
June 30th, 2018

Kurzeja & Rossignac Page 1 / 22

RangeFinder: Accelerating ball-
interference queries against steady

lattices

Submitted June 30th, 2018

Kelsey Kurzeja, Jarek Rossignac

kkurzeja3@gatech.edu, jarek@cc.gatech.edu

School of Interactive Computing,

Georgia Institute of Technology, Atlanta, USA

Abstract

Advances in additive manufacturing techniques are enabling the fabrication of new

microstructures and materials. These may often be defined in terms of a set of balls and of

beams that each connects two balls. To support application needs, we must support lattices

with billions of such elements. To address this problem, we focus on architected and periodic

structures in which the connectivity pattern repeats in three directions, and in which the

positions and radii of the balls evolve through the structure in a prescribed and steady way that

is defined by three similarity transforms. We propose here an algorithm that accelerates the

Ball-Interference Query (BIQ), which establishes which elements of the lattice interfere with a

query ball Q. Our RangeFinder (RF) solution reduces the asymptotic complexity of BIQs, which,

in our tests, reduced the query time by a factor of between 45 and 5500. RF does not use any

spatial occupancy data structure and can be trivially parallelized. We demonstrate the

effectiveness of RangeFinder through the generation of multi-level lattices that we call Lattice-

in-Lattice (LiL).

Keywords: lattice, pattern, query, point-membership classification, procedural modeling, steady

affine motions

1 Introduction
We consider three-dimensional, truss-like lattices that are each the union of a set of balls and

beams. The balls are organized into a three-dimensional array of groups of balls. Each group,

G[i,j,k], is identified by a triplet of indices, (i,j,k). All the groups have the same number of balls.

Each ball B[i,j,k,b] in G[i,j,k] is defined by the four-tuple (i,j,k,b) and has center, C[i,j,k,b], and

radius r[i,j,k,b]. The periodic connectivity of the lattice is defined in terms of a set of edge-

patterns. An edge-pattern is defined by the five-tuple (b1,i’,j’,k’,b2) and defines all edges from

ball (i,j,k,b1) to ball (i+i’,j+j’,k+k’,b2) for valid triplets (i,j,k) for which the two balls exist and are not

explicitly marked as omitted by the designer. To each such edge of each edge-pattern

June 30th, 2018

Kurzeja & Rossignac Page 2 / 22

corresponds a beam that is a solid of revolution around the axis passing through the centers of

the two balls and that smoothly blends between the two balls. In its simplest form, discussed in

this paper, the beam is a truncated cone, tangent to the two balls. Though, beams with non-

linear silhouettes may also be used [1].

We say that the lattice is regular if three vectors, U, V, and W, exist so that, for each ball-index,

b, C[i,j,k,b] = C[0,0,0,b] + iU + jV + kW and all values r[i,j,k,b] are identical. Regular lattices have

many advantages. The most important ones are that (1) they do not require storing the explicit

location of all the balls and (2) geometric queries, such as point-membership classification

(PMC) or area/volume calculations may be computed lazily, in constant time (assuming a

relatively small number of balls per group and of edge patterns), regardless of the complexity

(number of groups) of the lattice. An example is shown in Figure 1.

Figure 1: Regular lattice with 100
3
 groups of a single ball and 3 edge-patterns. The top-right is magnified to

show detail.

Our objective is to preserve, as much as possible, these advantages, while relaxing the

regularity constraint. Hence, we focus on semi-regular lattices, in which the centers, C[i,j,k,b],

and radii r[i,j,k,b] of the balls are defined by mathematical formulae or efficient algorithms, that

can be evaluated quickly (hence supporting the lazy evaluation advantage mentioned above)

and yet allow the designer to deform (bend, twist, taper) the lattice to some extent.

Such semi-regular lattices may be approximated by a regular lattice and a Free-Form

Deformation (FFD) of it [2, 3]. The FFD may be defined via a tri-viariate polynomial (for

example, Bezier or B-Spline) map. Such an approach offers design flexibility (for example, 64

control points for a cubic Bezier tri-variate) and mathematical continuity. However, it suffers from

several drawbacks:

1. Direct manipulation of the control points may often result in unacceptable geometries that

locally destroy the periodic structure of the pattern and may produce unwanted interferences

June 30th, 2018

Kurzeja & Rossignac Page 3 / 22

between beams. Hence, computer-assistance may be required to detect such problems and

help the designer avoid or rectify them.

2. The non-monotonic variations of beam length, of angles between beams, or of other

geometric measures along one of the three principal directions of the lattice may result in

abrupt spatial variations of homogenized mechanical properties.

3. The large number of control parameters (for example, 192 coordinates of the control points)

increases optimization cost.

4. Simple queries, such as PMC or the computation of integral properties (surface area,

volume, center of mass, inertia) may be prohibitively expensive, even when efficient

inversion solvers are available for computing the triplets (u,v,w) of parameters

(corresponding location in the regular lattice) that the FFD maps to for a given query point

Q.

5. The FFD bends beams and maps balls into complex shapes. Correcting for these

deformations so as to produce a valid lattice with straight-axis beams and spherical nodes

exacerbates the previous drawbacks. For example, a natural formula for inferring the radius

of each ball from the local derivative of the map may produce a lattice in which pairs of

instances of two different balls overlap, but only in a small portion of the lattice. Furthermore,

straightening the beams may result in pairs of beams interfering in some portions of the

lattice. Consequently, optimization steps may need to be interleaved with computationally

expensive interference or pathology detection and remediation passes. Finally, the (u,v,w)

parameters of a query point Q cannot be used against the regular (undeformed version of

the) lattice because a point with coordinates (u,v,w) would have to be classified against the

(now bent) preimages of the corrected balls and beams.

Steady lattices offer an appealing compromise between the regular lattices and their FFDs.

They support a limited, but useful, range of deformations (see an example in Figure 2) while

avoiding or reducing significantly the drawbacks of FFDs of regular lattices. This

compromise is particularly appealing for designing, optimizing, and querying highly complex

lattices with billions of beams.

We say that a lattice is steady if three orientation-preserving, similarity transforms, U, V, and

W, exist so that, for each ball-index, b, B[i,j,k,b] = G ◦ Wk ◦ Vj ◦ Ui ◦ B[0,0,0,b], where G

controls the position, orientation and size of the base-group G[0,0,0]. These incremental

similarity transformations may be computed from their cumulative counterparts, Uu, Vv, Ww

and the corresponding repetition counts u, v, w [4]. Hence, the deformation of a regular

lattice into the standard form of a steady lattice may be defined using four similarity

transforms, G, Uu, Vv, and Ww, or equivalently four local coordinate systems obtained by

transforming the global coordinates by G, G ◦ Uu, G ◦ Vv, and G ◦ Ww. Each coordinate

system is defined by 7 parameters (for example, three coordinates of its origin, 3 angles,

and one uniform scaling). So, the standard steady lattice layout has only 28 degrees of

freedom, about 7 times less than its FFD counterpart. More advanced variants of steady

lattices, not discussed here, expose additional degrees of freedom, at the expense of some

of the benefits of purely steady lattices. They include a variant which allows the designer to

control 8 frames, one at each corner of the lattice, resulting in 56 degrees of freedom. A

June 30th, 2018

Kurzeja & Rossignac Page 4 / 22

significant fraction of structures in architecture, CAE, urban planning, mechanical CAD,

material engineering, art, and nature contain structures that can be modelled as (or closely

approximated by) steady lattices.

Figure 2: Steadily bent, twisted, and tapered semi-regular lattice with 100
3
 groups of a single ball and 3 edge-

patterns. The top-right is magnified to show detail.

The key feature of all steady lattices is that their balls can be organized into steady rows (see

Figure 3) which have the form Rk = Sk ◦ R0, where R0 is the template shape and S is an

incremental similarity, proven in [4]. The set of balls B[i,j,k,b] for a fixed pair (i,j) and all valid

values of k forms a steady row of balls, i.e. B[i,j,k,b] = Wk ◦ B[i,j,0,b]. The beams of a steady

lattice may also be organized into steady rows of beams, such that, if T[i,j,k,b,t] is the beam

(tube), t, that connects to ball b in group (i,j,k), then T[i,j,k,b,t] = Wk ◦ T[i,j,0,b,t], which is also

proven in [4].

June 30th, 2018

Kurzeja & Rossignac Page 5 / 22

Figure 3: The base-group G[0,0,0] and beams originating from it are shown in magenta, and some rows along
the U (red), V (green), and W (blue) directions are also shown. Corresponding balls in each of the three rows
forms a steady row of balls, but corresponding beams are only guaranteed to form a steady row of beams
along the W direction.

An approach that takes advantage of these properties of steady lattices to accelerate the

computation of surface areas, volumes, and centroids of steady rows of balls or of beams is

addressed elsewhere [4]. In this paper, we focus on exploiting steadiness to accelerate Point-

Membership Classification (PMC) and Ball-Interference Queries (BIQs). Specifically, given a

candidate point Q and a steady lattice L, PMC establishes whether Q lies inside any of the

elements (ball or beam) of L. Similarly, given a candidate ball Q and a steady lattice L, BIQ

establishes whether Q interferes (i.e. has non-empty intersection) with any of the elements of L,

and can be used to retrieve a list of the elements of L that interfere with Q. BIQ is a generalized

form of PMC, because PMC is equivalent to a BIQ with a ball of radius zero.

A naive implementation of these queries requires testing Q against each element of L.

Exploiting the steadiness of L, we reduce the expected asymptotic complexity from O(uvw) tests

to O(uv) tests, at least, for queries where the radius of Q is small enough and the elements of L

are well separated enough so that Q may only ever interfere with a number of elements of L that

is small compared to u, v, and w. The proposed improvement may result in a 100-to-1

performance improvement for a lattice with 100x100x100 elements (see Figure 1 and Figure 2),

which is a lattice of modest complexity in the scale of micro- and nano-structures. For special

configurations of steady lattices, we further reduce the expected complexity to O(u) and O(1).

In some applications, it may be possible and advantageous to precompute flat or hierarchical

(bounding volume hierarchy or space partition) data structures and to use them to accelerate

BIQ queries. We focus here on applications where such an approach is not possible or not

desirable, for example, because the time or space cost of building such a structure would be

prohibitive or because the memory access costs to such a structure would be prohibitive on

massively parallel architectures. Furthermore, in an optimization loop that adjusts the lattice

parameters, the data structure would have to be reconstructed after each operation.

June 30th, 2018

Kurzeja & Rossignac Page 6 / 22

Hence, we advocate distributing the implicit definition of the lattice (the balls in the base-group,

its connectivity, the three similarities, and the repetition counts) to the various processors and,

within each thread, using it to evaluate the parameters that define a specific steady row (i,j) of

balls or beams, and then performing the query or query sequence on that steady row.

So, the problem addressed here may be reduced to the following. A steady row R is defined by

a template shape R0 (ball or beam), an incremental similarity S, and a repetition count n. R is

the union of all n+1 copies Rk = Sk ◦ R0. Given such a row R and a query ball Q, we want to

establish whether Q interferes with R.

We decompose this problem into two subtasks: (1) Identify the range [kmin, kmax] of values for

which we can guarantee, when k is outside of [kmin, kmax], that Q does not interfere with Rk and

(2) for all values k in [kmin, kmax], use precise geometric tests to establish whether Q interferes

with Rk. The second task consists of a hopefully small and constant number of standard

geometric tests. Hence, we focus on the first one and refer to its solution as RangeFinder.

We wish to compute [kmin, kmax] quickly using closed form expressions, without iterations or

recursions. At the same time, we wish to reduce the number of false positives, i.e., we want to

make [kmin, kmax] as tight as possible.

One important application of RangeFinder is accelerating higher level queries that build off of

BIQs. For example, a grid of query points or balls can be used to voxelize a lattice for analysis

or additive manufacturing. Also, a BIQ with a query ball of center Q and radius r can be used to

implement a local distance query by retrieving a list of lattice elements within distance r from Q

and computing the minimum distance to the lattice interior by testing and storing the minimum

distance from Q to each element in the list. Higher level queries may even build off of each

other, for example, the local distance query may be used to implement raycasting via sphere

tracing [5].

Another particularly important application of RangeFinder is its use for displaying and

processing a multi-level lattice directly from its implicit definition. For example, Figure 4 shows a

two-level lattice modeled using a coarse steady lattice C and a fine steady lattice F. Specifically,

we use a variant of BIQ to identify the good balls of F, which we define as those interfering with

C. We then discard the rest of the balls of F and the beams of F that are not connecting two

good balls. In other words, C is used to provide a procedural definition of a trimming volume for

F. This Lattice-in-Lattice (LiL) idea may be cascaded to provide a structure with more than two

levels, as shown in Figure 5.

June 30th, 2018

Kurzeja & Rossignac Page 7 / 22

Figure 4: (Left) Coarse lattice C shown in transparent blue and a fine lattice F of which its balls are colored
green if they interfere with C and red if they do not. (Right) The LiL resulting from removing from F all beams
with at least one red ball.

Figure 5: (Left) Cascaded LiL produced from two coarse lattices and a fine lattice with 138
3
 groups. The

resulting structure has 1,494,074 beams. (Right) Magnification on a multi-level beam.

The remainder of the paper is organized as follows:

 In section 2, we list our notations.

 In section 3, we review related prior art.

 In section 4, we first present the overview of the RangeFinder approach and prove the

key theorem upon which it is based, and then we explain the details of RangeFinder,

with a focus on steady rows of balls.

 In section 5, we extend the details, from section 4, to handle steady rows of beams.

 In section 6, we discuss how RangeFinder may be applied to accelerate BIQs on steady

lattices, and we offer modifications to the BIQ algorithm for performance improvements

on special cases of steady lattices.

 In section 7, we provide results of using RangeFinder to accelerate the generation of

LiLs.

June 30th, 2018

Kurzeja & Rossignac Page 8 / 22

 In section 8, we conclude by restating our contributions, highlighting the limitations of our

results, and discussing directions for future research.

2 Notations
First, we give brief descriptions and examples of the notations used:

k, f Integers, reals

Q, V Points, vectors

AB Vector from A to B

A, Rk Point-set object

S, M(X) Transformation, Function

C, Q Integer or real interval

X[A] Closest projection of X onto A

A·B Dot product of A and B

A⤫B Cross product of A and B

|V| Magnitude of V

V Normalization of V

S◦X X transformed by S

V°(w,D) V rotated by w radians around D

U^V Angle from U to V

⌊a⌋, ⌈b⌉ Floor of a, ceiling of b

3 Prior art
A significant number of man-made and natural objects contain patterns that may be modeled as

steady rows, or steady rows-of-rows, of which the template shape may or may not be a ball or

beam. M. Pauly et al. introduce a computational approach for discovering steady, similarity-

based patterns in 3D geometric models [6]. The method is applied to architectural, artistic, and

natural structures that are good candidates for RangeFinder acceleration, if BIQs against the

models are desired during some analysis.

N. Stolte proposed a method, known as infinite implicit replication [7], of implicitly modeling

infinitely repeating patterns, from a template surface, with a single closed-form equation. The

paper describes, at a high level, a mapping from points in space to integers such that the

integer corresponding to a region of space specifies how many times an incremental

transformation is to be applied to the template surface to generate the instance contained by

that region. The approach described is mostly abstract, and the only concrete replication given

is a steady translation along an axis. One limitation of this approach is that only a single

instance of the template surface may lie in each region of space. Patterns with overlapping

instances must be modeled as the union of multiple infinite implicit replications where none of

the individual replications have overlapping instances. The idea of mapping points in space to

integers is similar to RangeFinder, however, RangeFinder maps a ball to a range of indices

representing multiple instances that it may interfere with.

June 30th, 2018

Kurzeja & Rossignac Page 9 / 22

A. Pasko et al. discuss function-based models of periodic, volumetric microstructures [8]. They

formulate the idea of infinite implicit replication in terms of a unit cell of geometry that is implicitly

repeated using a replication function that maps points of space into the unit cell. Like Stolte,

Pasko et al. only mention orthogonal-translation based patterns. However, they create curved

and graded structures by warping axis aligned structures. This “post-processing warp” approach

creates distorted instances of the unit cell. Cylindrical mapping, tapering, twisting, and a few

other warps are demonstrated. O. Fryazinov et al. further discuss applying infinite implicit

replication to microstructures, with a focus on modeling multi-scale structures [9]. The

applications addressed in these papers are similar to ours, with a focus on microstructures and

lattices. However, these approaches use the concept of a unit cell, which does not translate well

into our method of modeling lattices. Furthermore, their structures are axis aligned, unless

warped.

G. Elber uses trivariate B-Splines to map microstructures into a volume [3]. The Free-Form

Deformation (FFD) approach [2] used by Elber allows more general warps than the ones

demonstrated by Pasko et al., but this increase in flexibility comes with an increased

computational cost for inverting the warp. B-Spline subdivision based solvers are commonly

used to do the inverse mapping [10], from points in space to the unwarped geometry.

The use of multi-level lattices to architect useful, novel materials is a recent and developing area

of research. Multi-level lattices have been manufactured that have a higher strength and

stiffness, relative to density, when compared to existing single-level lattices [11]. These multi-

level lattices also demonstrated high recoverability and resistance to failure from compression.

Multi-level lattices have also been used to design scaffolds on which tissue such as bone can

be grown, where a multi-level structure increases porosity to enhance nutrient transport [12].

Existing research on designing multi-level lattices, such as our Lattice-in-Lattice (LiL), is scarce.

As mentioned, [9] and [3] model multi-level structures, but neither is appropriate for our

definition of lattices since both rely on a regular, translational pattern of unit-cells. [11] designs

self-similar, multi-level lattices recursively by repeating instances of a unit-cell along the beams

of another instance of that unit-cell.

4 RangeFinder solution
In this section, we present and justify our RangeFinder solution to the problem of Ball-

Interference Queries (BIQs) on a steady row R of balls.

Later, we extend this solution to handle BIQs on a steady row of beams.

4.1 Overall strategy for RangeFinder
We start here by restating the problem, outlining the general nature of our strategy, and

revealing the mathematical formulation that it is based on.

We assume that the similarities discussed here are orientation-preserving (i.e., they have a

positive dilation factor).

June 30th, 2018

Kurzeja & Rossignac Page 10 / 22

PROBLEM: Given a query ball Q and a steady row R with incremental similarity S, repetition

count n, and template shape R0, find a conservative, but hopefully tight, candidate range C that

contains the indices of all shapes Rk that interfere with Q.

OVERALL STRATEGY: We divide the problem into two simpler RangeFinder sub-problems

and return the intersection of the candidate ranges produced as solutions to these.

This approach requires computing a particular canonical decomposition of S, which is justified

by the following property:

CANONICAL DECOMPOSITION: Similarity S may always be decomposed into a commutative

product of two primitive similarities, one of which is a rotation and the other is either a

translation or dilation.

Depending on the dilation factor d of S, one of the following two decompositions always exists:

1. If d = 1, S = R◦T, the product of a rotation R around an axis A with a translation T parallel to

A

2. If d ≠ 1, S = R◦D, the product of a rotation R around an axis A with a dilation D about a fixed

point F on A

If not directly available, the dilation factor d, of S, may be computed as the cube-root of the

determinant of the 3x3 matrix that represents the linear part of the similarity [13].

The subtype of similarity associated with the d ≠ 1 case is a swirl. The subtype for the case

when d = 1 is a screw, and although a screw may be considered as a special case of the

general family of swirls, we use a different derivation to compute the decomposition and the

candidate range.

The canonical decomposition of a screw is discussed in numerous papers and books (see for

example [14]). The canonical decomposition for the swirl is presented in [4]. Note that these

decompositions include special cases in which one or both primitive similarities degenerate to

identities. These special cases may be easily detected and may require special treatments that

are simple and hence are not discussed in this paper.

In the next section, we assume that S has been decomposed into its two primitive similarities as

either R◦T or R◦D, and we explain how RangeFinder identifies the candidate range C for each

one of the three possible primitive similarity types: T, D, R.

4.2 The essence of RangeFinder
First, we present the overall essence of RangeFinder.

Consider a point X0 of the template shape R0 and its images Xk = Sk◦X0 in the consecutive

instances Rk. Consider a normalized mapping, M, from space to the real line for which M(Xk) =

M(X0) + k. Our goal is to define such a mapping and to use it to identify indices k of the

instances Rk that are guaranteed not to contain a given point X.

June 30th, 2018

Kurzeja & Rossignac Page 11 / 22

DEFINITION: M is a normalized mapping if and only if, for every point X in the valid domain,

M(Sk◦X) = M(X) + k.

Assume that we have precomputed the extents s0 = min(M(X)) and e0 = max(M(X)) for all points

X in R0 under M. The template-extents, [s0, e0], bounds the image of R0 on the real line.

Likewise, let the query-extents [sq, eq] bound the image of ball Q on the real line, where sq =

min(M(Y)) and eq = max(M(Y)) for all points Y of Q.

THEOREM: Q may interfere with Rk only if k ∈ C = [max(0, ⌈sq‑e0⌉), min(n, ⌊eq‑s0⌋)].

Proof: Shape Rk is mapped to the interval [s0+k, e0+k]. So, shape Q may interfere with Rk only if

the intervals [s0+k,e0+k] and [sq,eq] overlap, yielding the conditions sq <= k+e0 and k+s0 <= eq,

i.e., if k ∈ [sq-e0, eq-s0]. The integer indices that lie in this interval are the members of integer

interval [⌈sq-e0⌉, ⌊eq-s0⌋]. Finally, the indices need to be clamped to [0, n].

If C is empty, then Q interferes with no instances.

Thus, for each one of the RangeFinders for our three primitive similarities, we need to define the

appropriate mapping M and closed-form expressions for computing the extent of the image of a

ball under M. To determine their image bounds on the real line, the extent computation is

applied to both the template shape and the query ball. The ball template shape is particularly

useful because it is simple and a single ball or a union of such balls may be used as a bounding

container for more complex shapes.

In the subsequent subsections, we consider primitive similarities T, D, and R, one at a time. For

each such similarity, X, we explain how to define M (see definition marked by X-MAP) and how

to compute the extent [s,e] of a ball B, with center C and radius r, under M (see definition

marked by X-RANGE).

4.3 RangeFinder for translation T
Consider that T is a translation by vector V. Let O be an arbitrarily chosen origin.

T-MAP: The normalized translation mapping, M, for a translation by vector V with chosen

reference point O is M(X) = OX•V / V2.

JUSTIFICATION: M(X) is composed of a projection and a normalization. The expression OX•V /

|V| computes the projection (measured from O) of X onto a line passing through O and parallel

to V. The 1 / |V| normalization ensures that the measure reported by the mapping is expressed

in the proper unit, so that, M(O+V) = 1 (see Figure 6).

T-RANGE: The extents [s, e] of B, as a ball of center C and radius r, for a translation by vector

V is E(B) = [M(C) – r / |V|, M(C) + r / |V|].

JUSTIFICATION: Interval [s, e] defines the smallest slice of space orthogonal to V that contains

B. Let c = M(C) be the image of the center C. We extend the interval in both directions around c

to ensure that it covers the projection of B onto a line parallel to V. However, we need to

June 30th, 2018

Kurzeja & Rossignac Page 12 / 22

normalize this extension to be expressed in the proper unit, which here is 1 / |V|, because the

distance between a point X0 of B and the corresponding point X1 of T◦B is |V|. (see Figure 6).

Figure 6: Normalized translation mapping and extent computation.

4.4 RangeFinder for dilation D
Consider that D is a dilation by factor d about fixed point F.

D-MAP: The normalized dilation mapping, M, for a dilation about fixed point F by dilation

factor d > 0 is M(X) = logd(|FX|).

JUSTIFICATION: Let sphere(C,r) denote a sphere of center C and radius r. M maps all points of

sphere(F,1) to 0 and all points of sphere(F,d) to 1. The mapping is logarithmic. For example,

sphere(F,d1/2) maps to ½. Hence, the same transformation, a dilation by d1/2 maps sphere(F,1)

to sphere(F,d1/2) and sphere(F,d1/2) to sphere(F,d), thus producing a steady pattern.

At point F, the image M(F) is undefined, because the logarithm of 0 is undefined. So, for

simplicity and elegance, we assume that B does not contain F. (When it does, RangeFinder

returns the full range [0,n]. However, a RangeFinder for dilation when B contains F can be

constructed by assuming M(F) = -∞ when d>1 and M(F) = ∞ when 0<d<1.)

D-RANGE: The extents [s, e] of B, as a ball of center C and radius r, for a dilation about fixed

point F by dilation factor d is E(B) = [min(logd(|FC| ± r)), max(logd(|FC| ± r))].

JUSTIFICATION: Interval [s, e] defines a spherical shell, i.e. the solid bounded by the union of

sphere(F, |FC|-r) and sphere(F, |FC|+r), such that the larger sphere contains B and the smaller

sphere does not. When d > 1, M(X) increases as |FX| increases, and s must be smaller than e,

so points on sphere(F, |FC|-r) map to s and points on sphere(F, |FC|+r) map to e. However,

when 0 < d < 1, M(X) decreases as |FX| increases, so points on the larger sphere map to s and

points on the smaller sphere map to e. Consequently, s = min(logd(|FC| ± r)) and e =

max(logd(|FC| ± r)). (See Figure 7).

June 30th, 2018

Kurzeja & Rossignac Page 13 / 22

Figure 7: Normalized dilation mapping and extent computation with d > 1 on the left and 0 < d < 1 on the
right.

4.5 RangeFinder for rotation R
For clarity and elegance, we present here the RangeFinder solution in which we assume that

the total angle sustained by the entire row is less than 2π. In other words, the row does not

even complete a single wrap around its axis. Such “tame” steady rows may be adequate for

some applications, but not for others.

Our extension to more general steady rows that fully wrap around the axis at least once applies

RangeFinder to each wrap, where each application may yield a different candidate range. A

previously computed candidate range for the other primitive similarity (T or D) can be used to

reduce the number of wraps tested.

Consider that R is a rotation by angle θ around axis A.

We assume below that A does not intersect ball B. When it does, RangeFinder returns the full

range [0,n].

Let angle(N,V,W) be the angle that rotates N to V around W, assuming that N and V are vectors

perpendicular to W and that |N|=|W|=1. It may be computed as atan2((W⤫N)•V, N•V).

R-MAP: The normalized rotation mapping, M, by rotation angle θ about axis A of direction W

and given an arbitrary reference vector N orthogonal to A returns M(X,b) = angle(N, X[A]X, W)/θ

+ 2πb/|θ|, where X[A]X is the normalized vector from X[A] to X, and where b, the branch ID,

represents the number of full rotations around A to be added to the angle measurement. If no b

is given, as in M(X), then M represents a mapping to the infinite values as the union of M(X,b)

for all integers b.

JUSTIFICATION: M is composed of the sum of a normalized angle measurement angle(N,

X[A]X, W)/θ and the normalized angle 2πb/|θ| of b rotations around A. The normalization ensures

that the measure reported by the mapping is expressed in the proper unit, so that, there exists a

value b such that M(X[A]+N°(θ,W), b) = 1, where X[A] may any point on A. (See Figure 8). The b

rotations around A are normalized by the absolute value of θ, because increasing b should

increase the result, regardless of the direction of rotation.

We define a branch of ID b to be the interval [(2πb - π)/|θ|, (2πb + π)/|θ|) on the real line. A

single value of image M(X), of any point X, lies in each branch b, for any integer b.

R-RANGE: The extents [s, e] of B, as a ball of center C and radius r, for a rotation by angle θ

around axis A is E(B,b) = [M(C,b) - h/|θ|, M(C,b) + h/|θ|] where h = sin-1(r / |CC[A]|) and b is the

desired branch for C to map to. If no b is given, then the extent E(B) is the union of the infinite

intervals corresponding to every possible b.

JUSTIFICATION: Interval [s, e] defines the smallest wedge of space extending infinitely radially

from A that contains B. This wedge is the intersection of two linear half-spaces, each containing

A in its bounding plane. Hence, we represent that wedge by the angles of their oriented

June 30th, 2018

Kurzeja & Rossignac Page 14 / 22

bounding planes around A, with respect to reference vector N. Let c = M(C,b) be the image of

center C in branch b. We want to extend the interval in both directions around c to ensure that it

covers the image of all points in B. Doing so requires extending in both directions by h, half of

the angle (from C[A]) subtending B, where the extension is normalized to the proper unit, 1/|θ|,

because the angle between a point X0 of B and the corresponding point X1 of R◦B around A is θ.

Although c is in branch b, either s might be in branch b-1 or e might be in branch b+1, because

we extended the interval around c, and c may be anywhere in branch b, including its boundary.

If s is in branch b-1, then we can add 2π/|θ| to both s and e, to ensure each lies in either branch

b or b+1.

The image E(Q) of query ball Q must map to infinite branches, because it may overlap with the

image of R in any branch. However, the extents of the entire row R can be restricted to lie in

only branches 0 and 1, because the total angle sustained by R is less than 2π, so the only

portions of E(Q) that may overlap the image of R are Q0 = E(Q,0) and Q1 = E(Q,1). Evaluating

RangeFinder with both query-extents, [sq,eq] = Q0 and [sq,eq] = Q1, each along with template-

extents [s0,e0] = E(R0,0) will yield two ranges, only one of which may be non-empty, because a

continuous mapping of the steady row covers less than 2π/|θ| on the real line. If one range is

non-empty, then it is returned by RangeFinder.

Figure 8: Normalized rotation mapping and extent computation.

4.6 Combining ranges from the two primitive similarities
Assume the candidate ranges [a,b] returned by RangeFinder for translation or dilation and [c,d]

returned by RangeFinder for rotation have already been computed. The final candidate range is

the intersection of the two ranges and can be computed as [max(a,c), min(b,d)].

June 30th, 2018

Kurzeja & Rossignac Page 15 / 22

5 Computing the extents of a beam
Here we describe how to compute the extents of beams defined as the convex hull of two balls,

X and Y.

Computing the extents of a beam directly, rather than approximately with a bounding ball,

reduces the number of false-positive candidate indices returned by RangeFinder, sometimes

significantly, because a bounding ball is a poor approximation for a long, thin beam.

Let [sX,eX] and [sY,eY] be the extents of balls X and Y respectively, under a primitive similarity.

Translation extents: [s,e] = [min(sX, sY), max(eX, eY)].

Justification: The most extreme points of the beam along the direction of translation must be in

X or Y, so the extent is constructed from only the min and max values of the ball extents. See

Figure 9.

Figure 9: Computation of beam extents for translation primitive.

Dilation extents: [s,e] = [min(sX, sY, logdf), max(eX, eY, logdf)], where f is the distance from the

fixed point F to the interior of the beam.

Justification: The point of the beam farthest from F must be in X or Y. However, the point of the

beam closest to F may or may not be in X or Y. Including logdf accounts for this possibility, and it

is used in both min and max to account for dilation factors less than or greater than 1. See

Figure 10.

[15] describes an efficient computation of the distance f from a point to a beam, called “cone-

sphere”.

June 30th, 2018

Kurzeja & Rossignac Page 16 / 22

Figure 10: Computation of beam extents for dilation primitive with dilation factor d>1. F is closer to the
conical part of the beam than to the balls.

Rotation extents: [min(sX, y - hY/|θ|), max(eX, y + hY/|θ|)], where θ is the rotation angle around

axis A, y = (sX+eX)/2 + angle(CX[A]CX, CY[A]CY, W)/θ is the proper mapping of CY relative to the

mapping of CX (described in justification), W is the direction of A, and hY = sin-1(rY / |CYCY[A]|) is

half of the angle subtending Y around A. CX[A] denotes the closest projection of the center of X

onto A. We assume A does not intersect the beam.

Justification: Consider starting with the extents [sX,eX] of X. The extents [sY,eY] of Y must be

computed relative to sX and eX, since computing sY and eY from Y, in isolation, will not guarantee

a mapping to the correct branch relative to the mapping of X. The relative offset from a mapping

of CX to the proper mapping of CY is angle(CX[A]CX, CY[A]CY, W)/θ, which is composed of the

angle from CX to CY around A normalized by the primitive’s rotation angle. From the correct

mapping of CY, the extents of Y can be computed by subtracting (for sY) and adding (for eY) half

of the angle subtending Y from CY[A], normalized by the primitive’s rotation angle. Given the

extent of X and correct relative extent of Y, the extent of the beam is computed by combining

the two in the same manner as the translation case. See Figure 11.

Figure 11: Computation of beam extents for rotation primitive. Given a mapping of CX into branch 0, the
correct mapping of CY here is into branch -1.

6 RangeFinder in steady lattices
Without loss of generality, assume we are performing a BIQ on a lattice of which the base-group

has a single ball with a single beam B originating from it.

We want to compute the set of group index triplets (i,j,k) of all groups whose instance of B

interferes with the query ball Q.

The naive solution, iterating through all valid index triplets and testing each instance of B for

interference with Q, takes O(uvw) time.

June 30th, 2018

Kurzeja & Rossignac Page 17 / 22

We have earlier introduced RangeFinder for performing BIQs on steady rows in expected

constant time.

The lattice can be organized into u by v steady rows [4], allowing for BIQs in expected O(uv)

time by using RangeFinder on each row. These steady rows are each composed of w

repetitions, an incremental similarity W, and a template shape as an instance of B in the base-

slab, where the base-slab is the union of all groups G[*,*,0], where asterisks denote any valid

index. Each use of RangeFinder returns a range of candidate values C so that for each value k

in C, a ball-vs-beam interference test needs to be performed between the query ball and the kth

instance of the steady row.

6.1 Special case improvements
For special configurations of a steady lattice, the expected time complexity of a BIQ can be

further reduced, from O(uv), to either O(u) or O(1), using simple modifications to the algorithm

above.

6.1.1 O(u) BIQ case

Consider the case in which the BIQ algorithm can be modified to reduce the time complexity to

an expected O(u). We want to perform u constant-time procedures, one for each group of the

base-row (the union of all groups G[*,0,0]), where each computes the set of (j,k) pairs

identifying instances of B that must be tested for ball-vs-beam interference.

The set of (j,k) pairs is computed using two RangeFinders:

1. to compute a range of k-values, using a steady row of w repetitions, incremental similarity

W, and a template shape as an instance of B in the base-row;

2. to compute a range of j-values, using a steady row of v repetitions, incremental similarity V,

and the same template shape as the RangeFinder for k-values.

The (j,k) pairs to be tested are formed as all possible combinations of values from both ranges.

The O(u) BIQ modification is valid if the following three conditions are met:

1. The row of balls in the V direction, of which the template shape is the ball in G[0,0,1], has an

incremental similarity of V.

2. Applying V to the beam originating at G[*,0,0] does not change its extents with respect to the

primitives of W.

3. Applying W to the beam originating at G[*,0,0] does not change its extents with respect to

the primitives of V.

The first condition implies that the lattice’s rows of beams in the V direction are steady. Rows of

beams in the V direction are not guaranteed to be steady, unlike in the W direction, as proven in

[4], but they must be steady in order for RangeFinder to work. This condition implies steadiness

for the rows of beams in the V direction because any row of balls of which the template shape is

a ball in the base-slab is steady in the V direction with an incremental similarity of V, and it is

only when all rows of balls along the V direction that are further along the W direction than the

June 30th, 2018

Kurzeja & Rossignac Page 18 / 22

base-slab also have an incremental similarity of V that all beams must be connecting two balls

that each belong to a steady row in the V direction with an incremental similarity of V, and if the

two end balls of a beam are transformed by the same similarity V, then the whole beam is

transformed by the similarity V.

The second condition implies that the range of k-values, returned by the RangeFinder on the

row in the W direction, is the same range that would be returned by a RangeFinder on any of

the other v rows in the W direction, for a fixed index i, and so, it is valid to use the single

returned range as the set of indices into each of the rows. The condition implies this because

the only parameter into RangeFinder that varies between the rows is the template shape, which

is transformed by V between consecutive rows, and if applying V to the template shape does

not change its extents with respect to the primitives of W, then the output of RangeFinder will

not change.

The third condition has a symmetric justification to the second.

6.1.2 O(1) BIQ case

Now consider the case in which the BIQ algorithm can be modified to reduce the time

complexity to an expected O(1). It is much like the O(u) BIQ case, except more restrictive.

Three RangeFinders are performed, one for a row in each direction, U, V, and W, where each

returns a range of indices of for which all possible combinations form the (i,j,k) index triplets

identifying instances of B to test for ball-vs-beam interference.

The O(1) BIQ modification is valid if the following conditions are met:

1. The row of balls in the V direction, of which the template shape is the ball at G[0,0,1], has an

incremental similarity of V.

2. The row of balls in the U direction, of which the template shape is the ball at G[0,0,1], has an

incremental similarity of U.

3. Applying U or V to the beam originating at G[0,0,0] does not change its extents with respect

to the primitives of W.

4. Applying U or W to the beam originating at G[0,0,0] does not change its extents with respect

to the primitives of V.

5. Applying V or W to the beam originating at G[0,0,0] does not change its extents with respect

to the primitives of U.

These conditions can be justified similarly to the conditions from the O(u) BIQ case.

7 Results
Here we demonstrate performance improvements, due to RangeFinder, in accelerating BIQs

against steady rows. We do this first by demonstrating improvements in two-level LiL

generation, and then we show results from a purer test of 100 random BIQs against a steady

lattice.

June 30th, 2018

Kurzeja & Rossignac Page 19 / 22

Table 1 shows the time taken to compute the sets of beams, to be displayed, for the LiLs shown

in Figure 12. Each test was performed on 8 threads, where the parameters that implicitly

describe the lattices were available to each thread. Each thread was assigned an approximately

equal number of groups from the fine lattice, divided along the U direction. For each valid beam

B originating from the assigned groups, its assigned thread analyzed B for membership in the

final LiL by performing two BIQs, one for both balls of B, against the coarse lattice.

The results clearly show a benefit of RangeFinder accelerated BIQs over naïve BIQs. However,

the benefit of O(uv) RangeFinder BIQs over naïve O(uvw) BIQs may not be as high as

expected. The reason for this is that the BIQs were performed against coarse lattices, which

contained no more than 9 groups in the W direction, which is very small. Therefore, we also

performed pure BIQ tests on more complex steady lattices, without the LiL concept.

Consider the curved, steady lattice in Figure 2, with 1003 groups. For two cases, one with naïve

BIQs and the other with O(uv) RangeFinder BIQs, we performed, on a single thread, 100 BIQs

with query balls of which the centers were randomly placed in the axis-aligned bounding box of

the lattice and of which the radii were randomly chosen to be between 90%-110% of the

average radius of the lattice’s balls. For the naïve case, it took 4.04 minutes to perform all 100

BIQs. For the O(uv) RangeFinder case, it took only 0.0894 minutes to perform the 100 BIQs,

yielding a 45x improvement over the naïve case. We performed the same tests of 100 random

BIQs on the fine lattices from the cylindrical LiL and the regular LiL in Figure 12. For the

cylindrical lattice, the test of 100 naïve BIQs took 6.38 minutes while the test with 100 O(u)

BIQs took 0.00173 minutes, yielding a 3700x improvement. For the regular lattice, the test of

100 naïve BIQs took 1.37 minutes while the test with 100 O(1) BIQs took 0.000252 minutes,

yielding a 5500x improvement.

These tests were performed on a on a machine with an I7-6820HQ@2.70GHz and 32GB DDR4

RAM.

 Regular lattice Cylindrical lattice Warped lattice

O(uvw) BIQ, Naïve 10.3 minutes 37.2 minutes 19.10 minutes

O(uv) BIQ, Standard 2.20 minutes 5.98 minutes 5.87 minutes

O(u) BIQ 0.31 minutes 0.541 minutes -

O(1) BIQ 0.067 minutes - -
Table 1: Time taken to compute the sets of beams displayed in the LiLs shown in Figure 12. Results are
displayed when either naïve, O(uv), O(u), or O(1) BIQs are used.

June 30th, 2018

Kurzeja & Rossignac Page 20 / 22

Figure 12: (Left) LiL created from a regular fine lattice of 75
3
 groups and a regular coarse lattice of 9

3
 groups.

(Middle) LiL created from a cylindrical, steady fine lattice of 32x128x128 groups and a cylindrical, steady
coarse lattice of 5x17x9 groups. (Right) LiL created from a regular fine lattice of 64

3
 groups and a semi-

regular coarse lattice of 8
3
 groups. All three examples have a fine lattice of 2 balls per group and 14 edge-

patterns and have a coarse lattice of 1 ball per group and 3 edge-patterns.

8 Conclusion
Here we review our contributions, discuss limitations, and propose questions to be explored in

future work.

We presented a simple solution for identifying, in expected constant time, a conservative but

tight range of instances, from a steady row of balls that is guaranteed to contain all instances

that interfere with a query ball Q. We extended that solution for steady rows of beams, and we

applied the extension to compute, in expected O(uv) time, the list of beams of a steady lattice

that interfere with query ball Q. We described conditions and algorithm modifications to improve

the ball-interference query (BIQ) complexity to O(u) or O(1) for special cases of steady lattices.

We applied BIQs to steady lattices to generate multi-level lattices, called Lattice-in-Lattice (LiL),

and we reported performance improvements from the application of RangeFinder to LiL

generation.

There are a few limitations that were not addressed in this paper.

One limitation is that we do not yet have a general solution to improve the BIQ complexity to the

theoretical optimum in all cases. Consider the cylindrical lattice from Figure 12. A human could

design a O(1) BIQ for this case, but our solution is O(u) time. We wish to further improve BIQ

costs for a wider variety of lattices.

Another, more minor, limitation is that RangeFinder sometimes returns false-positive candidates

when the query ball Q clearly cannot interfere with any instance. For example, given a

translational steady row, if Q moves any distance orthogonally to the direction of translation, the

candidate range will not change. Early rejection tests may be developed to cull non-interfering

queries before RangeFinder is ever performed.

June 30th, 2018

Kurzeja & Rossignac Page 21 / 22

Finally, we introduced the concept of Lattice-in-Lattice (LiL), to construct a multi-level lattice

from the beams of a fine lattice that have both balls interfering with a coarse lattice, but we

barely discussed it. To our knowledge, LiL has not been introduced previously. Further work

should be done to explore the design and properties of LiLs. One direction of research might be

to constrain the resulting lattice to be fully contained by the coarse lattice, which our algorithm

does not do.

Steady lattices are an appealing option for generative design of materials and other structures.

They may be used alone or as efficient primitives in more complex structures. Several queries

may be built from RangeFinder accelerated BIQs, and other queries on steady lattices have

been explored elsewhere, such as efficient computation of integral properties [4]. We suspect

that these benefits will enable generative design of new lattice-based materials that could not be

previously realized, because analysis of such complex structures has traditionally been too

costly to perform in an optimization loop.

9 Acknowledgements
This research was developed with funding from the Defense Advanced Research Projects

Agency (DARPA). The views, opinions and/or findings expressed are those of the author and

should not be interpreted as representing the official views or policies of the Department of

Defense or the U.S. Government.

10 References
[1] Ashish Gupta, George Allen, and Jarek Rossignac. Quador: Quadric-of-revolution

beams for lattices. Computer-Aided Design, 102:160–170, 2018.

[2] Thomas W Sederberg and Scott R Parry. Free-form deformation of solid geometric

models. ACM SIGGRAPH computer graphics, 20(4):151–160, 1986.

[3] Gershon Elber. Precise construction of micro-structures and porous geometry via

functional composition. In International Conference on Mathematical Methods for Curves and

Surfaces, pages 108–125. Springer, 2016.

[4] Ashish Gupta, Kelsey Kurzeja, Jarek Rossignac, George Allen, Pranav Kumar, and

Suraj Musuvathy. Designing and processing parametric models of steady lattices. in review.

[5] John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of

implicit surfaces. The Visual Computer, 12(10):527–545, 1996.

[6] Mark Pauly, Niloy J Mitra, Johannes Wallner, Helmut Pottmann, and Leonidas J Guibas.

Discovering structural regularity in 3d geometry. ACM transactions on graphics (TOG), 27(3):43,

2008.

June 30th, 2018

Kurzeja & Rossignac Page 22 / 22

[7] Nilo Stolte. Infinite implicit replication: Case study for voxelizing and representing cyclical

parametric surfaces implicitly. In Shape Modeling International, 2002. Proceedings, pages 105–

274. IEEE, 2002.

[8] Alexander Pasko, Oleg Fryazinov, Turlif Vilbrandt, Pierre-Alain Fayolle, and Valery

Adzhiev. Procedural function-based modelling of volumetric microstructures. Graphical Models,

73(5):165–181, 2011.

[9] Oleg Fryazinov, Turlif Vilbrandt, and Alexander Pasko. Multi-scale space-variant frep

cellular structures. Computer-Aided Design, 45(1):26–34, 2013.

[10] Nicholas M Patrikalakis and Takashi Maekawa. Shape interrogation for computer aided

design and manufacturing. Springer Science & Business Media, 2009.

[11] Lucas R Meza, Alex J Zelhofer, Nigel Clarke, Arturo J Mateos, Dennis M Kochmann,

and Julia R Greer. Resilient 3d hierarchical architected metamaterials. Proceedings of the

National Academy of Sciences, 112(37):11502–11507, 2015.

[12] Paul F Egan, Stephen J Ferguson, and Kristina Shea. Design of hierarchical three-

dimensional printed scaffolds considering mechanical and biological factors for bone tissue

engineering. Journal of Mechanical Design, 139(6):061401, 2017.

[13] Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics. AK Peters,

Ltd., 2009.

[14] Ignacio Llamas, Byungmoon Kim, Joshua Gargus, Jarek Rossignac, and Chris D Shaw.

Twister: a space-warp operator for the two-handed editing of 3d shapes. ACM transactions on

graphics (TOG), 22(3):663–668, 2003.

[15] Aurelien Barbier and Eric Galin. Fast distance computation between a point and

cylinders, cones, line-swept spheres and cone-spheres. Journal of Graphics tools, 9(2):11–19,

2004.

