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SUMMARY

Radar is an indispensable tool in the observation, analysis, and prediction of

weather. The Weather Surveillance Radar 1988-Doppler (WSR-88D) is the primary

source of weather radar data in the United States (U.S.), providing dual-polarimetric

(dual-pol) radar measurements for the inference of meteorological phenomena.

A classic estimation problem in radar meteorology is the estimation of rain rate.

Taking this problem one step further, a number of approaches have been suggested

for estimating the parameters of the drop size distribution (DSD) of rain (or clouds).

While various methodologies have been suggested for rain rate and DSD estimation,

and numerous studies have evaluated these estimators, no fundamental limit has yet

been established for how well these estimators could perform given the available dual-

pol data.

One of the primary contributions of this dissertation is to derive fundamental

performance bounds for the variance of any unbiased estimator of the DSD parameters

given the dual-pol measurements recorded by operational weather radars, e.g., the

WSR-88D. This dissertation further establishes similar bounds for the estimation of

rain rate and liquid water content (LWC).

First, this dissertation presents a comprehensive background on weather radar and

the WSR-88D. Then, the current state of the field for DSD and rain rate estimation

is reviewed, along with the methods by which such estimators are typically evaluated.

To establish variance bounds for the estimation of DSD parameters, this dissertation

begins by finding a closed-form expression that suitably approximates the complicated

mathematical mapping between the DSD parameters of rain (or clouds) and the

expected value of the dual-pol radar measurements. With these expressions and

xiii



an appropriate dual-pol signal model, the Cramér-Rao lower bound (CRLB) of the

DSD parameters is derived. This result is then applied to determine the CRLB of

rain rate and LWC as well. Then, to test the existence of an efficient estimator

for each of these quantities, which is both unbiased and achieves the CRLB, an

approach for determining their maximum-likelihood estimates (MLE) is proposed

and applied. Further, an extensive parametric analysis of the CRLB and MLE of

the DSD parameters, rain rate, and LWC is performed to gather more substantial

conclusions regarding the derived bounds. This dissertation concludes with an in-

depth analysis of the efficacy of the dual-pol radar measurements for estimation of

the DSD parameters, rain rate, and LWC.

xiv



CHAPTER I

INTRODUCTION

Radar plays a key part in the observation, analysis, and prediction of severe weather

events and other meteorological phenomena. The Weather Surveillance Radar 1988-

Doppler (WSR-88D) is the primary source of weather radar data in the United States

(U.S.) and U.S. territories, with 155 WSR-88D network sites (and an additional five

non-network WSR-88Ds), operated by the Departments of Commerce, Transporta-

tion, and Defense [58]. These radars are commonly referred to as the NEXRAD

(Next-Generation Radar) network.

Originally, the WSR-88D was deployed as a horizontally polarized radar. However,

for many years, the weather radar community has encouraged the application of dual-

polarization (dual-pol) radar measurements to increase the utility of weather radar.

With the recent dual-pol upgrade to the WSR-88D [59], there has been revitalized

interest in the application of such measurements [70, 46, 48, 47].

A classic estimation problem in radar meteorology, which may benefit from the

additional measurements available from a dual-pol radar (as opposed to a single-

polarimetric radar), is the estimation of rain rate. Taking this problem one step

further, a number of approaches have been suggested for estimating the parameters

that describe the drop size distribution (DSD) of rain. While various methodologies

have been suggested for rain rate and DSD estimation, and studies have been per-

formed to evaluate these estimators, no fundamental limit has yet been established

for how well these estimators may perform given the available dual-pol data.

One of the primary contributions of this dissertation is to derive fundamental

bounds for the variance of any unbiased estimator of the DSD parameters given the

1



standard dual-pol measurements recorded by operational weather radars, e.g., the

WSR-88D. Once the desired bound for the DSD parameters is found, this dissertation

further establishes similar bounds for other intrinsic quantities of interest, specifically

rain rate and liquid water content (LWC). Moreover, to determine whether an efficient

estimator exists for each of these quantities, an approach for finding the maximum-

likelihood estimate (MLE) of the DSD parameters, rain rate, and LWC is proposed.

Lastly, analysis of the resulting bounds provides insight to the utility of dual-pol radar

measurements for estimating the DSD, rain rate, and LWC.

1.1 Organization

The remainder of this chapter discusses the definition and significance of the DSD,

rain rate, and LWC. Chapter 2 provides a firm understanding of weather radar and

a comprehensive background on the WSR-88D. Chapter 3 reviews the current state

of the field for DSD and rain rate estimation along with the methods by which such

estimators are typically evaluated. To establish variance bounds for the DSD param-

eters, a function that maps the DSD parameters to the expected value of the radar

measurements is required; thus, Chapter 4 establishes closed-form expressions that

suitably approximate the complicated mathematical relationship between the DSD

parameters and the dual-pol measurements provided by an S-band weather radar.

Chapter 5 develops an appropriate signal model for the dual-pol measurements and

applies the expressions obtained in Chapter 4 to derive the Cramér-Rao lower bound

(CRLB) of the DSD parameters. Moreover, a method for finding the MLE of the DSD

parameters is proposed and applied to test the existence of an efficient estimator for

the DSD parameters. Then, Chapter 6 performs an extensive parametric analysis of

the CRLB and MLE of the DSD parameters to gather more substantial conclusions

regarding the derived bounds. Chapter 7 expands on these results by deriving similar

bounds for both rain rate and LWC. A parametric analysis of the CRLB and MLE of

2



rain rate and LWC is performed as well. Lastly, Chapter 8 summarizes the conclu-

sions and contributions of this dissertation, in addition to discussing a logical path

forward for future research.

1.2 DSD, Rain Rate, and LWC

1.2.1 Drop Size Distribution

The DSD of falling rain (or a cloud) describes both the concentration of raindrops (or

cloud droplets) and the probability density function (PDF) of drop diameters.1 The

interest in DSD estimation stems from its relation to the microphysical processes of

precipitation and application in estimating other fundamental quantities of interest,

e.g., rain rate and LWC. In its most general form, the DSD is defined as [15]

N (De;X) = NtpDe (De;X) , (1)

where Nt is the total number of drops in a unit volume and pDe (De;X) is the PDF of

the volume-equivalent drop diameters,2 De, given the deterministic DSD parameter

set, X.3 While initial models represented the DSD with an exponential distribution

[53], it is now widely accepted that the gamma distribution is the most appropriate

for modeling the instantaneous DSD of rain events [83]:

N (De;X) = NoD
µ
e e
−ΛDe De > 0, (2)

whereX = [No µ Λ]T is the parameter set of the DSD, where •T denotes the transpose.

Recall from (1) that the DSD does not integrate to one, but to the number of drops

1Throughout this dissertation, DSD may be used interchangeably to describe the DSD of rain
and the DSD of clouds.

2The volume-equivalent diameter of a raindrop is the diameter of a spherical raindrop that has the
same volume as a non-spherical raindrop. From this point forward, the volume-equivalent diameter,
De, of a spheroidal raindrop shall simply be referred to as diameter. Further, throughout this
dissertation, the variable D shall be used to describe the diameter of raindrops when the simplifying
assumption of spherical (versus spheroidal) raindrops is made.

3Here, the notation pY (Y ;X) indicates the dependence of the PDF of Y on the deterministic
parameter set X whereas the notation pY |X (Y |X) shall be used to indicate the dependence of the
PDF of Y on the random variable X.
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in a unit volume. Thus, these parameters define not only the mean drop diameter,

E [De] =
µ+ 1

Λ
, (3)

and drop diameter variance,

σ2
De =

µ+ 1

Λ2
, (4)

but also the drop concentration, i.e., the number of drops per unit volume:

Nt =
NoΓ (µ+ 1)

Λµ+1
, (5)

where Γ (•) is the gamma function.

Another parameterization of the gamma DSD, frequently used in the literature,

expresses N (De;X) in terms of physically meaningful quantities [81, 90]:

N (De;X
′) = Nwfµ (µ)

(
De

Do

)µ
e−(3.67+µ)De

Do , (6)

where X ′ = [Nw µ Do]
T is an alternative DSD parameter set. In (6), fµ (µ) is a

normalization term, Do is the median-volume diameter, and Nw is the intercept of an

exponential distribution with the same water content and median-volume diameter

as the gamma DSD.

1.2.2 Rain Rate

Rain rate is a measure of the rate at which rain falls to the earth’s surface. Rain rate

estimation is of interest for a variety of applications such as meteorology, agriculture,

the environment, and sewage systems of urban areas [7]. While rain rate may be

better estimated by instruments other than radar (e.g., rain gauges or distrometers4),

radar has the unique benefit of providing vast quantities of data over a large region

in a short period of time. As a result, accurate rain rate estimation has long been a

goal of radar meteorology. Given that rain rate is a direct function of the rain DSD

4A disdrometer is an instrument used to measure the drop size distribution and velocity of falling
hydrometeors.
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and the terminal velocity of raindrops, DSD estimation is a natural first step in the

estimation of rain rate.

Reflectivity, a measurement proportional to the received power from a reflecting

object (e.g., rain drops), was initially the only measurement available to estimate

rain rate. However, different DSDs can yield identical measured reflectivity values

while yielding very different rain rates [73]. As a result, reflectivity-based rain rate

estimators are prone to large errors. The dual-pol upgrade of the WSR-88D offers a

new set of measurements (discussed in detail in Chapter 2), in addition to reflectivity,

that may serve to improve the quality of rain rate estimators.

1.2.3 Liquid Water Content

LWC is a measure of the amount of cloud water in a unit volume. Estimation of LWC

is of interest because it relates to the microphysical processes occuring within clouds,

and knowledge of these processes may provide insight into the phenomena occuring

within those clouds. For example, updraft speeds and storm intensities are related to

the amount of latent heat released by production of water within clouds [25]. Another

reason LWC is of interest is because high concentrations of cloud water can impact

jet aircraft engines by causing them to “flame out” due to ingesting too much water

[25].

LWC estimation can benefit from the newly available dual-pol radar measurements

in the same way that rain rate estimation does. Like rain rate, it is a direct function of

the cloud DSD, and, hence, LWC estimation is a logical progression after estimating

the cloud DSD.

5



CHAPTER II

OPERATION AND PHENOMENOLOGY OF THE

NEXRAD (WSR-88D) WEATHER RADAR

2.1 Overview

The network of WSR-88Ds spanning the U.S. is the primary source of weather radar

data used by the National Weather Service (NWS) and other commercial interests to

extrapolate valuable information regarding precipitation and severe weather events.

There are a number of other commercial and experimental weather radars [82]; most

notably, the MPAR (Multifunction Phased-Array Radar) program [49, 89, 39] is in-

vestigating the potential of a phased-array radar with the capability to aid in remote

weather observation, air traffic control, air route surveillance, and homeland defense

tasks. However, for the time being, the WSR-88D is the most extensively utilized and

accessible source of weather radar data for governmental, commercial, and research

applications. Further, the intent for the WSR-88D to continue as a primary source

of remote weather observations is evidenced by the recent WSR-88D modernization

efforts, which include both the dual-pol and super-resolution upgrades that have been

completed in recent years [59]. Hence, along with providing a firm understanding of

the basic phenomenology of weather radar in general, this chapter aims to provide a

comprehensive description of WSR-88D parameters and operation.

This chapter is organized as follows. Section 2.2 reviews fundamental radar phe-

nomenology with an emphasis on applications in meteorology. Section 2.3 describes

WSR-88D parameters and operation. Section 2.4 discusses the various types of data

provided by the WSR-88D and how they relate to the physical parameters of observed

scatterers. Lastly, Section 2.5 exemplifies the utility of dual-pol data in the event of
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severe weather.

2.2 Basic Radar Phenomenology

Many of the concepts and terminology in this section apply to the subject of radar

in general. They are reviewed here, in part, to establish notation.

A monostatic radar transmits radio frequency (RF) electromagnetic (EM) waves

into a region of interest and receives EM waves reflected back by objects in this region

[72]. The signals received by the radar include energy reflected by objects of interest,

referred to as targets, and objects that are not of interest, referred to as clutter. In

the case of weather radar, the objects of interest are meteorological scatterers such

as raindrops, hail, or even tornadic debris. For many radar applications, including

weather radar, clutter often includes backscatter from terrain, trees, and buildings.

In contrast, weather is often the clutter that obscures the target signal in other radar

applications.

2.2.1 Range

A pulsed-wave radar, the type employed in meteorological applications, periodically

transmits a discrete pulse of short duration and then stops transmitting while waiting

to receive the reflected pulse. The time it takes for the pulse to be received directly

relates to the distance traveled by the pulse, i.e., twice the range of the reflecting

object. Since the pulse travels at the speed of light, c = 2.998×108 m/s, the range is

computed as

R =
c∆t

2
, (7)

where ∆t is the round trip time of the pulse between the radar and the reflecting

object. The set of received data samples for a single pulse corresponds to a series

of range bins along the EM wave’s path of propagation and is often referred to as a

fast-time sequence.
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2.2.2 Range Resolution

Range resolution is the minimum range between two objects such that the objects are

still resolvable by the radar. The bandwidth of the transmitted waveform determines

the range resolution of the radar:

∆R =
c

2βw
, (8)

where βw is the bandwidth in Hertz. In the case of a simple rectangular pulse at a

constant carrier frequency, as used in the WSR-88D [38], the waveform bandwidth

may be approximated as

βw ≈
1

τ
, (9)

where τ is the pulse duration in seconds.

2.2.3 Cross-Range Resolution

The amount of energy transmitted by the radar in a given direction is determined by

the antenna directivity pattern. The directivity pattern of the WSR-88D is shown in

Figure 1.1 Maximum energy is transmitted broadside, i.e., θ = ϕ = 0◦, where θ and

ϕ are the azimuth and elevation angles, respectively, relative to the antenna normal.

The two-sided antenna beamwidth is defined as the difference, in degrees, between

the half power points on either side of the pattern maximum and is often referred

to as the two-sided half-power (or three dB) beamwidth. Together, the half-power

beamwidths in azimuth and elevation define the solid angle of primary illumination

from the antenna beam.

The half-power beamwidth determines the cross-range resolution, i.e., the res-

olution in the azimuthal and elevation dimensions. Cross-range resolution is the

minimum separation between two objects in either of the two angular dimensions

1While the directivity pattern in Figure 1 is plotted versus azimuth, the WSR-88D directivity
pattern is axis symmetric and is, therefore, similar in the elevation dimension.
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Figure 1: Representative directivity pattern for the WSR-88D and worst case sidelobe
envelope. Typically, the sidelobes of the WSR-88Ds are several dB below the envelope.
Source: [60].

such that the objects are still resolvable. It may be computed for the azimuthal and

elevation dimensions, respectively, as

∆CRθ = R sin θ3 ≈ Rθ3 (10)

and

∆CRϕ = R sinϕ3 ≈ Rϕ3, (11)

where θ3 is the azimuthal half-power beamwidth and ϕ3 is the elevation half-power

beamwidth in radians. The approximations in (10) and (11) are valid for sufficiently

small beamwidths.

2.2.4 Radar Range Equation

The radar range equation (RRE) predicts the amount of power received by the radar

from a reflecting object. This section starts with a generic form of the RRE [1] and

develops the weather version of the RRE.
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In general, the power, in Watts, received by a monostatic radar from a point target

is

Pr =
PtG

2λ2σ

(4π)3R4L2(R)Ls
, (12)

where Pt is the peak transmit power in watts, G is the unitless gain of the antenna

on transmit and receive, λ is the transmit wavelength in meters, L(R) is the one-way

propagation loss over range R, Ls includes all system and processing losses, and σ is

the radar cross section (RCS) of the object in meters squared. The RCS of an object

corresponds to the reflective strength of a target, defined as the effective area of the

target as seen by the radar assuming the reflected EM wave is isotropic. However,

since objects do not reflect energy isotropically, the physical scattering area of an

object is not the sole governing factor in determining RCS; size, shape, orientation,

and composition of the reflecting object are influencing factors as well.

For weather radar applications, there are usually many scatterers within a reso-

lution volume, e.g., water droplets, ice crystals, and biological scatterers. Assuming

uncorrelated scatter between objects and neglecting multiple scattering, the RRE can

be rewritten as

Pr =
PtG

2λ2

(4π)3R4L2 (R)Ls

∑
i

σi, (13)

where the equation sums over the contributions of several scatters within a resolution

volume. Most often, the weather RRE is written as a function of reflectivity, or RCS

per unit volume:

η =
1

∆V

∑
i

σi, (14)

where ∆V is the radar resolution volume and η is given in units of mm2

m3 .

The beam of the WSR-88D is axis-symmetric [60], i.e., θ3 = ϕ3; thus, the resulting

resolution volume is roughly cylindrical in shape [82, 25]. Recalling the equations for

range and cross-range resolution, (8) and (10), respectively, the resolution volume can
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be approximated as [82]

∆V≈π
(
Rθ3

2

)2 (cτ
2

)
. (15)

Using (14) and (15), the final form of the weather RRE is

Pr =

(
1

2ln (2)

)
PtG

2λ2θ2
3cτη

512π2R2L2 (R)Ls
, (16)

where a factor of 1
2ln(2)

has been included to account for the non-uniform Gaussian

directivity pattern of the WSR-88D over the radar resolution volume [82].

2.2.5 Thermal Noise

All target echoes received by the radar compete with receiver thermal noise. Thermal

noise is modeled as an additive, zero-mean white, circular, complex Gaussian process.

The noise power of the radar receiver is

Pn = kbTsB = kbT0FB, (17)

where kb = 1.38×10−23 J/K is Boltzmann’s constant, T0 is the standard temperature

of 290 K, F is the receiver noise figure, Ts = T0F is the system equivalent noise

temperature2 in kelvin, and B is the instantaneous receiver bandwidth. Under most

circumstances, B = βw.

Accurate estimates of the system noise power are essential to properly estimate

the power of the received signal, especially since WSR-88D specifications require

reflectivity and velocity estimates at signal-to-noise ratios (SNR) as low as -3 dB [91].

Based on (17) and the parameters in Table 1, the WSR-88D receiver noise power is

expected to be −114 dBm. Measurements have yielded a comparable value of −113

dBm [25].

2Ts, in (17), refers to the system equivalent noise temperature, a term common in radar, which is
related to the standard temperature, T0, and the system effective temperature, Te, by the equation
Ts = T0 + Te.
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Table 1: Key WSR-88D Parameters. Source: [60].

Antenna Subsystem
Gain 45 dB
Polarization Simultaneous HH and VV
Beam Width 0.93◦

First Sidelobe Level -29 dB
Elevation Steerability +0.5◦ to +19.5◦

Maximum Rotation Rate 30 ◦s−1

Transmitter Subsystem
Transmit Frequency 2.7 to 3.0 MHz
Peak Power 750 kW
Short Pulse Width 1.57 µs
Long Pulse Width 4.5 µs
Short Pulse PRF 318 to 1304 Hz
Long Pulse PRF 318 to 452 Hz

Receiver Subsystem
Noise Temperature 450 K
Receiver Bandwidth 0.63 MHz

2.2.6 Doppler Frequency

The WSR-88D has a coherent quadrature receiver [60], meaning it can measure

the phase of a received sinusoidal wave relative to the radar’s stable local oscillator

(STALO). Coherence over multiple transmitted pulses yields two main advantages.

First, it can offer an increased SNR. The exact gain in SNR is a function of the

number of pulses in a coherent processing interval (CPI) along with the rate at which

the signal decorrelates over the duration of the CPI.3 Second, coherence facilitates

measurement of the Doppler frequency:

fd ≡
2Vr
λ
, (18)

3Throughout this disseration, a CPI refers to a sequence of transmitted pulses whose return
echoes have a non-zero correlation from pulse-to-pulse. The term dwell shall be used to refer to a
sequence of transmitted pulses whose return echoes are uncorrelated from pulse-to-pulse.
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where Vr is radial velocity of the target in m/s. The Doppler frequency is measured

over a series of pulses in a CPI. This sequence of pulses is often referred to as a slow-

time sequence. The time between consecutive transmitted pulses in a CPI is referred

to as the pulse repetition interval (PRI). The pulse repetition frequency (PRF) is the

sampling rate of the slow-time sequence:

PRF =
1

PRI
. (19)

The range of Doppler frequencies that can be measured without ambiguity is deter-

mined by the Nyquist criterion:

−PRF
2
≤fd≤

PRF

2
. (20)

The magnitude of the discrete Fourier transform of the slow-time sequence for

a given resolution volume provides an estimate of the target Doppler frequencies in

that resolution volume. For a single scatterer with constant RCS and radial velocity

over the duration of a CPI, the samples of the slow-time sequence are perfectly corre-

lated and the magnitude of the Doppler spectrum has a narrow peak at the Doppler

frequency of the target. A target with exponentially distributed, perfectly correlated

echoes from pulse to pulse is a Swerling I target [79]. A Swerling II target model

refers to a target with exponentially distributed echoes that completely decorrelate

from pulse to pulse, resulting in a white Doppler spectrum. At the PRIs utilized in

weather radars, raindrop scatter only partially decorrelates from pulse to pulse and

cannot be modeled as a Swerling I or Swerling II target. The Doppler spectrum of

rain scatter is commonly modeled as Gaussian with the spectral width being related

to the rate of decorrelation.

2.2.7 Polarization

The EM waves transmitted by a radar are associated with a vector quantity, E, which

lies in a plane orthogonal to the direction of the EM wave’s propagation. Assuming
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the EM waves travel along the z-axis of a Cartesian coordinate system, the electric

field vector, varying sinusoidally in time and space, has the form

E = Ex cos (2πftt− kz) + Ey cos (2πftt− kz + ψt) , (21)

where Ex and Ey are vectors in the x (i.e., horizontal) and y (i.e., vertical) directions,

respectively, with norms equal to the amplitude of sinusoidal variation in their re-

spective directions, k is the wavenumber (spatial frequency in radians per meter), ft

is the transmitted frequency, and ψt is the relative phase of the x and y components

upon transmission. The orientation of the electric field vector defines the polarization

of the wave. If the wave only has a horizontal component (i.e., parallel to the earth’s

surface and orthongonal to the direction of propagation), it is horizontally linearly

polarized. Similarly, if the wave only has a vertical component (i.e., orthogonal to the

earth’s surface and the direction of propagation), the wave is vertically linearly po-

larized. The wave may also be linearly polarized at an angle other than horizontal or

vertical. Other forms of polarization include circular, elliptical, or unpolarized. The

WSR-88D simultaneously transmits and receives horizontally and vertically polarized

waves [60]. More details on the dual-pol operation of the WSR-88D are provided in

Section 2.3.6. For a more in-depth discussion on polarization and its applications in

radar, see [87].

In general, the backscatter RCS of a target depends on the polarization of the

incident EM wave. The RCS of spheres and spheroids are of particular interest in

weather radar as they are often used as shape models for reflecting hydrometeors, e.g.,

raindrops and some hail. In the case of a perfect sphere, the RCS is independent of

polarization and related to the sphere diameter. However, given an oblate or prolate

spheroid, the RCS becomes a function of polarization. Denoting the transmit and

receive polarizations as t-type and r-type, respectively, where r and t are either h

for horizontal or v for vertical, the polarization-dependent RCS σrt is related to the
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scattering coefficient Srt through the equation4

|σrt|2 = 4π |Srt|2 . (22)

The polarization-dependent scattering coefficients are often written in a scatter ma-

trix, S: Eh
s

Ev
s

 =
e−jkR

R

Shh Shv

Svh Svv


︸ ︷︷ ︸

S

Eh
i

Ev
i

 , (23)

where E•i is an incident electric field component, E•s is a scattered electric field com-

ponent, •h indicates horizontal polarization, and •v indicates vertical polarization.

The e−jkR

R
term is the spherical wave factor which accounts for the phase change and

spreading of the EM wave as a function of R from the object of incidence. The scat-

tering matrix reveals how the reflecting object affects the incident wave in terms of

polarization, amplitude, and phase shifts.

When a sphere’s radius is significantly smaller than the wavelength of the incident

EM field, it lies in the Rayleigh scattering regime [84], and its RCS directly relates

to the sphere’s radius. Similarly, Rayleigh5 theory can also be applied to define the

RCS of an oblate spheroidal raindrop, in which case the effective RCS is largest if the

plane of polarization is the same as the plane of the spheroid’s semi-major axes. This

phenomenon is used in meteorological applications to infer information regarding the

size, shape, composition, and orientation of detected hydrometeors, as discussed in

more detail in Section 2.4.

4In general, the scattering coefficient is a function of the direction of scatter. For the purposes of
this chapter, unless otherwise stated, the scattering coefficients refer to backscatter in the direction
of the radar.

5In the weather radar literature, the Rayleigh scattering of spheroids is termed Rayleigh-Gans
scattering after Gans who derived the equations for Rayleigh scattering of spheroids [15]. This
unfortunate terminology is not used in this dissertation to avoid confusion with actual Rayleigh-
Gans scattering, an approximation for the scattering of small particles with an index of refraction
near unity [84].
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2.2.8 Attenuation

When EM waves travel through the atmosphere, the waves are attenuated by gases,

water vapor, and hydrometeors due to absorption and scattering. At the frequency

band of many weather radars (S-band), attenuation is low enough that the radar is

able to see into and through significant precipitation; however, attenuation is sub-

stantial enough that it cannot be neglected [25]. The total attenuation loss due to

rain in a unit volume is

kp =

∫ ∞
0

[σa(D) + σts(D)]N(D)dD (24)

=

∫ ∞
0

σe(D)N(D)dD,

where σa is the effective absorption cross section, σts is the total effective scattering

cross section, σe = σa + σts is the extinction cross section, and N(D) is the DSD.6

The total attenuation over the path of propagation is a function of range. In the

case of small raindrop diameter-wavelength ratios [25], the absorption effect is more

dominant than the scattering effect and can be approximated as

σa =
π2D3

λ
=(K), (25)

where D is the raindrop diameter, = denotes the imaginary component of a complex

number, and K is

K =
m2
r − 1

m2
r + 2

, (26)

where mr = nr − jnrκa is the complex refractive index of water, where the real part,

nr, is often referred to as simply the refractive index and κa is the attenuation index.

The rate of attenuation, usually expressed in dB/km, has been characterized for a

range of rain rates, DSDs, and frequencies [82]. For WSR-88D operations, attenuation

due to rain is traditionally estimated based on the reflectivity factor, or equivalently,

6For notational simplicity, the dependence of the DSD on the parameter set, X, is not shown
here. This convention is followed throughout Chapter 2.
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Figure 2: Specific two-way attenuation versus reflectivity as assumed in WSR-88D
calculations.

the RCS of rain (discussed in detail in Section 2.4.1) as observed and estimated by

the WSR-88D [60]. The presumed reflectivity-attenuation relationship is shown in

Figure 2.

2.2.9 Clutter and Anomalous Propagation

The signal received by a weather radar is sometimes contaminated with clutter, echoes

from objects that are not of interest and interfere with the signal the user would like

to observe [1]. In many radar applications, clutter includes echoes from precipita-

tion, whereas remote sensing of precipitation is a primary goal of weather radars.

In meteorological applications, clutter frequently includes objects such as terrain,

buildings, and trees.7 Under normal circumstances, clutter only contaminates the

WSR-88D signal when the antenna is at a low elevation angle [25]. However, on rare

occasions, abnormally significant departures from the atmosphere’s typical refractive

7Technically, clutter also includes signals from birds and insects. However, in application, echoes
from birds and insects are distinguished from stationary clutter and are given a separate classification
of “biological scatterers.”
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index gradient may result in a phenomenon referred to as anomalous propagation

(AP). AP occurs when significant temperature inversions or large moisture gradients

cause abnormally large refractive index gradients, which in turn bend the path of the

transmitted wave back towards Earth.

Since clutter consists of returns from nominally stationary objects, the clutter

slow-time spectrum is centered at zero velocity with a narrow spectral width. These

two attributes are often used to discriminate clutter from meteorological echoes[60].

In the case of AP, it may not be possible to recover any usable meteorological signals

from the contaminated resolution volumes. However, in other cases, clutter mitigation

is often achieved by applying a notch filter to the slow-time data sequence. Rather

than apply the notch filter indiscriminately, a site-specific clutter map might be used

to determine not only which portions of the data require a clutter filter but also the

parameters of the clutter filter (i.e., null width and depth) [61].

2.3 Operation of the WSR-88D

The WSR-88D was originally designed as a single frequency (S-band), horizontally

polarized radar. All WSR-88Ds have since been modified to support dual-pol capa-

bility [82, 59], transmitting and receiving both horizontally and vertically polarized

waves simultaneously. The simultaneous transmission is achieved by transmitting a

linearly polarized wave at a 45◦ angle. The horizontal and vertical components of the

wave are then simultaneously received in the horizontal and vertical receive channels

of the radar, respectively. The network of WSR-88Ds has also been upgraded to in-

clude a super-resolution mode that yields data points on a finer range-azimuth grid

than the legacy resolution [82].

2.3.1 Signal Processing Chain

To generate data for a set of resolution volumes along a single radial (i.e., along

range), the WSR-88D transmits a series of pulses in a CPI, receives the reflected pulses
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through a coherent quadrature receiver, and applies a matched filter to the received

signal. The result is a two-dimensional Nr×Np range-pulse map of complex (i.e., I-Q)

data. This I-Q data is often referred to as level I data. For each resolution volume, the

Np pulses are used to estimate the first three spectral moments of the data. The zero

moment corresponds to the average power reflected by scatterers in a given resolution

cell, while the first and second moments correspond to estimates of the mean and

standard deviation of the underlying distribution of scatterer radial velocities. Both

the first and second moments are estimated using pulse-pair processing, as described

in Sections 2.4.2.2 and 2.4.3.2. These three measurements are the classic single-

polarization level II data products8 and are among the most rudimentary level of

data recorded operationally [62].

2.3.2 Coordinate System and Propagation

The WSR-88D collects data from a full three-dimensional volume by mechanically

steering in azimuth and elevation. Each complete volume scan is composed of a series

of constant elevation scans, referred to as cuts, with each cut consisting of a full

360◦ in azimuth and ranges up to 460 km. The resulting data is stored in a three-

dimensional array, with the dimensions corresponding to the spherical coordinates of

the radar. Azimuth is measured in degrees clockwise from due north, elevation is

measured in degrees from the altitude line of the radar, and range is defined as the

slant range in meters from the radar. Computing the ground range and height of

a particular data point cannot be accomplished with a simple spherical-to-Cartesian

conversion since the atmosphere’s refractive index has a discernable impact on EM

wave propagation. The wave follows a curved path with curvature proportional to

the derivative of the refractive index. In general, the refractive index is assumed to

be horizontally homogeneous and change only as a function of height [25]. Thus, the

8In the weather radar literature, the term “product” can describe both level II data and other
quantities derived from such level II data, but it is rarely used to refer to level I data.
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curvature of the path of propagation is usually expressed as

Cp = −dnr
dh

, (27)

where nr is the refractive index and h is the height above sea level. To account for

the curved path of propagation, it is common to use an equivalent Earth model [25],

where the radius of Earth is assumed to be

RE
e = keRe, (28)

where Re is the true radius of the Earth and ke = 4
3
. With this model, the ground

range is approximated by

Rg = RE
e sin−1

(
R cos θ

RE
e + h

)
, (29)

where R is the slant range (or simply range) to a scatterer and the height above sea

level, h, is approximated as

h =

√
R2 +RE

e
2 + 2RRE

e sinθ −RE
e . (30)

2.3.3 Radar Parameters

The quality, resolution, and volume coverage of the WSR-88D level II data is de-

pendent on the operational parameters of the radar. Many of these parameters are

adjustable and chosen based on current weather conditions. Most adjustable param-

eters are set by selecting a volume coverage pattern (VCP), described in detail in

Section 2.3.4. There are a variety of VCPs, each defined for specific meteorological

conditions. The most notable parameters varied in VCPs are PRF, pulse width, cut

elevation angles, and antenna rotation rate; these parameters are described below.

2.3.3.1 PRF

The PRF is the frequency at which the radar transmits pulses. In addition to de-

termining the unambiguous velocity interval (as discussed in Section 2.2.6), the PRF
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also determines the maximum range at which objects can be detected unambiguously.

If an object is far enough in range, then it is possible that the reflected pulse will

not be received until after the next pulse has been transmitted. The reflection of the

first pulse from a far-range object is indistinguishable from a reflection of the second

pulse from a near-range object, resulting in range ambiguity. Choosing the PRF in-

volves trading off unambiguous velocity against unambiguous range. Recall from (20)

that the maximum unambiguous target velocity is directly proportional to the PRF,

whereas the maximum unambiguous range is inversely proportional to PRF:

Rua =
cPRI

2
=

c

2PRF
, (31)

where Rua is the maximum unambiguous detection range in meters. The apparent

range of any target beyond the maximum unambiguous range is

Ra = R modRua, (32)

where R is the true target range and “mod” denotes the modulo operation. Using two

or more PRFs, target ranges can be disambiguated. By applying algorithms based

on the Chinese remainder theorem, range measurements across different PRFs are

aligned [71]. Power and velocity measurements are then compared to determine the

range of the dominant return [63].

2.3.3.2 Pulse Width

The WSR-88D has two pulse width options, a short pulse of 1.57 µs and a long

pulse of 4.5 µs [60]. The short pulse provides better range resolution and is used

in high PRF modes for a greater span of unambiguous velocity measurements. The

long pulse, on the other hand, yields higher average signal power,9 evidenced by how

received power scales with pulse width in (16).

9Although weather radars could simultaneously achieve high resolution and high SNR by exploit-
ing more sophisticated waveforms than simple rectangular pulses [56], the current waveform set of
the WSR-88D is likely to remain standard for the foreseeable future.
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Traditional fast-time filters are matched to the shape and duration of the trans-

mitted waveform. The matched filter implementation in the WSR-88D samples the

fast-time data at the range resolution of the short pulse (≈ 250 meters) and uses

the short-pulse waveform in the filtering process, regardless of which pulse length is

transmitted. When the long pulse is transmitted, a three-sample coherent block av-

erage is applied to the “matched” filter output, reducing the data to the approximate

range resolution of the long pulse. This procedure, which simplifies the design of the

hardware (as described in Section 4.8 of [63]) well approximates traditional matched

filtering and downsampling.

2.3.3.3 Cut Elevation Angles

The term cut refers to a set of recorded data over all azimuth and range for a sin-

gle elevation angle. Cut elevation angles are selected based on a number of factors

including the type, rate of change, range, and extent of weather being observed. For

example, if significant weather is observed at far ranges, a VCP with a greater number

of low elevation cuts may be selected to obtain sufficient vertical sampling at those

ranges. If meteorological conditions are changing rapidly, a VCP with fewer elevation

cuts may be selected to maintain a certain volume coverage rate. In clear weather, a

VCP with relatively few elevation cuts scanned at a slower rate may be selected to

maintain a minimum volume coverage rate while obtaining an increased sensitivity

by increasing the duration of a CPI.

2.3.3.4 Antenna Rotation Rate

The WSR-88D scans a single elevation cut at a time, mechanically scanning in az-

imuth. The antenna rotation rate and PRF determine the maximum number of pulses

in a CPI, which is equal to the number of pulses transmitted during an antenna ro-

tation of one beamwidth, i.e.,

Np≤
θ3PRF

dθ
dt

, (33)
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where Np is the number of pulses in a CPI and dθ
dt

is the rotation rate of the antenna

in radians per second. This criterion ensures that the antenna beam overlaps for

all pulses in a CPI. Hence, lower rotation rates provide higher SNR and improved

velocity resolution at the expense of slower volume coverage.

In traditional radar applications, in which the target is a point target, scanning

the antenna over the course of a CPI results in a signal processing loss from the

amplitude modulation of the beam as it scans over the target. This is referred to

as beamshape loss. However, in weather radar, in which the target is volumetric, it

is common to assume the target uniformly fills the radar resolution volume, and the

effects of scanning are modeled as in increase in the effective beam size [24].

2.3.4 Volume Coverage Patterns

A VCP is a scan strategy that designates the parameters of the volume scan, specif-

ically the elevation angles at which cuts are taken, the types of cuts taken, and the

radar parameters used for those cuts.

The WSR-88D employs three types of cuts: split, batch, and contiguous Doppler

X (CDX) [63]. Split cuts scan a particular elevation slice twice, once in a contiguous

surveillance (CS) mode and once in a contiguous Doppler (CD) mode. The CS mode

uses a low PRF for collecting intensity (i.e., power) data over maximum range extent,

while the CD mode uses a high PRF for better velocity resolution. The CS mode is

also used to disambiguate range-folded CD data. Furthermore, split cuts facilitate

clutter suppression; thus, they are often used at elevation angles below 1.65◦ where

efficient clutter suppression is a necessity. Batch cuts alternate between high and low

PRFs in a single cut. They offer many of the benefits of split cuts, without requiring a

second scan of the same elevation slice. Batch cuts are employed for middle elevation

angles (i.e., between 1.8◦ and 6.5◦) where clutter contamination is less problematic.

CDX cuts employ a high PRF with a quick-rotating antenna at elevation angles above
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Figure 3: VCP 11 samples fourteen elevation angles in five minutes. The lowest
two angles use “split cut” (CS/CD), middle angles use batch, and higher angles use
Contiguous Doppler (CDX) mode. The beams shown represent the beam height as a
function of range and account for both the earth’s curvature and standard atmospheric
refraction of the beam.

6.5◦. CDX cuts do not require range unfolding since little reflectivity arises from far

ranges at these elevation angles. The highest elevation angle setting for any VCP is

19.5◦. The space above this angle is referred to as the cone of silence, which is the

vicinity above the radar where no radar observations are made.

VCPs are composed of a combination of split, batch, and CDX cuts. The VCP

is usually selected automatically based on the type and range of significant weather

patterns that have already been detected. An example VCP is show in Figure 3.

2.3.5 Legacy Resolution versus Super Resolution

Traditionally, for each cut of data in a volume scan, the WSR-88D generates a range-

azimuth grid sampled at the approximate resolution of the radar, 250 (or 750) meters

by 1◦ for the short (or long) pulse. The 1◦ azimuthal resolution corresponds to the

approximate beamwidth of the WSR-88D and is the result of choosing the maximum
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length CPI that satisfies (33). By choosing the maximum length CPI, the best possible

velocity resolution is attained and statistical variations of the radar measurements are

minimized. This is referred to as legacy resolution.

While both batch and CDX cuts still operate at legacy resolution, the split cuts

now operate in the new super-resolution mode. The motivation for super-resolution

surveillance is described in detail in [18] and [17], which show that certain severe

storm reflectivity and Doppler signatures are better and more frequently identified

by generating a grid with an azimuthal sampling rate of 0.5◦ (i.e., super-resolution

mode) rather than 1◦, i.e., legacy resolution. The term “super resolution,” when

referring to the WSR-88D, simply refers to the ability to collect more CPIs at an

increased azimuthal sampling rate.10 It does not refer to an actual increase in the

radar resolution. Rather, the increased azimuthal sampling is achieved by decreasing

the duration of a CPI by half. The negative consequence of a shorter CPI is an

increase in the standard deviation of the reflectivity and Doppler estimates. Since

the purpose of super-resolution mode is increased spatial resolution, this mode always

uses the short-pulse waveform for increased range resolution.

2.3.6 Dual-Polarization

All WSR-88Ds have been upgraded in recent years to include a dual-pol capability,

i.e., the ability to simultaneously transmit and receive both horizontally and verti-

cally polarized waves [82]. Details of the initial dual-pol performance analysis and

calibration process can be found in [54]. Since the WSR-88D is not capable of switch-

ing polarizations (as in a polarization-diversity radar) or waveform diversity (as in a

polarization-agile radar) [51], the WSR-88D does not measure all four scattering co-

efficients of a target, but rather measures the sum of the co-pol and cross-pol powers

10This terminology is contrary to its traditional usage in signal processing applications in which
it refers to autoregressive processing techniques that achieve super resolution by assuming a specific
form for a signal to be estimated.
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received in each channel, i.e., S2
hh + S2

hv and S2
vv + S2

vh. For applications involving

rain drops, the cross-polarization terms are often considered negligible since most

rain drops fall with a nearly vertical axis of symmetry [6]. For applications involving

more complex scatterers (e.g., snowflakes, birds, and tornadic debris), it is common

to resort to data mining algorithms to predict the dual-pol returns.

With the dual-pol upgrade, three new measurements are now included as part of

the level II data products. These include differential reflectivity, the co-polar corre-

lation coefficient, and (specific) differential phase. The primary motivation for these

supplementary data products is the added ability to discriminate various hydromete-

ors and improve quantitative forecasts by inferring the size, shape, distribution, and

concentration of scatters. For example, spherical hydrometeors have a similar RCS

for both horizontal and vertical polarizations; however, raindrops become more oblate

as they grow in size, and hence, yield greater differences between the scattered waves

of the two polarizations. The three dual-pol products measure these differences in

various ways and are explored in more detail in Section 2.4.

Despite the addition of the vertically polarized channel, all three of the original

level II data products (i.e., reflectivity, radial velocity, and spectral width) are still

measured from the horizontally polarized channel. The vertical channel is simply

employed to generate the three new dual-pol products.

2.4 Weather Radar Data Products

Level II data products include any quantity derived directly from the I-Q data of the

radar. The WSR-88D records six level II data products for each resolution volume:

reflectivity, mean radial velocity, spectral width, differential reflectivity, the co-polar

correlation coefficient, and differential phase. Reflectivity, radial velocity, and spectral

width are the classic single-polarization data products, whereas differential reflectiv-

ity, the co-polar correlation coefficient, and differential phase are the more recently
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Figure 4: A radar reflectivity image of a classic supercell containing a violent tornado
near Oklahoma City, Oklahoma on May 20, 2013.

added dual-pol data products.

2.4.1 Reflectivity

Reflectivity is a measure of the efficiency of a target in intercepting and reflecting

radio energy back towards the radar [62]. More specifically, it is a measure of the per

unit area or per unit volume (in the case of meteorological scatterers) RCS of objects

observed by the radar [1]. For a single hydrometeor, reflectivity is a function of size,

shape, physical state (e.g., water or ice), and aspect angle. However, some simplified

models are often used to model the RCS of certain hydrometeor types. This section

focuses specifically on rain.

An example reflectivity image for a classic tornadic supercell, which affected Okla-

homa City, OK during the afternoon of May 20, 2013, is shown in Figure 4. The main

body of the supercell is the large area of high reflectivity, depicted by yellows and

reds, in the center of the figure. At the bottom left of the main supercell, a “hook”
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and possible “debris ball” can be seen. An area of lower reflectivity, indicating inflow

into the tornado, is positioned to the right and above the hook and debris ball.

2.4.1.1 Phenomenology

In the simplest case, raindrops and small hail are modeled as perfect spheres that act

as Rayleigh scatterers. With these assumptions, the RCS of an individual raindrop

is [15, 84]

σ =
π5|K|2D6

λ4
. (34)

It is this model that gives rise to the term reflectivity factor, defined as

ζ =
1

∆V

∑
i

D6
i =

λ4η

π5 |K|2
. (35)

Reflectivity factor is given in units of mm6

m3 ; however, due to the large range of possible

values of reflectivity factor, it is traditionally expressed on a dB scale, Z = 10 log10 ζ,

with units of dBz.11 Placing reflectivity in the weather RRE yields

Pr =

(
1

2 ln (2)

)
PtG

2θ2
3cτπ

3|K|2ζ
512λ2R2L2 (R)Ls

. (36)

The value of |K|2 in the weather RRE depends on the physical state of observed

hydrometeors. However, for a reasonable range of temperatures (0◦ to 20◦ C) and

wavelengths (3 to 10 cm), the values of |K|2 can be approximated as

|K|2 ≈ 0.93 (37)

for water and

|K|2 ≈ 0.197 (38)

for ice [82]. The physical state is usually hypothesized based on factors such as

temperature and the altitude of the melting layer in stratiform events.12 However,

11From this point forward, reflectivity factor shall simply be referred to as reflectivity, as is common
in meteorological jargon.

12Stratiform precipitation results from the forced lifting of air. As the air rises, it cools, causing
the air mass to saturate, form clouds, and eventually precipitate. Stratiform events are most often
characterized as wide-spread, homogeneous rain events with less intense rain rate than convective
events.
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the actual computation of reflectivity usually assumes a refractive index of water

regardless of the conjectured hydrometeor phase [82].

While the Rayleigh scattering model of a sphere is a good approximation for the

RCS of small raindrops and hail, large raindrops tend to have an oblate shape result-

ing in polarization-dependent RCS properties. Also, hail can grow large enough in

diameter such that it falls into the nonlinear Mie scattering regime; i.e., the Rayleigh

scattering approximation is no longer valid.

2.4.1.2 Calculation

Using the weather RRE, the power received by the radar can be equated to a reflec-

tivity value. To estimate the reflectivity, the average received power is estimated as

a linear average over multiple pulses in one or more resolution volumes [25]:

P̂r =
1

Np

Np∑
i=1

|xi|2 − P̂n, (39)

where •̂ denotes an estimate, xi is the measurement of a single pulse for a single

resolution volume, and P̂n is the estimated noise power of the radar. The exact

number of averaged samples depends on the VCP of the radar, which dictates spatial

and temporal resolution requirements. Reflectivity is then estimated as

Ẑ = 10log10ζ̂ (40)

= 10log10

[
2ln(2)

512P̂rλ
2R2L2 (R)Ls

PtG2θ3
2cτπ3|K|2

]
,

where ζ̂ is the estimated linear scale reflectivity and Ẑ is ζ̂ converted to dBz.

2.4.2 Radial Velocity

The radial velocity reported by the WSR-88D signal processor is an estimate of the

reflectivity-weighted average motion of targets towards or away from the radar within

a given resolution volume. An example radial velocity image from the May 20, 2013
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Figure 5: A radar radial velocity image containing a tornadic vortex signature (TVS).
The TVS is marked by a significant gradient in the velocity field.

tornadic supercell (discussed in Section 2.4.1) is shown in Figure 5. The radial veloci-

ties of the supercell show a large scale circulation both towards the radar (depicted in

green) and away from the radar (depicted in red). Within the area circled in white, a

tight couplet of red and green indicates an area of increased circulation in the vicinity

of the tornado core. Comparing Figures 4 and 5, it’s evident that this couplet is co-

located with the area of increased reflectivity ascribed to the “debris ball” in Figure

4.

Several independent mechanisms contribute to the apparent motion of the numer-

ous hydrometeors in a resolution volume. Based on the Central Limit Theorem, it is

common to model the power spectrum of the coherent pulse sequence as Gaussian. In

fact, it is estimated that over 75% of all observed spectra are Gaussian shaped [44].
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2.4.2.1 Phenomenology

Scatterer velocity is determined by measuring the Doppler frequency. As mentioned

previously, the radar is only capable of measuring the radial velocity component

of a target. The measured radial velocity is a linear combination of the line-of-

sight components of the horizontal and terminal-fall velocities of hydrometeors in the

antenna beam width and can be computed as

Vr = −Vhx cos (θ) cos (ϕ)− Vhy sin (θ) cos (ϕ) + Vf sin (ϕ) , (41)

where Vhx and Vhy are the horizontal hydrometeor velocities in the x and y directions,

respectively, and Vf is the fall speed of the hydrometeor [19].

2.4.2.2 Calculation

The average radial velocity of the power spectrum for a given resolution volume is

estimated using pulse-pair processing [95], which assumes a Gaussian-shaped power

spectrum. The mean velocity is estimated from the phase angle of the first lag of the

autocorrelation of the slow-time signal:

V̂r = − λ

4πPRI
arg R̂x [1], (42)

where R̂x is the estimated autocorrelation function of the measured slow-time se-

quence and “arg” denotes the angle of a complex number.

2.4.3 Spectral Width

Spectral width is a measure of the dispersion of the scatterer velocities within the

radar resolution volume and is defined as the standard deviation13 of the velocity

power spectrum [62]. It is also a measure of the reliability of the estimated radial

13Here, we use the term “standard deviation” as a mathematical description of the spread of the
power spectrum; the power spectrum itself is not a probability density, although the power spectrum
is expected to be related to the probability density of the underlying hydrometeor velocities.
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velocity. Before the advent of dual-pol, spectral width was often used to identify

areas of tornadic debris.

2.4.3.1 Phenomenology

Spectral width, σVr is modeled as a sum of independent broadening mechanisms

[78, 25]:

σ2
Vr = σ2

s + σ2
α + σ2

f + σ2
o + σ2

t , (43)

where σ2
s is due to radial shear, σ2

α is due to antenna motion, σ2
f is due to varia-

tion in hydrometeor fall speed, σ2
o is due to oscillation and orientation changes of

hydrometeors, and σ2
t is due to turbulence.

2.4.3.2 Calculation

Similar to the computation for average radial velocity, the width of the slow-time

power spectrum is estimated using pulse-pair processing14 [95]:

σ̂Vr =
λ

2πPRI
√

2
ln

(
R̂x [0]− P̂n
|R̂x [1] |

)
. (44)

2.4.4 Differential Reflectivity

Differential reflectivity is the ratio of the horizontally and vertically polarized power

returns from a given resolution volume [62]. It is considered to be a good indicator

of raindrop shape, which is highly correlated with drop size. Differential reflectivity

is deemed helpful in estimating rain rate since reflectivity does not have a one-to-one

relation with rain rate.

2.4.4.1 Phenomenology

While small raindrops are approximately spherical, aerodynamic and viscous forces

cause larger raindrops to have an oblate (i.e., oriented with the major axis in the

14It is possible for the term inside the logarithm to be negative. In that case, the estimate is not
valid.
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Figure 6: An oblate raindrop with a radius of b along the vertical axis of symmetry
and a horizontal equatorial radius equal to a.

horizontal dimension) spheroidal shape as shown in Figure 6. A number of numerical

models have been suggested for relating raindrop size to the axis ratio,

r =
b

a
, (45)

where b is the radius along the axis of symmetry and a is the equatorial radius.

As discussed in Section 2.2.7, when reflecting spheroids are in the Rayleigh scat-

tering region, the increased horizontal radius of the oblate raindrop results in an

increased reflectivity in the horizontal channel relative to the vertical channel. A

good but biased approximation relating the power-weighted average axis ratio,

r̃ =

∫∞
0
r |Shh|2 pr(r)dr∫∞

0
|Shh|2 pr(r)dr

, (46)

and the differential reflectivity, ζdr, of an ensemble of oblate spheroidal raindrops, is

[40]

ζdr = r̃
7
3 , (47)

where pr (r) is the PDF of raindrop axis ratios.
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2.4.4.2 Calculation

Differential reflectivity is reported in dBz and is estimated as the ratio of the hori-

zontal and vertical linear reflectivity estimates, i.e.,

ẐDR = 10 log10 ζ̂dr (48)

= 10 log10

ζ̂h

ζ̂v

= ẐH − ẐV ,

where ζ̂h and ζ̂v are the linear estimated reflectivity values of the horizontal and

vertical channels, respectively, and ẐH and ẐV are the corresponding reflectivity

estimates reported in dBz.

2.4.5 Co-polar Correlation Coefficient

In the weather radar community, the co-polar correlation coefficient, usually referred

to as the correlation coefficient (CC), is the magnitude of the statistical correlation

between the reflected horizontally and vertically polarized signals, i.e.,

ρ =

∣∣∣∣E [ShhS
∗
vv]

σhhσvv

∣∣∣∣ , (49)

where the superscript asterisk denotes the complex conjugate, Shh and Svv are the

zero-mean random-valued amplitude returns corresponding to the co-polar scatter-

ing coefficients of the ensemble of hydrometeors, and σhh =
√
E[|Shh|2] and σvv =√

E[|Svv|2].

The CC is considered to be a good indicator of the homogeneity or heterogeneity

of scatterers in a resolution volume. A value of ρ ≈ 1 indicates highly homogeneous

scatterers whereas smaller values of ρ indicate more heterogeneous scatterers.

2.4.5.1 Phenomenology

In general, differential reflectivity is considered a good indication of the average

oblateness of spheroidal scatterers. It does not, however, provide any information
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regarding the distribution of scatterer shape and orientation. The CC, on the other

hand, when considered in conjunction with differential reflectivity, can be related to

the variance of the ratios of the amplitude returns at horizontal and vertical polar-

ization [41]. Consider the amplitude ratios of the echoes from a single hydrometeor,

ΥH =
Shh
Svv

(50)

and

ΥV =
Svv
Shh

. (51)

Assuming a spheroidal scatterer, the variances of ΥH and ΥV are a function of the

linear differential reflectivity, ζdr, and the correlation coefficient, ρ [41]:

σ2
ΥH

= ζdr
(
1− ρ2

)
(52)

and

σ2
ΥV

= ζ−1
dr

(
1− ρ2

)
. (53)

Furthermore, in the case of equilibrium-shaped raindrops (i.e., theoretical raindrops

whose shapes are no longer changing due to forces acting on the raindrop), Jameson

et al. [41] has shown that the diameter variance of an ensemble of raindrops is

σ2
D = 2.23ζ−1

DR

(
1− ρ2

)
. (54)

Thus, the CC and differential reflectivity provide an approximation of the first two

moments of the DSD.

2.4.5.2 Calculation

The CC estimate is simply the magnitude of the zero-lag correlation between the

received signals in the horizontally and vertically polarized channels. It is estimated

as

ρ̂ =

∣∣∣∣∣
1
Np

∑Np
i=1 xhi(x

v
vi

)∗

σ̂hhσ̂vv

∣∣∣∣∣ , (55)
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where xhi and xvi are samples of the received signal in the horizontal and vertical

channels, respectively,

σ̂hh =

√√√√ 1

Np

Np∑
i=1

|xhi |2, (56)

and

σ̂vv =

√√√√ 1

Np

Np∑
i=1

|xvi|2. (57)

2.4.6 Differential Phase

The WSR-88D differential phase product (or instantaneous differential phase) is the

difference in phase between the received signals in the horizontally and vertically

polarized channels [62]. It corresponds to the angle of the co-polar correlation term

at zero lag, i.e.,

φ = arg

[
E [ShhS

∗
vv]

σhhσvv

]
. (58)

While the differential phase alone is not very informative, a derived product referred

to as the specific differential phase, which is the range derivative of the instantaneous

differential phase, i.e.,

KDP =
dφ

dR
, (59)

is a function of the scattering properties of rain [43].

2.4.6.1 Phenomenology

When an EM wave is scattered forward by raindrops, a polarization-dependent phase

shift occurs over the path of propagation.15 An incident horizontal wave on an oblate

spheroid will result in a larger RCS, greater attenuation, and bigger phase shift than

an incident vertical wave. The difference between the phase shifts of the forward-

scattered wave in the horizontal and vertical channels is the specific differential phase.

15A similar polarization-dependent phase shift occurs upon backscatter, but this phase shift is
considered negligible [42].
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Assuming the backscatter phase shift is negligible, the one-way specific differential

phase shift in radians per unit distance is

KDP =
2π

k

∫ ∞
0

<{Shh (D)− Svv (D)}N(D)dD, (60)

where Shh and Svv are the forward scatter coefficients and < denotes the real part of

a complex number. An approximation relating specific differential phase, in degrees

per kilometer, to underlying meteorological parameters is [43]

KDP =
108

π2
WλC [1− ř] ,

where W is the LWC in units of g/m3, C is a value that depends on the radar

operational frequency, and ř is the mass-weighted mean axis ratio of the raindrop

ensemble, i.e.,

ř =

∫∞
0
rD3N(D)dD∫∞

0
D3N(D)dD

. (61)

2.4.6.2 Calculation

Instantaneous differential phase is estimated from the angle of the zero-lag co-polar

correlation term, i.e.,

φ̂ = arg

[
1

Np

Np∑
i=1

xhix
∗
vi

]
. (62)

Specific differential phase is estimated as the range derivative of the differential phase,

sometimes averaged over several resolution volumes along range to reduce statistical

variations, i.e.,

K̂DP =
φ̂a − φ̂b

2∆R

, (63)

where φa and φb denote the instantaneous differential phase in range bins Ra and

Rb, respectively, and ∆R = Ra − Rb. The factor of two in the denominator of (63)

is required because the measured instantaneous differential phase at the radar is a

result of the two-way path of propagation. In some cases, a least squares fit may also

be used to estimate the specific differential phase.

37



2.5 Dual-Pol Radar Parameters for Tornado Detection

The measurements available as a result of the dual-pol upgrade are being incorporated

into operational use by the NWS. This section illustrates the utility of some of these

new measurements by discussing their application in detecting tornadic storms.

Dual-pol parameters, such as the CC and differential reflectivity, are being com-

bined operationally with more traditional NEXRAD output, such as standard reflec-

tivity and radial velocity, to detect low-end tornadic storms. These storms are fairly

common in the winter and early spring in the southeastern U.S. They often occur

late at night, are wrapped in rain, and exhibit less vertical development than storms

seen later in the spring and summer severe weather season. For these reasons, these

early storms are often difficult to detect by direct observation or by using the original

(non-dual-pol) NEXRAD data products.

Analyzing the NEXRAD output for dual-pol tornado debris signatures (DPTDS)

is a promising method for detecting these storms. DPTDS are produced by the debris

that is lofted when a tornadic storm touches the ground. In addition to observing

a high reflectivity value and radial velocity couplet, the data can be examined for

relevant values of ρ and ZDR. Specifically, areas indicative of lofted tornado debris

tend to contain very low values of ρ, as the debris consists of objects with a wide

variety of sizes and shapes lofted by the tornado. In addition, ZDR tends to be near

zero, indicating no specific preferred orientation of the debris.

Figure 7 shows reflectivity, radial velocity, differential reflectivity, and the CC for

an EF3 tornadic storm that occurred near Adairsville, GA on 30 January 2013. The

area affected by the tornadic storm is enclosed in the white circle in all four plots.

The reflectivity plot shows a long line of storms along a squall line, but no distinctive

supercell thunderstorm. Radial velocity shows a large area of circulation, but a tight

couplet is not seen. There is, however, a distinct area of near-zero ZDR and low ρ

within the area of interest. These strong signals, associated with high reflectivity
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(a) Reflectivity (b) Radial Velocity

(c) Correlation Coefficient (d) Differential Reflectivty

Figure 7: Radar data products for an EF3 tornadic storm near Adairsville, GA on
30 January 2013.

and indications of rotation in the radial velocity image, allow for the detection of a

tornado on the ground.

2.6 Summary

This chapter reviews the basic phenomenology of radar meteorology and the operation

of the WSR-88D. The concepts described herein provide guidance on the physical

significance of the level II data products provided for meteorological applications.

These physical concepts provide intuition on how these data products may be applied

to problems such as hydrometeor characterization, clutter identification, rain rate

estimation, and detection of tornadic vortex signatures.
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CHAPTER III

STATE OF THE FIELD

3.1 Overview

The purpose of this chapter is to establish the current state of the field for estima-

tion of DSD parameters and rain rate. It provides background on current approaches

and demonstrates the weather radar community’s present mindset for solving these

problems, which often contrasts with the principled approach used to establish per-

formance bounds later in this dissertation.

This chapter is organized as follows. First, Section 3.2 discusses some basic con-

cepts related to the scattering of raindrops, which are central to the estimation tech-

niques reviewed in later sections. Section 3.3 examines various approaches for DSD

estimation, and Section 3.4 follows with a discussion of the methods by which such

estimators are frequently evaluated. Similarly, common approaches for rain rate es-

timation and evaluation of rain rate estimators are summarized in Sections 3.5 and

3.6, respectively.

3.2 Raindrop Scattering Basics

All approaches presented in this section depend on the ability to model the scattering

properties of raindrops. At the operational transmit frequency of the WSR-88D

(2.7 − 3 GHz) [60], the scattering of individual raindrops is well approximated by

Rayleigh scattering theory [64]. At higher frequencies, other approaches are used,

e.g., the T-matrix method [55]. For scattering calculations, the shape of a raindrop

is routinely modeled as an oblate spheroid, which is fully defined by its diameter

De and axis ratio r. Furthermore, raindrop shape models commonly assume that
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a deterministic relationship exists between drop diameter and axis ratio, i.e., r =

fr (De). This stems from the fact that larger raindrops tend to be more oblate (i.e.,

have a smaller axis ratio) due to various forces acting on the raindrop as it falls.

3.3 DSD Parameter Estimation

Since the advent of the WSR-88D dual-pol upgrade and the formulation of the

gamma DSD model, three primary approaches have been suggested for estimating

the parameters of a gamma DSD from dual-pol measurements: the beta method,

the Constrained-Gamma (CG) method, and a neural network approach. Each is dis-

tinguished not only by the applied technical methodology but also by the modeling

assumptions employed as part of the problem formulation.

3.3.1 Beta Method

3.3.1.1 Model Assumptions

Recall from Section 3.2 that it is standard to assume a known relationship between

r and De of a raindrop. The beta method [31, 32, 29, 13] assumes a linear model for

this relationship:

r = 1.03− βDe, (64)

where β is a slope parameter. This relation is consistent with the model of Pruppacher

and Beard [65], one of the first empirical fits ever proposed for relating r andDe, where

β = 0.62. The beta method, however, treats the slope parameter as an unknown

variable that is estimated from the radar observables along with the DSD parameters.

Gorgucci et al. [31] believes this technique accounts for effects due to different canting

distributions and modes of raindrop oscillation in various meteorological conditions.

3.3.1.2 Technical Approach

The beta method applies nonlinear regression analysis to simulated data to estimate

the functional relationship between the unknown parameters, X = [β No µ Λ]T , and
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the radar measurements, Y = [ZH ZDR KDP ]T . Regression is the statistical process of

estimating the model coefficients, ω, that define the relationship between the observed

data, Y , and the model parameters, X; e.g., the estimate of X given ω is

X̂nlr = gnlr (Y ;ω) . (65)

In the case of nonlinear regression, the relationship is modeled by a nonlinear function,

gnlr (Y ;ω), of the estimated coefficients.

The beta method solution requires training on a simulated data set. Thus, the

resulting solution is in part determined by the prior distribution on X that was em-

ployed to generate the simulated data. The chosen priors, however, are not necessarily

representative of the true distribution of model parameters [11]. They are simply se-

lected to include the range of values expected to be encountered in realistic DSDs.

Clearly, the beta method solution is dependent on the selection of the prior since

it proposes to solve for four unknown model parameters given three radar measure-

ments. In the context of this approach, it might be more appropriate to treat β as a

nuisance parameter1 in a Bayesian framework and choose priors with more discretion.

3.3.2 Constrained-Gamma Method

3.3.2.1 Model Assumptions

The CG method [94, 21, 22] uses the radar observables Y = [ZH ZDR]T , choosing

not to use KDP since it cannot be derived from a single resolution volume. Accord-

ingly, to make DSD estimation a two-parameter problem, the CG method applies a

constraint on the values of µ and Λ, a relationship supported by numerous indepen-

dent disdrometer data collections. The constraining mathematical µ − Λ relation is

approximated from experimental data by a second-order polynomial with coefficients

1A nuisance parameter is an unknown parameter that is not of interest but merely complicates
the estimation problem [45].
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determined by linear regression [10]:

Λ (µ) = 1.935 + 0.735µ+ 0.0365µ2. (66)

For the r−De relation, the CG model uses a deterministic function, r = fr (De) that

is also based on experimentally collected disdrometer data.

3.3.2.2 Technical Approach

The original CG method [94] uses an “iterative procedure” to solve the system of equa-

tions relating the DSD parameter set, X = [No µ]T (or, equivalently, X = [No Λ]T ),

with the expected value of the radar measurements, Y = [ZH ZDR]T . Given that the

radar measurements are MLEs of their true expected values [76], the CG solution

corresponds to the MLE of the DSD parameter set under the CG model. This follows

from the functional invariance property of the MLE [45]. The MLE is the value of

the model parameters that maximizes the likelihood of the observed data, i.e.,

X̂mle = arg max
X

pY (Y ;X) , (67)

where Y is the observed data and X is the unknown parameter set.

The CG model has also been applied using a Bayesian approach [21]. In the

Bayesian paradigm, the posterior probability of the unknown random parameter set,

X = [No µ]T , given the observations, Y = [ZH ZDR]T , is

pX|Y (X|Y ) =
pY |X (Y |X) pX (X)

pY (Y )
, (68)

where pY |X (Y |X) is the likelihood of the data given the parameter set X, pX (X)

is the prior distribution on the unknown parameters, and pY (Y ) is the marginal

probability of the observed data. Assuming the model of Cao et al. [21] is valid, the

provided solution is the minimum mean-square error (MMSE) estimate of X, i.e.,

X̂mmse = arg max
χ

∫ ∞
0

||X − χ||2 pX|Y (X|Y ) dX (69)

=

∫ ∞
0

XpX|Y (X|Y ) dX,
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where ||·|| denotes the l2 norm. However, the model employed by Cao et al. [21] is

an ad hoc approximation for the true joint distribution of the radar measurements.

Most recently, the CG model has been incorporated into a variational scheme as

well [22]. This approach is a method for spatial data assimilation in which one strives

to minimize a cost function. Based on certain assumptions, such as a Gaussian error

structure and exponential spatial correlation of the model variables, the posterior

distribution may be written as

PX|Y (X|Y ) =
1

Q
e−C(X,Y ), (70)

where C (X, Y ) is the cost function and Q is a normalization factor. In the varia-

tional scheme, X and Y refer to the model parameters and measurements, respec-

tively, for several radar resolution volumes over a multi-dimensional grid. Under the

given model, minimization of the cost function provides the joint maximum a pos-

teriori (MAP) estimate for the DSD parameters over that grid. The MAP estimate

is the value of the model parameters that maximizes the posterior probability of the

unknown model parameters, i.e.,

X̂map = arg max
X

pX|Y (X|Y ) . (71)

3.3.3 Neural Network Approach

3.3.3.1 Modeling Assumptions

The modeling assumptions applied in the neural network approach [88] are fairly

straightforward. A set of well-known, experimentally established deterministic models

is chosen to relate the raindrop diameter and axis ratio. Based on this fact, there is

a deterministic mapping from the DSD parameters, X = [No µ Λ]T , to the expected

value of the radar measurements, Y = [ZH ZDR KDP ]T .
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3.3.3.2 Technical Approach

Using simulated data, Vulpiani et al. [88] trains a neural network to estimate the DSD

parameters, X = [No µ Λ]T , from the radar measurements, Y = [ZH ZDR KDP ]T . A

neural network is a specific type of nonlinear regression model performed in multiple

stages that is designed to model the operation of neurons in the human brain [35].

Given a set of inputs, Y , a nonlinear function, gnn (•), called a node, computes a set

of derived features, A1 = [A1 (1) ...A1 (M)]T . The mth derived feature of the input

layer is

A1 (m) = gnn
(
w0

1,m + wH1,mY
)
, (72)

where w1,m and w0
1,m signify a weight vector and bias term, respectively, which are

estimated using regression, •H denotes the Hermitian (i.e., conjugate transpose), and

the subscript one signifies the set of input nodes is the first “layer” of the neural

network. In a multi-layer architecture, the first layer of derived features, obtained

from the input, feeds another layer that generates a new set of derived features, and

so on; i.e., the mth feature of the lth layer is

Al (m) = gnn
(
w0
l,m + wHl,mAl−1

)
. (73)

The estimated parameters, X̂nn, are expressed as a linear combination of the final

layer of derived features,

X̂nn = w0
L + wTLAL, (74)

where AL signifies the derived features of the final hidden layer of an L-layer neural

network.

3.4 Evaluation of DSD Estimators

As of yet, little consideration has been given to the theoretical treatment of DSD es-

timator performance. Typically, to evaluate DSD parameter-estimation performance,
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estimators are applied to one of two types of data: simulated [29, 88, 2] or experimen-

tally collected [13, 11, 94, 88, 2, 10]. Then, a set of metrics is applied to benchmark

estimator performance. A discussion of the merits and vices of simulated and experi-

mentally collected data is given in Section 3.4.1. Then, Section 3.4.2 summarizes the

metrics frequently used to describe estimator performance.

3.4.1 Data Merits

Simulated data is generally inexpensive to generate, and the quality of the data is often

more easily verified than experimentally collected data. For this reason, simulated

data is frequently used for the evaluation and comparison of the techniques described

in Section 3.3 [29, 88, 2]. The primary drawback of simulated data, however, is that it

requires a known model to generate the data. For DSD estimation, each of the three

techniques presented in Section 3.3 operate under different modeling assumptions.

By choosing a particular model to perform a simulation, one inherently elects the

best estimator. Furthermore, a Monte Carlo simulation requires the adoption of a

prior distribution on the model parameters. In many cases, the selection of the prior

is likely to have a direct impact on the outcome of the performance analysis. Most

often, simulated data is generated assuming independent uniform prior distributions

on log10 (Nw), Do, and µ. While these priors include the span of values likely to

be encountered in precipitation, they are unlikely to be representative of the true

distribution [11].

The primary advantage of experimentally collected data is that a known data

model is not required. Rather, the validity of the proposed models may be tested.

Nevertheless, reliable experimentally collected data is often difficult to obtain. It

requires collection of radar data and corresponding disdrometer measurements as

ground truth, the temporal and spatial synchronization of which is often a challenge.

Additionally, measurements are subject to experimental error. Further, it is difficult,
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if not impossible, to verify that the collected data is representative of the gamut

of DSD parameter values that may be encountered in the diverse array of possible

climatological settings.

3.4.2 Measures of Estimator Performance

A number of metrics are usually computed to assess estimator performance. These

include the statistical correlation between true and estimated parameter values, the

sample mean of the estimator bias, the root mean-square error (RMSE), and the

coefficient of determination [94, 88, 2]. While these metrics summarize estimator

performance over the parameter set represented by the test data, they do not provide

a method for reliably characterizing performance as a function of all variables that

influence estimator results, e.g., DSD and radar parameters.

As mentioned previously, the theoretical treatment of DSD estimator error is scant

in the current literature. However, Brandes et al. [11] does apply error propagation to

examine the impact of measurement errors on DSD parameters for the beta method.

Error propagation is a method of analysis for understanding how the error or un-

certainty of random variables may impact functions of that random variable. For

nonlinear functions X = fX(Y ), where Y = [Y (1)Y (2) ...Y (M)]T , the analysis may

be performed by applying a first-order Taylor series expansion about a point, Y o:

fY (Y ) ≈ fY (Y o) +
M∑
m=1

dfY (Y o)

dY (m)
(Y − Y o) . (75)

Then, with the simplifying assumption made by Brandes et al. [11] that the mea-

surement errors are independent, the variance of X = fY (Y o) is approximated as

σ2
X ≈

M∑
m=1

∣∣∣∣dfY (Y o)

dY (m)

∣∣∣∣2 σ2
Y (m), (76)

where σ2
Y (m) is the measurement error variance. However, the assumption of inde-

pendent measurement errors is frequently invalid. Furthermore, error propagation
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operates under the assumption that the only source of estimation errors are the re-

sult of measurement errors. Contrastingly, the beta method model estimates four

unknown parameters from three measurements, which makes such a relationship im-

possible.

3.5 Rain Rate Estimation

Rain rate estimation is a fundamental problem of interest in radar meteorology, which

is inherently related to DSD estimation. As such, a number of techniques have been

proposed to estimate rain rate from radar measurements. These approaches are di-

vided into two categories. The first category estimates the DSD and then proceeds to

extrapolate rain rate based on the retrieved DSD parameters. The second category

seeks to parametrically relate rain rate directly to radar measurements, bypassing

DSD estimation as a step.

3.5.1 DSD-Based Approaches

The approaches described in this section are based on the idea that once DSD pa-

rameters are estimated from radar measurements, rain rate is easily inferred from

the DSD parameters. Thus, the procedures described in this section are merely the

DSD estimation approaches discussed in Section 3.3, but extended to the rain rate

estimation problem.

Bringi et al. [16] extends the beta method to provide a power-law estimator for

rain rate. They suggest that the relationship between rain rate and reflectivity is well

modeled as

R̂r (ZH) = a (X) ζ1.5
h , (77)

where R̂r is the estimated rain rate and a (X) is a function of the retrieved DSD

parameters estimated using the beta method.2

2While power-law estimators may use the linear scale measurements, e.g., ζh, as input, it is
common notation to signify the rain rate estimator as a function of their logarithmic counterpart,
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To estimate rain rate, DSD parameters estimated with the CG method [94, 10]

and the neural network approach [88] have been applied to a direct mapping between

rain rate and the DSD parameters (i.e., Rr = fRr (X)). Given that the CG method

yields the MLE of the DSD parameters, the rain rate estimate is also the MLE under

that model.

3.5.2 Non-DSD-Based Approaches

The methods described in this section are among the more conventional rain rate

estimators. In these approaches, DSD estimation is not a preliminary step in the

estimation process; however, this is not to say that the role of the DSD in rain

rate is ignored. Radar measurements are often collected or simulated for a range of

realistic DSD parameters such that a direct relationship between rain rate and radar

measurements can be estimated. General nonlinear regression, neural networks, and

the probability matching method (PMM) are all technical approaches that have been

applied in this context for rain rate estimation.

3.5.2.1 Nonlinear Regression

Several estimators that parametrically relate radar measurements to instantaneous

rain rate through a power-law relation have been determined using nonlinear regres-

sion. Since the WSR-88D was first deployed as a single-polarization radar, reflectiv-

ity was originally the only available radar-based measurement for inferring rain rate,

leading to several estimators of the form

R̂r (ZH) = aζbh, (78)

where a and b are the regression coefficients. The coefficients used in (78) are highly

variable. Countless variants for the estimator coefficients of (78) have been recom-

mended in the literature [4]. Most often, the specific set of coefficients chosen is based

e.g., R̂R (ZH).
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on the type of precipitation under observation, e.g., stratiform, convection, or oro-

graphic. In general, such estimates are subject to large errors since a unique mapping

between reflectivity and rain rate does not exist.

After the dual-pol upgrade of the WSR-88D, improvements in rain rate estimation

came in the form of other power-law estimators similar to (78), but with the addition

of other data products, e.g., R̂r (ZH , ZDR) [28], R̂r (KDP ) [75], and R̂r (KDP , ZDR)

[9].

3.5.2.2 Neural Networks

Neural networks have been applied for estimating rain rate from radar measurements

as well [52, 92, 88]. As explained in Section 3.3.3, neural networks are also a form of

nonlinear regression; however, they have a specific parametric form modeled after the

operation of neurons in the human brain. The relationship between radar measure-

ments and rain rate can be well approximated by a neural network given appropriate

training data. As cited in Vulpiani et al. [88], it has been proven that a single hidden

layer neural network is capable of representing any continuous nonlinear function.

3.5.2.3 Probability Matching Method

PMM [74, 20] strives to match the sample cumulative distribution functions (CDF) of

rain rate, FR̂r

(
R̂r

)
, and reflectivity, FZH (ZH). PMM assumes reflectivity is related

to rain rate by a unique monotonic function (i.e., Rr = gpmm (ZH)) such that

FRr (Rr) = FZH
(
g−1
pmm (Rr)

)
, (79)

where g−1
pmm (•) denotes the inverse function of gpmm (•). Given the sample CDFs of

rain rate and reflectivity, the function gpmm (ZH) is estimated (usually non-parametrically)

so that (79) holds true for the sample CDFs. An extension to traditional PMM [30],

applying both ZH and ZDR, has been implemented as well.

One of the more attractive features of PMM is that it does not require temporal
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or spatial synchronization of radar measurements with rain gauge records when col-

lecting data to characterize the CDFs of rain rate and reflectivity. However, given the

possible variations in DSDs, the assumption of a unique monotonic function relating

ZH and Rr is clearly invalid.

3.6 Evaluation of Rain Rate Estimators

The methods and metrics normally used for the evaluation of rain rate estimators

are consistent with those used for DSD estimation. Estimators are applied to either

simulated [28, 8] or experimentally collected [16, 10, 52, 92] data. Then, performance

is quantified with metrics such as statistical correlation between true and estimated

rain rate, the sample mean of the estimator bias, the RMSE, and the coefficient of

determination [10, 16, 28, 52, 92, 8].

Little work has been done in terms of theoretical performance bounds of rain rate

estimation. However, for power-law estimators, error propagation has been considered

as a method of evaluating the impact of measurement errors on estimator performance

[23]. For example, given a simple power-law estimator, R̂r (ZH) = aζbh, the estima-

tor variance that results from measurement errors distributed with zero-mean and

variance of σ2
ζh

, is

σ2
R̂r(ZH)

= σ2
ζh
a2b2ζ

2(b−1)
h . (80)

This method provides the estimator variance resulting from measurement error. How-

ever, since a unique mapping relating rain rate to reflectivity does not exist, additional

errors are present in reflectivity-based estimators. Error propagation does not account

for this fact.

3.7 Summary

This chapter reviewed various suggested approaches for estimation of DSD parameters

and rain rate, along with the methods by which these estimators are often evaluated.
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Further, it demonstrated the extensive effort put forth by the weather radar com-

munity to find solutions to these problems. Despite all the effort put forth to solve

these problems, no one as yet attempted to determine potentially how well any of

these estimators could perform given the available dual-pol data. Thus, this chapter

also sets the stage for the remainder of this dissertation, which strives to establish

performance bounds for these estimators.
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CHAPTER IV

MAPPING DROP SIZE DISTRIBUTION PARAMETERS

TO RADAR MEASUREMENTS

4.1 Overview

Regardless of the approach taken to estimate DSD parameters, a functional mapping

relating the dual-pol radar measurements to the DSD parameters is the ultimate

goal of the DSD estimation problem. This mapping may be determined explicitly

based on the underlying physics, or it may be learned implicitly via data mining

techniques. In general, data mining approaches are suitable for estimation problems

in which the physical models are unavailable. Despite the fact that the physical

scattering properties of raindrops are well understood, the data mining approach is

still frequently used [13, 29, 88] because the complicated mathematical relationships

between these quantities are difficult to work with directly.

The objective of this chapter is to establish closed-form mathematical expressions

that suitably approximate the mathematical relationship between the DSD param-

eters of rain and the expected value of the dual-pol radar measurements. To our

knowledge, the only previous attempt to do something similar is [94], where the

scattering coefficients of raindrops, assuming a deterministic relationship between

raindrop size and shape, are fit to a power law. However, [94] makes no effort to

extend this mapping to other models for the axis ratio of raindrops. Further, the

quality of the approximations provided in [94] is not quantified.

To develop the proposed relationship, Section 4.2 begins by reviewing the scat-

tering properties of individual raindrops. Section 4.3 discusses the shape model for

individual raindrops so the applicable scattering theory may be applied. Section 4.4
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applies the shape model and scattering theory to an ensemble of raindrops, formu-

lating how each each of the dual-pol radar measurements relate to the properties of

the raindrop ensemble. The resulting mathematical relationships developed in this

section involve an integral that is only computable via numerical integration. Thus,

Section 4.5 proposes closed-form expressions that approximate the mathematical for-

mulations presented in Section 4.4. Then, Section 4.6 seeks to estimate the parameters

that yield the best approximations for the proposed closed-form expressions. Next,

Section 4.7 evaluates how well the proposed approximations model the actual rela-

tionship between the DSD parameters and radar measurements. Lastly, Section 4.8

summarizes our conclusions.

4.2 Scattering Properties of Individual Raindrops

In general, properties of a scattered EM wave depend on the scattering object’s

attributes (such as size, shape, composition, and orientation) and characteristics of

the incident EM wave (such as polarization and frequency). Recall from Section 2.2.7

that the polarization-dependent scattering of an incident EM wave can be expressed

in terms of a scattering matrix, S: Es
h

Es
v

 =
e−jkR

R

 Shh Shv

Svh Svv


︸ ︷︷ ︸

S

 Ei
h

Ei
v

 . (81)

The scattering matrix, which is also a function of the direction of scatter, reveals how

the reflecting object affects the incident wave in terms of polarization, amplitude, and

phase shifts [57]. This section presents the scattering coefficients of a raindrop.

The scattering coefficients of raindrops are commonly computed assuming spheroidally

shaped raindrops with diameter De and axis ratio r. Also, since raindrops are sig-

nificantly smaller than the wavelength of many weather radars, the Rayleigh approx-

imation is frequently used for computing their scattering coefficients. The Rayleigh
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scattering model is valid as long as the incident EM field penetrates the entire rain-

drop sufficiently fast that an electrostatic solution is a valid approximation. This

requires the particle size be “small” compared to the wavelength of the EM field. For

a sphere, this requirement is stated as∣∣∣∣πDλ
∣∣∣∣� 1, (82)

where D is the sphere diameter and λ is the wavelength. A second criterion is [84]∣∣∣∣πDλ √εr
∣∣∣∣� 1, (83)

where εr is the dielectric constant of the scatterer. Of the two criteria, (83) is the

more stringent condition for this application since water has a refractive index ap-

proximately equal to nine (or, equivalently, a dielectric constant of 81) at S-band, the

operational frequency band of many weather radars, e.g., the WSR-88D. Nonetheless,

the Rayleigh approximation of the RCS of a raindrop has been verified to be within

1.5 dB of the true RCS value at S-band as long as De < 0.07λ [4]. This equation

is satisfied for the range of realistic drop sizes as raindrops rarely exceed 6 mm in

diameter [15].

In the Rayleigh regime, the forward and backward scattering coefficients of rain-

drops with a vertically oriented axis of symmetry are identical; therefore, the equa-

tions in this section may be employed for both forward and backward scatter [64].

For a raindrop with a vertically oriented axis of symmetry, the off-diagonal entries of

the scattering matrix (i.e., Shv and Svh) are zero and the diagonal entries are given

as [15]

Shh (r,De, ψ) =
k2

4π
V αh (r) =

k2

24
D3
eαh (r) (84)

and

Svv (r,De, ψ) =
k2

4π
V αv (r) =

k2

24
D3
eαv (r) , (85)

where k = 2π
λ

is the wave number, V is the volume of the raindrop, αh (r) and
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αv (r) are the axis ratio-dependent part of the polarizability terms,1 and ψ denotes

the direction of scatter as either forward (ψ = 0) or backward (ψ = π).2 The axis

ratio-dependent part of the polarizability terms are

αh (r) =
(εr − 1)

1 + 1
2

(1− λz) (εr − 1)
(86)

and

αv (r) =
(εr − 1)

1 + λz (εr − 1)
, (87)

where λz is the depolarizing factor. The depolarizing factor for an oblate (r < 1) and

prolate (r > 1) spheroid are

λz =
1 + ε2

o

ε2
o

(
1− 1

εo
tan−1 (εo)

)
(88)

and

λz =
1− ε2

p

ε2
p

(
−1 +

1

2εp
ln

(
1 + εp
1− εp

))
, (89)

respectively, where the spheroid eccentricities are

εo =

√
1

r2
− 1 (90)

and

εp =

√
1− 1

r2
. (91)

The scattering coefficients of a 1 mm diameter raindrop, computed from these equa-

tions, are plotted as a function of axis ratio in Figure 8.

The above equations indicate some primary concepts for inferring information re-

garding the size and shape of raindrops. First, a horizontally (or vertically) polarized

incident wave remains horizontally (or vertically) polarized upon reflection. Second,

as raindrop size increases, the scattering coefficients increase. Lastly, as the axis ratio

1The polarizability term is the product of V and αh (r) or αv (r), i.e., V αh (r) and V αv (r).
2While the scattering coefficients are identical for forward and backward scatter and, therefore,

not written as a function of ψ, this dissertation uses this notation to delineate between the phenomena
of forward and backward scatter as they relate the radar measurements.
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Figure 8: Horizontal and vertical scattering coefficients of 1 mm diameter raindrop
as a function of axis ratio

of the raindrop decreases, the horizontal scattering coefficient increases relative to

the vertical scattering coefficient. These facts, combined with the phenomenology for

relating raindrop size and shape (discussed in Section 4.3), are the primary enabling

concepts for inferring the DSD from dual-pol radar measurements.

4.3 Raindrop Shape Model

The shape of raindrops influences their scattering coefficients and, thus, impacts

the relationship between the DSD parameters and radar measurements. Due to the

limited number of observable measurements provided by a dual-pol radar, the weather

radar community has exerted significant effort in defining constraining relationships

between raindrop size and shape. This section provides a survey of current models
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for these relationships.

4.3.1 Mean Axis Ratio

While small raindrops are approximately spherical, larger raindrops take on a more

oblate shape due to surface tension, hydrostatic pressure, and aerodynamic forces.

The shape of a raindrop falling at terminal velocity with all forces in balance is

termed the equilibrium shape. Multiple theoretical models for the equilibrium axis

ratio of spheroidal raindrops have been developed [65, 33, 5]. However, it is now

widely accepted that most raindrops do not fall in perfect equilibrium. Thus, to

characterize the mean axis ratio of raindrops as a function of diameter, large quantities

of disdrometer data have been collected. Using the collected data, several numerical

models based on polynomial least-squares fits have been suggested for relating the

diameter of a raindrop to its expected axis ratio. For the mathematical relationships

derived in this chapter, we consider three different models for the mean axis ratio of

a raindrop: Beard and Chuang [5], Andsager et al. [3] (which combines Beard and

Chuang’s model with empirical data), and Brandes et al. [9]. These three models are

plotted in Figure 9.

The Beard and Chuang model is one of the more commonly used theoretical

equilibrium models and is given by [5]

µr (De) = 1.012− 0.01445De − 0.01028(D2
e). (92)

The Andsager model [3] suggests applying the Beard and Chuang equilibrium model,

given in (92), to raindrops between one and four millimeters in diameter and, for

raindrops outside this range, applying their empirical fit to experimental data, given

by

µr (De) = 1.0048 + 5.7× 10−4De − 2.628× 10−2D2
e

+ 3.682× 10−3D3
e − 1.677× 10−4D4

e .

(93)
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Figure 9: Models for the mean axis ratio of a raindrop as a function of drop diameter

The resulting model accommodates for the apparent upward shift in mean axis ratios

observed in experimentally collected data relative to the theoretical equilibrium axis

ratio. Another empirical axis ratio model, applied in DSD estimation, is the model

of Brandes et al. [9]:

µr (De) = 0.9951 + 0.0251De − 0.03644D2
e + 0.00503D3

e − 0.0002492D4
e . (94)

For De ≤ 4 mm, this model yields values similar to the other more commonly used

models presented in this section. However, the curve deviates considerably for larger

drop diameters, modeling large drops as extremely oblate.

4.3.2 Axis Ratio Distribution

While the mean axis ratio models described in Section 4.3.1 may well approximate

the average axis ratio of a raindrop as a function of size, shape oscillations typically
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occur, which result in a distribution of axis ratios for a given drop size. Much of the

original literature disregards the random variation of raindrop axis ratios, implicitly

assuming an axis ratio standard deviation of zero, i.e., σr = 0. Based on collected

data, however, axis ratios are well approximated by a Gaussian distribution with a

non-zero variance. Two primary models have been suggested in the literature for

the standard deviation of raindrop axis ratios. Bringi et al. [14] suggests a standard

deviation proportional to the expected axis ratio of a raindrop,

σr (De) = 0.068µr (De) , (95)

regardless of drop size, while Jameson [40] suggests a standard deviation of

σr (De) =

 0.13− 0.025De : De < 2.755

−0.016 + 0.028De : De ≥ 2.755 .
(96)

In general, the PDF of the raindrop axis ratio is conditioned on the diameter of the

rain drop:

pr|De(r|De) =
1

Q
e
− (r−µr(De))2

2σ2r (De) r > 0, (97)

where Q is a normalization factor, µr (De) is the diameter-dependent mean axis ratio,

and σr (De) is the diameter-dependent standard deviation. The Gaussian distribution

is truncated here due to the lack of physical meaning associated with a negative axis

ratio.

For the numerical model presented in this chapter, we consider the truncated

Gaussian PDF of (97) with three different models for the axis ratio standard deviation:

the zero-variance model, the proportional model of Bringi et al. [14] given in (95), and

the model of Jameson [40] given in (96). The standard deviation as a function of the

axis ratio is shown in Figure 10 for each standard deviation model. The proportional

model of Bringi et al. is plotted for each of the mean models, since it depends on the

model used for the mean axis ratio.
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Figure 10: Models for the standard deviation of the axis ratio of a raindrop as a
function of drop diameter

4.3.3 Orientation

Equations (84) and (85) for the scattering coefficients of a raindrop assume a ver-

tically oriented axis of symmetry. However, raindrops rarely fall with a perfectly

vertical orientation, and the true canting angle of a raindrop alters its scattering

coefficients. Nonetheless, theoretical distributions in conjunction with observations

indicate that raindrop canting angles are narrowly distributed with a mean near zero

[6]. As a result, the effects of canting are considered negligible and are ignored in

common practice [37, 77]. This dissertation follows this convention. As a result,
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cross-polarization returns are considered insignificant.3

4.4 Scattering Properties of a Raindrop Ensemble

Of the six level II data products reported by the WSR-88D, four are relevant to the

DSD estimation problem: horizontal reflectivity factor, vertical reflectivity factor (or

differential reflectivity), specific differential phase, and the CC. How each measure-

ment is mathematically related to the DSD is discussed in detail in this section. Based

on scattering phenomenology and raindrop shape models, a functional relationship

between the DSD of rain (i.e., the raindrop ensemble) and the radar measurements

is given.

4.4.1 Reflectivity

Recall from Section 2.4.1 that reflectivity of rain is proportional to the expected value

of the per unit volume RCS of rain:

ζ =
λ4η

π5 |K|2
. (98)

This relation is true for the co-polarized returns in both the horizontal and vertical

channels; i.e., ζh ∝ ηh and ζv ∝ ηv, where ηh and ηv are the expected unit volume

RCSs and ζh and ζv are the linear reflectivity values for the horizontal and vertical

polarizations, respectively.

While the unit volume RCS is a random variable due to randomized constructive

and destructive interference of multiple scatterers, its expected value, η, is equal to

the sum (or integral) of the RCS of all individual scatterers (assuming non-coherent

scatter). Given the DSD of the observed raindrop ensemble, N (De;X), and the

raindrop axis ratio PDF, pr|De (r|De), the expected unit volume RCS of rain in the

3Since the cross-polarization returns due to rain are considered negligible, the remainder of this
dissertation refers to the returned signal from horizontal transmit, horizontal receive as simply
horizontal and to the returned signal from vertical transmit, vertical receive as simply vertical.

62



horizontal channel is

ηh = 4π

∫ ∞
0

∫ ∞
0

|Shh (r,De, π)|2N(De;X)pr|De(r|De) dr dDe. (99)

The expected unit volume RCS in the vertical channel, ηv (X), is analogous to (99),

simply replacing Shh (r,De, π) with Svv (r,De, π).

4.4.2 Differential Reflectivity

The discussion of reflectivity in Section 4.4.1 is valid for both horizontal and vertical

polarizations. However, it is standard practice to report differential reflectivity, ζdr,

in place of vertical reflectivity. Recall from Section 2.4.4, differential reflectivity is

the ratio of the power received in the horizontal and vertical polarization channels.

Given the horizontal reflectivity, the conversion between ζdr and ζv is straightforward.

For mathematical simplicity, this dissertation works directly with vertical reflectivity

rather than differential reflectivity. However, it is an aspiration of this research that

the mathematical approximations sought for horizontal and vertical reflectivity also

yield an appropriate approximation for differential reflectivity.

4.4.3 Specific Differential Phase

Recall from Section 2.4.6 that specific differential phase is the difference between the

phase shifts in the horizontal and vertical channels. Like reflectivity, the specific

differential phase is a random variable. The one-way expected specific differential

phase, KDP , given in units of rad
km

, is

KDP =
2π

k

∫ ∞
0

∫ ∞
0

<{Shh(r,De, 0)− Svv(r,De, 0)}N (De;X) pr|De (r|De) dr dDe.

(100)

Small, spherical raindrops do not contribute greatly to the specific differential phase,

whereas the larger, more oblate that a raindrop is, the greater the relative phase shift

it induces.
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4.4.4 Co-polar Correlation Coefficient

Recall from Section 2.4.5 that the CC is the magnitude of the statistical correlation

coefficient between the received horizontally and vertically polarized signals. Given

a DSD, N (De;X), and axis ratio PDF, pr|De (r|De), the expected value of the CC is

ρ =
num (ρ)
√
ηhηv

, (101)

where the numerator of ρ, denoted as num (ρ), is

num (ρ) = 4π

∫ ∞
0

∫ ∞
0

Shh (r,De, π)Svv (r,De, π)N (De;X) pr|De (r|De) dr dDe.

(102)

The CC is generally not considered very useful for DSD estimation since it maintains

a value close to unity for the realistic range of DSDs. However, it is considered here

for completeness.

4.5 Proposed Mathematical Formulation

While Section 4.4 mapped DSD parameters to the radar measurements, the relation-

ships are not closed-form expressions that are easily manipulated. This section seeks

closed-form expressions relating the DSD parameters and rain rate to the expected

value of the radar measurements.

First, we seek a closed-form expression for the unit volume RCS (in both polar-

ization channels) since per unit volume RCS is proportional to reflectivity. Equation

(99) for computing ηh and ηv may be rewritten as

η• =
1

λ4

∫ ∞
0

N (De;X)

[∫ ∞
0

π5

9
D6
eα

2
• (r) pr|De (r|De) dr

]
dDe, (103)

where • is either h or v for horizontal and vertical polarizations, respectively. In (103)

and throughout the remainder of this paper, a•, b•, and c• with various subscripts

represent fitting parameters. Due to the functional form of the inner integral in

(103), which is a function of De, it must be integrated numerically. For mathematical
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convenience, we propose the following approximation for the integral over r in (103):∫ ∞
0

π5

9
D6
eα

2
• (r) pr|De (r|De) dr ≈ a•D

b•
e e
−c•De , (104)

where, again, • is either h or v for horizontal and vertical polarizations, respectively.

By substituting (2) for N (De;X) and substituting the approximation in (104) for the

integral over r in (103), reflectivity can be approximated with the following closed-

form function of the DSD parameters:

η• =
a•No

λ4

∫ ∞
0

Dµ+b•
e e−(Λ+c•)DedDe (105)

=
a•No

λ4 (Λ + c•)
b•+µ+1

Γ (b• + µ+ 1) .

A similar analysis can be performed for the specific differential phase:

KDP =
1

λ

∫ ∞
0

N (De;X)

[∫ ∞
0

π2

6
D3 (αh (r)− αv (r)) pr|De (r|De) dr

]
dDe

=
akNo

λ (Λ + ck)
µ+bk+1

Γ (µ+ bk + 1) ,

(106)

where the following approximation has been made:∫ ∞
0

π2

6
D3 (αh (r)− αv (r)) pr|De (r|De) dr ≈ akD

bk
e e
−ckDe , (107)

where ak, bk, and ck are the fitting parameters. Next, we consider the numerator of

the CC:

num (ρ) =
1

λ4

∫ ∞
0

N (De;X)

[∫ ∞
0

π5

9
D6
eαhαv (r) (r) pr|De (r|De) dr

]
dDe, (108)

and approximate the integral over r as∫ ∞
0

π5

9
D6
eαhαv (r) pr|De (r|De) dr ≈ aρD

bρ
e e
−cρDe , (109)

where aρ, bρ, and cρ are fitting parameters. The denominator of the CC in (101) is the

square root of the product of the horizontal and vertical RCS. Substituting (105) into
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the denominator for the horizontal and vertical RCS and replacing the approximation

of (109) into the numerator, the CC may be approximated as

ρ =
aρ√
ahav

(Λ + ch)
µ+bh+1

2 (Λ + cv)
µ+bv+1

2

(Λ + cρ)
µ+bρ+1

Γ (µ+ bρ + 1)√
Γ (µ+ bh + 1) Γ (µ+ bv + 1)

. (110)

In the next section, we seek a set of “optimal” coefficients (i.e., ah, bh, ch, etc.)

for which these approximations of the axis ratio integral4 term (of each data product)

are reasonable.

While the wavelength dependence of the data products is not included in the

axis ratio integral term, the axis ratio-dependent part of the polarizability terms

(i.e., αh (r) and αh (r)), which are part of the axis ratio integral, are dependent on

the dielectric constant of water, which depends on temperature and radar transmit

frequency. However, a dielectric constant value of εr = 81, which is used in this disser-

tation, is valid for the relevant range of transmit frequencies and water temperatures.

4.6 Coefficient Estimation

This section seeks to find the optimal set of coefficients (i.e., ah, bh, ch, etc.) for the

approximations proposed in the previous section:

u• ≈ a•D
b•
e e
−c•De , (111)

where a•, b•, and c• are the coefficients to be estimated; • is either h, v, k, or ρ,

depending on the data product of interest, and u• denotes the exact value of the

integration over r that is obtained via numerical integration. Specifically, for the

approaches described below, we seek an approximation that is “optimal” for values

of De ≤6 mm.

We consider to approaches for estimating these coefficients, both of which define

optimal coefficients as those which minimize a cost function. These two approaches

4For the remainder of this chapter, the term “axis ratio integral” is used to refer to the “inner
integral” over r for each of the four data products considered.
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are nonlinear least-squares estimation (NLSE) and linearized least-squares estimation

(LLSE). In the NLSE approach, the objective function to be minimized is

gnls (a•, b•, c•) =
1

2

Nu∑
i=1

[
ui − a•Db•

ei
e−c•Dei

]2
(112)

where Nu is the number of discrete drop diameters for which the integral is evaluated,

Dei is the the ith drop diameter for which the integral is evaluated, and ui is the

corresponding integral value. In general, the NLSE approach does not have a closed

solution and must be solved iteratively. The LLSE approach simplifies the problem

by taking the natural logarithm of both sides of (111):

ln (u•) ≈ ln
(
a•D

b•
e e
−c•De

)
= ln (a•) + b• ln (De)− c•De

(113)

so that the new objective function to be minimized is

glls (a•, b•, c•) =
1

2

Nu∑
i=1

[ln (ui)− (ln (a•) + b• ln (Dei)− c•Dei)]
2 . (114)

This is a linear least-squares estimation problem. This solution, however, is gener-

ally considered suboptimal since applying the linearization transformation alters the

influence of the data on the regression results.

For each combination of mean axis ratio models and axis ratio variance models,

the coefficients resulting from these procedures are given in Appendix A in Tables 12

- 15, along with the coefficient of determination (CD) as a measure of the goodness

of fit. The CD is defined as:

CD = 1−
∑Nu

i=1 (ui − fui)
2∑Nu

i=1 (ui − u)2
, (115)

where fui denotes the value of the resulting approximation for ui and

u =
1

Nu

Nu∑
i=1

ui. (116)

A CD of one implies that the approximation is perfect and results in no error. For

each data product and possible combination of mean and standard deviation models,
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the CD is between 0.99 and 1. The one exception is the LLSE fit for the axis ratio

integral term of KDP ; however, the NLSE fit for the axis ratio integral term of KDP

is still between 0.99 and 1.

4.7 Results

The CDs in Appendix A provide a measure of the quality of fit of the proposed ap-

proximation to the axis ratio integral term given the coefficients estimated in Section

4.6. This section applies the computed coefficients to the approximations proposed

in Section 4.5 (i.e., (105), (106), and (110)) for a uniform sampling over the following

ranges of realistic (transformed) DSD parameters [15]:

3 ≤ log10 (Nw) ≤ 5 log10

(
mm−1

m3

)
0.5 ≤ Do ≤ 2.5 mm

− 1 ≤ µ ≤ 5,

(117)

where

Nw = No
3.674

6

Γ (µ+ 4)

(3.67 + µ)4 Λ−µ (118)

and

Do =
3.67 + µ

Λ
. (119)

These results are compared to the exact numerical integration of (99), (100), and

(101) to determine the quality of fit of the approximations to the data products

themselves. The resulting CDs for each of the four data products (horizontal reflec-

tivity, vertical reflectivity, specific differential phase, and the CC) are given in Tables

2 and 3. Additionally, using the developed approximations for horizontal and vertical

reflectivity, the resulting approximation for differential reflectivity is computed and

compared to the exact numerical calculations. Those results are also given in Tables
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Table 2: Coefficients of determination for approximation of data products using LLSE
coefficients

MM SDM ζh ZH ζv ZV ζdr ZDR KDP ρ

A Z 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.98
A P 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98
A J 0.99 1.00 1.00 1.00 0.95 0.97 0.98 0.56

B&C Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
B&C P 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99
B&C J 0.99 1.00 1.00 1.00 0.95 0.97 0.98 0.54

B Z 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.79
B P 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.79
B J 0.91 1.00 1.00 1.00 0.77 0.90 0.98 0.35

Table 3: Coefficients of determination for approximation of data products using NLSE
coefficients

MM SDM ζh ZH ζv ZV ζdr ZDR KDP ρ

A Z 1.00 1.00 1.00 1.00 0.01 -1.72 1.00 -0.40
A P 1.00 1.00 1.00 1.00 0.01 -1.72 1.00 -0.46
A J 1.00 1.00 1.00 0.99 0.97 0.98 1.00 -22.51

B&C Z 1.00 1.00 1.00 1.00 0.88 0.77 1.00 0.56
B&C P 1.00 1.00 1.00 1.00 0.88 0.77 1.00 0.55
B&C J 1.00 0.99 1.00 1.00 0.45 0.20 1.00 -21.92

B Z 1.00 1.00 1.00 1.00 0.88 0.79 1.00 0.81
B P 1.00 1.00 1.00 1.00 0.88 0.79 1.00 0.81
B J 0.98 0.96 1.00 1.00 -6.43 -4.60 1.00 -21.38

2 and 3 as well. For horizontal, vertical, and differential reflectivity, the CD is evalu-

ated for both linear reflectivities (i.e., ζh, ζv, and ζdr) and reflectivies on a decibel (or

dBz) scale, i.e., ZH , ZV , and ZDR, respectively.

For further visualization of results, refer to Appendix B. For the range of DSD

parameters specified in (117), the value of the resulting approximation for each of

the data products is plotted versus the exact value that is obtained via numerical

integration.

69



4.8 Conclusions

For horizontal and vertical reflectivity, the coefficients that are estimated using the

LLSE approach provide the best approximations over the range of realistic DSD

parameters. Not only do they well approximate horizontal and vertical reflectivity,

but they also provide a good approximation for differential reflectivity for the majority

of the mean axis ratio and axis ratio variance models. Upon initial consideration,

it may be surprising that the LLSE coefficient estimates provided a better overall

approximation than the NLSE coefficient estimates. We hypothesize that this is

because realistic DSDs are dominated by raindrops that are “small.” Specifically,

consider the drop diameter value corresponding to Nσ standard deviations beyond

the mean of the DSD, i.e.,

E [De] +NσσDe . (120)

For the range of DSD parameters given in (117), the maximum value of (120) is not

greater than 2.44, 3.14, and 3.85 mm for Nσ equal to one, two, and three, respectively.

As previously mentioned, the linearization process alters the influence of the data on

the regression results. Specifically, the linearization imposes a bias towards better

fitting the axis ratio integral term at smaller drop diameters. This improves the overall

approximation for the data products, but only for the range of DSDs considered. If

these approximations were applied to a DSD with a much larger mean or standard

deviation, this statement would likely no longer be accurate.

For specific differential phase, the coefficients estimated using the NLSE approach

provide the best approximations over the range of realistic DSD parameters. We

hypothesize that this is because, on average, small raindrops are modeled as spherical.

Perfectly spherical drops do not induce a specific differential phase on an EM wave,

i.e., KDP = 0. As a result, small raindrops do not contribute significantly to the total

specific differential phase. Thus, the bias towards better fitting the axis ratio integral

term for smaller drop diameters, which occurs in the LLSE approach, is undesirable.
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For the CC, the coefficients estimated using the LLSE approach provide the best

approximations over the range of realistic DSD parameters. However, only the first

two mean axis ratio models in combination with the first two axis ratio variance

models provide a good fit. For rain, the CC varies very little and usually maintains a

value close to unity. This small variation means that the CD will drop drastically for

even small errors in the CC approximation. Nonetheless, these errors are significant

relative to the variation of the CC over the realistic range of DSDs.

4.9 Summary

This chapter presented a closed-form mathematical formulation to suitably approx-

imate the data products provided by a dual-pol radar as a function of the DSD

parameters of rain. Further, this chapter estimated coefficients for various models

of the PDF of the axis ratio of a raindrop. Overall, the presented formulations well

approximate the data products. More specifically, the coefficients estimated using

the LLSE approach provide a good approximation for horizontal reflectivity, vertical

reflectivity, and the CC, while the NLSE coefficients yield better approximations for

specific differential phase. The one exception is the approximation of the CC for

some of the axis ratio PDF models considered. Thus, throughout this dissertation,

the estimated LLSE coefficients are used to approximate horizontal reflectivity, ver-

tical reflectivity, and the CC, whereas the NLSE coefficients are used to approximate

the specific differential phase.
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CHAPTER V

VARIANCE BOUNDS FOR ESTIMATION OF DROP SIZE

DISTRIBUTION PARAMETERS

5.1 Overview

While multiple approaches have been suggested for DSD estimation, and studies

have been performed to evaluate these estimators, no fundamental limit has yet been

established for how well these estimators could perform given the available dual-pol

data. The objective of this chapter is to derive fundamental bounds for the variance

of any unbiased estimator of the DSD parameters given the standard dual-pol data

products recorded by operational weather radars.

This chapter is organized as follows. Section 5.2 begins by discussing the dual-

pol signal model. Based on this model, Section 5.3 derives the CRLB of the DSD

parameters. Then, Section 5.4 proposes a method for computing the MLE of the

DSD parameters so that the existence of an efficient estimator, which achieves the

CRLB, can be tested. Subsequently, Section 5.5 tests for the existence of an efficient

estimator by computing and comparing the CRLB to the variance of the MLE for a

typical value of the DSD parameters.

5.2 Signal Model

5.2.1 Model for a Single Resolution Volume

Consider a dual-pol weather radar that simultaneously transmits and receives hor-

izontally and vertically linearly polarized waves. In a given dwell, Np pulses are

transmitted and received. For a single resolution volume, the received dual-pol data

sample from the ith pulse is denoted as xi = [xhi xvi ]
T , where xh and xv are the
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radar returns in the horizontal and vertical channels, respectively. The received dual-

pol signal from an ensemble of elementary scatterers (e.g., raindrops) with random

interference fading (i.e., Rayleigh fading) is modeled with a multivariate zero-mean,

circular, complex Gaussian distribution [27, 76, 85]. Assuming pulses are independent

and identically distributed (i.i.d.), the joint PDF of the pulse returns is

px
(
x1, ..., xNp

)
=

Np∏
i=1

pxi (xi)

=
1

π2Np |det (Cx)|Np
e
−tr
(
C−1
x
∑Np
i=1 xix

H
i

)
,

(121)

where Cx is the covariance matrix of the distribution and tr (•) denotes the trace

operator. The effects of noise are not considered in this model; it assumes that the

SNR is sufficiently high that noise may be neglected. This assumption is valid in the

majority of relevant applications and is generally considered a necessity to extract

any reliable information from the dual-pol data products [76].

While this model assumes independent samples, rain scatter only partially decorre-

lates from pulse to pulse at the PRF of most weather radars, including the WSR-88D

(as discussed in Section 2.2.6). However, at a slow enough PRF, the pulses can be

treated as independent. Additionally, if the autcorrelation function of the pulse se-

quence is known and no two pulses are perfectly correlated, a whitening filter can be

applied to the data, resulting in Np i.i.d. samples [76].

The terms in the covariance matrix,

Cx =

Chh Chv

Cvh Cvv

 , (122)
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fully characterize the PDF in (121). The sample covariance matrix,

Ĉx =
1

Np

Np∑
i=1

xix
H
i

=
1

Np

∑Np
i=1 xhix

∗
hi

∑Np
i=1 xhix

∗
vi∑Np

i=1 xvix
∗
hi

∑Np
i=1 xvix

∗
vi


=

1

Np

Ĉhh Ĉhv

Ĉ∗hv Ĉvv


(123)

is a sufficient statistic (and an efficient estimator [27, 76]) for the matrix Cx.

The matrix Cx can be rewritten as

Cx =

 Ph
√
PhPvρe

jφ

√
PhPvρe

−jφ Pv

 , (124)

where Ph and Pv denote the received power in the horizontal and vertical channels,

respectively. Recalling that reflectivity is proportional to power, it is evident that the

four radar data products are a set of sufficient statistics for describing the joint PDF

of the received dual-pol data sequence in an individual resolution volume.

5.2.2 Model for Multiple Resolution Volumes

Recall that in applications such as DSD and rain rate estimation, the instantaneous

differential phase is not very useful, as it does not have a direct mapping to rain

rate or the DSD parameters. Rather, an estimate of the specific differential phase is

required. It is estimated as [42]

K̂DP =
φ̂a − φ̂b

2∆R

, (125)

where φ̂a and φ̂b denote the estimated instantaneous differential phase of resolution

volumes at ranges Ra and Rb, respectively, and ∆R = Ra − Rb. The model in this

paper assumes that the estimate of KDP is derived from two resolution volumes with

the same DSD (i.e., the same scattering properties) such that the signals received
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for each of these range resolution cells are i.i.d., with the exception that they have

different instantaneous differential phases with the following relation:

φa − φb = 2∆RKDP . (126)

5.2.3 Mapping DSD Parameters to Radar Measurements

The received power estimates, which are proportional to reflectivity, can be related

to the per unit volume RCS using the weather RRE [82]:

ηh =

[
(1024 ln 2) π2R2L2 (R)

PtG2λ2θ2
3cτ

]
Ph

= CrrePh.

(127)

The term Crre is introduced as a convenient shorthand notation for the bracketed term

in (127). The above RRE holds for vertical polarization as well, i.e., ηv = CrrePv.

There exists a mapping between the parameters of the DSD, X = [No µ Λ]T , and

the observed values of ηh, ηv, KDP , and ρ. Closed-form expressions that approximate

these mappings for Rayleigh scattering were derived in Chapter 4 [67] as

ηh =
ahNo

λ4 (Λ + ch)
bh+µ+1

Γ (bh + µ+ 1) , (128)

ηv =
avNo

λ4 (Λ + cv)
bv+µ+1

Γ (bv + µ+ 1) , (129)

KDP =
akNo

λ (Λ + ck)
bk+µ+1

Γ (bk + µ+ 1) , (130)

and

ρ =
aρ√
ahav

(Λ + ch)
µ+bh+1

2 (Λ + cv)
µ+bv+1

2

(Λ + cρ)
µ+bρ+1

Γ (µ+ bρ + 1)√
Γ (µ+ bh + 1) Γ (µ+ bv + 1)

, (131)

where the coefficients, ah, bh, ch, av, bv, cv, ak, bk, ck, aρ, bρ, and cρ, given in Appendix

A, depend on the particular model used to describe the distribution of raindrop axis

ratios.

75



5.3 Cramér-Rao Lower Bound of DSD Parameters

The CRLB states [45]:

cov
(
X̂
)
≥ J−1

F (X) , (132)

where X̂ denotes an unbiased estimator of X, cov
(
X̂
)

denotes the covariance matrix

of X̂, JF (X) is the Fisher information matrix (FIM), and the (i, j)th element of the

FIM is

[JF (X)]ij = −EY
[
∂2 ln pY (Y ;X)

∂Xi∂Xj

]
, (133)

where Y denotes the observed data. The inequality in (132) means that the matrix

cov
(
X̂
)
− J−1

F (X) (134)

is positive semi-definite; i.e., all its eigenvalues are non-negative, which means that

the diagonal terms of the inverse FIM bound the variance of the unbiased estimator,

X̂, i.e.,

E

[(
X̂i −Xi

)2
]
≥
[
J−1
F (X)

]
ii
. (135)

To derive the CRLB of the DSD parameters, we begin with the inverse FIM of

β1 =



Chh

Cvv

|Chv|

arg (Chv)


, (136)

which is given in [76] as
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J−1
F (β1) =

1

Np



C2
hh |Chv| |Chv|Chh 0

|Chv| C2
vv |Chv|Cvv 0

|Chv|Chh |Chv|Cvv 1
2

(
ChhCvv + |Chv|2

)
0

0 0 0 1
2
|Chv|−2 (ChhCvv − |Chv|2)


.

(137)

From here, we use the transformation property of the CRLB [45]:

J−1
F (β) =

∂β

∂α
J−1
F (α)

∂β

∂α

H

, (138)

where ∂β
∂α

denotes the Jacobian of the transformation β = fβ (α). By sequentially

applying this property based on a series of variable transformations, we arrive at the

CRLB of the DSD parameters, X.

5.3.1 CRLB of Ph, Pv, ρ, and φ

We start by seeking the CRLB of

β2 =



Ph

Pv

ρ

φ


=



Chh

Cvv

|Chv|C
− 1

2
hh C

− 1
2

vv

arg (Chv)


. (139)

The Jacobian of the transformation from β1 to β2 is

∂β2

∂β1

=



1 0 0 0

0 1 0 0

−1
2
|Chv|C

− 3
2

hh C
− 1

2
vv −1

2
|Chv|C

− 1
2

hh C
− 3

2
vv C

− 1
2

hh C
− 1

2
vv 0

0 0 0 1


. (140)
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Substituting (137) and (140) into (138) and simplifying yields

J−1
F (β2) =

∂β2

∂β1

J−1
F (β1)

∂β2

∂β1

H

=
1

Np



P 2
h ρ2PhPv

1
2
ρPh (1− ρ2) 0

ρ2PhPv P 2
v

1
2
ρPv (1− ρ2) 0

1
2
ρPh (1− ρ2) 1

2
ρPv (1− ρ2) 1

2
(1− ρ2)

2
0

0 0 0 1
2
ρ−2 (1− ρ−2)


,

(141)

which is the CRLB of β2.

5.3.2 CRLB of Ph, Pv, ρ, and ∆φ

Next, we find the CRLB of

β3 =



Ph

Pv

ρ

∆φ


=



Ph

Pv

ρ

φa − φb


. (142)

The calculation of β3 requires data from two resolution volumes. As mentioned in

Section 5.2, we presume that such estimates are formed from two resolution volumes

with identical DSDs. As a result, the data received from the two resolution volumes

are i.i.d., except they have different instantaneous differential phases. Thus, we define

the vector

β2ab =

β2a

β2b

 (143)

to be the concatenated set of parameters, β2a , which represents β2 for range bin Ra,

and β2b , which represents β2 for range bin Rb. Based on these modeling assumptions,

the CRLB of β2ab is

J−1
F (β2ab) =

J−1
F (β2a) 0

0 J−1
F (β2b)

 , (144)
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where J−1
F (β2a) = J−1

F (β2b) = J−1
F (β2) and 0 denotes a zero matrix of appropriate

size. The Jacobian of the transformation from β2ab to β3 is

∂β3

∂β2ab

=

[
I4 M−1

]
, (145)

where I4 is a 4 × 4 identity matrix and M−1 is a 4 × 4 matrix with all entries equal

to 0 except the the lower right entry, which is equal to -1. This yields

J−1
F (β3) =

∂β3

∂β2ab

J−1
F (β2ab)

∂β3

∂β2ab

H

=
1

Np



P 2
h ρ2PhPv

1
2
ρPh (1− ρ2) 0

ρ2PhPv P 2
v

1
2
ρPv (1− ρ2) 0

1
2
ρPh (1− ρ2) 1

2
ρPv (1− ρ2) 1

2
(1− ρ2)

2
0

0 0 0 ρ−2 (1− ρ−2)


,

(146)

which is the CRLB of β3.

5.3.3 CRLB of ηh, ηv, ρ, and KDP

This sections seeks the CRLB of

β4 =



ηh

ηv

ρ

KDP


=



CrrePh

CrrePv

ρ

1
2∆R

∆φ


. (147)

The Jacobian of the transformation from β3 to β4 is

∂β4

∂β3

=



Crre 0 0 0

0 Crre 0 0

0 0 1 0

0 0 0 1
2∆R


. (148)
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Simple substitution yields

J−1
F (β4) =

∂β4

∂β3

J−1
F (β3)

∂β4

∂β3

H

=
1

Np



η2
h ρ2ηhηv

1
2
ρηh (1− ρ2) 0

ρ2ηhηv η2
v

1
2
ρηv (1− ρ2) 0

1
2
ρηh (1− ρ2) 1

2
ρηv (1− ρ2) 1

2
(1− ρ2)

2
0

0 0 0 1
4∆2

R
ρ−2 (1− ρ−2)


,

(149)

which is the CRLB of β4.

5.3.4 CRLB of No, µ, and Λ

This section computes the CRLB of the DSD parameters, X = [No µ Λ]T , from the

radar measurements, i.e., β4. As in the previous sections, the intent is to compute the

CRLB using the transformation property of the inverse FIM. However, the calculation

of the Jacobian ∂X
∂β4

is precluded by the fact that an explicit expression for the forward

transformation from β4 to X is not known. The reverse transformation from X to β4

is provided in (128) - (131) in Section 5.2. This permits the calculation of ∂β4
∂X

.1 To

compute the CRLB of X given β4, we would need to solve the following equation for

J−1
F (X):

J−1
F (β4) =

∂β4

∂X
J−1
F (X)

∂β4

∂X

H

, (150)

but this is an overdetermined equation with no solution. However, since ρ fluctuates

very little in rain for a wide range of DSDs, it is not used in practice for estimating the

DSD or rain rate. Thus, we consider the subset of measurements Y = [ηh ηv KDP ]T

instead, discarding ρ and seeking the solution to the alternate problem:

J−1
F (Y ) =

∂Y

∂X
J−1
F (X)

∂Y

∂X

H

, (151)

1Since the dimensions of X and β4 are not equal, ∂X
∂β4

is not square, and, as a result, ∂X
∂β4

cannot

be computed as the inverse of ∂β4

∂X .
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for J−1
F (X). From (149) in Section 5.3.3, it is evident that

J−1
F (Y ) =

1

Np


η2
h ρ2ηhηv 0

ρ2ηhηv η2
v 0

0 0 1
4∆2

R
ρ−2 (1− ρ−2)

 . (152)

Now, we must determine the Jacobian ∂Y
∂X

and solve for J−1
F (X).

5.3.4.1 Jacobian of DSD Transformation

The Jacobian ∂Y
∂X

is

∂Y

∂X
=


∂ηh
∂No

∂ηh
∂µ

∂ηh
∂Λ

∂ηv
∂No

∂ηv
∂µ

∂ηv
∂Λ

∂KDP
∂No

∂KDP
∂µ

∂KDP
∂Λ

 . (153)

Each term in ∂Y
∂X

is computed using the relations in (128) - (130). Starting with (128),

the equation for horizontal reflectivity, we find

∂ηh
∂No

=
ah

λ4 (Λ + ch)
µ+bh+1

Γ (µ+ bh + 1)

=
1

No

ηh

= δnηh,

(154)

∂ηh
∂µ

=
Noah

λ4 (Λ + ch)
µ+bh+1

Γ (µ+ bh + 1) [Ψ0 (µ+ bh + 1)− ln (Λ + ch)]

= [Ψ0 (µ+ bh + 1)− ln (Λ + ch)] ηh

= δhµηh,

(155)

and

∂ηh
∂Λ

= − Noah

λ4 (Λ + ch)
µ+bh+1

Γ (µ+ bh + 1)
µ+ bh + 1

Λ + ch

= −µ+ bh + 1

Λ + ch
ηh

= δhlηh,

(156)

where Ψ0 is the zero-order polygamma function and the terms δn, δhµ, and δhl, given

in Table 4, are introduced as a convenient shorthand notation. The equation for
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vertical reflectivity is analogous to that for horizontal reflectivity; hence, so are its

partial derivatives:

∂ηv
∂No

=
av

λ4 (Λ + cv)
µ+bv+1

Γ (µ+ bv + 1)

=
1

No

ηv

= δnηv,

(157)

∂ηv
∂µ

=
Noav

λ4 (Λ + cv)
µ+bv+1

Γ (µ+ bv + 1) [Ψ0 (µ+ bv + 1)− ln (Λ + cv)]

= [Ψ0 (µ+ bv + 1)− ln (Λ + cv)] ηv

= δvµηv,

(158)

and

∂ηv
∂Λ

= − Noav

λ4 (Λ + cv)
µ+bv+1

Γ (µ+ bv + 1)
µ+ bv + 1

Λ + cv

= −µ+ bv + 1

Λ + cv
ηv

= δvlηv.

(159)

Similarly, the partial derivatives of KDP are

∂KDP

∂No

=
ak

λ (Λ + ck)
µ+bk+1

Γ (µ+ bk + 1)

=
1

No

KDP

= δnKDP ,

(160)

∂KDP

∂µ
=

Noak

λ (Λ + ck)
µ+bk+1

Γ (µ+ bk + 1) [Ψ0 (µ+ bk + 1)− ln (Λ + ck)]

= [Ψ0 (µ+ bk + 1)− ln (Λ + ck)]KDP

= δkµKDP ,

(161)

and

∂KDP

∂Λ
= − Noak

λ (Λ + ck)
µ+bk+1

Γ (µ+ bk + 1)
µ+ bk + 1

Λ + ck

= −µ+ bk + 1

Λ + ck
KDP

= δklKDP .

(162)
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Table 4: Terms in δ Matrix

Term Value

δn
1
No

δhl −µ+bh+1
Λ+ch

δvl −µ+bv+1
Λ+cv

δkl −µ+bk+1
Λ+ck

δhµ Ψ0 (µ+ bh + 1)− ln (Λ + ch)
δvµ Ψ0 (µ+ bv + 1)− ln (Λ + cv)
δkµ Ψ0 (µ+ bk + 1)− ln (Λ + ck)

With equations (153) - (162), we arrive at the Jacobian ∂Y
∂X

:

∂Y

∂X
=


δnηh δhµηh δhlηh

δnηv δvµηv δvlηv

δnKDP δkµKDP δklKDP



=


ηh 0 0

0 ηv 0

0 0 KDP



δn δhµ δhl

δn δvµ δvl

δn δkµ δkl


= Mdδ,

(163)

where Md and δ are introduced for notational convenience and the entries in δ are

given in Table 4.

5.3.4.2 Computing the CRLB

To compute J−1
F (X), we substitute (163) into (151):

J−1
F (Y ) = MdδJ

−1
F (X) δHMH

d . (164)

By moving Md to the left side of the equation and noting that Md = MH
d , we have

M−1
d J−1

F (Y )M−1
d = δJ−1

F (X) δH . (165)
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The left side of (165) is then

M−1
d J−1

F (Y )M−1
d =

1

Np


1 ρ2 0

ρ2 1 0

0 1
4∆2

R
ρ−2 (1− ρ2)K−2

DP

 . (166)

Therefore, the inverse FIM and CRLB of the DSD parameters is

J−1
F (X) =

1

Np

δ−1


1 ρ2 0

ρ2 1 0

0 1
4∆2

R
ρ−2 (1− ρ2)K−2

DP

(δH)−1
, (167)

where KDP and ρ can be written in terms of the DSD parameters using (130) and

(131), respectively.

5.4 Maximum Likelihood Estimate

The CRLB establishes a bound on the variance of any unbiased estimator, X̂. An un-

biased estimator that achieves the CRLB is the minimum-variance unbiased (MVUB)

estimate of X and is referred to as an efficient estimator [45]. An efficient estimator is

not guaranteed to exist, but if it does, it is the MLE, X̂mle [45]. Recall from Chapter

3 that the MLE is the parameter value that maximizes the likelihood of the observed

data [45], i.e.,

X̂mle = arg max
X

pY (Y ;X) . (168)

This section proposes a method for finding the MLE of X so that we may compare

the covariance of X̂mle to the CRLB. We evaluate the MLE bias and RMSE as well.

The MLE of X = [No µ Λ]T is the value of X that maximizes (121) for the

observed data, where the matrix Cx is expressed in terms of X. This is equivalent to

maximizing the complex Wishart distribution [27, 76],

pĈx

(
Ĉx

)
=

1

π2Np |det (Cx)|Np
e−tr(C−1

x Ĉx), (169)
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with respect to X, where the matrix Cx is expressed in terms of X. As explained

in Section 5.3.4, we do not use ρ for the estimation of X; thus, (169) must first be

marginalized with respect to ρ. This marginalization, combined with the nonlinear

mapping from X to the terms in Cx, makes finding the MLE a nonlinear non-convex

optimization problem.

To circumvent this potentially difficult non-convex optimization problem, we pro-

pose an alternate method for finding X̂mle. Since the number of measurements (i.e.,

dim (Y )) is equal to the number of unknown parameters (i.e., dim (X)), the MLE

of X is the solution to the system of equations relating the DSD parameters to the

radar measurements or, equivalently,

X̂mle = arg min
X̃

G
(
X̃
)
, (170)

where minG (X) = 0 and

G (X) =
1

2

(
[ηh (X)− η̂h]2 + [ηv (X)− η̂v]2 +

[
KDP (X)− K̂DP

]2
)
. (171)

This solution follows from the functional invariance property of the MLE [45], which

states β̂mle = fβ (α̂mle), where β = fβ (α) [45]. While the function G (X) is still non-

linear and non-convex, this formulation can be reduced to a two-dimensional problem

(versus a three-dimensional problem) before applying the Nelder-Mead simplex search

(NMSS) method [50]. This is done as follows. Optimizing G (X) with respect to No

yields

∂G

∂No

= [ηh (X)− η̂h]
∂ηh
∂No

+[ηv (X)− η̂v]
∂ηv
∂No

+
[
KDP (X)− K̂DP

] ∂KDP

∂No

= 0. (172)

Recall from Section 5.3.4.1 that

ηh = No
∂ηh
∂No

, (173)

ηv = No
∂ηv
∂No

, (174)
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and

KDP = No
∂KDP

∂No

, (175)

where the partial derivatives in (173) - (175) are only functions of µ and Λ (i.e., not

No), e.g.,

∂ηh
∂No

=
∂ηh
∂No

(µ,Λ) . (176)

Substituting (173) - (175) into (172) yields the value of No that minimizes G (X) for

a given value of µ and Λ:

No (µ,Λ) =
η̂h

∂ηh
∂No

+ η̂v
∂ηv
∂No

+ K̂DP
∂KDP
∂No(

∂ηh
∂No

)2

+
(
∂ηv
∂No

)2

+
(
∂KDP
∂No

)2 . (177)

Substituting this equation into (171) forNo, or equivalently settingX = [No (µ,Λ) µ Λ]T ,

allows us to write G (X) as a function of only µ and Λ, i.e., G (µ,Λ). The NMSS

algorithm is then applied to G (µ,Λ).

5.5 Results

In this section, we compute the CRLB for a particular value of the DSD parameters.

In addition, we perform a set of Monte Carlo trials in which the radar measurements

are simulated according to the signal model, and the MLE of the DSD parame-

ters is computed from the simulated radar measurements. Based on the results of

these Monte Carlo simulations, the statistics of the MLE are evaluated and compared

against the CRLB.

5.5.1 Experimental Set-up

The functions in (128) - (131) depend on the transmit wavelength, λ, of the radar.

All experiments presented in this paper use λ = 10 cm, which is within the frequency

range of the WSR-88D (2.7-3 GHz) [60]. Additionally, the coefficients in (128) - (131)

depend on the particular model used to described the distribution of raindrop axis

ratios. We use those coefficients, found in Chapter 4, corresponding to Andsager’s
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[3] model for the mean axis ratio of a raindrop and a zero-variance model for the

distribution of the axis ratio of a raindrop.

For this experiment, we select a single set of DSD parameters to examine the

CRLB along with the variance and bias of X̂mle in detail:

X =


No

µ

Λ

 =


104

1

2.5

 . (178)

The value of X selected here is well within the typical range of realistic DSD param-

eters considered in current literature [15].

The CRLB depends not only on the value of the DSD parameters, but also the

number of pulses, Np, and the range span, ∆R, over which KDP is estimated. Initially,

we consider the case where Np = 256 (typical values of Np for the WSR-88D range

from 40 to 280 [60]) and ∆R = 10 km. Applying (167), we find the CRLB for the

value of X in (178) is

J−1
F (X) =


3.5415× 108 −3.5851× 105 −1.1171× 105

−3.5851× 105 364.42 113.60

−1.1171× 105 113.60 35.412

 . (179)

Taking the square root of the diagonal terms of J−1
F (X) gives a bound for the standard

deviation of an unbiased estimator X̂; i.e.,

σN̂o ≥ 1.8819× 104, (180)

σµ̂ ≥ 19.09, (181)

and

σΛ̂ ≥ 5.95. (182)

Before continuing with a computation of the MLE, a brief discussion of these results

with a focus on two main concepts is warranted.
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First, the current literature deems the typical range of DSD parameters to be

those given in (117) [15]. Further, it is common practice to assume a uniform prior

distribution on log10 (Nw), Do, and µ over the ranges given in (117). A simple Monte

Carlo simulation gives the covariance matrix of the corresponding prior on X =

[No µ Λ]T as

cov(X) =


7.9890× 1013 8.5640× 106 2.5462× 106

8.5640× 106 7.2994 2.4139

2.5462× 106 2.4139 3.0000

 . (183)

Taking the square root of the diagonal terms of the cov(X) gives the standard devi-

ation of the prior on X; i.e.,

σNo ≥ 9.0317× 106, (184)

σµ ≥ 2.7040, (185)

and

σΛ ≥ 1.7307. (186)

Interestingly, the variance of an unbiased estimator of µ and Λ is greater than the

variance that arises from randomly selecting a value from their prior distributions.

Also, while the standard deviation of an unbiased estimator of No is significantly less

than that which results from the prior, it is still greater than the value of No itself.

Second, a challenge may arise in computing X̂mle and its respective statistics.

Specifically, (128) - (131) are equations that well approximate the relationship be-

tween the DSD parameters and radar measurements over what current literature

considers a realistic range of values for the DSD parameters. However, these approx-

imations could break down at DSD parameter values significantly outside this range.

This is certainly true in the case where the argument inside Γ (•) becomes negative

since the gamma function has a discontinuity when its argument equals zero. There-

fore, we aim to prevent X̂mle from extending far beyond the range of realistic DSD
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Figure 11: Flow diagram for data simulation and estimation

parameters for which the approximations of (128) - (131) have been validated. We

also aspire to avoid the case where µ̂mle would result in (128) - (131) being evalu-

ated at or near the gamma function discontinuities. Further, the gamma distribution,

which is used to describe the DSD, is only valid for values of µ > −1. Therefore, we

require a value of Np that reduces the variance of X̂mle such that it is unlikely that

µ̂mle < −1. Based on the CRLB given in (179), the variance of X̂mle will be large

enough that these issues cannot be avoided when using a realistic value for Np. Thus,

we reduce the estimator variance by selecting Np = 217. Again, we recognize such a

value is impractical, but it permits the computation and comparison of X̂mle to the

CRLB.

For the parameters described above, Ns = 100, 000 trials were generated according

to the signal model of Section 5.2. For each trial, a dwell of i.i.d. pulses was simulated

for two resolution volumes. The simulation flow is shown in Figure 11. Given a
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Table 5: MLE Statistics

No µ Λ

Value 10,000 1 2.5

b
(
X̂mle

)
-283.13 0.3531 0.1102

σ
(
X̂mle

)
1754.18 2.0329 0.6339

RMSE
(
X̂mle

)
1776.88 2.0634 0.6434

Table 6: Square root of diagonal terms of CRLB of DSD parameters

No µ Λ

Value 10,000 1 2.5√[
J−1
F

]
ii

1663.37 1.6873 0.5260

specified value of X, a sequence of transformations was applied to define the terms in

the covariance matrix, Cx, in (121). A sequence of pulses with the distribution of (121)

was generated for two resolution volumes. The sample covariance of the generated

data sequence provides the MLE of the terms in Cx. Then, the same sequence of

inverse transforms is applied in reverse to arrive at the MLE of Y = [ηh ηv KDP ]T .

Since a closed-form expression for the inverse transform of (128) - (130) does not

exist, we used the approach described in Section 5.4 to find X̂mle from Ŷmle.

5.5.2 Eigenanalysis of CRLB and MLE

The sample bias, standard deviation, and RMSE of X̂mle, denoted b
(
X̂mle

)
, σ
(
X̂mle

)
,

and RMSE
(
X̂mle

)
, respectively, as determined from the Ns = 100, 000 Monte Carlo

simulations, are given in Table 5. Comparing the sample standard deviation for each

parameter in X to the square root of their CRLB, given in Table 6, allows us to

conclude that an efficient estimator for X does not exist for two reasons. First, the

sample bias of the MLE, b
(
X̂mle

)
, is non-negligible. This implies X̂mle is a biased

estimator. Second, the variance of X̂mle is significantly greater than that specified by

the CRLB. However, while the CRLB is exceeded for this particular value of X, the
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Table 7: Eigendecomposition of MLE sample covariance matrix of DSD parameters

√
λv 1754.18 0.4465 0.0033

-1.0000 0.0012 0
Sample EV 0.0011 0.9539 -0.3000

0.0004 0.3000 0.9539

Table 8: Eigendecomposition of inverse FIM of DSD parameters

√
λv 1663.37 0.1140 0.0009

-1.0000 0.0011 0
CRLB EV 0.0010 0.9462 -0.3237

0.0003 0.3237 0.9462

CRLB is only guaranteed to bound an unbiased estimator. Therefore, the variance of

X̂mle may very well be less than the CRLB for a different value of X. A similar bound

on the RMSE of a biased estimator could be determined, but it requires knowledge

of the estimator bias and the gradient of the estimator bias [86], and, hence, is not

pursued here.

While the diagonal terms of the inverse FIM bound the variance of an unbiased

estimator, X̂, the inverse FIM also provides a bound on the “error volume” of an

unbiased estimator. This error volume is referred to as a “concentration ellipse” (or

ellipsoid, if the parameter set is greater than two dimensions) [86], and it accounts

for the fact that the estimates, N̂o, µ̂, and Λ̂, may be correlated. Given a sample

covariance matrix, Ĉx, the concentration ellipse of the data is determined by applying

an eigendecomposition to the sample covariance matrix [36]:

Ĉx = UΛvU
T , (187)

where U is a unitary matrix such that each column corresponds to an eigenvector

of Ĉx and Λv is a diagonal matrix whose entries are the eigenvalues corresponding

to each of the eigenvectors of Ĉx. The eigenvectors correspond to the directions of

the concentration ellipse’s semi-principal axes (i.e., principal components), and the
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Figure 12: Concentration ellipses: No vs. µ.

square roots of the eigenvalues equal the length of the semi-principal axes, i.e., the

estimator standard deviation in the direction of the principal components.

While performing an eigendecomposition on an estimator’s sample covariance ma-

trix gives the actual error volume of that estimator, performing an eigendecomposition

on the inverse FIM establishes a lower bound on the error volume of an unbiased esti-

mator. The eigenvalues and eigenvectors of both the MLE sample covariance matrix

and the CRLB are given in Tables 7 and 8, respectively.

For ease of visualization, the eigendecompositions of the inverse FIM and sample

covariance matrix, along with the associated concentration ellipses, are determined

for each pair of parameters in X. The results are shown in Figures 12 - 14. In each
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Figure 13: Concentration ellipses: No vs. Λ

figure, the drawn concentration ellipses correspond to three standard deviations from

the estimator mean, i.e., 3
√
λv, where λv is an eigenvalue of the covariance matrix.

Additionally, the sample values of the MLE are plotted relative to the estimator

mean.2 The resulting plots show that the estimates of No, µ, and Λ are highly

correlated.3

Some intuition regarding these results may be gained by considering a singular

2For better visualization, these plots have been zoomed in so that some sample outliers are not
shown.

3Due to the high degree of correlation in the estimates of µ and Λ, the plots of the CRLB, sample
covariance, and sample estimates in Figure 14 are difficult to visualize in a manner that they may
all be distinguished.
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Figure 14: Concentration ellipses: µ vs. Λ

value decomposition (SVD) of the Jacobian ∂Y
∂X

[80]:

∂Y

∂X
= UΣV T , (188)

where the columns of U are the eigenvectors of
(
∂Y
∂X

∂Y
∂X

T
)

, the columns of V are the

eigenvectors of
(
∂Y
∂X

T ∂Y
∂X

)
, and Σ is a diagonal matrix containing the singular values

of ∂Y
∂X

, which are equal to the square root of the eigenvalues of
(
∂Y
∂X

∂Y
∂X

T
)

.

The Jacobian provides information regarding how each measurement varies as a

result of changes in X. If all measurements have similar dependencies on X, then(
∂Y
∂X

∂Y
∂X

T
)

will be near singular (i.e., the largest singular values of ∂Y
∂X

will be signifi-

cantly larger than the other singular values), and the estimates for the entries in X
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Table 9: Singular values of the Jacobian ∂Y
∂X

Σ11 4.5027E-01
Σ22 4.7404E-04
Σ33 3.3028E-06

will be highly correlated. For the value of X considered in this paper, the singular

values of ∂Y
∂X

are given in Table 9. The second and third largest singular values, Σ22

and Σ33, are four and six orders of magnitude smaller than the largest singular value,

Σ11, respectively. This suggests that, as the radar measurements relate to the param-

eters in X, there is not a high degree of independence between measurements, thus

the significant correlation observed.

5.6 Summary

This chapter derived the CRLB of the parameters that describe the DSD of rain. To

test the existence of an efficient estimator (i.e., an unbiased estimator that achieves

the CRLB), we proposed an approach for finding the MLE of the DSD parameters.

The experiments presented in this chapter suggest that an efficient estimator does

not exist. Further, a detailed eigenanalysis of the CRLB and MLE was provided

for the example value of X considered in this chapter. The results suggest that

each measurement relates to the DSD parameters in very similar ways. As a result,

parameter estimates are highly correlated.

To draw more extensive and substantial conclusions regarding the ability to esti-

mate DSD parameters with dual-pol radar measurements, a more extensive paramet-

ric analysis of the CRLB and MLE properties is performed in Chapter 6. However,

initial experiments suggest parameter estimates are highly correlated and that, unless

additional (i.e., prior) information is incorporated into such estimates, the resulting

estimates may have a high RMSE due to bias and high variance.
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CHAPTER VI

PARAMETRIC ANALYSIS OF VARIANCE BOUNDS

AND MAXIMUM-LIKELIHOOD ESTIMATOR

PROPERTIES FOR DROP SIZE DISTRIBUTION

PARAMETERS

6.1 Overview

While Chapter 5 examined the CRLB and statistics of the MLE,

X̂mle =


N̂omle

µ̂mle

Λ̂mle

 , (189)

in detail for a single value of the DSD parameters, this chapter presents a more

extensive parametric analysis of the CRLB and MLE. To ascertain trends in the

CRLB and MLE statistics as a function of the DSD parameters, we evaluate the

CRLB and MLE statistics over an array of realistic DSD parameters for one of the

nine raindrop axis ratio models presented in Chapter 4. Then, over the same range

of DSD parameters, we compare and contrast the derived CRLB for all nine of the

different axis ratio models to determine how the various models impact the derived

bounds.

This chapter is organized as follows. Section 6.2 begins by describing the set-up

for the experiments performed in this chapter, along with stipulating the value of

relevant experimental parameters. Section 6.3 presents an evaluation of the CRLB

of each of the DSD parameters over the designated range of DSD parameter values.

In addition, a Monte Carlo analysis is performed in which the statistics of the MLE

are computed and compared against the CRLB. Then, Section 6.4 compares and
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contrasts the derived CRLB for the various PDF models for the axis ratio of rain

drops.

6.2 Experimental Set-up

In Section 6.3, we calculate the CRLB for an array of DSD parameters to determine

how the CRLB changes as a function of these parameters. Furthermore, for each

set of parameter values, we perform Ns = 1, 000, 000 Monte Carlo trials to estimate

the statistics of X̂mle. For each Monte Carlo trial, radar measurements are simulated

according to the signal model described in Section 5.2, and, from those measurements,

the MLE of the DSD parameters is determined. From these Monte Carlo trials, the

bias, standard deviation, and RMSE of the MLE are estimated and plotted as a

function of the DSD parameters.

Many of the parameters for this experiment are identical to those in the experiment

presented in Section 5.5; i.e., ∆R = 10 km, λ = 10 cm, and the Andsager-Zero axis

ratio model is used. The number of pulses per simulated dwell is Np = 217.

The experiments use the following nominal value for the DSD parameters:

Xnom =


Nonom

µnom

Λnom

 =


104

1

2.5

 . (190)

In each of the three experiments presented in Section 6.3, two of the DSD parameters

are kept constant at their nominal value, while the third is swept over a range of

values. The first experiment varies No from No = 103.5 to No = 105; the second

experiment varies µ from µ = 0 to µ = 5; and the third experiment varies Λ from

Λ = 1.75 to Λ = 3.

The range of DSD parameter values used in these experiments is partially mo-

tivated by the typical ranges given in (117) [15]. Further, while we have selected

Np = 217 to avoid the computational concerns previously mentioned in Section 5.5.1,

97



it is also necessary to restrict the range of DSD parameters considered without sig-

nificantly increasing the value of Np even further. Thus, parameter values for these

experiments are selected such that the probable range of the MLEs, as predicted by

the computed CRLB of X, are such that this computational issue may be avoided.

6.3 CRLB and MLE Analysis

The results of the three experiments described in Section 6.2 are shown in Figures 15

- 17. In each figure, there are six plots, two for each of the three DSD parameters.

For each DSD parameter, the first plot (on the left) shows the square root of the

CRLB, the standard deviation of the MLE, and the RMSE of the MLE, while the

second plot (on the right) displays the MLE bias.

Figure 15 shows how the CRLB and MLE statistics vary with the value of No while

keeping the values of µ and Λ fixed at their nominal values. The results indicate that

with increasing No, the measurements enable a better estimate of µ and Λ, but a worse

estimate of No. Particularly, as No increases, the bias, variance, and, consequently,

RMSE of µ̂mle and Λ̂mle decrease. In contrast, the opposite trends are seen for N̂omle .

Figure 16 shows how the CRLB and MLE statistics vary with the value of µ while

keeping the values of No and Λ fixed at their nominal values. The results indicate that

with increasing µ, the measurements enable a better estimate of µ and Λ, whereas,

when µ > 0.5, the quality of N̂omle becomes increasingly worse. Specifically, as µ

increases, the bias, variance, and, consequently, RMSE of µ̂mle and Λ̂mle decrease. In

contrast, the bias and variance of N̂omle has a local minimum around µ = 0.5.

Figure 17 shows how the CRLB and MLE statistics vary with the value of Λ

while keeping the values of No and µ fixed at their nominal values. The results

indicate that with increasing Λ, the estimates of µ and Λ become increasingly worse.

Particularly, as Λ increases, the bias, variance, and, consequently, RMSE of µ̂mle and

Λ̂mle increase. However, the quality of N̂omle improves slightly with increasing Λ until
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(a) CRLB and MLE statistics for No (b) MLE bias for No

(c) CRLB and MLE statistics for µ (d) MLE bias for µ

(e) CRLB and MLE statistics for Λ (f) MLE bias for Λ

Figure 15: CRLB and MLE statistics of DSD parameters versus No while keeping the
values µ = 1 and Λ = 2.5 fixed.
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(a) CRLB and MLE statistics for No (b) MLE bias for No

(c) CRLB and MLE statistics for µ (d) MLE bias for µ

(e) CRLB and MLE statistics for Λ (f) MLE bias for Λ

Figure 16: CRLB and MLE statistics of DSD parameters versus µ while keeping the
values No = 104 and Λ = 2.5 fixed.
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(a) CRLB and MLE statistics for No (b) MLE bias for No

(c) CRLB and MLE statistics for µ (d) MLE bias for µ

(e) CRLB and MLE statistics for Λ (f) MLE bias for Λ

Figure 17: CRLB and MLE statistics of DSD parameters versus Λ while keeping the
values No = 104 and µ = 1 fixed.
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around Λ = 2.75, where estimator bias and variance increase drastically.

The results presented in this section are consistent with those in Chapter 5; the

MLE is biased, and, in general, the variance exceeds the CRLB for a wide range of

DSD parameters. Thus, the MLE of the DSD parameters is not an efficient estimator,

and an efficient estimator does not exist.

Even if the MLE is not efficient, it is asymptotically efficient [45]; i.e., as Np →∞,

the MLE becomes unbiased and achieves the CRLB. Thus, while the experiments

presented here for Np = 217 indicate the CRLB is a relatively tight bound for the

variance of X̂mle, the bound is likely much looser as Np becomes smaller. Similarly,

the bias of X̂mle is likely to change as Np decreases. These trends are a result of

the nonlinear relationship that exists between the the DSD parameters and radar

measurements, for which efficient estimators do exist [76, 27]. Consequently, the

variance of the MLE does not scale with 1
Np

as the CRLB does.

6.4 CRLB for Different Raindrop Shape Models

To derive the CRLB in Chapter 5, we used (128) - (131), which assume a probabilistic

model for the shape of raindrops. The different axis ratio models were distinguished

by the exact expression used to define the mean and standard deviation of the axis

ratio PDF. Three different models were considered for the mean axis ratio: Andsager

et al. [3], Beard and Chuang [5], and Brandes et al.[9]. Further, three different

models were considered for the standard deviation of the axis ratio: a zero standard

deviation, the “proportional” model of Bringi et al. [14], and the model of Jameson

[40]. Considering each combination of the three models for the mean and the three

models for the standard deviation, there are nine possible models for the PDF of the

axis ratio.

In this section, the CRLB is computed using all the same parameters as the

experiments in Section 6.2 except Np = 256, which is within the typical number of
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(a) CRLB of No (b) CRLB of µ

(c) CRLB of Λ

Figure 18: CRLB of DSD parameters for different axis ratio models versus No while
keeping the values µ = 1 and Λ = 2.5 fixed.

pulses used by the WSR-88D to estimate the dual-pol data products [60]. Figures

18 - 20 show the CRLB for each of the nine axis ratio models. Each figure contains

three plots, one for each of the DSD parameters. In each figure, two of the DSD

parameters are kept constant at their nominal value while the third is swept over an

array of values. Figure 18 sweeps over No; Figure 19 sweeps over µ; and Figure 20

sweeps over Λ.

Interestingly, while the general trends of the CRLB are similar for each of the

models, the Andsager model for the mean axis ratio of rain drops results in a sig-

nificantly larger CRLB over the array of DSD parameter values considered in this

chapter. Given that the three different models for µr (De) do not vary significantly
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(a) CRLB of No (b) CRLB of µ

(c) CRLB of Λ

Figure 19: CRLB of DSD parameters for different axis ratio models versus µ while
keeping the values No = 104 and Λ = 2.5 fixed.

in the span of realistic drop sizes (De < 6 mm), it may be surprising to see such

differences in the CRLB for the various models. Some intuition regarding these re-

sults may be gained by considering an SVD of the Jacobian of the transformation,

Y = fY (X), which maps the DSD parameters, X = [No µ Λ]T , to the radar mea-

surements, Y = [ηh ηv KDP ]T . For each of the nine axis ratio models, Table 10 lists

the singular values of the Jacobian, ∂Y
∂X

, evaluated at X = Xnom, along with the as-

sociated condition number. The condition number is the ratio of the largest singular

value, Σ11, to the smallest singular value, Σ33, i.e.,

κ =
Σ11

Σ33

. (191)

Large condition numbers indicate that the function fY (X) is highly sensitive to small
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(a) CRLB of No (b) CRLB of µ

(c) CRLB of Λ

Figure 20: CRLB of DSD parameters for different axis ratio models versus Λ while
keeping the values No = 104 and µ = 1 fixed.

errors in X, or, in this case, the inverse function f−1
Y (Y ) is highly sensitive to small

errors in Y . Thus, large condition numbers associated with the Jacobian indicate that

even small errors in the radar measurements translate to large errors in X̂mle. The

condition numbers of the Jacobian associated with the Andsager models are largest.

These results are consistent with the calculated CRLB of X, shown in Figures 18 -

20. Specifically, the larger the condition number of the Jacobian for a given model,

the larger the CRLB of X.

Additionally, given the rather large condition numbers of the Jacobian, it is reason-

able to conclude that even small changes to the Jacobian (i.e., changing the function
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Table 10: Singluar values and condition numbers of the Jacobian ∂Y
∂X

for all nine axis
ratio models

Model Σ11 Σ22 Σ33 κ

Andsager-Zero 0.4503 4.7404E-04 3.3028E-08 1.3633E+07
Andsager-Proportional 0.4523 4.7697E-04 3.6722E-08 1.2318E+07

Andsager-Jameson 0.4604 5.2034E-04 6.7578E-08 6.8128E+06
Beard & Chuang-Zero 0.4514 4.4778E-04 2.6480E-07 1.7048E+06

Beard & Chuang-Proportional 0.4535 4.5130E-04 2.7294E-07 1.6616E+06
Beard & Chuang-Jameson 0.4617 5.0268E-04 3.2847E-07 1.4057E+06

Brandes-Zero 0.4549 5.1850E-04 2.2865E-07 1.9896E+06
Brandes-Proportional 0.4571 5.2221E-04 2.3642E-07 1.9333E+06

Brandes-Jameson 0.4668 5.8945E-04 3.2650E-07 1.4298E+06

coefficients even slightly based on different axis ratio models) could result in signifi-

cant differences to both estimator quality (i.e., bias and variance) and the functional

relationship between X and Y .

6.5 Summary

This chapter presented a parametric analysis of the CRLB and MLE for the DSD

parameters of rain. The CRLB, for the DSD parameter values considered in this

chapter, indicates that even if an efficient estimator existed, it would provide a poor

estimate (i.e., high variance) of the DSD parameters, regardless of which axis ratio

model is employed. The thorough parametric analysis of the MLE bias, variance, and

RMSE are consistent with the results of Chapter 5, which suggest that an efficient

estimator does not exist.

Additionally, this chapter examined how the different models for the axis ratio

of raindrops impact the CRLB. Despite the fact that the different models for the

mean axis ratio of a raindrop are very similar, the Andsager model for the mean

axis ratio resulted in a significantly greater CRLB. This result was supported by the

computed condition numbers of the Jacobian for each of the nine axis ratio models.

Furthermore, the condition numbers of the Jacobian for all nine axis ratio models

106



were large, indicating that the measurements all depend on the DSD parameters in

similar ways. As a result, the DSD parameter estimates have a high variance and are

highly correlated.

Recall from Chapter 3 that a number of approaches have been proposed for the

estimation of DSD parameters. However, all of these methods, in one way or an-

other, effectively impose a constraining relationship [94, 10, 12, 93, 21, 22] or prior

distribution [13, 29, 88] on the DSD parameters. The results in this chapter and

the previous chapter suggest that these approaches must be highly dependent on the

additional information introduced by the selected prior or constraining relationship.

Furthermore, while several studies have been performed to evaluate the performance

of various previously proposed estimation techniques [94, 88, 2], our results suggest

that quantitative performance metrics such as RMSE are likely to be highly dependent

upon the values of the DSD parameters that are represented in the test data, making

it difficult to extrapolate estimator performance for a wider range of climatological

conditions.
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CHAPTER VII

VARIANCE BOUNDS FOR THE ESTIMATION OF RAIN

RATE AND LIQUID WATER CONTENT

7.1 Overview

A number of approaches have been suggested for estimating rain rate and other

intrinsic physical quantities of interest from dual-pol weather radars. Despite the

extensive research done on this topic, no performance bounds for such estimators

have been established. Thus, this chapter aims to establish such bounds. We begin

with the CRLB of the DSD parameters, which was derived and analyzed in Chapters

5 and 6, and build on these results to establish the CRLBs of rain rate and LWC.

This chapter is organized as follows. Section 7.2 begins with a derivation of the

CRLB of rain rate and LWC. This is followed with an extensive parametric analysis of

the derived bounds. Section 7.3 describes the experiments performed for this analysis,

and Section 7.4 presents the results, which include the CRLBs of rain rate and LWC

over an array of DSD parameter values along with the statistics (i.e., bias, variance,

and RMSE) of the MLE of each of these quantities. Next, Section 7.5 compares and

contrasts the CRLBs of rain rate and LWC for the different PDF models for the shape

(i.e., axis ratio) of rain drops. Lastly, Section 7.6 provides additional analysis and

insight regarding the results presented in the previous sections.

7.2 Cramér-Rao Lower Bounds

Rain rate and LWC can both be expressed in terms of the DSD parameters, X. Thus,

to derive the CRLB of each of these quantities, we begin with the CRLB of X and

apply the transformation property of the CRLB, as given in (138) [45].
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7.2.1 CRLB of Rain Rate

The instantaneous still-air rain rate, given in millimeters per hour, is [25]

Rr = 0.6π × 10−3

∫ ∞
0

v (De)D
3
eN (De;X) dDe, (192)

where v (De) is the terminal velocity of a raindrop of diameter De in meters per

second. To compute rain rate, we require an expression for the terminal velocity of a

raindrop, for which a common approximation is [26]

v (De) ≈ atD
bt
e , (193)

where at = 3.78 and bt = 0.67. This approximation is a power-law fit to the precise

terminal velocity measurements of Gunn and Kinzer [34]. Substituting (2) and (193)

into (192) and integrating yields a closed-form equation for rain rate in terms of the

DSD parameters:

Rr = 0.6π × 10−3 atNo

Λµ+bt+4
Γ (µ+ bt + 4) . (194)

To apply (138), we find the Jacobian of (194):

∂Rr

∂X
=


∂Rr
∂No

∂Rr
∂µ

∂Rr
∂Λ

 , (195)

which is

∂Rr

∂X
=


1
No
Rr

[Ψ0 (µ+ bt + 4)− ln (Λ)]Rr

− (µ+bt+4)
Λ

Rr

 . (196)

The CRLB of rain rate is then easily computed as

J−1
F (Rr) =

∂Rr

∂X
J−1
F (X)

∂Rr

∂X

H

, (197)

where J−1
F (X) is given in (167) and ∂Rr

∂X
is given in (196). Interestingly, the CRLB

of rain rate cannot be expressed as a function of only itself. In other words, the
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performance of an unbiased estimator of rain rate depends not only on the value of

Rr, but on the DSD of the falling rain. This is not surprising since two different DSDs

can yield identical rain rates, but different radar measurements.

7.2.2 CRLB of Liquid Water Content

LWC is a measure of the amount of cloud water in a unit volume and is given by [15]

W =
π

6
ρw

∫ ∞
0

D3
eN (De;X) dDe, (198)

where ρw is the density of water (103 kg/m3). Substituting (2) into (198) and inte-

grating yields a closed-form equation for LWC in terms of the DSD parameters:

W =
π

6
ρw

No

Λµ+4
Γ (µ+ 4) . (199)

To apply (138), we first find the Jacobian of (199):

∂W

∂X
=


∂W
∂No

∂W
∂µ

∂W
∂Λ

 , (200)

which is

∂W

∂X
=


1
No
W

[Ψ0 (µ+ 4)− ln (Λ)]W

− (µ+4)
Λ

W

 . (201)

Then, the CRLB of LWC is straightforwardly computed as

J−1
F (W ) =

∂W

∂X
J−1
F (X)

∂W

∂X

H

, (202)

where J−1
F (X) is given in (167) and ∂W

∂X
is given in (201). Like rain rate, the CRLB of

LWC cannot be expressed as a function of only itself; the performance of an unbiased

LWC estimator also depends on the DSD of the liquid water aloft.
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7.3 Experimental Set-up

In addition to deriving and examining the CRLB of the given quantities of interest,

we investigate the statistics of the MLE for each of these quantities and compare the

results to the CRLB. To find the MLE of Rr and W , we first find the MLE of X,

denoted as X̂mle, using the approach described in Chapter 5. Then, R̂rmle and Ŵmle

are found by substituting X̂mle into (194) and (199), respectively. This follows from

the functional invariance property of the MLE [45].

The parameters for this experiment are identical to those in the experiments

presented in Section 6.3; i.e., Np = 217, ∆R = 10 km, λ = 10 cm, and the Andsager-

Zero axis ratio model is used.

As before, the experiments use the following nominal value for the DSD parame-

ters:

Xnom =


Nonom

µnom

Λnom

 =


104

1

2.5

 . (203)

In each experiment, two of the DSD parameters are kept constant at their nominal

value, while the third is swept over a range of values. As before, the first experiment

varies No from No = 103.5 to No = 105; the second experiment varies µ from µ = 0 to

µ = 5; and the third experiment varies Λ from Λ = 1.75 to Λ = 3.

For each set of DSD parameter values, the values of Rr and W are computed along

with their respective CRLBs. In addition, a Monte Carlo analysis of Ns = 1, 000, 000

trials is performed to generate the statistics of the MLEs, i.e., Ŵmle and R̂rmle . The

bias, standard deviation, and RMSE of the MLEs are computed and plotted as a

function of the DSD parameters.
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7.4 CRLB and MLE Analysis

The results of these experiments are shown in Figures 21 - 23. In each figure, there

are six plots, three for each quantity of interest. The first two plots (top) show the

values of Rr and W , computed as a function of the DSD parameters; the next two

plots (middle) show the bias of the MLEs; and the final two plots (bottom) give the

square root of the CRLB along with the standard deviation and RMSE of the MLEs.

Figure 21 shows the aforementioned quantities, plotted as a function of No while

keeping µ and Λ fixed; Figure 22 shows the same quantities, plotted as a function of

µ while keeping No and Λ fixed; and Figure 23 shows these quantities as a function

of Λ while keeping No and µ fixed.

In general, as Rr and W increase, so do the CRLB and standard deviation and

RMSE of the MLE. There are local minimums in the MLE bias as a function of the

DSD parameters; however, the bias is not the primary contributer to the RMSE.

As evidenced by the results presented here, the MLEs of both rain rate and LWC

are biased, and the variance exceeds the CRLB for at least some values of the DSD

parameters. Thus, the MLE of the DSD parameters is not an efficient estimator, and

an efficient estimator does not exist.

Recall that even if the MLE is not efficient, it is asymptotically efficient [45]; i.e.,

as Np → ∞, the MLE becomes unbiased and achieves the CRLB. Thus, while the

experiments presented here for Np = 217 indicate the CRLB is a relatively tight bound

for the variance of R̂rmle and Ŵmle, the bound is likely much looser as Np becomes

smaller. Similarly, the bias is likely to change as Np decreases. These trends are a

result of the nonlinear relationship of rain rate and LWC with the radar measurements.

Consequently, the variance of the MLE does not scale with 1
Np

as the CRLB does.

112



(a) Value of Rr (b) Value of W

(c) MLE bias for Rr (d) MLE bias for W

(e) CRLB and MLE statistics for Rr (f) CRLB and MLE statistics for W

Figure 21: CRLB and MLE statistics of rain rate and LWC versus No while keeping
the values µ = 1 and Λ = 2.5 fixed.
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(a) Value of Rr (b) Value of W

(c) MLE bias for Rr (d) MLE bias for W

(e) CRLB and MLE statistics for Rr (f) CRLB and MLE statistics for W

Figure 22: CRLB and MLE statistics of rain rate and LWC versus µ while keeping
the values No = 104 and Λ = 2.5 fixed.
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(a) Value of Rr (b) Value of W

(c) MLE bias for Rr (d) MLE bias for W

(e) CRLB and MLE statistics for Rr (f) CRLB and MLE statistics for W

Figure 23: CRLB and MLE statistics of rain rate and LWC versus Λ while keeping
the values No = 104 and µ = 1 fixed.
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(a) CRLB of Rr versus No (b) CRLB of Rr versus µ

(c) CRLB of Rr versus Λ

Figure 24: CRLB of Rr for different axis ratio models versus each of the DSD param-
eters.

7.5 CRLB for Different Raindrop Shape Models

To derive the CRLBs of Rr and W , we used (128) - (131), which were derived in

Chapter 4 and assume a probabilistic model for the axis ratio of raindrops. This

section compares the CRLB of Rr and W for the nine different axis ratio models.

In this section, the CRLB is computed using all the same parameters as described

in Section 7.3 except Np = 256, which is within the typical range of the number of

pulses used to estimate the dual-pol data products of the WSR-88D [60]. Figures

24 and 25 show the CRLB of Rr and W , respectively, for each of the nine axis ratio

models. Each figure contains three plots, each one varying one of the DSD parameters

while keeping the other DSD parameters set at their nominal values.
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(a) CRLB of W versus No (b) CRLB of W versus µ

(c) CRLB of W versus Λ

Figure 25: CRLB of W for different axis ratio models versus each of the DSD param-
eters.

While the general trends of the CRLB are similar for each of the models, the

Andsager model for the mean axis ratio of rain drops results in a significantly larger

CRLB for both Rr and W . Recall that in Chapter 6 we found that the CRLB of the

DSD parameters is largest when using Andsager’s model for the mean axis ratio of

raindrops. Further, the Andsager model for the mean axis ratio results in the most

ill-conditioned Jacobian, which suggests that, under this model, the respective inverse

transformation is the most sensitive to radar measurement errors. Given that this

model results in the greatest CRLB for the DSD parameters, it is unsurprising to see

similar results for rain rate and LWC.

117



7.6 Analysis of Results

Overall, the analysis of Chapters 5 and 6 suggest that the MLEs of the DSD param-

eters are biased, have a high standard deviation, and, therefore, have a high RMSE.

Based on this fact, it might seem likely that estimators of quantities derived from

such parameters (e.g., rain rate and LWC) will inevitably have similar properties. To

test this hypothesis, this section strives to summarize the CRLB of Rr and W over

the prior distribution of DSD parameters considered standard in the literature, which

assumes independent uniform distributions for log10 (Nw), µ, and Do over the ranges

specified in (117). Using this distribution for the DSD parameters, Ns = 10, 000

random realizations of DSD parameter sets are generated. For each realization, the

value of Rr and W are computed along with their respective CRLBs. For two of the

axis ratio models, the resulting CRLBs of Rr and W are plotted in Figures 26 and

27, respectively, as a function of their corresponding values. The two axis ratio mod-

els shown are the Andsager-Zero model and the Beard and Chuang-Jameson model,

which correspond to the worst case (i.e., highest CRLB, in general) and best case

(i.e., smallest CRLB, in general) for estimating the quantities of interest.

While the Andsager models result in the highest CRLBs, the other models result

in much more desirable bounds on estimation performance. The ability to estimate

rain rate and LWC from seemingly poor estimates of the DSD parameters is best

understood by performing an eigendecomposition on the inverse FIM of the DSD

parameters [36]:

J−1
F (X) = UΛvU

T , (204)

where U is a unitary matrix such that each column corresponds to an eigenvector

and Λv is a diagonal matrix whose entries are the eigenvalues corresponding to each

of the eigenvectors of J−1
F (X). The eigenvectors of the inverse FIM correspond to

the principle directions of variance, as predicted by the CRLB. The eigenvector, U3,

which corresponds to the minimum eigenvalue, is the principal direction of minimum
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(a) Square root of CRLB of Rr versus Rr for the Andsager - Zero model

(b) Square root of CRLB of Rr versus Rr for the Beard and Chuang -
Jameson model

Figure 26: Square root of CRLB of rain rate versus rain rate evaluated over the
specified prior distribution of DSD parameters.
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(a) Square root of CRLB of W versus W for the Andsager - Zero model

(b) Square root of CRLB of W versus W for the Beard and Chuang -
Jameson model

Figure 27: Square root of CRLB of LWC versus LWC evaluated over the specified
prior distribution of DSD parameters.
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Table 11: Median angle of the Jacobians ∂Rr
∂X

and ∂W
∂X

with respect to the principle
direction of minimum variance of the DSD CRLB

Model med
(
∠U3
Rr

)
med

(
∠U3
W

)
Andsager-Zero 3.14 5.42

Andsager-Proportional 3.08 5.33
Andsager-Jameson 3.09 5.38

Beard & Chuang-Zero 2.66 5.05
Beard & Chuang-Proportional 2.76 5.08

Beard & Chuang-Jameson 2.66 4.98
Brandes-Zero 2.84 5.21

Brandes-Proportional 2.72 5.08
Brandes-Jameson 2.78 5.15

variance; i.e., it corresponds to the linear combination of parameters that can be

estimated with the smallest variance.

Even if none of the individual DSD parameter estimates have a low variance,

correlation of the individual parameter estimates may still permit some function of

these parameters to be estimated with a “small” variance if the functional depen-

dence corresponds to the direction of minimum variance. For rain rate, we consider

the angle ∠U3
Rr

, which is the angle between U3 (i.e., the direction of minimum variance

of J−1
F (X)) and ∂Rr

∂X
. If this angle is small, then estimation of rain rate approxi-

mately corresponds to estimating a parameter in the direction of minimum variance.

An analogous value, ∠U3
W , is considered for LWC. Using the same DSD parameter

distribution as before, a Monte Carlo simulation of Ns = 10, 000 trials is simulated.

The median of the angles ∠U3
Rr

and ∠U3
W (in degrees) over all Monte Carlo trials, is

given in Table 11. For all nine axis ratio models, the dependence of both rain rate

and LWC on the DSD parameters closely corresponds to the principal direction of

minimum variance of the DSD parameter estimates (as computed using the CRLB),

the median angles being within about three and five degrees for rain rate and LWC,

respectively.
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7.7 Summary

This chapter derived the CRLB of rain rate and LWC. Further, it presented a para-

metric analysis of the CRLB and MLE for the quantities of interest. The MLEs of

both rain rate and LWC were found to be biased with a variance that exceeds the

CRLB for a wide range of DSD parameters. Thus, we conclude that an efficient

estimator does not exist for either quantity.

The CRLBs of these quantities depend on the model used for the axis ratio of

raindrops. Specifically, the Andsager models resulted in much larger CRLBs than the

other models. The other models considered all yielded CRLBs similar to each other.

By exploiting the CRLB of the DSD parameters, we demonstrate that rain rate

and LWC are nearly proportional to the direction of minimum variance of the esti-

mated DSD parameters for realistic values of the DSD parameters, suggesting that

low variance (biased) estimates of rain rate could be possible.

While this chapter examined bounds for an unbiased estimator of rain rate and

LWC, it is perfectly reasonable to conclude that better estimator performance (i.e.,

lower RMSE) could be achieved by incorporating prior knowledge, such as an ap-

propriate prior on the DSD parameters. Many, if not all, methods that have been

proposed for estimating these quantities do incorporate such information either ex-

plicitly or implicitly. With explicit knowledge of these priors, the work presented here

could be expanded upon to establish similar performance bounds for biased estimators

based upon these priors [85].
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CHAPTER VIII

SUMMARY, CONCLUSIONS, AND FUTURE WORK

8.1 Summary of Contributions

The ultimate objective of this dissertation was to derive the CRLB of the DSD pa-

rameters of rain (and clouds), along with the CRLBs of both rain rate and LWC. In

all, this dissertation documented a number of original contributions:

• A firm understanding of radar phenomenology, with an emphasis on applications

in meteorology, as well as a comprehensive description of the parameters and

operation of the WSR-88D were provided in Chapter 2 [70].

• To establish the current state of the field, proposed techniques for estimation of

DSD parameters and rain rate were summarized in Chapter 3, along with the

methods by which these estimators are usually evaluated.

• Closed-form expressions that approximate the complicated mathematical rela-

tionship between the dual-pol radar measurements of an S-band radar and the

DSD parameters of rain were developed in Chapter 4. The quality of these

approximations were evaluated for the full range of DSD parameters expected

to occur in realistic climatological conditions [67].

• Using the closed-form expressions developed in Chapter 4, the CRLB of the

DSD parameters of rain was derived in Chapter 5, assuming measurements

from an S-band dual-pol radar were provided [69].

• An approach for finding the MLE of the DSD parameters of rain was presented

and applied in Chapter 5 to examine the statistics of the MLE of the DSD

parameters [69].
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• An extensive parametric analysis of the CRLB and MLE statistics of the DSD

parameters was performed in Chapter 6. This analysis served to establish the

estimator properties as a function of the changing DSD parameters and deter-

mine whether an efficient estimator exists for the DSD parameters [68].

• As a natural extension of the previously listed contributions, the CRLB of rain

rate and LWC was derived in Chapter 7 [66].

• A parametric analysis of the CRLB of rain rate and LWC is also performed in

Chapter 7. Furthermore, the relation of rain rate and LWC to the estimated

DSD parameters was examined in detail to discern the utility of the dual-pol

measurements for estimation of rain rate and LWC [66].

8.2 Conclusions

Throughout this dissertation, multiple probabilistic models for the shape of raindrops

were applied for establishing the relationship between the dual-pol radar measure-

ments and the DSD parameters of rain (or clouds). These models were distinguished

by how they define the mean and variance of raindrop axis ratios. Interestingly, while

the three different mean axis ratio models differ only slightly over the range of realis-

tic drop sizes, changing the mean axis ratio model significantly impacted the CRLB

and MLE variance of the DSD parameters. Using the functional mappings derived

in Chapter 4, we found that each of the three dual-pol radar measurements, most

often used for DSD and rain rate estimation, relate to the DSD parameters in very

similarly ways; i.e., the measurements are redundant with respect to measuring the

DSD parameters. Consequently, the functional relationship between the radar mea-

surements and DSD parameters is very sensitive to small changes in the model used

to derive such a functional relationship. Futhermore, DSD parameter estimates, such

as the MLE, are highly correlated and sensitive to small measurement errors. As a

result, the MLE of the DSD parameters has a high variance, in addition to being
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biased.

It is known that the radar measurements are efficient estimators for the parameters

of the received radar signal. However, given the nonlinear transformation required

to go from the radar measurements to the DSD parameters, rain rate, or LWC, the

existence of an efficient estimator for each of these quantities is not guaranteed. By

examining the properties of the MLE for each of these quantities, we confirmed that

an efficient estimator does not exist for the DSD parameters, rain rate, or LWC. This

was evidenced by the fact the MLE is both biased and frequently has a variance that

exceeds the CRLB.

While an efficient estimator does not exist for the DSD parameters, rain rate, or

LWC, the CRLB is still an excellent tool for determining the efficacy of the dual-pol

radar measurements for estimating each of these quantities, especially in the absence

of additional information that could be incorporated into the estimators. Thus, we

used the CRLB to infer how useful the measurements might be in forming a biased

estimator for rain rate or LWC. By applying an eigendecomposition to the inverse FIM

of the DSD parameters and, then, comparing the direction of minimum variance (as

predicted by the CRLB) to the gradient of rain rate (or LWC) with respect the DSD

parameters, we found that very often rain rate (and LWC) estimation approximately

corresponds to estimating a parameter in the direction of minimum variance that

results when estimating the DSD parameters. As a result, poor estimation of the

DSD parameters does not necessarily imply that poor estimation of rain rate or LWC

is inevitable. As a matter of fact, it may be possible to estimate rain rate and LWC

quite well.

8.3 Future Work

While this dissertation focuses on establishing performance bounds for unbiased esti-

mators of DSD parameters, rain rate, and LWC, it also provides a starting point for
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establishing similar bounds for biased estimators of these quantities, more specifically

estimators that incorporate prior distributions on the DSD parameters. Establishing

such a bound is extremely relevant in the context of many of the estimation tech-

niques that were discussed in Chapter 3, as a vast array of these approaches assume a

specific prior distribution on the DSD parameters, and their performance is inherently

dependent on the selection of these priors. The Bayesian Cramér-Rao Lower Bound

(BCRLB), also known as the posterior CRLB, establishes a bound on the MMSE of

an estimator, X̂, given a prior distribution, pX (X), on the unknown parameters [86].

Unlike the CRLB, the BCRLB makes no assumptions regarding the estimator bias.

Another avenue of research, related to this dissertation, that could also be explored

is the computation of the CRLBs of the DSD parameters, rain rate, and LWC when

using the CC (correlation coefficient) for estimation in place of one of the other radar

measurements. The CC has long been discarded in these types of estimation problems

due to its lack of variation when observing rain. However, given the singular nature of

the other three radar measurements (as they relate to the DSD parameters), it may be

advisable to consider the CC as a measurement that may provide information related

to the DSD parameters that is not availabe from the other three radar measurements.

Lastly, the signal model employed in this dissertation ignores the impact of thermal

noise. It would be a fairly straightforward extension to compute the CRLBs of the

DSD parameters, rain rate, and LWC in the presence of thermal noise. While most

estimation and inference algorithms that use the dual-pol data products only assume

reliable performance for high SNRs, WSR-88D specifications require some of the more

traditional single-polarization data products to be estimated at SNRs as low as -3

dB [91]. Thus, computing the CRLBs in the presence of thermal noise could provide

the necessary information for determining at what SNRs such estimators would break

down and become unreliable.
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APPENDIX A

TABLES OF COEFFICIENTS

The tables in this section list the coefficients found in Chapter 4, along with the

associated CDs as a metric for how well the axis ratio integrals are approximated. For

all tables in this section, the mean models (MM) of Andsager, Beard and Chuang,

and Brandes are denoted A, B&C, and B, respectively. Additionally the standard

deviation models (SDM) are denoted as Z, P, and J for the zero, proportional, and

Jameson models, respectively.

Table 12: Coefficients for axis ratio integral of horizontal reflectivity (ζh)

LLSE Results NLSE Results

MM SDM ah bh ch CD ah bh ch CD

A Z 256.3690 5.9517 -0.0945 1.00 227.5522 6.0628 -0.0842 1.00
A P 257.4120 5.9516 -0.0949 1.00 228.3439 6.0635 -0.0844 1.00
A J 251.6199 5.9324 -0.1132 1.00 321.6675 5.2318 -0.2904 1.00

B&C Z 260.5043 5.9613 -0.0892 1.00 256.2449 5.8922 -0.1155 1.00
B&C P 261.5808 5.9611 -0.0895 1.00 257.2455 5.8922 -0.1158 1.00
B&C J 255.7883 5.9422 -0.1078 1.00 362.0713 5.0624 -0.3213 1.00

B Z 252.4484 5.9442 -0.1076 1.00 287.1870 5.5047 -0.2238 1.00
B P 253.4640 5.9440 -0.1080 1.00 288.3833 5.5038 -0.2244 1.00
B Jn 246.2604 5.9213 -0.1302 1.00 554.1162 4.0525 -0.5681 1.00

127



Table 13: Coefficients for axis ratio integral of vertical reflectivity (ζv)

LLSE Results NLSE Results

MM SDM av bv cv CD av bv cv CD

A Z 328.4393 6.0633 0.1449 1.00 438.3372 5.5511 0.0403 1.00
A P 329.7509 6.0635 0.1452 1.00 440.3782 5.5501 0.0404 1.00
A J 328.1304 6.0559 0.1391 1.00 442.8122 5.4861 0.0180 1.00

B&C Z 319.1734 6.0466 0.1354 1.00 359.0418 5.8398 0.0934 1.00
B&C P 320.4272 6.0467 0.1357 1.00 360.5492 5.8394 0.0936 1.00
B&C J 318.9078 6.0393 0.1296 1.00 363.3282 5.7722 0.0706 1.00

B Z 333.2497 6.0695 0.1597 1.00 349.4382 6.0930 0.1780 1.00
B P 334.5912 6.0697 0.1601 1.00 350.8991 6.0931 0.1784 1.00
B J 332.8017 6.0619 0.1537 1.00 355.2631 6.0124 0.1519 1.00

Table 14: Coefficients for axis ratio integral of specific differential phase (KDP )

LLSE Results NLSE Results

MM SDM ak bk ck CD ak bk ck CD

A Z 7.9868E-11 6.1890 0.4072 1.00 6.1461E-11 6.1515 0.3384 1.00
A P 5.6218E-11 4.2183 -0.3232 0.84 6.3169E-11 6.1255 0.3343 1.00
A J 6.5890E-11 3.6867 -0.4669 0.84 6.8909E-11 5.8058 0.2411 1.00

B&C Z 1.1816E-10 6.0304 0.4326 0.99 1.3258E-10 5.0207 0.1282 1.00
B&C P 8.5074E-11 4.3364 -0.2018 0.91 1.3556E-10 5.0024 0.1255 1.00
B&C J 9.3758E-11 3.8128 -0.3572 0.90 1.4560E-10 4.7082 0.0374 1.00

B Z 5.2569E-11 4.7155 -0.1988 0.87 1.1432E-10 5.0037 0.0751 1.00
B P 6.1092E-11 4.1287 -0.3571 0.84 1.1698E-10 4.9842 0.0723 1.00
B J 6.9166E-11 3.6752 -0.4839 0.85 1.3380E-10 4.5447 -0.0502 1.00

Table 15: Coefficients for axis ratio integral of the CC (ρ)

LLSE Results NLSE Results

MM SDM aρ bρ cρ CD aρ bρ cρ CD

A Z 290.1752 6.0075 0.0252 1.00 315.8734 5.8066 -0.0221 1.00
A P 290.4194 6.0075 0.0251 1.00 316.1178 5.8065 -0.0221 1.00
A J 289.1973 6.0038 0.0216 1.00 329.2323 5.6919 -0.0523 1.00

B&C Z 288.3506 6.0039 0.0231 1.00 304.8260 5.8581 -0.0126 1.00
B&C P 288.5963 6.0039 0.0230 1.00 305.0905 5.8579 -0.0127 1.00
B&C J 287.4028 6.0003 0.0195 1.00 318.1277 5.7415 -0.0432 1.00

B Z 290.0488 6.0069 0.0261 1.00 315.0238 5.8076 -0.0212 1.00
B P 290.2888 6.0068 0.0260 1.00 315.3300 5.8071 -0.0214 1.00
B J 288.7690 6.0026 0.0219 1.00 339.8175 5.6193 -0.0684 1.00
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APPENDIX B

GOODNESS OF FIT OF APPROXIMATIONS

These plots illustrate the goodness of fit of the data product approximations developed

in Chapter 4. For the range of DSD parameters specified in (117), the value of the

resulting approximation for each of the data products is plotted versus the exact value

that is obtained via numerical integration.

Figure 28: Goodness of fit of approximation for horizontal reflectivity (ZH) for dif-
ferent axis ratio models
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Figure 29: Goodness of fit of approximation for vertical reflectivity (ZV ) for different
axis ratio models
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Figure 30: Goodness of fit of approximation for differential reflectivity (ZDR) for
different axis ratio models
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Figure 31: Goodness of fit of approximation for specific differential phase (KDP ) for
different axis ratio models
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Figure 32: Goodness of fit of approximation for the CC (ρ) for different axis ratio
models
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