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CHAPTER I

INTRODUCTION

A program for the development of a mathematical science of com-
putation was begun in 1963 by J. McCarthy with his publication of two
papers [13,14] which expounded the basis and aspirations of such a
theory. The second step in the program was made in 1967 by R. J. Orgass
and F. B. Fitch [17,18]. Orgass and Fitch presented a formal system of
combinatory logic and demonstrated its adequacy for representing all
the entities to be studied by a theory of computation. They established
the linguistic base. This paper suggests that the third step is the
explication of the algebraic structures that ensue from the linguistic
formalization. At the level of algebraic structures the relationship of
computation to other areas of mathematics will become clear. Further-

more, it will become possible to study the models of interesting lin-
guistic systems with known and powerful algebraic methods. We proceed

to recount the first two developments and to motivate the third.

A Basis for Computation

The basis proposed by McCarthy included a statement of the
objects of study of the proposed science and a sample of the kinds of
theorems about these objects that an appropriate theory would yield.
Problems, procedures, data spaces, programs, programming languages and

computers were the objects of study and they were related to each other



in [13] as follows. A problem was defined by its solution acceptance
criterion; a procedure together with a data space prescribed a method
of meeting the acceptance test, hence solving the problem. Procedures
and data spaces were to be defined in a precise manner after the fashion
of the construction of primitive recursive functions so that complex
procedures were to be constructed from elementary ones and similarly
for data spaces. The relationship between them was that procedures
are operations closed on data spaces. Programs are linguistic expres-
sions of procedures and, of course, programming languages are the
linguistic complexes which govern the construction of programs. Com-
puters are finite automata which execute programs. These were the
objects of study of computation according to the proposal.

We wish to prove theorems about the relationships that exist
between categories of objects and among the objects of a given category.
A specific problem can be solved by any one of several procedures, each
of these may be realized in any one of several programming languages
and each of these may be executed on a wide selection of computers.

This wealth of possibilities leads us to seek a theory of computation
with sufficient power to prove theorems of the following kinds:

(1) Problems of the type Tl’T ,T_ can be solved only by

IR

procedures having properties Pl’PQ""’Pm’
(2) Programming language PLi is capable of expressing procedures

P .

having properties Pl,P2,... n

(3) Procedure Pi translates programs written in PLi to equiva-

lent programs in PLj'



(4) Programming language PLi can express procedures that com-
puter Cj cannot compute.
(5) Computer Ci can compute everything that computer Cj can

compute.

All of these statements are qualitative but of course we wish eventually
to have a quantitative theory. Within a quantitative theory one could
state various criteria of optimality and would be able to state pre-
cisely how one procedure compares with another; how one computer com-
pares with another, etc. All of McCarthy's originally stated aspira-
tions for the science of computation are included in the above examples.
Many papers were produced in the wake of McCarthy's clarifica-
tion of the scope of computation, each of them attempting to deal with
an isolated problem or sub-area. For example, the problem of proving
the equivalence of two procedures expressed in a canonical notation has
been dealt with, for several canonical notations. Programming languages

were formulated in such a way that proofs about programs expressed in

them could be devised. Mathematical procedures and formalisms from
recursive function theory have been construed as programming languages
and machines in the hope of obtaining guidance in the development of
programming languages. Notable among these are the Markov algorithms,
Post systems, Thue systems, and the lambda calculi. Studies in the
syntax and semantics of programming languages are numerous. Indeed,
there is one for every type of language now in use as well as several
that were designed especially for the occasion. One may read a docu-

mented account of these efforts in the introduction to the dissertation



of R. Orgass [15] and in a survey of this field compiled by J. G.

Sanderson [22].

A Formal System for Computation

Orgass recognized the need for a unifying treatment of the syn-
tax and semantics of programming languages. In the course of achieving
a theory in which both syntax and semantics could be formulated, Orgass
chose a formulation that included both the classical theory of computa-
tion and the ability to model computing machines and allied utilities.
The chosen system is combinatory logic based on the minimal logic of
Fitch [3,4]. Thus the system 1s basic in the sense of Fitch. This
means that every system of logic is definable within it. The original
intent of this capability was recovery of the systems of logic developed
from Principia Mathematica through the 1930's. The present, added sig-
nificance of this capability is that the various objects and processes
of computation can be obtained in the combinatory system. Within this
system of combinatory logic, Orgass develops the following: (1) A
representation of natural numbers, (2) a representation of each partial
recursive function, (3) a representation of each n-ary predicate in the
Kleene-Mostowski hierarchy, (4) a representation of each primitive
recursive, recursive and recursively enumerable relation among formulas
of the system, (5) a representation of ordered n-tuples, (6) represen-
tations of computer memories, instructions, central processors and
computations, and (7) a representation for each programming language
and, for several concepts of the meaning of a program, the relation of

a program to its meaning. Hence, we now have an adequate and uniform



formal description of the objects of interest in a science of computa-
tion.

In [16] Orgass demonstrates the manner in which his theory deals
with problems of practical interest. Several notions of equivalence of
computations, equivalence of programs and of the relation of a program
to the function it causes a computer to compute are formulated. In each
case the system of combinatory logic is shown to be negation complete.
There is a formula in the system that is a theorem just in the case
that the relation holds and its negation is a theorem just in the case
that the relation fails to hold. The approach used is general. The
results that are obtained hold for classes of computers and programming
languages. Thus, this theory is of much greater interest than the
parochial results obtained heretofore.

The work of Orgass provides us with a universal locus and logic
for the problems of computation. The importance of this step forward
in the establishment of a science of computation cannot be overestimated.
We are now in the position of being able to identify a precise logical
nature for the objects of computation and their interrelations. Never-
theless, there are some unavoidable limitations of any program of
representation since we must still deal with the individual problems
or class of problems in a piecemeal fashion. A problem or class of
problems is given a combinatory alter ego and then we seek a solution
to the problems in their combinatory setting. There may be a wide
variety of combinatory settings for such problems and a wide variety

of combinatory tools for their solution. A level of uniformity has



been gained since settings and tools are all combinatory. Yet it may
be possible to take a further unifying step. We here propose to take
such a further step by characterizing the algebra of a portion of
combinatory logic that seems to offer an adequate setting and furnish
reasonable tools for the solution of a wide range of problems of

computation.

An Algebra for Computation

We call a theory of the character described by McCarthy a
predictive theory, for obvious reasons. The theory developed in this
paper is a suggestive theory in that it suggests a continuing develop-
ment that shows a great deal of promise for leading to a fully predic-
tive theory. Suggestive and predictive theories are also characterized
by their qualitative and quantitative properties, respectively. Thus,
we cannot actually solve any of the problems posed earlier; however, we
can show them in a setting in which they will be solvable when the
necessary measures are developed. It is an important aspect of the
setting that it is conducive to a development of measures. Our approach
to the development of this theory is as follows.

Every postulate system determines a class of structures. Each
member of a structure is a model of the system. It is now a workable
thesis that all the intuitive problems of computation can be expressed
in a combinatory logic. If we could characterize an algebra of com-
binatory logic, then all the models of this logic would be at hand and

we could use the resources of algebraic theory and model theory to



provide us with those broad and general results that characterize an
ideally mature science.

As a matter of fact, the algebraic structure of combinatory
logic has not yet been explicated. However, for the purposes of the
science of computation it may not be necessary to have the algebra of
all of combinatory logic. If certain economies can be realized in
the linguistic base and the portion of combinatory logic that is neces-
sary and sufficient to the study of computation can be identified, then
only the algebra of this portion must be determined. One may hope that
such a restriction of the algebraic problem will expedite its solution.

This hope has been realized and is reported in [19,20]. Some of

\
the details of this work will be brought out in the next section; at
this time it is necessary only to say that a subset of combinatory
logic has been proved necessary and sufficient for the study of hardware
structures and that a similar subset has been proved necessary and suf-
ficient for the study of software structures. The strategy in this
dissertation is to determine the algebra appropriate to the distin-
guished subset of combinators. This algebra is developed in Chapter III
and shown to be a transformation Boolean algebra with non-increasing,
normed, additive, and idempotent operators. The contribution that this
dissertation makes to information and computer science is the explica-

tion of the algebra of computation.

Plan of Presentation

Chapter II is devoted to the presentation of the Boolean and

combinatory basis on which this research rests. The broadest setting



within which this research takes place is now termed the theory of
models. The character of the theory of models is presented. Within
the theory of models, the development of the theory of Boolean algebras
with structure preserving operators is outstanding. Combinatory logic
is fundamental to this research program but it does not appear explicitly
in the algebraic development. Therefore, the presentation here is
directed toward the representation of hardware and software structures
which are part of the mathematical basis. The combinatory basis is
completed with the sections on the representation of hardware and soft-
ware facilities in combinatory logic.

The algebras of computation and computers are developed in
Chapter III. The appropriate concepts in Boolean duality which lead
to computation spaces are also developed there.

Chapter IV contains the concluding remarks. Some limitations
to the algebraic approach have been found and these are discussed. We

also discuss the advantages of the algebraic approach and make some

suggestions as to how the limitations might be overcome. A number of
possible further algebraic studies are suggested. The chapter is con-
cluded with a brief summary of the motivation, the algebraic develop-

ment, and the results.



CHAPTER 11

BOOLEAN AND COMBINATORY BASIS

Boolean Algebras with Operators

The theory of models (see Tarski [23]) is a part of the semantics
of axiomatic systems. Each axiom system determines a set of sentences
and every mathematical system in which every provable sentence of the
axiom system holds is a model of the axiom system. Thus, a class of
models is associated with each axiom system. An objective of the theory
of models is to transfer linguistic problems to a mathematical setting
so that mathematical methods can be employed in solving the problems.
Formal properties of the axiom system become structural properties of
the models and the mathematically determined properties of the models
lead to formal properties of the linguistic systems.

Tarski [11,12] points out that several significant new algebras
have been obtained in recent years via the generalization of models
developed for specific formal systems. For example, Halmos [6,7]
obtained polyadic algebras as the structures of the predicate calculus
and Tarski [9,10] obtained cylindric algebras for the same system.
Other examples are the development of closure algebras, projective
algebras and relation algebras. All of these systems have the same
algebraic structures; they are Boolean algebras with operators. The
algebraic structures appropriate to computation are shown in the next

chapter to also be Boolean algebras with operators.
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Each of these algebras presents its developer with the mathe-
matical obligation of establishing its identity through a representation
theorem. In the work that follows we present two representation theo-
rems. The first (Theorem 19) is the natural representation theorem in
that it establishes a theory of models for the abstract algebras in
question on the basis of the paradigm which motivated the algebras. The
second (Theorem 26) is a representation that follows on Boolean con-
siderations only. By combining the results of Jonsson and Tarski [11,
12] in a general study of Boolean algebras with hemimorphic operators,
and of Halmos [8] in the general theory of Boolean duality, with the
representation theory for Boolean algebras, we were able to obtain the
topological dual of the algebras developed in the next chapter. This
topological dual identifies the algebras in question in the larger
mathematical setting.

Throughout this thesis the well-known developments in the theory

of Boolean algebras are assumed.

System of Combinatory Logic

The system of combinatory logic used in the representation of
hardware and software structures is completely formalized and applica-
tive and is presented in the format prescribed in Curry and Feys [2].

Combinatory System H

A. Objects (ob)
(1) The primitive objects are constants S, K, and perhaps others.

(2) The primitive operation is application and is indicated by
juxtaposition.
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(3) If a and b are obs then (ab) is an ob. (Association
is to the left unless explicitly indicated.)

B. Elementary Theorems
(1) The axioms are:
(i) a = a for any ob a.

(ii) Sxyz = xz(yz) where x, y, z are indeterminants
with respect to H.

(iii) Kxy = x (x,y, and z as above).

(2) The rules of inference, for obs a, b, and ¢, are:

(i) If a = b, then b = a.

(ii) If a=b and b = ¢, then a = c.
(iii) If a = b, then ac = bec.
(iv) If a = b, then ca = cb.

The system that includes among its objects the indeterminants of
H is called an object extension of H. The definition of such an exten-
sion must list the indeterminants with the primitive objects and extend
the domain of applicability of the axioms and rules to the new set of
atoms. Also, the principle of extensionality must be included in the
rules of inference.

Principle of Extensionality. If x does not occur in a or b,

then ax = bx implies a = b where x is an indeterminant with respect to
H and a and b are obs over the extension.

Equality is used in the sequel in the sense of extensional
equivalence for the system H.

Some applicative formal systems have the property of combina-

torial completeness which asserts for each function definable
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intuitively via substitution of constants for indeterminants the
existence of a formal object to which the intuitive function is con-
gruent. In Curry and Feys it is proved that the system H has the
property of combinatorial completeness. Thus, the intuitive functions
are defined in terms of S and K. The following is a list of the usual
combinators, which represent basic functions, which facilitate manipu-
lation of combinators. Explicit definition is indicated '=df'.

1. I =df (SKK)

2. 0 =df (KI)

3. W =df (SS0)

4. B =df (S(KS)K)
5. C =df(S(BBS)(KK))
6. T =df(CI)

7. N =df (CIOQ)
8. V =df W(BC(BW(B(BB(C(BB(BWN))IN)))))

For any combinator X the following recursive definition schemata

hold.
9. x¥ =df I
L Zar (Bxd®)
10. X, .. =df X
(0)
£ (BX
X(ns1) ~9F (BX( )
11. X. o =df I
Lol
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12, x0 zaf 1
[ e (mxeext )
(n) _
13, 1" =g o I
1. x™) zge (M)
lol
(n) _ [2k] (n)
Aia] 95 © B0k
(n) (n)
i =df X
1o ) B
(n) _ [k] (n)
X1 |79 C Xy

Combinatory Definability of Hardware and Software

Poore, Baralt, and Chiaraviglio [19,20] have exhibited the sub-
sets of combinatory logic that are appropriate to the study of hardware
and software structures. In order to convey the significance of the
Hardware Definability Theorem of [19] and the Software Definability
Theorem of [20] as expeditiously as possible, a number of definitions
and procedural details are suppressed in the present treatment.

Consider now several combinators that are defined intuitively.
Since the underlying system of logic is combinatorially complete, all
of the following combinators have formal definitions which may be found
in the above cited papers. Using the notational abbreviations 'x' for

! 1 ! 1]
L SEOTRRE for (((XlXQ)XS)"'Xn) we have

L(n);( -

a = ax,
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N(k’n)L(k)(L(n)i) - L(k)(L(n)N;),
W(k’n)(L(k)(L(n)g)) (L(k)(L(n)§)) - L(k)[L(n)(m))

Now let

S {L(k)(L(n);()]xie{O,I}}

and we can state Theorem 1.

Theorem 1. (G(k,n)’w(k,n)’N(k,n)) is a Boolean algebra isomor-

phic to the Boolean algebra (({O,l}n)k,+,').
The following are explicit definitions within the combinatory
system that describe the combinators central to the definability of

hardware and software.

16. D =ar L@ P35
(n.)_
17. M, =df L Iz

[2] (n.+1) (n.)
18. H, =df c"“(t(L 1 v, ID)w._ 0
i Inj| [nj]

19. 7z =4f L(k)(H.M.)
s 1]

- (23, (2), (k+1)_ (k)
20. E =df N(Q)(C (L Ilk|)JJ(w[k]O)
(mt)
21. Y =df L (EZ_)

22. Q =df T[S[m ](K(W[m ]o)]J
t t
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(h.)

i ——

23. Xi =df L (Qth)

(h))
24. G, =df T(S[hi](KL ))
25. r =ar LT ED
11
- (%)
26. A =df T[SEQ](KL ))

27. P =df Ar

Six parameters are identified in the above list of explicit
definitions as follows: (1) k is the length of an input sentence,
(2) nj is the length of a jth word of an input sentence, (3) & is
the length of an output sentence, (4) h. is the length of an ith output
word in an output sentence, (5) t is the tth bit position in a word of
an output sentence, and (6) m, is the number of min-terms of which the
tth bit of the output is a function.

It is clear from Theorem 1 that if in explicit definition 16 the
nj are constant, then D is the schema for elements of the (On)k algebra.
The following theorem is then proved in [19].

n

Theorem 2. Every transformation from (On)k to (0 )}< is repre-

sented by a combinator of the form P provided k = 1 and N, = ... =3

hl = ... 0= hk'
If a hardware facility, i.e., a computer, is taken to be a set

of states together with a set of state transition functions, then the

Theorems 1 and 2 combined are the hardware definability theorem.
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Theorem 3 (Hardware Definability Theorem). Every hardware

facility is uniquely definable in a set of combinators G(k’n) which
represent the states and in combinators of the form P, with the
parameters appropriately restricted, which represent state transition
functions.

Software structure refers collectively to data structures and
programs. Intuitively, trees, lists, matrices, etc. are particular
data structures. These are included in the more general notion adopted
here that data structures are relations on finite sets the fields of
which may again be data structures. In particular, we are interested

n n n

in data structures on the Cartesian product 0 1 x 0 2 X ...x0"™

where
0 = {0,1}. The extensions of programs are functions from one data
Structure to another. These concepts are defined in [20] as follows.

Definition 1 (Data Structures). Let J be any finite subset of

the set of all d for which there are positive integers ny,N,,.. 0,0

n, n, n
such that d is a subset of 0O x 0 X ... x0

m

m Then the set of all

data structures of depth two, T, is given by
T = {D:D = W for some J}.

Definition 2 (Programs). The extensions of programs on data

structures of depth two is given by

P={p:p: D, ~ D,s for some D1 and D, in T}
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If p is the extension of a program with domain D, and range D

1 2°
then the length £ of the longest sentence and the length m of the
longest word occurring in D1UD2 can be found. There exists a one-to-one
code assignment c which maps D1UD2 into the set of states (Ow) : Then
c(Dl) and c(Dz) are subsets of (OW)JKand the function p is mirrored

in the partial state transition function cpc_l. Clearly, the
combinators of explicit definition 27, with the parameters unrestricted,
represent programs in extension while the combinators of 16 represent

elements of data structures.

Theorem 4 (Software Definability Theorem). Every data structure

in T has a unique combinatory representation and every extension of a
program is uniquely represented by a combinator of the form P and

conversely.
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CHAPTER III

THE ALGEBRAS OF COMPUTATION AND COMPUTERS

Introduction

The work summarized in the last section shows that the combina-
tors of interest are tied to Boolean functions which are ultimately
definable in terms of the one-bit reset functions and the bit Boolean
operations. We there took hardware structures to be pairs @On)k,G)
formed by all the k-long vectors of 0,1-valued functions of n-variables
together with a selection G from all the mappings of (On)k into (On)k.
Software structures differed from hardware structures in that they
could be composed of vectors of non-uniform lengths of 0,l-valued func-
tions of non-uniform numbers of variables and, as a consequence, the
set of mappings that represented extensions of programs would be
defined on such non-uniform vectors.

Hardware and software structures so conceived are related by a
two-dimensional abstraction to the real world entities that concern us.
Along one dimension in the case of hardware we abstract from the switch-
ing theoretic structures that implement the state transitions, the
wired in operations in G. Along the same dimension in the case of soft-
ware we abstract from the syntactical devices that are used to specify
the actions commanded by a program. Along the second dimension, hard-
ware structures abstract from the set of behaviors that characterize a

computer. Similarly, along this dimension software structures abstract
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from the fact that programs are not merely mappings but are also
imperatives calling for a behavior.

In this section we wish to show how these abstractions, hardware
and software structures, are related to what we call computation alge-
bras. Also we shall develop further the abstract concept of the com-
puter so as to be able to encompass in an algebraic setting some of the
aspects of computer behavior.

While all the sets obtained from {0,1} by dint of iterating
Cartesian products are either product Boolean algebras or are allied to
such algebras by relatively simple coding expediencies, it does not fol-
low that this Boolean structure is germane to either the wired in
operations of a computer or the operatives present in a language. Let
us suppose that we are dealing with a hardware structure (On,G). It
may be the case that some or all of the elements of G are neither
recoverable with the Boolean operators in the product algebra 0" nor do
they preserve any of the Boolean structure of om.

A computation algebra is a Boolean algebra together with trans-
formation operators, which are endomorphisms, and reset operators,
which are hemimorphisms. Having given the states of a hardware facility
the structure of a Boolean algebra, our objective is to recover arbi-
trary state transition functions in terms of structure preserving func-
tions on the Boolean algebra in question or on algebras systematically
related to them. A larger algebra is required to recover arbitrary
functions in terms of endomorphisms than that required to recover such

functions in terms of the operations that preserve only half the Boolean



20

structure, and both of these algebras are larger than the one
originally given.

A simple example will show the necessity of seeking structure
preserving operators in an algebra larger than the one formed by the
states. The nature of such larger algebras is developed in a later
section. Let
=01, f

0% = (£,=00, f =10, £,=11}

2 3

and let g map 0? into O2 as defined by

1t
Hh

g(fl)

2
g(f2) = £,
g(f3) = £,

and
g(fu) = fl

Thus, we seek an input-output relation of

((00,01),(01,10),(10,11),(11,00))

We have in the set and reset operations the ability to map bits into
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{1} and {0}, respectively, and we have in the transformations the
ability to permute bits and to copy the bit at one position into another
position. A reset of one bit applied to either column eqguates two of
the arguments and this eguality must stand under subsequent application
of any function. Therefore, in view of the one-cne character of g,
neither sets nor resets can be used in the recovery of g. Any trans-
formation that performs a copying function will also equate two argu-
ments. Thus, we are left with transformations . a cyclic nature. But
such transformations perform cycles of order two whereas the problem
demands a cyclic permutation of order four. Clearly, we must seek
operators in a larger algebra than that of the states. One problem of
this section is how we must conceive of a computation algebra such that
the operations in G are mirrored by the operations in the algebra. This
problem may be only of theoretical importance in the case of computers
if in fact the preponderance of wired in instructions is intimately
related to Boolean operators. The followin; table of wired in actions

illustrates some of these relationships.

Table 1. Boolean Character of Computer Actions

Boolean Operations and

Computer Elements Preserved y

Action . + - 0 1 one-one

Word Shift yes yes no yes no no

Word Rotate yes yes yes yes yes yes

Move (Load, yes yes yes yes yes no
Store, Jump)

Increment no no no no no yes

Complement no no yes no no yes




22

In this short list of typical computer instructions we find
isomorphisms, homomorphisms, hemimorphisms, and functions that do not
preserve any of the Boolean structure.

Another central problem of this section is what to ally to hard-
ware structures in order to represent some important aspects of computer
behavior. It is known or it is assumed that digital computers are a
variety of finite state machines. Thus a possible first step is to
represent such machines in computers. The concept that seems to be
reasonable is that of a control unit.

A control unit CG for a hardware structure (On,G) is a mapping
of 0" into G. The behavior that carries the computer from any state f

1

in 0" at some time t, into a state f2 in 0" at time ty is the CG(fl),

where tl is the immediate successor of tO. Thus the state f2 at tl is

CG(fl)fl' So conceived, the computer is a very restricted machine
whose state at any time tn’ the nth power of the immediate successor

time function applied to t is uniquely determined by the initial

O’

state, the state at time t Many different states may call the same

0
behavior. The set of states that call on the same behavior as the state
f is CG-l[CG(f)). Thus, CG defines a partition on On, On/E, where Efh
if and only if, CG(f) = CG(h). If CG(f) = CG(h) then CG(f)h = CG(h)h
and CG(h)f = CG(f)f.

In the very restricted machine realized by the computer it makes
limited sense to talk about the sequencing of states relative to a
yield a

sequence of inputs. Two inputs fl,f in the sequence f

2 lf2

sequence of states:
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Co(£,£,)E, = CG(£,) (ca(£)f )

CG(fl)fo is the ""first" state obtained from the state fo on the input
£, and CG(fQ)(CG(fl)fO] is the 'second'" state obtained from the "first"
state on the input f2. But it is most important to note that the above
equation makes sense only if fl is in the equivalence class of fo and
£, is in the equivalence class of CG(fl)fO. In other words the
sequence of inputs to a computer is uniquely determined up to an
equivalence by the initial input and the initial input is fixed up to
an equivalence by the initial state.

Nevertheless, computers are able to model machines that do not
have such restrictions provided they are large enough. That is to say
that the equivalence class in 0"/E must have at least as many members
as the unrestricted machine has states. Thus for example inputs could

be coded in the leftmost segments of the vectors in 0" and states of

the finite state machine could be coded to the right. Thereby, the

Cartesian product of the set of coded inputs with the set of coded
states would yield 0". The control unit would call for the proper
state transition function for each input-state pair. Such a coding
procedure would model a linear bounded automaton. Infinite and un-
bounded automata could be recovered in hardware structures of the

appropriate cardinality.

Computation Algebras and Computers

The intuitive ideas of the preceding section will now be made

precise.
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Definition 3. Let O be the simple Boolean algebra and let I

denote the set of positive integers. Alsc consider the Boolean algebra

A= (0F,4,0,-,1)

where the operations are the coordinate-wise induced operations and the
0 and 1 of 4 are the constant functions on I whose values are 0 and 1,
respectively.

We now define two sets of transformations, one on the index set
I and the other on the Boolean algebra A4.

Definition 4. Let E be the set of all mappings e:I+I for which

there exists a finite subset J of I such that e is equal to the identity
transformation d outside of J.

Definition 5. Let T be the set of all transformations T(e) from

A into A such that for all e in E and p in A,
[T(e)) (p) = pee
Theorem 5. The elements of T are Boolean endomorphisms on A4.
Proof. Let T(e) be in T and let p be an arbitrary element in
A. Then

T(e)(p) = pee

and clearly pee maps I into {0,1}. Hence T(e)(p) is a member of A and
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the range of T(e) is a subset of A. Again, let p be an arbitrary ele-

ment of A. Then
T(e)(p') = p'oe = (pee)' = (T(e)(p))"
The inner equality holds since the 'not' is defined coordinate-wise and
(p'ee)(i) = p'(e(i)) = [p(e(i)J]'
for i in I. Similarly, for arbitrary p and q in A

T(e)(p+q) = (ptqlee = (pee) + (qgoe)
and
(pee) + (gee) = T(e)(p) + T(e)(q)
Hence T(e) is a homomorphism. We have at this point what 1is called a

transformation algebra.

Definition 6. A transformaiion algebra is a triple (4,I1,S),

where A is a Boolean algebra, I is a set, and S is a function from

transformations on I to Boolean endomorphisms on 4, such that

S{(d)p = p

whenever p belongs to A and 4 is the identity transformation on I, and
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S(s)oS{t) = S(set)

whenever s and t are transformations on I.

Theorem 6. The triple (4,I,T) is a transformation algebra,
where A and 1 are as in definition 3 and T is a mapping from trans-
formations on I to Boolean endomorphisms on A as in definition 5.

Proof. Since d is the identity in E,
T(d)(p) = ped = p

for arbitrary p in A; therefore, T(d) is the identity endomorphism.

Let p be an arbitrary element of A and let s and t be arbitrary elements

of E. We have

T(sot) (p(1i)) = p((set)(1)) = p[s(tu))]

and

(T(s)oT(1)) (p(1)) = T(s)[T(t)(p(i)j]
T(S)[T(t)(p(i))] = T(S)[p[t(i))J = p[s(t(i))}
Thus, the second axiom of a transformation algebra,

T(sot) = (T(s)oT(t))
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holds in the present instance.

Definition 7. A mapping f from transformation algebra (4,I,T)

onto transformation algebra (B,I,S) is a transformation nomomorphism if

f is a Boolean homomorphism from A4 to B and

£(T(s)p) = s(s)fp

whenever p belongs to A.

Definition 8. A subset M of A is a transformation ideal of

(4,I,T) if M is a Boolean ideal of 4 and T(s)p belongs to M whenever p
belongs to M.

In addition to the transformation operations we consider a new
kind of operator that is normed, idempotent, additive, multiplicative,
and non-increasing. Such an operator is called a reset operator.

Definition 9. A reset operator is a mapping from a Boolean

algebra into itself such that:

(1) ReR =R

(2) R(ptq) = R(p) + R(q)

(3) R(p) =p

() R(p') = R(R(p))"

(5) R(p-q) = Rp*Rq
for p and g elements of the Boolean algebra.

Of course, definition 9 is a generalization of the specific class
of operators that suggest themselves for computation. All that is needed

for computation is a single position reset operator, transformations, and



28

composition in order to get general reset operations. However, some
tedium can be avoided by taking the higher definition that follows.

Definition 10. Let J be a finite subset of I and define

R(J):A+A such that on I - J

R(J)p(i) = p(i)

and on J

R(J)p(i) = 0

for p in A.
Theorem 7. The R(J) of definition 10 are reset operators.

Proof. It is obvious that R(J) is idempotent, multiplicative,

and additive. Since the domain of R is the Boolean algebra 4, the

relation < is the coordinate-wise induced relation. Therefore,
p(1),p(2),ee.sp(i),ees < gq(1),q(2),...,a(i),...

if and only if p(i) < q(i) for every i in I. Now it is equally obvious
that R(J)p < p. (R(J)p)' has the value p'(i) on I-J and 1 on J; there-
fore, R(J)(R(J)p)’ has the value p'(i) on I-J and 0 on J, which is the
same as R(J)p'. This establishes property Uu.

| A computation algebra can now be defined as a Boolean algebra
together with transformations and reset operators by specifying the
basic properties of the interaction between these two types of opera-

tors. We now define the central concept of this research.
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Definition 11 (Computation Algebra). A computation algebra is

a quadruple (C,I,T,R) where (C,I,T) is an atomic transformation Becolean
algebra, I is the set of positive integers, and R is a mapping from
finite subsets of 1 to reset operators on C such that:
(1) There is an atom a in C and a transformation
u(n) = n + m
for finite m such that

T(u)a' =1

(2) R(J)p = p*T(s)(a') where p is in C, a is the atom mentioned

in (1), and
Sy {1 for i in J .
s(1) _<Li for i in I-g[ T * 71
and
s(1) = (1 for 1 in J
- ik, where k is the least integer > 1 in I-J if léJ

Theorem 8. (4,I,T,R) is a computation algebra where 4 and I, T,
and R are as given in definitions 3, 5, and 10, respectively.

Proof. Clearly 4 is an atomic Boolean algebra and I is the set




of positive integers. Theorem 6 provides that (4,I,T) is an atomic
transformation algebra. Theorem 7 shows that the R(J) are reset
operators. In order to show that property (1) holds we exhibit the

distinguished atom a in OI, namely,
a(l) =1

a(i) = 0 for i > 1

and the distinguished transformation
u(i) =1 + 1

To show that property (2) holds we notice that

a' =011 ... 1
and that T(s)a', with s as defined in 11, yields the element in OI
which has the value 0 on J and 1 on I-J. The conjunction of such an

element with an element p yields the same result as R(J)p. Thus,

(4,I,T,R) is a computation algebra.

30

In order to gain familiarity with the reset operators, a number

of elementary properties will now be derived. The most important of

these are the normality and monotonicity of reset operators.
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Theorem 9. The reset operator is: (1) normed, (2) quasi-
additive, (3) monotone, and (4) quasi-multiplicative.
Proof. (1) is established by putting p = 0 in item (3) of

definition 9. Since R is additive and idempctent

" R(p+Rp) = Rp + RRq = Rn + Rq

establishing (2). We have p < q 1f and only if p+q = q. Let p+q = g

then using successively the fact that R is a function, R is additive,

and the biconditional just stated, we have

R(p+q) = Rq
Rp + Rg = Rq
Rp £ Rg

showing that R is monotonic. Since R is multiplicative and idempotent

R(p*Rg) = Rp*RRq = Rp*Rq

and R is quasi-multiplicative.
As it will be shown, the bit Boolean operations, the bit reset
operations, and the bit transformations are sufficient to recover in a

piecemeal fashion to be explained, all mappings of 4 into 4. However,
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in computation algebras it is not necessary to postulate both the bit
reset and complement. As the next definition shows, finite complement
operators can be obtained from reset operators, transformations, and
the operations that are available in any Boolean algebra.

Definition 12. For each finite subset J of I the complement

operator is defined by
C(J)p = {p‘-(R(J)l):J + R(J)p

The elementary properties of the complement operator are
established in the following theorem.

Theorem 10. The complement operator has the properties for J

and K finite subsets of I:

(1) c(J)eC(J) c(g)

C(J-K)

(2) c(J)eC(X)
(3) c()p' = {c)p)"
(Proof omitted.)

Several relationships exist among the Boolean operations, the
reset operations, the set operations (an obvious counterpart for the
reset operator), and the transformations, that are available in compu-
tation algebras. Familiarity with these interconnections often facili-
tates the work. It is clear from the definition of a computation alge-
bra that every reset operator can be obtained from the Boolean ‘'and’',

a distinguished atom of the algebra, and a transformation. A similar

remark would hold true for the set-operator. The unary 'and' operator
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and the unary 'or' operator for each element can be defined, in the

finite case, in terms of reset and set by
-1 -1
prq = R(p (0))q and ptq = S(p ~(1))q

. . . I
respectively. And if p and q are in 07, we need to allow that R(J) and
S(J) be defined for infinite J. The relationship between reset opera-
tors and set operators is first of all that the latter may be defined

in terms of the former per
s(dp = (RI)p')"

and secondly that any composition of set with reset, for example,
S(I)eR(J), can be expressed in terms of an operationally equivalent
composition which is furthermore commutative, namely, S(I)oR(J-I).

Definition 13. A computer (On,G,CG) is a hardware structure

(On,G) together with a mapping CG from o" into G.

Computers that are of particular interest are those built upon
computation algebras. Such computers have control units which have as
their ranges reset and transformation operations or operations composed
of resets and transformations. Consider the computation algebra
A = (OI,I,T,R) and the set PA which is the closure of the set of finite
resets, finite transformations, and finite Boolean operations under

functional composition. This algebra together with a mapping CU from

OI into PA forms a computer.
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Definition 14, A universal computer is a computer (A,PA,CU)

where CU is an onto mapping.

We say that a control unit is universal if it is an onto mapping.
Clearly, the intuitive appeal of universal control is that every pos-
sible procedure can be called. In general, computers have very
restricted initial sets of actions, and therefore do not have universal
control in the sense of being able to call every procedure.

A control unit, CU, is loecalized if and only if there is a J,

a finite subset of I, such that for any element g in OI:

cu(s(J)o+g) = cu(g)

Localized control says that only a finite and fixed portion of every
state determines the procedure assigned to states. Obviously, all con-

ventional computers have localized control, which is usually identified
as the program counter, instruction analyzer, etc. Indeed, this is
precisely the concept of buffering. Insofar as all memory-register
operations are actually buffer-register operations, the circuitry going
to all of memory being limited to fetch and store circuitry, the control
is localized to the buffer, rather than the memory, and the other cen-
tral processor control units.

Two observations are made concerning localized control. First,
there is no localized control unit for the universal computer. That is,

if CU is a universal control unit for the (OI,I,T,R) computation algebra
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then CU is not localized. Since CU is a function with a range of
cardinality Aleph-zero, at least this many elements of the algebra must
be discriminated by CU. Clearly, such a discrimination cannot be made
on the basis of a finite portion of the vectors in the algebra. Thus,
the CU is not a localized control unit.

The second observation is that every control unit for a conven-
tional computer is localized. This is obviously the case since the
state vectors are of finite length.

Gorn [5] has noted that one reason for the digital computer
being such a versatile tool is the presence of a certain ambiguity in
the use of memory. A word in memory may contain the code for a piece
of data or the code for an instruction depending, respectively, upon
whether the contents of the word are sent to the arithmetic unit or
the control unit. The same code may on one occasion play the role of
data and on another occasion play the role of an instruction.

Professor Gorn's statement concerning the ambiguity of process
and control may be paraphrased algebraically as follows. If f is an
element of 0" in the computer (On,G,CG) and CG(f)feCG_l(CG(f)), then
the instruction segment of f is unmodified by the operation of CG(f).
In our earlier terminology, f and CG(f)f belong to the same equivalence
class. If on the other hand cc(f)f¢cc"l(cc(f)), if f and CG(f)f do not
belong to the same equivalence class, then the instruction segment of f
has been modified by the operation CG(f). In the first case the in-
struction segment of f has not played the role of data; in the second

case it has. Thus sometimes the instruction segment may both call an
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operation and be operated on. It is in Gorn's sense ambiguous. It is
clear that not every segment of every f in 0" need be ambiguous in

this sense. It is also clear that in order to obtain at least one
transition from an equivalence class of states to another some ambipuity
is unavoidable.

It may be noted in passing that Gorn's sense of ambiguity, or
at least our interpretation of it, has nothing to do with indetermi-
nacy. In any computer as is here conceived each state determines a
unique procedure and therefore a unique next state. It may be also
noted that computers without some ambiguity are very uninteresting since
they are limited to the iteration of just one operation. The limit of
ambiguity is perhaps achieved by the universal computer since this
machine cannot have localized control, hence instruction segments can-
not be localized. Nevertheless, it is worthy of note that even this
computer can contain segments that never function as repositories of
instructions.

Three distinct concepts have thus far evolved which may be
viewed in a hierarchy of computational power. These are, in ascending
order, the computer, the universal computer, and the computation alge-
bra itself.

Computers have the power of finite state machines. The con-
catenatability of inputs to restricted semiautomata in terms of the
control unit concept has been put forth in the introduction. We have
also noted that the input set is the same as the state set and that the

usual concept of time is available to computers as we know them here.
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A universal computer is a triple (4,P,,CU) as introduced above.

A2
We may view the set of states of this computer as the set of tapes pos-
sible in a Turing machine of two symbols with a tape infinite in one
direction. For every finite n the set of all mappings from o" into O"
will be shown in the next section to be recoverable via coding and

embedding theorems as functions in PA. Thus viewed the universal com-

puter has at least the power of a two symbol universal Turing machine.

Coding and Embedding Theorems

Hardware structures in which the actions are arbitrary functions
can be coded in hardware structures in which the actions in question are
mirrored in hemimorphisms (sets and resets) or they may be coded in
structures in which the actions are mirrored in endomorphisms (trans-
formations). Arbitrary computers can be coded in computers of the same
size in which all the actions are only set and reset operations. This
mode of coding will not generally recapture the elementary operations
that are '"wired in" the arbitrary computer but it is capable of a pilece-
meal specification of every transition from one state to another.
Hardware structures in which the actions preserve Boolean structure can
be homomorphically embedded in the computation algebra (OI,I,T,R).
Computers that call only structure preserving actions can be homomor-
phically embedded in the universal computer. In this section we prove
theorems supporting the preceding statements. The strategy is first to
code, then to embed. First we code and embed hardware structures, then

we code and embed computers.
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Theorem 11. For every hardware structure (On,G) there exists a
k . .
hardware structure (0O ,T), where T is a set of transformations, and a

coding function C from 0" into Ok such that for any f in o"
Cgf = T(t)Cf

for geG and some T(t)eT.

n

(27)

Proof. Choose k = 2 and define 2" generators of Ok as fol-

lows: Let ", belong to o such that Wo(l) = 1 and wo(k) = 0. Then for

. n
i1=1,...,2, the generators are

W, = T(t;)W

where

,(i-1)

ti(m) =1 if (m-1)(mod 2i) < 1

and

ti(m) = k otherwise.

. LW n} freely generates 0* since it

It is clear that the set {wl,w
2

b
is an independent set.

Let C be an arbitrary one-one function from o" onto the genera-

tors of Ok and order the elements of ot such that

C(fi) =W,
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Let g be a mapping from 0" into 0" defined by

g(fj) = fij

What follows is an algorithm for constructing the t of T(t) men-

tioned in the theorem. Form a matrix having the generators W oW .
2
in that order, as its rows. Let h be a mapping from c(o™) into c(omM)

100

that corresponds to g. That is,

h(W.) = W,
] i.
]

: : . oM :
given g as above. VFor each j in {1,...,2 } we have the requirement
that

Wo(3) = 1w (3)
1

W n(j) =W, (3)
2 on

The column on the right of the equals sign is a column of O's and 1's
that summarizes the values h must yield and is perforce a columm j' of
the matrix formed above. Now define the transformation t on the index

set by

t(3) = 3
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According to this construction, h = T(t) and

Il
=

(TCow ) () = (W _ot)(3) =W (3) (i)

Finally, we have

(@]
0Q
H
1"
(@]
H
"
=]
.
"
H
~
-t
N
=
X
1]

T(t)Cf
X

as required.
Theorem 12. For every hardware structure (On,G) there exists a
hardware structure (Ok,SOR), where SoR is the closure under composition
k . ] . n . k
of sets and resets on 0, and a coding function C from O into O such

that for any f in o"
gf_ = P _R(J)(CE))
r r r

for g belonging to G and some I,J subsets of {1,...,k}, and Pr a pro-

. . k .
jection of the rth coordinate of O into o™,

Proof. Let g belong to G, a mapping from o" into On, where

and define a mapping g* belonging to the set of all mappings from

{1,...,2"} into 0" by
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g#(i) = g(fi)

We note that the algebra of all mappings from {l,...,2"} into o" is

n
isomorphic to o" 2 and define the isomorphism I in the obvious way:
I(g#(1)) () = g(£, (1))

Let {al,...,an} be the atoms of 0". Then the atoms of the algebra of

mappings from {1,...,2"} into o" may be defined by

a5 = 0 of o" for k # 3
and
n .
A..(k) = a, of 0" for k = 5
ij i
where j, k = l,...,2n and 1 = 1,...,n. As a notational expedient let
us write
I(Aij) = (0,...,0,1 ,0,...,0)
Then
g(f ) = g(r) = () A, )(x) = § A..(v)
g ier iel *
jed jed
and

) "l
® = IA. .
g 8(3( i5) (L))o



where 1 belongs to the simple algebra O and 0 belongs to the product
AN
algebra 0" “ . Therefore

gt ) = ;i#(r) = S(U(IAij)_l(l))O (r)
u

We now define the coding function

n
C(fr) R({1,...,27} - {r})(fl,...,f n)

2

S
gt

1

Pg +Cf) = P R(g ~(0))cf

Hence, the J required in the theorem is g*—l(O).

Theorem 13. Every hardware structure (On,TRS), where TRS is a

set of transformations, reset operators, and set operators, is a quo-
tient of the computation algebra (0!,I,T,R).
Proof. Let E be an equivalence relation defined on oI as
follows:
Epg = p(i) = gq(i) for i = 1,...,n
Then E induces a partition on OI and a homomorphism

h:OI+OI/E

such that h(p) = |p|. The quotient OI/E is isomorphic to o".

42



Furthermore, we may define induced reset, set, and transforma-

. I
tion operators on 0 /E as follows:

R(J) |p] = |R(I)p|
s(I)|p| = |s()p|
T(t)|p| = |T(t)p]
where if J intersects {1,...,n} in the null set then

R(J) = S(J) = R(®)

and if the range of t is outside {1,...,n} then similarly T(t) is the

identity transformation. From these definitions it follows that:

R(J)hp = R(J)|p| = |R(I)p| = h(R(I)p)
S(J)hp = s(J)|p| = |s)p| = n(S(I)p)
T(t)hp = T(t)|p| = |T(t)p] = h(T(t)p)

Thus, the homomorphism preserves sets, resets, and transformations.
(Consult the next sectlion for justification of the definitions of the

induced operators.)
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Theorem 14, Every computer (OD,G,CG) is isomorphic to a set-

reset computer (On,SR,CSR). That is, for every f in On,

CG(f)f = CSR(E)HT

Proof. The conclusion of the theorem is that there exist R(J)

and S(I) such that R(J)oS(I) is in SoR and such that
CG(f)f = R(J)oS(I)f
For CG(f) = g we have
-1 -1
I = (gf) (1) and J = (gf) ~(0)
so that since CG is a function there is only one set I and only one set
J for each g belonging to G and f belonging to 0". The new control

unit is defined:

CSR(E) = R((g6)7H(0)) o s((gf)™H(1))
Since

R((g6)71(0)) o s((gf) 1)) |h = gf

for any h in 0" the conclusion of the theorem follows.

Theorem 15. There exists a universal computer (A,PA,CU), as



defined in 14, in which every set-reset computer can be embedded via
a coding.

Proof. The coding K is achieved by way of a Godel numbering as

follows: For cach set of states 0" we assign the number n. This i3 an
ordering of the set of all finite memories. Next we assign an index c
to each control unit for a memory 0", That is to say we order the set
of mappings from 0" into the set of sets and resets. As was noted
earlier, every arbitrary composition of sets and resets is equal to
S(I) o R(J) for some I and J disjoint subsets of {1,...,n}. The number
of distinct control units for computers with memory 0" is a finite
number which is a function of n and the index ¢ is unique. Finally

we assign a unique index s to each state of o". Through the described
assignments a unique ordered triplet (n,c,s) is associated with each
state of each computer. The coding K is then the binary representation
of the Gddel number of triplets (n,c,s), which we denote by G(n,c,s).
More explicitly, if f is in On, the index of f is s, and the index of

the control unit is c, then
K(f) = G(n,c,s)
where G(n,c,s) is in A and we have left justified the binary represen-

tation appropriately.

We define a universal control unit for the universal computer

CU(G(n,c,s))[G(n,c,s)) = G(n,c,c(s)s)
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where c(s)s is the index of the state which ensues when the operation
called by the control unit with index ¢ at the state with index s is
applied to the state with index s. For any set reset computer (On,

SR,CSR), f in 0" with index S, CSR with index c, then

K(CSR(£)(£)) = G[(n,c,c(s)s) = cU(G(n,c,s)) (G(n,c,s)) = CU(KE)(KE)

Thus K is a proper embedding function in that it preserves control

units.
Theorem 16. There exists a universal computer (A,PA,CU) in

which every arbitrary computer can be embedded by a coding.

Proof. Follows from Theorems 14 and 15.

It seems reasonably clear that we may not obtain homomorphic
embedding theorems on the style of Theorems 15 and 16 because of the
presence of control units. Computers may have the same hardware
structure but differ in control units. Theorem 13 shows that every
hardware structure whose set of actions is composed of transformation,
set, and reset operators is a quotient of the computation algebra.
Theorem 14 states that every computer is isomorphic to a set-reset com-
puter. Nevertheless, even in the light of these two theorems it does
not follow that there exists a universal computer of which every other
computer is a quotient. In fact, the denial of this statement may be
shown by considering that homomorphisms must preserve the zero element
and that two computers may differ in that their control units may call

for different actions on the zero element. But the image of the zero
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element under a homomorphism must be the zero of the universal com-
puter; hence, it is not possible to homomorphically embed these two
computers in the universal one. The strongest homomorphism theorem to
be expected is as follows.

Theorem 17. Every arbitrary computer is a quotient of some
universal computer.

Proof. Since we have Theorem 14 it is sufficient to show that

for every set-reset computer there exists a universal computer of which
the set-reset computer is a quotient. In order to show this last step
we use Theorem 13 and construct the appropriate control unit. Computer

(On,TRS,CTRS) is a quotient of (A,P,,CU) provided CU is defined such

A)

that
CU(p) = CTRS(hp)

for p in A.

The theorems stated above summarize what might be viewed as ten
different theorems arising from five separate situations. Beginning
with a hardware structure we have two ways to go: (i) We can go to
the structure based on transformations, (ii) we can go to the structure
based on set-reset operators. Each of these we then embed in the OI
algebras. This accounts for four theorems--two for encoding and two
for embedding. Beginning with a computer, we first choose whether to
go to a larger algebra or to a piecemeal recovery of the actions as
appears in Theorem 1l4. If we choose to go to the higher algebras, then

we have a choice of going to hemimorphisms or to endomorphisms and from
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either to go on to a quotient of some universal computer. Thus, we may
follow a path to two more encoding theorems and two more embedding
theorems. This accounts for eight of the theorems. If we choose the
piecemeal recovery of the actions, then we encode to the set-reset
computer and embed in some universal computer. Thus, we have a total
of five encodings and five embeddings.

On the basis of these results we hereinafter understand by a
computer the appropriate quotient of some universal computer, and

similarly for hardware structures.

Algebraic Theory

The concepts of subalgebra, hcmomorphism, and ideal are basic
concepts of universal algebraic theory. Generally, a computation sub-
algebra is a transformation subalgebra B of a computation algebra 4
that is a computation algebra with respect to the operators on 4. A
computation homomorphism is a transformation homomorphism that pre-
serves reset operators. A computation ideal is a transformation ideal
that is closed under resets. These are the general, intuitive descrip-
tions of the basic concepts. In this section we pull together various
universal algebraic facts that were used without proof or justification
in the previous section.

Definition 15 (Computation Subalgebra). If A is a computation

algebra and B is a transformation subalgebra of A4 such that for all p
in B, R(J)p belongs to B for all finite subsets J of I, then B is a

computation subalgebra of 4.
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Definition 16 (Computation Homomorphism). If A and B are compu-

tation algebras, a computation homomorphism is a mapping h:A+B such

that h is a transformation homomorphism and

h(R(J)p) = R(Jh(p)

where J is a finite subset of I.

Definition 17 (Computation Ideal). A subset M of C of (C,I,T,R)

is a computation ideal if it is a transformation ideal of (C,I,T).
Clearly, there is no novelty introduced to a transformation ideal
by a reset operator since resets are non-increasing. We may say that
given an element of an ideal, all smaller elements (in the Boolean sense)
are in the ideal. The reset of an element is either equal to or smaller
than the element and therefore is in the transformation ideal already.

Theorem 18 (Homomorphism Theorem). A subset M of a computation

algebra A is the kernel of a computation homomorphism if and only if it
is a proper computation ideal.

Proof. Suppose that M is a subset of A and the kernel of compu-
tation homomorphism h. Obviously, the 0 of A is in M. If p and q are

in M then

h(p) = 0 and h(q) = 0

and since
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h(p+q) = h(p) + h(g) = 0+ 0 =0

we have p + q belongs to M. Let p be in M and q be in A. Since

h(p+q) = h(p) * h(g) = 0 * h(q) =0

P * q belongs to M. Again, let p be in M. Then

h(T(s)p) = T(s)h(p) = T(s)0 = 0
so that T(s)p belong to M. This proves that M is a computation ideal.
To show that M is also proper one simply notes that M does not contain
the 1 of 4 since in particular h is a Boolean homomorphism.

In order to show that every proper computation ideal M of the
algebra 4 = (A,I,T,R) is the kernel of a computation homomorphism, con-

sider the Boolean quotient algebra

B = (A/M,+,0,,1)

and the natural Boolean homomorphism h from A onto B. The task is to
convert B uniquely into a computation algebra in such a way that h
becomes a computation homomorphism with kernel M. In order to do this,
we define T on B and R on B and prove that they are transformations and

resets, respectively.

For (hp) an element of B, define the induced transformations on
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T(s)(hp) = h(T(s)p)

In order to prove that this definition is unambiguous it is necessary

to prove that

(hp) = (hq) implies T(s)(hp) = T(s)(hq)

Assuming the antecedent, p is congruent to g and their symmetric dif-
ference, p - q, belongs to the computation ideal M. Transformations

are endomorphisms and therefore

T(s)(p-q) = T(s)p - T(s)q

Since M is also a transformation ideal it contains T(s){(p-gq) and

T(s)p - T(s)g. Thus, T(s)p is congruent to T(s)q, or equivalently

h(T(s)p) = h{T(s)q)

By definition then

T(s)(hq)

T(s)(hp)

and the induced transformations (so-called) are well-defined. That

these operations are indeed transformations is shown by



T(d)(hp) = h(T(d)p) = hp

and

T(sot)(hp) = h[[T<s)oT(t))p] h[T(s)(T(t)p)]

(T(s)oT(t))(hp)

h[T(s)(T(t)p)J = T(s) (hT(t)p)
Analogously, we define
R(J) (hp) = h(R(J)p)
and show that this definition is unambiguous by showing that
(hp) = (hq) implies T(s)(hp) = T(s)(hq)

By hypothesis, p - q is in M and it follows that R(J)(p-q) is in M.

have

R(J)(p-q) = (p-q) - T(s)(a')

(p-T(s)a') - (q°T(s)a']

R(J)p - R(J)gq

52

We
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which implies that

h(R(J)p) = h(R(J)q)

Thus, the induced reset operators are well defined. It is mechanical

to show that the operator in question meets the conditions set forth in
Definition 9 for reset operators. The details are as follows with the
index set J omitted for brevity. It must be understood that the index

set 1s fixed throughout.

1

(1) RR(hp) = R(h(Rp)) = hRRp = hRp = R(hp)

(2) R(hp+thq) = R(h(p+q)) = hR(p+q) = h(Rp+Rq) = hRp+hRq =
Rhp+Rhq
(3) R(hp) < hp iff R(hp)+hp = hp

R(hp)+hp = hRp+hp = h(Rp+p) = hp

(4) R(hp)' = Rhp' = hRp' = hR(Rp)' = Rh(Rp)' =
R(hRp)' = R(Rhp)'
(5) R(hp*hg) = R(h(p-q)) = hR(p*g) = h(Rp+Rq) =

hRp+*hRgq = Rhp°*Rhq

In summary, we have constructed a computation algebra B from 4
in such a way that h maps 4 onto B and the kernel of h is M.

The only concrete example of a computation algebra is the one
based on the 0O-valued Boolean algebra. Representation theory proceeds
by showing to what extent every computation algebra is representable by
this O-valued, or simple, computation algebra. Thus, the main theorem

of this section is the following representation theorem,
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Theorem 19 (Representation Theorem). Every computation algebra

(C,I1,T,R) with (C,I,T) isomorphic to (OI,I,T) is isomorphic to
(OI,I,T,R).

Proof. Since ((,1,T) is isomorphic to (OI,I,T), the transforma-

tion isomorphism determines a transformation ideal which is 0. But this
is also a computation ideal and by Theorem 18 it determines a computa-
tion isomorphism from (C,I,T,R) to (OI,I,T,R).

The question of whether or not one can study computers alge-
braically (and if so, to what extent, and in what algebra) has now been
reduced to a manageable question. Given that the memory structure of
a computer, its set of actions, and its control unit constitute an
interesting and studyworthy portion of a computer, the question becomes
one of whether or not there is a theory of morphisms for such entities,
and if so, what is the extent of the theory, and what are the models of
the theory. The answer is in the affirmative and the algebras in
question are computation algebras. We now extend the theory of mor-
phisms of computation algebras to computers in the following definitions

and theorems.

Definition 18. (B,PB,CB) is a subcomputer of (C,PC,CC) if and

only if (B,PB) is a computation subalgebra of (C,P.) and CC restricted

to B is equal to CB.

Definition 19. A mapping h from (B,PB,CB) into (C,P,,CC) is a

C)

computer homomorphism if and only if h is a computation homomorphism

and

hCB(f)f = CC(hf)hf



Definition 20. A subset M of B in the computer (B,PB,CB) is a

computer ideal if and only if M is a computation ideal and for all f,g

in B such that f - g is in M, then

CB(£f)f = CB(g)g

We note that a computer ideal is more than a computation ideal,
and, therefore, more than a transformation ideal. The novelty is intro-

duced by the control unit.

Theorem 20. A subset M of a computer is the kernel of a com-
puter homomorphism if and only if it is a proper computer ideal.

Proof. If M is the kernel of a computer homomorphism

h:(B,P,,CB) + (C,P,,CC)

B’

then it is the kernel of a computation homomorphism and

h({CB(£)f) = CC(hf)hf

for every f in C. If f-g belongs to i, that is, if hg = hf then

CC(hf)hf = h(CB(f)f) = CC(hg)(hg) = hCB(g)g

Let M be a computer ideal and consider
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h:(B,Py) -~ (B/M,Pp)

which is a computation homomorphism. Define a computer (B/M,PB,CM)

such that
cM(|f])|£] = |CB(E)E]

for all f in B and |f]| in B/M. If g belongs to |f|, then CB(g)g =

CB(f)f since M is a computer ideal. Let
h(f) = |f]
for £ in B then
h{CB(£)f) = |CB(E)F| = cM(|£|)|£] = cM(hf)hf

That completes the proof of the theorem.

Theorem 21. Every computer (B,PB,CB) with (B,I,T,R) isomorphic
to (OI,I,T,R) is isomorphic to some universal computer.

Proof. Since (B,I,T,R) is isomorphic to (OI,I,T,R), the compu-
tation isomorphism determines a computation ideal which is {0}. Define
the control unit CU:OI+P such that

A

CU(Iso(f))[Iso(f)) = ISO[CB(f)f)
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for all f in B. The isomorphism so extended is a computer isomorphism
since {0} is indeed a proper computer ideal.

The field of computation can indeed be approached algebraically
and the algebra is at times quite illuminating. However, we have noted
at least one very substantial limitation to further algebraic develop-
ments. Namely, it is not possible to homomorphically embed every com-
puter in one and the same universal computer. Thus, the comparison of
computers cannot be carried out as hoped in terms of the comparison of
different quotients of a fixed algebra, in general. Such a limitation
was anticipated to the author by Professor S. Gorn in private discus-
sions. The source of the limitation is the nature of control units,

as was further anticipated by Professor Gorn.

Computation Spaces

The topological version of Stone's theorem says that there is a
one-to-one correspondence between Ecolean algebras and totally discon-
nected compact Hausdorff spaces, i.e. Boolean spaces. Since homeomor-
phism is the topological counterpart of the algebraic concept of iso-
morphism, this one-one-ness means that an algebra 4 determines a space
X to within homeomorphism and a space X determines an algebra A4 to within
isomorphism. The algebra A corresponding to the space X is called the
dual of X and is notated X*. The space X corresponding to the algebra 4
is called the dual of 4 and is notated A®*. The theory of duality makes
possible a somewhat more unified treatment of transformations and resets
than is possible in the algebraic theory in that all structural details

are dualized to relations and relational properties.
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It has already been noted that transformations and reset oper-
ators are hemimorphisms. The topological concept that is the dual of
algebraic hemimorphisms is that of a Boolean relation. Before defining
Boolean relations we introduce a limited amount of notation. Elements
of a binary relation ¢ on Boolean spaces Y and X are written in the
prefix style ¢yx for y in Y and x in X. ¢_l denotes the inverse of ¢.
If Q is a subset of Y, the direct image of Q under ¢, ¢Q, is the set of
all points x in X for which there exists a point y in Q such that ¢yx.
The inverse image of a subset P of X under ¢, ¢—lP, is the set of points
y in Y for which there exists a point x in P such that ¢yx.

Definition 21. A Boolean relation ¢ is a relation on Y x X,

where X and Y are Boolean spaces, such that the inverse image of every
open and closed set in X is an open and closed set in Y and such that
the direct ¢ image of every point in Y is a closed set in X.

The topology corresponding to the simple Boolean algebra is the
one in which every member of the power set of O is an open set. There
is a so-called natural isomorphism between X*, for X a Boolean space,
and the set of all continuous functions from X into the topological
space on 0, Every Boolean algebra is to be identified with the algebra
of all O-valued continuous functions on its dual space. Accordingly,
assume that an element p in A is a continuous function from X into O.
Then p(x), for x in X, is the characteristic function for the open set
p* in the space X. Thus, p(x) = 1 if x belongs to p* and p(x) = 0 if
x does not belong to p¥*.

Let 4 and B be Boolean algebras with dual spaces X and Y,
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respectively. If f is a hemimorphism from 4 into B, its dual, f%, is

the relation on Y x X defined by

fyx if and only if p(x) = fp(y)

for all p in 4. If ¢ is a Boolean relation on Y x X, its dual, ¢%, is
the mapping that assigns to every p in A a function ¢*p from Y to O.

¢*p is defined by

¢*ply) = Z {p(x):¢yx!}

We can now state the principal theorem in the theory of Boolean

duality.

Theorem 22 (Halmos [8], Page 54). If f is a hemimorphism, then

KA )
'

f 1is a Boolean relation, and £ = f. If ¢ is a Boolean relation, then

KX e ofa
e

¢ is a hemimorphism and ¢ = ¢.

All transformation and reset operators are, in the light of
Theorem 22, the duals of Boolean relations, and conversely. However,
transformations are more than hemimorphisms; they are endomorphisms.
The following theorem shows that these Boolean relations must be func-
tions.

Theorem 23 (Halmos [8], Page 57). If f is a hemimorphism from
A to B and ¢ is the corresponding Boolean relation on Y x X, then f is
a homomorphism if and only if ¢ is a function with domain Y.

Clearly, one Boolean relation of the dual of a computation
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algebra must be the identity relation on the dual space of the algebra.
The following theorem will help in obtaining the dual concept of the
requirement that the composition of two transformations must be a trans-
formation.

Theorem 24 (Halmos [8], Page 56). If A4, B, and C are Boolean
algebras with dual spaces X, Y, and Z, respectively, and if f and g are

hemimorphisms from 4 into B and B into (', respectively, then

(gf)* = f= g*

The appropriate concept is that the set of Boolean relations on
computation spaces must be closed under relational product.

Theorem 23 also shows that the idempotence of reset operators
dualizes to a requirement of transitivity and density on the correspond-
ing Boolean relation, R¥. R®* is dense since the intersection of R¥* with
the difference relation x # y is a Boolean relation that is a subset of
its square. According to the theorem that follows, the reset Boolean
relations must be functioms.

Theorem 25 (Halmos [8], Page 57). If a hemimorphism f from 4 to
B and a Boolean relation ¢ from Y to X are each other's duals, then f is
multiplicative if and only if ¢ is a function.

Note that this theorem does not make multiplicative hemimorphisms
into homomorphisms since there is no requirement that the dual of a
multiplicative hemimorphism be a function with domain Y. Indeed it can

be shown that since the multiplicative hemimorphisms of interest, the
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sets and resets, do not preserve 0 and 1, respectively, their duals

will have as domains proper subsets of Y. For J # @, R(J)1 # 1, then
{y:R(Ly) = 1} = | (R(D)) } D¢

is a proper subset of Y, and similarly for set.

Reset operators are non-increasing so their duals must have
&

R x ¢ x, for open set x. The dual of

R(Rp)'

Rp

is

R"(R"x)'

=
X
1l

for open set x.

Since it is well known that every atomic Boolean algebra is
isomorphic to the field of sets of all subsets of some set, we have
developed the following representation theorem.

Theorem 26 (Representation Theorem). Every computation algebra

(C,I,T,R), which may be written

(C,+,0,+,1,T ,T ,...,R

[ERERELN I EEERER

for Ti in the range of T and Ri in the range of R, is isomorphic to
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(PC(U),U,8,0,U,T ..., T ,...,R

where:

(1) All the T; are functions on U x U.

(2) For arbitrary Ti and Tg, there exists a T, such that

k
Tt =T,
Tl l ] k
(3) One T; is the identity in U x U.

(4) A1l R; are functions from U into U.

.

(5) The R; are transitive and dense.
(8) R?(u) c u.
3 =
(7) R.(u') = R,(R.u)'.
i i1
(8) There exists a closed set v and a relation T; such that
T.(v) = U.
i

?, Y,

(9) For each R; there exists a T; such that
R.(u) = un T.(v)
1 ]

with v as in (8).

Urysohn's metrization theorem states that a topological space

that is T, and for which the second axiom of countability holds is

3
metrizable. A topological space that is Tl and normal is also Tq. If
a space is T4 then it is TS' In order to prove that a computation space

is metrizable, it is necessary to show simply that it is normal and has

a denumerable base.
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A topological space is normal if and only if for each disjoint
pair of closed sets, A and B, there are disjoint cpen sets, U and V,
such that A is a subset of U and B is a subset of V. Computation
spaces are obviously normal since every subset of the underlying set
is both open and closed.

Computation algebras of interest have cardinality Aleph-one,
are atomic, and have Aleph-zero atoms. An element of an atomic Boolean
algebra is the supremum of the elements it dominates. In the dual
space of such an algebra, an element is the union of the unit sets of
its members. The set of all unit sets forms a denumerable base. Thus
these spaces are metrizable and discrete.

The space U together with the discrete topology P(U) and the

*. ot o ofe

Boolean relations TI,...,T" N .,R;,... of Theorem 26 is the

TP S
dual of the computation algebra (C,I,T,R) and hence may be appropriately
called the computation space of this algebra. An entirely similar con-
cept of hardware space is also available.

Let h be a computational homomorphism with kernel M from the
computation algebra A onto A/M. By Theorem 14 h* is a Boolean relation
and furthermore a function. Since e¢ach function from one Boolean space
to another is a Boolean relation if and only if it is continuous, B
is such a continuous mapping from A* to (A/M)*. From this it follows
that the dual of a hardware structure, a hardware space, is always the
range space of some continuous mapping from the computation space.

This fact is the dual of Theorem 13 which states that every hardware

structure of the transformation-reset-set type is a quotient of the

computation algebra.
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If we dualize beyond computation algebras to computers we may
consider that the control unit dually defines a function from the clopen
sets of the hardware space into the Boolean relations on the space.

The direct image of a clopen set under the Boolean relation which the

control unit assigns to it is the clopen set which is the dual of the

next state of the computer.
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CHAPTER IV

CONCLUDING REMARKS

Limitations and Advantages
of the Algebraic Approach

This paper represents one algebraic approach to the study of
computation. In particular, we studied Boolean algebras with operators.
This choice suggested itself for several reasons. A good deal of suc-
cess has been achieved by Halmos and Tarski in finding in Boolean
algebras with operators the structures suitable for the explication of
the lower predicative calculus. Prior to this, of course, Boolean
algebras were shown to be suitable for the study of the sentential
logic. More recently, Boolean algebras have been used to explicate
matters of set theory that have heretofore been rather opaque [21].

It was felt that Booclean algebras would prove similarly illuminating
in the field of computation.

More specifically, we recognize the seemingly natural affinity
between matters concerning computers and Boolean algebras. A Boolean
algebra is readily definable on the set of states of a computer. Fur-
ther, many computer operations, i.e. instructions, are Boolean in
nature. For these reasons it seemed reasonable to initiate an algebraic
study of computation along Boolean lines.

Certain limitations are inherent in this choice, however. The

inherent limitations stem from the fact that Boolean algebras have so



66

much structure that a considerable burden is placed on making defini-
tions and theorems. For example, we found in an earlier section that
a certain hoped-for homomorphic embedding could not be achieved. It
could not be achieved because of an overage of structure, namely dis-
tinguished elements, that had to be preserved and the preservation of
these elements was incongruent with the nature of control units.
Another example of such limitations is imminent in the section on com-
putation spaces. The metric asscciated with such spaces is not defined
on the clopen sets; however, the duals of the items on which we want
metrics are in terms of the clopen sets. In general, the limitations
on the present approach are manifest in the algebra's being too rich
in structure.

Other algebraic approaches might avoid these difficulties. Lat-
tices have less structure than do Boolean algebras, and semi-lattices
have even less structure. Therefore, the extension of algebraic theory

to hardware structures and computers would be less demanding of an
algebra of computation based on lattices or semi-lattices. On the other
hand, important contact with other theories, e.g. polyadic algebras and
Boolean spaces would be lost.

The duality considerations in this approach suggest an avenue of
investigation of measures, through metrics. Difficulties with this
avenue of investigation have already been anticipated; however, some
suggestions also come to mind for overcoming some of them.

The present approach does have the merit that it fits nicely into

the general schema of Boolean algebras with operators advanced by Tarski.
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Thus, those general developments accrue naturally to computation
algebras. Computation algebras are very similar to polyadic algebras,
underlining the close relationship between logic and computation. A
complete rapproachment between polyadic algebras and computation alge-
bras should prove interesting and profitable to the theory of computa-
tion. At the present stage of the rapproachment, the two algebras have
the same topologies. The theory of duality of polyadic algebras banks
only on the fact that quantifiers are hemimorphisms. This much they have
in common with reset operators. Such close contact with an existing
algebraic theory is valuable for perspective, if for nothing else.

We have made the study of computation an object of universal
algebraic theory. Computation algebra is in this sense clearly more
algebra than computation. In essence, this means that some problems
in the field of computation may now be studied with widely-known alge-
braic methods, which may make the field more palatable to professional
mathematicians.

In dealing with contemporary computers, we are able to study
them at any degree of detail or generality. The states and state tran-
sition functions have been given a great deal of structure so that their
characteristics are reflected in the algebra. Further, the basic alge-

braic concepts pertaining to such facilities have duals in the topology.

Further Developments

Many questions along the present line of development remain to
be investigated. Since most of the theorems in the section on coding

and embedding are existence theorems, questions of optimality arise.



68

It has not been proved that the algebra in which all operations are
recovered in transformations is the smallest. A similar statement holds
for the algebra based on sets and resets. It is also likely that the
constructions given for control units are not in any sense the most
desirable. It remains to develop criteria of desirability and opti-
mality and to state and prove the appropriate theorems.

The detailed investigation of several special universal computers
would also be useful. Those universal computers whose control units are
uniquely determined by their definition on a subalgebra of the universal
algebra, would perhaps be of special interest. Similarly, universal
computers whose control units are specified by the set of atoms, the
set of generators, proper ideals, or proper filters would appear to be
of special interest. Control units determined in ways just suggested
are systematically related to control units that are preserved under a
distinguished set of morphisms.

An alternative to seeking refuge in algebras of less structure
than a Boolean algebra would be to narrow the concepts we wish to
recover. The study of special universal computers would furnish ways
of narrowing such concepts. For example, if we agree that all control
units are to call the identity mapping on the states that are the dis-
tinguished elements of the algebra, then homomorphic embedding is pos-
sible. Such a convention is not unrealistic.

More generally, the question can be posed as to what are the
characteristics of a maximal set of computers, all of which can be in

some standard way embedded in a particular universal computer. This
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standard way of embedding may be by monomorphisms, homomorphisms, or
hemimorphisms. In the present paper we investigated only homomorphic
embedding. In the event that an embedding was not a homomorphism we
did not make inquiry as to what lesser sort of embedding was possible.
It is clear however that an exhaustive study of embedding possibilities
is desirable.

Such a study could result in an algebraic theory of the classi-
ficatibn of computers. All computers "morphic'" to a given universal
computer, which has its control unit prescribed in a special way, would
be in the same class. Admittedly, such a classification would be from
the point of view of theoretical expediency rather than from the point
of view of mirroring modes of classification that exist in practice.

In the theory of duality there is a large number of questions to
explore. The previous chapter concluded with a comment to the effect
that the dual of a control unit defines a function from clopen sets of
the hardware space into Boolean relations on the space. Thus, the
obvious effect of the control unit on the topology of the space is that
it sends clopen sets into clopen sets. However, this is a first obser-
vation and the question remains open as to what is the appropriate
dual, if any, of a control unit in a computation space.

The duals of the states of a computer are the clopen sets of the
underlying space of the topology. Metrics are defined on the space
rather than on the clopen sets of the space. Since in quantitative
studies we may be interested in assigning weights to the states of the

computer, the question of how to pass from a metric on the space to
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measures on its clopen sets needs to be explored. This question also
bears on the possibility of having a notion of distance between states
of a computer. In this case, an alternative question to ask is how to
appropriately associate states of the computer (clopen sets) to points
in the space such that the duals of the state transitions are pre-
served.

A final suggestion is the question of how to temporally deploy
computers in computation algebras. That is, what are the algebraic
facts relevant to all notions of time that preserve the sequentiality
of computers?

These suggestions are not exhaustive; they are only indicative
of the sorts of algebraic investigations of computers which appear to

be viable.

Summggz

We set out to establish a base from which to view broad and
general problems in the theory of computation. The combinatory setting
provides a formalism in which these problems can be uniformly repre-
sented. Since representation proceeds in a piecemeal fashion, any
program of representation has limitations as to the nature of the prob-
lems that can be solved and the nature of the results that can be
obtained. In order to circumvent the process of representation, we
obtained the algebraic structure of a portion of combinatory logic that
appears to be adequate for the representation of many problems of

interest. The appropriate algebraic structures were found to be
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transformational Boolean algebras with a distinguished element and a
distinguished operator.

The universal algebraic concepts of subalgebra, ideal, homo-
morphism theorem, and representation theorem were developed for compu-
tation algebras. These developments proceeded without novelty as
straightforward applications of the general algebraic concepts.

Digital computers are at the center of many problems in the
field of computation. In order to show that the élgebraic theory of
computation algebras is capable of dealing with such devices, we repre-
sented in the algebra the three key aspects of a digital computer, its
memory structure, its elementary actions, and its control unit., Compu-
tation algebras directly give the set of states the structure of a
Boolean product algebra, with the memory structure being given by the
manner in which the product is formed. The elementary actions of the
computer were regarded generally as arbitrary mappings of the set of
states into itself. In order to recover these actions algebraically,
the set of states was coded into a larger set of states in which the
operations that mirror the actions preserved half or all of the Boolean
structure, depending upon the construction of the larger algebra.
Finally, the control unit was represented as a mapping from the set of
states into the set of actions. We then homomorphically embedded the
computer, that is, the algebra together with the structure preserving
mappings and control unit, into a universal computer. The algebraic

theory of computation algebras was then extended to computers.



By way of Stone spaces of Boolean algebras and Boolean relations,
we were able to obtain the topological dual of a computation algebra.
The hemimorphisms on the algebra dualized to Boolean relations on the
topological space. The important relationship between computation
algebras and their quotients was dualized to continuous mappings from
computation spaces to their quotients. Finally, the computation spaces
were proved metrizable and it is this property that may point a way to

the development of a quantitative theory of computation.
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