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SUMMARY

The ability to generate motions that accomplish desired tasks is fundamental to any
robotic system. Robots must be able to generate such motions in a safe and feasible man-
ner, sufficiently quickly, and in dynamic and uncertain environments. In addressing these
problems, there exists a dichotomy between traditional methods and modern learning-based
approaches. Often both of these paradigms exhibit complementary strengths and weak-
nesses, for example, while the former are interpretable and integrate prior knowledge, the
latter are data-driven and flexible to design. In this thesis, I present two techniques for
robot motion generation that exploit structure to bridge this gap and leverage the best of
both worlds to efficiently find solutions in real-time. The first technique is a planning as
inference framework that encodes structure through probabilistic graphical models, and the
second technique is a reactive policy synthesis framework that encodes structure through
task-map trees. Within both frameworks, I present two strategies that use said structure as
a canvas to incorporate learning in a manner that is generalizable and interpretable while

maintaining constraints like safety even during learning.

XX



CHAPTER 1
INTRODUCTION

Across any domain, like a house, hospital, or even the surface of Mars, robots must posses
the capability to autonomously navigate and manipulate their surroundings by generating
motions (Figure 1.1). We use motion generation as a blanket term to refer to approaches
that utilize intrinsic, extrinsic, and task relevant information to compute and execute mo-
tions. Finding desirable and practical solutions to motion generation can be a monstrous
challenge. It requires many considerations like, high-degree-of-freedom spaces, model
inaccuracy, execution stochasticity, noisy sensors, dynamic environments, task and robot
dependent constraints, in the face of limited onboard computational resources.

Within the planning and control literature many methods have been proposed to tackle
this problem by dealing with various subsets of the considerations above and utilizing tech-
niques that can be broadly grouped into search [1, 2, 3], sampling [4, 5, 6], trajectory
optimization [7, 8, 9, 10, 11, 12], and inference [13, 14, 15, 16]. These approaches gen-
erally rely on domain knowledge, models, and problem constraints to offer interpretability
and safety. However, they can be hard to design for complex tasks and are limited by the
fact that they often do not utilize past experience or computation. Thus, they require hand
engineering and expert oversight to apply them to settings beyond their initial problem
abstraction.

Over the last few years, machine learning has led to many successes in the areas of
computer vision and natural language, as a result of advances in deep learning, access
to large amounts of data, and increasingly powerful computing hardware. Naturally, this
has generated heavy interest in applying these tools, successful in other domains, to solve
problems in robotics. Early work begun extending these ideas largely with a revisitation

of reinforcement learning for playing games [17, 18] and later to move robots [19, 20, 21,



Figure 1.1: State-of-the-art robotic systems designed for diverse applications operating in
their respective domains. (from left to right) Atlas humanoid (source: Boston Dynamics),
Curiosity Mars rover (source: NASA JPL), da Vinci Surgical System (source: Intuitive
Surgical), Kiva Drives (source: Amazon Robotics).

22, 23, 24]. Being inherently data-driven, learning offers opportunities to set up systems
that are more broadly applicable and can utilize prior computation. It can address complex
tasks that are difficult to program by hand, and can allow the system to evolve and adapt
to new situations on the fly. However, much of the current approaches have been applied
only in simulation [22, 20]. This limitation is being addressed with work in transferring
from simulation to the real world [25, 26], but that brings with it its own set of unique
problems. Other work that is applied on real robots commonly relies on networks that
transform raw inputs, like images, directly to action commands [21, 24]. Recent work, has
also revealed challenges in reproducing and benchmarking common deep reinforcement
learning methods [27].

The progress currently achieved in the context of robotics with a naive application of
modern machine learning tools mostly seems to be exhausted. Interpretability is usually
only available in the form of low-level image features from convolution networks and
therefore the decision making of complex robotic systems with sophisticated policy be-
haviors can be difficult to understand and analyze. Ensuring safety constraints becomes
challenging when the underlying problem structure is neglected. Inability to incorporate
physics, prior knowledge, and constraints leads to data inefficiency and the learning pro-
cess becomes slower, made doubly worse by the fact that acquiring large amounts of data
on real robotic systems is often infeasible. These tools for learning are powerful, but what’s

lacking are principled and systematic ways of leveraging them in robotics.



Recognizing the complementary strengths and weaknesses of traditional methods with
built in domain knowledge and strong priors, and modern methods with the power and
flexibility of machine learning, by employing structure as the pivotal component, in the
context of robot motion generation, we can bridge the gap between the two paradigms.

The role of structure has been a topic of recent interest among many other communities
like optimization [28, 29, 30], control [31, 32] and perception [33, 34] stemming from a
similar dichotomy between the two paradigms.

In this thesis, I present two novel overarching techniques for efficient robot motion
generation with systematic integration of learning for real world systems. First is a planning
as inference framework in Part I, where structure manifests with probabilistic graphical
models that are utilized to incorporate learning in two distinct ways in Part II. Second is
a reactive policy synthesis framework in Part I1I, where structure manifests with task-map
trees that are utilized to incorporate learning in two distinct ways in Part IV.

In both of these frameworks, the structure is used to encode domain knowledge and
problem constraints such that with the modularity induced therein, we can selectively learn
to represent parts of the problem. Effectively, the existing framework can still be utilized
to solve the full problem, and the non-learning and learning components can work in syn-
ergy. Consequently, I show that constraints like safety can be enforced by the non-learning
components even when learning is in progress. Along similar lines, broader generalization
is possible, wherein the learning components can easily transfer to new scenarios with the
help from the non-learning components. I also show that these representations are highly
interpretable and thus provide full transparency into how the system’s learning progresses

and how it eventually makes decisions.



Part 1

Planning as Inference



CHAPTER 2
GAUSSIAN PROCESS MOTION PLANNING

2.1 Introduction

Motion planning is a key tool in robotics, used to find trajectories of robot states that achieve
a desired task. While searching for a solution, motion planners evaluate trajectories based
on two criteria: feasiblity and optimality. The exact notion of feasibility and optimal-
ity can vary depending on the system, tasks, and other problem-specific requirements. In
general, feasibility evaluates a trajectory based on whether or not it respects the robot or
task-specific constraints such as avoiding obstacles, while reaching the desired goal. In
other words, feasibility is often binary: a trajectory is feasible or it is not. In contrast with
feasibility, optimality often evaluates the quality of trajectories without reference to task-
specific constraints. For example, optimality may refer to the smoothness of a trajectory
and encourage the motion planner to minimize dynamical criteria like velocity or acceler-
ation. A variety of motion planning algorithms have been proposed to find trajectories that
are both feasible and optimal.

In this chapter, we adopt a continuous-time representation of trajectories; specifically,
we view trajectories as functions that map time to robot state. We assume these functions
are sampled from a Gaussian process (GP) [35]. We will show that GPs can inherently
provide a notion of trajectory optimality through a prior. Efficient structure-exploiting GP
regression (GPR) can be used to query the trajectory at any time of interest in O(1). Us-
ing this representation, we develop a gradient-based optimization algorithm called GPMP
(Gaussian Process Motion Planner) [36] that can efficiently overcome the large computa-
tional costs of fine discretization while still maintaining smoothness in the result.

Through the GP formulation, we can view motion planning as probabilistic inference [15,



Figure 2.1: Optimized trajectory found by GPMP?2 is used to place a soda can on a shelf
in simulation (left) and with a real WAM arm (middle left). Examples of successful tra-
jectories generated by GPMP2 are shown in the countertop (middle right) and lab (right)
environments with the PR2 and WAM robots respectively.

37]. Similar to how the notion of trajectory optimality is captured by a prior on trajecto-
ries, the notion of feasibility can also be viewed probabilistically as well and encoded in a
likelihood. We encode structure in to the inference problem using a probabilistic graphical
model called factor graphs [38]. We illustrate the duality between inference and optimiza-
tion and show how to solve the maximum a posteriori (MAP) inference problem. We will
see how this optimization can be done in an efficient manner by exploiting the underlying
problem structure encoded through factor graphs. Similar techniques have been used to
solve large-scale Simultaneous Localization and Mapping (SLAM) problems [39]. With
this key insight we can leverage preexisting efficient optimization tools developed by the
SLAM community, and use them in the context of motion planning. With this we provide
the GPMP2 algorithm [40, 41], which is more efficient than previous motion planning al-
gorithms. Another advantage of GPMP?2 is that we can easily extend the algorithm using
techniques designed for incremental inference on factor graphs developed in the context
of SLAM. For example, Incremental Smoothing and Mapping (iSAM) [42, 43] can be
adapted to efficiently solve replanning problems. In Chapters 3 and 4, this structure (via
factor graphs) will serve a central role in integrating learning in to this framework.

We conduct benchmarks and compare GPMP and GPMP2 against leading trajectory
optimization-based motion planning algorithms [44, 45] as well as sampling-based motion

planning algorithms [5, 46, 47] in multiple reaching tasks (Figure 2.1). Our results show



GPMP2 to be several times faster than the state-of-the-art with higher success rates. We
also benchmark GPMP2 against our incremental planner, iGPMP2, on replanning tasks and
show that iGPMP2 can incrementally solve replanning problems an order of magnitude

faster than GPMP2 solving from scratch.

2.2 Related work

Most motion planning algorithms are broadly classified into sampling-based algorithms or
trajectory optimization-based algorithms. Sampling-based planners such as probabilistic
roadmaps (PRMs) [4] construct a dense graph from random samples in obstacle free areas
of the robot’s configuration space. PRMs can be used for multiple queries by finding the
shortest path between a start and goal configuration in the graph. Rapidly exploring random
trees (RRTs) [5, 6] find trajectories by incrementally building space-filling trees through
directed sampling. RRTs are very good at finding feasible solutions in highly constrained
problems and high-dimensional search spaces. Both PRMs and RRTs offer probabilistic
completeness, ensuring that, given enough time, a feasible trajectory can be found, if one
exists. However, they often result in jerky and redundant motion and therefore require post
processing to address optimality. Although optimal planners [48] have been proposed, they
are computationally inefficient on high-dimensional problems with challenging constraints.
Despite guarantees, sampling-based algorithms may be difficult to use in real-time applica-
tions due to computational challenges. Often computation is wasted exploring regions that
may not lead to a solution. Recent work in informed techniques [49] combat this problem
by biasing the sampling approach to make search more tractable.

In contrast with sampling-based planners, trajectory optimization starts with an ini-
tial, possibly infeasible, trajectory and then optimizes the trajectory by minimizing a cost
function. Covariant Hamiltonian Optimization for Motion Planning (CHOMP) and re-
lated methods [9, 44, 50, 51, 52] optimize a cost functional using covariant gradient de-

scent, while Stochastic Trajectory Optimization for Motion Planning (STOMP) [53] opti-



mizes non-differentiable costs by stochastic sampling of noisy trajectories. TrajOpt [11,
45] solves a sequential quadratic program and performs convex continuous-time collision
checking. It achieves reduced computational costs by parameterizing the trajectory with
a small number of states and employing continuous-time collision checking. However,
due to the discrete-time representation of the trajectory, a sparse solution may need post-
processing for execution and may not remain collision-free. In other words, a fine dis-
cretization may still be necessary on problems in complex environments. In contrast to
sampling-based planners, trajectory optimization methods are very fast, but only find lo-
cally optimal solution. The computational bottleneck results from evaluating costs on a
fine discretization of the trajectory or, in difficult problems, repeatedly changing the initial
conditions until a feasible trajectory is discovered.

Continuous-time trajectory representations can overcome the computational cost in-
curred by finely discretizing the trajectory. Linear interpolation [54, 55, 56], splines [57,
58, 59, 60, 61, 62], and hierarchical wavelets [63] have been used to represent trajectories
in filtering and state estimation. B-Splines [64] have similarly been used to represent trajec-
tories in motion planning problems. Compared to parametric representations like splines
and wavelets, Gaussian processes provide a natural notion of uncertainty on top of allow-
ing a sparse parameterization of the continuous-time trajectory. A critical distinction in
motion planning problems is that even with a sparse parameterization, the collision cost
has to be evaluated at a finer resolution. Therefore, if the interpolation procedure for a
chosen continuous-time representation is computationally expensive, the resulting speedup
obtained from a sparse representation is negligible and may result in an overall slower
algorithm. Recent work by [52] works to optimize trajectories in RKHS with RBF ker-
nels, but ignores the cost between sparse waypoints. Even without interpolation, these
dense kernels result in relatively computationally expensive updates. In this work, we use
structured Gaussian processes (GPs) that allow us to exploit the underlying sparsity in the

problem to perform efficient inference. We are able to use fast GP regression to interpolate



the trajectory and evaluate obstacle cost on a finer resolution, while the trajectory can be
parameterized by a small number of support states. We also show in this work that the
probabilistic representation naturally allows us to represent the motion planning problem
with a factor graph and the GP directly corresponds to the system dynamics or motion
model thus giving it a physical meaning.

GPs have been used for function approximation in supervised learning [65, 66], inverse
dynamics modeling [67, 68], reinforcement learning [69], path prediction [70], simultane-
ous localization and mapping [71, 72], state estimation [73, 74], and controls [75], but to
our knowledge GPs have not been used in motion planning.

We also consider motion planning from the perspective of probabilistic inference. Early
work by [13] uses inference to solve Markov decision processes. More recently, solutions
to planning and control problems have used probabilistic tools such as expectation propa-
gation [15], expectation maximization [14, 76], and KL-minimization [77]. We exploit the
duality between inference and optimization to perform inference on factor graphs by solv-
ing nonlinear least square problems. While this is an established and efficient approach [39]
to solving large scale SLAM problems, we introduce this technique in the context of mo-
tion planning. Incremental inference can also be performed efficiently on factor graphs [42,
43], a fact we take advantage of to solve replanning problems.

Replanning involves adapting a previously solved solution to changing conditions. Early
replanning work like D* [78] and Anytime A" [2] need a finely discretized state space and
therefore do not scale well with high-dimensional problems. Recent trajectory optimization
algorithms inspired from CHOMP [9] like incremental trajectory optimization for motion
planning (ITOMP) [79] can fluently replan using a scheduler that enforces timing restric-
tions but the solution cannot guarantee feasibility. GPUs have been suggested as a way to
increase the speed of replanning [80], with some success. Our algorithm is inspired from
the incremental approach to SLAM problems [43] that can efficiently update factor graphs

to generate new solutions without performing redundant calculations. During planning, we



use this method to update the trajectory only where necessary, thus reducing computational

costs and making fast replanning possible.

2.3 Motion planning as trajectory optimization

The goal of motion planning via trajectory optimization is to find trajectories, 6(t) : t —
RP. where D is dimensionality of the state, that satisfy constraints and minimize cost [44,

53, 45]. Motion planning can therefore be formalized as

minimize F[O(t)] (2.1

where the trajectory 0(t) is a continuous-time function, mapping time ¢ to robot states,
which are generally configurations (and possibly higher-order derivatives). F[6(t)] is an
objective or cost functional that evaluates the quality of a trajectory and usually encodes
smoothness that minimizes higher-order derivatives of the robot states (for example, ve-
locity or acceleration) and collision costs that enforces the trajectory to be collision-free.
G;[0(t)] are inequality constraint functionals such as joint angle limits, and H,;[0(t)] are
task-dependent equality constraints, such as the desired start and end configurations and
velocities, or the desired end-effector orientation (for example, holding a cup filled with
water upright). The number of inequality or equality constraints may be zero, depending
on the specific problem. Based on the optimization technique used to solve Eq. (2.1), col-
lision cost may also appear as an obstacle avoidance inequality constraint [45]. In practice,
most existing trajectory optimization algorithms work with a fine discretization of the tra-
jectory, which can be used to reason about thin obstacles or tight navigation constraints,

but can incur a large computational cost.
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2.4 Gaussian processes for continuous-time trajectories

A vector-valued Gaussian process (GP) [35] provides a principled way to reason about
continuous-time trajectories, where the trajectories are viewed as functions that map time
to state. In this section, we describe how GPs can be used to encode a prior on trajectories
such that optimality properties like smoothness are naturally encouraged (Section 2.4.1).
We also consider a class of structured priors for trajectories that will be useful in efficient
optimization (Section 2.4.2), and we provide details about how fast GP interpolation can

be used to query the trajectory at any time of interest (Section 2.4.3).

24.1 The GP prior

We consider continuous-time trajectories as samples from a vector-valued GP, 6(t) ~
GP(u(t), KC(t,t")), where p(t) is a vector-valued mean function and IC(¢,¢') is a matrix-
valued covariance function. A vector-valued GP is a collection of random variables, any
finite number of which have a joint Gaussian distribution. Using the GP framework, we can

say that for any collection of times ¢t = {to, ..., %y}, @ has a joint Gaussian distribution:

T

with the mean vector p and covariance kernel /C defined as

T

p= {NO HN} K = [K(tt)] 2.3)

1,0<4,j <N

We use bold 8 to denote the matrix formed by vectors 8; € R”, which are support states
that parameterize the continuous-time trajectory 6(t). Similar notation is used for p.

The GP defines a prior on the space of trajectories:
1 2
p(0) cexpd — > 10— | @4
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Figure 2.2: An example GP prior for trajectories. The dashed line is the mean trajectory
p(t) and the shaded area indicates the covariance. The 5 solid lines are sample trajectories
0(t) from the GP prior.

where || @ — p ||%= (6 — p) "K' (6 — p) is the Mahalanobis distance. Figure 2.2 shows
an example GP prior for trajectories. Intuitively this prior encourages smoothness encoded
by the kernel /C and directly applies on the function space of trajectories. The negative log
of this distribution serves as the prior cost functional in the objective (see Section 2.5.1)

and penalizes the deviation of the trajectory from the mean defined by the prior.

2.4.2 A Gauss-Markov model

Similar to previous work [81, 71], we use a structured kernel generated by a linear time-

varying stochastic differential equation (LTV-SDE)
0(t) = A(1)8(t) + u(t) + F(t)w(t), (2.5)

where u(t) is the known system control input, A(¢) and F(¢) are time-varying matrices of
the system, and w(t) is generated by a white noise process. The white noise process is

itself a zero-mean GP

w(t) ~ GP(0,Qcd(t —1')). (2.6)

Qc is the power-spectral density matrix and (¢ — t’) is the Dirac delta function. The

solution to the initial value problem of this LTV-SDE is

0(t) = ®(t, )0y + /t ®(t,s)(u(s) + F(s)w(s))ds, (2.7)

to
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where ®(t, s) is the state transition matrix, which transfers state from time s to time ¢. The
mean and covariance functions of the GP defined by this LTV-SDE are calculated by taking

the first and second moments respectively on Eq. (2.7),

p(t) = ®(t, to)po + /t ®(t, s)u(s)ds, (2.8)

to

IC(t, 1) = ®(t, to) Ko® (', )T

min(¢,t")
+/ ®(t,5)F(s)QcF(s) ®(t',s)" ds. (2.9)
to
o and ICy are the initial mean and covariance of the start state respectively.

The desired prior of trajectories between a given start state 6y and goal state 8, for
a finite set of support states, as described in Section 2.4.1, can be found by conditioning

this GP with a fictitious observation on the goal state with mean g and covariance /Cy.

Specifically
=G+ Kty t) (K(tn,ty) +Kn) 7 (On — ) (2.10)
K=K-K(ty,t) (K(ty,tn) + Kn) Kby, t), @11)
where k(tN, t) = []E(tN’ to) ... 7~C(t1v, tn)] (please see Appendix A.1 for proof).

This particular construction of the prior leads to a Gauss-Markov model that generates a
GP with an exactly sparse tridiagonal precision matrix (inverse kernel) that can be factored

as:

K'=B'Q'B (2.12)
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with,

| I 0 0 0_
—®(t1,10) I 0 0
B- 0 ~2(t2h) , 2.13)
1 0
0 0 L =®(ty,tno1) T
i 0 0 .. 0 I_
which has a band diagonal structure and Q! is block diagonal such that
Q' =diag(’K; ', Qol, - -, QLN ICY), (2.14)
Qup = / ! (b, s)F(s)Q.F(s) @(b,s)" ds (2.15)
ta

(see Appendix A for proof). This sparse structure is useful for fast GP interpolation (Sec-
tion 2.4.3) and efficient optimization (Section 2.5 and 2.6).

An interesting observation here is that this choice of kernel can be viewed as a general-
ization of CHOMP [44]. For instance, if the identity and zero blocks in the precision matrix
are scalars, the state transition matrix ® is a unit scalar, and Q! is an identity matrix, Kt
reduces to the matrix A formed by finite differencing in CHOMP. In this context, it means
that CHOMP considers a trajectory of positions in configuration space, that is generated by
a deterministic differential equation (since Q™! is identity).

The linear model in Eq. (2.5) is sufficient to model kinematics for the robot manipu-
lators considered in the scope of this work, however our framework can be extended to

consider non-linear models following [82].

2.4.3 Gaussian process interpolation

One of the benefits of Gaussian processes is that they can be parameterized by only a sparse
set of support states, but the trajectory can be queried at any time of interest through Gaus-

sian process interpolation. The reduced parameterization makes each iteration of trajectory
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Figure 2.3: An example that shows the trajectory at different resolutions. Support states pa-
rameterize the trajectory, collision cost checking is performed at a higher resolution during
optimization and the output trajectory can be up-sampled further for execution.

optimization efficient. Given the choice of the structured prior from the previous subsec-
tion, rich collision costs between the support states can be evaluated by performing dense
GP interpolation between the support states quickly and efficiently. This cost can then be
used to update the support states in a meaningful manner, reducing the computational ef-
fort. A much denser resolution of interpolation (Figure 2.3) can also be useful in practice
to feed the trajectory to a controller on a real robot.

The process of updating a trajectory with GP interpolation is explained through an
example illustrated in Figure 2.4. At each iteration of optimization, the trajectory with
a sparse set of support states can be densely interpolated with a large number of states,
and the collision cost can be evaluated on all the states (both support and interpolated).
Next, collision costs at the interpolated states are propagated and accumulated to the nearby
support states (the exact process to do this is explained in Section 2.5.3 and 2.7). Finally,
the trajectory is updated by only updating the support states given the accumulated cost
information.

Following [81, 71, 72], we show how to exploit the structured prior to perform fast GP
interpolation. The posterior mean of the trajectory at any time 7 can be found in terms
of the current trajectory € at time points ¢ [35] by conditioning on the support states that

parameterize trajectory:
~ ~ ~ -1 -
6(7) = Alr) + K(r, K (0 - i) (2.16)

i.e. performing Gaussian process regression. Although the interpolation in Eq. (2.16)
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(a) Interpolated trajectory (b) Gradients on all states (c) Gradients on support states

Figure 2.4: An example showing how GP interpolation is used during optimization. (a)
shows the current iteration of the trajectory (black curve) parameterized by a sparse set of
support states (black circles). GP regression is used to densely up-sample the trajectory
with interpolated states (white circles). Then, in (b) cost is evaluated on all states and their
gradients are illustrated by the arrows. Finally, in (c) the cost and gradient information
is propagated to just the support states illustrated by the larger arrows such that only the
support states are updated that parameterize the new trajectory (dotted black curve).

naively requires O(N) operations, €(7) can be computed in O(1) by leveraging the struc-
ture of the sparse GP prior generated by the Gauss-Markov model introduced in Section 2.4.
This implies that 6(7) at 7,¢; < 7 < ;41 can be expressed as a linear combination of only

the adjacent function values 8; and 6;,, and is efficiently computed as
0(1) = p(1) + A(7)(0; — ;) + O(7)(0;41 — [it1) (2.17)
where

A(r) = @(7,t;) — ¥(T)P(tis1, ti)

‘IJ(T) = Qi,T(I)(tiJrla T)T ;11-0-1

is derived by substituting

in Eq. (2.16) with only the (i) and (i + 1)*" block columns being non-zero.
This provides an elegant way to do fast GP interpolation on the trajectory that exploits

the structure of the problem. In Section 2.5.3 and 2.7 we show how this is utilized to
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perform efficient optimization.

2.5 Motion planning with Gaussian processes

We now describe the Gaussian Process Motion Planner (GPMP), which combines the
Gaussian process representation with a gradient descent-based optimization algorithm for

motion planning.

2.5.1 Cost functionals

Following the problem definition in Eq. (2.1) we design the objective functional as
F1O(t)] = Fors[0(1)] + AF,[0(1)] (2.18)

where F,, is the GP prior cost functional (the negative natural logarithm of prior distribu-
tion) from Eq. (2.4)
1
Fopl0(t)] = Fgpl0] = 5”0 - NHIQC (2.19)

penalizing the deviation of the parameterized trajectory from the prior mean, F; is the ob-
stacle cost functional that penalizes collision with obstacles and )\ is the trade-off between
the two functionals.

As discussed in Section 2.4.2 the GP smoothness prior can be considered a gener-
alization to the one used in practical applications of CHOMP constructed through finite
dynamics. In contrast to CHOMP, we also consider our trajectory to be augmented by ve-
locities and acceleration. This allows us to keep the state Markovian in the prior model
(Section 2.4.2), is useful in computation of the obstacle cost gradient (Section 2.5.2), and
also allows us to stretch or squeeze the trajectory in space while keeping the states on the
trajectory temporally equidistant [51].

The obstacle cost functional F,;, is also similar to the one used in CHOMP [44]. This

functional computes the arc-length parameterized line integral of the workspace obstacle
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cost of each body point as it passes through the workspace, and integrates over all body
points:

Fupal0(1)] = /t ) /B o(@) ]| du dt (2.20)

where c(-) : R?® — R is the workspace cost function that penalizes the set of points B C R3
on the robot body when they are in or around an obstacle, and x is the forward kinematics
that maps robot configuration to workspace (see [44] for details).

In practice, the cost functional can be approximately evaluated on the discrete support
state parameterization of the trajectory i.e. Fops[0(t)] = Fois|0], the obstacle cost is calcu-
lated using a precomputed signed distance field (see Section 2.9.1), and the inner integral
is replaced with a summation over a finite number of body points that well approximate the

robot’s physical body.

2.5.2  Optimization

We adopt an iterative, gradient-based approach to minimize the non-convex objective func-
tional in Eq. (2.18). In each iteration, we form an approximation to the cost functional via

a Taylor series expansion around the current parameterized trajectory 6:
F[0 + 6] ~ F[0] + VF[0]50 (2.21)

We next minimize the approximate cost while constraining the trajectory to be close to the

previous one. Then the optimal perturbation §8* to the trajectory is:

§6* = argmin {f[e] + VF[0]60 + g||5ey| ,26} (2.22)
60
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where 7 is the regularization constant. Differentiating the right-hand side and setting the

result to zero we obtain the update rule for each iteration:

_ 1 _
VO + K60 =0 = 50" = — KV 16)

0 0+36" — 60— ~KVFB) (2.23)
U

To compute the update rule we need to find the gradient of the cost functional at the current
trajectory

VF[0] = V Fos|0] + AV Fy, 6], (2.24)

which requires computing the gradients of the GP and obstacle cost functional. The gradi-
ent of the GP prior cost can be computed by taking the derivative of Eq. (2.19) with respect

to the current trajectory

Fol6] = 50— ) TK(0 — )

VFpl6] = K70 — p) (2.25)
The gradient of the obstacle cost functional can be computed from the Euler-Lagrange

equation [83] in which a functional of the form F[0(t)] = [ v(0(t)) dt yields a gradient

_ ov d Ov
VF[O(t)] = 5000 - &%

(2.26)

Applying Eq. (2.26) to find the gradient of Eq. (2.20) in the workspace and then mapping
it back to the configuration space via the kinematic Jacobian ./, and following the proof by

[84], we compute the gradient with respect to configuration position, velocity, and acceler-
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ation at any time point ¢; as

[e T N12]|[(I — 22T)Ve — er] du
V Fos|0i] = fB JTc & du (2.27)

0

where k = ||&||~2(I — @4 )7 is the curvature vector along the workspace trajectory traced
by a body point, &, & are the velocity and acceleration respectively, of that body point
determined by forward kinematics and the Hessian, and & = i/||#|| is the normalized
velocity vector. Due to the augmented state, the velocity and acceleration can be obtained
through the Jacobian and Hessian directly from the state. This is in contrast to CHOMP,
which approximates the velocity and acceleration through finite differencing. The gradients
at each time point are stacked together into a single vector g = VF,,[0]. We plug the cost

gradients back into the update rule in Eq. (2.23) to get the update

0+ 06— %K;(Azc—l(e — )+ g) (2.28)

This update rule can be interpreted as a generalization of the update rule for CHOMP with

an augmented trajectory and a generalized prior.

2.5.3 Compact trajectory representations and faster updates

In this section, we show that the finite number of states used to parameterize smooth tra-
jectories can be very sparse in practice. Through GP interpolation, we can up-sample the
trajectory to any desired resolution, calculate costs and gradients at this resolution, and
then project the gradients back to just the sparse set of support states. To interpolate 7,

states between two support states at ¢; and ¢, 1, we define two aggregated matrices using
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Eq. (2.17),

.

AZ'Z{AL AL AZ.T%]
.

\I@-z{ql; Lowl e }

If we want to up-sample a sparse trajectory @ by interpolating n;, states between every

support state, we can quickly compute the new trajectory ., as

0., = M(0 — p) + pyp (2.29)

where p,,, corresponds to the prior mean with respect to the up sampled trajectory, and

I 0 0 0 0
Ao P9 O 0 0
0 I 0 0 0
0 A T, 0 0
M= 0 o ... I o ... 0 0 (2.30)
0 0 A, Py 0 0
0 0 0 I 0 0
0o 0 Ay_1 PN
0 0 0 I |

is a tall matrix that up-samples a sparse trajectory 8 with only N + 1 support states to
trajectory 8, with (N+1)+ N xn;, states. The fast, high-temporal-resolution interpolation
is also useful in practice if we want to feed the planned trajectory into a controller.

The efficient update rule is defined analogous to Eq. (2.28) except on a sparse parametriza-

tion of the trajectory

061K <Mc—1(0 — )+ MTgup) (2.31)
n
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where the obstacle gradient over the sparse trajectory is found by chain rule using Eq. (2.29)
and the obstacle gradient, g,, over the up-sampled trajectory. In other words, the above
equation calculates the obstacle gradient for all states (interpolated and support) and then
projects them back onto just the support states using M. Cost information between sup-
port states is still utilized to perform the optimization, however only a sparse parameteriza-
tion is necessary making the remainder of the update more efficient.

GPMP demonstrates how a continuous-time representation of the trajectory using GPs
can generalize CHOMP and improve performance through sparse parameterization. How-
ever, the gradient-based optimization scheme has two drawbacks: first, convergence is slow
due to the large number of iterations required to get a feasible solution; and, second, the
gradients can be costly to calculate (See Figure 2.12). We improve upon GPMP and address

these concerns in the next section.

2.6 Motion planning as probabilistic inference

To fully evoke the power of GPs, we view motion planning as probabilistic inference. A
similar view has been explored before by Toussaint et al. [15, 37]. Unlike this previous
work, which uses message passing to perform inference, we exploit the duality between in-
ference and optimization and borrow ideas from the SLAM community for a more efficient
approach. In particular, we use tools from the Smoothing and Mapping (SAM) frame-
work [39] that performs inference on factor graphs by solving a nonlinear least squares
problem [38]. This approach exploits the sparsity of the underlying problem to obtain
quadratic convergence.

The probabilistic inference view of motion planning provides several advantages:

1. The duality between inference and least squares optimization allows us to perform

inference very efficiently, so motion planning is extremely fast.

2. Inference tools from other areas of robotics, like the incremental algorithms based
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on the Bayes tree data structure [43], can be exploited and used in the context of

planning. These tools can help speed up replanning.

3. Inference can provide a deeper understanding of the connections between different
areas of robotics, such as planning and control [85], estimation and planning [86,

87], and learning from demonstration and planning [88, 89].

In this and the next section, we develop the GPMP2 algorithm, which is more efficient
compared to GPMP.

To formulate this problem as inference, we seek to find a trajectory parameterized by 6
given desired events e. For example, binary events e; at t; might signify that the trajectory
is collision-free if all ¢; = 0 (i.e. € = 0) and in collision if any e; = 1. In general, the
motion planning problem can be formulated with any set of desired events.

The posterior density of 8 given e can be computed by Bayes rule from a prior and

likelihood

p(@le) = p(@)p(e|0)/p(e) (2.32)

x p(0)p(e|6), (2.33)

where p(0) is the prior on 6 that encourages smooth trajectories, and p(e|@) is the like-
lihood that the trajectory @ is collision free. The optimal trajectory € is found by the
maximum a posteriori (MAP) estimator, which chooses the trajectory that maximizes the

posterior p(6|e)

0" = argmax p(0le) (2.34)
0

= argmax p(0)1(0; e), (2.35)
0
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where [(0; e) is the likelihood of states 8 given events e on the whole trajectory
1(6;e) x p(e|0). (2.36)
We use the same GP prior as in Section 2.4

1
) xexp ~ 510wl | 2.37)

The likelihood is defined as a distribution in the exponential family

1
16:e) = xp { — 5 Il 0ie) I3 | 238)

where h(0; e) is a vector-valued cost function for the trajectory, and X is a diagonal matrix

and the hyperparameter of the distribution.

2.7 Structure with factor graphs

Given the Markovian structure of the trajectory and sparsity of inverse kernel matrix, the
posterior distribution can be further factored such that MAP inference can be equivalently
viewed as performing inference on a factor graph [38].

A factor graph G = {©, F, £} is a bipartite graph, which represents a factored function,
where ©® = {0, ...,0y} are a set of variable nodes, F = { fo, ..., fa} are a set of factor
nodes, and £ are edges connecting the two type of nodes.

In our problems, the factorization of the posterior distribution can be written as

M
p(6le) o< [] fn(©Owm), (2.39)

where f,, are factors on variable subsets ©,,,.

Given the tridiagonal inverse kernel matrix defined by Eq. (2.12)-(2.14), we factor the

24



Interpolated Obstacle Factor:
f 7 = exp{—jel oy, e},

— hi"(6;,0,+1)

Obstacle Factor:

fObs —exp{—f €; obs 7«}
e; = h(0;)

GP Prior Factor:

fl];ﬂ = exp{ffe Q7 H»lel}
e; = P(tiy1,6:)0; — Oip1 + ;41

Prior Factor:

15(60) = exp{— e Kq 'eo},

ep = 0o — po

Figure 2.5: A factor graph of an example trajectory optimization problem showing support
states (white circles) and four kinds of factors (black dots), namely prior factors on start
and goal states, GP prior factors that connect consecutive support states, obstacle factors on
each state, and interpolated obstacle factors between consecutive support states (only one
shown here for clarity, any number of them may be present in practice).

prior
N—

p(8) o< f(60) fx(On) H ?(0;,6,41), (2.40)

=0

where f3(6y) and fX(0y) define the prior distributions on start and goal states respectively

1
17(6,) :exp{ — §H0i—ui]|,2ci},i:OorN (2.41)

where IC and /Cy are covariance matrices on start and goal states respectively, and g and

e are prior (known) start and goal states respectively. The GP prior factor is

1
figp(ei, 01'+1> = exp {— 5”@(ti+1, tl)el - 01'_;_1 + llmq_l’ %Qi,i+1} (242)

where u,;, = ftib ®(b, s)u(s)ds, ®(t;11,1;) is the state transition matrix, and Q; ;41 is
defined by Eq. (2.14) (see [72] for details).
To factor the likelihood [(0;e) (here we primarily consider obstacle avoidance), we

define two types of obstacle cost factors: regular obstacle factors f?** and interpolated
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obstacle factors fj;?tp . The [(0; e) is the product of all obstacle factors

N Nip
1(6;e) =] {ffbs(@') 175 9i+1>}7 (243)
=1

1=0

where n;, is the number of interpolated states defined between each nearby support state
pair ; and 6,1, and 7; is the time to perform interpolation which satisfies t; < 7; < t;41.
The regular obstacle factor describes the obstacle cost on a single state variable and is

a unary factor defined as

1
£9(6,) = exp { —5 @) |2, } (2.44)

where h(6;) is a M -dimensional vector-valued obstacle cost function for a single state, and
O s 18 @ M x M hyperparameter matrix.

The interpolated obstacle factor describes the obstacle cost at 7;, which is not on any
support state and needs be interpolated from the support states. Since the Gauss-Markov
model we choose enables fast interpolation from adjacent states, we can interpolate a state
at any 7; from 6, and 0, by Eq. (2.17), which satisfies t; < 7; < t;;;. This allows us to
derive a binary interpolated obstacle factor that relates the cost at an interpolated point to

the adjacent two trajectory states

: 1
fP(0;,0i11) = exp{ -3 | h(6(r))) II2.. } (2.45)

1 .
= eXp{ — 5 [1B7(6:, 6:41) 5, }

In other words, 8(7;) is a function of 6; and 0,,, (see Eq. (2.17)). Just like in GPMP,
here too the interpolated obstacle factor incorporates the obstacle information at all 7 in the
factor graph and is utilized to meaningfully update the sparse set of support states.

An example factor graph that combines all of the factors described above is illustrated

in Figure 2.5. Note that if there are enough support states to densely cover the trajec-

26



tory, interpolated obstacle factors are not needed. But to fully utilize the power of the
continuous-time trajectory representation and to maximize performance, the use of sparse
support states along with interpolated obstacle factor is encouraged.

Given the factorized obstacle likelihood in Eq. (2.43)-(2.45), we can retrieve the vector-
valued obstacle cost function of the trajectory defined in Eq. (2.38) by simply stacking all
the vector-valued obstacle cost functions on all regular and interpolated states into a single

vector

h(6;e) = [h(6y); hy\7(6o,6:);...;h7"(60,6.); (2.46)

h(61); 171(61,02); . 77 (61,02

h(Oy_1); hirftp(ezv—h On);- .- hﬁ:ii(eN—ly On);

h(6y)],

where all h are obstacle cost functions from regular obstacle factors defined in Eq. (2.44),
and all h"™? are obstacle cost functions from interpolated obstacle factors defined in Eq. (2.45).
Since there are a total of N + 1 regular obstacle factors on support states, and n;,
interpolated factors between each support state pair, the total dimensionality of h(8) is

M x (N +1+ N X n;,). The hyperparameter matrix X in Eq. (2.38) is then defined by

O obs

Y= , (2.47)
O obs
which has size M X (N +1+ N x n;,) by M X (N +1+ N x n;,).
In our framework, the obstacle cost function h can be any nonlinear function, and

the construction of h, M, and o, are flexible as long as I(0;e) gives the likelihood.

Effectively h(6;) should have a larger value when a robot collides with obstacles at 8;, and
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a smaller value when the robot is collision-free. Our implementation of h, definition of M,
and guideline for the hyperparameter o s is discussed in Section 2.9.2.

To solve the MAP inference problem in Eq. (2.35), we first illustrate the duality between
inference and optimization by performing minimization on the negative log of the posterior

distribution

0" = argmax p(0)((0; e)

0
= argmin { — log <p(9)l(9; e)> }
)
(1 , 1 ,
= argmin § 5 16— p flic +5 I h(B:e) 5 (2.48)

where Eq. (2.48) follows from Eq. (2.37) and Eq. (2.38). This duality connects the two
different perspectives on motion planning problems such that the terms in Eq. (2.48) can
be viewed as ‘cost’ to be minimized, or information to be maximized. The apparent con-
struction of the posterior now becomes clear as we have a nonlinear least squares opti-
mization problem, which has been well studied and for which many numerical tools are
available. Iterative approaches, like Gauss-Newton or Levenberg-Marquardt repeatedly re-
solve a quadratic approximation of Eq. (2.48) until convergence.

Linearizing the nonlinear obstacle cost function around the current trajectory 6

h(6 + d6;e) ~ h(0;e) + HdO (2.49)
dh

- 2.50

de le ( )

where H is the Jacobian matrix of h(0;e), we convert Eq. (2.48) to a linear least squares

problem

1 1
00" = argmin {§H0 +60 — p ||% +5 | h(0;e) + HO H%} (2.51)
00
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The optimal perturbation §8* results from solving the following linear system

(K'+H'S'H)60" = - K (0 —pu)—H'S'h(0;e) (2.52)

Once the linear system is solved, the iteration

0 — 0+ 60" (2.53)

is applied until convergence criteria are met. Eq. (2.53) serves as the update rule for
GPMP2.

If the linear system in Eq. (2.52) is sparse, then 68" can be solved efficiently by ex-
ploiting the sparse Cholesky decomposition followed by forward-backward passes [90].
Fortunately, this is the case: we have selected a Gaussian process prior with a block tridi-
agonal precision matrix ! (Section 2.4.2) and H" X ~'H is also block tridiagonal (see
proof in Appendix B). The structure exploiting iteration combined with the quadratic con-
vergence rate of nonlinear least squares optimization method we employ (Gauss-Newton

or Levenberg-Marquardt) makes GPMP2 more efficient and faster compared to GPMP.

2.8 Incremental inference for fast replanning

We have described how to formulate motion planning problem as probabilistic inference
on factor graphs, results in fast planning through least squares optimization. In this section,
we show that this perspective also gives us the flexibility to use other inference and opti-
mization tools on factor graphs. In particular, we describe how factor graphs can be used
to perform incremental updates to solve replanning problems efficiently.

The replanning problem can be defined as: given a solved motion planning problem, re-
solve the problem with partially changed conditions. Replanning problems are commonly
encountered in the real world, when, for example: (i) the goal position for the end-effector

has changed during middle of the execution; (ii) the robot receives updated estimation about
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Factor Graph Bayes Tree
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Figure 2.6: Example of a Bayes Tree with its corresponding factor graph.

its current state; or (iii) new information about the environment is available. Since replan-
ning is performed online, possibly in dynamic environments, fast real-time replanning is
critical to ensuring safety.

A naive way to solve this problem is to literally replan by re-optimizing from scratch.
However, this is potentially too slow for real-time settings. Furthermore, if the majority
of the problem is left unchanged, resolving the entire problem duplicates work and should
be avoided to improve efficiency. Here we adopt an incremental approach to updating the
current solution given new or updated information. We use the Bayes tree [91, 43] data
structure to perform incremental inference on factor graphs.!

Two replanning examples with Bayes tree are shown in Figure 2.7. The first example
shows replanning when the goal configuration changes causing an update to the prior factor
on the goal state. When the Bayes tree is updated with the new goal, only the root node of
the tree is changed. The second example shows a replanning problem, given an observation
of the current configuration (e.g. from perception during execution) that is added as a prior
factor at 6, where the estimation was taken. When the Bayes Tree is updated, the parts of
the tree that change correspond to the parts of the trajectory that get updated.

In our implementation, we use the iISAM2 incremental solver [43] within the GPMP2
framework to solve the replanning problem. We call this incremental variant of GPMP2,
iGPMP2. A replanning scenario typically has the following steps. First, the original batch

problem is solved with GPMP2. Then, we collect the additional information to form factors

!Given that the trajectories are represented by GPs, the incremental updates of the factor graphs can also
be viewed as incremental GP regression [72].
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Factor Graph Bayes Tree

Figure 2.7: Replanning examples using Bayes Trees. Dashed boxes indicate parts of the
factor graphs and Bayes Trees that are affected and changed while performing replanning.

that need to be added or replaced within the factor graph. Finally, we update the Bayes Tree

inside ISAM?2, to get a newly updated optimal solution.

2.9 Implementation details

GPMP is implemented on top of the CHOMP [44] code since it uses an identical frame-
work, albeit with several augmentations. To implement GPMP2 and iGPMP2 algorithms,
we used the GTSAM [92] library. Our implementation is available as a single open source
C++ library, gpmp2.? In this section we describe the implementation details of our algo-

rithms.

2.9.1 GPMP
GP prior:

GPMP employs a constant-acceleration (i.e. jerk-minimizing) prior to generate a trajectory

with a Markovian state comprising of configuration position, velocity and acceleration, by

’Implementation along with a ROS interface available at ht tps://github.com/gtrll/gpmp2
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following the LTV-SDE in Eq. (2.5) with parameters

0I O 0
At)=10 0 1|,ult)=0F()= |0 (2.54)
0 00O I
and given At; = t;11 — t;,
I (t—9)1 %(t —5)°1
(t,s) = I (t —s)I (2.55)

0

0 0 I
AEQe 5AHQe gAEQe

Qiir1 = [LAHQe IABQc 1ALZQc (2.56)
FAQe AEQe  AtQc

This prior is centered around a zero jerk trajectory and encourages smoothness by attempt-

ing to minimize jerk during optimization.

Obstacle avoidance and constraints:

To quickly calculate the collision cost for an arbitrary shape of the robot’s physical body,
GPMP represents the robot with a set of spheres, as in [44] (shown in Figure 2.8). This
leads to a more tractable approximation to finding the signed distance from the robot sur-
face to obstacles. GPMP uses the same obstacle cost function as CHOMP (see Eq. (2.20))
where the cost is summed over the sphere set on the robot body calculated using a pre-
computed signed distance field (SDF). Constraints are also handled in the same manner as
CHOMP. Joint limits are enforced by smoothly projecting joint violations using the tech-
nique similar to projecting the obstacle gradient in Eq. (2.31). Along each point on the
up-sampled trajectory the violations are calculated via L, projections to bring inside the

limits (see [44] for details). Then they are collected into a violation trajectory, 6, to be
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Figure 2.8: The WAM arm is represented by multiple spheres (pink), which are used during
collision cost calculation.

projected:

6=6-+KM'6;, (2.57)

2.9.2 GPMP2 and iGPMP2

GPMP?2 uses the Levenberg-Marquardt algorithm to solve the nonlinear least squares op-
timization problem, with the initial damping parameter set as 0.01. The optimization is
stopped if a maximum of 100 iterations is reached, or if the relative decrease in error is
smaller than 10~*. iGPMP2 uses the iISAM2 [43] incremental optimizer with default set-

tings.

GP prior:

We use a constant-velocity prior in GPMP2 with the Markovian state comprising of config-
uration position and velocity. Note that, unlike GPMP, we did not include acceleration since
it was not needed for any gradients and an acceleration-minimizing prior for optimization
was sufficient for the tasks we consider in this work. Ideally a jerk-minimizing trajectory
would be beneficial to use on faster moving systems like quadrotors. GPMP2 scales only
quadratically in computation with the size of the state. So even if the same prior as GPMP

was used, GPMP2 would still be faster given its quadratic convergence rate.
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The trajectory is similarly generated by following the LTV-SDE in Eq. (2.5) with

A(t) = ,u(t) = 0,F(t) = (2.58)
00 I
and given At; = t; .1 — t;,
T (t—s)I IAQe 3AEQe
P(t,s) = Qi1 = |° 2 (2.59)
0 I %At?QC At; Qo

Analogously this prior is centered around a zero-acceleration trajectory.

Collision-free likelihood:

Similar to GPMP and CHOMP, the robot body is represented by a set of spheres as shown
in Figure 2.8, and the obstacle cost function for any configuration 6; is then completed by
computing the hinge loss for each sphere S; (j = 1,..., M) and collecting them into a

single vector,

h(9,) = [c(d(x(6., 5,)) (2.60)

1<<M
where x is the forward kinematics, d is the signed distance function, c is the hinge loss
function, and M is the number of spheres that represent the robot model.

Forward kinematics x(;, S;) maps any configuration 6, to the 3D workspace, to find
the center position of any sphere S;. Given a sphere and its center position, we calcu-
late d(z), the signed distance from the sphere at = to the closest obstacle surface in the
workspace. The sphere shape makes the surface-to-surface distance easy to calculate, since
it is equal to the distance from sphere center to closest obstacle surface minus the sphere
radius. Using a precomputed signed distance field (SDF), stored in a voxel grid with a

desired resolution, the signed distance of any position in 3D space is queried by trilinear
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Figure 2.9: The likelihood function h in a 2D space with two obstacles and € = 0.1m.
Obstacles are marked by black lines and darker area has higher likelihood for no-collision.

interpolation on the voxel grid. The hinge loss function® is defined as

—d+e ifd<e
c(d) = (2.61)

0 ifd>e

where d is the signed distance, and ¢ is a ‘safety distance’ indicating the boundary of the
‘danger area’ near obstacle surfaces. By adding a non-zero obstacle cost, even if the robot
is not in collision but rather too close to the obstacles, € enables the robot to stay a minimum
distance away from obstacles. The remaining parameter o ;s needed to fully implement the
likelihood in Eq. (2.44) and Eq. (2.45) is defined by an isotropic diagonal matrix

S =031 (2.62)

obs™»

where o, is the ‘obstacle cost weight’ parameter.

Figure 2.9 visualizes a 2D example of the collision-free likelihood defined by the obsta-
cle cost function in Eq. (2.60). The darker region shows a free configuration space where
the likelihood of no-collision is high. The small area beyond the boundary of the obstacles
is lighter, implying ‘safety marginals’ defined by e.

Note that the obstacle cost function used here is different from the one used in GPMP

3The hinge loss function is not differentiable at d = ¢, so in our implementation we set dc(d)/dd = —0.5
when d = e.
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and CHOMP, where c is instead a smooth function (necessary for gradient calculation)
and is multiplied with the norm of the workspace velocity (see Eq. (2.20)). This arc-
length parameterization helps in making the trajectory avoid obstacles rather than speeding
through them, while minimizing cost. The GP prior we use for GPMP2 helps us achieve
the same purpose, by incorporating cost on large accelerations. The choice of cost func-
tion in Eq. (2.61) serves as a good approximation for the tasks we consider and is also less

computationally expensive.

Motion constraints:

Motion constraints exist in real-world planning problems and should be considered during
trajectory optimization. Examples include the constrained start and goal states as well as
constraints on any other states along the trajectory. Since we are solving unconstrained
least square problems, there is no way to enforce direct equality or inequality constraints
during inference. In our framework, these constraints are instead handled in a ‘soft’ way,
by treating them as prior knowledge on the trajectory states with very small uncertainties.
Although the constraints are not exact, this has not been an issue in practice in any of our
evaluations.

Additional equality motion constraints, such as end-effector rotation constraints (e.g.
holding a cup filled with water upright) written as f(6,.) = 0, where 0. is the set of states

involved, can be incorporated into a likelihood,

1
Lconstraint(e) X eXp{ - 5 || f(ec) ||2§;C } (263)

where, 3. = 021, 0. is an arbitrary variance for this constraint, indicating how ‘tight’ the
constraint is.
To prevent joint-limit (and velocity-limit) violations, we add inequality soft constraint

factors to the factor graph. Similar to obstacle factors, the inequality motion constraint
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Figure 2.10: Environments used for evaluation with robot start and goal configurations
showing the WAM dataset (left), and a subset of the PR2 dataset (bookshelves (center) and
industrial (right)).

d
max

factor uses a hinge loss function to enforce soft constraints at both the maximum 6

and the minimum 6¢, values, with some given safety margin € on each dimension d =
{1,...,D}
(
—0¢+0L —c ifO <0 +¢
c(87) = 4 0 IOl +e<Ol<Ol —c (2.64)
0l —0% +¢ if0I>0% —¢
\
This factor has a vector valued cost function f(6;) = [c(6)] and the same likelihood

1<d<D
as the equality constraint factor in Eq. (2.63). At the final iteration we also detect limit

violations and clamp to the maximum or minimum values.

2.10 Evaluation

We conducted our experiments* on two datasets with different start and goal configurations.
We used: (1) the 7-DOF WAM arm dataset [36] consisting of 24 unique planning problems
in the /ab environment; and (2) the PR2’s 7-DOF right arm dataset [45] consisting of a total

of 198 unique planning problems in four different environments (Figure 2.10). Finally, we

4A video of experiments is available at https://youtu.be/mVA8ghGE7So.
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validated successful trajectories on a real 7-DOF WAM arm in an environment identical to

the simulation (Figure 2.1).

2.10.1 Batch planning benchmark

Setup:

We benchmarked our algorithms, GPMP and GPMP2, both with interpolation (GPMP2-
intp) during optimization and without interpolation (GPMP2-no-intp) against trajectory
optimizations algorithms - TrajOpt [45] and CHOMP [44], and against sampling based
algorithms - RRT-Connect [5] and LBKPIECE [46] available within the OMPL implemen-
tation [47]. All benchmarks were run on a single thread of a 3.4GHz Intel Core 17 CPU.

For trajectory optimizers, GPMP2, TrajOpt and CHOMP were initialized by a constant-
velocity straight line trajectory in configuration space and GPMP was initialized by an
acceleration-smooth straight line. For the WAM dataset all initialized trajectories were
parameterized by 101 temporally equidistant states. GPMP2-intp and GPMP use interpo-
lation so we initialized them with 11 support states and n;, = 9 (101 states effectively).
Since trajectory tasks are shorter in the PR2 dataset, we used 61 temporally equidistant
states to initialize the trajectories and for GPMP2-intp and GPMP we used 11 support
states and n;, = 5 (61 states effectively).

To keep comparisons fair we also compared against TrajOpt using only 11 states (TrajOpt-
11) in both datasets since it uses continuous-time collision checking and can usually find
a successful trajectory with fewer states. Although TrajOpt is faster when using fewer
states, post-processing on the resulting trajectory is needed to make it executable and keep
it smooth. It is interesting to note that since the continuous time-collision checking is per-
formed only linearly, after the trajectory is post-processed it may not offer any collision-free
guarantees. GPMP and GPMP2 avoid this problem when using fewer states by up-sampling
the trajectory with GP interpolation and checking for collision at the interpolated points.

This up-sampled trajectory remains smooth and can be used directly during execution. For
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(a) gops = 0.005  (b) gops = 0.05

Figure 2.11: (a) shows a successful trajectory with a good selection of o,,; (b) shows
failure, where the trajectory collides with the top part of the shelf, when o, 1s too large.

sampling-based planners no post processing or smoothing step was applied and they were
used with default settings.

All algorithms were allowed to run for a maximum of 10 seconds on any problem
and marked successful if a feasible solution is found in that time. GPMP, CHOMP, RRT-
Connect and LBKPIECE are stopped if a collision free trajectory is found before the max
time (for GPMP and CHOMP collision checking is started after optimizing for at least 10
iterations). GPMP2 and TrajOpt are stopped when convergence is reached before the max

time (we observed this was always the case) and feasibility is evaluated post-optimization.

Parameters:

For both GPMP and GPMP2, Q¢ controls the uncertainty in the prior distribution. A
higher value means the trajectories will have a lower cost on deviating from the mean and
the distribution covers a wider area of the configuration space. Thus a higher value is
preferable in problems with more difficult navigation constraints. However, a very high
value might result in noisy trajectories since the weight on the smoothness cost becomes
relatively low. A reverse effect will be seen with a smaller value. This parameter can be set
based on the problem and the prior model used (for example, constant velocity or constant
acceleration). In our benchmarks, for GPMP we set Q- = 100 for the WAM dataset and
Q¢ = 50 for the PR2 dataset and for GPMP2 we set Q¢ = 1 for both datasets.

Another common parameter, ‘safety distance, ¢ is selected to be about double the
minimum distance to any obstacle allowed in the scene and should be adjusted based on

the robot, environment, and the obstacle cost function used. In our benchmarks we set
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€ = 0.2m for both GPMP and GPMP2 for the WAM dataset, and ¢ = 0.05m for GPMP and
e = 0.08m for GPMP2 for the PR2 dataset.

For GPMP?2 the ‘obstacle cost weight’ o, acts like a weight term that balances smooth-
ness and collision-free requirements on the optimized trajectory and is set based on the
application. Smaller o,,s puts more weight on obstacle avoidance and vice versa. Figure
2.11 shows an example of an optimized trajectory for PR2 with different settings of 0. In
our experiments we found that the range [0.001, 0.02] works well for o,,s and larger robot
arms should use larger o,s. In the benchmarks we set 0,5 = 0.02m for the WAM dataset

and o,,s = 0.005 for the PR2 dataset.

Analysis:

The benchmark results for the WAM dataset are summarized in Table 2.1° and for the
PR2 dataset are summarized in Table 2.2%. Average time and maximum time include only
successful runs.

Evaluating motion planning algorithms is a challenging task. The algorithms here use
different techniques to formulate and solve the motion planning problem, and exhibit per-
formance that depends on initial conditions as well as a range of parameter settings that
can change based on the nature of the planning problem. Therefore, in our experiments we
have tuned each algorithm to the settings close to default ones that worked best for each
dataset. However, we still observe that TrajOpt-11 performs poorly on the WAM dataset
(possibly due to using too few states on the trajectory) while GPMP performs poorly on the
PR2 dataset (possibly due to the different initialization of the trajectory, and also the start
and end configurations in the dataset being very close to the obstacles).

From the results in Table 2.1 and 2.2 we see that GPMP2 perform consistently well

compared to other algorithms on these datasets. Using interpolation during optimization

SParameters for benchmark on the WAM dataset: For GPMP and CHOMP, A = 0.005, n = 1. For
CHOMP, € = 0.2. For TrajOpt, coeffs = 20, dist_pen = 0.05.

Parameters for benchmark on the PR2 dataset: For CHOMP, ¢ = 0.05. All remaining parameters are the
same from the WAM dataset.
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Table 2.1: Results for 24 planning problems on the 7-DOF WAM arm.

GPMP2-intp GPMP2-no-intp TrajOpt-101 TrajOpt-11 GPMP CHOMP RRT-Connect LBKPIECE

Success (%)  91.7 100.0 91.7 20.8 95.8 75 91.7 62.5
Avg. Time (s) 0.121 0.384 0.313 0.027 0.3 0.695 1.87 6.89
Max Time (s) 0.367 0.587 0.443 0.033 0.554  2.868 5.18 9.97

Table 2.2: Results for 198 planning problems on PR2’s 7-DOF right arm.

GPMP2-intp GPMP2-no-intp TrajOpt-61 TrajOpt-11 GPMP CHOMP RRT-Connect LBKPIECE

Success (%)  79.3 78.8 68.7 77.8 36.9 59.1 82.3 33.8
Avg. Time (s) 0.11 0.196 0.958 0.191 1.7 2.38 3.02 7.12
Max Time (s) 0.476 0.581 4.39 0.803 9.08 9.81 9.33 9.95

(GPMP2-intp) achieves 30 — 50% speedup of average and maximum runtime when com-
pared to not using interpolation (GPMP2-no-intp). On the WAM dataset TrajOpt-11 has
the lowest runtime but is able to solve only 20% of the problems, while GPMP2-intp has
the second lowest runtime with a much higher success rate. GPMP2-no-intp has the highest
success rate. On the relatively harder PR2 dataset, GPMP2-intp has the lowest runtime and
is twice as fast with a slightly higher success rate compared to TrajOpt-11. GPMP2-intp has
the second highest success rate and is slightly behind RRT-Connect but is 30 times faster.
The timing for RRT-Connect would further increase if a post processing or smoothing step
was applied.

As seen from the max run times, GPMP2 always converges well before the maximum
time limit and all the failure cases are due to infeasible local minima. Solutions like, ran-
dom restarts (that are commonly employed) or GPMP-GRAPH [93], an extension to our
approach that uses graph-based trajectories, can help contend with this issue.

To understand how the GP representation and the inference framework result in perfor-
mance boost we compare timing breakdowns during any iteration for CHOMP, GPMP and
GPMP2. Figure 2.12 shows the breakdown of average timing per task per iteration on the
WAM dataset where the solution update portion (dark blue) incorporates the optimization
costs. Table 2.3 shows average number of optimization iterations for successful runs in
both the WAM and the PR2 datasets. We see that compared to CHOMP, GPMP is more ex-

pensive per iteration primarily from the computation of the Hessian, that is needed to find
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Figure 2.12: Breakdown of average timing per task per iteration on all problems in the
WAM dataset is shown for CHOMP, GPMP-no-intp, GPMP-intp, GPMP2-no-intp and
GPMP2-intp.

Table 2.3: Average number of optimization iterations on successful runs.

CHOMP GPMP-no-intp GPMP-intp GPMP2-no-intp GPMP2-intp
WAM 264 11.5 12.0 23.6 13.0
PR2  46.6 322 19.1 26.4 244

the acceleration in workspace (CHOMP approximates the acceleration with finite differ-
encing). However, due to the GP representation and gradients on the augmented trajectory,
GPMP is able to take larger update steps and hence converge faster with fewer iterations.
GPMP2 on the other hand takes advantage of quadratic convergence while also benefiting
from the GP representation and the inference framework. GP interpolation further reduces
the runtime per iteration, especially for GPMP2. The dashed bars in Figure 2.12 represent
computational costs due to collision checking during optimization at a finer resolution, on
top of the computational cost incurred to evaluate gradient information. This was necessary
to determine convergence, since the CHOMP solution can jump in and out of feasibility be-
tween iterations [44]. GPMP also incurs this cost since it too exhibits this behavior due to
its similar construction. Note that the total computational time in Table 2.1 reflects the total
iteration time as shown in Figure 2.12 plus time before and after the iterations including

setup and communication time.
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2.10.2 Incremental planning benchmark

We evaluate our incremental motion planner iGPMP2 by benchmarking it against GPMP2
on replanning problems with the WAM and PR?2 datasets.

For each problem in this benchmark, we have a planned trajectory from a start config-
uration to an originally assigned goal configuration. Then, at the middle time-step of the
trajectory a new goal configuration is assigned. The replanning problem entails finding a
trajectory to the newly assigned goal. This requires two changes to the factor graph: a new
goal factor at the end of the trajectory to ensure that the trajectory reaches the new location
in configuration, and a fixed state factor at the middle time step to enforce constraint of
current state.

A total of 72 and 54 replanning problems are prepared for the WAM and the PR2
datasets, respectively. GP interpolation is used and all parameters are the same as the batch
benchmarks. The benchmark results are shown in Table 2.4 and Table 2.5. We see from the
results that iGPMP2 provides an order of magnitude speed-up, but suffers loss in success
rate compared to GPMP2.

GPMP2 reinitializes the trajectory as a constant-velocity straight line from the middle
state to the new goal and replans from scratch. However, iGPMP2 can use the solution
to the old goal and the updated Bayes Tree as the initialization to incrementally update
the trajectory, thus finding the solution much faster. There are three possible explanations
why iGPMP2’s success rate suffers as compared to the GPMP2’s. First, iGPMP2 uses
the original trajectory as initialization, which may be a poor choice if the goal has moved
significantly. Second, in iISAM2 not every factor is relinearized and updated in Bayes
tree for efficiency, which may lead to a poor linear approximation. Finally, GPMP2 uses
Levenberg-Marquardt for optimization that provides appropriate step damping, helping to
improve the results, but iGPMP2 does not use similar step damping in its current implemen-
tation. Since relinearizing factors or reinitializing variables will update the corresponding

cliques of the Bayes tree and break its incremental nature, this results in runtime similar to
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Figure 2.13: Example iGPMP2 results on the WAM and PR2 industrial. Red lines show
originally planned end-effector trajectories, and green lines show replanned end-effector
trajectories. Best viewed in color.

Table 2.4: Results for 72 replanning problems on WAM.

iGPMP2 GPMP2
Success (%) 100.0 100.0
Avg. Time (ms) 8.07 65.68
Max Time (ms) 12.65 148.31

Table 2.5: Results for 54 replanning problems on PR2.

iGPMP2 GPMP2

Success (%) 66.7 88.9
Avg. Time (ms) 6.17 27.30
Max Time (ms) 7.37 87.95

batch optimization, and should not be done frequently. A good heuristic is to only perform
relinearization/reinitialization when a planning failure is detected. We leave the task of
designing a better solution to overcome this issue as future work.

To maximize performance and overcome the deficiencies of iGPMP2, the rule of thumb
when using iGPMP?2 for replanning is to keep the difference between replanning problems
and existing solutions to a minimum. This will lead to better initialization and reduced
effect of linearization errors, and thus will improve iGPMP2’s success rate. We verify this
with the PR2 benchmark, where a smaller distance between original goal configuration and
new goal configuration means a smaller difference between the replanning problem and
the existing solution. We use L2 distance || 8, — 6, |2 to quantify the distance between
the original goal 6, and the new goal 6,.. From the PR2 benchmark, 27 problems have
|| 6, — 0, ||2< 2.0, where iGPMP?2 has 81.5% success rate. On the other hand, we see that

for the remaining 27 problems where || 8, — 0, ||2> 2.0, iGPMP2 only has 51.9% success
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rate.

Examples of successfully replanned trajectories generated using iGPMP2 are shown in
Figure 2.13. The use of the fixed state factor at the middle time step helps make a smooth
transition between original trajectories and replanned trajectories, which is critical if the

trajectory is being executed on a real robot.

2.11 Discussion

Comparisons with related work

GPMP can be viewed as a generalization on CHOMP where the trajectory is a sample from
a GP and is augmented with velocities and accelerations. Both GPMP and GPMP?2 use the
GP representation for a continuous-time trajectory, GP interpolation, and signed distance
fields for collision checking. However, with GPMP2 we fully embrace the probabilistic
view of motion planning. In contrast to similar views on motion planning [15, 14] that use
message passing, we instead solve the inference problem as nonlinear least squares. This
allows us to use solvers with quadratic convergence rates that exploit the sparse structure
of our problem, leading to a much faster algorithm compared to GPMP (and CHOMP)
that only has linear convergence and is encumbered by the slow gradient computation. The
update step in GPMP?2 involves only linearization and the Cholesky decomposition to solve
the linear system.

TrajOpt [11, 45] formulates the motion planning problem as constrained optimization,
which allows the use of hard constraints on obstacles but also makes the optimization prob-
lem much more difficult and, as a consequence, slower to solve. Benchmark results in
Section 2.10.1 show that our approach is faster than TrajOpt even when it uses a small
number of states to represent the trajectory. TrajOpt performs continuous-time collision
checking and can, therefore, solve problems with only a few states, in theory. However,
the trajectory does not have a continuous-time representation and therefore must perform

collision checking by approximating the convex-hull of obstacles and a straight line be-
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tween states. This may not work in practice since a trajectory with few states would need
to be post-processed to make it executable. Furthermore, depending on the post-processing
method, collision-free guarantees may not exist for the final trajectory. Representing trajec-
tories in continuous-time with GPs and using GP interpolation to up-sample them, allows
our algorithms to circumvent this problem. GPMP2 has also been extended to support pri-
ors defined in general Lie groups [94]. This allows us to perform full body planning and
incorporate state spaces for mobile manipulators like PR2.

Unlike sampling based methods, our algorithms do not guarantee probabilistic com-
pleteness. However, from the benchmarks we see that GPMP?2 is efficient at finding locally
optimal trajectories that are feasible from naive straight line initialization that may be in
collision. We note that trajectory optimization is prone to local minima and this strategy
may not work on harder planning problems like mazes where sampling based methods ex-
cel. Recent work however, has begun to push the boundaries in trajectory optimization
based planning. GPMP-GRAPH [93], an extension of our work, employs graph-based tra-
jectories to explore exponential number of initializations simultaneously rather than trying
them one at a time. Results show that it can quickly find feasible solutions even in mazes.
Depending on the problem and time budget, multiple random initializations can also be a
viable approach (since GPMP2 is fast), or GPMP2 can also be used on top of a path re-
turned from a sampling based method to generate a time parameterized trajectory that is
smooth.

Finally, our framework allows us to solve replanning problems very quickly, something
that none of the above trajectory optimization approaches can provide. We are able to
achieve this through incremental inference on a factor graph. On simpler replanning prob-
lems like changing goals, multi-query planners like PRM [4] can be useful but are time
consuming since a large initial exploration of the space is necessary to build the first graph,
a majority of which may not be needed. Solving these types of problems fast is very useful

in real-time real-world applications.
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Limitations

A drawback of iterative methods for solving nonlinear least square problems is that they of-
fer no global optimality guarantees. However, given that our objective is to satisfy smooth-
ness and to be collision-free, a globally optimal solution is not strictly necessary. Many of
the prior approaches to motion planning face similar issues of getting stuck in local min-
ima. Random restarts is a commonly used method to combat this, however our approach
allows for a more principled way [93] in which this problem can be tackled.

The main drawback of our proposed approach is that it is limited in its ability to handle
motion constraints like nonlinear inequality constraints. Sequential quadratic programming
(SQP) can be used to solve problems with such constraints, and has been used before
in motion planning [11, 45]. We believe that SQP can be integrated into our trajectory
optimizer, although this remains future work. Such strategies would also be helpful in
extending the planner to handle contact during manipulation. We have applied the inference

technique to the trajectory estimation problem in this domain [95].
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Part 11

Learning on Factor Graphs
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CHAPTER 3
COMBINING LFD AND MOTION PLANNING

3.1 Introduction

As robots assume collaborative roles alongside humans in dynamic environments, they
must have the ability to learn and execute new behaviors to achieve desired tasks. To ac-
complish this, there are two established approaches for generating trajectories, namely,
motion planning [6] and Learning from Demonstration (LfD) [96]. As discussed in Chap-
ter 2, motion planning focuses on generating trajectories that are optimal with respect to
pre-defined criteria (e.g. smooth accelerations) while maintaining feasibility (e.g. obstacle
avoidance, reaching via points) [6]. L{D, on the other hand, aims to generate trajectories
which satisfy the skill-based constraints learned from demonstrations [96, 97]. As a re-
sult, motion planning and L{D can be viewed as having complementary trade-offs. Motion
planning generalizes well to new scenarios (comprising the desired/given robot states and
the external environment) but requires precise optimality criteria that may be difficult to
define for complicated skills, whereas trajectory-based LfD methods circumvent the need
for hand coding optimality criteria, but typically do not generalize well.

By leveraging the framework and structure introduced in Chapter 2, here we develop
an efficient approach to skill learning and generalizable skill reproduction that combines
the strengths of motion planning and trajectory-based LfD while mitigating their weak-
nesses. We again view the problem of generating trajectories as equivalent to probabilistic
inference, where a posterior distribution of successful trajectories is computed from a prior
that encodes optimality, and a likelihood that characterizes feasibility in a given scenario.
Earlier, the trajectory prior was simple and pre-defined: it encouraged trajectories that min-

imize acceleration. We now argue that the trajectory prior can instead be learned from a
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set of demonstrations, and our key insight is that the resulting inference based planning
paradigm is identical to skill reproduction. The resulting algorithm, Combined Learning
from demonstration And Motion Planning (CLAMP) [88], performs probabilistic inference
to compute a posterior distribution of trajectories encouraged to match demonstrations
while remaining feasible for any given scenario. The structure induced by factor graphs
within CLAMP allows us to retain the efficiency during inference and is critical in making
learning generalizable, interpretable, and safe. We demonstrate these properties with the
evaluations of our approach on three skills including box-opening, drawer-opening, and

picking.

3.2 Related work

Probabilistic methods for trajectory-based LfD provide a viable way to learn a skill from
multiple demonstrations. However, the generalization capabilities of these methods vary
immensely. Purely probabilistic approaches, including Gaussian mixture models (GMM
/ GMR) [98] and LfD by Averaging Trajectories (LAT) [99], attract reproduced trajec-
tories towards an average form of the demonstrated motions, without regard to the ini-
tial or goal state. Task-parameterized GMM/GMRs [100] generalize better by assigning
reference frames to relevant objects and landmarks. Attempts at combining probabilistic
approaches with dynamical systems [101, 102, 103] have also met some success at gener-
alization. However, these methods generally require tedious parameter tuning to generate
the desired skill models. Although Gaussian processes (GPs) provide a non-parametric al-
ternative [104, 105], the computational complexity of conventional GP approaches scales
cubically with the number of data points, limiting their effectiveness in trajectory-based
LD settings.

CLAMP assumes that the demonstrated trajectories are governed by a latent stochas-
tic feedback control policy, which can be approximated as a linear stochastic dynamical

system. This simple yet powerful assumption yields a GP over trajectories with an ex-
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actly sparse inverse kernel matrix, enabling a significant boost in learning and inference
efficiency. This GP produces a Gaussian prior distribution over trajectories. A similar ap-
proach, probabilistic movement primitives (ProMPs) [106] directly fits a Gaussian distribu-
tion over demonstrations. New skill constraints are incorporated in ProMPs via inference
and feedback control policy is then found to follow the resulting trajectory distribution
on a robot. In contrast, inference over the prior in CLAMP generates trajectories which
naturally follow the demonstrated policy while satisfying all additional constraints.

We consider skill reproduction as performing inference over a prior trajectory distri-
bution, which is of course related to our inference-based planning method GPMP2 [40]
described earlier. Similarly, [107] show that trajectory adaptation to new start/goal states
via dynamic movement primitives (DMPs) [108] is a result of pre-specified Hilbert norm
minimization based on finite differences, thus drawing connections to CHOMP [44], a
gradient-based trajectory optimizer. The norm minimization procedure in CLAMP, how-
ever, goes one step further by minimizing the Mahalanobis distance from a learned prior
distribution.

Apart from generalizing skills over different start and goal states, skill reproduction
should also generalize to environmental changes, e.g. avoiding unforeseen obstacles. Many
conventional LfD approaches are not equipped to handle arbitrarily placed obstacles [98,
99]. Of those that do, obstacle avoidance is rather carried out reactively, without regard
to optimality of the entire trajectory [108]. Since motion planning provides a principled
way to handle obstacles, attempts at combining LfD and motion planning have been rela-
tively more successful. [109] presented a hierarchical framework that adapts the output of
a learned statistical model to avoid obstacles using a sampling-based motion planner as an
ad-hoc post-processing step. However, since the aim of both LfD and motion planning is
finding optimal and feasible trajectories, such a hierarchical approach induces redundancies
by assuming the two constituent steps to be independent. Recent trajectory optimization

based methods take a relatively more unified route. [110] carry out a functional gradient-
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based optimization for reproduction similar to CHOMP. Not only does their optimization
routine carry the same computational inefficiencies as CHOMP (see the discussion in Sec-
tion 2.11), their demonstration based cost functional disregards the motion dynamics. On
the other hand, [111], in a similar approach as ours, carry out probabilistic trajectory opti-
mization. This method performs optimization as a (partially) redundant two-step process.
An offline routine first learns a trajectory distribution in the presence of new obstacles
and fits a ProMP to represent it, and then an online routine adapts the ProMP given new
start/goal states or via-points. A major disadvantage of this approach is that the trajec-
tory distribution has to be re-learned every time an obstacle is displaced or further new
obstacles are introduced. In CLAMP, all skill generalization routines are carried out in
an efficient one-shot posterior inference procedure, while the trajectory distribution (prior)

only encodes human demonstrations.

3.3 The trajectory prior as a skill model

We argue that for generalizable skill reproduction, LfD should adhere to the same motiva-
tion as motion planning: finding trajectories that are optimal and feasible. In contrast to
motion planning, where optimality is pre-specified (e.g. smooth accelerations), LfD would
require the optimality criteria to be learned from demonstrations. The feasibility criteria
represent the reproduction scenario, e.g. collision avoidance, a fixed start state, reaching
a desired goal/via-point, or a combination thereof. We adopt the probabilistic inference
perspective on motion planning introduced in Chapter 2 that naturally allows the incorpo-
ration of optimality metrics learned from demonstrations in the form of a prior distribution.
Feasibility is encoded into a likelihood function specified in terms of a collection of binary
events e. Then the desired trajectory can be found by calculating the maximum a posteriori
(MAP) trajectory from the prior and likelihood by Eq. (2.35). Figure 3.1 illustrates our

framework.
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Figure 3.1: Block diagram showing various components of CLAMP.

3.3.1 Structured heteroscedastic GPs

We again use structured Gaussian processes (GPs) [82] to generate the trajectory prior,
but this time we allow them to be heteroscedastic (time-varying covariance). The inherent
sparsity in the precision matrix (i.e. inverse covariance matrix) associated with these GPs
can be exploited in both learning and inference for efficient computation.

We view trajectories as solutions to a linear time-varying stochastic differential equation

(LTV-SDE)

0(t) = A()0(t) + u(t) + F()w(t), w(t) ~GP(0,Qu(t)i(t—1)),  (3.D)

where 6(t) is the instantaneous robot state consisting of vectorized current positions and
their higher-order time derivatives (for all degrees of freedom), u(¢) is a bias term, A (¢) and
F(t) are time-varying system matrices and w(¢) is a white noise process with covariance
Q¢ (t) and dirac-delta 0. However, the key difference here is that the covariance Q¢ (1), is
time-varying and hence generates a heteroscedastic GP, which is suitable for encoding the
different ways of executing a skill.

Taking the first and second moments of the solution to the LTV-SDE yields the desired

33



GP with

p(t) = ®(t, to)po + /t ®(t, s)u(s)ds, (3.2)

to

min(¢,t")
IC(t,t') = ®(t, 1) Qo® (', to)" +/ ®(t,5)F(s)Qc(s)F(s)"®(t,s)"ds (3.3)

to

where ®(t, s) is the state transition matrix, and gy and Q are the initial mean and co-
variance. Following [82], we can decompose the mean, covariance and precision (i.e the
inverse covariance) of the GP parameterized by a finite number of support states 8 =

[007 017 s 70N]T as
p=Au, K=AQAT K l1=ATQ'A (3.4)

where,

T
K= {M(to),ﬂ(tl);-‘-ﬂ(tN)} ’
T tit1
u= [uo, U1, .- .uN_LN} y W41 = / ‘I’(ti+17 S)U(S)d&
t;

Q = diag(Q07 QO,lJ ey QN*LN%

Qiint = / | Bty 5)F(5)Qo(s)F(s) B (k1. 5) ds,

1 0 0 0
®(t,,t0) 1 0 0

AL | Bt ()
0 0
Bty 1,to) Pltx_1,t1) ... 1 0
B(ty,to) Bltnt) ... B(ty,tyo) 1

Due to the lower-triangular form of A, and the block-diagonal form of Q, the precision

matrix ! has a block-tridiagonal structure. In Section 3.4, we show how to perform fast
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and efficient inference by exploiting the exactly sparse structure of this precision matrix.
Note that, for the remainder of this chapter, 8(¢) will specifically refer to the robot’s state

in configuration space.

3.3.2 A combined prior

Usually, only the demonstrated workspace trajectories are relevant for skill execution.
Therefore, we choose to learn a prior distribution p(«|@) from demonstrations, generated
by using the LTV-SDE described above, but defined over the robot’s end effector state in
workspace x(t), instead of that in configuration space €(¢). We can directly use p(x|0) as
the prior in Eq. (2.35) to generate a MAP trajectory in workspace. However, the problem of
finding an associated configuration space trajectory is under-constrained for high-degree-
of-freedom robots. To resolve this, we reintroduce the pre-specified smoothness prior in
configuration space, p(8) o exp{—3||0 — ,uOH?CG}, giving a combined configuration space
prior

p=(0) = p(0|z) < p(0)p(x|0). (3.5)

The combined prior eventually functions as our skill model instead of (2.4). The effect of
the combined prior is to yield trajectories that are similar to the demonstrations given in
workspace while at the same time maintaining smoothness in configuration space. Next,
we detail the procedure for learning the workspace prior p(x|@). The configuration space
smoothness prior given by p(8), is analogous to the homoscedastic GP prior used for mo-
tion planning in Section 2.6.

In practice, based on the skills required, we may instead choose to directly learn the
prior p(@) in the configuration space, by considering the configuration space demonstra-
tions. In fact, any combination of learned or hand-coded priors in configuration or workspace

can be used, as the skill dictates.
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3.3.3 Learned workspace prior

The workspace prior distribution in Eq. (3.5) is defined as
1 x||2
p(@0) o exp{~|C(8) — p*[lic=}, (3.6)

where the function C maps a trajectory in configuration space to a workspace trajectory,
and the hyper-parameters p® and /C* are the mean and the covariance of the distribution.
We seek to estimate these hyper-parameters from provided workspace demonstrations.
Since demonstrations are recorded at discrete time instances, we only have access to
the support states x; to estimate the underlying workspace LTV-SDE. A discrete version
of the LTV-SDE in Eq. (3.1) proved sufficient for the experiments we considered in this

chapter, defined as
T = P (tir, ti)m iy + Wi, Wi ~N(0,QFL ), (3.7)

where the unknown parameters ®®(;,1,;), uf;,; and Qf,,  are defined as in Eq. (3.4),
but in workspace. Given a set of M trajectory demonstrations X = {x! x? ... &M}, the
regularized maximum likelihood estimate of the unknown parameters for the time interval
[ti, ti11] is given by

M
(L, 1), ulyyy = argmin > [ [P 4 AR (i, )| 7, 3.8)

uﬁi+1, PE(ti41,t:) m=1

M
L+l = Q7 Tl .
m=1

where the residual 1}, ; = uf;, | — x{t, + ®*(t;41,t;)x]" and A is the regularization pa-
rameter. We use linear ridge regression [112] to solve Eq. (3.8). The hyper-parameters of
the prior are calculated using the relationships in (3.4). Note that, if necessary, a continuous

formulation could be learned through variational inference [113].
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3.4 Efficient inference via factor graphs

In this section, we exploit the sparsity of the underlying system to efficiently carry out MAP
inference using the learned prior, to reproduce the skill. The structure of the precision ma-
trix of a distribution is captured by the structure of its factor graph, i.e. a sparser precision
matrix leads to a more factorized distribution. Efficiency during inference is a direct result

of this factorization (see Section 2.7).

3.4.1 Prior factors

Using the structured GP formulation (Section 3.3.1), the combined prior in Eq. (3.5) can

be factored as

N-1

P2 (8) o p(8)p(x[6) o< [0 e = H FE00(6;,0,11) F57(0,0,41), (3.10)

1=0

and is shown in Figure 3.2(a), where,
xT 1 xT €T
figp7 (0i70i+1) = exp {— 5”@ (tz+l7tz)C(01) - C(01,+1) +ui7i+1||2Qf,i+1}’ (311)

are the workspace prior factors learned from demonstrations as described in Section 3.3.3,

and

1
fl.gpﬂ(ei, 0i+1) = exp {— 5”{)9(1;2'_;'_17 tl)el — 0i+1 + uzi+1||2Qﬁi+1}, (312)

are the pre-specified smoothness prior factors in configuration space (see Section 3.3.2) as

described in Eq. (2.42).
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Figure 3.2: Example factor graphs of (a) the prior distribution, and the joint distribution
of the prior and the likelihood when the likelihood describes events associated with (b)

different start conditions or (c) obstacle avoidance and different start conditions. States 6;
are shown as white circles.

3.4.2 Likelihood factors

The factorization of the likelihood (see Section 2.7) is problem-specific and depends on the
events being considered. Here, we only consider events involving different start conditions
and/or collision avoidance. Figure 3.2(b) shows the joint distribution of the prior and start-
state likelihood. The posterior inference involves conditioning the prior on a desired start

state,

" 1
p(e‘0> x fbtdn = exp {— 5”00 — Ostart] z’start}’ (313)

where a very small covariance o, signifies the certainty of finding a solution that starts
from a desired start state @,,,,. Figure 3.2(c) shows the joint distribution with an additional

collision-free likelihood. The posterior and associated likelihood are then defined as,

N
plel6) oc fu o = p() [T (6:).  £(6:) = exp {— L) 12, }

- (3.14)
where f% are unary obstacle factors. The collision for any state is evaluated with a pre-
computed signed distance field, a cost function h, and a hyperparameter o, that balances
the weight on collision avoidance versus staying close to the prior. This was also used in
GPMP?2 for collision avoidance during motion planning. It is worth noting that, due to
this generic formulation, the learned skills can be reproduced in any new environment with

never-before-seen obstacles as long as a signed distance field is calculated beforehand.
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3.4.3 Skill reproduction

Finally, for efficient MAP inference, we take the negative log of the posterior distribution

p(0le) x pz(0)p(e|@) using the combined prior Eq. (3.5),
* : 1 0 (12 1 x (|2 1 2
0" = argmin 3 5 [| 6 — 7 flico +5 [| C(0) = 47 [lic= +5 [ (65 €) I3 (3.15)

Thus, giving a nonlinear least squares optimization based formulation for the inference
problem. The factor graph allows us to compactly organize the computation, with opti-
mization performed using Gauss-Newton or Levenberg-Marquardt. Combining the struc-
ture exploiting inference and the quadratic convergence rates of the optimization, make
this approach computationally efficient. The computational complexity is directly related
to how well the distributions factorize, and since only unary or binary factors are present,

the problem is extremely sparse and thus very efficient to solve.

3.5 Evaluation

We implemented CLAMP' using the GPMP2 C++ library and tested it on manipulation
problems. For skill learning, we considered workspace state x(¢) as composed of end-
effector 3D position and linear velocity, which proved sufficient for the experiments? con-
sidered here. We considered joint positions and velocities for the configuration space state
0(t), and we employed the constant velocity prior for ¢, encouraging smoothness in
joint accelerations.

We validated our method on three skills including, box-opening, drawer-opening and
picking. All skills were executed on a Kinova JACO? 6-DOF arm. For each skill, we
provided multiple demonstrations with different initial end-effector states (varying initial

position, zero initial velocity) through kinesthetic teaching [96]. The end-effector positions

Implementation available at https://github.com/GT-RAIL/clamp
%A video of experiments is available at https://youtu.be/DDs_ZxsNOEk
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(a) Kinesthetic demonstration (b) Reproduction (c) Reproduction with obstacle

Figure 3.3: Demonstration and reproduction of box-opening (top) and drawer-opening
(bottom).

over time were recorded and the trajectories were temporally aligned using dynamic time
warping [114]. The corresponding end-effector linear velocities were estimated by fitting
a cubic spline and differentiating with respect to time. Figure 3.4 shows the learned prior
distributions i.e. the skill models.

For the box-opening skill, each demonstration is composed of two primitive actions,
reaching and sliding the lid of the box. The sliding part of the skill is more constrained
compared to the reaching part. As shown in Figure 3.4(a), the variance in the state vari-
ables (i.e. positions and velocities) become much smaller during the sliding portion of the
trajectory. For the drawer-opening skill, each demonstration involves reaching the drawer
handle and pulling it in the direction perpendicular to the drawer body. Like the box-
opening skill, the second part of the demonstrations are highly restrictive in both positions
and velocities to satisfy skill completion, as shown in Figure 3.4(b). Finally, the picking
skill involves reaching an object from different initial end-effector positions and then plac-
ing it at different locations. As shown in Figure 3.4(c), since object location is fixed across
all demonstrations, the variance in the position state variable is much smaller in the middle
part of the skill. However, compared to the other two skills which deal with articulated ob-
ject manipulation, the velocity profile is not as critical for the picking skill. For all the skills,
the prior also encodes the coupling between the state variables. This is a consequence of
the underlying LTV-SDE.

Provided the initial state of the robot, the likelihood in Eq. (3.13) was used during
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(a) box-opening skill (b) drawer-opening skill (c) picking skill

Figure 3.4: Top: Position workspace priors shown in 3D; Middle: Position workspace pri-
ors plotted against time; Bottom: Velcocity workspace priors plotted againt time. The mean
is in blue with an envelope showing the 95% confidence. Demonstrations are overlayed.

inference to find MAP trajectories for skill reproduction. For obstacle avoidance, we further
incorporated the likelihood in Eq. (3.14). o,s was set manually to enable the desired
clearance of the robot from the obstacle. In general, o, depends on the size of the robot,
desired clearance and the environment itself. The MAP trajectories for all scenarios were
found using factor graph optimization to solve Eq. (3.15).

Figure 3.5(a) shows the reproduced trajectories for the box-opening skill with three
different initial robot states. In the left figure, our method was able to adapt the reaching
motion as per the initial state. In the presence of a new obstacle (right figure), our method
further adapted the reaching part of the skill around the obstacle. The sliding part of the skill
is highly constrained, as encoded in the prior and hence does not allow as much adaptability
as the reaching part. Figure 3.5(b) shows three MAP trajectories for the drawer-opening
skill with different starting states, with and without a new obstacle. In this case, like the
others, the reaching part of the skill adapts with varying initial states and obstacles, but the

highly constrained pulling part remains more-or-less unchanged. Apart from the position
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(a) box-opening skill (b) drawer-opening skill

Figure 3.5: Reproduced position trajectories in red from different initial states. The obsta-
cle is in yellow and the prior position mean is in blue.

trajectories, the direction of motion is also highly constrained in the latter part of these
skills, so having velocities in our prior played a crucial role. In all cases, the robot was suc-
cessful at executing the desired skill. We note that placing the obstacle in front of the object
being manipulated would cause failure due to the robot’s inability to carry out the required
pulling or sliding action. To detect such failure cases, we can use the workspace prior in
Eq. (3.6) to provide a demonstration-based success likelihood of the MAP trajectory 6%, as

a pre-execution evaluation step.

3.6 Discussion

We have presented CLAMP, a novel approach which unifies probabilistic LfD and inference-
based planning. Within this approach, we learned the skill in a non-parametric and efficient
manner, modeling the underlying system as a stochastic dynamical system. In some skills
we were able to analyze the skill model as a composition of primitive actions governed by
their variability (i.e. variance in the prior). Therefore, we see that learning the skills though
such an abstraction of factors on a graph allows for interpretability of the underlying skill.
Such models could be closely analyzed and then updated or relearned in situations where
the extracted behavior differs from the requirements or expectations of the user. Efficient
inference and generalized skill reproduction is carried out by fast numerical optimization
over factor graphs. Using this approach, we generate trajectories that are optimal with
respect to the learned skill (i.e. the trajectory prior) and feasible with respect to the re-

production scenario composed of various events (i.e. the likelihood). We perform MAP
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inference on the factor graphs with likelihoods constructed for satisfying the initial state of
the robot, and obstacle avoidance. The structured construction of our framework naturally
allows for easy generalization such that appropriate learned skill priors can be conditioned
on scenario specific information encoded by the likelihood. We have also extended this
framework to allow incremental learning of the skill, and to handle demonstrations ob-
tained from cluttered environments, where they may have been influenced by the presence
of objects irrelevant to the skill [89]. The structured compartmentalization makes con-
straints like safety easy to deal with even during learning (for example during incremental
skill learning), as they are handled by the likelihood. Although in our current implemen-
tation, we consider robot trajectories to be comprised of positions and velocities and the
events to be made up of robot’s current initial state and obstacle clearance, our approach

allows incorporation of further higher-order dynamics or event likelihoods.
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CHAPTER 4
DIFFERENTIABLE INFERENCE-BASED PLANNING

4.1 Introduction and related work

In this chapter, we present another technique that incorporates learning in to the framework
presented in Chapter 2 by leveraging the factor graph structure. In contrast to CLAMP in
the previous chapter however, here we exploit more modern machine learning tools and
also explore learning from algorithmic experts instead of human guided demonstrations.

Popular state-of-the-art sampling [4, 5] and optimization [9, 45] based planning ap-
proaches have complementary practical trade-offs. Sampling based methods are more well
suited for problems with tight navigation constraints like narrow hallways and mazes, but
are computationally expensive for high dimensional systems and generally need post pro-
cessing to get smooth solutions. On the other hand, trajectory optimization methods are
fast and well suited to tackle reaching style problems on manipulators. However, these
suffer from local minima problems that are usually the consequence of parameters in the
objective function.

Learning can be employed in an effective manner to utilize past experience or computa-
tion in a manner that can accelerates or augments the planning process [115, 116] as evident
from Section 3. With the advent of modern accessible machine learning techniques, there
is a growing interest to use deep learning for planning. End-to-end networks have been
trained to perform value iteration [117] and also learn rewards and transitions probabilities.
But, it is hard to scale as the action space needs to be discretized. [118] learns a latent
space embedding and a dynamics model in that space suitable for planning by gradient
descent within a goal directed policy. Such approaches have shown that learning to plan

is a promising research direction, but leave much to be desired. In general, we want to
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incorporate learning in a manner that is capable of handling planning considerations like
specifying task objectives, incorporating domain knowledge and constraints, and handling
uncertainty. Current literature falls short on many of these fronts.

Recent works in structured learning techniques offer avenues towards achieving this
goal. Various methods have focused on incorporating optimization within the networks.
For example, [119] implicitly learns to perform nonlinear least squares optimization by
learning an RNN that predicts its update steps, [28] learns to perform gradient descent,
and [30] utilizes a ODE solver within the network. Other methods like [29] learn a se-
quential quadratic program as a layer in the network while is extended to solve model
predictive control [120]. [31] learns structured dynamics model for reactive visuomotor
control. Taking inspiration from this body of work, in this chapter we present a differen-
tiable inference-based motion planning approach.

Our approach rewrites GPMP2 (see Chapter 2), the inference-based planner, as a fully
differentiable computational graph such that we can learn the parameters for its objec-
tive function from data. As a reminder, GPMP2 perform planning by constructing the
planing problem as inference on a factor graph and finds solutions by solving a nonlinear
least squares optimization function, where the inverse covariances in the factors show up
as weights in the objective. We will discuss GPMP2’s sensitiveness to objective parame-
ters (i.e. factor covariances) and see how such a learning strategy will help in improving
GPMP2’s general performance. This differentiable version can be trained from experts (too
slow to use in practice) to predict covariances that are time and space varying, in contrast
to fixed covariances as used in the vanilla approach, and also mitigates the need for hand
tuning. This form of structured learning offers interpretability and allows us to incorporate
other planning constraints. We perform several experiments in simulated 2D environments
comparing against vanilla GPMP2 to showcase the benefits of our approach, differentiable

GPMP2 (dGPMP2) [121].
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@) ops = 0.1,Qc =05 x T (¢) oops = 0.1,Qc = 0.5 x I

(b) oops =0.01,Qc =0.5x1I  (d)ogps =0.01,Qc =0.5x1 () oops = 0.01,Qc =1

Figure 4.1: (a)-(b) tarpit dataset (robot radius = 0.4m, safety distance = 0.4m). For the
same Qc¢, a smaller o, is required to encourage the planner to navigate around obstacles.
(c)-(d) forest dataset (robot radius = 0.2m, safety distance = 0.2m). For the same Q¢, a
larger o4 is required to focus on finding solutions near the straight line trajectory. (e)-(f)
multi_obs dataset (robot radius = 0.4m, safety distance = 0.4m) A small change in obstacle
covariance can lead to significant changes in the trajectory. In all figures, the red dashed
trajectories are the initializations and the blue trajectories are the optimized solutions.

4.2 Sensitivity to objective function parameters

The performance of GPMP?2 is dependent on the values of Q¢ (the parameter that governs
the covariance of the GP prior) and X (the covariance of the likelihood) as per its objective
function (see Section 2.9.2). For example, for collision avoidance, the distribution of ob-
stacles in the environment affects what relative settings of Q¢ and obstacle covariance o
(such that 3 = o2, x I) will be effective in solving the planning problem.

Different datasets require different relative settings of parameters. Due to the nonlinear
interactions between these parameters it might not be possible to find a fixed setting that

will always work, and in practice it can be a tedious task to find a setting that works for
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many different environments. For example, in environments like the one in Figure 4.1a-
4.1b, where the planner needs to find a trajectory that goes around the cluster of obstacles, a
small obstacle covariance is required to make the planner navigate around the “tarpit.” But,
at the same time, if a large dynamics covariance is used, it might try to squeeze in between
obstacles where the cost can have a local minima. So a smaller dynamics covariance is
needed as well. Another example is shown in Figure 4.1c-4.1d with dispersed obstacles
near the start and goal. Here an entirely different setting of covariances is effective. Since
obstacles are small and diffused, solutions can generally be found close to the straight line
initialization. A smaller dynamics covariance helps with that. Also, the start and goal can
be very near obstacles which means that a small obstacle covariance might lead to solutions
that violate the start and goal constraints. Having a smaller obstacle covariance can also
lead to trajectories that are very long and convoluted as they try to stay far away from
obstacles.

Small changes in parameters can lead to trajectories lying in different homotopy classes.
For example, Figure 4.1e-4.1f illustrates how even minor changes in the obstacle covariance
can lead to significant changes in the resulting trajectories. This makes tuning covariances
harder, as the effects are further aggravated over large datasets with diverse environments
leading to inconsistent results.

With sufficient domain expertise, the parameters can be hand-tuned. However, this pro-
cess can be very inefficient and becomes increasingly hard for problems in higher dimen-
sions or when complex constraints are involved. An ideal setup would be to have an algo-
rithm that can predict appropriate parameters automatically for each problem. Therefore, in
this work, we rebuild the GPMP2 algorithm as a fully differentiable computational graph,
such that these parameters can be specified by deep neural networks which can be trained
end-to-end from data. When deployed, our differentiable GPMP2 approach (dGPMP2) can

then automatically select its own parameters given a particular motion planning problem.
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4.3 A computational graph for planning

In this section, we first explain how GPMP2 can be interpreted as a differentiable com-
putation graph. Then, we explain how learning can be incorporated in the framework and
finally, we show how the entire system can be trained end-to-end from data.

Our architecture consists of two main components: a planning module P that is dif-
ferentiable but has no learnable parameters and a trainable module W that can be imple-
mented using a differentiable function approximator such as a neural network as shown in
Figure 4.2. As discussed in Section 4.2, GPMP2 performs trajectory optimization via MAP
inference on a factor graph by solving an iterative nonlinear optimization, where at any it-
eration the factor graph is linearized at the current estimate of the trajectory to produce the
linear system in Eq. (2.52) and an update step is computed by solving that linear system. At
a high level, our planning module P implements this update step as a computational graph.
The trainable module W is then set up to parameterize some desired planning parameters
and outputs these as ¢, at every iteration. These parameters correspond to factor covari-
ances used by P to construct the linearized factor graph. Additionally, P takes as input a set
of fixed planning parameters ¢ to allow parameters that can be user-specified and are not
being learned, for example, obstacle safety distance and covariances of constraint factors
like start, goal, and velocity. The key insight is that since solving Eq. (2.52) involves only
matrix operations, we can easily differentiate through it using standard autograd tools [122]
and thus train W in an end-to-end fashion from data.

Similar to GPMP2, during the forward pass, dGPMP2 iteratively optimizes the trajec-
tory where at the 7' iteration, the planning module P takes the current estimate of the
trajectory 0° and planning parameters ¢; and ¢ as inputs (where ¢, is the output of the
trainable module W and ¢ are user-defined and fixed) and produces the next estimate
0! as shown in Figure 4.2. The new estimate then becomes the input for the next itera-

tion. This process continues until 8! passes a specified convergence check or a maximum
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Figure 4.2: The computational graph of dGPMP2 where ¢ represents some user defined
planning parameters that are fixed and ¢, represents the learned planning parameters. See
text for details.

of T iterations and the optimization terminates. At the end of the optimization, we roll out
a complete differentiable computation graph for the motion planner.

Notation: 0 refers to the trajectory estimate at the i'" iteration of the optimization
that goes from 1,...,7T and 6; is the i'" state along the trajectory that goes from 1, ..., N.

The planning module: 6 is fed into the planning module along with a signed distance
field of the environment and additional planning parameters (¢ and ¢;) such as factor
covariances, safety distance, robot kinematics, start-goal constraints, and other task related
constraints. These inputs are used to construct the linear system in Eq. (2.52) corresponding
to the linearized factor graph of the planning problem. Similar to standard GPMP2, con-
straints are implemented as factors with fixed small covariances and the likelihood function
for obstacle avoidance is the hinge loss function (see Section 4.4) with covariance 3. The
trajectory update 0@° is then computed by solving this linear system, using Cholesky de-
composition of the normal equations [41, 39], and the new trajectory 6°"! is computed
using a Gauss-Newton step. Since the above procedure involves only matrix operations it
is fully differentiable and allows computing gradients in the backwards pass with respect

to 0%, GP covariance /C and likelihood function covariance .
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The trainable module: The trainable module W outputs planning parameters ¢y .
These correspond to covariances of factors in Eq. (2.52) that we wish to learn from data.
In practice, we can choose to learn the GP covariance /C, the likelihood covariance 3, or
both. Additionally, this approach allows us to learn individual covariances for different
states along the trajectory [0y, ..., 0x] and different iterations of the optimization thus of-
fering much more expressiveness than a single hand-tuned covariance. We implement W
as a feed-forward convolutional neural network that takes as input the bitmap image of the
environment and signed distance field and outputs a parameter vector ¢’ at every iteration
1. Note that, given our architecture, W can be customized as per individual needs based on
problem requirements or parameters chosen to be learned.

After a forward pass, we roll out a fully differentiable computation graph that outputs
a sequence of trajectories {6, ..., 07}, Then we evaluate a loss function on this sequence
and backpropagate that loss to update the parameters of W such that it produces parameters
¢, that allow us to optimize for better quality trajectories on the dataset as measured by the
loss. We explain our loss function and the training procedure in detail below.

Imitation loss:  Consider the availability of expert demonstrations for a planning prob-
lem. These may be provided by an asymptotically optimal (but slow) motion planner [123]
or by human demonstration [88]. dGPMP2 can be trained to produce similar trajectories

by minimizing an error metric between the demonstrations and learner’s output with

'Cimitation - ||0e - 0| |§ (41)

where 6° is the expert’s demonstrated trajectory and the metric is the L2 norm.

Task loss: Naively trying to match the expert can be problematic for a motion plan-
ner. For example, when equally good paths lie in different homotopy classes, the learner
may land in a different one than the expert. In this case, penalizing for not matching the

expert may be excessively conservative. If using human demonstrations as an expert, a
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realizability gap can arise when the planner has different constraints as compared with the
human. Thus, we use an external task loss as a regularizer that encourages smoothness and
obstacle avoidance, while respecting start and goal constraints, as is often used in motion
planning [44]:

Eplan = S smooth T A X -Fobsy (42)

where Fno0tn corresponds to the GP prior error and F,, is the obstacle cost and A is a
user specified parameter.

The overall loss for a single trajectory is, £ = Linitation + Lplan-

Training: During training we roll out our learner for a fixed number of iterations T’
and use Backpropagation Through Time (BPTT) [124] on the sum of losses of the interme-
diate trajectories in order to update the parameters of the trainable module W. Then, the

total loss minimized for our learner over a batch of size K is

11 K T ‘
Liotal = KT Z Z L£h. 4.3)

k=1 i=1
4.4 Evaluation

4.4.1 Implementation details

All our experiments and training are performed on a desktop with 8 Intel Core 17-7700K @
4.20GHz CPUs, 32GB RAM and a 12GB NVIDIA Titan Xp. We consider a 2D point robot
in a cluttered environment and planning is done in a state space ; = [z, y, &, y]*. The robot
is represented as a circle with radius 7 centered on its center of mass and the environment is
a binary occupancy grid. A Euclidean signed distance field is computed from the occupancy
grid to evaluate distance to obstacles and check collisions. We utilize the same collision
likelihood factor as GPMP2 (see Section 2.9.2). In our current experiments, we consider
@1, = 0 as the learned parameter and ¢pp = [Qc, €sase, ICs, KCy] to be fixed i.e we only

learn the obstacle covariance and keep the GP covariance fixed. Although, performance of
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(a) Expert (b) GPMP2 (c) GPMP2 (d) dGPMP2
oops = 0.15 oops = 0.01

Figure 4.3: Example comparison of (d) dGPMP2 against (b)-(c) GPMP2 (fixed hand tuned
covariances) and (a) Expert on forest (top row) and tarpit (bottom row) datasets. Hand
tuned covariances that work well on one distribution of obstacles fail on the other and vice
versa. By imitating the expert, dGPMP?2 is able to perform consistently across different en-
vironment distributions. Green circle is start, cyan is goal, dashed red line is initialization,
and Q. = 0.5 x I, » = 0.4m for all. Trajectory is in collision if at any state the signed
distance between robot center of mass and nearest obstacle is less than or equal to 7.

the planner depends on both Q¢ and ¥, for our task they trade off against each other and
thus we can achieve a similar behavior by varying one relative to the other. Since in our
setup the environment changes learning the likelihood covariance X is more relevant. For
GPMP2, X = o2, x I, while for dGPMP2, 3 = diag(o2,,,, ..., 0%, ). Where any o, is
a function of the current trajectory and the environment.

Loss function:  Sampling based asymptotically optimal planning methods such as RRT*
[123] are effective in finding good homotopy classes to serve as an initialization for local
trajectory optimizers, but can be slow to converge and produce non-smooth solution paths.
We use a combination of RRT* and GPMP2 as our expert. Expert trajectories are generated
by first running RRT* and are then optimized with GPMP2 to yield smooth solutions. This
allows dGPMP2 to learn by utilizing the best combination of local and global planning. We

use the loss function defined in Section 4.3 with this expert.
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Network architecture: For W we use a standard feed-forward neural network model
consisting of convolutional and fully connected layers. The network consists of 5 convolu-
tional layers with [16, 16, 16, 32, 32] filters respectively, all 3x3 in size. This is followed
by two fully connected with [1000, 640] hidden units. We use ReLLU activation with batch
normalization in all layers and a dropout probability of 0.5 in the fully connected layers.
The input to the neural network is a 128x128 bitmap of the environment stacked on top of
the euclidean signed distance field of the same dimensions. Training is performed for fixed
number of iterations, T" = 10.

Comparing planners: 'The convergence for the optimization is based on the following
criterion: a tolerance on the relative change in error across iterations tol(deor ), magni-
tude of update tol(d0), and max iterations 7,,,,. On convergence the final trajectory is
returned. We report the following metrics on a test set of environments: (i) success, per-
cent of problems solved i.e. when a collision free trajectory is found, (ii) average gp_mse,
mean-squared GP error measuring smoothness and (ii1) collision_intensity, the aver-
age portion of trajectory spent in collision when a collision occurs.

We test our framework on two different planning tasks to demonstrate (i) how learning
covariances improves performance and (i1) how the planner’s structure allows us to incor-

porate constraints. We compare against a baseline GPMP2 with hand-tuned parameters.

4.4.2 Learning on complex distributions

In this experiment, we show that if the planner’s parameters are fixed, performance can
be highly sensitive to distribution of obstacles in the environment. However, if a function
can be learned to set the parameters based on the current planning problem, this can help
the planner achieve uniformly good performance across different obstacle distributions.
We construct a hybrid dataset which is a mixture of two distinct distributions of obstacles
as shown in Figure 4.3. The first distribution called forest consists of small obstacles

scattered around the workspace and the second called tarpit contains small number of
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larger obstacles clumped together near the center of the workspace. We use a test set of 150
randomly sampled environments from this mixed dataset and further subdivide it into two
sets for each of the constituent distributions (roughly equal in proportion). We then hand-
tuned parameters for GPMP?2 to find the best covariances for the individual distributions
and compared them against dGPMP2 on three different test sets: two for the individual
distributions and one for a mixed (roughly equal of the two distributions). The results in
Table 4.1 show that for GPMP2 the best parameters on one distribution perform poorly
on the other distribution in terms of success, although their performances on the mixed
dataset are similar. Conversely, dGPMP2 has uniform and consistent performance across
both distributions even though it is only trained on the mixed dataset. This demonstrates
that dGPMP2 does not require manual tuning or domain knowledge for every distribution
of planning environments, but can automatically predict the covariances to use based on
the current trajectory and environment as can be seen in Figure 4.3. Additionally, dGPMP2
has the lowest gp_mse on the mixed dataset meaning the trajectories produced are still
smooth. dGPMP2 also converges in fewer number of iterations than the GPMP2 due to the
covariance being more expressive and varying over iterations.

Limitations: Since BPTT is known to have issues with exploding and vanishing gra-
dients for long sequences, we use a small number of iterations (7' = 10) during training
which prevents the learner from sufficiently exploring during training. The network archi-
tecture is a simple feed-forward network and does not have any memory and hence the
learner does not learn to escape local minima very well. We believe that these issues can
be addressed in the future using learning techniques such as Truncated Backpropagation
Through Time (TBPTT) [125], recurrent networks such as LSTMs [128], and policy gra-

dient methods [126, 127].
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Table 4.1: Comparison of dGPMP2 versus GPMP2 with fixed hand tune covariances.
dGPMP?2 learns the obstacle covariance o, using training set of 5000 environments.
Qc = 0.5 x [ for all.

GPMP2

Oops = 0.15 | ops = 0.01 dGPMP2

forest only 71.02 52.18 66.67

tarpit only | success 55.56 74.08 68.00

mixed 62.67 64.00 67.33
gp-mse 0.002 0.0484 0.0015

num_iters 55.69 86.74 50.00
coll_intensity 0.0464 0.0414 0.0374

Table 4.2: Performance of dGPMP2 with velocity constraints on different combinations
of training and testing. Mild constraints are vy;,.; = 1.5m/5s, Uyme; = 1.5m/s, and
time = 15s, tight constraints are vy, = 1.0m/s, Vymaes = 1.0m/s, and time = 10s for
the same start and goal.

Training condition | Mild | Mild | Tight
Testing condition | Mild | Tight | Tight
success 96 96 | 98.12
constraint_violation | 0.0022 | 0.104 | 0.097

4.4.3 Planning with velocity constraints

We show that our learning method can explicitly incorporate planning constraints by in-
cluding velocity limit factors into the optimization. We use a hinge loss similar to obstacle
cost to bound the robot velocity v, and v, and set the covariance to a low value, KC,, = 1074,
analogous to joint limit factors in [41]. We evaluate the average constraint violation
on a dataset with multiple randomly placed obstacles and study the effect of incorporating
constraints during training. Table 4.2 shows a comparison between dGPMP?2 trained with
mild constraints and tested on problems with mild and tight constraints versus dGPMP2
trained using tight constraints and tested on problems with tight constraints (details in the
Table 4.2 caption). We see that, by incorporating tight constraints during training, dGPMP2
can learn to handle tight constraints while avoiding obstacles. This illustrates that dGPMP2
can successfully incorporate constraints within its structure, and that the method can learn

to plan while respecting user-defined planning constraints.
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4.5 Discussion

We formulated an inference-based motion planner as a differentiable computational graph.
Our method learned to predict objective function parameters as part of the differentiable
planner and showed competing performance against planning with fixed hand tuned pa-
rameters. With the help of the embedded planning structure we are also able to handle
constraints. These preliminary results show that this approach is viable and is a promising
direction to further investigate the benefits of structured learning as a way to bridge the gap
between traditional planning methods and modern machine learning techniques. Our im-
plementation is currently limited to only point robots in 2D environments. However, since
the formulation was built on the GPMP2 planner, it can be extended to handle articulated
robots in 3D workspaces in a fashion similar to the planner. The factor graph structure em-
bedded within our approach that allows us to handle constraints, can also allow for handling
uncertainty via noisy state measurements. Exploration of these ideas are a few directions

for future work.
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Part 111

Reactive Policy Synthesis
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CHAPTER §
RIEMANNIAN POLICIES FOR REACTIVE MOTION

5.1 Introduction

We now switch gears to another common approach to motion generation with reactive
policies. They operate over single steps and are locally governed, but can be fast with
respect to computation as well adapting to dynamic changes in the environment. Broadly
speaking, this is complementary in its strengths and weakness to trajectory optimization
style of motion planning that was the focus of the first half of this thesis.

In this chapter, we develop a new reactive motion generation framework that enables
globally stable controller design within intrinsically non-Euclidean spaces.! Non-Euclidean
geometries are not often modeled explicitly in robotics, but are nonetheless common in the
natural world. One important example is the apparent non-Euclidean behavior of obsta-
cle avoidance. Obstacles become holes in this setting. As a result, straight lines are no
longer a reasonable definition of shortest distance—geodesics must, therefore, naturally
flow around them. This behavior implies a form of non-Euclidean geometry: the space is
naturally curved by the presence of obstacles.

The planning literature has made substantial progress in modeling non-Euclidean task-
space behaviors, but at the expense of efficiency and reactivity. Starting with early dif-
ferential geometric models of obstacle avoidance [129] and building toward modern plan-
ning algorithms and optimization techniques [130, 131, 132, 15, 6, 123, 49, 41], these
techniques can calculate highly nonlinear trajectories. However, they are often compu-
tationally intensive, sensitive to noise, and unresponsive to perturbation. In addition, the

internal nonlinearities of robots due to kinematic constraints are sometimes simplified in

ISpaces defined by non-constant Riemannian metrics with non-trivial curvature.
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the optimization.

At the same time, a separate thread of literature, emphasizing fast reactive control over
computationally expensive planning, developed efficient closed-loop control techniques
such as Operational Space Control (OSC) [133]. But while these techniques account for
internal geometries from the robot’s kinematic structure, they assume simple Euclidean ge-
ometry in task spaces [134, 135], failing to provide a complete treatment of the external
geometries. As a result, obstacle avoidance, e.g., has to rely on extrinsic potential func-
tions, leading to undesirable deceleration behavior when the robot is close to the obstacle.
If the non-Euclidean geometry can be intrinsically considered, then fast obstacle avoid-
ance motion would naturally arise as traveling along the induced geodesic. The need for a
holistic solution to motion generation and control has motivated a number of recent system
architectures tightly integrating planning and control [136, 85].

We develop a new approach to synthesizing motion policies that can accommodate and
leverage the modeling capacity of intrinsically non-Euclidean robotics tasks. Taking in-
spiration from Geometric Control Theory [137],> we design a novel recursive algorithm,
RMPflow [138], based on a recently proposed mathematical object for representing non-
linear policies known as the Riemannian Motion Policy (RMP) [139]. This algorithm
enables the geometrically consistent fusion of many component policies defined across
non-Euclidean task spaces that are related through a tree structure. Such a task-map tree
structure embedded within our formulation will be critical to incorporating learning in the
following chapters. We show that RMPflow, which generates behavior by calculating how
the robot should accelerate, mimics the Recursive Newton-Euler algorithm [140] in struc-
ture, but generalizes it beyond rigid-body systems to a broader class of highly-nonlinear
transformations and spaces.

In contrast to existing frameworks, our framework naturally models non-Euclidean task

spaces with Riemannian metrics that are not only configuration dependent, but also velocity

2 See Appendix B.1 for a discussion of why geometric mechanics and geometric control theory constitute
a good starting point.
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dependent. This allows RMPflow to consider, e.g., the direction a robot travels to define
the importance weights in combing policies. For example, an obstacle, despite being close
to the robot, can usually be ignored if robot is heading away from it. This new class of
policies leads to an extension of Geometric Control Theory, building on a new class of
non-physical mechanical systems we call Geometric Dynamical Systems (GDS).

We also show that RMPflow is Lyapunov-stable and coordinate-free. In particular,
when using RMPflow, robots can be viewed each as different parameterizations of the same
task space, defining a precise notion of behavioral consistency between robots. Addition-
ally, under this framework, the implicit curvature arising from non-constant Riemannian
metrics (which may be roughly viewed as position-velocity dependent inertia matrices in
OSC) produces nontrivial and intuitive policy contributions that are critical to guarantee-
ing stability and generalization across embodiments. Our experimental results illustrate
how these curvature terms can be impactful in practice, generating nonlinear geodesics that
result in curving or orbiting around obstacles. We also demonstrate the utility of our frame-

work with a fully reactive real-world system on multiple dual-arm manipulation problems.

5.2 Motion generation and control

Motion generation and control can be formulated as the problem of transforming curves
from the configuration space C to the task space 7. Specifically, let C be a d-dimensional
smooth manifold. A robot’s motion can be described as a curve ¢ : [0,00) — C such that
the robot’s configuration at time ¢ is a point ¢(¢) € C. Without loss of generality, suppose
C has a global coordinate q : C — R4, called the generalized coordinate; for short, we
would identify the curve ¢ with its coordinate and write q(g(t)) as q(t) € R?. A typical
example of the generalized coordinate is the joint angles of a d-DOF (degrees-of-freedom)
robot: we denote q(t) as the joint angles at time ¢ and §(t), G(¢) as the joint velocities and
accelerations. To describe the tasks, we consider another manifold 7, the task space, which

is related to the configuration space C through a smooth task map ¢ : C — T. The task

80



space 7 can be the end-effector position/orientation [133, 141], or more generally can be a
space that describes whole-body robot motion, e.g., in simultaneous tracking and collision
avoidance [142, 143]. Thus, the goal of motion generation and control is to design the
curve g so that the transformed curve v o ¢ exhibits desired behaviors on the task space 7.

Notation For clarity, we use boldface to distinguish the coordinate-dependent rep-
resentations from abstract objects; e.g. we write ¢(t) € C and q(t) € R? In addition,
we will often omit the time- and input-dependency of objects unless necessary; e.g. we
may write ¢ € C and (q,q,q). For derivatives, we use both symbols V and 0, with
a transpose relationship: for x € R™ and a differential map y : R™ — R", we write
Viy(x) = 0yy(x)T € R™™", For a matrix M € R™ ™, we denote m; = (M); as its
ith column and M;; = (M),; as its (i, j) element. To compose a matrix, we use (-). for
vertical (or matrix) concatenation and [-]. for horizontal concatenation. For example, we
write M = [m,])2, = (M;;)7%_; and MT = (m/)7%, = (Mj;)i_,. We use RT*™ and
R ™ to denote the symmetric, positive semi-definite/definite matrices, respectively.

We model motion as a second-order differential equation of § = 7(q, q), where we
call m a motion policy and (q,q) the state. We assume the system has been feedback
linearized [144], which is a common technique used to control fully actuated nonlinear
systems (serial manipulators). The idea is to build a controller that cancels the nonlin-
earities in the dynamics so that the acceleration becomes the new control and the system
becomes a double integrator (i.e. linear dynamics). In practice, once the policy generation
provides an acceleration based control we can execute that policy on the physical system in
two particular ways: (i) apply inverse dynamics to calculate the true control (joint torques)
to be executed, or (ii) integrate the acceleration to get a position and velocity trajectory to
be tracked by a PD controller. The performance of the former method relies on access to
an accurate dynamics model, while that of the latter depends on well tuned gains of the PD

controller. Since in our experiments we deal with fully actuated manipulators performing

non-high-speed tasks, the second method proved sufficient to control our systems.
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5.3 Related work

In contrast to an open-loop trajectory, which forms the basis of many motion planners, a
motion policy expresses the entire continuous collection of its integral trajectories® and
therefore is robust to perturbations. Motion policies can model many adaptive behav-
iors, such as reactive obstacle avoidance [145, 136] or responses driven by planned Q-
functions [146], and their second-order formulation enables rich behavior that cannot be
realized by the velocity-based approach [147].

The geometry of motion has been considered by many planning and control algorithms.
Geometrical modeling of task spaces is used in topological motion planning [131], and mo-
tion optimization has leveraged Hessian to exploit the natural geometry of costs [9, 15, 36,
40]. Ratliff et al. [130], e.g., use the workspace geometry inside a Gauss-Newton optimizer
and generate natural obstacle-avoiding reaching motion through traveling along geodesics
of curved spaces. Geometry-aware motion policies were also developed in parallel in con-
trols. OSC is the best example [133]. Unlike the planning approaches, OSC focuses on the
internal geometry of the robot and considers only simple task-space geometry. It reshapes
the workspace dynamics into a simple spring-mass-damper system with a constant inertia
matrix, enforcing a form of Euclidean geometry in the task space. Variants of OSC have
been proposed to consider different metrics [148, 134, 143], task hierarchies [142, 149],
and non-stationary inputs [150].

While these algorithms have led to many advances, we argue that their isolated focus on
either the internal or the external geometry limits the performance. The planning approach
fails to consider reactive dynamic behavior; the control approach cannot model the effects
of velocity dependent metrics, which are critical to generating sensible obstacle avoidance
motions, as discussed in the introduction. While the benefits of velocity dependent met-
rics was recently explored using RMPs [139], a systematic understanding is still an open

question.

3 An integral curve is the trajectory starting from a particular state.
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5.4 From operational space control to geometric control

We set the stage for our development of RMPflow and geometric dynamical systems (GDSs)
in Sections 5.5-5.7 by first giving some background on the key tools central to this work.
Specifically, we give a tutorial on the controller design technique known as energy shaping
and the geometric formulation of classical mechanics, both of which are commonly less
familiar to robotics researchers. Then we will show that geometric control [137], which to
a great extent developed independently of operational space control within a distinct com-
munity, nicely summarizes these two ideas and leads to techniques of leveraging energy
shaping within the context of geometric mechanics.

This section targets at readers more familiar with operational space control and intro-
duces many of the relevant ideas in a way that we hope is more accessible than the tra-
ditional exposition which assumes a background in differential geometry. We begin with
a review of classical operational space control wherein tasks are represented as hard con-
straints on the mechanical system, and then show how energy shaping and the geometric
mechanics formalism enable us to easily develop provably stable operational space con-
trollers that simultaneously trade off many tasks. The material presented in this section pri-
marily rehashes existing techniques from a perhaps unfamiliar community, restating them
in a way that should be more natural to researchers familiar with operational space control.
We end with a discussion of the limitations of these geometric control techniques that we

will address with RMPflow and GDSs.

Energy shaping and classical operational space control

Energy shaping is a controller design technique, wherein the designer first configures a
virtual mechanical system by shaping its kinetic and potential energies to exhibit a certain

behavior, and then drive the robot’s dynamics to mimic that virtual system. This scheme
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overall generates a control law with a well-defined Lyapunov function, given as the virtual
system’s total energy, and therefore has provable stability.

For instance, the earliest form of operational space control [133] formulates a virtual
system that places all mass at the end-effector. Behavior is then shaped by applying po-
tential energy functions (regulated by a damper) to that virtual mass (e.g. by connecting
the end-effector to a target using a virtual (damped) spring). Controlling the system to
behave like that virtual system then generates a control law whose stability is governed
by the total energy of that virtual point-mass system. In this context, the choice of virtual
mechanical system (the point end-effector mass) is a form of kinetic energy shaping, and
the subsequent choice of potential energy applied to that point end-effector mass is known
as potential energy shaping. This particular pattern of task-centric kinetic and potential
energy shaping, is common throughout the operational space control literature.

A similar theme can be found in [134]. Here the virtual mechanical systems are de-
signed by constraining an existing mechanical system (e.g. the robot’s original dynamics)
to satisfy task constraints. This is achieved by designing controllers around a general-
ized form of Gauss’s principle of least constraint [151], so that virtual mechanical systems
would behave in a sense as similarly as possible to the true robotic mechanical system
while realizing the required task accelerations. In other words, the energies of the original
mechanical system are reshaped to that given by the task constraints.

In essence, these early examples above are based on the idea that faithful execution of
the task enables a simplified stability analysis as long as the task space behavior is itself
well-understood and stable. This style of simplified analysis and the controller design has
been successful in practice. Nonetheless, it imposes a limitation that the controllers cannot
have more tasks than the number of DOF in the system. This becomes particularly prob-
lematic when one wishes to introduce more complex auxiliary behaviors, such as collision
avoidance where the number of tasks might scale with the number of obstacles and the

number of control points on the robot’s body.
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The rest of this section is dedicated to unify and then generalize these ideas through the
lens of geometric mechanics, so that we can use operational space control to handle these
more complex settings of many competing tasks, by using nuanced weighted priorities
that might change as a function of the robot’s configuration. However, we will eventually
see that even this is still not quite sufficient for representing many common behaviors.
The insights into sources of these limitation learned in this section are the motivation of
our more in-depth subsequent development of RMPflow and geometric dynamical systems

(GDSs).

A simple first step towards weighted priorities

This section leverages Gauss’s principle of least constraint (different from the techniques
mentioned briefly above [134]) to illustrate the concept of energy shaping, which will be
used more abstractly below to derive a simple technique for combining multiple task-space
policies.

Gauss’s Principle: Gauss’s principle of least constraint states that a nonlinearly con-
strained collection of particles evolves in a way that is most similar to its unconstrained evo-
lution, as long as this notion of similarity is measured using the inertia-weighted squared
error [135]. For example, let us consider N particles: x; € R? with respective (positive) in-
ertiam; € Ry, fori = 1,..., N. Then the acceleration X; of the i*" particle under Gauss’s

principle can be written as

X = argming . 4 5[|x? — X'||3, (5.1

where A denotes the set of admissible constrained accelerations. To simplify the notation,

we’ve stacked? the particle accelerations into a vector X = (X;;...;Xy) and construct a
diagonal matrix Ml = diag(my1, ..., myI), where I € R3*3 is the identity matrix.

“We use the notation v = (v1;Va;,...,vy) to denote stacking of vectors v; € R into a single vector
v € R3V,

85



Kinematic Control-Point Design: Let us use the above idea to design a robot controller.
If we define many kinematic control points x; € R34 = 1,..., N distributed across the
robot’s body and calculate a desired acceleration at those points X¢, a sensible way to trade

off these different accelerations is through the following quadratic program (QP):

ming, SV i kd — %012 st % = J;q 4+ Ji¢ (5.2)
1,2@71 2 () q q?

where m; > 0 is the importance weight, x; = 1;(q) is the forward kinematics map to
the i*" control point and J; = Oq, i 1s its Jacobian. This QP states that the system should
follow the desired accelerations as well as possible, with (constant) tradeoff priorities m; in
the event the tasks cannot be achieved exactly, subject to the physical kinematic constraints
on how each control point can accelerate.

Comparing this QP to that given by Gauss’s principle in Eq. (5.1), one can immedi-
ately see that its solution gives the constrained dynamics of a mechanical system defined
by N point particles of mass m; with unconstrained accelerations x¢ and acceleration con-
straints X; = J;q + Jiq. In particular, if xf = —-m; IngSZ- — B;x; for some non-negative
potential function ¢; and constant 3;, we arrive at a mechanical system with total energy
Zfil (Z||1%;]]* 4 ¢i(x;)). Controlling the robot system according to desired accelerations

q* given by solving Eq. (5.2) ensures that this total energy dissipates at a rate defined by
the collective non-negative dissipation terms >, m;3;||x;||>. This total energy, therefore,
acts as a Lyapunov function.

This kinematic control-point design technique utilizes now more explicitly the method-
ology of energy shaping. In this case, we use Gauss’s principle to design a virtual mechan-
ical system that strategically distributes point masses throughout the robot’s body at key
control points (kinetic energy shaping). We then apply (damped) virtual potential func-

tions to those masses to generate behavior (potential energy shaping). In combination, we

see that the resulting system can be viewed as a QP which tries to achieve all tasks simul-
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taneously as well as it can. Since exact replication of all tasks is impossible, the QP uses
the mass values as relative priorities to define how the system should trade off task errors

when necessary.

Abstract task spaces: simplified geometric mechanics

The controller we just described demonstrates the core concept around energy shaping, but
is limited by requiring that tasks be designed specifically on kinematic control-points dis-
tributed physically across the robot’s body. Usually task spaces are often more abstract than
that, and most generally we consider any task space that can be described as a nonlinear
map from the configuration space.

This abstraction is common in trajectory optimization. For instance, [15] describes
some abstract topological spaces for behavior creation which enable behaviors such as
wrapping an arm around a pole and unwrapping it, and abstract models of workspace ge-
ometry are represented in [130, 152] by designing high-dimensional task spaces consisting
of stacked (proximity weighted) local coordinate representations of surrounding obstacles
conveying how obstacles shape the space around them. Likewise, similar abstract spaces
are highly relevant for describing common objectives in operational space control prob-
lems. Specifically, spaces of interest include one-dimensional spaces encoding distances to
barrier constraints such as joint limits and obstacles, distances to targets, spaces of quater-
nions, and the joint space itself; all of these are more abstract than specific kinematic
control-points. In order to generalize these ideas to abstract task spaces we need better
tools. Below we show the insights from geometric mechanics and geometric control theory
[137] provide the generalization that we need.

Quick review of Lagrangian mechanics: Lagrangian mechanics is a reformulation of
classical mechanics that derives the equations of motion by applying the Euler-Lagrange
equation the Lagrangian of the mechanical system [153]. Specifically, given a generalized

inertia matrix M (q) and a potential function ®(q), the Lagrangian is the difference between
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kinetic and potential energies:

L(a,4) = 34" M(a)q — 2(q). (5.3)
The Euler-Lagrange equation is given by
LOGL — OgL = Text (5.4)

where 7.y is the external force applied on the system. Applying Eq. (5.4) to the Lagrangian

Eq. (5.3) gives the equations of motion,

M(q)d + C(q,q)q + VO(q) = Text, (5.5)

where C(q, q)q = M(q)q — %qTﬁqM(q)q. For convenience, we will define this term as

ém(a, q) = M(q)g — 1" 9;M(q)g (5.6)

which will play an important role when we discuss about the geometry of implicit task
spaces. (This definition is consistent with the curvature term in GDSs that we later gener-
alize.)

Ambient Geometric Mechanics: Geometric mechanics [137] is the application of differ-
ential geometry to describe mechanical systems. According to it, geometry is an intrinsic
part of mechanics as the space of all possible configurations of a physical mechanical sys-
tem has a natural geometric structure where constraints are intrinsically satisfied by that
geometry. To see how geometry can arise in mechanics let’s for instance use a two link ma-
nipulator. The system can be described by the points on the elbow and the end-effector in
3D Euclidean space. Thus, we need two 3D particle coordinates as well as two constraints

each, one for the plane the link lies in and the other for the sphere on which the particle lies.
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Alternatively, is it much easier to describe every configuration of this system by the angles
of its two joints (i.e configuration space) such that the space of all possible states is then
described by the surface of a torus (doughnut). This manifold is the configuration mani-
fold as it encodes the constraints as well. In general, by choosing an appropriate geometric
representation it is possible to intrinsically enforce the constraints of the system.

We are interested in evolution of the mechanical system and not just isolated states on
the configuration manifold. Given a set of consecutive configurations, that form a smooth
curve on the manifold, at consecutive times separated by some time intervals, if some
interval approaches an infinitesimal value the distance on the manifold between the config-
urations around that interval also tends to zero. This curve describes the evolution of the
system between the time from the first configuration to the time at the last configuration
on that curve. Typically we only have access to the current state of the system comprising
of the configuration position and velocity and can be used to find the system’s evolution.
The velocity vector at some time is by construction a tangent to the curve, and since the
curve lies on the manifold the tangent then lies on the tangent space of the manifold at that
point along that curve. To obtain the time evolution we can now apply Hamilton’s principle
of least action that states that physical paths on the configuration space are least resistant
paths with respect to an action functional. This functional is the Lagrangian of the system
that is the difference between the kinetic and potential energies as we have see above. Thus
we can go from the Hamilton’s principle to the Euler-Lagrange equations that provide the
evolution of the system. The metric that is associated with the manifold and is in the kinetic
energy later appears as the inertia of the system after solving the Euler-Lagrange equations
and thus conservation of energy leads to the evolution of the system as a geodesic on the
manifold. We will discuss this in more detail below.

Thus geometric mechanics can be viewed as a reformulation of classical mechanics
that builds on the observation that classical mechanical systems evolve as geodesics across

a (configuration) manifold whose geometry is defined by the system’s inertia matrix.
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To make the connection more clear we will use a simple example to derive an opera-
tional space QP similar in form to Eq. (5.2). Let x = v(q) be an arbitrary differentiable
task map 1) : R? — R" where n > d. In practice, the full task map often consists of many
smaller task maps stacked on top of one another, like a kinematic tree. We can define a pos-
itive definite matrix that changes as a function of configuration using M(q) = J(q)"J(q)
where J(q) = 04¢(q) is the Jacobian of the task map. Geometric mechanics states that we
can think of M(q) as both the generalized inertia matrix of a mechanical system defining
a dynamic behavior M(q)q + C(q, q)q = Text (see also Eq. (5.5)), and equivalently as a
Riemannian metric defining an inner product (q, d2)m = 4 Mq. on the tangent space
(for our purposes, the space of velocities ¢ at a given q) of the configuration space C (the
manifold where q lives). Note that since X = J(q)q, the columns of J(q) span this tangent
space, which we see from the dependency on q in J can change direction at different q.

Because we can suppose n > d in general®, the set X = {x : x = 1)(q) for some q € C}
sweeps out a d-dimensional sub-manifold of the n-dimensional ambient Euclidean task
space. In light of this picture, we can also view the tangent space as a first-order Tay-
lor approximation to the surface at a point x, = ¢(qo) for some q in the sense x =
xo +J(q — qo).

Indeed, one connection between the mechanical system and this geometry is clear: the
kinetic energy of the mechanical system is given by the norm of g with respect to the inner

product defined by the metric M(q):

K(aq,q) = 3a"™M(a)q = [|a]3; = (4, @)m- (5.7)

Likewise, in this particular case, since M = J"J we see that specifically the kinetic energy

3This holds when 1) is full rank. Reduced rank 1) result in a similar geometry, but we would need to
slightly modify the linear algebra used in the following discussion.
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is given by the Euclidean velocity through the task space
K(a,q) = 36" M(a@)q = 39" (I7I)q = 3[%]> (5.8)

More generally, for the same reason, Euclidean inner products between velocities in the
task space induce these generalized inner products in the configuration space in the sense
x| X3 = §{ M. This connection between task space and configuration space inner prod-
ucts, exemplified by the equivalence between task space velocity and the system’s kinetic
energy offers a concrete connection between mechanics and geometry, and we can exploit
to link the system’s equations of motion to geodesics across X.

For systems without potential functions and external forces, we can get some insight
into the connection between dynamics and geodesics from the view point of Lagrangian
mechanics as well. The Lagrangian Eq. (5.3) in this case simplifies to £ = %qTMq —
d(q) = %qTMq. The Euler-Lagrange equation in Eq. (5.4) is the first-order optimality

condition of an action functional which measures the time integral of the Lagrangian across

a trajectory. In this case, it takes on a nice minimization form
ming [T 1q"™Madt < ming [0 L]x]2dt, (5.9)

where £ is a trajectory through the configuration space C. One can show that these tra-
jectories are length-minimizing trajectories (i.e. solutions extremize the length functional
fab 2]1x/|dt), but with the additional property that the trajectories are of constant velocity.
This means the dynamical system will curve across the manifold & along a trajectory
that is as straight as possible without speeding up or slowing down. Another way to charac-
terize that statement, is to say the system never accelerates tangentially to the sub-manifold
X, i.e. it has no component of acceleration parallel to the tangent space. The curve cer-
tainly must accelerate to avoid diverging from the sub-manifold X', but that acceleration

is always purely orthogonal to the tangent space. Since we know that J spans the tangent
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space, we can capture that sentiment fully in the following simple equation:
J'x=0. (5.10)
Plugginginx = Jq + Jq we get

J5%=7J7 (Jq+ Jq) —0

= I N g+I"Jg=0. (5.11)

Comparing to Eq. (5.5) (with zero potential and external forces), since we already know
JTJ = M, we can formally prove the connection between geodesics and classical mechan-
ical dynamics if we can show that JTJq = C(q,q)q. The required calculation is fairly
involved, so we omit it here but note for those inclined that it’s easiest to perform using
tensor notation and the Einstein summation convention as is common in differential geom-
etry. This equivalence also appears as by-product fo our RMPflow and GDS analysis, as
we will revisit in chapter B as lemma 1.

Forced mechanical systems and geometric control: So far we have derived only the
unforced behavior of this system as natural geodesic flow across the sub-manifold. To un-
derstand how desired accelerations contribute to the least squares properties of the system
we express Eq. (5.11) in x by pushing them through the identity x = Jq + Jq and exam-
ine how arbitrary motion across the sub-manifold X decomposes. First, the equations of

motion in x with Eq. (5.11), we get

% =J4+Jq=-J(373) 3 Iq+Jgq
_ (I . J(JTJ)_IJT> Jq

=P, Jq, (5.12)

where in the final expression, the matrix P, = I — P, with P, = J (J T )71J T is the
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nullspace projection operator projecting onto the space orthogonal to the tangent space
(spanned by the Jacobian J). Note again these projections P and P/ are functions of the
configuration q.

By construction, these geodesics accelerate only orthogonally to the tangent space. This
implies that any trajectory, traveling on the sub-manifold X" but deviating from geodesics,
would necessarily maintain an acceleration component parallel to the tangent space, which
we might write as Xy. Importantly, any such trajectory must still accelerate exactly as
Eq. (5.12) in the orthogonal direction in order to stay moving along the sub-manifold X'.
Therefore, we see that the overall acceleration of a trajectory on X’ can decomposed nicely

into the geodesic acceleration and the tangential acceleration:

% =P, Jq+ Pk, (5.13)

where x¢

is any vector of “desired” acceleration whose tangential component matches the
tangential acceleration of the given trajectory, i.e. P//)"cd = Xy.
Now we show how the decomposition Eq. (5.13) is related to and generalizes Eq. (5.2).

This is based on the observation that Eq. (5.13) is the same as the solution to the least-

squared problem below
ming 1||%¢ — %[ st. % =Jg+ J4. (5.14)

This equivalence can be easily seen by resolving the constraint, setting the gradient of the

resulting quadratic to zero, i.e.,
J'Ig+J " Jg=J"x¢ (5.15)

and re-expressing the optimal solution in x. This relationship demonstrates that a QP very

similar in structure to Eq. (5.2).
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The curvature terms: As a side note, the above discussion offers insight into the term
C(q,4)q = J7Jq. The term J¢ captures components describing both curvature of the
manifold through the ambient task space and components describing how the specific co-
ordinate q (tangentially) curves across the sub-manifold X'. Explicitly, X = J ¢ has units of
acceleration in the ambient space and captures how the tangent space (given by the columns
of J) changes in the direction of motion. The acceleration X decomposes as X = X + )"(/c,
into two orthogonal components consisting of a component perpendicular to the tangent
space X = P X and a component parallel to the tangent space X/C/ = P/x° The term
P, Jqg="P, % given in Eq. (5.12) extracts specifically the perpendicular component x¢ .
The other component x/j is, therefore, in a sense irrelevant to fundamental geometric be-
havior of the underlying system, and is only required when expressing the behavior in the
specific coordinates q. Indeed, when expressing the equations of motion in q, the related
term manifests as C(q,q)q = J'Jq = J T)"c/c/ since J'x¢ = 0, and depends only on
the parallel component x/j This observation emphasizes why we designate the term ficti-
tious forces. Here and below we will consider these terms to be curvature terms as they

compensate for curvature in the system coordinates.

Non-constant weights and implicit task spaces

The above derived the geometric perspective of equations of motion, but only for me-
chanical systems whose inertia matrix (equiv. Riemannian metric) can be expressed as
M(q) = J(q)"J(q) globally for some map x = 1)(q) with J(q) = 94¢(q). Fortunately,
due to a deep and fundamental theorem proved by John Nash in 1956, called the Nash em-
bedding theorem [154], all Riemannian manifolds, and hence all mechanical systems can
be expressed this way, so the arguments of abstract task spaces above hold without loss of
generality for all mechanical systems. It is called an embedding theorem because the map
x = 1)(q) acts to embed the manifold C into a higher-dimensional ambient Euclidean space

where we can replace implicit geometry represented by the metric M(q) with an explicit
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sub-manifold in the ambient space.

This ambient representation is a convenient for understanding and visualizing the non-
linear geometry of a mechanical system, but it is unfortunately often difficult, or even
impossible, to find a closed form expression for a task map x = (q) from a given metric
M(q). We, therefore, cannot rely our ability to operate directly in the ambient space using
the QP given in Eq. (5.14).

This subsection addresses that problem by deriving a QP expression analogous to Eq.
(5.14), but for which task space weights are general non-constant positive definite ma-
trices (which we will see are the same as Riemannian metrics). We will arrive at this
expression by considering again the ambient setting, but assuming that the unknown em-
bedding can be decomposed in the composition of a known task space x = 1(q) and then
a known map from the task space to the ambient Euclidean space z = {(x) described in the
Nash’s theorem. We suppose the priority weight is given as the induced Riemannian metric
G(x) = J¢(x)"J¢(x) on x defined by the second map (. We note that the final result will
be expressed entirely in terms of G(x), so it can be used without explicit knowledge of (.

Suppose we have a Riemannian metric (inertia matrix) M which decomposes as M =
J'J, where J = J:J,, is the Jacobian of the composite map z = ¢ o 1(q) which itself
consists of two parts x = ¢(q) and z = ((x). Because the intermediate task space metric

isG = JCTJC, denote the task space force as fx = szz and by Eq. (5.15) we have

J'IG+3"Jq=7"%,

= (I3 I)Ty) a+ J;[J}% JJp)a=J I 1,
= JGIa+ 33! (33 +3cy) a= )k

= J,GIa+ 3] (I I%) + 3, (3] Te)Tpa = T 1

= J,GJud+J;GIq =] (f. —&a).

where we recall £g in given in Eq. (5.6). Rearranging that final expression and denoting
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%% = %4 — G7€g with X = G~f,, we can write the above equation as
JG (gd — (Jud + J¢q)) — 0, (5.16)
which is the first-order optimality condition of the QP
ming $[|%¢ — %(|& st X =Jud + Jya. (5.17)

This QP is expressed in terms of the task map x = v(q), the task space metric G(x), the
task space desired accelerations %%, and the curvature term £¢ derived from the task space
metric G(x). The QP follows a very similar pattern to the QPs described above, but this
time the priority weight matrix G is a non-constant function of x. The one modification
required to reach this matching form is to augment the desired acceleration % with the
curvature term &g calculated from G using Eq. (5.6) to get the target ¥? = %? — G~ '£¢.
Importantly, while we start by assuming the map z = ((x), at the end we show that we

actually only need to know G.

Limitations of geometric control

Even with the tools of geometric mechanics, the final QP given in Eq. (5.17) can still only
express task priority weights as positive definite matrices that vary as a function of configu-
ration (i.e. position). Frequently, more nuanced control over those priorities is crucial. For
instance, collision avoidance tasks should activate when the control-point is close to an ob-
stacle and heading toward it, but they should deactivate either when the control-point is far
from the obstacle or when it’s moving away from the obstacle, regardless of its proximity.
Importantly, reducing the desired acceleration to zero in these cases is not enough—when
these tasks deactivate, they should drop entirely from the equation rather than voting with
high weight for zero acceleration. Enabling priorities vary as a function of the full robot

state (configuration and velocity) is therefore paramount.
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The theory of RMPflow and GDSs developed below generalizes geometric mechan-
ics to enable expressing these more nuanced priority matrices while maintaining stability.
Additionally, since geometric control theory itself is quite abstract, we build on results re-
ducing the calculations to recursive least squares to derive a concrete tree data structure to

aid in the design of controllers within this energy shaping framework.

5.5 Structure with task-map trees

RMPflow is an efficient manifold-oriented computational graph for automatic generation
of motion policies. It is aimed for problems with a task space 7 = {7, } that is related to
the configuration space C through a tree-structured task map ¢, where 7;, is the ith subtask.
Given user-specified motion policies {7, } on {7, } as RMPs, RMPflow is designed to con-
sistently combine these subtask policies into a global policy 7 on C. To this end, RMPflow
introduces 1) a data structure, called the RMP-tree, to describe the tree-structured task map
1 and the policies, and 2) a set of operators, called the RMP-algebra, to propagate infor-
mation across the RMP-tree. To compute 7(q(t), ¢(t)) at time ¢, RMPflow operates in two
steps: it first performs a forward pass to propagate the state from the root node (i.e. C) to
the leaf nodes (i.e. {7;,}); then it performs a backward pass to propagate the RMPs from
the leaf nodes to the root node while tracking their geometric information to achieve con-
sistency. These two steps are realized by recursive use of RMP-algebra, exploiting shared

computation paths arising from the tree structure to maximize efficiency.

5.5.1 Task-maps

In most cases, the task-space manifold 7 is structured. In this paper, we consider the case
where the task map 1/ can be expressed through a tree-structured composition of transfor-
mations {1, }, where 1., is the ith transformation. Figure 5.1 illustrates some common
examples. Each node denotes a manifold and each edge denotes a transformation. This

family trivially includes the unstructured task space 7 (Figure 5.1a) and the product man-
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Figure 5.1: Tree-structured task maps

ifold 7 = 7, x --- x T, (Figure 5.1b), where K is the number of subtasks. A more
interesting example is the kinematic tree (Figure 5.1c), where, e.g., the subtask spaces on
the leaf nodes can describe the tracking and obstacle avoidance tasks along a multi-DOF
robot.

The main motivation of explicitly handling the structure in the task map 1 is two-fold.
First, it allows RMPflow to exploit computation shared across different subtask maps. Sec-
ond, it allows the user to focus on designing motion policies for each subtask individually,
which is easier than directly designing a global policy for the entire task space 7. For
example, 7 may describe the problem of humanoid walking, which includes staying bal-
anced, scheduling contacts, and avoiding collisions. Directly parameterizing a policy to
satisfy all these objectives can be daunting, whereas designing a policy for each subtask is

more feasible.

5.5.2 Riemannian motion policies

Knowing the structure of the task map is not sufficient for consistently combining sub-
task policies: we require some geometric information about the motion policies’ behav-
iors [139]. Toward this end, we adopt an abstract description of motion policies, called
RMPs [139], for the nodes of the RMP-tree. Specifically, let M be an m-dimensional man-
ifold with coordinate x € R™. The canonical form of an RMP on M is a pair (a, M)M,
where a : R™ x R™ — R™ is a continuous motion policy and M : R™ x R™ — R}

is a differentiable map. Borrowing terminology from mechanics, we call a(x,X) the de-
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sired acceleration and M(x,X) the inertia matrix at (x, x), respectively.® M defines the
directional importance of a when it is combined with other motion policies. Later in Sec-
tion 5.7, we will show that M is closely related to Riemannian metric, which describes
how the space is stretched along the curve generated by a; when M depends on the state,
the space becomes non-Euclidean. We additionally introduce a new RMP form, called the
natural form. Given an RMP in its canonical form (a, M)M, the natural form is a pair
[f, M]M, where f = Ma is the desired force map. While the transformation between these
two forms may look trivial, their distinction will be useful later when we introduce the

RMP-algebra.

5.5.3 RMP-tree

The RMP-tree is the core data structure used by RMPflow. An RMP-tree is a directed
tree, in which each node represents an RMP and its state, and each edge corresponds to
a transformation between manifolds. The root node of the RMP-tree describes the global
policy 7 on C, and the leaf nodes describe the local policies {7, } on {7, }. To illustrate, let
us consider a node u and its K child nodes {v; }X£,. Suppose u describes an RMP [f, MM
and v; describes an RMP [f;, M}, where \; = e, (M) for some 1).,. Then we write
u = ((x,%), [f, MJM) and v; = ((y;,¥:), [f;, M;]V); the edge connecting u and v; points
from u to v; along 1).,. We will continue to use this example to illustrate how RMP-algebra

propagates the information across the RMP-tree.

5.6 Automatic motion policy generation

5.6.1 RMP-algebra

The RMP-algebra consists of three operators (pushforward, pullback, and resolve)

to propagate information.” They form the basis of the forward and backward passes for

®Here we adopt a slightly different terminology from [139]. We note that M and f do not necessarily
correspond to the inertia and force of a physical mechanical system.
"Precisely it propagates the numerical values of RMPs and states at a particular time.
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automatic policy generation.

1. pushforward is the operator to forward propagate the state from a parent node
to its child nodes. Using the previous example, given (x,x) from w, it computes
(¥i,¥i) = (¢e,(x),J;(x)%) for each child node v;, where J; = 0y, is a Jacobian
matrix. The name “pushforward” comes from the linear transformation of tangent

vector x to the image tangent vector y;.

2. pullback is the operator to backward propagate the natural-formed RMPs from the

child nodes to the parent node. It is done by setting [f, M]* with
f=SF JJ(f—MJx) and M=3" J'MJ, (5.18)

The name “pullback” comes from the linear transformations of the cotangent vector
(1-form) f; — MZ-J ;X and the inertia matrix (2-form) M. In summary, velocities can
be pushfowarded along the direction of 1);, and forces and inertial matrices can be

pullbacked in the opposite direction.

To gain more intuition of pullback, we write pullback in the canonical form of
RMPs. It can be shown that the canonical form (a, M) of the natural form [f, M]M

above is the solution to a least-squared problem:
a = argmin, 3 SE T+ Ik — a;||s, (5.19)

where a; = MIf; and || - |35, = (-,M,). Because ;, = J;% + J;%, pullback
attempts to find an a that can realize the desired accelerations {a;} while trading
off approximation errors with an importance weight defined by the inertia matrix
M., (yi,yi). The use of state dependent importance weights is a distinctive feature
of RMPflow. It allows RMPflow to activate different RMPs according to both con-

figuration and velocity (see Section 5.6.3 for examples). Finally, we note that the
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pullback operator defined in this paper is slightly different from the original defi-
nition given in [139], which ignores the term J,;x in Eq. (5.19). While ignoring J;x
does not necessary destabilize the system [143], its inclusion is critical to implement

consistent policy behaviors.

3. resolve is the last operator of RMP-algebra. It maps an RMP from its natural form
to its canonical form. Given [f, M]™, it outputs (a, M) with a = M'f, where {
denotes Moore-Penrose inverse. The use of pseudo-inverse is because in general the
inertia matrix is only positive semi-definite. Therefore, we also call the natural form
of [f, MM the unresolved form, as potentially it can be realized by multiple RMPs

in the canonical form.

5.6.2  Algorithm

Now we show how RMPflow uses the RMP-tree and RMP-algebra to generate a global
policy 7 on C from the user-specified subtask policies {7, } on {7, }. Suppose each subtask
policy is provided as an RMP. First, we construct an RMP-tree with the same structure as 1,
where we assign subtask RMPs as the leaf nodes and the global RMP [f,., M,.]¢ as the root
node. With the RMP-tree specified, RMPflow can perform automatic policy generation.
At every time instance, it first performs a forward pass: it recursively calls pushforward
from the root node to the leaf nodes to update the state information in each node in the
RMP-tree. Second, it performs a backward pass: it recursively calls pullback from the
leaf nodes to the root node to back propagate the values of the RMPs in the natural form,
and finally calls resolve at the root node to transform the global RMP [f,, M, into its
canonical form (a,, M.,.)¢ for policy execution (i.e. setting 7(q,q) = a,).

The process of policy generation of RMPflow uses the tree structure for computational
efficiency. For K subtasks, it has time complexity O(K) in the worst case as opposed to
O(K log K) of a naive implementation which does not exploit the tree structure. Further-

more, all computations of RMPflow are carried out using matrix-multiplications, except for
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the final resolve call, because the RMPs are expressed in the natural form in pullback
instead of the canonical form suggested originally in [139]. This design makes RMPflow
numerically stable, as only one matrix inversion M!f, is performed at the root node with

both f. and M, in the span of the same Jacobian matrix due to pullback.

5.6.3 Example RMPs

We give a quick overview of some RMPs useful in practice (for a complete discussion of
these RMPs please see [138]). We recall from Eq. (5.19) that M dictates the directional

importance of an RMP.

Collision/joint limit avoidance

Barrier-type RMPs are examples that use velocity dependent inertia matrices, which can
express importance as a function of robot heading (a property that traditional mechanical
principles fail to capture). Here we demonstrate a collision avoidance policy in the 1D
distance space = = d(q) to an obstacle. Let g(z, @) = w(x)u(&) > 0 for some functions w
and u. We consider a motion policy such that m(z, &)@ + 34%9,9(x, &) = —0,P(x) — bi:
and define its inertia matrix m(z, #) = g(z, %) + 120;g(x, &), where ® is a potential and
b > 0 is a damper. We choose w(z) to increase as x decreases (close to the obstacle), u()
to increase when & < 0 (moving toward the obstacle), and u() to be constant when & > 0.
This motion policy is a GDS and g is its metric (cf. Section 5.7); the terms 140;¢(x, &) and

%55281 g(x, 1) are due to non-Euclidean geometry and produce natural repulsive behaviors.

Target attractors

Designing an attractor policy is relatively straightforward. For a task space with coordinate
X, we can consider an inertia matrix M(x) > 0 and a motion policy such that X = —V® —
B(x)% — M€y, where ®(x) & ||x| is a smooth attractor potential, (x) > 0 is a damper,

and &g is a curvature term.
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Orientations

As RMPflow directly works with manifold objects, orientation controllers become straight-
forward to design, independent of the choice of coordinate. For example, we can define
RMPs on a robotic link’s surface in any preferred coordinate (e.g. in one or two axes at-
tached to an arbitrary point) with the above described attractor to control the orientation.

This follows a similar idea outlined in the Appendix of [139].

Q-functions

Perhaps surprising, RMPs can be constructed using Q-functions as metrics (we invite read-
ers to read [139] for details on how motion optimizers can be reduced to Q-functions and
the corresponding RMPs). While these RMPs may not satisfy the conditions of a GDS that
we later analyze, they represent a broader class of RMPs that leads to substantial benefits

(e.g. escaping local minima) in practice.

5.7 Theoretical analysis of RMPflow

We investigate the properties of RMPflow when the child-node motion policies belong to
a class of differential equations, which we call structured geometric dynamical systems
(structured GDSs). We show that the pullback operator retains a closure of structured
GDSs. When the child-node motion policies are structured GDSs, the parent-node dy-
namics also belong to the same class. Using this closure property, we provide sufficient
conditions for the feedback policy of RMPflow to be stable. In particular, we cover a class
of dynamics with velocity-dependent metrics that are new to the literature. For the analysis
on the invariance property please refer to [138].

Below we consider the manifolds in the nodes of the RMP-tree to be finite-dimensional
and smooth. Without loss of generality, for now we assume that each manifold can be

described in a single chart, so that we can write down the equations concretely using finite-
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dimensional variables. We also assume that all the maps are sufficiently smooth so the re-

quired derivatives are well defined. The proofs of this section are provided in Appendix C.

Geometric dynamical systems

We define a new family of dynamics useful to specify RMPs on manifolds. Let manifold M
be m-dimensional with chart (M, x). Let G : R xR™ — RT*™ B : R™xR™ — R}"*"™,

and ¢ : R™ — R. The tuple (M, G, B, ®) is called a GDS if and only if

(G(x,%) + Ea(x,%)) X + €a(x,%x) = =V, P(x) — B(x,x)x, (5.20)

where let g;(x, x) be the ith column of G(x, %) and we define

Ba(x,x) =1 > 7" #0x8i(x,%) (5.21)
a(x, %) == G(x, %)% — LV, (xTG(x,%)%) (5.22)
where (x}(x, x) = [0xgi(x,X)x|",. We refer to G(x,x) as the metric matrix, B(x, X)

as the damping matrix, and ®(x) as the potential function which is lower-bounded. In
addition, we define M(x,%) = G(x,%X) + Eg(x,X) as the inertia matrix, which can
be asymmetric. We say a GDS is non-degenerate if M(x,x) is nonsingular. We will
assume Eq. (5.20) is non-degenerate so that it uniquely defines a differential equation and
discuss the general case in Appendix B. G(x,x) induces a metric of X, measuring its
length as $x" G(x, x)x. When G(x,x) depends on x and X, it also induces the curvature
terms =(x, %) and £(x,%). In a particular case when G(x,x) = G(x), the GDSs reduce
to the widely studied simple mechanical systems (SMSs) [137], M(x)x + C(x,%x)x +
Vx®(x) = —B(x,%)x; in this case M(x) = G(x) and the Coriolis force C(x,X)x is
equal to £g(x,x%). The extension to velocity-dependent G(x,x) is important and non-
trivial. As discussed in Section 5.6.3, it generalizes the dynamics of classical rigid-body

systems, allowing the space to morph according to the velocity direction.
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As its name suggests, GDSs possess geometric properties. Particularly, when G(x, X)
is invertible, the left-hand side of Eq. (5.20) is related to a quantity ag = X + G(x,x)™*
(Eg(x,%)% + £€g(x,X)), known as the geometric acceleration. In short, we can think
of Eq. (5.20) as setting ag along the negative natural gradient —G (x,x) !V, ®(x) while

imposing damping —G(x, x) " 'B(x, X)x.

Closure

Earlier, we mentioned that by tracking the geometry in pullback in Eq. (5.18), the task
properties can be preserved. Here, we formalize the consistency of RMPflow as a closure
of differential equations, named structured GDSs. Structured GDSs augment GDSs with
information on how the metric matrix factorizes. Suppose G has a structure S that factor-
izes G(x,%x) = J(x) "H(y,y)J(x), where y : x — y(x) € R"and H : R" x R" — R*",

and J(x) = Oxy. We say the tuple (M, G, B, ®)s is a structured GDS if and only if

(G(x,%) + Eg(x,%)) X + na.s(x, %) = —Vx®(x) — B(x, %)% (5.23)

where ng.s(x, %) = J(x)T(éu(y,y) + (H(y,y) + Eu(y,y))J(x,%)x). Note the met-
ric and factorization in combination defines 1g.s. As a special case, GDSs are structured
GDSs with a trivial structure (i.e. y = x). Also, structured GDSs reduce to GDSs (i.e.
the structure offers no extra information) if G(x,%) = G(x), orif n,m = 1 (cf. Ap-
pendix C.1). Given two structures, we say S, preserves S, if S, has the factorization (of
H) made by S,

Below we show the closure property: when the children of a parent node are structured
GDSs, the parent node defined by pullback is also a structured GDS with respect to the
pullbacked structured metric matrix, damping matrix, and potentials. We note that G; and

B, can be functions of both y; and y;.

Theorem 1. Let the ith child node follow (N;, G;, B;, ®;)s, and have coordinate y;. Let
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f, = —nma,s, — Vy, @ — Biyi and M; = G; + Eg,. If [f, M|M of the parent node is
given by pullback with {[f;, M;}N}£  and M is non-singular, the parent node follows
(M, G, B, ®)s, where G = YK JTGJ, B =2 J'BJ, & = YF &0y, S
preserves S;, and J; = Oyy;. Particularly, if G; is velocity-free and the child nodes are

GDSs, the parent node follows (M, G, B, ®).

Theorem 1 shows structured GDSs are closed under pullback. It means that the differ-
ential equation of a structured GDS with a tree-structured task map can be computed by

recursively applying pullback from the leaves to the root.

Corollary 1. If all leaf nodes follow GDSs and M,. at the root node is nonsingular, then

the root node follows (C, G, B, ®)s as recursively defined by Theorem 1.

Stability

By the closure property above, we analyze the stability of RMPflow when the leaf nodes
are (structured) GDSs. For compactness, we will abuse the notation to write M = M,..
Suppose M is nonsingular and let (C, G, B, ®)s be the resultant structured GDS at the root
node. We consider a Lyapunov candidate V(q,q) = 59" G(q,q)q + ®(q) and derive its

rate using properties of structured GDSs.
Proposition 1. For (C,G,B, ®)s, V(q,q) = —q"B(q, q)q.

Proposition 1 directly implies the stability of structured GDSs by invoking LaSalle’s in-

variance principle [144]. Here we summarize the result without proof.

Corollary 2. For (C,G,B,®)s, if G(q,q),B(q,q) = 0, the system converges to a for-

ward invariant set Coo, = {(q,q) : Vq®(q) =0,q = 0}.

To show the stability of RMPflow, we need to further check when the assumptions in
Corollary 2 hold. The condition B(q, q) > 0 is easy to satisfy: by Theorem 1, B(q, q) =

0; to strictly ensure definiteness, we can copy C into an additional child node with a (small)

106



positive-definite damping matrix. The condition on G(q, q) > 0 can be satisfied similarly.
In addition, we need to verify the assumption that M is nonsingular. Here we provide a

sufficient condition. When satisfied, it implies the global stability of RMPflow.

Theorem 2. Suppose every leaf node is a GDS with a metric matrix in the form R(x) +

L(x) "'D(x, x)L(x) for differentiable functions R, L, and D satisfying

R(x) =0, D(x,%) = diag((di(x,9:))i21) = 0, 6:03di(x,4:) = 0

where X is the coordinate of the leaf-node manifold and y = Lx € R". It holds Eg(q,q) =
0. If further G(q,q),B(q,q) = 0, then M € R, and the global RMP generated by

RMPflow converges to the forward invariant set C, in Corollary 2.

A particular condition in Theorem 2 is when all the leaf nodes with velocity dependent
metric are 1D. Suppose x € R is its coordinate and g(z, ) is its metric matrix. The
sufficient condition essentially boils down to g(z, %) > 0 and £0;g(z, &) > 0. This means
that, given any x € R, g(z,0) = 0, g(z, &) is non-decreasing when & > 0, and non-
increasing when # < (. This condition is satisfied by the collision avoidance policy in

Section 5.6.3.

5.8 Applying RMPflow on a simple example problem

In this section, we use a simple 2-DOF planar manipulator as shown in Figure 5.2a tasked
with avoiding an obstacle and making its end-effector reach a goal, to illustrate how to go
about constructing an RMP-tree and relevant RMPs given a problem.

The overall task is decomposed into several subtasks, like making the end-effector
reach the goal and avoiding the obstacle at various locations on the robot (including the

end-effector) such that these locations well approximate the robot’s body. We begin by
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Figure 5.2: (a) A 2-DOF planar manipulator tasked with avoiding an obstacle (red) and
reaching a goal (green). Task-map tree for the problem in (a) being built starting from
(b) the main kinematic chain to (c) all kinematic body point locations to (d) full task-map
tree consisting of all abstract task spaces for obstacle avoidance (red) and target attraction
(green).

building a task-map tree consisting of the main kinematic chain of the robot as shown in
Figure 5.2b. The root of the tree is the configuration space of the robot q, where both
joint angles (q; and q») are available and where the desired overall joint acceleration pol-
icy needs to be evaluated to achieve the task. The main kinematic chain goes from the
configuration space to the position space of the elbow x; that is calculated with a forward
map (T}, q2) = ¢¥;(Ts, q1,q2), and then from the elbow to the end-effector position space
X, that is calculated with a forward map T. = .(T;,q2). Here, T are homogeneous
transformation matrices and T, represents the base frame of the robot.

From the main chain we branch out the tree to task spaces that specify body points of
interest (that well approximate the body for collision avoidance) as shown in Figure 5.2c.
In this example, we use three body points along each link where their respective forward
maps are just linear offsets from those link frames, x;, from x; and x,., from x., where
1 = 1,2, 3. Next, we grow the tree from robot kinematics to abstract task-spaces where we
will define appropriate sub-task RMPs to achieve the desired task. In our example, these
abstract task spaces are distance spaces to the obstacle or the goal as shown in Figure 5.2d.
On every node associated with a body point on the robot we attach a task space d; where

the associated forward map d? = ||x; — X,||2 — 7, defines the distance of the body point
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1 to the obstacle (at x, with radius ). Note that in the presence of multiple obstacle we
attach multiple such task spaces that define the distance of that body point to each of those
obstacles. Finally, we attach a task space d? with forward map d¢ = ||x. —X,||» that defines
the distance of the end-effector to the target attractor at x,.

To solve our example problem we place obstacle avoidance RMPs on every task space
d? as described in Section 5.6.3 with a position-velocity dependent metric (a barrier func-
tion for the position part and a negative half-gate for the velocity part) and a barrier function
for the potential. We also place an attractor RMP as described in Section 5.6.3 with position
dependent metric that stretches the task space in the direction of the goal and a quadratic
potential function. Once the task relevant RMPs are defined on the leaf nodes of the tree
we apply RMPflow to evaluate the desired policy at any time step. In practice, we can
extend this construction in a similar fashion to robots with more joints by starting with its
respective main kinematic chain as well incorporating other tasks space for tasks like joint

limit avoidance.

5.9 Evaluation

We perform controlled experiments to study the curvature effects of nonlinear metrics,
which is important for stability and collision avoidance. We then perform several full-
body experiments® to demonstrate the capabilities of RMPflow on high-DOF manipulation
problems in clutter, and implement an integrated vision-and-motion system on two physical

robots.

5.9.1 Controlled experiments

1D example

Let g € R. We consider a barrier-type task map x = 1/q and define a GDS in Eq. (5.20)

with G = 1, ®(x) = 1(x —x0)% and B = (1 + 1/x), where xo > 0. Using the GDS,

8 A video of experiments is available at https://youtu.be/F14WvsXQDzo
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Figure 5.3: Phase portraits (gray) and integral curves (blue; from black circles to red
crosses) of 1D example. (a) Desired behavior. (b) With curvature terms. (c) Without
curvature terms. (d) Without curvature terms but with nonlinear damping.

(a) (b) (c) (d) (e)

Figure 5.4: 2D example; initial positions (small circle) and velocities (arrows). (a-d) Ob-
stacle (circle) avoidance: (a) w/o curvature terms and w/o potential. (b) w/ curvature terms
and w/o potential. (c) w/o curvature terms and w/ potential. (d) w/ curvature terms and w/
potential. (e) Combined obstacle avoidance and goal (square) reaching.

we can define an RMP [V, ® — Bx — &g, M|®, where M and £q are defined according
to Section 5.7. We use this example to study the effects of Jq in pullback Eq. (5.18),
where we define J = 04x. Figure 5.3 compares the desired behavior (Figure 5.3a) and the
behaviors of correct/incorrect pullback. If pullback is performed correctly with Jq,
the behavior matches the designed one (Figure 5.3b). By contrast, if Jq is ignored, the
observed behavior becomes inconsistent and unstable (Figure 5.3c). While the instability
of neglecting J¢ can be recovered with a damping B = (1 + X;Q) nonlinear in x (suggested

in [143]), the behavior remains inconsistent (Figure 5.3d).

2D example

We consider a 2D goal-reaching task with collision avoidance and study the effects of ve-

locity dependent metrics. First, we define an RMP (a GDS as in Section 5.6.3) in x = d(q)
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(the 1D task space of the distance to the obstacle). We pick a metric G(x,X) = w(x)u(x),
where w(x) = 1/x* increases if the particle is close to the obstacle and u(x) = € +
min(0, x)x (where ¢ > 0), increases if it moves fowards the obstacle. As this metric is non-
constant, the GDS has curvature terms Eg = 3xw(x)dxu(x) and €g = 2x%u(x)0xw(x).
These curvature terms along with Jq produce an acceleration that lead to natural obstacle
avoidance behavior, coaxing the system toward isocontours of the obstacle (Figure 5.4b).
On the other hand, when the curvature terms are ignored, the particle travels in straight
lines with constant velocity (Figure 5.4a). To define the full collision avoidance RMP, we
introduce a barrier-type potential ®(x) = %ozw(x)2 to create extra repulsive forces, where
a > 0. A comparison of the curvature effects in this setting is shown in Figure 5.4c and 5.4d
(with a = 1). Next, we use RMPflow to combine the collision avoidance RMP above (with
a = 0.001) and an attractor RMP. Let q, be the goal. The attractor RMP is a GDS in the
task space y = q — q, with a metric w(y)I, a damping nw(y)I, and a potential that is
zero at y = 0, where n > 0. Figure 5.4e shows the trajectories of the combined RMP.
The combined non-constant metrics generate a behavior that transitions smoothly towards
the goal while heading away from the obstacle. When the curvature terms are ignored (for
both RMPs), the trajectories oscillate near the obstacle. In practice, this can result in jit-

tery behavior on manipulators. When the metric is not velocity-based (G(x) = w(x)) the

behavior is less efficient in breaking free from the obstacle to go toward the goal.

5.9.2  System experiments

Task-map tree structure

Figure 5.5 depicts the tree of task maps used in the full-robot experiments. The chosen
structure emphasizes potential for parallelization over fully exploiting the recursive nature
of the kinematic chain, treating each link frame as just one forward kinematic map step
from the configuration space. We could possibly save some computation by defining the

forward kinematic maps recursively as (T;11,Qi+1,...,94) = ¥i(Ti,qi,...,qq). The
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Figure 5.5: Task-map tree used in the system experiments.

configuration space q is linked to L link frames T, ..., T through the robot’s forward
kinematics (the details of tasks will be described later on for each individual experiment).
Each frame has 4 frame element spaces: the origin o; and each of the axes a¥, a?, a?, with

1) g T

corresponding distance spaces to targets d?, d?,dY,d? (if they are active). Additionally,
there are a number of obstacle control points x; distributed across each of the links, each
with £ associated distance spaces d7', . . ., d]k, one for each obstacle o0y, . . . , ox. Finally, for

each dimension of the configuration space there’s an associated joint limit space 1, . . ., [4.

Reaching-through-clutter experiments

We set up a collection of clutter-filled environments with cylindrical obstacles of varying
sizes in simulation as depicted in Figure 5.6, and tested the performance of RMPflow and
two potential field methods on a modeled ABB YuMi robot.

Compared methods:

1. RMPflow: We implement RMPflow using the RMPs in Section 5.6.3 and detailed
n [138]. In particular, we place collision-avoidance controllers on distance spaces
sij = dj(x;), where j = 1,...,m indexes the world obstacle o; and i = 1,...,n

indexes the n control point along the robot’s body. Each collision-avoidance con-
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troller uses a weight function w,(x) that ranges from 0 when the robot is far from
the obstacle to w;*™* > 0 when the robot is in contact with the obstacle’s surface.

min
a

Similarly, the attractor potential uses a weight function w,(x) that ranges from w

max

far from the target to w;,

close to the target.

. PF-basic: This variant is a basic implementation of obstacle avoidance potential
fields with dynamics shaping. We use the RMP framework to implement this variant
by placing collision-avoidance controllers on the same body control points used in
RMPflow but with isotropic metrics of the form GP#si¢(x) = w™**T for each control
point, with w*** matching the value RMPflow uses. Similarly, the attractor uses the
same attractor potential as RMPflow, but with a constant isotropic metric with the

form GPasic(x) = w™max],

. PF-nonlinear: This variant matches PF-basic in construction, except it uses a non-
linear isotropic metrics of the form Gi(x;) = w,(x)I and G2 (x;) = w,(x)I
for obstacle-avoidance and attraction, respectively, using weight functions matching

RMPflow.

A note on curvature terms: PF-basic uses constant metrics, so has no curvature terms;

PF-nonlinear has nontrivial curvature terms arising from the spatially varying metrics, but

we ignore them here to match common practice from the OSC literature.

Parameter scaling of PF-basic: Isotropic metrics do not express spacial directionality

toward obstacles, and that leads to an inability of the system to effectively trade off the

competing controller requirements. That conflict results in more collisions and increased

instability. We, therefore, compare PF-basic under these baseline metric weights (matching

RMPflow) with variants that incrementally strengthen collision avoidance controllers and

C-space postural controllers (f¢(q, q) = 7,(qo — q) — 749) to improve these performance

measures in the experiment. We use the following weight scalings (first entry denotes

the obstacle metric scalar, and the second entry denotes the C-space metric scalar): “low”
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simulated worlds real-world experiments

Figure 5.6: Two of the six simulated worlds in the reaching experiments (left), and the two
physical dual-arm platforms in the full system experiment (right).

(3,10), “med” (5,50), and “high” (10, 100).

Environments: We run each of these variants on 6 obstacle environments with 20 ran-
domly sampled target locations each distributed on the opposite side of the obstacle field
from the robot. Three of the environments use four smaller obstacles (Figure 5.6 left), and
the remaining three environments used two large obstacles (Figure 5.6 middle left). Each
environment used the same 20 targets to avoid implicit sampling bias in target choice.

Performance measures: We report results in Figure 5.7 in terms of mean and one stan-
dard deviation error bars calculated across the 120 trials for each of the following perfor-

mance measures:9

1. Time to goal (“time”): Length of time, in seconds, it takes for the robot to reach a
convergence state. This convergence state is either the target, or its best-effort local
minimum. If the system never converges, as in the case of many potential field trials
for infeasible problems, the trial times out after 5 seconds. This metric measures

time-efficiency of the movement.

2. C-space path length (“length”): This is the total path length [ ||q||dt of the move-
ment through the configuration space across the trial. This metric measures how eco-
nomical the movement is. In many of the potential-field variants with lower weights,
we see significant fighting among the controllers resulting in highly inefficient extra-

neous motions.

9There is no guarantee of feasibility in planning problems in general, so in all cases, we measure perfor-
mance relative to the performance of RMPflow, which is empirically stable and near optimal across these
problems.
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Figure 5.7: Results for reaching experiments. Though some methods achieve a shorter goal
distance than RMPflow in successful trials, they end up in collision in most the trials.

3.

Minimal achievable distance to goal (“goal distance”): Measures how close, in me-

ters, the system is able to get to the goal with its end-effector.

Percent time in collision for colliding trials (“collision intensity”): Given that a trial
has a collision, this metric measures the fraction of time the system is in collision
throughout the trial. This metric indicates the intensity of the collision. Low val-
ues indicate short grazing collisions while higher values indicate long term obstacle

penetration.

. Fraction of trails with collisions (“collision failure”): Reports the fraction of tri-

als with any collision event. We consider these to be collision-avoidance controller

failures.

Analysis: In Figure 5.7, we see that RMPflow outperforms each of these variants sig-

nificantly, with some informative trends:

1.

2.

RMPflow never collides, so its collision intensity and collision failure values are 0.

The other techniques, progressing from no scaling of collision-avoidance and C-
space controller weights to substantial scaling, show a profile of substantial collision
in the beginning to fewer (but still non-zero) collision events in the end. But we note
that improvement in collision-avoidance is achieved at the expense of time-efficiency

and the robot’s ability to reach the goal (it is too conservative).
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3. Lower weight scaling of both PF-basic and PF-nonlinear actually achieve some faster
times and better goal distances, but that is because the system pushes directly through
obstacles, effectively “cheating” during the trial. RMPflow remains highly economi-
cal with its best effort reaching behaviors while ensuring the trials remain collision-

free.

4. Lower weight scalings of PF-basic are highly uneconomical in their motion reflec-
tive of their relative instability. As the C-space weights on the posture controllers
increase, the stability and economy of motion increase, but, again, at the expense of

time-efficiency and optimality of the final reach.

5. There is little empirical difference between PF-basic and PF-nonlinear indicating that
the defining feature separating RMPflow from the potential field techniques is its use
of a highly nonlinear metric that explicitly stretches the space in the direction of the
obstacle as well as in the direction of the velocity toward the target. Those stretchings
penalize deviations in the stretched directions during combination with other con-
trollers while allowing variation along orthogonal directions. By being more explicit
about how controllers should instantaneously trade off with one another, RMPflow is

better able to mitigate the otherwise conflicting control signals.

Summary: Isotropic metrics do not effectively convey how each collision and attractor
controller should trade off with one another, resulting in a conflict of signals that obscure
the intent of each controller making simultaneous collision avoidance, attraction, and pos-
ture maintenance more difficult. Increasing the weights of the controllers can improve their
effectiveness, but at the expense of decreased overall system performance. The resulting
motions are slower and less effective in reaching the goal in spite of more stable behavior
and fewer collisions. A key feature of RMPflow is its ability to leverage highly nonlinear
metrics that better convey information about how controllers should trade off with one an-

other, while retaining provable stability guarantees. In combination, these features result in
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Figure 5.8: From left to right using RMPflow the YuMi robot opens a drawer with one arm
and with the other arm picks and places a banana in that drawer.
efficient and economical obstacle avoidance behavior while reaching toward targets amid

clutter.

System integration for real-time reactive planing

We demonstrate the integrated vision and motion system on two physical dual arm manip-
ulation platforms: a Baxter robot from Rethink Robotics, and a YuMi robot from ABB.
Footage of our fully integrated system (see start of Section 4.4 for the link) depicting tasks
such as pick and place amid clutter, reactive manipulation of a cabinet drawers and doors
with human interaction, active leadthrough with collision controllers running, and pick and
place into a cabinet drawer (see Figure 5.8).

This full integrated system, uses the RMPs described in Section 5.6.3 and in [138] with
a slight modification that the curvature terms are ignored. Instead, we maintain theoretical
stability by using sufficient damping terms as described in Section 5.9.1 and by operating
at slower speeds. Generalization of these RMPs between embodiments was anecdotally
pretty consistent, although, as we demonstrate in our experiments, we would expect more
empirical deviation at higher speeds. For these manipulation tasks, this early version of the
system worked well as demonstrated in the video.

For visual perception, we leveraged consumer depth cameras along with two levels of

perceptual feedback:

1. Ambient world: For the Baxter system we create a voxelized representation of the
unmodeled ambient world, and use distance fields to focus the collision controllers
on just the closest obstacle points surrounding the arms. This methodology is similar

in nature to [136], except we found empirically that attending to only the closest
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point to a skeleton representation resulted in oscillation in concaved regions where
distance functions might result in nonsmooth kinks. We mitigate this issue by finding
the closest points to a volume around each control point, effectively smoothing over

points of nondifferentiability in the distance field.

. Tracked objects: We use the Dense Articulated Real-time Tracking (DART) system
of [155] to track articulated objects in real time through manipulations. This sys-
tem is able to track both the robot and environmental objects, such as an articulated
cabinet, simultaneously to give accurate measurements of their relative configura-
tion effectively obviating the need for explicit camera-world calibration. As long as
the system is initialized in the general region of the object locations (where for the
cabinet and the robot, that would mean even up to half a foot of error in translation
and a similar scale of error in rotation), the DART optimizer will snap to the right
configuration when turned on. DART sends information about object locations to
the motion generation, and receives back information about expected joint config-
urations (priors) from the motion system generating a robust world representation

usable in a number of practical real-world manipulation problems.

Each of our behaviors are decomposed as state machines that use visual feedback to

detect transitions, including transitions to reaction states as needed to implement behav-

ioral robustness. Each arm is represented as a separate robot for efficiency, receiving real-

time information about other arm’s current state enabling coordination. Both arms are

programmed simultaneously using a high level language that provides the programmer a

unified view of the surrounding world and command of both arms.

5.10 Discussion

We propose an efficient policy synthesis framework, RMPflow, for generating policies with

non-Euclidean behavior, including motion with velocity dependent metrics that are new to
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the literature. In design, RMPflow is implemented as a computational graph, which can ge-
ometrically consistently combine subtask policies into a global policy for the robot. In the-
ory, we provide conditions for stability and show that RMPflow is intrinsically coordinate-
free. In the experiments, we demonstrate that RMPflow can generate smooth and natural
motion for various tasks, when proper subtask RMPs are specified. We have also extended
this framework to multi-agent systems, where formation behaviors can also additionally be
encoded [156] in both centralized and decentralized settings.

While here we focus on the special case of RMPflow with GDSs, this family already
covers a wide range of reactive policies commonly used in practice. For example, when
the task metric is Euclidean (i.e. constant), RMPflow recovers OSC (and its variants) [133,
142, 134, 135, 143]. When the task metric is only configuration dependent, RMPflow
can be viewed as performing energy shaping to combine multiple SMSs in geometric con-
trol [137]. Further, RMPflow allows using velocity dependent metrics, generating behav-
iors all those previous rigid mechanics-based approaches fail to model. We also note that
RMPflow can be easily modified to incorporate exogenous time-varying inputs (e.g. forces
to realize impedance control [141] or learned perturbations as in DMPs [150]). In compu-
tation, the structure of RMPflow in natural-formed RMPs resembles the classical Recursive
Newton-Euler algorithm [140, 157] (see Appendix D). Alternatively, the canonical form of
RMPflow in Eq. (5.19) resembles Gauss’ Principle [134, 135], but with a curvature correc-
tion E¢ on the inertia matrix (suggested by Theorem 1) to account for velocity dependent
metrics. Thus, we can view RMPflow as a natural generalization of these approaches to a

broader class of non-Euclidean behaviors.

Limitations

With the help of velocity (and position) dependent metrics we are able to design behav-

iors that can get close to planning-like without incurring the relatively larger computational
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overhead of planning. However, the performance relies primarily on how well the RMPs
can be designed and therefore presents a major challenge for non-expert practitioners. We
begin to address some of these challenges with the help of learning in the next chapters.
Another consequence of imperfect design is that it can get stuck in local minima without
having access to long term objectives. Our framework can currently only support fully ac-
tuated systems without any actuation or dynamic constraints. For our current experiments
this was sufficient, but further research is necessary to adapt the presented framework such
that it can incorporate constraints like contact, nonholonomicity, or dynamics and is appli-
cable to high-speed mobile manipulation problems. Our theoretical analysis with respect
to stability is currently limited to the system’s kinematics as opposed to stability of the
dynamics of the system as seen in many OSC and geometric control formulations. OSC
and geometric control also provide formal analysis on controllability which we have not
currently established in our work. Our method also currently relies on perfect state in-
formation that can be provided from a reliable perception system since it cannot internally

handle uncertainty.
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Part IV

Learning on Task-Map Trees
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CHAPTER 6
LEARNABLE POLICY FUSION

6.1 Introduction and related work

In the previous chapter, we showed the capabilities of RMPflow. However, practical usage
difficulties still remain to be addressed. Particularly, the user must provide RMPs with ma-
trix functions that properly describe the characteristics of the correspondent subtask motion
policies in order to build an effective RMPflow system. Otherwise, the final global policy
may have unsatisfactory performance, though still being geometrically consistent (with re-
spect to some unreasonable geometric structure). This poses a challenge for practitioners
who are inexperienced in control/dynamical systems, or for designing policies of unstruc-
tured tasks where the full state is hard to describe.

In this chapter, we leverage the task-map tree structure presented in Chapter 5 and intro-
duce a hierarchical energy reshaping scheme into RMPflow to remedy the requirement of
providing high-quality subtasks RMPs from the user. The modified algorithm, called RMP-
fusion, adds a set of multiplicative weight functions in the policy fusion step of RMPflow,
which can be manually parametrized or modeled by function approximators (like neural
networks) that can be learned. An immediate benefit of our new algorithm is the extra
design and parameterization flexibilities added to RMPflow. These weight functions do
not just linearly combine motion policies [158, 159], but hierarchically reshape the inher-
ent kinematic and potential energies of RMPflow, overall creating a nonlinear effect on
the global policy it outputs. Effectively RMPfusion adapts between multiple versions of
RMPflow according to the robot’s configuration and the environment, so it can work with
imperfect subtask RMPs from the user, which the vanilla approach fails to handle.

We prove that RMPfusion inherits the Lyapunov-type stability from RMPflow as long
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Figure 6.1: Franka robot navigating around an obstacle using RMPfusion.

as the weight functions are positive. That is, RMPfusion remains stable under almost arbi-
trary choice of weight functions. As a result, RMPfusion can be treated as a class of struc-
tured parameterized policies, which are suitable for learning with safety constraints and
prior information. We show that the new policy fusion step is differentiable and therefore
any parameterized weight functions can be conveniently learned in an end-to-end fashion.
To corroborate our theoretical analysis, we verify properties of RMPfusion in imitation
learning tasks, in both simulations and on a real-world robot (Figure 6.1). We show that
RMPfusion can learn to mimic the expert policy when sufficient demonstrations are pro-
vided, and importantly, it always yields stable policies even during the immature phase of

learning.

6.2 Modifying RMPflow with multiplicative weight functions

RMPflow provides a control-theoretic framework for combining subtask policies. How-
ever, certain limitations exist. Particularly, it requires the user to provide sensible inertia
matrices (cf. section 5.5) to describe the subtask policies’ characteristics in the leaf-nodes
RMPs; failing to do so may result in a global policy with undesirable performance, al-
beit still being geometrically consistent with the meaningless geometric structure induced
by the bad inertia matrices. This can be challenging especially for users inexperienced in

control/dynamical systems, or when designing policies that use less structured information
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(e.g. camera image).

In this work, we propose a modified algorithm, RMPfusion, which adds extra flexibili-
ties into RMPflow to address this difficulty. The main idea is to introduce an additional set
of weight functions as gates to switch on and off the child-node policies in an RMP-tree,
based on the current state of the robot and the environment. These functions can either be
designed by hand, or be parameterized as function approximators (like neural networks)
which are then learned end-to-end from data (see section 6.3). As a result, RMPfusion can
combine imperfect subtask RMPs into a better global policy, thereby lessening the burden
on the user to provide high-quality subtasks RMPs.

RMPfusion adds new features to the RMP-tree and RMP-algebra in RMPflow as RMP-
tree* and RMP-algebra*, respectively. RMP-tree* shares the same tree structure of RMP-
tree, but augments each node with extra information and each edge with a weight function.
RMP-algebra* consists of pushforward and resolve from RMP-algebra and a modi-
fied backward operator pullback®. Below we define these modifications. In addition, we
show that RMPfusion retains the nice structural properties of RMPflow: under mild con-
ditions on the weights, the global policy of RMPfusion can retain Lyapunov-type stability,
as in Section 5.7. Later in Section 6.3, we will show how to learn the weight functions in

RMPfusion from data.

RMP-tree*

In addition to the RMP and its state, each node in RMP-tree* also stores the values of a
scalar function L (called the Lagrangian) and the metric matrix G. When a leaf-node RMP
is a GDS, G is defined as Eq. (5.20) and L = 3x' Gx — ®(x).

Each edge in an RMP-tree* has a weight function in addition to the transformation
map between manifolds in the RMP-tree. This weight is a function of the parent-node
configuration and some auxiliary state (which is additional information to describe the task

at hand, such as the location of the goal in a reaching task), and it can be specified manually
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or learned from data.

pullback*in RMP-algebra*

We modify pullback into pullback™® so it can uses the weight functions on edges of
the RMP-tree* to combine child-node RMPs. This new operator is defined below: for the

parent and child nodes given in Eq. (5.18), we set

f =S8 wJ](f — MJ;x) + h;
M =8 wJM,J;
(6.1)
G =K wJ]GJ,

=55 wil,

where h; = L;V,w; — (x"V,w;)J] G;J;x. From Eq. (6.1), we see that pul1back* does
not simply linearly combine child-node motion policies. It adds a correction term h;, which
is designed to anticipates the change of weighting w; so that the system remains stable. This

turns out to be a form of hierarchical energy reshaping as discussed later in Section 6.2.

Stability

We show RMPfusion is also Lyapunov stable like RMPflow. To state the stability property,
let us introduce additional notation to precisely describe the functions in the RMP-tree*.
We will use (i; j) to denote the ith node in depth j of an RMP-tree* and we use C;,; to
denote the indices of its child nodes. For example, node (1;0) denotes the root node, which
we will also write as node r for short. In addition, we will refer to the functions on the
edges using the indices of the child nodes, as each node in the RMP-tree* only has one
parent node. For example, the Jacobian of the transformation to the ith node in depth j is
denoted as J ;).

We show the stability property of RMPfusion when all the leaf nodes are of GDSs. The

proof is given in Appendix E.
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Theorem 3. Suppose an RMP-tree* has leaf-node policies as GDSs with energy functions
given as V(x,%x) = 3x' G(x,%X)x + ®(x). Define the energy function V{; ), damping

matrix B ;.;), and potential ®;.;y on the tree through the recursion

Vi) = 2okecy,, Wikt Vit
B(ZJ) = ZREC(Z-;]-) w(kv]+1)JE;,]+1)B(k7]+1)J(k7]+1) (6'2)

Dij) = Dnecy,, Wikt Pk

in which the boundary condition is given by the leaf-node GDSs. Let V, be a Lyapunov

candidate.
1. If M, = 0, then V, = —q"B,q < 0.

2. If further G,, B, > 0, then the system converges to the forward invariant set Co, =

{(q,4) : Vq®,(q) = 0,q =0}
where we recall the subscript ,. stands for the root node.

Theorem 3 shows that the system is Lyapunov stable with respect to the energy V.
To satisfy the conditions required in Theorem 3, a sufficient condition is to select leaf-
node GDSs with certain monotone metrics 2 and positive weight functions. Therefore, in
addition to the conditions needed by RMPflow, RMPfusion only imposes mild constraints
on the choice of weight functions. This is a useful feature when the weight functions are
learned from data, because Theorem 3 essentially guarantees the output policy is always
stable even in the middle and premature stage of learning.

Note that it is straightforward to extend RMP-tree* and the above analysis to include,
in Eq. (6.1), an extra time-varying forcing term that vanishes as ¢ — oo (like the one
used in DMPs [150]) and to consider time-varying potential functions (e.g. in tracking

applications).
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Advantages of RMPfusion over RMPflow

RMPfusion is a strict generalization of RMPflow. In the special case where each weight is
constant one, RMPfusion becomes RMPflow (i.e. pullback* is the same as pullback
and Theorem 3 reduces to Theorem 1). More generally, RMPfusion allows mixing lo-
cal policies through reweighting their energy functions, while retaining the nice structural
properties of RMPflow, as shown in Theorem 3.

In comparison, RMPfusion has a more flexible way to express policies and compose the
subtask energy functions into the Lyapunov candidate V, in Eq. (6.3). Whereas Theorem 1
uses the simple summation of subtask energies V, = Zf; Vi, Theorem 3 uses the energy

function

Vi = Zw(kl;l) Z Z Wk ;D) Vikp;D) (6.3)

ki€C0)  k2€C4y1)  kDE€CK_y5p-1)

for a depth-D RMP-tree* (cf. Eq. (6.2)) and each weight w;,;) can be a function of the
configuration and auxiliary state of the parent of node (i; 7). Therefore, from Eq. (6.2) and
Eq. (6.3), RMPfusion can be viewed as a form of hierarchical energy reshaping scheme
along the hierarchy structure naturally provided by the RMP-tree*. Consequently, the re-
cursive formulation of RMPfusion allows the user only to provide basic subtask policies on
the leaf nodes, because the expressiveness of those policies will be amplified by the weight
functions whenever they pass through pullback®. Conversely, using RMPflow requires
the user to provide a set subtask policies with complicated behaviors.

We use an example to illustrate the extra flexibility offered by RMPfusion. Consider a
simple Y-shape RMP-tree* with a root node and two child nodes with weight functions w,
and w,. For the child nodes, suppose they are GDS (N;, G;, B;, ®;) and have coordinate
yi, for ¢ = 1,2. For simplicity, let us assume G; only depends on the configuration y;.

From Theorem 3, we see that the root node has an energy function V,, = %qTG,q + O,
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where

G.(q) = wi(q)Gi(y1(q)) + w2(a)Ga(y2(q))

P, (q) = wi(q)P1(y1(q)) + wa(q)Pa(y2(q))

Because w; is a function of q not y; and the energy function of RMPflow only allows
summing child-node functions, this example root node policy does not admit a tree struc-
ture decomposition in the original RMP-tree and can only be implemented as a single
large node. Conversely, because of the weight function on the edges, RMP-tree* can fur-
ther exploits potential sparsity inside the policy representation so that building complicated
global polices with only basic elementary policies becomes possible. We note that the ex-
ample above does not imply that RMPfusion can generate more expressive policies than
RMPflow. More precisely, RMP-tree* allows representing the same global policy using
more basic leaf-node policies. This property has two implications: it suggests (i) RMP-
fusion can be more efficient to compute and (ii) RMPfusion can offload the difficulties of

designing leaf-nodes policies into the weight functions, which are learnable.

6.3 End-to-end learning of weight functions

We presented a new computational graph, RMPfusion, which supplements RMPflow with
a set of multiplicative weight functions to achieve extra flexibility in policy fusion. Here
we show these weight functions can be learned from data, and therefore RMPfusion can be
treated as a parameterized policy class in policy optimization.

Suppose we have an RMP-tree* in which some weight functions are parameterized as
function approximators. For example, we can consider the neural network presented in
Figure 6.2 as the weight function. To show the weights are learnable, it is sufficient to
check if we can differentiate through the output of the final policy m = a, with respect to

the parameters that specify the weight functions. As the computation of a, is accomplished
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Figure 6.2: (a) Shows the network used for learning with RMPfusion, specifically for any
node ¢ on the RMP-tree*, with children ¢y, ..., c;. If 7 is a leaf node, then it is evaluated
from the designed RMP policy. The global policy is obtained by applying resolve on the
root node RMP. RMP-tree* used in experiments for (a) 2d11level and (b) 2d21evel.

recursively in the backward pass using pullback®, we will only illustrate that pul 1back*
is differentiable. This can be seen by treating pullback™® as a computation graph, as il-
lustrated in Figure 6.2. Take the nodes in Eq. (6.1) as an example. pullback* receives f;,
M,;, G;, B;, J,, J i» L; from the edges to the child nodes, the current state (x,%) and the
auxiliary state to define the weight function w; and the correction term h;. As these inputs
values do not depend on the weight functions {w;} at the current node (i.e. they do not
form a loop), the derivative of a, with respect to the weight functions in the RMP-tree* can
be computed recursively by back-propagating the derivatives through each pullback* op-
erator. This, for example, can be implemented easily through computational graph libraries
like tensorflow [160] or pytorch [122].

It is important to note that we do not have to learn all the weight functions in an RMP-
tree*. If we know that certain leaf-node RMPs have to be turned on, we can adopt a
semi-parametric scheme of weight functions. For example, we can design parameteriza-
tion of the weight functions such that only collision avoidance RMPs are turned on, when
the robot is extremely close to an obstacle. This property is due to the structure of RMP-
tree*, which is interpretable, unlike policies purely based on general function approxima-
tors. Interpretability allows for prior knowledge (like constraints and preferences) to be

easily incorporated into the policy structure. This feature is particularly valuable for policy
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learning with safety constraints [161].

6.4 Evaluation

We validate our approach with experiments of imitation learning. The goal is to show that
RMPfusion with an RMP-tree* that is parametrized by randomly initialized neural net-
works (as in Figure 6.2) is able to mimic the expert policy’s behavior through observing
expert demonstrations. This setup simulates the situation where the user of RMPfusion
only provides imperfect subtask policies. We also use these experiments to validate the
stability properties of RMPfusion by studying if the energy function of the policies gen-
erated by RMPfusion (even the premature ones obtained before learning converges) decay
monotonically over time. We perform these experiments with a 2D particle robot and with
a Franka Panda 7-DOF robot. The supplementary video shows example executions with
the Franka robot in simulation and on the real world platform (Figure 6.1).

As our aim it not invent a new imitation learning algorithm, we adopt the most basic
approach, behavior cloning [162], in which the demonstrations are purely generated by
running the expert policy alone without any active intervention from the learner. The ob-
jective of these experiments is to study how well RMPfusion can recover the behaviors of
an expert that is within its effective policy class, and therefore we use a known RMP-tree*
with fixed weights as the expert policy. We choose this setting to rule out bias due to mis-
matches between policy classes, because properly handling policy class biases in imitation

learning is a non-trivial research question on its own right [163, 164, 165].

6.4.1 2D robot

We first validate our approach on two problems where a 2D robot is tasked with reach-
ing a goal while avoiding one obstacle (2d11evel) or two obstacles (2d21evel). The
RMP-tree* for these problems are shown in Figure 6.2b-6.2c. 2dllevel consists of

a 2D particle that aims to reach a goal while avoiding an obstacle. The RMP-tree* for
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2dl1level is of depth one (see Figure 6.2b), where the root node q (configuration space
of the robot) has one child obstacle RMP node (0yp) and one child attractor RMP node
(amp). 2d21evel consists of a 2D particle that aims to reach a goal while avoiding two
obstacles. The RMP-tree* for 2d21evel is of depth two (see Fig 6.2c), where the root
node (q) has one child attractor RMP node (a,p) and one all-obstacle RMP (o) that is meant
to combine two child obstacle RMPs (0., one for each obstacle). The respective weight
functions are shown on the edges of both these trees. In the 2d1 1evel problem, the aim
is to show near-perfect recovery of the weights given that the problem is convex in the
weight functions. The 2d21evel problem adds extra complexity to the learning process.
It introduces multiplication between weights so the weights cannot be uniquely identified.

The aim here is to show that close-to-expert behavior can still be achieved.

Data

For each problem, the expert policy is generated by the respective RMP-tree* with some
fixed assigned weights, which are unknown to the learner. The training data consist of 20
randomly selected environments with varying placements and sizes of obstacles. In each
environment, the expert is run to generate 50 trajectories from unique initial states, and 60
temporally equidistant data points on each trajectory are recorded. Each data point is a
pair of input and output: the input consists of the state (position and velocity) of the 2D
particle and the auxiliary state (obstacle location and dimension, goal location) i.e. the
meta information about the environment; the output consists of the action (acceleration) as
specified by the expert given the input state visited by running the expert policy. Test data
are collected by repeating this process with 5 new environments with 10 trajectories in each

environment.

131



—— Expert — Expert - — Expert
—— Learner  —— Learner 1.00 100 —— Learner

40 0 5000 10000 15000 20000
Time (s) Training steps

(a) (b) © (d)

Figure 6.3: Trajectories generated in (a) 2dllevel and in 2d2level by (b)
learner-rmp and (e) learner—un, compared to the expert are shown. Initial state
is a black circle for position and black arrow for velocity. The environment has obstacles
(red and blue) and goal (orange square). (c) shows the corresponding energy function for
learner—-rmp trajectories in (b). (d) shows the learning curve for learner—rmp.
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Figure 6.4: Improvement of the behavior produced by learner—rmp at various stages
during training for 2d21evel. The top row shows the trajectories and the bottom row
shows the corresponding energy function. From left to right these plots correspond to the
red dots from left to right on the training curve in Figure 6.3d.

Unstructured network

For 2d21evel we also compare our RMPfusion learner-rmp with an unstructured
neural network 1earner—un. This is a fully connected feed forward network with similar
number of learnable parameters compared to learner—rmp. This network takes robot
state and auxiliary state as the inputs, and outputs the acceleration. Our aim with this
comparison is to show that an unstructured approach cannot offer any stability or safety
guarantees, and with the same amount of data and training underperforms compared to the

structured approach.
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Training

We use the mean squared error between the action generated by any learner and the action
specified by the expert as the loss function for imitation learning. All learners are trained

using RMSprop [166] with a minibatch size of 200 for 20K iterations.

Results

We report two types of test loss: the batch-loss is the average loss on the entire test dataset
generated by the expert policy, and the online-loss is the average loss at every time step (1
second interval) on the trajectories generated by the learner’s policy starting from the ini-
tial states in the test dataset. In 2d1 1evel, the batch-loss is 5.42e-5 and the online-loss is
5.82e-5. In 2d11evel, for learner—rmp the batch-loss is 2.45¢-4 and the online-loss
is 2.78e-4, while for 1earner—un the batch-loss is 0.111 and the online-loss is 12.203.
The higher batch-loss for 1earner—un indicates that with the same amount of data and
training the network is unable to learn the policy from the expert, while the much worse
online-loss indicates that it cannot generalize well and succumbs to covariate shift prob-
lems.

Figures 6.3a, 6.3b and 6.3e show the evaluation of the trained networks on an example
test environment. These results show that RMPfusion can perfectly match the behavior
of the expert in the convex case (2d11level), while achieving near-expert performance
in the non-identifiable case (2d12evel). From the overall results we also observe that
learner—-un is never able to reach the goal and also has a collision rate of 28% (e.g.
Figure 6.3e), whereas 1earner—rmp successfully finishes the task 100% of the time.

Figure 6.4 shows the improving progression of learner-rmp during training, in
which each snapshot corresponds to an associated point on the training curve in Figure 6.3d.
This verifies that with training we can progressively improve the behavior of the learner.
In addition, we verify that the stability properties of RMPfusion in the associated energy

functions in Figure 6.3c and Figure 6.4. We see that, regardless of the setting, the energy
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Figure 6.5: (b) Trajectories generated in 2d21level by learner-rmp-large com-
pared to the expert is shown. Initial state is a black circle for position and black arrow for
velocity. The environment has obstacles (red and blue) and goal (orange square). Learn-
ing curves for (a) learner—rmp and (c) learner-rmp-large on 2d2level is also

Figure 6.6: Trajectories produced by 1learner—un at various stages during training for
2d21evel. From left to right these plots correspond to the red dots from left to right on
the training curve in Figure 6.5a.
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Figure 6.7: Trajectories produced by learner—un-1large at various stages during train-
ing for 2d21evel. From left to right these plots correspond to the red dots from left to
right on the training curve in Figure 6.5c.
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functions always decays monotonically as indicated by Theorem 3. This suggests RMPfu-
sion produces a stable policy even when the learned weight functions are premature before
the learning has converged (Figure 6.4). On the other hand, 1earner—un does not always
avoid collision or provide any stability during or after training (see Figure 6.6).

We also compared with a unstructured network, learner-un-large, that has 5.8
times more learnable parameters compared to learner—un. We see improvement over
loss values where the batch-loss is 0.065 and the online-loss is 0.393, and the collision rate

decreases to 16%. However, it is still never able to complete the task (e.g. see Figure 6.5b).

134



Figure 6.8: RMP-tree* used for the Franka robot. Gray nodes show task spaces, blue nodes
show subtask RMPs, and weight functions are shown on the respective edges where they
are defined. See text for more details.

Figure 6.7 shows the progression of learner-un-1large during training, in which each

snapshot corresponds to an associated point on the training curve in Figure 6.5c.

6.4.2 Franka robot

We also validate our approach on a more realistic setup with a Franka Panda 7-DOF robot
arm. In these experiments, the tasks is to reach a goal while navigating around an obstacle.
The RMP-tree* used is shown in Figure 6.8, where the configuration space of the robot
is the root node (q) and weights functions are shown on the edges where they are defined.
From the root node we have various task spaces, like the end-effector position (ee) on which
the attractor space (a) is defined by a change of coordinates such that the goal position is
at the origin. The attractor RMP (ay,) is then defined on the attractor space for a goal
reaching subtask. Each joint of the robot is mapped to a one dimensional upper (ujl;)
and lower (Ij1;) joint limit space where a joint limit RMP (jl,p) is defined for joint limit
avoidance subtasks. The root node is also mapped to a pre-specified number of control
points on the robot (cp;) such that they collectively approximate the robot’s body and can

be used for collision avoidance. On any control point space we add a distance space to
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Figure 6.9: An example from the test and training dataset (left) and the validation dataset
(right). The robot is shown in its start configuration with an obstacle (cylinder) and a goal
(sphere).

the obstacle (d;) where the obstacle RMP (0pp) is defined.! Finally, there are also native
RMPs defined on the root node like a constant damper RMP (qq) and a RMP which is just
an identity metric (qn,;) with no learnable weight function to ensure the resolve operator

is numerically stable.

Data and training

The expert policy is given by the RMP-tree* with some fixed known weights, while the
learner’s policy is defined by the RMP-tree* with neural network weight functions that will
be learned through behavior cloning.

For training and test data we place an obstacle in a fixed location near the robot and
sample different start configurations and goal locations that are in a region in front of the
obstacle from the robot’s perspective such that it forces the robot to interact with the ob-
stacle while trying to reach the goal. We run the expert to generate 110 and 30 unique
trajectories respectively for training and test data. The trajectories are 5-10 seconds long
and data is collected every 0.1 seconds. Any data point consists of the state (configuration
position and velocity of the robot), the auxiliary state (distances to goal and obstacle), and

the expert action (acceleration). In a new environment with a different placement of the

'Note that when multiple obstacles are present we can add distance spaces and the obstacle RMPs for
each obstacle on every control point. Now, since the tree structure can change with the number of obstacles,
in practice, shared weights can be specified across all obstacles on a given control point, such that training
can be performed with only one obstacle to learn the weight function and then can be applied to arbitrary
number of obstacles during execution.
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Figure 6.10: Learner’s performance with respect to the expert on the validation dataset for
the experiments with the Franka robot.

obstacle this process is repeated to gather the validation dataset where the expert is used
to generate 20 unique trajectories. An example from the training and validation dataset is
shown in Figure 6.9.

The loss function is the same as in the experiments with the 2D robot and we train the

policy using ADAM [167] with a minibatch size of 200 for 1500 iterations.

Results

We compare the performance of the learner, against the expert, at various stages of train-
ing, learner—0 at no training (the neural network is initialized with random weights),
learner—-300 at 300 iterations, and learner—1200 at 1200 iterations when the learn-
ing converges. We record the following metrics on the validation dataset for the expert and
all the learners: (1) time: the time to reach within a precision of 0.05m of the goal; we
time-out the execution at 10 seconds, (ii) conf length: the distance traveled in configuration
space, (iii) end eff length: the distance traveled by the end effector in workspace, and (iv)
goal distance: the distance to the goal from the end effector at the end of an execution.
Figure 6.10 shows the performance of the learners relative to the expert on the validation
dataset (it plots the mean and the standard deviation of the ratios of the learner’s metric and
the expert’s metric across trajectories; the expert is shown as the dotted horizontal baseline).

From these results we see that when the learner is not trained the robot does not move much
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Figure 6.11: (a)-(d) An example execution (left to right) from the validation dataset, com-

paring (a) the expert with (b) learner-0,(c) learner—-300,and (d) learner—1200.
(e) The respective total energy profiles of the learners’ trajectories (learner-0 (left),

learner-300 (middle), learner—1200 (right)).
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and incurs a high goal distance before timing out. With more training the goal error reduces
as the robot start traveling towards the goal but it still often times out. As the learning
converges so does the performance of the learner towards the expert’s performance. In all
the trajectories across all the learners there are no collision, which verifies that constraints
like safety can be incorporated through the structured learning approach that RMPfusion
allows. We also show a qualitative comparison on an example execution with the expert
and the learners in Figure 6.11 and also verify the stability properties of RMPfusion (even
during learning) with the monotonically decreasing energy plots on these executions. Note
that the scale on the energy plot for 1earner—0 is very small and the tiny kink on the plot

is due to numerical issues with Euler integration.

6.5 Discussion

We introduce extra parametrization flexibility into RMPflow and propose a new algorithm
called RMPfusion. RMPfusion features a set of learnable weight functions that specifies
the importance of subtask policies based on the robot’s configuration and the environment.
Consequently, RMPfusion can combine imperfect subtask policies into a global policy with
good performance, where the original RMPflow fails. We demonstrate the ability of RMP-
fusion to learn weight functions for policy fusion in simulation, and further theoretically
prove that RMPfusion inherits the Lyapunov-type stability from RMPflow with only mild
conditions on the weight functions. These structural properties and encouraging experi-
mental results of RMPfusion suggest that RMPfusion can be treated as a class of structural

policies suitable for policy learning with safety and interpretability requirements.
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CHAPTER 7
LEARNING REACTIVE MOTION POLICIES

7.1 Introduction

Performing complex manipulation tasks in unstructured environments involve specific, co-
ordinated, and adaptive movements of different parts of the robot, and thus can be viewed
as being composed of several inter-related subtasks, each associated with a desired be-
havior. For example, consider a wiping task. In addition to requiring the end-effector to
maintain contact, it is desirable to maintain a specific elbow orientation in order to effec-
tively wipe the surface. Furthermore, the movements of the elbow and the end-effector are
inter-dependent, requiring coordination and adaptation based on the task and environmental
changes such as the presence of a new obstacle.

In this chapter, we introduce a framework to learn time-invariant reactive policies, each
associated with a certain subtask, building on the structured framework introduced in Chap-
ter 5. We characterize the desired behavior in each task space as an RMP. As we have seen
in Chapter 5, specifying RMPs for complex behavior is not straightforward. To handle
complex tasks, we propose to learn RMPs directly from a demonstration provided by the
human. This framework involves learning a subset of RMPs from demonstration, while
manually specifying the rest. For example, RMPs for obstacle avoidance and joint lim-
its can be specified with ease, while RMPs associated with desired behaviors at different
robot links can be learned from demonstration. Specifically, we learn a potential func-
tion associated with the desired behavior. The learned potential has a guaranteed unique
global minimum and thus ensures convergence. We utilize the learned potential to define
a Lyapunov-stable (GDS). Furthermore, based on the learned potential we identify a Rie-

mannian metric that is consistent with the underlying geometry and defines a notion of
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Figure 7.1: Sawyer robot performing a complex manipulation task in a constrained envi-
ronment, by coordinating the movements of different parts of its arm.

distance in the corresponding subtask space.

Indeed, the subtask spaces of the robot are not independent. They must satisfy certain
constraints, such as those required by robot kinematics, while simultaneously accomplish-
ing task goals. Our framework explicitly considers the kinematics of the robot and the
dependencies between the policies during motion generation. Toward this end, we utilize
RMPflow to combine the policies associated with different subtask spaces of the robot.
When combining multiple such policies, the identified Riemannian metric associated with
a given policy provides a notion of directional importance and hence enables policy reso-
lution. As known from Section 5.7, if each individual policy is given by a Lyapunov-stable
GDS, then the combined policy is also Lyapunov-stable. We demonstrate the effectiveness
of this approach on a complex robot manipulation task and illustrate the necessity of learn-
ing policies in multiple subtasks spaces and combining them in a geometrically consistent

manner.

7.2 Related work

Motion generation techniques for articulated robots can be broadly grouped into motion

planning [6, 9], reactive policy synthesis [133, 138], and learning from demonstration
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(LfD) [96]. Trajectory optimization-based planning methods minimize a cost function to
yield smooth collision free solutions that consider the robot kinematics[9, 45, 41]. In prac-
tice, their performance is limited by the parameters in the cost function and their slower
evaluation speeds compared to reactive policy methods.

Reactive methods are very more well suited for dynamic environments. Recent work in
this area has explored the explicit use of non-Euclidean geometry [139, 138] and addresses
the problem of systematically combing multiple policies, each defined in a different task
space. Unlike existing methods that utilize user-designed behaviors in each task space, our
approach enables learning the desired behaviors directly from an expert demonstration.

In contrast to trajectory-based planning, trajectory-based LfD methods, do not require
user-specified cost functions and can exploit human demonstrations to learn how to perform
complex tasks. Such demonstrations have been used to learn either an underlying cost
function [107, 110, 168] or the state-to-action policy [150, 101, 169, 170]. Our work
belongs to the category of methods that learn policies directly from the demonstration.
These methods have appealing properties such as convergence guarantees, time-invariance,
and instantaneous adaptation. However, existing methods learn the end-effector policies
without accounting for the behaviors of other parts of the robot, and they do not explicitly
consider the robot kinematics and joint limits while generating motions.

A potential approach to simultaneously encoding the role of different parts of the
robot is to consider the movement in the robot’s configuration space. Prior work has ex-
plored learning policies that simultaneously consider both configuration space and task
space constraints [171, 172, 173] (also see Chapter 3. These methods however provide
time-dependent policies, and are thus prone to perturbations. An approach to combine
learned reactive configuration space policies is proposed in [174], but this formulation is
coordinate-specific and does not generalize to robots across different embodiments. Our
framework, on the other hand, can learn coordinate-free policies in an arbitrary number of

subtask spaces as necessary given the the task.
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Figure 7.2: Example RMP-tree with root node as the configuration space ¢, white nodes are
other task spaces on the kinematic tree. There two types of leaf nodes with learned (blue)
and hand designed (grey) RMPs.

To the best of our knowledge, no existing work combines multiple learned stable time-
invariant policies defined on different task spaces of the robot in a geometrically consistent

manner.

7.3 SKkill reproduction via RMPflow

To accomplish a desired skill, we aim to generate a configuration space policy a, = 7(q, )
via RMPflow such that the all the constraints in the relevant subtask spaces are simultane-
ously satisfied. The constraints can be either imposed by the requirements of the skill
itself, or the environment where the skill has to be accomplished. With the root node of the
RMP-tree associated with the configuration space C, all these constraints can be encoded
as individual leaf RMPs collected in a set V = {v;, } with task map 7 = {7}, }. A subset of
these leaf RMPs can be chosen to be learned from human demonstrations in order to encode
the skill constraints. While the remaining leaf RMPs can be hand-specified. A noteworthy
class of hand-specified leaf RMPs here are the obstacle avoidance RMPs. Adding obstacle
avoidance leaf RMPs to the RMP-tree guarantees collision-free behaviors.

For a given skill, we argue that an RMP learned in the end-effector subtask space alone
is not sufficient to encode all the relevant skill constraints. This is specially true for highly

redundant manipulators where a given end-effector trajectory can be achieved with many
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different configuration space trajectories. Hence, we require definition of additional sub-
task spaces along the robot’s body to fully encode a demonstrated skill. A human can
choose to provide demonstrations for each subtask space either independently or simulta-
neously. While the choice of subtask spaces is user and task dependent, a trivial choice of
subtask spaces are the locations of the reference frames located at the end of all the robot
links. Hence, for a N-link robot manipulator, we choose to define N human-guided leaf
RMPs V;.x C V with associated subtask space 71.; C 7 governed by the kinematics of the
robot. Here the N-th human-guided leaf RMP refers to the desired end-effector behavior.
Before we elaborate our learning approach, a few assumptions are presented in order.
For the skills we consider in this paper, a single human demonstration per subtask space is
assumed to be sufficient. Furthermore, successful execution of a skill is assumed to require

satisfaction of positional and curvature constraints, as opposed to velocity profile.

7.3.1 Human-guided Riemannian motion policies

Given a single subtask space human demonstration, our aim is to learn an RMP which
encodes the desired behavior as a motion policy, alongside a metric which gives directional
importance to this policy when combined with other policies using RMPflow. We desire
that all the trajectories on the subtask manifold smoothly converge to the demonstration
and are stabilized at the demonstrated goal position. Let us define this desired behavior as
an acceleration policy as x¢ = f(x, ).

We choose to imitate this desired acceleration policy using a geometric dynamical sys-
tem (GDS). A GDS dictates the motion on a non-Euclidean manifold, which is also in-
herently Lyapunov stable. The task of learning an RMP is then equivalent to learning the
parameters of a GDS from human demonstration. To achieve this, we employ a simpler

form of GDS whereby the manifold defining Riemannian metric is solely dependent on
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position,
M(x)x = —V,x®(x) — B(x, %)% — &m(x, X). (7.1)

For this special case, the inertia matrix M(x) is equivalent to the Riemannian metric
itself. To make the connection between a desired a acceleration policy and a GDS, let us

rewrite Eq. (7.1) as,
x4 = M(x)’l( — Vx®(x) — B(x,%x)x — &m(x, x)) (7.2)

In essence, we require the accelerations generated by the GDS to match with those
desired. Let us decompose the desired acceleration from GDS into three components:
(i) desired potential-based acceleration: —\V(x) ™'V ®(x); (ii) damping acceleration for
stability: —M(x)'B(x, x)x; and (iii) curvature acceleration for geometrically consistent

behavior: —M(x)~*&nm(x, X). Hence Eq. (7.2) can be concisely written as,

%1 = —V,®(x) — B(x, %)x — M(x) &p(x, %) (7.3)

where ® and B refer to some other potential and damping matrix, which we call warped
potential and warped damping matrix respectively. We can directly specify a warped po-
tential and warped damping combination to achieve our desired subtask space behavior.
Thereon, we can choose an admissible metric Riemannian metric M (x) which obeys the

following relationship,
Vx®(x) = M(x)V,d(x); B(x) = M(x)B(x). (7.4)

We observe here that the total desired acceleration generated by the GDS is mainly gov-

erned by the potential-based acceleration, while the remaining terms simply add stability
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Figure 7.3: Left: Visualization of warped potential learned from a demonstration overlayed
on top in red. The arrows show the negative gradient direction. Right: Isocontours repre-
senting points equidistant to the target on the underlying manifold defined by the metric
that stretches space in the direction of the potential gradient.

and consistency. Hence, we choose to learn the warped potential from demonstration such
that its negative gradient combined with a constant hand-specified warped damping matrix
B = Y41, modulus the curvature acceleration, achieves the desired behavior.

The remainder of this section details our learning procedure followed by our methodol-
ogy for generating an admissible Riemannian metric which enables combining the learned

subtask policies via RMPflow.

7.3.2 Learning warped potentials from demonstration

We seek to learn a warped potential which generates acceleration in line with our desired
accelerations. Let us assume the availability of a demonstration { = {{; };—1.7 in a given
subtask space composed of 1" data points. To learn a valid potential function, we restrict
our search space to the class function which are positive. Furthermore, we also desire the
potential function to be convex with a single unique global minima located at the final
location x, = (7. The latter requirement prevents the introduction of spurious attractors
in the state-space. To achieve this, we use an approach similar to that used by [175].

Specifically, we carry out kernelized regression whereby the overall warped potential at
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a query point is given by a convex combination of potential elements centered at each

trajectory point ¢;, i.e.,

P(x) = Zwi(x)gz;i(x), where, Zwi(x) =1 (7.5)

Each weight w;(x) is defined by a normalized radial basis function centered at ¢; with

bandwidth o,
k X, Gi
w;(x) = F<T—Q (7.6)
Zj:l k(x,¢;)
where, k(x, ;) = o~ 707 (k6T (x=¢) (7.7)

Furthermore, each contributing potential element here is a summation of two compo-

nents,

9i(x) = ¢ (x) + ¢ (7.8)

where the component ¢¢/7o<t : R™ s R is a strictly convex function with a global min-
ima at ¢; and ¢? € R, is a constant bias term. As a consequence of the aforementioned
decomposition, the gradient of the overall warped potential in Eq. (7.5) can also be decom-

posed as,

qu)(X> _ vx&)attract (X) + Vx&)nominal (X) (79)

where the gradient component foi)“”md(x) causes attractive pull towards the demonstra-
tion while the nominal component V, ®mominal (x) produces accelerations along the direc-

tion of motion of the demonstration. The attractive gradient component can be further
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written as a weighted summation of gradients of individual attractive potential elements,

i=T
Vx(i)attract (X) _ Z w; (X) vxégttract (X) (7 10)

=1

Fortunately due to this decomposition, we can carry out potential function learning as two-
step process. First, we independently design the function gz;;-l“’”“t(x) as per our desired
attractive accelerations towards the demonstration. Second, we learn the bias terms qE?
such that the direction of motion governed by the potential at each datapoint (; matches
with the one demonstrated.

As a first step in this procedure, we choose to go with the following attractive potential

element,
T attract 1 [l =l —nllx—=¢:ll
I (x) = —log | el 4 g7l (7.11)
n

which is a 7-scaled softmax function where n > 0 defines the effective smoothing radius

of the function at the origin. The corresponding gradient is

- i 1 — e 2l=GlN x — ¢,
Vi (x) = (1 n 6_2n||x—ci> % — ¢l (7.12)

where s,,(0) = 0 and s,,(r) — 1 as r — 0. For a sufficiently large 7, this choice of potential
function ensures that the attractive acceleration always has a unit magnitude except in the
neighborhood of the center (; where it smoothly decreases to zero. A trivial alternative
to this function is the quadratic function as used by Khansari-Zadeh et al. [175]. How-
ever, the gradient of a quadratic function increases linearly with distance which can cause
undesirably large accelerations far away from the data points.

Towards the second step in the procedure, we learn the bias terms qSO = {gE?} such

that at the data points ¢;, the negative potential gradient aligns with the direction of the
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demonstrated motion at these points with unit magnitude, i.e. ¢ = Hng .

The corresponding

optimization problem is

min —Zumv (¢ )11 + Ao

S.t. H—l < ¢O Vi = 17 SRR (T - 1) (714)
0 < ¢

vx&)(CT) =0

where the optimization constraints enforce the potential to decrease monotonically along
the demonstration with an unique global minima at the goal location {7. The aforemen-
tioned optimization problem is convex, and hence can be solved efficiently with off-the-
shelf solvers, e.g. CVX [176]. Slack variables can be added to ensure feasibility of the

optimization problem.

7.3.3 Admissible metric for policy resolution

While there can be multiple such metrics M(x), we base our selection on the following
key insight:
any arbitrarily curved trajectory on a Euclidean manifold can be viewed as a straight-

line trajectory on a curved/non-Euclidean manifold.

In view of this, once a warped potential is learned, we seek to extract a Riemannian
metric which defines the underlying subtask manifold. Concretely, this metric warps a
simple potential which generates straight-line trajectories on a non-Euclidean manifold,
into a more convoluted potential defined on a Euclidean manifold. Using this metric to
combine multiple such learned policies via RMPflow allows giving each policy the appro-

priate directional importance as dictated by the underlying subtask geometry. A natural
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choice for a metric in this regard is,

Mirecn(x) = (1 — a(x))vx@(x)&)(x)T + (a(x) + ¢)I (7.15)

[

2
20

where a(x) = exp(—'-1) is a decaying exponential and € > 0. This metric defines a man-
ifold which is stretched in the direction of the warped potential when away from the goal
X., while becoming increasingly Euclidean when near the goal. In other words, warping a
straight-line vector field generated by a simple potential with this metric, generates the de-
sired behavior in the subtask space. For this choice of metric, we find the curvature term &y
by making use of numerical differentiation. It should be reiterated that the curvature terms
keep the subtask trajectories consistent with the underlying geometry. Figure 7.3(right)
shows a visualization of an example manifold found using the aforementioned method.
The isocontours in the visualization represent points that are equidistant to the origin on

this manifold. Indeed, the paths between the origin and every point on a given contour can

be seen as geodesics of equal length.

7.4 Evaluation

We evaluated the proposed approach on a constrained-placing task executed on Rethink
Sawyer robot. The task involved placing a green cube inside a narrow hole in a wall-
like structure situated closely in front of the robot (see Figure 7.1). Accomplishing this
task requires simultaneous satisfaction of constraints on multiple links. Specifically, the
robot’s end-effector must go around the wall, while the elbow is held high and away from
the structure to avoid collision. Furthermore, the wrist and end-effector movements must
enable a certain angle of approach in order to place the object at the goal position. Indeed, it
is not straight-forward to manually specify RMPs that are appropriate for this task. Hence,
we utilized our human-guided learning framework to acquire this skill.

To learn the desired skill, we used a single kinesthetic demonstration configuration
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Figure 7.4: Sequence of images illustrating qualitative differences between learning leaf
RMPs (a) only for the end-effector (fop row), and (b) for all the robot link reference frames
(bottom row) when starting from similar configurations.

space of the robot €. To capture all the relevant constraints of the task, we setup an RMP-
tree and learned four leaf RMPs on different subtask spaces, each associated with a link
reference frame placed at the end of the corresponding link. We transformed the configu-
ration space demonstration to all four subtask spaces based on the task maps given by the
forward kinematics of the robot, yielding 7 transformed demonstrations {¢”:}7_,, one for
each subtask space. In each of these subtask spaces, we then learned a warped potential
(Section 7.3.2). We identified an admissible metric for each subtask space to capture the
underlying geometry (Section 7.3.3). We then derived the final GDS equation which de-
fines the desired behavior in each subtask space. As in Eq. (7.3), we added damping and
curvature terms to the GDS to ensure stability and geometric consistency. We empirically
chose a constant damping matrix that minimizes the oscillations in the system. We found
B = 101 to be sufficient in all our experiments. After this procedure, we end up with
{vi}iz1,. 7 learned leaf RMPs defined by learned GDSs.

To execute the task, we combined these learned policies into a global configuration
space policy as dictated by the RMP-algebra detailed in Section 5. It should be noted that
the RMP-tree also contained other hand-specified leaf nodes which incorporate joint limits
and joint damping factors. For further details on hand-specified RMPs, we refer the reader

to [138].
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Q = 0 0
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Figure 7.5: Time evolution of mean squared errors between reproduced link frame trajecto-
ries and the corresponding demonstrations over time for three different robot initial configu-
rations (init-0 through init-1). The top-row visualizes errors for an RMP-tree with a human-
guided leaf RMP defined solely on the end-effector, while bottom-row corresponds to an
RMP-tree with human-guided leaf RMPs defined on all the robot link reference frames.

We evaluated the effectiveness of proposed approach and compared it to that of a base-
line, which involves learning a single leaf RMP located at the end-effector. We evaluated
the performances of both the proposed algorithm and the baseline from multiple initial con-
figurations, i.e. init-0, init-1 and init-2. Here, init-0 refers to an initial configuration that is
identical to the demonstration’s initial configuration, while init-1 and init-2 are configura-
tions obtained by perturbing the joint angles in two random directions.

Sequences of images illustrating qualitative differences between the proposed and base-
line approaches when starting from iniz-2 are are shown in Figure 7.4. The baseline method
results in the robot’s elbow colliding with the wall and fails to place the object in the hole.
In contrast, the proposed approach coordinates the movement of each of its links and suc-
cessfully accomplishes the task.

To quantify performance, we compute errors between the demonstrated and reproduced
tasks-space trajectories for each of the four link frames. The error associated with a partic-
ular link is measured by the norm of the difference between demonstrated and reproduced

task space trajectories associated with that link. We aligned the demonstrated and repro-
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t=0.25

t=10.75

Figure 7.6: The combination of obstacle avoidance RMP and human-guided RMPs results
in motions that are guaranteed to avoid collisions while simultaneously attempting to satisfy
the task constraints.

duced trajectories using dynamic time warping to ensure that they have an equal number of
samples.

As seen in Figure 7.5, the proposed approach consistently outperforms the baseline.
Specifically, the errors of our framework diminish to zero for all initial configurations. In
contrast, the baseline’s error stays relatively high for all the links except the end-effector
(Link 7). This is expected since the baseline has no incentive to force the other links to track
the demonstration. Moreover, the baseline resulted in poorer performances when the the
initial configuration of the evaluation scenario was different than that of the demonstration
(init-1 and init-2).

Finally, we validated the ability of the proposed approach to avoid obstacles. Figure 7.6
demonstrates this behavior when an obstacle (shown as a sphere) hinders the demonstrated
path. As seen, the motion generated by proposed approach reaches the desired goal while

simultaneously avoiding collisions on the entire arm.

153



7.5 Discussion

We introduced a coordinate-free learning and motion generation framework for complex
tasks in constrained environments. This approach is capable of simultaneously learning
inherently-stable reactive polices in multiple subtask spaces directly from an expert demon-
stration, while explicitly considering the underlying geometries. The structured learning set
up here allows us to incorporate human guided expert data in to specific policies that are
interpretable given that any of them can be analyzed in their respective task spaces. Fur-
thermore, the compartmentalization offered by the structure allows us to carefully specify
policies for safety, such that they cannot be interfered with by the learning process, thus
ensuing safety during skill acquisition and reproduction. Experiments demonstrate that this
approach can capture the desired behaviors of multiple robot links in order to accomplish
a constrained manipulation task. Qualitative and quantitative comparisons indicate that
our approach consistently outperforms a baseline method that only learns an end-effector
policy. While here we focused on individually learning the RMPs from human demonstra-
tions, the strategy presented in the previous chapter can be utilized to learn such RMPs in
an end-to-end fashion (by parameterizing them as structured neural networks) where high

dimensional data like images could be used, and remains future work.
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CHAPTER 8
CONCLUSION

Based on current trends this thesis recognized the split between traditional methods and
modern learning-based approaches towards robot motion generation. Building on strong
mathematical foundations and prior work, I presented two novel techniques for robot mo-
tion generation that leverage structure to bridge the gap between the two paradigms, such
that we can combine their strengths while mitigating each others weaknesses. Structure can
be an overloaded term, however in this thesis it manifested as a tool that allows us to incor-
porate learning into our algorithms alongside domain knowledge and problem constraints.

Specifically, the first technique I presented, views motion planning with a lens of proba-
bilistic inference. Here the prior distribution describes desired motion while the likelihood
describes other costs and constraints. This problem is constructed using factor graphs and
leads to an efficient planning algorithm. The structure induced by factor graphs is then
leveraged to bring learning into this framework, by allowing learning factors from human
demonstrations, as well as learning factors in an end-to-end setting. The second technique
I presented, brings together dynamical systems and geometric mechanics for reactive pol-
icy synthesis. A full task policy is achieved by designing appropriate sub-task behaviors
through dynamical systems, and then consistently and efficiently combining them. This
is done in part by representing the full task space decomposed as a task-map tree. The
structure induced by task-map trees is later utilized within this framework, to learn weight
functions along the tree in an end-to-end fashion for policy fusion, and to also learn individ-
ual sub-task policies from human demonstrations. Across all these approaches the various
benefits of structured learning, like interpretability, incorporation of constraints such as
safety even during the learning process, and data efficiency, are shown.

While the methods presented here further the state-of-the-art and have provided useful
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insights, they are not without their limitations as was discussed in relevant chapters. There
are still many technical challenges ahead that are excellent directions for future work. Some
of them were alluded to in previous chapters, but here we discuss a few overarching themes

that arise.

How do we plan better?

For problems where we have to deal with high speed tasks, considering the underling dy-
namics and closely integrating planning with impedance control is critical. The algorithms
presented here internally rely on least squares style optimization, and would need to be
extended to handle hard requirements like dynamics, underactuation, and nonholonomic
constraints, while at the same time following structured ways of integrating learning. This
further open doors to problems that also involve discrete constraints, for example, in task
planning, or when dealing with contact during manipulation.

Through the two major techniques in this thesis, we have seen that planning and reac-
tive policies are very complementary. So far they were utilized independently, however, an
ideal system would greatly benefit from using them both. The interesting research questions
arise in finding ways to seamlessly integrate them. Loosely speaking, there are connections
between GPMP2 and RMPflow. The covariance of a factor bears resemblance to a Rieman-
nian metric, and the inference on a factor graph is reminiscent of the forward-backward
pass on a task-map tree. The critical difference is that the former is built over a long time
horizon while the latter operates over a single time step. Exploring this connection more

formally can lead to possibilities of combining planning and reactive motion.

How do we learn better?

While we have currently explored the utility of structured learning more formal studies
should be conducted that can inform on finding the right mix of priors and known models vs

learning within the structure. Along these lines it is also still unclear whether this structure
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should evolve as the system improves. The structure is helpful for data efficiency but it
may also introduce model biases. It is also not clear if it is more effective to learn with an
unstructured approach if say we have access to really large amounts of data and compute.
Being able to utilize data from multiple sources (beyond human demonstrations) will
be an asset, as limitations in hardware can often lead to poor quality demonstrations. We
relied primarily on data collected from expert algorithms or human users to learn via imi-
tation. This is not always possible, and therefore it is beneficial to investigate strategies in

extending the ideas presented here to leverage reinforcement learning as well.

How do we perceive better?

The quality and efficiency of motion generation partly depends on reliable perception.
Therefore having a tighter coupling between them is highly necessary. We have shown
this is possible with the GPMP2 framework [87], however RMPflow currently deals with
estimation externally. The connection between the two discussed above could help cross
pollinate ideas to incorporate uncertainty handling. RMPflow being reactive is able to
handle dynamic environments, however GPMP2, and by extension CLAMP and dGPMP2,
currently rely on a precomputed SDF for collision checking. For large scenes this is infeasi-
ble to evaluate online in a dynamic environment and thus requires research into generating
SDFs incrementally online by leveraging GPUs.

Learning from vision has largely been restricted to 2D single view images (usually from
the top). Incorporating modern learning tools to handle 3D scenes especially in the case
of manipulators can address challenges in accelerating collision avoidance and planning
in general. Beyond vision and joint encoders there are many other sensor modalities that
we haven’t explored with our systems. Tactile information can be of particular importance
for problems in contact rich manipulation. Audio is also another sensor, less commonly
used. The ability to fuse such diverse sensory information can highly benefit the motion

generation process.
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Getting robots to work and move in the real world means on some level we have to
tackle motion generation, which after being around and constantly evolving since the early
days of robotics, has still remained one of its most difficult challenges. Throughout this
thesis the underlying philosophy has been to incorporate learning in a manner that adds
value over traditional methods. Consequently, the techniques and algorithms presented
here, brings us closer to solving motion generation and pushing the capabilities of current

systems.
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APPENDIX A
PRIOR AND SPARSITY IN GAUSSIAN PROCESS MOTION PLANNING

A.1 The trajectory prior

First, we review conditioning a distribution of state 8 on observations Y in general (for a

full treatment see [35]). Let the observation be given by the following linear equation
Y =CO+e, e~N(0K,). (A.1)

We can write their joint distribution as

o K KCT
N , _ _ _ ) (A.2)
Ci| |CK CKCT+K,

The distribution of the state conditioned on the observations is then N (u, KC) where

p=p+KC(CKC +K,) (Y — Cp) (A.3)

K=K-KC'(CKCT +K,)'CK (A.4)

Now, we are interested in conditioning just on the goal state 8 with mean p and covari-

ance JCy. Therefore in the above equations weuse C =[0 ... 0 I]and INCy =Ky to
get
u:ﬁ—i-k(tN,t)T(’E(tN,tN)+’CN)_1(9N—[LN) (AS)
K=K-K(ty,t) (Ktn, ty) + Kn) ' K(tn, t) (A.6)
where KC(ty, ) = [K(tn,to) ... K(tx,tn)]-
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Using the Woodbury matrix identity we can write Eq. (A.4) as
~ -1 ~ -1
K=K +C'K,C)" (A7)
and substituting C and ky as before for conditioning on the goal we get

-1
K=<KJ_1+[0 .0 I0'KVo ... 0 I]) . (A.8)

From [71] we know that the precision matrix of the distribution obtained from the LTV-
~—T ~—1~—

SDE in Eq. (2.5) can be decomposed as k_l =A Q A 1. Therefore,

;&71 T ~ -1 ;&71
K= (A.9)
0 0 I Kyl |o 0 I
=B'Q'B (A.10)
where ) )
I 0 0 0
—®(t1,10) I 0 0
0 —<I’(t2,t1) . .
B = , (A.11)
. . . I 0
0 0 . =Dty tno1) T
i 0 0 0 I_
and
Q' = diag(Ky "', Qoly - Qat v K, (A.12)
iy
Qup = / ®(b,5)F(5)Q.F(s) ®(b,s)" ds (A.13)
ta
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A.2 Sparsity of the likelihood

In Eq. (2.52) we argue that matrix ' + H "X ~'H is sparse. In Section 2.4.2, we proved
the block-tridiagonal property of }C™'. In this section we prove that HT3~'H is also
block-tridiagonal.

Given the isotropic definition of 3 in Eq. (2.47) and Eq. (2.62)

H' X 'H=0¢2H H. (A.14)

obs

Given the definition of h(@) in Eq. (2.46), the size of His M x (N + 1+ N x n;,) by
(N + 1) x D, therefore H'H has size (N + 1) x Dby (N + 1) x D.

For simplicity, we partition H and H" H by forming blocks corresponding to the system
DOF D, and dimensionality M of h, and work with these block matrices in the remaining
section. So H and H" H have block-wise size N + 1+ N X n;, by N + 1 and N + 1 by
N —+ 1 respectively. We define A (i, j) to be the block element at row ¢ and column j of A.

Given the definition of h(0) in Eq. (2.46), each element of H is defined by

H(i,j) = : (A.15)

for rows contain regular obstacle factors, where s; is the support state index connects the

regular obstacle factor of row ¢, or

ahintp<082‘ 9 05i+1)
80j (7]

H(i, j) = (A.16)
for rows contain interpolated obstacle factors, where s; is the before support state in-
dex of interpolated obstacle factor of row i. Since h(8,,) is only a function of 6, and

hr (@, , 0, 1) is only function of 6,, and 6, 1, they have zero partial derivatives with
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respect to any other states in @, so for any block element in H
H(i,j) =0, if j # s;ors; + 1. (A.17)

For each block element in H' H

N+1+N><nip

HH(G,j)= > H(,kHE,)) (A.18)
k=1

N+1+N><nip
— Z H(k,q) "H(k, 7). (A.19)
k=1

For each k, non-zero H(k, i) "H(k, j) is possible when the following condition is satisfied,

{i =spors;+1}and {j = s; or s + 1}. (A.20)

So for non-zero H H(i, §)

i —jl <1, (A.21)

since if 7 and j has difference larger than 1, Eq. (A.20) is unsatisfied on every k, so
H'"H(i, j) will be zero based on Eq. (A.19). Given we know that H" H is block tridi-

agonal, and Eq. (A.14), we have proved that H" X~ 'H is also block tridiagonal.
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APPENDIX B
GEOMETRIC DYNAMICAL SYSTEMS

Here we summarize details and properties of GDSs introduced in Section 5.7.

B.1 From geometric mechanics to GDSs

Our study of GDSs is motivated by geometric mechanics. Many formulations of mechan-
ics exist, including Lagrangian mechanics [153] and the aforementioned Gauss’ Principle
of Least Constraint [151]—They are all equivalent, implicitly sharing the same mathe-
matical structure. In that sense, geometric mechanics, which models physical systems as
geodesic flow on Riemannian manifolds, is the most explicit of these, revealing directly the
underlying manifold structure and connecting to the broad mathematical tool set from Rie-
mannian geometry. These connections enable us here to generalize beyond the previous
simple mechanical systems studied in [137] to non-classical systems that more naturally

describe robotic behaviors with non-Euclidean geometric properties.

B.2 Degenerate GDSs

Let us recall the definition of GDSs.

Definition 1. Ler B : R” xR™ — R and let G : R™ xR™ — R and ® : R™ — R
be differentiable. We say the tuple (M, G, B, ®) is a GDS if

M(x,%x)x + €g(x, %) = —Vx®(x) — B(x, %)% (B.1)

where M(x,%x) = G(x, %) + Eg(x, X).

For degenerate cases, M(x,x%) can be singular and Eq. (B.1) define rather a family of
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differential equations. Degenerate cases are not uncommon; for example, the leaf-node
dynamics could have G being only positive semidefinite. Having degenerate GDSs does
not change the properties that we have proved, but one must be careful about whether
differential equation satisfying Eq. (B.1) exist. For example, the existence is handled by the
assumption on M in Theorem 1 and the assumption on M,. in Corollary 1. For RMPflow,
we only need that M, at the root node is non-singular. In other words, the natural-form
RMP created by pullback at the root node can be resolved in the canonical-form RMP

for policy execution. A sufficient and yet practical condition is provided in Theorem 2.

B.3 Geodesic and stability

For GDSs, they possess a natural conservation property of kinematic energy, i.e. it travels
along a geodesic defined by G(x, x) when there is no external perturbations due to ¢ and
B. Note G(x, x) by definition may only be positive-semidefinite even when the system is
non-degenerate; here we allow the geodesic to be defined for a degenerate metric, meaning
a curve whose instant length measured by the (degenerate) metric is constant.

This geometric feature is an important tool to establish the stability of non-degenerate
GDSs; We highlight this nice geometric property below, which is a corollary of Proposi-

tion 1.

Corollary 3. All non-degenerate GDSs in the form (M, G, 0,0) travel on geodesics. That
is, K(x,%) = 0, where K (x,%) = 1xTG(x, %)%

Note that this property also hold for degenerate GDSs provided that differential equa-

tions satisfying Eq. (B.1) exist.

B.4 Curvature term and Coriolis force

The curvature term &g in GDSs is highly related to the Coriolis force in the mechanics

literature. This is not surprising, as from the analysis in [138] we know that &g comes
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from the Christoffel symbols of the asymmetric connection. Recall it is defined as
£a(x,%) = G(x, %)% — LV, (xT G(x, X)%)

We show their relationship explicitly below.

Lemma 1. Let [';j;, = %(aka,-j + 0p;Gir — O0.,G i) be the Christoffel symbol of the
first kind with respect to G(x,x), where the subscript ;; denotes the (i, j) element. Let

Cij = ZZ=1 @11, and define C(x, %) = (Cl-j)?szl. Then £ (x,x) = C(x,X)X.

Proof of Lemma 1. Suppose &g = (&;)7,. We can compare the two definitions and verify

they are indeed equivalent:

d d
o 1~ .

],k?:]. ]719:1
1< 1o 1y
jk=1 j.k=1 Jrk=1
= (C(x. %)%), -
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APPENDIX C
PROOFS OF RMPFLOW ANALYSIS

C.1 Proof of Theorem 1

Theorem 1. Let the ith child node follow (N;, G;, B;, ®;)s, and have coordinate y;. Let
f. = —nma,s, — Vy, @ — Biy; and M; = G; + Eg,. If [f, M|M of the parent node is
given by pullback with {[f;, M;}N}£ | and M is non-singular, the parent node follows
(M,G,B,®)s, where G = 35 JTG,J, B =301 J/BJ, =38 &0y, S
preserves S;, and J; = Oyy;. Particularly, if G; is velocity-free and the child nodes are

GDSs, the parent node follows (M, G, B, ®).

Proof of Theorem 1. We will use the non-degeneracy assumption that G + ZE¢ (i.e. M
as we will show) is non-singular, so that the differential equation specified by an RMP in
normal form or a (structured) GDS is unique. This assumption is made to simplify writing.
At the end of the proof, we will show that this assumption only needs to be true at the root
node of RMPflow.

The general case We first show the differential equation given by pullback is equivalent
to the differential equation of pullback structured GDS (M, G, B, ®)s. Under the non-
degeneracy assumption, suppose S; factorizes G; as G; = LiTHZ-LZ-, where L; is some
Jacobian matrix. On one hand, for pullback, because in the child node ¥; satisfies (G; +
Eq,)¥i = —Nass, — Vy, i — Byy; (where by definition ng,s, = L/ (€u, + (H; +
Zw,)L;y;)), the pullback operator combines the child nodes into the differential equation

at the parent node,
K

Mk = > I Mi(§; — Ji%) (C.1)

=1
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where we recall M = Zf; JiTMZJi is given by pullback. On the other hand, for

(M, G, B, ®)s with S preserving S;, its dynamics satisfy
(G + EG) X+ Ngs = —Vx® — Bx (C.2)
where G is factorized by S into

T T
Jq Gy Ji L.J, H, L,Jy

and the curvature term 1g.s by S is given as ng.s = J ' (¢ + (H + Eg)jx)
To prove the general statement, we will show Eq. (C.1) and Eq. (C.2) are equivalent.

First, we introduce a lemma to write E¢ in terms of Eq, (proved later in this section).

Lemma 2. Let M and N be two manifolds and let x and y(x) be the coordinates. Define
M(x,x) = J(x) 'N(y, y)J(x), where J(x) = O,y (x). Then

Therefore, we see that on the LHSs

(G + Eg)k = Mx
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and on the RHSs

where the first equality is due to Lemma 2, the second equality is due to Eq. (C.1), and the
third equality is due to the definition of structured GDSs. The above derivations show the
equivalence between the RHSs and LHSs of Eq. (C.1) and Eq. (C.2), respectively. There-
fore, when the non-degenerate assumption holds, Eq. (C.1) and Eq. (C.2) are equivalent.

The special case With the closure of structured GDSs proved, we next show the closure
of GDSs under pullback, when the metric is only configuration-dependent. That is, we
want to show that, when the metric is only configuration-dependent, the choice of structure
does not matter. This amounts to show that £ = mq.s because by definition E; = 0 and
E = 0. Below we show how &g is written in terms of g, and Eqg, for general metric
matrices and specialize it to the configuration-dependent special case (proved later in this

section).

Lemma 3. Let M and N be two manifolds and x and y(x) be the coordinates. Suppose
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M(x, x) is structured as J(x) "' N(y,y)J(x), where J(x) = Oxy(x). Then

Em(x,%) = 3007 (€n(y,3) + (N(y,3) + 25n(y. )d (x, 0)%)

—J(x,%) "En(y, ¥) T I (x)x

When M(x,%) = M(x), &m = Mm.s regardless of the structure of S.

By Lemma 3, we see that structured GDSs are GDSs regardless of the chosen structure
when the metric is only configuration dependent. Thus, the statement of the special case
follows by combining Lemma 3 and the previous proof for structured GDSs.

Remarks: Proof of Corollary 1 We note that the non-degenerate assumption does not
need to hold for every nodes in RMPflow but only for the root node. This can be seen
from the proof above, where we propagate the LHSs and RHSs separately. Therefore, as
long as the inertial matrix at the root node is invertible, the differential equation on the

configuration space is well defined. |

Proof of Lemma 2. Let m;, n;, j; be the ith column of M, N, and J, respectively. Suppose

M and N are of m and n dimensions, respectively. By definition of Eyy,

2BMm(X,X) = Zajamlxx i N(y, y)ji(x))
(fj N(y, 3)ii(x >>> 3x)
(z n(5.9) i Jﬂ<x>) T
(Z an]yy>)J< )

= 23(x) En(y,3)I(x) .

Proof of Lemma 3. Before the proof, we first note a useful identity Oyy = J(x,%). This
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can be derived simply by the definition of the Jacobian matrix (0xJ(x)x);; =

Zk 1 xkaz] Jik = Zk 1 xkax]aackyl ZZ; ‘rk&xkjlj = (J)ZJ

To prove the lemma, we derive &y by its definition

x

& = M(x,%)x — %VX(XTM(X, %)x)

= J(x,%) "Ny, $)I(x)% + I(x) "Ny, 7)I(x, %)% + I (x) N(y, y)I (x)x
— SV I NG $)I (%)

= J(x,%) " N(y,9)y + I(x) N(y,y)I(x, )% + I(x) 'N(y,y)y
VNG 9))

= J(x,%) "Ny, )y + I(x) N(y,y)I(x, %)% + I(x) 'N(y,¥)y
I TV (TN $)3) — 3 %) Ny 9y — I, %) By, 3)TI00%

= J(x) " (N(y, y)I (x, %)% + N(y, 3)I (x)% — —v v Ny, 3)¥)

—J(x,%) " Enly. ) I (x)x
In the second to the last equality above, we use Dy = J (x,x) and derive

SV NG 9)3) = 53TV Ny 9)9) + 5@V (3 N 9))

2

— %JTV (y 'N(y,¥)y) + J(x,%) "N(y, y)y
+ 53063 TV (5 NGy Y02y
;JTV (y 'N(y,y)y) + J(x,%) "N(y, y)y

+J(x,%) "Enly, y) I (x)%

as 20y (2" N(y,y)2) ey = 3y O, %:0ymi(y.y)) = ¥y En(y,y), where n; is the ith

column of IN.
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To further simplify the expression, we note that by Oyy = J (x,%) we have

= Z i (Oym;(y, y)J (%)% + Oyni(y, y)Ox(y)X)

= Z U0y, (y,y)y + 7:0yn:(y, Y)j(Xa X)X

i=1

(Z yiayni(YvY)) y + (Z ?)z‘ayni(y,}")> J(x, %)%

i=1 =1

Y .
= N(y, y)y + 2En(y, y)J (x, %)x
Combining these two equalities, we can write

SM(Xvk) =
3607 (Ry-9)5 — 595Nl + (N(r.3) + 22y 90 %)%

— J(x,%) " Ex(y, y) I (%)%

Substituting the definition of En(y,y) = 1<I(y, y)y — %Vy(yTN(y, y)y) proves the gen-

eral statement.

In the special case, M(x, %) = M(x) (which implies Zy; = 0),

(%) = 3007 (En(y.9) + N(y)(x %))

We show this expression is equal to mn.s regardless of the structure S. This can be seen

from the follows: If further N(y) = L(y) " C(z)L(y) and M is structured as (LJ) " C(LJ)
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from some Jacobian matrix L(y) = 0y z, we can write

d(LJ
mas =1L (g + 070 g
=JT(L"¢s + LTC(LJ + LJ)%)
=37 (LT(gc + CLy) + LTCLJx>

—J7 (5N + NJ)‘() — tm m

C.2 Proof of Proposition 1

Proposition 1. For (C,G,B,®)s, V(q,q) = —q'B(q, q)q.
Proof of Proposition 1. Let K(q,q) = %qTG(q, q)q. Its time derivative can be written as

d d

i) =47 (Gla@d+ (5 Glaaa)

d
1 d
o .T . . - .'_ ) .
=q (G(q, W+ ;qzdtgz(q, q))

d d
1 1
q (G(q, a)d + 3 z; Gi0agi(a, )+ 5 z; G0 (q, q)q>

1a

~ 4" ((G(a @)+ Zela.a)i+ jGaaa)

where we recall G is symmetric and é(q7 q) = [0q8i(q,q)q)?_;. Therefore, by definition

(G(q,9) + Ec(q,9))d = (—na.:s(q,9) — Vq®(q) — B(q,q)dq(q, q)), we can derive

d

d
el . — _K . . T @
dtV(q, q) o (9,9) + 4 ' Vq@(q)

=q' (—nc;s(q, q) — Vq®(q) — B(q, q)x + %é(q, q)q + Vq@(q))

G(a, Q)Q)

N | —

- q"B(a, @)+’ <—77G;s(q, a) +
To finish the proof, we use two lemmas below.

173



Lemmad. 1q'G(q,q)q = q"€éc(q, q).

Proof of Lemma 4. This can be shown by definition:
T . T A N 1 T N
q &cla,q) =q <G(q, 9)d - 5Vq(@ Gla, Q)Q>>
d d 1
= Z dr <Z 4404, Gri — 5 Z Qinaqui,j)
k=1 ij=1 ij=1

d d
L 1 L
= ) Gidk0s,Gri — 3 > G104, G

i,7,k=1 i,7,k=1
d -
= E QinQkaquj,i_E § 4iGj G104, G j
ij k=1 ij k=1

d
1 L 1.+ N
=5 D G0y, Grs = 54" Gla, @)
ij k=1

where for the second to the last equality we use the symmetry G; ; = G ;. [ |

Using Lemma 4, we can show another equality.

Lemma 5. For all structure S, ¢" (—ng;g(q, q) + %Cq}(q, q)q) =0

Proof of Lemma 5. This can be seen from Lemma 3. Suppose S factorizes G(q,q) =

J(q) "H(x,x)J(q) where J(q) = dqx. By Lemma 3, we know
(=17 <5H +(H+ QEH)jx) _JTElax

On the other hand, by definition, we have ng.s = J' (ég + (H + EH)J %). Therefore, by

comparing the two, we can derive,
q'éc=q" <"7G;S +J Enlq - JTE;JQ) =4 nas

Combing the above equality and Lemma 4 proves the equality. [
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Finally, we use Lemma 5 and the previous result and conclude

G(a, )q) — —4'B(q,q)ql

[\DI»—t

d . N
@V(q, q)=-q B(q,q)a+4q" ( Naes(a,q) +

C.3 Proof of Theorem 2

Theorem 2. Suppose every leaf node is a GDS with a metric matrix in the form R(x) +

L(x) "D(x, x)L(x) for differentiable functions R, L, and D satisfying

R(x) =0,  D(x,x) = diag((di(x,9:))iz1) = 0, §:0y,di(x,9:) 2 0

where x is the coordinate of the leaf-node manifold and y = Lx € R". It holds Eg(q, q) =
0. If further G(q,q),B(q,q) = 0, then M € R, and the global RMP generated by

RMPflow converges to the forward invariant set Co, in Corollary 2.
Proof. Let A(x,%x) = R(x) + L(x) "D(x,x)L(x). The proof of the theorem is straight-
forward, if we show that E4 (x,x) = 0. To see this, suppose L = R"*". Let ij be the

jthrow L, respectively. By definition of 24 (x, %) we can write

(11

%) = %i 0 (x, %)
T i i 05(D (. L, (x)
lelx i (dj(x,95) Ljs(x)e;)
x)T i (i Lﬁ<x)g;~i> 0y, d;(x, §;)ejw]
Z% (%, 95)ej;

= L(x) " Ep(x, x)L(x)
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where e; the jth canonical basis and Ep(x, x) = sdiag((9y,d;(x, 9;))1,). Therefore, un-
der the assumption that d;,d;(x, y;) > 0, Ea(x,%) = 0. This further implies E¢(q, q) = 0
by Theorem 1.

The stability of the entire system follows naturally from the rule of pullback, which
ensures that M,(q,q) = M(q,q) = G(q,q) + Eg(q,q) > 0 given that the leaf-node
condition is satisfied. Consequently, the condition in Corollary 2 holds and the convergence

to Co 1s guaranteed. [ |
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APPENDIX D
RMPFLOW AND RECURSIVE NEWTON-EULER

The policy generation procedure of RMPflow is closely related to the algorithms [140]
for computing forward dynamics (i.e. computing accelerations given forces) based on re-
cursive Newton-Euler algorithm. In a summary, these algorithms computes the forward

dynamics in following steps:
1. It propagates positions and velocities from the base to the end-effector.

2. It computes the Coriollis force by backward propagating the inverse dynamics of

each link under the condition that the acceleration is zero.

3. It computes the (full/upper-triangular/lower-triangular) joint inertia matrix.

4. It solves a linear system of equations to obtain the joint acceleration.

In [140], they assume a recursive Newton-Euler algorithm (RNE) for inverse dynamics is
given, and realize Step 1 and Step 2 above by calling the RNE subroutine. The computation
of Step 3 depends on which part of the inertia matrix is computed. In particular, their
Method 3 (also called the Composite-Rigid-Body Algorithm in [157, Chapter 6]) computes
the upper triangle part of the inertia matrix by a backward propagation from the end-effector
to the base.

RMPflow can also be used to compute forward dynamics, when we set the leaf-node
GDS as the constant inertia system on the body frame of each link and we set the trans-
formation in the RMP-tree as the change of coordinates across of robot links. This works
because we show GDSs cover SMSs as a special case, and at root node the effective dy-
namics is the pullback GDS, which in this case is the effective robot dynamics defined by

the inertia matrix of each link.
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We can use this special case to compare RMPflow with the above procedure. We
see that the forward pass of RMPflow is equivalent to Step 1, and the backward pass of
RMPflow is equivalent of Step 2 and Step 3, and the final resolve operation is equivalent
to Step 4.

Despite similarity, the main difference is that RMPflow computes the force and the
inertia matrix in a single backward pass to exploit shared computations. This change is im-
portant, especially, the number of subtasks are large, e.g., in avoiding multiples obstacles.
In addition, the design of RMPflow generalizes these classical computational procedures
(e.g. designed only for rigid bodies, rotational/prismatic joints) to handle abstract and even
non-Euclidean task spaces that have velocity-dependent metrics/inertias. This extension
provides a unified framework of different algorithms and results in an expressive class of

motion policies.
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APPENDIX E
PROOFS OF RMPFUSION ANALYSIS

Here we provide the proof of Theorem 3. We use Theorem 1 as the main lemma in this
proof. Using the recursive property, it is sufficient to show that pullback* preserves a
family of structured GDSs, which are specified by the weight functions. Then the statement
of Theorem 3 follows directly as in Appendix C.

We proceed by first decoupling the pullback* into two steps. Let u be a parent node
on manifold M and {v; }X_| be its K child nodes on manifold {\}}X | in an RMP-tree*.
Between u and each vy, we add an extra node v, on manifold M to create a new graph. In
this new graph, u has K child nodes {0y, }*_, with identity transformation and the original
weight function wy, and vy has a single child which is vy with the original transformation
from u to v, and an identity weight function. Under this construction, the pullback*
operator in the original graph can then be realized in the new graph as (i) a pullback*
operator from vy, to vy for each k; (ii) a pul 1back* operator from {ﬂk}le to u. To verify

this we rewrite Eq. (6.1) as

=0 wd] (£ —Mdix) + b, = Y5 wf +h

L=y wl =Y wlk

where we also has h; = h; = L,V w; — (}'{Twai)GiX. That is, node ¥, has the RMP
(f’i, 1\7[1)/0‘/‘, the metric matrix G;, and the Lagrangian L;. From the equalities above, we
verify the two-step decomposition of pullback™ is valid.

Next we show that each step in the two-step decomposition yields a structured GDS like
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Lemma 1, which is sufficient condition we need to prove Theorem 3. In the first step from

v; to v;, because the weight is constant identity, pul 1back™ is the same as pullback. We

apply Lemma 1 and conclude that 9; follows (M, Gi, Bi, i)l) §,» Where S’i preserves S;.
Then we show the second step from {7; } X, to u has similar properties. This is summa-

rized as Lemma 6 below.

Lemma 6. If &; follows (M, G, B;, &)i)gi, then u follows (M, G, B, ®)g, where S pre-
serves S;, G = Zfil w;G;, B = Zfil w;B;, and ® = Zfil w; ®;.

Proof of Lemma 6. This can be shown by algebraically comparing the dynamics of
(M, G, B, ®)s and the result of Eq. (6.1). Let x be a coordinate of M and, without loss of
generality, let us consider wy, to be a function of only x (we ignore the dependency on the

auxiliary state). By Eq. (5.23), the dynamics of (M, G, B, @) satisfies
M(x, %)X + ng.s(x,%) = —Vx@(x) — B(x,%)x (E.1)

We first show the recursion of f of pullback* satisfies Eq. (E.1). To this end, we rewrite

Na.s by Eq. (5.23) as

NG;s (X7 X) = Zfil €wiéi (X’ X)
= 21};1 W; (X)’r’éi (X7 X) + (XTvxwi (X))é‘i(xa X)X

— %wai(x)XTéi(x, X)X

where in the first equality we use the trick we made that the transformation from u to vy, is

identity and we use the fact S; preserves .S;, so the structure S that preserves S; has a clean
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structure

Similarly, we rewrite V,®(x) = S5 w;(x)Vy®(x) + ®;V,w;(x). Substituting these

two equalities into Eq. (E.1), we can write (with input dependency omitted)

M = —V,® — Bx — na.s
= Zfil —w; Ve ®; — O, Viw; — w;Bx

+ 8 —wmg, — (X V) Gix + 1V wix T Gix
=3k wif + 1Vawix Gix — &, Vyw; — (X7 Vyw;) Gk

=S5 wif +

where we use the fact that ﬂ = —chf)i — Bp’c— Na,.s, as v; follows (M, Gi, Bi, éi)& with
S; preserving S;. This is exactly the recursion of f when pullback* is applied between ¥
and u,ie. f = Mx = Zfil w;f; + h.

To establish the equivalence of the other recursions, we next rewrite M as

M(x, %) = G(x,%) + Eg(x, %)

where we use the fact that w; does not on the velocity x. The recursion for G and L can be

derived similarly, so we omit them here. [ |

So far we have shown that pullback* of RMPfusion retains the closure of structured
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GDSs as pullback in RMPflow. In addition, we show that the structured GDS created by
pullback* has a linearly weighted metric matrix, damping matrix, and potential function
(cf. Lemma 6). By recursively applying the two-step decomposition above, from the leaf
nodes to the root node, we conclude that the root node policy will be a structured GDS
with an energy given by the recursion in Eq. (6.2). The rest of the statement of Theorem 3

follows from the properties of structured GDSs.
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