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Nomenclature

| | 4
= cardinality of a set, or the number of elements in a vector or

matrix

∀ 4
= “for all”

′ 4
= indicates a revised term

?
4
= indicates a term that differs in a controlled way

α
4
= number of arriving packets

β
4
= temporal-burstiness factor

βS
4
= spatial-burstiness factor

γ
4
= periodicity of a Markov chain

η
4
= number of stages in a network

λ
4
= average burst length

π
4
= steady-state probabilities

πi
4
= steady-state probability for state i

πt 4
= state probability distribution at time t

πt
i

4
= probability of a system being in state number i at time t

Ψ(k)
4
= set of unrestricted partitions of k

Ψ(k, ω)
4
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4
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4
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4
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= operator to produce a sum of products generated via selection

$
4
= number of arrival vectors represented by a reduced arrival vector

a
4
= number of on-sources that remain on during an input state

transition
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AVR
4
= arrival vector reduction
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4
= arrival vector y
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= element i of arrival vector y
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4
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Bx
4
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x

4
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Summary

This work develops an exact logical operation model to predict the performance of the

all-optical shared-memory architecture (OSMA) class of packet switches and provides

a means to obtain a reasonable approximation of OSMA switch performance within

certain types of networks, including the Banyan family.

All-optical packet switches have the potential to far exceed the bandwidth cap-

ability of their current electronic counterparts. However, all-optical switching technol-

ogy is currently not mature. Consequently, all-optical switch fabrics and buffers are

more constrained in size and can cost several orders of magnitude more than those

of electronic switches. The use of shared-memory buffers and/or links with multiple

parallel channels (channel grouping) have been suggested as ways to maximize switch

performance with buffers of limited size. However, analysis of shared-memory swit-

ches is far more difficult than for other commonly used buffering strategies. Obtaining

packet loss performance by simulation is often not a viable alternative to modeling

if low loss rates or large networks are encountered. Published models of electronic

shared-memory packet switches (ESMP) have primarily involved approximate models

to allow analysis of switches with a large number of ports and/or buffer cells. Because

most ESMP models become inaccurate for small switches, and OSMA switches, un-

like ESMP switches, do not buffer packets unless contention occurs, existing ESMP

models cannot be applied to OSMA switches. Previous models of OSMA switches

were confined to isolated (non-networked), symmetric OSMA switches using channel

grouping under random traffic. This work is far more general in that it also encom-

passes OSMA switches that (1) are subjected to bursty traffic and/or with input

links that have arbitrary occupancy probability distributions, (2) are interconnected

to form a network and (3) are asymmetric.

xxi



Chapter 1

Introduction and Background

1.1 Introduction

The rapid growth of the internet has placed extreme demands upon the world’s tele-

communications infrastructure. This has resulted in the urgent need to develop new

technologies that can deliver the required bandwidth. Techniques such as wavelength

division multiplexing (WDM) can allow a single optical fiber to carry an impressive

and seemingly unlimited data rate. Single-fiber data rates in excess of ten trillion bits

per second have been reported [1], [2]. However, a serious bandwidth performance

problem remains with the electronic switches that route data between the network

links. A network switch must handle all of the data presented by the total of its input

fibers and must be able to route this data, in real time, to the proper output ports.

Furthermore, the incoming data must not be degraded or lost to an unacceptable

degree in passing through the switch. Packet-switched networks place an additional

constraint of high-speed routing operation upon the switch. This work focuses ex-

clusively on packet-switched networks— specifically, time-slotted networks carrying

fixed-length packets.

To improve the bandwidth capability of switches so they more closely match that

of an optical fiber, the all-optical network [3]–[7] has been proposed. In an all-optical

network, the data remain in an optical state from the original source, through the

intermediate switches, until the final destination is reached. Although the switches

may be electrically controlled, the packets they route remain entirely in optical form.

If these all-optical switches can operate at the needed packet rate with accept-

able levels of signal degradation, a serious problem still remains —how to handle

contention. Contention occurs when two or more packets compete for a limited net-

work resource that cannot serve them all at once. Specifically, this work is concerned
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with output port contention, which occurs when more packets arrive at a switch’s in-

puts destined for a particular output than that output can handle at once. Buffering,

the use of multichannel links and deflection routing are the most commonly proposed

techniques for contention resolution in all-optical networks [8]. If the switch is unable

to buffer packets or otherwise resolve the conflict, one or more packets will be lost.

Packet loss rates of 10−10 or better are generally regarded as acceptable in today’s

ATM networks [9]. However, future all-optical networks may be more tolerant in this

regard, especially if a much larger available bandwidth offsets the higher loss rates.

1.1.1 Purpose and Contributions of Work

It is the purpose of this work to develop a method of analysis to predict the packet

loss performance of certain types of all-optical packet-switched networks that use the

optical shared-memory architecture (OSMA) class of switches. The developed model

yields exact results for an isolated switch or switches in the first stage of a network

and good approximate results for switches in later network stages under random or

bursty traffic. The following are all original contributions of the model in this work:

• It can be used to analyze OSMA switches under bursty traffic and/or with input

links that have arbitrary occupancy probability distributions.

• It can be used to analyze Banyan networks with multiple stages of OSMA

switches by using an interstage traffic approximation.

• It is general enough to be used with asymmetric (with respect to number of ports

and/or channel grouping factors of the inputs and outputs) OSMA switches.

• It is more computationally tractable than the exact OSMA models previously

reported in the literature [10]–[13].
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1.2 ESMP Switches

In conventional fiber optic networks, packet switching is accomplished by converting

the optical data stream into an electrical form via detectors, switching it electrically

and then transmitting it via modulated lasers at the appropriate output port. An

electronic buffer (memory) is provided to store packets that could not be routed be-

cause of contention. A switch in which a single memory bank is shared among all the

ports is known as a shared-memory switch. For a given total number of switch buffer

cells, shared-memory switches perform better than alternative buffer techniques such

as input or output buffering (in which each port has its own buffer) because all the

free memory cells can be used to hold packets from any port as needed. Furthermore,

if there is a free output port, packets in the buffer destined to it can be routed out,

regardless of their location within the buffer. Thus, the random access nature of the

shared memory does not suffer from the head-of-line blocking problems exhibited

by first-in-first-out (FIFO) memories used for input or output buffering. Electronic

shared-memory packet switches (ESMP) (Figure 1) are sometimes referred to as very

large scale integration (VLSI) switches because of the added switch complexity asso-

ciated with allowing buffer cells to be shareable.
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Figure 1: The ESMP switch.
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It is helpful to review the steps in the logical operational cycle of an ESMP

switch:

1. Packets arrive at the inputs, where the data is detected and converted into an

electrical form. Addressing information is extracted at this time.

2. All of the packets are stored in the buffer. If there are more incoming packets

than there are free buffer cells, packets are randomly selected to be stored. The

excess packets are dropped.

3. As many packets as possible are routed from the buffer to the output ports.

If there are more packets in the buffer destined for a particular output port

than that port can handle, packets are randomly selected to be routed from the

contending group. The unchosen packets remain in the buffer.

There are variations in the operational cycle. Most of these involve deviations

from randomly selecting packets to be dropped or routed to accommodate packets

with varying priorities, to limit the maximum time a packet remains in the buffer, or

to preserve packet ordering. Giving certain packets priority does not affect the loss

characteristics of a switch because the effect is simply to interchange packets with the

same destination, but which differ in some other metric.

The ESMP switch offers a number of advantages. Because the optical signals are

threshold detected and regenerated, noise does not accumulate from switch to switch.

Also, because all packets that pass through the switch are buffered or latched, timing

variations can be completely compensated for by the switch. Finally, the buffer can be

made quite large because of the inexpensive nature of the memory. A large single-chip

VLSI shared-memory switch can have 32 ports or more and a buffer size that exceeds

a thousand packets [14]. Multiple-chip designs can be much larger.

There are also a number of disadvantages. Because the switch is electronic, it

must provide optoelectronic interfaces, such as detectors and lasers, at the inputs
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and outputs, respectively. These interfaces greatly increase the complexity and cost

of the switch. Furthermore, the electronics must be able to process all of the data

that passes through the switch. At the core of a network shared by many users, the

presented bandwidth could be extremely large. Another issue is that the performance

of the entire switch may be compromised if traffic imbalances cause a single output

to monopolize the buffer. Various buffer management protocols have been proposed

to minimize this problem [15].

It should be noted that that performance could be improved by allowing the

ESMP switch to route packets directly from the input to the output and buffering

only when contention occurs. This isn’t often done in practice because it is much more

cost effective to route all traffic through a larger buffer than to provide a “thru” bus

which would complicate the routing circuitry and protocols.

1.2.1 Starlite and Sunshine Switches

One notable electronic shared-memory switch that supports “thru” capability is the

Starlite switch [16]. However, in its unmodified form, the Starlite architecture is con-

sidered unfair as it favors dropping contending packets destined for higher address

ports over those destined for the lower ports [17]. Techniques have been developed to

deal with this issue [18].

The Sunshine switch [19] is a Starlite switch with added output buffers. Exact

performance models for the Sunshine switch have not been reported in the literature.

1.3 OSMA Switches

Optical shared-memory architecture (OSMA) switches are defined here as all-optical

packet switches that support

• completely shared buffering—each buffer cell can be used by any arriving

packet;
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• random access at the packet level to and from each buffer cell— each buffer

cell can be read or written at each timeslot regardless of its “location” or the

contents of the buffer cells;

• thru capability—packets are sent to the buffer only in the event of contention;

• fair dropping of packets— packets that cannot be buffered are selected for drop-

ping without address favoritism;

• work conserving operation—output links will always be utilized to the fullest

extent possible (i.e., there is no such thing as an idle output link when there

are packets anywhere in the buffer or inputs that are destined to that output).

Physically, OSMA switches can be implemented in different ways. Perhaps the

most obvious is the all-optical Starlite switch shown in Figure 2. The all-optical Star-

lite switch consists of an optical cross-connect and one or more optical buffer loops,

each capable of storing a single optical packet. Control information such as packet

addresses may be provided by low bandwidth out-of-band signaling techniques [20].

The only electronic controls needed are those used to extract the control information

and to operate the cross-connect. Unlike the electronic Starlite switch, the switch

control is required to drop packets fairly. Because the all-optical switch fabric is con-

trolled by a single controller, this is not a difficult requirement to meet. Another way
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Figure 2: The all-optical Starlite OSMA switch.
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to build an OSMA switch is to use a single-fiber loop, but allow this loop to hold

multiple packets, each at a different wavelength. This implementation is known as

the multiwavelength fiber loop memory switch (MFLMS) [21], [22], also known as

the fiber-loop buffer memory (FLBM) switch [12], [13], which is shown in Figure 3.

Finally, there are also exotic optical buffering technologies such as “light freezing” [23]

which are promising, but currently far from practical.

The OSMA logical operation cycle is as follows:

1. Packets arrive at the inputs. It is assumed that there is some method to syn-

chronize arrivals at the packet level. The destination addresses of the incoming

packets are extracted.

2. As many packets as possible are routed out of the buffer. If there is contention,

packets will be randomly chosen for routing from the contenders.

3. As many packets as possible are routed from the inputs to the outputs. In case

of contention, packets are randomly chosen for routing.

4. If some input packets could not be routed out, they are stored in the buffer.

If the buffer cannot hold all of these packets, a maximal subset is randomly

chosen for buffering and the rest are dropped.
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Figure 3: The multiwavelength fiber loop memory OSMA switch.
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Of course, there may be variations, such as choosing from contending packets

based on priority, buffer age, or sequence number. However, like the ESMP switch,

these will not affect the loss rate or the average number of packets in the buffer.

The OSMA switch has a number of advantages. Unlike the ESMP switch, the

OSMA switch does not have to process any of the packet data other than the control

information. As a result, the data rate and format can be altered without requiring

changes to the switch (i.e., data transparency). Furthermore, there is no need for mod-

ulated output lasers. Because packet buffering is done only in the event of contention,

the loss and delay performance is better than that of an ESMP switch with the same

size buffer (Figure 4). It should also be noted that increasing the size of the packets is

relatively easy to accommodate by lengthening the fiber loops and/or increasing the

data rate. This contrasts with the ESMP switches, which require increases in buffer

memory to match the larger packet size.
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Figure 4: OSMA versus ESMP loss performance for 4 × 4 switches with 16 buffer
cells under random traffic. ESMP data taken from Pattavina and Gianatti’s exact
vectorial model [24, page 406].

However, there are a number of disadvantages. If there is no regeneration and

retiming of the packets, noise, timing skew, cross-talk and optical signal attenuation

will accumulate as the number of switch hops increases. For the same reasons, there
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may be a maximum length of time a packet can remain in a buffer loop until it

becomes unacceptably degraded. There are promising all-optical means to perform

packet regeneration and retiming. However, such technology is not yet practical [25],

[26]. Therefore, making an optical buffer that is able to preserve packets for the

required amount of time is difficult and expensive [27]–[30].

Furthermore, there are severe limitations on the size of all-optical cross connects

for high speed packet switching. Currently, a 8×8 all-optical switch fabric is considered

to be quite large [7]. Most experimental demonstrations of all-optical packet switches

utilize switch fabrics with less connectivity, such as 2× 2 or 4× 4 [4], [29], [31]–[34].

Therefore, the cost per buffer cell is several orders of magnitude higher than the RAM

used in the ESMP switch. Consequently, current OSMA buffers must be far smaller,

in terms of the number of packets held, than their ESMP counterparts.

1.4 Non-OSMA Switches

There are all-optical shared-memory switches that are not members of the OSMA

family. In fact, physical implementation difficulties may favor a non-OSMA design.

A few of the more important non-OSMA switches will now be briefly mentioned.

1.4.1 Karol’s Shared-Memory Optical Packet (SMOP) Switch

Mark J. Karol proposed the shared-memory optical packet (SMOP) switch shown in

Figure 5 [35]. The design is similar to the all-optical Starlite switch (Figure 2), but

with recirculation delay lines of possibly different length. In the most general form, the

delay lines can be of arbitrary length, the only constraint being that each can store an

integer number of packets. The all-optical Starlite switch is a special case of Karol’s

SMOP switch in which all the delay lines are one packet long. However, in the typical

configuration suggested by Karol, each additional delay line is one packet longer than

its predecessor. Thus, such a switch with i delay lines can buffer up to (i)(i+1)
2

packets.

The inspiration for this design derives from the idea that packets that need buffering
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Figure 5: Karol’s shared-memory optical packet (SMOP) switch.

should be “rescheduled” so that they do not (re)contend in future timeslots. This

strategy can pay off when the number of delay lines (and resulting switch fabric

size), rather than the number of buffer cells per se, is the constraining factor. Karol’s

typical configuration generally out performs an all-optical Starlite OSMA switch with

the same number of delay lines.

However, using delay lines with lengths greater than one packet timeslot intro-

duces a number of disadvantages. Because packets can be written/read only at the

start/end of each delay line, true random access to each buffer cell is not possible.

Thus, switching decisions cannot be globally (re)optimized at each timeslot. Buffered

packets cannot preempt arriving packets based on priority without compromising per-

formance. Furthermore, packet delay through the switch (latency) increases with the

lengths of the delay lines.

For these reasons, when comparing switches with the same total number of buffer

cells, OSMA switches offer superior performance over designs that use delay lines

longer than one packet timeslot. Therefore, the OSMA design is typically to be pre-

ferred when the number of buffer cells is the constraining factor rather than the

number of delay lines (and switch fabric size). For instance, the MWFLM switch

implementation (Figure 3) favors the OSMA approach.
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1.4.2 Haas’ Staggering Switch

Zygmunt Haas proposed the “Staggering switch” (Figure 6) [36]–[41]. The Staggering

switch uses delay lines with each additional delay line having one additional packet

delay more than its predecessor, as with the typical configuration of Karol’s SMOP

switch. However, Haas’ design is purely “feedfoward” and has a major advantage

of not requiring the use of recirculation loops. Karol’s SMOP switch can be viewed

as being a Staggering switch in a feedback configuration. Depending on the various

parameters and constraints, either the feedfoward or feedback configuration may be

superior [40]. In particular, the feedforward configuration can outperform its feedback

counterpart if the recirculation loops of the latter cannot maintain packet integrity for

more than a few circulations. The Staggering switch has the same basic disadvantages

as Karol’s SMOP switch and cannot compete with the performance of an OSMA

switch with the same number of buffer cells.
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Figure 6: Haas’ Staggering switch.

1.5 Channel Grouping

It is desirable to reduce contention as much as possible. This is especially true in

all-optical networks because of the expensive nature of optical buffer loops.

Channel grouping has been proposed as a means to reduce or eliminate con-

tention [10], [11], [42]–[46]. With channel grouping, each output (and/or input) port
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of a switch is expanded via parallel channels so that a given link1 can carry more than

one packet at a time (Figure 7). Physically, this may be accomplished via parallel

.
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Figure 7: A switch with channel grouping on the outputs.

fibers or WDM within each fiber. In effect, the multichannel interswitch links serve

as external “buffers” which ease the demands placed on the internal buffer of the

switch. The number of parallel channels in a link is called the channel grouping factor

(CGF). A CGF of one implies that there is no channel grouping.

Packets that can take advantage of these parallel pathways do not suffer the

amount of degradation that would occur if they had been held for multiple circulations

in a buffer loop. Furthermore, the packet loss rate and needed buffer size can be

reduced to arbitrarily low values by increasing the CGF on the outputs.

However, there are drawbacks to channel grouping. Obviously, the additional

pathways add to switch complexity and size. For all-optical WDM systems, this will

likely require the use of all-optical wavelength converters. Perhaps a less obvious and

more serious problem is that these additional channels will have to be connected to

another switch or an end user (data sink). This next stage will then have to be able to

process a higher peak bandwidth because of the multiple packets arriving simultane-

ously in each link. Furthermore, the network will utilize the available bandwidth less

1In this work, “link” is synonymous with “channel group.”
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efficiently if these additional channels are used only when contention occurs (total

switched bandwidth remains the same).

Channel grouping should be evaluated against other alternatives such as increas-

ing the capacity of each link via a speed-up so as to lower the normalized link load to

reduce the probability of contention. The cost of implementing each alternative may

not be proportional to the corresponding change in capacity because of the presence

of factors such as fixed costs (e.g., the initial cost to provide the first channel) and

nonlinearities in the cost/benefit curve (e.g., decreasing returns-to-scale).

1.6 Banyan Networks

Because of the limitations on the maximum size of a single switch and the need for ge-

ographically distributed routing, switching elements2 (SE) are usually interconnected

to form a network. Banyan networks are particularly promising for all-optical use be-

cause of their “self-routing” property. With self-routing, each switch can make its own

routing decisions, based solely on the packets arriving to it, without the need to con-

sider the routing decisions or status of the other switches in the network. Self-routing

promotes high-speed operation by allowing the parallel processing of routing decisions

by all the switches. This is especially important in all-optical networks because the

packets have a time-of-flight nature. On a related note, this work will assume that

there are no interstage flow control mechanisms (back pressure, etc.). The Banyan

family encompasses a number of networks of different topologies such as the Baseline,

N-cube, and Omega [17, chapter 2], [47].

An N ×N Banyan network can be constructed by using logn N stages of n× n

switches, with each stage having N/n switches. Interstage connections are performed

according to permutations such as butterfly, shuffle, identity, and their inverses, de-

pending upon which particular member of the Banyan family is desired. As is typically

2A switch within a network is sometimes referred to as a “switching element” to emphasize its modular
role.
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done, this work will confine itself to cases in which n and N are powers of two. An

example of a Banyan network is shown in Figure 8.
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Figure 8: An 8× 8 Baseline Banyan network using 2× 2 switches.

Banyan networks lend themselves well to analysis, in part because the input ports

of each switch do not have paths to a common upstream switch. Hence, there are no

correlations among the arriving packets at the different inputs of each switch. If one

further assumes that each switch self-routes and that packet destination addresses are

uniformly and randomly assigned, a given switch can be analyzed as though it were

the end point of a network consisting of a “cascaded” series of independent switches.

1.7 Markov Models

The use of Markov models to analyze switch performance will now be briefly reviewed.

In a Markov model, all of the historical dependencies of the system to be analyzed are

contained in its current “state.” Many physical systems can be modeled as Markovian.

Markov processes in which time is discrete are referred to as “chains.”3

3Some authors use this term to refer to Markov processes with discrete states. In this work both time
and the finite state spaces are discrete. Therefore, there is no ambiguity here.
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1.7.1 The Use of Markov Chains to Analyze Systems

Once a suitable state space S is determined for the system, the transition prob-

ability matrix P must be generated. The elements of P, Px,f , are the probability

of transitioning from state number x to state number f . The total number of states

is represented4 by |S|. Therefore, 0 ≤ x, f < |S|. The difficulty in generating P

usually determines whether the model is computationally tractable. Because P has

|S|2 elements, P will rapidly consume computational resources, such as memory, with

increasing state space. Furthermore, the number of calculations required to fill P can

grow quite large, depending not only on the size of P, but also on the probabilistic

complexity of the individual state transitions.

It is a property of Markov chains that if the probability distribution of the states

at time step t is given by πt, where each element πt
i is the probability of the system

being in state number i at step t, the probability distribution of the states at the next

time step can be found using the following relation:

πt+1 = πtP, where t = 0, 1, 2, . . . (1)

Iterating this recurrence relation, we can write

πt = π0Pt, (2)

where π0 is any given valid initial state distribution. The limit

π = lim
t→∞

πt = lim
t→∞

π0Pt, (3)

is known as the stationary, or steady-state, probability distribution. Physically, the

steady-state probabilities are the probabilities of finding the system in each state as it

is observed in operation for an infinite amount of time. If certain properties (discussed

in the next section) hold for the Markov chain, the limit in Equation 3 is guaranteed

4Terminology: The cardinality operator, | |, when used with a set, denotes the number of items in the
set. With a matrix or vector, it denotes the number of elements in the matrix or vector.
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to exist and will converge to a unique π, irrespective of the particular choice of π0,

i.e., the Markov chain loses memory of its initial starting point.

Once the steady-state probabilities are known, the performance of the entire

system can be calculated. Typically, the desired performance metric (loss, buffer oc-

cupancy, etc.) is calculated for each state and then the steady-state probabilities are

used to extend the results to the overall system. For each state, the performance

metric could be explicitly “hard-coded” into the state name or could be inferred

analytically from the properties of the given state.5

1.7.2 Existence of the Steady-State Probabilities

If a Markov chain is homogeneous, irreducible, and has one ergodic state set, it is

guaranteed that the steady-state probabilities exist, and are unique, and that Eq-

uation 3 can be used to obtain them [48], [49]. A Markov chain is homogeneous

if the transition probabilities are not a function of time. A Markov chain is said

to be irreducible if every state is reachable from every other state, albeit possibly

through intermediate states. Irreducibility generally precludes the presence of states,

or groups of states, that are “absorbing.” A state is ergodic if it is positive recurrent

and aperiodic. Positive recurrent implies that the expected number of steps in a cycle

beginning and ending in the state is finite. (i.e., it will not take an infinite length of

time for a state to return to itself.) A state is said to be periodic if it can return to

itself only after some multiple of the integral period γ, γ > 1. All states in a periodic

Markov chain have the same period γ. Aperiodic is synonymous with nonperiodic.

All chains in this work are homogeneous. The irreducibility condition is generally

satisfied for models in this work as the states are based on the contents of the switch

buffers and traffic sources, and every state is reachable from every other state if the

ground state (empty buffer and all input sources idle) is used as an intermediary.

5The difference between the two is somewhat analogous to the approaches used in the Moore and Mealy
hardware state machines, respectively.
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Additionally, because the number of states is finite, it follows that the states must

be positive recurrent. Finally, the ground state can generally reach itself within one

time slot (no packets arrive and the sources remain off), which implies that it and,

consequently, all the states are aperiodic.
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Chapter 2

Prior Work

Prior work with shared-memory switches and/or channel grouping will now be briefly

reviewed.

2.1 Karol and Hluchyj

Some of the earliest work with electronic shared-memory switches was done by Mark

J. Karol and Michael G. Hluchyj [50], [51]. In these works, the superiority of shared

queuing over input or output buffering was shown. Karol’s shared-queue switch was of

the Starlite architecture. The models were not exact as groups of packets in the buffer

with the same destination addresses were assumed to be independent of each other.

This assumption becomes increasingly true as the number of switch output ports

increases. However, for switches with less than about 16 output ports, the results are

quite inaccurate. The input traffic was uniform and random.

Karol and Hluchyj also did some work with switches that utilize “input smooth-

ing” which is functionally like channel grouping. However, their analysis of input

smoothing was confined to bufferless switches [50], [51].

Finally, Karol did some work with all-optical packet switches [35], [52]. Karol’s

shared-memory optical packet switch was discussed in Section 1.4.1. Analysis was

confined to simulations of SMOP switches under uniform random traffic.

2.2 Szymanski and Shaikh

Ted Szymanski and Salman Shaikh did some of the first work with channel-grouped

(dilated) Banyan networks [42]. Their approximate models were for networks of input

and output buffered switches under uniform random traffic. Because the buffer states

of switches in different stages were treated as being independent, these models were
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not very accurate. However, Szymanski and Shaikh’s work was among the first to

show the potential benefits of using channel grouping as a means to reduce packet

loss probabilities and/or increase throughput.

2.3 Liew and Lu

Soung Liew and Kevin Lu analyzed asymmetric packet switches that use channel

grouping [43], [44], [53]. Input and output buffered channel-grouped switches under

random and bursty traffic were studied. Only the maximum throughput was calcu-

lated as the switch buffers were assumed to be always saturated. A further assumption

was that the packets in different channels of a link were independent from each other.

There was no consideration of shared buffering. In [53], a three-stage structure (net-

work) for constructing very large switch fabrics out of much smaller switches was

introduced.

2.4 Lin and Silvester

Arthur Lin and John Silvester developed an exact model of an output-buffered switch

using channel grouping on the output links under random and deterministic traffic

[54]. Networks and/or bursty traffic were not considered.

2.5 Izmailov and Haas

Rauf Izmailov and Zygmunt Haas developed an analytic model of Haas’ Staggering

switch (the non-OSMA switch discussed in Section 1.4.2) under random traffic [41].

Exact analysis was possible only for switches with up to three delay lines after which

an upper/lower approximate analysis was used.

Haas also evaluated via simulation the performance of the Staggering switch

under bursty traffic as well as within a network [38]–[40]. Although Haas proposed

the use of the Staggering switch in multiwavelength systems [38], [39], the independent

use of multiple wavelength channels within each switch (channel grouping) to resolve

contention was not considered.
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2.6 Turner and Bianchi

Giuseppe Bianchi and Jonathan S. Turner analyzed delta networks constructed of

ESMP switches [55], [56]. A variety of approximate models were used. The uniform

scalar model used a single value, which indicates the total number of packets in the

buffer, to represent the switch state. The bidimensional model expanded the state

space of the uniform scalar model to include the number of active switch outputs. A

third model, the interval and threshold method, attempts to reduce the state space

of the bidimensional model by grouping the numbers of active switch outputs into

intervals (state grouping). The network traffic was uniform and random.

Although computationally tractable, these models are quite inaccurate, even for

a single switch. For networks, the inaccuracy is far worse because interstage state

correlation was not considered. The accuracy does improve somewhat with increasing

switch and decreasing buffer sizes.

2.7 Pattavina, Monterosso and Gianatti

Achille Pattavina, along with Alberto Monterosso and Stefano Gianatti, did some of

the most extensive work with ESMP switches and Banyan networks constructed from

them [17], [24], [57], [58]. A number of different models were presented, such as the

vectorial, scalar, bidimensional, tridimensional, and four dimensional. Both random

and bursty traffic cases were analyzed.

For an isolated switch, the vectorial model is exact. However, it was never ex-

tended to handle bursty traffic—presumably because of the large number of states

that would be required. Consequently, the vectorial model is inaccurate for networks

because it makes unrealistic assumptions about the independence of the buffer states

of switches in different stages. The scalar model is like that of Karol’s work and is

extremely inaccurate. The n-dimensional models are named after the n-tuples used

to describe the state of each switch. The bidimensional model is similar to Turner’s

bidimensional model, except that the two state terms describe the number of packets
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in the buffer destined to a tagged and nontagged switch outlet(s), rather than the

total number of buffer packets and number of active outputs, as is done with Turner’s

approach. The tri- and four-dimensional models build on the bidimensional model

by adding terms that describe the states of bursty input sources. Although the tri-

and four-dimensional models greatly improve on the accuracy of the bidimensional

model when used on a multistage network, they are still approximations. As such,

they can generate results that are off by an order of magnitude or more— even for

a single switch. Only the results for the overall network were presented. There was

no analysis of how switch performance can vary between the stages of the network.

Channel grouping was not considered.

2.8 Montagna, Paglino and Meyer

Sergio Montagna, Roberto Paglino and John Meyer developed an exact and an ap-

proximate model for ESMP switches under random and bursty traffic [59]. Their

approximate model was somewhat unique in that it could internally exploit the use

of their exact model (on smaller component “subsystems”) to reduce the required

computation time and improve the accuracy of the results for switches too large to

be directly analyzed by the exact model. Their models are not applicable to channel-

grouped switches or to networks.

2.9 Fong and Singh

Simon Fong and Samar Singh developed several approximate models for ESMP swit-

ches under bursty traffic [60]–[62]. These models are somewhat similar to those of

Pattavina and Turner, but with variations and improvements such as the consid-

eration of the “hot-spot pushout” buffer management protocol. Their models are

typically quite accurate for loss rates, but less so for other performance metrics (e.g.,

buffer occupancies and packet delays).
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Fong and Singh also did some work with networks of ESMP switches [63]. Sev-

eral different backpressure flow control schemes were compared. The accuracy of the

results was surprisingly good despite the use of a relatively simple buffer state de-

scription. The model will over or under estimate loss rates depending on the network

parameters. Channel grouping was not considered.

2.10 Saleh and Atiquzzaman

Mahmoud Saleh and Mohammed Atiquzzaman did some of the more recent work

with networks of ESMP switches [64]–[66]. Their work focuses mainly on variations

of Pattavina’s and Turner’s work, such as analyzing global flow control protocols or

more general forms of unbalanced traffic. Saleh and Atiquzzaman’s models are not

applicable to switches using channel grouping or to those under bursty input traffic.

2.11 Danielsen

Soeren Danielsen along with Benny Mikkelsen, Carsten Joergensen, Terji Durhuus

and Kristian E. Stubkjaer analyzed multiwavelength [45] (channel-grouped) switches

of three different configurations, each of which used feedforward delay lines similar to

Haas’ Staggering switch. The channel traffic was independent, uniform and random.

Exact results could be obtained for packet loss performance. The ability to wavelength

convert packets to avoid contention was shown to greatly improve switch performance.

Bursty traffic or networks were not considered.

2.12 Bergstrom

The most extensive work with OSMA switches to date has been by Peter D. Bergstrom

Jr. [10], [11]. The Bergstrom reduced Markov chain (RMC) model provided an exact

analysis of symmetric channel-grouped OSMA switches under uniform, random traffic.

Unfortunately, the RMC state description included the throughput, which resulted in

the rapid growth of the state space with increasing switch size and made description
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of the state space difficult. This large state space precluded the possibility of investi-

gating switches under bursty traffic. Furthermore, the calculation of the packet loss

probability from throughput presents numerical difficulties for loss rates less than

10−15 because of the typical floating point accuracy limits of most computational

platforms. Networks of switches were not considered.

2.13 Chia and Hunter

M. C. Chia and David K. Hunter et al. developed an approximate model for an all-

optical non-OSMA switch related to Haas’ staggering switch under uniform random

traffic [46]. Chia and Hunter’s designs (both feedfoward and feedback designs were

proposed) utilized multiple blocks of delay lines with delay line selection within each

block being controlled via wavelength conversion. Multichannel link operation was

proposed, but this required the switch structure to be independently duplicated for

each channel. Thus, delay lines could not be globally shared by traffic of different

input wavelengths. Their model was very accurate in predicting packet loss, but less

so for other switch performance metrics (e.g., packet delay). Bursty traffic or networks

were not considered.

2.14 Singh, Kushwaha and Bose

Yatindra Singh, Amit Kushwaha and Sanjay Bose did some very recent work with mul-

tiwavelength fiber-loop buffer memory (FLBM) switches under random traffic [12],

[13]. Both exact and approximate models were developed. These models had some

unique features including the ability to take into consideration some practical limi-

tations of the optical buffer including read/write access restrictions and finite packet

lifetime. The buffer states of the exact model did not employ buffer state reduction

techniques such as those used in the models of Bergstrom, Montagna, Gianatti and

Pattavina. Consequently, the exact model’s state space scales especially poorly with

increasing switch size. Switches larger than 4× 4 were not analyzed. Furthermore, to
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simplify analysis, the models require the switch to drop packets unfairly, in a deter-

ministic fashion which favors the dropping of packets with lower addresses. Bursty

traffic, networks or the use of channel grouping were not considered.
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Chapter 3

OSMA Switches Under Random Traffic

The exact Markov model of the OSMA switch under random, uniform traffic will

now be developed. The switch parameters are as shown1 in Figure 9, where m is the

number of buffer cells, h is the number of input channel groups, g is the number of

output channel groups, and s and r are the channel grouping factors of the inputs and

outputs, respectively. For the case of symmetry in the number of input and output

channel groups, h = g = n. For symmetric channel grouping factors, s = r = c.
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Figure 9: OSMA switch parameters (all-optical Starlite version shown).

3.1 The Uniform Random Source (RS)

The Markov model for a uniform, random source is shown in Figure 10.

The source consists of a single state that is completely described by the para-

meter p, which is the probability of emitting a packet in each timeslot. These sources

are also referred to as “Bernoulli” or “geometric” sources because the presence or

1The all-optical Starlite implementation is used here because it is easy to clearly illustrate. Of course,
the parameters mean the same thing in other OSMA implementations.
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p

0

Figure 10: The random source.

absence of packets in each timeslot is a Bernoulli random variable and the packet

interarrival times have a geometric distribution. Because the source has only one

state, it is completely memoryless. The average normalized load presented by the

source, σ, is trivially determined by p, (σ = p).

For this work, “uniform” refers to the fact that each packet’s destination address

is randomly and uniformly selected from all the possible destinations.

3.1.1 The Extended Random Source (ERS)

Interfacing a random source to drive a multichannel link can be done in two obvious

ways (see Figure 11). Independent sources can drive each channel (Figure 11(a)) or

a single source can be sped-up to drive the entire link (Figure 11(b)). Because the

random source is memoryless, these two approaches yield identical traffic. In both

cases, the probability, qi, that i (0 ≤ i ≤ c) packets are in the link in any given

timeslot has a binomial distribution:

qi =

(
c

i

)
pi(1− p)c−i, (4)

RS

RS

RS

(a) Drive independently

RS

(b) Speed-up a single source

Figure 11: Interfacing a random source to a multichannel link.
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where c is the channel grouping factor of the link.2 The average link load presented

by either the sped-up or independent random source(s) is unaffected by c, (σ = p).

A more general memoryless random source, the extended random source (ERS),

can be had by allowing an arbitrary distribution for the number of packets in the

link (Figure 12), where pi is the probability of emitting i packets into the link in any

given timeslot and
c∑

i=0

pi = 1. By setting pi to conform to the binomial distribution,

(pi = qi of Equation 4), the ERS traffic will be equivalent to that of driving the

channels independently.

.

.

p0

pc

0

Figure 12: The extended random source

The normalized link load presented by an ERS source is given by

σ =

c∑
i=1

ipi

c
. (5)

3.2 State Descriptions

For a given Markov system state space, S, Sx denotes state number x and |S| is the

total number of states (cardinality of S) of the system to be analyzed. Therefore,

0 ≤ x < |S| . Sx,i is the value of element i in the tuple in the “name” of state x.

Techniques for describing the states of an OSMA switch in exact models will

now be formulated. For uniform random traffic, the state of the system composed of

2This equation can be extended to handle p = 1 by defining 00 ≡ 1. Physically, this means that the link
will always be 100% utilized—anything less is impossible, i.e., qi = 1 for i = c, qi = 0 otherwise.
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the switch is completely determined by the state of the buffer. Hence, S = B, where

B is the set of all buffer states. Although S = B under random traffic, this is not

necessarily true for other traffic models. Throughout this chapter, both B and S will

be used such that the developed equations will have greater generality. It should also

be noted that a bufferless switch is a special case that has the single state of an empty

buffer.

3.2.1 General Buffer Description

One of the most general models can be had by using the destination addresses in

each distinct buffer cell to represent the state. A state Bx is then an m-tuple of

values 0 to g, where g, an out of range address, denotes an empty buffer cell.3 Hence,

0 ≤ Bx,i ≤ g, 0 ≤ i < m. |B| is given by

|B| = (g + 1)m. (6)

Combinatorially, |B| represents the number of ways to put m distinguishable balls

into g +1 distinguishable urns.4 The exponential growth of |B| with increasing buffer

size makes this approach impractical for all but the most trivial of switches. However,

the states do allow analysis of the occupancy statistics of the various buffer cells as

well as statistics of the switching configurations of the cross-connect.

3.2.2 Buffer Cells are Indistinct

It is usually unimportant which particular buffer cell a packet occupies. A major

reduction in the state space can be achieved by allowing the buffer cells to be indistinct

from each other. A state Bx is then described by a (g + 1)-tuple with
g∑

i=0

Bx,i = m.

The Bx,i is the number of packets in the buffer destined for channel group i, with

channel group i = g indicating the free buffer cells. Combinatorially, |B| represents

3The output channel groups have addresses 0 to g − 1. This convention allows a given channel group
address i to directly correspond to an index within a state tuple Bx,i.

4This corresponds to m distinguishable buffer cells each of which holds one of g + 1 possible values.
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the number of vectors of length g + 1 whose elemental sum is m. An alternative

viewpoint of |B| is that it is the number of ways to put m indistinguishable balls into

g + 1 distinguishable urns (the number of ways to select m objects from g + 1 with

replacement). Therefore, |B| is given by

|B| =
〈

g + 1

m

〉
=

(
g + m

m

)
=

(g + m)!

m!g!
. (7)

Unfortunately, |B| is still too large for most OSMA switch sizes of interest. However,

this state description does have the ability to analyze switches under nonuniform

traffic in which some output destinations are favored over others.

It should be noted that because Bx,g, the number of free buffer cells for Bx, is

completely determined by m and
g−1∑
i=0

Bx,i, it can be omitted when writing the state

name. This shorthand form of the state name is a g-tuple consisting of the number

of packets destined to each output link.

3.2.3 Destination Addresses are Indistinct

If the input traffic is uniform and random with respect to the destination addresses

of the incoming packets, a further reduction in the state space can be achieved.

Under these conditions, the absolute addresses of the packets in the buffer are of no

importance. It is the relative numbers of packets addressed to each destination that

determines the properties of interest for each state. For example, for a switch with six

or more buffer cells and four output channel groups, the state [4,1,1,0], in which four,

one, and one buffer packets are addressed to channel groups 0, 1, and 2, respectively, is

considered to be equivalent to buffer states [0,1,4,1], [1,1,0,4], etc. Hence, the ordered

state represents all the other permutations (i.e., state lumping). In this manner, a

rather large reduction in the required state space is obtained. Combinatorially, the

states are the ways in which b can be partitioned into parts not exceeding g in length,

where b is the number of packets in the buffer (buffer occupancy), 0 ≤ b ≤ m. An
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alternative interpretation is that the states are the ways b indistinguishable balls can

be placed into g indistinguishable urns.

Let the operator Ψ(k) generate the set of unrestricted partitions (no limits

on the length of the partition or on the values of the elements) of the nonnega-

tive integer k. Likewise, Ψ(k, ω) is the set of partitions of k not exceeding ω in

length and Ψ(k, ω, θ) has the further restriction that each element not exceed θ,

(Ψ(k) = Ψ(k, k) = Ψ(k, k, k)). A partition of k may have a length less than ω. In

such cases, Ψ(k, ω) will be defined such that zeros are appended, if needed, to ensure

that the returned partitions always have ω elements. This is done purely for compu-

tational convenience, and the appended zeros in no way alter the partition “name.”

Furthermore, Ψ(0, ω) is defined in this work as consisting entirely of a single vector of

ω zeros. Ψi(k) is the ith partition and Ψi,j(k) is the jth element in the ith partition

(0 ≤ i < |Ψ(k)|, 0 ≤ j < ω = k).

Therefore, B is given by

B =
m⋃

b=0

Ψ(b, g), (8)

where the set union operation is performed over every possible buffer occupancy value

b. |B| is given by

|B| =
m∑

b=0

|Ψ(b, g)|. (9)

For a more detailed discussion of partitions of integers and the Ψ function used in

this work, see Appendix A.

|B| is quite reasonable for OSMA switch sizes of interest. The model developed in

this work uses this state description. It is also the basis of Monterosso and Pattavina’s

“vectorial” model [24], [57]. Bergstrom’s RMC model used a similar state description,

but it had an added throughput term in each state [10], [11]. The OSMA model of

this work will be referred to as the “partition” model because of the origin of the

state names.
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3.3 Calculation of the Transition Probabilities

To generate the transition probability matrix P, each state must be evaluated against

the probability of each possible input stimulus to the switch and every possible way

of dropping packets, if packets need to be dropped. In this manner, the probability of

every possible transition out of each state, and consequently P, is determined. The

specific stimulus presented to the inputs of a switch in any given timeslot is called

an arrival vector5, Ay. The set of all arrival vectors is designated by A. The total

number of possible arrival vectors is given by |A|. It should be noted that a given

arrival vector Ay, when acting on a given buffer state Bx, can result in several possible

buffer state transitions, if and only if the switch has to drop packets. Therefore, the

total number of computations needed to form P is at least |B||A|. |A| can become

extremely large. If care is not taken to keep |A| to a manageable size, it will not

be possible to calculate P in a reasonable amount of time and the model will not

be viable. This situation can be true even if |B| is small. The reduction of |A|, in a

manner that preserves the exactness of the model is known as arrival vector reduction

(AVR) and will be discussed in Section 3.3.3.

An arrival vector can contain information on the number of arriving packets,

their destination addresses, and the input links they arrive on. For the purposes of

this work, which particular link supplies a group of packets is unimportant because

the input links all carry traffic with the same properties. Therefore, an arrival vector

can consist solely of information on the number of arriving packets and their desti-

nation addresses. The elements of Ay, Ay,i, are the number of incoming packets with

destination addresses i.

5Notation: x will be used to indicate a particular state, y will be used to index arrival vectors and z will
indicate a way of dropping packets.
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3.3.1 The OSMA Operation Cycle

The steps an OSMA switch takes when transitioning from one buffer state, Bx, to

another, Bf , (Bx, Bf ∈ B) will now be detailed. As described in Section 3.2.3, Bx

consists of an ordered g-tuple, with each value Bx,i (0 ≤ i < g) indicating the number

of packets in the buffer addressed to a “tagged” output channel group i. It is im-

portant to emphasize that Bx,i is not necessarily the number of packets addressed to

physical output channel group i. Other works bypass this issue by having the switch

dynamically reorder the physical destination addresses of packets in the buffer at the

end of each operation [10]. However, with this other approach, some readers may

incorrectly infer that additional switch complexity must be introduced to make the

analytic model feasible. The approach used in this work is to state outright that the

absolute physical addressing information has been removed from B by requiring that

all states consist of ordered elements. Bx,i corresponds to a single, unspecified, phys-

ical address. Furthermore, Bx,j (i 6= j) corresponds to a different, single, unspecified

physical address. Computations will be done with tagged addresses. Unless otherwise

stated, “address” or “output channel group (link)” will refer to “tagged address” or

“tagged output channel group (link),” respectively.

At the beginning of the switch’s operational cycle, the switch will route all the

packets it can from the buffer. Then, the number of packets in each output channel

group, Oi, is given by

Oi =

 Bx,i : Bx,i ≤ r

r : Bx,i > r
. (10)

The number of unused (free) output channels in each channel group, Ui, is given by

Ui = r −Oi. (11)

The buffer state changes to B′
x as a result of the routing out of the packets:

B′x,i = Bx,i −Oi. (12)

32



Note that because O is an ordered g-tuple, B′
x is also ordered and B′

x ∈ B. If no

additional packets arrive, B′
x will be the state at the end of the cycle and Bf = B′

x.

Otherwise, the switch then routes what it can from the incoming packets in the arrival

vector Ay. Let α be the total number of arriving packets in Ay, α =
g−1∑
i=0

Ay,i. The

packets that can be directly routed to each output channel group i are given by

Vi =

 Ay,i : Ay,i ≤ Ui

Ui : Ay,i > Ui

, (13)

and v =
g−1∑
i=0

Vi is the total number of packets directly routed. The total number of

packets at each output channel group is now

O′
i = Oi + Vi. (14)

Those packets that could not be routed, Di, will have to be buffered and are given by

Di = Ay,i − Vi. (15)

The total number of packets needing buffering, d, is given by

d =

g−1∑
i=0

Di. (16)

The total number of empty buffer cells after routing from the buffer, e, is given by

e = m−
g−1∑
i=0

B′x,i. (17)

If d ≤ e, the buffer can hold all the packets requiring buffering and there will be

no packet loss. In this case, the buffer contents become

B′′x,i = B′x,i + Di (d ≤ e). (18)

However, Di is not guaranteed to be ordered. B′′x,i must be sorted in decreasing order

to be a valid state name6 and a member of B. Hence, the final state of the buffer

6Again, the physical addresses are not changing here. The tagged addresses are being ordered so that Bf

matches an ordered state name that represents many permutations— one of which is B′′
x. The switch does

not actually perform this operation.
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becomes

Bf = ordered(B′′
x). (19)

On the other hand, if d > e, there will have to be l = d − e packets lost. w = e

packets will be randomly chosen for buffering from the d contending for the buffer.

These packets will be referred to as the “winning” packets, Wi, (W is the “win

vector”):

g−1∑
i=0

Wi = w. (20)

The losing packets will be designated L (loss vector) with

g−1∑
i=0

Li = l, Wi + Li = Di. (21)

The buffer contents become

B′′x,i = B′x,i + Wi. (22)

However, Wi is not guaranteed to be ordered. B′′x,i must be sorted in decreasing order

to be a valid final state name, Bf , as in Equation 19. The three equations above can

be used even if no packets are to be dropped if one recognizes that in this event, L

consists entirely of zeros and W = D.

Given that the switch is in state Bx before the arrival vector, the probability of

this particular buffer transition to Bf occurring in the manner just described is given

by PTB

PTB = PAPL, (23)

where PA is the probability of this arrival vector, Ay, occurring and PL is the prob-

ability of choosing this particular way, L, for the packets to be dropped. If no packets

are to be dropped, PL = 1, as there is only one way not to drop any packets. Because
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the switch buffer states are the Markov states (S = B), PTB is also the probability

of transitioning between system states in the manner determined by Ay and L:

PT = PTB . (24)

PT must be added7 to the Px,f term in the transition probability matrix P, resulting

in the revised Px,f , which is denoted here as P ′
x,f . (This is not necessarily the only way

to transition from Bx to Bf —there most likely will be other arrival vectors and/or

loss vectors that can cause the same buffer state change.)

P ′
x,f = Px,f + PT . (25)

The probability of a given arrival vector Ay occurring is determined by two

independent characteristics of Ay —the probability of the number of packets arriving,

Pα, and the probability that the particular destination addresses will occur, Pδ. Hence,

PA can be written as

PA = PαPδ. (26)

Substituting into Equation 23 yields

PTB = PαPδPL. (27)

Pα and Pδ are dependent on the type of input sources used. They will be derived in

the next sections.

PL is unchanged throughout this work and will be developed now. The number

of ways this L could have occurred is given by
(

D0

L0

)(
D1

L1

)
· · ·
(

Dg−1

Lg−1

)
. The total number

of ways to drop l packets from d is given by
(

d
l

)
. Therefore, the probability of this

particular L occurring is

PL =

(
D0

L0

)(
D1

L1

)
· · ·
(

Dg−1

Lg−1

)(
d
l

) . (28)

7It is assumed that P is initialized to the zero matrix before the start of the algorithm.
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3.3.2 Nonreduced Arrival Vectors

As mentioned previously, an arrival vector Ay consists of elements Ay,i, which are the

number of incoming packets addressed to output channel group i. Each input channel

can either be empty or have a packet addressed to one of g destinations. Because

there are hs input channels, the total number of possible arrival vectors is given by

|A| =
〈

g + 1

hs

〉
=

(g + hs)!

g!hs!
. (29)

Unfortunately, this can be a relatively large number for switches of interest and scales

badly with increasing switch size. Nevertheless, it is instructive to derive Pα and Pδ

for this A.

3.3.2.1 Probabilities of Nonreduced Arrival Vectors from RS

If each channel is driven independently within each input link by random sources (RS),

there are hs independent channels supplying packets to the switch. The probability

of the switch receiving α packets (0 ≤ α ≤ hs) in any given timeslot is given by

Pα =
(hs)!

α!(hs− α)!
pα(1− p)hs−α. (30)

This follows from Equation 4. The probability, Pδ, of these α packets having the

addresses described by Ay is given by

Pδ =
α!

Ay,0!Ay,1! · · · Ay,g−1!

(
1

g

)α

. (31)

Each packet has a 1/g chance of being a particular address and the α!
Ay,0!Ay,1!···Ay,g−1!

part of the equation enumerates all possible permutations of these addresses.

3.3.2.2 Probabilities of Nonreduced Arrival Vectors from ERS

If the input links are fed by ERS sources, Equation 30 no longer holds because the

channels within a link are no longer independent of one another. Hence, the arrival
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vector Ay must be thought of as being delivered by h groups of inputs rather than

by hs channels. Pα is given by

Pα =
∑

Ψ(α,h,s)

(
h!

K0!K1! · · ·Ks!
pK0

0 pK1
1 · · · pKs

s

)
, (32)

where the summation is over all partitions Ψ(α, h, s), Ki is the number of elements

of value i in a given Ψj(α, h, s) (0 ≤ j < |Ψ(α, h, s)|), and pk is the probability

of each ERS source emitting k packets. Equation 32 requires further explanation.

The numbers of packets in each of the h input links, when ordered, form a parti-

tion in Ψ(α, h, s). The probability of this ordered vector occurring is given by the

pK0
0 pK1

1 · · · pKs
s part of Equation 32. The h!

K0!K1!···Ks!
term accounts for all possible or-

derings (permutations). It is possible to rewrite Equation 32 so that the summation is

over all combinations of choosing α from h groups, each with s members (no replace-

ment), and do away with the h!
K0!K1!···Ks!

term. However, this would greatly increase the

computation time, as there would be many more values to sum.8 Furthermore, which

particular input link delivers which set of packets is unimportant with random traffic.

It should also be noted that because α has a relatively small range, (0 ≤ α ≤ hs),

Pα can be precomputed for each α and the results stored in a look-up table, thus

avoiding the need to recompute Pα for each arrival vector Ay.

Because the address of each packet is independent of every other, even within

the same link, Equation 31 remains valid for Pδ under ERS traffic.

3.3.3 Arrival Vector Reduction (AVR)

Suppose Bx,i = Bx,j for given valid i, j (i 6= j). Furthermore, suppose the two corre-

sponding elements within the arrival vector Ay are swapped to result in a new arrival

vector A?
y:

A?
y,i = Ay,j, A?

y,j = Ay,i, A?
y,k = Ay,k ∀ k 6= i, j. (33)

8This assumes that the algorithm to generate partitions is not very much slower than that used to generate
combinations. In practice, this is the case— it is usually faster to generate partitions.
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d, e, l,PA, and PL are all unaffected by swaps and are equal to their ? counterparts.

Looking at the final states of the transitions with the switch dropping packets in the

same way (L?
i = Lj, L?

j = Li, L?
k = Lk ∀ k 6= i, j), one finds that

B′′?x,i = B′′x,j, B′′?x,j = B′′x,i, B′′?x,k = B′′x,k ∀ k 6= i, j. (34)

However, Bf is an ordered B′′
x. Therefore,

B?
f = Bf . (35)

The conclusion is that permuting the elements in arrival vectors whose corresponding

buffer state elements are all equal has no effect on the number of packets dropped

by the switch or on the next state of the transition! This insight provides a way to

greatly reduce the size of |A|, yet still retain an exact model.

The sets of identical elements within a buffer state are called buffer groups. The

corresponding elements in the arrival vector are termed arrival groups. The number

of elements within a particular group i is denoted by Gi. The vector consisting of

elements Gi is G. The number of buffer groups is given by |G|, where 1 ≤ |G| ≤ g.

With arrival vector reduction, instead of generating A by choosing hs items from g+1

addresses with replacement, hs items will be chosen from |G|+ 1 with replacement.9

This means that the reduced A will be a function of the current buffer state Bx. The

number chosen from each buffer group is denoted by Hi, where 0 ≤ i < |G| and H|G|

is used to denote the number of input channels with no packets (and so not belonging

to a buffer group). For each chosen H, Ψ(Hi, Gi) will be generated within each arrival

group i, 0 ≤ i < |G|. Therefore, for each chosen H,
|G|−1∏
i=0

|Ψ(Hi, Gi)| arrival vectors

will be generated. The set of all these arrival vectors for every possible H forms the

reduced set A. This A will then be applied to the switch (which is in the given buffer

state Bx).

9|G| is typically less than g. For instance, the ground buffer state (empty buffer) has only one buffer
group—the group of all the zero elements.
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3.3.3.1 Probabilities of Reduced Arrival Vectors

With AVR, both Pα and PL remain unchanged. However, Pδ must be revised to

account for the fact that a given Ay no longer contains every possible permutation

of addresses within its arrival groups. Pδ becomes

Pδ =
α!

Ay,0!Ay,1! · · · Ay,g−1!

(
1

g

)α

$. (36)

where $ accounts for all the possible permutations of the elements within each arrival

group. $ is given by

$ =

|G|−1∏
i=0

Gi!

K0(i)!K1(i)! · · ·Khs(i)!
. (37)

where Kj(i) is the number of elements with value j in arrival group i. Typically,

only a few of the Kj(i) are nonzero. $ is the number of unreduced arrival vectors

represented by the single, reduced arrival vector Ay.

3.4 Calculation of Switch Performance

Once P has been constructed, the steady-state probabilities can obtained using Eq-

uations 1 and 3. Then, the various performance metrics of the switch, such as the

packet loss probability, Ploss, normalized throughput Th, expected number of packets

in the buffer Eb and the expected packet delay times, can be calculated.

3.4.1 Loss Probability and Throughput

The probability of a packet being lost, Ploss, is defined as

Ploss ≡
expected number of packets lost per timeslot

expected number of input packets per timeslot
. (38)

Because the switch must be in some state at the beginning of every timeslot and the

states’ steady-state probabilities must sum to one, Equation 38 can be rewritten as

Ploss =

∑
S

πx El|x∑
S

πx Eα|x
, (39)
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where El|x is the expected number of packets lost per timeslot and Eα|x is the expected

number of packets input per timeslot when the switch is in state Sx. Eα|x is a constant

with respect to the system states under both RS and ERS traffic. Therefore, Eα, the

expected number of arriving packets per timeslot,

Eα =
∑
S

πx Eα|x, (40)

can be found directly for RS,

Eα = hsp, (41)

and ERS traffic,

Eα = h
s∑

i=1

ipi, (42)

where pi is the probability of an input link having i packets. Therefore, Equation 39

becomes

Ploss =

∑
S

πx El|x

Eα

. (43)

For each state Sx, El|x is the sum over all possible arrival vectors of lPA, where l is

the number of packets lost from a given arrival vector, and PA is the probability of

the arrival vector occurring:

El|x =
∑
A

lPA. (44)

Note that PA is a function of the particular arrival vector Ay, and l is dependent on

both Ay and the state Sx. El|x can be calculated at the same time as P. The expected

loss equivalent of Equation 25 is

E ′l|x = El|x + lPA. (45)

Once Ploss is obtained, the normalized throughput Th, which is the load the switch

presents to its output links, can then be calculated:

Th =
Eα − EαPloss

rg
=
Eα

rg
(1− Ploss). (46)
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3.4.2 Buffering and Direct Routing Probabilities

In addition to being dropped, an arriving packet could be sent to the buffer or it

could be fortunate enough to make it directly to the switch outputs without passing

through the buffer. The probabilities of the latter two cases are denoted by Pbuffer

and Pvia, respectively. It follows that

Ploss + Pbuffer + Pvia = 1. (47)

Pbuffer, the probability that an input packet will be sent to the buffer, can be obtained

in same manner as Ploss. Pbuffer is defined as

Pbuffer ≡
expected number of input packets buffered per timeslot

expected number of input packets per timeslot
, (48)

which can be written as

Pbuffer =

∑
S

πx Ew|x∑
S

πx Eα|x
, (49)

where Ew|x is the expected number of packets sent to the buffer per timeslot when

the switch is in state Sx. Equation 49 can be rewritten using Eα:

Pbuffer =

∑
S

πx Ew|x

Eα

. (50)

Ew|x is given by

Ew|x =
∑
A

wPA. (51)

w is dependent on both Ay and the state Sx. Like El|x, Ew|x can be calculated at the

same time as P:

E ′w|x = Ew|x + wPA. (52)

Once Ploss and Pbuffer are obtained, Equation 47 can be easily solved for Pvia.
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3.4.3 Expected Number of Packets in the Buffer

The expected number of packets in the buffer, Eb, can be obtained directly from the

buffer state names and steady-state probabilities:

Eb =
∑
S

(
πx

g−1∑
i=0

Bx,i

)
. (53)

3.4.4 Expected Packet Delay Times

Little’s result [67], [68] is an extremely powerful and useful relation. It can be stated

as

arrival rate =
expected number of customers in a system

expected time spent in the system by each customer
. (54)

Little’s result will hold if the number of customers in a system does not grow without

bound [49]. Clearly, this is the case for finite-sized OSMA switches.

By having the entire switch serve as the “system,” Little’s result can be used to

obtain the expected “service time,” Ets , of the incoming packets:

Ets =
Eb

Eα

. (55)

A packet is considered to be serviced when it is either dropped or routed from the

switch.

Typically, one is more interested in Etp , the expected time it takes for packets

that are not dropped to pass through the switch. In this case, the system arrivals

consist only of input packets that have not been dropped. Therefore,

Etp =
Eb

Eα(1− Ploss)
. (56)

Lastly, by defining the system to consist solely of the buffer, the expected amount

of time a buffered packet will age in the buffer, Etb , can be obtained:

Etb =
Eb

EαPbuffer

. (57)
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Etb may be of greater interest with OSMA switches than with ESMP switches because

the all-optical buffer of the former can maintain the integrity of its packets only for

a limited amount of time. By choosing to route out the oldest buffer packets first,

the maximum number of timeslots a packet may remain in the buffer can be limited

to m/r (if m is not a multiple of r, round up to the next integer). As mentioned

in Section 1.3, operating an OSMA switch in this manner does not otherwise affect

switch performance or the model of this work.

3.5 Numerical Results

The full analytic model, as described in the previous and subsequent sections, has

been implemented in a computer application, “Shared-optical-Memory Switch Ex-

pected Loss calculaToR” (SMELTER). In addition, a discrete event simulator has

been developed to provide a means to validate the results from the analytic model. The

simulator is known as “Shared-Optical-memory switch Network SIMulator” (SON-

SIM), and is capable of simulating entire networks of OSMA switches with arbitrary

parameters and connection topologies.

The generality of the model provides a large parameter space from which to

draw data. As mentioned earlier, this work is primarily concerned with small swit-

ches because current all-optical packet switch fabric sizes are severely limited and

most existing shared-memory switch models become inaccurate for small switches.

Numerical results will now be shown for a chosen subset of parameters to identify

the issues and trade-offs associated with evaluating switch performance. Figures 13

and 14 show the packet loss probability and the expected number of packets in the

buffer, respectively, for symmetric (h = g = n = 4, s = r = c) OSMA switches under

random traffic (p = 0.5), as predicted by both the analytic model and simulation.10

10Throughout this work, results will be analytic unless stated otherwise. For model validation purposes,
simulation results will usually be shown as a nexus of asterisks overlaying the lines of analytic data. The
95% confidence interval of the simulation results is guaranteed to be within the asterisks unless explicit error
bars indicate otherwise.

43



0 1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

m
P

lo
s
s

sim.

c=1

c=2

c=4

Figure 13: Ploss for n = 4 switches under random traffic with p = 0.5.
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Figure 14: Eb for n = 4 switches under random traffic with p = 0.5.

The complete correlation between the analytic and simulation results is unsurprising

because of the exact nature of the model.

The first notable observation is the dramatic effect increasing the number of

buffer cells has on packet loss. For a switch with the given parameters, each additional

buffer cell decreases the probability of a packet being lost by almost an order of

magnitude. The expected number of packets in the buffer is perhaps lower than one

might expect. These switches operate most of the time with very few, if any, occupied

buffer cells. Packet loss can occur only after the buffer saturates— and it is desirable
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that this happens quite infrequently. Initially, adding buffer cells increases Eb because

the buffer can hold more packets and the extra cells are used. However, beyond a

certain point, the added buffer cells are used so rarely that their presence does not

noticeably affect Eb. The result is the characteristic “increasing-then-flat” shape of

the curves in Figure 14.

Etb , the expected time a buffered packet remains in the buffer, increases with m

and decreases with r. For m ≤ r, Etb = 1 (the minimum possible Etb) because each

buffered packet must remain in the switch for at least one timeslot and all buffered

packets are guaranteed to be routed out on the next timeslot if r ≥ m. For the switches

in Figures 13 and 14, the largest Etb of ≈ 1.28 occurs for the c = 1, m = 8 switch.

OSMA switches are very efficient at clearing their buffers and achieve theoretically

minimum Etb values.

The effect of channel grouping is somewhat more complex. Clearly, increasing r

decreases Ploss because of the reduction in output port contention. However, because

the input link load remains constant at 50%, the c = 4 switch is carrying four times

the bandwidth of the c = 1 switch! This raises the issue of whether Figure 13 is a fair

comparison. The answer depends on what one hopes to achieve by utilizing channel

grouping. If it is viewed as a means to increase switch capacity, then Figure 13 is

quite appropriate. On the other hand, if channel grouping is seen primarily as a

way to reduce packet loss while maintaining the existing switched bandwidth then

the comparison will need modification. The rational for this latter position is that

all-optical networks may have some “bandwidth to burn” in exchange for reduced

optical buffer size requirements (i.e., switch/buffer cost may be traded for link cost).

The model of this work can be used to explore either approach. Figure 15 shows

Ploss for the same switch as in Figure 13 except that the total switched bandwidth

is conserved (input link load = 0.5
c

). Note the dramatic decrease in Ploss obtained via

channel grouping as compared to that of Figure 13.

Ploss and capacity benefits aside, channel grouping is undesirable because it man-
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Figure 15: Ploss for n = 4 switches under random traffic with p = 0.5
c

.

dates an increase in the complexity of the switch fabric and the network interconnects.

It is particularly unwanted at the switch inputs because it increases the maximum

number of packets that can arrive at any given timeslot. In this way, input channel

grouping serves to undermine some of the Ploss benefit of channel grouping at the

outputs. This considered, when Ploss is of primary concern it is desirable to provide

channel grouping only at the outputs. However, these channel grouped outputs will

have to be connected to something —be it an end user or the input to the next stage

of a network. Symmetric switches allow for easy, direct, interconnections between

stages without the unrestrained growth of channel grouping factors as one progresses

through the network. Therefore, the two classes of channel-grouped switches of great-

est interest are (1) those using channel grouping only at the outputs— such switches

may be used in the first stage of a network; and (2) those using symmetric channel

grouping—these can be employed in any stage(s) of a network. If channel grouping

is confined to the outputs, the result is shown in Figure 16. (Not shown is the r = 4

case in which output port contention is impossible and even bufferless switches are

lossless under all loads.) Without the negative effect of input channel grouping, and

with all of the benefits of output channel grouping, this configuration has the lowest

Ploss of all the given examples.
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Figure 16: Ploss for n = 4 switches under random traffic with p = 0.5, s = 1, r = 1, 2.

Channel-grouped switches should be evaluated against alternatives such as in-

creasing the channel capacity (speed-up the data rate so that the input load decreases)

or adding buffer cells. The cost of implementing each alternative plays a big role in de-

termining which is best. For the example switch, if channel grouping is not used, but

instead the link (channel) capacity is increased so that the input link load decreases

(p = 0.5, 0.5
2

, 0.5
4

), Ploss becomes as shown in Figure 17. The result is somewhat similar

to that achieved by using channel grouping with constant total switched bandwidth

in Figure 15. However, the cost to speed up a single link by c may be very different
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Figure 17: Ploss for n = 4, c = 1 switches under random traffic with p = 0.5, 0.5
2

, 0.5
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.
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from the cost to provide c parallel channels within a link. Thus, the model can be

used to explore design options.

Figure 17 shows another important aspect of OSMA switches— the lighter the

load, the greater the decrease in Ploss each additional buffer cell provides. This is

because lighter loads produce less correlation between the buffer cells as well as lower

Eb values (because the buffer has a better chance to clear itself at each timeslot).

Thus, for lighter loads, each additional buffer cell produces a greater benefit than it

would under higher loads. So, if low Ploss is important, switches with limited buffers

are likely to be constrained to operation under light loads.

Finally, Figure 18 shows that Ploss is very sensitive to changes in the input load.11
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Figure 18: Ploss for m = n, c = 1 switches under random traffic of various loads.

For a given number of buffer cells per input/output line (m/n) under reasonable loads,

larger switches have lower loss rates because of lower correlation between the addresses

of the packets in the buffer cells.12 However, as the load becomes very heavy, the buffer

11For plots with a continuous x-axis variable (e.g., p, σ), data points are guaranteed to be plotted for each
x-axis tick mark value with additional data points as needed to prevent excessive interpolation between data
points (e.g., p = 0.15, 0.25 in this particular figure). Obviously, this interpolation of the graphing software
is not a concern with discrete x-axis variables (e.g., m).

12This independence of the addresses of the buffered packets is a key assumption of Karol’s approximate
model which works well for large switches (Section 2.1).
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saturates to a degree that it becomes virtually useless, and Ploss is not much better

than that of a bufferless switch. Under such extreme conditions, the larger switches

exhibit a slightly higher loss rate (this is also true for bufferless switches under the

same conditions).
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Chapter 4

OSMA Switches Under Bursty Traffic

End users tend to send their data as quickly as possible. When contention occurs,

switch buffers allow the build-up of groups of packets destined for the same output

link. For these reasons, real-world network traffic often has correlations between the

arrivals of packets in a link. So, packets tend to arrive in “clumps” or “bursts.” For

instance, if there is an arriving packet in a link in a given timeslot, then there often

is a greater than average probability that a packet will arrive in the next timeslot(s).

Such temporally bursty behavior implies that the data source has memory and is not

accurately represented by the RS and ERS models of Chapter 3; a more complex

traffic source model is required.

4.1 The Two-State Source (TS)

The Markov model for a two-state bursty source is shown in Figure 19. This source’s

0 1

pon

1−poff

poff

1−pon

Figure 19: The two-state source.

properties are determined by the parameters pon, poff and p. When in the off state

(0), no packets will be emitted. When in the on state (1), a packet will be emitted

with probability p. The transition probabilities between the two states are given by

pon and poff. When p = 1, the source will always emit packets when in the on state.

Any bursty source that uses all of the available bandwidth when on will be referred to
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as a “full-on-burst” (FOB) source. The steady-state probability of finding the source

in the on state, πon, is given by

πon =
pon

pon + poff

. (58)

The steady-state probability for the off state is given by

πoff =
poff

pon + poff

. (59)

The average load presented by the source, σ, is given by

σ = πonp. (60)

The average burst length1, λ, can be obtained from

λ =
1

poff

. (61)

λ is equal to the expected number of consecutive packets emitted only for a FOB

source (p = 1).

Note that, if poff and pon are taken to the extremes of zero and one, the two-state

source may become periodic or deterministic. If so, it will be incapable of “forgetting”

its initial starting state.2 Care must be taken when at the boundaries of the parameter

space to ensure that the choice of parameters does not violate the requirements of a

valid Markov chain.

For the purposes of this work, the address of each packet in a burst is uniformly

and randomly chosen from the possible destination addresses. Hence, the addresses

of the packets within a burst or between bursts are uncorrelated. Although this may

not be a completely realistic model of end-user bursts, it may accurately reflect the

situation where burstiness is the result of switch buffering or where network traffic is

the result of the superposition of packets from a large number of end users [59]. The

1A source is said to “burst” when it is in the on state for one or more consecutive timeslots.
2Consider p = pon = poff = 1. This source will then emit a packet every other timeslot like a “square

wave” generator.
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high capacity of the OSMA switch is likely to be used at the core of a high bandwidth

all-optical network where the traffic is the composite of many, perhaps thousands or

even millions, of simultaneous lower bandwidth end users. In such a situation, the

traffic presented to a switch can be less bursty than that from the individual end

users [69], [70].

4.1.1 The Extended Two-State Source (ETS)

As discussed in Section 3.1.1, a source can be interfaced to a multichannel link by

driving each channel independently or by speeding up a single source to drive the

entire link (Figure 20). Because the two-state source has memory, the two approaches

TS

TS

TS

(a) Drive independently.

TS

(b) Speed-up a single source.

Figure 20: Interfacing a two-state source to a multichannel link.

do not yield identical traffic patterns. There is a problem with analyzing switches

driven by “sped-up” multistate sources — the source can change state in the middle

of “filling” a link (Figure 20(b)). For this reason, the sped-up source will be allowed

to change states at “link” timeslots only. This restriction will ensure that the state

transitions of the switch and sources will always occur at the same time.

The occupancy probabilities for the independently driven link are given by

qi =

(
c

i

)
(πonp)i(1− πonp)c−i. (62)

For the sped-up source, qi is given by

qi =

 πoff + πon(1− p)c : i = 0

πon

(
c
i

)
pi(1− p)c−i : i 6= 0

. (63)
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The average load presented to the link, for both the independently driven and sped-up

cases, is given by

σ = πonp. (64)

A more general form of the sped-up two-state source, the extended two-state

(ETS) source, can be had by allowing an arbitrary probability distribution for the

number of packets emitted per timeslot when the source is on. Hence, when on, the

ETS source will emit 0, 1, . . . , c packets into the link with probabilities p0, p1, . . . , pc,

respectively, where
c∑

i=0

pi = 1. If pc = 1, the ETS source is classified as a FOB source.

The link occupancy probabilities for the ETS source are given by

qi =

 πoff + πonp0 : i = 0

πonpi : i 6= 0
. (65)

The load presented to the link by the ETS source is

σ =

c∑
i=1

iqi

c
=

πon

c∑
i=1

ipi

c
. (66)

Another property of interest for bursty sources is the average load presented

when on, σon. For the independently driven and sped-up cases, σon is given by

σon = p. (67)

Note that, for the independently driven link, σon refers to the channel load presented

when the source is on (there is one source per channel). The entire link will have this

load only when all of the link’s sources are on. For the ETS source, σon is given by

σon =

c∑
i=1

ipi

c
. (68)

In any event, because the bursty sources are not allowed to emit packets when off, it

is always true that σ ≤ σon.
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4.1.2 The Temporal-Burstiness Factor

It is helpful to have a quantitative measure of the temporal burstiness of traffic. The

temporal-burstiness factor, β, is defined in this work as

β ≡
the probability that there will be one or more packets in the link in the next timeslot,

given that one or more packets are in the link in this timeslot

the probability that there will be one or more packets in the link
. (69)

β = 1 indicates a source that is not temporally bursty, such as a random source.

β < 1 indicates a “relaxation” or antibursty source, which has a tendency not to emit

back-to-back packets. β > 1 indicates bursty traffic.

β may be determined directly from empirical traffic data using Equation 69. For

a two-state source (including the multichannel sped-up and ETS forms), β is given

by

β =
1− poff

πon

. (70)

It should be pointed out that as the average load of the bursty source, σ, increases, the

upper bound on β decreases via constraints on πon and p. Therefore, sources of higher

loads cannot be made as bursty as lighter load sources —a source that is putting out

packets almost all the time can hardly burst to an even higher emission level. It may

also be surprising to note that, for a large enough poff (or πon), β can fall below unity.

Hence, the two-state source model is also capable of generating antibursty traffic.

4.2 Spatial Burstiness

In addition to temporal burstiness, channel-grouped systems can be subject to an-

other type of burstiness which is called “spatial burstiness” in this work. Temporal

burstiness is the tendency of packets to arrive in successive timeslots, but spatial

burstiness is the tendency of packets to arrive together in the same timeslot (Fig-

ure 21). Although different, these two types of burstiness are related. For instance,

it is easy to see that if a temporally bursty source is sped-up to drive a multichan-

nel link, the resulting traffic will be spatially bursty (Figure 20(b)). However, unlike
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Figure 21: Temporal versus spatial burstiness.

temporal burstiness, spatial burstiness can occur even in memoryless systems. For

example, a bufferless switch under random input traffic can produce spatially bursty

output traffic. This is the direct result of the multiple output channels being used

to resolve what would otherwise be output link contention. Both the ERS and ETS

sources can produce spatially bursty traffic through a suitable choice of pi.

The reader should note that most publications in the area of switching theory

use the term “bursty” to refer exclusively to temporally bursty traffic. In this work,

the term “bursty” will be qualified when the distinction is important.

4.2.1 The Spatial-Burstiness Factor

As with temporal burstiness, it is helpful to have a quantitative measure of the spatial

burstiness of traffic. The spatial-burstiness factor, βS, is defined in this work as

βS ≡
the expected number of packets in the link, given that one or more packets are in the link

the expected number of packets in the link, given that one or more packets are in the link,

for traffic with a binomial occupancy distribution (qi) of the same average load

.

(71)

Thus, if the channels of a link behave independently of each other (binomial distri-

bution of the same average load), even if the traffic in the link is temporally bursty,

then βS = 1 which indicates non-spatially bursty traffic. Spatial burstiness occurs

when there is a positive correlation in the presence of packets in each channel of a

link (βS > 1).

βS may be determined directly from qi obtained from empirical traffic data or
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from the parameters of a traffic model using Equation 71 written in the form

βS =

c∑
i=1

iqi

c∑
i=1

qi

cσ
1−(1−σ)c

. (72)

For the sped-up TS source, Equation 72 can be written as

βS =

cp
1−(1−p)c

cσ
1−(1−σ)c

=
p(1− (1− σ)c)

σ(1− (1− p)c)
. (73)

For the ETS sources, Equation 72 simplifies to

βS =
1− (1− σ)c

πon(1− p0)
. (74)

Finally, βS for ERS sources can be obtained using

βS =
1− (1− σ)c

1− p0

, (75)

which is just Equation 74 with πon = 1.

4.3 System States Under Bursty Traffic

The buffer state of a switch under temporally bursty traffic does not contain all of the

historical dependencies of the switch/source system because one also needs to know

the states of the input sources to predict the probability of an arrival vector and,

consequently, the probabilities of the buffer state transitions the given arrival vector

may cause. Therefore, to be a valid Markov model, the system state space, S, must

be extended to include the buffer states, B, as well as the state space of the input

sources, I . Hence, S becomes

S = B ⊗ I . (76)

The ⊗ operator forms a state set by prepending each element in the set on the left

hand side to every element in the set on the right hand side. Therefore, |S| = |B||I|.

For example, if B = {[0, 0, 0, 0], [1, 0, 0, 0]} and I = {0, 1}, then

S = B ⊗ I = {[0, 0, 0, 0].0, [0, 0, 0, 0].1, [1, 0, 0, 0].0, [1, 0, 0, 0].1},
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where “.” is used to separate the constituent parts of the composite states. SB
x and

SI
x will refer to the buffer-state part and the input-state part of system state Sx,

respectively (Sx = SB
x .SI

x). As before, x will be used to index system states. Ad-

ditionally, xB and xI will be used as needed to index buffer (BxB) and input (IxI)

states, respectively.

4.3.1 General Input Source State Description

One way to represent the states of the input sources is by using a binary vector whose

elements indicate the status of each input source. If I denotes the number of input

sources, then |I| is given by

|I| = 2I . (77)

Unfortunately, |I| grows much too rapidly for OSMA switch sizes of interest. However,

for completeness, the probability of transitioning between two input states (PTI) in

this I will now be developed.

4.3.1.1 General Input Source State Transition Probabilities

The probability of transitioning from input state IxI to IfI is given by

PTI =
I−1∏
i=0

%(i), (78)

where

%(i) =



1− pon : IxI ,i = 0, IfI ,i = 0

pon : IxI ,i = 0, IfI ,i = 1

poff : IxI ,i = 1, IfI ,i = 0

1− poff : IxI ,i = 1, IfI ,i = 1

, (79)

which can be seen directly from Figure 19.
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4.3.2 Reduced Input Source State Description

For the purposes of calculating the probability of a given arrival vector Ay, it does

not matter which particular input source is in which particular state. It is the total

number of on-sources which affects PA. This is a direct result of the switch model

being indifferent to which inputs supply which packets.

Therefore, I can be reduced to a set of scalar values that indicate how many

sources are on:

I = {0, 1, 2, . . . , I} (80)

and

|I| = I + 1. (81)

In this way, |S| = |B||I| grows linearly with an increasing number of bursty input

sources and is only a factor of I +1 larger than that of the same switch under random

traffic.

For the reduced input source state description, SI
x, IxI and IfI are scalars and

can be written as SIx, IxI and IfI , respectively. Unless otherwise noted, the reduced

input source state description will be used exclusively in the remainder of this work.

Also, note that the SIx representation differs from that of IxI only in the way the

states are numbered (indexed). So, either can be used depending upon whether the

system (x, f) or just the input (xI , fI) states need to be counted.

4.3.2.1 Reduced Input Source State Transition Probabilities

Calculating PTI with the reduced I is not as easy as that of the nonreduced case in

Section 4.3.1.1. The probability of transitioning from input state IxI to IfI is given

by

PTI =

upper(a)∑
a=lower(a)

( (
(1− poff)

a(poff)
IxI−a(pon)

IfI−a(1− pon)
I−IxI−IfI+a

)
· IxI !

a!(IxI−a)!

(I−IxI )!

(IfI−a)!(I−IxI−IfI+a)!

)
,

(82)
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where a is the number of on-sources that remain on between the two states and

lower(a) = max(IxI + IfI − I, 0) (83)

upper(a) = min(IxI , IfI). (84)

Equations 82, 83 and 84 merit further discussion. There are four categories of

things that can happen to the sources when they change states. Knowing the number

of on-sources in the initial state, IxI , the number of sources that are on after the

transition, IfI , and the number of sources that remained on through the transition,

a, provides one with enough information to determine how many sources belong to

each of the four categories:

a : sources that remained on

IxI − a : sources that were on that went off

IfI − a : sources that were off that went on

I − IxI − IfI + a : sources that were off that stayed off

The four exponentials in Equation 82 calculate the probability that the sources in

each category would transition in the way that they did. However, there is usually

more than a single way in which the sources can transition that will result in the

same number of sources in each category. The first fraction enumerates the number of

ways to choose a sources from the IxI that are on to remain so. The second fraction

enumerates the number of ways to choose the IfI −a sources that went from off to on

from those that were initially off. There is no need to enumerate the on–off and off–off

cases as they have been already counted—choosing sources to remain on implies that

the unchosen go off.

Finally, the probability of transitioning for the given a must be summed over

all possible values of a. The valid range of a is determined as follows: Obviously, a

cannot be larger than either IxI or IfI . The minimum value of a can be zero, unless

the number of on-sources in the next state, IfI , exceeds the number of off states in

the initial state, (IfI > I −IxI). This situation means that the number of on-sources

in the next state of this transition is so large that, even if every off-source in the
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initial state turned on, there would not be enough to account for IfI —there has to

be at least IfI + IxI − I sources that remain on (a has a floor). Therefore, the valid

range of a is given by Equations 83 and 84.

4.4 System State Transition Probabilities

Under bursty traffic, the probability of a particular transition between system states

(PT ) occurring, in the manner determined by the arrival and loss vectors, is given by

PT = PTIPTB = PTIPαPδPL, (85)

which is Equation 24 after having been extended to encompass the transitions of

the input sources. Pδ and PL remain the same as under random traffic because the

input states do not affect the addresses of the packets or the internal operation of the

switch. However, Pα must be modified to account for the fact that only sources that

are on (active) can emit packets. Therefore, Pα is a function of the input state. Pα

will be derived in the next sections.

4.4.1 Pα With Each Channel Driven Independently

If each input channel is driven by a separate two-state bursty source, Equation 30

can be modified to give

Pα =


SI

x !

α!(SI
x−α)!

pα(1− p)S
I
x−α : 0 ≤ α ≤ SIx

0 : otherwise
, (86)

as only the number of active input sources, SIx, can contribute arriving packets.

4.4.2 Pα For Sped-Up TS Source Driven Links

If the input links are driven by sped-up two-state sources, Pα is given by

Pα =


(SI

xs)!

α!(SI
xs−α)!

pα(1− p)S
I
xs−α : 0 ≤ α ≤ SIxs

0 : otherwise
, (87)

as only the number of active input sources, SIx, can contribute arriving packets.
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4.4.3 Pα Under ETS Traffic

If the input links are driven by ETS sources, Equation 32 can be modified for bursty

traffic to give

Pα =


∑

Ψ(α,SI
x ,s)

(
SI

x !
K0!K1!···Ks!

pK0
0 pK1

1 · · · pKs
s

)
: 0 ≤ α ≤ SIxs

0 : otherwise

, (88)

as only the number of active input sources, SIx, can contribute arriving packets.

4.5 Calculation of Switch Performance

The few remaining changes needed to extend the model to handle bursty traffic will

now be reviewed.

Because there are only I + 1 elements in I , PTI can easily be precomputed

and stored in a relatively small lookup matrix with (I + 1)2 elements. Therefore,

in practice, PTI can usually be obtained repeatedly with less effort than PTB . For

this reason, when calculating PT , it is usually more efficient to calculate PTB for

each buffer-state/arrival-vector and then to evaluate PTI for each possible input-

state transition rather than the other way around. Equations 25, 45 and 52 can then

be used to obtain P, El|x and Ew|x, respectively.

Under bursty traffic, Eα|x is not a constant with respect to the system states be-

cause it is a function of the input state. If each input channel is driven independently,

Eα|x is given by

Eα|x = SIxp. (89)

For ETS inputs, it is given by

Eα|x = SIx
s∑

i=1

ipi, (90)

which can also be used with the sped-up source by using pi that are binomial coeffi-

cients.
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The expected number of packets in the buffer, Eb, can be obtained like in Equa-

tion 53, but noting that the buffer state under each system state is now given by SB
x

rather than by Bx as with random traffic:

Eb =
∑
S

(
πx

g−1∑
i=0

SBx,i

)
. (91)

4.6 Model Algorithm Overview

It may be helpful to summarize the steps required by the algorithm of the model of

this work as developed in the previous sections. There are three major steps:

1. Calculate the transition probability matrix (P), the expected number of packets

lost in each timeslot for each state (El|x) and the expected number of packets

sent to the buffer in each timeslot for each state (Ew|x) using a series of nested

loops that go through each possible buffer state, arrival vector, way of dropping

packets (if needed), input state and input state transition. The probability of

each transition is calculated and then added into P:

For each buffer state

For each arrival vector

For each way of dropping packets

For each possible input state3

Build El|x and Ew|x using Equations 45 and 52.

Build Elinks,i|x using Equation 97.4

For each possible input state transition

Calculate the transition probability to the next system state

(PT = PAPLPTI) and enter it into P.

3Because calculating arrival vectors is relatively computationally intensive, it is more efficient to put
calculations that depend on the input state at the inner part of the loop. There, the set of possible input
states is restricted by the properties of the current arrival vector (because some input states cannot produce
some arrival vectors). This is one of several acceleration techniques employed by SMELTER.

4Elinks,i|x will be discussed in Section 5.3.
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2. Solve for the steady-state probabilities, π, via the iteration of Equation 1.

3. Finally, using π, El|x and Ew|x, calculate the performance results (overall loss

rate, average number of packets in the switch, average delay, etc.) using the

equations of Sections 3.4 and 4.5.

4.7 Scalability Issues

There are two main issues that determine if the model is computationally tractable

for a given switch. The first, and usually the most important, is whether the tran-

sition matrix P will fit into available computer memory. |P| scales as the number

of system states squared (|S|2) with about 10 bytes needed per element for floating

point representation.

The second issue is the number of calculations that are required to generate P.

This is at least |S||A|.5 The required number of computations is normally not of as

much importance as the memory requirement. Usually, the only time the number of

computations becomes a limiting factor is for large switches with small buffers.6

There is also the number of computations required to solve for the steady-state

probabilities. This is approximately 2|S|2 multiplied by the number of required itera-

tions (typically around 50–400). If P will fit into available computer memory, solving

for π is normally not too much of an issue as most current computers can perform

several hundred operations on each of their memory cells within a reasonable amount

of time (i.e., the amount of memory is reasonably matched to the processing speed).

It is interesting to compare the state space size requirements of the model of

this work (called here the “partition” model) with that of the closest ESMP model—

Pattavina’s 3-D approximate model [24]. For the 3-D model, |S| is given by

5In practice, the number of computations can be more than an order of magnitude greater than |S||A|
because the number of ways a switch can drop packets for a given Sx, Ay (Section 4.6) is not considered.
Also, there is programming “overhead” associated with generating each Ay and L.

6These larger switches are often better handled by approximate models which become more accurate
with increasing switch size because of the lower correlations in the addresses of the buffered packets.
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|S| = (h + 1)
(m + 2)(m + 1)

2
= (h + 1)

〈
m + 1

2

〉
. (92)

For the partition model, |S| is given by

|S| = (I + 1)
m∑

b=0

|Ψ(b, g)|, (93)

where I = h, c = 1 for comparison with the 3-D model which does not support

channel-grouped switches. Figure 22 shows the required state space for switches of

typical sizes under bursty traffic. Surprisingly, the exact partition model actually

requires fewer states than the approximate 3-D model for n = 2 switches and for

n = 4, 8, 16 switches with m < 6. Although the 3-D model does scale better for larger

switches and buffers, it does introduce some “redundant” states for the smaller ones.
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Figure 22: Number of system states required for the model of this work (“partition”
model) compared to that of Pattavina’s “3-D” model [24].

64



The required |S| for the partition model is within an order of magnitude of that of

the 3-D model, even for switches as large as m = n = 16.

4.8 Numerical Results

The two-state source has two parameters more than the random source does. As a

result, switch systems under bursty traffic have an even larger parameter space than

those under random traffic. A simple TS source can be described in terms of (p, pon,

poff) or in an alternative basis such as (β, p, σ) or (β, λ, σ). The resultant traffic

properties are more easily deduced from these latter two forms. The ETS source has

the additional parameters pi instead of just the single value p. However, pon and poff

are determined for a given set of pi and any two of β, λ, or σ. Of course, any pj = 1

implies that the others, pk (k 6= j), are zero because
c∑

i=0

pi = 1.

Some numerical analytic and simulation (SMELTER and SONSIM) results for

OSMA switches under bursty traffic will now be presented. Figure 23 shows Ploss for

n = 8, c = 1, 4, 0 ≤ m ≤ 8 switches driven by FOB ETS sources (λ = 8, pc = 1.0,

σ = 0.3) with β ≈ 2.9. The simulation results validate those from the exact analytic

model. The FOB source is very demanding upon a switch as it entirely fills the link
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Figure 23: Ploss for n = 8 switches under ETS traffic, λ = 8, pc = 1.0, σ = 0.3,
(β ≈ 2.9 and βS = 1, 2.533 for c = 1, 4, respectively).
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in every timeslot that it is on. Furthermore, the average burst length of eight is

somewhat long. It is not surprising that the switch exhibits such high loss rates when

subjected to these traffic conditions. The beneficial Ploss effect of channel grouping on

the outputs is almost completely nullified by the very large number of simultaneously

arriving packets in the multichannel input links. In fact, for m = 8, the c = 4 switch

actually has a slightly higher loss rate than its lower bandwidth counterpart.

Figure 24 shows the same c = 1 switch under less bursty traffic (λ = 8, p = 0.6,

σ = 0.3, yielding β = 1.75) and under random traffic, with loads of 0.3 and 0.6, for

comparison. Successive packet arrivals tend to result in an increase in the number of

packets in the buffer. For this reason, a buffered switch under bursty traffic has a Ploss

at least as large as that of the same switch under random traffic of the same load.

However, Ploss under bursty traffic will not be greater than that under random traffic

with load σon —the off periods of the bursty sources reduce output port contention

and allow the buffer a chance to clear. This intuitive line of reasoning provides a

means to establish a floor and a ceiling to Ploss under bursty traffic, in terms of

random traffic with loads of σ and σon, respectively (Figure 24). Unfortunately, this

range can span several orders of magnitude and, therefore, provides a poor substitute
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Figure 24: Ploss for n = 8, c = 1 switches under random (RS) and bursty (TS)
traffic.
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to having the “real” bursty analytic results shown in the middle curve. However, the

observation may be useful as a rule-of-thumb or to serve as a base upon which to

interpolate when a more general model, like the one of this chapter, is unavailable or

too computationally demanding under bursty traffic.

4.8.1 The Effect of Burstiness on the Packet Loss Rate

Figure 25 shows how β affects Ploss for the same (n = m = 8, c = 1) switch as in

Figure 24. For these traffic parameters, the valid range of β is 0 < β < 2. The limits

are not inclusive because the end points result in invalid Markov models. The four

order-of-magnitude range that Ploss spans clearly shows that variations in β can have

a profound effect on Ploss. For bursty traffic (β > 1), Ploss stays between its floor and

ceiling (as previously discussed). For β = 1, the two-state source behaves exactly like

a random source and the model agrees perfectly with that of the simpler random case.

It was pointed out in Section 4.1.2 that the two-state source can generate antibursty

(β < 1) traffic. When β < 1, Ploss is actually lower than that under random traffic. The

source “backs off” after sending a packet so it tends not to send two or more packets

consecutively. This gives the buffer more of a chance to clear between arrivals than
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Figure 25: Effect of β on Ploss for an n = 8, c = 1, m = 8 switch. Two-state source
(TS) parameters are β, p = 0.6, σ = 0.3. Ploss under p = 0.3, 0.6 random traffic (RS)
is also shown for comparison.
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with the random source, which will send packets out with the same 30% probability

regardless of what it did in the previous timeslot.

Figure 26 shows that Ploss can be very sensitive to changes in spatial burstiness

as well. The traffic source used for Figure 26 is an ERS (memoryless) source with a

binomial distribution for pi at βS = 1. For βS > 1, p4 was incremented to fixed values

at the proportional expense of p1–3 as shown for selected data points in Table 1.

Because there are more degrees of freedom with the pi parameters (even with the σ

and
c∑

i=0

pi = 1 constraints for c > 2) than with the single parameter βS, there are

many different valid pi sets, each of which may result in a different Ploss for a given

switch, and many of which may have the same βS. Indeed, as can easily be seen from

Equation 75, βS is constant for ERS sources if p0 and σ are held constant regardless

of the values of pi (i > 0). Nevertheless, βS can be a very helpful first order rule of

thumb in predicting the effect on Ploss a given change in pi will have.

Notice in Figure 26, for the region of small βS, that Ploss is very sensitive to

changes in βS and it becomes less so with increasing βS. This effect may be due, at

least in part, to the fact that p4 initially increases rapidly, as measured as a percentage

of p4, and then increases more slowly for larger values of p4 and corresponding βS (see
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Figure 26: Effect of βS on Ploss for an n = 4, c = 4, m = 8 switch under ERS traffic
with σ = 0.3.
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the p4 column of Table 1). Shifts in the occupancy distribution of traffic such as

this example have some importance in the analysis of networks, so this topic will be

revisited in Chapter 5.

Table 1: Selected data points for the traffic parameters used in Figure 26.

p0 p1 p2 p3 p4 βS

0.240 0.412 0.265 0.076 0.008 1*

0.385 0.282 0.181 0.052 0.1 1.235

0.542 0.141 0.091 0.026 0.2 1.661

0.7 0 0 0 0.3 2.533

*binomial distribution

4.8.2 The Effect of Load on the Packet Loss Rate

As with random traffic, a change in the load typically has a major effect on the loss

rate as shown in Figure 27. Notice the similarity between Figure 27 and Figure 18.

However, keeping λ constant while varying σ results in changes in β. For example,

in Figure 27, the traffic has β = 7.5 at σ = 0.1, but has β = 0.94 (antibursty) at
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Figure 27: Effect of σ on Ploss for n = 2, 8, c = 1, m = n switches under bursty
traffic of λ = 4, p = 1.0, (0.9 < β ≤ 7.5).
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σ = 0.8.7 The increase of β with decreasing σ partially offsets the reduction in Ploss

afforded by the lighter load. Thus, the loss rates of Figure 27 are several orders of

magnitude greater than those of Figure 18 for the lighter loads.

If instead we choose to hold β constant and allow p to vary with σ, the result is

shown in Figure 28. Because β = 1.5 is a relatively mild degree of burstiness, the loss

rates are much closer to those of Figure 18—and this is true in spite of the fact that

p reaches unity at σ = 0.5.8
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Figure 28: Effect of σ on Ploss for n = 2, 8, c = 1, m = n switches under bursty
traffic of β = 1.5, λ = 4, (0.2 ≤ p ≤ 1.0).

4.8.3 The Effect of Burst Length on the Packet Loss Rate

Perhaps surprisingly, Ploss can be relatively insensitive to changes in λ if β, βS, and

σ are held constant as shown in Figure 29. By itself, an increase in λ will result

in a non-negligible increase in Ploss because longer sustained bursts have a better

chance of overflowing the buffer. However, holding β and σ constant requires that p

be decreased as λ is increased. For example, in Figure 29 at λ = 2, p = 0.9, but at

7For the parameters used in Figure 27, σ cannot exceed 0.8 because this would require pon to be greater
than unity.

8For these parameters, σ > 0.5 is not possible as this would require p > 1.
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Figure 29: Effect of λ on Ploss for n = 2, 8, m = n switches under bursty traffic of
β = 1.5, σ = 0.3, 0.47 < p ≤ 0.9.

λ = 16, p ≈ 0.47. This decrease in the intensity of the bursts offsets the effect of the

longer burst length. Therefore, λ or p alone can be weak affecters of Ploss.

4.8.4 Reducing the Packet Loss Rate via Channel Grouping

and/or Increasing the Buffer Size

Judging the effects of channel grouping on Ploss under bursty traffic is somewhat

involved because of the different ways a bursty traffic model can be interfaced to a

multichannel link. One approach is to speed up a source so as to reduce λ by a factor

of c. With such an arrangement, some degree of temporal burstiness is “exchanged”

for the presence of spatial burstiness. Figures 30 and 31 show the results of this

approach for n = 2 and n = 4 switches, respectively, under bursty traffic of λ = 8
c
,

pc = 1 and σ = 0.5. The loss rate improvement with channel grouping is quite

modest because: (1) Reductions in temporal burstiness (β = 1.75, 1.5, 1) are offset

by corresponding increases in spatial burstiness (βS = 1, 1.5, 1.875) for respective

increases in the channel grouping factor (c = 1, 2, 4); (2) In all cases, the load remains

constant (σ = 0.5). This second issue raises the same concern brought up in Sec-

tion 3.5 (Figure 13). Namely, is it fair to use the extra bandwidth or should the

load be reduced proportionally with increases in c so as to keep the total switched
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Figure 30: Ploss for n = 2, c = 1, 2, 4 switches under bursty traffic, λ = 8
c
, pc = 1,

σ = 0.5.
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Figure 31: Ploss for n = 4, c = 1, 2, 4 switches under bursty traffic, λ = 8
c
, pc = 1,

σ = 0.5.

bandwidth constant? Figures 32 and 33 show that channel grouping is more effective

in reducing Ploss when the additional link bandwidth is not exploited.

Channel grouping is far more effective when applied only to the outputs (Fig-

ure 34). Not shown in Figure 34 is the n = 2, r = 2, 4 and n = 4, r = 4 cases

which are completely lossless because output link contention is impossible. However,

as mentioned in Section 3.5, such switches may not be practical for exclusive use in

networks because of fanout growth.
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Figure 32: Ploss for n = 2, c = 1, 2, 4 switches under bursty traffic, λ = 8
c
, pc = 1,

σ = 0.5
c
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Figure 33: Ploss for n = 4, c = 1, 2, 4 switches under bursty traffic, λ = 8
c
, pc = 1,

σ = 0.5
c

.

Finally, instead of reducing the load and/or using channel grouping, Ploss can be

lowered via increasing (perhaps dramatically) the size of the buffer (Figure 35). For

example, comparing Figure 35 with Figure 33, it can be seen that, for the n = 4,

c = 1, m = 8 switch under the given traffic conditions, if a loss rate of 10−6 or lower is

needed, increasing c to four (and not exploiting the extra bandwidth) is equivalent (as

far as Ploss is concerned) to increasing the buffer size to 16. Which approach is best

depends on the cost associated with implementing each. Because costs typically vary
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Figure 34: Ploss for n = 4, s = 1, r = 1, 2 switches under bursty traffic, λ = 8, p = 1,
σ = 0.5.

nonlinearly with respect to the various switch parameters, determining the optimal

solution can be a nontrivial matter. In any event, it is obvious that meeting a given

Ploss goal becomes much more difficult (and expensive) to achieve as the burstiness

of the traffic increases.
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Figure 35: Ploss for n = 2, 4, c = 1 switches with large buffers under bursty traffic,
λ = 8, p = 1.0, σ = 0.5, (yielding β = 1.75).
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Chapter 5

Networks of OSMA Switches

Switches are the building blocks of networks. Because switches are usually used within

the context of a network, it is important to be able to predict their performance when

they are interconnected. The historical dependencies of a network are contained in the

states of all of its switches. Therefore, an exact Markov model of the entire network

requires a state space cardinality equal to the product of the cardinalities of the

individual switch state spaces. Unfortunately, this makes an exact Markov network

model impractical for all but the most trivial networks, even with the heavy switch

state space reduction employed in this work. Previous works [24], [55], [56], [58] that

analyzed networks of ESMP switches utilized approximate models of the switches

and/or made unrealistic assumptions about the properties of the interstage traffic.

(The predicted overall network loss rates from some of these models can deviate from

the true values by several orders of magnitude, even at relatively high (10−2) loss

rates [24], [56]). Furthermore, none of these models encompass networks that utilize

multichannel links.

5.1 Interstage Traffic Approximation

The approach used in this work is to combine the exactness of the model for the inter-

nal operation of the switch, as developed in the previous chapters, with a “reasonably

close” approximation of the interstage traffic. In this method, a multistage network is

analyzed through the use of “virtual sources” which approximate the interstage traf-

fic (Figure 36). Hence, an analysis is carried out for each stage and then the results

are used to determine the parameters of the virtual sources that feed the next stage.

Successive stages are analyzed in this manner until the end of the network is reached.
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Figure 36: Approximating interstage traffic with virtual sources.

There are constraints on the types of networks that can be analyzed with this

approach. Throughout this work, it was required that the input links (sources) to a

switch be independent from one another (i.e., there are no inter-link traffic correla-

tions) and that they must have the same parameters. Furthermore, the destination

addresses of the packets must be completely random. Therefore, the networks to be

analyzed are subject to all of the following constraints:

1. Different input links to a switch must carry traffic with the same parameters—

the upstream structures must look identical for all input links.

2. There must not be any inter-input-link traffic correlations —different input links

to a switch must not have paths leading to a common upstream switch or source.

3. The routing actions of an upstream switch must not introduce correlations in

the packet destination addresses to downstream switches. This will be true if

switches in different stages self-route on different address fields.

One very broad category of network that can have these properties (loosely re-

ferred to here as a “cascade”) is shown in Figure 37. Perhaps surprisingly, Banyan

networks can also satisfy these requirements as the different inputs to each switch

do not have paths to a common upstream switch. Because the switches in each stage

“see” traffic with the same properties, one needs to calculate the performance of only

a single switch in a stage to know the performance of every switch in that stage.
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Figure 37: A cascade of switches.

5.2 Output Traffic of OSMA Switches

The action of the switch fabric and buffer significantly alters the traffic that passes

through a switch. First of all, the switch combines input packets with the same des-

tination addresses and then sends them to the appropriate output links. Thus, the

traffic of an output link is a type of selective composite of the traffic in all the input

links. Secondly, any dropped packets serve to reduce the total output traffic load.

Finally, the action of the buffer serves to store any contending packets and defer their

output until the next available timeslot(s). Therefore, the output traffic of a switch,

and hence, the interstage traffic of a network, tends to be somewhat bursty—even if

the input traffic is purely random.

5.2.1 Interstage Load and Temporal Burstiness

A simulation (via SONSIM) was carried out on a two-stage 16× 16 Banyan network

composed of 4 × 4 switches (c = 1, 0 ≤ m ≤ 4, n = 4) under random traffic loads

of 0.30, 0.60 and 0.90. Ploss for switches in each stage is shown in Figure 38. Most

interesting is the “crossover point,” easily seen in Figure 38(b), where the loss rates

in each stage are equal. For the 30% load, the crossover point occurs for very small

m. As the load increases, it takes a larger m to make the loss rates equal and the
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Figure 38: Ploss from simulation for a 16×16 Banyan network of 4×4 switches with
c = 1, 0 ≤ m ≤ 4 under random traffic.

crossover point moves rightward. At the 90% load, the crossover point cannot be seen

in Figure 38(c) because it is to the right of the graph. An explanation for the varying

Ploss between the stages can be seen in Figures 39 and 40, which show the measured

(via simulation) average load (σ) and temporal burstiness factor (β), respectively, at

the output of each stage. Increasing m increases both σ and β of a switch’s output

traffic. The buffer acts to resolve contention by temporally shifting contending output

packets into the next available timeslot(s), thereby creating a “burst” that lasts until

the switch is able to clear itself of packets with the given destination address. For

small m and/or large input loads, the loss rate of the first stage is high enough to

significantly decrease the traffic load seen by stage 2. As a result, stage 2 exhibits a

0 1 2 3 4
0.24

0.25

0.26

0.27

0.28

0.29

0.3

 

m

σ

Stage 1
Stage 2

(a) RS input load = 30%.

0 1 2 3 4
0.4

0.45

0.5

0.55

0.6

 

m

σ

Stage 1
Stage 2

(b) RS input load = 60%.

0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

 

m

σ

Stage 1
Stage 2

(c) RS input load = 90%.

Figure 39: σ at the output of each stage as measured from simulation.
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Figure 40: β at the output of each stage as measured from simulation.

lower loss rate than stage 1. However, as m increases, stage 1 looses fewer packets

and the burstiness of its output traffic increases. Therefore, the additional buffer cells

do not decrease the Ploss of stage 2 as fast as they do in stage 1— resulting in the

inevitable intersection of the Ploss curves.

There are other interesting observations from Figure 40. For m = 0, β = 1 at

the outputs for all input loads. Without buffers, the switch becomes memoryless and

the output traffic is random (albeit with a smaller load than the input traffic). Note

the rapid increase in β as m is initially increased beyond zero. Later additions to m

do not increase β as much. β increases are the direct result of the additional buffer

cells being used. As m increases beyond a certain point, these additional cells are

used so infrequently that they do not noticeably affect the output traffic. In this way,

Figure 40 is closely related to Figure 14. The slight decrease in β, seen for the 90%

input load case as m increases beyond two, is interesting as well. As mentioned in

Section 4.1.2, β cannot be made as large as σ increases.1 So, under high loads as

m increases, the loads at the outputs of the switches increase to the point that the

“ceiling” on β decreases and β is forced to become slightly lower. The same effect can

be seen in a different way; for a given m, β decreases with increasing input load as

can be seen by comparing Figures 40(a,b,c).

1For an extreme example, at σ = 1, β must be equal to one. The source/switch cannot burst because
every packet slot is always occupied.
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5.2.2 Interstage Spatial Burstiness

To explore the evolution of interstage spatial burstiness independently of β, a simula-

tion (via SONSIM) was carried out on a four-stage 16×16 Banyan network composed

of 2×2 bufferless switches (c = 4, m = 0, n = 2) under a random traffic (each channel

driven independently, σ = p) load of 0.30.

In this network, temporal burstiness cannot occur as every switch and input

source is memoryless. Thus, β = 1 at every link in the network. The measured inter-

stage traffic properties as well as Ploss for each stage is shown in Table 2. As expected,

Table 2: Interstage traffic properties at the output of each stage for a 16×16 Banyan
network of 2× 2 bufferless switches, c = 4, under a random traffic load of 0.30.

Stage # Link Occupancy Probabilities % σ βS Ploss

0 1 2 3 4

Input Source 24.05 41.08 26.44 7.61 0.81 0.300 1.001 n/a

Stage 1 27.31 38.42 23.76 8.38 2.14 0.299 1.044 2.54× 10−3

Stage 2 28.87 37.16 22.70 8.58 2.69 0.298 1.064 4.39× 10−3

Stage 3 29.52 36.73 22.25 8.60 2.91 0.297 1.072 5.20× 10−3

Stage 4 29.93 36.57 22.00 8.57 2.93 0.295 1.075 5.34× 10−3

the input source link occupancy probabilities (qi) have a binomial distribution which

is not spatially bursty. However, as one progresses through the network, the occupancy

distribution shifts to favor the higher occupancy levels. For example, the probability

of having four packets in a link at an input source is 0.81%, but this increases by

almost a factor of four to 2.91% at the output of stage 3 (which is the input to stage

4). This change in the occupancy distribution causes the later stages to see traffic of

increasing spatial burstiness. At the input of stage 4, βS has increased to 1.072, which

causes stage 4 to experience more than twice the loss rate of stage 1—even though

stage 4 carries a slightly lighter traffic load because of the losses in the earlier stages.
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Bufferless switches under random traffic are simple enough systems to allow for

some direct analysis of this effect. The link occupancy probabilities for an input to a

switch driven by a random source is given by

Pin,i =

(
s

i

)
pi(1− p)s−i. (94)

However, the probability of i packets appearing in a given tagged output link of the

switch, Pout,i, is given by

Pout,i =


(

hs
i

)
(p

g
)i(1− p

g
)hs−i : 0 ≤ i < r

hs∑
j=r

((
hs
j

)
(p

g
)j(1− p

g
)hs−j

)
: i = r

. (95)

The summation in the equation for i = r is needed to count the cases when output

link contention occurs. For symmetric switches (h = g = n, s = r = c), the ratio of

the probabilities of full occupancy of the output and input links is given by

Pout,c

Pin,c

=

nc∑
i=c

((
nc
i

)
( p

n
)i(1− p

n
)nc−i

)
pc

, (96)

which is plotted as a function of n and c for σ = p = 0.5 in Figure 41. It is surprising
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Figure 41:
Pout,c

Pin,c
versus n and c for bufferless switches under a random traffic load

of 0.5.
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to learn that the larger switches can produce traffic that completely fills the output

links more than an order of magnitude more often than the random, binomial, input

traffic.

5.2.3 Eigentraffic

This is not to say that traffic always becomes increasingly spatially or temporally

bursty as it progresses through the stages of a network. Because, in this work, the

packets of a (spatial or temporal) burst always have uncorrelated addresses, they

are always dispersed among all of the output links when passing through a switch.

This effect limits the maximum burstiness traffic can sustain as it travels through

switches. Thus, switches with a given set of parameters under a given traffic load

favor a “natural” level of temporal and spatial burstiness and tend to transform

input traffic properties toward these “eigenvalues.”

5.3 Determining the Virtual Source Model

The traffic at the output of a switch is complex. It is the result of the actions of a

system that has hundreds, if not thousands, of states. If the switch is under bursty

traffic, the additional input source states make the resulting output traffic even more

difficult to accurately model. The most general source model developed in this work is

the ETS source. By an appropriate choice of parameters, an ETS source can serve as

any RS, ERS, or TS source. It is fully capable of supplying a multichannel link with

traffic with an arbitrary packet occupancy probability distribution. This flexibility is

obtained with a mere two states. In this work, ETS sources will serve as the interstage

link virtual sources. In fact, the primary reason for extending the switch model to

include ETS inputs is to facilitate the use of the ETS source as an approximate

interstage traffic model.

The process of matching ETS parameters to switch output traffic will now be

developed.
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5.3.1 Output Traffic Information Required from the Switch

Model

Additional information from the model is needed to ascertain the spatial and temporal

properties of the switch’s output traffic. The output link occupancy distribution is

obtained via Elinks,i|x which is the expected number of output links that have i packets

given that the switch/source system is in state number x. Elinks,i|x is generated at the

same time as P, El|x and Ew|x (see Section 4.6). In the same manner as El|x and Ew|x,

Elinks,i|x is constructed by successive additions within the loops of the model algorithm:

E ′links,i|x = Elinks,i|x + JiPAPL, (97)

where Ji is the number of output links that have i (0 ≤ i ≤ r) packets (i.e., the

number of O′
k (0 ≤ k < g) that are equal to i).

Ascertaining the temporal properties of the output traffic and matching an ETS

source to it is complicated by two issues: (1) Knowing qi and β of the traffic in a link

does not provide one with enough information to solve for pi, pon and poff; and (2)

the Markov nature of the model limits the memory of the system to that which is

contained in the current state. Obtaining information beyond this (say, to track the

traffic of a particular output) would require expanding the system states —which is

highly undesirable.

The first difficulty arises because, from an external point of view, it is impossible

to know exactly when a burst ends while monitoring the ETS output traffic, if and

only if, the ETS source is allowed not to emit packets when on (p0 6= 0). Defining

output bursts to consist only of timeslots in which a given output link has at least one

packet has a physical basis in the switch system. Namely, when the buffer and input

links become devoid of packets that are addressed to the given output link, the switch

system effectively becomes memoryless with (and only with) regard to that output

link, and hence, this event represents the end of the “output burst.” This is not to
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suggest that the burst length of the input sources is not taken into consideration, but

merely that it is done so through its action on the buffer. Also, even if the model’s

complexity were to be increased so as to relax the p0 = 0 restriction, and to increase

λ of the ETS source by allowing bursts to contain “empty” timeslots, the effect on

predicting switch Ploss performance would be minimal because variations of λ with

fixed σ, qi and β typically have very little impact on Ploss as was discussed in Sec-

tion 4.8.3. Furthermore, the allowed upper range of p0, and consequently λ, can be

severely limited by the other constraints (more so than the example of Figure 29).

For all of the above reasons, p0 = 0 will be required for the ETS virtual source match.

The second difficulty can be overcome by realizing that, in any given system state,

one can easily “look forward” by one timeslot—which is already required during the

course of evaluating the state transitions. This simple transition based analysis is ob-

viously sufficient to determine β as can easily be seen from its “packets→packets”2 based

definition in Equation 69. Note that knowing the packets→packets probability implies

knowing the “packets→empty”3 probability because they both have to sum to unity.

Furthermore, either of these two in conjunction with qi determines the empty→empty

and empty→packets probabilities in the same way that the qi can be viewed as steady-

state probabilities of a two-state Markov chain with the “X→Y” serving as transition

probabilities. Knowing the π (qi) and any single transition probability (X→Y) deter-

mines the entire P for a two-state Markov chain. This relationship between the X→Y

properties of the traffic will hold even if the traffic was produced by a more complex

Markov chain4 because we are concerned only with observed average traffic proper-

ties (which from their definitions have a simple Markovian relationship) and not the

underlying mechanics which actually gave rise to the traffic. The above discussion

is important only because, in practice, it is easier to obtain (and then match) the

2The probability that a link with one or more packets will have at least one packet in the next timeslot.
3The probability that a link with one or more packets will not have any packets in the next timeslot.
4Or even if it is the result of a “real world” process of unknown mechanism.
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empty→packets transition probability directly from the switch model (as will be done

in Equation 102) than the packets→X probabilities as the former, unlike the latter,

does not involve the switch buffer’s contents. With either approach, all of the X→Y

probabilities, as well as β, are guaranteed to be matched.

Finally, because the addresses of the packets are required to be uniform and

random, the traffic properties of a given tagged output can be ascertained from the

overall output traffic of the switch (Elinks,i|x) without having to resort to additional

system states to track the traffic of a specific output.

5.3.2 Matching Obtained Traffic Parameters to an ETS Source

It is trivial to obtain Pout,i|x, the probability of a given output link having i packets,

given that the switch is in system state number x, from Elinks,i|x:

Pout,i|x =
Elinks,i|x

g
. (98)

Using Pout,i|x and the law of total probability, one can obtain Pout,i, which is the

probability of a given output link having i packets for the overall system:

Pout,i =
∑
S

πxPout,i|x =
∑
S

πxElinks,i|x

g
. (99)

Pout,i is the same as qi for the traffic of any given output link, so the spatial part of

the description of the output traffic is now complete.

For the temporal aspects of the traffic, two preliminary results are needed. Px|out,i,

the probability of being in system state number x given that a tagged output link

has i packets (i.e., the “inverse” of Equation 98) can be obtained via Bayes’ rule:

Px|out,i =
πxPout,i|x

Pout,i

, (100)

of which we will be mainly interested in the i = 0 case. Psrcout|xI , the probability that

the input sources will emit at least one packet addressed to a tagged output link,

given that the input sources are in input state number xI , is given by:

Psrcout|xI =
hs∑

α=1

[
Pα|xI

(
1−

(
g − 1

g

)α)]
, (101)
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where Pα|xI is obtained using the appropriate equation for Pα from Section 4.4 with

SIx = IxI .

Now, using Px|out,i and Psrcout|xI , we can obtain the empty→packets transition prob-

ability of the output traffic. Given that the tagged output link is empty, we can obtain

the probability of the switch being in system state number x via Px|out,0. In order for

this link to have at least one packet in the next timeslot, the input sources must

transition to a next (possibly the same) input state and then they must emit at

least one packet addressed to the given link. Summing over all possible system states

and all possible input state transitions for each of those system states, we obtain

the empty→packets transition probability which is equivalent to pon of the ETS source

match because of the p0 = 0 requirement:

pon =
∑
S

[
Px|out,0

I∑
fI=0

(
PTIPsrcout|fI

)]
, (102)

where PTI is the probability of transitioning from input state IxI (IxI = SIx) to

IfI . By matching the empty→packets probability here, we guarantee a match to β from

the discussion in Section 5.3.1. Note that Equation 102 is much simpler than one

describing a packets→X probability because we do not have to consider the buffer state

in the next timeslot (within the inner summation).

The p0 = 0 requirement makes it trivial to obtain πoff as the source is considered

to be off whenever it does not emit a packet:

πoff = Pout,0. (103)

Likewise, it is easy to obtain πon:

πon = 1− πoff. (104)

Substituting Equation 103 into Equation 59 and solving for poff we obtain

poff =
ponPout,0

(1− Pout,0)
. (105)
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Finally, using p0 = 0 and Pout,i for qi in Equation 65, and solving for pi we obtain

pi =

 0 : i = 0

Pout,i

πon
: 0 < i ≤ r

. (106)

Equations 102, 105 and 106 together completely describe the parameters of an

ETS virtual source that matches qi, σ, βS and β of the switch’s output link traffic.

5.3.3 Factors That Contribute to Inexactness

The interstage virtual source model matches traffic parameters that represent averages

of quantitative traffic properties and cannot match some of the more complex aspects

of traffic. Because the switch loss rate will typically vary in a highly nonlinear way

with respect to the different “components” in the distribution of a traffic property,

using an average will tend to underestimate the true loss rate because of the unequal

“weight” of the components with respect to their effect on the switch (see Figure 42).

The virtual source model exactly matches the following traffic parameters:

• the average load presented (σ);

• the temporal burstiness factor of the link traffic (β);

X

X

X

X

Ploss

parameter

distribution

true Ploss

parameter average Ploss

Figure 42: A nonlinear response of Ploss to variations in traffic properties contributes
to errors when a parameter average is used as an approximation.
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• the link occupancy probability distribution (qi) and spatial burstiness factor

(βS);

• the average burst5 length (λ).

Parameters that are not matched exactly include

• temporal correlations between the qi; (For example, if a c = 4 link has three

packets in a given timeslot, there may be a higher than normal probability that

three or four packets will be in the link in the next timeslot.)

• the probability distribution of burst lengths.

Because the ETS source lacks the complexity of a switch/input source system, there

are, without doubt, other traffic metrics that are not matched exactly.

5.4 Overall Loss Rate of a Network

Knowing the loss rate for the switches in each stage i (1 ≤ i ≤ η) of a network, it is

trivial to calculate the Ploss of the overall network:

Ploss = 1−
η∏

i=1

(1− Ploss,i), (107)

where η is the number of network stages and Ploss,i is the packet loss probability for

switches in stage i.

However, in practice, Equation 107 performs less than satisfactorily when im-

plemented directly in computational environments of finite floating point accuracy.

With most current machines, a Ploss,i less than about 10−15 will present problems

with Equation 107 because of the need to subtract from the constant of one, which is

potentially many orders of magnitude larger than Ploss,i. In [17, page 358], Pattavina

addressed this issue and noted that, for small Ploss,i, the approximation

Ploss ≈
η∑

i=1

Ploss,i (108)

5Where “bursts” cannot contain empty timeslots (i.e., p0 = 0) as discussed in Section 5.3.1.
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is reasonably accurate. Although Equation 108 avoids the problems of Equation 107,

it is an approximation and leaves it to user to decide how large an error is acceptable.

To avoid both problems, Equation 107 can be rewritten in the form

Ploss =

η∑
j=1

(−1)j+1Υ

(
Ploss,i

j

)
, (109)

where Υ
(Ploss,i

j

)
is the sum of the products formed by choosing j combinations (with-

out replacement) from the set of values Ploss,i (1 ≤ i ≤ η). For example, if η = 3,

Equation 109 becomes

Ploss = Ploss,1 + Ploss,2 + Ploss,3

− (Ploss,1Ploss,2 + Ploss,1Ploss,3 + Ploss,2Ploss,3)

+ Ploss,1Ploss,2Ploss,3. (110)

From the above, it is easy to identify Equation 108 as representing the first set of

terms.

5.5 Numerical Results

Figure 43 shows the loss rates, as obtained from the analytic model and simulation,

for switches at each stage of a 16 × 16 Banyan network composed of four stages of

2× 2 switches (c = 4, 0 ≤ m ≤ 4, n = 2) under a random traffic load of σ = 0.3. As

mentioned in Section 3.5, throughout this work, the 95% confidence interval of the

simulation results is within the asterisks unless explicit error bars indicate otherwise.

Because the model is exact for the first stage, the analytic results for stage one

totally agree with those obtained from simulation. For the later stages, the analytic

model slightly underestimates the loss rate. This deviance is due entirely to the use of

the ETS interstage traffic approximation. Note that the loss rate of a stage 4 switch

with m = 4 is more than an order of magnitude greater than that of a stage 1 switch

with m = 4 because of the increase in the burstiness of the input traffic to stage 4

as a result of the use of the buffers and output channels to resolve contention in the
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(d) Stage 4.

Figure 43: Ploss for switches in each stage, from both the analytic model and simu-
lation, for a 16× 16 Banyan network of 2× 2 switches with c = 4, 0 ≤ m ≤ 4 under
random traffic, σ = 0.3.

earlier stages (β = 1.002, βS = 1.072 for the input to stage 4 versus β = βS = 1 for

the input to stage 1).

Results for the same network under heavily bursty traffic (FOB ETS source,

β = 2.5, βS ≈ 2.53, λ = 4, pc = 1, σ = 0.3) are shown in Figure 44. The analytic

model results deviate noticeably from those of simulation for stages after the first,

especially for the lower loss rates. The increasing inaccuracy with lower Ploss values

is unfortunate, but understandable —as Ploss falls, a packet loss becomes an increas-

ingly rare event whose accurate prediction demands a more accurate modeling of the

input traffic. A plausible explanation for the fact that the model tends to be less
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0 1 2 3 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

m

P
lo

s
s

Sim.
Analytic
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(d) Stage 4.

Figure 44: Ploss for switches in each stage, from both the analytic model and simu-
lation, for a 16× 16 Banyan network of 2× 2 switches with c = 4, 0 ≤ m ≤ 4 under
FOB bursty traffic, β = 2.5, βS ≈ 2.53, λ = 4, pc = 1, σ = 0.3.

accurate for the bursty traffic case than under the random traffic case is that the

additional complexity of the two-state input sources, relative to that of single-state

random input sources, makes the traffic at the output of stage 1 less conducive to

accurate representation by ETS sources. For example, the inter-stage traffic may have

a probability distribution of burst lengths that is quite different from the ETS virtual

source, which can match only the average (as discussed in Section 5.3.3).

Perhaps surprisingly, the analytic model is extremely accurate for the overall

network under both of the traffic cases as shown in Figure 45. The reason for the

accurate overall loss predictions under heavily bursty traffic is because the first stage
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(b) FOB Bursty traffic.

Figure 45: Ploss of the overall 16 × 16 Banyan network under random and FOB
bursty traffic, σ = 0.3.

is responsible for the vast majority of the loss and this stage is modeled exactly. The

later stages exhibit a lower loss rate because input bursts are dispersed among all the

output links of the switches (addresses of the packets in a burst are uncorrelated),

which results in more random-looking traffic at the later stages.

Figure 46 shows the Ploss performance for stages in the same type of network

with c = 4, m = 4 switches under traffic of moderate varying burstiness (1 ≤ β ≤ 1.8

yielding 2 ≤ λ ≤ 10, βS ≈ 1.56, binomial pi for an “on” load of σon = 0.6), and an

average load of σ = 0.3. Varying β does affect the accuracy of the model somewhat,

but the deviations are within the range of those of Figure 43 and Figure 44. Note that

error need not accumulate as one progresses toward the later stages. The ETS virtual

source used at the input to stage 2 exactly matches σ, β, βS and qi of the actual

traffic, so inaccuracy in this stage is entirely the result of “other” traffic parameters

that are not matched (Section 5.3.3). As one progresses further into the network,

the interstage traffic becomes less sensitive to changes in the temporal and spatial

burstiness of the input traffic to the network (Section 5.2.3), resulting in loss rates

and modeling accuracy that are more constant with respect to changes in β and/or

βS (Figure 46(d)). The overall loss rate for the network is shown in Figure 47, where
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(b) Stage 2.
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(c) Stage 3.
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Figure 46: Ploss for switches in each stage, from both the analytic model and sim-
ulation, for a 16 × 16 Banyan network of 2 × 2 switches with c = 4, m = 4 under
moderately bursty traffic, 1 ≤ β ≤ 1.8, 2 ≤ λ ≤ 10, βS ≈ 1.56, binomial pi (for
σon = 0.6), σ = 0.3.

model accuracy is also reasonably well behaved with respect to varying β.

Finally, the model also performs well for larger (64 × 64) networks composed

of larger switches (c = 1, m = 10, n = 8) under mildly bursty (β = 1.25) traffic

of varying λ (3 ≤ λ ≤ 12) and average load of σ = 0.5 as shown in Figures 48

and 49. Figure 48(b) indicates that variations in λ (with β held constant) do not

appear to adversely affect model accuracy despite the p0 = 0 ETS match requirement

(Section 5.3.1).

The analytic model can be used to analyze networks that are impractical to
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Figure 47: Ploss for the overall 16 × 16 Banyan network under moderately bursty
traffic, 1 ≤ β ≤ 1.8, βS ≈ 1.56, σ = 0.3.
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Figure 48: Ploss for switches in each stage, from both the analytic model and sim-
ulation, for a 64 × 64 Banyan network of 8 × 8 switches with c = 1, m = 10 under
bursty traffic of varying burst lengths, β = 1.25, 3 ≤ λ ≤ 12, σ = 0.5.

simulate, either because the loss rate is too low and/or the network is too large. The

latter situation can result because of the fact that the computational effort required

by the analytic model (for a given switch size) grows linearly with an increasing

number of network stages (η) while the size of the network to be simulated grows

exponentially (nη). Such very large or low loss networks were not considered here

because comparison with results from simulation would not be viable—not because
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Figure 49: Ploss for the overall 64×64 Banyan network under bursty traffic of varying
burst lengths, β = 1.25, 3 ≤ λ ≤ 12, σ = 0.5.

of limitations of the analytic model.

It appears that the accuracy of the presented model is generally superior to other

shared-memory packet switch network models in published literature [24], [56], [58],

[63]. Direct comparisons are not possible because the published models are for ESMP

switches, use different traffic models or network parameters, are not general enough

to be applicable to switches with channel-grouped links and did not provide results

for the individual network stages.
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Chapter 6

Asymmetric Switches

It is sometimes useful or necessary to employ switches that are asymmetric with

respect to the number of input and output links. Switches that have more input than

output links (h > g) are known as “concentrators” or “multiplexers.” Conversely,

switches with more output than input links (g > h) are known as “expanders” or

“demultiplexers.” Such asymmetry has a large effect on switch performance and can

alter the properties of the traffic in the output links, including load, in ways not

possible with symmetric switches.

Figure 50 (solid curve) shows the Ploss rates for c = 1, g = 4, m = 12 switches

under a random traffic load of σ = 0.5 as a function of h. Increasing h from 2

(expander) to 8 (concentrator) results in a 20 order-of-magnitude increase in Ploss.

Such a large range is caused by the fact that increasing h results in an increase in

the total bandwidth carried by the switch as well as the total number of packets that

can simultaneously arrive at the switch. Once again, this raises the issue of fairness

because the h = 8 switch is being asked to handle four times the bandwidth of the
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Figure 50: Ploss for c = 1, g = 4, m = 12 switches under random traffic of σ = 0.5
and σ = 0.5g

h
= 2

h
as a function of h (2 ≤ h ≤ 8).
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h = 2 switch. If instead, the input link load is adjusted so that the total switched

bandwidth is held constant with respect to h (σ = 0.5g
h

= 2
h
), Ploss increases less

dramatically with increases in h (Figure 50, dashed curve). The increase in Ploss with

h is because of the fact that having more input links allows for more packets to

arrive simultaneously to the switch— events that can be severely detrimental to Ploss

performance even if they happen relatively infrequently.

Varying g also greatly affects switch performance, but with some differences from

h/g asymmetry induced by varying h. Figure 51 (solid curve) shows the Ploss rates for

c = 1, h = 4, m = 12 switches under a random traffic load of σ = 0.5 as a function of

g. The nearly 15 order-of-magnitude reduction in Ploss as g is increased from 2 to 8 is

somewhat less of a range than when h is varied by a comparable amount. Increasing

g does reduce the probability of output port contention, but unlike variations with

respect to h, it does not affect the total bandwidth input to the switch or the maximum

number of packets that can arrive simultaneously.

However, the total output capacity of the switch is determined by g. If instead,

the input link load is adjusted so that the total input bandwidth remains matched

to the total output link capacity so that the output link load (neglecting the effect
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Figure 51: Ploss for c = 1, h = 4, m = 12 switches under random traffic of σ = 0.5
and σ = 0.5

h/g
= 0.125g as a function of g (2 ≤ g ≤ 8).

97



of packet loss on output link load) is held constant at 50% (σ = 0.5
h/g

= 0.125g), Ploss

becomes practically insensitive to h/g asymmetry as shown by the dashed curve in

Figure 51. Under such circumstances, this atypical increase in Ploss with g is likely

because of the fact that the total switched bandwidth increases linearly with g while

the buffer size is held constant. Barring such unusual adjustments to the input load,

it is generally true that concentrators have higher loss rates than their expander

counterparts.

Of course, severe packet losses are unavoidable if the output links are physically

incapable of handling the total input bandwidth—there is often a heavy price to be

paid for trying to do, or even just approach, the impossible. For instance, the c = 1,

h = 4, g = 2, m = 12, σ = 0.5 switch in Figure 51 (solid curve) has a Ploss of 4.7×10−2.

This improves very little even with drastic increases in buffer size (Ploss = 1.4× 10−2

for m = 48) because of the futility of trying to get the output links to carry a load

approaching 100%.1 If g is reduced further to g = 1, at least half of the input packets

would have to be lost regardless of the buffer size.

Finally, asymmetric channel grouping factors (Section 3.5) can be used in con-

junction with, and possibly to compensate for, h/g asymmetry. For example, an h = 4,

g = 2, s = 1, r = 2, m = 12 switch under a random traffic load of σ = 0.5 has a very

respectable Ploss = 2.1×10−13 which is an 11 order-of-magnitude reduction from that

of the corresponding r = 1 case of Figure 51 (Ploss = 4.7× 10−2).

6.1 Trill Networks

In order to properly describe networks that utilize switches of differing parameters (in

different stages) it is necessary to expand the parameter terminology. Let ci, gi, hi,

mi, ni, ri, si represent their respective (nonindexed) switch parameters for switches

in stage i (1 ≤ i ≤ η) of a network.

1It is theoretically possible to have an output load of 100%, but only in the absence of output link
contention.
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Liew and Lu [43], [44], [53] have proposed a general three stage network archi-

tecture that allows the construction of very large packet networks (asymmetric or

symmetric) out of much simpler switches. Liew and Lu did not name their design.

“Trill” seems appropriate for “Tri-stage Liew and Lu” and will be used to refer to

such networks in this work. The Trill architecture is shown in Figure 52. Switches

in the first two stages are organized into logical groups called “partitions” (indicated

as dashed boxes in Figure 52). Because the h3 stage 1-2 partitions are not intercon-

nected, they may have a physical basis with each corresponding to a self-contained

physical switch “module.” The ith stage 3 partition contains switches that handle the

output traffic from the ith second stage switch in each stage 1-2 partition. Because

the switches within a stage 3 partition are not interconnected, a physical basis of a

stage 3 partition is less clear than that of the stage 1-2 partitions.
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Figure 52: The Trill architecture.
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The switches in stages 1, 2 and 3 need not necessarily be expanders, symmetric,

and concentrators, respectively, though this is the typical configuration suggested and

analyzed by Liew and Lu [53]. The first stage switches select which of the g1 stage 3

partitions a given packet is destined to. The second stage switches select from the g2

switches within the given stage 3 partition. Each stage 3 switch then routes packets

to one of its g3 output links.

Trill networks satisfy the requirements for analysis by the virtual source approach

of the analytic model of this work (Section 5.1). In fact, Trill networks are a gener-

alization of a member of the three stage Banyan family. This can easily be seen by

observing that if 2 × 2 switches are used for all three stages, Figure 52 reduces to

Figure 8, although with the stage 1-2 and stage 2-3 interconnections transposed from

input to output.

Some basic properties of the overall Trill network can be written in terms of the

parameters of its switches (refer to Figure 52). The number of input links is given by

h1h2h3. The number of output links is given by g1g2g3. The number of 1-2 and 2-3

interstage links is given by g1h2h3 and g1g2h3, respectively. The number of switches

in stage 1, 2 and 3 is given by h2h3, g1h3 and g1g2, respectively. Finally, Liew and Lu

defined [53] the “expansion ratio” as the number of 1-2 interstage links divided by

the number of input links ( g1

h1
).

6.1.1 Numerical Results

Trill networks can sometimes outperform their Banyan equivalents. Figure 53 shows

Ploss for each stage as well as the overall network for a 16× 16 Trill network of 2× 4,

2× 2 and 4× 2 switches (in stages 1, 2, and 3, respectively) with c = 4, m1 = m2 = 3

and m3 = 4 under moderately bursty traffic, 1 ≤ β ≤ 1.8 yielding 2 ≤ λ ≤ 10,

βS ≈ 1.56, binomial pi for an “on” load of σon = 0.6, and an average load of σ = 0.3.

This is the same input traffic used for the four-stage 16×16 Banyan of 2×2 switches

of Figure 46 and Figure 47. The Trill network uses 32 switches (eight 2 × 4, sixteen
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Figure 53: Ploss for switches in each stage and the overall network, from both the
analytic model and simulation, for a 16 × 16 Trill network of 2 × 4, 2 × 2 and 4 × 2
switches with c = 4, m1 = m2 = 3, and m3 = 4 under moderately bursty traffic,
1 ≤ β ≤ 1.8, 2 ≤ λ ≤ 10, βS ≈ 1.56, binomial pi (for σon = 0.6), σ = 0.3.

2 × 2 and eight 4 × 2) versus the 32 switches (all 2 × 2) required by the Banyan.

Although the Trill network does use larger 2× 4 and 4× 2 switches, the total number

of buffer cells in the network, 104, is less than the 128 employed by the Banyan.

However, the Trill network exhibits overall loss rates similar to that of its Banyan

counterpart with the former even outperforming the latter for β ≥ 1.3 as can be seen

by comparing Figure 53(d) with Figure 47. The Trill network accomplishes this by

using 2 × 4 expanders in the first stage and twice the number of 2 × 2 switches in

the second stage than that of the Banyan. Thus, the Trill network can obtain lower
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loss rates in the first stage via the use of expanders and in the second stage via the

use of a greater than normal number of switches with each of these handling half the

bandwidth of its Banyan counterpart— thus allowing for a reduction in the number

of buffer cells used by switches in these stages. This strategy can pay off when the

highest loss rates are found in the first stages, which is typically the case under bursty

traffic.

However, expansion ratios greater than unity do not always yield better loss

rates, especially if the total number of buffer cells used by the network is fixed. Table 3

shows the performance, as determined by the analytic model for c = 1, 128 × 128

Trill networks with expansion ratios of 1, 2 and 4, under a random traffic load of

σ = 0.30. The total number of buffer cells used in each stage is held constant with

each network having a total of 832 buffer cells.2 As can be seen in Table 3, increasing

the expansion ratio not only dramatically increases the total number of switches and

interstage links required, it results in much worse loss rates. It may be noted that, in

the networks with non-unity expansion ratios, the number of buffer cells used in each

stage has not been optimally allocated. Specifically, in the network with an expansion

ratio of two, it is advisable to decrease the number of buffer cells in stage 1 switches

and apply these to the later stages where they are more badly needed. However, there

are simply not enough “excess” buffer cells in stage 1 to be able to reduce the later

stages’ loss rates to the 10−10 range needed to match the performance of the unity

expansion ratio network. For example, if two buffer cells are taken from each of the

32 stage 1 switches and applied to the 64 stage 3 switches so that each stage 3 switch

has an additional buffer cell (m3 = 7), Ploss,1 becomes 2.2 × 10−11, Ploss,2 becomes

1.7× 10−9 and Ploss,3 becomes 1.8× 10−8 yielding an overall Ploss of 1.9× 10−8, which

is not low enough to match the performance of the network with unity expansion

ratio. The situation becomes even worse as the expansion ratio is increased to four.

2That is, the number of buffer cells in switches in each stage is decreased proportionally with increases
to the number of switches in that stage.
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Table 3: Performance, as determined by the analytic model, of c = 1, 128× 128 Trill
networks with expansion ratios of 1, 2 and 4, under a random traffic load of σ = 0.30.
In each of the three cases, there is a total of 832 buffer cells in the network.

Expansion Ratio

1 2 4

Number of Interstage Links 128 256 512

SE Size, Stage #1 (h1 × g1, m1) 4× 4, m1 = 8 4× 8, m1 = 8 4× 16, m1 = 8

SE Size, Stage #2 (h2 × g2, m2) 8× 8, m2 = 12 8× 8, m2 = 6 8× 8, m2 = 3

SE Size, Stage #3 (h3 × g3, m3) 4× 4, m3 = 12 4× 2, m3 = 6 4× 1, m3 = 3

Number of SE, Stage #1 32 32 32

Number of SE, Stage #2 16 32 64

Number of SE, Stage #3 32 64 128

Total Number of SE 80 128 224

Ploss, Stage #1 2.7× 10−10 1.2× 10−14 1.2× 10−18

Ploss, Stage #2 1.3× 10−11 1.7× 10−9 3.2× 10−7

Ploss, Stage #3 1.8× 10−13 1.7× 10−7 1.2× 10−4

Ploss, Overall 2.8× 10−10 1.7× 10−7 1.2× 10−4

All things being equal, a larger number of switches is undesirable, not only because of

the added complexity, but because the shared-buffer concept is partially undermined

by the use of multiple switches because different switches cannot share buffer cells

globally among themselves as needed. Thus, it is generally desirable, from a loss rate

perspective, to use larger and fewer switches when constructing networks if the total

number of buffer cells is to be minimized for a given maximum acceptable loss rate.
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Chapter 7

Conclusion

Analytical modeling can be useful not only to predict the performance of systems for

which simulation is not practical, but also to help in identifying and understanding

underlying mechanisms and design trade-offs. There are several general principles and

insights that can be observed from the results of this work.

Although exact modeling may not be suitable for larger switches, maintaining

an exact model of the internal operation of a switch can pay off in terms of network

modeling accuracy. This is true in spite of the fact that the ETS approximation of

the interstage traffic is simplistic. Quantitative traffic properties σ, β, βS and λ were

defined and shown to be predictive of switch performance under ETS traffic. λ in

itself generally has less of an effect on packet loss relative to the other properties.

Small buffer sizes pose serious difficulties in obtaining low packet loss rates.

Furthermore, additional buffer cells tend to have more of an effect at lower loads. So,

all-optical networks with severe buffer limitations will likely have to be operated at

modest loads or used with transport protocols that are tolerant of higher packet loss

rates than are typically encountered in current systems.

Channel grouping has the potential to reduce the need for buffering, but it should

be evaluated against alternatives such as speeding up the links. Using multichannel

links to resolve contention can degrade performance in downstream switches because

of spatial burstiness. This can happen even in bufferless systems. Likewise, buffering

can result in increases in the temporal burstiness of a switch’s output traffic. What

is of benefit to an isolated switch may have detrimental effects within the context of

a network.

Care must be taken when evaluating the effects of channel grouping and/or asym-

metry because their net benefits often depend on how a fair comparison is defined.
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In some situations, network designs that use asymmetric switches are superior

to their symmetric-only counterparts. Finally, generally speaking, if the total number

of buffer cells is to be minimized, it is better to use larger, but fewer, switches when

designing a network so as to reap the maximum benefit from the shared memory

scheme.

7.1 Contributions of Work

As mentioned in Section 1.1.1, this work offers several original contributions. These

will now be briefly reviewed.

More capable input traffic models: The use of the ETS traffic model provides

a means to analyze OSMA switches under (temporally) bursty traffic or traffic with

arbitrary occupancy probability distributions (spatial burstiness). Previous OSMA

models were confined to analysis of random traffic with a binomial occupancy distri-

bution.

Network analysis: The model of this work can be used to analyze networks

of OSMA switches through the use of virtual sources. Previous OSMA models were

applicable only to single switches.

Asymmetric switches: The developed model is general enough to be used with

asymmetric (with respect to number of ports and/or channel grouping factors of the

inputs and outputs) OSMA switches. Previous OSMA models were applicable only

to symmetric switches.

Computationally efficient: The buffer state and arrival vector reduction tech-

niques in this work are more advanced than those of previous OSMA models. Thus,

switches can be analyzed with less computational effort.

7.2 Suggestions for Future Research

One of the enduring aspects of engineering is that there are always more problems to

solve, improvements to be made and hidden truths to be found. Here are some of the
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more prominent “unturned stones” of this work that have the potential to become

fruitful areas of investigation.

Cost-benefit and/or optimization analysis: The results of this work open

the door to a large number of optimization issues that were deliberately avoided

because they involve specific judgments to be made concerning the actual costs as-

sociated with implementing the different alternatives. How many buffer cells is a

channel worth? What is the cost of a lost packet in terms of buffer cells? Up to what

point should load be sacrificed for lower loss rates? Once questions such as these

are addressed, it becomes possible to investigate an optimal solution. There are also

optimization issues related to the network as a whole, such as how to best allocate

channel-grouping factors, buffer cells, etc.

Traffic model improvements: Network modeling accuracy could be improved

via the use of a more complex model of interstage traffic. Traffic closer to end users

is likely to have strong correlations and/or non-uniformities in the packet addresses.

New buffer state and arrival vector reduction techniques would have to be developed

in order to handle such traffic.

More aggressive state space reductions: Improved state space and/or arrival

vector reduction techniques would allow the analysis of larger switches. If exactness

is not required, novel approximate models could be pursued, such as retaining only

the first i terms of the buffer state of the exact model.

Properties and ramifications of “asymptotic” network traffic: In Sec-

tion 5.2.3 the concept of “eigentraffic” in networks was introduced. It might be in-

teresting to predict the properties of traffic deep within a network based solely on

the analysis of a single switch. Large networks could then be analyzed and optimized

without the need of multiswitch analysis or simulation.

Use of traffic conditioning devices: External “in-line” devices could be used

to condition link traffic so as to reduce contention within the switches. Bufferless

“feed-forward” switches such as Haas’ Staggering switch might be useful in this regard.
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Revised switch designs/operation: A hybrid OSMA design could be pro-

posed that incorporates ideas from Karol’s SMOP and Haas’ Staggering switches.

Specifically, longer, unequal delay lines could be used to hold packets that are known

to contend in the next timeslot. However, OSMA style (single timeslot delay) buffer

cells would be used during most “typical” operation for low latency and better packet

loss performance on a per-buffer-cell basis. Also, the OSMA switch routing protocols

could be modified in ways that improve the properties of the output traffic from the

point of view of downstream switches.

Alternative technologies to reduce or to better tolerate packet loss:

Instead of simply dropping packets, OSMA switches could be configured to route

them to a different output link within a network topology that may allow the mis-

routed packets to eventually find their destination, a concept known as deflection (aka

“hot-potato”) routing [71]. Finally, block erasure codes could be used to introduce

redundancy at the packet level which would allow end users to mitigate the loss of

information contained in one or more packets [72], [73].
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Appendix A

Partitions of Integers

As discussed in Section 3.2.3, the buffer states of the model of this work are rep-

resented by sets of partitions of integers. A partition of an integer is a division of

the integer into positive parts without regard to ordering of the parts.1 Partitions

are typically written with the parts in decreasing order. For example, there are five

unrestricted partitions of the integer four: 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.

The theory of partitions of integers has an interesting history. In the mid-

eighteenth century, Leonhard Euler, one of the important founders of modern mathe-

matics, was the first to show that the number of unrestricted partitions of an integer

n, which is traditionally denoted2 in mathematics as p(n), could be found by solving

for the coefficients of polynomials obtained from generating functions [76]:

∞∑
n=0

p(n)xn =
∞∏
i=1

1

1− xi
. (111)

p(n) can also be determined from recursive relations [75].

In 1918, the legendary mathematician Srinivasa Ramanujan, along with Cam-

bridge mathematician Godfrey Hardy who brought Ramanujan to the attention of

the Western world, developed an asymptotic closed-form expression for p(n) that ap-

proaches the true value for large n [77]. (The Hardy-Ramanujan formula was also inde-

pendently discovered by James Uspensky in 1920 [78].) In 1937, Hans Rademacher im-

proved on Ramanujan and Hardy’s work by developing an exact solution for p(n) [79],

[80]. Andrew Odlyzko has shown that the Hardy-Ramanujan-Rademacher equation

1For a more formal and detailed treatment of the topic of partitions of integers, the reader is referred
to [74] and [75].

2In this appendix, some concessions have to be made with regard to notation in order to accommodate
fields with other conventions. In particular, p(n) and n are used here in their conventional mathematical
sense and not as they are (or might have been) defined in the equations of the previous chapters. It should
be obvious from context which notation is in effect.
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is a nearly optimal way to compute p(n) for large n [75]. However, for the purposes

of this work (small n), the Hardy-Ramanujan-Rademacher equation is quite complex

and unwieldy to employ. Furthermore, the model of this work requires restrictions on

the length and element (part) values of the partitions as well as requires the names of

the partitions. So, unfortunately p(n) is of little use here. A more direct computational

approach has to be employed.

To address these requirements, the operator Ψ was introduced in Section 3.2.3.

Its definition and basic properties will now be repeated here for convenience. Ψ(k)

generates the set of unrestricted partitions of the nonnegative integer k. Ψ(k, ω) is the

set of partitions of k not exceeding ω in length. Ψ(k, ω, θ) has the further restriction

that each element not exceed θ. Thus, Ψ(k) = Ψ(k, k) = Ψ(k, k, k). A partition of

k may have length less than ω. In such cases, Ψ(k, ω) is defined to append zeros as

needed, to ensure that the returned partitions always have ω elements. This is done

purely for computational convenience. Ψi(k) designates the ith partition and Ψi,j(k)

is the jth element in the ith partition (0 ≤ i < |Ψ(k)|, 0 ≤ j < ω = k). |Ψ(k)| is

analogous to p(n) for n = k > 0. The parameters k, ω and θ are always nonnegative.

The boundary conditions for these parameters at zero are listed below in order of

decreasing precedence:

|Ψ(k, 0, θ)| = 0, for k ≥ 0, θ ≥ 0, (112)

|Ψ(0, ω, θ)| = 1, for ω > 0, θ ≥ 0, (113)

|Ψ(k, ω, 0)| = 0, for k > 0, ω > 0. (114)

It should be pointed out that Equation 112 and Equation 113 deviate from what is

usually done by convention in mathematics. Specifically, Equation 112 forbids the

partitioning of zero into zero parts and Equation 113 allows the partitioning of zero

into one or more parts. The latter is needed to describe the single state of the degen-

erate case of a bufferless switch. However, Andrews [74, page 1] and Knuth [75] state
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that there is one partition of zero into exactly zero parts and no partition of zero into

exactly one or more parts.

These differing conventions can be reconciled somewhat by taking the viewpoint

that Ψ(0, 0) exists, but that its name cannot be spoken! That is to say, to handle

Ψ(0, ω) with ω > 0, the ω zero “placeholders” can be used as a surrogate state name,

but being denied even this option with Ψ(0, 0), the partition cannot be rendered

and thus cannot be counted with |Ψ(0, 0)|.3 This issue is of importance only in the

degenerate boundary cases, but is mentioned here in the event the Ψ operator, as

defined here, is used for, or compared to, related operators from other work.

The following two functions, written in C, will implement an algorithm that

provides the full functionality of Ψ(k, ω, θ):

/* firstpart() and nextpart() integer partitioning functions

(c) Michael Shell 1999-2004

Released under the BSD license (2004 version)

http://www.opensource.org/licenses/bsd-license.php

and may be freely used, distributed and modified.

This code is offered as-is without any warranty either expressed or

implied, without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE.

usage:

firstpart(integer_to_partition, num_partition_elements,

max_element_value, pointer_to_partition_array, offset)

nextpart(max_partition_length, pointer_to_partition_array, offset)

return values:

0 = operation not successful, no valid partition found

3Concepts such as this can have profound philosophical implications— the world of mathematical logic
and description is not confined within the narrower boundaries of the world of finite computation and
representation.
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1 = partition array has a valid partition */

int firstpart(unsigned int inttopart, unsigned int numel,

unsigned int maxvalue, unsigned int * partarray,

unsigned int offset)

{

unsigned int i; /* counter */

unsigned int remaining; /* amount of integer remaining to partition */

/* zero partition array */

/* could use Unix memset() instead */

for (i=offset;i<(numel+offset);i++) partarray[i] = 0;

/* must have at least one element */

if (numel == 0) return(0);

/* allow a partition of zero into more than zero parts */

if (inttopart == 0) return(1);

/* try to create partition */

remaining = inttopart;

for (i=offset;i<(numel+offset);i++)

{

if (remaining > maxvalue)

{

partarray[i] = maxvalue;

remaining -= maxvalue;

continue;

}

else

{

partarray[i] = remaining;

remaining = 0;
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break;

}

}

/* successful if remaining is zero */

if (remaining == 0) return(1);

else return(0);

}

int nextpart(unsigned int numel, unsigned int * partarray,

unsigned int offset)

{

unsigned int i,ip,j,k; /* counters */

unsigned int sum; /* sum of right hand side (RHS) elements */

unsigned int prev; /* previous element value */

unsigned int maxvalue; /* maximum value an element can have */

unsigned int totaltodist; /* total to be redistributed */

/* must have more than one element to have a second partition */

/* catch potential out of range array access if numel == 0 */

if (numel < 2) return(0);

/* initialize */

prev = 0;

sum = 0;

/* start scanning from the RHS */

/* use ip = i+1 as unsigned int cannot be negative */

for (ip=(numel+offset);ip>offset;ip--)

{

i = ip - 1;

/* continue scanning until find a possible redistribution point */
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if (partarray[i] == prev || partarray[i] == 1)

{

sum += partarray[i]; /* sum of elements scanned */

prev = partarray[i]; /* element now is the previous element */

continue;

}

/* partarray[i] > 1 and partarray[i] != prev */

maxvalue = partarray[i] - 1; /* value elements cannot exceed */

totaltodist = sum + 1; /* compensate for decrement of element */

/* if redistribution is not possible here,

back out and continue scanning */

if (totaltodist > ((numel+offset)-(i+1))*maxvalue)

{

sum += partarray[i];

prev = partarray[i];

continue;

}

/* redistribution is possible */

/* decrement this element by one and redistribute totaltodist */

partarray[i] = partarray[i] - 1;

/* redistribute and create sub-partition */

for (j=i+1;j<(numel+offset);j++)

{

if (totaltodist > maxvalue)

{

/* single element cannot hold all */

partarray[j] = maxvalue;

totaltodist -= maxvalue;
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}

else

{

/* single element can hold all */

partarray[j] = totaltodist;

/* zero remaining elements */

for (k=j+1;k<(numel+offset);k++)

{

partarray[k] = 0;

}

/* successful redistribution */

return(1);

}

} /* end redistribution */

} /* end scanning */

/* unable to find a valid redistribution, no valid next partition */

return(0);

}

These two functions utilize an offset parameter to allow for the independent

manipulation of multiple partitions that are contained within the single array part[].

This capability is useful when working with multiple groups of partitions at once, such

as is done with the arrival groups of Section 3.3.3.

A skeleton example of use is shown here:

unsigned int gotpartition;

/* obtain parameters and allocate needed space for partarray */

gotpartition = firstpart(inttopart,numel,maxvalue,partarray,offset);

while(gotpartition)
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{

/* do something with partition */

/* get next partition */

gotpartition = nextpart(numel,partarray,offset);

}

The firstpart() function obtains the first partition simply by zeroing all the

elements of the partition (as determined by offset and numel) and then distribut-

ing the integer to be partitioned across the first elements of the array, while taking

care that no element exceeds maxvalue. Successive partitions are then obtained via

repeated calls to nextpart(). The generated partitions are ordered in decreasing

element value with increasing part[] index.

Note that nextpart() does not require access to the value of maxvalue as

nextpart() never creates a new partition with element values greater than those

in the original partition sent to it. The algorithm of nextpart() works by scanning

the current partition starting at the highest index and proceeding toward the first

element of the partition (i.e., right to left). See the example of the partitions of the

number four at the beginning of this appendix for an illustration of the order of the

results produced by successive applications of this algorithm. When nextpart() finds

an element with value greater than one and that is not equal to the preceding ele-

ment (of index+1), it attempts a redistribution by decreasing this element value and

forming a new “sub-partition” in the cells after it with no element exceeding the new

value of the element that was decreased by one.4 If this redistribution is not possible,

nextpart() will continue scanning for possible redistribution points until the start of

the partition is reached. A successful redistribution will result in a new valid partition.

When nextpart() cannot perform a redistribution, no more partitions are possible.

4This aspect makes the task of generating partitions amicable to implementation by recursive algorithms.
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No claims are made with regard to the optimality of the algorithm used in

nextpart(). In particular, with each execution, nextpart() operates without re-

gard to the moves it made during its previous execution. An improved algorithm

might take such information into consideration to reduce execution time. However,

because nextpart()’s memory is confined to those values in the partition sent to it,

nextpart() does not require the use of other tracking data structures and/or static

variables. Thus, nextpart() can even be used to “advance” partitions that were

generated by other means.

Obviously, it is one thing to state mathematically what needs to be done, but

quite another matter to instruct a machine to properly carry out the desired algo-

rithm. The reader might now have some small appreciation for the amount of hidden

effort that was required to implement in computer code the full analytic model of this

work.
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