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Abstract

The Discrete Equivalent Wing Crack Damage (DEWCD) model formulated

in this paper couples micro-mechanics and Continuum Damage Mechan-

ics (CDM) principles. At the scale of the Representative Elementary Vol-

ume (REV), damage is obtained by integrating crack densities over the unit

sphere, which represents all possible crack plane orientations. The unit sphere

is discretized into 42 integration points. The damage yield criterion is ex-

pressed at the microscopic scale: if a crack is in tension, crack growth is

controlled by a mode I fracture mechanics criterion; if a crack is in compres-

sion, the shear stress that applies at its faces is projected on the directions

considered in the numerical integration scheme, and cracks perpendicular to

these projected force components grow according to a mode I fracture me-

chanics criterion. The projection of shear stresses into a set of tensile forces

allows predicting the occurrence of wing cracks at the tips of pre-existing

defects. We assume that all of the resulting mode I cracks do not interact,

and we adopt a dilute homogenization scheme. A hardening law is intro-

duced to account for subcritical crack propagation, and non-associated flow
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rules are adopted for damage and irreversible strains induced by residual

crack displacements after unloading. The DEWCD model depends on only 6

constitutive parameters which all have a sound physical meaning and can be

determined by direct measurements in the laboratory. The DEWCD model

is calibrated and validated against triaxial compression tests performed on

Bakken Shale. In order to highlight the advantages of the DEWCD model

over previous anisotropic damage models proposed for rocks, we simulated:

(a) A uniaxial tension followed by unloading and reloading in compression;

and (b) Uniaxial compression loading cycles of increasing amplitude. We

compared the results obtained with the DEWCD model with those obtained

with a micro-mechanical model and with a CDM model, both calibrated

against the same experimental dataset as the DEWCD model. The three

models predict a non linear-stress/strain relationship and damage-induced

anisotropy. The micro-mechanical model can capture unilateral effects. The

CDM model can capture the occurrence of irreversible strains. The DEWCD

model can capture both unilateral effects and irreversible strains. In addi-

tion, the DEWCD model can predict the apparent increase of strength and

ductility in compression when the confinement increases and the increasing

hysteresis on unloading-reloading paths as damage increases. The DEWCD

model is the only of the three models tested that provides realistic values of

yield stress and strength in tension and compression. This is a significant

advancement in the theoretical modeling of brittle solids. Future work will

be devoted to the prediction of crack coalescence and to the modeling of the

material response with interacting micro-cracks.

Keywords: Continuum Damage Mechanics, Micromechanics, Anisotropic
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1. Introduction

In most brittle materials such as rocks, concrete and ceramic composites,

mechanical failure is the result of a sequence of coupled micro-processes. In

Continuum Damage Mechanics (CDM), anisotropic damage is usually repre-

sented by second-order tensors (Murakami, 1988; Halm and Dragon, 1996) or

fourth-order tensors (Ju, 1989) that depend on the density and orientation

of families of micro-cracks. The expression of the damaged stiffness tensor is

based on the principle of strain or energy equivalence (Murakami, 2012), and

stress/strain relationships are deduced from the thermodynamic relationships

that are derived from the energy potentials. The damage flow rule, combined

with the consistency condition, allows determining the evolution of the mag-

nitude and direction of micro-cracks (Simo and Ju, 1987; Chaboche, 1993;

Hayakawa and Murakami, 1997). CDM models were implemented in Finite

Element Methods (FEM) for practical engineering purposes (e.g., (Jin et al.,

2015; Xu and Arson, 2015; Jin et al., 2016)) and were successfully used to

predict damage-induced anisotropy and confinement-induced strengthening

in rock subject to compression (e.g., (Shao and Rudnicki, 2000; Shao et al.,

2005, 2006)), as well as unilateral effects (e.g., (Chaboche, 1993; Dragon

et al., 2000)). However, multiple non-linear damage phenomena require more

constitutive parameters that are often not related to any microstructure or

mechanical property, which raises calibration challenges (Halm and Dragon,

1996, 1998; Arson, 2014). Moreover, difficulties arise when distinguishing

tension and compression: either the stress or the strain tensor has to be
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split into positive and negative components. Damage evolution depends on

distinct yield criteria and damage potentials (Lubarda et al., 1994; Frémond

and Nedjar, 1996; Comi and Perego, 2001; Zhu and Arson, 2013). These

so called bi-dissipative models are based on complex mathematical formula-

tions (challenging to implement in FEM) and depend on a large number of

parameters (challenging to calibrate). In micromechanical models, a direct

relationship is established between the macroscopic mechanical behavior and

micro-crack initiation, propagation, opening, closure and frictional sliding.

In the dilute crack scheme, the calculation of the displacement jump across

crack faces (Budiansky and O’connell, 1976) is used as a basis to upscale

the effective properties of the damaged REV (Kachanov, 1992, 1993) and

to express the corresponding energy potentials (Kachanov, 1982a,b; Pensée

et al., 2002; Pensee and Kondo, 2003). The evolution law is based on frac-

ture mechanics and can represent Mode I splitting (Krajcinovic et al., 1991;

Gambarotta and Lagomarsino, 1993), Mode II friction sliding (Gambarotta

and Lagomarsino, 1993) or mixed Mode wing crack development (Kachanov,

1982b; Nemat-Nasser and Obata, 1988). In order to account for crack inter-

actions, one can explicitly express the stress field that results from external

loading and crack interaction (Paliwal and Ramesh, 2008). Other upscal-

ing techniques (e.g., (Zhu et al., 2008, 2009; Zhu and Shao, 2015; Qi et al.,

2016a,b)) resort to Eshelby homogenization procedure (Eshelby, 1957), in

which the cracked solid is viewed as a matrix-inclusion system (Dormieux

et al., 2006). Micromechanical formulations automatically predict unilateral

effects but usually cannot capture the inelastic deformation together with the

softening that characterize the REV behavior after the peak of stress, and
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they require computationally intensive resolution algorithms. In this paper,

we formulate an anisotropic damage model that couples micro-mechanical

crack propagation criteria and CDM energy principles with a minimum num-

ber of constitutive parameters. In Section 2, we present the theoretical for-

mulation of our model, called the Discrete Equivalent Wing Crack based

Damage model (DEWCD). A finite number of orientations is used to project

the normal and tangential crack displacement vectors. The damage variable

is a second-order crack density tensor, and the irreversible deformation is the

crack opening vector averaged over all possible crack orientations. In tension,

cracks propagate in mode I in the direction normal to the tensile stress. In

compression, wing cracks propagate in mode I in the direction of the mini-

mum deviatoric stress. We calibrate and validate the DEWCD model against

triaxial compression data obtained on Middle Bakken shale. In Section 3, we

use the same experimental dataset to calibrate a phenomenological damage

model, the Differential-Stress Induced Damage (DSID) model (Xu and Ar-

son, 2014, 2015) and a micromechanical damage model (Pensée et al., 2002;

Pensee and Kondo, 2003). We simulate: (1) A uniaxial tension followed by

unloading and uniaxial compression; and (2) Two loading-unloading cycles of

uniaxial compression of increasing amplitude. We compare the performance

of the three models for capturing damage-induced anisotropy of stiffness, uni-

lateral effects in compression, damage hysteresis during unloading-reloading

cycles, damage-induced irreversible strains, confinement-dependent strength,

and differences of behavior in tension and compression.
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2. Theoretical Formulation of the Discrete Equivalent Wing Crack

Damage (DEWCD) model

2.1. Micromechanics-based free enthalpy

We formulate a CDM model in which the expression of the free enthalpy

is obtained from micromechanics principles. In the following, we consider

a REV of volume Ωr and external boundary ∂Ωr, in which a large number

of penny shaped microscopic cracks of various orientations are embedded in

an isotropic linear elastic matrix of compliance tensor S0. Each microscopic

crack is characterized by its normal direction −→n and its radius a, which is at

least 100 times smaller than the REV size. Opposite crack faces are noted

ω+ and ω−, with normal vectors −→n +
and −→n −. The displacement jump is

noted:

[−→u ] = −→u + −−→u − (1)

Where −→u +
(respectively −→u −) denotes the displacement vector at face ω+ (re-

spectively ω−). We consider a uniform stress field σ applied at the boundary

∂Ωr. The displacement field at the REV scale is calculated by superposi-

tion, by adding up the displacement field in the elastic matrix in the absence

of cracks and the displacement field induced by the opening and sliding of

micro-crack faces.

We assume that the mechanical interaction between cracks is negligible

and we use a dilute homogenization scheme to calculate the crack displace-

ment jumps. As a result, the average micro stress is equal to the stress field

applied to the REV, so that we have:

σ =
1

|Ωr|

∫
Ωr

[σm(x) + σc(x)]dx (2)
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In which σc is the stress field that is applied at micro-crack faces and σm

is the stress field in the linear elastic matrix. Moreover, the local stress at

crack faces is self-equilibrating, so that:

1

|Ωr|

∫
Ωr

σc(x)dx = 0 (3)

And therefore:

σ = 〈σm〉 (4)

The strain tensor in the matrix is obtained as follows:

εm = S0 : σ. (5)

Each micro-crack can be considered as a single crack embedded in an infinite

elastic homogeneous matrix, which allows calculating the displacement jumps

from fracture mechanics principles (Horii and Nemat-Nasser, 1983; Kachanov

et al., 2013). Considering a penny shaped crack of radius a subjected to a

uniformly distributed normal stress p at its faces and embedded in an infinite

elastic medium with Young’s modulus E0 and Poisson’s ratio ν0, the normal

displacement jump is:

[un] = 8
1− ν2

0

πE0

p
√
a2 − r2 (6)

The corresponding average Crack Opening Displacement (COD) is therefore:

〈[un]〉 =
16

3

1− ν2
0

πE0

pa (7)

Similarly, considering a penny shaped crack of radius a subjected to a uni-

formly distributed shear stress −→τ at its faces and embedded in an infinite
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elastic medium with Young’s modulus E0 and Poisson’s ratio ν0, the shear

displacement jump is expressed as (Kachanov et al., 2013):

〈[−→ut ]〉 =
32

3

1− ν2
0

(2− ν0)πE0

−→τ a (8)

We first consider a REV that contains a single family of N cracks of same

orientation −→ni and same size ai. The volume fraction of the normal and shear

displacement jumps are calculated as follows:

βi =
N

|Ωr|
〈[un]〉π(ai)

2 = ρic0σ
c : (−→ni ⊗−→ni )

−→γi =
N

|Ωr|
〈[−→ut ]〉π(ai)

2 = ρic1(σc · −→ni − (−→ni · σc · −→ni )−→ni )
(9)

Where p = σc : (−→ni ⊗−→ni ), −→τ = σc ·−→ni − (−→ni ·σc ·−→ni )−→ni and ρi is the damage

density along the direction −→ni , expressed as:

ρi =
Na3

|Ωr|
(10)

The coefficient c0 (respectively c1) is defined as the normal (respectively

shear) elastic compliance of the crack (Budiansky and O’connell, 1976; Kachanov,

1992):

c0 =
16

3

1− ν2
0

E0

c1 =
32

3

1− ν2
0

(2− ν0)E0

(11)

According to the dilute homogenization scheme, the average strain due

to the crack r is calculated as:

〈εc,r〉 =
1

2|Ωr|

∫
∂ω+

(−→n ⊗ [−→u ] + [−→u ]⊗−→n )dS (12)
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As a result, the overall average strain due to the entire family of micro-cracks

of normal −→ni can be obtained by summation, as follows:

εc =
N

|Ωr|

∫
∂ω+

[un](−→ni ⊗−→ni )dS

+
N

2|Ωr|

∫
∂ω+

([−→ut ]⊗−→ni +−→ni ⊗ [−→ut ])dS

= βi
−→ni ⊗−→ni +

1

2
(−→γi ⊗−→ni +−→ni ⊗−→γi )

(13)

With [un] = [−→u ] · −→ni and [−→ut ] = [−→u ] − [un]−→ni . The free energy W ∗ of the

REV containing the N cracks of orientation −→ni is the sum of the elastic

deformation energy of the matrix and the energy stored in the micro cracks

displacement jumps:

W ∗ =
1

2
εm : C0 : εm +

1

2
σc : εc (14)

Now substituting Eq.9 and Eq.13 into the above equation, the Helmholtz free

energy W ∗ of the REV can be rewritten as:

W ∗ =
1

2
εm : C0 : εm +

1

2
σc : [βi

−→ni ⊗−→ni +
1

2
(−→γi ⊗−→ni +−→ni ⊗−→γi )]

=
1

2
εm : C0 : εm +

1

2ρic0

β2
i +

1

2ρic1

−→γi · −→γi
(15)

The Gibbs energy (free enthalpy) is obtained by Legendre transformation,

as follows:

G∗ = σ : εE −W ∗ (16)

In which εE = εm + εc is the REV elastic strain. As a result, G∗ is expressed

as:

G∗ =
1

2
σ : S0 : σ + σ : εc − 1

2
σc : εc

=
1

2
σ : S0 : σ + σ : [βi

−→ni ⊗−→ni +
1

2
(−→γi ⊗−→ni +−→ni ⊗−→γi )]

− 1

2ρic0

β2
i −

1

2ρic1

−→γi · −→γi

(17)
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For a reversible process, i.e. for a fixed crack density, we have:

Ġ∗ = εE : σ̇

0 = [σ : (−→ni ⊗−→ni )−
1

ρic0

βi]β̇i + [(σ · −→ni − (−→ni · σ · −→ni )−→ni )

− 1

ρic1

−→γi ] · −̇→γi

(18)

From which we get:

σ : (−→ni ⊗−→ni ) =
1

ρic0

βi

σ · −→ni − (−→ni · σ · −→ni )−→ni =
1

ρic1

−→γi · −̇→γi
(19)

According to the dilute homogenization scheme, the equivalent traction

at the crack faces (at the REV scale) is given by:

−→
ti = σc · −→ni (20)

A normal displacement jump can only be induced by a tensile force, i.e. for

−→ni · σ · −→ni ≤ 0 (in which compression is counted positive, according to the

soil mechanics convention). The unilateral contact condition at crack faces

can be expressed as

[un] ≥ 0, σnn = −→n · σ · −→n ≤ 0, [un]σnn = 0 (21)

Using the conjugation relationships in Eq. 19 in the expression of free en-

thalpy in Eq.17 and introducing the unilateral condition, we get:

G∗ =
1

2
σ : S0 : σ +

1

2
c0ρi(
−→ni · σ · −→ni )〈−→ni · σ · −→ni 〉+

+
1

2
c1ρi[(σ · σ) : (−→ni ⊗−→ni )− σ : (−→ni ⊗−→ni ⊗−→ni ⊗−→ni ) : σ]

(22)
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In which we note 〈x〉+ = x, x ≥ 0, and 〈x〉+ = 0, x < 0. The Gibbs energy of

the REV is obtained by integrating G∗ for a distribution of crack orientations

ρ(n), over the unit sphere S2 = {−→n , |−→n |= 1}, as follows:

G =
1

2
σ : S0 : σ +

1

8π

∫
S2

{c0 ρ(−→n )(−→n · σ · −→n )〈−→n · σ · −→n 〉+

+ c1 ρ(−→n )[(σ · σ) : (−→n ⊗−→n )− σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σ]}dS
(23)

Because the calculation of the integral above is impractical for a continuous

distribution ρ(−→n ), we use a numerical integration scheme, with M integra-

tion points:

G =
1

2
σ : S0 : σ +

1

2

M∑
i=1

wi{c0ρi(
−→ni · σ · −→ni )〈−→ni · σ · −→ni 〉+

+ c1ρi[(σ · σ) : (−→ni ⊗−→ni )− σ : (−→ni ⊗−→ni ⊗−→ni ⊗−→ni ) : σ]}

(24)

Where wi is the weight in direction ni. We adopt Bazant’s discrete scheme

with 2 × 21 microplanes (Bažant and Oh, 1986). Note that the calculation

of G requires M calculations at each time step. Increasing M can increase

exponentially the computational cost of the numerical integration. Bazant’s

2×21 scheme provides satisfactory accuracy at reasonable computation cost.

For a detailed discussion about the performance of numerical integration

scheme, the reader is referred to (Ehret et al., 2010; Levasseur et al., 2013).

The expression of Gibbs energy expressed in Eq. 24 accounts for the dis-

placement field induced by crack opening and crack sliding, but not for crack

growth (i.e., the model does not account for the increase of crack radius). In

order to account for inelastic crack dedonding (i.e. crack radius growth), we

introduce the inelastic strain εin in the formulation. We adopt a hyper-elastic

framework (Collins and Houlsby, 1997), in which the REV strain tensor ε
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is split into a pure elastic part εe which corresponds to the deformation of

elastic matrix, an additional elastic part εd which represents the micro-crack

elastic strain, and the inelastic deformation εin, as follows:

ε = εe + εd + εin = εE + εin (25)

In which:

εe =
1 + ν0

E0

σ − ν0

E0

Tr(σ)δ

εd =
M∑
i=1

wi{c0ρi〈−→ni · σ · −→ni 〉+−→ni ⊗−→ni

+ c1ρi[σ · (−→ni ⊗−→ni )− (−→ni · σ · −→ni )−→ni ⊗−→ni ]}

(26)

Conjugation relationships can be established to calculate the total elastic

strain εE and the damage driving force Yi:

εE = εe + εd =
∂G

∂σ
(27)

Yi =
∂G

∂ρi
=

1

2
wi{c0(−→ni · σ · −→ni )〈−→ni · σ · −→ni 〉+

+ c1[(σ · σ) : (−→ni ⊗−→ni )− σ : (−→ni ⊗−→ni ⊗−→ni ⊗−→ni ) : σ]}
(28)

2.2. Damage yield criterion

Uniaxial compression tests performed on two-dimensional photoelastic

materials highlighted the occurrence of two wing cracks at the tips of pre-

existing cracks. Wing cracks propagate along a curved path, of average

direction parallel to the direction of maximum compression (Nemat-Nasser

and Horii, 1982; Ashby and Hallam, 1986; Horii and Nemat-Nasser, 1986).

The sliding wing crack model was initially presented in the pioneering work
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of Bombolakis and Brace (Bombolakis and Brace, 1963). Since then, numer-

ous studies were devoted to the mechanisms of crack propagation in brit-

tle solids under compression, for instance: (Nemat-Nasser and Horii, 1982;

Ashby and Hallam, 1986; Horii and Nemat-Nasser, 1986; Dyskin and Sal-

ganik, 1987; Nemat-Nasser and Obata, 1988; Lehner and Kachanov, 1996).

3D lab experiments (Germanovich et al., 1994; Sahouryeh et al., 2002), nu-

merical simulations (Scholtès and Donzé, 2012) and theoretical derivations

(Dyskin and Salganik, 1987) were also proposed to model the propagation

of tensile wing cracks at the tip of sliding cracks (‘slips’). Friction forces at

the faces of slips are thus the forces driving the propagation of wing cracks.

3D wing cracks propagate due to mixed failure modes (I, II or III) at differ-

ent locations along the edge of the pre-exiting slip cracks. The shape of 3D

wing cracks is therefore extremely complex, and depends on a high number

of parameters.

For practicality, we ignore friction at crack faces, i.e. we assume that wing

cracks propagate in pure mode I and we represent the propagation of shear

cracks in the form of tensile wing cracks. We ignore the interaction between

these tensile micro-cracks and we apply the dilute hogenization scheme. If

the unilateral contact condition is satisfied, cracks propagate due to normal

tensile stresses, according to the following mode I propagation criterion:

fd(σ, ai) = σinn −
Kc√
ai

(29)

Where Kc is a constitutive parameter which represents the material tough-

ness. We define the second-order crack density tensor Ω (also called second-
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order damage tensor) as follows:

Ω =
M∑
i=1

ρi
−→ni ⊗−→ni . (30)

If the unilateral contact condition is not satisfied, shear stresses at the faces

of slip cracks induce the propagation of wing cracks. Following (Horii and

Nemat-Nasser, 1986; Lehner and Kachanov, 1996), we represent two half

wing cracks as a single fictitious circular crack, as shown in Fig.1.

The direction of maximum shear stress at the faces of the cracks perpen-

dicular to direction −→ni can be calculated as follows:

−→mi =
τ c

||τ c||
=

σ · −→ni − (−→ni · σ · −→ni )−→ni
||σ · −→ni − (−→ni · σ · −→ni )−→ni ||

(31)

We solve the wing crack propagation problem in two dimensions, by assuming

that the normal of the equivalent fictitious circular crack that represents the

wing cracks is contained in the plane (mi, ni). Therefore, we have:

σinn = −→ni · σ · −→ni

τ inm = ||σ · −→ni − (−→ni · σ · −→ni )−→ni ||

σimm = −→mi · σ · −→mi

(32)

The tensile force F applied at the faces of the fictitious wing crack is equal

to the shear forces undergone by the pre-existing ‘slip’ of radius ai, and can

be calculated as:

F = πa2
i τ

c = πa2
i τ

i
nm (33)

Experimental (Sahouryeh et al., 2002) and numerical (Scholtès and Donzé,

2012) studies indicate that wing cracks propagate along the direction of maxi-

mum compression stress. When the pre-existing ‘slip’ crack is in compression
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and subjected to shear stresses, the normal to the fictitious planar crack rep-

resenting the wing cracks is therefore oriented in the direction of minimum

compression (Eq.32). Using Mohr’s circles, the intensity σmin and direction

θi of the mimimum compression are calculated as follows:

tan(2θi) =
2τ inm

σimm − σinn

σmin =
σimm + σinn

2
−
√

(
σimm − σinn

2
)2 + (τ inm)2

(34)

Based on the theory of linear fracture mechanics, we consider that the wing

crack propagates only if the stress intensity factor reaches the material tough-

ness. Assuming that the tensile driving force F is uniformly distributed along

the faces of the fictitious planar crack (Fig.1), we define the wing micro crack

propagation criterion as follows:

fd0(σ, aθi) =
√
π aθi

(
Fcos(θi)

πa2
θi

− σmin
)
−Kc

√
π (35)

Satisfying the criterion fd0 is equivalent to satisfying the following criterion,

which will be adopted in the following for wing crack propagation:

fd(σ, aθi) =

(
cos(θi)τ

i
nm(

ai
aθi

)2 − σmin
)
− Kc√

aθi
(36)

aθi is the radius of the fictitious wing crack, which can be determined by

projecting the damage tensor defined in Eq. 30 as follows:

aθi = (
|Ωr|
N
−→nθ ·Ω · −→nθ)1/3 (37)

−→nθ is the unit vector normal to the family of wing cracks of orientation θ,

and is expressed as:

−→nθ = −→micos(θi) +−→nisin(θi) (38)
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The progressive stiffness degradation observed before the peak of stress

in experimental rock mechanics compression tests indicates that wing micro-

cracks propagate in a stable way (Yuan and Harrison, 2006). Theoretically,

in the subcritical regime, cracks can propagate even when the stress intensity

factor is lower than the material toughness. Moreover, the stress intensity

required for crack propagation increases as the crack propagates (Savalli and

Engelder, 2005). In order to account for this hardening effect, we propose to

express the material toughness as a hyperbolic function of the crack radius,

as follows:

Kc =
a3/2

1
K0

+ a
σc

(39)

Where a = aθi for a crack in compression (leading to the propagation of

wing cracks), and a = ai for a crack in tension. As shown in Fig.2, the yield

point depends on K0, the slope of the plot that represents the variations the

toughness with the square root of the fracture length. The parameter σc

controls the peak driving force that the REV can sustain.

2.3. Damage potential and flow rule

Inelastic strains observed after unloading are due to residual geometric

incompatibilities at the crack faces, which depend on the damage-driving

forces Yi. The micro-crack propagation criteria formulated in Eq. 29 and 36

depend on stress and cannot properly represent the occurrence of residual

displacement fields after unloading. We thus derive the evolution laws of

inelastic strains from non associate flow rules. We introduce discrete damage

potentials (expressed in terms of Yi) in a homogeneous function of degree
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one, as follows:

gd(ni) = Yi − C0 (40)

Following a non-associate flow rule, the inelastic strain increment can be

computed from the damage potential as

ε̇in =
M∑
i=1

λ̇i
∂gd(ni)

∂σ
=

M∑
i=1

λ̇i
∂Yi
∂σ

=
M∑
i=1

wiλ̇i{c0〈−→ni · σ · −→ni 〉+−→ni ⊗−→ni

+ c1[σ · (−→ni ⊗−→ni )− (−→ni · σ · −→ni )−→ni ⊗−→ni ]}

(41)

Where λi is Lagrange multiplier for each family of crack with normal −→ni .

Similarly, the increment of damage density is calculated as:

ρ̇i = λ̇i
∂gd
∂Yi

= λ̇i (42)

The incremental damage density is calculated from the increments of crack

radius, as follows:

∆ρi =
N

|Ωr|
∆(a3

i ) (43)

In which ∆(a3
i ) represents the variation of the value of a3

i between two iter-

ations. We have: ∆(a3
i ) = 3(ai)

2∆(ai) in which ∆(ai) is obtained by using

the consistency rule:

∆(ai) = −
∂fd
∂σ
∂fd
∂ai

: ∆σ (44)

The equation above requires calculating the derivatives of τ inm and σmin with

respect to the stress tensor σ, which is computationally intensive. We employ
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the Newton iteration scheme to update the radius of the micro cracks at each

load step. As shown in Fig.3, the tangent of the yield criterion is calculated

at each iteration i to approach the exact crack size at load step n+1, as

follows:

an,i+1 = an,i −
fd(σn,i, an,i)

f ′d(σn,i, an,i)
(45)

The convergence criterion (rn,i) is expressed as

||rn,i||= ||an,i+1 − an,i|| ≤ εTOL (46)

Where εTOL is a tolerance value. Once the increment of crack radius is

obtained for each crack orientation (∆(ai), ∆(aθi)), the increment of damage

tensor ∆Ω can be updated as

∆Ω =
M∑
i=1

N

|Ωr|
∆(ai

3)−→ni ⊗−→ni +
M∑
i=1

N

|Ωr|
∆(aθi

3)−→nθi ⊗−→nθi (47)

In the equation above, the variation of crack density in direction −→ni accounts

for the growth of cracks perpendicular to direction −→ni in mode I, and for the

growth of wing cracks that develop at the tips of cracks that are not per-

pendicular to −→ni . The proposed model is named Discrete Equivalent Wing

Crack based Damage (DEWCD) model because frictional wing cracks are in-

directly represented by equivalent tensile wing cracks obtained by projection.

The DEWCD model is designed to capture splitting and crossing effects. We

used the quadrature rules explained above (Bažant and Oh, 1986) to project

the vectors −→nθi on the 42 directions −→ni . Ultimately, the increment of crack

density is obtained by projecting the increment of damage tensor in each of

the 42 directions considered in the quadrature:

∆ρi = −→ni ·∆Ω · −→ni (48)
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2.4. DEWCD Model calibration and validation

The Discrete Equivalent Wing Crack based Damage (DEWCD) model de-

pends on six constitutive parameters: the reference (initial) Young’s modulus

E0, the reference (initial) Poission’s ratio ν0, the reference (initial) microcrack

radius a0, the microcrack density (Number of crack per unit volume) N = N
|Ωr| ,

the initial toughness slope K0 and the critical stress σc. For an intrinsically

anisotropic material (i.e. with anisotropy not induced by micro-crack prop-

agation), the model can easily be adapted by choosing different values of

reference radius (a0) for different crack orientations. The six parameters

above have a sound physical meaning and can be determined by performing

standard mechanical tests (e.g., uniaxial and triaxial compression tests; uni-

axial tension test; Brazilian test), and microstructure characterizations (e.g.

Scanning Electron Microscopy; acoustic emissions). In the following, we cali-

brate and validate the DEWCD model against a series of triaxial compression

tests performed on North Dakota Bakken shale plugs in ConocoPhillips rock

mechanics laboratory. All the samples were dry (Amendt et al., 2013). Plugs

were cored from the same depth and lithology and were selected to avoid ma-

jor bedding discontinuities, and were considered homogeneous. We used the

stress/strain curves obtained with a confinement of 2000 psi (13.8 MPa) for

calibration, and we validated the model with confinements of 1000 psi (6.9

MPa) and 3000 psi (20.7 MPa). Note that the soil mechanics sign convention

was adopted throughout the paper (with compression counted positive).

We used the Interior Point Algorithm programmed in MATLAB to de-

termine the unknown vector B = (E0, ν0, a0,N, K0, σc) that minimizes the

squared residual of the distance between experimental results yi and numeri-
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cal predictions fi(X,B). The residual that is minimized iteratively is defined

as:

R(B) =
n∑
i=1

[yi − fi(X,B)]2 (49)

WhereX stands for the vector of known input variables (e.g., strain or stress,

depending whether the load is controlled in force or displacement). The al-

gorithm was initialized with an initial guess, as well as the lower bound and

the upper bound of the coefficients of the unknown parameter vector B.

Then, triaxial compression tests were simulated with the DEWCD model

at the material point, and the value of the residual R(B) was calculated

based on the set of parameters obtained at the previous iteration. The gra-

dient of the residual R(B) with respect to each parameter in the vector B

was calculated and used to minimize the difference between numerical and

experimental stress-strain curves, as follows:

Bn+1 = Bn − γn∆R(B) (50)

Where γn is the barrier parameter, which is updated at each iteration step in

the Interior Point Algorithm. The procedure is described in detail in (Byrd

et al., 2000; Waltz et al., 2006).

Fig.4(a) shows the experimental stress-strain curve (green star marker)

and the numerical stress-strain curve obtained after model calibration (green

solid line) for a confinement of σ3 = 13.8 MPa. Note that the calibration

of the DEWCD model was based on experimental data obtained before the

failure stress, because the DEWCD model does not capture the interactions

and coalescence of cracks during the post peak softening regime. Curves

match closely except for the lateral deformation, which is underestimated by
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the DEWCD model for damage values higher than 10%. We interpret this

discrepancy by the fact that shale is not a purely brittle material. Ductile

deformation at high damage induces large lateral strains, which cannot be

captured by the DEWCD model, especially for shales that contain significant

amounts of clay/organic matter (Sone and Zoback, 2013a,b). We simulated

the triaxial compression tests performed under confinements of σ3 = 6.9 MPa

(solid blue line) and σ3 = 20.7 MPa (solid red line) using the calibrated pa-

rameters, and compared the DEWCD predictions with experimental data

(blue circle markers and red square makers, respectively). Similar to the

the theory of plasticity, we define the yield stress as the value of stress at

which micro cracks start to propagate (damage initiation), and we define the

the material strength as the peak value of stress in the stress/strain curve.

Fig.4(a) shows that the DEWCD model captures the increase of the yield

stress σy with increasing confining pressure σ3. Over 800 sampling points

were used on the experimental stress/strain curves before the failure peak

to assess the accuracy of the model predictions after calibration. The error,

defined as the distance between the numerical and experimental curves, is

less than 5%, which is considered very satisfactory provided the unavoid-

able microstructural differences between the initial rock samples. Fig.4(b)

shows the evolution of the principal values of the damage tensor for the

three confining pressures considered. Micro-cracks normal to the axial di-

rection of the compression load (x1) are fully closed, therefore Ω1 = 0 in

all tests. The lateral damage components Ω2 and Ω3 are induced by the

opening of wing cracks at the tips of non horizontal cracks, which are sub-

jected to local shear stresses. Lateral damage increases exponentially with
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deviatoric stress. As the deviatoric stress approaches the value of the peak

stress noted in the stress/strain curves, the tangent to the damage evolu-

tion curve approaches infinity. Physically, this phenomenon corresponds to

strong micro-crack interactions leading to crack coalescence and macroscopic

discontinuities. Overall, the performance of the DEWCD model for the cal-

ibrated parameters is very satisfactory. The DEWCD model parameters

calibrated for North Dakota Bakken Shale are reported in Table 1. Using

these calibrated model parameters, we simulated triaxial compression tests

under confining pressures ranging from 5 MPa to 28 MPa. We calculated

the deviatoric stress at which the Young’s modulus was decreased to 25%

of its initial value. As shown in Fig.5, the value of that threshold stress in-

creases linearly with the confining pressure. Moreover, the variations of the

threshold stress with the confining pressure match those of the compressive

strength obtained experimentally. This indicates that the DEWCD allows

predicting the failure (peak) stress.

3. Comparison of the DEWCD model with phenomenological and

micromechanical damage models

In the following, we explain the theoretical formulation of a microme-

chanical model (Pensée et al., 2002; Pensee and Kondo, 2003) and of the

phenomenological Differential Stress Induced Damage (DSID) model, and

we calibrate the micro-mechanical and DSID models against the same ex-

perimental dataset as the DEWCD model. Then we compare the perfor-

mance of the micro-mechanical, DSID and DEWCD models in capturing

damage-induced anisotropy, crack-induced dilation strains, damage hystere-
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sis, confinement-dependent strength, unilateral effects in compression, and

distinct behaviors in tension and compression.

3.1. Formulation and calibration of the micro-mechanical damage model

Table 2 summarizes the main equations of the micro-mechanical model

presented in (Pensée et al., 2002; Pensee and Kondo, 2003). The free enthalpy

(Gibbs free energy) is the sum of the elastic deformation energy stored in the

non-damaged matrix and of the potential energy due to the displacement

jumps at the micro-crack faces. A discrete formulation is adopted, with M

possible crack orientations characterized by a crack density and a unilateral

condition. Crack closure is considered elastic. Crack debonding is the only

dissipation mechanism considered in the model. Based on the assumption

of crack non-interaction, damage (Ω) is defined as the crack density tensor

(i.e. as the sum of crack densities projected in their respective crack direc-

tions). For each of the M micro-crack directions, the damage yield criterion

is expressed as a linear hardening law, in terms of the crack density and of

its work-conjugate energy release rate. Since the only dissipation mechanism

adopted in the model is crack debonding, an associated damage flow rule is

adopted.

We used the same triaxial compression test dataset obtained for North

Dakota Middle Bakken Shale as in subsection 2.4 for micro-mechanical model

clibration and validation (Tab. 3). Following the same procedure as in sub-

section 2.4, we use the experimental results obtained with a confining pressure

of σ3 = 13.6 MPa for calibration and the results obtained for confining pres-

sures of σ3 = 6.9 MPa and σ3 = 20.7 MPa to verify the model parameters. As

shown in Fig.6(a), the high initial stiffness is compensated by a high dam-
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age propagation rate. Although the residual minimized by the calibration

algorithm reaches a very low value, the stress/strain curve predicted by the

micro-mechanical model does not match the experimental results satisfacto-

rily, especially for the lateral deformation. The main micro-crack propagation

mechanism is based on micro-crack face sliding under compression. During

a triaxial compression test, the highest crack densities are those of cracks

oriented by an angle of approximately 45 degrees from the loading axis. As a

result, the axial damage component Ω1 (crack planes parallel to the compres-

sion axis) is higher than the lateral damage components Ω2 and Ω3 (Fig.6(b)),

which is counter-intuitive for a compression test. Fig.6 also shows that the

stress/strain response predicted by the micro-mechanical model is the same

for the three confining pressures investigated. This is because the damage

yield criterion is expressed in terms of energy release rate, which is essen-

tially controlled by deviatoric stress σ1 − σ3. As a result, the influence of

the confining pressure on the damage yield stress cannot be captured by the

micro-mechanical model.

3.2. Theoretical formulation and calibration of the phenomenological DSID

model

The theoretical formulation of the DSID model (Xu and Arson, 2014,

2015) is summarized in Table 4. The damage tensor (noted Ω) is a phe-

nomenological internal variable, which controls the degradation of material

stiffness along principal crack planes. The free enthalpy (Gibbs free energy,

G) is expressed as the sum of the damaged elastic deformation energy stored

in the material, the potential energy that can be released by creating new

material surfaces, and the potential energy that can be released by opening
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cracks (i.e., the potential irreversible deformation energy). This free enthalpy

potential is expressed as a polynomial that is quadratic in stress and linear

in damage, which implies that the material is linear elastic in the absence of

damage (Shao et al., 2005; Halm and Dragon, 1998). Stress/strain relation-

ships are obtained by deriving the Gibbs energy by stress. Damage evolution

is controlled by a damage function, similar to the Drucker-Prager yield func-

tion (but expressed in terms of energy release rate instead of stress). The

damage flow rule is non-associate, and the damage potential is chosen so as

to ensure the positivity of dissipation associated to damage. The irreversible

deformation due to damage follows an associate flow rule, which ensures that

dilation due to crack opening takes place in the damage principal directions

(i.e. in the directions orthogonal to the crack planes).

Similar to the DEWCD model and the micro-mechanical damage mod-

els, we first calibrated the DSID model against experimental stress-strain

curves obtained during a triaxial compression test performed under a con-

fining pressure of σ3 = 13.8 MPa, as shown in Fig.7(a). Unlike the mi-

cromechanical damage model, the phenomenological DSID model can predict

the stress-strain curves before the occurrence of damage. However, like the

micro-mechanical damage model, the DSID model fails at capturing large

dilative lateral deformation. Fig.7(b) shows that lateral damage components

Ω2 and Ω3, which correspond to crack planes parallel to the loading axis,

propagate with increasing deviatoric stress, and that axial damage Ω1 re-

mains equal to zero, which is physically reasonable. However, the rate of

damage propagation is very small, even at the peak stress. In other words,

the DSID model predicts a continuous hardening even after the experimental
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peak stress, which is not physically reasonable. As shown in the magnified

part of Fig.7(b), the DSID model can capture the dependence of the yield

stress to the confining pressure. This is conform to the yield criterion cho-

sen in the DSID model, which depends on the confining stress through the

term αI∗. However, the DSID model predicts that the material under high

confining pressure softens faster, and yields a higher level of damage. This

inconsistency is due to the unreasonable damage evolution predicted by the

model and to the negligible difference in yield stress in the three triaxial com-

pression tests. This problem can be overcome by calibrating the DSID model

against the whole set of experimental data instead of just one stress strain

curve (however, we calibrated the DSID model against the dataset obtained

at a confining pressure of σ3 = 13.8 MPa to match the calibration procedure

used in the two other models).

3.3. Simulation of uniaxial tension followed by compression

One of the major characteristics of brittle solids such as rocks, concrete

and ceramics, is that they yield at a very low tensile stress and fail soon

after yielding. Before complete failure, stiffness damaged in tension can

be partially recovered in compression, due to the unilateral effects of crack

closure (Mazars et al., 1990). In order to assess the performance of the three

damage models to capture tensile failure and unilateral effects, we simulated

a uniaxial tension test followed by unloading and uniaxial compression. All

simulations were done in MATLAB at the material point, with the model

parameters calibrated above (Tab. 1, 3 and 5).

Figures 8(a) and 8(b) show that according to the micro-mechanical model

the tensile yield stress of Bakken shale is σy = 45 MPa. This result is unreal-
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istic for a rock material, because most rocks fail at that stress level in tension.

This discrepancy is due to the fact that the projection of crack densities in

the principal damage directions yields non zero lateral damage ( Ω2 and Ω3),

even in uniaxial tension. Moreover, the damage evolution rate for both lat-

eral and axial damage components is very slow. The phenomenological DSID

model gives a reasonable tensile yield stress of σy = 15 MPa (Fig.8(c)). How-

ever, the rate of damage propagation is slow and axial damage amounts to

only 10% when the tensile stress reaches 60 MPa. According to the DSID

model, Bakken shale follows an elastic behavior followed by hardening af-

ter the yield stress has been reached (Fig.8(d)). Figures 8(e) and 8(f) show

that according to the DEWCD model, Bakken shale yields at σy = 12 MPa

in uniaxial tension. After yielding, the damage propagation rate is high.

Large inelastic strains accumulate in the axial direction (Fig.8(e)), which is

unrealistic, because brittle solids subject to tensile loads tend to fail catas-

trophically without large deformation. That being said, crack interactions

other than the occurrence of wing cracks are ignored in the DEWCD model,

which is aimed to capture the damaged behavior before the peak of stress

(Eq.24). After a certain level of damage, micro-crack interaction and co-

alescence cannot be neglected. In order to capture the transition between

smeared and localized damage propagation, it would be more suitable to

couple the DEWCD model to a model of fracture mechanics. For the sake

of completeness, we show the results obtained for a tensile stress up to 45

MPa to compare the DEWCD model with the micro-mechanical and DSID

models. We note that the introduction of a damage potential together with

non-associate flow rules in the DSID and DEWCD models allows capturing

27



the occurrence of residual inelastic strains after unloading, which are not

accounted for in the micro-mechanical model. Simulation results obtained

with the micro-mechanical and DEWCD models also highlight unilateral ef-

fects induced by crack closure in compression, which are not captured by the

DSID model.

Fig.9 shows the evolution of the energy potentials for a uniaxial tension

simulation followed by unloading and uniaxial compression. Note that at

any point, the external work input equals the sum of the elastic deforma-

tion energy stored in the REV and the dissipation potentials. Dissipation

results solely from crack debonding in the micro-mechanical model. In the

DSID model, the total work input is the sum of the purely elastic strain

energy stored in the matrix, the additional damage-induced elastic strain

energy (due to stiffness degradation), and the inelastic strain energy (due to

residual crack-induced deformation). In the DEWCD model, elastic strain

energy is stored in the matrix (’matrix elastic strain energy’ in Fig. 9(c)) and

between crack faces (displacement jumps - ’damage induced strain energy’

in Fig. 9(c)), and energy is dissipated in the form of inelastic strain energy.

The damage-induced strain energy is one order of magnitude larger in the

DEWCD model than in the other two models, because of the significant dam-

age growth rate predicted by the DEWCD model after the peak stress. By

contrast with the micro-mechanical and DSID models, the DEWCD model

predicts that the compressive strength of the initial material is higher than

that of the material that has been damaged during the uniaxial tension load-

ing stage: the compressive strength is about 50 MPa in the virgin material

(Fig. 10(f)), while is it only 5 MPa in the presence of tensile damage (Fig.

28



8(f)).

3.4. Simulation of uniaxial compression cycles of increasing amplitude.

The compression strength of rock-like brittle solids is usually an order of

magnitude larger than the tensile strength. Requirements of thermodynamic

consistency (i.e. positive dissipation potentials) and yield function differen-

tiability make it challenging to combine two different criteria in tension and

compression. Some formulations split the stress into compressive and tensile

components (Comi and Perego, 2001; Shao and Rudnicki, 2000); other mod-

els are based on the decomposition of strains into positive and negative parts

(Dragon et al., 2000). In the DEWCD model, crack propagation in modes I

and II are modeled with two mode I propagation criteria applied to two dif-

ferent categories of cracks (tensile crack propagation and tensile wing crack

propagation). In order to assess the performance of this modeling strategy

in distinguishing the yield and failure in tension and compression, we simu-

late a cyclic compressive loading path with the micro-mechanical, DSID and

DEWCD models. Results obtained with the parameters calibrated above for

Bakken shale are shown in Fig. 10.

In the micro-mechanical model studied here, the unconfined compressive

yield stress is about 100 MPa (Fig. 10(a)-10(b)), which is an order of magni-

tude higher than the 45 MPa tensile yield stress found in the previous tests.

With the DSID model, the unconfined compression strength is σy = 40 MPa,

which is acceptable for a rock material (Fig. 10(c)-10(d)). However, the sam-

ple still does not fail under a uniaxial compressive stress of 250 MPa, which

means that the uniaxial compressive strength predicted is more than 250

MPa: this is approximately twice as much as what was expected for shale.
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From Fig.8(d), it can also be seen that more than 60 MPa uniaxial tension

is required to achieve a 0.3 damage. According to Kachanov’s calculations

(Kachanov, 1992), a damage of 0.3 corresponds to the initiation of crack in-

teractions, above which the framework of CDM is no longer valid and the

REV has reached failure. Accordingly, the present simulations indicate that

the tensile strength predicted by the DSID model exceeds 60 MPa, which is

several times higher than the value expected for shale.

Contrary to the micro-mechanical and DSID models, the DEWCD model

predicts values of yield stress and strength that are in the range of values

expected for a rock material like shale (Fig. 10(e) and 10(f)). The yield

stress predicted by the DEWCD model in uniaxial compression is 50 MPa.

Damage reaches 0.3 for a uniaxial compression stress of 180 MPa, and for a

uniaxial tensile stress of 30 MPa (Fig. 8(f) and 10(f)). For the compression

test simulated with the DEWCD and DSID models, axial damage (crack

planes perpendicular to the loading axis) does not propagate, and the lat-

eral damage components grow exponentially after the yield stress is reached,

which is more realistic than the damage evolution predicted with the micro-

mechanical model. In the DSID model, damage during the second loading

cycle initiates when the stress reaches the maximum stress value reached dur-

ing the first cycle. In the simulations done with the DEWCD model, damage

during the second loading cycle initiates at a lower stress value than the

maximum stress value reached during the first cycle. The DEWCD model

is the only model amongst the three tested that can capture this hysteretic

effect.
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4. Conclusion

The Discrete Equivalent Wing Crack Damage (DEWCD) model formu-

lated in this paper couples micro-mechanics and Continuum Damage Me-

chanics (CDM) principles to study brittle materials like rocks, ceramics and

concrete. In this study, we focus on the following complex features: (1) A

non-linear stress/strain relationship; (2) Damage-induced anisotropy of stiff-

ness; (3) The occurrence of irreversible strains due to volume dilation; (4)

A reduction of strength after the peak stress has been reached (softening) ;

(5) An apparent increase of strength and ductility in compression when the

confinement increases; (6) Increasing hysteresis on unloading-reloading paths

as damage increases; (7) Unilateral effects and partial recovery of stiffness in

compression; (8) Different mechanical responses in tension and compression.

The Representative Elementary Volume (REV) considered in the DEWCD

model is a unit sphere which is discretized with 42 integration points (to rep-

resent 42 possible micro-crack plane orientations). The REV free enthalpy

is the sum of the elastic deformation energy stored in the undamaged ma-

trix and the potential deformation energy due to the relative displacement

of crack faces. Cracks are represented by penny-shaped inclusions. Damage

at the REV scale is obtained by integrating the crack densities over the unit

sphere. The damage yield criterion is expressed at the microscopic scale: if a

crack is in tension, crack growth is controlled by a mode I fracture mechan-

ics criterion; if a crack is in compression, the shear stress that applies at its

faces is projected on the 42 directions considered in the numerical integra-

tion scheme, and cracks perpendicular to these projected force components

grow according to a mode I fracture mechanics criterion. The projection
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of shear stresses into a set of tensile forces allows predicting the occurrence

of wing cracks at the tips of pre-existing defects subject to mode II failure.

We assume that all the resulting mode I cracks do not interact and we use

a dilute homogenization scheme. A hardening law is introduced to account

for subcritical crack propagation, and non-associate flow rules are adopted

for damage and irreversible strains induced by residual crack displacements

after unloading. The DEWCD model is calibrated and validated against tri-

axial compression tests performed on Bakken Shale in ConocoPhillips rock

mechanics laboratory.

In order to highlight the advantages of the DEWCD model over previous

anisotropic damage models proposed for rocks, we simulated: (a) A uniaxial

tension followed by unloading and reloading in compression; and (b) Uni-

axial compression loading cycles of increasing amplitude. We compared the

results obtained with the DEWCD model with those obtained with a micro-

mechanical model and with a CDM model, both calibrated against the same

experimental dataset as the DEWCD model. The three models predict a

non linear-stress/strain relationship and damage-induced anisotropy (1)-(2).

The micro-mechanical model can capture unilateral effects (7) but not the

phenomena (3)-(6). The DSID model can capture the occurrence of irre-

versible strains (3), but cannot capture phenomena (4)-(7). The DEWCD

model can capture all phenomena (1)-(8) except the softening behavior (4),

which characterizes the mechanical response in case of crack interaction (be-

yond the scope of the present study). Note in particular that the DEWCD

model is the only of the three models tested that provides realistic values of

yield stress and strength in tension and compression (8). This is a significant
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advancement in the theoretical modeling of rock brittle behavior, because

unified models of tension and compression failure proposed so far could not

distinguish properly the difference of behavior of materials in tension and

compression.

The micro-mechanical model used for comparison is based on the same

discrete formulation of the free enthalpy as the DEWCD model, but does

not account for wing crack propagation. The CDM model used for compari-

son depends on the same phenomenological variables as the DEWCD model

(second-order damage tensor, irreversible strains). Therefore, the numerical

benchmark presented in this paper is representative and can be used to assess

the relative performance of the three models. The DEWCD model proved

to over-perform previous formulations purely based on micro-mechanics or

purely based on CDM. Moreover, the DEWCD model depends on only 6

constitutive parameters which all have a sound physical meaning and can be

determined by direct measurements in the laboratory. Future work will be

devoted to the prediction of crack coalescence and to the modeling of the

material response with interacting micro-cracks.
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Table 1: DEWCD parameters calibrated for Bakken Shale

Elasticity Initial State Damage function

E0 ν0 a0 N K0 σc

GPa − L N/L3 MPa/LMPa

40.8 0.32 0.022 960 3.6 1 ×

104
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Table 2: Theoretical formulation of the micro-mechanical damage model

Micromechanical Damage Model

Free Energy G = 1
2σ : S0 : σ + 1

2

∑M
i=1 wi{c0ρi(

−→ni · σ · −→ni)〈−→ni · σ · −→ni〉++

c1ρi[(σ · σ) : (−→ni ⊗−→ni)− σ : (−→ni ⊗−→ni ⊗−→ni ⊗−→ni) : σ]}

ε =
∂Gs
∂σ

=
1 + ν0
E0

σ − ν0
E0

(Trσ) δ +
∑M
i=1 wi{c0ρi〈

−→ni · σ · −→ni〉+−→ni ⊗−→ni

+c1ρi[σ · (−→ni ⊗−→ni)− (−→ni · σ · −→ni)−→ni ⊗−→ni ]}

Yi = 1
2
∂Gs

∂ρi
= wi{c0(−→ni · σ · −→ni)〈−→ni · σ · −→ni〉+

+c1[(σ · σ) : (−→ni ⊗−→ni)− σ : (−→ni ⊗−→ni ⊗−→ni ⊗−→ni) : σ]}

Damage Criteria fd(ni, Yi, ρi) = Yi − k(1 + ηρi)

Flow Rule ρ̇i = λ̇i
∂fd(ni,Yi,ρi)

∂Yi
= λ̇i

λ̇i = Yi

kη = 1
kη

∂Yi

∂σ : σ̇

∂Yi

∂σ = wi{c0〈−→ni · σ · −→ni〉+−→ni ⊗−→ni
+c1[σ · (−→ni ⊗−→ni)− (−→ni · σ · −→ni)−→ni ⊗−→ni ]}

G: Free enthalpy ε: Total strain k: Initial damage threshold

σ: Stress tensor δ: Kronecker delta S0: Undamaged compliance tensor

ρi: Damage density Yi: Damage driving force ρ̇i: Damage density rate

E0: Young’s Modulus ν0: Poisson’s ratio η: Damage hardening variable

fd: Damage function λ̇i: Lagrangian Multiplier wi: Weight in direction −→ni
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Table 3: Micromechanical damage model parameters calibrated for Bakken Shale

Elasticity Initial State Damage function

E0 ν0 a0 N k η

GPa − L N/L3 J/L3 J/L3

53.5 0.35 0.050 960 278.9 116.6
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Table 4: Theoretical formulation of the DSID model

D.S.I.D. Model

Free Energy G(σ,Ω) =
1

2
σ : S0 : σ + a1 TrΩ(Trσ)2 + a2 Tr(σ · σ ·Ω)

+a3 TrσTr(Ω · σ) + a4 TrΩTr(σ · σ)

εE =
∂G

∂σ
=

1 + ν0
E0

σ − ν0
E0

(Trσ) δ + 2a1(TrΩTrσ) δ + a2(σ ·Ω +Ω · σ)

+a3[ Tr(σ ·Ω) δ + (Trσ)Ω ] + 2a4(TrΩ)σ

Y =
∂G

∂Ω
= a1(Trσ)2 δ + a2σ · σ + a3Tr(σ)σ + a4Tr(σ · σ)δ

Damage Function fd =
√
J∗ − αI∗ − k

J∗ =
1

2
(P1 : Y − 1

3I
∗δ) : (P1 : Y − 1

3I
∗δ), I∗ = (P1 : Y ) : δ

P1 (σ) =
∑3
p=1

[
H(σ(p))−H(−σ(p))

]
n(p) ⊗ n(p) ⊗ n(p) ⊗ n(p)

k = C0 − C1Tr(Ω)

Damage Potential gd =

√
1

2
(P2 : Y ) : (P2 : Y )

P2 =
∑3
p=1H

[
max3

q=1(σ(q))− σ(p)
]
n(p) ⊗ n(p) ⊗ n(p) ⊗ n(p)

Flow Rule ε̇id = λ̇d
∂fd
∂σ

= λ̇d
∂fd
∂Y

:
∂Y

∂σ

Ω̇ = λ̇d
∂gd
∂Y

G: Gibbs free energy εE : Total elastic strain C0: Initial damage threshold

σ: Stress tensor δ: Kronecker delta S0: Undamaged compliance tensor

Ω: Damage variable Y : Damage driving force max(·): Maximum function

E0: Young’s Modulus Ω̇: Damage rate C1: Damage hardening variable

ν0: Poisson’s ratio H(·): Heaviside function a1, a2, a3, a4: Material parame-

ters

fd: Damage function λ̇d: Lagrangian Multiplier P1 and P2: Projection tensors

gd: Damage potential ε̇id: Irreversible strain

rate

σ(p); n(p): Principal stress ten-

sor, vector
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Table 5: DSID parameters calibrated for Bakken shale

Elasticity Free Energy Damage function

E0 ν0 a1 a2 a3 a4 C0 C1 α

GPa − MPa−1 MPa−1 MPa−1 MPa−1 MPa MPa −

46 0.186 7.35× 10−7 1.21× 10−4 −3.15× 10−11 2.39× 10−12 0.01 1.18 0.399
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σ1

τ
c

Figure 1: Wing crack propagation model in 3D under compression.
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K0
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Kc/a
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Figure 2: Hyperbolic damage hardening function used in the DEWCD model
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fd'(an,0)
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fd

fd'(an,1)

fd(an,0)

fd(an,1)

Figure 3: Newton iteration scheme used to calculate the Lagrange multiplier with the

hyperbolic hardening law used in the proposed model
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Figure 4: Calibration and validation of the DEWCD model parameters against experimen-

tal stress-strain curves obtained during triaxial compression tests under various confining

pressures. (a) Triaxial data with a confining pressure σ3 = 13.8MPa is used to calibrate

the model. Triaxial datasets for confining pressures of σ3 = 6.9MPa and σ3 = 20.7MPa

are employed to validate the calibration. (b) Evolution of the three principal values of the

damage tensor with the calibrated parameters, for the three confining pressures.
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predictions with the peak stress (strength) obtained experimentally in shale.
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Figure 6: Calibration and validation of the micromechanical damage model against triaxial

compression tests performed on Bakken Shale. (a) Stress/strain curves (calibration based

on data obtained at 13.8 MPa confinement, and verification against tests performed under

confining stresses of 6.9 MPa and 20.7 MPa). (b) Evolution of the three principal values

of damage during the tests.
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Figure 7: Calibration and validation of the DSID model against triaxial compression tests

performed on Bakken Shale. (a) Stress/strain curves (calibration based on data obtained

at 13.8 MPa confinement, and verification against tests performed under confining stresses

of 6.9 MPa and 20.7 MPa). (b) Evolution of the three principal values of damage during

the tests.
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DEWCD model

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Axial stess, σ
1
(MPa)

D
am
ag
e
va
ria
bl
e,
Ω

Ω
1

Ω
2

Ω
3

O(B)

A

A

B C

C

(f) Damage evolution predicted with the

DEWCD model

Figure 8: Comparison of the stress-strain behavior and damage evolution predicted the

micro-mechanical, DSID and DEWCD models, for a stress path that comprises a uniaxial

tension (OA), an elastic compressive unloading (AB), followed by an inelastic compressive

loading (BC). The three models were calibrated against the same experimental data.
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Figure 9: Evolution of the energy potentials during the simulation of uniaxial tension

followed by unloading and compressive reloading.
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Figure 10: Comparison of the stress-strain behavior and damage evolution predicted the

micro-mechanical, DSID and DEWCD models, for a stress path that comprises two cycles

of uniaxial compression loading - elastic unloading. The three models were calibrated

against the same experimental data.
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