues of the radius of gyration tensor as described above. �̅� describes the size 

of the chain along is most extended axis; �̅� describes the size of the chain along the most 

extended axis perpendicular to the first, and �̅� describes the size of the chain along the 

axis perpendicular to those two axes respectively. This is shown in Figure 11.5 for a 

triblock (A-B-B-A) copolymer.  

Two chain descriptors, the end to end distance (r0) and �̅�are plotted normalized by 

the pitch in Figure 11.9. Because the diblock copolymers only have one basic 

conformation, there is a single peak. The triblock copolymers have two peaks because 

they have two basic conformation: the first peak corresponds to the loop conformation, 

while the second corresponds to the extended conformation. The end to end distance of 

such a conformation is small because the two chain ends end up relative close. The 

extended conformation is represented by the peak around r0/L0 = 0.9. These chains span 

approximately a full domain from the center of one domain to the center of the other and 

this is reflected in their end to end distance relative to the pitch. By using �̅�/L0 instead of 
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r0/L0, similar information is gained, but in perhaps a more intuitive way. Instead of 

considering chains ends (for which peaks become confounded with higher order 

multiblock polymers), �̅�/L0 uses the shape of the whole chain which is more intuitive and 

easier to distinguish with longer chains. When plotted this way, the two peaks are still 

represented, but this time, the diblock peak and the looped triblock peak occur at the 

same value, which makes sense because the take up approximately the same space 

perpendicular to the A-B interface.  

 

 

Figure 11.8. Diagram of conformations of Diblock and Triblock 

copolymers. The Diblock only has one conformation, while the Triblock 

has two, an extended and a loop conformation. 
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Figure 11.9. Histograms of chain shape for both Diblock and Triblock 

copolymers based on a diblock of 32 monomers (NEq = 32) at an εAB of 0.3 

kcal/mol. A) plots probability as a function of end to end distance (r0) over 

L0 while B) plots probability as a function of �̅�/L0. 
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conformations respectively (see Figure 11.10), these polymers have 3 and 4 peaks 

respectively and are plotted alongside the diblock and triblock results in Figure 11.11.  

The area under each peak corresponds to the fraction of each conformation exists 

in our simulations. The area under each of these peaks is shown in Figure 11.12. The area 

is taken from minimum to minimum. As the number of blocks increases, the area under 

the peaks in the middle of the distribution increases relative to the outlying peaks. One 

might conjecture that the relative occurrences of each of the conformations is caused by 

the number of possible configurations of each conformation. In the tetrablock case there 

are 3 conformations: extended which spans 1.5 domains, single loop which spans 1 

domain, and double loop which spans 0.5 domains. The extended and double loop 

conformations can only exist in one way, that is, one configuration. The single loops 

conformation has two different places in which the loop can occur: the interior B block or 

the interior A block. Using just the number of possible configurations for each 

conformation, one might expect that the tetrablock conformations would occur at a ratio 

of 1:2:1 for the extended, single, and double loops respectively. However, the extended 

and double look conformations don’t occur to the same degree; in fact the double loop 

conformation occurs twice as often as the extended conformation. Similarly, the 

pentablock copolymers have 4 configurations: extended, single, double and triple loop 

which span 2, 1.5, 1, and 0.5 domains respectively. These would be expected to occur in 

a ratio of 1:3:3:1 (ratios of high order BCPs would continue to follow ratios as given by 

Pascal’s triangle), however, the single and double loop conformations, which should 

occur in equal proportion if the number of occurrences of each conformation are driven 
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by the number of possible configurations of each conformation, occur at a ratio of 1:3, a 

significant deviation.  

The proportions as calculated using the number of configurations for each 

conformation is compared with the simulation results in Figure 11.12. It seems that 

conformations with more loops (spanning fewer domains) are favored over equaled 

expected, more extended domains. Two possibilities seem probable. One, the simulation 

has simply not equilibrated. This possibility is currently being investigated. Two, it may 

be that more extended configurations suffer an entropic penalty for spanning the domain, 

thus reducing their occurrence. When a block loops back on itself and causes the chain to 

cross the dame interface an additional time, there are a wide variety of locations this 

second intersection can occur. While it cannot move too far away from the original 

intersection, it can deviate from that location in the plane of the A-B interface. However, 

when a block is extended across an A or B domain, the second A-B intersection must 

occur very close in the A-B interfacial plane to the original A-B intersection, or stretch 

the block in order to accommodate any difference. This results in reduced entropy for the 

extended conformation and a relative favoring of the conformations with more loops. The 

increased entropy of multiple configurations for a single conformation and reduced 

entropy from extended blocks results in the ultimate distribution found in Figure 11.11 

and Figure 11.12.  
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Figure 11.10. Diagram of the possible conformation of tetra and 

pentablock copolymers.  

 

 

Figure 11.11. Histogram of �̅�/L0 for di, tri, tetra, and pentablock 

copolymers for NEq = 32 and εAB = 0.3 kcal/mol. Each plot has a peak 

corresponding to the possible conformations in Figure 11.10. 
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Figure 11.12. Comparison of the calculated fraction of each conformation 

with the measured fraction in simulation for NEq = 32 and εAB = 0.3 

kcal/mol. 

11.4. Conclusions  

Simulations of multiblock BCPs created by linking diblock BCPs together end to 

end are run. It is found that increasing multiplicity has no effect on domain size. 

Increasing multiplicity decreases χN (equivalent to the diblock) at the ODT, but the 

decrease is small. This calculation is in agreement with previous RPA predictions. The 

distribution of chain conformations as a function of multiplicity is investigated using the 

eigenvalues of the radius of gyration tensor. The fraction of chains in a particular 

conformation (described by the number of time a chain loops back and intersection the 

same interface) scale with the configurational entropy of each conformation, but are 

skewed towards more looped conformations.  
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CHAPTER 12 

CONCLUSIONS AND RECOMMENDATIONS 

12.1. Conclusions 

As IC fabrication requires smaller and smaller features, the insertion point of 

BCP-DSA comes ever nearer. For it to ever be implemented, a fuller understanding of 

BCP-DSA in general and the specific problems it faces is critical. This work used a 

coarse-grained polymer model and molecular dynamics simulations to study the effects 

of materials and guiding layer properties on line roughness and defect density in BCP-

DSA. Also included were basic studies necessary to use the model, a new technique 

which applied PCND to polymer systems to enable enhanced phase space sampling of 

energetically restricted systems, and a brief study on extending the minimum pitch of a 

BCP-DSA process through the use of multiblocks. 

Chapter 2 introduced the coarse-grained model and some tools necessary for its 

use. The coarse grained model used here treated a number of monomers (equivalent to 

the statistical segment length) as a single point. These beads were bonded together using 

a harmonic bond potential, a harmonic angle potential, and a Lennard-Jones like non-

bonded potential. This method, along with the use of GPUs, decreased simulation time by 

4 orders of magnitude or more as compared to a simple atomistic system. Chapter 2 also 

covered techniques to measure the pitch of a BCP system, measure χ in a BCP system, 

measure the ODT of a BCP system, and compared results to well established mean field 

results.  
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Chapter 3 considered some of the implications of using a finite periodic box to 

simulation an ordered system. When using a lamellae forming BCP (or anything else that 

forms similar layered structures) only a finite number of repeat distances are allowed. A 

simple equation was derived to describe all possible allowable distances. It was found 

that using more elongated boxes generally produced more allowable pitches for a given 

simulation volume. The calculations were demonstrated using our BCP model.  

Chapter 4 explored the effect of guiding layer properties and errors on resulting 

directed self-assembly (DSA) pattern properties produced in block copolymer (BCP) thin 

films. Guiding patterns that are non-commensurate to the natural BCP pitch were 

considered, as were guiding lines that have correlated or anti-correlated line edge 

deviations. The process window was detailed for non-commensurate line widths.  

Guiding lines with various correlated and anti-correlated roughnesses showed that under 

the high χ conditions used here, very significant guiding roughness was required to have 

any effect on the BCP film, and most of the guiding roughness was damped out within 5 

nm of the bottom surface of the BCP film. Also, pitch sub-division patterns (where the 

BCP natural periodicity is some integer multiple smaller than the guiding pattern 

periodicity) damped out guiding line roughness more easily than pitch replicating 

patterns where a guiding pattern exists for each line formed in the BCP film. 

Chapter 5 studied the thin film self-assembly and resulting pattern properties of 

block copolymer (BCP) systems with various molecular weight polydispersities.  Effects 

of the polydispersity index (PDI) on feature pitch and interfacial roughness, which are 

critical lithographic parameters that have a direct impact on integrated circuit 
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performance, were simulated.  It was found that for a realistic distribution of polymer 

molecular weights, modeled by a Wesslau distribution, both line edge roughness (LER) 

and line width roughness (LWR) increase approximately linearly with increasing PDI, up 

to ~ 45% of the monodisperse value at PDI = 1.5. Mechanisms of compensation for 

increase A-A and B-B roughness were considered. It was found that long and short chain 

positions were not correlated, and that long chains were significantly deformed in shape. 

The increase in LWR was due to the increase in LER and a constant correlation between 

the line edges. Unaligned systems showed a correlation between domain width and local 

molecular weight, while systems aligned on an alternating pattern of A and B lines did 

not so any correlation. When the volume fraction of individual chains was allowed to 

vary, similar results were found when considering the PDI of the block as opposed to the 

PDI of the entire system.  

Chapter 6 studied the effect of χN on the block domain interfacial roughness and 

block domain width variation.  The domain interfacial roughness was characterized in 

terms of line edge roughness (LER) at the A-B lamellar domain interface as defined by 

bead density mapping. The block domain width variation was characterized in terms of a 

line width roughness (LWR) of the A and B domains again as defined by bead density 

mapping of the aligned BCP films. These two parameters were chosen and quantified 

since they are particularly important for the potential application of block copolymer 

directed self-assembly in semiconductor manufacturing as an enhancement to current 

optical lithography techniques.  LER and LWR behavior at low χN values received 

particular attention in this work because of the lack of prior studies in this area.  

Previously, the behavior of LER and LWR at high χN values has been probed using 
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analytical techniques based on mean-field Leibler, Ohta, and Kawasaki (LOK) models, 

but these models use assumptions that limit their accuracy in the low χN regime.
1,2

 Using 

a coarse grained molecular dynamics model, this low χN region was explored. A sharp 

increase in LER and LWR in aligned BCP patterns is found for low χN values. Other 

models underestimate roughness at low χN.  Using guiding stripes with programmed 

roughness instead of idealized straight guiding stripes does not change the dependence of 

BCP LER and LWR on χN. 

Chapter 7 described a technique to measure free energy differences between states 

called thermodynamic integration and applied it to variations in pitch and to 

measurements of the ODT. The minimum free energy occurred at a pitch that 

corresponded to the calculated natural pitch from scattering calculations. The penalty for 

pitches lower than the natural pitch was found to scale with χ and the proportional 

decrease in pitch, indicating a purely enthalpic driving force and resulting in a universal 

energy penalty curve. The penalty for pitches larger than the natural pitch is entropically 

driven and requires more complex calculations. The entropic and enthalpic terms must be 

separated to investigate such behavior. The ODT was also measured in a manner similar 

to Müller et al.
3
 by calculating the free energy in the mixed state and of the demixed 

state. The intersection of these curves is the ODT. The measured ODT depends on the 

pitch used in the demixed calculation. If the pitch is too large, then the χN at the ODT 

will be over estimated. The measurement was taken as a function of pitch and found to 

approach the expected ODT of 10.5 when smaller pitches were used, thus correcting the 

work by Müller et al.
3
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Chapter 8 applied the previously mentioned thermodynamic integration to 

measurement of defect free energies of a defect commonly found in BCP-DSA. By 

measuring this free energy, the concentration of defects, and what affects that 

concentration, at equilibrium can be found. Because defect density is one of the most 

important hurdles yet to be overcome in BCP-DSA for IC fabrication, understanding 

what affects this free energy is critical. It is found that χN is not the best predictor of 

defect free energy and that a single χN value can yield vastly different free energies when 

χ and N are different (though their product is identical). This means that higher χ systems 

that are being produced to allow for smaller feature size DSA will likely have a lower 

equilibrium intrinsic defect density. Measurements of defect densities are reasonable for 

the oft-studied PS-PMMA. Defect free energies were measured as a function of defect 

placement relative to the underlayer and as a function of background composition. The 

effect of background composition was unclear but the defect free energy was highly 

dependent on defect location relative to the underlayer. Free energy differences ~ 100 kT 

were found between the three possible defect locations on a 1-3 guiding pattern. The 

effect of PDI on defect free energy was also studied. It was found that PDI significantly 

reduced defect free energy. Extrapolating form PDI up to 1.5 suggests that the defect will 

occur in equal proportions with a PDI of around 1.6 for this system. It was found that 

long chains tended to concentrate near the defect and stabilize the defect.  

In addition to equilibrium defect density, the kinetics of defect healing are 

important to understanding final defectivity in a real BCP-DSA process. Chapter 9 

considers the kinetic of healing the defect studied in chapter 8. It is found that infinitely 

thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, 
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the rate of transport was similar to the rate at which the transition state was reached so 

that the overall rate changed only slightly. The energy barrier in periodic simulations 

increased with 0.31 χN on average. Thin film simulations show no change in rate 

associated with the energy barrier below χN ~ 50, and then show an increase in energy 

barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free 

interface or the BCP-underlayer interface where the increased A-B contact area associated 

with the transition state will be minimized, while the infinitely thick films must start 

healing in the bulk where the A-B contact area is increased. It is also found that 

cooperative chain movement is required for the defect to start healing. 

The large energy barriers found at high χN in chapter 9 suggest a need for a 

method to increase the sampling efficiency of MD calculations in systems with large 

activation energies. Such a method is developed by applying PCND to polymer systems. 

By applying a time correlated random force along the backbone of the polymer chain, 

chain movement is encouraged without significant perturbation of the free energy of the 

system. This method is applied to a coarse-grained MD model in the context of defect 

healing in an aligned thin film system. It was found that PCND increased defect heal rate 

by 4 orders of magnitude. Diffusion is also increased by about an order of magnitude. An 

investigation of the limits of the parameters that describe the random force was 

undertaken, and a set of parameters that both significantly decrease defect heal time and 

have little effect on system properties such as natural pitch and chain statistics was found. 

A comparison to increased temperature annealing was undertaken and it was found that 

the correlated random force was much more effective at sampling over energy barriers. 
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Chapter 11 considered a slightly different problem, that a given polymer with a 

given χ has a minimum pitch that can be achieved before the ODT is reached. The pitch 

can be reduced by decreasing N, the degree of polymerization, but when χN drops too 

low, the polymer will mix. By using multiblock copolymers where A and B are linked 

together to form longer chains but block size is retained, this limit can be decreased. The  

diblock equivalent χN at the ODT can be reduced such that the minimum pitch possible 

for that combination of A and B is reduced beyond the diblock limit. However, the gain is 

minimal. The distribution of chain conformations is also studied.  

12.2. Recommendations for future work 

While chapter 3 considers the effect of box size on allowable lamellar repeat 

distances, cylinder repeat distances are also of interest in the BCP community. A similar 

approach could be taken to derive an equation, or set of equations, that describe allowable 

repeat distances of cylinders. This is a more complicated problem because: 1) there is an 

extra dimension around which the cylinders can rotate, and 2) the penalty for producing 

cylinders that are not hexagonally packed or have some other morphology is low 

compared to analogous defect in lamellae forming systems. Using a limited box size may 

favor forming a defect over adopting one of the allowable repeat distances for perfect 

hexagonally packed cylinders.  

Chapter 4 presents interesting data regarding a BCPs ability to accommodate 

defective underlayer patterns, but these results are not generalized. Large defects in the 

underlayer are required to perturb the overlying BCP, but what determines how large the 
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defect must be? A systematic study of exactly how large such a defect must be, and how 

that varies with properties like χ would be worthwhile.  

Line edge roughness was measured as a function of polydispersity, χ and N, and 

some underlayer properties. Other properties, such as differences in cohesive energy 

density or differences in stiffness between block could be studied. This is an area that is 

completely unstudied, and in fact would be very difficult to study using conventional 

simulation techniques. Our model would excel at elucidating such effects. In chapter 6, 

using more accurate interfacial width calculations or results may modify Semenov’s 

theory to better match the data found here. 

   Defect free energy calculations are shown in chapter 8 and provide good insight 

into what properties are important when optimizing BCP-DSA materials and properties. 

However, a great many underlayer properties have not been considered. Various types of 

guiding layers will produce different defects, but only one such defect and guiding layer 

has been studied here. Processes such as the COOL
4
 process or the SMART

TM5 
process 

have different underlayers that may affect defect density. What approach is best? What 

effect does topography, which is present in the COOL and SMART
TM

 approaches and 

perhaps unintentionally in other approaches, have of defect density? Thermodynamic 

integration could be used to study these processes. Additionally, the defects that may be 

present may be different than those in pure chemoepitaxial processes. The types of 

defects that occur, especially near topography in the underlayer, could be easily studied 

using our model, but very difficult to study experimentally. Studies similar to those found 

in chapter 9 on the kinetics of such defect healing could also be carried out for the 
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various defects and underlayers for which equilibrium defect density is studied. 

Additionally, the effect of chain distribution on defect free energy as a function of χN 

could be more fully studied. Two approaches could be envisioned: 1) the approach used 

here where various distributions are forced and the defect free energy is measured, and 2) 

a defect is forced (perhaps via a defect in the guiding layer) and the chains are allowed, 

over a very long period of time, to adopt their preferred distribution. Light PCND could 

help with sampling time, but care would have to be taken to preserve the defect.  

Protracted colored noise dynamics for polymer systems, while introduced here, 

has not been fully studied. A full study on the effect that PCND has on the free energy of 

a system would be worthwhile. If PCND does affect the relative free energies of various 

states significantly, then understanding how that happens is crucial. Alternatively, if 

PCND generally does not, then it is necessary to know that before making conclusions 

from simulations involving PCND in some cases. Preliminary studied suggest the effect 

is small, but what that effect is like under different conditions has not been studied. In 

addition, a detailed study on choosing parameters that best fit a system and purpose is 

worth pursuing. Here, a wide range of parameters are considered to find the optimal 

range. However, if this is necessary for every new system, PCND’s useful would be 

significantly hampered. PCND has only been applied to short chains. Longer chains 

which are thoroughly entangled may have very different behavior under the influence of 

PCND. Such systems are almost never studied using MD because of the exceedingly long 

simulation times required. PCND may allow such systems to be studied in greater detail, 

but this has not been considered.  
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Solvent annealing, or processes that involve both solvent and thermal annealing, 

are becoming more common. Adapting this model to include solvent-polymer 

interactions would be a worthwhile undertaking. The effects that solvent annealing have 

on χ, pitch, chain mobility and effects on morphology and orientation are not fully 

understood, especially when considering the concentration gradients that can occur and 

which have been shown to affect alignment orientation.
6
 Simulations can consider these 

gradients more easily than experiments and the effects can be more clearly elucidated. 

When combined with rapid thermal annealing, these processes only get more 

complicated.
7
 Effects of solvent mixing may be an important topic in the future, 

especially as solvents will partition into various block differently.
8
 The effect that this has 

is not fully understood and could benefit from simulation.  

This work has only used BCPs that were symmetric, that is, each block had the 

same homopolymer parameters. However, no real BCP systems exist in this state. In fact, 

high χ materials often have a very asymmetric nature and it is often this fact that creates 

the large χ. One estimation of the χ value of a BCP uses the differences in the solubility 

parameters which derive from the cohesive energy density of the homopolymers. If these 

are the same, then χ is calculated as zero, but if they are very different then a high χ is 

calculated. While this method is not very accurate, it does demonstrate how an 

asymmetry in a BCP gives rise to χ. Because of this fact, the impact of asymmetries will 

likely increase as more high χ materials are used, thus study of such system may become 

increasingly important. In fact it has already been demonstrated that BCP asymmetry is a 

cause for the formation of horizontal lamellae (lamellae that lay parallel to the 

underlayer), which are largely useless in semi-conductor fabrication.
9
 Traditional mean-
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field models are currently largely incompatible with these asymmetries, but the coarse-

grained model used here can be easily adapted to model BCPs who blocks have different 

densities, cohesive energy densities, stiffnesses, etc. The effect of asymmetry on the 

various aspects of BCP-DSA shown here, an on more fundamental BCP phase separation 

would be very useful.  
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