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SUMMARY

This thesis contains two parts: the detectability of convex sets and the study on

regression models.

In the first part of this dissertation, we investigate the problem of detecting the presence

of an inhomogeneous region with a convex shape in a Gaussian random field. The first

proposed detection method relies on checking a constructed statistic on each convex set

within an n×n image. We prove that the number of convex sets grows faster than any finite-

degree polynomial of n, which indicates that one approach of determining the asymptotic

threshold of the detectability can not be adopted here. We then consider detecting hv-

parallelograms instead of convex sets, which leads to a multiscale strategy that can have

the order of complexity O(n2 log(n)). We prove that 2/9 is the minimum proportion of

the maximally embedded hv-parallelogram in a convex set. Such a constant indicates the

effectiveness of the above mentioned multiscale detection method in detecting convex sets.

In the second part, we study the robustness and the optimality of regression models,

and propose an improved all-subset selection algorithm.

1. Firstly, for robustness, M-estimators in a regression model where the residuals are

unknown but have stochastically bounded distribution are analyzed. An asymptotic

minimax M-estimator is derived. The new method is named regression with stochas-

tically bounded noises (RSBN). Simulations demonstrate the robustness of this ap-

proach, as well as advantages over commonly used estimates such as the ordinary

least square estimate and the Huber’s estimate. Insights from RSBN are discussed.

2. Secondly, for optimality, by analyzing the performance of least angle regressions

(LARS) – a newly introduced stepwise algorithm for variable selection – we get in-

terested in considering the conditions under which a vector is the solution of two

xiii



optimization problems. For these two problems, one can be solved by certain step-

wise algorithms, the other is the objective function in many existing criteria in subset

selection (including Cp, AIC, BIC, MDL, RIC, etc). The latter is proven to be NP-

hard. Several conditions are derived. They give the conditions for a vector to be the

common solution to the two optimization problems. When the conditions, which can

be easily checked, are satisfied, a greedy algorithm can be used to solve the seemingly

unsolvable problem.

3. Finally, extending the above idea to exhaustive subset selection in regression, we

improve the widely-used algorithm – the leaps-and-bounds algorithm by Furnival and

Wilson. The proposed method further reduces the number of subsets needed to be

considered in the exhaustive subset search by considering not only the of residual sums

of squares, but also the residuals, the model matrix, and the current coefficients.

xiv



PART I

Detectability of Convex Sets



CHAPTER I

INTRODUCTION

1.1 Motivations

Constantly improved imaging technology and cheaper and better computers give rise to

demands of using digital images as tools for evaluation and analysis. Automatic analysis

and extraction of information from an image becomes more and more important in many

fields. In most of these applications, data (images) are collected by standard sensors, such

as cameras and radars. Then, the collected images are analyzed for the detection and

the recognition of the targets, either stationary or moving, with unknown background.

Detecting an inhomogeneous region with a convex shape in a noisy environment is one of

many problems.

We investigate detecting the presence of a convex set in a noisy digital image. Detecting

such objects is not only a basic task for detecting more complex targets. It also plays an

important role in a variety of areas, including medical imaging, satellite imaging, and so

on. We list some of the applications in the following:

• In electron cryomicroscopy [100], accurate and automatic particle detection from cyro-

electron microscopy (Cryo-EM) images is very important for fast and correct recon-

struction of macromolecular structures. The goal of this step is to locate all particles,

which always have elliptic or rectangular shapes, from the Cryo-EM images. Since

achieving high-resolution reconstruction often requires over hundreds of thousands of

particles, it is extremely important to design a fast and automatic algorithm.

• In geomorphology [57, 10, 97], impact crater detection and crater size frequency count-

ing have a very high priority in Extra Terrestrial Mapping and planetary chronological

research. For example, in the Mars exploration, the existence of numerous impact

craters in one area will provide evidence on the evolving surface process on Mars,
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which may help us find the geological evidence for running water on, or just below,

the surface of Mars, especially several billion years ago. Hence, automation of crater

detection is an important initial step toward making more efficient the work of the

analyst, who are facing huge volumes of images that are being obtained by missions.

• In medical science [56], accurately locate and isolate the lesions in a brain image or a

skin image is crucial for accurate diagnosis. Detection of the lesions in the early stages

will considerably reduces morbidity and mortality. However, automated detection is

a challenging task due to several reasons: (a) low contrast between the lesion and the

surrounding, (b) reflections and shadows due to wrong illumination, and (c) artifacts

such as skin texture, air bubbles, and hair.

1.2 Statistical Model

We formulate the detection problem, and give a statistical model in this section. In order

to illustrate the idea, Figure 1 (a) presents a convex set in a square and Figure 1 (b)

illustrates the convex set in a noisy Gaussian random field. Suppose an image is sampled

(a) a convex set (b) a noisy Gaussian random field
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Figure 1: A convex set (a) and its embedding in a random field (b).

from a random field in this square, with the following property: inside the convex set, the

Gaussian mean is slightly higher than the Gaussian mean outside. Question: how to detect

the presence of such a convex set?

To formulate the problem statistically, we first introduce some notations for a digital

2



image. An n × n digital image has double indices: (i, j), 0 ≤ i, j ≤ n − 1. Each pair of

indices indicate a pixel of the image. A subset of pixels is denoted by Ω, i.e., Ω ⊂ {(i, j), 0 ≤

i, j ≤ n − 1}. A pixel p is called a boundary pixel of Ω, iff (if and only if) it belongs to Ω

and one of its neighbor is outside of Ω. Ω is a convex set if and only if for any two points

x, y ∈ Ω, the line segment connecting x and y is inside the Ω. More rigorous definition for

convex sets will be given later in Chapter 2 and Chapter 3, when we consider more specific

detection approaches.

For a location p (with indices (i, j)), let X(p) (or X(i, j)) denote the intensity of the

image at pixel p, i.e., (i, j). We have

X(p) ∼





N(0, σ2), if p 6∈ Ω,

N(µ, σ2), if p ∈ Ω,

where N(µ, σ2) stands for a normal distribution with mean µ and standard deviation σ.

An illustration of such a sampled image X is in Figure 1 (b). For future convenience, in

this document, we assume σ = 1. That is, if the image has no embedded signal (i.e., a

white noise image), then X(i, j) ∼ N(0, 1), for all 0 ≤ i, j ≤ n − 1. Here N(0, 1) stands

for a normal distribution with mean 0 and variance 1. This situation is defined as the null

hypothesis (denoted by H0). On the other hand, if there is a subset of pixels (denoted

by Ω) satisfying that for a constant µ > 0, X(i, j) ∼ N(µ, 1) when pixel (i, j) ∈ Ω, and

X(i, j) ∼ N(0, 1) when pixel (i, j) is outside Ω, then Ω is an “embedded” object. Such a

case is defined as an alternative hypothesis (denoted as Ha(Ω, µ)). Note that by varying

the subset Ω and the value of parameter µ, there are infinite number of possibilities for the

alternative hypotheses. The objective of our detection problem is to decide whether or not

such an object Ω exists. More specifically, how large should the value of µ and the area of

Ω be so that the corresponding alternative hypothesis can be distinguished from the null

hypothesis. In statistics, this is a typical hypothesis testing problem with a simple null

hypothesis and a composite alternative hypothesis.
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1.3 Research Contributions

The focus of this part of the dissertation is to give an efficient method to solve the hypothesis

testing problem for the detection. In particular, we study and develop results that are able

to derive meaningful and fast detection algorithms. The main contributions of this part can

be summarized as follows:

• We propose one possible detection method based on the principle of the Generalized

Likelihood Ratio Test (GLRT). The infeasibility of this approach is revealed by the

study of the cardinality of the convex sets in an n by n image. More significantly, we

give a recursive formula to compute the number of convex sets. From this formula,

it can be proven that the number of convex sets grows faster than any finite-degree

polynomial of n.

• We propose the second detection scheme based on a multiscale approach in detecting

h(v)-parallelogram in an image. The efficiency of this procedure is analyzed by study-

ing the minimax proportion of an h(or v)-parallelogram included in a convex set. We

show that the proportion is a constant: 2/9. Hence, we provide a method that has

the same testing power as detecting convex sets directly but having much lower order

of complexity.

1.4 Organization of part I

The rest of part I is organized as follows.

• Chapter 2 proposes the first design of detection, counts the number of convex sets in

a digital image, and shows the impracticality of this approach.

• Chapter 3 introduces the multiscale approach to detect rectangles or h(v)-parallelogram,

proposes the second detection system, and shows the minimax proportion of a hv-

parallelogram in a convex set.
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CHAPTER II

NUMBER OF CONVEX SETS IN A DIGITAL IMAGE

In this chapter, we consider the number of convex sets in an n by n digital image. We prove

that a finite degree polynomial solution does not exist. A recursive formula is provided. This

problem is directly motivated by the signal detection problem in finding the inhomogeneous

convex region in the image. However, due to the generality of the problem, it could have

much wider impact.

This chapter is organized as follows. The detection scheme that motivated the research

in this chapter is derived in Section 2.1. The main result is given in Section 2.2. The

theorem is proved in Section 2.3. The report on our literature survey together with some

concluding remarks are provided in Section 2.4.

2.1 Detection Method – the First Approach

In order to detect the existence of a significant area Ω in a noisy Gaussian random field, we

consider the following hypothesis testing problem:

H0 : X(i, j) ∼ N(0, 1) for all 0 ≤ i, j ≤ n− 1;

Ha(Ω, µ) : X(i, j) ∼ N(µ, 1) for some µ > 0 when (i, j) ∈ Ω.

In this dissertation, we are interested in the case when Ω is a convex set. Recall the

objective of the detection problem is to decide whether or not such an object Ω exists, so

that the alternative hypothesis Ha can be distinguished from the null hypothesis H0. The

following is an approach that can be easily derived. A useful reference regarding this is [2].

The analysis is from an asymptotic viewpoint.

First, if Ω and µ is give, we have a simple null hypothesis versus a simple alternative.

Define

X(Ω) =
∑

(i,j)∈Ω

X(i, j)/
√

|Ω|,

where |Ω| is the number of pixels in Ω. Under H0, it is not hard to derive that X(Ω) ∼
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N(0, 1), while under Ha(Ω, µ), X(Ω) ∼ N(µ
√

|Ω|, 1). Hence, one can easily conduct the

likelihood ratio test of H0 against Ha(Ω, µ), simply by asking if

X(Ω) > τ,

for a threshold τ .

For the composite alternative hypothesis, where µ(> 0) and Ω are both unknown, it’s

straightforward to consider the maximum among all X(Ω)’s (denoted by X∗). I.e., we

consider

X∗ = max
Ω∈Fn

X(Ω),

where Fn denotes a collection of all subsets that are under consideration. For example,

when we consider the problem of detecting a convex set, the Fn = {all convex sets in an

n× n image}.

Now we derive a detection rule so that for the simple null and the composite alternative,

the type-I error (i.e., Prob(reject Ha|H0)) converges to 0 while the image size n goes to

infinity. Given a constant τ > 0, and taking advantage of a property of N(0, 1), we know

• under H0, for any Ω, P (X(Ω) > τ) < 1
τ e

− 1
2
τ2

([80, page191]);

• moreover, P (X∗ > τ) ≤ |Fn| ·P (X(Ω) > τ) ≤ |Fn| 1τ e−
1
2
τ2
. The first inequality is due

to Bonferroni. The second one is a direct substitution. Here |Fn| is the cardinality of

the set Fn.

Notice that if τ∗ =
√

2 log |Fn| → +∞, then under H0, P (X∗ > τ∗) → 0. This gives us

a powerful hypothesis testing method. Namely, the probability of the type-I error of this

test goes to zero. On the other hand, consider a subset Ω, within which there is a nonzero

mean µ, we have X(Ω) ∼ N(µ
√

|Ω|, 1). If the mean of this normal distribution µ
√
|Ω| > τ∗

(respectively, µ
√
|Ω| < τ∗), such a subset will (respectively, will not) be distinguishable

from the null. Hence aforementioned choice of τ∗ =
√

2 log |Fn| gives a threshold on when

a subset is detectable. Note the above argument implies an asymptotic argument: we skip

the notion that n→ ∞.
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Now we explain why a polynomial expression for the size of set Fn (i.e., |Fn|) could be

useful in determining the asymptotic detectability of convex sets. If the cardinality of set

Fn can be a polynomial of image size n — for an integer k > 0, one has |Fn| = O(nk), (i.e.,

limn→+∞
|Fn|
nk = constant) — then τ∗ = C2

√
2k logn, where C2 is a constant. Note that

to increase the value of τ by a factor of 10, the value of n needs to be increased to n100.

The slow growth of τ , when |Fn| is a polynomial, is an interesting feature of this type of

detection problems. The existence of a polynomial formula for the quantity |Fn| is of strong

interest to us.

2.2 Main Result

We first establish a definition for convex sets. Note that due to the discreteness of the

problem, there could be other ways to define a convex set.

Definition 2.1 (Convex Set) A set Ω is convex iff (if and only if)

1. there exists a close chain of pixels: (a1, b1), (a2, b2), · · · , (ak, bk), and (a1, b1), which

belong to Ω, and their centers form the vertices of a convex non-degenerated polygon;

2. ∀p ∈ Ω, the center of p is inside or on the boundary of the above mentioned polygon,

and vice versa.

We have clarify the importance of the cardinality of convex sets in an n×n digital image

for evaluating the detectable threshold τ∗. We hope that the cardinality can be expressed

in a polynomial of image size n. However, this is not the truth. In this chapter, a recursive

formula is provided to compute the number of convex sets. Most significantly, the following

theorem is proven.

.

Theorem 2.2 (Main) Given the above definition, the number of convex sets increases

faster than any finite degree polynomial of image size n, as n→ ∞.

This result implies that the approach we introduced in Section 2.1 for determining the

asymptotic threshold of the detectability of convex sets can not be adopted. However, we
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Figure 2: Notations for the second case.

would like to point out that even though Theorem 2.2 states that the number of convex

sets is not polynomial, it would still be possible to have τ∗ ∼
√

log(n). In other words, the

nonexistence of a polynomial formula merely invalidates a sufficient condition. The result

of τ∗ ∼
√

log(n) can still be true. In fact, paper [2] gives a result of this kind. We refer

to that paper for further details. Apparently, such a result can not be derived by counting

the number of convex sets. Reference [2] also gives an excellent overview of the problem of

detecting geometric objects in a random field.

2.3 Proof of the Theorem

We need some new notations. (Recall that a convex set is determined by a convex polygon

whose vertices are the centers of some boundary pixels.) Let a1 = min{i : (i, j) ∈ Ω}, b1 =

min{j : (i, j) ∈ Ω}, b2 = max{j : (i, j) ∈ Ω}, and a2 = max{i : (i, j) ∈ Ω}. The rectangle

[a1, a2]×[b1, b2] is the minimum bounding rectangle of the convex set Ω. Let t1 = a2−min{i :

(i, b1) ∈ Ω}, t2 = b2−min{j : (a2, j) ∈ Ω}, t3 = max{i : (i, b2) ∈ Ω}−a1, and t4 = max{j :

(a1, j) ∈ Ω} − b1. An illustration is given in Figure 2.

We will need another notation: H(a, b). For a, b ≥ 0, a sequence of points — (0, 0),

(c1, d1), (c2, d2), . . ., (cℓ, dℓ), (a, b) — determines a convex curve iff the chain of line segments,

which connect these points by the same order, is convex. If this convex curve lies within the

boundary of the right triangle with vertices (0, 0), (a, 0), and (a, b) (boundary is included),

we call it a restricted convex curve between (0, 0) and (a, b). Apparently, for a restricted

convex curve, we must have 0 ≤ c1 ≤ c2 ≤ · · · ≤ cℓ ≤ a and 0 ≤ d1 ≤ d2 ≤ · · · ≤ dℓ ≤ b.
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More restrictively, if ∀ℓ, cℓ < a, we claim that this restricted convex curve does not intersect

with the vertical line i = a. The total number of restricted convex curves that do not

intersect with the vertical line i = a is denoted by H(a, b). Without much effort, one can

derive

• H(0, b) = 0, for b ≥ 0;

• H(a, 0) = 1, for a ≥ 1; and

• H(1, b) = 1, for b ≥ 1.

We would like to draw readers’ attention to the fact that because cℓ < a, the last segment

((cℓ, dℓ) to (a, b)) can not be the vertical line passing through point (a, b). Furthermore,

readers may notice that under our definition, H(a, b) and H(b, a) could be unequal. For

example, H(0, b) 6= H(b, 0) when b ≥ 1.

Recall Figure 2. It is not hard to prove that the following is the total number of convex

sets under our definition:

n∑

k1,k2=1

(n− k1)(n− k2)G(k1, k2), (1)

where k1 = a2 − a1, k2 = b2 − b1, G(k1, k2) is the number of convex sets whose minimal

bounding rectangle is of size k1 × k2. One can verify that, assuming H(0, 0) = 1,

G(k1, k2) =
∑

0≤t1,t3≤k1,

0≤t2,t4≤k2

H(t1, k2 − t2)H(t2, k1 − t3)H(t3, k2 − t4)H(t4, k1 − t1). (2)

Now the importance of H(a, b) in our analysis is clear. To get our main result, we shall

proceed by proving the following lemmas regarding H(a, b).

Lemma 3.1 The number of restricted convex curves between points (0, 0) and (a, b), a > b

and with slopes < 1 is equal to H(a−b, b). Here, “slopes” refer to the slopes of line segments

that make up the convex curve.

Proof. Readers can refer to Figure 3 for an illustration of the proof. First of all, the

convex curves satisfying the condition of the lemma will lie within the triangle ((0, 0), (a−
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(a−b,b)

(0,0) (a−b,0)

(a,b)

(a,0)

Figure 3: Illustration for the proof of Lemma 3.1.

b, 0), (a, b)), without touching the edge between (a − b, 0) and (a, b), except the last point.

For simplicity, we use C1 to denote this set of convex curves . At the same time, H(a −

b, b) is the number of restricted convex curves between (0, 0) and (a − b, b) that do not

intersect with line i = a − b. We use C2 to denote this set of convex curves. We

want to show |C1| = |C2|. Note that ∀ {(0, 0), (c1, d1), . . . , (cl, dl), (a, b)} ∈ C1, one can

easily verify {(0, 0), (c1 − d1, d1), . . . , (cl − dl, dl), (a − b, b)} ∈ C2. On the other hand,

∀ {(0, 0), (e1, f1), . . . , (em, fm), (a−b, b)} ∈ C2, {(0, 0), (e1+f1, f1), . . . , (em+fm, fm), (a, b)} ∈

C1. Hence, there exists a one to one mapping between the curves in C1 and the curves in

C2. The lemma is proved. �

Lemma 3.2 The number of restricted convex curves that are between points (0.0) and (a, b),

a < b, with slopes ≥ 1, and not intersecting with line i = a, is equal to H(a, b− a).

(a,a)

(0,0) (a,0)

(a,b)

(a,b−a)

Figure 4: Illustration for the proof of Lemma 3.2.
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Proof. This can be proved similarly with Lemma 3.1. We omitted the detail and only give

the illustration in Figure 4.

For H(a, b), b ≥ a > 0, we have the following recursive relation.

Lemma 3.3 (Recursive Rule) For b ≥ a > 0,

H(a, b) = H(a, b− a) +
∑

x1+x2≤a,

x1,x2≥1

H(x2, a− x1 − x2)H(x1, b− a+ x2). (3)

Proof. We describe it graphically. Refer to Figure 5.

1x2

x2

x1 x1 x2(a−     , a−      −    )

(a,b)

(a,0)

(a,a)

x
(0,0)

Figure 5: Illustration of the proof of Lemma 3.3.

For any curve that can be counted into H(a, b), there are two possibilities (and only

these two):

1. Case 1. The slopes of the curve are all ≥ 1.

2. Case 2. One of the vertices of the curves, (p1, p2), which is the center of a pixel p,

satisfies the following: starting from the left, until reach its center, the slope of the

convex curve is strictly less than 1; after this vertex, the slope of the convex curve is

at least 1.
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Hence,

H(a, b) = #{curves from Case 1} + #{curves from Case 2}

= #{curves from Case 1}

+
∑

p

#{curves ending at p} · #{curves starting from p}.

Under the first circumstance, the restricted convex curves have been analyzed in Lemma

3.2. So #{curves from Case 1} = H(a, b− a).

Under the second circumstance, since the slopes of the convex curve before (p1, p2)

(including the edge ending at p) is strictly less than 1, (p1, p2) should be strictly under the

line that connects (0, 0) and (a, a). I.e., p2 < p1. We can rewrite p2 = p1−x2, where x2 ≥ 1

and is illustrated in Figure 5. Also, since the convex curve cannot intersect with the vertical

line i = a, p1 should be strictly less than a. So we can rewrite p1 = a − x1, with integer

x1 ≥ 1 that is also illustrated in Figure 5. The center of pixel p becomes (a−x1, a−x1−x2),

x1 ≥ 1, x2 ≥ 1. At last, because p2 ≥ 0, we have x1 + x2 ≤ a. Actually, one can check

from Figure 5 that (p1, p2) can and only can lie strictly within the triangle with vertices

(0, 0), (a, b), and (a, 0), or lie on the line segment connecting (0, 0) and (a, 0) (excluding the

ending points). The geometric meanings of x1 and x2 are illustrated in Figure 5. Conditions

x1 ≥ 1, x2 ≥ 1, and x1 + x2 ≤ a give an enumeration of all the possible positions of p.

Now, we have

H(a, b) = H(a, b− a) +
∑

x1+x2≤a, x1,x2≥1
p=(a−x1,a−x1−x2)

#{curves ending at p} · #{curves starting from p}.

From Lemma 3.1, the number of restricted convex curves between (0, 0) and (a−x1, a−

x1−x2), with slopes< 1, is equal toH((a−x1)−(a−x1−x2), a−x1−x2) = H(x2, a−x1−x2).

Now let’s consider the last term, #{curves ending at p}. By switching the origin (0, 0)

to (a − x1, a − x1 − x2), we observe that the number of restricted convex curves between

(a − x1, a − x1 − x2) and (a, b), with slopes ≥ 1, is equal to the number of convex curves

between (0, 0) and (a− (a− x1), b− (a− x1 − x2)) = (x1, b− a+ x1 + x2), with slopes ≥ 1.

The latter, from Lemma 3.2, is H(x1, b− a+ x2).

From all the above, the lemma is proved. �
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As a direct application of Lemma 3.3, one can verify the following.

• H(2, b) = 2 + ⌊ b−1
2 ⌋, for b ≥ 1 where ⌊x⌋ is the largest integer that is no larger than

x. This can be verified from H(2, b) = H(2, b − 2) + 1 for b ≥ 2, which is stated by

Lemma 3.3, and H(2, 0) = 1, H(2, 1) = 2.

• H(3, b) = H(3, b− 3⌊ b3⌋) + 2⌊ b3⌋ +
∑⌊ b

3
⌋

i=1(⌊ b+4−i
2 ⌋ − i).

• H(3, 1) = 3, H(3, 2) = 4, and H(3, 3) = 5.

Another way to utilize Lemma 3.3 is to derive the following.

Corollary 3.4 For a ≥ 1,

H(a, a) ≥ 1 +
1

2
a(a− 1).

Proof.

H(a, a) = H(a, 0) +
∑

x1+x2≤a

x1,x2≥1

H(x2, ·)H(x1, ·) ≥ 1 +
a−1∑

x1=1

a−x1∑

x2=1

1 = 1 +
1

2
a(a− 1).

�

Recall we had H(1, 1) = 1, H(2, 2) = 2, H(3, 3) = 5.

We found that it is extremely difficult to derive a close form for the number of convex sets

under our definition. This may explain why such a result does not exist in the published

literature. In fact, by using Lemma 3.3, we can prove that if such a formula exists, it

increases faster than any finite-degree polynomial of n, as n goes to infinity.

Proof of Theorem 2.2. From Lemma 3.3, one can prove for a > 0,

H(a, b) ≥ ba−1

a2a
. (4)

By choosing a large enough and b = 2a2, the right hand side of (4) increases faster than any

polynomial with a prescribed degree. Verifying (4) via (3) is a simple exercise. We describe

it briefly below.

Proof of (4).

13



• When b < a,

H(a, b) > 1 >
ba−1

a2a
.

• When b ≥ a > 0, from Lemma 3.3 and induction,

H(a, b) = H(a, b− a) +
∑

x1+x2≤a,

x1,x2≥1

H(x2, a− x1 − x2)H(x1, b− a+ x2)

≥ (b− a)a−1

a2a
+

∑

x1+x2≤a,

x1,x2≥1

(a− x1 − x2)
x2−1

x2x2
2

(b− a+ x2)
x1−1

x2x1
1

≥ (b− a)a−1

a2a
+

[
(b− a)a−2

(a− 1)2(a−1)
+

(b− 1)a−3

(a− 2)2(a−2)
+ · · ·

]

>
1

a2a

[
(b− a)a−1 +

(
a

1

)
a(b− a)a−2 +

(
a

2

)
a2(b− a)a−3 + · · ·

]

=
ba−1

a2a
.

�

From (1) and (2), it is not hard to see that the number of convex sets also grows faster

than any finite-degree polynomial of n. The theorem is proved.

2.4 Conclusion

The number of convex sets is a very general geometric problem. To our surprise, we can

not locate any paper that directly address the problems being studied. The only remotely

related work that we can find is [69], as well as some papers that were cited therein. There

is a difference in the objective: they considered an algorithm for counting, instead of the

cardinality of a collection of all convex sets.

Our motivation of studying this problem is from a detection problem that was described

in the Introduction. However, as shown in this chapter, the number of convex sets grows

faster than any finite-degree polynomial of power n (Theorem 2.2). This indicates that the

introduced approach for determining the dectability of convex sets is not appropriate. But,

as we indicated before, the theorem only shows the invalidation of a sufficient condition.

Efficient detection scheme is still possible and we will give more results in the next chapter.

14



CHAPTER III

MINIMAX PROPORTION OF AN H(OR

V)-PARALLELOGRAM EMBEDDED IN A CONVEX SET

Detecting the presence of a convex set in a Gaussian random field is considered further in

this chapter. A multiscale strategy that is described in [2] can have the order of complexity

O(n2 log2(n)) for detecting a h(or v)-parallelogram in an n by n noisy image. So, instead

of detecting convex sets directly, we can detect the h(or v)-parallelogram that embedded

in convex regions with a nonzero Gaussian mean. We prove that 2/9 is the minimax

proportion of a h(or v)-parallelogram included in a convex set. Such a constant indicates

the effectiveness of the above mentioned multiscale detection method.

This chapter is organized as follows. Section 3.1 reviews the multiscale approach for

detecting h(or v)-parallelograms. Section 3.2 gives the main result of this chapter. Section

3.3 develops the proofs for the theorem. Section 3.4 provides some discussions.

3.1 Multiscale Detection of Convex Sets – the Second Ap-

proach

Recall in the last chapter, we examined the following detection scheme. We calculate

X∗ = max
Ω∈Fn

X(Ω), (5)

where Ω is a convex set, Fn is the collection of all convex sets,X(Ω) =
∑

(i,j)∈ΩX(i, j)/
√

|Ω|.

We hope to find X∗ by enumerating all the convex sets in an image. Unfortunately, there

is no numerically efficient way to compute the statistics X(·) for all convex sets. Mainly

because there are too many convex sets.

In this chapter, we detect a more basic shape, named h(or v)-parallelogram, as a sur-

rogate of detecting convex sets. It is relatively easy to compute the X(·)-statistics for the

new geometric objects. By investigating the relationship between a h(v)-parallelogram and

a convex set, we can build a method to find inhomogeneous convex region indirectly.
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An h-parallelogram was introduced in [2]. We give the definition and some related

information in the following.

Definition 1.1 (h(or v)- parallelogram) An h-(resp. v-) parallelogram is a parallelo-

gram having two sides horizontal (resp. vertical) and its horizontal (resp. vertical) projec-

tion to the y- (resp. x-) axis on a Cartesian plane is a dyadic interval.

A dyadic interval is defined as the following. Without loss of generality, we can assume

the size of the image, n, equals to 2m for some integer m. And we transfer the index set

of pixels from {0, 1, ..., n − 1} to {0, 1/2m, 2/2m, ..., 1 − 1/2m}. Then, a dyadic interval is

defined as follows.

Definition 1.2 (dyadic interval) Interval (a, b) is a dyadic interval if and only if there

exist two non-negative integers s and ℓ, s ≤ m and ℓ < 2s, such that a = ℓ/2s and

b = (ℓ+ 1)/2s.

Now we reformat the testing scheme as the follows. Recall that for the image intensity,

X(i, j),

X(i, j) ∼





N(0, 1), if x 6∈ Ω,

N(µ, 1), if x ∈ Ω,

where µ > 0 and Ω is a convex set. Given a region Ω̃, we can calculate the statistic

X(Ω̃) =
∑

(i,j)∈eΩ

X(i, j)/

√
|Ω̃|,

where |Ω̃| denotes the number of pixels inside the set Ω̃. If set Ω̃ does not intersect with

the “high activity” convex set Ω (i.e., Ω̃ ∩ Ω = ∅), we have X(Ω̃) ∼ N(0, 1). Otherwise, we

have

X(Ω̃) ∼ N


µ · |Ω̃ ∩ Ω|√

|Ω̃|
, 1


 ,

where similarly the |Ω̃ ∩ Ω| denotes the cardinality of the intersection Ω̃ ∩ Ω.

In Chapter 2, we choose the detection region Ω̃ as a convex set. In this chapter, we

focus on h(v)-parallelograms. That is, we calculate

X̃∗ = max
eΩ is an h(v)- parallelogram

X(Ω̃). (6)
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It is provable that the above statistic is upper bounded by a quantity, which is a function

of n. Specifically, if the null and alternative hypotheses are the following:

H0 : X(i, j) ∼ N(0, 1) for all 0 ≤ i, j ≤ n− 1;

Ha(Ω̃, µ) : X(i, j) ∼ N(µ, 1) for some µ > 0 when (i, j) ∈ Ω̃.

It can be shown that there exists a constant Γn,

Γn√
2 log(n2)

→ 1.

As n→ ∞ and the null hypothesis is true,

P{X̃∗ < Γn} → 1.

That is, if we observe a X(Ω̃) that is larger than Γn, then the presence of an embedded

h(v)-parallelogram can be claimed.

At resolution n, i.e., an n by n image, there are O(n) dyadic intervals, including both

vertical and horizontal directions. For each dyadic interval, there are at most O(n3) h(or v)-

parallelograms: there are O(n) options for two lower corners, at different side of a dyadic

interval, the height of the parallelogram adds another O(n) possibility. Hence the total

number of h- (or v-) parallelograms is O(n4). Note that it is lower than the cardinality of

all the convex set.

Hence, within O(n4) operations, we can detect the significant h(v)-parallelogram in

an n × n image. Actually, a lower order algorithm can be derived by using a multiscale

methodology with the help of Beamlets and Beamlet algorithms. This method is actually

the idea in [2], where Arias-Castro et al. find that there exists an algorithm with order of

complexity O(n2 log2(n)) in detecting a h(v)-parallelogram. We omit the details and only

mention the results with an emphasis that detecting h(v)-parallelogram can be done fast.

Note that we are interested in detecting convex sets, not a simple parallelogram. We

should ask whether the above detecting rule can be adopted for convex regions. Further-

more, if yes to the previous question, how to adopt? We give the answers in the following

section.
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3.2 The Minimum Proportion of the Maximally Embedded

hv-parallelogram

In this chapter, we analyze the relationship between an h(v)-parallelogram and a convex

set. The main result is stated as the follows.

Theorem 2.1 (main theorem) For any convex set, there is an embedded h- or v- paral-

lelogram, which occupies at least 2/9 of the convex set. Moreover, the constant 2/9 can not

be increased. In other words, for any quantity that is greater than 2/9, there is a convex

set, within which there is no embedded h- or v- parallelogram that takes the given proportion

of the area of the convex set.

This theorem is proved in continuum. In the discrete case, when the resolution n→ ∞, the

same quantity holds.

Recall that we consider all the h- and v- parallelograms and have the new statistic: X̃∗

as in (5). Comparing with X∗ in (6), based on the above theorem, we can conclude

X̃∗ ≍
√

2

9
X∗

Hence an equally powerful test can be based on the comparison between 3√
2
X̃∗ and Γn,

which is given earlier.

3.3 Proof of the Main Theorem

The main theorem is proved in this section. We should consider both h-parallelograms

and v-parallelograms. However, due to the symmetry of convex sets, only one type of

parallelograms need to be considered. If we consider v-parallelogram alone, the minimax

proportion 2/9 can be reached. One such limit case is shown in Figure 6. Without loss of

generality, v-parallelograms are considered in the sequel.

3.3.1 Different Cases

A maximally embedded v-parallelogram is illustrated in Figure 7. Note that we do not use

the word ‘inscribed’, to reflect the possibility that one corner point of a parallelogram may

not be on the boundary of a convex set.
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(1,1)(0,1)

(7/8,1/2)

(1/2,7/8)

(1/8,1/8)

1/4

Maximal V−parallelogram

Figure 6: An example when minimax embedding 2/9 is achieved.

V−parallelogram

Ω

  A   DYADIC  INTERVAL

Figure 7: Illustration of a maximally embedded v-parallelogram
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To simplify the proof, we assume that one side of the convex set is horizontal. An

affine transform can be applied to convert an arbitrary convex set into a convex set with a

horizontal side, as illustrated in Figure 8: the original set is Ω, and the transformed set is

Ω′. Note the two sets have the same height at the same location. It is not hard to verify that

Ω′ is convex. Moreover, a maximally embedded v-parallelogram in Ω becomes a Maximally

Embedded Rectangle (MER) in Ω′. Note that the rectangle must be supported by a dyadic

interval on the x-axis, due to the definition of the v-parallelogram.

X

Y

f(x)
’Ω

Ω

LENGTH

SAME 

Figure 8: Illustration of the transformation, which transforms an arbitrary convex set into
a convex set with a horizontal side.

The essence of the proof is to enumerate all the configurations of a convex set. We

consider the horizontal side of a (transformed) convex set. Let a denote a dyadic number:

i.e., there exist two integers s and ℓ, ℓ < 2s, such that a = ℓ/2s. Let δ = 1/2s
′
, s′ ≥ s − 1.

Note that intervals (a, a+0.5δ) and (a+0.5δ, a+ δ) are two dyadic intervals. For (a, a+ δ),

it is a dyadic interval when s′ ≥ s, and may not be when s′ = s− 1. We can always find an

a and a δ such that (the horizontal side of) Ω′ is complete inside of interval (a, a + δ), as

shown in Figure 9 (a). We denote this case as TC-1. Now, if we consider the middle point

a+ 0.5δ, there are two possibilities:

1. If the middle point a + 0.5δ is outside Ω′, say, it is on the left of Ω′, then by setting

anew = a+ 0.5δ and δnew = δ/2, we go back to case TC-1 in Figure 9 (a). The case

when a+ 0.5δ is on the right of Ω′ can be similarly transferred to TC-1.

2. Therefore, we only need to consider the case when the middle point is inside Ω′ (Figure
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9 (c) TC-3).

Now we consider two more quarter points: a+ δ/4 and a+ 3δ/4. If none of them is inside

Ω′, which is illustrated in Figure 9 (d), let anew = a+ δ/4 and δnew = δ/2, we can transfer

it back into case TC-3 in Figure 9 (c). So we only need to consider the case in which at

least one of the above two points is inside Ω′. These two cases are illustrated in Figure 9

(e), in which both are inside, and Figure 9 (f), in which only one is inside. They are called

cases C1 and C2, respectively, and will be investigated further.

(a) TC-1 (b) TC-2 (c) TC-3

δa+

’Ω

 a

x

δa+a+0.5δ

’Ω

 a

x

δa+

’Ω

δa+0.5 a

x

(d) TC-4 (e) C1 (f) C2

x

 a

Ω ’

a+0.5δ a+δ
x

 a a+0.5δ

Ω ’

a+δ
x

 a a+0.5δ

Ω ’

a+δ

Figure 9: Possible cases while projecting to the x-axis. TC stands for Temporary Case.

We consider the MER. To reduce ambiguity, if there are two (embedded) rectangles

with equal area, we always choose the one with larger support. Based on the definition of

v-parallelogram, the support of MER (on the boundary of Ω′ on x-axis) is a dyadic interval.

Within the case of C1, there are six subcases, as in the following table. The notations of

points are illustrated in Figure 10. Note that there is a rescaling on the x-axis: δnew = δ/4.

• C1-1: the support of the MER is with length ≤ δ/4, e.g., rectangle P11P12P46P45.

• C1-2: the support of the MER is with length δ, i.e., the support is (a+ δ, a+ 2δ) or

(a + 2δ, a + 3δ). Due to symmetry, we only need to consider the MER with support

(a+ δ, a+ 2δ), which is rectangle P31P32P44P42 in the figure.

• C1-3: the support of the MER is with length δ/2. This item and the next two cover

this case. Due to symmetry, other locations are automatically taken care of. In this

subcase, the MER is rectangle P21P22P42P41.
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• C1-4: the support of the MER is with length δ/2 and the MER is P22P23P43P42.

• C1-5: the support of the MER is with length δ/2 and the MER is P23P24P44P43.

δa+4δa+ a
x

a+2δ a+3δ

23

42P 43P 44P 45PP P46

(1)

(2)

(5)(4)(3)

11P 12P

21P 22P P 24P

31P 32P

41

Figure 10: Subcases of Case C1.

Within C2, there are nine subcases, as illustrated in Figure 11.

C2-1: the support of the MER is with length ≤ δ/8, e.g. rectangle P11P12P59P58.

C2-2: the support of the MER is with length δ. The only possibility is P41P42P57P54.

C2-3: the support of the MER is with length δ/2. Due to symmetry, only two condi-

tions need to be considered. In this subcase, we consider rectangle P31P32P54P52.

C2-4: continuing from the above subcase, the MER is the rectangle P32P33P56P54.

C2-5: the support of the MER is with length δ/4. Due to symmetry, five possibilities

need to be considered. In this subcase, the MER is P21P22P52P51.

C2-6: the MER is P22P23P53P52.

C2-7: the MER is P23P24P54P53.

C2-8: the MER is P24P25P55P54.

C2-9: the MER is P25P26P56P55.
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 a
x

a+2δ a+3δδa+

(3)

(9)(8)(7)(5) (6)

(4)
(2)

(1)

P

33P32P31P

26P25P24P23P22P21P

12P

Figure 11: Subcases of case C2.

3.3.2 Discussion Regarding the Foregoing Cases

We prove the theorem through all the above subcases. All the proofs are illustrated in

figures.

3.3.2.1 Case C1-1 and C2-1

For cases C1-1 and C2-1, it can be easily seen that these two subcases cannot exist. Actually,

we can always find a contradiction. That is, inside the convex set, we can find other

rectangles with dyadic supports and larger areas. These are illustrated in Figure 12 and 13,

respectively.

To be more specific, we consider case C1-1 first. Under C1-1, the area of the MER

candidate, rectangle P11P12P46P45, is less than or equal to hδ/4 (shaded parts in Figure

12), where δ/4 is the upper bound of the width and h is the height. The support can be

either in interval (a, a+δ) or in (a+δ, a+2δ), which also includes the other two possibilities

(a+ 2δ, a+ 3δ) and (a+ 3δ, a+ 4δ) because of symmetry.

• When the support is within interval (a + δ, a + 2δ), this situation is illustrated in

Figure 12 (a). From the definition of convex sets, it can be easily verified that the

trapezoid with vertices (a+ δ, 0), P11, P12, and (a+ 3δ, 0) is within the convex set Ω′.

Hence, the rectangle embedded in the trapezoid with support (a+ 3
2δ, a+2δ) and one
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 a
x

δa+ a+4a+2δ δa+3δ

h

<δ/2

12P11P

45P 46P

x
 a δa+ a+2 a+4δδ a+3δ

>h/3

h

<δ/2

P42 P38

P11 P12

(a) (b)

Figure 12: Case 1-1 cannot occur.

vertex on the line between (a+ δ, 0) and P11 is inside Ω′ as well. Note (a+ 3
2δ, a+2δ)

is a dyadic interval and the height of this new rectangle is greater than h/2, which

leads to an area greater than hδ/4. Hence, P11P12P46P45 cannot be the MER.

• When the support is within interval (a, a+ δ), as illustrated in Figure 12 (b), an rect-

angle with dyadic support (a+δ, a+2δ) can be found embedded inside Ω′. The height

of this rectangle should be greater than h/3 by elementary knowledge in geometry.

Hence, this embedded rectangle has area greater than (hδ/3), which also leads to a

contradiction.

From all the above, case C1-1 does not exist.

Similarly, under the conditions of C2-1, no embedded rectangle with a dyadic base

shorter than δ/8 can be the MER, no matter where the rectangle is (cf. Figure 13).

3.3.2.2 Case C1-3 and C1-4

Cases C1-3 and C1-4 are similar with the above two cases C1-1 and C2-1. Under C1-3

(Figure 14 (a)), though, a shorter rectangle having the same area as the proposed MER can

be found. The shorter rectangle also has a dyadic support and the original MER is shaded

in the figure. Due to our preference for longer support, this one are embedded in another

case. Under C1-4 (Figure 14 (b)), a larger embedded dyadic rectangle can be found.
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x
 a δδa+ δa+3a+2

<δ/4

x
 a δ a+3a+ a+2 δδ

<δ/4

Figure 13: Case 2-1 cannot occur.

δ
x

 a δ δa+ a+2 a+4δ a+3
x

 a δ δa+ a+2δ a+4a+3δ
(a) (b)

Figure 14: Case C1-3 & Case C1-4, where Case C1-3 can be covered by another case and
Case C1-4 is impossible. The shaded areas are the original MERs. (a) is for C1-3 and (b)
is for C1-4.
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3.3.2.3 Case C1-2

Case C1-2 is much more complicated. We can divide this case further to get more detailed

subcases. Figure 15 presents some key points that are important in the following discussion.

In this figure and all the figures in the remaining of this report, a solid point means this

point is inside or on the boundary of convex set Ω′. A circle either denotes a point outside

of Ω′, or a point we’re not sure whether it is inside or outside. Notations Pij are used to

denote these points. Points Pi× are in the same height, while the height of points P4× (given

it is not on the x-axis) is half of the height of points P3×. Similarly, the height of points

P3× is half of the height of points P2×. For the horizontal inter-distance among P×j ’s, if

xi,j denotes the x-coordinate of Pij , then intervals (xi,j , xi,j+1), (xi,j+1, xi,j+2) and so on are

successive dyadic intervals with the same length. For the points at different level, the length

of (xi,j , xi,j+1) is half of the length of interval (xi+1,j , xi+1,j+1). Moreover, lij denotes a line

passing through point Pij such that Ω′ is on one side of the line.

a+3δ δa+4δa+
x

a+2δ a

32P31P

22P 24P23P

33P

25P 26P 27P 28P

Figure 15: Case 1-2: an overview.

Now we return to case C1-2. Given Figure 15, where the MER have two vertices P31

and P32, we know that at least one of the points P31 and P32 will be on the boundary of Ω′.

First, we assume P31 is on the boundary. Hence, line l31, passing through P31, can be

chosen such that Ω′ is on the right side of l31. Moreover, P33 should be on the boundary

of Ω′ or P33 /∈ Ω′, i.e., it cannot be inside Ω. Otherwise, we can find a larger embedded

rectangle with dyadic support (a + 2δ, a + 3δ). Furthermore, among P22, P23, P24, P25, P26

and P27, at most one of them will be in the Ω′. Otherwise, we will have a contradiction
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regarding the MER again. Hence, we will have several subcases depending on the status of

each P2j .

If P22 ∈ Ω′ (Figure 16), then l31⊥X and P23 /∈ Ω′. Hence, we can find a line l23 such

that Ω′ is on the left side of l23. To make the possible Ω′ have the maximal area, l23 should

pass P33 as well. The reason is the following. Clearly, the Ω′ with the maximal area is the

triangle surrounded by l31, l23, and x-axis, or the quadrangle surrounded by those three

lines and the additional side vertical to x-axis and parsing through (a+4δ− ε, 0). An offset

ε is introduced because (a+4δ, 0) /∈ Ω′. In Figure 16 (a), point P33 is either on l23 or above

it. Obviously, the polygon with one side passing through P33 has larger area. In Figure 16

(b) and (c), P33 is either on l23 or below it. Difference between (b) and (c) is that in (b),

line l33 intersects with x-axis outside interval (a, a+4δ); in (c), line l33 intersects with x-axis

inside interval (a, a + 4δ). Clearly, from the figures, both of (b) and (c) will give a larger

Ω′ when P33 is on l23. Hence, in this case, the maximal Ω′ is the quadrangle mentioned in

this paragraph. We have, under this circumstance,

|MER|
|Ω′| ≥ 1

4
>

2

9
.

δ δa+4δa+
x

a+2δ a+3 a

31P 32P

l23

l23

l31
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(a) P33 cannot be above l23 (b) P33 cannot be below l23 (c) P33 cannot be below l23

Figure 16: Subcase of Case 1-2, where P31 is on the boundary of Ω′ and P22 ∈ Ω′. (a)
demonstrates that P33 cannot be above l23; (b) demonstrates that P33 cannot be below l23
when l33 intersects with x-axis outside of interval (a, a + 4δ); (c) demonstrates that P33

cannot be below l23 when l33 intersects with x-axis inside of interval (a, a+ 4δ).

If P23 ∈ Ω′ (Figure 17), then P24 /∈ Ω′. Recall P31 is on the boundary of Ω′. We have

that Ω′ is on the right side of l31 and the left side of l24. Through Figure 17 (a), we find

that when the slope of l31 is increasing, the area of the possible Ω′ is increasing. Through
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Figure 17 (b), we find that l24 should pass through P33. Hence, Ω′ is within the triangle

bounded by the l31 that is vertical to the x-axis, the l24 that passes through P33 and the

x-axis. Hence, in this case,
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Figure 17: Subcase of Case 1-2, where P31 is on the boundary of Ω′ and P23 ∈ Ω′. (a)
demonstrates that the larger the slope of l31 is, the larger the possible Ω′ is; (b) demonstrates
that P33 cannot be below or above l24 in order to make a larger feasible Ω′.

If P24 ∈ Ω′ (Figure 18), we have P25 /∈ Ω′. Hence, Ω′ is on the right side of l31 and the

left side of l25. The maximal and applicable Ω′ should be within the triangle bounded by

l31, l25, and the x-axis, where l31 should pass through P23 (Figure 18 (a)) and l25 should

pass through P33 (Figure 18 (b)). Therefore,

|MER|
|Ω′| ≥ 2

9
.

If P25 ∈ Ω′ (Figure 19), Ω′ is on the right side of l31 and the left side of l33. We study

l33 instead of l26 because P26 /∈ Ω′, P33 is on the boundary of Ω′ or P33 /∈ Ω′, and P33 is

exactly below P26. We observe that the possible Ω′ is limited by l31, which passes through

P24 (Figure 19 (a)), l33, which also passes through P26 (Figure 19 (b)), and the x-axis.
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Figure 18: Subcase of Case 1-2, where P31 is on the boundary of Ω′ and P24 ∈ Ω′. (a)
demonstrates that P23 should not be below or above l31 in order to have a larger Ω′; (b)
demonstrates that P33 should not be below or above l25 in order to have a larger Ω′.

Consequently, we have
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Figure 19: Subcase of Case 1-2, where P31 is on the boundary of Ω′ and P25 ∈ Ω′. (a)
demonstrates that P24 should not be below or above l31 in order to have a larger and feasible
Ω′; (b) demonstrates that the larger the absolute value of the slope of l33 is, the larger the
possible Ω′ is.

If P26 ∈ Ω′ (Figure 20), we can prove that such a case is impossible by finding a larger

dyadic rectangle in Ω′ with support (a+2δ, a+3δ). The same thing will happen if P27 ∈ Ω′.
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Figure 20: Subcase of Case 1-2, where P31 is on the boundary of Ω′ and P26 ∈ Ω′. This case
is impossible because we can find a higher dyadic rectangle in Ω′ with support (a+2δ, a+3δ).

If none of P2x ∈ Ω′ (Figure 21). It is obvious that the maximal Ω′ is smaller than the

previous subcases. Possible Ω′’s are illustrated in the figure. Hence,
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Figure 21: Subcase of Case 1-2, where P31 is on the boundary of Ω′ and none of P2j ∈ Ω′

All the above are under the condition that P31 is on the boundary of Ω′. One the other

hand, when P32 is on the boundary of Ω′, it is much simpler. Reader can refer to Figure

22 for more details. More specifically, since P46 ∈ Ω′ and P32 is on the boundary, none of

P2x(x ≥ 2) is in Ω′ and the maximal possible Ω′ is bounded by the x-axis, l32, which also

passes through P46, and the vertical line passes through point (a, 0). Hence, we have

|MER|
|Ω′| ≥ 2

9
.
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Figure 22: Subcase of Case 1-2, where P32 is on the boundary of Ω′. In this case, the
maximal Ω′ is bounded by the x-axis, l32 which also passes through P46, and the vertical
line passes through point (a, 0).

We have finished the discussion about case C1-2. The analysis for the other cases is

similar. We will just briefly go through the proof. Readers should be able to figure out the

details by referring to the figures.

3.3.2.4 Case C1-5

For case C1-5, it can be subdivided as follows. Two points are critical: point P23 and point

P24. For these two points, at least one of them should be on the boundary of Ω′.

We first assume that point P24 is on the boundary of Ω′ (Figure 23 and Figure 24).

Hence, Ω′ is on the left of certain line l24, which passes through P24. Furthermore, P31 /∈ Ω′,

otherwise, the MER has support (a+ δ, a+2δ). So, Ω′ is on the right of the line l31. Figure

23 shows that the possible Ω′ is larger when the slope of l31 is larger. Figure 24 details that

l24 should pass though P33 (actually, a little below P33 since P33 /∈ Ω′) in order to get larger

Ω′. Hence, the maximal possible Ω′ is surrounded by vertical line l31, the x-axis, and l24

which also passes through P33. So, we have

|MER|
|Ω′| ≥ 2

9
.
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Figure 23: Subcase of Case 1-5, where P24 is on the boundary of Ω′. For the slope of l31,
Ω′ is on the right of l31, and the possible Ω′ is larger when the slope of l31 is larger.
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(a) P33 cannot be above l24 (b) P33 cannot be below l24

Figure 24: Subcase of Case 1-5, where P24 is on the boundary of Ω′. For the slope of l24,
comparing with the case where P33 is on l24, (a) demonstrates that the maximal possible Ω′

is smaller when P33 is above l24; (b) demonstrates that the maximal possible Ω′ is smaller
when P33 is below l24.
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Next, if we assume point P23, not point P24, is on the boundary of Ω′ (Figure 25 and

Figure 26). Hence, Ω′ is on the right of certain line l23. Furthermore, P25 is not inside Ω′,

which means that there exists a line l25 such that Ω′ is on the left of it. Note l23 and l25 are

critical here. From Figure 25, we observe that l25, making a larger Ω′, should pass through

P33. From Figure 26, we observe that l23, making a larger Ω′, should also pass through P31.

Hence, the maximal possible Ω′ is surrounded by these two specified lines and the x-axis.

We have
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(a) P33 cannot be above l25 (b) P33 cannot be below l25

Figure 25: Subcase of Case 1-5, where P23 is on the boundary of Ω′. We are considering
the slope of l25. Comparing with the case where P33 is on l25, (a) demonstrates that the
maximal possible Ω′ is smaller when P33 is above l25; (b) demonstrates that the maximal
possible Ω′ is smaller when P33 is below l25.

We finish case C1-5 and conclude that under this case, the theorem holds.

3.3.2.5 Case C2-2

Now we look at case C2-2, which is quite similar with case C1-2, but more complicated.

The reason is we have more P2j ’s to be considered.

With an overview of this case (Figure 27), we know either P41 or P42 will be on the

boundary of Ω′. Due to the symmetry, these two are the same and we assume that P41 is

on the boundary. Furthermore, among P24 up to P211, at most one of them will be inside
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Figure 26: Subcase of Case 1-5, where P23 is on the boundary. We are considering the slope
of l23. Comparing with the case where P31 is on l23, (a) demonstrates that the maximal
possible Ω′ is smaller when P31 is above l23; (b) demonstrates that the maximal possible Ω′

is smaller when P31 is below l23.

of Ω′. Hence, we will have several subcases with respect to the state of each P2j . We deal

with them in the following.

δδa+ a+2δ a a+3
x

PP P211

P41

P32

210

42

P34

P

P24 P25 P26

P33

27 P28 P29

Figure 27: Case 2-2: an overview. Either P41 or P42 is on the boundary of Ω′. We assume
it is P41. For points P2j , at most one of them will be inside of Ω′.

If P24 ∈ Ω′ (Figure 28), we can prove this case is impossible since we can find a larger

dyadic rectangle in Ω′ with support (a + δ, a + 0.5δ). Similarly, the cases where P28 ∈ Ω′,

or P29 ∈ Ω′, or P210 ∈ Ω′, or P211 ∈ Ω′ contradict with the assumption of the MER. Hence,

only 4 subcases need to be analyzed.

If P25 ∈ Ω′ (Figure 29 and Figure 30), then P26 is the closest point to P25 among the

P2j ’s and P26 /∈ Ω′. Hence, in this case, the critical lines are l26 and l41, where Ω′ is on

the left side of certain l26 and the right hand side of certain l41. Figure 29 deals with the
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a+2δ a a+3δδa+
x

PP P211

P41

P32

Figure 28: Subcase of Case 2-2, where P24 ∈ Ω′. This case cannot happen since a larger
embedded dyadic rectangle can be found.

slope of l41 and Figure 30 deals with the slope of l26. From Figure 29, we observe that

the larger the slope of l41, the larger the possible Ω′. From Figure 30, we observe that l26

should pass through P34 to enclose a larger Ω′. Hence, the maximal possible Ω′ is enclosed

by the vertical l41, the x-axis, and l26 that also passes through P34. Hence, we have
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Figure 29: Subcase of Case 2-2, where P25 ∈ Ω′. The slope of l41 is considered. It is clear
that the larger the slope is, the larger the possible Ω′ is.

If P26 ∈ Ω′ (Figure 31), then P25 and P27 are not inside Ω′. Recall P41 is on the boundary.

Three lines are critical, l25, l27, and l41. Set Ω′ is on the right of l25 and l27 and on the

left of l41. Clearly from the figures, in order to enclose a larger possible Ω′, l27 should pass
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Figure 30: Subcase of Case 2-2, where P25 ∈ Ω′. The slope of l26 is considered. Comparing
with the case where P34 is on l26, (a) demonstrates that the maximal possible Ω′ is smaller
when P34 is above l26; (b) demonstrates that the maximal possible Ω′ is smaller when P34

is below l26.

through P34 (Figure 31 (a)), and l25 and l27 are the same line (Figure 31 (b)). Therefore,

the maximal possible Ω′ is surrounded by l27 that passes throught P34, line l41 that passes

through P25, and the x-axis. The relationship between the MER and the convex set Ω′ is
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Figure 31: Subscase of case 2-2, where P26 ∈ Ω′. Ω′ is surrounded by l25, l27 and l41. (a)
demonstrates that P34 cannot be below or above l27 in order to enclose a larger feasible Ω′.
(b) demonstrates that P41 cannot be below or above l25 in order to have a larger feasible
Ω′.

If P27 ∈ Ω′ (Figure 32), Ω′ are surround by lines l26, l34 and l41. Obviously, l34 is vertical

to the x-axis. From the figure, when the slope of l41 is larger, larger Ω′ could be enclosed.
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The slope of l26 can be found not changing the maximal possible Ω′. Hence,
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Figure 32: Subcase of Case 2-2, where P27 ∈ Ω′. The maximal Ω′ is limited by vertical l41,
vertical l34, the x-axis, and l26. Slope of l26 won’t change the area of the maximal Ω′ as
long as it passes through P41, or l41 is vertical.

If none of P2j ∈ Ω′, we can get more detailed subcases according to the status of P32, P33

and P34. In each case, however, it is easy to verify the area of the MER is at least 1
4 of the

area of Ω′. This number is greater than 2
9 . We leave this for the readers.

Hence, case C2-2 is proved.

3.3.2.6 Case C2-3

In case C2-3, the MER has vertices P31 and P32 and support (a + 0.5δ, a + δ). Therefore,

either P31 or P32 is on the boundary of Ω′.

If the point on the boundary is P32, as shown in Figure 33, none of P2x, x ≥ 1 in Ω′ since

(a+2δ, 0) is inside Ω′. Hence, the limiting boundary for the maximal Ω′ is: the vertical line

passing (a, 0) (la), l32 that passes P42, and the x-axis. Please refer to Figure 33 for more

details. Obviously, we have

|MER|
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.
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Figure 33: Subcase of Case C2-3, where P32 is on the boundary of Ω′. None of P2j is inside
of Ω′. Ω′ is surrounded by the vertical line la, the x-axis, and l32 that also passes P42.

On the other hand, if P31 is on the boundary of Ω′ (Figure 34), notice P33 /∈ Ω′ and

(a + 2δ, 0) ∈ Ω′. So, Ω′ is between l31, l33 and the x-axis. We can easily check that when

the largest possible Ω′ is enclosed, l33 passes through (a + 2δ, 0) since P42 /∈ Ω′, and l31 is

vertical. Hence, in this case,
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9
.

Therefore, case C2-3 is checked.
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Figure 34: Subcase of Case C2-3, where P31 is on the boundary of Ω′. Region Ω′ is between
l31 and l33. Note firstly, the larger the slope of l31, the larger the possible Ω′. Secondly,
(a + 2δ, 0) is below l33. However, the larger the distance between them, the smaller the
possible Ω′.
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3.3.2.7 Case C2-4

For C2-4, either P32 or P33 is on the boundary of Ω′. The case while P33 is on the boundary

is much easier than the other. We first consider the easier case. When P33 is on the

boundary (Figure 35), P31 /∈ Ω′. Hence, Ω′ is between l31 and l33. For line l31, obviously,

the larger the slope of l31, the larger the possible Ω′. Similar with the last subcase of C2-3,

for l33, , when l33 passes (a+ 2δ, 0), the enclosed Ω′ has larger area. Hence, we have
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Figure 35: Subcase of Case C2-4, where P33 is on the boundary of Ω′. Region Ω′ is between
l31 and l33. Note firstly, the larger the slope of l31, the larger the possible Ω′ is. Secondly,
(a + 2δ, 0) is below l33. However, the larger the distance between them, the smaller the
possible Ω′.

Meanwhile, if P32 is on the boundary of Ω′, we can find an l32 such that Ω′ is on the

right side of it. Furthermore, among P24 up to P27, at most one of them will be in the Ω′.

So we will have several subcases with respect to the status of each P2j , 4 ≤ j ≤ 7.

If P24 ∈ Ω′ (Figure 36), then P25 /∈ Ω′. Furthermore, we have P42 /∈ Ω′. Hence, l32, l25,

and l42 are crucial. Best states of these lines are: l32 is vertical to the x-axis, l25 is parallel

to the x-axis, and l42 is vertical to the x-axis. Please refer to the figure. So,
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.
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Figure 36: Subcase of Case C2-4, where P32 is on the boundary and P24 ∈ Ω′. Ω′ is bounded
by l32, l25, l42, and the x-axis. Line l32 is vertical because both P24 and P32 are on the line.
l25 being zero and l42 being vertical will enclose larger Ω′ that is applicable.

If P25 ∈ Ω′ (Figure 37), Ω′ is bounded by l32, l26 and the x-axis. The best status is: l32

is vertical to the x-axis and l26 passes P42, referring to the figure. Hence, we have
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If P26 ∈ Ω′ (Figure 38), Ω′ is bounded by l32 and l27. The best case, which includes a

maximal possible Ω′, is: l32 passing P25 and l27 passing P42. Details can be found in the

figure. Hence, we have
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If P27 ∈ Ω′ (Figure 39), Ω′ is bounded by l32 and l28. The best case is: l32 passing P26

and l28 vertical. Details can be found in the figure. Again, we have
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.

If none of P2x ∈ Ω′, x = 4, 5, 6, 7 (Figure 40), Ω′ could be surrounded by l32, l24, and l28.

One of the best status is: l32 is vertical to the x-axis, l25 is parallel to the x-axis, and l42 is

40



 a
x

a+2 a+3δa+δ δ

26

P

42P

32P

41P

211P210P29P28P27P

33P P

26l

26

l

26l

26l 32l

31P

25P24P

34

Figure 37: Subcase of Case C2-4, where P32 is on the boundary of Ω′ and P25 ∈ Ω′. Ω′ is
bounded by l32, l26, and the x-axis. For l32, the larger the slope is, the larger the possible
enclosed Ω′ is. For l26, point (a+ 2δ, 0) is below l26. The larger the distance between them
is, the larger the possible Ω′ is. Meanwhile, l26 is below P42 since P42 not in Ω′. Hence, the
best l26 passes P42.
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(a) slope of l32 (b) slope of l27

Figure 38: Subcase of Case C2-2, where P32 is on the boundary and P26 ∈ Ω′. Ω′ is bounded
by l32 and l27. (a) indicates that in order to include a larger possible Ω′, l32 should pass
P25, or more correctly, slightly below P25; (b) indicates that l27 should pass P42 to include
larger area.
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Figure 39: Subcase of Case 2-4, where P32 is on the boundary and P27 ∈ Ω′. Region Ω′ is
bounded by l32 and l28. For l32, when P26 is on it, the embedded area is larger than the
area when P26 is not on the line. Line l28 should be vertical because P34 and P42 are not in
Ω′.

vertical to the x-axis. Hence,
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Figure 40: Subcase of Case C2-4, where P32 is on the boundary of Ω′ and none of P2j ∈ Ω′.
Ω′ is surrounded by l32, l24, and l28. Line l28 is vertical because P34 is outside Ω′ and
(a+ 2δ, 0) is inside. l24 is horizontal because l28 is vertical and more area are supposed to
be enclosed. Hence, given l28 and l24, the slope of l32 can be any positive value as long as
(a, 0) is above it.

3.3.2.8 Cases C2-5, C2-6, C2-7, C2-8, and C2-9

Cases C2-5 to C2-8 are similar to cases C1-3 and C1-4 (Figure 41 and Figure 42), where

another embedded dyadic rectangle with larger area or with the same area but longer

42



support can be found. Hence, these cases are either impossible or covered by other cases.

x
 a δa+ a+2δ δa+3

x
 a δa+ a+2δ δa+3

(a) C2-5 (cannot happen) (b) C2-6 (cannot happen)

Figure 41: Case C2-5 & Case C2-6. Two impossible cases because a larger embedded
dyadic rectangle can be found with support (a+ 0.5δ, a+ δ).

x
 a δa+ a+2δ δa+3

x
 a δa+ a+2δ δa+3

(a) C2-7 (covered by another case) (b) C2-8 (cannot happen)

Figure 42: Case C2-7 & Case C2-8. (a) indicates that case C2-7 is covered by another
case since comparing with the shaded part, a lower embedded rectangle with the same area
but smaller height can be found; (b) indicates that case C2-8 is impossible because a larger
dyadic rectangle can be found.

3.3.2.9 Case C2-9

This case is almost the same as case C1-5. For point P25 and point P26, at least one of

them should be on the boundary of Ω′. We first assume that point P26 is on the boundary

(Figure 43 and Figure 44). Hence, there exists a line l26 such that Ω′ is on the left side of

this line. Furthermore, we have P32 /∈ Ω′, so there is a line l32 such that Ω′ is on the right

side of it. The best choice for such l32 and l26 is that l32 is vertical (Figure 43) and l26

passing P34. Therefore, we have

|MER|
|Ω′| ≥ 2

9
.

On the other hand, when P25 is on the boundary of Ω′ (Figure 45 and Figure 46). Lines
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a+2δ a+3δδa+ a
x

P28

l26

l32

34

32l

P24 P25 P26

33

P27

P32 PP

Figure 43: Subcase of Case C2-9, where P26 is on the boundary of Ω′. Region Ω′ is between
l32 and l26. The slope of l32 is considered here. The line should be vertical such that the
enclosed area is larger.

a+2δ a+3δδa+ a
x

P28

l26

l32

34

26l

P24 P25 P26

33

P27

P32 PP

a+3δδa+ a+2δ a
x

PP

l26

l32

l26

28P24 P25 P26

P33

27

P32 P34

(a) P34 cannot be above l26 (b) P34 cannot be below l26

Figure 44: Subcase of Case 2-9, where P26 is on the boundary of Ω′. Region Ω′ is between
l32 and l26. The slope of l26 is considered here. In order to include more area, (a) indicates
that P34 cannot be above l26 and (b) indicates that P34 cannot be below l26.
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l27 and l25 are crucial, because Ω′ is between them. From those two figures, the enclosed

possible Ω′ is maximized if l27 passes P34 (Figure 45) and l25 passes P32 (Figure 46). Hence,

we have

|MER|
|Ω′| ≥ 2

9
.

δδa+ a+2δ a a+3
x

PP

l27

l27

l25

28P24 P25 P26

P33

27

P32 P34

δδa+ a+2δ a a+3
x

PP

l25

l27

l27

28P24 P25 P26

P33

27

P32 P34

(a) P34 cannot be above l27 (b) P34 cannot be below l27

Figure 45: Subcase of Case 2-9, where P25 is on the boundary. Consider the slope of l27, (a)
indicates that the enclosed area is smaller if P34 is above l27; (b) indicates that the enclosed
area is smaller if P34 is below l27.

a+3δδa+ a+2δ a
x

PP

l27

l25 l25

28P24 P25 P26

P33

27

P32 P34

δδa+ a+2δ a a+3
x

PP

l27 l25

l25

28P24 P25 P26

P33

27

P32 P34

(a) P32 cannot be above l25 (b) P32 cannot be below l25

Figure 46: Subcase of Case 2-9, where P25 is on the boundary. We consider the slope of
l25. (a) indicates that the enclosed area is smaller if P32 is above l25; (b) indicates that the
enclosed area is smaller if P32 is below l25.

Based on all the above, we have proved the Theorem 2.1.
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3.4 Discussion and Conclusion

Similar works, regarding constants related to multiscale methods in other scenarios, can be

found in [47, 48].

Note for Theorem 2.1, there may exist other partitions or other methods, which could

give a simpler proof. But our intention is to show that such a non-zero constant, 2/9, exists.

This constant tells us that as long as h(v)-parallelograms are detectable, convex sets are

detectable. Hence we can guarantee the detectability of convex sets. Such a result can

be used in the pre-screening of large volume of images. We have stated several potential

applications in Introduction.

More discussions and potential applications will be provided in [74], which is a derivative

of this part of the thesis. We will try to exam the results in real problems, such as the Cryo-

EM images.
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PART II

Regression Models



CHAPTER IV

INTRODUCTION

4.1 Linear Model

Linear regression is one of the most widely used statistical technique for investigating the

relationship between variables. Applications of linear regression are numerous and occur in

almost every field, including engineering, medical science, economics, psychology, manage-

ment, and many more. It has been a mainstay of statistics for the past decades and remains

one of the most important tools.

The linear regression model assumes that the relationship between the expected response

(denoted by E(Y |A)) and the predictors (denoted by Aj , j = 1, 2, ...,m) is linear, or can be

reasonably approximated by a linear model. Mathematically, the linear regression model is

Y = Ax + ε,

where the notations are explained as follows:

• Y = [Y1, Y2, · · · , Yn]T is the response vector, in which Yi is the observed response in

the ith trial;

• A = [A1, A2, · · · , Am] ∈ Rn×m is called model matrix, in whichAj = [a1j , a2j , · · · , anj ]T ,

j = 1, 2, ...,m, is the value of the jth predictor in all trials;

• x = [x1, x2, ..., xm]T are unknown parameters (or coefficients) that we want to esti-

mate;

• ε = [ε1, ε2, ..., εn]
T are the random errors, which are sampled from distribution F with

mean zero. Traditionally, people assume that εi’s are i.i.d. normal distributed.

Linear models were largely developed in the pre-computer age of statistics, because they

are simple and easy to be interpreted. However, even in today’s computer era there are
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still good reasons to study and use the linear models due to several reasons. First of all,

although complicated non-linear models are available right now, for predictions purposes,

linear models can sometimes outperform fancier models, especially in situations with small

numbers of training cases or sparse data. Secondly, notice that the linear model is linear

in the parameters, not the variates. The variates Aj can be quantitative inputs, transfor-

mations of quantitative inputs, qualitative values, or interaction between variables. This

expansion considerably extends the scope of the linear regression. Thirdly, real world is

much more complicated than the theoretical assumption. In many applications, errors are

not normal distributed, inputs can be correlated, or data could be misreported. Developing

robust estimators that can survive the distortion is an interesting problem. Finally, be-

cause of the rapid development of the computer resources, the size of the data for analysis

becomes much larger. Some of the data contain thousands of variates. It’s impossible and

unpractical to interpret the model with huge number of predictors. How to eliminate the

low-effect variables and contains the most related ones is another interesting problem.

Following the above concerns, two aspects have interested us.

• One is the robustness of the model. The word “robust” in this chapter means the

insensitivity against the error distributions that belong to a family, in which the

probability of large errors is small however present. How can we develop a meaningful

estimator that can remove or reduce the effect of large errors? How is it compared

with the traditional robust estimators such as M -, L-, and R- estimators?

• The other is the sparsity. The word “sparsity” means that the number of predictors

useful for the prediction or explanation are significantly less than the total number

of predictors. Fast algorithms are introduced for estimation and variable selections.

Statistical criteria are developed to guide the model selection through many consider-

ations. Some interesting questions are: how well a greedy algorithm is used in subset

selection? How can greedy approaches be connected with global statistical criterion

of optimality?

We will try to analyze and answer these questions in the second half of this dissertation.

48



4.2 Contributions

This part of this dissertation is to give new results with respect to the linear model. As

mentioned in the previous section, two aspects of the linear models are studied: regression

with non-Gaussion noise and variable selection through stepwise and/or all-subset selec-

tion algorithms. Specifically, we have developed new regression mechanism for noise with

outliers, analyzed the performance of certain stepwise algorithms in subset selection, and

proposed a new all-subset selection algorithms. The main contribution of this part can be

summarized as follows:

• We have derived a new robust estimator appropriate for the linear regression model

with stochastically bounded noise. Given this type of noise and some necessary regu-

larity conditions, we show that this robust estimator is a locally asymptotical minimax

estimator. Simulations on the real as well as artificial data demonstrate the advantages

of this new estimator over the Least Square Estimator and the Huber’s M-estimator.

An easy-to-implement algorithm is obtained based on the proximal point method. We

also present an alternative approach, using a state-of-the-art optimization software,

to solve the derived estimation problem.

• We analyze the effectiveness of least angle regression in correctly retrieving the original

variables that produce the signal. We revisit the connection between least angle

regression and Lasso by showing that least angle regressions give the same solution

as Lasso. We also provide a counterexample in which least angle regressions cannot

get the correct subset. This counterexample stirs the interest in finding the condition

for accurate model selection. We prove that many existing criteria in subset selection

means to solve an NP-hard problem. But its solution, under some conditions, is

the same with the solution that certain stepwise algorithms provide. We study the

these conditions that leads to common solutions. Several conditions are derived, from

different aspects.

• We also study the all subset searching algorithms for linear model. The leaps-and-

bounds algorithm is currently the state-of-the-art. We review the algorithm with our
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new data structure, which is easier to be understood than the original description.

Based on the same framework, we introduce an enhanced algorithm by including

newly designed optimality tests in each iteration in order to exclude (i.e., leap) more

non-optimal subsets. Simulations validate the improvements.

4.3 Organization of part II

The rest of part II is organized as follows.

• Chapter 5 derives RSBN (regression with stochastically bounded noises) as a new

robust estimator. It is proven that RSBN estimator is a locally asymptotic minimax

estimator. The derived estimator is compared with the least square estimator, which

is a mainstay of statistics, and the Huber’s estimator, which heavily influenced the

development of robust estimators.

• Chapter 6 focuses on the concurrence of two optimization solutions. One is the solu-

tions of certain stepwise algorithms, such as LARS for Lasso. The other is the existing

criteria in subset selection. It is shown that in some cases, these two problems can

have concurrent solutions. We derive several conditions for the exact recovery for

either problem, and for both of them. An extreme example with respect to the least

angle regressions is constructed, which by itself is interesting.

• Chapter 7 develops an advanced algorithm for all subset selection, based on the leaps-

and-bounds algorithm by Furnival and Wilson (1974). New optimality tests are added

into the original simple tests that based only on the the residual sums of squares. The

new method brings more information under consideration, so that it can exclude more

non-optimal subsets.

• Appendix contains the details of some proofs. Appendix A gives the proofs associated

with the development of RSBN. Appendix B gives the proofs regarding the results of

LARS.

50



CHAPTER V

RSBN: REGRESSION WITH STOCHASTICALLY

BOUNDED NOISES

In this chapter, we consider M-estimates in a regression model where the noises are of

unknown but stochastically bounded distribution. An asymptotic minimax M-estimate is

derived. Simulations demonstrate the robustness of this approach, as well as advantages over

commonly used estimates such as the ordinary least square estimate and the Huber’s esti-

mate. The new method is named regression with stochastically bounded noises (RSBN). We

provide an iterative numerical solution, which is derived from the proximal point method.

The iterative method is elegant, however may not have fast rate of convergence. RSBN can

also be solved by applying existing state-of-the-art nonlinear optimization software. We

present SNOPT as one example. Insights from RSBN are discussed.

This chapter is organized as follows. Section 5.1 summarizes the contributions of this

chapter. Section 5.2 presents the formulation and the main theoretical result. Section 5.3

establishes the asymptotic minimaxity of the proposed estimate. Section 5.4 describes the

numerical algorithm that is derived from the proximal point method. Related analysis on

the convergence of this algorithm is presented. Section 5.5 presents an alternative numer-

ical approach, which utilizes a state-of-the-art but commercialized optimization software.

Section 5.6 conducts simulations that consolidate our findings. Section 5.7 and Section 5.8

present the discussions and the conclusions, respectively.

5.1 Introduction

We consider a regression problem in which the noise distribution is unknown, but some

probabilistic information is available. More specifically, we consider the cases when the

noise is stochastically bounded: there exist constants δ > 0 and 0 < α < 1, such that

Prob.{|noise| > δ} < α. In a regression framework, we derive the asymptotic minimax
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estimate of the coefficients for all noise distributions satisfying the above condition.

Interesting similarity between the derived minimax estimate and some recently emerged

criterion functions in model selection is inspiring. Specifically, the fact that the objective

function become linear outside a neighborhood of the origin coincides with the ℓ1-norm

principle that has recently gained popularity via methods such as Lasso [90] and Basis

Pursuit [12].

RSBN can be viewed as an extension of the well-developed Huber M-estimate. Hence

it is a development in the line of robust statistics. We found that by deriving the exact

form of the asymptotic minimax estimate of the coefficients, we can achieve slightly better

numerical performance. Simulations on synthetic data are reported to demonstrate our

findings.

Using the proximal point method in optimization, we develop an iterative approach

that is extremely simple to implement — it takes a few lines in MATLAB. However, its

numerical performance is not satisfactory: it can converge extremely fast in some situations,

and extremely slow in some pathological cases. We give our analysis on the speed of

convergence in some simplified situations. We also present an alternative: using existing

state-of-the-art optimization software packages, e.g., SNOPT.

5.2 Formulation and Main Theoretical Result

Recall that a regression model is

y = Ax + ε,

where y = (y1, y2, · · · , yn)T ∈ Rn is the response vector, x ∈ Rm is a vector of coef-

ficients, model matrix is A = [a1, a2, · · · , an]T ∈ Rn×m, and a random error vector is

ε = (ε1, ε2, . . . , εn)
T . Without loss of generality, for the rest of the chapter, we assume that

vectors ai’s are standardized (i.e., ‖ai‖2 = 1, for i = 1, 2, . . . , n) and the model matrix A is

of full column rank (equivalently, matrix inverse (ATA)−1 exists). Furthermore, we assume

that the random errors εi, i = 1, 2, . . . , n, are i.i.d. with a common density function f .

Given a set of coefficients x, the residual associated with the ith response is ri = yi−aTi x.
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One can estimate the set of coefficients by solving the following optimization problem:

minimize
∑n

i=1 ρ(ri), (7)

subject to ri = yi − aTi x, i = 1, 2, · · · , n.

Here, we normally require function ρ to be convex; because convex optimization problem

in principle is much more amenable than other optimization problems (e.g., combinatoric

optimization problems). If we define a residual vector r = (r1, r2, · · · , rn)T ∈ Rn, the

restriction of the above optimization problem can be rewritten as r = y−Ax. Another way

to express the optimization problem in (7) is:

minimize ρ(r) =
∑n

i=1 ρ(ri),

subject to r = y −Ax.

A key feature of the above formulation is that the criterion function (which is also the

objective) is an additive function with respect to the residuals ri. The criterion depicted in

(7) covers many known approaches. For example, when ρ(x) = x2, we have the ordinary

least square estimate.

We consider the situation when the random errors εi satisfy the following condition.

Condition 2.1 (stochastically bounded noises) In a regression model, if for i.i.d. ran-

dom errors εi, i = 1, 2, . . . , n, we have

Prob.(|εi| > δ) ≤ α, ∀1 ≤ i ≤ n,

where δ > 0 and 0 < α < 1 are predetermined, then we have stochastically bounded noises.

In this chapter, we propose the following function for ρ(x):

ρ(x) =





− log cosλ1(x/δ), if |x/δ| < 1;

λ1 tanλ1 · |x/δ| − λ1 tanλ1 − log cosλ1, if |x/δ| ≥ 1.
(8)

where 0 < λ1 < π/2 is a function of α. The analytic relation between λ1 and α will be

established when we derive the asymptotic minimaxity of the above estimate. Figure 47

gives a graphical comparison between the above ρ and the objective functions that are used

in the least square estimate and the Huber’s M-estimate.
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Figure 47: Objective function ρ(x) in ordinary least square, Huber’s M-estimate, and
RSBN.

When the function ρ(x) has the form in (8), the obtained estimate is called a regression

with stochastically bounded noise (RSBN) estimate. With our choice of ρ, problem (7) turns

into a nonlinear optimization problem. The main reason to choose the function ρ in (8) is

the following theorem.

Theorem 2.2 Under the ‘stochastically bounded noises’ condition, the estimate from (7)

with the function ρ specified in (8) is the asymptotic local minimax estimate of the coefficient

vector x.

The above theorem will be established in the next section. Note we proved local minimaxity,

instead of global minimaxity. Distinction between the two will be discussed in Section 5.7.5.

5.3 Regression Achieving Asymptotic Minimaxity

Theoretical foundation of RSBN will be presented in the following subsections:

• Asymptotic normality (Section 5.3.1): we establish that the solution to (7) is asymp-

totically normal.

• Minimum asymptotic variance estimation (Section5.3.2): we derive the estimate that

achieves the minimum asymptotic variance.

• Least informative distribution (Section 5.3.3): we study the worst case in estimation,
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which is equivalent to finding the least informative distribution. By doing so, we get

a locally asymptotic minimax estimate.

• Regression with stochastically bounded noises (RSBN) (Section 5.3.4 and 5.3.5): we

present our regression method, by specifying the function ρ(·) in (7).

• Fisher information (Section 5.3.6) and asymptotic variance (Section 5.3.7): we de-

rive the Fisher information for the least informative distribution and the asymptotic

variance for the RSBN estimate.

• Robustness (Section 5.3.8): we consider the robustness of the estimate by specifying

its breakdown point.

5.3.1 Asymptotic Normality

The solution to (7) is an M-estimate. In this section, we derive the asymptotic normality

of an M-estimate.

We start with assumptions and notations. First, we consider location estimation. In

(7), we temporarily assume that m = 1 and ai = 1, i = 1, 2, · · · , n. Suppose ρ has the

second derivative. Let ψ = ρ′ be the first derivative of ρ. Define a function λ(t, F ) =

∫
ψ(ξ−t)dF (ξ), for t ∈ R, where F is a cumulative distribution function (c.d.f.) of a random

variable ξ. Define a functional T from distribution space to R, such that λ(T(F ), F ) = 0.

Value T(F ) is defined as the true location parameter. Let Fn be the empirical c.d.f. Note

that λ(x, Fn) = 0 is the first order necessary condition (FOC) for a minimizer of (7). It is

easy to see that T(Fn), which satisfies λ(T(Fn), Fn) = 0, is an M-estimate for n samples.

The asymptotic normality theorem is typically derived in the following three steps:

1. Firstly, we have

0 = λ(T(F ), F ) − λ(T(Fn), F ) + λ(T(Fn), F ) − λ(T(Fn), Fn)

= [T(F ) − T(Fn)]
λ(T(F ), F ) − λ(T(Fn), F )

T(F ) − T(Fn)

− 1

n

n∑

i=1

[ψ(yi − T(Fn)) − λ(T(Fn), F )] . (9)
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2. We assume some regularity conditions are satisfied, and T(Fn) → T(F ). (As long as

ψ is monotone and Fn ⇒ F , which are generally satisfied conditions, T(Fn) → T(F )

is true.) We have

λ(T(F ), F ) − λ(T(Fn), F )

T(F ) − T(Fn)
⇒ ∂

∂t
λ(t, F )|t=T(F )

=

∫
ψ′(x− T(F ))dF (x). (10)

Since ρ has the second derivative, the derivative ψ′ exists. The above also implies

that the right hand side of (10) is integrable.

3. Observe

1

n

n∑

i=1

[ψ(yi − T(Fn)) − λ(T(Fn), F )]

⇒ 1√
n

Normal

(
0,

∫
ψ2(x− T(F ))dF (x)

)
. (11)

This is a direct result from central limit theorem (CLT) because the left hand side is

a sum of i.i.d. random variables. We suppose to check the Lindeberg condition. In

this chapter, we assume the condition is satisfied. For more details, see [38].

Combining (9), (10) and (11), we have

T(Fn) − T(F ) ∼ 1√
n

Normal

(
0,

∫
ψ2dF

(
∫
ψ′dF )2

)
.

The asymptotic variance is equal to
R
ψ2dF

(
R
ψ′dF )2

.

The above result can be generalized to a multivariate parameter case. When m > 1

and matrix A is of full column rank, the asymptotic variance/covariance matrix of the

M-estimate will be
R
ψ2dF

(
R
ψ′dF )2

(ATA)−1. For reference, please see Chapter 7.6 in [44].

Lemma 3.1 Given function ρ(·) that has a monotone increasing first derivative ψ = ρ′

and its second derivative is integrable in (10), the estimate given by (7) has the asymptotic

distribution

Normal

(
x0,

1

n

∫
ψ2dF

(
∫
ψ′dF )2

(ATA)−1

)
,

where the vector x0 is made of the true values of the coefficients.

We take the quantity
R
ψ2dF

(
R
ψ′dF )2

as a natural measure of performance for an M-estimate.

The smaller this quantity, the closer the M-estimate is to the true value of the parameter.
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5.3.2 Minimum Asymptotic Variance Estimation

We call the quantity
R
ψ2dF

(
R
ψ′dF )2

the asymptotic variance. It is known that the asymptotic

variance is lower bounded by the inverse of Fisher information. The following analysis is

well-adopted in mathematical statistics.

Let fθ = f(x− θ) be the p.d.f. associated with c.d.f. Fθ and location parameter θ. I(f)

is the Fisher information with respect to θ. We have

λ(θ, Fθ) =

∫
ψ(x− θ)f(x− θ)dx = constant.

Taking the operator ∂
∂θ on both sides, we get

0 = −
∫
ψ′(x− θ)f(x− θ)dx−

∫
ψ(x− θ)f ′(x− θ)dx. (12)

Here we assume both ψ and f are absolutely continuous and have first derivatives. From

(12),

1 =

[∫ (
ψ∫
ψ′f

)
·
(
−f

′

f

)
f

]2

Cauchy
≤

∫ (
ψ∫
ψ′f

)2

f ·
∫ (

−f
′

f

)2

f

=

∫ (
ψ∫
ψ′f

)2

f · I(f),

where I(f) is the Fisher information of f . So asymptotic variance
∫ ( ψR

ψ′f

)2
f ≥ 1

I(f) .

It achieves equality iff ρ′ = ψ ∝ −f ′

f = (− log f)′, in which case the M-estimate is also

the maximum likelihood estimate (MLE). When ρ = − log f , we call the solution to (7) the

minimum asymptotic variance estimate. The result in this subsection is summarized as the

following lemma.

Lemma 3.2 The asymptotic variance of the estimate from (7) is lower bounded by 1/I(f).

The lower bound is achieved when ρ ∝ (− log f), i.e., when the estimate is the maximum

likelihood estimate.

5.3.3 Least Informative Distribution

The smaller the Fisher information I(f) is, the larger is the lower bound of the asymptotic

variance. We are interested in the least informative distribution, which is the solution to
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the following optimization problem: (note the variable is a function f)

minimize I(f), (13)

subject to
∫
v(x)f(x)dx ≤ 0,

∫
f(x)dx = 1.

Note in our framework, function f is assumed to have second derivative. Otherwise, a

piecewise constant function f may lead to I(f) = 0, which leads to infinite asymptotic

variance. Such a case is excluded by demanding the existence of the second derivative.

The first constraint is a general form of many types of restrictions on the noise distri-

bution. For example, if

v(x) =





−α, |x| < δ,

1 − α, |x| ≥ δ,
(14)

we have
∫ δ
−δ f ≥ 1 − α. This implies stochastically bounded noises. This condition is

meaningful when there are outliers. If v(x) = x2 − B, we have
∫
x2f(x)dx ≤ B, which

is the second moment constraint. Similarly, we can have some other moments constraints.

The second constraint in (13) is the constraint of a p.d.f.

To find the solution to (13), we consider the following function:

µ(f) = I(f) + β1[

∫
v(x)f(x)dx+ γ2] + β2[

∫
f(x)dx− 1],

where β1 and β2 are the Lagrange multipliers, and γ ∈ R is a pseudo-variable:
∫
v(x)f(x)dx+

γ2 = 0. We consider a variational approach. Assume function f0 is a minimizer in (13).

For any other p.d.f. f1, consider ft = (1− t)f0 + tf1, 0 ≤ t ≤ 1. Because f0 is a minimizer,

we must have d
dtµ(ft)|t=0 ≥ 0 for any f1, which is equivalent to

−4

∫
(
√
f0)

′′
√
f0

(f1 − f0)dx+ β1

∫
v · (f1 − f0)dx+ β2

∫
(f1 − f0)dx ≥ 0.

The above holds if and only if

4
(
√
f0)

′′
√
f0

− β1 · v − β2 = 0. (15)

Note the above is a necessary condition for f0 to be the solution to (13).
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Lemma 3.3 If a function f0 has second derivative and achieves a local minimum in (13),

then it satisfies the equation (15).

In the next subsection, we construct a function f0 that satisfies (15). This constructed

function f0 leads to the objective function that is used in our RSBN.

5.3.4 Regression with Stochastically Bounded Noises (RSBN)

Recall our objective is to find an appropriate function ρ in (7), so that the solution to (7)

is both easy to compute and optimal within a family of distributions for random errors.

In our construction, the following conditions are satisfied.

• [Conditions for probability density function] Function f is a probability density func-

tion. Function f is from real numbers to nonnegative real numbers f : R → R+

(f ≥ 0) and
∫
f = 1. In previous discussion, we implied that function f has fi-

nite Fisher information, I(f) < ∞. We also assume that the density function f is

symmetric about 0.

• [Conditions for stochastically bounded noises] We have
∫ δ
−δ f ≥ 1 − α. This means

that the probability of noises having absolute values no larger than δ is at least 1−α.

Usually α is small. It is equivalent to say that no more than proportion α of residuals

can have absolute values greater than δ. As mentioned earlier, an equivalent expression

of this condition is
∫
v(x)f(x)dx ≤ 0, where function v is defined in (14).

• [Conditions for convexity] The function ρ(x) = − log f(x) must be convex, otherwise

we will not have a convex optimization problem. The first derivative of ρ, ρ′, exists

and has first derivative as well. Complying with these, problem in (7) becomes a

nonlinear convex optimization problem.

• [Conditions for minimaxity] When ρ(x) = − log f(x), according to Lemma 3.2, the

minimum asymptotic variance is achieved. If density f also minimize the objective

in (13), the minimum variance is achieved in the worst scenario. Such an estimate

is called an asymptotic minimax estimate. From Lemma 3.3, the above mentioned

minimizer f should satisfy equation (15).
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Readers can verify that the following function is a solution to equation (15).

f0(x) =





c
[
cosλ1

x
δ

]2
, |x| < δ,

c · exp
(
−2λ2

|x|
δ

)
· cos2 λ1 · exp(2λ2), |x| ≥ δ,

(16)

where 0 < λ1 <
π
2 , λ2 > 0. The above is constructed by considering the general solutions to

the differential equation (15). One of the simplest form that satisfies all the aforementioned

conditions is chosen. Special care is given to ensure that log(f0) has second derivative, as

readers will see later. More discussion regarding our choice of function f0, especially how

it differs from Huber’s estimator, will be provided in Section 5.7.

Recall ρ = − log f0, we have

ρ(x) =





− log c− 2 log cosλ1
x
δ , |x| < δ,

− log c+ 2λ2
|x|
δ − 2λ2 − 2 log cosλ1, |x| ≥ δ.

(17)

Note ρ(x) can be simplified without changing the optimization problem in (7): i.e., replacing

ρ(x) with aρ(x) + b, a > 0 in (7) gives an equivalent optimization problem. Note that ρ(x)

is linear outside the interval [−δ, δ].

5.3.5 Parameters in RSBN

The parameters c, δ, α, λ1, λ2 satisfy the following conditions:

∫ δ

−δ
f0(x)dx = 1 − α; (18)

lim
x→δ+

f ′(x) = lim
x→δ−

f ′(x);

or equivalently,

lim
x→δ+

ρ′(x) = lim
x→δ−

ρ′(x); (19)

∫ +∞

δ
f0(x)dx =

α

2
. (20)

From (19), we have

λ2 = λ1 tanλ1. (21)
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From (18) and (20), we have

1 − α = c

∫ δ

−δ

[
cosλ1

x

δ

]2

=
cδ

2

(
1

λ1
sin 2λ1 + 2

)
; (22)

α

2
= c · cos2 λ1 · exp(2λ2)

∫ +∞

δ
exp

(
−2λ2

x

δ

)

=
cδ

2
[cosλ1]

2 1

λ2
, (23)

respectively. From (22), (23) and (21), we have

α

1 − α

(22),23)
=

1
λ2

· cos2 λ1

1 + 1
2λ1

sin 2λ1

(21)
=

1
λ1

cos3 λ1/ sinλ1

1 + 1
2λ1

sin 2λ1

=
cos3 λ1

λ1 · sinλ1 + sin2 λ1 · cosλ1
.

Hence

α =
cos3 λ1

λ1 · sinλ1 + cosλ1
. (24)

Proposition 3.4 The proportion α defined in the stochastically bounded noises condition

and the parameter λ1 in RSBN have a relation stated in (24).

Figure 48 illustrates the relationship between α and λ1.

Now we consider a simplified version of (17). As an objective function in (7), the

following ρ is equivalent to the one in (17).

ρ(x) =





− log cosλ1
x
δ , |x| < δ;

λ2
|x|
δ − λ2 − log cosλ1, |x| ≥ δ.

(25)

Bringing in (21), we get exactly the expression in (8). Up to this point, we have established

the Theorem 2.2.

We summarize the procedure of getting function ρ for RSBN. By some prior information,

we know the values of α and δ. From (24), we can compute for λ1. From (21), we can

compute for λ2. Substituting values λ1 and λ2 into (25), we have the close form formula

for ρ. The following flow chart summarizes how to get ρ from α:

α, δ
(24)−→ λ1

(21)−→ λ2
(25)−→ ρ.
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Figure 48: Parameter λ1 vs. α. The upper one is ordinary; the bottom takes log 10 on α.

5.3.6 Fisher Information of the Least Informative Distribution

We consider two important quantities associated with RSBN: Fisher information and asymp-

totic variance. For Fisher information, we give a close form solution with respect to λ1.

Since we know the relationship between λ1 and α in (24), we have the relationship between

the Fisher information and α. Figure 49 will illustrate it. For the asymptotic variance,

we need to know the exact noise distribution. In the next subsection, we describe how to

compute it in a general case.

We start with the Fisher information I(f0). We consider the location estimation case.

Let fθ = f0(x− θ), where f0 is the least informative distribution in Section 5.3.4. We have

I(f0) = 4
λ2

1

δ2
λ1 · sinλ1

λ1 · sinλ1 + cosλ1
. (26)

The details in validating the above equation is postponed to Appendix A.1. Taking δ = 1.0

and combining (24) and (26), we have the relationship between the Fisher information I(f0)

and α. Since λ1 ∈ [0, π2 ], the range of Fisher information I(f0), based on (26), is from 0 to

π2/δ2. Figure 49 shows the relationship between α and the Fisher information I(f0). It is

easy to find that small α leads to large Fisher information.
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Figure 49: Fisher information I(f0) versus α. The upper one takes ordinary coordinates;
the lower takes log10 on α.

5.3.7 Asymptotic Variance of RSBN

As for asymptotic variance, in Section 5.3.1 we have already known that

asymptotic variance =

∫
ψ2dF

(
∫
ψ′dF )2

. (27)

Since ψ = ρ′, we have

ψ(x) = ρ′(x)
(25)
=





λ1
δ tanλ1

x
δ , |x| < δ;

sign(x) · λ1
δ tanλ1, |x| ≥ δ;

(28)

and

ψ′(x) =





λ2
1
δ2

secλ1
x
δ , |x| < δ;

0, |x| ≥ δ.

Note ψ′ is no longer continuous. As long as the noise has probability density function f that

makes (27) meaningful, we can compute the asymptotic variance of the RSBN estimate.
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5.3.8 Robustness

We now consider the robust property of RSBN. We compute the breakdown point—the

maximum proportion of observations that can be arbitrarily distorted, while the estimate

still does not “blow up” (i.e., not going to ±∞).

On page 16 in [43], we know that

breakdown point = ǫ⋆ =
η

1 + η
,

where η = min
{
−ψ(−∞)
ψ(+∞) ,−

ψ(+∞)
ψ(−∞)

}
. From the formula of ψ in the last section, we have

η = 1. Hence ǫ⋆ = 1/2, which is the largest breakdown point we can have for M-estimates.

Lemma 3.5 The breakdown point of the RSBN estimate is 1/2.

5.4 Numerical Algorithm: Proximal Point Method

In this subsection, we describe a proximal point algorithm. The purpose is to give readers

who may not have access to a sophisticated optimization software package an extremely–

easy–to–use algorithm.

The rest of this section is organized as follows. Section 5.4.1 describes the general idea of

a proximal point method. The RSBN can be formulated as a partial inverse problem, which

is described in Section 5.4.2. Section 5.4.3 describes how to solve a partial inverse problem.

An algorithm that solves RSBN is provided in Section 5.4.4. Some analysis regarding the

convergence rate of the proposed algorithm is presented in Section 5.4.5.

5.4.1 General Idea

The proximal point algorithm solves the following problem:

Find µ ∈ Rn : 0 = U(µ), (29)

where U : Rn → Rn is an operator.

The proximal point algorithm includes two steps:
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Algorithm to Solve 0 = U(µ).

1. Choose µ(0), n = 0.

2. Repeat

µ(n+1) = (I + U)−1µ(n),

n = n+ 1,

Until convergence.

Here I is the identity operator, and (I + U)−1 is the inverse of operator (I + U). The

following results are known [89].

• Let µ0 denote the solution to (29), i.e., 0 = U(µ0). If {µ(n)} converges, then it

converges to µ0.

• If U is a monotone operator in Rn, then (I + U)−1 is well defined. (Operator U is a

monotone operator if for any x1, x2 ∈ Rn, the inner product 〈x1−x2,U(x1)−U(x2)〉 ≥

0.)

• If U is a monotone operator in Rn, then {µ(n)} converges.

5.4.2 Partial Inverse

Problem (7) can be cast as a partial inverse problem. Suppose A is a subspace of Rn,

A ⊂ Rn and B is the perpendicular compliment of A, B = A⊥. The partial inverse problem

is:

find x, y ∈ Rn :





x ∈ A,

y ∈ B,

y = U(x).

(30)

If U is strictly monotone, the solution of the partial inverse is unique.

Problem (30) can be formulated as (29). Suppose x, y ∈ Rn have decomposition:

x = xA + xB, y = yA + yB,
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where xA, yA ∈ A and xB, yB ∈ B. We define a new operator UA, such that xB + yA =

UA(xA + yB) if and only if y = yA + yB = U(xA + xB) = U(x). Suppose z has a

decomposition: z = zA + zB, where zA ∈ A, zB ∈ B. A general theorem says that (x, y) is

the solution to (30) if and only if

∃z : 0 = UA(z), (31)

where x = zA, y = zB. By solving (31), we get an exact solution to (30). Note that (31)

has the same form as (29).

5.4.3 Solving Partial Inverse

Based on (31) and the algorithm in Section 5.4.1, the key to solving a partial inverse problem

is to find (I+UA)−1. Following the notations in Section 5.4.2, since xB+yA = UA(xA+yB),

we have x+ y = (I+UA)(xA+ yB). In other words, xA+ yB = (I+UA)−1(x+ y). In order

to solve (I + UA)−1(u), if we can find (x, y) satisfying





u = x+ y,

y = U(x),

then (I + UA)−1(u) = xA + yB. Since u = x+ y = (I + U)(x), we have





x = (I + U)−1(u),

y = u− x.

Now we have the algorithm to solve (I + UA)−1.

Algorithm to Solve (I + UA)−1.

• Find x, so that x = (I + U)−1(u);

• Let y = u− x;

• (I + UA)−1(u) = xA + yB.

Note this is a general method to solve (30). If (I + U)−1 is easy to implement, then

(I + UA)−1 is easy to implement.
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5.4.4 Application to RSBN

Now we apply the previously developed method to RSBN. Consider the first order necessary

condition of (7), we have

0 = ATψ(Ax− y), (32)

where ψ = ρ′, ψ(y − Ax) = [ψ((y − Ax)1), ψ((y − Ax)2), · · · , ψ((y − Ax)n)]
T , (y − Ax)i

denotes the ith component of vector y − Ax, and ψ is defined in (28). Equation (32) is

equivalent to

find u, v :





u = Ax,

v = ψ(u− y),

0 = AT v.

(33)

In other words,

find u, v :





u ∈ Range(A),

v ∈ Kernel(A),

v = ψ(u− y).

Following the algorithm in Section 5.4.3, we have
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Algorithm for RSBN

1. Choose µ(0) ∈ Rn, k = 0.

2. Find ui, such that ψ(ui − yi) + ui = µ
(k)
i , i =

1, 2, · · · , n.

3. Let vi = µ
(k)
i − ui, i = 1, 2, · · · , n.

4. Project u = (u1, · · · , un)T , v = (v1, · · · , vn)T .

µ(k+1) = PA(u) + PKer(A)(v)

= v +A(ATA)−1AT (u− v).

Here PA and PKer(A) are projection operators to sub-

spaces range of A and kernel of A respectively.

5. If not converge, k = k + 1, go back to step 2.

In step 2, since ψ in (28) is monotone increasing, xi will have a unique solution. But

because there is a tangent function in ψ in RSBN, one needs to implement a line search

algorithm to solve it. We can see that if function ψ is piecewise polynomial, this method is

quite appealing, because a close form solution is available to the equation in step 2. This

approach has been used in solving Huber’s M-estimate, see [67].

After getting u, the x can be solved via u = Ax. Recall matrix A is of full column rank.

5.4.5 Analysis

It is possible that the above mentioned algorithm converges slowly to the solution. Here is

an example. Assume the projection matrix associated with PA is, for d < n,







1

. . .

1




d×d

0

0 0




n×n

;
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i.e., it projects to the first d coordinates. Following the notations in the above subsection,

we have

µ
(k+1)
i =





ui, 1 ≤ i ≤ d,

vi, 1 + d ≤ i ≤ n.

Restricted to 1 ≤ i ≤ d, we have

|µ(k+1)
i − µ

(k)
i | = |ui − µ

(k)
i | = |ψ(ui − yi)| ≤

λ1

δ
tanλ1,

where the last term is a constant, the second equality is based on the step (b) in the RSBN

algorithm, and the inequality is based on (28). If u0 is the solution of the RSBN, assuming

that we started with an all zero vector µ(0) = (0, 0, . . . , 0)T , the proposed proximal point

algorithm takes at least

max1≤i≤d |u0
i |

λ1/δ tanλ1

steps to converge. Note the number of steps can be large, if the maximum entry max1≤i≤d |u0
i |

is large.

The reason that the proximal point approach can be slow is that it does not take

advantage of high degree smoothness of the objective function. For example, it does not

use the second derivatives. More efficient numerical solution can be developed by taking

advantage of the existence of second derivatives. Most of state-of-the-art optimization

software will do so automatically. We propose one alternative in the next section.

5.5 Other Implementation: SNOPT and SQP

As an alternative, we use some state-of-the-art optimization software to solve the RSBN

directly. In this research, we use a general-purpose optimization package—SNOPT. It is a

software package developed in [33]. It minimizes a linear or nonlinear function subject to

bounds on the variables, as well as sparse linear or nonlinear constraints. It is suitable for

large-scale linear and quadratic programming and for linearly constrained optimization, as

well as for general nonlinear programs. In our case, in (7), we have linear constraints and

a nonlinear but convex objective function.

SNOPT finds a solution that is locally optimal. Ideally, any nonlinear functions should

be smooth and users should provide gradients. In our case, since the objective function in
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(7) is convex, the locally optimal solution will coincide with the global optimal solution. For

RSBN, the gradients are given in (28).

SNOPT uses a sequential quadratic programming (SQP) algorithm that obtains a search

direction from a sequence of quadratic programming subproblems. Each QP subproblem

minimizes a quadratic model of a certain Lagrangian function subject to a linearization

of the constraints. An augmented Lagrangian merit function is reduced along each search

direction to ensure convergence from any starting point.

The source code for SNOPT is written in Fortran. In order to use it, a Fortran compiler

is required. The numerical examples in the present chapter are a result of combining some

MATLAB programming, Unix shell programming, Fortran programming, and SNOPT.

5.6 Simulation

5.6.1 An Illustrative Example: Variable Star

In this section, we study a well-known data set in the time series analysis — magnitudes of

a variable star at midnight on 600 successive nights. [7] showed that it is a superposition of

two ‘dominant’ sinusoid functions. We are taking a slightly different viewpoint. We assume

that the underlying signal (denoted by s) is a smooth signal residing in a low dimensional

linear subspace. The observed magnitudes denoted by y, y = (y1, y2, . . . , y600)
T , are an

approximation to s. In our case, y is the rounded version of s: i.e., yi = [si + 0.5], where

[x] is the largest integer no larger than x. It is evident that the mapping from s to y is

completely nonlinear. Let y = s+n, where n is the so-called noise sequence. Considering the

source where the noise sequence is generated, the Gaussian assumption on the distribution

of n is not appropriate. We assume that the subspace, on which the signal resides, is known

to us. In this case, we compare ordinary least square estimate, Huber’s estimate, and RSBN.

We consider the discrete cosine transform (DCT). The DCT with signal length n has

the kth basis function:

ck(i) =





√
1/n, k = 0, i = 1, 2, · · · , n;

√
2/n cos[(i− 1

2)k πn ], k 6= 0, i = 1, 2, · · · , n.

The reasons of choosing DCT are: (a) DCT is a real analogous of the Fourier transform,
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which is widely adopted in representing cyclic signals; (b) there are fast numerical algorithms

to implement DCT.

First, we study the original variable star data set. We find the subspace that contains

most of the signal’s energy. This can be done by carrying out a DCT transform, then

retaining the coefficients with the largest amplitudes. Later, we intentionally distort the

observation. Three different ways of projection are then compared. We illustrate the

optimality of our method.
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Figure 50: From top to bottom: (a) Integer-valued magnitude of a variable star at mid-
night on 600 successive nights; (b) The deviation (between estimation and observation)
corresponding to the ordinary least square estimate; And (c) the deviation corresponding
to RSBN.

Figure 50 (a) shows the magnitude vector y of the variable star. We take a DCT of

y, keep the 10% of coefficients that have the 10% largest amplitudes (of coefficients). The

associated 10% basis functions span the subspace that contains the largest possible propor-

tion of the energy. We denote the subspace by A. The dimension of A is 60. Projecting the

observation y to A by the ordinary least square regression, we have PA,LS(y) = ŝLS,1, where
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subscript ‘LS’ indicates least square estimate, and ‘1’ indicates for original observation y.

The deviation between the original sequence y and the estimate ŝLS,1 is illustrated in Fig-

ure 50 (b). Then we project the observation y to A by using RSBN. We choose δ = 0.5,

λ1 = 0.46π and ρ is given in (25). We denote PA,RSBN (y) = ŝRSBN,1, where subscript

‘RSBN’ indicates a RSBN estimate. The deviation, y− ŝRSBN,1, is illustrated in Figure 50

(c). Since the deviations are supposed to be round off errors, ideally they should be within

the interval [−0.5, 0.5]. For the least square estimate in Figure 50 (b), there are 70 devia-

tions having amplitudes larger than 0.5, and 16 of them having amplitudes larger than 1.0.

For RSBN in Figure 50 (c), there are 44 deviations having amplitudes larger than 0.5, and

15 of them having amplitude larger than 1.0. In this case, compared to the ordinary least

square estimate, the RSBN has less deviations falling beyond the ideal interval [−0.5, 0.5].

Of course, at the same time, we should observe a loss in the mean square error, which is

what a least square approach tries to minimize. The sum of squares of deviations in the

least square estimate is 10.4337, and the one for RSBN is 10.6022.

Now we randomly pick up two positions in the variable star sequence. In particular,

we choose position 224 and 446. Originally, y224 = 15 and y446 = 16. Suppose the decimal

points in these numbers were somehow misspecified. The recorded values become y′224 = 1.5

and y′446 = 160. Without loss of generality, let y′ denote the new sequence. Figure 51 shows

y′.

Recall PA,LS and PA,RSBN denote the projection operators to subspace A by least

square estimate and RSBN respectively. Let PA,H denote a projection operator to A via

Huber’s M-estimate. Recall that a Huber’s M-estimate is for ∆ > 0, choose

ρ(x) =





x2, |x| < ∆,

2∆|x| − ∆2, |x| ≥ ∆,

in (7) [43, 44]. In Huber’s estimate, the function ρ is piecewise linear (outside a neighborhood

of the origin) or quadratic (inside a neighborhood of the origin).

Consider the projections ŝLS,2 = PA,LS(y′), ŝRSBN,2 = PA,RSBN (y′), and ŝH,2 =

PA,H(y′). The deviations y − ŝLS,2, y − ŝRSBN,2 and y − ŝH,2 are plotted in Figure 52

(a), (b), and (c). Note these are the deviations from the estimates to the “original” signal
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Figure 51: The distorted variable star signal. On day 224 and 446, the decimal points
in the observed values were wrongly shifted to the left (15 → 1.5) and right (16 → 160)
respectively. Circles indicate the true values.

Table 1: Some statistics for three regression methods for the distorted variable star data.

ordinary Huber’s RSBN
least square M-estimate

Square root of sum of squares, ‖y − ŝ∗,2‖2 47.2771 10.6658 10.6053

Number of amplitudes > 0.5 372 53 45

Number of amplitudes > 1.0 196 16 15

sequence y (not y′). Table 1 shows some statistics on the performance of three different

methods.

There are several phenomena noteworthy. First of all, the deviation of the least square

estimate is significantly worse than the other two. This illustrates that least square estimate

is not a robust method. Second, the performance of RSBN has almost no difference between

the two cases: y and y′. In other words, ŝRSBN,2 is as close to y as ŝRSBN,1 is. Third,

RSBN performs nearly as well as the Huber’s M-estimate. RSBN is slightly better. It is not

surprising that the performances of RSBN and Huber’s M-estimate are close, because the

objective functions in (7) for these two are very close to each other. One commonality: they

both take linear function outside an interval: (−δ, δ) for RSBN and (−∆,∆) for Huber’s.
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Figure 52: Differences between the original variable star signal and the estimates from
distorted signal by three different methods. The corresponding methods are, from top to
bottom: (a) ordinary least square regression, (b) RSBN, and (c) Huber’s M-estimate with
∆ = 0.5.

5.6.2 Comparison with Ordinary Least Square Estimate and Huber’s Estimate

We compare three different regression methods: ordinary least square estimate, RSBN, and

Huber’s M-estimate. We demonstrate that for distorted Gaussian noises, RSBN does the

best job.

Recall we have a linear model:

y = Ax + ε, (34)

where A ∈ Rn×m is the model matrix, x ∈ Rm is the parameter vector, ε ∈ Rn is the noise

vector, and y ∈ Rn is the observation vector. In this experiment, we choose m = 15, n =

600.
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5.6.2.1 Design of Simulation

In each experiment, for the model in (34), A is generated by sampling each entry (Aij , 1 ≤

i ≤ n, 1 ≤ j ≤ m) from a standard Normal distribution (Normal(0, 1)), with the constraint

that matrix A must have full column rank. If the generated matrix A does not have full

column rank, the process is repeated instead of proceeding to the next step. The vector

x is generated as a standard Normal vector in Rm, x ∼ Normal(0, Im). The vector ε is

generated as a standard Normal vector in Rn, ε ∼ Normal(0, In). The observation vector

y is a superposition: y = Ax + ε.

Let span(A) denote the linear subspace spanned by the column vectors in matrix A.

Obviously, it has m degrees of freedom, dim(span(A)) = m. Recall the operator PA,LS :

Rn → span(A) is the projection operator from Euclidean space Rn to the linear subspace

span(A). In other words,

PA,LS(y) = argmin ‖u − y‖2
ℓ2 .

u ∈ span(A)

Let dLS,1 denote the deviation vector from the least square projection PA,LS(y) to the true

linear component Ax. Note here the first subscript “LS” indicates the least square method,

and the second subscript “1” indicates the Gaussian noise vector (ε). We have

dLS,1 = PA,LS(y) −Ax = PA,LS(ε). (35)

We then distort the Gaussian vector ε. We randomly select 1% entries in ε, mul-

tiply them by 200 (value 200 is arbitrarily chosen). The new vector is denoted by ε′.

Effectively, each entry of ε′ follows a mixed normal distribution: ε′i ∼ 0.99Normal(0, 1) +

0.01Normal(0, 2002), 1 ≤ i ≤ n. Denote y′ = Ax + ε′.

Recall previously mentioned notations, PA,RSBN : Rn → span(A) and PA,H : Rn →

span(A) are projection operators by adopting RSBN and Huber’s M-estimate respectively.

Let dLS,2, dRSBN,2 and dHuber,2 denote the deviation vectors corresponding to the least

square estimate, RSBN, and Huber’s M-estimate, respectively. (The first subscripts of the

above d’s indicate methods, and the second subscript “2” indicates distorted noise vector
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ε′. ) We have

dLS,2 = PA,LS(y′) −Ax = PA,LS(ε′);

dRSBN,2 = PA,RSBN (y′) −Ax = PA,RSBN (ε′);

dHuber,2 = PA,Huber(y
′) −Ax = PA,Huber(ε

′);

We repeat the experiments for 1000 times. Each time, for the distorted noises, three

methods lead to three deviation vectors: dLS,2, dRSBN,2 and dHuber,2. Let d
(i)
LS,2, d

(i)
RSBN,2

and d
(i)
Huber,2 denote the deviation vectors we get in the ith experiment, we have totally 3000

n-D vectors: d
(i)
LS,2, d

(i)
RSBN,2, d

(i)
Huber,2, i = 1, 2, · · · , 1000.

The smaller the deviations are, the better the regression method is. In the multivariate

situation, we need to quantify the smallness. We will report our comparison in Section

5.6.2.3.

5.6.2.2 Cut-off Value

To measure the robustness of different methods, it is nature to compare the deviation vectors

dLS,2, dRSBN,2, and dHuber,2 with deviation vector dLS,1, because dLS,1 is the deviation of

an ideal method (least square estimation, or MLE) in the ideal situation (with Gaussian

noises). We propose to study the number of deviations with amplitudes above a quantity

τ : i.e., for 1 ≤ i ≤ 1000,

#{j : |(d(i)
∗,2)j | > τ, 1 ≤ j ≤ n},

where ∗ can be LS, RSBN, or Huber. Here notation # stands for the cardinality of a finite

set. The jth component of vector d
(i)
∗,2 is denoted as (d

(i)
∗,2)j . Value τ can be viewed as a

quantile of random variable ‖dLS,1‖∞. The value τ will be called a cut-off value.

The following is to derive a reasonable value of τ . We study the distribution of random

variable ‖dLS,1‖∞. Let ‖dLS,1‖2 denote the ℓ2 norm of the vector dLS,1. We have

‖dLS,1‖∞ = ‖dLS,1‖2 ·
‖dLS,1‖∞
‖dLS,1‖2

.

We list three facts. For details, please refer to Appendix A.2.
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• Random variables ‖dLS,1‖2 and ‖dLS,1‖∞/‖dLS,1‖2 are independent;

• Random variable ‖dLS,1‖2
2 satisfies the χ2

m distribution with m degrees of freedom.

Recall m is the column rank of matrix A.

• Assume the projection PA,LS related to model matrix A has eigenvalue decomposition

PA,LS = UT




Im

0


U,

where matrix U is orthogonal. Let

x = UT




xm

0(n−m)×1


 ,

where vector xm is Uniform on the unit sphere in Rm, ‖xm‖2 = 1, and vector 0(n−m)×1

is an all zero vector. Let ρmax,m = ‖x‖∞. The ratio ‖dLS,1‖∞/‖dLS,1‖2 has the same

distribution as ρmax,m. The analytical solution to the probability density function of

ρmax,m could be too complicated to be useful though.

Based on the above three facts, we can find the distribution of ‖dLS,1‖∞ and the cut-

off value through simulations. In this chapter, we choose the cut-off value: τ = 1. The

related probability P{‖dLS,1‖∞ > τ} is approximately 3.1×10−4, which is obtained through

100, 000 times of simulations.

5.6.2.3 Simulation Results

Figure 53 illustrates the results from all the steps of one simulation.

• Figure 53 (a) shows the Gaussian noise vector ε. Each element of it satisfies distribu-

tion Normal(0, 1).

• Figure 53 (b) shows the deviation vector (dLS,1) of the least square regression in the

Gaussian noise (ε) case.

• Figure 53 (c) shows the distorted Gaussian noise vector ε′. The vector ε′ is gotten by

multiplying randomly picked six elements of vector ε by 200.
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Figure 53: (a) Standard Gaussian noise vector ε, (b) the deviation vector dLS,1 of least
square regression in the Gaussian noise ε case, (c) the distorted Gaussian noise vector ε′, (d)
the deviation vector dLS,2 from the least square regression with the distorted Gaussian noise
ε′, (e) the corresponding deviation vector dRSBN,2 from the RSBN, (f) the corresponding
deviation vector dHuber,2 from the Huber’s estimate.

• Figure 53 (d) shows the deviation vector dLS,2 from the least square regression with

the distorted Gaussian noise ε′.

• Figure 53 (e) shows the corresponding deviation vector dRSBN,2 from the RSBN.

• Figure 53 (f) shows the corresponding deviation vector dHuber,2 from the Huber’s

estimate.

Continued from Section 5.6.2.1, we get 3000 deviation vectors out of 1000 simulations:

d
(i)
LS,2, d

(i)
RSBN,2, d

(i)
Huber,2, i = 1, 2, · · · , 1000.

We choose two ways to compare the three different methods. One is to study the relative

ratio of the l2 norms of a pair of deviation vectors. The other is to count the number of

amplitudes above the cut-off line (determined by the τ value developed in Section 5.6.2.2)

in each deviation vector.
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Figure 54: (a) The histogram of the ratios between the Huber’s estimate and RSBN:

‖d(i)
Huber,2‖2

2/‖d
(i)
RSBN,2‖2

2, i = 1, 2, · · · , 1000; (b) The histogram of the logarithm ratios

log10

(
‖d(i)

L2,2
‖2
2/‖d

(i)
RSBN,2‖2

2

)
, i = 1, 2, · · · , 1000, for the least square regression and the

RSBN; (c) For Huber’s estimate, number of deviations whose amplitudes are above the
cut-off; (d) For the ordinary least square regression, the histogram of number of deviations
whose amplitudes are above cut-off.

Figure 54 (a) gives a histogram of the ratios of the ℓ2 norms of deviation vectors from

the Huber’s estimate and RSBN: ‖d(i)
Huber,2‖2

2/‖d
(i)
RSBN,2‖2

2, i = 1, 2, · · · , 1000. We observe

that most of them are above 1. This implies the RSBN tends to give smaller sum square

of deviations than the Huber’s estimate does . Figure 54 (b) shows a histogram of log-

arithm (base 10) of ratios corresponding to the least square estimate and the RSBN:

log10

(
‖d(i)

LS,2‖2
2/‖d

(i)
RSBN,2‖2

2

)
, i = 1, 2, · · · , 1000. The reason to take logarithm is that some

ratios can be extremely large. Obviously, the least square regression for non-Gaussian noise

leads to much higher sum of squares of deviations than the RSBN does.

Define the numbers of amplitudes above the cut-off in the following way:

Γ
(i)
∗,2 = #{j : |(d(i)

∗,2)j | > 1, 1 ≤ j ≤ n},
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where the ∗ can be subscripts: LS, RSBN, or Huber. We observe that for all 1 ≤ i ≤ 1000,

Γ
(i)
RSBN,2 = 0. This means the RSBN is very robust (in the sense that there is no outstanding

deviation from the true signal). The Huber’s estimate performs comparably. Figure 54

(c) gives a histogram of Γ
(i)
Huber,2, i = 1, 2, · · · , 1000. We observe that 15 out of 1000 of

them have 1 deviation whose amplitude is larger than 1, and only 1 out of 1000 of them

have 2 deviations whose amplitudes are greater than 1. Figure 54 (d) shows a histogram of

Γ
(i)
LS,2, i = 1, 2, · · · , 1000. We can see that in most simulations, the number of deviations with

amplitudes above the cut-off 1 is large. The average number of deviations with amplitudes

above the cut-off is 421, which is roughly 70% of the signal.

In this simulation, the RSBN outperforms the Huber’s estimate, and the Huber’s esti-

mate outperforms the ordinary least square regression.

5.7 Discussion

5.7.1 A General Regression Formulation

Equation (7) is consistent with many approaches that exist in the literature.

1. If ρ(x) = x2, (7) is the classical least square regression. The solution can be given by

applying hat matrix: x̂ = (ATA)−1AT y. We prefer this formulation if the residuals

are normally distributed.

2. For ∆ > 0, we have

ρ(x) =





0, |x| < ∆;

|x| − ∆, |x| ≥ ∆.

Formulation (7) is an ℓ1 regression with a ‘dead zone’. By adding some slack variables,

(7) can be formulated as a linear programming problem. Readers can verify that the

following linear programming problem is equivalent to the problem in (7).

minimize
∑n

i=1 ti,

subject to −ti − ∆ ≤ yi − aTi x, i = 1, 2, · · · , n;

yi − aTi x ≤ ti + ∆, i = 1, 2, · · · , n;

0 ≤ ti, i = 1, 2, · · · , n.
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The idea of adding a dead zone is to make the large residual relatively more important.

3. If ρ(x) = |x|, (7) is the standard least ℓ1 norm estimation [17]. It can be solved as

a linear programming problem [94]. This can be viewed as a special case of the last

problem: ∆ = 0. This formulation is interesting when the noises are Laplacian: i.e.,

the errors satisfy an exponential distribution. [61] established an analytical connection

between Huber’s estimate (with ∆ being a tuning parameter) and the least ℓ1 norm

estimate (which was called linear ℓ1 estimator in [61]). Their result is based on

analyzing the solutions to the dual problems, and is inspiring.

5.7.2 Our Choice of Objective Function vs. Huber’s Estimate

Our choice of objective function ρ(·) is rooted in (15). We present justification on why to

choose such a functional solution as in (16). Because function −β1 · v(x) − β2 in (15) is

piecewise constant with discontinuity points −δ and δ, we consider a generic differential

equation:

g′′

g
+ C = 0, (36)

where C ∈ R is a constant and g =
√
f0. The general solution to the above equation, up

to a constant, is:

• if C = 0, g = x+ c1,

• if C > 0, g = cos(x+ c2), and

• if C < 0, g = exp{−
√
−C|x|},

where c1 and c2 are constants. Since we want g(±∞) = 0, we must assume −β1·v(x)−β2 < 0

outside interval [−δ, δ], which leads to the only functional form that vanishes at infinities.

Inside interval [−δ, δ], we assumed −β1 ·v(x)−β2 > 0, which leads to the objective function

in RSBN. If we choose to assume −β1 · v(x) − β2 = 0, then we have g(x) = x, which

eventually will lead to the Huber’s estimate. Our numerical study seems to indicate that

our choice leads to relatively more robust performance.

Historically, Huber’s estimate is derived differently from our approach, see [60, Section

5.6]. They consider an asymptotic minimax estimate among all cumulative distribution
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functions (c.d.f.) F (x) = (1− ε)G(x) + εH(x) where constant ε and c.d.f. G(x) are known,

and c.d.f. H(x) is unknown but satisfies some general conditions. When G(x) = Φ(x),

which is the c.d.f. of the standard normal, the minimax estimate is the Huber’s estimate.

Our approach is strongly similar to theirs. However, it differs in the last few steps. We

solved the minimax problem in a more general sense.

5.7.3 Other Theoretical Results

Some results that are related to estimators in regression are worth mentioning.

Researchers have explored the robustness of some regression approaches. For example,

[26] analyzed the ‘leverage’ and ‘breakdown’ in minimum ℓ1 norm regression. The objective

in that paper is different from ours: e.g., they do not consider asymptotic performance as we

formulated and they do not consider a minimax estimate. However, their work is inspiring.

A citation search of [26] gives a good sense on what is known about the robustness of some

estimators in regression.

In our formulation, we assume the independent noises. Other conditions regarding

the regularity of the probability density function of the noises – e.g., the existence of the

second derivative of the density, as well as some integrable conditions – are embedded in the

derivation of the asymptotic minimaxity. Researchers have studied the condition for an M-

estimate to be consistent. The Introduction of a recent article [6] provides a nice overview.

Further citation search for the papers cited there gives a full spectrum of the results that are

available. In this chapter, we did not intend to address those issues. However, it will be an

interesting future search to derive minimax M-estimate under weaker regularity conditions.

5.7.4 Convexity of Fisher Information I(f)

In our derivation, we implicitly used the result that Fisher information I(f) is a convex

function of f . We give a brief verification of such a convexity. Recall the function ft =

(1 − t)f0 + tf1, 0 ≤ t ≤ 1, which was defined in Section 5.3.3. We have

I(ft) =

∫
(f ′t)

2

ft
dµ(x).
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One can verify that

∂2I(ft)

∂t2
|t=0= 2

∫
[(f ′1 − f ′0)f0 − (f1 − f0)f

′
0]

2

f3
0

≥ 0,

and the equality is achieved if and only if f1 = f0, which is not true. Hence functional I(f)

is strictly convex at every function f0.

5.7.5 Local Minimaxity

We can only verify that our RSBN estimate is minimax at a neighborhood of function f0.

Reader can refer to Lemma 3.3. Proving that RSBN is a minimax estimate globally (i.e., for

all functions satisfying the ‘stochastically bounded noise’ condition) seems to be a difficult

task. This problem has not been solved here.

5.8 Conclusion

We derive an asymptotically minimax estimate in a general regression framework. Extensive

numerical simulation demonstrates its advantage over ordinary least square estimate, as well

as another robust estimate: Huber’s M-estimate.

An interesting insight of our result is to observe that the derived objective function

should be in the form of the ℓ1 norm outside a neighborhood of the origin. This coincides

with many recent applications of ℓ1 norm in problems such as variable selection. Even

though this chapter does not exactly create any link, the connection between the ℓ1 norm

and the asymptotic minimaxity of RSBN is certainly something that should be explored in

the future.

A condensed version of this chapter can be seen in [72].
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CHAPTER VI

ACHIEVING OPTIMAL REPRESENTATION WITH

STEPWISE ALGORITHMS IN REGRESSION

This chapter presents new results on using stepwise algorithm to achieve the best represen-

tations of signals that coincide with model selection results. This is motivated first by the

analysis on the performance of a newly developed algorithm, least angle regressions (LARS).

A counter example is established to show that LARS cannot recover the optimal selection

in certain cases. Conditions under which LARS (Lasso) or stepwise algorithms can recover

exactly the optimal models are investigated. We study the homotopy between LARS and

Lasso and reveal that LARS yields the Lasso solution path. This is a known result in the

literature [25]. These problems, which are raised in Lasso and LARS, are outlined with

(P1). Meanwhile, Classical model selection criteria are reviewed, which are summarized

with (P0). Problem (P0) is combinatorial in nature and proven to be NP-hard. We try to

investigate the relationship between (P0) and (P1) and hence find the connection between

stage-wise algorithms and statistical variable selection critera. Several conditions are given.

We present the necessary and sufficient condition for a vector to be the optimal solution

of (P1). For (P0), sufficient conditions are derived. We also study the conditions under

which the two optimization problems have common solutions. Hence, in these situations, a

greedy algorithm can be used to solve the seemingly unsolvable problem. We provide the

results from three different angles: (1) a direct analysis on sufficiency and necessity, (2)

results on covariates that are mostly correlated with the response, (3) results motivated by

recent works in sparse signal representation. The applications, possible future research, and

related works in statistics are discussed.

This chapter is organized as follows. Section 6.1 introduces the two optimization prob-

lems we are considering, (P0) and (P1), together with their connection with modern subset

selection criteria, Lasso, and LARS. Section 6.2 reviews the known model selection criteria
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in statistics, as well as the solution paths property of Lasso and its solutions based on LARS.

This material provides a starting point of the consequent work. Section 6.3 presents two

case studies. In the first case, it is shown that a greedy algorithm (i.e., a version of LARS)

can go totally wrong in an extreme situation. In the second case, it is shown that the two

optimization problem we are considering give the same result in subset selection. These

two opposing cases motivate us to analyze the conditions under which the two approaches

choose the identical subset. Section 6.4 contains the main results. Our main results are

organized in three groups. In Section 6.4.1, necessary and sufficient conditions are provided.

For (P0), such a condition is hard to verify in practice. In Section 6.4.2, a sufficient con-

dition is derived. This condition started from a simple fact: the most correlated covariates

(with the response) form the concurrent optimal subset. This condition is easy to verify

numerically. However, it is relatively restrictive. We use it as a preparation for more flexible

sufficient conditions. In Section 6.4.3, a very general sufficient condition is derived. To our

knowledge, this is the best known subset equivalence condition between (P0) and (P1).

Section 6.5 discusses related works and potential future research topics. A brief conclusion

is provided in Section 6.6. To keep the flow of the paper, not-directly-required proofs are

postponed into the appendix B.

6.1 Introduction

We consider two types of optimization problems in this chapter.

• The first is an optimization problem that is based on a counting measure,

(P0) min
x

‖y − Φx‖2
2 + λ0 · ‖x‖0,

where Φ ∈ R
n×m, x ∈ R

m, y ∈ R
n, the notation ‖ · ‖2

2 denotes the sum of squares of

the entries of a vector, nonnegative constant λ0 is an algorithmic parameter, and the

quantity ‖x‖0 is the number of nonzero entries in vector x.

• Solving (P0) generally requires exhaustive searching through of all the possible sub-

sets. Whenm, the column size of Φ, increases, the methods based on exhaustive search

become rapidly impractical. An approach is to relax the above problem by replacing
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‖x‖0 with ‖x‖1, which leads to the following problem: an optimization problem that

depends on a sum of absolute values,

(P1) min
x

‖y − Φx‖2
2 + λ1 · ‖x‖1,

where ‖x‖1 =
∑m

i=1 |xi| for vector x = (x1, x2, . . . , xm)T , and the nonnegative constant

λ1 is another algorithmic parameter, whose role will be discussed later.

Note that ‖x‖0 (respectively, ‖x‖1) is a quasi-norm (respectively, norm) in R
m. In

the literature of sparse signal presentation, they are called the ℓ0-norm and the ℓ1-norm,

respectively. The numbers “0” and “1” in the notations (P0) and (P1) follow such a

convention [20, 19, 11].

In subset selection under linear regression, many well known criteria – including Cp

statistic [65], Akaike information criterion (AIC) [1], Bayesian information criterion (BIC)

[84], minimum description length (MDL), risk inflation criterion (RIC) [30], and so on – are

special cases of (P0), by assigning different values to λ0. Details regarding the foregoing

statement will be provided later. It is shown in this paper that the problem (P0) in general

is NP-hard (Theorem 2.1).

At the same time, (P1) is the mathematical problem that is called upon in Lasso [90].

Recent advances (whose details and references are provided in Section 6.2.2) demonstrate

that some stepwise algorithms (e.g., least angle regressions (LARS) presented in [25]) reveal

the solution paths of problem (P1), while parameter λ1 takes a range of values. More

importantly, most of these algorithms only take polynomial number of operations – i.e.,

they are polynomial-time algorithms and (P1) minimizes a global objective function. In

fact, the complexity of finding a solution path for (P1) is the same as implementing an

ordinary least square fit [25].

However, as pointed out by the authors of LARS, having the same solutions as Lasso

does not guarantee that LARS selects the optimal subset of variables. I.e., solutions to (P1)

may not match the principles of AIC, BIC, Cp, and RIC (P0). An example by Weisberg in

the discussion of LARS ([95]) is unfavorable to the optimality of LARS. This chapter will

also give an example in which stepwise algorithms go totally wrong until the last step. I.e.
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the algorithm chooses all the variates outside the optimal subset before it selects any inside

the optimal subset.

Therefore, the issue of under what conditions a stepwise greedy approach can generate

a solution that optimizes a global objective function interests us. For clarity, we restricted

the underlying model to be a linear regression model. Variable selection instead of model

selection is the focus: we are not giving an optimality criterion for model selection; instead,

conditions under which (P0) and (P1) give the same result are investigated.

In summary, the main objective of this paper is to find when (P0) and (P1) lead

to a common solution in the subset selection under a regression model. A subset that

corresponds to the nonzero subset of the minimizer of (P0) (respectively, (P1)) is called a

type-I (respectively, type-II) optimal subset with respective to λ0 (respectively, λ1). A subset

that is both type-I and type-II optimal is called a concurrent optimal subset. It will be shown

that there is a necessary and sufficient condition for the type-II optimal subset (Theorem

4.2), and this condition can be verified in polynomial time. However, in general, there is

no polynomial-time necessary and sufficient condition for the type-I optimal subset. We

then search for easy-to-verify (i.e., polynomial-time) sufficient conditions for type-I optimal

subsets. Two types of results are derived. The first is based on the assumption that the

most correlated covariates form the optimal subset. The second result is motivated by a

new advance in sparse signal representation, and is rather general.

Our analysis deals with a fundamental issue that has recurred due to the introduction

of LARS. In practice, stepwise greedy algorithms are normally preferred by empiricists

due to their simplicity in implementation, while global optimality criteria are favored by

theorists due to their amenability in analysis. Theories explaining the link between these

two is of both practical and theoretical interests. Our work will raise awareness, and more

importantly, encourage more research on this topic.

6.2 Review of Two Optimization Problems

We consider subset selection in regression. Recall in a regression setting, Φ ∈ R
n×m(n > m)

denotes a model matrix. Vectors x ∈ R
m and y ∈ R

n are coefficient and response vectors.
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The columns of matrix Φ are covariates. A regression model is y = Φx + ε, where ε is a

random vector. Let I = {1, 2, . . . ,m} denote all the indices of the coefficients. A subset of

coefficients (or, covariates) is denoted by Ω ⊆ I. Let |Ω| denote the cardinality of the set

Ω. Let xΩ denote the coefficient vector that only takes nonzero values when the coefficient

indices are in the subset Ω. A subset selection problem has two competing objectives in

choosing a subset Ω: firstly, the residuals, which are in the vector y − ΦxΩ, are close to

zeros; secondly, the size of the set Ω is small. Note that we differ from many statisticians,

who emphasize the predictability of the selected models. We provide some discussions in

Section 6.5.

6.2.1 Subset Selection Criteria and (P0)

There has been rich literature on the criteria regarding subset selection. Book [68] and paper

[31] give an excellent overview. An interesting fact is that a majority of these criteria can

be unified under (P0), where ‖y−Φx‖2
2 is the residual sum of squares (denoted by RSS(x))

under the coefficient vector x, and constant λ0 depends on the criteria. The following

summarizes some well-known results:

• Akaike [1] defines his criterion by maximizing the expected log-likelihoodEX,θ̂(log f(X|θ̂)),

where θ̂ is the estimate of parameter θ, f(X|θ) is the density function. This is equiv-

alent to maximizing the expected Kullback-Leibler’s mean information for discrimi-

nation between f(X|θ̂) and f(X|θ), i.e., EX,θ̂(log f(X|θ̂)
f(X|θ)), for a known true θ. Under

a Gaussian assumption in the linear regression, the above leads to the Akaike infor-

mation criterion (AIC) that minimizes

AIC =
RSS(x)

σ2
+ 2 · ‖x‖0,

where σ2 is the noise variance, and other notations have been defined at the beginning

of this section. It is a special case of (P0) by assigning λ0 = 2σ2.

• Mallows’ Cp [65, 34], which is derived from the unbiased risk estimation, minimizes

Cp =
1

σ̂2
RSS(x) + 2 · ‖x‖0 − n,
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where σ̂ is an estimate of the parameter σ. When σ̂2 = σ2 is assumed, the Cp is

equivalent with the AIC. Again Cp is a special case of (P0).

• Motivated by the asymptotic behavior of Bayes estimators, Bayesian information cri-

terion (BIC) [84] chooses to select the model that maximizes

log f(X|θ̂) − 1

2
· log n · ‖x‖0.

Again, under the squared error loss and the Gaussian model assumption with known

variance σ2, BIC is to minimize

BIC =
RSS(x)

σ2
+ log n · ‖x‖0.

The above is a special case of (P0) by assigning λ0 = σ2 logn.

• According to [41, Section 7.8], the equivalence between BIC and the minimum de-

scription length (MDL) is well known. Hence MDL is a special case of (P0).

• Risk inflation criterion (RIC) is suggested in [30] from a minimax estimation vantage

point. RIC recommends the model that minimizes

RIC =
RSS(x)

σ2
+ 2 log p · ‖x‖0,

where p is the number of available predictors. This is derived from selecting the model

with minimum risk inflation. Due to the different emphasis of the present paper, we

do not include further details of RIC. However, readers can see that RIC is another

special case of (P0), by taking λ0 = 2σ2 log p.

In this paper, the “subset selection criteria” that appears everywhere encompasses all

the aforementioned criteria, all adopting the formulation (P0).

Solving (P0) generally requires exhaustive search of all the possible subsets. When ‖x‖0

(i.e., the number of covariates) increases, the methods based on exhaustive search become

rapidly impractical. In fact, solving (P0) in general is an NP-hard problem. The following

theorem can be considered as an extension of a result that was originally presented in [71].

Theorem 2.1 Solving the problem (P0) with a fixed λ0 is an NP-hard problem.
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Proof. Let

f(m) = min
x: ‖x‖0≤m

‖y − Φx‖2
2,

where all the symbols are defined in (P0). It is evident that point array (m, f(m)),m =

1, 2, . . ., forms a non-increasing curve in the positive quadrant.

We first establish the existence of an integerm0, such that value f(m0)+λ0m0 minimizes

the objective in (P0). Note that there are finite number of m’s such that λ0m ≤ f(1)+λ0 ·1.

This inequality gives an upper bound of m’s that satisfy f(m)+λ0m ≤ f(1)+λ0 ·1. Among

these finite number of m’s, there is at least one m0 that minimizes the value of function

f(m) + λ0m.

Define ε = f(m0). In general, we can assume ε > 0, because if ε = 0, response y can be

superposed by a small (more specifically, no more than m0) number of columns of matrix

Φ, which is a special case.

Using the idea of Lagrange multiplier, we can see that solving (P0) with λ0 is equivalent

to solving the sparse approximate solution (SAS) problem in [71, Section 2] with ε, which

is proven in [71] to be NP-hard. Hence, in general, solving (P0) is NP-hard. �

6.2.2 Greedy Algorithms and (P1)

Due to the hardness of solving (P0), a relaxation idea has been proposed. The relaxation

replaces the ℓ0 norm with the ℓ1 norm in the objective, which leads to (P1). The idea of

relaxation started in sparse signal representation [12]. Theoretical properties are derived

later in [20, 19]. A partial list of new representative results include [91], [92], [37], and [11].

Being compared with this paper, the problem of sparse signal representation has a different

emphasis. In sparse signal representations, researchers consider a redundant dictionary

[63, 32] and the conditions under which the sparsest representation can be solved via a

linear programming. Their formulations of (P0) and (P1) are slightly different from ours.

However, a group of results in this paper are certainly motivated by some recent results in

sparse representation. More connections will be discussed when we present our findings in

Section 6.4.3.
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At the same time, (P1) has been proposed in statistics as a way of subset selection. The

method is coined as Lasso [90]. An interesting recent development – the least angle regres-

sions (LARS) [25] – demonstrates that certain greedy algorithms can reveal the solutions

to (P1) with varying values of λ1, based on the idea of homotopy [77]. Here, we review this

result by a simple illustration. We prove that LARS is derived by satisfying a necessary

condition for a vector being an optimal solution in Lasso (i.e. (P1)), which represents the

idea of homotopy used in the LARS paper [25]. Being compared with those existing homo-

topy explanations in [77], the following analysis is more straightforward, taking advantage

of a Lagrange multiplier and a perturbation analysis.

Recall Lasso is equivalent to find the following minimizer:

x(c) = argmin ‖y − Φx‖2
2,

s.t. ‖x‖1 ≤ c,
(37)

where c is a constant; y, Φ, x, and ‖x‖1 have been defined before. The sum of squares of

residuals is ‖y − Φx‖2
2. To make a link later, the following graphical illustration of (37)

is introduced. In Fig. 55, the horizontal axis is the value of ‖x‖1, the vertical axis is the

2

1

||y||22

~||x||1

||y−Φx||2

||x||

Figure 55: Graphical Illustration of Lasso Problem.

value of ‖y − Φx‖2
2. The point set (‖x‖1, ‖y − Φx‖2

2), for all c, forms a feasible set. This

set is the shaded region in Fig. 55. The lower bound of the feasible set is called a frontier.

Apparently, each point on the frontier corresponds to a solution to (37), with a particular

constant c. Given that function ‖y − Φx‖2
2 is strictly convex for x, one can verify that the
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frontier in this case is strictly convex. This intuitively correct phenomenon is hard to be

proved. It is listed as a lemma below. In Fig. 55, x̃ denotes a solution of 0 = y − Φx.

Lemma 2.2 If there exists a vector x̃, such that 0 = y − Φx̃, then the frontier mentioned

above is strictly convex, i.e., there are no vectors x1 and x2 and constant λ(0 < λ < 1),

such that points p1 = (‖x1‖1, ‖y − Φx1‖2
2), p2 = (‖x2‖1, ‖y − Φx2‖2

2), and λp1 + (1 − λ)p2

are simultaneously on the frontier.

The proof can be found in Appendix B.1.

Now we apply the idea of Lagrange multipliers. For every c, there exists a value λ, such

that

x(c) = x(λ) = argmin ‖y − Φx‖2
2 + λ‖x‖1. (38)

This indicates that Lasso solves (P1). Being compared to (37), the optimization problem

(38) is unconstrained. Hence, we can consider the First Order Condition for the objective

in (38). Let f(x;λ) denote the objective:

f(x;λ) = ‖y − Φx‖2
2 + λ‖x‖1.

We have the first derivative

df(x;λ)

dx
= 2ΦTΦx− 2ΦT y + λ · sign(x)

= −2ΦT (y − Φx) + λ · sign(x),

where sign(x) is a vector whose entries are the signs of the entries of vector x. The above is

written assuming xi’s are not equal to zero. When xi is zero, f(x;λ) is not differentiable.

From the above, we have

df(x;λ)

dxi
= −2

[
ΦT (y − Φx)

]
i
+ λ · sign(xi)

for xi 6= 0. Hence

[
ΦT (y − Φx)

]
i
=
λ

2
· sign(xi). (39)

If xi = 0, and x minimizes f(x;λ), we must have

∣∣−2
[
ΦT (y − Φx)

]
i

∣∣ ≤ λ;
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otherwise, a small perturbation of xi will decrease the value of f(x;λ). Hence

∣∣[ΦT (y − Φx)
]
i

∣∣ ≤ λ/2; (40)

From the above, if x minimizes f(x;λ), both (39) (when xi 6= 0) and (40) (when xi = 0)

must be satisfied. On the other hand, if x satisfies (39) and (40), then x is at least a

local minimizer of f(x;λ). Note that even the frontier is strictly convex, the minimizer

of the function f is not necessarily unique. For example, there exist v1 and v2 such that

Φ(v1 − v2) = 0 and sign(v1) = sign(v2). One can verifies that if f(v1;λ) = f(v2;λ), then

f(v1;λ) = f(κv1 + (1 − κ)v2;λ), for 0 ≤ κ ≤ 1.

According to the steps of LARS and the above analysis, we proved the following.

Theorem 2.3 At each iteration of LARS, a solution vector satisfies a necessary condition

for this vector to be a solution to Lasso.

More recent analysis demonstrates further that greedy algorithms can literally render the

entire solution path in a large class of problems, referring to [39] and the references therein.

A recent conference presentation [62] gives the most succinct solution in generating solution

paths, utilizing a homotopy continuation method [78] and an analysis of subdifferential. [83]

is a standard reference for the background of this material.

6.3 Motivations: Case Studies

6.3.1 An Extremal Example for the Least Angle Regressions

Least Angle Regression [25] is a forward variable selection method. An extensive manual

regarding forward selection can be found in [5]. As been indicated previously, LARS can give

the solution path of (P1). However, this homotopy does not guarantee that LARS always

reveal the optimal solutions of (P0). In this subsection, we present one particular case, in

which LARS choose wrongly in the first iteration and end up correcting it inefficiently. As

a result, LARS do not include the correct covariates until the last step. Initially, such an

example motivated us to consider the conditions that will be presented later.

Details of LARS algorithm can be found in [25], Section 2. In simplicity, LARS start with

zero coefficients, select the most correlated covariates with the signal s, then move along the
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direction that is equiangular among the selected covariates until some other covariates have

as much correlation with the current residual, add these new covariates under consideration

and move along the new equiangular direction. When the covariates and the response are

standardized to have mean 0 and unit norm, correlation between vectors is proportional to

the inner product. In this section, for clarity, we first give an example with nonstandardized

vectors, and choose the covariates according to the inner products. The corresponding

example with standardized covariates and signal is presented later in Section 6.3.1.1. Section

6.3.1.2 shows how to use the result in this section to come up with a dramatic example in

presentation.

The first example is generated as follows. Let φi ∈ R
n, i = 1, 2, ...,m, denote the ith

column of the model matrix Φ. Hence, Φ = [φ1, φ2, ..., φm]. Let δi ∈ R
n, i = 1, 2, ...,m,

denote the dirac vector taking 1 at the ith position and zero elsewhere. For i = m − A +

1,m − A + 2, ...,m, let φi = δi, where A is a positive integer. Consider a special signal

s = 1√
A

∑m
i=m−A+1 φi. Obviously, in this case, the optimal subset is {m−A+1, ...,m}. For

the first m−A columns of Φ, make φj = aj ·s+bj ·δj , where 1 ≤ j ≤ m−A and a2
j +b2j = 1.

Note φi’s and s are all unit-norm vectors. From now on, for simplicity, we always assume

1 ≤ j ≤ m−A and m−A+ 1 ≤ i ≤ m. It is easy to verify that

〈s, φj〉 = aj and 〈s, φi〉 = 1/
√
A.

In this example, we choose 1 > a1 > a2 > · · · > am−A > 1/
√
A > 0.

Now consider the procedure of LARS. In the first step, since φ1 has the largest inner

product with s, evidently column φ1 will be chosen. The next residual will be r1 = s−c1φ1,

where c1 is the coefficient to be determined. The following result about the consequent step

in LARS will be proved in Appendix B.2.

Lemma 3.1 In the consequent step of LARS, covariate φ2 is chosen, with c1 = a1−a2
1−a1a2

.
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Hence, the residual of the first step becomes

r1 = s− c1φ1

= s− a1 − a2

1 − a1a2
(a1s+ b1δ1)

=
b21

1 − a1a2
s− (a1 − a2)b1

1 − a1a2
δ1

=
b21

1 − a1a2
[s− a1 − a2

b1
δ1].

Note that in LARS, only the direction of a residual vector determines the selection of the

next covariates. The amplitude of a residual vector does not change the variable selection.

Hence, we introduce a surrogate residual with a simpler form:

r̃1 = s− a1 − a2

b1
δ1.

Residuals r̃1 and r1 have the same direction. This is an important step to simplify our

analysis. In the proof of the next theorem, the surrogate residuals with simpler forms are

repeatedly called upon.

As a sanity check, the following calculations are performed:

1. For i, 〈φi, r̃1〉 = 1/
√
A.

2. For j,

〈φj , r̃1〉 = 〈ajs+ bjδj , s−
a1 − a2

b1
δ1〉

= aj −
bj(a1 − a2)

b1
〈δj , δ1〉.

As special cases: 〈φ1, r̃1〉 = a2, 〈φ2, r̃1〉 = a2, and for j ≥ 3, 〈φj , r̃1〉 = aj .

The above analysis demonstrates some basic techniques that will be used in the conse-

quent LARS steps. Now we use induction to show the following.

Theorem 3.2 (Case Study of LARS) In the example described in the beginning of this

section, LARS choose covariates φ1, φ2, ..., φm−A one by one sequentially in the first m−A

steps.
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It takes some energy to verify the above theorem. We postpone it to Appendix B.3.

This example shows that LARS can choose all the covariates outside an intuitively optimal

subset before it reaches any covariate inside the optimal subset.

6.3.1.1 Standardized Covariates

Readers may notice that LARS should proceed along the direction that depends on the

correlations between φi’s and the residual. Meanwhile, in our case study, the proceeding

direction is determined due to the inner product. The inner product is not proportional

to the correlation since the response s and the covariate vectors φi’s are not standardized

to have mean 0. However, this discrepancy can be easily remedied as follows. The key

observation is that LARS only depend on geometric information. More specifically, the

result depends only on 〈φi, s〉, i = 1, 2, ...,m, and 〈φi, φj〉, 1 ≤ i, j ≤ m. For example,

an orthogonal transform of both s and φi’s will retain the results in LARS. We state this

without a proof.

Lemma 3.3 After a simultaneously orthogonal transform on both response and covariates,

the results of LARS from the transformed data is the same orthogonal transform of the

LARS results from the original data.

Hence, if we can find another set of standardized vectors, which retain the inner products

and are the orthogonal transforms of φi’s and s in the previous example, the same results

can be predicted for LARS.

The standardization can be incorporated according to the following. The main idea

is that an n-dimensional linear space can be treated as a subspace of R
n+1, which is or-

thogonal to vector (1, 1, ..., 1). Let {b0, b1, ..., bn} denote an orthonormal basis of R
n+1,

with b0 = 1√
n+1

(1, 1, ..., 1)T . Denote the unit-norm vectors s = (s1, s2, ..., sn)
T and φi =

(φi1, φi2, ..., φin)
T , i = 1, 2, ...,m. Define s′ =

∑n
j=1 sjbj , φ

′
i =

∑n
j=1 φijbj , i = 1, 2, ...,m.

One can easily verify that 〈s′, φ′i〉 = 〈s, φi〉 for 1 ≤ i ≤ m, and 〈φ′i, φ′j〉 = 〈φi, φj〉 for

1 ≤ i, j ≤ m. Hence, applying LARS to s′ and φ′i’s will produce the same result as in

the first case study. It is not hard to verify that s′ and φ′i’s are standardized. Hence, the

conclusions in our case study can be extended to the case with standardized response and
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covariates.

Theorem 3.4 (An Example with Standardized Covariates) There exists an orthog-

onal transform that can be applied to the previous example to create a case in which all the

covariates and the response are standardized, and LARS select all the covariates outside the

optimal subset before it chooses any covariate inside the optimal subset.

6.3.1.2 A Dramatic Presentation

The foregoing example is developed in a fairly general form, with controlling parameters

A and m. To illustrate how dramatic this example can be, let us consider the case where

A = 10 and m = 1, 000, 000. Based on the previous description, the LARS will select the

first 999, 990 covariates before it selects any of the last ten covariates. At the same time,

the optimal subset is formed by the last ten covariates.

6.3.2 Variable Selection with Orthogonal Model Matrix

In order to provide some insights, a simple case in which Φ is orthogonal is considered.

Although this example has been studied in the original LARS paper [25], the purpose of

restating it here is to illustrate that there is a case in which LARS find the type-I optimal

subset.

Theorem 3.5 (Orthogonal Design) Let x̃0 and x̃1 denote the solutions to (P0) and

(P1), respectively. When Φ is orthogonal, we have

x̃0,i =





0, if |zi| ≤
√
λ0,

zi, if |zi| >
√
λ0,

and

x̃1,i =





0, if |zi| ≤ λ1/2,

sign(zi)(|zi| − λ1
2 ), if |zi| > λ1/2.

Here, x̃0,i and x̃1,i denote the ith entry of x̃0 and x̃1, respectively, and zi is the ith entry of

z = ΦT y.

For readers who are familiar with soft-thresholding and hard-thresholding [23], the above

is not a surprise. A proof follows.
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Proof. Both (P0) and (P1) can be decomposed into the univariate problems

min
xi

(zi − xi)
2 + λ0 · 1(xi 6= 0),

and

min
xi

(zi − xi)
2 + λ1 · |xi|.

From here, it is not hard to derive the formulae in the theorem. �

From the above, verifying the following becomes an easy task. Let supp(x) denote the

set of indices of the nonzero entries in vector x.

Corollary 3.6 When
√
λ0 = λ1/2, one has supp(x̃0) = supp(x̃1), i.e., there is a concurrent

optimal subset. Moreover,

x̃0,i − x̃1,i =





0, if i /∈ supp(x̃0),

λ1
2 · sign(zi), if i ∈ supp(x̃0).

The proof is obvious and is omitted.

Now there are two opposing examples. On one hand, if Φ is orthogonal, LARS and

Lasso recover the optimal subset in (P0). On the other hand, we found an example in

which a version of LARS would choose all the covariates outside the optimal subset before

choosing anything inside. These inconsistencies encourage us to analyze the solutions of

(P0) and (P1), and the conditions for a subset to be the concurrent optimal subset. We

present the details and the results in the next section.

6.4 Main Results: Conditions of Equivalence

We present our findings in three subsections. In Section 6.4.1, we give a sufficient and neces-

sary condition for a subset to be the concurrent optimal subset. Recall that (P0) in general

is NP-hard. Checking the aforementioned condition can not be done via a polynomial-time

algorithm. In Section 6.4.2, we ask when the k most correlated covariates form the concur-

rent optimal subset. A sufficient condition is derived. This result is easy to check but too

restrictive. However, it inspires us to consider more general sufficient conditions. A more

general sufficient condition for (P0) is derived in the next section – Section 6.4.3 – which
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is also motivated by a recent approach appeared in applied mathematics [36]. We modified

their approach to solve a different mathematical problem.

6.4.1 Sufficient and Necessary Conditions

Before moving into the specific discussion, we introduce a sufficient and necessary condition

for a concurrent optimal subset. Let I1 denote a subset of indices. Let Φ1 and x1 denote

columns of Φ and entries of x with indices from I1. Let Φ = [Φ1 Φ2]. Here, a permutation

that does not change the problem is implied.

Theorem 4.1 (Sufficient and Necessary for (P0)) I1 is the optimal subset of (P0) if

and only if value

yT y − yTΦ1(Φ
T
1 Φ1)

−1ΦT
1 y + λ0 · ‖x1‖0 (41)

is the minimum of the objective in (P0).

Theorem 4.2 (Sufficient and Necessary (P1)) I1 is the optimal subset of (P1) if and

only if there exists a vector ω, such that

ΦT y =




ΦT
1 Φ1

ΦT
2 Φ1


x1 +




λ1
2 · sign(x1)

ω


 (42)

holds and ‖ω‖∞ ≤ λ1/2.

Theorem 4.3 (Sufficient and Necessary (Concurrent)) I1 is the concurrent optimal

subset of (P0) and (P1) if and only if (41) and (42) are true. Moreover, recall x̃0 and x̃1

are the solutions of (P0) and (P1), respectively. We have

(x̃0 − x̃1)I1 = (ΦT
1 Φ1)

−1 · λ1

2
· sign((x̃1)I1). (43)

Proof. For the above theorems, Theorem 4.1 is from a direct derivation; and Theorem

4.2 is based on the argument of subdifferential [92, 62].

For Theorem 4.3, consider

(x̃0)I1 = (ΦT
1 Φ1)

−1ΦT
1 y,
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and

ΦT
1 y = (ΦT

1 Φ1)(x̃1)I1 +
λ1

2
· sign((x̃1)I1).

By combining the above two, (43) follows. �

The above theorem gives a necessary and sufficient condition for a concurrent optimal

subset. The following provides some further comments.

Remark 4.4 Equation (43) provides a methods of computing x̃1, given that x̃0 is available

and represents the optimal solution. Evidently,

(x̃1)I1 = (x̃0)I1 −
λ1

2
(ΦT

1 Φ1)
−1 · sign((x̃1)I1).

Remark 4.5 Note

Φ(x̃0 − x̃1) = Φ1(x̃0 − x̃1)I1

=
λ1

2
· Φ1(Φ

T
1 Φ1)

−1 · sign((x̃1)I1),

which is an equiangular vector among the columns of Φ1. Hence, when optimality is achieved

in both (42) and (43), the difference between the two predicted vectors is an equiangular

vector.

Readers can compare the above results with those in [62], who independently achieved

the same results.

Verification of the sufficient and necessary conditions in (41) is difficult, requiring solving

a combinatorial search problem. Because in general, solving (P0) is NP-hard (Theorem

2.1), it will be easy to verify that there should be no sufficient and necessary condition that

can be verified by a polynomial time algorithm.

6.4.2 A Sufficient Condition for Covariates that are Mostly Correlated with
the Response

Because it is generally impossible to have a necessary and sufficient condition that can be

verified in polynomial time, we will focus on finding some easy-to-verify sufficient conditions.

We first introduce a set of sufficient conditions, which only depend on the correlations

between the response y and the covariates φi, as well as the maximum correlation between
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the covariates. For simplicity, we now assume that response y and covariates φi’s are all

standardized. It is not hard to see |〈y, φi〉| ≤ 1, i = 1, 2, ...,m, and |〈φi, φj〉| ≤ 1, 1 ≤ i, j ≤

m. Denote z = ΦT y = (z1, z2, ..., zm)T . Without loss of generality, we assume |z1| > |z2| >

· · · > |zm|. We want to find sufficient conditions such that subset A1 = {φ1, φ2, ..., φk} is

the solution to both (P0) and (P1). In other words, the k most correlated covariates with

the response form the optimal subset. Clearly, an optimal subset does not need to be the

most correlated covariates with the response. Due to this additional condition, this set of

conditions are restrictive. The restrictiveness is illustrated in an example in Section 6.4.2.1.

Denote

µ = max
1≤i,j≤m

i6=j

|〈φi, φj〉|.

The following is a well-known result from linear algebra.

Lemma 4.6 Let λ(ΦT
1 Φ1) denote an eigenvalue of matrix ΦT

1 Φ1, where Φ1 = [φ1, φ2, · · · , φk].

We have

1 − (k − 1)µ ≤ λ(ΦT
1 Φ1) ≤ 1 + (k − 1)µ, (44)

and

1

1 + (k − 1)µ
≤ λ

(
(ΦT

1 Φ1)
−1
)
≤ 1

1 − (k − 1)µ
(45)

The above lemma will be used in proving the following two theorems.

Theorem 4.7 For a given λ0, and correlations z1, z2, ..., zk, if the following three conditions

are satisfied:

[1 − (k − 1)µ]z2
k ≥ 2(k − 1)2µ+ z2

k+1[1 + (k − 1)µ], (46)

z2
k+1 ≤ λ0(1 − ∆) − (2k − 1)µ

1 + (k − 1)µ

k∑

i=1

z2
i , (47)

z2
k ≥ λ0 +

(2k − 3)µ

1 + (k − 1)µ

k∑

i=1

z2
i , (48)

where ∆ = n · µ in (47), then subset A1 is the type-I optimal subset.

To prove the above theorem, we will show that for subsets having sizes equal to k, or

sizes greater than k, or sizes less than k, the above three conditions will guarantee that
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subset A1 is the type-I optimal subset. Since the proof is a little bit long and technical, it

is postponed into Appendix B.4.

Remark 4.8 Conditions (46), (47) and (48) are independent, i.e., none of them can be

derived from the other two.

The following theorem states the condition for set A1 = {φ1, φ2, ..., φk} to be the type-II

optimal subset.

Theorem 4.9 Given λ and k, if

λ

2
− |zk+1| ≥

√
kµ

1 − (k − 1)µ

√√√√
k∑

i=1

(
|zi| +

λ

2

)2

, (49)

then subset A1 is the type-II optimal subset.

Again, The proof is postponed into Appendix B.5 because it is a little bit technical.

The following corollary gives a sufficient condition for A1 to be the concurrent optimal

subset.

Corollary 4.10 Given (46), (47), (48), and (49), subset A1 is the concurrent optimal

subset.

6.4.2.1 Restrictiveness of the Aforementioned Sufficient Conditions

Readers may notice that the four conditions in the previous section are restrictive. One

can easily find an example that does not satisfy these conditions, however still has the

concurrent optimal subset A1.

A counter example can be established as follows. Suppose n,m, and k are three positive

integers satisfying n > m > k and n ≥ m+ k. Let ai denote the ith entry of vector a ∈ R
k

with |a1| ≥ |a2| ≥ · · · ≥ |ak|. Let Im×m ∈ R
m×m be an identity matrix and Φa ∈ R

k×k be

the diagonal matrix with the ith diagonal entry being equal to ai. Consider

Φ = standardized








Φa 0k×(m−k)

Im×m

0(n−k−m)×m








, y =
k∑

i=1

φi,
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where standardized{M} refers to the standardization of all the columns of matrix M ,

matrices 0k×(m−k) and 0(n−k−m)×m are made by zeros, and φi is the ith column of Φ.

The optimal solution is the first k covariates, and these covariates have larger correla-

tions with y. However, there are many choices of m,n, k and vector a, with which con-

dition (46) is not satisfied. As a special case, consider the following simple example:

n = 10,m = 7, k = 3, and a = (−1 1 0)T . It’s not hard to verify that µ(Φ) = 0.1667, z3 =

0.7379, z4 = −0.3162, [1−(k−1)µ]z2
k = 0.3630, and 2(k−1)2µ+z2

k+1[1+(k−1)µ] = 0.9117.

Hence, (46) does not hold for this case.

6.4.3 Sufficient Conditions based on the Model Matrix and the Correlations
with Residuals

It is evident that the conditions in the previous subsection is restrictive. However, the

derivation of the results (e.g., Theorem 4.7) demonstrates some key quantities that are

required in the analysis: e.g., the correlations among the covariates, the correlations between

the covariates and the response.

In order to come up with a practical subset selection scheme, it is helpful to have a

sufficient condition for the type-I optimal subset. For example, when a solution path of

(P1) is computed by an efficient stepwise algorithm, this sufficient condition can be used

to test whether any of the solutions on this solution path is also type-I optimal. If yes, then

a concurrent optimal subset is obtained.

We develop some sufficient conditions to identify whether a subset is a type-I optimal

subset. Recall that x ∈ R
m denote a coefficient vector. Denote the corresponding residual

vector by ε = y − Φx. Recall that y ∈ R
n and Φ ∈ R

n×m are the response vector and the

model matrix, respectively. Let Ω denote the support of the vector x: Ω = supp(x). For an

integer k ≥ 1, let

σ2
min,k = inf

‖Φδ‖2
2

‖δ‖2
2

, subject to ‖δ‖0 ≤ k.

The above quantity reflects certain property of the model matrix. Furthermore, for a vector
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v ∈ R
n and an integer k ≥ 1, we define

c(v, k) =

√√√√
k∑

i=1

v2
(i),

where |v(1)| ≥ |v(2)| ≥ · · · ≥ |v(n)| are the non-increasing-ordered magnitudes of the entries

of vector v. For finite k, we assume that quantities c2(ΦT ε, k) and σ2
min,k are available.

The following theorem provides a sufficient condition for a subset being included in a

type-I optimal subset with respect to λ0.

Theorem 4.11 Given a subset of coefficient Ω. Suppose that coefficient vector x is the

minimizer of function ‖y − Φx‖2
2 subject to supp(x) ⊂ Ω. Let ε = y − Φx.

(1) If mini∈Ω |xi| > q1(|Ω|), then with respect to λ0, there is no type-I optimal subset

whose size of the support is less than |Ω|.

(2) Furthermore, if mini∈Ω |xi| > q(|Ω|), then with respect to λ0, we have Ω ⊂ Ω′, where

Ω′ is the type-I optimal subset with respect to λ0.

The quantities q1(·) and q(·) are defined as follows. For an integer k ≥ 1,

q1(k) = sup
m<k

c(ΦT ε, 1) +
√
c2(ΦT ε, k +m) + (k −m)λ0σ2

min,k+m

σ2
min,k+m

,

q2(k) = sup
m≥k

c(ΦT ε, 1) +
√
c2(ΦT ε, k +m) + (k −m)λ0σ2

min,k+m

σ2
min,k+m

,

and

q(k) = max{q1(k), q2(k)}.

Note that quantities q1(·) and q2(·) have the same objective function. However, the

ranges of variable m are different. Because q1(k) only requires a finite choice of variable m,

it is computable. It is not straightforward that for any k ≥ 1, the quantity q2(k) exists. In

this paper, we assume the existence of this quantity.

Proof. Suppose Ω′ is the type-I optimal subset, with corresponding coefficient vector

x′. We must have

‖y − Φx′‖2
2 + λ0‖x′‖0 ≤ ‖y − Φx‖2

2 + λ0‖x‖0. (50)
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Denote δ = x′ − x, we have ‖δ‖0 ≤ |Ω| + |Ω′|. We will prove that

“if |Ω′| < |Ω|, then ‖δ‖∞ ≤ q1(Ω), ” (51)

and

“for any Ω′, ‖δ‖∞ ≤ q(Ω).” (52)

To see the above, a reformulation of (50) gives

‖ε− Φδ‖2
2 ≤ ‖ε‖2

2 + λ0(|Ω| − |Ω′|),

which is equivalent to

‖Φδ‖2
2 ≤ 2〈ΦT ε, δ〉 + λ0(|Ω| − |Ω′|), (53)

where 〈·, ·〉 denotes the inner product between two sequences. Define δ′ = σ2
min,|Ω|+|Ω′| · δ.

Because ‖Φδ‖2
2 ≥ σ2

min,|Ω|+|Ω′|‖δ‖2
2, and (53), we have

‖δ′‖2
2 ≤ 2〈ΦT ε, δ′〉 + λ0(|Ω| − |Ω′|) · σ2

min,|Ω|+|Ω′|.

The above is equivalent to

‖ΦT ε− δ′‖2
2 ≤ ‖ΦT ε‖2

2 + λ0(|Ω| − |Ω′|) · σ2
min,|Ω|+|Ω′|.

Define ε∗ = ΦT ε. The above inequality leads to

∑

i∈Ω∪Ω′

(ε∗i − δ′i)
2 ≤

∑

i∈Ω∪Ω′

(ε∗i )
2 + λ0(|Ω| − |Ω′|) · σ2

min,|Ω|+|Ω′|.

The above immediately leads to

sup
i∈Ω∪Ω′

|δ′i| ≤ sup
i∈Ω∪Ω′

|ε∗i | +
√ ∑

i∈Ω∪Ω′

(ε∗i )
2 + λ0(|Ω| − |Ω′|) · σ2

min,|Ω|+|Ω′|.

Dividing both sides by σ2
min,|Ω|+|Ω′|, we have

sup
i∈Ω∪Ω′

|δi| ≤
c(ΦT ε, 1) +

√
c2(ΦT ε, |Ω| + |Ω′|) + λ0(|Ω| − |Ω′|) · σ2

min,|Ω|+|Ω′|

σ2
min,|Ω|+|Ω′|

. (54)

Recall the definitions of q1(·) and q(·), (51) and (52) can be derived directly from (54).

Now we are able to verify item (1) in the theorem. Suppose there is a type-I optimal

subset Ω′ satisfying |Ω′| < |Ω|. We have

|x′i| ≥ |xi| − |xi − x′i| ≥ |xi| − q1(Ω) > 0.
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The second inequality is based on (51); and the last inequality is from the condition in item

(1). The above implies Ω ⊂ Ω′, which contradicts |Ω′| < |Ω|. We have proved item (1).

The proof of item (2) is strongly similar to the proof of (1). We skip the obvious details.

�

The above theorem is motivated by a recent related work in applied mathematics. Read-

ers may compare it with the test proposed in [36]. Their test is related to the optimality in

sparse signal representations.

In Theorem 4.11, quantities q1(·) and q(·) require multiple values of σ2
min,k, for a range

of values of k. Comparing to the quantities c(·, k), it is harder to compute σ2
min,k’s. Inspired

by the derivation in Theorem 2 in [36], we derive a sufficient condition, which only depends

on σ2
min,|Ω|, where Ω is the subset that is tested. To state our result, the following quantity

needs to be defined: for an integer m ≥ 1 and a given integral constant M , let

λ(m;M) = 1 − M√
m

sup
|I|≤m

sup
k/∈I

‖Φ+
I φk‖2,

where I is a subset of indices, |I| denotes the size of this subset, matrix ΦI is a submatrix

of Φ whose column indices form the set I, Φ+
I = (Φ∗

IΦI)−1Φ∗
I is the Moore-Penrose pseudo-

inverse [35] with (·)∗ denoting the adjoint, and φk is the kth column (i.e., covariate) in Φ.

Given m, quantity λ(m) can be computed by enumerating all m-subset of the covariates.

Now we present another sufficient condition.

Theorem 4.12 Given a subset of coefficient Ω. Suppose that coefficient vector x is the

minimizer of function ‖y −Φx‖2
2 subject to supp(x) ⊂ Ω. Suppose it is known a priori that

the size of the type-I optimal subset is no larger than M . If mini |xi| > q′(|Ω|,M), then

set Ω is at least a subset of the type-I optimal subset. Here quantity q′(·) is defined as, for

integer k ≥ 1 and constant M ,

q′(k,M) = sup
1≤m≤M

c(ΦT ε, 1) +
√
c2(ΦT ε, k) + λ0 · k

2(k−m)
(k+m)2

· σ2
min,k · λ2(k;m)

k
k+mσ

2
min,k · λ2(k;m)

Proof. The beginning of the proof is the same as the proof of the previous theorem. It

starts to deviates at stage (53). For readers’ convenience, we restate the inequality (53):

‖Φδ‖2
2 ≤ 2〈ΦT ε, δ〉 + λ0(|Ω| − |Ω′|). (55)
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Readers are referred to the previous proof for the meanings of the notations.

First, we have

〈ΦT ε, δ〉 ≤
n∑

i=1

|b(i)| · |δ(i)|, (56)

where |δ(1)| ≥ |δ(2)| ≥ · · · ≥ |δ(n)| is the ordered list of the magnitudes of the entries in

vector δ. Similarly, |b(1)| ≥ |b(2)| ≥ · · · ≥ |b(n)| is the ordered list of the magnitudes of the

entries in vector ΦT ε. We denote ΦT ε by b. The following manipulations are needed:

R.H.S. of (56) =

|Ω|∑

i=1

|b(i)| · |δ(i)| +
n∑

i=|Ω|+1

|b(i)| · |δ(i)|

≤
|Ω|∑

i=1

|b(i)| · |δ(i)| + |b(|Ω|+1)| ·
n∑

i=|Ω|+1

|δ(i)|

≤
|Ω|∑

i=1

|b(i)| · |δ(i)| + |b(|Ω|+1)| ·
|Ω′|
|Ω| ·

|Ω|∑

i=1

|δ(i)|

≤
(

1 +
|Ω′|
|Ω|

) |Ω|∑

i=1

|b(i)| · |δ(i)|

=

(
1 +

|Ω′|
|Ω|

)
〈b∗, δ∗|Ω|〉, (57)

where vector δ∗|Ω| takes the absolute values of δ only at the positions where vector δ has the

|Ω| largest magnitudes and zeros elsewhere. I.e.,

δ∗|Ω|,i =





|δi|, if |δi| ≥ |δ(|Ω|)|;

0, elsewise.

For vector b∗,

b∗i = |b(j)|, where δi = δ(j).

Putting (56) and (57) together, we have

〈ΦT ε, δ〉 ≤
(

1 +
|Ω′|
|Ω|

)
〈b∗, δ∗|Ω|〉. (58)

Meanwhile, for any Ω, we have

‖Φδ‖2
2 ≥ ‖ΦΩΦ+

ΩΦδ‖2
2

≥ σ2
min,|Ω| · ‖Φ+

ΩΦδ‖2
2

= σ2
min,|Ω| · ‖δΩ + Φ+

ΩΦΩcδΩc‖2
2, (59)
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where set Ωc is the complement of set Ω, matrices ΦΩ and ΦΩc are submatrices of matrix Φ

by taking columns whose indices are in Ω and Ωc, respectively. As mentioned earlier, matrix

Φ+
Ω is a pseudo-inverse of ΦΩ. Vector δΩ (respectively, δΩc) only takes nonzero values when

the index is in the set Ω (respectively, Ωc). Note here Ω can be any subset of the indices,

which is different with the Ω in the assumption at the beginning of the proof – we have an

abuse of the notation. In the above steps, the first inequality is true because the matrix

ΦΩΦ+
Ω is a projection matrix. The second inequality is based on the definition of σ2

min,|Ω|.

The last step is just a reorganization. Furthermore, we have

‖δΩ + Φ+
ΩΦΩcδΩc‖2 ≥ ‖δΩ‖2 −

∑

k∈Ωc

|δk| · sup
k/∈Ω

‖Φ+
Ωφk‖2

≥ ‖δΩ‖2 −
n∑

k=|Ω|+1

|δ(k)| · sup
k/∈Ω

‖Φ+
Ωφk‖2

≥ ‖δΩ‖2 −
|Ω′|
|Ω| · ‖δ

∗
|Ω|‖1 · sup

k/∈Ω
‖Φ+

Ωφk‖2

≥ ‖δΩ‖2 −
|Ω′|√
|Ω|

· ‖δ∗|Ω|‖2 · sup
k/∈Ω

‖Φ+
Ωφk‖2

≥ λ(|Ω|; |Ω′|) · ‖δ∗|Ω|‖2. (60)

In the above, the first and the second steps are common maneuvers. The third inequality

is based on ‖δ∗|Ω|‖1/|Ω| ≥ ∑n
k=|Ω|+1 |δ(k)|/|Ω′|. The fourth inequality is based on ‖δ∗|Ω|‖1 ≤

√
|Ω| · ‖δ∗|Ω|‖2. The last step recalls the definition of λ(·, ·) and takes Ω as the indices subset

where δ∗‖Ω‖ having nonzero entries. Combining (59) and (60), we have

‖Φδ‖2
2 ≥ σ2

min,|Ω| · λ2(|Ω|; |Ω′|) · ‖δ∗|Ω|‖2
2. (61)

Now we put the above results together, and then maneuver back to the argument as in

the proof of Theorem 4.11. Combining (55), (58), and (61), we have

σ2
min,|Ω| · λ2(|Ω|; |Ω′|) · ‖δ∗|Ω|‖2

2 ≤ 2

(
1 +

|Ω′|
|Ω|

)
〈b∗, δ∗|Ω|〉 + λ0(|Ω| − |Ω′|).

Let

δ′ =
|Ω|

|Ω| + |Ω′|σ
2
min,|Ω| · λ2(|Ω|; |Ω′|) · δ∗|Ω|.

We have

‖δ′‖2
2 ≤ 2〈b∗, δ′〉 + λ0 ·

|Ω|2(|Ω| − |Ω′|)
(|Ω| + |Ω′|)2 · σ2

min,|Ω| · λ2(|Ω|; |Ω′|).
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The above is equivalent to

‖δ′ − b∗‖2
2 ≤ ‖b∗‖2

2 + λ0 ·
|Ω|2(|Ω| − |Ω′|)
(|Ω| + |Ω′|)2 · σ2

min,|Ω| · λ2(|Ω|; |Ω′|).

The above leads to the following

‖δ′‖∞ ≤ ‖b∗‖∞ +

√
c2(b∗, |Ω|) + λ0 ·

|Ω|2(|Ω| − |Ω′|)
(|Ω| + |Ω′|)2 · σ2

min,|Ω| · λ2(|Ω|; |Ω′|).

Recall the definition of δ′ and b∗, we have

‖δ‖∞ ≤ ‖b‖∞ +

√
c2(b, |Ω|) + λ0 ·

|Ω|2(|Ω| − |Ω′|)
(|Ω| + |Ω′|)2 · σ2

min,|Ω| · λ2(|Ω|; |Ω′|)

≤
c(ΦT ε, 1) +

√
c2(ΦT ε, |Ω|) + λ0 · |Ω|2(|Ω|−|Ω′|)

(|Ω|+|Ω′|)2 · σ2
min,|Ω| · λ2(|Ω|; |Ω′|)

|Ω|
|Ω|+|Ω′|σ

2
min,|Ω| · λ2(|Ω|; |Ω′|)

≤ q′(|Ω|;M). (62)

The above is equivalent to ‖x− x′‖∞ < q′(|Ω|;M). Using the same argument as in the last

proof, we can argue that Ω ⊂ Ω′. Suppose xi 6= 0, we have

|x′i| ≥ |xi| − |xi − x′i| ≥ |xi| − q′(|Ω|,M) > 0,

which implies that Ω ⊂ Ω′. �

6.4.3.1 Application in the Case with Orthonormal Covariates

If the model matrix Φ is orthonormal, readers can verify that σ2
min,k = 1 and λ(m;M) = 1.

It brings significantly simplified criteria in Theorem 4.11 and Theorem 4.12. Comparing

with the result in Theorem 3.5, the new criteria are less attractive. We consider this a price

of the generality.

It will be interesting to apply the above conditions to some applications with real data

sets. However, due to the length of this paper, considering we are more focused on the

formulation and theoretical developments in the present paper, we leave applications for

future publications.
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6.5 Discussion

6.5.1 Computing Versus Statistical Properties

The question that we addressed in this paper is quite different from some statistical works.

In the present paper, we identify easy to verify (polynomial time) conditions for the type-I

optimal subset. Our direct motivation is that certain greedy algorithm can find a path of

type-II optimal subsets. If one of these type-II optimal subset is confirmed to be type-I

optimal, then a concurrent optimal subset is obtained. In the above sense, our question is

more statistical computing than prediction.

In traditional approaches of subset selection, researchers try to answer the questions

regarding the consistency of variable selection, as well as the optimal accuracy rate in sub-

model prediction. There is a large scope of existing efforts. It is impossible and unnecessary

for us to give a comprehensive survey here. We will just list some publications that have

been informative and inspiring to us. [25], [95], [24], [85], [103], and the references therein

give some interesting results in model estimation integrating the prediction accuracy. Con-

sistency of variable selection has been studied in [101].

Nowadays, due to the rapid rising of data sizes, it becomes increasingly important to

develop computationally efficient statistical principle. Our idea of finding efficient suffi-

cient conditions for otherwise unsolvable (i.e., NP-hard) subset selection principle is an

incarnation of the aforementioned ideology.

6.5.2 Other Works in Variable Selection

Despite their generality, the formulations of (P0) and (P1) do not cover all the existing

works in statistical model selection. We review some recent works that have attracted our

attention.

Paper [27] proposes a family of new variable selection methods based on a nonconcave

penalized likelihood approach. The criterion is to minimize

Fan&Li = RSS(x) + 2n ·
‖x‖0∑

j=1

pλ(|θj |),
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where pλ(·) is a penalty function which is symmetric, nonconcave on (0,∞) and has singu-

larities at origin. With proper choice of λ, Fan and Li show that the estimators would have

good statistical properties, such as sparsity and asymptotic normality.

Shen and Ye in [86] suggest an adaptive model selection procedure to estimate the

algorithmic parameter λ from the data. In detail, the optimal value of λ is obtained by

minimizing

Shen&Ye = RSS(x) + ĝ0(λ0) · σ2,

which is derived from the optimal estimator of the loss l(θ, θ̂). Quantity ĝ0(λ0) is the

estimator of g0(λ0), which is independent of the unknown parameter θ. Value g0(λ0)/2 is

called the generalized degrees of freedom in [98].

At this moment, we do not know whether there are analogous conditions (to those

in Section 6.4.3) that can be established in the above two settings. Examining possible

connections will be an interesting topic for future research.

6.5.3 Back Elimination

Subset selections include at least three basic approaches: forward selection, backward elim-

ination, and all subset selection. Problem (P0) is an all subset selection method. The

greedy algorithms that have been discussed in this paper are assumed to be forward selec-

tion algorithms. Readers are referred to Section 6.2.2.

In [15], a very interesting result is proved for backward elimination. It is shown that

under certain conditions, back elimination finds the solution of (P0). Such a result reveals

the properties of problem (P0) from another angle.

It will be interesting to examine whether the approaches that are adopted in Section

6.4.3 can lead to stronger conditions in back elimination approaches. Again, this is left as

a topic of future research.

6.5.4 Other Greedy Algorithms and Absolutely Optimal Subset in Variable
Selection

We have treated LARS as a forward stepwise algorithm. Other greedy algorithms have

made significant impact in other fields, such as signal processing. Two representative ones
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are matching pursuit (MP) [16, 64] and an improved version – orthogonal matching pursuit

(OMP) [79]. MP and OMP do not generate the regularized solution path, while a version

of LARS does. However, the intensive research effort following MP and OMP will provide

researchers powerful tools.

Researchers have studied on the subsets that are unconditionally concurrent optimal,

i.e., its concurrent optimality depends on neither the coefficients nor the corresponding

residuals. The representative works include [19], [91], and [92]. The concept of exact

recovery coefficient (ERC) [92] has inspired many recent works. Readers can compare ERC

with our quantity λ(m;M) that is defined right before Theorem 4.12 in Section 6.4.3.

Note that in our sufficient conditions, both coefficient and residuals are taken into ac-

count. This is due to the different emphasis of the problem. Comparing with our works,

the results mentioned in the last paragraph can be considered as analysis of the worst cases.

6.5.5 Other Related Topics

An interesting model selection approach that adopts Bayesian computing is presented in

[14]. This provides another interesting aspect of strategies. It will be interesting to analyze

the connection with the contents of this paper.

Variable selection is a critical problem in supersaturated design. A citation search of [96]

will provide most of existing literature. A numerically efficient condition on the optimality

of subsets has the potential to identify a good design. Further study of this problem is left

as a topic of future research.

6.6 Conclusion

Stepwise algorithms can be numerically efficient, i.e., polynomial time. Specially designed

stepwise algorithms can find type-II optimal subset in subset selection. We derived sufficient

conditions to test whether these type-II optimal subsets are also type-I optimal. Such an

approach renders polynomial time algorithms to locate concurrent optimal subsets, which

otherwise requires solving an NP-hard optimization problem in general.
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CHAPTER VII

REGRESSIONS BY ENHANCED LEAPS-AND-BOUNDS

VIA ADDITIONAL OPTIMALITY TESTS (LBOT)

The conditions derived in the last chapter is valuable. In this chapter, we extend the

results into the implementation of certain all-subset selection algorithm. In exhaustive sub-

set selection in regressions, the leaps-and-bounds algorithm by Furnival and Wilson [28]

is the current state-of-the-art. It utilizes a branch and bound strategy. We improve it

by introducing newly designed optimality tests, retaining the original general framework.

Compared with the original leaps-and-bounds algorithm, the proposed method further re-

duces the number of subsets that are needed to be considered in the exhaustive subset

search. Simulations demonstrate the improvements in numerical performance. Our new

description of the leaps-and-bounds algorithm, which is based on our newly designed pair

tree, is independent of programming languages, and therefore is more accessible.

This chapter is organized as follows. In Section 7.1, we state our objective, bring in the

leaps-and-bounds algorithm, and summarized our contributions. In Section 7.2, some basic

results regarding the fast computation of RSS’s and matrix inverse are given. In Section

7.3, a specific version of the LB method in [28] is reviewed, and will serve as a starting point

of our algorithmic description. In Section 7.4, additional optimality tests are derived. In

Section 7.5, the newly derived optimality tests are integrated with LB, and the new leaps-

and-bounds method (i.e., LBOT) is established. In Section 7.6, simulations are provided

to demonstrate the improvements of performance. Some discussions and conclusions are

provided in sections 7.7 and 7.8, respectively.
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7.1 Introduction

We continue studying the variable selection problem in a generic regression model in this

chapter. Again, regression model can be expressed as follows:

y = Φx+ ε,

where y ∈ R
n is a response vector, n is the number of observations, matrix Φ ∈ R

n×(m+1),

Φ = [1n/
√
n, φ1, . . . , φm], is the model matrix with a constant column φ0 = 1n/

√
n and

covariates φi ∈ R
n, 1 ≤ i ≤ m, and vector ε ∈ R

n is a random vector. The model selection

is to choose a subset of {φi : i = 1, 2, . . . ,m}, so that the regression model based on the

selected subset is as effective in prediction as the model built on the full set of covariates.

There is a huge related literature in statistics, e.g., model estimation theory, which is not the

theme of this dissertation. We will concentrate on the leaps-and-bound (LB) algorithm [28],

which is a widely used subset selection method based on all-subsets comparisons. Recent

papers – [55] and [29] – give excellent surveys on subset selection.

In [28], the following problem is solved: for all integer k, 1 ≤ k ≤ m,

(FW) minx ‖y − Φx‖2
2,

subject to: ‖x‖0 = k,

where ‖ · ‖2
2 denotes the sum of squares of the elements in a vector (i.e., the square of the

ℓ2 vector norm), and ‖ · ‖0 is the number of nonzero entries in a vector (which is also called

ℓ0 quasi-norm). We name the problem (FW) to recognize the contribution of the original

proposers of LB. Solving (FW) gives a way to realize model selection. It is connected with

many widely used model selection methods, which can be summarized as the following

optimization problem:

min
x

‖y − Φx‖2
2 + λ0 · ‖x‖0, (63)

where λ0 is an algorithmic parameter. For AIC and Cp, we have λ0 = 2σ̂2, where σ̂2 is an

unbiased estimate of the common variance of the random errors. For BIC and MDL, we

have λ0 = σ2 log n. We refer to [53] for more relevant information. The foregoing paper also

proves that problem (63) is NP-hard. Readers may compare the difference between (63)
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and (FW). Note that solutions to (FW) lead to a solution to (63), with a small amount of

additional computation.

Since the initial introduction of LB, little effort has been reported to improve this

algorithm. The essence of the LB method is a branch and bound procedure, which uses tests

to reduce the number of subsets that should be considered in an exhaustive subset search.

In this dissertation, in the same branch-and-bound framework, we derive new optimality

tests. It is shown that the induced additional tests can further reduce the number of subsets

that are required to be considered. Hence, it accelerates LB. The derived method is named

leaps-and-bounds via optimality tests (LBOT).

We briefly describe the motivation for the new tests. The original LB algorithm utilizes

the following optimality test. Let A and B denote two distinct subsets of covariates, and

assume that A is a subset of B: A ⊂ B. Let RSS(A) (resp., RSS(B)) denote the residual

sum of squares of the regression model that is built on subset A (resp., B). We have

RSS(A) ≥ RSS(B). In this thesis, more powerful optimality tests will be derived. The key

idea is deriving a more strict necessary condition for a subset to outperform an existing

optimal subset. We will not only use the residual sums of squares, which are utilized in the

LB, but also consider the coefficients and the residuals associated with the optimal subsets.

Details regarding the derivation of such a condition are presented in Section 7.4.2.

Simulations demonstrate the improvement in performance. They also indicate the sit-

uations in which LB and its enhanced one – LBOT – are likely to significantly reduce the

number of subsets that are needed to be computed. We will argue in this chapter that the

number of subsets that are examined is a good indicator of the computational complexity,

because of its implementational independence. Some heuristics that can possibly improve

the performance of our algorithms are tested, and the results are presented.

7.2 Review of Basics

Some relevant computational details are presented here. The ideas can be found in the

original paper [28]. The purposes of re-presenting them are

• to demonstrate that from one subset to a new subset, by inserting or deleting a
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covariate, there is an efficient numerical approach for the computation regarding the

submodels;

• to make a point that the number of subsets that are needed to be computed in an

algorithm (e.g., LB or LBOT) is an indicator of the complexity of this algorithm.

7.2.1 Computing Regarding Submodels

From now on, for simplicity, we assume that the covariates φi, i = 1, 2, . . . ,m, are standard-

ized, i.e., for 1 ≤ i ≤ m, ave(φi) = 0, and ‖φi‖2 = 1, where ave(·) (resp., ‖ · ‖2) denotes the

average (resp., ℓ2-norm) of a vector. It is evident that the correlation matrix among the

response and the covariates is

(y,Φ)T (y,Φ) =




yT y yTΦ

ΦT y ΦTΦ


 .

Moreover, the diagonal entries of matrix ΦTΦ are all equal to 1.

A submodel is determined by a subset of the covariates. Suppose subset Ω (Ω ⊂

{1, 2, . . . ,m}) determines the submodel. The corresponding model matrix is made by the

constant column vector and the columns having indices from Ω. The model matrix is de-

noted by ΦΩ: ΦΩ = [1n/
√
n, {φi}i∈Ω]. Note the first column corresponds to the intercept

term, which is also included in submodels. Let β̂(Ω) denote the least square fit on this

submodel, we have

β̂(Ω) = (ΦT
ΩΦΩ)−1ΦT

Ω · y. (64)

Let RSS(Ω) denote the residual sum of squares of the least square fit, we have

RSS(Ω) = yT y − (ΦT
Ω · y)T (ΦT

ΩΦΩ)−1(ΦT
Ω · y). (65)

Note ΦT
Ω · y is a subvector of ΦT · y, which can be handily read from the correlation matrix.

7.2.2 Two Basic Linear Algebra Results

The following simple linear algebra results show that when adding or deleting one covariate,

the resulting inverse matrix can be computed efficiently. The original LB paper also took

advantage of these facts. However, their description is less direct.
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Lemma 2.1 For a positive integer k, given symmetric matrix M ∈ R
k×k with its inverse

M−1, a vector v ∈ R
k, and a constant c ∈ R, we have




M v

vT c




−1

=




M−1 + τM−1vvTM−1 −τM−1v

−τvTM−1 τ


 ,

where scalar τ = (c− vTM−1v)−1.

The following is an easy extension.

Corollary 2.2 Given the same notations as in Lemma 2.1, if we have



M v

vT c




−1

=




B11 B12

BT
12 B22


 ,

where B11 ∈ R
k×k, B12 ∈ R

k×1, and B22 ∈ R, then the following holds:

M−1 = B11 −B12B
T
12/B22.

Let I(Ω) denote the inverse matrix (ΦT
ΩΦΩ)−1. For i ∈ Ω and j /∈ Ω, from Lemma 2.1

(resp., Corollary 2.2), there is a fast way to compute I(Ω ∪ {j}) (resp., I(Ω\{i})). The

following is in the original LB paper [28]. Readers can easily verify it.

Lemma 2.3 For above mentioned indices i and j, subset Ω, and integer k = |Ω|, which

is the size of subset Ω, it takes O(k2) numerical operations (additions, subtractions, multi-

plications, and divisions) to generate the inverse matrices corresponding to adding/deleting

one covariate to/from the subset Ω.

7.3 Subset Arrangement and the Leaps-and-Bounds Algo-

rithm

The ingenious idea in the original LB paper [28] is to introduce a systematic way to scan

through all the subsets, at the same time, ‘leaping’ over those evidently nonoptimal subsets.

Here, we redescribe their scheme. The pairing structure and the pair tree in Section 7.3.2

are new, which is motivated by the description in [28]. Because the original description

requires knowledge in Fortran language and two trees, we believe our description is more

understandable.
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7.3.1 Inverse Tree

4

1 2 3 4 5

1234 23451235 1345

123

1245

124 125 134 135 145 234 235 245 345

12 13 14 15

1

23 24 25 34 35 45

2 3 5

Figure 56: An inverse tree with m = 5. For simplicity, in figures, “1234” is equivalent with
subset {1234} in the text.

Figure 56 gives an inverse tree with m = 5 covariates. Its construction is in the original

LB paper. For completeness, we briefly describe it in the following.

1. The root node is the full set {1, 2, . . . ,m}.

2. Level 1 is made by m ordered children of the root node by removing one covariate at

a time from the full set at the decreasing order: m,m− 1, . . . , 2, 1.

3. Consider a node associated with subset {i1i2 · · · ik}, k ≥ 1, i1 < i2 < · · · < ik. Assume

it is the jth (j ≥ 1) child of its parent. At the next level, this node has j − 1 children

that are generated by deleting one covariate at a time from the set {i1i2 · · · ik} with

the order ik, ik−1, . . . , ik+2−j .

4. The tree stops growing when it reaches the subsets made by one covariate, or all

terminal nodes are the first children.

Readers can easily verify the following facts, which are collectively presented in a theo-

rem.

Theorem 3.1 The inverse tree has the following properties:

• The above constructed inverse tree contains all the 2m − 1 subsets of {1, 2, . . . ,m}.
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• Each subset appears once and only once in this tree.

• The sizes of the subsets associated with the nodes at level k (1 ≤ k ≤ m − 1) of this

tree are equal to m− k.

• Each subset associated with a node in this tree, except the root node, is obtainable by

removing one covariate from the subset associated with its parent node.

The following observation will be utilized in a new description of the LB algorithm.

Theorem 3.2 In the inverse tree with m covariates, the subtree rooted at node {2, 3, . . . ,m}

has the identical structure with the subtree started at the original root node, after pruning

the subtree rooted at node {2, 3, . . . ,m} and ignoring the only terminal nodes at the bottom

level: {1}. Moreover, if Ω is a subset in the subtree rooted at node {2, 3, . . . ,m}, then subset

Ω ∪ {1} is associated with the node at the same position in the latter pruned tree.

7.3.2 Pair Tree

The original description of the LB method is based on two trees: regression tree and bound

tree. Being inspired by these two trees, we construct the following pairing scheme and a new

tree for the pairs of subsets, so that the subsets searching and leaping can be realized based

on one single structure. We believe this new scheme gives a more intuitive description.

Figure 57 gives such a pair tree for the same case (m = 5) as depicted in Figure 56.

(4, 5)

(φ, 

(1, 2345)(12, 1345)(123, 1245)(1234, 1235)

(124, 125) (134, 135) (13, 145) (234, 235) (23, 245) (2, 345)

(14, 15) (24, 25) (34, 35) (3, 45)

12345)

Figure 57: A pair tree with m = 5.

A pair tree can be constructed by using induction. Readers can use Theorem 3.2 to

verify that the following construction is well defined. For m = 2, the pair tree (denoted as
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PT (2)) is

(∅, {12})

↓

({1}, {2}).

For m = 3, the corresponding pair tree is constructed by the following three steps:

• Transfer index i (i = 1, 2) in tree PT (2) to i+ 1. The generated tree is called T1.

• Take a T1, insert {1} in all the nonempty subsets. The new tree is called T2.

• Take another T1, convert ∅ to {1}, and make it an additional subtree of T2 by making

the root node of the modified T1 a new child of the root node of T2. The new child is

the last child at the first level of T2. The combined pair tree is PT (3).

The following depicts PT (3):

(∅, {123})

ւ ց

({12}, {13}) ({1}, {23})

↓

({2}, {3})

In general, given PT (m), PT (m + 1) is generated by three steps: (1) Transfer index

i (i = 1, . . . ,m) in tree PT (m) to i+1. The generated tree is called T1. (2) Take a T1, insert

{1} in all the nonempty subsets. The new tree is called T2. (3) Take another T1, convert ∅

to {1}, make it an additional subtree of T2 by making the root node of the modified T1 a

new child of the root node of T2. The result pair tree is PT (m + 1). Readers can observe

the strong parallelism to the previous description. In fact, it is a generalization.

We can easily verify the following.

Theorem 3.3 Consider a pair tree for m covariates (i.e., PT (m)).

1. In the aforementioned pair tree, each subset of {1, 2, . . . ,m} appears once and only

once.
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2. For an intermediate node (Ω1,Ω2), all the subsets in the descendant nodes are the

subsets of Ω2. This indicates that the order in a pair can not be changed.

3. For integers 1 ≤ k1, k2 ≤ m, suppose two subsets in a pair contain k1 and k2 co-

variates, respectively. The sizes of the subsets in the descendent nodes are at least

min(k1, k2). Such a fact is utilized in the original LB algorithm.

4. Consider a node (Ω1,Ω2) and one of its children (Ω′
1,Ω

′
2). If (Ω′

1,Ω
′
2) is the first child

of (Ω1,Ω2), then subset Ω′
1 (resp., Ω′

2) is a subset of Ω2 by removing the last (resp.

the second last) covariate from Ω2. If (Ω′
1,Ω

′
2) is not the first child, assuming (Ω′

3,Ω
′
4)

is the child of (Ω1,Ω2) and, in the pair tree, is immediately in the left hand side of

(Ω′
1,Ω

′
2), then subset Ω′

1 is obtained by removing the last covariate from subset Ω′
3 and

subset Ω′
2 is obtained by removing one covariate from Ω2. In summary, subsets of a

particular node can be obtained by removing one covariate from a subset in its parent

and possibly its left sibling. This relation ensures an efficient numerical approach to

scan through all the nodes; more specifically, an efficient scan moves top down and

left to right in the pair tree.

7.3.3 Test in the Original Leaps-and-Bounds Algorithm

Now, after the analysis of the inverse tree and the pair tree, we are ready to give a new

description of the LB method. We still use the case of 5 covariates as our example. Recall

the contents of Section 7.2.2. The following inverse matrices can be computed, according

to the scheme below:

I({1}) → I({12}) → I({123}) → I({1234}) → I({12345}),

I({12345}) → I({1235}),

I({12345}) → I({1245}),

I({12345}) → I({1345}),

I({12345}) → I({2345}),

where each ‘→’ involves inserting/removing one covariate to/from the subset on the left

hand side. The consequent residual sums of squares can be computed correspondingly by
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(65).

In the pair tree, we have the residual sums of squares of the subsets included in the

root node and the nodes in the first level. We consider the remaining nodes. Whether

or not to compute RSS({124}) and RSS({125}) depends on the values of RSS({1245}) and

RSS({123}). If RSS({123}) ≤ RSS({1245}), because {124} and {125} are subsets of {1245},

we immediately have RSS({123}) ≤ RSS({124}) and RSS({123}) ≤ RSS({125}). Hence,

there is no need to compute for RSS({124}) and RSS({125}). Otherwise, they should be

computed.

Similarly, whether or not to compute RSS({134}) and RSS({135}) (or RSS({13}) and

RSS({145})) depends on three values: RSS({12}), RSS({1345}), and min( RSS({123}),

RSS({124}), RSS({125})) (denoted as RSS(3)). Note that RSS(3) ≤ RSS({12}). There are

three cases for those three values:

• If RSS({12}) ≤ RSS({1345}), then none of RSS({134}), RSS({135}), RSS({13}), or

RSS({145}) needs to be calculated.

• If RSS(3) ≤ RSS({1345}) < RSS({12}), then only RSS({13}) and RSS({145}) need

to be calculated to update the minimum RSS with 2 covariates.

• If RSS({1345}) < RSS(3), then all of the four RSS’s need to be calculated.

Repeating this step through the entire tree gives the original LB algorithm.

In general, the original LB algorithm is equivalent to scanning through the pair tree

according to the following scheme.

• Compute the residual sums of squares for all the subsets in the root node and the

nodes in level 1 of the pair tree.

• Suppose (Ω1,Ω2) is an intermediate node in the pair tree, and RSS(Ω1) and RSS(Ω2)

have been computed. In our construction, readers can verify that we have |Ω1| ≤ |Ω2|,

where | · | is the size of a subset. For |Ω1| ≤ k ≤ |Ω2|, let RSS(k) denote the minimum

of the residual sum of squares of all the k-subsets that have been scanned up to this

point. If RSS(Ω2) ≥ RSS(k), for all |Ω1| ≤ k ≤ |Ω2|, then the computations for the
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descendants of node (Ω1,Ω2) can be ignored, because none of them can be an optimal

solution to (FW). Otherwise, we should consider at least partial of the descendants

of (Ω1,Ω2).

Readers can easily verify the following result.

Lemma 3.4 In a top-down and left-to-right scheme to scan through the pair tree, the fol-

lowing inequality is true,

RSS(k + 1) ≤ RSS(k),

for any k that is applicable.

Hence, in the LB algorithm, we have the following cases:

• If

RSS(|Ω1|) ≤ RSS(Ω2),

then skip all the descendants of node (Ω1,Ω2). Because none of the subsets in a

descendant of node (Ω1,Ω2) can have a smaller residual sum of squares than the

corresponding existing RSS(k)’s.

• If

RSS(|Ω2| − k) ≤ RSS(Ω2) < RSS(|Ω2| − k − 1)

for certain k, where 1 ≤ k ≤ |Ω2| − |Ω1| − 1, then we can skip the first k children of

node (Ω1,Ω2).

• If

RSS(Ω2) < RSS(|Ω2| − 1),

then none of the children of (Ω1,Ω2) can be skipped.

In summary, the optimality tests in LB completely depends on the values of residual

sums of squares.
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7.4 Additional Optimality Tests

To the best of our knowledge, little effort has been reported to bring new optimality tests. In

this section, additional tests are derived. The key intuition is to bring in the considerations

of the coefficients and the residuals in the up-to-date optimal solutions. In comparison,

the original LB method only considers the values of residual sums of squares. Additional

optimality tests, together with the original test, will reduce the number of subsets that are

needed to be considered. Hence, it reduces the computational requirement.

7.4.1 New Tests

We now consider additional optimality tests for node (Ω1,Ω2) in the pair tree. The following

notations will be used:

• Let Ω(k) be the k-subset associated with the minimum residual sum of squares RSS(k).

• Let β̂(k) = β̂(Ω(k)) denote the coefficients of the least square fit on the subset Ω(k),

whose computation is given in (64).

• Denote a residual vector

ε(k) = y − ΦΩ(k)
β̂(k).

• Recall (Ω1,Ω2) is a pair of subsets in the pair tree. Recall φa and φb are standardized

covariates. A new quantity µ is defined as follows:

µ = max
a,b∈Ω2∪Ω(k)

a6=b

|〈φa, φb〉|.

Quantity µ is the maximum absolute value of the correlation within the subset Ω2 ∪

Ω(k).

• Define k1(k) = min(2k, |Ω2 ∪ Ω(k)|). Quantities µ and k1(k) are easily computable.

• For an arbitrary vector v and an arbitrary integer k2, assuming that the dimension of

v is no less than k2, we define

‖v‖(k2) =

√√√√
k2∑

j=1

|v|2(j),
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where |v|(1) ≥ |v|(2) ≥ |v|(3) ≥ · · · are ordered absolute values of the entries of vector

v.

• It is easy to observe that vector ΦT ε(k) is an (m + 1)-dimensional vector, which is

handly computable. We define vector ΦT
Ω2∪Ω(k)

ε(k) as a subvector of ΦT ε(k) by taking

covariate indices in the subset Ω2 ∪ Ω(k).

The following theorem points out a new optimality test.

Theorem 4.1 (Optimality Rule) For the previously defined Ω1,Ω2,Ω(k), ε(k), k1(k) (sim-

plified as k1) and µ. For |Ω1| ≤ k ≤ |Ω2|, define a set Θ(k) of covariate indices such that

i ∈ Θ(k) if and only if i ∈ Ω(k) and

|(β̂(k))i| >
‖ΦT

Ω2∪Ω(k)
ε(k)‖∞ + ‖ΦT

Ω2∪Ω(k)
ε(k)‖(k1)

1 − (k1 − 1)µ
, (66)

where (β̂(k))i denotes the coefficient of the ith covariate in β̂(k). If a subset Ω (Ω ⊂ Ω2 and

|Ω| = k) achieves RSS(Ω) ≤ RSS(k), then we must have Θ(k) ⊂ Ω.

If a k-subset achieves a residual sum of squares that is less than RSS(k), then Θ(k) is a

subset of this k-subset. Hence, in the pair tree, any descendant that does not include Θ(k)

as a subset cannot achieve a residual sum of squares less than RSS(k). This fact can be

used to screen out some descendants of the nodes in a pair tree.

7.4.2 Proof of Theorem 4.1

The key idea adopted in the proof is to find a sufficient condition for a subset, such that

this subset can not achieve a smaller residual sum of square than the one that corresponds

to the up-to-date optimal subset having the same size.

We use the same notations as in the previous subsection. Let Ω be a subset of Ω2:

Ω ⊂ Ω2. Let δ denote a vector that satisfies the following rules.

• δ only takes possibly nonzero values at position i when i ∈ Ω ∪ Ω(k).

• Let β̂(Ω) denote the coefficient of the least square fit when the subset is Ω. Given
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previously defined β̂(k), the entries of δ are given as follows:

δi =





(β̂(Ω))i − (β̂(k))i, if i ∈ Ω ∩ Ω(k),

(β̂(Ω))i, if i ∈ Ω, however i /∈ Ω(k),

−(β̂(k))i, if i ∈ Ω(k), however i /∈ Ω,

0, elsewhere,

where (·)i denotes the value of the coefficient corresponding to the covariate i in the

coefficient vector.

The following derives a necessary condition for RSS(Ω) ≤ RSS(k) =RSS(Ω(k)). We start

with the following inequality:

‖y − ΦΩβ̂(Ω)‖2
2 ≤ ‖ε(k)‖2

2.

The above is equivalent to the following:

‖ε(k) − ΦΩ∪Ω(k)
δ‖2

2 ≤ ‖ε(k)‖2
2,

which is equivalent to the following inequality:

‖ΦΩ∪Ω(k)
δ‖2

2 ≤ 2〈ΦT
Ω∪Ω(k)

ε(k), δ〉, (67)

where 〈·, ·〉 denotes the inner product of two vectors.

In order to prove the theorem, we will need the following two lemmas.

Lemma 4.2 Recall |Ω(k)| = k. Given Ω ⊂ Ω2 and |Ω| = k, we have

|Ω ∪ Ω(k)| ≤ min(2k, |Ω2 ∪ Ω(k)|) = k1.

The proof of the above is simple, we leave it for the readers. The next result is critical in

constructing the new optimality tests.

Lemma 4.3 Recall k1 = min(2k, |Ω2 ∪ Ω(k)|). Given the previously defined quantities µ

and δ, we have

‖ΦΩ∪Ω(k)
δ‖2

2 ≥ (1 − (k1 − 1)µ) ‖δ‖2
2.
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Proof. First of all, we have

‖ΦΩ∪Ω(k)
δ‖2

2 = δTΦT
Ω∪Ω(k)

ΦΩ∪Ω(k)
δ

≥
∑

i

δ2i − µ
∑

a 6=b,a,b∈Ω∪Ω(k)

|δa| · |δb|.

Applying the Cauchy’s inequality, readers can easily verify the following:

∑

a6=b,

a,b∈Ω∪Ω(k)

|δa| · |δb| ≤ (k1 − 1)‖δ‖2
2.

Combining the above two, we have proved the inequality in the lemma. �

Combining Lemma 4.3 and inequality (67), we have

(1 − (k1 − 1)µ) ‖δ‖2
2 ≤ 2〈ΦT

Ω∪Ω(k)
ε(k), δ〉,

which is equivalent to

∥∥∥(1 − (k1 − 1)µ) δ − ΦT
Ω∪Ω(k)

ε(k)

∥∥∥
2

2
≤ ‖ΦT

Ω∪Ω(k)
ε(k)‖2

2.

The above implies the following,

(1 − (k1 − 1)µ) ‖δ‖∞ ≤ ‖ΦT
Ω∪Ω(k)

ε(k)‖∞ + ‖ΦT
Ω∪Ω(k)

ε(k)‖2, (68)

where ‖ · ‖∞ denotes the maximum absolute value in a vector. Recalling Ω ⊂ Ω2, the

following is evident:

‖ΦT
Ω∪Ω(k)

ε(k)‖∞ ≤ ‖ΦT
Ω2∪Ω(k)

ε(k)‖∞. (69)

It is easy to verify that

‖ΦT
Ω∪Ω(k)

ε(k)‖2 ≤ ‖ΦT
Ω2∪Ω(k)

ε(k)‖(k1). (70)

Combining (69) and (70), we have

(1 − (k1 − 1)µ) ‖δ‖∞ ≤ ‖ΦT
Ω2∪Ω(k)

ε(k)‖∞ + ‖ΦT
Ω2∪Ω(k)

ε(k)‖(k1). (71)

Given (71), we are ready to prove the theorem. For i ∈ Ω(k), suppose (66) holds. From

(71), we have

|(β̂(k))i − (β̂(Ω))i| ≤
‖ΦT

Ω2∪Ω(k)
ε(k)‖∞ + ‖ΦT

Ω2∪Ω(k)
ε(k)‖(k1)

1 − (k1 − 1)µ
.

The above and (66) lead to |(β̂(Ω))i| > 0, which implies that i ∈ Ω. Hence, we have

Θ(k) ⊂ Ω. The theorem is proven.
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7.5 Algorithm

In this section, the implementation strategies are described. The scanning described in

Section 7.5.1 is equivalent to the method in the original LB [28]. We believe our new

description is more accessible. The integration of new optimality tests is trivial. Hence, it

is only briefly described in Section 7.5.2.

7.5.1 A Scheme to Scan Through the Pair Tree PT (m)

We design an algorithm that reaches each node of PT (m) once and only once. We will use

the following notations. For an arbitrary set Ω with ordered elements, for integer j ≥ 1,

r(Ω, j) denotes a subset of Ω by removing the jth last element of Ω. For example, we have

r({12345}, 1) = {1234}, and r({12345}, 5) = {2345}.

Based on the above, define

rk(Ω, j) = r(r(· · · r︸ ︷︷ ︸ (Ω, j) · · · , j), j).

k times

For example, we have r2({12345}, 1) = {123} and r3({12345}, 1) = {12}.

Given the structure of PT (m), readers can verify that the following scheme reaches

every node in PT (m) once and only once.

1. A node list is empty initially. Starting from the root node (∅, {1, 2, . . . ,m}), the

following array,

r({1, 2, . . . ,m}, 1), r({1, 2, . . . ,m}, 2), 1,

r2({1, 2, . . . ,m}, 1), r({1, 2, . . . ,m}, 3), 2,

r3({1, 2, . . . ,m}, 1), r({1, 2, . . . ,m}, 4), 3,

...
...

...

rm−1({1, 2, . . . ,m}, 1), r({1, 2, . . . ,m},m), m− 1,

is inserted into the node list. Note each row of the node list is made by two subsets

and its order among the siblings.
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2. Suppose the node list is not empty and the top row is (Ω1,Ω2, s), where Ω1 and Ω2

are the subsets of {1, . . . ,m}, and integer s ≥ 1.

• If s = 1, this row is removed from the node list (has been scanned).

• If s > 1, add the following array at the bottom of the node list:

r(Ω2, 1), r(Ω2, 2), 1,

r2(Ω2, 1), r(Ω2, 3), 2,

...
...

...

rs−1(Ω2, 1), r(Ω2, s), s− 1.

Then, remove the top row (Ω1,Ω2, s) from the node list.

3. Step 2 is repeated until the node list is empty again.

7.5.2 Integrating the Optimality Tests

In the scheme that was described in the last subsection, it is straightforward to integrate

the optimality test. We maintain the optimality tests list, whose rows are made by

RSS(k), Ω(k), β̂
T
(k), ε

T
(k)Φ,

where 0 ≤ k ≤ m. In step 2 in the last subsection, if the pair of subsets in a row fail at least

one optimality test (which includes both the original test in LB and the newly proposed

test in Theorem 4.1), then this row is not inserted into the node list.

Note the original LB only uses the information in the first column of the optimality

tests list, while the newly proposed tests (LBOT) use additional information.

7.6 Simulations

7.6.1 Synthetic Data

7.6.1.1 An Illustrative Example

In order to illustrate the efficiency of our method, we create a table – Table 7.6.1.1 – that

includes all the pairs from PT (5). The pairs that are used by the original LB are marked

with ‘∗’, while those that are required by our enhanced leaps-and-bounds algorithm are
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marked with ‘∆’. The underlying regression model is:

y = 167.5058 + 27.0171x1 + 5.2054x3 + 135.8065x4 − 0.0431x5 + ε,

which is generated by random. It is observed that for the case illustrated in Table 7.6.1.1,

the enhanced leaps-and-bounds reduces the number of examined pairs nodes from 13 (which

is for the original LB) to 9. Table 7.6.1.1 presents the minimum residual sums of squares

Table 2: Pair tree and residual sums of squares.

LBOT LB Ω1 RSS Ω2 RSS

∆ ∗ ∅ 20030.67 12345 1077.78
∆ ∗ 1234 1077.81 1235 19667.34
∆ ∗ 123 19667.86 1245 1104.57
∆ ∗ 12 19691.99 1345 1077.80
∆ ∗ 1 19733.12 2345 1731.38

∗ 124 1104.59 125 19691.40
∗ 134 1077.83 135 19708.79

∆ ∗ 13 19709.37 145 1104.61
234 1731.45 235 19964.93

∆ ∗ 23 19965.92 245 1759.68
∆ ∗ 2 19991.05 345 1731.45

∗ 14 1104.62 15 19732.47
24 1759.77 25 19989.98
34 1731.51 35 20004.86

∆ ∗ 3 20005.92 45 1759.76
∗ 4 1759.85 5 20029.52

for different subset size k, as well as the optimal k-subsets.

Table 3: Minimum residual sums of squares and the corresponding optimal k-subsets.

k RSS Optimal Subset

0 20030.67 ∅
1 1759.85 4
2 1104.62 14
3 1077.83 134
4 1077.80 1345
5 1077.78 12345

130



7.6.1.2 LB versus LBOT in Random Experiments

To further compare LBOT with LB, some random experiments are performed. Recall

the regression model, y = Φx + ε, where model matrix Φ ∈ R
n×(m+1). In the following

experiments, we set n = 1000 andm = 10. Each column φi, i = 1, 2, . . . ,m, is first generated

from multivariate normal N(
−→
0 n×1, In), then followed by standardization. Coefficients are

generated as xi ∼ N(0, σ2), i = 0, 1, . . . ,m, where σ = 100. Set εi ∼ N(0, 1), for i =

1, 2, . . . , n. We present the dot-plots of quantities –

(number of pairs used in LBOT, number of pairs used in LB)

– in Figure 58. Totally 1000 random simulations are performed. The dashed line is the

diagonal. We can see that all points are below the diagonal: LBOT always requires less

pairs to be examined. To illustrate the reduction of the number of pairs of subsets that are

required to be examined, in Figure 59, we present the histograms of the ratios – the number

of pairs used in LBOT over the number of pairs used in leaps and bounds. On average,

LBOT requires 87.05% of the subsets that are required by LB.

In Table 7.6.1.2, for a range of the values of m, following the same random simulations

described in the last paragraph, the average number of pairs that are examined based on

10 random experiments are reported. Again, we see a reduction in the number of required

pairs. It is interesting to observe that the percentage of pairs that are examined in a pair

tree reduces as the number of covariates (m) increases; see the last column of Table 7.6.1.2.

Table 4: For different values of m, the average numbers of pairs that are examined by both
LB and LBOT among ten random experiments are presented. The second column includes
the total number of pairs in the complete pair trees.

m # Pairs LB LBOT LBOT/#Pairs

10 512 148.7 131.3 0.2564
12 2048 598.9 550.6 0.2688
14 8192 1714.3 1643.3 0.2006
16 32768 6226.2 6112.2 0.1865
18 262144 21034.0 20973.7 0.0800
20 1048576 42654.8 42278.6 0.0403

131



0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

# of Pairs for LB

# 
of

 P
ai

rs
 fo

r 
LB

O
T

# of Pairs, LBOT vs LB

Figure 58: The number of pairs in LBOT versus the number of pairs used in LB. The
number of covariates m = 10.
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Figure 59: Histogram: when m = 10, the number of pairs in LBOT over the number of
pairs used in LB.
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7.6.2 Effect of Model

For simplicity, the experiment that leads to Figures 58 and 59 is denoted as Exp. A. Note in

this experiment, the coefficients are sampled from N(0, 1002); i.e., the absolute values of the

coefficients are likely to be large. To see when LBOT can significantly reduce the number

of pairs from LB, we repeat the Exp. A, but change the distribution from N(0, 1002) to

N(0, 1). The new experiment is denoted as Exp. B. Figure 60 presents the histograms of

the numbers of pairs used by LB, together with the ratios of the pairs between the two

methods. Note Figure 60 (b) repeats Figure 59. It is redrawn and scaled for comparison.

No dramatic difference can be seem from Figure 60 (a) and (c): the number of pairs that

are required by LB does not change much. However, being compared with Figure 60 (b),

histogram (d) is significantly skewed to the right: the additional optimality tests are less

likely to reduce the computation in Exp. B, in which the coefficients of the underlying

models are likely to be close to zero.

In summary, the additional optimality tests are likely to improve LB when the underlying

true model has relatively large absolute values of coefficients (relative to the noise level).

7.6.3 Heuristic: Pre-Sorting

The pair tree is scanned top-down, left-to-right. If the optimal subsets appear earlier in

the scanning scheme, LB and LBOT will have a better chance to reduce the computation.

Based on this observation, we can reorder the covariates before the evocation of LB or

LBOT. We carry out a random experiment (denoted as Exp. C), which is identical with

Exp. A, except a pre-sorting of the covariates that imposes the following condition:

〈y, φ1〉 ≥ 〈y, φ2〉 ≥ · · · ≥ 〈y, φm〉.

The histograms of the number of pairs that are used by LB in Exp. A and C are presented

in Figure 61 (a) and (c), respectively. After the pre-sorting, we see a significant reduction in

the numbers of pairs that are required. Figure 61 (b) is another rescaled version of Figure

59. It will be compared with subfigure (d). Based on Figure 61 (d), LBOT still reduces the

number of pairs in a significant proportion of cases.
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Figure 60: Histograms: (a) and (c), the number of pairs in LB; (b) and (d), ratios between
the numbers of pairs in LB and the numbers of pairs in LBOT. (a) and (b) (resp., (c) and
(d)) are for Exp. A (resp., Exp. B). See the context for details.
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Figure 61: Histograms: (a) and (c), the number of pairs in LB; (b) and (d), ratios between
the numbers of pairs in LB and the numbers of pairs in LBOT. Subfigures (a) and (b)
(resp., (c) and (d)) are for Exp. A (resp., Exp. C). See the context for details.
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In summary, some preprocessing can help to improve the efficiency of both LB and

LBOT.

7.6.4 Real Data

Being compared with LB, LBOT always reduces the number of subsets that are required

to be examined. The actual amount of reduction depends on the data, as one can observe

in the previous experiments. For example, the reduction is more evident in Exp. A than in

Exp. B. How much will LBOT reduce the number of subsets in real data? We experimented

with two datasets: diabetes data (http://www-stat.stanford.edu/∼hastie/Papers/LARS/)

and housing data (http://www.ics.uci.edu/∼mlearn/databases/housing/). They are chosen

because they have been widely used in the regression literature. The diabetes data has 10

covariates and has been used in [25] to illustrate a stepwise algorithm (LARS). The housing

data has 13 covariates. In both cases, LBOT fails to reduce the number of subsets. In other

words, it is equivalent to the case when the ratio is equal to 1 in Exp. A, B, or C. Note

in the random experiments, comparing to the histograms in Figure 59, 60 (d), and 61 (d),

the probability of having a ratio “1” is small. To our surprise, the ratio is “1” for both

‘real’ data sets that we experimented. As a future research topic, it will be interesting to

derive reasonable condition(s), under which the additional optimality tests can not reduce

the number of required pairs in LB (or LBOT).

For the diabetes data, Table 7.6.4 gives the optimal subsets. The covariates are stan-

dardized. No pre-sorting is adopted. Note that some covariates come and leave the optimal

subsets, e.g., covariates 5 and 7, as the subset size increases. Such a phenomenon can not

be caught by a pure forward or backward subset selection.

For the housing data, the same table is produced in Table 7.6.4. Again, we see some

covariates (e.g., 2 and 4) coming and leaving from the optimal subsets.

7.7 Discussion

LB is a branch-and-bound (B&B) approach designed specifically for regression problems.

B&B has been applied to many other problems, e.g., feature subset selection (FSS). Typical

references are [70], [58], and [54]. The objective in an FSS problem is different from the
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Table 5: The optimal subsets and corresponding residual sums of squares, for the diabetes
data.

Subset Sizes k RSS Optimal Subsets

0 2621009.12
1 1719581.81 3
2 1416694.01 3 9
3 1362708.69 3 4 9
4 1331431.40 3 4 5 9
5 1287881.16 2 3 4 7 9
6 1271494.00 2 3 4 5 6 9
7 1267807.81 2 3 4 5 6 8 9
8 1264714.58 2 3 4 5 6 8 9 10
9 1264068.10 2 3 4 5 6 7 8 9 10
10 1263985.79 1 2 3 4 5 6 7 8 9 10

Table 6: The optimal subsets and corresponding residual sums of squares for the Housing
data.

Subset Sizes k RSS Optimal Subsets

0 42716.30
1 19472.38 13
2 15439.31 6 13
3 13727.99 6 11 13
4 13228.91 6 8 11 13
5 12469.34 5 6 8 11 13
6 12141.07 4 5 6 8 11 13
7 11868.24 4 5 6 8 11 12 13
8 11678.30 2 4 5 6 8 11 12 13
9 11526.12 1 4 5 6 8 9 11 12 13
10 11308.58 1 2 5 6 8 9 10 11 12 13
11 11081.36 1 2 4 5 6 8 9 10 11 12 13
12 11078.85 1 2 3 4 5 6 8 9 10 11 12 13
13 11078.78 1 2 3 4 5 6 7 8 9 10 11 12 13
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objective in a regression problem. FSS mostly involves with a classification problem, instead

of a regression problem. In FSS, researchers have proposed enhanced B&B by adapting

various heuristics: [99], [13], [88], and [9]. Similarly, leaps-and-bounds has been applied

to variable selection in discriminant analysis [87]. A careful comparison will review that

the strategy of deriving the additional optimality test in LBOT is very distinct from the

above works in FSS. On the other hand, it will be very interesting to explore the heuristics

that have been developed in accelerating the B&B algorithms in FSS. They could further

improve the performance of LBOT. Some serious structural works are required.

7.8 Conclusion

In this chapter, new optimality conditions are derived in the framework of leaps-and-bounds

algorithm. The new tests guarantee to reduce the number of subsets that are required in

a branch-and-bound exhaustive subset search. The reduction of computation is testified

in random experiments. We improved a state-of-the-art method in comprehensive subset

selections. The ideas behind the newly introduced tests are novel. The analysis technique

that is used in deriving the new condition could be insightful in studying other regression-

related problems.
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APPENDIX A

PROOFS ASSOCIATED WITH CHAPTER VI (PART II)

A.1 Details for Proving (26)

We have

I(f0) = I(fθ)|θ=0

=

∫ (
∂

∂θ
fθ

)2 1

fθ
dx|θ=0

(16)
=

∫ δ

−δ

(
2 · c · cosλ1

x

δ
· λ1

δ
· sin λ1x

δ

)2 1

c
[
cosλ1

x
δ

]2dx

+2

∫ +∞

δ

[
c · exp

(
−2λ2

x
δ

)
· 2λ2

δ · cos2 λ1 · exp(2λ2)
]2

c · exp
(
−2λ2

x
δ

)
· cos2 λ1 · exp(2λ2)

dx

= 4c
λ2

1

δ2

∫ δ

−δ
sin2 λ1x

δ
dx

+2c
4λ2

2

δ2
cos2 λ1 · exp(2λ2)

∫ +∞

δ
exp

(
−2λ2

x

δ

)
dx

= 4c
λ2

1

δ

(
1 − 1

2λ1
sin 2λ1

)

+4c
λ2

δ
cos2 λ1

(21)
= 4c

λ2
1

δ

(23)
= 4

λ2
1

δ2
αλ2

cos2 λ1

(24)
= 4

λ2
1

δ2
λ2 cosλ1

λ1 · sinλ1 + cosλ1

(21)
= 4

λ2
1

δ2
λ1 · sinλ1

λ1 · sinλ1 + cosλ1
.

A.2 Some Lemmas Regarding Cut-off Values in Section

5.6.2.2

Lemma 2.1 Random variable ‖dLS,1‖2
2 satisfies the χ2

m distribution with m degrees of free-

dom, where m is the column rank of matrix A.

Proof. Based on (35),

dLS,1 = PA,LS(ε) = A(ATA)−1AT ε.
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Since A(ATA)−1AT is a projection matrix with the rank equals to m, it can be written as

A(ATA)−1AT = O ·




Im 0

0 0




n×n

·OT ,

where O is an orthogonal matrix. Hence

‖dLS,1‖2
2 =

∥∥∥∥∥∥∥




Im 0

0 0


 ·OT · ε

∥∥∥∥∥∥∥

2

2

.

Since OT · ε also satisfies standard Normal distribution in Rn, i.e., OT · ε ∼ Normal(0, In),

we have

‖dLS,1‖2
2 ∼ χ2

m.

�

Lemma 2.2 The ratio ‖dLS,1‖∞/‖dLS,1‖2 has the same distribution as random variable

ρmax,m, which was defined in Section 5.6.2.2.

Proof. Let η = dLS,1/‖dLS,1‖2. Recall

dLS,1 = PA,LS(ε) = UT




Im

0


U · ε.

Because ε ∼ N(0, In), we have U · ε ∼ N(0, In) as well. Hence

dLS,1
‖dLS,1‖2

=

UT




Im

0




n×n

U · ε

‖




Im

0




n×n

U · ε‖2

= UT




x̃m/‖x̃m‖2

0(n−m)×1


 ,

where x̃m = (Im 0)m×nU · ε ∼ N(0, Im). Based on the property of a normally distributed

random vector, we have xm = x̃m/‖x̃m‖2 is uniformly distributed on the unit sphere Sm−1 ⊂

Rm. �
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Lemma 2.3 Random variables ‖dLS,1‖2 and ‖dLS,1‖∞/‖dLS,1‖2 are independent.

Proof. Let η = dLS,1/‖dLS,1‖2. From the previous lemma, the distribution of the random

variable η is independent of the quantity ‖dLS,1‖2. Hence ‖dLS,1‖∞/‖dLS,1‖2 = ‖η‖∞ is

independent of ‖dLS,1‖2. �
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APPENDIX B

PROOFS ASSOCIATED WITH CHAPTER VII (PART II)

B.1 Proof of Lemma 2.2

Suppose there are two vectors x1 and x2, such that P1 = (‖x1‖1, ‖y − Φx1‖2
2), P2 =

(‖x2‖1, ‖y − Φx2‖2
2), and for 0 < λ < 1, λP1 + (1 − λ)P2 are on the frontier. We con-

sider a point Pλ = (λx1 + (1 − λ)x2‖1, ‖y − Φ[λx1 + (1 − λ)x2]‖2
2). First of all, we have

inequality

‖λx1 + (1 − λ)x2‖1 ≤ λ‖x1‖1 + (1 − λ)‖x2‖1, (72)

and the equality holds if and only if x1 and x2 have the same sign at each position, or one

of them takes zero. On the other hand, we have inequality

‖λ(y − Φx1) + (1 − λ)(y − Φx2)‖2
2 ≤ λ‖y − Φx1‖2

2 + (1 − λ)‖y − Φx2‖2
2, (73)

and equality holds if and only if y − Φx1 = y − Φx2, which implies

‖y − Φx1‖2
2 = ‖y − Φx2‖2

2. (74)

It is impossible to have (74). The reason is the following. Given formula (72) and (73),

and frontier being a non-increasing function on c, we can easily verify that the frontier is

convex. If (74) is true, the three points P1, P2, and (‖x̃‖1, 0) will violate the convexity.

Hence, λP1 + (1 − λ)P2 cannot be on the frontier. From all the above, we proved that the

frontier is strictly convex.

B.2 Proof of Lemma 3.1

The choice of c1 depends on the following three correlations:

1. For m−A+ 1 ≤ i ≤ m,

〈φi, s− c1φ1〉 = 〈δi, s− c1(a1s+ b1δ1)〉

= (1 − c1a1)/
√
A. (75)
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2. For 1 ≤ j ≤ m−A,

〈φj , s− c1φ1〉 = 〈ajs+ bjδj , s− c1(a1s+ b1δ1)〉

= aj(1 − c1a1) − c1bjb1〈δj , δ1〉.

As special cases, one has

a. for j = 1,

〈φ1, s− c1φ1〉 = a1 − c1; (76)

b. For j ≥ 2,

〈φj , s− c1φ1〉 = aj(1 − c1a1). (77)

The choice of c1 is the maximum value that satisfies (76) ≥ (75) and (76) ≥ (77). From

(76) ≥ (75), we have a1 − c1 ≥ (1 − c1a1)/
√
A, which is equivalent to

a1 − 1/
√
A ≥ c1(1 − a1/

√
A). (78)

From (76) ≥ (77), we have a1 − c1 ≥ aj(1 − c1a1), which is equivalent to

a1 − aj ≥ c1(1 − a1aj). (79)

Combining (78) and (79), we have

c1 = min

{
a1 − 1/

√
A

1 − a1/
√
A
,
a1 − aj
1 − a1aj

}

=
a1 − a2

1 − a1a2
.

The last equality is based on an observation that function a1−x
1−xa1

is a decreasing function of

x. �

B.3 Proof of Theorem 3.2

To prove the above theorem, we will need the following lemma.

Lemma 3.1 The equiangular vector among φ1, φ2, ..., φk is

uk = [φ1 φ2 · · · φk]
(
D−1
k 1 −D−1

k vk
vTkD

−1
k 1

1 + vTkD
−1
k vk

)
,
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where

Dk =




b21 0 · · · 0

0 b22 · · · 0

...
...

. . .
...

0 0 · · · b2k




, vk =




a1

a2

...

ak




,

and 1 is a k-dimensional all one vector.

Proof: It is easy to verify that

[φ1 φ2 · · · φk]T [φ1 φ2 · · · φk] = Dk + vkv
T
k .

Using a known result in linear algebra:

(Dk + vkv
T
k )−1 = D−1

k −D−1
k vkv

T
kD

−1
k

1

1 + vTkD
−1
k vk

.

Denoting Φk = [φ1 φ2 · · · φk], we have

uk = Φk(Φ
T
kΦk)

−11

= Φk

(
D−1
k 1 −D−1

k vkv
T
kD

−1
k 1

1

1 + vTkD
−1
k vk

)
.

�

Note that in order to keep the formula simple, we do not normalize the vector uk. In

LARS, this does not change the selection of variables.

Proof of Theorem 3.2 Now we apply induction to prove the theorem. Assume after

step k−1, k ≤ m−A, the variates φ1, φ2, ... , φk have been selected, and a surrogate residual

is

r̃k−1 = s−
k−1∑

j=1

aj − ak
bj

δj .

We will argue that in the next step, variate φk+1 will be chosen, and the next surrogate

residual has the form

r̃k = s−
k∑

j=1

aj − ak+1

bj
δj . (80)

Combining the above two, the theorem is proven. We first perform a sanity check:

1. For m−A+ 1 ≤ i ≤ m, 〈φi, r̃k−1〉 = 1/
√
A.
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2. For k ≤ j ≤ k,

〈φj , r̃k−1〉 = 〈ajs+ bjδj , s−
k−1∑

t=1

at − ak
bt

δt〉

= aj − (aj − ak)

= ak.

3. For k + 1 ≤ j ≤ m−A,

〈φj , r̃k−1〉 = aj .

The next residual should be

rk = r̃k−1 − ckuk,

where ck is determined by considering the following three correlations:

1. For i ≥ m−A+ 1,

〈φi, rk〉 = 〈φi, r̃k−1 − ckuk〉

= 〈φi, s−
k−1∑

t=1

at − ak
bt

δt − ckuk〉

=
1√
A

− ck〈φ, uk〉

=
1√
A

− ck
1√
A
vTk

(
D−1
k 1 −D−1

k vkv
T
kD

−1
k 1

1

1 + vTkD
−1
k vk

)

=
1√
A

[
1 − ck

vTkD
−1
k 1

1 + vTkD
−1
k vk

]

=
1√
A

[1 − ckg(k)], (81)

where g(k) =
vT

k
D−1

k
1

1+vT
k
D−1

k
vk

, and vk, Dk, and 1 are defined in Lemma 3.1. This quantity

will appear frequently in the following.

2. For j ≤ k,

〈φj , rk〉 = 〈ajs+ bjδj , s−
k−1∑

t=1

at − ak
bt

δt − ckuk〉

= ak − ck〈ajs+ bjδj , uk〉.

From the definition of uk, one has

〈ajs+ bjδj , uk〉 = 〈φj , uk〉 = 1.
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Hence,

〈φj , rk〉 = ak − ck. (82)

3. For k + 1 ≤ j ≤ m−A,

〈φj , rk〉 = 〈ajs+ bjδj , s−
k−1∑

t=1

at − ak
bt

δt − ckuk〉

= aj − ck〈ajs+ bjδj , uk〉

= aj − ckaj〈s, uk〉

= aj − ckajv
T
k

(
D−1
k 1 −D−1

k vkv
T
kD

−1
k 1

1

1 + vTkD
−1
k vk

)

= aj − ckaj
vTkD

−1
k 1

1 + vTkD
−1
k vk

= aj [1 − ckg(k)]. (83)

To determine ck, we consider two conditions: (82) ≥ (81) and (82) ≥ (83). From

(82) ≥ (81), we have ak − ck ≥ 1√
A

[1 − ckg(k)], which is equivalent to

ak −
1√
A

≥ ck

[
1 − 1√

A
g(k)

]
. (84)

From (82) ≥ (83), we have ak − ck ≥ aj [1 − ckg(k)], which is equivalent to

ak − aj ≥ ck[1 − ajg(k)]. (85)

Combining (84) and (85), we have

ck = min

{
ak − 1√

A

1 − 1√
A
g(k)

,
ak − aj

1 − ajg(k)
, j ≥ k + 1

}
.

It is not hard to verify that ak <
1

g(k) . One can verify that function

f(x) =
ak − x

1 − xg(k)
=

1

g(k)
+
ak − 1

g(k)

1 − xg(k)

is a decreasing function of x. Hence,

ck =
ak − ak+1

1 − ak+1g(k)
.
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It also indicates that φk+1 is selected in the next LARS step. This is the first result

stated at the beginning of this proof. To verify (80), we need to compute the new residual:

rk = r̃k−1 − ckuk

= s−
k−1∑

j=1

aj − ak
bj

δj − ckuk

= s−
k−1∑

j=1

aj − ak
bj

δj −
ak − ak+1

1 − ak+1g(k)
uk.

The coefficient of s in rk is

1 − ak − ak+1

1 − ak+1g(k)
vTk

(
D−1
k 1 −D−1

k vkv
T
kD

−1
k 1

1

1 + vTkD
−1
k vk

)

= 1 − ak − ak+1

1 − ak+1g(k)
g(k)

=
1 − akg(k)

1 − ak+1g(k)
. (86)

The coefficient of δk in rk is

− ak − ak+1

1 − ak+1g(k)
· 1

bk
[1 − akg(k)]

= −ak − ak+1

bk
· 1 − akg(k)

1 − ak+1g(k)
. (87)

The coefficient of δj , 1 ≤ j ≤ k − 1, in rk is

−aj − ak
bj

− ak − ak+1

1 − ak+1g(k)
· 1

bj
[1 − ajg(k)]

= − 1

bj

{
aj − ak +

ak − ak+1

1 − ak+1g(k)
[1 − ajg(k)]

}

= −aj − ak+1

bj
· 1 − akg(k)

1 − ak+1g(k)
. (88)

Compare (86), (87) and (88), the next surrogate residual, after getting rid of factor 1−akg(k)
1−ak+1g(k)

,

is

r̃k = s−
k∑

j=1

aj − ak+1

bj
δj .

This proves the second result stated at the beginning of this proof. From here, it is not

hard to see that the theorem is proven. �
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B.4 Proof of Theorem 4.7

For any subset of indices A, let zA denote the subvector of z given by A, and let ΦA denote

the submatrix of Φ with the column indices in A. We only need to show that given (46),

(47), and (48), function zTA(ΦT
AΦA)−1zA − F |A| is maximized at A1 = {1, 2, ..., k}. In order

to prove this is true, three situations are considered.

Case 1. If |A| = k, but A is not {1, 2, ..., k}. Recall Φ1 = [φ1, φ2, ..., φk]. Let v1 =

(z1, z2, ..., zk)
T , we have

vT1 (ΦT
1 Φ1)

−1v1 ≥
∑k

i=1 z
2
i

1 + (k − 1)µ
.

On the other hand,

zTA(ΦT
AΦA)−1zA ≤

∑k−1
i=1 z

2
i + z2

k+1

1 − (k − 1)µ
.

If (46) is true, recall zi ≤ 1, we have

[1 − (k − 1)µ]z2
k ≥ 2(k − 1)µ

k−1∑

i=1

z2
i + z2

k+1[1 + (k − 1)µ].

The above is equivalent to

[1 − (k − 1)µ]

k∑

i=1

z2
i ≥ [1 + (k − 1)µ]

k−1∑

i=1

z2
i + z2

k+1[1 + (k − 1)µ],

which is equivalent to ∑k
i=1 z

2
i

1 + (k − 1)µ
≥
∑k−1

i=1 z
2
i + z2

k+1

1 − (k − 1)µ
.

Hence, we proved that

zTA(ΦT
AΦA)−1zA ≤ vT1 (ΦT

1 Φ1)
−1v1.

This proves that A1 maximizes zTA(ΦT
AΦA)−1zA − F |A| among all k-subsets.

Case 2. If |A| > k, assume ℓ = |A| − k. Using a similar argument as in the previous

case, one only needs to prove

∑k
i=1 z

2
i

1 + (k − 1)µ
≥

∑k+ℓ
i=1 z

2
i

1 − (k + ℓ− 1)µ
− ℓ · F,

which will guarantee that no subset with more than k variates produces a larger value of

zTA(ΦT
AΦA)−1zA − F · |A|.
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If (47) holds, we have

z2
k+1 ≤

k∑

i=1

z2
i

[
1 − kµ

1 + (k − 1)µ
− 1

]
= F · (1 − ∆)

≤ 1

ℓ

k∑

i=1

z2
i

[
1 − (k + ℓ− 1)µ

1 + (k − 1)µ
− 1

]
+ F · [1 − (k + ℓ− 1)µ].

Hence,
k+ℓ∑

i=k+1

z2
i ≤

k∑

i=1

z2
i

[
1 − (k + ℓ− 1)µ

1 + (k − 1)µ
− 1

]
+ ℓ · F · [1 − (k + ℓ− 1)µ].

Hence, ∑k+ℓ
i=k+1 z

2
i

1 − (k + ℓ− 1)µ
≤

k∑

i=1

z2
i

[
1

1 + (k − 1)µ
− 1

1 − (k + ℓ− 1)µ

]
+ ℓ · F.

Hence, ∑k
i=1 z

2
i

1 + (k − 1)µ
≥

∑k+ℓ
i=1 z

2
i

1 − (k + ℓ− 1)µ
− ℓ · F.

Again, A1 takes the maximum.

Case 3. If A has less than k variates, one only needs

∑k
i=1 z

2
i

1 + (k − 1)µ
≥

∑k−1
i=1 z

2
i

1 − (k − ℓ− 1)µ
+ ℓ · F. (89)

If (48) is true, we have

ℓ · z2
k[1 + (k − 1)µ] ≥ µ(2k − ℓ− 2)

k∑

i=1

z2
i + ℓ · F [1 + (k − 1)µ][1 − (k − ℓ− 1)µ].

Hence,

ℓ · z2
k

1 + (k − 1)µ

1 − (k − ℓ− 1)µ
≥ (2k − ℓ− 2)µ

1 − (k − ℓ− 1)µ

k∑

i=1

z2
i + ℓ · F · [1 + (k − 1)µ].

Hence,

k∑

i=k−ℓ+1

z2
i

1 + (k − 1)µ

1 − (k − ℓ− 1)µ
≥

k∑

i=1

z2
i

[
1 + (k − 1)µ

1 − (k − ℓ− 1)µ
− 1

]
+ lF [1 + (k − 1)µ].

Hence,
k∑

i=1

z2
i ≥ 1 + (k − 1)µ

1 − (k − ℓ− 1)µ

k−ℓ∑

i=1

z2
i + lF [1 + (k − 1)µ],

which leads to (89).

Combining the three cases, we proved that A1 is the solution to (P0). �
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B.5 Proof of Theorem 4.9

Recall v1 = (z1, z2, ..., zk)
T . Define v2 = (zk+1, zk+2, ..., zn)

T . From (42), we have

ω = v2 − (ΦT
2 Φ1)(Φ

T
1 Φ1)

−1

[
v1 −

λ

2
sign(x1)

]
.

We want to show that when (49) holds, ‖ω‖∞ ≤ λ
2 . This will imply that A1 satisfies (42).

Hence, A1 is the minimizer in (P0).

One can have for k < j ≤ n,

∥∥(φTj Φ1)(Φ
T
1 Φ1)

−1
∥∥

2
≤ 1

1 − (k − 1)µ

∥∥φTj Φ1

∥∥
2

≤
√
kµ

1 − (k − 1)µ
.

We have

‖ω‖∞ ≤ |zk+1| + max
j

∥∥(φTj Φ1)(Φ
T
1 Φ1)

−1
∥∥

2

∥∥∥∥
(
v1 − sign(x1)

λ

2

)∥∥∥∥
2

≤ |zk+1| +
√
kµ

1 − (k − 1)µ

√√√√
k∑

i=1

(
|zi| +

λ

2

)2

≤ λ

2
.

A solution based on A1 satisfies (42). Hence it is a type-I optimal subset. �
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