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SUMMARY 

As feature sizes on integrated circuits (computer chips) continue to decrease in 

accordance with Moore’s Law, new technologies are needed to maintain pace. Next-

generation lithographic techniques, including extreme ultraviolet lithography (EUVL), are 

expected to replace current lithography processes in the coming years. This new technique 

will require new tools and materials in order to be realized. In particular, new photoresists 

will need to be developed that can be patterned at the small feature sizes expected to be 

used with these new techniques. This thesis will explore both negative and positive-tone 

crosslinked molecular resists as materials capable of sub-50nm imaging. 

Block copolymers have also emerged as a means of extending the usefulness of 

current lithographic processes. The last portion of this thesis will explore underlayers 

designed to direct the self-assembly of block copolymers into lithographically-useful 

features. The underlayers presented can be directly patterned using various radiation 

sources, offering a more direct route to achieving self-assembly of block copolymers. 

 

 

 

 



 

 

1 

CHAPTER 1. INTRODUCTION 

1.1 Photolithography techniques 

Photolithography is one of the steps involved in the manufacture of integrated circuits 

(computer chips). Advancements in this technology have been one of the major driving 

forces for simultaneously obtaining faster computer chips and steadily decreasing the cost 

required to create each computer chip, a trend known as Moore’s Law.1 The lithography 

process is shown in Figure 1.1, and it involves growing a thin film of silicon dioxide on 

top of a silicon wafer, followed by coating a material known as a photoresist. The 

photoresist is either inherently sensitive to radiation or is formulated with a photosensitive 

compound that generates a reactive species (often an acid) upon irradiation. During the 

exposure step, selected areas of the photoresist are irradiated with ultraviolet light through 

a mask, which generates a reactive species, and then a post-exposure bake (PEB) is 

typically performed to allow reactions to occur that affect the solubility of the photoresist 

in the exposed regions. The wafer is then developed in a chosen solvent, and one of two 

patterning “tones” is achieved. In a positive tone material, the exposed regions become 

soluble in the developer, while the unexposed regions remain insoluble on the wafer. In a 

negative tone material, the exposed regions of the resist become insoluble in the developer 

solvent while the unexposed regions are washed away during development. After 

development and drying, an etch step is performed which transfers the pattern defined in 

the photoresist into the silicon substrate. It is the job of the photoresist to protect the silicon 

directly underneath it from the etch step so that only areas of the wafer that aren’t covered 



 

 

2 

in photoresist are etched. After this etch step, the photoresist is removed and the litho-etch 

process is repeated as many times as necessary to build desired device architectures. 

 

Figure 1.1 Overview of the photolithography process used to fabricate ICs. 

The minimum feature size of the lithography process is governed by the resolution (R) 

formula in (Equation 1.1, where k is a process dependent constant, λ is the wavelength of 

light used, and NA is the numerical aperture of the system. In order to decrease the critical 

dimension of features, the wavelength of light used has decreased over the years. 

Lithography systems have evolved from 436 nm light to 193 nm. Eventually, 157 nm 

lithography was researched as a next-generation lithography technique, but it was difficult 

to find suitable materials for this process since many resists and lens materials strongly 

absorb this wavelength of light, and so it was abandoned. Thus, the industry extended the 

use of 193 nm lithography. In order to do this, the numerical aperture of the 193 nm systems 

was increased by using high-purity water, which increased the ultimate achievable 
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resolution in accordance with Equation 1.1. Water has a higher refractive index (n) than 

air, which leads to an increase in the numerical aperture (NA), as shown in Equation 1.2. 

The use of water as an immersion liquid has extended the use of 193nm immersion 

lithography to the 22nm node.2 

R(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) = 𝑘
λ

NA
    (Equation 1.1) 

NA = nsinθ  (Equation 1.2) 

Eventually, without the use of toxic high refractive index materials, the resolution of 193 

nm immersion lithography will be limited by diffraction, even when using double 

patterning techniques.3 Electron beam lithography has demonstrated features as small as 2 

nm, but in this technique, each feature must be written individually.4 Thus, the time it takes 

to pattern features would be prohibitively slow on an industrial scale and use of e-beam 

lithography is generally restricted to the creation of the masks used for optical lithography. 

Efforts are currently underway to develop multi-beam electron lithography systems, but 

these are still in the early stages of development.5 

Extreme ultraviolet lithography (EUVL) has been proposed as the next extension of optical 

lithography. This lithography technique uses a wavelength of 13.5 nm and is a significant 

departure from previous lithography approaches. Since all matter absorbs this wavelength 

of light, the optics must be enclosed in a vacuum. Due to the high energy of the photons 

(92 eV), the photon-resist interaction is much different in EUVL than in previous 

generations. In previous generations, such as 193 nm lithography, the ultraviolet light 
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caused excitation of electrons. In EUVL, photons have sufficient energy to directly break 

molecular bonds, which leads to ionization events that generate secondary electrons. These 

electrons then go on to generate additional ionization events and eventually generate 

photoacid.6 Several groups are actively studying this phenomenon, and a complete 

discussion is beyond the scope of this thesis. 

1.2 Chemically-amplified resists (CARs) 

In order to realize EUVL in a high-volume manufacturing setting, new photoresists are 

needed to access the smaller feature sizes desired. Traditionally, a polymeric material has 

been used as the photoresist, which is typically a phenol protected with an acid-labile 

protecting group. In this imaging scheme, shown in Figure 1.2, the photoacid will deprotect 

the phenolic polymer, which is then capable of being deprotonated by 0.26N TMAH, the 

standard industry developer, transforming it into an aqueous-soluble salt. The advantage 

of this chemistry is that, at the end of each deprotection reaction, the photoacid is 

regenerated. In this manner, a single photoacid can catalyze many deprotection reactions, 

giving rise to the term “chemical amplification.” The number of reactions catalyzed by 

each molecule of photoacid is termed the “catalytic chain length,” and values between 

approximately 10 to 1,100 have been reported, though this number will vary for each 

unique set of processing conditions and materials.7,8,9 By using such a chemistry paradigm, 

the doses required to pattern are usually much lower than non-chemically amplified resists 

(non-CARs), since non-CARs require a one photon for every deprotection reaction to 

occur.10  
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Figure 1.2 Overview of the imaging mechanism of an example chemically-amplified 

resist (CAR). 

These so-called chemically-amplified resists (CARs) have been the dominant form of 

photoresists for many years.11 However, as feature sizes continue to decrease, many 

problems will likely limit the usefulness of polymeric CARs. Several of these issues, 

including swelling, pattern collapse, and LER may be improved or eliminated by 

employing the use of smaller photoresist materials, called molecular resists.12  
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Figure 1.3 The RLS trade-off diagram. 

In particular, the phenomenon known as the RLS-tradeoff has become increasingly 

problematic in recent years as feature sizes continue to scale well below 50nm. This is the 

interdependent relationship between three photoresist properties: resolution, sensitivity, 

and line edge roughness (LER).13 At a basic level, the RLS trade-off states that one of the 

three properties can be improved at the expense of one or two of the other properties. For 

example, the sensitivity of a resist may be improved, but the resist may be limited in the 

ultimate resolution it achieves and its LER may increase. Various groups have researched 

methods to overcome this barrier to simultaneously improve all three properties, but little 

headway has been made. 

1.2.1 Molecular Resists 



 

 

7 

Molecular resists offer many potential advantages over polymeric resists. Their smaller 

size will likely allow their use to be extended to smaller patterning nodes versus polymeric 

resists.12 Synthesis of polymers always gives rise to a compositional dispersity, so it is quite 

difficult to produce the same composition from batch to batch. In contrast, molecular resists 

can be synthesized as truly monodisperse systems, such that each molecule in a resist film 

is structurally identical. Molecular resists were studied as early as the mid-1990s, based on 

calixarene cores and patterned with 365nm UV light.14 Over the years, several additional 

groups began researching these materials for use in high-resolution lithography, and some 

of the resists that were developed are shown in Figure 1.4.15 

 

Figure 1.4 Examples of molecular resists reported in the literature.14,16,17,18 

As feature sizes continue to decrease, pattern collapse during post-development drying 

becomes increasingly worse. Various methods have been explored by many academic and 

industry research groups, including supercritical CO2 development, dry development rinse 

materials and processes (DDRM and DDRP), as well as surfactant-treated water, and 

reactive rinses.19,20,21,22 Each of these materials and processes adds increased complexity 
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and cost to the nanofabrication process, which will drive up costs associated with 

fabricating computer chips. 

A simpler method is to design a material that has some inherent resistance to pattern 

collapse, so that more expensive and time-consuming methods can be avoided. One such 

route is to use crosslinked resists. Polymeric versions of these resists have been reported in 

the literature, but these do not lend themselves to patterning at smaller feature sizes due to 

their tendency to swell during development. This is because the polymers reach a gelation 

point well before a high crosslink density is achieved, which results in a very loosely-

crosslinked network, which imbibes developer. By using molecular resists, which require 

a much higher extent of conversion (crosslinking) before gelling, highly-crosslinked 

networks can be achieved. Thus, negative-tone crosslinked resists based on acid-catalyzed 

epoxide-homopolymerization were developed to provide some inherent resistance to 

pattern collapse in the photoresist itself.23 Several negative-tone resists were developed, 

and it was demonstrated that one of them, TPOE-4Ep, was able to withstand roughly twice 

the capillary forces during post-development drying as a non-crosslinked positive tone 

resist.24 Over the years, the patterning of TPOE-4Ep was optimized, and it eventually 

managed to resolve sub-20nm features in MIBK development when using EUVL.23 

1.3 Block copolymers 

Instead of developing new resists for EUV lithography, several groups have turned their 

attention to block copolymers (BCPs) as a means to further extend the usefulness of 193-

immersion lithography. BCPs are materials where two individual homopolymers are 
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covalently linked to one another, as shown in Figure 1.5. Due to this covalent bond, the 

individual polymers cannot undergo complete macro-phase separation and instead undergo 

micro-phase separation where individual domains of each of the two blocks are formed. 

Depending on the relative volume fraction of the two blocks, a variety of morphologies is 

possible, including lamellae, cylinder, spheres, and gyroids.25 Generally, lamellae are the 

most studied morphology for lithographic processes, except for cylinders, which are useful 

for printing bit-patterned media. The lamellar morphology is formed when the relative 

volume fraction between the two blocks is roughly 50:50.  

Each of the two blocks in the BCP are referred to as domains, and the size of each of these 

domains is determined by the degree of polymerization of the block, N. BCPs are 

comprised of a non-polar block and a polar block, which can increase the thermodynamic 

driving force towards phase separation. The most commonly-researched BCP is 

poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) due to the ease of orienting the 

BCP perpendicular to the substrate. However, the thermodynamic driving force for phase 

separation of this BCP is quite low. In order to phase separate a BCP, the product of χN 

needs to be greater than 10.5, where χ is the Flory-Huggins interaction parameter. Due to 

the low χ of PS-b-PMMA, it is limited to a roughly 22 nm pitch.26 In order to design BCPs 

that can achieve much smaller feature sizes and still phase separate them (i.e., have 

XN>10.5), χ must be increased. This has given rise to the pursuit of materials with much 

higher χ values than PS-b-PMMA, which has a χ value of approximates 0.037, in so-called 

high-χ BCPs. Several BCPs have been developed that can achieve sub-10nm lines.27,28 
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Figure 1.5. Diagram illustrating the variety of morphologies that BCPs can adopt, 

depending on their volume fraction.29 

In order to phase separate BCPs, a driving force is necessary to perturb the BCP. There are 

multiple methods available to phase separate BCPs, including thermal annealing, solvent 

annealing, and electric fields.30 Thermal annealing, where a film of the block copolymer is 

simply baked, is the most popular method employed to drive phase separation because it is 

the most feasible technique to be incorporated into a high-volume manufacturing setting.  
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By phase separating a BCP with this fraction on a neutral underlayer, a fingerprint pattern 

is formed, which is not lithographically-useful. In order to make a lithographically-useful 

BCP pattern, some form of guidance is needed. Directed self-assembly (DSA) is the means 

by which long-range order of BCPs is achieved. There are two very general methods to 

achieve such long-range order. The first is called graphoepitaxy, which uses traditional 

lithographic techniques to generate a relief pattern at a relaxed pitch in order to guide the 

self-assembly of a BCP. The second method is called chemoepitaxy, which uses chemical 

guiding patterns which preferentially wet one of the two blocks to direct the self-assembly 

of a BCP. 
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CHAPTER 2. AQUEOUS BASE SOLUBLE RESIST: TPOE-3EP 

2.1 Introduction 

As feature sizes of transistors continue to decrease according to Moore’s Law, 

issues such as acid diffusion, line edge roughness (LER), and pattern collapse become 

increasingly problematic in conventional photoresists. Negative-tone, molecular glass 

resists offer potential solutions to these problems by crosslinking to form highly 

crosslinked networks, which have been shown to have superior resistance to collapse from 

capillary forces when compared to non-crosslinked polymeric resists.1 Molecular resists 

are amorphous and do not crystallize, which allows them to form excellent films.2 The 

negative-tone molecular glass resist presented here are designed to crosslink through acid-

catalyzed cationic polymerization of epoxides. During the polymerization, the generated 

acid is attached to the growing polymer network, and this covalent attachment of photoacid 

could help reduce photoacid diffusion outside the exposed region of the resists, leading to 

a reduction in image blurring. Development of the resists in aqueous base is favored 

because of cost and environmental concerns with organic solvent development. This 

prompted the design of a molecular glass resist that can be developed in aqueous base. 
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Figure 2.1 Structures of TPOE-4Ep and TPOE-3Ep. 

TPOE-3Ep (or simply 3Ep) is an aqueous base developable negative tone resist that 

can be developed in both 0.26N TMAH and organic solvents. As shown in Figure 2.1, this 

molecule is designed to be a base-soluble analog to a previously-reported resist, 4Ep, and 

so the two will be compared.3 The resist was designed to have a bulky core that provides 

etch resistance, to which crosslinkable epoxy groups are attached in order to provide 

negative tone behavior, and a base ionizable group, a phenol, to provide aqueous base 

solubility. 3Ep contains three glycidyl ether groups that can be protonated by a photoacid 

and crosslink during the post exposure bake (PEB). Crosslinking of the molecule provides 

a difference in molecular weight between exposed and unexposed regions of the resist, 

which allows it to be developed in organic solvents. It also contains a phenolic group, 

which renders the molecule soluble in standard aqueous base developers such 0.26 N 

tetramethylammonium hydroxide (TMAH). Thus, 3Ep allows for a direct comparison 

between the two development methods.  

In previous work on aqueous-base developable molecular resists, DPA-2Ep, which 

contains an ionizable carboxylic acid group, was evaluated and showed significant amounts 
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of swelling after development that lead to pattern failure.4 The swelling was likely a result 

of the formation of tetramethylammonium salts with un-reacted carboxylic acids inside the 

crosslinked network. Carboxylic acids are known to swell more than phenols in 

photoresists because carboxylic acids are more acidic than their phenolic counterparts and 

so will imbibe more of the basic developer.5,6 Phenols can also react with the protonated 

epoxides during the PEB, which could, in principle, mask hydroxyl groups in the network, 

further prevent imbibing of the alkaline developer, leading to a reduction in swelling. For 

these reasons, the aqueous-base developable resist to be discussed includes an ionizable 

phenolic site. 

2.2 Synthesis of TPOE-3Ep 

 

Figure 2.2 Synthesis of TPOE. 

TPOE: All reagents were ordered from either TCI America or Sigma Aldrich and used 

without further purification. 1,1,2,2-tetrakis(p-hydroxyphenyl)ethane (TPOE) in Figure 

2.2 was synthesized via the acid-catalyzed reaction between phenol and glyoxal, where 4 

molar equivalents of phenol (58 g), 1 eq glyoxal (7.53 g of 40% solution in water), and 

0.05 eq. (0.45 mL) 2-mercaptopriopionic acid (MPA) were added to 60 mL acetonitrile in 
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a 250-mL round bottom flask with stirring. 5.5 mL Concentrated sulfuric acid (H2SO4) 

was added dropwise to the solution. After addition, the flask was placed in an oil bath at 

70oC and stirred for 48 hours, during which time the solution turned a dark brown. After 

48 hours, the solution was cooled to room temperature and precipitated into 500 mL cold 

acetone where a solid formed, which was vacuum filtered and washed with water and 

acetone to produce a white solid. 1H NMR (300MHz, methanol-d4, δ): 6.99 ppm (d,8H), 

6.65 ppm (d, 8H), 4.55 ppm (s, 2H). MS (EI) m/z: [M]+: 199. Yield: 73%.

 

Figure 2.3 Synthesis scheme for TPOE-3Ep. 

TPOE-3OAllyl: Allyl groups were then introduced onto the core by reacting TPOE (15.2 

g) with 10.2 g (2.2 equivalents) of allyl bromide in the presence of 23.8 g (5 equivalents) 
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of potassium carbonate (K2CO3) and a catalytic amount (0.6 g) of 18-crown-6 ether in 750 

mL of methanol in a 1L round bottom flask. The reaction was heated to reflux for 12 hours, 

after which it was cooled to room temperature, ethyl acetate added, and washed once with 

dilute HCl solution. The organic layer was washed twice with deionized water and then 

dried over MgSO4. After concentrating solvents via rotary evaporator, the crude mixture 

was purified via silica gel chromatography to afford TPOE-3OAllyl (Figure 2.3). TPOE-

2OAllyl and TPOE-1OAllyl were also isolated during this column, and they will be 

discussed in a later chapter. 1H NMR (300MHz, acetone-d6, δ): 7.25 ppm (d, 6H), 7.15 

ppm (d, 2H), 6.65 ppm (d, 6H), 6.55 ppm (d, 2H), 5.97 ppm (m, 3H), 5.30 ppm (dd, 3H), 

5.16 ppm (dd, 3H), 4.82 ppm (s, 1H), 4.78 ppm (s, 1H), 4.37 ppm (d, 6H). Yield: 17%. 

TPOE-3OAllyl-TBS: The remaining phenol was protected by reacting 3.5 g of TPOE-

3OAllyl with 1.5 equivalents (1.5 g) of tert-butyldimethylsilylchloride (TBS-Cl) in the 

presence of 1.5 equivalents (1.37 g) of imidazole in 100 mL chloroform at room 

temperature for 6 hours. Afterwards, the solution was washed once with dilute HCl solution 

and twice with deionized water. The organic layer was dried over MgSO4 and solvents 

evaporated using a rotary evaporator. 1H NMR (300MHz, CDCl3, δ): 7.01 ppm (d, 6H), 

6.84 ppm (d, 2H), 6.65 ppm (d, 6H), 6.51 ppm (d, 2H), 5.97 ppm (m, 3H), 5.30 ppm (dd, 

3H), 5.20 ppm (dd, 3H), 4.50 ppm (s, 2H), 4.35 ppm (d, 6H), 0.88 ppm (s, 9H), 0.05 ppm 

(s, 6H). Yield: 95%. 

TPOE-3Ep-TBS: Alkenes were converted to epoxides by reacting 4.5 g (1 equivalent) of 

TPOE-3OAllyl-TBS (dissolved in ethyl acetate) with 26 g (12 equivalents) of Oxone 

(dissolved in water) and 11.5 g (36 equivalents) of NaHCO3 in the presence of a catalytic 

amount of acetone (10 mL). This procedure was repeated several times until conversion of 

alkenes to Oxone was complete, as monitored via 1H NMR. After conversion was 

complete, deionized water was added until all solids dissolved and additional ethyl acetate 
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was added. The organic layer was then washed twice with deionized water and then 

solvents evaporated via rotary evaporator. 1H NMR (300 MHz, CDCl3, δ): 7.01 ppm (d, 

6H), 6.84 ppm (d, 2H), 6.65 ppm (d, 6H), 6.52 ppm (d, 2H), 4.52 ppm (s, 2H), 4.09 ppm 

(dd, 3H), 3.75 (dd, 3H), 3.26 ppm (m, 3H), 2.80 ppm (dd, 3H), 2.68 ppm (dd, 3H), 0.88 

ppm (s, 9H), 0.05 ppm (s, 6H). Yield: 83%. 

TPOE-3Ep: Once conversion to epoxides was complete, the TBS group was removed by 

dissolving 1 equivalent of TPOE-3Ep-TBS in 50 mL DCM and adding 3 equivalents of 

tetrabutylammonium fluoride (TBAF) (1.0 M solution in THF), and stirring at room 

temperature for 4 hours. The solution was washed three times with water and the organic 

phase was dried over MgSO4 and then concentrated via rotary evaporator. This crude 

product was then purified via silica gel column chromatography, eluting first with hexanes 

to remove residual TBS-F, and then hexanes:ethyl acetate (9:1) to remove TBAF, to give 

TPOE-3Ep as a yellow solid. 1H NMR (300 MHz, CDCl3, δ): 7.01 ppm (d, 6H), 6.84 ppm 

(d, 2H), 6.65 ppm (d, 6H), 6.52 ppm (d, 2H), 4.75 ppm (s, 1H), 4.52 ppm (s, 2H), 4.09 ppm 

(dd, 3H), 3.75 (dd, 3H), 3.26 ppm (m, 3H), 2.80 ppm (dd, 3H), 2.68 ppm (dd, 3H). Yield: 

40%. 

2.3 Lithographic Evaluation 

Resists were dissolved in ethyl lactate with 5 mol% TPS-SbF6 and coated onto a 

silicon wafer to produce 45 nm-thick films on O2 plasma-cleaned silicon wafers. The films 

were subjected to a post-apply bake (PAB) of 90oC for 2 minutes, patterned using 248 nm 

DUV light exposure using an Oriel Instruments 500 W Hg-Xe arc lamp with 248 nm band-

pass filter, and then a PEB of 90oC for 1 minute. For solvent development, the exposed 

resists were developed with MIBK for 30 sec., followed by a rinse with isopropyl alcohol. 
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For aqueous base development, the resists were developed with AZ300 for 30 sec., 

followed by a rinse with deionized water. Resist film thicknesses were measured using an 

M-2000 Woolam Ellipsometer. The patterned wafers were imaged using a Carl Zeiss Ultra 

60 SEM with 2 keV accelerating voltage. EUV evaluation was performed using the Micro 

Exposure Tool (MET) at the Lawrence Berkeley National Lab Advanced Light Source. 

2.4 Comparison to TPOE-4Ep 

Although structurally similar to 4Ep, 3Ep has several differences that impact its 

patterning behavior. First, the phenol can be ionized, which renders the entire molecule 

soluble in TMAH during development. Secondly, replacement of a flexible glycidyl ether 

group with a phenol capable of hydrogen bonding has the effect of raising the glass 

transition temperature (Tg).
7,8 To measure glass transition temperature in these resists, films 

were coated and the thickness change with temperature was monitored using spectroscopic 

ellipsometry with a heated stage. When the system crosses the Tg, the slope changes as the 

coefficient of thermal expansion is different in the glass vs. the melt. As shown in Figure 

2.4, the Tg changes from 48°C in 4Ep to 63°C in 3Ep. An increase in Tg would most likely 

reduce the mobility of the growing polymer chains, which would lead to a slower 

propagation rate.9,10 In the imaging mechanism of epoxy-based negative- tone resists, it is 

theorized that a fast initiation and slow propagation is necessary for a polymerization to 

proceed in a controlled manner to produce networks with a high crosslink density.11 
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Figure 2.4 Ellipsometry data showing the differences in Tg values between TPOE-4Ep 

and TPOE-3Ep. 

Another major difference between 4Ep and 3Ep is that polymerization of 3Ep can 

proceed in one of two ways, as shown in Figure 2.5. The top mechanism is common to 

both routes and involves generation of a photoacid which then protonates an epoxide, 

creating a highly electrophilic oxonium species. This molecule can then react via epoxide-

epoxide crosslinking as shown in the middle route, which involves an unprotonated 

epoxide attack on the oxonium ion. It can also proceed via the bottom route, in which a 

phenol attacks the oxonium ion. It is likely that each reaction is occurring during the 

polymerization due to the high reactivity of the oxonium. Since the photoacid is only 

present in catalytic amounts, several steps are required for the oxonium to be regenerated 

after a successful phenol-epoxide reaction, and thus the rate of crosslinking is likely 

reduced. This reduction in rate could assist in reducing the amount of polymerization that 

occurs outside the exposed regions of the resist, reducing image blur and LER. 
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Figure 2.5 Potential crosslinking mechanisms that 3Ep can participate in. The bottom 

represents a new crosslinking route due to inclusion of a phenol. 

Taken together, these three differences make it difficult to precisely identify the source of 

changes in the patterning behavior of the two molecules, but it is likely caused by some 

combination of them. The EUV contrast curve in 

Figure 2.6 shows the impact of these differences on patterning. In MIBK 

development, 3Ep shows a much more gradual increase in NRT compared to 4Ep, 

attributed to the slower polymerization kinetics discussed previously. While 3Ep does have 

a lower contrast than 4Ep, it also exhibits a shift of E0 away from zero dose, which should 

help prevent crosslinking in the unexposed regions of the resist due to flare and reduce 

issues such as bridging. In the same figure, development of 3Ep in 0.26 N TMAH shows a 

shift of E0 away from zero dose as well, out to approximately 3 mJ/cm2. After the delay in 

film thickness response, 3Ep then shows a rapid rise in NRT to produce an insoluble film. 



 

 

23 

In both MIBK and TMAH development, solubility switching occurs though the molecular 

weight increase and network formation that occurs as the system cross-links. The reason 

for the better contrast behavior in TMAH development is that it also has a solubility 

switching that occurs as the phenol group reacts with epoxides. Thus, even though a low 

amount of epoxide homopolymerization may occur at low doses, a small amount of 

epoxide-phenol crosslinking at low doses can mask the phenol, resulting in a large increase 

in NRT. It is possible that even a single epoxide-phenol crosslink could render a molecule 

insoluble in TMAH. 

 

Figure 2.6 EUV contrast curves comparing TPOE-4Ep in MIBK development with TPOE-

3Ep in 0.26N TMAH and MIBK development. 
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Figure 2.7 SEM images comparing TPOE-3Ep (left) and TPOE-4Ep (right) in MIBK 

development. Esize and resolution (1:1 line:space) is shown in bottom right. 

Comparing SEM images of MIBK solvent developed 4Ep vs. 3Ep in Figure 2.7, 

3Ep forms better lines than 4Ep and also exhibits fewer particle defects. The defects in 4Ep 

are likely an effect of how close E0 is to zero dose, so that any flare can generate crosslinked 

species, leading to insoluble material. 3Ep also has a much higher Esize than 4Ep because of 

the different polymerization kinetics as discussed previously. Although higher-quality lines 

are formed in 3Ep, its higher Esize could be responsible for the better patterning performance 

due to reduction in LER with increasing dose.12 At a given dose, the 4Ep polymerization 

likely proceeds at a faster rate than 3Ep because 4Ep is not impeded by the epoxide- phenol 

crosslinking that 3Ep participates in so a higher dose is required to pattern comparable 

features in 3Ep. Previous work with 4Ep used additives to help control the polymerization 

rate and showed higher-quality lines than 3Ep.13 Thus, future work will be performed where 

these additives are included in 3Ep formulations. 

2.5 Comparison Between 0.26 N TMAH and MIBK Development of TPOE-3Ep 
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Figure 2.8 SEM images of TPOE-3Ep patterned on bare silicon wafers, showing lack of 

adhesion to the silicon substrate. 

 

Figure 2.9 SEM images of TPOE-3Ep showing that use of an underlayer corrected the 

adhesion issue. 

Although the contrast curve of TMAH-developed 3Ep shows a shift of E0 away 

from zero dose, SEM images of EUV-exposed wafers in Figure 2.8 show a serious issue 

with lack of adhesion of the resist to the silicon substrate. This is indicated by shifted line 

patterns and dots missing or displaced from the dot arrays. At low doses, there is 

insufficient energy to promote significant amounts of polymerization, and the polar TMAH 
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will wet the surface of the wafer, causing the resist film to lose adhesion to the wafer. This 

results in entire regions of patterns to be missing from the wafer. This adhesion issue 

prompted the use of an underlayer, which the polar TMAH developer would not 

preferentially wet. An epoxide-containing underlayer (GT1) that can be thermally 

crosslinked was developed in-house to coat the silicon wafers. As shown in Figure 2.9, use 

of the underlayer corrected the adhesion issues in this resist. 

 

Figure 2.10 SEM images that show the bridging that occurs in TMAH development at 

both low doses (left) and high doses (right).  

Although use of the underlayer improves the adhesion issue, TMAH development of 3Ep 

still has poorer performance than MIBK solvent development. Figure 2.10 shows that 

bridging occurs at low doses and that the formation of patterned lines is very poor because 

polymer networks are not yet fully-formed. The problem with bridging only becomes 

worse at high doses, as such significant bridging occurs that the unexposed regions are 

rendered almost completely filled-in. This behavior is attributed to the same polarity-

switching chemistry that results in the high contrast that is seen with TMAH development. 
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Molecules of 3Ep that are rendered insoluble at low doses because of masking of the phenol 

through epoxide-phenol crosslinking have not reached the gel point. Even a single epoxide-

phenol crosslink could potentially render the molecule insoluble in TMAH. This presents 

a serious problem in the dark regions of the photoresist, where flare can generate photoacid, 

which promotes epoxide-phenol crosslinking during the PEB, resulting in insolubilization 

of material in nominally unexposed regions. This insoluble material is likely the culprit 

behind the formation of bridges in the resist images. This result suggests that there is a 

balance between the number of ionizable -OH groups and epoxides that must be maintained 

to prevent phenol-epoxide insolubilization of the resist at low doses where a network has 

not been completely formed. A negative tone cross-linking resist that maintains basic 

solubility until network formation is almost complete (i.e. a high extent of conversion) is 

likely necessary to pattern high-quality features. The next chapter will discuss methods that 

were explored to attempt to create a resist that showed high network conversion at lower 

doses.  
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CHAPTER 3. STRUCTURAL EFFECTS ON THE PATTERNING 

PERFORMANCE OF AQUEOUS BASE SOLUBLE EPOXIDE 

MOLECULAR RESISTS 

3.1 Introduction 

As feature sizes of individual transistors continue to decrease on integrated circuits (ICs), 

issues such as pattern collapse and photoacid blur become increasingly problematic during 

the lithography step of IC fabrication. Typically, polymers are utilized as the photoresist, 

but they come with several drawbacks which can potentially be solved by molecular resists, 

which are much smaller and have a more well-defined composition than polymers.1 Several 

years ago, it was demonstrated that a negative-tone, epoxy-based, crosslinked molecular 

resist exhibited increased resistance to pattern collapse compared to a non-crosslinked 

resist.2 In epoxide-based resists, the photoacid is active for only a short time and is quickly 

consumed by epoxides, which then become the reactive centers as oxonium ions. This 

reactive center will eventually become diffusion-limited as the crosslinking proceeds, 

which can help control crosslinking outside of exposed regions.3 Much of the work on 

epoxy-based negative-tone molecular glass resists has concentrated upon resists that were 

not soluble in 0.26N TMAH, as these molecules do not possess an ionizable functional 

group such as a phenol or carboxylic acid.4,5,6 Thus, TPOE-3Ep was designed to contain a 

single phenol to provide an epoxy-based negative-tone molecular resist that is soluble in 

standard 0.26N TMAH developer.7  
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TPOE-3Ep exhibited good DUV and EUV sensitivity and contrast in TMAH development, 

however, when patterns were resolved, several problems emerged. The first issue observed 

was delamination of films during TMAH development which was not observed in MIBK 

development, and the material required an underlayer to eliminate delamination. At low 

doses, network formation was likely incomplete, which might have allowed the TMAH to 

wet and etch the resist/substrate interface. At these low doses, any formed network would 

have a very low crosslink density which would likely result in a material with very different 

mechanical properties than a fully crosslinked feature. Additionally, bridging occurred in 

the low-dose regions of the resist because the solubility transition for TMAH development 

occurs at lower doses than in MIBK. 

Due to these issues, there is a need to understand how various structural features of a resist 

affect its lithographic properties to enable the rational design of negative-tone materials. 

Ideally, a resist would maintain TMAH solubility until network formation is complete. 

TMAH solubility is primarily driven by epoxide-phenol reactions that consume the phenol, 

while development in organic solvent is primarily driven by molecular weight increases as 

the resist crosslinks.  

For TMAH development of aqueous soluble epoxide resists, ideally the solubility transition 

for TMAH would occur where network formation is almost complete, reducing the amount 

of microbridging observed, as well as potentially eliminating the delamination and need 

for an underlayer. Additionally, since highly-crosslinked features are desired, if lines are 

resolved in TMAH at doses well below doses where complete network formation occurs, 

the patterned features will likely not be as mechanically robust as those at higher doses. 
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Thus, it is important for us to identify a ratio of epoxides to phenols that results in similar 

solubility transitions in both organic solvent and in 0.26N TMAH developers.  

Using the TPOE core, this ratio can be varied and expect that increasing the number of 

phenols relative to the number of epoxides will increase the shift in E0 away from zero dose 

and reduce the amount of insoluble material in the low-dose regions of the resist, since 

increasing the number of phenols will likely increase the number of crosslinking events 

required to insolubilize the material in TMAH. Ideally, the insolubility transition in these 

materials will occur when network formation is almost complete, which would manifest 

itself with the TMAH and MIBK DUV contrast curves being similar. The proposed 

molecules to study are shown in Figure 3.1. 
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Figure 3.1 TPOE-Ep molecules to be synthesized and studied. Patterning data for TPOE-

3Ep has already been obtained. 

The molecules were chosen because data for TPOE-3Ep has already been gathered 

and this core allows us to study three different ratios: an excess number of phenols (TPOE-

1Ep), a balanced ratio of phenols and epoxides (TPOE-2Ep), and a case where there are 

more epoxides than phenols (TPOE-3Ep). Calixarenes are also a potential candidate to use 

as cores for this process but it is extremely difficult to isolate individual functionalities due 

to the large number of hydroxyl groups on the core, as well as the numerous conformations 

these molecules can adopt, which further complicates isolation of individual 

functionalities.8 

The goal is to design a molecule that has increased TMAH solubility at low extents of 

conversion, to avoid bridging in between patterned lines. To quickly screen molecules for 

their TMAH solubility, a calculation called logD is performed, the details of which are 

described elsewhere.9 Briefly, if a compound with a functional group that can be 

deprotonated by TMAH (such as a phenol or carboxylic acid), has a logD value of less than 

2, it is considered soluble in 0.26N TMAH. Figure 3.2 shows the logD values for the 

product of a single epoxide-phenol crosslink for TPOE-3Ep and TPOE-2Ep. After a single 

epoxide-phenol crosslinking reaction for TPOE-3Ep, the material becomes insoluble. For 

TPOE-2Ep, after a single epoxide-phenol crosslink, the product of that reaction is still quite 

soluble in 0.26N TMAH, and it would likely take several crosslinks to render insoluble. 

Thus, from a design standpoint, TPOE-2Ep and TPOE-1Ep are expected to have much 
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higher TMAH solubility than TPOE-3Ep, which should help reduce bridging in between 

patterned lines, assuming the materials are processed at identical conditions. 

 

Figure 3.2 Structures and logD values of products formed from a single epoxide-phenol 

reaction. The TPOE-3Ep is insoluble after only one crosslink, while the TPOE-2Ep 

remains soluble. 

3.2 Experimental 

3.2.1 Synthesis of resists 

    

TPOE-3Ep Single Crosslink Product  TPOE-2Ep Single Crosslink Product 

          logD = 6.15 (insoluble)                 logD = -2.07 (soluble) 
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Figure 3.3 Synthesis scheme of BHPF-1OAllyl 

BHPF-1OAllyl: 2g BHPF (TCI America) was dissolved in 50 mL methanol, and then 4 

equivalents (2.36g) of potassium carbonate were added, along with a catalytic amount of 

18-crown-6 ether. Then, 1 equivalent of allyl bromide was added dropwise, and the 

reaction mixture was allowed to stir in an oil bath set to 70oC for 18 hours. Afterwards, the 

solution was cooled to room temperature and then ethyl acetate was added and then washed 

once with dilute HCl solution and then twice with deionized water. The organic phase was 

then filtered/dried over MgSO4 and solvents were evaporated. 1H NMR (300 MHz, CDCl3, 

δ): 7.80 ppm (d, 2H), 7.30 ppm (m, 6H), 7.11 ppm (d, 2H), 7.05 ppm (d, 2H), 6.70 ppm (d, 

2H), 6.60 ppm (d, 2H), 6.01 ppm (m, 1H), 5.75 ppm (s, 1H, OH), 5.40 ppm (dd, 1H), 5.30 

ppm (dd, 1H), 4.49 ppm (dd, 2H). Yield: 0.6961g. 
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Figure 3.4 Synthesis scheme of BHPF-1OAllyl-TBS 

BHPF-1OAllyl-TBS: 0.6961g BHPF-1OAllyl was dissolved in ethyl acetate, and 1.5 

equivalents (0.4 g) of tert-butyldimethylsilylchloride (TBS-Cl) were added, along with 1.5 

equivalents (0.36g) of imidazole and stirred at room temperature overnight. Afterwards, 

the solution was washed once with dilute HCl solution and twice with deionized water. The 

organic layer was dried over MgSO4 and solvents evaporated using a rotary evaporator. 

The final product was isolated using silica gel chromatography, using hexanes:ethyl acetate 

(5:2) as the eluent.  1H NMR (300 MHz, CDCl3, δ): 7.80 ppm (d, 2H), 7.30 ppm (m, 6H), 

7.11 ppm (d, 2H), 7.05 ppm (d, 2H), 6.70 ppm (d, 2H), 6.60 ppm (d, 2H), 6.01 ppm (m, 

1H), 5.75 ppm (s, 1H, OH), 5.40 ppm (dd, 1H), 5.30 ppm (dd, 1H), 4.49 ppm (dd, 2H), 

0.98 ppm (s, 9H), 0.11 ppm (s, 6H). Yield: 0.5404. 
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Figure 3.5 Synthesis scheme of BHPF-1Ep-TBS 

BHPF-1Ep-TBS: Alkenes were converted to epoxides by reacting 0.5409g (1 equivalent) 

of BHPF-1OAllyl-TBS (dissolved in dichloromethane) with 2 equivalents (1.31g) of 

Oxone (dissolved in water) and 4 equivalents (1.08g) of NaHCO3 in the presence of a 

catalytic amount of acetone (5 mL). This procedure was repeated several times until 

conversion of alkenes to Oxone was complete. After conversion was complete, deionized 

water was added until all solids dissolved and additional ethyl acetate was added. The 

organic layer was then washed twice with deionized water and then solvents evaporated 

via rotary evaporator. 1H NMR (300 MHz, CDCl3, δ): 7.80 ppm (d, 2H), 7.30 ppm (m, 

6H), 7.11 ppm (d, 2H), 7.05 ppm (d, 2H), 6.70 ppm (d, 2H), 6.60 ppm (d, 2H), 4.12 ppm 

(m, 2H), 3.91 ppm (m, 1H), 3.32 ppm (m, 1H), 2.90 ppm (dd, 1H), 2.65 ppm (dd, 1H), 0.98 

ppm (s, 9H), 0.11 ppm (s, 6H). Yield: 0.1759. 
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Figure 3.6 Synthesis scheme of BHPF-1Ep. 

BHPF-1Ep: 0.1759g BHPF-1Ep-TBS was dissolved in chloroform and then 2 equivalents 

of TBAF (1.0 M in THF) were added. The solution was stirred at room temperature for 6 

hours and then washed with water three times. The organic layer was then filtered/dried 

over MgSO4 and purified vis silica gel chromatography, using hexanes and then ethyl 

acetate as eluents. 1H NMR (300 MHz, CDCl3, δ): 7.80 ppm (d, 2H), 7.30 ppm (m, 6H), 

7.11 ppm (d, 2H), 7.05 ppm (d, 2H), 6.70 ppm (d, 2H), 6.60 ppm (d, 2H), 5.05 ppm (s, 1H, 

OH), 4.10 ppm (m, 2H), 3.90 ppm (m, 1H), 3.32 ppm (m, 1H), 2.90 ppm (dd, 1H), 2.65 

ppm (dd, 1H). Yield: 94.1 mg. 
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Figure 3.7 Synthesis scheme of THPE-1OAllyl. 

THPE-1OAllyl: 4g THPE (TCI America) was dissolved in methanol, and then 6 

equivalents (10.82 g) of potassium carbonate were added, along with a catalytic amount of 

18-crown-6 ether. Then, 2 equivalents (2.36g) of allyl bromide was added dropwise, and 

the reaction mixture was allowed to stir in an oil bath set to 70oC for 18 hours. Afterwards, 

the solution was cooled to room temperature and then ethyl acetate was added and then 

washed once with dilute HCl solution and then twice with deionized water. The organic 

phase was then filtered/dried over MgSO4 and solvents were evaporated. The final product, 

along with TPOE-2OAllyl, was isolated using a silica gel column with hexanes:ethyl 

acetate (5:2) as the eluent. 1H NMR (300 MHz, CDCl3, δ, ppm): 6.98 (d, 2H), 6.92 (d, 4H), 

6.81 (d, 2H), 6.71 (d, 4H), 6.05 (m, 1H), 5.79 (s, 2H, -OH), 5.41 (m, 1H), 5.27 (m, 1H), 

4.51 (m, 2H), 2.08 (s, 3H). Yield: 1.21 g. 
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Figure 3.8 Synthesis scheme of THPE-1OAllyl-2TBS. 

THPE-1OAllyl-2TBS: 1.20g THPE-1OAllyl was dissolved in ethyl acetate, and 3 

equivalents (1.31g) of tert-butyldimethylsilylchloride (TBS-Cl) were added, along with 3 

equivalents (1.42g) of imidazole and stirred at room temperature overnight. Afterwards, 

the solution was washed once with dilute HCl solution and twice with deionized water. The 

organic layer was dried over MgSO4 and solvents evaporated using a rotary evaporator. 1H 

NMR (300 MHz, CDCl3, δ): 6.98 (d, 2H), 6.92 (d, 4H), 6.81 (d, 2H), 6.71 (d, 4H), 6.05 

(m, 1H), 5.79 (s, 2H, -OH), 5.41 (m, 1H), 5.27 (m, 1H), 4.51 (m, 2H), 2.10 (s, 3H), 0.96 

(s, 18H), 0.18 (s, 9H). Yield: 1.6017g. 
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Figure 3.9 Synthesis scheme of THPE-1Ep-2TBS. 

THPE-1Ep-2TBS: Alkenes were converted to epoxides by reacting 1 equivalent (1.60g) 

of THPE-2OAllyl-TBS (dissolved in dichloromethane) with 4 equivalents (3.42g) of 

Oxone (dissolved in water) and 6 equivalents (1.4g) of NaHCO3 in the presence of a 

catalytic amount of acetone (5 mL). This procedure was repeated several times until 

conversion of alkenes to Oxone was complete. After conversion was complete, deionized 

water was added until all solids dissolved, and additional ethyl acetate was added. The 

organic layer was then washed twice with deionized water and then solvents evaporated 

via rotary evaporator. 1H NMR (300 MHz, CDCl3, δ): 6.94 (d,4H), 6.87 (d, 2H), 6.77 (d, 

4H), 6.68 (d, 2H), 4.48 (dd, 2H), 4.15 (dd, 2H). 3.90 (dd, 2H), 3.31 (m, 2H), 2.86 (m, 2H), 

2.72 (m, 2H), 2.07 (s, 3H), 0.89 (s, 9H), 0.13 (s, 6H). Yield: 0.5196g. 
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Figure 3.10 Synthesis scheme of THPE-1EP 

THPE-1Ep: THPE-1Ep-2TBS was dissolved in chloroform and then 4 equivalents of 

TBAF (1.0 M in THF) was added. The solution was allowed to stir at room temperature 

for 6 hours and then washed with water three times. The organic layer was then 

filtered/dried over MgSO4 and purified vis silica gel chromatography, using hexanes and 

then ethyl acetate as eluents. 1H NMR (300 MHz, CDCl3, δ, ppm): 6.98 (d, 2H), 6.89 (d, 

4H), 6.70 (d, 2H), 6.61 (d, 4H), 5.30 (s, 2H, -OH), 3.93 (dd, 1H), 3.41 (m, 1H), 2.90 (t, 

1H), 2.70 (m, 1H), 2.10 (s, 3H). HR MS (ESI) Calculated: 385.1410. Found: 385.1410. 

Yield: 0.1202g. 
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Figure 3.11 Synthesis scheme of THPE-2OAllyl. 

THPE-2OAllyl: 4g THPE (TCI America) was dissolved in methanol, and then 4 

equivalents (10.82g) of potassium carbonate and 2 equivalents (2.36g) of allyl bromide 

were added. This reaction mixture was placed in an oil bath set to 70oC and allowed to stir 

for 18 hours. It was then cooled to room temperature, and ethyl acetate and dilute HCl 

solution were added. The organic phase was then washed an additional two times with 

deionized water and then filtered/dried over MgSO4 and solvents evaporated. The final 

product, along with THPE-1OAllyl, was isolated using a silica gel column with 

hexanes:ethyl acetate (5:2) as the eluent. 1H NMR (300 MHz, CDCl3, δ, ppm): 6.98 (d, 

4H), 6.94 (d, 2H), 6.80 (d, 4H), 6.72 (d, 2H), 6.06 (m, 2H), 5.53 (s, 1H, -OH), 5.41 (dd, 

2H), 5.28 (dd, 2H), 4.15 (m, 4H), 2.10 (s, 3H). Yield: 0.8282. 
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Figure 3.12 Synthesis scheme of THPE-2OAllyl-TBS. 

THPE-2OAllyl-TBS: 0.8282g THPE-2OAllyl was dissolved in ethyl acetate, and 1.5 

equivalents (0.48g) of tert-butyldimethylsilylchloride (TBS-Cl) were added, along with 2 

equivalents (0.29g) of imidazole and allowed to stir at room temperature overnight. 

Afterwards, the solution was washed once with dilute HCl solution and twice with 

deionized water. The organic layer was dried over MgSO4 and solvents evaporated using 

a rotary evaporator. 1H NMR (300 MHz, CDCl3, δ, ppm): 6.98 (d, 4H), 6.94 (d, 2H), 6.80 

(d, 4H), 6.72 (d, 2H), 6.06 (m, 2H), 5.53 (s, 1H, -OH), 5.41 (dd, 2H), 5.28 (dd, 2H), 4.15 

(m, 4H), 2.10 (s, 3H), 1.03 (s, 9H), 0.24 (s, 6H). Yield: 0.8891g. 



 

 

44 

 

Figure 3.13 Synthesis scheme of THPE-2Ep-TBS 

THPE-2Ep-TBS: Alkenes were converted to epoxides by reacting 1 equivalent (0.8891g) 

of THPE-2OAllyl-TBS in the presence of 8 equivalents (4.36g) of Oxone (dissolved in 

water) and 12 equivalents (1.78g) of NaHCO3 in the presence of a catalytic amount of 

acetone (5 mL). This procedure was repeated several times until conversion of alkenes to 

Oxone was complete. After conversion was complete, deionized water was added until all 

solids dissolved and additional ethyl acetate was added. The organic layer was then washed 

twice with deionized water and then solvents evaporated via rotary evaporator. 1H NMR 

(300 MHz, CDCl3, δ, ppm): 6.98 (d, 4H), 6.94 (d, 2H), 6.80 (d, 4H), 6.72 (d, 2H), 6.06 (m, 

2H), 4.13 (m, 2H), 3.93 (m, 2H), 3.32 (m, 2H), 2.88 (dd, 2H), 2.73 (dd, H), 2.10 (s, 3H), 

1.03 (s, 9H), 0.24 (s, 6H). Yield: 0.8683g. 
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Figure 3.14 Synthesis scheme of THPE-2Ep. 

THPE-2Ep: THPE-2Ep-TBS (1 eq) was dissolved in chloroform and then 2 equivalents 

of TBAF (1.0 M in THF) was added. The solution was allowed to stir at room temperature 

for 6 hours and then washed with water three times. The organic layer was then 

filtered/dried over MgSO4 and purified vis silica gel chromatography, using hexanes and 

then ethyl acetate as eluents. 1H NMR (300 MHz, CDCl3, δ, ppm): 6.97 (d, 4H), 6.91 (d, 

2H), 6.79 (d, 4H), 6.70 (d, 2H), 4.18 ppm (dd, 2H), 3.95 ppm (d, 1H), 3.90 (d, 1H), 3.35 

(m, 2H), 2.90 (dd, 2H), 2.75 ppm (dd, 2H), 2.10 (s, 3H), 1.58 (s, 1H, -OH). HR MS (EI): 

Calculated: 418.1780 Found: 418.1781. Yield: 41%. 
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Figure 3.15 Synthesis scheme of THP-2Ep. 

THP-2OAllyl: 5g THP (TCI America) was dissolved in methanol, and then 4 equivalents 

of potassium carbonate (7.1g) and 1.5 equivalents (3.10g) of allyl bromide were added. 

This reaction mixture was placed in an oil bath set to 70oC and allowed to stir for 18 hours. 

It was then cooled to room temperature, and ethyl acetate and dilute HCl solution were 

added. The organic phase was then washed an additional two times with deionized water 

and then filtered/dried over MgSO4 and solvents evaporated. The final product, along with 

THP-2OAllyl, was isolated using a silica gel column with hexanes:ethyl acetate (5:2) as 

the eluent. 1H NMR (300 MHz, CDCl3, δ, ppm): 6.99 (d,4H), 6.92 (d, 2H), 6.81 (d, 4H), 

6.72 (d, 2H), 6.04 (m, 1H), 5.77 (s, 1H, -OH), 5.8 (m, 1H), 5.39 (m, 1H), 5.35 (s, 1H), 4.51 

(m, 2H). Yield: 1.2234g. 

THP-2OAllyl-TBS: 1.2234g THP-2OAllyl was dissolved in ethyl acetate, and 1.5 

equivalents (0.74g) of tert-butyldimethylsilylchloride (TBS-Cl) were added, along with 2 

equivalents (0.447g) of imidazole and allowed to stir at room temperature overnight. 
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Afterwards, the solution was washed once with dilute HCl solution and twice with 

deionized water. The organic layer was dried over MgSO4 and solvents evaporated using 

a rotary evaporator. 1H NMR (300 MHz, CDCl3, δ ppm): 6.99 (d,4H), 6.92 (d, 2H), 6.81 

(d, 4H), 6.72 (d, 2H), 6.04 (m, 1H), 5.39 (m, 1H), 5.35 (s, 1H), 5.82 (m, 1H), 4.51 (m, 2H), 

0.95 (s, 9H), 0.16 (s, 6H). Yield: 1.3677g. 

THP-2Ep-TBS: Alkenes were converted to epoxides by reacting 1 equivalent (0.8891g) 

of THP-2OAllyl-TBS in the presence of 8 equivalents (4.49g) of Oxone (dissolved in 

water) and 12 equivalents (1.84g) of NaHCO3 in the presence of a catalytic amount of 

acetone. This procedure was repeated several times until conversion of alkenes to Oxone 

was complete. After conversion was complete (as tracked via 1H NMR spectroscopy), 

deionized water was added until all solids dissolved, and additional ethyl acetate was 

added. The organic layer was then washed twice with deionized water and filtered/dried 

over MgSO4, and then solvents evaporated via rotary evaporator. 1H NMR (300 MHz, 

CDCl3, δ(ppm)): 6.96 (d,4H), 6.92 (d, 2H), 6.81 (d, 4H), 6.72 (d, 2H), 5.27 (s, 1H), 4.12 

(m, 2H), 3.95 (m, 2H), 3.32 (m, 2H), 2.87 (m, 2H), 2.73 (m, 2H), 0.95 (s, 9H), 0.16 (s, 6H). 

Yield: 0.6400g. 

THP-2Ep: 0.64g THP-2Ep-TBS was dissolved in dichloromethane, and then 2.5 mL (2 

equivalents) of TBAF (1.0 M in THF) was added. The solution was stirred at room 

temperature for 2 hours, and then water and additional DCM were added. The organic layer 

was washed with water three times. The organic layer was then filtered/dried over MgSO4 

and purified vis silica gel chromatography, using hexanes and then ethyl acetate as eluents. 

1H NMR (300 MHz, CDCl3, δ, ppm): 6.96 (d,4H), 6.92 (d, 2H), 6.81 (d, 4H), 6.72 (d, 2H), 
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5.36 (s, 1H, -OH), 5.27 (s, 1H), 4.12 (m, 2H), 3.95 (m, 2H), 3.32 (m, 2H), 2.87 (m, 2H), 

2.73 (m, 2H). Yield: 0.5984g. 

 

Figure 3.16 Synthesis scheme of TPOE-1OAllyl. 

TPOE-1OAllyl synthesis is described in Chapter 2. 1H NMR (300 MHz, CDCl3, δ, ppm): 

7.01 (d, 6H), 6.84 (d, 2H), 6.65 (d, 6H), 6.51 (d, 2H), 5. (m, 1H), 5.30 (dd, 1H), 5.20 (dd, 

1H), 4.50 (s, 2H), 4.35 (d, 2H). Yield: 0.236g. 
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Figure 3.17 Synthesis scheme of TPOE-1OAllyl-3TBS. 

TPOE-1OAllyl-3TBS: TPOE-1OAllyl (0.236g) was dissolved in ethyl acetate, and 4.5 

equivalents (0.408g) of tert-butyldimethylsilylchloride (TBS-Cl) were added, along with 

0.424g of imidazole and stirred at room temperature overnight. Afterwards, the solution 

was washed once with dilute HCl solution and twice with deionized water. The organic 

layer was dried over MgSO4 and solvents evaporated using a rotary evaporator. 1H NMR 

(300 MHz, CDCl3, δ): 7.01 ppm (d, 6H), 6.84 ppm (d, 2H), 6.65 ppm (d, 6H), 6.51 ppm 

(d, 2H), 5.97 ppm (m, 1H), 5.30 ppm (dd, 1H), 5.20 ppm (dd, 1H), 4.50 ppm (s, 2H), 4.35 

ppm (d, 2H), 0.88 ppm (s, 27H), 0.05 ppm (s, 18H). Yield: 0.423g. 
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Figure 3.18 Synthesis scheme of TPOE-1Ep-3TBS. 

TPOE-1Ep-3TBS: Alkenes were converted to epoxides by reacting (0.423g) 1 equivalent 

of TPOE-1OAllyl-3TBS (dissolved in ethyl acetate) with 4 equivalents (0.0668g) of Oxone 

(dissolved in water) and 12 equivalents of NaHCO3 in the presence of a catalytic amount 

of acetone. This procedure was repeated several times until conversion of alkenes to Oxone 

was complete. After conversion was complete, deionized water was added until all solids 

dissolved and additional ethyl acetate was added. The organic layer was then washed twice 

with deionized water and then solvents evaporated via rotary evaporator. 1H NMR (300 

MHz, CDCl3, δ): 7.01 ppm (d, 6H), 6.84 ppm (d, 2H), 6.65 ppm (d, 6H), 6.52 ppm (d, 2H), 

4.52 ppm (s, 2H), 4.09 ppm (dd, 1H), 3.75 (dd, 1H), 3.26 ppm (m, 1H), 2.80 ppm (dd, 1H), 

2.68 ppm (dd, 1H), 0.88 ppm (s, 27H), 0.05 ppm (s, 18H). Yield: 0.3886g. 
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Figure 3.19 Synthesis scheme of TPOE-1Ep. 

TPOE-1Ep: 0.3886g (1 equivalent) of TPOE-1Ep-3TBS was added to DCM, and 6 

equivalents of TBAF (1.0 M in THF) were added. The solution turned dark brown upon 

addition of TBAF, and the solution was allowed to stir at room temperature for 4 hours 

before being washed with water 3 times. The organic phase was filtered/dried over MgSO4 

and then solvents were removed using rotary evaporator. The resulting crude material was 

then purified via a silica gel column, first eluting with hexanes and then with hexanes:ethyl 

acetated (9:1) to remove residual TBAF impurities. 1H NMR (300 MHz, CDCl3, δ, ppm): 

7.01 ppm (d, 6H), 6.84 ppm (d, 2H), 6.65 ppm (d, 6H), 6.52 ppm (d, 2H), 4.52 ppm (s, 

2H), 4.09 ppm (dd, 1H), 3.75 (dd, 1H), 3.26 ppm (m, 1H), 2.80 ppm (dd, 1H), 2.68 ppm 

(dd, 1H). Yield: 0.1259g. 
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Figure 3.20 Synthesis scheme of TPOE-2OAllyl. 
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Figure 3.21. 1H NMR spectra of TPOE-2OAllyl isomers in CDCl3. The isomers elute with 

a different Rf, but have a near-identical 1H NMR spectrum. 

TPOE-2OAllyl synthesis is described in Chapter 2. The TPOE-2OAllyl product exists as 

a mixture of isomers, as shown in Figure 3.20, but no effort was made to isolate a single 

isomer, since the 1H NMR spectra were nearly identical, as shown in Figure 3.21. For 

brevity, only a single isomer is shown in the synthetic schemes following this one. 1H NMR 

(300 MHz, CDCl3, δ, ppm): 7.00 (d, 4H), 6.95 (d, 4H), 6.65 (d, 4H), 6.55 (d, 4H), 5.98 (m, 

2H), 5.34 (dd, 2H), 5.21 (dd, 2H), 4.87 (s, 1H, -OH), 4.51 (s, 2H), 4.39 (m, 4H). Yield: 

0.475g. 
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Figure 3.22 Synthesis scheme of TPOE-2OAllyl-2TBS. 

TPOE-2OAllyl-2TBS: 0.475g TPOE-2OAllyl was dissolved in ethyl acetate, and 3 

equivalents (0.44g) of tert-butyldimethylsilylchloride (TBS-Cl) were added, along with 3 

equivalents (0.411g) of imidazole and stirred at room temperature overnight. Afterwards, 

the solution was washed once with dilute HCl solution and twice with deionized water. The 

organic layer was dried over MgSO4 and solvents evaporated using a rotary evaporator. 1H 

NMR (300 MHz, CDCl3, δ): 7.01 ppm (d, 6H), 6.84 ppm (d, 2H), 6.65 ppm (d, 6H), 6.51 

ppm (d, 2H), 5.97 ppm (m, 2H), 5.30 ppm (dd, 2H), 5.20 ppm (dd, 2H), 4.50 ppm (s, 2H), 

4.35 ppm (d, 4H), 0.88 ppm (s, 18H), 0.05 ppm (s, 12H). Yield: 0.34g 
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Figure 3.23 Synthesis scheme of TPOE-2Ep-2TBS. 

TPOE-2Ep-2TBS: Alkenes were converted to epoxides by reacting 0.284g (1 equivalent) 

of TPOE-2OAllyl-2TBS (dissolved in dichloromethane) with (0.98g) 8 equivalents of 

Oxone (dissolved in water) and 12 equivalents (0.81g) of NaHCO3 in the presence of a 

catalytic amount of acetone. This procedure was repeated several times until conversion of 

alkenes to Oxone was complete. After conversion was complete, deionized water was 

added until all solids dissolved and additional ethyl acetate was added. The organic layer 

was then washed twice with deionized water and then solvents evaporated via rotary 

evaporator. 1H NMR (300 MHz, CDCl3, δ): 6.97 ppm (d, 4H), 6.90 ppm (d, 4H), 6.62 ppm 

(d, 4H), 6.54 ppm (d, 4H), 4.47 ppm (s, 2H), 4.05 ppm (dd, 2H), 3.75 (dd, 2H), 3.23 ppm 

(m, 2H), 2.80 ppm (dd, 2H), 2.64 ppm (dd, 2H), 0.88 ppm (s, 18H), 0.05 ppm (s, 12H). 

Yield: 0.1923g. 

TPOE-2Ep: 1 equivalent of TPOE-1Ep-3TBS was added to DCM, and 4 equivalents of 

TBAF (1.0 M in THF) were added. The solution was allowed to stir at room temperature 
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for 4 hours before being washed with water 3 times. The organic phase was filtered/dried 

over MgSO4 and then solvents were removed using rotary evaporator. The resulting crude 

material was then purified via a silica gel column, first eluting with hexanes and then with 

hexanes:ethyl acetated (9:1) to remove residual TBAF impurities. 1H NMR (300 MHz, 

CDCl3, δ): 6.97 ppm (d, 4H), 6.90 ppm (d, 4H), 6.62 ppm (d, 4H), 6.54 ppm (d, 4H), 4.47 

ppm (s, 2H), 4.05 ppm (dd, 2H), 3.75 (dd, 2H), 3.23 ppm (m, 2H), 2.80 ppm (dd, 2H), 2.64 

ppm (dd, 2H). Yield: 64%. 

TPOE-3Ep synthesis is detailed in Chapter 2. 

 

Figure 3.24 Synthesis scheme of TMPOE. 

TMPOE: 25 g o-cresol and 5.8 g glyoxal (40 wt% solution in water) were added to 25 mL 

of acetone in a 100-mL round-bottom flask. 5 g concentrated sulfuric acid was added 

dropwise and the mixture was stirred at room temperature for 72 hours, and afterwards was 

poured into 250 mL acetone, where a white precipitate formed. This mixture was then 

filtered, and the solid was washed with acetone until white and then three times with 

deionized water. The solid was then boiled in approximately 50 mL acetone for 30 minutes, 

filtered, and then dried overnight to yield a white powder. Yield: 5.4 g. 1H NMR (300 MHz, 
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methanol-d4, δ): 6.89 ppm (s, 4H), 6.80 ppm (d, 4H), 6.47 ppm (d, 4H), 4.48 ppm (s, 2H), 

2.01 ppm (s, 12H). MS (EI) m/z: [M]+: 227.1. Anal. Calcd for C30H30O4: C, 79.97; H, 

7.50. Found: C, 79.95; H, 7.36. 

 

Figure 3.25 Synthesis scheme of TMPOE-1OAllyl. 

TMPOE-1OAllyl:  3g (1 molar equivalent) of TMPOE and 3 molar equivalents (2.73g) 

of potassium carbonate were added to methanol in a round bottom flask in an oil bath set 

to 70oC. Then, 2.2 equivalents (1.6g) of allyl bromide were added dropwise, and the 

reaction mixture stirred in the oil bath at 70oC for 12 hours/overnight. The reaction mixture 

was cooled to room temperature, and then ethyl acetate and HCl were added. The organic 

phase was then washed once more with dilute HCl solution, and three times with deionized 

water. The organic phase was filtered/dried over MgSO4 and then solvents were evaporated 

using a rotary evaporator. A mixture of products, which included TMPOE-1OAllyl, 

TMPOE-2OAllyl, and TMPOE-3OAllyl was produced. The individual molecules of 

interest were then isolated and purified from each other using silica gel chromatography 

with hexanes:ethyl acetate (5:2) used as the eluent. 1H NMR (300 MHz, CDCl3, δ, ppm): 
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6.83 (m, 8H), 6.52 (d, 2H), 6.47 (d, 2H), 6.00 (m, 1H), 5.35 (dd, 1H), 5.19 (dd, 1H), 4.63 

(s, 3H, -OH), 4.43 (s, 2H), 4.38 (dd, 2H), 2.11 (s, 6H), 2.07 (s, 6H). Yield: 0.4984g.  

 

Figure 3.26 Synthesis scheme of TMPOE-1OAllyl-3TBS. 

TMPOE-1OAllyl-3TBS: 0.4984g TMPOE-1OAllyl was dissolved in ethyl acetate, and 

3.5 molar equivalents (0.531g) of tert-butyl dimethylsilylchloride and 6 equivalents 

(0.27g) of imidazole were added and then stirred at room temperature for 18 hours 

(overnight). Afterwards, the solution was washed once with dilute HCl solution and then 

twice with deionized water. The organic phase was then filtered/dried over MgSO4 and 

solvents were removed using a rotary evaporator. 1H NMR (300 MHz, CDCl3, δ, ppm): 

6.83 (m, 8H), 6.52 (d, 2H), 6.47 (d, 2H), 6.00 (m, 1H), 5.35 (dd, 1H), 5.19 (dd, 1H), 4.43 
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(s, 2H), 4.38 (dd, 2H), 2.11 (s, 6H), 2.07 (s, 6H). 0.9 ppm (s, 27H), 0.05 ppm (s, 18H). 

Yield: 0.5757g. 

 

Figure 3.27 Synthesis scheme of TMPOE-1Ep-3TBS. 

TMPOE-1Ep-3TBS: TMPOE-1OAllyl-3TBS was dissolved in DCM, and a catalytic 

amount of acetone was added. 4 equivalents of sodium bicarbonate were dissolved in water 

and added to the reaction mixture. 2 equivalents of Oxone were dissolved in water and then 

added dropwise the reaction mixture. This procedure was repeated multiple times until 

conversion of alkenes to epoxides was complete, as tracked with 1H NMR. Once 

conversion was complete, the reaction mixture was washed with water and extracted with 

ethyl acetate, and then solvents were evaporated via rotary evaporator. 1H NMR (300 MHz, 

CDCl3, δ, ppm): 6.83 (m, 8H), 6.52 (d, 2H), 6.47 (d, 2H), 6.00 (m, 1H), 4.38 (m, 1H), 4.03 
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(m, 1H), 3.84 (m, 1H), 3.26 (m, 1H), 2.83 (m, 1H), 2.71 (m, 1H), 2.11 (s, 6H), 2.07 (s, 6H), 

0.9 ppm (s, 27H), 0.05 ppm (s, 18H). Yield: 0.56g. 

 

Figure 3.28 Synthesis scheme of TMPOE-1Ep. 

TMPOE-1Ep: 1 equivalent (0.56 g) of TMPOE-1Ep-3TBS was added to CHCl3, and 6 

equivalents of TBAF (1.0 M in THF) were added. The solution turned dark brown upon 

addition of TBAF, and the solution was allowed to stir at room temperature for 4 hours 

before being washed with water 3 times. The organic phase was filtered/dried over MgSO4 

and then solvents were removed using rotary evaporator. The resulting crude material was 

then purified via a silica gel column, first eluting with hexanes and then with hexanes:ethyl 

acetated (9:1) to remove residual TBAF impurities. 1H NMR (300 MHz, CDCl3, δ, ppm): 

6.83 (m, 8H), 6.52 (d, 2H), 6.47 (d, 2H), 6.00 (m, 1H), 5.26 (s, 3H, -OH), 4.38 (m, 1H), 

4.03 (m, 1H), 3.84 (m, 1H), 3.26 (m, 1H), 2.83 (m, 1H), 2.71 (m, 1H), 2.11 (s, 6H), 2.07 

(s, 6H). Yield: 67%. 
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Figure 3.29 Synthesis scheme of TMPOE-2OAllyl. 

TMPOE-2OAllyl synthesis is described in the synthesis for TMPOE-1OAllyl. 1H NMR 

(300 MHz, CDCl3, δ ppm): 6.86 (m, 8H), 6.54 (d, 2H), 6.47 (d, 2H), 5.97 (m, 2H), 5.35 

(m, 2H), 5.20 (m, 2H), 4.58 (s, 2H), 4.4 (m, 4H), 2.10 (s, 6H), 2.07 (s, 6H). Yield: 0.7347g. 

 

Figure 3.30 Synthesis scheme of TMPOE-2OAllyl-2TBS. 

TMPOE-2OAllyl-2TBS: 0.4315g TMPOE-2OAllyl was dissolved in ethyl acetate, and 

2.5 equivalents (0.30g) of TBS-Cl and 3 equivalents (0.164g) of imidazole were added. 

The solution was allowed to stir at room temperature for 24 hours, after which it was 

washed once with dilute HCl solution and twice with deionized water. The organic phase 
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was filtered/dried over MgSO4 and then solvents were removed via rotary evaporator. 1H 

NMR (300 MHz, CDCl3, δ ppm): 6.86 (m, 8H), 6.54 (d, 2H), 6.47 (d, 2H), 5.97 (m, 2H), 

5.35 (m, 2H), 5.20 (m, 2H), 4.58 (s, 2H), 4.4 (m, 4H), 2.10 (s, 6H), 2.07 (s, 6H), 0.95 (s, 

18H), 0.09 (s, 12H). Yield: 0.3605g. 

 

Figure 3.31 Synthesis scheme of TMPOE-2Ep-2TBS. 

TMPOE-2Ep-2TBS: TMPOE-2OAllyl-2TBS was dissolved in DCM, and a catalytic 

amount of acetone was added. 8 equivalents of sodium bicarbonate were dissolved in water 

and added to the reaction mixture. 4 equivalents of Oxone were dissolved in water and then 

added dropwise the reaction mixture. This procedure was repeated multiple times until 

conversion of alkenes to epoxides was complete, as tracked with 1H NMR. Once 

conversion was complete, the reaction mixture was washed with water and extracted with 

ethyl acetate, and then solvents were evaporated via rotary evaporator. 1H NMR (300 MHz, 

CDCl3, δ ppm): 6.86 (m, 8H), 6.54 (d, 2H), 6.47 (d, 2H), 4.38 (s, 2H), 4.06 (m, 2H), 3.74 
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(m, 2H), 3.29 (m, 2H), 2.82 (dd, 2H), 2.70 (dd, 2H), 2.10 (s, 6H), 2.07 (s, 6H), 0.95 (s, 

18H), 0.09 (s, 12H). Yield: 0.20g. 

 

Figure 3.32 Synthesis scheme of TMPOE-2Ep. 

TMPOE-2Ep: 0.25g TMPOE-2Ep-2TBS was dissolved in CHCl3 and then 4 equivalents 

of TBAF (0.63mL) (1.0 M in THF) were added. The solution was allowed to stir at room 

temperature overnight and was then washed 3 times with deionized water. The organic 

phase was then filtered/dried over MgSO4 and then solvents were removed via rotary 

evaporator. The resulting crude material was then purified via silica gel column, eluting 

first with hexanes and then with ethyl acetate to remove impurities. 1H NMR (300 MHz, 

CDCl3, δ ppm): 6.86 (m, 8H), 6.54 (d, 2H), 6.47 (d, 2H), 4.38 (s, 2H), 4.06 (m, 2H), 3.74 

(m, 2H), 3.29 (m, 2H), 2.82 (dd, 2H), 2.70 (dd, 2H), 2.10 (s, 6H), 2.07 (s, 6H). Yield: 22%. 
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Figure 3.33 Synthesis scheme of TMPOE-3OAllyl. 

TMPOE-3OAllyl synthesis is described in the synthesis for TMPOE-1OAllyl. 1H NMR 

(300 MHz, CDCl3, δ (ppm)): 6.90 (d, 6H), 6.87 (d, 2H), 6.56 (s, 2H), 6.53 (s, 2H), 6.01 (m, 

3H), 5.37 (m, 3H), 5.22 (m, 3H), 4.49 (s, 3H, -OH), 4.40 (m, 6H), 2.12 (s, 6H), 2.10 (s, 

6H). Yield: 0.7578g. 

 

Figure 3.34 Synthesis scheme of TMPOE-3OAllyl-TBS. 

TMPOE-3OAllyl-TBS: 0.7578g TMPOE-3OAllyl was dissolved in ethyl acetate and 1.5 

equivalents (0.298g) of TBS-Cl and 2 equivalents (0.179g) of imidazole were added. The 

solution was stirred at room temperature for 24 hours and then washed once with dilute 
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HCl solution and twice with deionized water. The organic phase was filtered/dried over 

MgSO4 and then solvents were removed with rotary evaporator. 1H NMR (300 MHz, 

CDCl3, δ (ppm)): 6.90 (d, 6H), 6.87 (d, 2H), 6.56 (s, 2H), 6.53 (s, 2H), 6.01 (m, 3H), 5.37 

(m, 3H), 5.22 (m, 3H), 4.49 (s, 3H, -OH), 4.40 (m, 6H), 2.12 (s, 6H), 2.10 (s, 6H), 0.92 (s, 

18H), 0.11 (s, 9H). Yield: 0.7406g. 

 

Figure 3.35 Synthesis scheme of TMPOE-3Ep-TBS. 

TMPOE-3Ep-TBS: TMPOE-3OAllyl-TBS was dissolved in DCM, and a catalytic 

amount of acetone was added. 9 equivalents of sodium bicarbonate were dissolved in water 

and added to the reaction mixture. 6 equivalents of Oxone were dissolved in water and then 

added dropwise the reaction mixture. This procedure was repeated multiple times until 

conversion of alkenes to epoxides was complete, as tracked with 1H NMR. Once 

conversion was complete, the reaction mixture was washed with water and extracted with 

ethyl acetate, and then solvents were evaporated via rotary evaporator. 1H NMR (300 MHz, 

CDCl3, δ (ppm)): 6.90 (d, 6H), 6.87 (d, 2H), 6.56 (s, 2H), 6.53 (s, 2H), 4.06 (m, 2H), 3.74 
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(m, 2H), 3.31 (m, 2H), 2.80 (dd, 2H), 2.67 (dd, 2H), 2.12 (s, 6H), 2.10 (s, 6H), 0.92 (s, 

18H), 0.11 (s, 9H). Yield: 0.5646g. 

 

 

Figure 3.36 Synthesis scheme of TMPOE-3Ep. 

TMPOE-3Ep: 0.5646g TMPOE-3Ep-TBS was dissolved in CHCl3 and then 2 equivalents 

of TBAF (1.52mL) (1.0 M in THF) were added. The solution was allowed to stir at room 

temperature overnight and was then washed 3 times with deionized water. The organic 

phase was then filtered/dried over MgSO4 and then solvents were removed via rotary 

evaporator. The resulting crude material was then purified via silica gel column, eluting 

first with hexanes and then with ethyl acetate to remove impurities. 1H NMR (300 MHz, 

CDCl3, δ (ppm)): 6.90 (d, 6H), 6.87 (d, 2H), 6.56 (s, 2H), 6.53 (s, 2H), 4.06 (m, 2H), 3.74 

(m, 2H), 3.31 (m, 2H), 2.80 (dd, 2H), 2.67 (dd, 2H), 2.12 (s, 6H), 2.10 (s, 6H). Yield: 

0.0922g. 

3.3 Lithographic evaluation 
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3.3.1 DUV Contrast Curves 

 

Figure 3.37 Structure of BHPF-1Ep and 248nm DUV contrast curves in PGMEA 

development. 

In the contrast curves of BHPF-1Ep in Figure 3.37, very little conversion is seen, based on 

the low NRT values. Even at a PEB temperature of 150oC, only 10% of the original film 

thickness remains. A compound with only 1 epoxide appears to be insufficient to form an 

insoluble network. 

Surprisingly, even though the logD value of this material was calculated to be 1.83, a film 

of the material was not soluble in 0.26N TMAH developer (a logD value lower than 2 

generally indicates that the resist will be soluble in 0.26 N TMAH developer). The material 

was placed in 0.26N TMAH developer with no PAB to discount the possibility of thermal 

reactions between epoxides and phenols leading to insoluble films. Still, the film remained 

insoluble. The 1H NMR spectrum of BHPF-1Ep in Figure 3.38 confirms that there are both 

epoxides and phenols present on the molecule. Because of these issues, no further data was 

gathered on this material. 
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Figure 3.38 1H NMR spectrum of BHPF-1Ep in CDCl3, showing the presence of epoxides. 

    

Figure 3.39 Structure and 248nm DUV contrast curve of THPE-1Ep showing the low 

NRT of this material. The right graph is a zoom of the left graph. 

A similar situation is seen in THPE-1Ep contrast curves (Figure 3.39) in both PGMEA and 

0.26N TMAH development. A maximum of approximately 10% remaining film thickness 

is seen in each development solvent. Various temperatures, PEB times, and development 

solvents were explored, but none of them produced enough insoluble material to warrant 

further investigation of this resist. 
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Figure 3.40 DUV contrast curves for TPOE-1Ep showing the effect of increasing the 

PEB temperature. 

Unlike the other 1Ep compounds, TPOE-1Ep showed an increase in NRT with dose in its 

contrast curves in Figure 3.40 and appears to have a sufficient number of functional groups 

to achieve an insoluble network. An extraordinarily high PEB of 170oC is required to reach 

an NRT of 1 in PGMEA development. Unfortunately, the material swells to an NRT value 

of 2 when developed in 0.26N TMAH. This enormous swelling is likely due to the large 

number of phenols present on the core, which are likely not being completely consumed 

through epoxide-phenol reactions. To increase consumption of phenols, the PEB was raised 

10 degrees to 180oC. While the swelling was eliminated, crosslinked material remained on 

the wafer, even at a dose of 0 mJ/cm2. At this temperature, there is apparently sufficient 

energy to allow epoxide-phenol crosslinking to occur in the absence of photoacid to 

generate insoluble material in unexposed regions.  
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Figure 3.41 DUV contrast curves of TPOE-2Ep at two different PEB temperatures. 

For TPOE-2Ep in Figure 3.41,  a similar situation is seen where increasing the PEB from 

120oC to 150oC causes thermal crosslinking in unexposed regions of the resist film. At a 

PEB of 120oC, there is insufficient material remaining to reach an NRT of 1 in PGMEA 

development. While increasing the PEB to 150oC does increase the NRT to 1 in PGMEA 

development, thermal crosslinking appears in 0.26N TMAH development at a dose of 0 

mJ/cm2. 

An increase in glass transition temperature (Tg) is seen with increasing the number of 

phenols, which requires much higher PEBs to be used as the number of phenols is 

increased. To achieve good contrast behavior in these materials, there appears to be a need 

to balance the increase in phenols with a decrease in their glass transition temperature. 

Literature reports show that for small phenolic molecules, inclusion of a methyl or methoxy 

group adjacent to a phenol decreases melting points, possibly due to hydrogen-bond 

disruption.10 Incorporating methyl groups in the ortho position in TPOE resists may also 
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lead to a reduction in Tg so that the resists can be crosslinked at temperatures much lower 

than where epoxide-phenol thermal crosslinking occurs. To that end, several new 

molecules were synthesized, based on the TMPOE core and are shown in Figure 3.42 

 

Figure 3.42 Structures of new TMPOE resists that were designed with methyl groups 

adjacent to phenols to reduce glass transition temperatures. 

TMPOE-3Ep has an identical Tg to TPOE-3Ep, which could possibly be due to opposing 

effects of mass increase and disruption of hydrogen bonding. TMPOE-2Ep and TMPOE-

1Ep both show a slight decrease in glass transition temperature due to the inclusion of the 

methyl groups. 
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Figure 3.43 DUV contrast curves comparing TMPOE and TPOE resists, developed in 

PGMEA and 0.26N TMAH. No TMAH curve is shown for TMPOE-3Ep, as it is 

insoluble in 0.26N TMAH. 

In Figure 3.43 the DUV contrast curves of the new methylated TMPOE resists are 

compared to their predecessors, which lack a methyl group. As a whole, the new 

methylated materials achieve much lower ultimate NRT than their TPOE counterparts in 



 

 

73 

both PGMEA and 0.26 N TMAH development. The methyl groups can cause a reduction 

in one of two possible ways. Placement of the methyl group adjacent to the phenol likely 

provides steric hindrance to the phenol such that it is prevented from crosslinking with 

protonated epoxides, reducing the overall amount of crosslinking in the exposed films. If 

the phenols cannot crosslink into the network, phenols will be present in the final 

crosslinked film, which will likely increase the Tg of the growing network. Such an increase 

in Tg can cause the film to become vitrified more quickly at a similar PEB, which limits 

the diffusion of the growing network, reducing the final NRT value.3 An attempt was made 

to gather e-beam patters for these molecules, but the materials do not appear to resolve 

high-resolution pattern at doses below the highest doses probed, up to 120 µC/cm2. The 

material does appear to pattern large squares used to obtain the e-beam contrast curves, but 

there was not enough material remaining to locate the squares using a profilometer, and so 

no contrast curves were obtained. Future work should focus on identifying the correct doses 

required to resolve patterns in these materials. 
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Figure 3.44. SEM image of squares formed from TMPOE-2Ep using e-beam patterning. 

Squares are circled in red. 

3.4 Glass Transition Temperature 
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Figure 3.45 a) Plot of the Tg of selected compounds versus the number of phenols on the 

resist. b) A plot of the glass transition temperature versus molecular weight of the resists. 

These results suggest that, in order to successfully design a TMAH-developable epoxide 

resist, there are two resist parameters that must be carefully balanced: base solubility and 

Tg. The first is influenced by the number of ionizable phenols vs. non-ionizable portions 

of the resist (such as epoxides and other structural features which lack an ionizable phenol). 

Glass transition temperature is influenced by a variety of factors, but in epoxide materials, 

we have seen that many of our smaller resists tend to have a lower Tg than those based on 

the TPOE core.11 Figure 3.45a plots the glass transition temperature of the molecules 

synthesized in this chapter as a function of the number of phenols they contain. (Figure 

3.46 contains the structures of the molecules, along with their Tgs, as measured via 

spectroscopic ellipsometry). We chose to measure the resists via ellipsometry instead of a 

traditional DSC for two reasons: 1) the Tg often produces a vanishingly weak signal for 

small molecules in a DSC, and 2) thin-film confinement effects can drastically alter the Tg 

of a compound, due to substrate-material interactions and the presence of a free surface at 
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the top of a film.12 For example, it has been shown that for thin films of PMMA, the Tg 

increases as the film thickness decreases due to the hydrogen-bonding interactions between 

the silicon substrate and the methacrylate-containing polymer.13 In contrast, poly(α-

methylstyrene) was shown to have a lower Tg as its film thickness decreased due to the 

absence of preferential substrate interactions and the presence of a free surface.12 

 

Figure 3.46 Base-soluble molecular resists synthesized in this study to examine the effect 

of phenol:epoxide ratio on glass transition temperature. 

A general increase in Tg is seen in these resists across all cores as the number of phenols is 

increased. The only molecule to defy this trend is BHPF-1Ep, which has a near-identical 

Tg (58oC) to BHPF-2Ep (57oC).11 There is only a very weak correlation between molecular 
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weight and Tg, likely because in these molecules, a decrease in molecular weight is often 

the result of removal of epoxide groups, which introduces phenols, which raise the Tg by 

increasing the amount of hydrogen bonding in the resist films.14,15 Inclusion of methyl 

groups adjacent to the phenol in the TMPOE molecules appears to lead to a very slight 

reduction of the Tg of the resists, possibly through disruption of hydrogen bonding.16 

However, in TMPOE-3Ep, an identical Tg was observed compared to TPOE-3Ep, and this 

is potentially due to competing effects between disruption of hydrogen bonding and 

restriction the rotational freedom of the molecules.17 As more phenols are introduced into 

the molecule, the degree of hydrogen bonding would also increase, so the effect of Tg 

reduction due to hydrogen-bond disruption is more pronounced in TMPOE-2Ep and 

TMPOE-1Ep. 

By designing a material with both increased base solubility and a lower Tg, it might be 

possible to design a resist with increased base solubility while increasing network 

conversion at low doses. Such a molecule, called THPE-2Ep, is shown in Figure 3.47 

 

Figure 3.47 Structure of low-Tg, base-soluble resist, THPE-2Ep and its 248nm DUV 

contrast curve on an underlayer.  
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The Tg of THPE-2Ep is 41.1oC, which is much lower than the Tg of any of the base-soluble 

materials reported here. The exception is THP-2Ep, which is structurally identical to 

THPE-2Ep, but THP-2Ep lacks a methyl group in the center of the resist. THP-2Ep de-wet 

from both unprimed silicon wafers and wafers treated with an underlayer, and such a low 

Tg has been problematic in the past with resists.11 The 248nm DUV contrast curve in Figure 

3.47 shows that THPE-2Ep achieves an NRT of 1 in 0.26N TMAH at a dose of 7 mJ/cm2, 

while in PGMEA development, it achieves an NRT of 0.8 at a dose of 15 mJ/cm2 at the 

same PEB. 

 

Figure 3.48 Contrast curve comparison between THPE-2Ep and TPOE-3Ep. 

Figure 3.48 compares the contrast curve of THPE-2Ep to TPOE-3Ep where each is 

formulated with 5 mol% TPS-SbF6 and baked at a 90oC PEB. Even though THPE-2Ep has 

a lower functionality than TPOE-3Ep, it achieves a remarkably similar NRT in both MIBK 

and TMAH development. Previous results have shown that lower-functionality resists tend 

to require higher doses since more crosslinking needs to occur in order to insolubilize the 
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films.4 However, THPE-2Ep has a lower Tg, which gives its growing chain ends more 

mobility compared to TPOE-3Ep, and so the resist can match the NRT of TPOE-3Ep.4 

 

Figure 3.49 100keV e-beam contrast curve with the 248nm DUV contrast curve of 

THPE-2Ep in MIBK development. (PAB = 60oC/2 min; PEB = 100oC/60s; 5 mol% TPS-

SbF6). 

The e beam contrast curve of THPE-2Ep is shown in Figure 3.6 for MIBK development. 

The material reaches a maximum NRT of approximately 0.7 at a dose of 100 µC/cm2. 

Figure 3.50 shows the resulting e-beam patterns of THPE-2Ep when developed in MIBK 

and 0.26N TMAH. The material appears capable of resolving 30 nm (1:1 line:space) 

patterns. Similar to TPOE-3Ep without an underlayer, no patterns were resolved in TMAH 

development due to severe delamination.  
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Figure 3.50 (left) E-beam patterns of THPE-2Ep using MIBK development showing 

30nm lines and spaces. (right) development in 0.26N TMAH showing delamination. 

An underlayer based on poly(hydroxy styrene) and 4Ep was developed to combat this 

issue. After a series of bake tests, it was determined that a molar ratio of phenol to epoxide 

of 2:1 provided the best resistance to de-wetting. The PEB temperature was also lowered, 

since the SEM images of TMAH development in Figure 3.50 showed only large swaths of 

polymerized resist. The resulting e-beam patterns are shown in Figure 3.51. 
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Figure 3.51 E-Beam pattern of THPE-2Ep, demonstrating the material can resolve 30nm 

patterns when developed in 0.26N TMAH. 

The current resolution of this material at the doses and PEB temperature used appears to 

be approximately 30 nm, as shown in Figure 3.52, which is comparable to the previously-

reported TPOE-3Ep, which achieved a resolution of 26 nm lines. The resist did not resolve 

lines below 30 nm at the conditions used in this study, as the material appears to blur and 

bridge significantly at sub-30nm features using these processing conditions.  
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Figure 3.52 Lines resolved of THPE-2Ep from 80nm to 40nm at a dose of 56 µC/cm2. 

At a PEB of 50oC, the material resolves much narrower lines that aren’t blurred, as shown 

in Figure 3.53. However, as expected, the material requires slightly higher doses in order 

to resolve patterns. At this PEB, the minimum resolution appears to be 30 nm 1:1 

(line:space) patterns, as shown in Figure 3.54. 
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Figure 3.53 Comparison of 60 nm lines at a dose of 63 µC/cm2. 
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Figure 3.54 E-beam patterns of THPE-2Ep at a PEB of 50oC using a dose of 72 µC/cm2. 

3.5 Conclusion 

This study has shed light on the various structural features that affect the crosslinking 

behavior of epoxide-based molecular resists by using 248nm DUV contrast curves. It has 

been shown that by increasing the number of phenols, the Tg of the resists is increased to a 

point that necessitates using very high PEB temperatures. This results in crosslinking in 

both exposed and unexposed regions. Methyl groups were introduced adjacent to the 

hydroxy groups in an attempt to reduce the Tg of these compounds, but only a slight 

reduction in Tg was observed, and the resulting TMPOE resists had a much lower NRT 

than the previous TPOE resists. By designing a molecule that has a low Tg, it is possible to 

achieve a high NRT at modest PEB temperatures. Such a molecule, called THPE-2Ep has 

been identified as a candidate for further e-beam evaluation studies. Presently, it can 

resolve roughly 30nm lines and spaces when developed in both MIBK and 0.26N TMAH. 

Future work will involve optimizing the processing conditions of this new resist to identify 

its resolution limit and develop other low-Tg base-soluble epoxide molecular resists. 
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CHAPTER 4. POSITIVE-TONE CROSSLINKED MOLECULAR 

RESIST BASED ON ACID-CATALYZED DEPOLYMERIZATION 

4.1 Introduction 

One of the key driving forces towards obtaining a higher density of transistors 

on integrated circuits has been advancements in photolithography, through innovations 

in both the light sources and the photoresists used to generate useful relief patterns. 

Polymeric chemically-amplified resists (CARs) have traditionally filled the role of the 

photoresist in the lithography process, but as feature sizes decrease, issues such as 

photoacid diffusion into unexposed regions of the photoresist, line edge roughness 

(LER), and pattern collapse become increasingly problematic. 

Molecular resists have been proposed to solve some of these challenges and offer 

several potential advantages when compared to polymeric resists. In contrast to 

polymers, which have an inherent molecular weight distribution, molecular resists are 

small molecules that can be made monodisperse such that every molecule in the resist 

composition has identical elemental composition and molecular weight through post-

synthesis purification, which has been shown to lead to a reduction in LER.1 Molecular 

glass resists have been shown to have a smaller photoacid diffusion length than similar 

polymeric materials, which can reduce blur caused by migration of photoacid into 

nominally unexposed regions of the resist.2 The argument has also been made that 

molecular resists offer better mixing compatibility between the resist and any additives, 

such a photoacid generators (PAGs), which can further lead to a reduction in LER.3 
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A major resolution-limiting factor in sub-100nm lithography is pattern collapse 

caused by unbalanced capillary forces generated during post-development drying, which 

only becomes worse as the width between patterned features is decreased.4 Several 

methods have been explored to combat this, including reactive rinses, supercritical CO2 

development, and surfactant-treated water, but each of these methods involves adding 

additional processing steps, equipment, or materials to an already costly process.5,6 One 

method that has shown promise in preventing pattern collapse has been to crosslink 

resists to form insoluble networks to provide a negative-tone material, potentially 

eliminating the need for additional processing steps. These resists, based on acid-

catalyzed homopolymerization, have been utilized by our group and have demonstrated 

the ability to withstand approximately twice the capillary force during post-development 

drying than a polymeric positive-tone resist through typical photoresist processing 

without any additional post-development processing.7 The fundamental chemistry 

behind such negative tone crosslinked resists was studied in detail due to the early 

promising results of these materials, resulting in the development of several new resists 

that resolved sub-20 nm features.8,9
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Figure 4.1 Structure and proposed imaging mechanism of THPE-2VE, illustrating the 

reactions required to first insolubilize the molecule and then catalytically render it 

soluble after exposure. 

As lithographic processes continue to push the limit of modern imaging tools, the 

need for having access to both positive and negative tone resist materials has grown 

significantly. Given the promising imaging and pattern collapse results obtained for the 

crosslinked negative-tone materials, our group sought to incorporate a crosslinking 

scheme into a positive-tone resist design. Such a design requires two separate solubility-

switching reactions to occur: (1) a first reaction must transform the initially solvent-

soluble resist insoluble through crosslinking, and (2) a second reaction must induce 

solubility only in exposed regions to give the material positive-tone imaging behavior. 

In the resists discussed in this paper, the insolubilization reaction is accomplished 

through a PAB-induced thermal crosslinking reaction between vinyl ethers and either a 

phenol or a carboxylic acid, depending on the specific molecule used, as shown in Figure 

4.1 for THPE-2VE. This reaction generates acetals in the final network, which are 

sensitive to cleavage by the photo-generated acids typically used in chemically amplified 

resists. These acetals are cleaved by a catalytic amount of photoacid to generate phenols 

and aliphatic alcohols in the exposed portion of the resist, thus rendering those exposed 
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regions soluble in developers.10 This design scheme takes advantage of the benefits of 

both crosslinked resists, which provide a mechanically-robust material, and the low 

activation energy of acetals, which result in a highly sensitive material.11,12 Our initial 

attempts on this front involved blending two different molecules together to form an 

insoluble network, but this approach suffered from a variety of shortcomings and was 

abandoned.13 The next design incorporated thermally crosslinkable groups on the same 

resist core, and the molecule DPA-2VE (shown in Figure 4.2) was synthesized, which 

managed to resolve sub-40nm features, but suffered from significant dark loss and poor 

contrast.14  

 

Figure 4.2 Structure of previously-reported resist, DPA-2VE. 

To improve upon this design, a new, phenol-containing resist was designed 

because literature reports show that phenol-containing resists have a larger shift in E1 

away from zero dose when developed in aqueous alkaline developer, potentially reducing 

concerns from flare.10 Other results have shown that switching from a carboxylic acid to 

a phenol resulted in increased shelf stability in depolymerization resists.15 Although not 
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observed at the feature sizes resolved with DPA- 2VE, using a phenol may also help 

reduce concerns from swelling during development as smaller feature sizes are pursued 

with these materials.16 THPE-2VE, shown in Figure 4.1, was designed to use a phenol 

while maintaining a 2:1 ratio of vinyl ethers to phenol in order to make a more direct 

comparison between DPA-2VE to determine the effect of switching from a carboxylic 

acid to a phenol. In this paper, we report on processing variables that affect the 

performance of THPE-2VE, including the deep ultraviolet (DUV) sensitivity and 

contrast as well as the 100 keV e-beam lithographic line:space patterns obtained using 

this material. 

4.2 Synthesis 

 

Figure 4.3 Synthesis of THPE-2VE. 

1,1,1-tris(4-hydroxyphenyl) ethane (THPE), and 2-chloroethyl vinyl ether (CEVE) were 

ordered from TCI America and used as received. All other reagents and casting solvents 

were ordered from Sigma-Aldrich and used as received. THPE-2VE was synthesized via 

the reaction between THPE and CEVE in the presence of potassium hydroxide (KOH) in 

dimethyl sulfoxide (DMSO). 2 grams of THPE (1 equivalent) and 0.78g NaOH (6 eq.) 
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were added to 30 mL DMSO and stirred in a 100-mL round-bottom flask in an oil bath at 

80oC for 30 minutes. Afterwards, 1.04g of 2-chloroethyl vinyl ether (2 eq.) was added 

dropwise to the mixture, which was then stirred at 80 oC for 5 hours. After 5 hours, the 

solution was cooled to room temperature and washed once with deionized water and 

extracted with ethyl acetate. The organic layer was washed twice more with deionized 

water before filtering and drying over magnesium sulfate. Solvents were evaporated via 

rotary evaporator, and the resulting crude product was purified via silica gel column 

chromatography using ethyl acetate and hexanes (2:5) to isolate THPE-2VE as a colorless 

oil. 1H NMR (300 MHz, CDCl3, δ): 7.00 ppm (d,4H), 6.93 ppm (d,2H), 6.82 ppm (d,4H), 

6.73 ppm (d,2H), 6.54 ppm (q,2H), 5.67 ppm (s,1H), 4.12 ppm (m,12H), 2.10 ppm (s,3H). 

MS (EI) m/z: [M]+: 431.52. Calculated (HR MS (EI): 446.2093. Found: 446.2089. Anal. 

Calcd for C28H30O5: C, 75.31; H, 6.77. Found: C, 73.62; H, 7.35. Yield: 0.63g.  

4.3 Lithographic Evaluation 

To create resist solutions for both DUV and e-beam lithographic evaluation, 3 

wt% solutions (with respect to total solids) of THPE-2VE in cyclohexanone were 

formulated with 5 mol% (relative to moles of THPE-2VE) TPS-SbF6 and filtered 

through a 0.2 µm Teflon membrane filter. Films of approximately 50 nm thickness were 

spin cast using a speed of 2000 rpm onto unprimed silicon wafers ordered from 

University Wafer. For the post-apply bake (PAB) study, approximately 50 nm films of 

THPE-2VE were spin cast from a 3 wt% solution in cyclohexanone with 5 mol% 

triphenyl sulfonium hexafluoroantimonate (TPS-SbF6,
 Midori Kagaku, Ltd.) and baked 

for 10 minutes in ambient atmosphere at various temperatures to crosslink films. An 
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initial film thickness was measured after the 10-minute bake using ellipsometry, and 

then development in either aqueous 0.26 N tetra methyl ammonium hydroxide (TMAH) 

or methyl isobutyl ketone (MIBK) was performed and the thickness was measured again 

to obtain normalized remaining thickness (NRT) values, which is the ratio of the film 

thickness measured after development to the film thickness measured after the PAB. 

The procedure for the PAG loading study was very similar, with only the PAG mol% 

changing from 3 mol% to 5 mol% (with respect to moles of THPE-2VE). Comparison 

of choice of PAG between TPS-SbF6 to TPS-Tf also followed a similar procedure, with 

5 mol% of either TPS-SbF6 or TPS-Tf added. Aside from these noted changes, all other 

processing variables were consistent with what was performed for all other DUV 

lithographic experiments.  

Films were crosslinked at 200 oC and then exposed to either 100 keV e-beam or 

248 nm DUV radiation, followed by a post-exposure bake (PEB) at 90 oC for 60 seconds 

in ambient atmosphere. The films were then developed in either MIBK for 30 seconds, 

followed by an isopropyl alcohol (IPA) rinse, or 0.26 N aqueous TMAH solution for 30 

seconds, followed by a deionized water rinse. DUV contrast curves were obtained by 

exposing resist films with an Oriel Instruments 500W Hg-Xe arc lamp with a 248 nm 

bandpass filter, followed by solvent development, and then film thickness measurements 

using a J.A. Woolam M-2000 Ellipsometer. E-beam lithography evaluation was 

performed using a JEOL JBX-9300FS electron-beam lithography system with a 100-

keV acceleration voltage and a 100-pA current. Resulting e-beam patterns were imaged 

using a Carl Zeiss Ultra 60 SEM with 2 keV acceleration voltage. E-beam contrast 
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curves were obtained by exposing crosslinked resist films to 100 keV e-beam radiation, 

followed by solvent development and then film thickness measurements were obtained 

using a Tencor P15 profilometer. 

4.4 Results and Discussion 

4.4.1 Contrast Curves 

 

Figure 4.4 (a) PAB study of THPE-2VE, (b) 248 nm DUV contrast curve comparing 

organic solvent and aqueous base TMAH development, (c) PAG loading study for 0.26N 
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TMAH development, and (d) a comparison of two different PAGs in 0.26N TMAH 

development. 

THPE-2VE was designed to have a 2:1 ratio of vinyl ethers to phenols in order to directly 

compare its performance to DPA-2VE and to investigate if using a phenol is a viable 

alternative to using a carboxylic acid. The material was first subjected to a post-apply bake 

(PAB) study to determine at what temperature the material should be crosslinked at, as 

shown in Figure 4.4a. The material largely shows similar normalized remaining thickness 

(NRT) values for each developer at the same temperature. At a PAB of 90oC, the material 

begins to become insoluble, and then increases to an NRT >1 presumably due to swelling 

at a temperature of 170oC because at this temperature, there is likely only a loosely-

crosslinked network formed, which imbibes developer solution. The NRT value returns to 

1 at a PAB temperature of 200oC, and so this temperature was chosen as the standard PAB 

temperature.   

The DUV contrast curve in Figure 4.4b, which plots the NRT vs. dose, shows that 

THPE-2VE has an increase in contrast ratio (7.2) as well as a much lower dose-to-clear 

of 3 mJ/cm2, compared to a contrast ratio of 5.2 and a DUV dose-to-clear of 7 mJ/cm2 

for DPA-2VE.14 THPE-2VE is more than twice as sensitive to DUV exposure than 

DPA-2VE, which was surprising because reported carboxylic-acid containing resists 

have a lower dose-to-clear than their phenolic counterparts.10 This increase in sensitivity 

could arise from the different processing conditions used for the two resists. DPA-2VE 

was evaluated using a PAB of 160 oC due to concerns from thermal degradation at 

higher temperatures, while THPE-2VE was processed using a PAB of 200 oC, so it 
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makes a direct comparison between the two materials somewhat difficult. Carboxylic 

acid-containing resists have been shown to have a higher crosslinking rate than phenol-

containing polymers, so even at a lower PAB, the DPA-2VE could have formed a more 

densely-crosslinked network versus THPE-2VE.10 The more densely-crosslinked 

network would reduce the mobility of the photoacid, thus requiring slightly higher doses 

in order to generate enough photoacid to cleave the network to render it soluble in 

developer at equivalent PEB conditions. 

Interestingly, the contrast curves between the two development conditions in 

Figure 4.4b are almost identical, which differs from our epoxy-based negative-tone 

resists, which show marked differences between 0.26 N TMAH and MIBK development 

curves.8 In those materials, the two development conditions differed because the 

solubility transition for the two solvents occurred at different doses due to the different 

requirements to insolubilize the material. For any material to be rendered soluble in either 

developer in the current material, it needs to completely detach from the network. Due 

to the nature of the depolymerization chemistries, one phenol and one aliphatic alcohol 

are unmasked for each acid-catalyzed acetal cleavage, resulting in highly polar fragments 

(depolymerization product shown in Figure 4.1) that are soluble in 0.26 N TMAH 

developer. 

Figure 4.4c shows that increasing the PAG loading from 3 mol% to 5 mol% results 

in a lower dose-to-clear while maintaining a shift in E1 away from zero dose in 0.26 N 

TMAH developer. Due to the high PAB temperature used for this material, the PAG 

TPS-SbF6 was used, which shows excellent thermal stability at elevated temperatures. 
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The DUV contrast curve in Figure 4.4d shows that the PAG triphenyl sulfonium triflate 

(TPS-Tf), which was used for DPA-2VE, shows nearly-identical performance to TPS-

SbF6 at 5 mol% loading with THPE-2VE when developed in TMAH. 

 

Figure 4.5 One hundred kilo-electron volt e-beam contrast curve of THPE-2VE, 

developed in MIBK and 0.26N TMAH. 

 

The 100 keV e-beam contrast curve of THPE-2VE (Figure 4.5) shows similar 

sensitivity in both 0.26 N TMAH with a dose-to-clear (E0) of 20 µC/cm2 and an E0 

of 24 µC/cm2 in MIBK development. Development in 0.26 N TMAH appears to 

result in a slightly more sensitive material, with an E0 of 20 µC/cm2. At this dose, 

MIBK development still shows an NRT of approximately 0.5, so a crosslinked 

network is still present, but this network is likely heavily fragmented, with a reduced 

crosslink density, which could result in swelling in 0.26 N TMAH developer, leading 

to swelling-induced delamination.17 If delamination is occurring, this could result in 
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the NRT difference observed for TMAH and MIBK development at a dose of 20 

µC/cm2. 

4.4.2 E-beam lithographic patterns 

 

Figure 4.6 100 keV e-beam images of THPE-2VE comparing development in MIBK (a)–

(c) and 0.26N TMAH (d)–(f) at various exposure doses, formulated with 5 mol. % TPS-

SbF6. 

In MIBK development (Figure 4.6a-c), THPE-2VE suffers from bridging at e-

beam doses of 32 µC/cm2 and 40 µC/cm2, but manages to resolve isolated lines at a dose 
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of 48 µC/cm2, with a calculated 3σ LER value of 8.4 nm, and a minimum feature size of 

approximately 35 nm. This LER value is somewhat high compared to other molecular 

resists reported in the literature.18 There are several side reactions that can compete with 

the acetal cleavage responsible for depolymerization that may be responsible for this poor 

LER. Due to excess vinyl ethers on THPE-2VE compared to phenols, one possible side 

reaction is the acid-catalyzed homopolymerization of vinyl ethers, which would result in 

insoluble material being formed.19 It is possible that as the dose is increased, more acid is 

available to catalyze this undesired reaction, which results in a poor line edge profile. A 

study that probes the effect of these side reactions on patterning performance of these 

materials will be discussed in the next chapter. 

Development of THPE-2VE in 0.26 N TMAH (Figure 4.6d-f) showed a slightly lower 

dose to pattern observable features compared to MIBK development, which is in agreement 

with the e-beam contrast curve. At lower doses, such as the 24 µC/cm2 shown in Figure 

4.6d, patterned lines do not appear to be fully formed. Increasing the dose to 32 µC/cm2 

does not appear to improve performance, possibly because of the delamination concerns 

raised earlier with the e-beam contrast curve. Increasing the dose to 40 µC/cm2 allows the 

material to resolve sub-40nm features with a calculated LER value of 8.2 nm, which is 

somewhat lower than MIBK development. Despite the high LER values reported here, 

there is no evidence of pattern collapse at any of the feature sizes probed thus far in either 

developer, which is a promising early result as the processing conditions are optimized to 

determine the ultimate resolution limit of this material. To the best of our knowledge, these 
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lines are some of the smallest features ever resolved using acetal-containing 

depolymerization resists.12,20,21 

4.4.3 Time-dependent properties of resist solutions 

 

Figure 4.7 (a) DUV contrast curves for 0.26N TMAH development for the same nominal 

THPE-2VE (3 wt. % solids in cyclohexanone, 5 mol. % TPS-SbF6) solution after 

different periods of storage. (b) DUV contrast curve comparing development in an 

organic solvent to development in 0.26N TMAH. 

In Figure 4.7a, THPE-2VE shows slightly improved shelf stability and is stable up 

to one day after solution creation, which is an improvement upon DPA-2VE, which 

began to show inconsistent contrast curves after 1 hour solution aging.14 Similar 

improvements have been reported by the Willson group when switching from a 

carboxylic acid to a phenol-based design in similar materials, which suggests that the 

acidic functional group of the resist participates in the reactions responsible for the 
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limited shelf life.15 Even with the improvement, THPE-2VE still appears prone to a dark 

reaction that slowly degrades its patterning performance over time. 

To gain some insight into how this dark reaction affects development, a comparison 

was made between organic solvent and TMAH development, and the results are shown 

in Figure 4.7b. In this study, a distinct difference was shown between the two 

development methods, with TMAH showing severely degraded patterning behavior, 

while development in organic solvent looks comparatively similar to the original curve 

at 0 days solution age. While the mechanism responsible for this issue is currently 

unknown, it does appear that phenols are being consumed in the resist solution at some 

point prior to lithographic processing, since the presence of a phenol is a requirement for 

the resist to be soluble in 0.26 N TMAH. A potential reaction that could explain this 

behavior involves oxidation of vinyl ethers via atmospheric oxygen in solution, which 

would produce radicals that can potentially consume phenols, which are known to act as 

radical scavengers.22,23 Assuming radicals are involved, phenols are reported to be better 

radical scavengers than carboxylic acids, which may be why the THPE-2VE shows a 

slightly extended shelf life compared to DPA-2VE.24
 

4.5 Summary and conclusions 

A phenol-containing molecular resist based on acid-catalyzed 

depolymerization has been synthesized and patterned using 100 keV e-beam 

lithography. The first molecule in this family, THPE-2VE, was designed in order to 
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provide a direct comparison between a previous resist in order to examine the effect 

of changing the carboxylic acid to a phenol. 

The initial DUV experiments shed light on the variables that affect the performance 

of this resist, including PAB temperature, choice of development solvent, PAG loading, 

and PAG type. The optimal PAB temperature was deemed to be 200 oC since this was the 

lowest temperature where no swelling was observed in either development solvent. PAG 

loading showed that increasing the percentage of TPS-SbF6 from 3 to 5 mol% resulted in 

increased sensitivity while maintaining a shift in E1 away from zero dose. Neither the 

choice of development solvents nor PAGs used here appears to markedly affect the DUV 

sensitivity or contrast of this material. 

THPE-2VE showed both an increase in sensitivity and contrast compared to DPA-

2VE, and initial 35 nm features were obtained using 100 keV e-beam lithography, showing 

a dose-to-size of 48 µC/cm2 in MIBK development and 40 µC/cm2 in 0.26 N TMAH 

development for 35 nm lines. An improvement in shelf life was observed upon switching 

to a phenol in the THPE-2VE design, though the material still showed gradual loss of 

sensitivity over time. Although 3σ LER values were high for THPE-2VE, the excellent 

resolution (with one of the smallest features ever reported for similar materials) and 

sensitivity make it an attractive candidate for future optimization towards smaller features. 

The results presented here lay the foundation for future studies that will probe the 

fundamental patterning performance of this family of materials. 
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CHAPTER 5. STRUCTURAL EFFECTS ON THE PATTERNING 

PERFORMANCE OF CROSSLINKED DEPOLYMERIZATION 

MOLECULAR RESISTS 

5.1 Introduction 

In order to accommodate more transistors on integrated circuits, the size of the 

transistors must continually decrease, and this has traditionally been achieved through 

advancements in photolithographic materials and processes. In this process, a photoresist 

is used to generate a relief image which is then transferred to the underlying substrate 

through etching, and this litho-etch process is then repeated until the desired features are 

built. Historically, the development of new light sources for photolithography brought with 

it the need for new photoresist designs to meet the requirements for new processes. 

Polyphenolic chemically-amplified resists have been the dominant form of photoresists for 

many years in the semiconductor industry, but as feature sizes of transistors continue 

decrease well below 50nm, issues with these photoresists, such as photoacid diffusion into 

unexposed regions, line edge roughness (LER), and pattern collapse have become worse. 

New materials are needed to meet these increasing performance demands, and molecular 

resists have been proposed as a candidate to potentially overcome some of these resolution-

limiting factors. Polymeric resists have a molecular weight distribution, so precise 

compositional control is difficult to achieve because very complex, and expensive synthetic 

methods are often employed to produce low-polydispersity materials. In contrast, 

molecular resists can be made truly monodisperse, which can eliminate batch-to-batch 
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variations, offering precise control over the molecular composition of resists. Compared to 

traditional polymeric resists, molecular resists have been shown to have a smaller acid 

diffusion length than similar polymeric materials, which can help reduce photoacid blur 

and offer potentially better mixing additives such as photoacid generators (PAGs).1 

Pattern collapse in sub-100nm features is a major resolution-limiting issue, and so 

our group has pursued negative-tone crosslinked resists that have been demonstrated to 

withstand approximately twice the capillary forces compared to a polymeric, positive-

tone, non-crosslinked resist before collapsing.2 Encouraged by early results with these 

materials, the fundamental chemistry behind the class of molecules was studied, resulting 

in the development of several new materials that, through formulation and processing 

optimization, were capable of resolving sub-20nm features under extreme ultraviolet 

(EUV) exposure.3,4 

Certain lithographic features produce better results depending on development 

tone, so it’s important to have both positive and negative tone photoresists.5,6 This led our 

group to pursue a positive-tone crosslinked molecular resist that could leverage the benefits 

of both crosslinked resists and highly-sensitive acetals throughout the network, which 

result in a highly sensitive material.7,8 Both carboxylic acid and phenol-based designs of 

these materials were developed, and each demonstrated sub-50nm resolution and excellent 

sensitivity in both 248nm DUV and 100 keV e-beam exposures.9 The phenol-containing 

design, THPE-2VE, showed improved contrast and shelf life compared to the carboxylic 

acid design and was capable of resolving sub-40nm lines using 100 keV e-beam patterning 
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with a dose-to-size (Esize) of 40 µC/cm2 in 0.26N TMAH developer and 48 µC/cm2 in 

organic solvent development.10  

 

Figure 5.1 Structures of the resists used in this study, where the number of vinyl ethers 

attached to the phenolic core is varied. 

The presence of vinyl ethers in these resists can result in various side reactions beyond 

the phenol/vinyl ether crosslinking and the acid-catalyzed acetal cleavage reactions that are 

responsible for the imaging chemistry of these resists.11,12 In order for the depolymerization 

resists to provide good contrast and produce high-resolution features, an understanding of 

these side reactions and their effects on patterning performance is critical. Several 

molecules, whose structures are shown in Figure 5.1, were synthesized to have different 

ratios of phenols and vinyl ethers on their core. By systematically varying this ratio, we 

can investigate the effects that the relative content of the two functional groups have on the 

patterning performance of these materials, enabling optimization of future designs and 

formulations. 248nm DUV curves are used to quickly and cheaply study the effect of 

various formulation and processing variables to optimize the performance of the resists 

before obtaining high-resolution e-beam patterns. Here, we report the 248nm DUV contrast 
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curves and the 100keV e-beam patterns and discuss the impact of structural variations on 

the patterning performance of these materials. 

5.2 Experimental 

5.2.1 Synthesis 

 

Figure 5.2 Synthesis of THPE-2VE and THPE-1VE. Products are isolated from a one-pot 

reaction via silica gel chromatography. 

Reagents were ordered from TCI America and Sigma Aldrich, unless otherwise 

noted. The single-batch reaction between 5 grams of 1,1,1-tris(4-hydroxyphenyl) ethane 

(THPE) and 2-chloroethyl vinyl ether (VE) in the presence of potassium hydroxide (KOH) 

in dimethyl sulfoxide (DMSO) was used to synthesize both THPE-2VE and THPE-1VE. 

THPE (1 molar equivalent) and KOH (6 eq.) were added to 30 mL DMSO and stirred in a 

100-mL round-bottom flask in an oil bath at 80oC for 30 minutes. Afterwards, 2-
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chloroethyl vinyl ether (2 eq.) was added dropwise to the mixture, which was then stirred 

at 80oC for 5 hours. After 5 hours, the solution was cooled to room temperature and washed 

once with deionized water and extracted with ethyl acetate. The organic layer was washed 

twice more with deionized water before filtering and drying over magnesium sulfate 

(MgSO4). Solvents were evaporated via rotary evaporator, and the resulting crude product 

was purified via silica gel column chromatography using ethyl acetate and hexanes (2:5) 

to isolate THPE-2VE and THPE-1VE. 1H NMR (300 MHz, CDCl3, δ): THPE-2VE: 7.00 

ppm (d,4H), 6.93 ppm (d,2H), 6.82 ppm (d,4H), 6.73 ppm (d,2H), 6.54 ppm (q,2H), 5.67 

ppm (s,1H), 4.12 ppm (m,12H), 2.10 ppm (s,3H); Yield: 43% THPE-1VE: 7.00 ppm 

(d,2H), 6.93 ppm (d,4H), 6.82 ppm (d,2H), 6.73 ppm (d,4H), 6.55 ppm (q,1H), 5.18 ppm 

(s,2H), 4.12 ppm (m,6H), 2.12 ppm (s,3H); Anal. Calcd for C24H24O4: C, 66.36; H, 7.28. 

Found: C, 72.34; H, 6.97; Yield: 37%.  

 

Figure 5.3 Synthesis of TPOE. 

TPOE: 1,1,2,2-tetrakis(p-hydroxyphenyl)ethane (TPOE) was synthesized via the acid-

catalyzed reaction between phenol and glyoxal, where 4 molar equivalents of phenol (60 

g), 1 eq glyoxal (40% solution in water), and 0.05 eq. 2-mercaptopriopionic acid were 

added to acetonitrile with stirring. Concentrated sulfuric acid was added dropwise to the 
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solution. After addition, the flask was placed in an oil bath at 70oC and stirred for 48 hours, 

during which time the solution turned a dark brown. After 48 hours, the solution was cooled 

to room temperature and precipitated into acetone. A solid formed, which was vacuum 

filtered and washed with water and acetone to produce a white solid. 1H NMR (300MHz, 

methanol-d4, δ): 6.99 ppm (d,8H), 6.65 ppm (d, 8H), 4.55 ppm (s, 2H). Anal. Calcd for 

C26H22O4: C, 78.37; H, 5.57. Found: C, 73.89; H, 6.30. Yield: 57%. 

 

Figure 5.4 Synthesis of TPOE-3VE, TPOE-2VE, and TPOE-1VE. Each individual 

molecule is isolated from the same reaction via silica gel chromatography. 

TPOE-1VE, TPOE-2VE, and TPOE-3VE were synthesized via a slightly different 

procedure from THPE-1VE and THPE-2VE. Potassium carbonate (K2CO3) is used as the 

base in this reaction since NaOH will deprotonate the ethyl bridge protons, forming a 
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carbanion which then attacks the 2-chloroethyl vinyl ether, forming unwanted side 

products. 3.181 g of TPOE (1 molar equivalent) was dissolved in dimethylformamide, 

followed by the addition of 8.61g (6 eq.) of potassium carbonate and 2.21g (2 eq.) of 2-

chloroethyl vinyl ether (VE). The mixture was heated to 80oC and stirred for 48 hours, after 

which the solution was cooled to room temperature, and deionized water and ethyl acetate 

were added. The aqueous layer was washed with dilute hydrochloric acid solution and 

extracted once with additional ethyl acetate. The organic layers were then combined, 

washed twice with additional deionized water, and then dried over MgSO4, after which 

solvents were evaporated using a rotary evaporator. The resulting crude residue was then 

purified via silica gel chromatography using hexanes and ethyl acetate in a ratio of 5:3 to 

yield TPOE-3VE, TPOE-2VE, and TPOE-1VE as oils. 1H NMR spectral data are as 

follows: 

TPOE-1VE (300MHz, acetone-d6, δ): 7.25 ppm (d, 2H), 7.11 ppm (d, 6H), 6.69 

ppm (d, 2H), 6.58 ppm (d, 6H), 6.50 ppm (dd, 1H), 4.75 ppm (s, 2H), 4.11 ppm (m, 6H). 

Yield: 0.47g.  

TPOE-2VE (300MHz, CDCl3, δ): 7.00 ppm (d, 4H), 6.98 ppm (d, 4H), 6.65 ppm 

(d, 4H), 6.55 ppm (d, 4H), 6.49 ppm (dd, 2H), 4.85 ppm (s, 2H), 4.51 ppm (s, 2H), 4.15 

ppm (m, 12H). Yield: 0.689g. Anal. Calcd for C34H34O6: C, 75.82; H, 6.36. Found: C, 

74.13; H, 6.93. 

TPOE-3VE (300MHz, CDCl3, δ): 7.01 ppm (d, 6H), 6.98 ppm (d, 2H), 6.65 ppm 

(d, 6H), 6.54 ppm (d, 2H), 6.50 ppm (dd, 3H), 4.85 ppm (s, 1H), 4.55 ppm (m, 18H). 

Yield: 0.83g. Anal. Calcd for C38H40O7: C, 74.98; H, 6.62. Found: C, 73.89; H, 6.94. 
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5.2.2 Lithographic Evaluation 

3 wt% resist solutions were created by dissolving the resist in cyclohexanone, containing 

5 mol% (with respect to resist) triphenyl sulfonium hexafluoro antimonate (TPS-SbF6) 

(Midori Kagaku, Ltd.) and filtering through a 0.2 µm Teflon membrane filter. Resist 

solutions were then spin-coated onto unprimed silicon wafers ordered from University 

Wafer to form films approximated 40nm thick. The films were then subjected to a post-

apply bake (PAB) for 10 minutes in ambient atmosphere to crosslink and insolubilize the 

film in developers. Crosslinked films were then exposed to either 100 keV e-beam or 

248nm DUV radiation, followed by a post-exposure bake (PEB) for 60 seconds. For 

organic solvent development, the exposed films were then developed in either methyl 

isobutyl ketone (MIBK) for 60 seconds, followed by an IPA rinse and nitrogen gun drying. 

For aqueous base development, the films were developed in 0.26 N aqueous tetramethyl 

ammonium hydroxide (TMAH) solution for 60 seconds, followed by a deionized water 

rinse and nitrogen gun drying. 248nm deep ultraviolet (DUV) contrast curves were 

obtained using an Oriel Instruments 500W Hg-Xe arc lamp with a 248 nm bandpass filter, 

using a M-2000 Woolam Ellipsometer for film thickness measurements. Normalized 

remaining thickness (NRT) measurements were obtained by measuring the thickness of the 

film after the PAB versus the thickness remaining after development. E-beam lithography 

evaluation was performed using a JEOL JBX-9300FS electron-beam lithography system 

with a 100-keV acceleration voltage and a 100-pA current. Resulting e-beam patterns were 

imaged using a Carl Zeiss Ultra 60 SEM with 1-5 keV acceleration voltage. 
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5.3 Results 

 

Figure 5.5 248nm DUV contrast curve of TPOE-1VE, using a PAB of 200 oC and a PEB 

of 90 oC in 0.26N TMAH development. 

248nm DUV contrast curves offer a quick, inexpensive way for resist formulation and 

processing conditions to be optimized before obtaining high-resolution patterns. Beginning 

with TPOE-1VE, which has a threefold excess of phenols compared to vinyl ethers, the 

248nm DUV contrast curve of the material in Figure 5.5 shows a dose-to-clear (E0) of 7 

mJ/cm2. The material exhibits severe swelling in 0.26N TMAH developer at low doses, 

with the NRT first increasing with dose and then gradually decreasing to a thickness of 0, 

giving the material a contrast ratio of 6.6. 
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Figure 5.6 DUV contrast curve of THPE-1VE with a PAB of 200oC and 90oC PEB 

     

Figure 5.7 100 keV e-beam patterns of THPE-1VE in 0.26N TMAH development, when 

formulated with 5 mol% TPS-SbF6 as PAG. 

In the DUV contrast curve of THPE-1VE (Figure 5.6), no swelling is observed, and the 

material begins to show thickness loss at a dose of 1 mJ/cm2, with an E0 of 7 mJ/cm2 when 

developed in 0.26N TMAH at a PAB of 200oC and a PEB of 90oC. The material has a 

contrast value of 3.2. Under 100keV e-beam patterning (Figure 5.7), the material 

demonstrates a sub-40nm resolution of 1:1 line:space patterns with no noticeable swelling 
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at a dose of 84 µC/cm2 with a 3σ LER value of 4.98 nm. The lines appear under-dosed at 

78 µC/cm2. 

 

Figure 5.8 248 nm contrast curve of TPOE-2VE comparing (a) two different PAB 

temperatures at a PEB of 90oC in 0.26N TMAH and (b) comparing MIBK and 0.26N 

TMAH development at a PAB of 170oC and PEB of 90oC. 

TPOE-2VE was designed to have an equal number of phenols and vinyl ethers, such 

that all functional groups can in principle be incorporated into the final crosslinked 

network, potentially strengthening the network relative to the resists that have an unequal 

ratio of the two. When a PAB of 200oC is used to crosslink the material, TPOE-2VE does 

not completely depolymerize, even at a dose 50 mJ/cm2, as shown in Figure 5.8a. Lowering 

the PAB by 30 degrees to 170oC allows the material to completely depolymerize at a dose 

of 8 mJ/cm2. The differences between MIBK and 0.26N TMAH development on the DUV 

performance of TPOE-2VE are shown in Figure 5.8b, when a PAB of 170oC and a PEB of 

90oC were used. The curves are largely similar, with the TPOE-2VE having an E0 of 8 
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mJ/cm2 in both solvents and contrast ratio of 2.2 in TMAH development and 1.6 in MIBK 

development. Figure 5.9 demonstrates that the material is capable of resolving roughly 

45nm lines at a dose of 78 µC/cm2 with a 3σ LER of 5.5nm in TMAH development with 

no signs of pattern collapse at this feature size.  

 

Figure 5.9 100 keV e-beam patterns of TPOE-2VE for 0.26N TMAH development, with 

a PAB of 170oC and PEB of 90oC. 

The patterning performance of THPE-2VE has been reported previously, but it is still 

useful to include the data here for a full comparison to the other materials. The 248nm 

DUV contrast curve of THPE-2VE in Figure 5.10 shows that, when subjected to a PAB of 

200oC and PEB of 90oC, the resist shows an E0 of 3 mJ/cm2 and a contrast value of 10.3. 

Figure 5.11 shows the 100keV e-beam images, which demonstrate that the material is 

capable of resolving lines down to approximately 40nm with a dose of 40 µC/cm2 with an 

LER (3σ) of 8.2 nm in TMAH development. 
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Figure 5.10 248nm DUV curve of THPE-2VE in 0.26N TMAH development. Processing 

conditions: 200oC PAB, 90oC PEB. 

 

Figure 5.11 100 keV e-beam patterns of THPE-2VE in 0.26N TMAH development. 

Processing conditions: 200oC PAB, 90oC PEB. 

TPOE-3VE, which has a threefold excess of vinyl ethers, does not completely 

depolymerize when a PAB of 170oC is used, regardless of how high of a PEB was used, as 

shown in Figure 5.12a. In fact, the NRT even begins to increase with dose as the PEB is 
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raised to 170oC.  In order to attempt to reduce the amount of remaining thickness at higher 

doses, even lower PAB temperatures of 160oC and 150oC were used, but as Figure 5.12b 

shows, the NRT never quite reaches a value of 0. 

 

Figure 5.12 DUV contrast curves of TPOE-3VE, processed (a) at various PEB and (b) 

PAB temperatures in an attempt to reduce NRT. 

Figure 5.13 compares the DUV contrast curves of THPE-1VE, THPE-2VE, and 

TPOE-2VE, when the materials are processed at identical conditions. The sensitivity of 

TPOE-2VE is significantly lower than that of the other two materials, even failing to 

depolymerize completely and return to an NRT of 0. THPE-1VE and THPE-2VE both 

show E0 values below 10 mJ/cm2. 



 

 

120 

 

Figure 5.13 Comparison of THPE-1VE, THPE-2VE, and TPOE-2VE when processed at 

identical conditions (PAB = 200oC and PEB = 90oC). 

5.4 Discussion 

At lower doses, the network in TPOE-1VE is likely just beginning to fragment, but 

sufficient fragmentation has not yet occurred in order to solubilize the material in the 

developer, and so the network instead swells, up to an NRT value of approximately 1.2 in 

Figure 5.5.13 Beyond some critical number of de-crosslinking reactions, the network has 

sufficiently fragmented to begin rendering the material soluble in developer, and the NRT 

decreases accordingly, eventually reaching an NRT of 0 at a dose of 7 mJ/cm2. In this resist, 

by virtue of stoichiometry only one phenol per resist molecule is consumed during the 

crosslinking reaction with the single vinyl ether to form an acetal, resulting in a network 

that has many unreacted phenols present. The acidic phenols likely imbibe the basic 

developer, forming phenolate salts, which results in the high NRT observed in TMAH 

development at lower doses. Due to the extreme swelling of this material, the resist is 
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unlikely to yield quality high resolution patterns, and so e-beam imaging of this resist has 

not been pursued. 

The lack of swelling in THPE-1VE in Figure 5.6, even though there is one unreacted 

phenol on the resist core would suggest that either a single unreacted phenol is not 

sufficient to result in swelling of the network or that depolymerization occurs rapidly 

enough to avoid any noticeable swelling, compared to TPOE-1VE. The material requires 

roughly twice the dose required to image compared to THPE-2VE at identical processing 

conditions and formulations.10 Since THPE-1VE has one more phenol than vinyl ethers on 

the core, the unreacted phenol could result in a higher dose required to image if the 

photoacid mobility is sufficiently limited. Phenols have been reported to slow photoacid 

diffusion through films of photoresists due to both increases in glass transition temperature 

(Tg) and hydrogen-bonding interactions with the photoacid.14 At a dose of 84 µC/cm2, the 

material exhibits an LER of 4.98 nm, which is considerably lower than the 8.2 nm LER 

reported for THPE-2VE. The source of improved LER is unclear, but the presence of more 

hydroxyls in THPE-1VE may lead to better acid generation efficiency, which could lead 

to a more homogeneous distribution of acid, reducing LER.15 

In Figure 5.8a, we show that the sensitivity of these materials can be modulated simply 

by crosslinking at different temperatures. TPOE-2VE fails to completely depolymerize 

when a PAB of 200oC and PEB of 90oC are used. This resist was designed to have an equal 

number of phenols and vinyl ethers so that all functional groups could theoretically be 

incorporated into the final network. Having such a densely-crosslinked network is likely to 

impede the diffusion of photoacid throughout the network, preventing the material from 
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depolymerizing completely. By lowering the PAB to 170oC, the density of crosslinks is 

reduced enough for the material to depolymerize completely by a dose of 8 mJ/cm2. When 

processed at identical condition, TPOE-2VE is significantly less-sensitive than THPE-1VE 

and THPE-2VE in Figure 5.13, likely forming a more densely-crosslinked network than 

the other materials, resulting in its reduced sensitivity. The NRT of the 0.26N TMAH 

development curve of TPOE-2VE in Figure 5.8b increases slightly to 1.03 at a dose of 1 

mJ/cm2, which could suggest that small amounts of swelling are occurring. At this low 

dose, the network is likely just starting to fragment, but enough photoacid has not been 

generated to break enough crosslinks to render the material fully-soluble in the developer. 

This fragmentation would result in both phenols and aliphatic alcohols being unmasked 

during the depolymerization reaction, which could imbibe the basic TMAH developer, thus 

accounting for the observed swelling, similar to that seen in TPOE-1VE, though not as 

extreme.16  
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Figure 5.14 Mechanism showing the acid-catalyzed side reactions of vinyl ethers that are 

possible in the current materials. 

THPE-2VE has the highest sensitivity and contrast of any of the materials in this study, 

with a DUV E0 of 3 mJ/cm2 and a contrast value of 10.3 in TMAH development. It manages 

to resolve roughly 40nm features in TMAH development with a rather high LER (3σ) of 

8.2 nm. This high LER could arise from unwanted side reactions, such as acid-catalyzed 

homopolymerization, shown in Figure 5.14, which would result in insoluble material at the 

line edge, and increase the LER for this resist, compared to THPE-1VE and TPOE-2VE, 

which both show 3σ LER values of 4.98nm and 5.5nm, respectively. 

TPOE-3VE was the resist with the least favorable patterning behavior and never 

completely depolymerized at any processing conditions attempted, as shown in Figure 

5.12a and Figure 5.12b. In an effort to decrease the final NRT of the material at a PAB of 

170oC in Figure 5.12a, the PEB of the material was raised, but there was still remaining 

thickness even at the highest PEB of 170oC. Surprisingly, at a PEB of 170oC, we observed 
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an increase in NRT as the dose increased. In this curve, complete depolymerization has 

likely occurred between doses of 5 and 10 mJ/cm2, where the contrast curve at 170oC 

reaches its minimum. As the dose is increased, there are no more acetals to be consumed, 

and so the photoacid is consumed by available vinyl ethers, which then polymerize to form 

a product that is insoluble in 0.26N TMAH. Since TPOE-3VE contains only a single phenol 

with three vinyl ethers, only a single vinyl ether on each resist molecule can be consumed 

during the thermal crosslinking step to form the acid-cleavable acetals. Because of this, 

each resist molecule in the crosslinked network will have two unreacted vinyl ethers that 

are not incorporated into the final network during the PAB. These vinyl ethers can undergo 

two acid-catalyzed side reactions, outlined in Figure 5.14, and each of these reactions can 

contribute to the lowered sensitivity of TPOE-3VE. In Pathway 1, which is acid-catalyzed 

hydrolysis of vinyl ethers, the photoacid first protonates the vinyl ether, which is then 

attacked by an equivalent of water, eventually regenerating the photoacid. It is possible 

that this reaction can impede the progress of depolymerization, since several steps must 

occur before the photoacid is regenerated once it reacts with the vinyl ether. Pathway 2, 

which shows acid-catalyzed homopolymerization of the vinyl ethers, represents a much 

worse scenario. In this reaction, the photoacid would be completely consumed by the vinyl 

ethers, with would then react with themselves, forming carbon-carbon bonds which cannot 

be de-crosslinked by photoacid, resulting in the non-zero NRT values in Figure 5.12a and 

Figure 5.12b.12 Similar to TPOE-2VE, the PAB temperature was lowered, which should 

reduce the number of crosslinks in the network to allow the material to be imaged at lower 

doses, since fewer acetal crosslinks would need to be cleaved by photoacid to render the 
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material soluble in developer. However, as shown in Figure 5.12b, the material still 

retained roughly 10% of its original thickness even at the lowest PAB of 150oC. No PAB 

temperatures below 150oC were attempted due to reduction of film quality and network 

swelling as the materials likely produced less densely-crosslinked networks at those 

temperatures. Assuming that lowering the PAB results in fewer crosslinks in the final film, 

this would also mean that even more vinyl ethers are not to incorporated into the network, 

potentially further compounding the remaining thickness issue. Additionally, as the 

concentration of acid in the film increases with increasing dose, the NRT does gradually 

decrease, which suggests that a competing reaction is occurring. Literature reports for these 

materials show that as the acid concentration increases, acid-catalyzed hydrolysis of the 

vinyl ethers begins to occur, reducing the number of vinyl ethers available for 

homopolymerization, but the NRT never returns to zero at the doses probed, and so no 

high-resolution patterns of TPOE-3VE were obtained. 

5.4.1 Resist blends 
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Figure 5.15 Composition of blends used in the blending study. 

One option for modifying the patterning behavior of these resists is to blend different resists 

together to make a formulation that can be imaged. The potential benefits of doing this is 

that each functional group has an equimolar amount of the other functional group, such 

that each can be incorporated into the final network, which may minimize the side-

reactions seen in the individual resists. As a starting point, blends of the THPE-VE resist 

family were created such that there was an equimolar amount of vinyl ethers and phenols 

in the blend, shown in Figure 5.15. 
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Figure 5.16 Imaging behavior of THPE-2VE and THPE-1VE blend comparing PEB 

temperatures (left) and cyclohexanone and 0.26N TMAH development solvents (right) 

(PAB = 200oC; 5 mol% TPS-SbF6). 

Figure 5.16 shows the 248nm DUV curve of a blend of THPE-2VE and THPE-1VE that is 

formulated to have an equimolar amount of phenols and vinyl ethers. The curve shows that 

the blend is more sensitive than either of the individual resists shown in Figure 4.4 and 

Figure 5.6. In the right contrast curve, the TMAH and cyclohexanone contrast curves are 

quite similar, with the resist film clearing completely by a dose of 2 mJ/cm2. While this 

increase in sensitivity is attractive, the resist does lose the shift in E1 away from zero dose 

seen in THPE-2VE, which is desired to reduce pattern degradation from flare during 

exposure. 
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Figure 5.17 248 nm DUV contrast curve of a blend of THPE-3VE and THPE (PAB = 

200oC; 5 mol% TPS-SbF6). 

THPE-3VE is a by-product of the reaction that produces THPE-2VE and THPE-1VE. 

While the molecule itself is not a depolymerization resist, it can be blended with other resist 

molecules to produce a formulation that is capable of acting like a depolymerization resist. 

As an initial study, shown in Figure 5.17, THPE-3VE is blended with an equimolar amount 

of THPE core to produce a solution that can be thermally crosslinked during a PAB and 

then depolymerized in the presence of a photoacid during the PEB. The 248 nm DUV curve 

in Figure 5.17 shows that this blend can dissolve completely by a dose of only 1 mJ/cm2 

when developed in cyclohexanone. However, the material does not completely dissolve 

when using 0.26 N TMAH as the developer, and roughly 50% of the film remains after a 

30s development time. This is because THPE-3VE does not contain a phenol which is 

necessary to be soluble in the basic TMAH developer. 
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Figure 5.18 DUV contrast curves of a blend of THPE-2VE and THPE core (PAB = 

200oC, 5 mol% TPS-SbF6). 

When THPE-2VE is blended with the THPE core, the material becomes more sensitive 

than THPE-2VE (Figure 4.4), with the resist film clearing by a dose of only 1 mJ/cm2 in 

each development solvent. However, similar to the blend of THPE-2VE and THPE-1VE, 

the shift in E1 is again lost when THPE-2VE is blended with another material. Blended 

systems have higher sensitivities than their single-resist counterparts, but suffer from no 

shift in E1 away from zero dose, which is useful in mitigating flare, which can potentially 

cause depolymerization reactions in nominally unexposed regions. 

5.5 Summary 

A series of molecular resists was synthesized in which the number of vinyl ethers 

and phenols on the molecular core was systematically varied in order to provide insight 

into how varying the composition of these two groups affects the patterning behavior of 

this class of materials. The results showed that an extreme excess of either of the two 

functional groups leads to undesirable contrast curves, with an excess of phenols in TPOE-
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1VE leading to network swelling. An excess of vinyl ethers in TPOE-3VE leads to residual 

material that is not cleaved by acid due to secondary acid-catalyzed reactions of vinyl 

ethers. A very slight imbalance of the two functional groups led to much more sensitive 

materials compared to TPOE-2VE, which had an equal number of phenols and vinyl ethers. 

Due to this imbalance, THPE-1VE and THPE-2VE likely formed a less-crosslinked 

network, which required fewer acid-catalyzed de-crosslinking reactions to occur before 

becoming soluble in developer versus TPOE-2VE. Comparing THPE-1VE and THPE-

2VE, the resist with more phenols, THPE-1VE, showed a lower sensitivity, possibly 

because of reduced photoacid diffusion, due to either a higher Tg or photoacid interactions 

with phenols present in the network. The highest 3σ LER value was observed for THPE-

2VE, with a value of 8.2 nm, compared to 4.98 nm for THPE-1VE and 5.5 nm for TPOE-

2VE. This extremely high LER value is likely a result of acid-catalyzed 

homopolymerization, which would result in insoluble material forming at the line edge. 

The materials presented here are very sensitive to 248nm DUV lithography, with the ability 

to modulate their sensitivity through changes in the PAB temperature used. 100keV e-beam 

imaging of THPE-1VE, THPE-2VE, and TPOE-2VE show that the resists are all easily 

capable of resolving sub-50nm features in 0.26N TMAH development. 
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CHAPTER 6. DIRECTLY PHOTO-PATTERNABLE 

UNDERLAYERS FOR DIRECTED SELF-ASSEMBLY OF BLOCK 

COPOLYMERS 

6.1 Introduction 

Block copolymers (BCPs) have been proposed to extend the use of older lithography 

systems, such as 193nm immersion lithography due to their ability to self-assemble into a 

variety of potentially useful morphologies. However, in order for block copolymers to be 

lithographically useful, their assembly needs to be directed such that they can achieve long-

range order over a large area with minimal defects. Currently, two main techniques are 

used to achieve the DSA of BCPs: graphoepitaxy and chemoepitaxy.1,2 In graphoepitaxy, 

a lithographic guiding pattern is generated on top of a neutral underlayer using a photoresist 

with conventional photolithography at a pitch larger than the size BCP domains. Often, the 

side walls of this guiding pattern are preferential to one of the two blocks, allowing one of 

the two blocks to preferentially wet the wall and enhancing the strength of the guidance. In 

chemoepitaxy, whose process flow is shown in Figure 6.1a, a neutral underlayer is coated 

on top of a substrate. A lithographic relief pattern is formed using photolithography. An 

etch step is then performed, which generates hydrophilic groups in the portions of the 

underlayer that aren’t covered by photoresist. The photoresist is then removed, leaving a 

chemical guiding pattern which preferentially wets the more hydrophilic of the two blocks. 

This process is long and complicated, which will only increase the cost of the devices 
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fabricated using this technique, thus there is motivation to reduce the number of steps used 

to direct the self-assembly of BCPs using a chemical guiding pattern. 

One such option to reduce process time is to directly “write” a chemical pattern onto a 

neutral substrate using lithography, eliminating the need for the etch step (Figure 6.1b). 

Such a design has already been reported that is based on the acid-catalyzed deprotection of 

a poly(4-hydroxystyrene) (PHOST) polymer protected with isopropyloxycarbonyl (iPOC) 

groups, shown in  Figure 6.2.3 The design includes a methacrylate (MA) group as the 

crosslinking group, which is necessary to ensure that the underlayer does not dissolve once 

the BCP is coated atop the underlayer. The PHOST portion of the underlayer is protected 

with an isopropyloxycarbonyl (iPOC) protecting group, which deprotects in the presence 

of photogenerated acid and a PEB to generate hydrophilic phenols, which the more polar 

block of the BCP preferentially wets.  
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Figure 6.1: Comparison between typical chemoepitaxy process (a) and the directly-

photodefinable underlayer (b). 

This design showed good acid-catalyzed deprotection (as measured via contact angle 

change with increasing DUV dose), but it didn’t crosslink as efficiently as expected. In 

order to verify that the underlayer would not wash away when the BCP was coated on top, 

the underlayer was sonicated in PGMEA for 10 minutes to remove crosslinked material. 

As much as 50% of the underlayer was lost after the crosslinking reaction was carried out, 

potentially because the methacrylate group was sensitive to oxygen, which resulted in chain 

termination as the crosslinking reaction was performed. Since the film was so thin, the 

underlayer had to be coated very thickly in order to direct the self-assembly of PS-b-

PMMA. 
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Figure 6.2: Structure (left) and chemistry of the acid-catalyzed deprotection of the 

PHOST-iPOC-r-MA underlayer. 

Coating the underlayer so thickly results in wasted material and can also interfere with the 

etch steps to transfer the underlayer to the silicon substrate underneath. Thus, there is a 

need for a more efficient crosslinking chemistry which can achieve high NRT values during 

the crosslinking step without being washed away during subsequent coating steps. Two 

potential chemistries were investigated that have been demonstrated to achieve high NRT 

values in ambient conditions: epoxides and benzocyclobutene (BCB). These designs 

shown in Figure 6.3 are identical to the old design in Figure 6.2, but differ in the 

crosslinking group used. 
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Figure 6.3 Structure of new underlayers designed with improved crosslinking groups. 

The epoxide crosslinking group in iPOC-Ep has been shown to achieve high NRT values 

through thermal crosslinking, and the BCB group in iPOC-BCB by other groups.4 The goal 

of this chapter is to evaluate whether either of these groups can be successfully integrated 

into the directly-photodefinable underlayer and increase the NRT of the film without 

affecting the deprotection chemistry needed to guide BCPs. 

6.2 Experimental 

6.2.1 Synthesis 
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Figure 6.4 Synthesis scheme for iPOC-r-Ep underlayer. 

PHOST-r-iPOC: Dissolve 2g p-poly(hydroxystyrene) (PHOST) (11,800 g/mol) in 50 mL 

THF, then add 17 mL isopropyl chloroformate (iPOC) (1.0 M in toluene). Add 6 mL 

triethylamine (TEA) and stir at room temperature for 24 hours. The reaction was quenched 

with dilute HCl solution, and ethyl acetate was added. The organic layer was washed twice 

with deionized water before it was filtered/dried over MgSO4. Yield: 2.00 g. 

 

Figure 6.5 1H NMR spectrum of PHOST-r-iPOC in acetone-d6. 

iPOC-r-Allyl: Dissolve 1g (0.025 mol) PHOST-r-iPOC in 30 mL dimethylformamide 

(DMF), and add 0.1 g potassium carbonate and 2 g (1.5 mL, 0.13 mol) allyl bromide to the 
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solution, along with 0.1 g (0.3 mmol) 18-crown-6 ether. Place solution into oil bath set to 

75oC and stir for 24 hours. Afterwards, cool solution to room temperature, add ethyl 

acetate, and wash once with dilute HCl solution and twice with deionized water. The 

organic layer was then filtered/dried over MgSO4 before solvents were evaporated. Yield: 

0.85g. 

 

Figure 6.6 1H NMR spectrum of iPOC-r-Allyl in CDCl3. 

iPOC-r-Ep: Dissolve 1.61 g iPOC-r-Allyl in 40 mL of chloroform in an ice bath. Add 10 

mL acetone along with 3.65 g sodium bicarbonate. Dissolve 4.45 g Oxone in 30 mL 

deionized water and add dropwise to the solution. Remove the solution from the ice bath 

and stir at room temperature for 24 hours. A small sample was extracted, washed with 

water and extracted with ethyl acetate in order to track conversion of alkenes to epoxides 

via 1H NMR. The procedure was repeated until conversion to epoxides was complete. Once 

conversion was complete, the solution was washed with water and extracted with ethyl 
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acetate. The organic layer was washed twice more with water before being filtered/dried 

over MgSO4 and solvents evaporated. Yield: 1.20 g. 

 

Figure 6.7 1H NMR spectrum of iPOC-r-Ep in CDCl3. 

 



 

 

141 

 

Figure 6.8 Synthesis scheme for iPOC-r-BCB underlayer. 

BCB-r-AS: To a 10-mL Schlenk flask, add 0.022 g vinyl-benzocyclobutene (BCB), 0.9927 

g acetoxy styrene, and 0.0531 g AIBN in 2 mL dry toluene. Perform three freeze-pump-

thaw-backfill (N2) cycles. Allow flask to warm to room temperature and then place in an 

oil bath set to 75oC and stir for 24 hours. The reaction vessel was then opened to air to 

quench the reaction and allowed to cool to room temperature. The solution was then diluted 

slightly with dichloromethane (DCM) and then precipitated into cold methanol, where a 

white powder formed, which was vacuum filtered and dried in a vacuum oven overnight. 

Yield: 0.5032 g. Mw (7,300 g/mol). 
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Figure 6.9 1H NMR (300 MHz) spectrum of BCB-r-PAS in CDCl3. 

BCB-r-PHOST: BCB-r-AS (1 g) was dissolved in 20 mL p-dioxane and then flushed with 

N2. Hydrazine hydrate (NH2NH2) was added dropwise and the reaction stirred at room 

temperature for 6 hours. After this time, the reaction was quenched via addition of 

deionized water and then extracted with ethyl acetate. The organic layer was dried over 

MgSO4 and solvent evaporated via rotary evaporator. Yield: 0.64g. 
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Figure 6.10 1H NMR (300 MHz) spectrum of BCB-r-PHOST in acetone-d6. 

BCB-r-iPOC: BCB-r-AS (1.2 g) was dissolved in 60 mL of ethyl acetate and 1.55 mL 

triethylamine and 13 mL isopropyl chloroformate (1.0 M solution in toluene) were added. 

The reaction was then sealed with a rubber septum and allowed to stir for two days at room 

temperature, after which time it was quenched via addition of dilute HCl solution and 

extracted with ethyl acetate. The organic layer was dried over MgSO4 and solvents 

evaporated via rotary evaporator. Yield: 1.1g. 
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Figure 6.11 1H NMR (300 MHz) spectrum of BCB-r-iPOC in CDCl3. 

 

Figure 6.12 Synthesis of HEMA-THP monomer. 

HEMA-THP: 2 g (1 molar equivalent) of hydroxyethyl methacrylate (HEMA) was 

dissolved in ethyl acetate in a 22mL glass vial. To this solution, 1.1 eq. dihydropyran 

(DHP) was added, along with a catalytic amount (0.2 eq.) of trifluoroacetic acid (TFA). 

This solution was stirred at room temperature for 2 hours. Afterwards, the solution was 
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washed with sodium bicarbonate solution and then twice with water. The organic layer was 

filtered/dried over MgSO4 before solvents were removed via rotary evaporator. Yield: 

2.26g. 

 

Figure 6.13 1H NMR spectrum of HEMA-THP in CDCl3. 

 

Figure 6.14 Synthesis scheme of PHEMA-r-BCB underlayer. 

PHEMA-r-BCB: Dissolve 0.5 g (1 eq.) HEMA-THP, 0.05 eq. vinyl-benzocyclobutene 

(BCB), and 0.05 eq. AIBN in 1 mL THF and stir at room temperature until the AIBN is 
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dissolved. Three free-pump-thaw-backfill cycles were performed, and once completed, the 

solution was allowed to warm to room temperature before being placed in an oil bath set 

to 75oC to stir for 2 hours. Excess THF was removed via rotary evaporation, and the 

resulting crude material was re-dissolved in ethyl acetate and precipitated into cold 

methanol to obtain a white powder. Yield: 0.32 g. 

 

Figure 6.15 1H NMR (300 MHz) spectrum PHEMA-THP-r-BCB in CDCl3. 

6.2.2 Lithographic Evaluation 

Films of the underlayers were coated onto freshly O2-plasma cleaned wafers ordered from 

University Wafer. The films were then subjected to PABs for 10 minutes to determine the 

optimal temperature necessary to crosslink the films. After the PAB, the film thickness was 

measured, and the films were sonicated in PGMEA for 10 minutes, and the film thickness 
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was measured once again via spectroscopic ellipsometry. These two thicknesses were 

compared to generate an NRT value.  

After the optimal crosslinking temperature was identified, solutions of the underlayers 

were formulated with TPS-SbF6 as PAG. Films were cast from these solutions, crosslinked, 

and then exposed to 248nm DUV radiation, and baked during a PEB for 2 minutes. 

Thickness measurements were taken after the crosslinking temperature and after the PEB 

to generate NRT curves. After the thickness was obtained, water contact angle 

measurements were obtained using deionized water on a water contact angle measurement 

system. 

6.3 Crosslinking studies 
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Figure 6.16 Crosslinking study of the iPOC-Ep underlayer with various percentages of 

epoxides. 

In the first design, using an epoxide as the crosslinking group, a PAB study was performed 

to quantify the underlayer’s ability to thermally crosslink. When using only 5% epoxide, 

extremely high PAB temperatures are required in order to achieve relatively high NRT 

values. By increasing the epoxide content to 10%, high NRT values can be achieved at 

much more reasonable PAB temperatures, but the NRT never quite reaches an NRT of 1 

at its highest value. Increasing the content of epoxides to 15 mol% does little for the NRT. 

In each of the three designs, the NRT begins to decrease at a PAB temperature of 290oC, 

likely due to thermal decomposition reactions. 
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Figure 6.17: Crosslinking study for iPOC-r-BCB underlayer containing 5 mol% BCB.  

For the iPOC-r-BCB design containing only 5 mol% BCB, Figure 6.17 shows that a 

maximum NRT of 1 is achieved at a PAB temperature of 210oC. Above this temperature, 

the thickness begins to decrease, which could potentially be due to thermal deprotection 

reactions of the iPOC group. Because the thickness decreases above 210oC, this 

temperature was chosen to crosslink the underlayers in future studies. 

6.4 DUV contrast curves 
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Figure 6.18: iPOC-Ep contact angle and thickness change versus dose using 248 nm 

lithography. 

When PHOST-iPOC-r-Ep was formulated with 5 wt% TPS-SbF6, no contact angle 

modulation was observed as with previous designs, even at incredibly high doses (Figure 

6.18). Additionally, it was observed that the thickness actually began to increase with 

increasing dose. Since the deprotection reaction results in a large portion of mass loss, it 

would be expected that the thickness of the resist would decrease as more deprotection 

reactions occur with increasing dose. The most likely explanation for this phenomenon is 

that there are unreacted epoxides within the film that the photoacid encounters. These 

epoxides competitively and irreversibly react with the photoacid, preventing it from 

reacting with the iPOC protecting groups. Thus, the film essentially continues to cure as 

more photoacid is generated without any contact angle modulation.  
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Figure 6.19 DUV study of thickness and contact angle versus exposure dose using 248 

nm lithography with 25 mol% BCB group. 

A design with 25 mol% BCB group (relative to iPOC groups) was formulated with 5 mol% 

TPS-SbF6 and then exposed to 248nm DUV light to determine the dose required to achieve 

maximum deprotection of the PHOST group. Figure 6.19 shows this initial study, which 

shows that enough deprotection does not occur to change the water contact angle at the 

doses studied. Additionally, this deprotection reaction should also result in a slight 

thickness decrease, since the deprotection reaction outgasses CO2 and 2-butene, but the 

thickness is constant. By simply lowering the BCB percentage to 5 mol%, a contact angle 

change is achieved by a dose as low as 30 mJ/cm2 when using a PEB of 170oC (Figure 

6.20). 
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Figure 6.20: Contact angle change for the iPOC-BCB design using 5 mol% BCB group 

(relative to iPOC/PHOST portion). 

6.5 PHEMA-THP-r-BCB 

 

Figure 6.21 Photochemistry of PHEMA-THP-r-BCB underlayer. 

Two BCPs developed in our group (PS-b-PHEMA and PtBS-b-PHEMA) use the PHEMA 

block as the more polar of the two blocks. In order to provide stronger guidance during 

DSA of this BCP, it may be better to design an underlayer that uses the HEMA monomer 
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itself, since it is more likely to preferentially wet itself versus another polar block. Thus, 

the more guidance the BCP is given during DSA, the less likely defects will be to form.5,6 

 

Figure 6.22 Contact angle change of the PHEMA-THP-r-BCB underlayer using 248 nm 

DUV lithography. 

As seen in Figure 6.22, the contact angle begins to decrease at much lower doses (5 mJ/cm2) 

versus the iPOC-protected designs. This is due to the THP group being a low-activation 

energy acetal-based protecting group.7 Although the initial contact angle is much lower 

than the iPOC designs (68o versus ~85o), this initial angle can be modified by including a 

third monomer into the design. The most likely candidate would be the monomer that 

comprises the second block of the BCP that includes PHEMA, such as PS or PtBS. Doing 

so would allow the “neutral,” un-patterned region of the underlayer to have a slight 

preference to the non-polar block, which has been shown to improve the DSA of block 

copolymers.8,2 
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6.6 Conclusion 

The iPOC-Ep design showed a much lower ultimate NRT versus the iPOC-BCB design, 

even when the iPOC-Ep underlayer was formulated with three times the percentage of 

crosslinking group. iPOC-BCB showed excellent crosslinking at lower temperatures than 

the iPOC-Ep design and showed good contact angle modulation using 248 nm DUV 

exposures. PHEMA-THP-r-BCB has been designed and demonstrated as a PHEMA-

containing underlayer that is capable of achieving much lower final contact angles than 

previous designs, which can help better guide the DSA of a PHEMA-containing BCP. It 

also demonstrates that, provided that the protecting group is thermally stable during the 

crosslinking step, the photo-definable underlayer designs are not restricted to iPOC-

containing designs. 
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CHAPTER 7. SUMMARY AND RECOMMENDATIONS FOR 

FUTURE WORK 

7.1 Summary 

This thesis details the efforts to design new materials to enable the adoption of next-

generation lithographic techniques.  

In Chapter 1, a new, molecular resist called TPOE-3Ep was developed in order to provide 

an example of an epoxide-based resist that is soluble in the industry standard developer, 

0.26N TMAH. The material showed very promising results and managed to resolve 26 nm 

lines and spaces in MIBK development when using EUVL. Several problems were 

observed when patterning in TMAH, however, including delamination and microbridging. 

An underlayer corrected the delamination issue, but microbridging persisted. 

Chapter 2 details a study where numerous base-soluble molecular resists were synthesized 

and evaluated in order to gain insight into how various structural features affect the 

lithographic performance of these materials. It was shown that increasing the number of 

phenols on the resist core increased the Tg of the materials, which then required a high bake 

temperature to achieve high NRT values. In order to achieve NRT values of 1, high bake 

temperatures were required, which caused crosslinking to occur outside exposed regions. 

Thus, a low Tg 0.26N TMAH-developable molecular resist was developed, called THPE-

2Ep that shows 30nm resolution using e-beam lithography in both MIBK and 0.26N 

TMAH. 
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Chapter 3 provides an example of a positive-tone crosslinked molecular resist, named 

THPE-2VE. The motivation is to develop a positive-tone crosslinked material to exploit 

the pattern-collapse resistance shown in the negative-tone crosslinked materials. The 

resulting material was highly-sensitive to both DUV and e-beam lithography and resist was 

able to resolve roughly 35nm lines in both MIBK and 0.26N TMAH using e-beam 

lithography. 

Chapter 4 delves deeper into positive-tone depolymerization resists and examines the effect 

of varying the ratio of phenols to vinyl ethers using five different resists. Results from this 

study showed that resists with more vinyl ethers had a slightly higher sensitivity than those 

with phenols. Resists with more phenols had a lower sensitivity but a lower LER value and 

higher resolution. As a whole, the depolymerization resists appear to be a highly-sensitive 

family of resists worthy of future studies. 

Chapter 5 details the design of new photodefinable underlayers with improved crosslinking 

chemistries to achieve a higher NRT than previous designs. Two crosslinking groups, 

epoxides and benzocyclobutene, were investigated. The epoxide designs showed much 

lower ultimate NRT values than the BCB design. The BCB design showed that it was 

capable of achieving an NRT of 1 at both a lower mole percentage of BCB and a lower 

crosslinking temperature. iPOC-r-BCB was demonstrated to show good acid-catalyzed 

deprotection, as evidenced by the change in water contact angle observed. 

7.2 Recommendations for future work 
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THPE-2Ep has demonstrated promising initial patterning using e-beam lithography, but its 

processing needs to be optimized. The material appears to fail by blurring of exposed lines, 

and reducing the PEB temperature is likely the most straightforward way to counteract this 

problem. In addition, the influence of methyl groups on the Tg and patterning behavior of 

the TMAH-soluble resists could be further explored by synthesizing resists which contain 

methoxy groups adjacent to the phenol, as this has been shown to drastically reduce the Tg 

of phenolic polymers.1 An additional route would be to explore different substitution 

patterns of the phenols, as this has also been shown to lead to a reduction in Tg.
2  

The poor shelf life of the depolymerization resists will limit their ultimate usefulness as a 

resist material, so identifying the cause of this instability would be an excellent place to 

begin optimizing their performance. Furthermore, the outgassing observed during their 

PEB is a potential problem since acetaldehyde is a toxic compound. Thus, a mass-persistent 

design, such as the one shown in Figure 7.1, may be desirable. In this resist, called THPE-

2DHP, the aldehyde which would normally outgas during the PEB is tethered to the resist, 

such that only a ring-opening reaction occurs. 
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Figure 7.1 Example of a mass-persistent depolymerization resist, THPE-2DHP. 

The iPOC-r-BCB designs should be patterned using e-beam lithography in order to 

demonstrate that they can direct the self-assembly of a block copolymer. Various other 

photodefinable underlayers can be designed to tailor their chemistry to the need of the user. 

Different protecting groups, such as ring-opening chemistries, can be utilized in order to 

create a totally mass-persistent system. 

The photo-definable underlayers that have been previously reported, both here and in the 

literature, have relied upon acid-catalyzed deprotection reactions to effect a change in 

contact angle.3 While such designs have the benefit of typically requiring lower exposure 

doses compared to non-catalytic processes, there are several potential advantages to 

designing an underlayer that does not need photoacid to cause a contact angle change. A 

directly photo-cleavable protecting group would eliminate the need for a PEB, eliminating 

one processing step. In addition, since no PAG is needed, there are no concerns from PAG 

aggregation.  
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One such chemistry that has been demonstrated for use in both 248nm and 193nm 

lithography is the nitrobenzyl (NBn) group.4,5 This protecting group can be directly cleaved 

using ultraviolet light and has been used in organic chemistry as a photo-cleavable 

protecting group.6 A prototypical design using a nitrobenzyl protecting group on a PHOST 

backbone is shown in Figure 7.2. The design uses the previously-developed BCB 

crosslinking group due to its high NRT. 

 

Figure 7.2: Structure of PHOST-Nbn-r-BCB directly photodefinable underlayer. 

7.3 References 

1. Nakamura, K.; Hatakeyama, T.; Hatakeyama, H., Dsc Studies on Hydrogen-

Bonding of Poly(4-Hydroxy-3, 5-Dimethoxystyrene) and Related Derivatives. Polym J 

1986, 18 (3), 219-225. 

2. Nakamura, K.; Hatakeyama, T.; Hatakeyama, H., Effect of Substituent Groups on 

Hydrogen-Bonding of Polyhydroxystyrene Derivatives. Polym J 1983, 15 (5), 361-366. 

3. Maher, M. J.; Bates, C. M.; Blachut, G.; Carlson, M. C.; Self, J. L.; Janes, D. W.; 

Durand, W. J.; Lane, A. P.; Ellison, C. J.; Willson, C. G., Photopatternable Interfaces for 

Block Copolymer Lithography. Acs Macro Lett 2014, 3 (8), 824-828. 

4. Lawson, R., Molecular Resists for Advanced Lithography. 2011. 



 

 

161 

5. Guo, L. X.; Guan, J.; Lin, B. P.; Yang, H., Synthesis and characterization of 

methacrylate matrix resin bearing o-nitrobenzyl group. J Cent South Univ 2015, 22 (9), 

3296-3301. 

6. Bochet, C. G., Photolabile protecting groups and linkers. J Chem Soc Perk T 1 

2002,  (2), 125-142. 

 

  



 

 

162 

CHAPTER 8. APPENDIX: CHARACTERIZATION DATA 

8.1 1H NMR Spectra of Selected Compounds 

All spectra were collected using a 300 MHZ spectrometer, using CDCl3 as the solvent, 

unless otherwise noted. 

Figure 8.1. 1H NMR spectrum of TPOE in methanol-d4. 
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Figure 8.2 TPOE-1OAllyl. 

 

Figure 8.3. TPOE-1Ep-3TBS. 
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Figure 8.4 TPOE-1Ep. 

 

Figure 8.5 TPOE-2OAllyl. 
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Figure 8.6 TPOE-2OAllyl-2TBS. 

 

Figure 8.7 TPOE-2Ep-2TBS. 
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Figure 8.8 TPOE-2Ep. 
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Figure 8.9 TPOE-3OAllyl, along with the TLC plate taken of the crude TPOE-OAllyl 

product prior to TPOE-3OAllyl separation using hexanes:ethyl acetate (3:2). 

 

Figure 8.10 TPOE-3OAllyl-TBS. 



 

 

168 

 

Figure 8.11 TPOE-3Ep-TBS. 
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Figure 8.12 TPOE-3Ep. 

 

Figure 8.13 BHPF-1OAllyl. 

 

Figure 8.14 BHPF-1OAllyl-TBS. 
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Figure 8.15 BHPF-1Ep-TBS. 

 

Figure 8.16 BHPF-1Ep. 
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Figure 8.17 THPE-2OAllyl. 

 

Figure 8.18 THPE-2Ep-TBS. 
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Figure 8.19 THPE-2Ep. A small amount of alkenes is still present.  

 

Figure 8.20 TMPOE in methanol-d4. 
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Figure 8.21 TMPOE-1OAllyl. 

 

Figure 8.22 TMPOE-1OAllyl-3TBS. 
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Figure 8.23 TMPOE-1Ep-3TBS. 

 

 

Figure 8.24 TMPOE-2OAllyl. 
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Figure 8.25 TMPOE-2OAllyl-2TBS. 

 

Figure 8.26 TMPOE-2Ep. 
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Figure 8.27 TMPOE-3OAllyl. 

 

Figure 8.28 TMPOE-3OAllyl-TBS. 
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Figure 8.29 TMPOE-1Ep-3TBS. 

 

Figure 8.30 TMPOE-1Ep in CDCl3. 



 

 

178 

 

Figure 8.31 TDMPOE in acetone-d6. Anal. Calcd for C34H38O4: C, 79.97; H, 7.50. Found: 

C, 79.95; H, 7.36. 

 

Figure 8.32 THPE-3VE. 
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Figure 8.33 THPE-2VE. 

 

Figure 8.34 THPE-1VE. 
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Figure 8.35 TPOE-4VE. 
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Figure 8.36 TPOE-3VE. 

 

Figure 8.37 TPOE-2VE. 
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Figure 8.38 TPOE-1VE in acetone-d6. 

 

Figure 8.39 PHOST-r-iPOC. 

 

Figure 8.40 iPOC-r-Allyl. 
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Figure 8.41 HEMA-THP. 
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Figure 8.42 PHEMA-r-BCB. 

8.2 Mass Spectra 

 

 

Figure 8.43 TPOE EI mass spectrum. 
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Figure 8.44 TMPOE EI mass spectrum. 
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Figure 8.45 EI Mass spectrum of TDMPOE. 

 

Figure 8.46 EI Mass spectrum of THPE-2Ep. 

GT Mass Spectrometry Laboratory 21-Jun-2018  14:27:30Sharp THPE-2EP

m/z
335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470

%

0

100

ch180621aep 23 (0.569) Cm (23:34) Magnet EI+ 
914387.2

347.1

346.2

337.4

345.2

343.2338.4

371.2

348.2
351.4

362.2

361.3

357.2355.2
365.4

366.4

372.2
386.2

373.2 379.4
374.3 385.3

403.2

388.2

402.2

389.2

390.3 401.3393.4

400.4

404.2

418.2

405.2

406.3

415.3
411.3

419.2
421.3 449.3433.2

432.4429.3422.3
434.4 448.4445.4

436.4
461.3450.4 459.3

452.4

462.4

468.5 469.5



 

 

187 

 

 

Figure 8.47 (top) EI mass spectrum of THPE-2VE and (bottom) its exact mass from EI 

MS. 
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8.3 TGA Traces 

 

Figure 8.48 TGA trace of iPOC-r-Ep. Heating rate: 10oC/min. 

8.4 GPC traces 
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Figure 8.49 GPC trace of BCB-r-AS Mw = 7,300 g/mol; PDI = 2.3. 


