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Summary of Work Completed 

The work completed during the period December 1, 1988 to May 30, 1989 consists 
primarily of extensions to the analysis previously reported to include a number of important 
considerations. In particular, the vehicle model was extended to include angle of attack 
effects, the thrust vector component normal to the velocity vector, and flight in the subsonic 
and supersonic regimes.~- multi-mode propulsion system consisting of turbojet, ramjet, 
SCRAMJET, and rocket engines was assumed and simple models for thn1st generation and 
fuel consumption adopted for each engine cycle. The state space was further constrained by 
consideration of a maximum allowable aerodynamic heating rate. Singular perturbation 
methods were applied to this more realistic model and again yield a simple algorithm suitable 
for generating the fuel optimal altitude profile in real time. A simple iterative algorithm was 
derived that approximates the optimal engine transition points and the regions of cycle 
overlap. Feedback linearization was employed to derive an angle of attack controller which 
is used to guide the vehicle along the fuel-optimal altitude profile in simulations of flight 
within the atmosphere. A computer subroutine based on the space shuttle explicit guidance 
algorithm was written to handle the exoatmospheric phase of ascent guidance and allows for 
the simulation of insertion into orbit. The resulting software was employed to examine the 
influence of the added model complexity on the fuel-optimal ascent trajectories and the 
performance of the guidance algorithms. 

I. Introduction 

This is a report of the progress made in conducting research under contract to NASA 
(Contract Number NAQ .. l-922) during the period from December 1, 1988 to May 30, 
1989. The research effort is directed at the problems of real-time trajectory optimization and 
guidance law development in National Aerospace Plane applications. In particular, singular 
perturbation methods are being applied to develop guidance algorithms suitable for on
board, real-time implementation. Sections II and III of this report provide a description of 
the vehicle model currently being employed and an overview of the analysis that has been 
completed. A detailed mathematical formulation of the optimization problem and the method 
of solution, along with a discussion of the numerical results that have been generated, is 
available in [1]. The results obtained prior to this reporting period are available in [2-4]. The 
guidance scheme employed for simulation of the exoatmospheric phase of insertion into 
orbit is briefly describe4 in Section IV. A discussion of the problem areas that have been 
encountered is presented in Section V. Conclusions are stated in Section VI. Lastly, an 
overview of research planned for the next reporting period is presented in Section VII. 

II. Vehicle Models 

Two distinctly different vehicle· models have been employed in the research conducted to 
date. The make-up of these two models, along with the advantages and limitations of each, 
is discussed below. 



Model Number 1. The vehicle configuration detailed in the last progress report and 
the corresponding aerodynamic and propulsive mooels presented in that report are valid only 
at hypersonic speeds. This model was derived from a hypersonic research airplane concept 
studied by NASA in the mid 1970's. The concept's design, which employs a seventy 
degree swept delta wing, is based on a fued geometry modularized SCRAMJET propulsion 
system that is closely integrated with the airframe. For modeling purposes, a full scale 
vehicle of 150 feet total length and 200,000 pounds take-off gross weight was assumed. 
The hypersonic aerodynamic characteristics assigned to the model are based on model wind 
tunnel data taken at Mach 6. The Mach number independence principle is used to extend 
these aerodynamic charact~ristics to higher Mach numbers. In particular, drag is assumed to 
have a conventional parabolic form, that is 

D = qsCno + KL2/qs 

where the symbol q represents dynamic pressure, s an aerodynamic reference area, and Co0 

the zero-lift drag coefficient. The coefficient of the induced drag component, K, is assumed 
independent of the Mach number, M, for M > 5 by means of the Mach number 
independence principle. 

A simple conceptual model of a SCRAMJET engine, based on Billig's generic design 
guidelines, is employed to model SCRAMJET performance. A rocket, sized for orbital 
insertion, is assumed available to augment SCRAMJET thrust. To simplify the analysis it 
was assumed that the SCRAMJET would operate continuously at a stoichiometric fuel-to-air 
ratio, thus only the optimal rocket throttle control, h, need be determined. The total thrust, 
T, and total fuel consumption rate, f, are given by 

h CE [0,1] 

f = c5T5 + hCrTr 

where thrust specific fuel consumption is represented by c5 for the SCRAMJET and Cr for 
the rocket. The above model, detailed descriptions of which are available in [3] and [ 4], is 
referred to henceforth as Model Number 1. 

Extension of Model Number 1 to include aerodynamic characteristics at subsonic and 
supersonic speeds requires that we recognize CDo and K as being Mach number dependent. 
Although model wind tunnel data was taken for this configuration at subsonic and 
supersonic speeds, it is not available at sufficiently low angles of attack. The desire for this 
data stems from the fact that the vehicle is expected to operate at very low angles of attack 
along the fuel-optimal trajectory. For this reason a new configuration, for which low angle 
of attack aerodynamic data is available, has been adopted and was used to construct the 
model described below. 

Model Number 2. This model is based on the "Generic Hypersonic Aerodynamic 
Model Example," or GHAME, detailed in [5]. A nominal configuration of 233.4 feet total 
length and 300,000 pounds gross take-off weight is assumed. The assigned aerodynamic 
characteristics are taken directly from the GHAME documentation and extend from take-off 
to orbital velocities. Drag is again assumed parabolic in form but we now assume Mach 
number and angle of attack, a, dependencies as follows, 

K = K(M,a) 

,. 
t. 



A multi-mode propulsion system, assumed to consist of turlx>jet, ramjet, SCRAMJET, and 
rocket engine cycles, is stipulated for lack of more detailed information. The assumed 
propulsive characteristics for the air-breathing engines are adopted from [6]. This includes 
the SCRAMJET engine characteristics, i. e. the generic SCRAMJET model employed in 
Model Number 1 is not used in conjunction with the turlx>jet and ramjet data of [6], rather 
all three air-breathing engine types are modeled using the fuel specific impulse data given in 
[6] where 

T = Isp (0.029j) g r V Ca A 
--

f=T /Isp 

and the undefined symbols represent: 

Isp fuel specific impulse 
j the engine control 
g acceleration due to gravity 
r atmospheric density 

v 
Ca 
A 

velocity 
the capture area ratio 
the engine inlet area 

Note that, in general, Ca is a function of both angle of attack and Mach number. The rocket 
is modeled as for Model Number 1 and again sized for orbital insertion. This data set, 
referred to as Model Number 2, is valid over the entire flight regime from take-off to orbit. 

The problem of vehicle trim, which applies to either Model and which is discussed in 
more detail in [1], is treated as a sub-system problem that can be ignored at this level of 
control law development. 

III. Application of Singular Perturbation Theory 

The work completed to date is restricted to considering the flight of a point mass in a 
vertical plane over a spherical, non-rotating Earth. The atmosphere is assumed stationary 
and the thrust vector is assumed to lie in the plane of symmetry. The equations of motion 
governing such flight can be reduced to a four state model in: radial distance from the center 
of the Earth, velocity, flight path angle, and vehicle mass. For convenience mass specific 
energy is introduced as a state variable in place the velocity. Given the performance index of 
maximum final mass, one can proceed to determine the optimal controls, i.e. to determine 
the optimal angle of attack and engine throttle control histories. In an attempt to avoid 
computationally intensive methods of solution, singular perturbation methods are applied by 
artificially introducing a small parameter in the dynamic equations to effect a time scaling. 
The solution to the full order problem is then investigated by examining the necessary 
conditions for optimality on differing time scales, that is, the solution to the full order 
problem is approximated by solving a series of low order problems. Ideally, the resulting 
low order problems will yield to analytic solution, but even if this is not the case one can 
often derive a simple algorithm that will yield a solution. This technique is especially 
attractive because the resulting solution is in feedback form. 

For the particular application at hand, altitude and flight path angle dynamics are assumed 
fast in comparison to energy and mass dynamics. This assumption yields an optimal altitude 



program as a function of energy and mass and a nonlinear feedback guidance law using 
angle of attack as a control. The necessary conditions for optimality also yield relations for 
evaluating the optimal engine controls as a function of state. The algorithm by which the 
optimal altitude program is generated and by which the optimal engine settings are 
determined is presented in detail in [1]. State variable inequality constraints on dynamic 
pressure and aerodynamic heating rate are easily enforced because altitude, an assumed 
"fast" variable, acts as a control in the "reduced solution," thus converting these two state 
variable inequality constraints into constraints of state and control. 

Angle of attack control allows one to consider a realistic vehicle model that includes 
phenomenon such as the functional dependence of SCRAMJET thrust on angle of attack. 
This dependence has been shown to strongly influence the nature of the fuel-optimal ascent 
trajectories [1]. The use of angle of attack, rather than lift, as a control variable does not 
seriously degrade the performance (i.e. increase the run time) of the guidance algorithm 
previously reported. Several points are introduced, however, about which iteration is 
required. 

Control of the multi-mode propulsion system consists of determining when to use each 
cycle type, the regions of overlap in cycle operation, and the optimal throttle settings for 
each when in operation. It is expected that all four cycle types will exhibit fuel flow variation 
in direct proportion to pilot command, that the air-breathing cycles will typically exhibit a 
nonlinear relation between fuel flow and thrust generation, and that it is reasonable to 
assume that the relation between fuel flow and thrust generation for the rocket is linear. For 
simplicity, one can ignore the nonlinearities cited above and examine the solution to the 
resulting bang-bang control problem. This leads to a set of analytic conditions (that must be 
iteratively satisfied) which determine the engine cycles to be employed along any segment of 
the ascent trajectory so as to minimize the fuel consumed in achieving orbit. This 
approximate approach, which is detailed in [1], proves very efficient. It does not, however, 
settle the question of whether or not intermediate values of throttle setting are optimal. In the 
particular case of rocket throttle control, intermediate values of throttle setting (i.e. singular 
arcs) were previously shown to be non-optimal for the given dynamic model. To reinforce 
this result, the rocket throttle singular surface was generated numerically and is plotted in the 
altitude-velocity plane in [1]. Singular arcs for rocket throttle could still be optimizing given 
a higher-order dynamic model. The methodology for determining the optimal throttle 
settings for the air-breathing engines is outlined in [ 1 ]. However, numerical investigation 
will require realistic nonlinear engine models. 

The addition of a maximum aerodynamic heating rate constraint was completed using the 
procedure employed to handle a maximum dynamic pressure constraint in previously 
reported work. The model adopted for aerodynamic heating rate, as well as the influence of 
this constraint on the ascent trajectories, is discussed in detail in [1]. 

The boundary layer problem which is formulated to handle the altitude and flight path 
angle dynamics again results in a nonlinear feedback guidance law. This law is dependent 
on knowledge of the costates, which necessitates solution of the two-point boundary-value 
problem that results from the application of the necessary conditions for optimality. 
Previously developed methods for the approximate solution of this problem fail in the 
presence of state variable inequality constraints. This problem is discussed further in Section 
V. Feedback linearization is employed to overcome this hurdle (see [1] and [2]) and 
provides a near-optim~l control law for tracking the reduced solution altitude profile. As 
illustrated in [2], little or no performance can be gained by further optimization of altitude 
and flight path dynamics beyond the feedback linearization approach cited above. 



IV. Exoatmospheric Guidance 

Flight beyond the Earth's atmosphere precludes the use of air-breathing engines. The 
solution to the minimum-fuel ascent-to-orbit problem for rocket powered vehicles has been 
studied for several decades. The solution in vacuum is well known to be in the form of a 
linear tangent steering law [7] and has been extensively employed for exoatmospheric 
guidance of rocket powered launch vehicles. A simple vector form of the linear tangent 
steering law based on the concept of velocity-to-be-gained handles all phases of space 
shuttle exoatmospheric powered flight and is detailed in [8]. This algorithm has been 
programmed for use in simulating rocket powered insertion into orbit once the computed 
fuel-optimal ascent trajectory exceeds a specified boundary for the sensible atmosphere. 
Note that the transition from angle of attack control and SCRAMJET thrust to control by the 
rocket thrust vector alone has not been optimized but approximated by this procedure. 
Optimization of this transition would consist of a terminal boundary layer analysis in the 
singular perturbation formulation. 

V. Problem Areas 

Vehicle Models. Model Number 1 as described in Section II is adequate for 
consideration of flight in the hypersonic regime but proves deficient at subsonic and 
supersonic speeds. Model Number 2 appears to overcome this difficulty by providing a 
continuous aerodynamic data set over the entire Mach range, including data at low angles of 
attack. However, this aerodynamic data set intentionally includes unrealistically high drag 
penalties. A realistic aerodynamic data set is desired to allow for proper engine sizing and to 
allow for the use of the developed software package to examine vehicle performance and the 
feasibility of the single-stage-to-orbit concept. 

The air-breathing engine models employed thus far are not suitable for numerically 
investigating many nonlinear effects of interest. These include the question of whether or 
not intermediate values of air-breathing engine throttles are optimal and convexity of the 
hodograph. Assistance is needed in identifying and acquiring suitable engine models. 

The State Constrained Boundary Layer Problem. Difficulty has been 
encountered in forming an approximate solution to boundary layer problems in which a state 
variable inequality constraint is to be enforced. In particular, the technique of linearizing the 
boundary layer necessary conditions about the reduced solution in order to pick the 
unknown initial conditions of the costates fails because purely imaginary eigenvalues are 
encountered. It has been shown that a discontinuity in the fast costate rates will occur at the 
juncture of an unconstrained arc (the boundary layer trajectory) and a constrained arc (the 
reduced solution). It is not clear at this time how to expand about such a point. For the same 
reasons, the technique for addressing altitude and flight path angle dynamics on differing 
time scales by penalizing flight path angle in the performance index also fails. Given purely 
imaginary eigenvalues, there is no mechanism to choose the weighting in the performance 
index so that the coupled system's behavior is emulated. This problem is of theoretical 
interest and an investigation is being initiated. 

' " 



VI. Conclusions 

The application of the minimum principle to a simple model of energy and mass 
dynamics results in an efficient algorithm for trajectory optimization that is suitable for on
board, real-time implementation. The use of angle of attack as a control variable, rather that 
lift, is easily incorporated into this algorithm, though some iteration is then required. 
Examination of the rocket throttle switching surface in the altitude/velocity plane confirms 
the previously reported result that intermediate values of rocket throttle setting are not 
optimal. Enforcing an aerOdynamic heating constraint results in greater mass expenditure to 
achieve orbit and also increases the time of flight. Functional dependence of SCRAMJET 
thrust on vehicle angle of attack has a major impact on the nature of fuel-optimal ascent 
trajectories, in general dictating flight at a value of dynamic pressure lower than expected 
when Mach number is greater than 10. Finally, it has been shown that assumptions 
regarding propulsion system characteristics, natnely that they enter into the optimization 
problem in a linear fashion, allow one to determine the optimal engine transition points as a 
function of state using a simple iterative test. 

VII. Plans for the Next Reporting Period 

The analysis of flight in a vertical plane using the aerodynamic, propulsive and dynamic 
models described in this report is complete in the sense that the algorithn1s and methodology 
are fully developed. Further investigation of points of interest require more detailed and 
realistic models that exhibit qualitatively correct nonlinear behavior. Given that such models 
can be developed or made available, additional points of interest include numerical 
investigation of the optimality of intermediate throttle settings and the convexity of the 
hodograph. Optimal control of a realistic propulsion system that includes variable geometry 
and shared hardware between cycles is also of interest but would require detailed knowledge 
of the system and its performance. 

Theoretical investigation of the state variable inequality constrained boundary layer 
problem is of interest. A study of this problem in a general setting is being initiated. Note 
however, that solution of this problem is not required to implement the derived guidance 
algorithms. 

The major effort to be undertaken during the next reporting period is to examine three
dimensional maneuvers as may be required for lift modulation, orbital plane change, and 
abort maneuvers. The approach will again center around singular perturbation methods, 
treating out-of-plane dynamics as an additional boundary layer. Once this effort is complete 
and a three dimensional simulation code is available, it will be of interest to estimate the 
errors introduced by the rotational velocity of the Earth, winds, the perturbing effects of 
gravity, density holes in· the upper atmosphere, etc. Possible abort maneuvers, initiated in 
response to engine-out conditions or heat shield failure, will also be studied. 

Tasks planned for the next reporting period are detailed below. 

• Further develop the vehicle model as follows. 

- Acquire the aerodynamic characteristics of NASP vehicle configurations that 
become available and compare with Models 1 and 2. 

E 



- Acquire suitable turbojet and ramjet engines models which exhibit realistic 
nonlinear behavior. 

- If possible, acquire models of other engine concepts, the air-turbo-ramjet for 
instance, and incorporate them into the software package as optional devices. 

- Further investigate SCRAMJET modeling issues including variation of 
engine performance with angle of attack, additional thrust derived from fuel 
preheat, additional fuel flow required for engine cooling at the higher Mach 
numbers, additional thrust due to unburned fuel ejection, variable geometry, 
dual-mode {ramjet-SCRAMJET) operation, and the magnitude of the normal 
component of thrust. 

- Acquire or develop more accurate means for estimating the aerodynamic 
heating rates encountered and for identifying the transition from turbulent to 
laminar flow. 

- Adopt a suitable model for winds in the upper atmosphere. 

• Extend the analysis to include consideration of: 

- The opti1nality of intermediate values of throttle setting given suitable 
nonlinear models of the air-breathing engine cycles are available. 

- The convexity of the hodograph. 

- The further optimization of orbital insertion by treating it as a tenninal 
boundary layer. 

- Three-dimensional dynamics as may be required for lift modulation, orbital 
plane change, or abort maneuvers. 

- A rotating, oblate Earth 

- A nonstationary atmosphere 

• Continue the derivation of a suitable guidance algorithm: 

- Address the theoretical issues associated with the inclusion of a state variable 
constraint in the boundary layer analysis. If possible devise a method for 
synthesizing an approximate boundary layer angle of attack control solution 
for the constrained case. 

- Extend the Singular Perturbation formulation to include out-of-vertical plane 
dynamics as an additional layer. 

- Consider the possibility of an exact nonlinear transfonnation of the boundary 
layer necessary conditions to a linear optimal control problem with a 
quadratic index of performance. 

-
I 



• Evaluate the resulting real-time guidance algorithms in non-real-time simulation 
studies. 

- Compare the guided solutions with exact numerical solutions obtained using 
the Program to Optimize Simulated Trajectories (POST). 

- Examine the robustness of the guided solutions to variations in atmospheric 
conditions (gusts, density holes, etc.), off-nominal engine performance, and 
other modeling uncertainties. 

• Conduct sensitivity studies to examine the impact of vehicle sizing parameters on 
the nature of the optimal trajectories. 

• Compute the CPU time required to cycle through the guidance algorithm in order 
to evaluate its suitability for real-time control and for comparison to other 
approaches to real-time trajectory optimization. 
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Summary 

During the current reporting period, January 1 to December 31, 1989, general problems 

associated with on-board trajectory optimization, propulsion system cycle selection, and with the 

synthesis of guidance laws were addressed for ascent to low-Earth-orbit of an air-breathing, 

single-stage-to-orbit vehicle. This report follows a previous one entitled "Trajectory Optimization 

and Guidance Law Development for National Aerospace Plane Applications" and dated Decernber 

1988. The work reported herein builds directly upon the analytical results presented in that 

document. A good portion of this work focused on making improvements to the vehicle models 

employed. The NASA "Generic Hypersonic Aerodynamic Model Example" and the "Langley 

Accelerator" aerodynamic data sets were acquired and implemented. Work pertaining to the 

development of purely analytic aerodynamic models also continued at a low level. A generic model 

of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and 

rocket engine cycles. Provisions were made in the dynamic model for a component of thrust 

normal to the flight path. Computational results, which characterize the nonlinear sensitivity of 

scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the 

engine model. Additional trajectory constraints were also introduced. The constraints now treated 

are: maximum dynamic pressure, maximum aerodynamic heating rate. per unit area, angle of attack 

and lift limits, and limits on acceleration both along and normal to the flight path. 

The remainder of the research effort focusedf for the most part, on required modifications to the 

previously derived algorithm when the model complexity cited above was added. In particular, 

analytic switching conditions were derived which, under appropriate assumptions, govern optimal 

transition from one propulsion mode to another for two cases: the case in which engine cycle 

operations can overlap, and the case in which engine cycle operations are mutually exclusive. The 

resulting guidance algorithm was ~plemented in software and exercised extensively. It was found 

th~t the approximations associated with the assumed time scale separation employed in this work 

are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the 

very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for 

ascent to orbit. Very little mass penalty is induced by the resulting inaccuracies in the trajectory 

over this region because it is traversed rapidly. However, the reduced solution climb paths prove to 

be unfeasible within this Mach range when subject to the full model dynamics and active trajectory 

constraints. These difficulties were successfully overcome by accounting for flight path angle and 

flight path angle rate in construction of the flight path over this Mach range. The resulting 

algorithm provides the means for rapid near-optimal traje·ctory generation and propulsion cycle 
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selection over the entire Mach range from take-off to orbit given a realistic nonlinear vehicle model 

and all pertinent trajectory constraints. 

The only significant problem area encountered to date relates to the lack of a general theory for 

singularly perturbed systems that are. subject to state-variable inequality constraints. Such 

constraints are common to a wide class of flight vehicles but have received little attention in the 

literature when the dynamic system is singularly perturbed. A study was initiated in this area and it 

was found that, when the reduced solution. lies on a state-variable inequality constraint boundary, 

the boundary layer trajectories are of finite time in the stretched time scale. The possibility of 

costate discontinuites at the juncture between constrained and unconstrained arcs makes direct 

application of existing theory difficult at best. A transformation technique was identified that 

eliminates some of these difficulties, but at the cost of possibly increased system order and the 

introduction of singular arcs. Much work remains to be done in this area. 

Work on development of simple, efficient algorithms for prediction of vehicle aerodynamic and 

propulsive performance have continued during the present phase of the program. Improvements in 

modeling of the hypersonic lifting body module have eliminated previous discrepancies between 

measured and predicted aerodynamic behavior. Several modes of data entry are now implemented 

· making assessment of a given vehicle configuration very simple. An interactive program mode has 

been devised that makes possible direct and immediate assessment of configuration changes on 

selected vehicle performance paramaters. The algorithms developed in this program are of potential 

use in applications beyond those originally envisioned. 

Four conference papers have now been published which discuss most of the results of this 

research effort. A Ph.D. Dissertation that details the entire effort to date was published in 

Decemeber of 1989. A full-length paper entitled "Rapid Near-Optimal Trajectory Generation for 

Single-Stage-to-Orbit Airbreathing Vehicles" has been submitted for publication in the AIAA 

Journal of Guidance, Control and Dynamics and a· new paper is now being prepared for the 1990 

AIAA GN &C Co~erence on the issue of state contraints in singularly perturbed systems. 

iii 
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SECTION 1 

Introduction 

Emerging technology in many engineering fields, including hypersonic air-breathing 

propulsion, computational fluid dynamics, and high temperature materials, may soon make 

possible a vehicle configuration that has been the subject of study for over four decades1• This 

vehicle concept is commonly referred to as an aerospace plane. Its development, in one version or 

another, is being pursued by a number of industrialized nations. The current U.S. concept consists 

of a single-stage vehicle propelled, for the most part, by airbreathing engines. Most notable among 

the airbreathing cycles to be employed is that of the supersonic combustion ramjet or "scramjet." 

This aircraft is to be fueled by liquid hydrogen and will take-off and land horizontally on 

conventional runways. Operational objectives include hypersonic cruise in the upper atmosphere 

for long durations and the ability to accelerate to orbital velocity. Potential missions for such a 

vehicle include transportation to low-Earth-orbit, intercontinental passenger transportation, and a 

wide range of defense missions. This research effort is focused upon the particular mission of 

single-stage-to-orbit which promises, by the use of air-breathing hypersonic propulsion and 

greatly reduced launch operations, an order of magnitude reduction in the cost of placing payloads 

in low Earth orbit 2,3. 

Even with the greatly improved fuel efficiency of airbreathing propulsion over current rocket 

engine technology, the ability to attain orbit in a single-stage vehicle will be marginal at besr4. 

Trajectory optimization will play an important role in mission success for this reason. In fact, 

because the airbreathing propulsion system characteristics are sensitive to vehicle attitude and 

atmospheric conditions, precise trajectory control will be required. State-of-the-art launch vehicle 

guidance technology is heavily reliant on pre-mission, ground-based trajectory 

generation/optimization. In order to be cost effective, aerospace plane operations will have to 

approach those of modem commercial airlines. Technology dependent upon pre-mission, ground

based trajectory optimization is inadequate for this task; real-time, on-board trajectory optimization 

will be req uired5. 

The state of the art in trajectory optimization for complex nonlinear systems consists of a 

number of well developed numerical methods of solution. Unfortunately, these algorithms are 

poorly suited for on-board, real-time implementation. They are, in general, computationally 

intense, require an initial guess of the solution, and are lacking in global convergence 

characteristics. While some success in designing a reliable algorithm to numerically solve a two 
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point boundary value problem in an on-board computer has been achieved for orbit transfer6, the 

diverse mission requirements and complex control structure of a general purpose aerospace plane 

will likely require that structured methods for order reduction be employed. 

Energy state approximations and singular perturbation methods have been successfully 

employed to derive near-analytic trajectory optimization algorithms in the past. Near-optimal 

feedback guidance laws hav~ also been obtained. These methods also contribute considerable 

insight into the nature of the optimal profiles and their relation to vehicle aerodynamic and 

propulsion characteristics. Early studies were devoted to fighter aircraft performance optimization7-

9. However, many of the modeling approximations employed for analysis of subsonic and 

supersonic aircraft optimal trajectories are not valid for a vehicle with hypersonic cruise and orbital 

capabilities. 

This research report presents an analysis of the problem of fuel-optimal ascent to low-Earth

orbit of an airbreathing, single-stage-to-orbit vehicle. Section II presents the problem formulation. 

A generic multi-mode propulsion system is defined which incorporates turbojet, ramjet, scramjet, 

and rocket engines. Inequality constraints on dynamic pressure, aerodynamic heating rate, and 

vehicle acceleration are· also introduced. In Section Ill an algorithm for generating fuel-optimal 

climb profiles is derived employing an energy state approximation. This algorithm results· from 

application of the minimum principle to a low order dynamic model that includes general functional 

dependence on angle of attack and a normal component of thrust. Switching conditions are derived 

which, under appropriate assumptions, govern optimal transition from one propulsion mode to 

another. The use of bank angle to modulate the magnitude of the vertical component of lift is also 

investigated. A nonlinear transformation technique is employed to derive a feedback controller for 

tracking the computed trajectory. Section IV provides an overview of the vehicles models 

employed in this work. Section V provides a presentation and discussion of representative 

numerical results, and Section VI states conclusions drawn from this work. The main body of the 

report is followed by two appendices. Appendix A details an initial investigation into the 

characteristics of _boundary layer systems when the reduced solution lies on a state-variable 

inequality constraint boundary. Appendix B details work performed in analytical vehicle model 

development. 
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SECTION 2 

General Problem Formulation 

Consider atmospheric flight of a point mass over a spherical non-rotating Earth. The equations 

governing such flight can be reduced to a four state model as follows, 

E = V(Fc -D) 
m 

m = -f (r,E,1t,a:) 

• (F s + L} cosa Jl cosy V cos y 
ey= - +---

mV Vr2 r 

ri = V siny 

(1) 

(2) 

(3) 

(4) 

The perturbation parameter, E, which has been artificially inserted, is nominally one. It is assumed 

that the atniosphere is stationary and that the thrust vector lies in the vehicle's plane of symmetry. 

In ( 1 ), mass specific energy, E, is employed as a state variable in place of velocity, V, where 

E = VZ/2- fl/r (5) 

The reference point for zero gravitational potential is taken at a radial distance approaching infinity. 

The symbol V is to be taken as 

V = [2(E + fl/r)]112 (6) 

everywhere it appears in this analysis. Position and heading dynamics are decoupled from ( 1-4) 

by the assumption of a non-rotating Earth and are not of interest at present. 

Drag is assumed to have a conventional parabolic form 

D = qsCo0 + Kl..Z /qs where (7) 
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The assumed functional dependence for Co0 , the zero lift drag coefficient, and K, the coefficient 

of the induced drag component, are: 

Coo= Co0 (M) K = K(M,a) (8) 

Lift is given by 

(9) 

The lift curve slope, CLa , and the angle of attack for zero lift, etzL , are assumed to be Mach 

number dependent. 

A multi-mode propulsion system composed of n different engine types (i.e. cycles) is assumed. 

Net thrust is given by 

(10) 

where Fe represents the component of net thrust along the velocity vector and Fs represents the 

component of net thrust normal to the velocity vector, i.e. in the lift direction. These components 

are depicted in Figure 1 and given by: 

Fe = ± lli Tj cos (a. + ET; ) + t Ti cos (a. + er, ) (11) 
j=l i=p+l 

Fs = ±ni Tj sin (a.+ er;) + t Ti sin (a.+ er, ) (12) 
j=l i=p+l 

Each of then engine cycles (i.e. turbojet, ramjet, scramjet, rocket, etc.) is controlled by variation 

of the fuel flow rate in direct proportion to command. Of the total number of engine types to be 

considered, p are assumed to exhibit a linear relation between fuel flow rate and thrust generation. 

Each engine of this type shall be controlled by varying its throttle setting, 11} This assumption is 

typically employed for rocket engines. For the remaining n-p engine cycles, the relation between 

fuel flow rate and thrust generation is assumed nonlinear. Control of each engine of this type shall 

be effected by variation in its fuel equivalence ratio, <J>i· This behavior is typical of air-breathing 
I 

cycles. The subscripted symbol Tk (k = 1 ton) in (11) and (12) represents the net thrust generated 
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by any number of independent engines employing a particular cycle k. The symbol ETk denotes the 

angle between Tk and the body longitudinal axis (see Figure 1). Note that in general, 

11j E [0, 1] j = 1 top (13) 

<fli E [0,1] i = p + 1 ton (14) 

k = 1 ton (15) 

The total fuel flow rate, f, is given by 

(16) 
j=l i=p+ 1 

where Cj represents the thrust specific fuel consumption for engine type j and fmaxi represents the 

product of thrust specific fuel consumption and thrust at a stoichiometric fuel-to-air ratio for engine 

type i. For convenience all of the engine throttle controls are collected into a single vector as 

follows, 

(17) 

The control variables are angle of attack, a, bank angle, cr, the fuel equivalence ratios, <fli, for 

engine types 1 through n, and engine throttle settings, Tlj, for engine types n+ 1 through p. The 

objective is to minimize the fuel consumed in gaining energy, with the performance index given 

by, 

J =- m(tr) (18) 

The final time, tr, is free. Minimization of (18) is to be carried out subject to maximum dynamic 

pressure and maximum aerodynamic heating rate inequality constraints and acceleration limits 

defined by 

C 1 (r, E) = q - Qmax ~ 0 (19) 
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C2 (r, E, a)= Q- CJmax ~0 (20) 

C3 (r, E, m, a, 1t) = n1 - n1max ~. 0 (21) 

C4 (r, E, m, a, 1t) = n2- n2max ~ 0 (22) 

The symbols n1 and n2 represent the accelerations in g's along and normal to the velocity vector 

(i.e. in the lift direction), respectively. 
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SECTION 3 

Singular Perturbation Analysis 

3.1 Reduced Solution. 

Lift as a Control. We first consider a simplified problem in which flight is constrained to a 

vertical plane, the thrust vector is aligned with the velocity vector, and thrust production is 

assumed independent of vehicle angle of attack: 

(J = 0, Fs = 0, Fc=T (23) 

Furthermore, we consider only that portion of the trajectory in the hypersonic regime. In this 

regime we need only consider a dual-mode propulsion system (i.e. n = 2). The system consists of 

a bank of scramjet engine modules assumed to operate continuously and a rocket engine that can be 

throttled as desired. The constraint (21), which can lead to the requiremef!t for intermediate values 

of throttle setting, will be ignored. In this simplified setting the total fuel flow rate and net thrust 

can be represented as 

T = T8(r,E) + 11 T/r) ; 11 e [0,1] (24) 

(25) 

where thrust specific fuel consumption is represented by c8 for the scramjet and cr for the rocket. 

Under these assumptions the governing equations of motion can be written as, 

E = ·V(f-D) 
m (26) 

m = -f (r,E,rt) (27) 

L Jl cosy V cos y 
£"( = mV - 2 + 

Vr r 
(28) 

Er = V sin"( (29) 
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The control variables are now rocket engine throttle, Tt, and vehicle lift, L. The objective remains 

to minimize the fuel consumed in gaining energy. 

Setting E = 0 in (26-29) reduces the Qrder of the dynamic system to two and results in what is 

conventionally referred to as the energy state approximation. That is, altitude and flight path angle 

dynamics are assumed fast in comparison to energy and mass dynamics, and altitude now takes on 

the role of a control variable9. The differ~ntial equations (28) and (29) are reduced to algebraic 

equations which yield the following relations: 

Yo =0 (30) 

L0 = m[(J.Lir2)- (V2fr)] (31) 

The subscript zero denotes reduced solution values and is omitted below where not deemed 

necessary for clarity. The reduced solution Hamiltonian is given by 

Ho = AE E +Am m +constraints·= 0 (32) 

where 

(33) 

Satisfaction of the minimum principle with respect to altitude, h, is equivalent to the following 

operation (see Appendix B of reference 10), 

h0 * = arg max h [V(T- D)/f.l (34) 
E =constant 
T>D qSqmax 

11=11* Q S Qmax 

Consideration. of the constraints (19, 20) simply limits the search space over which the 

maximization of (34) takes place. The superscript asterisk denotes an optimal value of control. 

This operation yields an optimal altitude program as a function of vehicle energy and mass. Note 

that 11 appears linearly in the Hamiltonian resulting in a bang-bang control solution for rocket 

throttle setting. A switching condition, S, results from the evaluation of dHo/dTt and is given by, 

(35) 
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Using (32) to eliminate AE in (35) and taking into account the sign of Am t yields the following 

analytic switching condition: 

(36) 

11 = 1 if [(Cr- Cs)/erlTs < D 

Intermediate values of rocket throttle setting are not optimal. This fact is revealed by examination 

of the matrix Huu, which is required to be at least positive semidefmite along an optimizing singular 

arc. For convenience, V, rather than his taken as the control-like variable so that uT = [ V,11 ]. The 

determinant of Huu, which is symmetric, must be greater than or equal to zero for positive 

semidefiniteness. However, it can be shown that 

2 
det Hw =- {Hv11 } 

which is negative for Hv11 :;:. 0, which is generally the case. 

(37) 

It can happen that the velocity set is not convex in a region of interest, and, in the absence of 

convexity, one can not guarantee that an optimal control exists. Thus the possibility of a chattering 

control solution should be examined. Conclusions regarding this matter are model dependent and 

are discussed in reference 16. It is sufficient to say here that no chattering solutions for rocket 

throttle setting were found for the vehicle models examined. 

The reduced solution costates are determined as12: 

Am0 = -m( tt)!m (38) 

Ay
0 

= AE
0 

[2KV2Lof(qs)] (39) 

t The "influence function", Am, represents the variation in the performance index, J, with 

respect to mass1I. Since J =- m(tf), A.m cannot change sign (i.e. it is not possible for a reduction 

in vehicle mass as fuel is expended along the climb path to increase the fmal mass of the vehicle). 
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Angle of Attack as a Control.Consider now the full model complexity formulated in Section 

IT with the exception that flight remains constrained to a vertical plane. That is, consider flight over 

the entire Mach range, including the subsonic and supersonic regimes. Assume a multi-mode 

propulsion system consisting of turbojet, ramjet, scram jet, and rocket cycles (i.e. n = 4 ). Allow for 

a component of net thrust normal to the velocity vector and consider the possibility that the 

performance of one or more of the air-breathing engine cycles is dependent on vehicle angle of 

attack. Consider also the constraint on axial acceleration given by (21). The method of solution 

proceeds as before. 

Setting E = 0 in (1-4) reduces the differential equations (3) and (4) to algebraic relations: 

'Yo= 0 (40) 

L0 = m(Jl/r2 - V2Jr) - Fs (41) 

The control a.o is eliminated via (41). That is, given values of rand E, <X0 is iteratively determined 

using (41) while enforcing trim through elevon deflection, Oe. More concisely, 

<X0 (r,E) = {a.0 : L(r,E,a.,Oe)- L0 (r,E,1t,<X) = 0} (42) 

The reduced solution Hamiltonian is again given by (32). But since drag, given by (7), is 

dependent on L0 2, which in turn depends on engine con~ols through Fs, as given in (12), the Cf>i 

and the Tlj both enter nonlinearly in the H_amiltonian. Satisfaction of the minimum principle with 

respect to h and 1t is equivalent to the following operation, 

ho *, x* = arg_ max h,n [V (Fe - D )/f] 

E =constant 
qSqmax 
nt S ntm~x 

Fc>D 
Q;Qmax 
n2 Sn2max 

(43) 

This operation yields both an optimal altitude program as a function of vehicle energy and mass 

and the corresponding optimal engine controls. 

If we neglect the dependence of reduced solution drag on the sine component of net thrust, Fs, 

then the Tlj enter linearly in Ho. In such case we have bang-bang solutions for the Tlj with possible 
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singular arcs along which intermediate throttle settings may be optimal. The switching functions 

are determined as before from aHJanj, 

Sj = [f(1t) cos( a+ £T)I(Fc(1t)- D)]- Cj j = 1+n top (44) 

Throttle settings are then governed by the following relations: 

Tlj = Tlmin if S·<O J . . 

Tlj singular if Sj = 0 for finite time (45) 

Tlj = Tlmax if S· >0 J 

The Sj are dependent on the Tlk, k :~: j. Thus an iterative scheme is required to arrive at the optimal 

combination of throttle settings if j > 1. 

Thus far in the analysis it has been assumed that each engine cycle can be independently 

controlled. Since much of the captured mass flow and some or all of the engine hardware will be 

shared by the various engine cycles employed, it is perhaps more useful to consider operation of 

the various air:breathing cycles as mutually exclusive. In reality, dual combustion over a .finite 

range of Mach number will be required to smoothly transition from subsonic to supersonic 

combustion13. One can view the case of mutually exclusive engine cycles as a problem in which 

the system equations are discontinuous at cycle transition points along the trajectory. Following the 

terminology of reference 11, suppose that one set of system equations, 

i = f (1) (x,u,t) (46) 

applies fort< t1, where t1 is free, and another set of system equations applies fort> 11, namely, 

i = f (2) (x,u,t) (47) 

Here x and u denote general state and control vectors, respectively. It is necessary for optimality 

that 
H(l) (t1-) = H<2) (t1 +) (48) 

The condition (48) can be used to determine the optimal point of transition from one set of system 

equations to another. In this case f (1) and f (2) differ only by the thrust produced by the particular 

engine cycle being employed and by the associated difference in fuel consumption. Satisfaction of 
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(48) can be reduced to the following equality where the condition Ho = 0 has been employed to 

eliminate costate dependence 

(49) 

This result is, in fact, obvious from examination of (43). That is to say, points at which a change 

in engine cycle can occur require that the function to be maximized be equal for either choice of the 

propulsion cycle. When the functional evaluations are not equivalent, one. or the other is greater 

and dictates the optimal choice of cycle. 

Bank Angle as a Control. It is reasonable to assume that the performance of the proposed 

scramjet engines will be sensitive to vehicle angle of attack. Furthermore, it is quite likely that 

thrust production will depend on angle of attack in a nonlinear way. Given that this is true, any 

particular engine installation will exhibit an angle of attack for which engine performance is best. 

This angle of attack for best engine performance, call it the design angle of attack, may in tum vary 

with Mach number14. If such nonlinear behavior is assumed and the optimal flight path is 

constructed using (43), one finds that, since fuel optimization is v~ry sensitive to engine 

performance, the optimal trajectory tends to remain on a contour along which the design angle of 

attack is maintained. It can happen, however, that overall performance is improved if the design 

angle of attack is· maintained while flying at lower altitudes, and hence at higher values of dynamic 

pressure. Of course, maintaining the design angle of attack at a higher dynamic pressure generates 

additional lift which causes the vehicle to immediately climb above the desired flight path. Thus, in 

order to fly along the optimal path, the extra lift associated with maintaining the design angle of 

attack must be "dumped." One procedure for accomplishing this task is to roll back and forth in 

such a way that, on average, the component of lift in the vertical direction is reduced to that 

required to maintain the optimal climb rate. It may in fact be more practical to appronriately offset 

the initial vehicle heading and to then execute a single coordinated tum that accomplishes the same 

objective. With bank angle thus introduced as an additional control, satisfaction of the minimum 

principle with respect to h, 1t, and a is equivalent to the following operation, 

h0 *, 7t*, a 0 * = arg max h [V(Fc- D)/f] 
,1t,a 

12 

E =constant 
qSqmax 
nt Sntmax 

Fc>D 
QSQmax 
n2 Sn2max 
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where bank angle, a, is determined so that 

L cos a =Lo (51) 

3.2 Boundary Layer Analysis. 

The unconstrained boundary layer solution associated with (1-4) is obtained by introducing 

the time transformation 't = t/e and again setting E = 0. That is, energy and mass are held constant 

while altitude and flight path angle dynami.cs are examined on a stretched time scale. The resulting 

necessary conditions for optimality yield an optimal feedback guidance law for lift control which 

depends on the unknown costate A.:y (see Section 5.2.2 of reference 10). In the absence of a state 

inequality constraint such as (19), a suitable approximation to Ivy can be obtained by linearizing the 

boundary layer necessary conditions about the reduced solutionl0,15. However, this procedure is 

not applicable when the reduced solution lies on a state constraint boundary. This problem is 

discussed in detail in Appendix A. The boundary layer control solutions for engine throttle settings 

are similar to those of the reduced solution. The Tlj enter the Hamilt?nian linearly, but the 

switching conditions that govern their behavior are also dependent on the unknown costate J...:y. 

This dependence drops out of the switching conditions if the sine component of thrust, Fs, is 

neglected. 

Feedback Linearization - Lift as a Control .. As an alternative approach to handling the 

control of altitude and flight path dynamics, a nonlinear transformation technique is employed as 

followslO. Consider the boundary layer altitude and flight path angle dynamics given in (32) and 

(33) on a transformed time scale 't = t/e. Note that we have system equations in block triangular 

form. To proceed we take successive total time derivatives of r until explicit dependence on the 
control appears. The prime notation denotes differentiation with respect to 't. 

r" = (Lcosy)/m + (Vl cos2y)/r - {Jl/r2) (46) 

The control, L, appears in the second time derivative and we define U, the pseudo control, as 

U = r" (47) 

It is desired that U be determined as follows 
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(48) 

where r0 denotes the reduced solution radius at the current energy level and the time derivative of 

r0 denotes the climb rate required to stay on the reduced solution as energy is gained. This climb 

rate can be estimated by defining an appropriate increment in energy, evaluating the reduced 

solution at this higher energy level, and then estimating the required climb rate using a forwards 

difference. 

The inverse transformation is defined by solving for Lin (47) using (46) and (48), 

L = {U + (Wr2)- [(V2/r)cos2y]} (m/cosy) (49) 

This lift control solution is constrained directly by (21). Note that as r and y approach their 

reduced solution values, ( 49) approaches the reduced solution value of lift given by (35). A block 

diagram depicting the conceptual implementation of the nonlinear transformation technique to yield 

the controller defined by ( 49) is presented in references 10, 15 and 16. The corresponding closed 

loop transfer function is 

CJ(s) = (~s + 1Cp)/(s2 + ~s + ICp) (50) 

where the gains ICp and ~ for the second order system can be written in terms of the damping 

ratio, ~, and natural frequency, ffin, as 

(51) 

The performance of this controller can be dictated by selecting the values of ICp and ~ to yield the 

desired dynamic response. This lift control solution applies equally well to the unconstrained or the 

inequality constrained case. 

Feedback Linearization - Angle of Attack as a Control. Direct extension of the lift 

control solution presented above to include the angle of attack effects included in (1-4) results in 

the following feedback control law, 
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{ [ 2 2] } Jl V cos 'Y m 
a* = a: U +- - -- - (F s + L} = 0 

r2 r cos 'Y (63) 

The pseudo-control, U, is defined as be~ore where again Kp, proportional gain, and~, rate gain, 

are selected to yield the desired controller performance. Optimal lift, which is directly constrained 

by (21 ), is then determined by, 

L* = qsC1a (a*- aZL) (64) 
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SECTION 4 

Vehicle Models 

Four different vehicle models were employed to generate the numerical results presented in the 

next section. The frrst, referred to as Model 1, is based on a hypersonic research vehicle concept 

studied by NASA in the 1970's and is powered by a combination of scramjet and rocket 

propulsionlO. This model is useful only in the hypersonic regime. Models 2 and 3 are based on a 

"Generic Hypersonic Aerodynamic Model Example,"- or GHAME, developed more recently by 

NASA17. A nominal configuration of 233.4 feet total length and 300,000 pounds gross take-off 

weight was assumed. The trimmed aerodynamic characteristics were taken directly from the 

GHAME documentation. For Model 2 the largely empirical GHAME I aerodynamic data set was 

employed. For Model 3 the numerically generated GHAME II aerodynamic data set was employed. 

Both sets extend from take-off to orbital velocities. Thrust for both Models 2 and 3 is provided by 

a multi-mode propulsion system composed of turbojet, ramjet, scramjet, and rocket engines. The 

airbreathing propulsive characteristics for this model were adopted from reference 18. A rocket, 

sized for orbital insertion (roughly 15,000 lbs. of thrust in vacuum), is assumed available over the 

entire Mach range1°. This system corresponds to the case p = n = 4 in (11), (12), and (16). As a 

result, the switching conditions given by ( 45) can be used to determine all of the cycle transition 

points. Figure 2 presents the adopted variation in fuel specific impulse with Mach number for the 

various engine cycles. The various engines where sized by trial and error and do not represent an 

optimal configunition. The generation of scramjet thrust due to mass ejection when operating above 

a stoichiometric fuel-to-air ratio is not modeled. Thrust induced pitching moments, which can be 

significant 16, were not considered when trimming the aircraft. A fourth model was constructed by 

combining an aerodynamic data set provided by the NASA Langley Research Center (referred to as 

the "Langley Accelerator") with the propulsive data described above. Additional details regarding 

these models are available in references 10 and 19. 

A simple model for convective heating rate per unit area, Q, was adopted from reference 20, 

Q = (4.919 E-08) p0.5 y3.0 (52) 

Equation (52) gives Q in Watts/cm2 given density in kg!m3 and velocity in m/sec and corresponds 

to equilibrium conditions on the surface of a sphere or wing leading edge 10 em in radius and 

cooled by reradiation alone. For reference, a contour of Q = 800 in the altitude-velocity plane 

corresponds roughly to a contour along which skin temperature remains at approximately 20000 F 

three feet aft of the leading edge assuming laminar flow21. 
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SECTION 5 

Numerical Results 

Reduced solution trajectories were generated by carrying out the maximization process 

indicated in (34), (43), and (50) over the energy range from take-off to orbit. Numerous results are 

available in reference 19. Only a few representative plots are presented here. Figure 3 depicts 

reduced solution trajectories for Model 1 in the altitude/velocity plane. Dynamic pressure is limited 

to 2000 psf while maximum allowable heating rate is varied. The tr(\jectories follow the dynamic 

pressure constraint boundary until the specified contour of maximum heating rate is encountered. 

The path then follows the constant heating rate contour until reaching the trajectory for which no 

heating rate constraint was enforced. At this point the heating constraint becomes inactive and the 

trajectory rejoins the unconstrained climb path. The mechanism causing the altitude discontinuity at 

a velocity of 22,000 ft./sec. is similar to that which has been noted in the transonic region for 

supersonic fighter aircraft IS. Included in Figure 3 is the rocket switching surface, i.e. the contour 

along which the switching function (39) remains zero. At altitudes below this contour the optimal 

rocket throttle setting is zero whereas above the contour the optimal throttle setting is one. The 

performance penalty paid in enforcing the heating constraint is presented in Figure 3 as time 

required and percent gross weight consumed to achieve an orbital energy level. This performance 

penalty must be weighed against the complications of using active cooling, the weight of heat 

shielding, and v~ous other factors in the vehicle design process. 

Figure 4 presents the reduced solution climb path in the altitude-velocity plane for Vehicle 

Model4. The dynamic pressure constraint is again enforced, an aerodynannc heating constraint is 

not, and a limit on axial acceleration is introduced. The trajectories vary predictably as the 

magnitude of the acceleration constraint is changed. Some throttling of the engines is employed but 

in general the vehicle prefers instead to climb to reduce the excess thrust available. Note that the 

altitude discontinuity present in Figure 3 does not occur for this vehicle, but is in fact implicit in 

matching a terminal altitude condition at orbital velocity. The horizontal bars at the top of the figure 

indicate the velocity range over which the operation of each engine cycle was deemed optimal, 

including regions of cycle overlap. The rocket operation was not optimal during atmospheric flight 

for this case. 

Computational investigations of the sensitivity of scramjet perforinance to changes in angle of 

attack predict highly nonlinear behaviorl4. Figure 5 presents a scramjet thrust scaling factor 

employed to model this effect. This figure is based on a liberal interpretation of the computational 
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results presented in reference 14. This curve is shifted with respect to the horizontal axis in order 

to represent inlet designs which favor maximum engine performance at an angle of attack other 

than zero. 

Figure 6 presents variations in the dynamic pressure constrained reduced solution trajectories 

for Model 3 when thrust variation with angle of attack for both the ramjets and scramjets, as 

depicted in Figure 5, is included. The angle of attack for best engine performance is varied over the 

range from 0.5 to 3.0 degrees. When only scramjets are operating,. the ve~icle tends to prefer a 

path along which the "design" angle of attack is strictly maintained. The performance penalty paid 

for a change in the design angle of attack is modest however, since in this Mach region, the 

acceleration capability of the vehicle is high. When the thrust scaling factor of Figure 5 is assumed 

Mach dependent in accordance with the results of reference 14, a much greater variation in the 

trajectory is experienced19. 

The peak in the trajectories at approximately 3000 ft./sec. in Figure 6 is due to turbojet shut 

down. This peak is significantly reduced when the turbojet inlet area is increased, indicating that 

the climb away from the dynamic pressure constraint boundary is due to the decreasing level of 

thrust available from the turbojet as the Mach number increases. With an increase in altitude comes 

a reduction in vehicle drag, but the turbojet switching surface is encountered at an altitude of 

approximately 75,000 ft. and the turbojet shut down. The SCRAMJET almost immediately 

switches on, and-with a much greater magnitude of thrust, can sufficiently overcome vehicle drag, 

even at a higher dynamic pressure. Thus the trajectory returns to the dynamic pressure constraint 

boundary. Note that the ramjet is turned on at a very low Mach number (i.e. M = 0.81) even 

though it is extremely inefficient in this speed range (see Figure 2). This behavior has been noted 

by past researchers and is due to the presence of a "pinch point" (i.e. a point of minimum thrust 

minus drag) in the transonic region. The size of the ramjet was selected without regard to its 

weight. However, optimization of the vehicle configuration must take into account. the mass of 

each engine and the mass of the required engine cowling. Results obtained indicate that the optimal 

trajectory for such an optimized configuration may prefer the use of rocket (rather than ramjet) 

thrust to augment turbojet thrust at the transonic pinch point. 

As stated above, cycle operations are represented in Figure 6 by horizontal bars. The transition 

points were very nearly the same for thrust independent of or dependent on angle of attack. The 

overlap in air-breathing cycles is desirable to provide smooth cycle transitions. For Model 3, 

turbojet sizing requires about 25 sq. ft. of inlet area, whereas the total number of ramjet modules 

selected require 200 sq. ft. of inlet area. Thus it should be possible to start the majority of the 
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ramjet engines in a sequence that avoids excessive accelerations while maintaining turbojet thrust. 

Once the velocity for turbojet shut-down is reached, turbojet airflow can be diverted to the 

remaining ramjet modules. The number of required scramjet modules is likewise larger than the 

number of required ramjet modules, and a similar argument for cycle overlap can be made. Of 

course, the actual system will no doubt share much of the engine hardware amongst the various 

cycles employed in addition to sharing the captured mass flow. Thus the actual optimization of 

engine transitions will be more complex. 

Modulation of the vertical component of lift via bank angle variation was also evaluated for 

Model3. Carrying out the maximization process indicated in (50) alters the trajectories presented in 

Figure 6 only slightly. The changes correspond to those portions of the trajectory where a 0 < 

«design. As such, only a very modest gain in performance was achieved. However, if design 

constraints force the scramjet design angle of attack to differ significantly from the angle of attack 

for zero lift, much greater savings can be obtained. 

Figure 7 depicts the reduced solution trajectory for Vehicle Model 2.in the altitude-velocity 

plane. A maximum allowable dynamic pressure of 2000 psf is the only constraint enforced. The 

dashed line labeled 1 represents the fuel-optimal climb path when scramjet performance is assumed 

independent of vehicle angle of attack. The percent of take-off gross weight consumed in attaining 

orbital energy is 61. The solid line label 2 represents the fuel-optimal climb path when scramjet 

performance is assumed to vary with angle of attack according to Figure 5, with optimum engine 

performance assumed to occur at an angle of attack of 3 degrees across the Mach range. In this 

case the trajectory tends to remain on the dynamic pressure constraint boundary for the majority of 

the flight. The percent of take-off gross weight consumed in attaining orbital energy in this case is 

68.2. The weight penalty of 7.2 percent of the take-off gross weight most likely exceeds the 

payload capability of the vehicle. Th~s comparison indicates the critical need to accurately model 

the ~ny interactions present among disciplines. 

Figure 8 depicts the altitude time history for simulated flight of Model 3 using the lift control 

law derived via feedback linearization to track the corresponding reduced solution. The ramjet 

cycle was eliminated and the trajectory is subjected to the following constraints: dynamic pressure 

S 2000 psf, reference heating rateS 400 Watts/cm2, and axial accelerationS 3.0 g's. In general 

this vehicle preferred to climb in order to satisfy an axial acceleration limit rather than to throttle 

back the engines. The rapid climb at roughly 400 seconds is due to scramjet turn-Oft and this 

preferred behavior. The large overshoot just before 500 seconds is due to the inability of the 

vehicle to pull down as the altitude for which n1 S 3 at full throttle is approached. This overshoot 
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can be reduced somewhat by careful gain scheduling and having the controller look ahead in 

energy. However, the requirement to fine tune the controller for each trajectory generated is not 

desirable for the intended applications of this algorithm. The problem has less to do with the 

controller than with the generation of the trajectory itself. 

Over the vast majority of the trajectory the flight path angle is small and the flight path angle rate 

very modest so that ( 41) provides a good approximation to the actual lift required to follow the 

flight trajectory. However, when the scr'!ffijet is initially turned on at a relatively high value of 

dynamic pressure, the energy rate of the vehicle is greatly increased. The necessity of 

simultaneously climbing to avoid violating the dynamic pressure constraint boundary results in a 

large flight path angle rate. The time scale separation assumed in (1-4) is simply not appropriate 

over this small portion of the trajectory. A simple way to overcome this difficulty consists of 

estimating the flight path angle and time interval between energy levels, combining them to form an 

estimate of the flight path angle rate, and then inverting relation (3) to obtain the required lift. By 

restricting the accelerations normal to the flight path when constructing the reduced solution in this 

region, a feasible trajectory can always be obtained. 

Figure 9 depicts the reduced solution climb path for Model 3 again with a maximum dynamic 

pressure of 2000 psf, a maximum aerodynamic heating rate of 400 Watts/cm2, but with a 

maximum axial acceleration of 1g to amplify the problem (y = 0 in the lift calculations). Also 

depicted is the modified trajectory when the method described above is implemented (y and dy/dt ¢: 

0). The results in the altitude/velocity plane are quite dramatic over the speed range from 3,000 to 

12,000 ft./sec. The near vertical altitude transition at a velocity of approximately 3,000 ft./sec. is 

eliminated, as is the dive that followed. The arc which follows in the velocity range from 5,000 to 

13,000 ft./sec. corresponds to the region over which the axial acceleration limit is active. Less 

altitude change is commanded in this region; more throttle is used to reduce the axial acceleration 

instead. The remainder of the trajectory, the same for either case, constitutes flight along the 

heating constraint boundary. Despite the significant change in trajectory, only 200 additional 

pounds of fuel are ~onsumed and the difference in time of flight is only about 60 seconds. These 

small differences are due to the fact that the velocity interval from 3,000 to 12,000 ft./sec. is 

traversed very rapidly in time, corresponding to only a small fraction of the total time of flight. 
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SECTION 6 

Conclusions and Recommendations 

6.1 Conclusions 
This research effort has demonstrated the utility of singular perturbation methods in the study of 

single-stage-to-orbit airbreathing vehicles and, in particular, in the derivation of efficient algorithms 

for ascent trajectory optimization and optimization of engine cycle transitions._ The analysis extends 

over the entire Mach range from take-off to orbit and accomodates a realistic nonlinear vehicle 

model and all pertinent trajectory constraints. A number of important modeling and analysis issues 

not treated in the early stages of this effort were identified and addressed during this reporting 

period. Reasonable assumptions regarding propulsion system characteristics were introduced that 

allow the optimal engine cycle transition points to be determined as a function of state using a 

simple iterative test. These switching conditions lead to significant computational savings during 

the optimization process. Functional dependence of scramjet thrust on vehicle angle of attack was 

shown to have a major impact on the nature of fuel-optimal ascent trajectories. Also, depending on 

the actual vehicle configuration and the characteristics of the engine inlets, roll maneuvers used to 

modulate the vertical component of lift were shown to sometimes ~mprove the index of 

performance during ascent. Over those limited regions of flight where the energy state 

approximation was found to be poor, simple lift corrections that account for non zero flight path 

angle and flight path angle rate were introduced that significantly improve the trajectory generation 

methodology. 

6.2 Recommendations 
Future efforts should be directed towards enhancing the performance and applicability of the 

derived algorithm. Such efforts should include the development of detailed multi-disciplinary 

vehicle models, the incorporation of additional controls such as thrust vectoring, reaction jets, and 

variable geometry, optimal control of the total heat load on the vehicle, the study of three

dimensional maneuvers, including abort, an examination of robustness issues, and improvements 

in speed of operation. 

The demonstrated capability for rapid near-optimal trajectory generation has yet to be exploited 

in the development of efficient tools for fully integrated hypersonic vehicle design. Efforts to move 

in this direction should include tieing a parameter optimization algorithm around the trajectory 

optimization code that has been developed and the incorporation of this algorithm into a fully 

·integrated control system design methodology. 
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Work of more general theoretical interest was also initiated during this reporting period. It was 

found that state-variable inequality constrained boundary layer systems are not well understood. 

Many of the characteristic features of such systems were identified. For instance, it was found that, 

when the reduced solution lies on a state-variable inequality constraint boundary, the boundary 

layer trajectories are of finite time in the stretched time scale. The possibility of costate 

discontinuites at the juncture between constrained and unconstrained arcs makes direct application 

of existing theory difficult. A transformation technique was identified that eliminates some of these 

difficulties, but at the cost of possibly increased system order and the introduction of singular arcs. 

Further research in this area is recommended. 

Continued work with the integrated aerodynamic/propulsion performance prediction program 

has resulted in a highly accurate and useful means both for providing the needed vehicle parameters 

in the present program and for more general transatmospheric flight performance calculations. The 

program is evolving into a completely interactive performance estimation package, which will make 

it possible to view effects of small configuration changes on any performance parameters. The 

user can view in animated graphical form the effect of desired vehicle .configuration changes. 

These modifications can be entered graphically by moving defining points on the vehicle outlines 

or by means of shifting simulated "levers" built in to the computer program. For example wing 

incidence angle, twist, wing area, fin cant angle, etc. can be changed· continuously with 

simultaneous graphical output showing the effect on selected perfom1ance parameters. We 

anticipate many applications for this analytical capability and will continue to improve upon it. 

6.3 Publications 

Four conference papers have now been published which discuss most of the results of this 

research effortl2,15,16.49. A Ph.D. Diss~rtation that details the entire effort to date was published in 

Dece~eber of 198919. A full-length paper entitled "Rapid Near-Optimal Trajectory Generation for 

Single-Stage-to-Orbit Airbreathing Vehicles" has been submitted for publication in the AIAA 

Journal of Guidance, Control and Dynamics and a new paper is now being prepared for the 1990 

AIAA GN&C Conference on the issue of state contraints in singularly perturbed systems. 
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Appendix A 

State Inequality ~onstrained Boundary Layers 

Abstract 

The established necessary conditions for optimality in nonlinear control problems that involve 

state-variable inequality constraints are applied to a class of singularly perturbed systems. The 

distinguishing feature of this class of systems is a transformation of the state-variable inequality 

constraint, present in the full order problem, to a constraint involving states and controls in the 

reduced problem. It is of particular interest to construct the zeroth order boundary layer solution 

when the reduced solution lies on the constraint boundary. It is shown that, in general, the 

boundary layer problem is of finite time in the stretched time variable. A special case is identified 

in which the boundary layer time scale transformation results in an increase in state inequality 

constraint order. In this case, required smoothness properties possessed by the full order system 

may be lost, and the application of existing necessary conditions for singularly perturbed systems 

then becomes invalid. A Valentine transformation can be used to regain required smoothness, but 

at the price of introducing singular arcs and an increase in system order. Finally, the various 

system properties and characteristics described in the body of the appendix are illustrated with 

several simple examples. 

I. Introduction 

State inequality constraints are commonly encountered in the study of dynanucal systems. The 

study of rigid body aircraft dynamics and control is certainly no exception. For instance, a 

maximum allowable value of dynamic pressure is usually prescribed for aircraft with supersonic 

capability. This limit is required to ensure that the vehicle's structural integrity is maintained and 

constitutes an inequality constraint on vehicle state. State inequality constraints have been studied 

extensively by researchers in the field of optimal control, and necessary conditions for. optimality 

when functions of state are constrained have been obtainedl-3. However, the construction of 

solutions via this set of conditions proves very difficult, and mostpractitio,ners rely on direct 
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approaches to optimization that employ penalty functions for satisfaction of state inequality 

constraints4. 

As discussed in the literature, the use of singular perturbation techniques in the study of aircraft 

trajectory optimization can, through order reduction, lead to both open and closed loop solutions 

that are computationally efficient. These methods can also be used to circumvent difficulties 

associated with enforcing a state inequality constraint in the reduced solutionS. As an example 

consider the minimum time intercept problem o£6. A near optimal feedback solution is obtained via 

singular perturbation theory that includes consideration of an inequality constraint on dynamic 

pressure. In the zeroth-order reduced solution, algebraic constraints are obtained when the 

perturbation parameter,£, which premultiplies the so called "fast" dynamic equations, is set to 

zero. These constraints can be used to eliminate the fast states (in this case altitude and flight path 

angle) from the reduced problem. One can choose, however, to retain one or more of the fast states 

and to eliminate instead some of the original control variables. The retained fast state variables are 

treated as new controls, and the original state constraint becomes a constraint involving both state 

and control in the reduced problem. In subsequent analysis of boundary layers, altitude resumes 

its status as a state variable, and dynamic pressure once again becomes a function of state alone. 

However, because the reduced solution for the example F-8 aircraft does not lie on the dynamic 

constraint boundary during ascent, the inequality constraint on dynamic pressure was not 

considered. Of note is the fact that modern supersonic fighter aircraft (such as the F-15) do ride the 

dynamic pressure constraint boundary during the ascent leg of the minimum time to intercept path. 

In addition to the example cited above, dynamic pressure bounds are encountered during fuel

optimal climb for supersonic transports? for rocket powered launch vehicles such as the U.S. 

space shuttleS , and for single-stage-to-orbit air-breathing launch vehicles9. If, as in applying 

singular perturbation methods in seeking a solution to any of these problems, the reduced solution 

climb .Path lies directly on the dynamic pressure constraint boundary for a portion of the flight, 

then it is necessary to consider boundary layer transitions onto the constrained arc. This problem, 

which proves quite perplexing, has received almost no attention in the literature. 

This appendix documents an initial investigation of the features of boundary layer transitions to 

state constrained arcs. Section II provides a brief review of frrst order necessary conditions derived 

for state-variable inequality constrained problems in optimal control. Section III discusses the 

optimal control of singularly perturbed systems subject to. state-variable inequality constraints in 

general, and in particular examines the features of state inequality constrained boundary layers 

when the reduced solution lies on the constraint boundary. Section IV provides several simple 
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examples which illustrate the problem features discussed in earlier sections. Section V completes 

the appendix by providing some concluding remarks. 

II. Constrained Problems in Optimal Control 

The introduction of a state inequality constraint of the form 

S(x,t)::; 0 (A.1) 

can lead to considerable difficulty when attempting to obtain an optimal control solution. One 

approach to incorporating state inequality constraints into necessary conditions for optimality 

consists of constructing successive total time derivatives of S until explicit dependence on the 

control appearsll. If p time derivatives are required then (1) is referred to as a pth order state 

variable inequality constraint. The function SP(z,u,t)=O is then adjoined to the Hamiltonian as a 

constraint to be enforced when S=O. This approach introduces the following additional tangency 

conditions at the point of entry to a constrained arc 

N(z,t) = 

S(z, t) 
1 

S ( z,t) 

p-1 
S (z,t) 

=0 (A.2) 

These same tangency conditions also apply at a point where the path leaves the constraint 

boundary. The equations (2) constitute a set of interior boundary conditions that must be met at 

each juncture between a constrained and unconstrained arc. Unfortunately, in order to satisfy these 

interior boundary conditions one must allow for the possibility of discontinuities in the costate 

variables at the junctures. An alternative set of necessary conditions can be obtained by adjoining 

the constraint function, rather than its pth derivative, to the Hamiltonian and then employing a 

separating hyperplane theorem22. These conditions prove simpler and "sharper" than those of 

reference 11 however the possibility of discontinuous costates is still present. The gap between 

the necessary conditions of references 11 and 22 is defined in reference 23. A third alternative 

involves enploying a transformation technique in which a. slack variable is used to transform the 

state inequality constrained problem into an unconstrained problem of higher dimension30,31. The 

work associated with the derivation of these first order necessary conditions is detailed in 
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references 32-38. Second order necessary conditions for optimality in the presence of state 

constraints have also been derived39 as have conditions for various special cases40. Work 

continues in the area of state constrained optimization as evidenced by the approach ofLowen41. 

III. Optimization of Singularly Perturbed Systems 
Subject to State Inequality Constraints 

Consider the system of singularly perturbed nonlinear differential equations: 

dx/dt = f(x,y,u,t) 

E dy/dt = g(x,y,u,t) 

with an index of performance of the form 

t, 
J = q>[ Z(t r)' tr] + ~ 0 L[z(t), u(t), t]dt 

(A.3) 

(A.4) 

(A.5) 

where~ and fare of dimension n, y and g are of dimension m, x(t0 ) and y(to) are given, Eisa 

small parameter, t0 ~ t ~ tr, and the control u(t) is of dimension p. Zero order necessary conditions 

for optimality of the associated reduced and boundary layer problems in the absence of state 

constraints are readily available42. However, the following restrictions apply: f, g, (Jf/iJx, df/dy, 

'dg!ax, and dg/dy must be continuous and u must be piecewise continuous. Because of these 

restrictions on smoothness a direct extension of the necessary conditions of for state constrained 

problems to include singularly perturbed systems is not possible. This is due to the previously 

mentioned fact that discontinuities in the costates can occur at the junctures between constrained 

and unconstrained arcs. Alternately, the state inequality constrained singularly perturbed problem 

of interest can be converted into an unconstrained singularly perturbed problem of higher 

dimension by introduction of a slack variable30. This approach does eliminate the problem of 

discontinuous costates. However, the state constrained arc is replaced by a singular arc and the 

prospect of increased system dimension is unwelcome given the basic tenet of seeking order 

reduction. 

Consider the flight dynamics problem detailed in the main body of this report. An inequality 

constraint on dynamic pressure of the form 
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S(h,V) = q- ~ax S 0 (A.6) 

is to be enforced where 

q = pV2f2 (A.7) 

The symbol p represents atmospheric density and V represents the flight velocity. Given the 

equations of motion (1-4) expressed in the main body of this report, the first time derivative of 

(A.6) can be expressed as, 

dS/dt = dq/dt = [V3(ap/Ch-)/2- pJ.tV jr2] siny + p V(T- D)/m (A.8) 

Recall that the symbol T represents thrust, D, aerodynamic drag, m, vehicle mass, r, radial 

distance from the center of the Earth, y, flight path angle, and J.t, the gravitational constant for the 

Earth. Assume, as is typically done, that atmospheric drag can be represented as follows, 

D = qsCno + KL2/qs (A.9) 

where s represents an aerodynamic reference area, C00,the zero lift drag coefficient, and K, the 

coefficient of the induced drag component. Note that the drag is explicitly dependent on the lift, L, 

which is treated as a control. In addition, the relation for thrust, T, is usually explicitly dependent 

on the engine throttle control. These controls appear explicitly in the first time derivative of the 

constraint function, (A.8), and it is thus classified as a first order state inequality constraint (i.e. p 

= 1). It is shown in reference 22 that when the constraint function is adjoined directly to the 

Hamiltonian and p = 1, no jumps in the costates will occur at the entry of an unconstrained arc onto 

a constrained arc. In this case the smoothness properties required by general singular perturbation 

theory are not violated and we may proceed with the application of singular perturbation methods 

with confidence. 

The state inequality constraint on dynamic pressure is conven!ently reduced to a state and 

control constraint function in construction of the reduced solution (i.e p becomes zero). This 

occurs because altitude, a state variable in the full order problem, becomes a control variable in the 
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reduced solution. Enforcing this state/control constraint in the reduced solution is a trivial matter. 

Now consider the construction of the zeroth order initial boundary layer. Assuming that energy is 

characterized as a slow state, application of the time stretching transformation 't = t/E and again 

setting E to zero yields an energy rate of zero. As such, the last term in (A.8) is no longer present. 

Instead, the ftrst time derivative of the constraint function is given by, 

dS/d't = dq/d't = [V3(ap/dr)/2 - pJ.L V Jr2] siny (A.lO) 

With the last term of (A.8) absent, control dependence does not explicitly appear in (A.l 0). That 

is, the classification of the constraint function is altered following the time scale transformation 

when E is set to zero. Taking the time 't derivative of (A.lO), (i.e. forming the 2nd time 't derivative 

of S), yields a term containing the time derivative of the flight path angle, y. The expression for 

flight path angle rate is as follows, 

, L Jl cosy V cosy 
y = mV- Vr2 + r (A.ll) 

which is explicitly dependent on the lift control. Thus, in the boundary J..ayer, the inequality 

constraint on dynamic pressure is 2nd order. Unfortunately, there is no guarantee that the costates 

are continuous for this case as there was for the case p = 1. Note that this type of behavior, in 

which the inequality constraint function order varies, is not present in all singularly perturbed 

problems with state inequality constraints, just for a certain class of them. For instance, if the 

constraint function is dependent on fast states alone, this variation does not occur. 

If jumps in the costates are in fact present at the juncture between an unconstrained and a 

constrained arc, the smoothness properties required are violated and the available necessary 

conditions for optimal control of a singularly perturbed system cannot be applied directly. In some 

cases it is not possible for the boundary layer dynamic system to "ride" the constraint boundary 

before reaching the reduced solution. In such case the boundary layer costates can, at most, be 

discontinuous at the juncture between the initial boundary layer and the reduced solution and only 

if the reduced solution at that point is on the constraint boundary. It is also possible that no such 

jumps will occur. 

If we proceed assuming that such jumps do not occur, then ·in most cases of interest the 

functional form of the bo\lndary layer control solution in the presence of a state-variable inequality 
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constraint can be obtained. If this functional form involves an unknown costate, then use of the 

derived control solution is prevented unless the associated two point boundary value problem 

(TPBVP) is solved. To avoid solution of the TPBVP, as is desired in seeking a solution suitable 

for on-board, real-time implementation, an approximation for the unknown costate can be formed. 

If the costate history is continuous, the linearization technique of reference 43 can be applied to 

form the estimate. Unfortunately, for the case described above in which the reduced solution lies 

on the constraint boundary and the inequality constraint order is elevated to 2 by the boundary layer 

time scale transformation, purely imaginary roots result- when the linearization t~chnique is applied. 

Thus it is not possible to flnd a stablizing costate approximation given arbitrary initial states. In an 

unconstrained problem, the lack of an appropriate eigen-structure indicates that the problem does 

not exhibit the time scale properties assumed. Boundary layer transients do not exist for such 

cases; in fact there are fast oscillations that do not die out. The addition of an artificial cost term in 

formulation of the problem is suggested as an ad-hoc way to circumvent this difficulty. By proper 

choice of the weighting on can guarantee the proper structure of the linearized boundary layer 

system44• 

An interesting feature of the constrained boundary layer system described above is the presence 

of a flnite costate rate at the juncture with the reduced solution. This behavi9r is illustrated in the 

sketch presented as Figure 1. In the flgure, h denotes the time at which an unconstrained arc joins 

a constrained arc (i.e. a juncture point). 
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Figure 1 

0~-----------------L------------~~-----

A.y'<tc) =- A.s. asray I 
0 

0+------------------------------------------

- off the constraint - - riding the constraint -

Illustration of finite costate rate at juncture between boundary layer and reduced 
solution trajectories. 

ldeptification of the behavior illustrated in Figure 1 is based on the following construction. 

aHBL 

ay 
aHBL = ---ay 

+ ~~u· -

/u* ay 
u = u* u = constant 
sso sso 

-A. y (A.12) 

Note that, since the last term in (A.l2) is zero, this relation is equal to the negative of the costate 

rate. The following relation can also be constructed. 
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()HBL 

ay 
u=u* 
sso 

Now as 't tends to t1- we find that, 

()HBL 
=--ay 

u=u* 
unconstrained 

A
::= 0 for 't < t1 

+ -ay 
' ()HBL 

-A. (tl-) = --
y ay 

u =constant 
unconstrained 

~ 

= - A.s. dS/dy I 
0 

0 

at t1 + this becomes A.s 
0 

(A.13) 

(A.14) 

Thus the fast costate rate, 'Ay', has a finite value at t 1- and then jumps to zero at t 1 +. The boundaiy 

layer system no .longer approaches the reduced solution asymptotically as in the unconstrained 

case. Instead, a finite time boundary layer is implied. Similar finite time boundary layer 

phenomenon have been discovered by the investigators of interior boundary layers and boundary 

layers that approach singular arcs45,46. Using this terminal value for the costate rate it is possible 

to show analytically for problems of interest that the linearized boundary layer system will always 

have purely imaginary roots when the reduced solution lies on the state-variable inequality 

constraint boundary. 

Consider the possibility of integrating the boundary system backwards in time from the reduced 

solution using the finite terminal value of costate rate to get started. Note that only a single extremal 

will be generated unless an additional free parameter is introduced into the problem. Since it should 

be possible to reach any set of initial conditions that do not violate the constraint, such a parameter 

surely exists. The only available parameter appears to be the magnitude of the possible costate 

jump at the juncture. This would imply that the costate hist?ry will be discontinuous at the juncture 

for all initial conditions that do not lie on the single extremal generated when it is assumed no jump 

occurs. 

44 



Assuming that first order necessary conditions for optimality can be obtained for which the 

requirement for smoothness can be relaxed (see for instance reference 47), one would again 

require a scheme for obtaining a stabilizing estimate of the unknown costates that appear in the 

optimal control law. However, to the author's knowledge, no directly applicable stability theory 

for finite time phenomenon is available for completing this task48. Alternately, one can consider 

transforming the constrained problen1 into an unconstrained problem, generally of higher order. 

The optimal trajectory of the transformed problem exhibits singular arcs which correspond, in the 

original constrained problem, to arcs which lie on the constraint boundary30. Because of this, the 

technique for costate approximation using the linearized boundary layer system, will fail. The 

reader is referred to the literature for a description of the work that -has been done with regard to 

understanding control of singularly perturbed systems that include singular arcs46. 

IV. Examples 

Several simple examples are now presented which illustrates the application of the Valentine 

transformation technique described in reference 46 without the penalty of increased system 

order31. The pqenomena of a fmite time boundary layer is illustrated in example 2. 

Example 1 

Consider the following singularly perturbed dynamical system with initial conditions at zero. 

Xl(O) = 0 (A.15) 

(A.16) 

(A.17) 

The following 2nd order (i.e. p = 2) state inequality constraint is to be enforced, 

(A.l8) 

The final value of x
1 

is specified, the final time is free, and the performance index is given by, 
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(A.28) 

Evaluation of flrst order necessary conditions for optimality results in the following, 

0 0 

H=O & Ha = 0 => A = -1 
X ' 

a. = 0 (A.29) 

0 

Hal= 0 => A = -1 a (A.30) 

0 

Hal = 0 => A = -1 al (A.31) 

Boundary Layer Problem. Introducing the time scale transformation 't = t/E and again setting E 

to zero, the boundary layer dynamics are given by 

(A.32) 

(A.33) 

where the prime notation denotes differentiation with respect to the stretched time 't. The boundary 

layer Hamiltonian is given by, 

2 2 

HBL= ~ + (a~+ aa2} + l..aa 1 + Aa,a2 = 0 (A.34) 

The costate dynamics are given by 

(A.35) 
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(A.36) 

And when the constraint is inactive, the control, 0.2, is determined by the necessary condition, 

(A.37) 

Note that when the constraint is active, a. is zero and the condition (A.37) yields no direct control 

solution. Riding the constraint boundary corresponds to a singular arc in the transformed problem. 

Example 2 

Consider a simplification of Example 1, namely the singularly perturbed dynamical system, 

(A.38) 

(A.39) 

The inequality constraint (A.18) becomes a 1st order (i.e. p = 1) state inequality constraint, 

(A.40) 

The final value of x
1 

is again specified, the final time is free, and the performance index is again 

given by, 

(A.41) 

Using Valentine's device, the inequality constraint (A.40) is converted into an equality by the 

introduction of a "slack variable," a,30. 

S + a.2/2 = 0 (A.42) 
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Differentiating (A.42) p times (p = 1) with respect to time, the following equation is obtained, 

u/E + CJ.CJ.t/E = 0 where E da/dt = a1 (A.43) 

Using the transformations x2 = 1 - a2J2.and u =- aah (A.38-39) become, 

2 
. (J. . ( )2 
XI= 1 - 2 - (J.(J.l 

(A.44) 

ECJ. = al (A.45) 

Reduced solution. By setting E to zero, (A.45) is reduced to the following, 

(A.46) 

The reduced solution Hamiltonian is given by, 

(A.47) 

Evaluation of frrst order necessary conditions for optimality results in the following, 

0 0 

H = 0 & Ha = 0 => Ax = -1 , (J. = 0 (A.48) 

0 

A = 0 (l 
(A.49) 

from which it is evident that 

(A:50) 
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(A.51) 

Boundary Layer Problem. Introducing the time scale transformation 't = t/E and again setting E 

to zero, the boundary layer dynamics are given by 

(A.52) 

where the prime notation denotes differentiation with respect to the stretched time 't. The boundary 

layer Hamiltonian is given by, 

2 

HaL= ~ + (a.a./ + A,pl = 0 (A. 53) 

The costate dynamics are given by 

(A. 54) 

The condition that the partial derivative of the Hamiltonian with respect to the control be zero yields 

the following result, 

(A.55) 

Substituting this result back into the condition that the Hamiltonian be zero, the following result is 

obtained. 

2 
H = 0 => A.a = ± fi a. (A. 56) 

Substituting (64) into (63) we fmd that the optimal value of the control, CX.t, is constant; namely, 

(A. 57) 
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With this result it is possible to integrate equation (A.52) to obtain, 

't 
a('t) = fi ± fi (A. 58) 

When the boundary layer trajectory reaches the constraint boundary (i.e. x2 = 1), a= 0 and the 

expression (A. 58) yields a finite final time of 2 units of boundary layer time. Transforming back, 

we obtain an expression for u in terms of ~2, 

(A. 59) 

where integration of the original differential equation (A.39) yields, 

2 

x2 = 1 - ( 1- I) (A. 58) 

V. Conclusions 

In conclusion, state-variable inequality constrained singularly perturbed problems can exhibit 

complex boundary layer phenomenon that are not well understood. The order of the state constraint 

can increase when going from the full order problem to a boundary layer analysis. Because 

discontinuous costate histories can be introduced by the presence of state inequality constraints, a 

direct application of available singular perturbation theory, which requires the state and costate 

histories to be smooth, is not possible. The boundary layer phenomenon associated with such 

problems appear to be finite time. A stability theory for finite time phenomenon, as required to 

construct a suitable approximation for costates appearing in derived feedback control laws, is not 

available at this time. Valentine's transformation can be used to overcome some of these 

difficulties, but at the expense of introducing singular arcs and possibly increased system order. 
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Appendix B 

Permormance Modeling of Hypersonic Vehicles 

I. Introduction 

In order to carry out useful performance studies, trajectory optimization and guidance law 
development for hypersonic transatmospheric vehicles, it is necessary to utilize an accurate 
model of the aerodynamics and propulsion system characteristics. Since actual vehicle design 
is not involved, it is appropriate to utilize simplified models if they can be made to properly 
reflect the actual vehicle performance characteristics. It is also of great benefit to have 
available models that can be used interactively to study the impact of small changes in vehicle 
configuration or propulsion system design. 

In what follows is described a set of simple algorithms devised for use in the present 
research program for the purposes outlined. The computer codes have evolved continuously 
throughout the study. The result is an integrated hypersonic vehicle performance package that 
has many applications beyond those originally envisioned. 

II. Hypersonic Aerodynamic Performance Modeling 

Simple hypersonic aerodynamic theory enables construction of practical and highly accu
rate representations of the performance characteristics of realistic hypersonic flight vehicles. 
In this section we review the basic theoretical approach and the implementation of this theory 
in the form of interactive computer software. The basic approach was to make the application 
of the model to a particular airframe conceptual design as simple as possible. Because of the 
interactive nature of the algorithms us~, effects of even minor design modifications can be 
immediately assessed in terms of sensitivity parameters such as LID ratio, overall vehicle drag 
coefficient, and trim moments. 

The models developed have applications that range considerably beyond the ones ad
dressed in this report. For example, they are a sufficiently accurate representation of the 
vehicle performance to allow assessment of off-design flight conditions as well as approximate 
stability and control studies. Although the emphasis in the following discussion is on the high
Mach number performance modeling, the computer program under development is being set 
up to cover the entire Mach number range from low subsonic to hypersonic speeds. The low 

~ speed aerodynamic performance models used are not as accurate as those in the hypersonic 
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range, but are sufficiently precise for use in simple performance modeling in which low speed 
flight affects such as the landing or takeoff flight phases are to be included. 

In what follows is given a brief description of the operation of the computer program and 
the basic theory on which it is based. The methods used in applying the theory to a given 
vehicle configuration is reviewed for the benefit of readers unfamiliar with hypersonic aerody
namic modeling. 

User Interface 

The computer algorithms were designed to make their application to a given vehicle con
figuration as simple as possible. At present, limited access to actual flight vehicle configura
tions makes it necessary to work from rather sparse data sets. For example, the vehicle to be 
studied may be defmed only by a simple three-view drawing. We have deliberately set out to 
make it possible to work effectively from such data. The configuration is entered into the 
program in a variety of ways. The simplest method allows input in the form of outlines of the 
wing planform, fuselage elevation and planform, body cross-section shapes, and tail surface 
configuration in the form of discrete points. It is not necessary that a large number of outline 
points be used. For example fuselage outline data can consist of as few as ten points in 
elevation and planform with acceptable accuracy. The program allows for variation in 
fuselage cross-section station by station along the axis of symmetry. It also. allows for comers 
in the cross-section as often chosen in hypersonic vehicle layouts. 

The configuration data can also be entered by scanning a three-view of the vehicle. Scaling 
is accomplished by selecting points at the nose and tail of the planform. The user then selects 
points interactively by means of a mouse or graphics table. Modifications in geometry can be 
directly implemented in the input process by altering position of control points. Wing and tail 
incidence, fin cant, control surface deflection , and other required information are entered in an 
interactive tabular input window. If insufficient data has been entered to properly define the 
complete configuration, the program warns the operator and indicates what additional informa
tion must be specified. 

Interactive Program Mode 

The computer program has been designed to take full advantage of modem computer 
graphical interface technology. Once a vehicle configuration has been implemented as 
described earlier, its attributes can be saved and modified later. At the discretion of the user, 
one or more attributes of the vehicle aerodynamic performance characteristics can be displayed 
simultaneously with the configuration input paneL For example, the lift coefficient vs angle of 
attack, lift/drag ratio, pitching moment vs lift coefficient or other information can be viewed at 
the same time changes i'n vehicle geometry such as wing area, incidence angle, airfoil shape, or 
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body cross-section shape are being input. This makes it very easy to determine the impact of 
design changes in a direct and graphically useful manner. When the program is linked to one 
of the postprocessing packages such as the one describing trajectory optimization discussed 
elsewhere in the report, it is possible to view effects of configuration modifications directly in 
terms of their impact on selected performance parameters. 

Local Surface Inclination Theory with Blast Wave Corrections 

Several decades of experience hav~ shown that the simplest form of hyp~rsonic flow field 
modeling yields a practical and accurate means for estimating vehicle performance. The 
Newtonian flow model gives an excellent representation for the pressure changes on the 
vehicle surfaces directly in terms of the inclination of the local surface to the freestream flow. 
Various modifications can also be applied to correct the pressure distribution for effects of 
strong shock formations at the leading edges of lifting surfaces and tail surfaces and on the 
nose of thefuselage. The blast wave theory is employed for this purpose. 

Simple Newtonian impact theory shows that the pressure coefficient at any point on the 
windward vehicle surface is given by 

(B.1) 

Thus all that is necessary to apply it to a three dimensional vehicle is to set up an algorithm that 
utilizes geometry information to determine whether a given element of the surface is on the 
windward side and to calculate the angle between the freestream velocity vector and the 
surface element. Samples of the computational method used in this program are discussed 
briefly in the following subsections. 

Hypersonic Thin Airfoil Theory 

In some situations, it is sufficiently accurate to represent hypersonic lifting surfaces as flat 
plates. However, in practical situations the need for adequate low-speed aerodynamic charac
teristics and surface structure dictates that a cambered airfoil of reasonable thickness be used. 
For example, the NASA vehicle designs used in our computations typically employed airfoils 
of of between 5 and 10% maximum thickness ratio. Thus it is useful to provide means for 
correcting the force calculations for camber and thickness effects. Figure B .1 defines the 
required geometry for a typical wing section. 

On the windward side of the airfoil, the camber/thickness function is conveniently de
scribed as a functional relationship 

Yl = F(x) (B.2) 
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Figure B.l. Hypersonic Airfoil 

This can be input in the computer program as a series of points taken from a scan of the airfoil 
or by inputing in tabular fom1. The program also allows the specification of the airfoil profile 
directly in analytical form. The program logic then determines the required calculation module 
from which to compute the wing characteristics. The program also contains provision for 
accounting for wing twist, although none of the vehicle models studied have employed twist. 
The local value of the pressure coefficient becomes 

(B.3) 

where a. is the vehicle angle of attack measured between the fuselage reference plane (See 
Figure B.2), tis the incidence angle between the wing chord line and the fuselage reference 
plane, and F is the airfoil envelope shape function as described above. This information is then 
used as the basis for determining the normal force coefficient for the airfoil. The result is 

2Jc. 2( d.F·) Cn =- sm a.+t-- dx 
c 0 - dx . 

. (B.4) 
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Figure B.2. Definition of Fuselage Reference Plane 

and from this we find the section lift and drag coefficients. 

2cosa rc . 2( dF) 
c1 = c Jo sm a+ t- dx dx (B.5) 

2sina rc . 2( dF) 
cd = c Jo s1n a+ t- dx dx (B.6) 

These coefficients are then used with the wing planform information giving the local values of 
chord length and incidence (for a twisted wing) to determine the force on the local wing 
section. The results for the entire wing are then accumulated. The program has provision for 
displaying the total lift and drag coefficients and the center of pressure location for the three
dimensional wing. It also determines contributions to the pitch, yaw, and roll moment 
coefficients. 

Aileron, elevon or flaperon deflection effects are also computed. The user must input the 
desired control surface deflections. Differential elevon deflections are allowed. The program 
senses when the critical surface deflection angle (at which the freestream flow no longer 
impinges on the deflected surface) has been exceeded and properly adjusts the force system. 
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Hypersonic Lifting Body Theory 

The integrated fuselage/propulsion system provides most of the lift of a typical hypersonic 

aircraft. Since the shapes may be somewhat complex, it is necessary to provide for an adequate 

geometrical representation. Figure B.2 shows the coordinate system used and defines the 
vehicle reference plane. This plane typically coincides with the body centerline as seen in the 

elevation drawing, but the program allows for arbitrary specification of this plane. For 
convenience, the origin of the coordinate system is located at the vehicle nose. The x-axis lies 

along the reference plane in the (assumed) nonnal plane of symmetry. They-axis points to the 

left and the z-axis points downward. 

Figure B.3 shows how the various profile curves defining the body shape are represented in the 

program. These curves may be determined by curve fitting of three-view drawings or may be 

input into the program as a table of points. It is not necessary to utilize a large number of 
points. Ten points per profile curve usually provide adequate accuracy unless the body shapes 
are exceptionally complex. 

As shown in Figure B.3, the body cross-section profiles are not required to be continuous 

curves. Comers are allowed as represented by the break points shown in the drawings. The 

fuselage shape is specified in functional fonn as 

j
z = f(y) Cross Section Shape 

y = g(x) Planfonn Shape 

z = h(x) Fuselage Elevation 
(B.7) 

These functions are determined in the program from the input coordinate points and are used to 
compute the unit vector nonnal to a point on the windward surface. The result is 

where $}=tan-!(:) 
$2 =tan-!(:) 

An area element of the body surface at the same location can be written as 

57 

(B.8) 

(B.9) 

(B.lO) 

(B.ll) 



I I 

z=h(u)(x) : : 
1 : Fuselage Reference Plane . -- . -- --- . -- . -- . --' . -- . -- . -- . -- . -- . -- . -- . 

I 
•z 
I 

I 
I 
·y 

I I 
.• I X 

- - .J 1 Break Line .-- -·--- .. 
I 

Fuselage Elevation 

Fuselage Planform 

Cross-Section 
I ·z 

y = g(x) 

Break Line 

z = r<t)(y) 

Figure B.3. Definition of Body Shape Functions 

58 

X 

y 



The projected width of the element in the reference plane is.!\ as shown in Figure B.3. The 
inclination angle between the freestream velocity vector and the surface element is given by 

-t(Uoo · n) 1t "'=cos --
Uoo 2 

(B.12) 

where the velocity vector is specified in body coordinates as 

Uoo = Uoo((cosf3 cosa)i- (sinf3)j- (cosf3 sina)k) (B.13) 

The local pressure coefficient is 

(B.14) 

The dimensionless normal force vector on the surface element is, in vector form 

dF = -2 sin2
[ 'l'] dS ~ (B.l5) 

Integration of this function across the width of the body gives the force '{ector on an axial · 
element of the vehicle. The program then sums all contributions axially to determine the lift, 
drag, sideforce, and moment coefficients for the complete assembly. 

The more detailed representation of the body geometry used in the present version of the 

program greatly improves the agreement between the predicted and measured aerodynamic 
performance. Earlier problems with the vehicle lift curve slope at zero angle of attack have 
been eliminated because the effects of body curvature and surface orientation are now properly 
accommodated in the calculations. 

ill. Scramjet Propulsion Model 

Although the supersonic combustion ramjet concept has been known for over two decades, 
the lack of appropriate unclassified experimental data, cycle analyses, and combustion analy
ses requires that we use a simple conceptual model for the purposes of vehicle trajectory opti
mization. In what follows is a brief description of this model and-the philosophy behind it. 

Conceptually, the SCRAMJET is as simple an airbreathing .combust1on device as one 
could imagine. In the case of the new family of flight vehicles to use this propulsion concept, 
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the entire underside of the vehicle plays a role in the operation of the system. Figure 1 shows 
the basic configuration. Mechanically, the device can be thought of in terms of three elements. 
These are 

1. Diffuser 
2. Combustor 
3. Expansion nozzle 

Hypersonic vehicle designers attempt _to utilize the forward fuselage, strak~s, and wings to 
provide the majority of the diffusion. The lower part of the three-dimensional oblique shock 
formed at the leading edges is tailored to the shape of the combustor inlet so that air enters at 
approximately a Mach number of the order of 3 depending on the flight speed. Combustion of 
hydrogen fuel takes place in the duct at supersonic speeds in order to minimize energy losses 
due to dissociation, which would be enormous if the more conventional subsonic ramjet cycle 
were to be used in high speed flight. Liquid hydrogen is the fuel of choice-not only because of 
its high energy content, but because it can be made to bum in a supersonic flow due to its wide 
flammability limits and high flame speed. Finally, the combustion products are expanded 
through a nozzle, which, like the diffuser is designed into the contour of the lower fuselage. 

The propulsion system is mostly diffuser ·and nozzle. While these elements are fairly easy 
to model from the thermodynamic cycle point of view, the aerodynamics ·are quite complex, 
giving rise to a challenging design problem. Computational fluid dynamics (CFD) numerical 
techniques ar~ being relied upon in conjunction with a new family of hypersonic test facilities 
to yield practical design solutions. Unfortunately, information on the current research is 
classified, so that realistic design data is not available for projects of the type reported here. 

The computational model used here to represent the SCRAMJET propulsion system was 
deliberately designed to be readily updated as new information becomes available. It directly 
accesses a standard atmosphere model (also easily adjustable to provide non-standard operat
ing conditions), which simplifies its incorporation into a trajectory optimization program. The 
diffuser and nozzle performance is determined either with standard thermodynamic models or 
by means of optimal design curve fits such as those proposed by Billig. Since information 
concerning recent progress in supersonic combustion was not available, a simple combustor 
model was incorporated. This is a straightforward Rayleigh line calculation. An iterative 
scheme is used to determine the nozzle entrance Mach number, by maintaining the mixture 
ratio at or below the stoichiometric value. No detailed combustion calculations with multi
species gases is attempted in the present version of the model although these could be readily 
incorporated as a more definitive model of practic~l· SCRAMJET combustion comes into 
focus. 
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The propulsive drag estimate of Billig was incorporated to account in a simple way for 
some of the frictional losses. No attempt was made to incorporate vehicle integration effects in 
an interactive fashion. Experience with the aerodynamic simulation shows that very small 
vehicle attitude changes take place during equilibrium flight. Therefore in the present state of 
development, no vehicle attitude dependence has been included in the propulsion model. The 
flexibility of the algorithm will make· such additions quite easy to incorporate as the need for 
them is established. 
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I. Summary 

This progress report covers the period from May 1st to October 3151, 1990. During this 
period, efforts were focused upon developing a general understanding of singularly 
perturbed systems subject to state-variable inequality constraints. Such constraints are 
common to a wide class of flight vehicles, but have received little attention in the literature 
for the case of singularly perturbed dynamic systems. In the last progress report, it was 
noted that singularly perturbed optimal control problems with state-variable inequality 
constraints can exhibit complex boundary layer phenomenon. In particular, the boundary 
layer transitions associated with such problems can be of finite time when the state 
constraint is frrst encountered at the end of the boundary layer transition. The lack of a 
general theory for treating such systems was identified as a significant research problem. 

A cursory look at this problem was completed prior to submission of the 1989 final 
report. Since that time, considerable progress has been made. The results of this effort are 
detailed in a technical paper that was frrst presented in Portland, Oregon at the 1990 AIAA 
GN&C Conference. A revision of the paper is included as an appendix to this report, and 
has been submitted for publication in the AIAA Journal of Guidance, Dynamics and 
Control. The results are summarized as follows. 

The established necessary conditions for optimality in nonlinear control problems that 
involve state-variable inequality constraints were applied to a class of singularly perturbed 
systems. The distinguishing feature of this class of two-time-scale systems is a 
transformation of the state-variable inequality constraint, present in the full order problem, 
to a constraint involving states and controls in the reduced problem. The existence of a 
nonsingular control solution was assumed. It was of particular interest to construct the 
zeroth order initial boundary layer solution, or at least and approximation to it, when the 
reduced solution lies on a state constrain boundary. In the absence of a state constraint, 
one can take advantage of the fact that the reduced solution serves as an equilibrium point 
for the boundary layer system. However, it was shown that, when a state constraint is 
active in the reduced problem, the boundary layer problem can be of fmite time in the 
stretched time variable. Thus, the usual requirement for asymptotic stability of the 
boundary layer system is not applicable, and can not be used to construct approximate 
boundary layer solutions. Furthermore, an active state constraint introduced the possibility 
of discontinuous costate variables at the juncture between constrained and unconstrained 
arcs. 

V arlo us means for treating such problems were investigated. A simple linear example 
was constructed and used to show that a Valentine transformation can be used to regain 
smoothness, but with limited advantage. That is, Valentine's transformation can be used to 
avoid the problems associated with discontinuous costate time histories, but at the expense 
of introducing a singular arc and discontinuities in the transformed control variable. A 
second linear example was used to illustrate the exact analytic solution of a simple 
singularly perturbed problem involving a state variable inequality constraint. The solution 
includes a f'fast" costate discontinuity and a finite-time initial boundary layer transition. A 
third, but nonlinear, example for which the boundary layer system could not be solved 
analytically was then constructed. This example was used to illustrate a general feedback 
strategy that was developed for synthesizing a near-optimal boundary layer transition onto a 
constrained arc. In this technique, the costate jumps that can occur and the boundary layer 
final time are used as free parameters in order to satisfy continuity conditions in the state 
variables at the end of the boundary layer response. The resulting approximation was 
compared directly with the numerically generated optimal solution. The method proved 
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quite satisfactory when used to construct an approximate solution for this relatively simple 
nonlinear example, at least for small perturbations away from the reduced solution. 

Several research problems requiring further attention have been identified. For instance, 
numerical problems were sometimes encountered in the solution process for Example 3 as 
time-to-go approached zero (i.e. as the boundary layer transition nears completion). This 
difficulty did not prevent the generation of an accurate approximation of the optimal 
solution for the example problem, and further manipulation of Example 3 has lead to a 
completely analytic characterization of the solution. However, the possibility of 
approaching a singularity should be investigated in a generic setting. 

The application of the developed technique to guidance of a generic aerospace vehicle is 
now underway. But, the approximation technique being employed depends upon a 
linearization of the boundary layer system about a non equilibrium point. It does not 
appear possible to characterize the stability of the approximation for a given set initial 
conditions. And though guidance along a constraint boundary will likely be subject to 
small perturbations only, linearization does introduce the likelihood of control saturation for 
sufficiently large perturbations. A multiple time scale approach, in which altitude and flight 
path angle dynamics are examined on separated time scales, could eliminate this 
dependence on linearization and should be investigated. There is also a question of 
applicability when atmospheric disturbances lead to a constraint violation. The activities 
planned for the next reporting period include an investigation of these matters while 
applying the methodology to guide a generic aerospace plane configuration in numerical 
simulations. A paper which reports on our progress is being planned for presentation at 
either the 1991 ACC or the AIAA GN&C Conference. 

II. Progress this Reporting Period 

This research project is focused upon various aspects of real-time trajectory generation 
and guidance for a generic aerospace plane configuration. Funding was initiated in July of 
1987 and the research results obtained through 1989 have been documented in a series of 
reports and papers which are cited as references [1-8]. The results reported in [1-8] are 
summarized in a paper which has been submitted to the AIAA Journal of Guidance, 
Dynamics and Control entitled "Rapid Near-Optimal Aerospace Plane Trajectory 
Generation and Guidance" [9]. Climb paths generated using the derived near-optimal 
trajectory generation algorithm have since been compared with numerically generated 
optimal trajectories. One of these comparisons is documented in [10] and illustrates the 
excellent agreement obtained. There was a funding lag for the period from January to May 
of 1990 during which no research was conducted in this area. Funding resumed on the 
first of May. 

This progress report covers the period from May tst to October 318', 1990. During this 
period, efforts were focused upon developing a general understanding of singularly 
perturbed systems subject to state-variable inequality constraints. Such constraints are 
common to a wide class of flight vehicles, but have received little attention in the literature 
for the case of singularly perturbed dynamic systems. In the last progress report, it was 
noted that singularly perturbed optimal control problems with state-variable inequality 
constraints can exhibit complex boundary layer phenomenon. In particular, the boundary 
layer transitions associated with such problems can be of finite time when the state 
constraint is first encountered at the end of the boundary layer transition. The lack of a 
general theory for treating such systems was identified as a significant research problem. 
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The results of our effort to date on state constrained singularly perturbed problems are 
are summarized in Section I, and detailed in a technical paper that was frrst presented in 
Portland, Oregon at the 1990 AIAA GN&C Conference [11]. A revision of the paper is 
attached as an appendix to this report, and the reader is referred to this appendix for a 
discussion of the technical details. This revision has been submitted for publication in the 
AIAA Journal of Guidance, Dynamics and Control. 

Since the completion of [ 11] and Appendix A, a fully analytic solution to Example 3 has 
been obtained. In particular, the complete analytic solution of the system (78-81) of 
Appendix A was derived, where the unknowns are tr, a, c and d. The solution proceeds as 
follows. 

Solve (81) for the unknown value of din terms of e and tr 

d = trl + 2etr (1) 

Substitute (1) into (78) to obtain 

5tf + 8etf3 - 24btr- 12a = 0 (2) 

Substitute (1) into (79) to obtain 

2tf3 + 3etr2 - 6b = 0 (3) 

Solve (3) for etr2 

etr = -2tf3/3 + 2b (4) 

Finally, substitute (4) into (2) to obtain 

tf + 24btr + 36a = 0 (5) 

The complete analytic solution of the quartic polynomial (5) is available by standard 
handbook methods and yields four possible values of 'tf. Note that all allowable 
combinations of initial conditions fall into two general categories, those for which a < 0 and 
b > 0 and those for which a < 0 and b < 0. For either case, one can show that only one 
positive real solution for 'tf will occur. 

The fact that three of the four unknowns in equations (78-81) enter linearly leads to the 
possibility of analytic solution. It appears that this will also be the case when considering 
altitude and flight path angle dynamics of an aerospace plane, though the eigen values will 
no longer be exactly zero. Thus, it may be possible to reduce the requirement for numerical 
solution of the corresponding set of four nonlinear algebraic equations to the solution of a 
single transcendental equation. 
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III. Plans for the Next Reporting Period 

Several research problems requiring further attention have been identified For·instance, 
numerical problems were sometimes encountered in the solution process for Example 3 of 
[11] as time-to-go approached zero (i.e. as the boundary layer transition nears completion). 
This difficulty did not prevent the generation of an accurate approximation of the optimal 
solution for the example problem, and further manipulation of Example 3 has lead to a 
completely analytic characterization of the solution. However, the possibility of 
approaching a singularity should be investigated in a generic setting. 

The application of the developed technique to guidance of a generic aerospace vehicle is 
now underway. But, the approximation technique being employed depends upon a 
linearization of the boundary layer system about a non equilibrium point. It does not 
appear possible to characterize the stability of the approximation for a given set initial 
conditions. And though guidance along a constraint boundary will likely be subject to 
small perturbations only, linearization does introduce the likelihood of control saturation for 
sufficiently large perturbations. A multiple time scale approach, in which altitude and flight 
path angle dynamics are examined on separate time scales, could eliminate this dependence 
on linearization and should be investigated. This technique has been applied to guidance of 
fighter aircraft when a state-constraint is inactive [12]. In such case a weighted penalty on 
flight path angle is included in the index of performance and the weighting adjusted so that 
for small perturbations, the response of the nonlinear feedback systems mimics (at least 
with respect to natural frequency) that of the boundary layer system when linearized about 
the reduced solution. Note however, that full nonlinearity of the boundary layer system is 
retained for ·implementation. This technique cannot be applied directly to the state 
constrained case since the reduced solution no longer serves as an equilibrium point for the 
boundary layer system. However, it is expected that a similar approach, perhaps based 
upon matching of the boundary fmal time with the linearized case, can be developed. 

A more rigorous identification of multiple time scales than has been accomplished in the 
past is also of interest. In particular, a formal multiple scale analysis is proposed. Multiple 
scale analysis is a collection of general perturbation techniques that includes as special cases 
the concepts used both in the boundary layer method and the WKB method [13-14]. (The 
WKB method is named for Wentzel, Kramers, and Brilloun, who popularized it.) The 
multiple scale approach is based upon the introduction of several time scales and then the 
use of these time scales to eliminate the emergence of secular, resonance causing terms. 
The number of different time scales still have to be guessed a priori for any given problem, 
a weakness of the method. However, the method has the advantage of allowing for 
nonlinear time scales, that is, time scales for which the stretched time variable 't is related to 
the original time variable t via a nonlinear relation of the form 

~ = g(e) t 

Here g(e) is a general function of£ to be detennined (usually g(e) =en). 

There is also a question of feedback law applicability when atmospheric disturbances 
lead to a constraint violation. Consider, for instance, a constraint on maximum allowable 
dynamic pressure. The value of dynamic pressure is dependent on both atmospheric 
density and velocity relative to a stationary atmosphere. Neither of these quantities are fully 
deterministic, thus one cannot truly define a trajectory along which the vehicle will 
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experience a constant dynamic pressure. Furthermore, it is quite possible that the vehicle 
could experience a violation of the constraint, at least for a short period of time. The 
algorithm developed to date does not function properly in the case of a constraint violation. 
Hence, further development is required in this area 

During the next reporting period (11-1-90 to 3-30-91 ), an investigation of these matters 
will be conducted while applying the developed methodology to guidance of a generic 
aerospace plane configuration. A paper which reports on our progress is being planned for 
presentation at either the 1991 ACC or the AIAA GN&C Conference. 

References 

[1] Calise, A. J., J. E. Corban, and G. A. Flandro, "Trajectory Optimization and 
Guidance Law Development for National Aerospace Plane Applications," 
Proceedings of the 1988 ACC, Vol. 2, pp. 1406-1411, Atlanta, GA, June 15-17. 

[2] Calise, A. J., J. E. Corban, and G. A. Flandro, "Trajectory Optimization and 
Guidance Law Development for National Aerospace Plane Applications," Final 
Report for Period July 1, 1987 to November 30, 1988, NASA Grant No. NAG-1-
784, December 1988. 

[3] Corban, J. E., Calise, A. J., and Flandro, G. A., "Trajectory Optimization and 
Guidance Law Development for Transatmospheric Vehicles," Proceeding of the 
1989 IEEE International Conference on Control and Applications (ICCON), April 
3-6, Jerusalem, Israel. 

[4] Corban, J. E., A. J. Calise, and G. A. Flandro, "A Real-Time Guidance Algorithm 
for Aerospace Plane Optimal Ascent to Low Earth Orbit," Proceedings of the 1989 
ACC, Vol. 3, June 21-23, Pittsburgh, PA, pp. 2475-2481. 

[5] Corban, J. E., A. J. Calise, and G. A. Flandro, "Optimal Guidance and Propulsion 
Control for Transatmospheric Vehicles," Presented at the 1989 AIAA GN&C 
Conference, August 14-16, Boston, MA, available as AIAA Paper 89-3617. 

[6] Calise, A. J., and J. E. Corban, "Optimal Control of Singularly Perturbed 
Nonlinear Systems with State Variable Inequality Constraints;' Presented at the 
IFAC Workshop on Singular Perturbations and Asymptotic Methods in Systems 
and Control, Boston, MA, August 17-18, 1989. 

[7] Corban, J. E., "Real-Time Guidance and Propulsion Control for Single-Stage-to
Orbit Airbreathing Vehicles," Ph.D. Dissertation, The Georgia Institute of 
Technology, December 1989. 

[8] Corban, J. E., A. J. Calise, and G. A. Flandro, "Rapid Near-Optimal Trajectory 
Generation and Guidance Law Development for Single-Stage-to-Orbit Airbreathing 
Vehicles," Final Report for Period January 1 to December 31, 1989, NASA Grant 
No. NAG-1-922, January 1990. 

[9] Corban, J. E., A. J. Calise, and G. A. Flandro, "Rapid Near-Optimal Aerospace 
Plane Trajectory Generation and Guidance," Submitted for Publication in the AIAA 
Journal of Guidance, Dynamics and Control. 

7 



[10] Van Buren, M. A., and K. D. Mease, "Aerospace Plane Guidance Using 
Geometric Control Theory," Proceedings of the 1990 ACC, San Diego, CA, May 
23-25, Vol. 2, p. 1829-1838. 

[11] Calise, A. J., and J. E. Corban, "Optimal Control of Singularly Perturbed 
Nonlinear Systems with State-Variable Inequality Constraints," Proceedings of the 
1990 AIAA Guidance, Navigation and Control Conference, August 20-22, 
Portland, OR, also submitted for publication in the AIAA Journal of Guidance, 
Dynamics and Control. 

[12] Calise, A. J., "Optimization of Aircraft and Flight-Path Angle Dynamics," Journal 
of Guidance, Dynamics and Control, Vol. 7, No. 1, Jan.-Feb. 1984, pp. 123-125. 

[13] Bender and Orszag, "Advanced Mathematical Methods for Scientist and 
Engineers," McGraw-Hill, New York, NY, 1978. 

[14] Cakmak, Botha and Gray, "Computational and Applied Mathematics for 
Engineering Analysis," Springer-Verlag, 1987. 

8 



Appendix A 

Technical Supplement 

9 



Presented at the 1990 AIAA Guidance, Navigation and Conttol Conference. Portland, Oregon 

Optimal Control of Singularly Perturbed 
Nonlinear Systems with State-Variable Inequality Constraints 

A. J. Calise • and J. E. Corban t 
The Georgia Institute of Technology, School of Aerospace Engineering. Atlanta, GA 30332 

Abstract 

The established necessary conditions for optimality in 
nonlinear control problems that involve state-variable 
inequality constraints are applied to a class of singularly 
perturbed systems. The distinguishing feature of this class 
of two-time-scale systems is a transfonnation of the state
variable inequality constraint, present in the full order 
problem, to a constraint involving states and controls in 
the reduced problem. It is shown that, when a state 
constraint is active in the reduced problem, the boundary 
layer problem can be of fmite time in the stretched time 
variable. Thus, the usual requirement for asymptotic 
stability of the boundary layer system is not applicable, and 
can not be used to construct approximate boundary layer 
solutions. Several alternative solution methods are explored 
and illustrated with simple examples. 

I. Introduction 

State-variable inequality constraints are commonly 
encountered in the study of dynamic systems. The swdy of 
rigid body aircraft dynamics and control is certainly no 
exception. For instance, a maximum allowable value of 
dynamic pressure is usually prescribed for aircraft with 
supersonic capability. This limit is required to ensure that 
the vehicle's structural integrity is maintained. Given a 
typical state-space description of the vehicle dynamics, this 
limit constitutes an inequality constraint on vehicle state. 

State inequality constraints have been studied 
extensively by researchers in the field of optimal control. 
First-order necessary conditions for optimality when general 
functions of state are constrained have been obtained.l-3 
However, the construction of solutions via this set of 
conditions proves difficult. Most practitioners seeking an 
open loop control solution rely on direct approaches to 
optimization that employ penalty functions for satisfaction 
of state inequality constraints.4 As a rule, algorithms 
employing such methods are computationally intense and 
slow to converge. Consequently, they are not well suited 
for real-time implementation. 

As discussed in the literature, the use of singular 
perturbation techniques in the study of aircraft ttajectory 
optimiz~tion can, through order reduction, lead to both 
open and closed loop solutions that are computationally 
efficient. These methods can sometimes be used to 
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circumvent difficulties associated with enforcing a state 
inequality constraint as wen.s As an example consider the 
minimum time intercept problem of Ref. 6 which employs 
a model of the F-8 aircraft. A near-optimal feedback 
solution is obtained via singular perturbation theory that 
includes consideration of an inequality constraint on 
dynamic pressure. In the zero order reduced solution, 
algebraic constraints are obtained when the perturbation 
parameter, £, which premultiplies the so called "fast" 
dynamic equations, is set to zero. These constraints can be 
used to eliminate the fast states (in this case altitude and 
flight path angle) from the reduced problem. One can 
choose, however, to retain one or more of the fast states 
and to eliminate instead a corresponding number of the 
original control variables. In such case, the retained fast 
state variables are treated as controls, and the original state 
constraint becomes a constraint involving both state and 
control. This transformation of the constraint function 
from one dependent only on state to one dependent on both 
state and control leads to considerable simplification when 
seeking a solution to the reduced problem. In subsequent 
analysis of boundary layers, altitude resumes its status as a 
state variable, and dynamic pressure once again becomes a 
function of state alone. However, because the reduced 
solution for the example F-8 aircraft does not lie on the 
constraint boundary during ascent, the inequality constraint 
on dynamic pressure does not have to be considered in the 
boundary layer analysis. The problem of treating a pure 
state constraint is thus avoided. Of note is the fact that 
modem supersonic fighter aircraft (such as the F-15) do ride 
the dynamic pressure constraint boundary during the ascent 
leg of the minimum time to intercept path. 

In addition to the example cited above, dynamic 
pressure bounds are encountered during fuel-optimal climb 
for supersonic transports 7, for rocket powered launch 
vehicles such as the U.S. space shuttleS, and for single
stage-to-orbit air-breathing launch vehicles9. H in applying 
singular perturbation methods when seeking a feedback 
solution to any of these problems, the reduced solution 
climb path lies directly on the dynamic pressure constraint 
boundary for a portion of the flight, then it is necessary to 
consider boundary layer transitions onto the consttained arc. 
This problem has not received attention in the literature. 

In the absence of a state-variable inequality constraint 
(i.e. when it is inactive), the initial boundary layer solution 
for the class of systems being considered is an infinite time 
process. A solution is sought which asymtotically 
approaches the reduced solution. However, it will be shown 
that, when a state constraint is active in the reduced 
solution, the boundary layer problem can be of finite time 
in the stretched time variable. Thus, the usual requirement 



for asymptotic stability of the boundary layer system is not 
applicable, and can not be used to construct an approximate 
boundary layer solution. tO The presence of an active state 
inequality constraint also introduces the possibility of 
discontinuous costate variables at the juncture between 
constrained and unconstrained arcs. A Valentine 
transformation can be used to convert the constrained 
problem to an equivalent unconstrained problem of 
increased dimension. Smoothness is regained in the 
process, but to little or no advantage when seeking a 
solution for real-time implementation. This point is 
discussed in greater depth later. 

It is shown by example that one can analytically obtain 
a solution to a simple singularly perturbed example 
involving a state inequality constraint by dealing with the 
possible costate discontinuities directly. In addition, a 
genera] procedure for constructing a near-optimal boundary 
layer transition onto the constraint boundary is formulated 
for use when an exact analytic solution can not be obtained. 
The resulting approximation proves quite satisfactory when 
compared with the optimal solution, at least for small 
perturbations away from the reduced solution. 

This paper proceeds as follows. Section 11 provides a 
brief review of the frrst order necessary conditions that have 
been obtained for state-variable inequality constrained 
problepts in optimal control. Section III discusses the 
optimal control of singularly perturbed systems subject to 
state-variable inequality constraints in general, and in 
particular examines the features of state inequality 
constrained boundary layers when the reduced solution lies 
on the constraint boundary. Section IV presents the 
solutions to three example problems. The first two are 
linear and simply illusttate the problem features discussed 
in earlier sections. A nonlinear example is then used to 
illustrate a general feedback strategy for the construction of 
near-optimal boundary layer transitions onto a constrained 
arc. The approximate solution is then compared directly 
with the optimal solution. Section V completes the paper 
by providing some concluding remarks. 

II. State· Variable Inequality 
Constrained Problems in Optimal Control 

The introduction of a state-variable inequality constraint 
of the form 

S(z,t) S 0 (1) 

can lead to considerable difficulty when attempting to 
obtain an optimal control solution to a general nonlinear 
problem. In (1), the variable z denotes the system's state 
vector BJ;,ld t denotes time. One approach to incorporating 
state-variable inequality constraints in the formulation of 
frrst-order necessary conditions for optimality consists of 
constructing successive total time derivatives of S until 
explicit dependence on the control, u, appears. If p time 
derivatives are required then Eq. (1) is referred to as a pth 
order state-variable inequality constraint. The relation 
SP(z,u,t) = 0 is then adjoined to the Hamiltonian as a 
constraint to be enforced when S =0. In this instance, the 
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superscript p denotes the pth total time derivative of S. 
This approach inttoduces additional "tangency" conditions 
that must be satisfied at points of entry onto and exit from 
a constrained arc. These conditions are given by 

S(z,t) 

S1(z,t) 
N(z,t)= =0 (2) 

Eq. (2) constitutes a set of interior boundary conditions 
that must be met at each juncture between a constrained and 
unconstrained arc. In order to satisfy these interior boundary 
conditions one must allow for the possibility of 
discontinuities in the costate variables at the junctures. I 

An alternative set of necessary conditions can be 
obtained by adjoining the constraint function (1), rather 
than its pth derivative, to the Hamiltonian and then 
employing a separating hyperplane theorem.2 The resulting 
necessary conditions prove simpler and "sharper" than those 
of Ref. l, but the possibility for discontinuous costate 
variables remains. The relationship between the necessary 
conditions of Refs. 1 and 2 is defined in Ref. 3. Other 
approaches to treating such problems include employing a 
transformation technique in which a slack variable is used 
to transform the state constrained problem into an 
equivalent unconstrained problem of higher dimension and 
various direct numerical methods of solution4.11. 

III. Optimization or 
Singularly Perturbed Systems 

Subject to State Inequality Constraints 

Consider the singularly perturbed optimal control 
formulation: 

dx/dt = f(x,y ,u,t) x(to) = Xo xe R n ue R 1 (3) 

£ dy/dt = g(x,y,u,t) y(tJ = y0 yeRm (4) 

with an index of performance and scalar inequality 
constraint of the form 

J = t[x(tr), ey(tr)l S(x,y) S 0 (5} 

where £ is a small parameter. It is further assumed that 
&u T gu > 0, Sy T Sy > 0 (the superscript T denotes transpose 
and the subscripts denote partial differentiation), and that 
the problem is regular so that the control is continuous at 
the juncture of unconstrained and constrained arcs. Zero
order necessary conditions for optimality of the associated 
reduced and boundary layer problems in the absence of state 
variable inequality constraints are readily availab1e.12 In 
addition to basic smoothness assumptions on both f and g. 
sufficient conditions for the existence of a boundary layer 
solution carry the requirement that there exist an isolated 
root of g = 0 along the reduced solution to serve as an 



asymptotically stable equilibrium point for the boundary 
layer dynamics. Furthermore, the initial condition on y 
must lie in the domain of attraction of this root at the 
initial time, which amounts to a controllability 
requirement in this context Similar requirements exist at 
the final time. 

The extension of the necessary conditions for state 
constrained problems discussed in the previous section to 
include the singular perturbation formulation in (3-5) is as 
follows. Adjoining the constraint in (5) directly, the 
Hamiltonian is given by 

H = A.xf + A.yg + vS where v(t) 2! 0 (6) 

The additional first order necessary conditions for 
optimality are: 

dAx/dt = -Hx 

£ dA.y/dt = -Hy 

Ax(lf) = .x(lf) 

A.y(tr) = •y(tr)/E 

Hu=O 

(8) 

with the jump conditions 

The li represent the times at which a constrained and 
unconstrained arc meet. In (9,10) the scalar multiplier a is 
o(E). Note that in the limit as£ goes to zero, there are no 
jumps in the slow costate variables. In contrast, the fast 
costates can exhibit finite jumps proportional to Sy. In 
order to arrive at the condition (10) it is important to note 
that the interpretation for A.y in a singular perturbation 
formulation is different from that of a non-singular 
formulation, namely 

A.y<to> = raJtay<to>J te (11) 

The reduced problem and associated necessary 
conditions are obtained by setting E= 0 in (3-10). The fast 
states act as control variables as a consequence of setting £ 
=0 in Eq. (8). Hence, the constraintS can be viewed as a 
function of both states and controls, and the possibility of 
jumps in the slow costates is eliminated. The reduced 
solution necessary conditions are given by: 

dx/dt = f(x,y ,u,t) x(to) = Xo g(x,y ,u,t) = 0 (12) 

H = A.xf + A.yg + vS S(x,y) S 0 where v(t) 2! 0 (13) 

dAx/dt=-Hx 1x(1f) = •x(tr) Hy = Hu = 0 (14) 

The zero-order initial boundary layer solution associated 
with (3-5) is obtained by introducing the time stretching 
transformation 't = (t-t0 )/E and again setting £ to zero. On 
this time scale the slow states and costates are essentially 
frozen at their reduced solution values. The initial boundary 
layer necessary conditions are given by: 
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dy/d't = g(x0 ,y,u,'t) 

HBLu =0 

dAy/dt = -Hy 

s<xs> so 

(16) 

(17) 

(18) 

where [ ]
0 

denotes the reduced solution evaluated at t=to· 
When the reduced solution trajectory does not lie on the 
constraint boundary, the boundary layer solution, if it 
exists, is expected to be an infmite time process and to 
asymptotically approach the reduced solution. A local 
stability test, accomplished by linearizing the boundary 
layer necessary conditions about the reduced solution, is 
usually employed to test for the existence of a solution. 
Since the linearized dynamics [with the control eliminated 
using Eq. (18)] in general have eigenvalues symmetrically 
arranged about the origin, thus the sufficiency condition is 
reduced to the requirement that none of the resulting 
eigenvalues lie on the imaginary axis.l 0 When this 
condition holds true, a feedback solution for small 
perturbations away from the reduced solution can be 

. constructed by selecting the initial conditions on the 
perturbations in A.y to lie in the subspace spanned by the 
eigenvectors associated with the stable eigenvalues. 

When the reduced solution lies on the state constraint 
boundary, it may no longer act as an equilibrium point of 
the boundary layer dynamics. This feature is evident upon 
examination of (14) and (16). A critical requirement is that 
dAy/d't approach zero as the reduced solution is approached. 
In the unconstrained case this is a natural consequence of 
the fact that Hy = 0 is satisfied by the reduced solution. 
However, when the reduced solution lies on a constraint 
boundary, the situation is considerably more complicated. It 
may happen that the state constraint is encountered before 
the end of the boundary layer transition, in which case the 
reduced solution would serve as an equilibrium point in a 
reduced state space associated with riding the constraint 
boundary. If on the other hand the state constraint is not 
encountered until the end of the boundary layer transition, 
then the reduced solution is very likely not an equilibrium 
point, which typically occurs when S is dependent on only 
one fast state variable. This is often the case in aircraft 
flight mechanics problems. As a consequence, dAy/dt does 
not approach zero at the end of the boundary layer 
transition, but instead "jumps" to zero due to the jumps 
that occur in 1y. This further implies that the boundary 
layer arc is of fmite time in the 't time scale. In this case, 
the ttaditional asymptotic stability analysis and method of 
matched asymptotic expansions can not be used in 
constructing an approximate solution. 

In this paper, several alternate means for constructing 
such an approximation are presented. In particular, the 
costate jumps that can occur and the boundary layer final 
time are used as free parameters in order to satisfy 
continuity conditions in the state variables at the end of the 
boundary layer response. Note that the continuity condition 



on H in (9) is guaranteed if the problem is regular. Though 
not addressed in this paper, a similar finite time 
phenomenon has been observed when considering boundary 
layer transitions onto singular arcs.13 

As mentioned earlier, one approach to tteating these 
problems that avoids the difficulties associated with costate 
discontinuities consists of using a Valentine ttansfonnation 
to convert the constrained problem to an equivalent 
unconstrained one of higher dimension.ll The inequality 
constraint in (5) is converted to an equality constraint by 
the introduction of a slack variable a(t) as follows 

S(x,y ,t) + lf2a2(t) = 0 (19) 

Differentiating (19) p times with respect to time, the 
following set of equations is obtained 

Sl +aati£=Sxf+Sy g/£+S 1+aat/£=0 £da/dt=at 

s2(x,y,t) + at21£2 + aa2/t2 = 0 £dat/dt=a2 

s3(x,y,t) + 3at (1.2/£3 + OJ:J:y£3 = 0 £da2fdt=a3 

(20) 

where the presence of£ in (20) is representative of the fact 
that a and all the ai must be fast variables in order to 
maintain the equality in (19). Using the pth equation in 
(20), one can solve for the control u to obtain 

u = G(x,y,ap-lt···,altaap,£,t) (21) 

Using (21) and treating a, .•• , ap-1 as additional fast state 
variables, the following unconstrained problem, with ap as 
the new control variable is obtained 

dx/dt = f(x,y ,G ,t) 

E dy/dt = g(x.y,G,t) 

£da/dt= <lt 

tdap-t/dt = ap 

with the index of performance again given by 

J = ~[x(tr), ey(tr)] 

(22) 

(23) 
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Note that the dimension of (22) can be reduced using (19) 
and the ftrSt p-1 equalities in (20) to eliminate some of the 
original fast state variables. The initial conditions a{f.o), 
••. , <lp-t(lo) are chosen to satisfy (19) and the frrst p-1 
equations in the set (20}: 

a( to) = ± [-2S(x(to),y(to),f.o)] l/2 

at <to)=- eS 1(x(to),y(£o),to)/a{to) 

a2(lo) =- E2£S2(x(to),y{f.o),f.o) + at2(to}l/a{to) 

(24) 

With this choice of boundary conditions. (19-20) are 
satisfied for all time on the interval of interest for any 
control function ap; that is, any function ap will produce 
an admissible trajectory. Thus the original constrained 
problem (3-5) is replaced by a transformed unconstrained 
problem (22-24). In general, however, this technique 
simply trades one difficulty for another. Constrained arcs 
which occur in the reduced solution of the original problem 
correspond to singular arcs in the the transformed variables. 
Linearization of the boundary layer dynamics and 
exploitation of asymptotic stability properties again is not 
possible since the fust variation with respect to ap 
vanishes along the reduced solution, and <Xp is in general 
discontinuous at the juncture of singular and non-singular 
arcs. 

IV. Examples 

Several simple examples are now presented. The 
fust illustrates the use of the Valentine transformation and 
the finite time nature of the boundary layer solutions. The 
second example is solved without resorting to the Valentine 
transformation and illustrates the complete analytic 
solution to a singularly perturbed problem of optimal 
control involving a state-variable inequality constraint. A 
third nonlinear example is introduced for which a complete 
analytic solution is unavailable. In this case a feedback 
strategy is employed to construct an approximation to the 
boundary layer transition onto the constraint arc. This 
strategy is based on a Taylor's series expansion to firSt 
order about a non-equilibrium point. The costate jump that 
can occur and the boundary layer fmal time are used as free 
parameters in order to satisfy continuity conditions in the 
state variables at the end of the boundary layer response. 
The optimal solution of the third example was generated 
numerically for direct comparison to this feedback 
approximation. 

Example 1 
Consider the singularly perturbed dynamical 

system~ 

dx/dt = y - u2 £dy/dt= u S=y-lSO (25) 



with the initial conditions specified as x(O) = y(O) = 0. The 
fmal value x(tr) > 0 is specified and the objective is 10 
minimize the time required 10 reach this specified end 
condition. The state constraint in this case is first order. 
Introduction of a slack variable and transformation results 
in the equivalent unconstrained dynamics: 

x(O) = 0 

eda/dt = a 1 a(O) = (2)112 0.1) 

where y has been eliminated using (19). 

Reduced solution: The reduced solution Hamiltonian is 
given by 

H =Ax [1 - a 2/l- (aa1)2] + Aa,a1 + 1 = 0 (28) 

where a1°=0 as a consequence of setting£= 0 in (27). 
Evaluation of first order necessary conditions for optimality 
results in the following: 

H=O and Ha= 0 => 

Hal =0 => 

from which it is evident that 

A 0 =-1 a 0 =0 
X 

A 0 =0 a 

yo(t) = 1 gO :0 

(29) 

(30) 

(31) 

Boundary Layer Solution: Introducing the time scale 
transformation 't = t/£ and again setting £ to zero, the 
boundary layer dynamics become 

da/d't = a 1 a(O) = (2)112 

The boundary layer Hamiltonian is given by 

and the associated necessary conditions are: 

-

dAa/d't = -a(l + 2a1
2) 

Hal= 0 =>.. a1 =- Aa/2a2 

H = o => Au = - (2)112a2 

Substituting (36) into (35) yields 

(32) 

(34) 

(35) 

(36) 

When the boundary layer trajectory reaches the constraint 
boundary, a('tr) = 0 and (37) yields 'tf = 2. Transfonning 
back, we obtain a feedback solution for u in tenns of y, 
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u = [1- y]1' 2 (38) 

Integration of (25) on the 't time scale using (38) gives 

y('t) = 1 - [l - 't/2]2 (39) 

Note that while a1 is discontinuous at "t = 'tf, the original 
control is continuous. 

Example 2 

Now consider a third--order version of the preceding 
example. 

dx/dt = Y1 - u2 £dy1/dt = Y2 £dy2/dt = u (40) 

S = Yl - 1 S 0 (41) 

with initial conditions x(to), y1 (to) < 1, and Y2(lo) given. 
As before, the final condition on x is prescribed and greater 
than x(to), the final conditions on Yl and Y2 are free, and 
the objective is to minimize the fma1 time. In this case, the 
state constraint is of order two. In contrast to Example 1, 
the solution to this problem is carried out in tenns of the 
original variables. 

Reduced Solution: The reduced solution Hamiltonian is 
given by 

where Y20(t) and u0(l) are zero as a consequence of setting 
t=O in (41). Evaluation of frrst order necessary conditions 
for optimality results in the following: 

H = Hy1 = 0 => VO(t) = 1 Yt0 (t) = 1 Ax0 (t) = -1 

Hy2 = 0 => Ayl o(t) = 0 

Hu = 0 => ly
2 
°(t) = 0 (43) 

Thus all the variables except x are constant, the control is 
maintained at zero, the initial conditions on Yl and Y2 
cannot be met, Yl remains on the constraint boundary, and 
x is propagated to its specified final value according to the 
relation 

(44) 

Boundary Layer Solution: Introducing the time scale 
transfonnation 't = t-to/£ and again setting £ to zero, the 
boundary layer dynamics become: 

Yt ('tf) = Y1 °(lo) = 1 

Y2('tf) = Y2 °(to) = 0 

(45) 

(46) 



where the tenninal conditions on the fast states are chosen 
to match their reduced solution values. The boundary layer 
Hamiltonian is given by 

H =Ax 0 (YI- u2) + A.y1 Y2 + Ay2 u + V(YI- 1) + 1 = 0 
(47) 

and the associated necessary conditions are: 

A.y
1 
(tr) = 0' (i.e. free) (48) 

Note that when the boundary layer solution reaches the 
constraint boundary, it has also reached the reduced 
solution, i.e. it is not possible for the boundary layer 
system to ride the constraint boundary before reaching the 
reduced solution. Thus the initial boundary layer problem 
can be viewed as an unconstrained two-point-boundary
value problem in which the terminal conditions must 
match the state and costate conditions just prior to entering 
onto the constrained arc. Integration of the state and costate 
dynamic equations following elimination of the control u 
using (50) and assuming to =0 yields: 

Yl {t)::-r4/48+A.y1 (O)t3/12-i..yl0)t2/4+y2(0) 't+Yl {0) (51) 

Y2('t) = t 3/12 + A.y1(0) t 2/4- iwy2(0) t/2 + Y2(0) (52) 

A.y1 (t) = A.y2(0) + t (53) 

(54) 

Evaluating (51-54) at 'tf results in four algebraic equations 
in four unknowns: Ay 1 (0), Ay2(0), A.y 1 ('tf), and 'tf. The 

solution to this system is obtained as follows 

Ay 1 (Tf) = A.y2(0) + Tf (55) 

iwy2(0) = T(l{l + Ay.(O) 'tf (56) 

where 
A,1<0> = [y2<o>- tr/6]4/tr (57) 

am 
tf + 48 Y2(0) 'tf+ 144 (y1 (0) - 1] = 0 (58) 

Equation (58) must in general be solved numerically and 
will yield at most one real positive solution for the fmal 
time, 'tf. ·For the particular choice of initial conditions of 
x(to) = Yt (to) = Y2(to) = 0, (58) can be solved directly 
yielding 

'tf = 2(3)112 = 3.464 

Ay1(0) = -2Ttf3 = -2.309 
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The costate A.y 1 is discontinuous at the juncture between 
the unconstrained (boundary layer) and constrained (reduced 
solution) arcs as evidenced by its finite value at 'tf. 

iwy1 ('tr) = 2(3)112f3 = 1.155 

In essence, the time 'tf corresponds to a juncture time ti in 
(10). Note that 

1. The control solution in (SO) can be put in feedback 
form by solving the boundary layer problem for an 
arbitrary initial condition and evaluating at t=O. 

2. The control solutions in (38) and (50) are exact in 
the sense that they satisfy the necessary conditions 
for the full order problems. Thus all of the higher
order correction terms are zero. This is a 
consequence of the fact that both the dynamics and 
the constraints in these examples are independent of 
the slow state variable.l4 

Solutions to the system of equations (55-58) for a 
number of different initial conditions are presented in Table 
1. Representative state, costate, and control histories are 
presented in Figures 1-4. Note that x simply propagates to 
its specified fmal value according to (44) after the solution 
for Y1 reaches the constraint boundary. The x trajectories 
achieve large negative values initially for cases 4 and 5 and 
are not shown. Cases in which x(tr) is reached before Yl 
reaches the constraint boundary indicate that the singular 
perturbation approximation is inappropriate. In general, for 
£ = 1 it is possible to nondimensionalize the dynamics so 
that £ = 1/x(tr). 

Example 3 

Consider the addition of a nonlinear term in the 
dynamic system of Example 2 as follows 

dx/dt = Yl- u2 edy1/dt = y2 + y1y2 edyl-'dt = u (59) 

S = Yt- 1 S 0 (60) 

As in Example 2, the state constraint is of order two. 

Reduce(l Solution: The reduced solution Hamiltonian is 
given by 

where Y2°(t) and u0 (t) are again zero as a consequence of 
setting £ = 0 in (59). The reduced solution is identical to 
that of Example 2. All the variables except x are constant 
and the control is maintained at zero. 

Boundary Layer Solution: Introducing the time scale 
transformation t = t-to/£ and again setting £ to zero, the 
boundary layer dynamics become: 



dyt/dt = Y2 + YtY2 

dy2/dt = u 

Yt<tr) = 1 

Y2('tf) = 0 

(62) 

(63) 

where the terminal conditions on the fast states are chosen 
to match their reduced solution values. The boundary layer 
Hamiltonian is given by 

H=A.x 0 {yt-u2)+A.y1(y2+ YtY2>+A.y2u+vS + 1 =0 (64) 

and the~ necessary conditions are: 

dl.y1/dt = 1 - A.y 1 Y2 A.y
1
(tr) =a (i.e. free) (65) 

(66) 

Because an analytical solution for the state and costate 
dynamic equations (following elimination of the conttol) 
could not be found, we must resort to numerical methods of 
solution or seek approximations to the optimal solution. 

As discussed earlier, the reduced solution does not act as 
an equilibrium point for the boundary layer system. 
However, one can write a Taylorts series expansion for the 
boundary layer system about a non-equilibrium point. We 
choose as such a point the state and costate conditions just 
prior to the juncture of the unconstrained boundary layer 
trajectory and the reduced solution which lies on the 
constraint boundary. The corresponding time is denoted as 
'tf which is representative of the time tc in (10). All the 
conditions at this point are known except for the value of 
A.y1(tr), which is free to jump from a fmite value to its 
reduced solution value of zero at the end of the boundary 
layer transition. To first order, the perturbation dynamics 
are described by 

d5z/dt = f[z(tr)] + 'df/dz I Sz (68) 
z('tf) 

where the vector z is composed of the boundary layer states 
and costates and the vector f represents the right-hand sides 
of their corresponding differential equations given by 
(62,63,65,66). The perturbations are defined as follows: 

Sy1 = Yt (~)- 1.0 

Sy2 = Y2(t) 

SAy 1 = A.y 1 (t) - A.y 1 (tr) 

SA.yz = A.yz(t) 

The relation (68) is of the general form 

d5z/dt = ASz + B 

(69) 

(70) 

(71) 

{72) 

(73) 
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where 

0 2 0 0 

0 0 0 -1/2 
A= 

0 -9 0 0 
(74) 

-9 0 -2 0 

BT = (0 0 1 -29] (75) 

8 • A.y 1 ( t r> (76) 

The solution to (73) is well known to be of the fonn 

Note that the eigenvalues of A in this case are all zero. The 
state ttansition matrix is obtained analytically, and the 
response of the perturbation equations given an arbittary set 
of initial condition can be written as: 

Sy1 = -r4/12 + e:r,3f3- dt2(2 + 2bt +a 

Sy2 = t3/6 + e:r,2fl- dt/2 + b 

SA.y
1 

= -et4124- e9t3/6 + d9t2/4 + (1- 9b)t + c 

SA.y2 = - t2 - 2et + d 

where for convenience 

a ESy1(to) 

C E Ayl(to) 

e E 8( 1 + a/2) + c 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

We wish to drive these penurbations to zero at t = 'tf. 
Thus, the left-hand sides of (78-81) are set to zero. The 
initial conditions Yl (to) and Y2(to) are known. It is left to 
determine the corresponding final time 'tf (i.e. time tj-), e 
as defined in (76), and the costate initial conditions. A 
Newton method was used to numerically obtain the 
solution. 

The initial costate values determined in this way can be 
used to approximate the initial costates for the nonlinear 
boundary layer system. By periodically updating these 
estimates while numerically integrating the nonlinear 
boundary layer dynamics forward in time, one can generate 
an approximate solution to the boundary layer problem. As 
for Examples 1 and 2, the contrOl solution (67) is exact in 
the sense that it satisfies the necessary conditions for the 
full order problem. Thus all of the higher-order correction 
terms are zero. 

Table 2 presents the solution to (78-81) at time 'tf for 
various combinations of initial conditions. The feedback 



strategy described above was employed to generate 
approximations to the optimal boundary layer ttansitions. 
Representative state, costate, and control time histories are 
depicted in Figures 5-8 for the case where x(to) = Yt(lo) = 
Y2(lo) = 0. For comparison, the optimal solution was 
generated numerically using a multiple shooting algcxitlun. 
The full-order dynamic system was considered and the 
associated unconstrained two-point-boundary value problem 
solved for the case when to = 0, x(to) = Yl (to) = Y2(lo) = 0, 
tr free, Yt {tr) = 1, yz(tr) = 0 and x(tr) free. The optimal 
state, costate, and control time histories are superimposed 
over the approximations presented in Figures 5-8. In the 
optimal case, YI reaches the constraint boundary in 2.767 
seconds. At that time x has a value of 1.117 and Ay 

1 
is 

0.856. In contrast, at 2.8 seconds the approximated 
boundary layer transition has not quite reached the reduced 
solution. The value of x is 1.139, y1 is .999, Y2 is .010 
and the time-to-go is estimated as 0.18 seconds. Using 
linear interpolation, the value of x at 2.767 seconds is 
1.107, thus the x approximation is slightly less than the 
optimal value of x as it should be. An open loop 
simulation of the nonlinear dynamic system starting with 
the approximation obtained via (78-81) is also depicted in 
Figures 5-8. These trajectories clearly illustrate the need to 
regularly update the approximate solution. 

V. Conclusions 

Singularly perturbed optimal control problems with 
state-variable inequality constraints can exhibit complex 
boundary layer phenomenon. In panicular, the boundary 
layer transitions associated with such problems can be of 
finite time when the state constraint is first encountered at 
the end of the boundary layer transition. Valentine's 
transformation can be used to avoid the problems associated 
with discontinuous costate time histories, but at the 
expense of introducing a singular arc and discontinuities in 
the transfonned control variable. Because of the fmite time 
nature of the boundary layer solutions, the traditional 
asymptotic stability analysis and method of matched 
asymptotic expansions can not be used in constructing an 
approximate solution. Instead, the costate jumps that can 
occur and the boundary layer final time can be used as free 
parameters in order to satisfy continuity conditions in the 
state variables at the end of the boundary layer response. 
This technique has proved quite satisfactory when used to 
construct an approximate solution for a relatively simple 
nonlinear example, at least for small perturbations away 
from the reduced solution. 
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Table 1. 

Representative solutions of Equations (55-58) in Example 2 

Case Yt(O) Y2(0) A.y,(O) 1y2(0) i..yl {'tf) 'tf 

1 0.00 0.00 -2.309 -2.000 1.155 3.464 

2 0~80 0.20 -0.982 -0.121 0.849 1.830 

3 0.99 0.01 -0.620 -0.123 0.371 0.991 

4 -5.00 -5.00 -5.143 -11.260 1.980 7.122 

5 0.80 -5.00 -4.681 -9.717 1.573 6.254 
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Figure 1. Example 2: x versus 't for several different sets 
of initial conditions (see Table 1). 
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Table 2. 
Representative solutions of the linearized 

boundary layer system (78-81) in Example 3 at time 'tf 

Case Yl(O) Y2(0) Ay,(O) 1y2(0) Ayl('tf) 'tf 

1 

2 

3 

4 

5 

0.00 0.00 -2.041 

0.80 0.20 -1.075 

0.99 0.01 -O.tXJ7 

-5.00 -5.00 -1.019 

0.80 -5.00 -4.828 

6 

\. 

\\ 
~ 

4 

~ 

0 

-2 
0 

' ' ~ 
~ ~ 

' ..... .... 

2 

-2.000 0.817 2.449 

-0.264 0.687 1.144 

-0.089 0.268 0.668 

-13.500 1.469 5.427 

-12.210 1.243 4.952 
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Figure 3. Example 2: u versus 't for several different sets 

of initial conditions (see Table 1). 
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sets of initial conditions (see Table 1). 
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I. Summary from previous reporting periods 

This is the final progress report covering the complete period from December 1, 1988 to 
August 31, 1991, funded under the NASA Contract NAG-1-922. The research effort was 
directed toward the problems of real-time trajectory optimization and guidance law 
development for National Aerospace Plane applications. In particular, singular perturbation 
methods were used to develop guidance algorithms suitable for on board, real-time 
implementation. 

The bulk of the work completed during the period is summarized in three previous 
reports, listed as references [1]-[3]. Reference [4] cites the final progress report from the 
previous project (funded under the NASA Contract NAG-1-784). 

The work completed during the period from· December 1, 1988 to June 30, 1989 (See 
Ref. [1]) consisted primarily of extensions to the analysis reported in reference [ 4] to 
include a number of important considerations. In particular, the vehicle model was 
extended to include angle of attack effects~ the thrust vector component normal to the 
velocity vector, and flight in the subsonic and supersonic regimes. A multi-mode 
propulsion system consisting of turbojet, ramjet, scramjet and rocket engines was assumed 
and simple models for thrust generation and fuel consumption were adopted for each 
engine cycle. The state-space was further constrained by considering a maximum allowable 
heating rate. Singular perturbation methods were applied to this more realistic model, 
leading to a simple algorithm suitable for generating a nearly-fuel-optimal altitude profile in 
real time. A simple iterative algorithm was derived that approximates the optimal engine 
transition points and the regions of cycle overlap. Feedback linearization was employed to 
derive an angle of attack controller which can be used to guide the vehicle along the nearly
fuel-optimal altitude profile in simulations of flight within the atmosphere. A computer 
subroutine based on the space shuttle explicit guidance algorithm was written to handle the 
exoatmospheric phase of ascent guidance which allows for the simulation of insertion into 
orbit. The resulting software was employed to examine the influence of the added model 
complexity on the fuel-optimal ascent trajectories and the performance of the guidance 
algorithms. 

During the second reporting period, up to December 31, 1989 (See Ref. [2]) general 
problems associated with on-board trajectory optimization, propulsion system cycle 
selection, and with the synthesis of guidance laws were addressed for ascent to low-Earth
orbit of an air-breathing, single-stage-to-orbit vehicle. The work built directly upon the 
analytical results of reference [1]. A good portion of the work focused on making 
improvements to the vehicle models employed. The NASA "Generic Hypersonic 
Aerodynamic Model Example" and the "Langley Accelerator" aerodynamic data sets were 
acquired and implemented. Work pertaining to the development of purely analytic 
aerodynamic models also continued at a low level. A generic model of a multi-mode 
propulsion system was developed that includes turbojet, ramjet, scram jet, and rocket engine 
cycles. Provisions were made in the dynamic model for a component of thrust normal to 
the flight path. Computational results, which characterize the nonlinear sensitivity of 
scramjet performance to changes in vehicle angle of attack, were obtained and incorporated 
into the engine model. Additional trajectory constraints were also introduced. The 
constraints treated were: maximum dynamic pressure, maximum aerodynamic heating rate 
per unit area, angle of attack and lift limits, and limits on acceleration both along and 
normal to the flight path. 

The remainder of the research effort during the second period focused, for the most part, 
on required modifications to the previously derived algorithm when the model complexity 
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cited above was added. In particular, analytic switching conditions were derived which, 
under appropriate assumptions, govern optimal transition from one propulsion mode to 
another for two cases: the case in which engine cycle operations can overlap, and the case 
in which engine cycle operations are mutually exclusive. The resulting guidance algorithm 
was implen1ented in software and exercised extensively. It was found that the 
approximations associated with the assumed time scale separation employed in this work 
are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to 
the very large thrust capability of scramjets in this Mach regime when sized to meet the 
requirement for ascent to orbit. Very little mass penalty- is induced by the resulting 
inaccuracies in the trajectory over this region because it is traversed rapidly. However, the 
reduced solution climb paths prove to be unfeasible within this Mach range when subject to 
the full model dynamics and active trajectory constraints. These difficulties were 
successfully overcome by accounting for flight path angle and flight path angle rate in 
construction of the flight path over this Mach range. The resulting algorithm provides the 
means for rapid near-optimal trajectory generation and propulsion cycle selection over the 
entire Mach range from take-off to orbit given a realistic nonlinear vehicle model and all 
pertinent trajectory constraints. 

A significant problem area encountered was the lack of a general theory for singularly 
perturbed systen1s ·that are subject to state-variable inequality constraints (Ref. [2]). Such 
constraints are common to a wide class of flight vehicles but have received little attention in 
the literature when the dynamic system is singularly perturbed. A study was initiated in this 
area and it was found that, when the reduced solution lies on a state-variable inequality 
constraint boundary, the boundary layer trajectories are of finite time in the stretched time 
scale. The possibility of costate discontinuities at the juncture between constrained and 
unconstrained arcs makes direct application of existing theory difficult at best. A 
transformation technique was identified that eliminates some of these difficulties, but at the 
cost of possibly increased system order and the introduction ·of singular arcs. Much work 
remains to be done in this area. 

Work on the development of simple, efficient algorithms for prediction of vehicle 
aerodynamic and propulsive performance continued during the second phase of the 
program (Ref. [2]). Improvements in the modeling of the hypersonic lifting body module 
eliminated previous discrepancies between measured and predicted aerodynamic behavior. 
Several modes of data entry can now be implemented making assessment of a given vehicle 
configuration very simple. An interactive program mode was devised that makes possible 
direct and immediate assessment of configuration changes on selected vehicle performance 
parameters. The algorithms developed in this program are of potential use in applications 
beyond those originally envisioned. 

The first two reporting periods resulted in four conference papers (Ref. [5]-[8]) which 
discuss most of the results of this research effort. A Ph.D. Dissertation that details the 
entire effort to date was published in December of 1989 (Ref. [9]). A full-length paper 
entitled "Rapid Near-Optimal Trajectory Generation for Single-Stage-to-Orbit Airbreathing 
Vehicles" has also been submitted and accepted for publication in the AIAA Journal of 
Guidance, Control and Dynamics (Ref. [10]). · 

There was a funding lag for the period from January to May of 1990 during which no 
research was conducted. Funding resumed on the first of May. 

During the next reporting period, from May 1 to October 31, 1990 efforts were primarily 
focused upon developing a general understanding of singularly perturbed systems subject 
to state-variable inequality constraints and also upon developing criteria for the applicability 
of singular perturbation techniques to flight mechanics problems and in particular to aircraft 
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energy climbs (Ref. [3]). As noted in reference [2], singularly perturbed optimal control 
problems with state-variable inequality constraints can exhibit complex boundary layer 
phenomena. In particular, the boundary layer transitions associated with such problems 
can be of finite time when the state constraint is frrst encountered at the end of the boundary 
layer transition. The lack of a general theory for treating such systems was identified as a 
significant research problem. 

A cursory look at the problem was completed prior to the submission of the 1989 final 
report (Ref. [2]). Since that time, considerable progress was made. The results of the 
effort are detailed in a technical paper that was first presented at the 1990 AIAA ON &C 
Conference (Ref. [11]). A revision of the paper has also been accepted for publication in 
the AIAA Journal of Guidance, Dynamics and Control. The results are summarized as 
follows. 

The established necessary conditions for optimality in nonlinear control problems that 
involve state-variable inequality constraints were applied to a class of singularly perturbed 
systems. The distinguishing feature of this class of two-time-scale systems is a 
transformation of the state-variable inequality constraint, present in the full order problem, 
to a constraint involving states and controls in the reduced problem. The existence of a 
nonsingular control solution was assumed. It was of particular interest to construct the 
zeroth order initial boundary layer solution, or at least and approximation to it, when the 
reduced solution lies on a state constrain boundary. In the absence of a state constraint, 
one can take advantage of the fact that the reduced solution serves as an equilibrium point 
for the boundary layer system. However, it was shown that, when a state constraint is 
active in the reduced problem, the boundary layer problem can be of finite time in the 
stretched time variable. Thus, the usual requirement for asymptotic stability of the 
boundary layer system is not applicable, and can not be used to construct approximate 
boundary layer solutions. Furthermore, an active state constraint introduced the possibility 
of discontinuous costate variables at the juncture between constrained and unconstrained 
arcs. 

Various means for treating such problems were investigated. A simple linear example 
was constructed and used to show that a Valentine transformation can be used to regain 
smoothness, but with limited advantage. That is, Valentine's transformation can be used to 
avoid the problems associated w.ith discontinuous costate time histories, but at the expense 
of introducing a singular arc and discontinuities in the transformed control variable. A 
second linear example was used to illustrate the exact analytic solution of a simple 
singularly perturbed problem involving a state variable inequality constraint. The solution 
includes a "fast" costate discontinuity and a finite-time initial boundary layer transition. A 
third, but nonlinear, example for which the boundary layer system could not be solved 
analytically was then constructed. This example was used to illustrate a general feedback 
strategy that was developed for synthesizing a near-optimal boundary layer transition onto a 
constrained arc. In this technique, the costate jumps that can occur and the boundary layer 
final time are used as free parameters in order to satisfy continuity conditions in the state 
variables at the end of the boundary layer response. The resulting approximation was 
compared directly with the numerically generated ·optimal solution. The method proved 
quite satisfactory when used to construct an approximate solution for this relatively simple 
nonlinear example, at least for small perturbations away from the reduced solution. 

Several problems requiring further attention were identified. For instance, numerical 
problems were sometimes encountered in the solution process for Example 3 (See Ret 
[ 11]) as time-to-go approached zero (i.e. as the boundary layer transition nears 
completion). This difficulty did not prevent the generation of an accurate approximation of 
the optimal solution for the example problem, and further manipulation of Example 3 has 
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lead to a completely analytic characterization of the solution. However, the possibility of 
approaching a singularity should be investigated in a generic setting. The approximation 
technique being employed depends upon a linearization of the boundary layer system about 
a non equilibrium point. It does not appear possible to characterize the stability of the 
approximation for a given set of initial conditions. And though guidance along a constraint 
boundary will likely be subject to small perturbations only, linearization does introduce the 
likelihood of control saturation for sufficiently large perturbations. A multiple time scale 
approach, in which altitude and flight path angle dynamics are examined on separate time 
scales, could eliminate this dependence on linearization. There is also a question of 
applicability when atmospheric disturbances lead to a constraint violation. 

II. Progress this reporting period 

During the last reporting period, from November 1, 1990 to August 31, 1991 efforts 
were again focused upon developing a general understanding of singularly perturbed 
systems subject to state-variable inequality constraints and also upon developing more 
stringent criteria for the applicability of singular perturbation techniques to flight mechanics 
problems and in particular to aircraft energy climbs. Specifically, a systematic approach 
was devised for naturally identifying the perturbation parameter e in a singular perturbation 
analysis of aircraft optimal guidance and expressing· it in terms of original physical problem 
parameters. The approach, which is based on a nondimensionalization of the equations of 
motion, can be used to evaluate the appropriateness of forced singular perturbation 
formulations used in the past for transport and fighter aircraft, and to assess the 
applicability of energy state approximations and singular perturbation analyses for 
airbreathing transatmospheric vehicles with hypersonic cruise. and orbital capabilities. 
Furthermore, the approach can easily be extended to asses the possibility of treating the 
same problems by assuming multiple (more than two) time scale behavior. 

The lack of strict criteria for the applicability of singular perturbation techniques to flight 
mechanics problems served as an incentive for our efforts during the last reporting period. 
The methods of matched asymptotic analysis in singular perturbation theory are based on 
the presence of small parameters in the differential equations of motion which give rise to 
multiple time scale behavior. It has been noted by numerous authors (Ref. [13],[14]) that, 
in spite of a wide number of papers attesting to the applicability of singular perturbation 
methods to optimization problems in aircraft flight mechanics, few have been successful in 
first casting the equations of motion in a singular perturbation form. A few notable 
exceptions are Refs. [13]-[16). In Ref. [13) two methods for time scale separation analysis 
are proposed to identify the proper assignment of state variables to various time scales. 
These methods are based on forming an estimate of the state variable speeds. In Ref. [14] a 
rescaling to nondimensional variables is recommended. However, it is noted that the proper 
scaling transformation is not obvious, even if the time scale separation of the variables is 
well known from analysis or experience. Both of these papers (and in particular Ref. [13)) 
provide extensive references to earlier studies which employ so-called forced singular 
perturbation formulations, in which the perturbation parameter (say e), nominally equal to 
1, is artificially introduced as a book keeping parameter in a formal expansion of the 
solution about e = 0. In particular, there exists a large number of publications on the 
optimization of aircraft energy climbs (see for example Refs. [17]-[20]), none of which 
make any attempt to identify an appropriate perturbation parameter in terms of the original 
problem parameters. This is particularly disturbing considering the number of years that 
have passed since such analysis techniques were first introduced in the flight mechanics 
literature. In any singular perturbation analysis, every attempt should be made to identify 
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the perturbation parameter in terms of the original problem parameters (which in general 
include the boundary conditions) so that the physical process that gives rise to the two time 
scale behavior is clearly understood. Then, the range of parameter values for which the 
perturbation analysis is valid can be easily identified. Knowledge of time scale separability 
present in the system dynamics, and success in exploiting this characteristic to obtain 
approximate solutions, is not, in itself justification for artificially introducing e. That is, 
within the framework of our system of logic it is always possible to have conclusions that 
are true, which follow from assumptions that are wrong. 

Our work has partially rectified this situation by presenting a systematic (albeit still ad
hoc) approach to nondimensionalize variables in nonlinear optimization problems in flight 
mechanics. Most of the considerations that were presented apply in other fields as well. 
Our main motivation for collecting and stating these considerations was to define the 
thought process by which it is possible to arrive at a suitable scaling of the aircraft energy 
climb problem. Of particular interest was the assessment of the applicability of energy state 
approximations and singular perturbation analyses for airbreathing transatmospheric 
vehicles with hypersonic cruise and orbital capabilities. 

The major result of our effort was the demonstration that for energy climbs that take 
place on a vertical plane the singular perturbation parameter e is always equal to the 
maximum longitudinal loading factor of the vehicle. Two time scale behavior is suggested 
according to whether e is less than one or not. Based on this result it is straightforward to 
see why singular perturbation methods applied to aircraft performance optimization have 
worked so well in the past. The maximum longitudinal loading factors associated with the 
majority of conventional aircraft are either less than one because the aircraft lack very high 
thrusting capabilities, or because they are restricted to be so for other reasons (structural, 
comforting, etc.). A few notable exceptions do occur for some modem fighters. This 
directly suggests that most conventional aircraft can be expected to exhibit two-time-scale 
behavior for almost any energy climb that they are allowed to perform. This then appears to 
be the reason for the past success of so many singular perturbation treatments of aircraft 
energy climbs. The implication for transatmospheric vehicles is rather direct. If we consider 
such a vehicle as a passenger transport, then, in order to assure passenger comfort it is only 
natural to impose as a constraint a maximum longitudinal loading factor for the vehicle that 
is less than one. Our work suggests that such a constraint would imply two-time-scale 
beha.vior for any type of energy climb that such a vehicle would be allowed to perform. 
Therefore, singular- perturbation formulations of such maneuvers still appear to be 
promising, even with all the added complexities that the flight regimes of such vehicles can 
involve. A paper which reports on our progress has been presented at the 1991 AIAA 
GN&C Conference. A copy of the paper is included as an Appendix. 
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Abstract 

This paper proposes a systematic approach for identifying the perturbation parar_neter in singular 

perturbation analysis of aircraft optimal guidance, and in particular considers a family of problems 

related to aircraft energy climbs. It is frrst shown that for energy climbs that take place Qn a vertical plane 

the singular perturbation parameter can always be taken to be the maximum allowed longitudinal loading 

factor of the vehicle. Two time scale behavior is suggested according to whether this parameter is 

sufficiently less than one. The approach, which is based on a nondimensionalization of the equations of 

motion, is then used to evaluate the appropriateness of forced singular perturbation formulations used in 

the past for transport and fighter aircraft, and to assess the applicability of energy state approximations 

and singular perturbation analysis for airbreathing transatmospheric vehicles with hypersonic cruise and 

orbital capabilities. 

Introduction 

The methods of matched asymptotic analysis in singular perturbation theory are based on the 

presence of small parameters in the differential equations of motion which give rise to multiple time scale 

behavior. It has been noted by several authors1.2 that, in spite of a wide number of papers attesting to the 

applicability of singular perturbation methods to optimization problems in aircraft flight mechanics, few 

have been successful in first casting the equations of motion in a singular perturbation form. A few 

notable exceptions are Refs. 1-4. In Ref. 1 two methods for time scale separation analysis are proposed 

to identify the proper assignment of state variables to various time scales. These methods are based on 

forming an estimate of the state variable speeds. In Ref. 2 a rescaling to nondimensional variables is 

recommended. However, it is noted that the proper scaling transformation is not obvious, even if the 

time scale separation of the variables is well known from analysis or experience. Both of these papers 

(and in particular Ref. 1) provide extensive references to earlier studies which employ so-called forced 

singular perturbation formulations, in which the perturbation parameter (say e), nominally equal to 1, is 

artificially introduced as a book keeping parameter in a formal expansion ·of the solution about e = 0. In 

particular, there exists a large number of publications on the optimization of aircraft energy climbs (see 
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for example References 5-8), none of which make any attempt to identify an appropriate perturbation 

parameter in terms of the original problem parameters. This is particularly disturbing considering the 

number of years that have passed since such analysis techniques were frrst introduced in the flight 

mechanics literature. In any singular perturbation analysis, every attempt should be made to identify the 

perturbation parameter in terms of the original problem parameters (which in general include the 

boundary conditions) so that the physical process that gives rise to the two time scale behavior is clearly 

understood. Then, the range of parameter values for which the perturbation analysis is valid can be 

easily identified. Knowledge of time scale separability present in the system dynamics, and success in 

exploiting this characteristic to obtain approximate solutions, is not, in itself justification for artificially 

introducing e. That is, within the framework of our system of logic it is always possible to have 

conclusions that are true, which follow from assumptions that are wrong. 

In this note we attempt to partially rectify this situation by presenting a systematic (albeit still ad

hoc) approach to nondimensionalize variables in nonlinear optimization problems in flight mechanics. 

Most of the considerations that are presented apply in other fields as well. Our main motivation for 

collecting and stating these considerations is to define the thought process by which it is possible to 

arrive at a suitable scaling of the aircraft energy climb problem. Of particular interest is an assessment of 

the applicability of energy state approximations and singular perturbation analysis for airbreathing 

transatmospheric vehicles with hypersonic cruise and orbital capabilities. 

Subsonic-Supersonic Regimes, Flat Earth Approximation 

Consider atmospheric flight of a conventional aircraft, viewed as a point mass, in a vertical plane 

over a flat Earth. The equations governing such flight can be reduced to a three-state model in: mass 

specific energy E, flight path angle y, and altitude h. The vehicle mass, m, is assumed to be constant. 

The equations are: 

dE V(T- D) 
dt = m (1) 

.
dy = (l)-( g cos 'Y) 
dt mV V (2) 
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dh v . 
dt = Stn 'Y (3) 

where L, D and g denote the lift, the· drag and the (constant) gravitational acceleration. It is assumed that 

the atmosphere is stationary, and that the thrust, T, is directed along the flight path. The specific energy 

(mechanical energy per unit mass of the vehicle) E and the speed V are related by 

v2 
E=T+gh 

and E rather than V has been employed as a state variable. 

(4) 

In many of the earlier singular perturbation studies the traditional way of writing down Eqs. (2) and 

(3) was: 

dy _ (l)- (g cosY) 
edt - mV V 

dh v . e- = stn y 
dt 

(5) 

(6) 

that is, by artificially introducing a parameter e and then stating that its nominal value was equal to 1. 

Since our main purpose in the present paper is to avoid such an artificial introduction at the outset, Eqs. 

(5) and ( 6) will setve only as a guide for the natural introduction of e. 

Nondimensional form 

The first step is to put Eqs. (1) through (3) in nondimensional form. To this end we define the setS 

(7) 

The elements of the set S are at this point arbitrary positive quantities, and the only restriction that we 

impose upon them is that: 

to has dimensions of time 

E0 has dimensions of energy per unit mass 

ho has dimensions of lenght 

V 0 has dimensions of speed 
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T 0, D0, and Lo have dimensions of force 

Using the elements of S to defme the nondimensional quantities: 

t E h y 
t=-t E=- . h=- . V=-

Eo ' ho ' Yo (8) 0 

T D L T=- D=- L=- (9) To Do Lo 

Eqs. (1) through (3) can be put into the following nondimensional form: 

dE ( t 0 Y0 ) dt=V(TTo-DDo) Eom (10) 

dy = (!:.)(~)- (cos 'Y )(~) 
dt V mY0 V Y0 

( 11) 

(12) 

The goal is now to put Eqs. (10) through (12) in the traditional singular perturbation format. We thus 

multiply both sides ofEqs. (11) and (12) by (h0 / Yo to). This results in: 

(13) 

( 
ho l4J1 . 

yo to ) d t = V stn 'Y (14) 

Comparing the set ofEqs. (10), (13) and (14) with the set (1), (5) and (6), it is evident that we can make 

the two sets similar by imposing the following/our conditions on the elements of the setS: 

To=Do (15) 

(16) 

(17) 
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If we define e as 

then, Eqs. (10), (13) and (14) assume the form: 

dE =V(T- D) 
dt 

d 1 =( L - cos 'Y) . 
£ dt v 

dh v . e- = s1n 'Y 
dt 

(18) 

(19) 

(20) 

(21) 

(22) 

To summarize, it was shown in the present section that it is possible to introduce a parameter E 

naturally into the equations of motion (Eqs. (1) - (3)) by first introducing a set of arbitrary positive 

quantities S (see Eq. (7)) to scale the variables of interest, and then by imposing/our conditions (Eqs. 

(15) - (18)) on these quantities so that the resulting nondimensional equations assume the traditional 

singular perturbation form (Eqs. (20) - (22)). Note that only one of the arbitrary quantities in S is 

uniquely determined at this point. Combining Eqs. (17) and (18) it follows that 

L 0 =mg.? (23) 

Specifying a particular nondimensional form 

As shown in the previous section, only four conditions are imposed on the seven elements of the 

set s in transforming the equations of motion to the traditional singular perturbation format. This means 

that we can specify three of the elements of S to fit our convenience and then determine the remaining 

four using Eqs. (15)-(18). The first conclusion therefore is that in general the value of e is quite 

arbitrary. For example, by choosing ho , V 0 and to in two different ways e can be made arbitrarily. small 

or large. The separability of the time scales on the other hand is a property of the system and not of the 

particular nondimensional form of the equations of motion that is chosen. We therefore expect that if the 
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system does indeed have this property it will exhibit it no matter ~hat the actual value of£ is. This is 

precisely the reason for the success of so many singular perturbation treatments of the past in which £ 

was introduced artificially and its nominal value was said to be fixed at one. 

Although there is no unique way of specifying a particular nondimensional form of the equations of 

motion, we will now argue that there is one that results in additional physical insight. First, in order to 

maintain the relationship in Eq. (4) in the transformed variables, afifth condition is introduced 

E 0 = gh 0 (24) 

which together with Eq. (18) gives 

Using Eqs. (16) and (24) in Eq. (19) it follows that 

To 
£= mg 

(25) 

(26) 

It is now evident that only two among the seven elements of the set S need to be s~cified. Then, the 

five conditions, Eqs. (15)- (18) and (24), uniquely detennine the remaining elements. 

Eq. (26) implies that e depends only on T0 and is independent of the value of the remaining 

elements of S. The question therefore arises naturally as to whether there is a particular choice of To for 

which the resulting value of £ can be used as a strict criterion for the applicability of a singular 

perturbation analysis to Eqs. (20)-(22). The answer to this question is negative because, in a given time 

interval, it is the relative magnitudes of the three quantities 

dE dy <1:h 
dt , dt , dt 

and the boundary conditions of interest that determine the validity of a singular perturbation analysis. 

Specifically, for an aircraft to exhibit the well-known two-time-scale behavior in a given time interval, it 

is necessary that: 

dE ( ( dy 
dt dt 

15 

(27) 



dE ( ( dh 
dt dt 

(28) 

in' that intetval, and that the required change in E is sufficiently large to permit the boundary layer 

responses in h and 'Y to reach their equilibrium values. Hence, the very question is whether or not the net 

change in E during the boundary layer response is sufficiently small to permit approximating E as a 

constant (to zero order in e) in the boundary layer analysis. In addition, we are interested in knowing if 

this two-time-scale property is a consequence of the inherent dynamics of the aircraft, and not a 

consequence of using a high gain control solution for L Therefore~ we assume that the L resulting from 

the boundary layer analysis is of order one in Eq. (21). 

Under the above assumptions, there is a choice for T0 for which the value of e can be used as a 

measure for the existence of time intervals in which two-time-scale behavior is exhibited. If the choice 

ofT 0 is such that dE/dt is at most of the same order of magnitude as edy/dt and edh/dt, then, a value of 

e sufficiently less than one indicates the possible existence of such intervals. By suitably choosing V0 we 

can restrict V to be of order one. Then, for the choice 

To= (T- D)max (29) 

dE/dt is of order one, and both dy/dt and dh/dt are of order 1/e. For this choice of T0 , e is given by 

(T- D) max 
e=----mg (30) 

and is equal to the maximum longitudinal loading factor of the vehicle. 

Note that Eq. (30) actually represents an upper bound for£ since it is obtained by selecting the 

flight condition where the difference between thrust and drag, T-D, reaches a maximum. The logical 

choice for V 0 is the speed at this flight condition. One can also adopt the viewpoint of evaluating £ along 

the energy climb path that results from a reduced solution. The value of£ as a function of E can then be 

used as a measure to distinguish energy levels where a singular perturbation analysis may be appropriate 

from other levels where it may not be valid. 

It is interesting to note that a good deal can be anticipated from Eq. (30) for conventional aircraft 

without exact numerical evaluation: (T-D)max divided by mg is approximately equal to sin'Ymax where 
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'Ymax is the maximum climb angle that can be maintained at a given energy level without loss of airspeed. 

It follows therefore that f<1 for all such aircraft types. For transport aircraft sinYmax is approximately 

0.1, while for fighter aircraft sinYmax is approximately 0.8. This suggests that the forced singular 

perturbation analysis used in the past studies of optimal aircraft trajectories is valid for most conventional 

subsonic and supersonic aircraft. 

Eq. (30) can also be used to estimate f in terms of the quantities (T/mg)max and (LID)max for a given 

aircraft. Since L is less than or equal to mg along the energy climb path, it follows that a second upper 

bound for f is given by 

f<fun 

where fun is defined as 

fuB =[(T I mg) - 1/ (L/D) J 
max max 

Estimates of fun are given in Table 1. 

Table 1 

Estimation of fun based on Eq. (32) 

Parameter Transports Fighters 

********************************************** 
(T I mg) 

max 
(L/D)max 

fuB 

0.25 

13-15 

0. 17-0. 18 

0.90 

4-7 

0. 65 -0.76 

Hypersonic Regime 

(31) 

(32) 

Consider the flight of a hypersonic ~d possibly transatmospheric vehicle, viewed as a point mass, 

in a vertical plane over a spherical non-rotating Earth. The equations governing such flight can be 

reduced to a four-state model in E, m, y and radial distance from the center of the Earth, r. The equations 

are: 

dE V(TtT- D) 
dt = m (33) 
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dm f - =- (r V '") dt ' ' 'I 

dy =(l)-(J.I.cos y)+(v cosY) 
dt mV vr2 r 

dr v· -= Sln y 
dt 

(34) 

(35) 

(36) 

where T is the maximum available thrust at a given speed and altitude. The control variables are L and 1'\, 

where O<r)<l is introduced as a nondimensional throttling variable. E and V are now related by 

. v2 J.1 
E= 2- r (37) 

Note again that in earlier singular perturbation studies9, the traditional way of writing down Eqs. 

(35) and (36) was: 

dy =(l)-(Jlcosy) (Vcosy) 
£ dt mV vr2 + r 

dr 
£- =V sin y 

dt 

(38) 

(39) 

that is, by artificially introducing a parameter e and then stating that its nominal value was equal to 1. 

Again, in order to avoid this artificial introduction, Eqs. (38) and (39) will serve only as a guide for the 

natural introduction of e. 

Nondimensional Form 

In order to put Eqs. (33) through (36) in nondimensional form we now define the set of arbitrary 

positive quantities 

and impose the restrictions that: 

to has dimensions of time 

Eo has dimensions of energy per unit mass 

mo has dimensions of mass 

r0 has dimensions of lenght 

(40) 
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V 0 has dimensions of speed 

f0 has dimensions of mass per unit time 

T0, D0, and Lo have dimensions of force 

Using the elements of S to deftne the nondimensional quantities: 

t - _t • E- l · m- .1!L · r- .L. · V= l - to , -Eo , - m o , - r o , V o 

f T D L f - -· T-- · D- -· L=--f' -T' -D ~ L 
0 0 0 0 

Eqs. (33) through (36) can be put into the following nondimensional form: 

dE_ V(Tt TT0 - DD0)( t 0 V 0 ) 

dt - m Eomo 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

In order to put Eqs. (43) through (46) in the traditional singular perturbation format, we multiply both 

sides of Eqs. (45) and (46) by (r0 I V0 to). This results in.: 

( ;o0tJ:i = (m; )( ~::~)-c~:n( V~r J+ ( V c~s y) 
(47) 

( 
ro }Ar_ . 

V o to )d t = V sin 'Y (48) 

Comparing the set of Eqs. (43), (44), (47) and (48) with the set (33), (34), (38) and (39) results in the 

following five conditions on the elements of the set S: 

To=Do (49) 
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By defming 

Eqs. (43), (44), (47) and (48) assume the traditional singular perturbation form: 

dE_ V(Tl T- D) 
dt- m 

dm f d t = - ( r, V, 11) 

e d1 = (_L) _ (cos 1) + ( V cos 1) 
dt mV vr2 r 

dr v . e- = stn 1 
dt 

Specifying a particular nondimensional form 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

For the hypersonic case only five conditions on the nine elements of the set S are needed in order 

to put the equations of motion in the traditional singular perturbation format. Thus, we can specify four 

of the elements of S to fit our convenience and then determine the remaining five using Eqs. (49)- (53). 

Again, in order to maintain the relationship in Eq. (37) in the transformed variables, a sixth 

condition is introduced 
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which together with Eq. (53) gives 

Jl 
Eo=r 

0 
(59) 

(60) 

If we think of r0 as a radial distance, then Eq. (53) restricts V 0 to be the circular orbital speed at r0• 

Similarly, Eq. (52) restricts L0 to be the centrifugal force that a point mass 1llo would experience in a 

circular orbit at r0• Using Eqs. (50), (53), and (59) we haye 

Torl 
E=-

Jlmo (61) 

Hence, by picking three among the nine elements of the set S arbitrarily, the six conditions Eqs. ( 49) -

(53), and (59) uniquely determine the remaining elements. 

The question arises again as to whether there is a particular choice for these three elements for which 

the resulting value of£ can be used as a measure for the applicability of a singular perturbation analysis 

t~ Eqs. (55)-(58). The right-hand-side of Eqs. (55) and (58) can be made of the same order of 

magnitude by choosing the ratio T0 /mo as 

_!o_ _(TIT- D) 
m - m 0 . max (62) 

Choosing r0 as the sea level radius r5L, r and V are of order one. Also, for these choices of T0 /mo and 

r0, dE/dt is of order one, and both dy/dt and dr/dt are of order 1/E. By choosing f0 as the value off at 

the flight condition where the ratio (TIT- D)/m is a maximum, dm/dt can also be made of order one. 

With the above choices of T0 /mo, r0 , and f0 

£ = ( riL )(nT; D)max (63) 

The right-hand-side ofEq. (63) is. the maximum longitudinal loading factor of the vehicle in units of 

sea-level g's, and actually represents an upper bound forE since it is obtained by selecting the flight 

condition where (TIT- D)/m reaches a maximum. One can again adopt the viewpoint of evaluating£ along 

the energy climb path that results from the reduced solution. The value of£ as a function of E can then be 
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used as a measure to distinguish energy levels where a singular penurbation analysis may be 

appropriate, from other levels where it may not be valid. 

A hypersonic flight vehicle employing an airbreathing propulsion system and sized for acceleration 

to orbital velocity necessarily employs a multimode propulsion system. An example might include 

turbojet, ramjet, scramjet, and rocket modes. Each mode of propulsion can be characterized by a 

corresponding e. Current models of this vehicle type exhibit large values of excess thrust at low 

hypersonic Mach numbers. In fact, Eq. (63) will produce an e that is greater than one over such flight 

phases. Experience with hypersonic vehicle dynamics reponed in Ref. 10 indeed suggests that the 

assumed time scale separation is not valid in these phases. However, over the majority of the trajectory, 

Eq. (63) results inane that is less than one just as in the Flat Eanh, Subsonic-Supersonic case. 

Numerical validation 

It was shown in the preceding sections that for aircraft energy climbs that take place in a venical 

plane, the singular perturbation parameter e can always be identified as the maximum longitudinal 

loading factor of the vehicle, measured in units of sea-level g's. In order to further explore the 

implications of this result, numerical evaluations of e will be presented in this section for several types of 

vehicles. 

The idea that the authors would like to introduce at this point is that in general, for a given aircraft, it 

may be sufficient to evaluate an upper bound fore, valid for the entire envelope, in order to get a hint 

for the possible two-time-scale behavior of the aircraft in questiono If the resulting value of this upper 

bound is less than one, then, two-time-scale behavior is implied for any energy climb that the aircraft is 

allowed to perform. If however the resulting value of the upper bound turns out to be greater than one, 

then no conclusion can be drawn. The way to proceed in this latter case would be to evaluate a less 

conservative upper bound for e and apply the same reasoning. As it turns out, the less conservative the 

upper bound, the more work one has to perform in order to evaluate it. If all the upper bounds fore, 

evaluated for the entire envelope fail to yield any conclusions, the reasonable thing to do next is to 

evaluate e as a function of the energy E using all the assumptions made in the evaluation of reduced 
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solutions in aircraft energy climbs (y=O,L=mg etc.). By evaluating in this sense, and at each energy level 

the absolute maximum value of the longitudinal loading factor we obtain a curve C on the e-E plane. The 

interesting properties of this curve are that for a given aircraft it need only be constructed once and that it 

lies above all other curves that may be evaluated similarly, but along the reduced solutions corresponding 

to specific problems. In other words, points on cu~e C represent upper bounds for e at the 

corresponding energy levels. The portions therefore of curve C where £ is less than one immediately 

show the energy levels where two-time-scale behavior (boundary layer transitions along constant E) can 

be expected. If there are any portions of curve C where e is greater than one, then no conclusions can be 

drawn as to the possible two-time-scale behavior at the corresponding energy levels. In the latter case 

one has again to evaluate a less conservative upper bound fore at these energy levels. Such less and less 

conservative upper bounds would of course eventually lead to the maximum value of the longitudinal 

loading factor evaluated as a function of E along the reduced solution corresponding to a specific 

problem. 

It should be clear now that if we are interested in the possible two-time-scale behavior of a vehicle 

along a particular trajectory (corresponding to a specific problem) then the least conservative upper 

bound fore would be the maximum longitudinal loading factor encountered along that (exact) trajectory. 

Calculating this upper bound would not be very useful since it would require the actual computation of 

the trajectory first. The idea presented above suggests that there may be a hope of avoiding this by 

starting with a more conservative upper bound, and proceeding with less and less conservative upper 

bounds. 

In order to demonstrate the above ideas in practice, numerical evaluations of e are presented in Figs. 

1-8 for four types of vehicles. For each type there is one plot showing the variation of the maximum 

longitudinal loading factor of the vehicle with energy E, and one or more plots showing the variation of 

the longitudinal loading factor with E along the reduced solution corresponding to a specific optimization 

problem. 

Figs. 1 and 2 show the results for an F-8 fighter I o. The two optimization problems considered for 

this case were minimum time to a specified energy and minimum time to a specified downrange position. 
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The reduced solutions corresponding to these problems are obtained by maximizing (with respect to V) 

at each energy level the quantities (T-D)V for the former and [(T-D)V]/{V 0-V) for the latter, where V0 is 

the maximum possible cruising speed of the aircraft and D is calcuiated at L=mg. Fig. 1 shows the actual 

paths in the envelope corresponding to these reduced solutions and to the maximum longitudinal loading 

factor of F-8. Fig. 2 shows the results for £ evaluated along these climb paths. Since the maximum 

longitudinal loading factor of F-8 stays always below one in Fig. 2, it is reasonable to assume that for a 

any optimization problem, if the required energy gain is sufficient, the transitions to the reduced solution 

will take place at nearly constant E, exhibiting the well known boundary layer structure. 

Figs. 3 and 4 show similar results for an F-15 fighterll. The two optimization problems considered 

in this case were again minimum time to a specified energy and minimum time to a specified downrange 

position. A maximum dynamic pressure constraint of 1500 lbfper square feet is imposed on the climb 

paths for this case. Due to the large thrust to weight ratio ofF-15, the£ levels in Fig. 4 are much higher 

than the ones corresponding to F-8 (compare with Fig. 2). In particular there is a small region at low 

energy where £ exceeds one, implying that two time scale separation at these energy levels may not be 

appropriate for the above two optimization problems. 

Figs. 5 and 6 show the results for a conventional transport12. In this case however, the two 

optimization problems considered were minimum fuel .to a specified energy and minimum fuel to a 

specified downrange position. The reduced solutions corresponding to these problems are obtained by 

maximizing (with respect to V and 11) at each energy level the quantities [(T-D)V]/f for the former and 

[ (T-D) V]/(fV 0-f0 V) for the latter, where V 0 is the most fuel efficient cruising speed of the aircraft and f0 

is the fuel consumption rate at this cruising flight condition 7. It is interesting to note the very low levels 

of£ in Fig. 6 (compare with Figs. 2 and 4), suggesting two time scale behavior for the entire envelope. 

Finally, Figs. 7 and 8 show the results for a hypersonic vehicle model, used by NASA and called 

"the Langley Accelerator''13. The only optimization problem considered in this case was minimum fuel to 

a specified energy, the reduced solution corresponding to which is obtained by maximizing the quantity 

[(11T-D)V)/{mf) at each energy level (mass is not constant in this case). A maximum dynamic pressure 

constraint of 2000 lbf per square feet is imposed on the climb paths for this case. This particular vehicle 
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model employs a multimode propulsion system, sized for acceleration to orbital velocity and consisting 

of turbojet, ramjet, scramjet, and rocket cycles. Note that Figs. 7 and 8 correspond to a nonoptimal 

switching between the different propulsion cycles. Specifically,- we first assume allowable operating 

ranges for the different propulsion cycles (expressed as bounds on the Mach number), and then, at each 

energy level we pick the cycle that maximizes HllT-D)V]/(mf) and (llT-D)/m. The switching therefore 

from one cycle of propulsion to the other is abrupt, with no overlap. The actual points of cycle 

transitions are also shown in the figures. Note also that in Fig. 8 e is plotted against the speeds at which 

the constant energy contours intersect the zero altitude axis. The reason for this is that E is negative in 

this case. The actual value of e is likely to be much lower if a practical method for cycle transition is 

employed. Note finally that as the energy levels get higher and higher we approach the boundary of the 

envelope and e goes to zero. This is basically a characteristic of all aircraft (see also Figs. 2, 4, and 6) 

suggesting that the transitions to the reduced solution can be treated as boundary layers more succesfully 

at high energy levels than at low ones. The physical explanation for this comes from the behavior of the 

difference between the thrust T and the drag D. At low energy levels both the speed and altitude are low, 

implying that the thrust is high and the drag is low, so that T-D is high and can be used to change the 

energy during a transition. At high energy levels on the other hand either the speed or the altitude or both 

are high, implying that the difference T-D is low. Thus, transitions to the reduced solution at high energy 

levels can be expected to occur more or less by interchanging kinetic for potential energy (or vice versa), 

with the total energy staying nearly constant. 

Conclusions 

For both the conventional (subsonic-supersonic, flat Earth) and the transatmospheric (hypersonic, 

spherical Earth) flight regimes a systematic procedure was introduced to identify naturally a singular 

perturbation parameter e in the differential equations of motion. The procedure consists of using a set of 

arbitrary scaling constants to nondimensionalize all the variables of interest and then applying a set of 

conditions on these constants to put the resulting nondimensional equations of motion in the traditional 

singular perturbation format. Because the number of conditions is less than the number of constants, the 
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scaling constants cannot be uniquely specified. Thus, the resulting expression for e is in general quite 

arbitrary. There is, however, a particular choice of the scaling constants for which the values of the 

resulting e can serve as a hint for a possible two-time-scale behavior of the aircraft in question. The 

primary result of the paper is the demonstration that for this "useful" choice of the scaling constants the 

resulting e is always equal to the maximum longitudinal loading factor of the vehicle, measured in units 

of g's. Two time scale behavior is suggested according to whether e is less than one or not. Based on 

this result it is straightforward to see why singular perturbation methods applied to aircraft performance 

optimization problems have worked so well in the past. The maximum longitudinal loading factors 

associated with the majority of conventional aircraft are either less than one because the aircraft lack very 

high thrusting capabilities, or because they are restricted to be so for other reasons (structural, 

comforting, etc.). A few notable exceptions do occur for some modem fighters. This directly suggests 

that.most conventional aircraft can be expected to exhibit two-time-scale behavior for almost any energy 

climb that they are allowed to perform. This then appears to be the reason for the past success of so 

many singular perturbation treatments of aircraft energy climbs. The implication for transatmospheric 

vehicles is rather direct. If we consider such a vehicle as a passenger transport, then, in order to assure 

passenger comfort it is only natural to impose as a constraint a maximum longitudinal loading factor for 

the vehicle that is less than one. Our work suggests that such a constraint would imply two-time-scale 

behavior for any type of energy climb that such a vehicle would be allowed to perform. Therefore, 

singular perturbation formulations of such maneuvers still. appear to be promising, even with all ·the 

added complexities that the flight regimes of such vehicles can entail. 
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