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Abstract

Liquid and gas interactions often contain bubbles surrounded by
thin liquid films. Simulation of these liquid films is challenging
since they quickly become thinner than the grid resolution, which
leads to premature bursting or merging of the bubbles. We prevent
this thinning process by applying a disjoining force to the film, ob-
taining bubbles that last much longer without bursting or merging.
The surface tension on the liquid film is the next diffuculty. Since
the level set is not differentiable at the center of the thin liquid film,
the curvature computed from the level set gradient is noisy, and the
thin liquid film ruptures quickly. To prevent this, we compute the
surface tension from the local isosurface, obtaining long-lasting liq-
uid films. However, since bubbles stay longer without bursting or
merging, the volume loss of each bubble is noticeable. To solve this
problem, we modify the pressure projection to produce a velocity
field whose divergence is controlled by the proportional and inte-
gral feedback. This allows us to preserve the volume or, if desired,
to inflate or deflate the bubbles. In addition to premature bursting
and volume change, another difficulty is the complicated liquid sur-
face, which increases memory and computational costs. To reduce
storage requirement, we collocate the velocity and pressure to sim-
plify the octree mesh. To reduce the computational complexity of
the pressure projection, we use a multigrid method.

1 Introduction

In real fluids, we often observe a bubble rising to surfaces, floating
around for a while, and then bursting or merging. In soap water,
the bubble will last much longer than in pure water. When mul-
tiple bubbles are rising, the bubbles will interact with other bub-
bles and liquids. If a large number of bubbles are rising, and if
they do not burst, they will stack, forming the wet foam. The water
between those stacked bubbles will drain, leaving micrometer-thin
films of liquid between bubbles. This is called the dry foam. The
micrometer-thin film maintains its thickness due to the disjoining
pressure, which is a result of various molecular interactions. The
simulation of liquids with thin film is still a challenging open prob-
lem.

On the Eulerian grid, bubbles are hard to simulate, since bubbles
are made of thin liquid films, which are too thin to be represented
on a regular or even an adaptive grid. Films thinner than grid res-
olution quickly break, making bubbles burst earlier than desired.
This premature bursting hampers simulations of bubbles with thin
liquid films. Since films are broken too early, bubbles are few and
interactions are rare. Moreover, the bubbles may break even before
they become smooth and round, since it takes time for the surface
tension to balance the curvature of the bubble. Therefore, prevent-
ing thin films from bursting and making them last longer is essential
in the simulation of bubble and thin film.

Another difficulty in the simulation of a thin film is the compu-
tation of the surface tension. When the level set method is used
to represent liquid and gas domains, surface tension is computed by
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differentiating the level set function, which is differentiable near the
interface. However, in the thin film, the level set is locally singular
and hence not differentiable. Curvature computed by differentiat-
ing the level set function near the thin film is noisy. When this
noisy curvature is used to compute the surface tension, the thin film
breaks quickly.

Various chemical reactions may result in the volume change of
bubbles. For example, bubbles are inflated in boiling water. An an-
imation of such phenomena would require a method to control the
volume of bubbles. In addition, the simulated bubble tends to lose
or gain volume due to various reasons, for example, numerically in-
accurate pressure projection and level set advection. We propose a
volume control method using divergence as the control input. This
allows us to arbitrarily change the volume of fluid without visual
artifacts. The volume loss or gain of fluids can also be remedied by
this method.

Finally, bubbles with thin films have a very complex interface,
which can lead to high memory and computation costs. We propose
methods that can reduce those costs. First, to reduce memory cost,
we collocate velocity, pressure, and level set variables at the octree
center. Second, to reduce the computational cost, we apply a multi-
grid method, which greatly reduces the computation time when the
interface is extremely complex. In addition, thanks to the volume
control, volume of fluid is well preserved or controlled. Therefore,
we do not use the particle level set method, which requires signifi-
cant amount of memory and computational costs.

2 Prior Arts

Significant progress has been made since the pioneering work on
fluid simulation for computer graphics [KM90; OH95; FM96].
The stability problem of earlier work was addressed in [Sta99], in
which semi-Lagrangian advection and pressure projection were in-
troduced. This solution became popular for the simulation of in-
compressible fluids, such as smoke [FSJ01] and also for free sur-
face flows [FF01; EMF02]. A well known drawback of the semi-
Lagrangian approach [Sta99] is the excessive diffusion and dissipa-
tion. Several solutions were proposed such as vorticity confinement
method [FSJ01], vortex particles [SRF05], vortex fluid [PK05], and
higher-order advection methods such as [SSK05; KLLR05].

In contrast to the simulation of gaseous phenomena such as
smoke, the simulation of liquids contains complicated changes of
the liquid surface. Therefore, a method suitable to represent the liq-
uid volume and surface and capable of handling changes of the liq-
uid surface is needed. One such method that has been widely used
recently is the level set method [OS88; OF02; Set99]. In [FF01],
the level set method was used in fluid simulation to create a real-
istic liquid simulation, and in subsequent work [EMF02], the vol-
ume loss of the level set method was addressed by the particle level
set method. This particle level set method has been broadly used
in recent fluid simulation approaches [CMT04; GBO04; SRF05;
ELF05; HK05; WMT05].

Even though the level set method allows simulation of a liq-
uid’s surface, the complexity of the surface that can be simulated
is limited by the grid resolution. A significant improvement can
be obtained by an adaptive grid such as an octree [LGF04; SY04].
In particular, [LGF04] showed that detailed liquid surfaces can be
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Figure 1: Simulation of 63 interacting bubbles. A disjoining force is applied to preserve the thin liquid film between bubbles, preventing
unrealistic bubble merging and premature bursting. Physical realism is increased by computing surface tension from the liquid/air interface.
A proportional and integral controller is used to maintain the volume of each bubble.

simulated by using an octree grid.
Prior liquid simulation researches [EMF02; LGF04; CMT04;

GBO04; SRF05; ELF05] simulated liquids only, ignoring air.
Therefore, liquid and air interactions, such as bubbles, requires an
extension. In general, liquid/air phenomena can be simulated by the
variable density pressure projection method that has been broadly
studied in mathematics and fluid mechanics [SSO94; OKBG00;
KFL00; HKLS04]. This variable density pressure projection has
been used in graphics applications by [SSK05; KLLR05], in which
splash and bubbles are simulated. We also notice the bubble simu-
lation using Lattice-Boltzmann-Method(LBM) is studied in [NT04;
PDT∗04].

Although the two phase flow method can simulate bubbles, the
practical simulation of foam, in particular, dry foam, is more chal-
lenging since the micrometer-thin liquid film is not captured by
an Eulerian grid. Consequently most foam simulations have been
performed by Lagrangian methods. For example, the authors of
[KHVG02] approximated foam bubbles as spheres and then stud-
ied interactions between them. The interaction between bubbles
and liquid is not studied. In contrast, the authors of [TFK∗03] used
particle to represent foams and simulated interactions with liquids.
However, the formation, bursting, or merging of foam bubbles have
not been addressed.

Thin liquid films are governed by molecular interactions rather
than by the Navier-Stokes equations. An interesting outcome of
such molecular interactions is the disjoining pressure, which acts
along the direction normal to the film surface. This disjoining pres-
sure causes a capillary suction, slowing down the drainage of liquid
in the film. Thus, the thin film is maintained. This disjoining pres-
sure, caused by molecular interactions such as electrostatic, van der
Waals, steric, and adsorptional interactions, is the subject of nu-
merous engineering and scientific studies [PK96; EK98; WH99;
SvK04]. Besides those efforts to understand thin film, its simulation
is rather rare. The authors of [WH99] constructed piecewise curves
and patches to simulate a dry foam. The author of [Dur97] simu-
lated 2D dry foam using circular bubbles. Because circular bubbles
avoid the difficulties related to the thin films, it greatly simplifies
the simulation of foam. The drawback of these methods would be
the lack of bursting, merging, and interactions with liquid. The au-
thors of [BvdVM01] simulated the behavior of a foam drop that is
made of a few bubbles. They used a Lagrangian mesh to represent
the liquid/gas interface. Simulations of various phenomena such
as wet foam, formation of dry foam, bubble merging, and bursting
were not attempted.

3 Fluid Simulation on an Octree Grid

We use the following Navier-Stokes equation for the fluid simula-
tion.

∂u
∂ t

= −u ·∇u+ν∇ · (∇u)− 1
ρ

∇P+
f
ρ

. (1)

We follow the operator-splitting steps proposed in [Sta99] except
for the projection step, where we use the variable density pressure
projection. We use the octree grid with both the velocity and pres-
sure located at the center of the cell.

3.1 Nonstaggered Octree Grid

Simulation of bubbles with thin films requires a high resolution
mesh to represent thin films. In addition, liquid with multiple
bubbles has a complex interface. Since a high-resolution octree
grid containing a complex interface has a high memory cost, a
memory-efficient implementation of an adaptive grid is desirable.
Towards this goal, we simplify the octree grid representation used
in [LGF04], by storing pressure and velocity at the center of the
octree cell. Since all values are stored at the center of the octree
cell, we do not need a parallel data structure for the cell corner,
where velocities and level set values were stored in [LGF04]. In
addition, velocity transfer [GSLF05] to the cell face is not needed.
Therefore, implementation is simpler and memory-efficient. In our
experiment, the 5123 grid with a flat water surface and 63 bubbles
underneath (see Fig. 1) has 14 million octree leaves. In this case,
2.5G bytes of memory was used. The 10243 grid with five bubbles
under a water surface requires 2.2G bytes of memory. About 65%
of this memory cost is used for the octree. The remaining 35% is
used for the symmetric pressure projection matrix and for tempo-
rary vectors needed for conjugate gradient iteration. This 35% cost
can be saved when the pressure projection is implemented directly
on the octree. In our experiments, this implementation was about
twice slower during the first few steps and then quickly become
more than five times slower, because of the cache misses resulting
from the address fragmentation produced during the dynamic allo-
cation of memory for the octree nodes.

One drawback of our collocation is the complexity of the inter-
polation in semi-Lagrangian advection. However, we found that a
continuous interpolation is not necessary, but a simple interpolation
with neighboring cells suffices. We interpolate values with neigh-
boring cells assuming that the cells are in the same tree depth, even
when they are not. Since we do not allow more than a two-to-one
depth ratio between adjacent cells, the largest tree depth difference
ignored would be one. Suppose that we are performing an interpo-
lation of φ at a point (x,y,z), which is contained in a leaf cell A.
Assume that cell A has tree depth d. Interpolation involves the φ
values of the neighboring nodes of A. First assume that a particular
node B incident upon a face of A has depth d. If B is a leaf, we use
its φ . If not, we use the average of its children. Now assume that
the depth of B is less than d. It can only be d−1, since we ensure a
2-to-1 ratio between neighboring cells. We will use its φ .

Following [LGF04], we perturb the sampling points to obtain a
symmetric pressure projection matrix. The two phase flow formu-
lation is similar to [SSK05], except for the differentiation operator
across different grid resolution. Notice that all our variables are
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defined at the cell center. Therefore, the differentiations of these
variables are the same as the differentiation of pressure in [LGF04].

3.2 Multigrid Solver

A high resolution mesh with a complex interface makes the pressure
projection step very slow even in an adaptive grid. In addition, large
surface tensions require small time steps. Therefore, simulation
may be very slow. To reduce this computational cost, we use a
multigrid solver. We applied the simple nested iteration discussed
in [BHM00].

1. We first build a pressure projection operator and compute the
divergence of the velocity at a coarse level.

2. We then solve the pressure projection equation using the con-
jugate gradient (CG) method with the Jacobi preconditioner.
This will produce the pressure solution in a coarse grid.

3. We use the computed pressure as a starting estimate for the
child-nodes at the next finer resolution.

4. Repeat steps 1, 2, and 3 until the maximum depth is reached.

We tested the effect of this approach in several experiments. As
shown in Fig. 2, CG iteration tends to vary greatly when we do
not use the nested iteration. This often occurs when the time step
is small and the CG error bound is large. However, as shown in
Fig. 2, when we used the nested iteration, the computation time be-
come uniform. When the complexity of surface is high the benefit
is significant. We conclude that the nested iteration is beneficial,
especially when the interface is complex or is in high-resolution.
When nested iteration is used, the pressure projection takes about
40 ∼ 50% of the total computation time.
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Figure 2: The computation time for the pressure projection step is
reduced by nested iteration. The benefit increases as the grid reso-
lution and number of leaves increases. Average pressure projection
times are (a) nested:21.1sec, single:45.3 sec, (b) nested:141.2sec,
single:718.6sec, (c) nested:47.5sec, single:494.4sec.

3.3 Level Set Advection

We use the level set method to trace the interface between liquid and
gas. We use the BFECC (Back and Forth Error Compensation and
Correction) and simple redistancing methods [DL03] that signifi-
cantly reduce the volume loss of fluid thanks to increased second-
order accuracies in space and time. Although this approach reduces
the volume loss significantly, the volume loss is still noticeable in
fluid simulation [KLLR05]. To solve this problem, we propose to
use the new divergence control method discussed in a later section.

The BFECC method applied to level set advection tends to in-
duce high-frequency noises on the interface wherever the velocity

Figure 3: Contour of the level set function φ . Thin films contain
series of local minima, and therefore, the gradient ∇φ is not always
perpendicular to the film surface. Therefore, the curvature vector
computed from ∇φ can be inaccurate.

field is not smooth. Therefore, the authors of [DL04] proposed a
remedy to use the following semi-Lagrangian advection

φn+1 =
1
2

[ φn(−u∆t + εe)+φn(−u∆t − εe) ] , (2)

where e = (1,1,1) and ε = 0.2∆x. BFECC is implemented by per-
forming this step three times per each time step. This oversam-
pling and averaging adds small amount of diffusion, making the
surface smooth. Since this oversampling point is always displaced
along ±e, it may cause some artifacts along ±e. A possible so-
lution would be oversampling in more directions, but it would be
slow. Our solution is to randomly choose e from the four directions
{(1,1,1),(1,−1,1),(−1,1,1),(−1,−1,1)} in each time step.

3.4 Surface Tension

Real world bubbles have round and smooth shapes because the sur-
face tension flattens the liquid/gas interface. In thin liquid films,
surface tension can be a dominating force. Therefore, implement-
ing surface tension is important in the simulation of thin films.
Since the surface tension is proportional to the curvature normal
vector of the interface, computation of the curvature normal vector
is necessary. In the level set framework, this curvature normal is
computed as ∇ ∇φ

|∇φ | . However, along the center of the thin film, the
level set function has a singularity, as shown in Fig. 3, and hence
the gradient computed would not be accurate. Therefore, the curva-
ture computed from the gradient of φ is noisy. In our experiments,
the surface tension computed from the derivatives of φ produced
artifacts on surface and an early breaking of thin films, even with a
large disjoining force (described later) was active. See Fig. 5.

Therefore, a new approach is needed in order to simulate surface
tension of the thin film. First, notice that even though the gradi-
ent of φ is inaccurate inside a thin film, the liquid surface of the
film is smooth as shown in Fig. 3. This observation led us to the
idea of computing the surface tension from the liquid/gas interface.
Assume that we have a sufficient octree refinement near the inter-
face so that all the interfaces are contained in cells of maximum
depth. Consider two octree cells whose centers are A and B, as
shown in Fig. 4. Suppose that φ has different signs at A and B and
that the line AB is parallel to x-axis. The interface point P can be
computed by linear interpolation of φ . The neighboring interface
points Q0,Q1,Q2,Q3 can be easily computed. The local surface
neighborhood around P contains more neighbors, but computing
those additional neighbors and their connectivity would require iso-
surface extraction algorithm. Since extracting the iso-surface at ev-
ery time step is expensive, we developed a method to compute the
curvature normal vector on P using the four neighborhood points
{Q0,Q1,Q2,Q3}.

In estimating curvature normal, the discrete Laplace-Beltrami
operator [DMSB99] would be a good candidate. However, the
vertex P has only four neighbors {Q0,Q1,Q2,Q3}, and moreover,
those neighboring vertices are not always evenly distributed, as
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shown in the right image of Fig. 4. By the Taylor series expansion
[Xu04] of the surface around P, it can be shown that the accuracy of
discrete Laplace-Beltrami operator is low. Therefore, we develop a
method that first computes a good normal direction and then a rea-
sonable mean curvature value, using only {P,Q0,Q1,Q2,Q3}.

As shown in the left illustration of Fig. 4, the normal vector
is computed as a normal to the two difference vectors of the two
tangent pairs, i.e., n := (tz1 − tz0)× (ty1 − ty0), n := n/|n|. In the
right illustration of Fig. 4, the surface has small curvature but the
angle between the two tangents ty0,1 is small. Notice that a good
normal vector is produced in this case as well. Once the normal
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Figure 4: Computing a normal vector on a point where the liquid
surface and AB are intersecting. In the right, we illustrate the case
when the iso-surface has low curvature but the angle ∠Q2PQ3 is
small. Notice that the normal vector n is computed properly.

vector is computed, we estimate the mean curvature from the angles
between n and each of the tangent vector tz0 , tz1 , ty0 , and ty1 . We
first compute the radius of a circle that encloses ∆xn and ∆xtz0 by
r0 = ∆xtz0 ·n. Similarly, we compute r1 = ∆xtz1 ·n,r2 = ∆xty0 ·n
and r3 = ∆xty1 · n. We then average those radii, computing r =
(r0 + r1 + r2 + r3)/4. The mean curvature is estimated as κ = 2/r,
which allows us to compute the surface tension as γκn, where γ is
the surface tension coefficient. After γκn is computed, we multiply
it with the weights |PB|/|AB| and |PA|/|AB|, and apply them to A
and B.

When the surface tension is applied to the Navier-Stokes equa-
tion, it must be divided by the density. However, in water and
air interface, density ratio is near 1,000, causing a large velocity
jump across the interface. In our experiment, this induces artifacts.
Therefore, we divided γκn by the density of water uniformly near
the interface since the water dominates the behavior near the inter-
face.

4 Making Thin Film Last Longer

In real fluid, thinning of a film slows down due to the disjoining
pressure that results from various molecular forces, such as the elec-
trostatic, van der Waals, steric, and adsorptional interactions [PK96;
EK98]. This disjoining pressure is active typically when the thick-
ness is smaller than a micrometer, which is too thin to be captured
by an Eulerian grid. Therefore, we apply disjoining forces in a film
that is thinner than 4∆x. This disjoining force is normal to the film
and is applied in both directions to make the film thicker. As a re-
sult, a part of a film that became thinner than the threshold recovers
its thickness. To this goal, we first detect cells inside the thin film,
compute the normal vector and film thickness, compute the disjoin-
ing force, and finally, apply a symmetric set of forces that repulse
the two film surfaces, making the film thicker.

To determine whether a cell is a thin film cell or not, we check
sign changes of φ in each x,y, and z directions. We only explore two
grid cells in each direction, since our threshold thickness is 4∆x. If

Figure 5: (a) The artifacts near the interface is resulted from errors
in φ due to the simple redistancing and level set singularities. (b)
This artifacts are removed when the curvature is computed from
the local interface. (c) The inaccurate φ inside the thin film causes
artifacts on the bubble surface, and premature bursting follows. (d)
When the surface tension is computed from the local interface, the
bubble surface is smooth and the bubble does not burst.

sign changes in both ±x directions are detected, the cell is marked
as a thin film cell. Similarly, we apply this to ±y and ±z directions.
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Figure 6: Disjoining force that prevents a thin film from bursting.
Figure 6 shows a fluid cell A that is inside a thin film and is

surrounded by four air cells A,B,C, and D. We calculate forces that
push the two surrounding interface away from A. In each of such
thin film cell, we compute the normal direction to the thin film. The
normal n at A is computed as the orthogonal vector of the average
of the two tangents at P and Q. Thus, we avoid using the level set
gradient that is not differentiable in the thin film, similarly to the
surface tension case. The thickness of the film is computed as a
projected length. For example, in Fig. 6, the thickness is computed
by l = dn · i. When sign changes are detected in more than one
direction, we perform this operation on each direction and average
them. Thus, we computed the normal direction n, and the thickness
of the thin film l at each film cells. We then compute the force f by

f = η

(
2

(
l

4∆x

)3

−3

(
l

4∆x

)2

+1

)α

n , (3)

where η is the coefficient that determines the magnitude of force.
In our experiments, when η = 5,000, thin films rupture rarely. The
power α determines the thickness of the film. In most case, we use
α = 1, which produces film slightly thinner than 4∆x. When α = 2,
the film thickness is reduced below 3∆x.

The next step is to apply this force ±f to the neighboring cells
B,C,D, and E so that the interfaces are repulsed. Since these forces
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applied to neighbors should not introduce motions other than thick-
ening, we apply ±f to B,C,D, and E so that the force and torque
resultants are zero, i.e.,

f0 + f1 + f3 + f3 = 0

(−i)× f0 + i× f1 + (−j)× f2 + j× f3 = 0 .
(4)

Let n = (nx,ny). The forces f0, f1, f2, and f3 that satisfy (4) are
computed as

f0 = −f1 = −nxf

f2 = −f3 = −nyf .
(5)

Finally, f0, f1, f2 and f3 are added to B,C,D and E, respectively.
The extension to 3D is straightforward. Let n = (nx,ny,nz), and

let f4 and f5 be the forces on the two neighboring nodes in back and
front of A, respectively. Then, the forces f4 and f5 are computed by
f4 = −f5 = −nzf, while f0, f1, f2, and f3 are computed by (5).

In addition, in our experiments, the first-order level set advection
yields early breaking of thin films. Since it is only first-order accu-
rate, it yields fast local volume loss in the thin film, even when large
disjoining force is applied. We conclude that a high-order level set
advection method such as BFECC is necessary.

5 Controlling Fluid Volume

In this section, we present the volume control idea that allows arbi-
trary volume change. This tool is also used in correcting undesired
volume loss or gain of the liquid drops, bubbles, as well as liquid
body.

We begin with the brief overview of volume control. First, we
segment the fluid domain into several connected components of liq-
uid or gas. We then compute the volume error as a difference be-
tween the desired and current volume per each component. Us-
ing this volume error, we compute the divergence to inflate/deflate
each component to correct volume error. In computation of the di-
vergence, we use a feedback control strategy. Finally, we project
the velocity field to the vector field with the computed divergence,
which is performed in the pressure projection step. Notice that
we apply divergence to all cells of each component except for the
boundary cells. Therefore, added divergence is small and the over-
all fluid motion is affected little.

5.1 Segmentation and Tracking

A step needed for the volume control is segmenting the connected
components of gas and liquids, computing volumes of components,
and then tracking components movement, merge, and split in the
following time steps. The segmentation is rather trivial in Eulerian
grid using level set. We first consider the leaf cells as a graph, where
two leaf cells are connected if they share a face. On this graph, we
start a component from a leaf cell and grow that component by vis-
iting neighborhood in a breadth first manner. When no connected
cell has the same sign of φ , we start a new component. Since this
requires only a normal queue rather than a priority queue, this is a
linear time algorithm. The volume of the component is computed
as the sum of the volumes of cubical leaf cells that belong to the
component. We ignore the liquid-gas interface cutting the cells.
Although this is an approximation, it only adds small amount of
error.

The next step is tracking the connected components. Let Sn

be the set of components in previous time step, and let S n+1 be
the set of components in current time step. We compute flow from
S n to S n+1. We ignore the flow that is less than 10% of the ini-
tial volume of the component. Otherwise, we consider it as a vol-
ume transfer between components, indicating a merge and/or split.

Notice that this approach handles simultaneous merges and splits
between components.

5.2 Projection to a Controlled Divergence Field

Let u∗ be the velocity computed before the pressure projection is
applied. The modified pressure projection projects u∗ to a velocity
un+1 that has the divergence cn, i.e.,

∇ ·un+1 = cn ⇒ ∇ · ∇P
ρ

=
1
∆t

(∇ ·u∗ −cn), (6)

Since cn is simply subtracted from the divergence, the complex-
ity of the pressure projection step is not increased. The divergence
value cn is constant at all cells that belong to a connected com-
ponent. In general, different connected components have different
values of cn.

5.3 A Feedback Controller

A connected component, such as a bubble, gains or loses little vol-
ume per time step. It typically takes almost 1,000 time steps until
a bubble loses half of its volume even in a relatively coarse 1283

grid (See Fig. 8). In other words, the volume change is not a high
frequency behavior when BFECC is used for level set advection.
This indicates that volume control should be relatively easy. In ad-
dition, this slow dynamic nature implies that a derivative feedback
is not necessary and proportional feedback would suffice. Given
this observation, we first designed a proportional controller.

In designing a control system, the first step is to define the state
variable x. We use the normalized volume error

xn
i =

V n
i −Ṽi

Ṽi
, (7)

where Vi is the current volume of the i th component, and Ṽi is
its desired volume. Using this state variable x, the divergence of
i th component, denoted by ci, is computed as the proportional feed-
back

cn
i = −kPxn

i , (8)

where kP is the proportional gain.
When we applied this strategy to a rising bubble simulation, we

observed that a rising bubble still loses volume until the loss Vi −
Ṽi is large enough for the proportional controller to produce large
enough divergence ci. As a result, the volume of a rising bubble
tends to saturate to a slightly smaller volume. This drift error is
often negligible. However, the amount of error is hard to expect.
Therefore, we design additional control strategy to remove this drift
error.

In the classical control strategy, a natural choice for removing
drift error is using integral feedback, by which the small drift error
will be integrated over time and then used as an additional control
input. This is an efficient strategy since the small drift error can
be accumulated to produce large control input. The proportional-
integral (PI) controller is in the following form.

cn
i = −kPxn

i − kI

n

∑
m=0

xm
i ∆t, (9)

where kP and kI determines the amount of the proportional and inte-
gral feedbacks, respectively. kP and kI are constant numbers called
the proportional and integral gains, respectively.

The next problem is to compute kP and kI that stably reduce the
volume error xi. Since it is rather complex, we provide the detail in
the appendix. The gains kP and kI are computed as

kP =
9.2

np∆t
, kI =

1
4

(
kP

2ζ

)2

, (10)



GVU Technical Report Number: GIT-GVU-06-10 6

where np and ζ are variables that the user can choose. np is the
number of time step required to reduce the volume error down to
90%. Suppose that a bubble has a large volume error. Then the
error is reduced down to 0.1x in approximately np steps. Therefore,
smaller np provides faster correction of error. However, large np
can cause instability or noisy surface. In our experiment, np = 50
worked well in most cases. ζ is the damping coefficient of the typi-
cal second order equation ÿ+2ζωnẏ+ω2

n = 0. In our experiments,
the critical damping ζ = 1 worked well.

5.4 Experiments

In Fig. 8, we test various controllers to prevent the volume change.
In Fig. 9, we command the desired volume as a function of time,
obtaining the simulation of a bubble whose volume is changing over
time. Notice that when the desired volume is time-varying, the PI
controller does not produce error converging to zero. This could
be improved with derivative feedback [Oga90]. Since PI controller
produces a small error, we do not use derivative feedback. The vol-
ume control tests in Fig. 7 and 8 are performed on 1283-equilivalent
grids.

Figure 7: The bubble shrinks when the volume control is not ap-
plied (left). When the volume control is applied, the volume is
preserved (right). See Fig. 8 for the volume change over time.

6 Results

We simulated bubble interactions in several situations. In Fig. 1, we
simulated 63 bubble rising, interacting including merging in a 2563-
equilivalent grid. At the end of the simulation, the bubbles tends to
form a structure similar to the wet foam. The average computation
is about 50 seconds per time step (∆t = 0.00002sec) and the whole
simulation took about three days on an Athlon 64 3200 (2GHz)
machine. We choose η = 50,000. Densities and viscosities are
those of air and water.

In Fig. 10, we create 21 bubbles on a 5123-equilivalent grid
and then inflate them as a linear function of time. The disjoining
force prevents bubbles from bursting. Since the surface complex-
ity increases as bubbles grow, the computation time per time step
increased from 45sec at the beginning to 140sec at the end on an
Athlon 64 3200 (2GHz) machine. The whole simulation took about
a week (∆t = 0.00002, total 6,544 time steps).

7 Conclusion

We have shown that the various bubble interactions such as stack-
ing, merging, splitting, and bursting, can be simulated by using an
octree grid, by computing the surface tension from the thin film
interface, and by applying a disjoining force that delays the thin-
ning process of the film that separates bubbles. The potentially high
memory and computation costs of these simulations can be reduced
by using a simplified octree and a multigrid method. In addition, we
have shown that the volume of fluid can be preserved or arbitrarily
changed using divergence as a control variable. We adopted the PI
control strategy, developed a method to compute control gains, and
showed its effectiveness on several examples.
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Figure 8: Controlling the volume of a rising air bubble. The propor-
tional controller (blue) can keep the volume error small. The small
steady-state error is fixed when the proportional-integral (PI) con-
troller is used (red). As shown in the bottom figure, the PI controller
increases the divergence input little.
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8 Appendix

In this section, we show the derivation of the control gains given
in (10). We first start by constructing a mathematical model of the
volume change.
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8.1 Building a Volume Change Equation

The volume change could be due to the inaccuracies in several steps
such as the pressure projection and level set advection. We also
obtain error in the volume computation. We can assume that this
volume change error per time step due to the inaccuracies of the
simulation is small and that large enough divergence can dominate
the volume change.

To make the analysis easy, we use the continuous system, i.e.,
we write xi = xt(t),ci = ci(t) as functions of time. From the di-
vergence theorem, the volume rate is V̇i = Vici. However, since we
do not apply the divergence to cells near the interface, the effective
volume is slightly smaller. In addition, the inaccuracies in the level
set advection and the pressure projection exist. We amortize those
unknown factors in b. Then, the volume rate would be V̇i = b Vici,
which yields

ẋi =
V̇i

Ṽi
= b

Vici

Ṽi
= b (xi +1)ci. (11)

When the proportional feedback ci = −kPxi is used, xi = 0 is a lo-
cally asymptotically stable equilibrium [Kha96] and xi converges
to 0 for any initial value in (−1,∞), since the function x2

i is strictly

decreasing, i.e., dx2
i

dt =−bkPx2
i (xi +1) < 0 on (−1,∞)−{0}. How-

ever, developing a systematic strategy to compute kP that provides
fast and stable error reduction is much harder with nonlinear equa-
tions. Therefore, to facilitate further analysis, we linearize the equa-
tion by assuming a small volume error, i.e., |xi| � 1, yielding

ẋi = b ci. (12)

Now, we can develop a strategy to compute the gains kP and kI . We
first compute kP and then compute kI .

8.2 Computing Proportional Gain kP

In a high resolution mesh with small surface tension, since volume
loss or gain occur slowly, the proportional control may keep the
volume loss unnoticeable. Indeed, in most case, the proportional
control seems sufficient. Therefore, we first develop a simpler pro-
portional controller, i.e., we provide a method to compute kP when
kI = 0.

Using the proportional feedback ci =−kPxi, the system equation
(12) is written as

ẋi = −bkPxi, (13)

and its discrete form is xn
i =

(
e−bkP∆t

)n
x0

i . Let nP be the number of
time steps required to reduce the initial error x0

i down to 10%. Then
nP is computed from the condition

(
e−bkP∆t

)nP = 0.1 as

kP =
− ln0.1
nPb∆t

=
2.3

nPb∆t
, (14)

where nP can be translated as the number of time steps required
to reduce error down to 10%. We estimate b from the response of
a step input. We set the volume error xi = 0.5 and then apply the
volume control. The error xi will quickly decrease towards zero.
The time taken until the error is reduced by 90% of initial error
is considered as the rising time. We measure this rising time, and
then from the condition

(
e−bkP∆t

)nP = 0.1, we can estimate b. We
observed that b ≈ 0.25 for a single rising bubble on a 1283 grid.
The value of b will change depending on different situations, but it
is hard to predict and may become noticeable occasionally. There-
fore, we propose to choose b = 0.25. Then the proportional gain is
computed as

kP ≈ 9.2
nP∆t

(15)

Even though this is obtained with a number of assumptions, it pro-
vides a reasonable guideline in choosing the gain kP. In our exper-
iments, nP = 50 worked well.

We would like to notice that the unknown factors, such as chang-
ing values of b, can be tracked by inserting an estimator. However,
in Fig. 8, notice that the proportional gain kP provides an already
good result and that the integral control provides further improve-
ments as discussed in the next section. Since these simple con-
trollers leave little room for improvement, we do not peruse more
advanced controllers.

8.3 Computing Integral Gain kI

The drift error of proportional control can be removed by adding
integral feedback. However, improperly chosen integral gain kI can
cause undesired oscillations in volume, which indeed occurred in
our simulation of stacked bubbles. This oscillation was removed
when we increased the damping. Therefore, we propose a method
to compute a gain kI that provides a good damping.

By substituting ci in (12) by the PI-controller, we obtain

ẋi = − bkPxi − bkI

∫ t

0
xi. (16)

Let y =
∫ t

0 xidt. Then, we obtain a second order system

ÿ + bkPẏ + bkIy = 0, (17)

whose natural frequency is ωn =
√

bkI and the damping coefficient

is ζ = bkP

2
√

bkI
= kP

√
b

2
√

kI
. Our goal is now choosing good values of ζ

that provides enough damping. By the classical control theory, a
system that has a good balance between fast regulation and damp-
ing would have ζ = 0.7, which contains a small amount of oscilla-
tion that settles down quickly. When ζ ≥ 1, the system is critically
damped or overdamped, and therefore, oscillation in xi does not ex-
ist (an overshoot is possible). Notice that equation (16) is obtained
by making a number of assumptions. Therefore, it would be safe to
choose ζ slightly larger than 0.7. In our experiments, ζ = 1 worked
well. After ζ is chosen, the integral gain kI is computed as

kI =

(
kP
√

b
2ζ

)2

= b

(
kP

2ζ

)2

≈ 1
4

(
kP

2ζ

)2

=
k2

P

16
, (18)

where the proportional gain kP is computed from (15).
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