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NOTATION

Beam cross-sectional area
Coefficient in a cosine series
Coefficient in a sine series
Constants

Integration constants

Modulus of elasticity

Constant = vE

External force, function of x and t

Second moment of inertia of the beam

cross-section = fZ2 dA
Constant = qu dA
Ratio of (E J) to (E I), Constant

Differential equation for which y is the
dependent variable

Bending moment

Radius of curvature of the beam elastic line
A function in-(t) only

Shearing force

A function in (x) only

Coefficient in a cosine series, also undetermined
parameters

Coefficient in a sine series

Arbitrary amplitude

Undetermined parameters, constants
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viii

Distance from the origin

A given displacement at the start of the ﬁotion_
A given veloclity at the staft of the moticn
Gravitational acceleration, 32.2 ft/5602
Imaginary unit

An index

Radius of gyration of the beam element about an
axis through its center of gravity

Total length of the beam

™

Constant = T

An index. Bubscript meaning mode number or
approximation number

Natural freguency of the linearized equation of motion

Natural frequency of the non-linear differential
equation of motion

A positive integer, an index
Time

Initiai veloclity

Weight of beam per unit length
A distance on the x-axis

Beam deflection

First, second, ..., etec. derivatives of y with
respect to x

Assumed approximate solution
Differentiation of ¥ with respect to t, velocity

Euler's integral of the variational preblem

An index
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Y Dimensienless constant
S A small porticn of the beam
g (in/in) ' Strain referred to the median line of the

undeformed beam

n Ratioc of ¢ to p

Aq : Constant = EET

p (lb_sec2/in2) Mass of beam per unit length

¢ (1lb/sq in) Stress.
T | Period of oscillation
E ® Slope of the deflection curve

P A function in x and t




SUMMARY

In this study, the Bernculli-Euler equation of bending of beams
is first reformulated te include the effect of the non-linear elastic
properties of a material. The properties of the material are expressed

by a stress-strain relation of the form

g = E(E-YES)

of which v is constant.

Next the complete formula of the radius of curvature is used and
a non-linear differential equation of motion is obtained. This equation
is expanded to fifth order terms.

Galerkin's variational method is applied to the non-linear dif-
ferential_equation of motion and the natural frequency is determined.
Application of the methed to the simply supported beam as well as the
cantilever beam is discussed. The four possible combinations of lin-
earized and non-linear curvature and stress-strain relation are pre-
sented.

For each case, a frequency equation is obtained showing the
natural frequency of the non-linear system as related to the natural
frequency of the linearized system for an arbitrarily chosen ampli-

tude. A numerical example is given and the frequency curves are

discussed.
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One major result of this study lies in the verification of the
fact that added non-linear terms to the equation of motion influence the
shape of the amplitude versus frequency curve. These terms limit the
infinite increase of amplitudes predicted by the linear theory.

A second result lies in the cemparison of the effect of non-linear
curvature and non-linear stress-strain relation on the natural frequency.

A third result consists of the comparizon of the choice of two
assumptions for the approximate solution.

The fourth result reveals the ingsignificant effect of the added

fifth order terms, thus indicating that third order terms are sufficient

for the purpose of this investigation.




CHAPTER I
INTRODUCTION

1.1 Definition and Scope of the Problem

The subject of the present study 1s the determination of funda-
mental natural frequency of beams with the inclusion of the non-linear
effects. This problem is of considerable importance in the design of
a great number of engineering components. It includes the analysis of
aircraft wings, high speed aircrafts, space boosters, etc. The trend
of this research is linkeﬁ with the solution of ome of fhe basic prob-
lems, that of resonance determination (i.e., to move by proper choice
of the operating conditions away from a position at which detrimental
vibrational effects would occur).

The mathematical solution of straight uniform beams in simple
bending which contains trigonometric and hyperbolic functions is well
known [l]*. The use of a linear differential equation to describe the
beam vibratory motion, amounts to certaln restrictive assumptions of
linearity. It is adequate cnly if the occurring amplitudes can be con-
sidered small. With increasing amplitudes the influence of the non-

linear effects becomes more and more apparent.

* Figures within brackets refer to items in the Bibliography.
See page 93.




1.2 Types of Non-Linearities

The elementary theory: of bending of beams does not account for the
beam non-linear effects. Beam non-linearity takes place in the formula-

tion of the equation of motion due to opne or more of the following:

l.- Non-Linear Curvature
According to. the Bernoulli-Euler equation [2], thé bending moment
M of ‘any portien of the beam is propertional to the change in the curva-

ture caused by the action of the load. In other words

M

EI

(1.1)

o=

in which %—is the curvature of the beam center line§ E is.the modulus of

elasticity, and I is the moment of inertia of the beam cross-section.

If the curvature is expressed in rectangular coordinates, then

2
d
=

1 dx .
i, = (102)

.2-3/2
dy .
[: + (Eﬁz) }

A combination of Equations (L.1} and (1.2) results in a second

order non-Linear differential equation

2
&L
= dx o (1.3)

s
EI 5 3/2
a
o]
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In the classic theory of bending of beams the term (%ﬁ& is

neglected as_being:very small compared to unity, provided the deflection
is small compared to the length of the beam. This assumption can lead
to large errors when applied to conditions involving large deflections.
Euler, who is credited with the-beam equation, has discussed several
problems in which he retained the term k%§j2 [3]. Euler inveéfigated
the defiection of a cantilever beam due to vertical load at the free end.
His results exhibit a hardening characteristic,

2. Non-Linear Stress-Strain Relation

The c¢lassic theory of pure bending in which the bending stress is
calculated by the formula
g = ﬂ%& {1.4)
was developed on the basis of two assumptions; first, that plane cross-
séctions of the beam before bending remain plane after bending, and
second, that Hooke's law is valid., These two assumptions reveal that
the theory is good only for linear stress-~strain characteristics of a
material. A typlcal indealigzed stress-strain curve for an elastic
materia}, however, shows some deviations as exhibited in Figure 1,

For small values of o, the relation is a straight line indicating
direct propovticnality in accordance with Hooke's law. Reduction of the
stress to zero within the segment 1 - 2 causes the strain to revert to

zero also. Beyond peint 2, there is a portion of the curve 2 - 3 over

which the variation of o with ¢ is non-~linear, but reduction of ¢ to




zere still causes e to vanish. It follows that within the elastic
deformation of a material, the non-linear elastic properties can alse
‘be considered for an elastic material with linear properties. Beyond

point 3, the stress strain variation is non-linear, but reduction of

Stress

(o)

Strain (&)

Figure 1. A Typical Stress-Strain Curve for an Elastic Material.

¢ to zero results in a non-zero residual strain.

Several authors [W] have expressed the stress-strain relationship

mathematically by considering stress as a function of strain or vice

Versa.

Ramberg and Osgood [5] showed that the formula

e =g+ Ko (1.5)




in which K is constant, is applicable to a wide variety of materials.
Wang [6] proposed a stress-strain relation depending on the form of the
cross-section of beams and the relative dimensions of the cross-section.

Bolotin [7] assumed a relation in the form
3
¢ = E(e - y&7) (1.8)

in which y is constant. He reasoned that for the majority of known

materlals the stress ¢ and the strain ¢ satisfy the inequality

fu
g

[ a9
<

(1.7)

a

3. Non-Linear Damping

This is encountered due to the condition which has been experi-
mentally verified [8], that energy loss during vibrations depends not
only on velocity, but on material internmal friction as well. The latter
is usuwally called structural damping.

4, Non-Linear Inertia

This is due to the assumption that in vibrations, every section
of the beam goes through some longitudinal dispiaaement of higher order
in comparison to the beam displacement. The resulting distributed load-
ing due to the inertia forces acting on the beam would be equal to the
mass times the acceleration. This load would slightly influence the

shape of the vibration.

In this study we shall limit ourselves to the first two cases of




beam nen-linearity. These are referred to as non-linearities of static
origin, whereas the last two cases are known as non-linearities of

dynamic origin.

1.3 Methods of Investigating a Solution

fhe determination of the natural frequency often requires an
elaborate analysis. Several methods are now widely used. The majority
of these methods start with an assumed shape of the vibrating beam. The
determination of the lowest natural frequency permits some freedom in
the choice of an assumed deflection curve as leng as it satisfies the
beam end conditions.

Lord Rayleigh [9] in his text on sound suggested an approximate
method by which the fundamental matural frequency of a beam is determined
with reasonable accuracy. The method is based on the equivalence of the
maximum potential emergy and the maximum kinetic energy.

& second method originated by Stodola [10] allows the determina-
tion of all modes of vibrations. In this method, the differential equa-
tion is solved by iterative integration. It becomes quite time-consuming
for higher modes of vibrations.

A third method devised by Myklestad [11] is a sequence of calcu-
lations whereby the beam is divided inteo a number of segments and the
distributed mass of each gegment is replaced by a discrete mass at the
center of gravity of the segment (lumped wass method).

The above methods have been widely used in solving vibration

problems described by linear differentlial equations. ' Several analytical

methods are also available for the evaluation of the non-linear differ-




ential equations. For a complete survey of the subject the reader is
referred to references [12] and [13].

For the present problem Galerkin's variational method is employed.
This method depends on minimizing the error averaged by integration.
Duncan [14] has shown that the use of Galerkin's method for solving
beam vibration problems is equivalent to the application of Rayleigh's

principle.

1.4 Approach to the Problem

The non-linear bending equation of motion of beams, with the
effect of an assumed nen-linear stress-strain relation, is derived in
Chapter II. The ekact formula of curvature is used to evaluate the
Bernoulli-Euler equation of bending. Four possible combinations of
curvature and stress-strain relation are discussed.

In Chapter IIIL, the linearized equation of ﬁotion_is solved by
Bernoulli's separation method. The applicatien of the general solution
in calculating the fundamental frequencies is discussed for the simply
supported beam and the cantilever beaﬁ.

Chapter IV gives the solutions of the non-linear differential
equation of motion. Galerkin's method is explained and applied to the
equation of wmotion. The non—linéar natural frequency is determined as
a function of the natural frequency of the linearized system and an
arbitrary amplitude. Chapter V outlines the results obtained.

In the Appendix, a numerical example is given, and frequency

curves are presented. These curves exhibit soft restoring character-

istics.,




CHAPTER II
EQUATION OF MOTION

2.1 Derivaticn of the Basic Equation of Motion.

Let us assume that a uniform beam, fixed horizontally in any
manner, is .oscillating in one plane centaining cne of the prinecipal
axes of inertia of the beam cross-section. Let the x-axis be taken
along the center line of the beam in its unstrained positien and the

y-axis perpendicular to the x-axis in the plane of motion, Figure 2.

y)k_ v

i | dx “‘_
’ 2 |
) )
(a) Simply Supported Beam {b) Cantilever Beam

Figure 2. The Vibrating System.

Let @ and Q' be two polnts on the central line of the beam. The

length QQ' represents an element dx. At any instant of motion, let the

inclination of the beam center line at these points with respect to the




x-axis be ¢ and (¢ + d¢), Figure 3. Since the position of point Q
varies with time, the vertical displacement y is a function of t at a

given x. But y is also a function of x at any particular instant;

2
hence, ¥ is a function of x and t, and the acceleration is 3—%‘. The
3t
yA
fe} rX

Figure 3. Beam Center-Line.

component of the acceleration in the x-direction will be ignored as
2

: . . 3
being of small effect in comparison with (-—%)
at
The slope of the beam center curve is tan ¢ = %%eand if ¢ is
small, it is approximately
-3y .
tan ¢ = = ¢ (2.1)
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Let V and M denote the shearing force and the bending moment at
point Q, (V + dv) and (M + dM) denote the shearing force and the bending
moment at point Q'. Let w be the weight of the beam per unit length.

Resclving in the direction of the y-axis for the motion of the

Reversed Effective Force

l 3%y
* It
]
Reve rsed ~——-> M Q 1 \(M +am
Inertia : - -
Couple L /
' {

_—,‘d vV + 4v)
% .

32

Figure %, Free Body of a Beam Element

element Q Q', and assuming that there are no forces acting on the
element dx except the shearing force and the bending moment at its

ends, we get

2
av + o (L) (dx) = 0
Bt2

that is
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av _ 3y
==-0 (2.2)

Tc get the relation between V and M, we consider the moments about
the center of gravity of the element dx. To do this, we must pay atten-
tion to the fact that during'bending vibrations, the cross sections of

the beam are not only displaced normally to lts length (displacement y),

but they also rotate by an angle ¢ given by the slope of the deflection

at the corresponding peint; i,e,, %%—.

The angular velocity and acceleration follow from Equation (2.1)

2
°¢ _ _ ¥y
3t - (5x)(aey > and

09 _ BSy

: (2.3)
I 3t2 (Bx)(atz)

Summing moments about the center of gravity of the element Q Q',

we get, for the motion of this element

2

1284 [(V4av) + V] cos ¢ [2T - an = o (2.4)
ot

where I is the moment of inertia of the beam element about an axis

through its center of gravity perpendicular to the beam center-line., If

k denotes the radius of gyration of a section of the beam about the axis




12

through its center of gravity pérpendicular to the plane of motion, then

I =9 (dx) (k]

Neglecting small quantities of higher order in the Equation (2.4),

we arnive at

2
[p (dx} kf2] 9—% + V{dx) - d¥ = 0
C3t

Dividing the last equation all through by dxz, the result becomes

o
{p 1-:'2]3—3-&\?—%-}-&—: 0
at ®
which, when in-the limit becomes
aM 2 3°
Mooy 228 (2.5)
X 3t2

Differentiating Equation (2.5) with respect to x, we get

2 ' ' 2
oM EE.+ p k2 9 |3%¢ (2.6)

2 X ox 2

X ot

Now making use of Equations (2.2) and (2.3), the Equatien (2.6)
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becomes
2 2 4
B_g:'pa_%+pk2 gyz
Ix ot Idx +at
that is,
2 z2 L '
ﬁ_%;za- o |2 _ 2 ;_%;XE : C{2.7)
x gt ox"at’

The last term in Equation (2.7) is due to the rotary inertia of
the beam. If the beam ig thin k is small, then the term due to the

rotary inertia in the above equation is small compared with the other

two terms in the equation of motion for ordinary beam. It has been
shown by Rayleigh [15] that added terms in the equation of motion due
to rotary inertia influence.the vibrations significantly at higher.
modes. At lower frequencies.they-are insignificant and may be omitted.
Then the final equation of motion for free oscillation of thin uniform

heams 1s

2 2

M
2_5;: -0 E_%. (2.8)
ax at :

where p is the mass per unit length of the beam,

M is the bending moment, and

y(x,t) iz the deflection.
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When beams are short, further changes must be made to Equation
(2.8). The shearing force will also contribute to the deflection of the

beam. The relative contribution being greater the shorter the beam [16],

2.2 Evalunation of the Bending Moment

Let us assume the properties cof the beam material to be expressed

by the relation (1.6), which states that
3
o = E(e - ye7)
where ¢ is the stress, £ is the strain, and y is a dimensionless con-
stant.

Assuming plane sections to remain plane, it is

M=[o02da (2.9)
A

where the integration is taken over the entire normal cross-section.

With

% 3 E
g=Ee -F ¢ where £ = ¥E, and ¢

=E
R

. . 3
o =BG - @ | (2.10)

we obtain
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Equations (2.9) and (2.10) yield

Figure 5. Strain of Beam Flement.

’ - -
M= f B2 - (EJ;] Zd8 , or
A R R

wo= Bl

X {2.11)

(=]
- |L’"J“
4] :‘_,"'

where I = f 22 dA
A

J= [z aa
A

Replacing %-by its value from Equation (1.2), we obtain
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M = E T “:yl'l(l.'.yt2)

TP

_8
£ | 3 2. 2
~E J iy (1+y' ) (2.12)

where the prime indicates differentiation with respect to the varilable x.

Differentiating Equation (2.12) with respect to x, we get

.3 -2
2 2
?—E’T_ = E I [yllf(l.‘.le) - 3 yfyll2(l+y?2) :}

A _il
o | 2 2
- E J[3 YIIB ym (l+y|2) -9 y.t y"q(l+y'2) ]
The second derivative yields
3 _s 5
2 . 2 2 "2
a_g. =g 1I ylv(l+y'2) -9yl gty (l+y’2) -3 y"3(1+y'2)
ax
1
2 3 2 2
+ 15 v'7 oy"T (1+y*T)
_8 .8
2 . 2
% .
-EVJ |6 y" yr|12(1+y|2) + 3 y"2 ylv (l+y'2)
u u
2 2
- 63 ' yn3 o (l_l_ylz) -9 y"5(l+y'2)
_L3
2 .5 2. 2
+ 99 y'7 y" (l+y' )
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Making use of the Binomial Theorem, we expand the quantities

QE'i-l
-(=%7)
2
(1+y'“) B =1, 2, 3,..
This yields
32M v 2 15 4
——=EI |y [1-=y'"" +—y! ]
2 2 8
)4
- 9 yl y" yl" [l - _yl2 + %ylu c‘.]
3 . 2 35 4
- ) - = L ] il T
3y [1 =yt gy -
+ 15 y'2 y"s f1 - %y'g + 68—3}"” ...}:I
#
_EcJ{S v y‘"Q[l—gy‘2+§§-Y‘q .ol
F 3yl gV 29?2 Bt
- 2 8
- 63 y' yus " [1 - %Y'Q + 1—%?’_3,1“' ]
sy 12—1ny \ 1;3 U
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+ 99 y'Q y"5 [1 - %;-y'z + E%E.y|” veol] ]

We obtain the first non-linear approximation by retaining terms
of the third order in the expansion. The second non-linear approximation
is accomplished by retaining third and fifth order terms in the above
equation. Neglecting higher order terms, we arrive at

32

........I;—!-: E I ylv_ E I I:[ %ylvyiz - 9 Y' yn ym+ 3371;3]
ax

k0 .
- EcJ [[6 Y" YIIIQ + 3 YTTQ ylV]

- [27 yng yﬂ ym2 + 22_7 ysz yn? ylv

+ 63 y‘r yns y!n + 9 YIIS:IJ

The first term in Equation (2.13) corresponds to the usual linear

approximation in the theory of bending.

A substitution of Equation (2.13) into the equation of motion

(2.8), yields
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-p _u-= E I ylV- £ I [% ylvy'lz + 9 yf- ytt yrn+ 3 Yﬂ3]

+ ET [%5_ ylvqu‘ + 22'5_37'3 yu };r11+ L;_Sy,Q yn?’:’
&t
-EJ [6 yn y1r12+ 3 ylvyr|2}

%
+ F J [27 }712 yn ym2+ %th yn2 y;.V

+ 53 yl y113 ylﬂ + 9 YHSJ

Rearranging the terms, we get the non-linear bending equation of.

motion

y AN = ey v ey gty 3yl (2.14)
_ [% yl"y-” + EQEY'S P 4 42_5 y' 2 yns]
+ K [ y" y'"2+ 3y y"2]

2 2,27 ,2 2 v

yli y"l + T y yli y

!

K [27 ¥'

+ 63 yl y,I'I3 ylﬂ+ 9 yl15]
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E% J
where K= T ° and
b_ p
ATET

On the right hand side non-linear terms of third and fifth order
are presented. Setting the right hand side equal to zero yields the.

linearized problem.

2.3 Forms Derivable from the Differential Fquation of Motion

If the equation of motion (2.14) is to be linearized by neglecting
i . the non-linear stress-~strain effect and the non-linear terms in the cur-

vature expression, the equation of motion is

1V .-
‘ y + 2 y=0 (2.15) .

Linearizing the curvature expression by neglecting the term;wg in
‘ Equation (2.12) as being very small compared to unity, and retaining the

non-linear stress-strain relationship, the equation of motion yields

5 2
%

E—E‘EE Iy -Edy™]=-op §4%

ox 3t
or

yo A% =K eyt yme eyl Y ] (2.16)

Retaining the nom-linear terms in the curvature expression and
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linearizing the stress-strain relationship; i.e., Y = 0, the equation of

metion will be

3 v, 2

AT = Yy eyt gty 3y (2.17)

15 4 5 3 Lh 3
- ?ylvy, + Ty! gyt _2___},!2 77

where higher ordey terms, above fifth, are neglected. Equation (2.17)
can be attained by equating K to zero in Equatien (2.14).

Finally we have Equation (2.14) which includes the non-linear
stress-strain effect as well as the non-linear curvature.

Since the assumed stress-strain relation is of the third power;
i.e., 33, the right hand side of Eguation (2.16) will always yield third

order terms. Fifth order terms appear in the right hand side of EQua-

tions (2.14) and (2.17).
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CHAFTER III

LINEAR SCOLUTIONS

3.1 General Solutions

Equations (2.14), (2.15), (2.18), and (2.17), previously derived,
possess periodic selutiens y(x,t). The theory of differential equations
requires that such periodic solutions be unique eonce the initial condi-
tions of displacement and velocity are specified. Non-periodic solutiens

- can also be verified, but for the present problem, only periodiec solu-
tioens are investigated.

Let us first consider the linearized differential equation of

i motion
|
i v+ Au§ =0
where Au = é%— . With Bermoulli's separation method, the solution is
assumed in the form
y = X(x)+T(t) (3.1)

"where X and T are functions of x and t, respectively. - Substituting

Equation (3.1) into Equation (2.15), we obtain

a* a%r

I e T
x at

d
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Dividing the above equation by XT and re-arranging the terms, we gef

| b

. . —]L'T- E - = — . (3'2)
. A dx dt

The independent variables are now separable, and since the right
hand side is a function of x and the left hand side a funetien of t, each

side must be equal to a constant, say (p2).

-_‘.....__..:____‘2..=P (3.3)

Equation (3.3) may be separated into two independent éqﬁations in

X and T.

2
i——g— + P°T = 0 , and (3.4)
dt
4
dx_ AMPQX =0 or
m
dx
1
ﬂ_%__ ntx = 0 - (3.5)
dx

where tnu = AMPQ .

The general sclution of Equatien (3.4) is




24

Tn{t) =a cos Pnt + bn sin Pnt (3.8)

where a and bn are constants depending on the initial conditions of
displacement and velocity at the start of the motion. This solutiomn is -
restfiqted to positive values of PQ. If P2 < 0 the solqtions_for T(t)
cannot be periocdic. |

Equatien (3.5) is a fourth order ordinary homogeneous differential

equation. The solutien can be assumed in the farm
X=e (3.7)

Substituting Equation (3.7} into Equation (3.5), we get the characteristic

equation
r -m =0 (3.8)
which has the roots
r = m, -m, im, -im ' (3.9)

where i = ¥-1 , and the solution of Equation. (3.5) becomes

X(x) =D. e + D e ™ i p M yp M

1 5 3 € 4 (3.10)

in which D D DS’ and D4 are integration constants.

2)

l’
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Equation (3.10) can be written in another form in terms of trigo-

nometric¢ and hyperbeolic functions as:

X(x) = C, sin mx¢ + C, cos mx + C, sinh mx + ¢, cosh mx (3.11)

1 2

where C., C 03, and Cq are constants to be determined in each particu-

1* 72°
lar case from the boundary conditions of the beam.

By superimposing all possible normal vibratiens, the general solu-
tien of the linearized equation of motion becomes

[+ ~]

yix,t) = nzl Xn(x) {an cos Pnt +_bn sin Pntl (3.12)

The applicatien of the above equation in calculating the funda-
mental frequencies will be discussed for the simply supported beam and

the cantilever beam.

3.2 Simply Supported Beam
Let us first determine the constants for the simply -supported

beam. The end conditions in this case are:

1. vw(0,t) =0 at the end x = 0

2. y(2,t) =0 at the end x = 2

3. at x =.0 MO = 0; i.e., yg =0
= = 0 1 LA

L, at x £ ME 03 i.e., y£ 0

where ¥ is the bending moment at the respective ends of the beam.
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Applying the end conditions to Equafion (3.11), we get:

from condition (1)

C2 + C4 =0
applying cenditien (3), we get

CH - C2 =0
hence

C2 = 04 =0

and Equation (3.11) reduces to

X(x) =.Cl sin mx + 03 sinh mx

from conditions (2) and (4), we théin

¢, sinh m& + C , &nd

3

1
pol

1 sin mf =

n
L

03 sinh mf - Cl sin m%

for the non-trivial selution, the above equations are satisfied for

sinh (mﬂ)-sin.(mg) = Q
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and since sinh (m%) cannot be zero, then
sin (mf) = 0 (3.13)

which is the frequency equation for the simply supported beam. The roots

of this equation are

mf = nm n.=1, 2,;.. (3.14)

2 mm _n'm' | EL
n Ruku gu o}

nm LT .
Pn = 22 ?;- n=1,2,... - (3.15)

The corresponding period of oscillation will be

L N
n P ET
n mm !

The shape of the deflection curve for the various modes of vibra-

tions is determined by the displacement function, Equation (3.11). For
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the simply supported beam, the displacement function takes the form
X = C_ sin mx
n

where Cn are constants.
If m is replaced by its value EE—, we obtain an infinite number of
2
possible vibrations of sinuscidal shape;

X = C_ sin UL (3.17)

Figure 6 presehts the first four characteristic functions for the simply
supported beam.
The general solution of the equation of motion for the simply sup-

ported beam is now obtained from Equations (3.17) and (3.12).

sin —E—-[An cos Pnt + Bn sin Pnt] (3.18)

Leoe]

2 . nmx
in which An and Bn are constants depending on the initial conditions at
time t = 0.

Assuming that the initial conditions are given by

y = £(x) at t = 0, and (3.19)
dy _ at €t = 0
s fl(x)




{’____\ Fundamental
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Third Mode

2
_ 3m.° SEI
P3_<£) o

2
N
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Figure 6. Shapes of the First Four Characteristic Functions
for a Simply Supported Beam.
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Substituting Equations (3.19) intoc Equation (3.18), we obtain

I A sin = = £(x) (3.20)

n=1 %

v
"

¥

. NTH _
Z [Pn Bn] sin ——= = fl(x)

n=1 L

ay
4at

Multiplying Equations (3.20}, both sides, by sin 222 and making use of

2

the orthogonality conditions to evaluate the coefficients, we obtain

2
_ 2 . nmx
An =3 f f(x} sin —E—-dx , and
o
2 i % nmx
Bn = 7" 55 £ fl(x) sin —E—-dx

Assuming that in the initial moment t = O the axis of the beam is
straight and that due to impact an initial velocity, say v, is given te

a short portion § of the beam at the distance d from the origin. Then
y = fx) =0, and (3.22)
fl(x)_also is equal to zeroc at all points except the point x = 4 for

which fl(x) = v,

Substituting this into Equations (3.21), we obtailn

A =0 (3.23)
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and, B. = % .

Substituting equations (3.23) iInto the general solution of the

simply supported beam, Equation (3.18), we get

§ . nTX [g_(v'ﬁ) in nnd

sin T TP si T
1 n

y =
n

sin Pnt] (3.24)

If d = /23 i.e., the impact is produced at the middle point of

the beam span, we obtain

v = 2 (v+8) [ sin (&%) sin Pt (3.25)
2 Pl L 1
1 . 3wmx _., i ., 5mx _,
all e 81n < sln P3t + - gin 2 sin Pst

3 5

3.3 Cantilever Beam

If the origin is taken at the clamped end of the beam, the end

conditions for the cantilever beam will be:

1. atx =20 y{0,t) = 0
2. atx =0 y'(0,t) = 0
3. atx=1 y'rie,t) = @

b, at x = & vy {e,t} =0
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Applying the above boundary conditions to the displacement func-

tien, Equatien (3.11), we obtain:

from condition (1)

Applying condition (2), we get.

(3.26)

(3.27)

Eliminating 03 and C4 from Equatien (3.11), and applylng condi-

tions (3) and (4), we obtain

Cl (sin m¢ + sinh mil + C2 [cos m¢ + cosh m&] .

C1 [cos mf + cosh mi] + C2 [ginh m¢ - sin m&]

Eliminating Cl

teristic equation of mi

1+ cosh (m&)* cogs (mi) = O

6 , and-

(3.28)

and CQ in Equations (3.28), we obtain the charac-

(3.29)

Equation {(3.29) determines mf, and therefore determines the fre-

quency p, since all other quantities involved in m are known. This
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equation can be sclved graphiecally. Let

y, = cos mk , and (3.30)

'y, =-1/{cosh m&) = -sech mf

The roots of Equation (3.29) will be abscissas of the points of

intersection of the two curves ¥y and Yoo Figure 7. There is an

Ly

¥o© -gsech mf

Figure 7, Graphical Solution of the Equation.
(1 + cos m¢ cosh m& = 0O)

infinite number of roots of the frequency equation. The first three

roots are nearly
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mg = 0.6 , L1.49%w , 2,50m (3.31)

Since sech mf becemes quite small for large values of mi, the

higher modes are given with satisfactory accuracy from the equatien

cos md =0, or (3.32}

i

mé& = (n - 1/2)%

The second root, for example would thus be 1.50m which differs slightly
from the more correct value of the second reot 1.49%4w.

The natural frequency of the cantilever heam is given by .

2
_ (m)* S/ ET _
Pn = ?; (3.33)

£

The period of escillation corresponding to each value of P is

given by
T = =2 (3.34)
Substituting the voots of the frequency equation inteo Equafion

(3.28), the ratie (Cl/CQ) for the correspending modes of vibration can

be calculated, and the shape of the deflection curve is obtained from

the displacement equation
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X{x) = Cl[sin mx - sinh mx] + C2 fcos mx - cosh mx] (3.35)

Figure 8 gives the shapes of the first four characteristic func-

tions for the cantilever beam.

The general solution of the linearized equation of motion for the

cantilever beam is now obtained by substituting Equation (3.35) into

Equation (3.12). The result is

o

oo

X (x) [A cos Pt +B sin P t]
oy D n n T n

(3.36)

where An and'Bn are constants.

Assuming the initial conditions at the moment t

= 0 are given by
Equation (3.19), to satisfy the initial displacement conditions, we

must have

y = f(x) = Z A X (%)

(3.37)
n=1
and to satisfy the initial velocity conditions, we must have
Y .of () = |
o = £,(x) z (B_ P ) X (x) (3.38)
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CHAPTER IV
KON-LINEAR SOLUTIOKS

4.1 Method of Solution

" In calculating the fundaﬁental frequency of .a vibrating system
governed by a non—lineap.differential equation, approximate methods are
employed. Two methods are widely used. The first method is associated
~with Galerkin, the other one which is closely related to Galerkin's
method is that of Ritz. This method [17], generally referred to as the
minimizing method, is a further aevelopment of Raleigh's priunciple.
Galerkin's method ié usually known as thg averaging mefho&. They may
be formulated in general terms as follows fisl, [19]. ' |

Let .
L{y)=0 _ (4.1}

be the.differentia1 equétién to be solved, where y is a function of
(%,t) and L is some differential operator of which the solgtion safisj
fies the given boundary conditions.

L (y) .= 0 can be considered to be the Euler equation ef the cor—.

respending variational problem

L 27 .
Z = J_ f L (y,7",¥"5...,t) dx dt = minimum (u.2)
o © .




33

Assuming an approximate solution in the form

n . '
yn(x,t) = rzl ¢, wr(x,t) _ (4.3)

where wr(x,t) for » = 1,2,...n are chosen functions each of which satis-

‘fies the given boundary conditions, and Cr are undetermined-parameters{_

Intreducing Equation (#.3) into Equation (4.2}, the integral =
becomes a finite set of equations in the unknown.paramefers L - These

parameters are determined by the condition

|$

H
o

r=1,2,3,...n (4.4)

(Minimizing Method)

In order that §n(x,t) be the exact solution of the given Equation
(4.1), it is necessary that L (y) be identically equal to zero. This
requirement is equivalent to the requirement of the orthogonality of

the expression L (y) to all the chosen functions
¢P(x,t) for »=1,2,3,...n

and since we have n constants Cy1s Chs CgaveeCoy then we can satisfy n
j1y .

conditions of orthogonality expressed by

Jf e IyGout)] v (x,1) dx dt o (4.5)

- n _
= ff LI} e. ¢.d{x,t)] [ (x,t)] dx dt = 0
- =1 33 . r
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for r = 1,2,3,...n

(Averaging Method)

Equations (4.5) serve tao determine the coefficients c,. -

In the case L (y) is non-linear, the n-equations of amplitude
will also be non-linear. Once c, is determined, then the approximate
solution §n(x,t) is obtained.

- It can be shown [20] that the set of Equations (4.4) is equivalent
to the set of Equations (4.5). Although the two methods lead to the same
approximate sclution, Galerkin's method makes possible the simpler and
the more direct setting of the equations. In fact for applying if, one
needs to know only the differential eguation, irrespective of whether or
not -a variatiénal expression exists [21}. For the present study we are:
going to follow Galerkin's procedure. |

The accuracy of the method depends on the cholce of the functions
¢r and the number of terms used in the displacement function. Duncan
[22], [23] has introduced sets of displacement functions of the poly-
nomial form which satisfy the beam geometrical end conditioﬁs. Rauscher
[24] introduced displaceméht_functions that depend on the elastic proper-
ties of the structure, whereas Duncan's functions do not depend on a
particular structure. Some advance knowledge of the expected solution
will facilitate the choice of the functions and the quality of the solu-
tiom.

Klotter [25] has shown that a good choice is often possible by

restricting the assumptions to one single term approximation. The com-

plexity of the problem increases with the number of terms in the solution.
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Since wr is a function of % and t, it is customary to assume

Y. (x,t) in the form
¥, (e t) = X (x) [A cos Pt + B sin P t] (4.6)

If only the natural frequencies Prl and the associated amplitudes

Xr(x) are required, then the function wr(x,t) may be simplified to

wP(X,t) Xp(x) [cos Prt] Cor to

¢r(x,t) Xr(x) {sin Prt]

This procedure is correct if no damping is present.

For the present study, the function ¢r(x,t) will be considered as

J]

¢r(x,t} Xr(x) Lcos Prt] for the linear system (4.7)

1]

wP(X,t) Xr(x) [cos qu] for the non-linear system

where Pr is the natural frequency of the linearized equation, and q, is
the natural frequency of the non-linear equatidn.. The ratio of q, to Pr
will be furnished for both the simply supported beam and the cantilever

beam.

4.2 Simply Supported Beam

Let us assume a function




y1

¢r(x,t) = Xp(x) + cos Prt r =1,2,3,...

satisfying the simply supported beam end conditions

v le,t) = ¢ (2,1) =0
prlo,t) = w;(_x,t) =0
Such solutions can be adapted in the form
XP = sin fm£ - _ such that
¢f = (sin rmx)(cos prt) r = 1,2,3,... | (4.8)

- where Pr is the natural frequency of the linearized equation of motien,

and m = %j or, in the form [26]

X (x) = (3) -2 (%)3 + '(%)4 forr =1
and,
r+l r+l1
K(x) = () L - (P] | ferrz2
such that

3 b
b=l -2 +(PJeosPt ~ r=1 (49




b2

X r+l % r+l
b, = (P f1 - (P cos Pt T2
The approximate selution then becomes
y (x,t) = Z_ a, ¥, (4.10)

A substitutieén of Equation (4.10) into the differential equation
of motion, results in the following Galerkin cendition

2n
£ P n
£ [ nrl a. ¥, (x,t)] [p.(x,t)) dx dt = © (4.11)
o’ a=1 1 ] r

which yields the set of equations for the unknewn constants aj._

4,2.1 Linearized Curvature and linearized Stress-Strain Relation
The differential equation of motion to be considered here is Equa-

tion (2.15) op

. ) _p
where | 5

Let us first consider the function ¢r'described by Equatien

(4.8), with one term approximation, we assume a solution

y, = &, sin mx cos pt (4,12)

1
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Substituting §l-into Equation (2.15), we obtain Galerkin's conditien

27

-ty laxat =0, or
o 0
TN TR Sy S S

from which we have

=
£

P2=m—=1r——-EI
A

u L P

=

The natural frequency of the system is therefore

» [E
P

F =
QQ

(4.13)

which is identical with Equation (3.15). One can conclude that the
choice of Eguation (4.8) yields the correct answer [27].
Let us now consider the set of Equations (4,9). For n = 1, we

have

3 n
- R x X
Xl(x) = (EJ_H 2 (EJ * (EQ , and
| 3 4 |
b (,0) = [ -2 () + (P 1 cos pt (4.14)




b

The cerresponding selution will be

3 i
¥, =3 [(%) -2 (’-;-) + (%) 1 cos pt . (2.15)

Substituting §1 into Equation (4.11), we obtain

27

fg [ o e? 5 1 p,laxdt = 0
i Y1 yyd Loyt dxdt =

The asbove equation, when evaluated results in

mn

4.80 - A” L P2 (0.0492) = ©

from which we have

Aq P2 Eu = 97.5610

and the natural frequency will be

p= 28075 /L (4.16)
2? P

whereas the exact value is

p - 9.8696 fET -
= / -

L

A plot of the two displacement functions, Equations (4.8} and
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(4.9), with one term approximation, is shown in Figure 9.
Let us now consider a two-term approximation; i.e., n = 2,

we have

. 3’ 4
¥y = (& -2 + (D 1 cos Pt (3.17)
3 3
p = (D - (D] cos Pt

and the correspending approximate solution is

Yo T ap ¥ ta, vy, (4.18)
Substituting §2 into the linearized equation of motion (2.15), we arrive
at Galerkin's variational equations

4

and

t
o
-

L P _
f J (y,) ¥, dx dt =
o O

27

£ P ~
[ | L (3,) ¥, dx dt
[o] o

"
o

An evaluation of these twe equations results in

ay * e 4 2
g; £ Cb]" v by - 27 P° gy + ] ax (4.19)

'3 .
tf e -2y, s wTax =0
o
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ryesqg pojaeddng A1dutg B
aos suotrzouny juswsoeTdsT( om] Fo uoTimiussaad Teotydeas 6 2an3TJ

[uorinTog 2jeurxoaddy] AWV + AWVN - A\Wv = Axv.ma |||||||
h €
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« &
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B — f°0
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R, =
L 1 i 0%
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and,

a 2

1l 5 v 4 .2
%i Loy " = ¥y = A7 PT gy o+ p,] dx

£ .
s f Wi e, - At p? b, * 9,0 dx =0
@]

substituting wl and L2 in Equation (4.19) yields

1 .24 4.2 4% 31 6 . 4 2 u 3 _ _
Erl B -
and
4 6 4 2 4 3 2 b2 4 1
2 lzg " PV gl t gy - B g =0

The characteristic equation will then be

2
3 4 .2 4 3 24 4 .2 4 31 2 o2 oun 1 .
[53" AP g 15403 - [7?' AP R 630] {53“‘ ALET L 120123"0

or, when simplified, becomes

2

2% - suw79.3 At P

2

E: £%7 + 816326.5 = 0

and the roots of this equation are




%—[8479.3 + Y68633222.u49 1

The lowest root is

%—(8u79.30 - 8284.517034) = >

and the natural frequency of the system will be

This may be compared te the exact answer

_9.8696 [ EI
P = S ==
2 P

)

Comparing the resulits of P obtained for omne

mation, we arrive at

Exact Answer of P2 Aq 2“

Equation (4.8), One-Term Approximation
Equation (4.9), One-Term Approximaticn

Equation (4.9}, Two-Term Approximation

194,782966 _

ug

97.3915 (4.20)

(4.21)

and two-term approxi-

97.4090
97.14090
97.5610

97.3915

H.2.2 Linearized Curvature and Non-Linear Stress—Strain Relation

Fquation (2.186) is the differential equation of motion to he

solved in this section, which for convenience is given here again
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L (y) = ylV + AL} y - K [6 y" y™

For ¥i = 2 sin mx cos qt

Galerkin's condition yields
2n
A
f fq (a nt - a
1
o ©

1 lu q2) (sin mx cos qt)

- X [8 (—ai m8 0032 mx sin mx + Sai m8 sin3 mx)]

[(cos® qt)]| {sin mx cos qt} dx 4t = 0

where q is the natural frequency of the non-linear system.

Making use of the definite integrals:

3

I sin’ mx dx =‘%
o .

* 3
f sin mx dx=§£
o

L
I sin® mx 0032 mx dx = %-i
o

2m

q
f cos” qt dt = I.
o q
2n

4 . 3T

{ cos gt dt = ¥ q

[o]
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this results in the frequency equation

b4 2% 7 3.8 1 3.8 3
a, [m = 2a q°] 2 a9 K [6(-al m 8) + 3(al m §-£)] .

Dividing the above equation by [%-mu a

'3 .
1 §J the result is

2 6 2 4 9 2 5.3 _
1 -~ ;E-q - K[~ gam tgam ]E-— 0
i
but A = A Hence,
4 2
m P
2
_q 8 b
1 5 16 Kaim =0
P
or 93 9 2 b
5 =1 - EE'K al m , and
P
2 2 an
q = [ [l - 54.78 T K] (”-.22)

L

Equation {4.22) exhibits the behavior of a softening character-
istic where the frequency decreases as the amplitude increases,

4.2.3: Non-Linear Curvature and Linearized Stress-Strain Relation

Retaining the non-linear terms in the curvature formula and

linearizing the stress-strain relation, the equation of motion yields

+ Ay - [%' Wogr? ha gty oy gynd] (2.17)

iv

Ly) =¥y
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The assumed approximate solution is

yl = al sin mx cos gt

Substituting §1 into Equation (2.17) and requiring the resulting

function to be orthogonal to the selected function'wl, we obtain

f f (al nt - a, At q2) gin mx cos qt
o o :

- [g-ai'm 0052 mx sin mx + 9 ai m6 0052 mx - sin mx

- 3 ai m® sin® mx ] cos® qt

+ [iia5 m8 cosq mx sin mx + EE-a3 m8 cox4 mx
g 1 : 2 1
. 45 5 8 2 .3
sin mx - —a; m" cos” mx sin mx] -

cos® gt| {sin mx cos qt} dx 4t = 0

Evaluating this yields:
2
fq %, 4 N 2 6

2
5 tam 1--1q ) cos” qt - a

B )

=} m
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5 815 , L 45 2
1"Y8 TTe T2 T 16

-3-%’-)cosuqt+a

45 g 6 _
) lB)cos qt; dt = 0O
with
2n
a
f cos2 qt dt = Z
o q
21
4 ty
[ cos qt dt = 2z
4 q
o
Ll
q
f c056 qt dt = 1z
=] 2 9
we obtain the expression
A2 n oL 3 3
[l—Eq][alm -5-5]—[16-R-a1m e
15 5 8 m. _
+ [l28 £ -aim 2q1 0

Dividing the above equation by [al mLP . % . g{l, we obtain

m
A2 9 2 2. 15 4 oy
l—muq—é-?z—alm +128alm 0
or
© 9 2 2. 15 u .y
1"P2‘§"2"a1m+12331“‘_°
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where

mq 2
_LL.=P
A
from which we have
q2 9 2 2 15 4y
P—2=l-§-§alm s

and the natural frequency of the non-linear system will be

2 4
| q2 = P2[1 - 2,77 24 110 —i] (4.23)
32 ot

where the first term exhibits the fundamental frequency of the linear-
ized system. For increasing values of the amplitude, the ratio g/p will
always decrease.

4.2.4 Non-Linear Curvature and Non-Linear Stress-Straln Relation

The equation of motion under consideration is

L(y) = Iy*Y + %] - [—g- v y'2 + 9yt yt ym+ 3 y7]

. [_1285 EA RTINS 45 2 .3

1 2

- K[e yn yttl2+ alv v 1

+ K[27 Y'Q yn y1112+ % th 2

yn + 63 y! }""3 y"'+ g y"sj = 0
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where

E*J
K=E'-I—, and .
P
MoS T

- The first four brackets in the above equation have been already
evaluated. To evaluate the last bracket, we use the same approximate

solution

¥y = al sln mx CO8 gt

Following Galerkin's procedure, we get

2.

| :
f f [(Terms Already Evaluated)]
¢ o

2,27 2 iv
It y.m + 20 yl y

5 'y.rl2 + 63 yl y"3 ym + 9 y1|5] »

+ K[27 y'2 y

[sin mx cos qt] dx dt = 0

2n
£ q
or [ 3+ f f K[L(-) 27(ai mlO cosu-mx'sin mx
o 0O
27 5 1 2 .3 5 10 2 .3
T 5-a; M cos M SinT mMX ¥ 63 a; M cos’ mx sin’ mx

- ai 1t sin® mx ] cos® qt| {sin mx cos qt} dx dt = 0
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After computing the integrals, we obtain

10 [..27..8.’_..;.21._&_.;. 53.i_ig] T -0

5
! J+Kapm 677 " 16 16~ 16 ' 2q

1

Dividing the above equation by [al mLi & géﬂ, we obtain an additional
" term, K ai m6 (gg), and the complete frequency equation is
q2 9 2 2 15 4 Y4 9 2 b 89 4 6
l-—?—ﬁalm +—-—12831m —EKalm +3—2Kalm =0

The natural frequency of the non-linear system is therefore

32 au a2
g2 = PP[1 - 2.77 ==+ 11,40 —= - 54.78 K —= (4. 28)
2 m m
% 2 %
y
&1
+ 2672.16 —]
76

The above frequency eguation is but  -the summation of Equations
(4.21), (4.22), and (4.23) with one additional term. The added quantity
[%%—K ai m6] is very small and will not effect the softening behavior of
the system.

A numerical example to be given in the Appendix will illustrate

the amplitude-frequency relation.

4.3 Cantilever Beam

Let. us assume the function

wr(x,t) for r =1,2,...
"‘
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satisfying the cantilever beam end conditions; i.e.,

wr(o,t) ¢£(o,t) = ¢

H ]

" [{}] =
prlf,t) = 27 {8,t) = 0
where the fixed end of the cantilever beam is taken at the origin.

The general solution of the linearized equation of motion is

wr = [Cl(sin mx - sinh mx)} + Cz(cos mx - ¢osh mx)] [cos pt]
The application of these fynctions to the non-linear equation requires
an elaborate analysis and the problem becomes complicated even with

one term approximation. Without losing the general shape of the deflec-
tion curve and fulfilling the given boundary conditions, the functions
wr can be selected iIn polthmial form. The choice of v, in polynomial
form has the advantage that the process consists in the manipulation

of small functions.

A proper set of functions is

| ) o) 2T p(ee) o) (w7
Yy = T 3(3r+s) P 2(3rt8) %
r(e1)(e+2) 2"
6{3r+8) 1

Another set of functions derived by Duncan [28] is
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1 % r+l 1 " r+2 1 % r+3
p, = ot (e48) () - Fr(ed3) () + Zrlrtl) (D (4.26)

Similar sets of functions can easily be derived, once the terms
in the linearized solutlion are expanded into power series. Some advance
knowledge of the expected answer of applying the above sets of functions
would favor the =election of sets (4.25)., 1In fact, if we restricted
curselves to wl, then Equation (4.25) makes a good choice. To obtain
the same results from Equation (4.28) both ¢l, and ¢2 are required.

4,3.1 Lineéarized Curvature and Linearized Stress-Strain Relation

Let us first consider r = 1, [29]); then Equation (4.25) beccmes

2 3 5
= 20 %y 10 x 1%
¥, (x) = 37 7 P TP (4.27)
whereas Equation (%4.26) yields
2 3 L
_ X 4 .x 1l x
wl(X) = Q(EJ -3 (EJ + E‘(Eﬂ (4.28)

A plot of these twe displacement functions is shown in Figure 10, where
it can be seen that they differ only slightly.
Let us now apply Equation (4.27) to the lineariged differential

equation of motion. The approximate solution is now:

5

3 :
B+ 32

- 20 L
11 "2

y, = a, cos pt L

2
x 10
N 3

11 g7 T 11

Substituting §l into Equation (2.15), Galerkin's condition vields




wl(x)

0.8

0.6

]
//
//
/// —]
///
//
/
— p—
-
/”
,”, — 1
_.__-"'
= | | I
0.2 O.u 0.6 0.8 1.0
(D >
2 3 5
_ .20 X 10 b4 1 X
wl(x) = (IT) (g) (ll) (EJ + (II) (ﬂ)
2 3 )
_ X, 4 = L %
-------- wl(x) =2 (2) -3 (EJ t 3 (2)
Figure 10. Graphical Presentation of Two Displacement Functions

for a Cantilever Beam.

o
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L P : 2 3 5
120 x 4 2,20 .x 10 % -1 x
I E PR Ll vl M vl 1] (ayeos o)

190

b
Y -7

(X)3 i<i)53 dx 4t = 0
T 17 7 X dt =

' 20
[cos pt [-]-_-l- ( T

An evaluaticn of the displacement terms results in

2r

F T, 4 2
[ [3.116 -~ A" P(0.2520)47] a, cos” pt dt = 0
o]

Evaluating the time functions, the result is

3.116 - 0.252 2* P2 2t = o (4.30)
or
22 12,3650 | EL
- e E

The exact value of the lowest natural frequency for the canti-
lever beam [30] is
2 lu 24

P = 12.3624

Let us now apply Duncan's functions using only ¢1’ Equation

{4.28). The approximate solution is

2 3 1

¥, = a, cos pt [2 (%J - %—(%J + = (HM (4.31)

6 "%
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Substituting Equation (4.31) into the differential eguation of

motion (2.15), and applying the orthogenality condition results in

PQ.Au a” = 12.4B659 (4.32)

which compares with the exact value of

av)

St
-
]

12.3624

A two-term approximation yields

Two-Term Approximations n = 2.
] 2 3 5
| - 20 (2y" J L0 %y, L o(X '
- ¥, seospt [37 () -7 (P +s7 (P ) (%.33)
3 4 6
= 20 (%y" 15 x 2 (%
Y, = cos pt [7 (2) 5 (R) t S (ﬁ) ]

and the approximate solution is given by

Yo =3 ¥ tay

Substituting the expression for §2 into the system

L(y) =y +2% =0

we obtalin the Galerkin cenditions




om
L P :
I/ L(yg) ¢, dx dt = 0, and
o 0
2m
E [ w3 v, axat=o0
: o 0

patibility equation yield

P A7 2 = - 68.883952 + 81.246318

2 4

The lowest root is P2 A' &% = 12.362326, or

2 _ 12.362326 _ EIL
gt P

p2 _ 12.3624  EI

Duncan's functions with the two-term approximations

TR TE IR 13
v, =2 -3 3%

3 L 5

_ 10,x 10.x Xy .
'J»'Q - '—S—(E) - “3—'(1") + (E’}

presents the approximate solution

61

Two homogeneous equations are obtained and the reoots of the com-

C(4.34)

(4.35)
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- _ R 4 x L x
¥, = a, cos pt [2 (Eﬂ - 5—(10 + §-(R) 1
3 b 5
+ a, cos pt [%?—(%J - %?—(%O + (%J 1

Substituting §2 into the equation of motion, Galerkin's conditions

yield

21

and

1
o
-

8P
f ] L) v axar
o o

2T

—

. P
] L) v, dxat
(6 I o]

n
L]

After computing the integra;s, we get the roots
p? At g% = 23y.00 ¢+ 221.8375
where the lowést root exhibits the wvalue .
2 _ 12.3625 EI

pe = 2£:390e0 | Bl {(4.38)
ot P

whereas the exact value of the lowest root is

2 _ 12,3624  EI
o o

F- =
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Once the roots are known, the ratio ay to a, can be determined.

Comparing the results of P2 obtained for one and two~term approxi-

mations, we have:

Exact Value of p2 At 2t = 12.3624
Equation (4.25), One-Term Approximation = 12.3650
Equation (4.26}, One-Term Approximation = 12.u4659
Equation (4,25}, Two-Term Approximations s 12,3623
Equation {(4.26}, Two-Term Approxiﬁations = 12.3625

From this we conclude that Equation (4.25) offers a good approxi-
mation.

4.3.2 Linearized Curvature and Non-Linear Stress-Strain Relation

2
Neglecting the term (%%0 in the curvature formula, and retaining

the non-linear stress-strain relation, the equation of motion becomes
— iv 4 - 1t 1"2 11 2 iv —_
L(y) =y  +x y-XKbey"y" +3y"" y'I=0 (2.186)
The assumed approximate solution is

3 5
10 .= -1 %
T a1l

' 2
- 20 . x
¥, = & cos qt [ll z)

Substituting §l into Equation (2.16) and applying the corthogen-

ality condition, the result is

2n
L q a, cos qt
| f ([120x - 2% P2 200® %2 - 1002 &P+ XD (22—
5
o o 118




o

2

- BK [(4023 - 6022 X + 20 xs)(—BO £ + 860 x2)2

a, cos qt 3 5
5]
11 &7

2

+~% (40£3 - B0LS x + 20 xs)(lQO x3] C

{[M%] r208% % - 1022 %° + x5]} dx dt = 0
11 8

An evaluaticon of the displacement terms results in

a [ a
[ 7 Irs.116 - 0.252 A" P2 &™) —% cos? gt
o] £

3
a

‘ - BK[4.91 + 0.165] —%—cosu qt| dt =0
. .

l Evaluating the time functions, we arrive at -

a
[3.116 - 0.252 q2 lq 24] —%-(%J - {(30.,450)K
'3

a
Dividing the above equatlon by [3.118 f%-(géj , We pet
L

0.252 2 4 .4

l-mq L A - T7.32K

A7)
o

2
from which we obtain the natural frequency of the non-linear system

2
a

2= -7k, or

TR

2 A [
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2
a

q” = P[1 - 7.32K -¢] (4.37)
2

which for K = 0 presents the linearized result. Tor increasing values
of the amplitude, the frequency decreases.

%4.3.3 Non-Linear Curvature and Linearized Stress-Strain Relation

Pollewing the same procedure used in the previous section, we

have the approximate solution

a
§i-= 15 [cos qt] r208% 2 - 1022 %2 + x°]

112

The Galerkin condition corresponding to this solution is

21

2 q .
f I Ylv t 14 y - (g‘Ylv Y'2 + 9yt y" ym+ 3Y"3)
o 0

+ (ig?_, ylv yrq‘ + %S_yu?’ Yyt 4 %5-51"2 Y"B)

~

cos gt (2023 x2
5

112

- 1082 %% + x%)] dx dt = o

-An evaluation of the displacement functions results in

2%
q 2484 a
_9Ar k41 2 .+
/ (1 12.36] 3 {3.116) cos“ qt

o} £

3
a

- [3 (5.393) + 9(0.4343) + 3(9.2281)] — cos ' qt
)
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5
d
¥ [E2 (93.10) + 22 (393.89) + 22 (2295.96)] - cos® gtlat
8 2 2 - £7
=0
When time functions are evaluated, we arrive at
3
2 a a .
[1- 33 [ (3.116) 11 - [39.6684] [+ (= 1)1
2 3 | 5 kg
P £ 2
5
1
+ [2288.05]) {—=(5=)}]1 = 0
27 2q
' 3 m
Dividing the above equation by_[—g-(S.llB) (EJ] we obtain
L
2 b
-2 a a
-4 - 12,73__%,_ 367.18 —
P £ )
from which we have
2 af a;
3§-= 1 - 12.73 = + 367.14 — (4.38)

P 2 £

Again the frequency is lower the larger the amplitude.

4.3.4 Non-Linear Curvature and Non-Linear Stress-Strain Relation

Applying the same approximate solution already derived

- b 3 3

- 100% &2+ x°7

y, = cos qt [2007 x
booan?®
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and making use of Galerkin's variaticnal method, we arrive at

2%

% q _
f f [Terms. already evaluated]
o o

2 5

+ K[?? yIQ y!l y!"2+ ngyfz ylv y" + 63 yl yﬂ3 yﬂ|+ q y" ] R

(=gt (2027 %% - 1022 %% + x°)7 dx dt = ©
118
5
al m
Here the additional term is K[1449.40] —§—(§EJ which, if divided by
a 2
[—i-(S.llB) I results in
3 q
4
aﬂ
232.57 X —é
3

Thus, the complete fregquency equation will be

2 n 2
2 al al al
1 - q—z- 12.73 —5 + 367.1% — - 7.82 K —
P e 2 %
4
4
+ 232.57 K = =0 , or
3
I3
2 ai ai
%: 1 - 12.73 — + 867.14 — (4.39)
P 2 3
3.2 al—l.
1 ™
- 7.32 K—E‘I‘ 232.57 ](—6—

3 L




68

CHAPTER V

RESULTS AND CONCLUSIONS

5.) Results

The frequency equations obtained in.Chapter IV are tabulated
below. Response curves for the simply supported beam and the canti-
lever beam are shown in Figures 11 and 12. These curves are plotted
from the numerical example given in the Appendix.

An evaluation of the results reveals the following:

1. The natural frequency of the non-linear system depends on
the amplitude.

2. The observed behavior of the system exhibits many of the
well-known characteristics of a soft spring.

3. For a cantilever, the effect of stress-strain nen-linearity
is less than the effect of the added non-linear terms connected with
the curvature. The curvature has a great effect in determining the
shape of the frequency curves whereas the assumed stress-strain relation
has a small effect.

4. TFor simply supported beams, the situation is different. The
influence of stress-strain non-linearity is larger than that of the
curvature.

5. The influence of curvature non-linearity on the frequency

has a greater effect on the cantilever beam than it does on the simply

supported beam.




Simply Supported Beam Cantilever Beam.
Llnea?lzed.Curvature o 97.37 5 19,36
and Linearized . PT = TN PT = TR
Stress-Strain Relation LA £ A
. . 2 2
Linearized Curvature 9 al o al
and Non-Linear n- =1- 54,78 K n n =1-7.32 K T
Stress-Strain Relation L 4
Non-Linear Curvature 5 ai a; 9 ai ai
and Linearized Stress- n =1-2.77 -—§' + 11.40 - n- =1 - 12.73 --i- + 367.14 i
Strain Relation L 3 [ 3
Non-Linear 5 ai a; 5 ai ai
Curvature and no=1-2.77 —=+ 11.40 — n =1-12.73 — + 367.14 —
. 2 4 2
Non-Linear A A " 5 £ £
1Stress-Strain a% a, a; ai
Relation - 54.78 K — + 2572.16 K — - 7.32 K — + 232.57 K —
m 6 JEn 6
2 2 L 2
e —— —— ——yrn
_a 5 _ oo - .
n=p A= i a, Arbitrary Amplitude
EJ
K= 337

=]
w
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0.8~ . . .
—+—s—r+— [inearized curvature and non-linear
stress-gtrain relation (y = 10000)
C;.
0.6 |—
L e Non-linear curvature and linearized
2 stress-strain relation
o
=] [
= 0.4 b . R !
g Non-linear curvature and non-linear
< stress-gtyrain relation !
(y = 10000)
0.2 4
0 | | i | _
0.9960 0.9970 0.9980 0.9990 1.0
N
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Beam Length 40 in. Cross-Secticnal Dimensions TRy

Figure 11. Response Curves for the Simply Supperted Beam.
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Figure 12. Response Curves for the Cantilever Beam.
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6. The effect of fifth order terms in the neon-linear differential
equation of motion resulted in a very small contribution te the frequency

deviations.

5.2 Conclusions

1. By a simple approximate variational methed, one is able to
determine the non-linear matural frequency of the system.

2. The behavior of beams in lateral bending vibratiens exhibits
a softening characteristic; indicating a decrease of the natural fre-
quency with increasing amplitude.

3. The resulting non-linearity due to ecurvature and stress-strain
relation has a favorable irifluence on the frequency-amplitude curve in
that it limits the infinite amplitude predicted by the linear theory.

4, WNo experimental wverification of the results is available,

Presently very little experimental data exists on the subject.
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APPENDIX

A NUMERICAL EXAMPLE

7y

In order to illustrate the relation between the natural frequency

Beam Croeoss-Secticnal Dimensions

Beam Length:
Simply Supported
Cantilever

Specific Weight of Beam

Mechanical Properties:
Tensile Strength
Compression Strength

Modulus of Elasticity

and the arbitrarily chosen amplitude, let us assume the following data:

0.25" x 0.25"
4o
20"

L90 1bs/c It

60 x 10° psi
650 % 10° psi
30 ® lO6 pai

Stress~gtrain curve is shown in Figure 13.

From the above data, the following is calculated:

- Beam Cross-Sectional Area
Weight of Beam Per Unit Length

Mass of Beam per Unit Length

T8

a2 _ (0.25)" _

I=[z°das-=5>—-=
5

J = IZH dA = £2;2§l_ =

80

0.0625 sq in
0.01771875 1lbs/in

0.00004585 1b sec?/in2

0.00032552 inq

0.00000305 in
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- Epf = 0.4695 x 107° s.e<:2/‘inLL

To calculate vy, let us assume the stress-strain curve shown below.

G000 me e
59900 e e e e
[
_ {
Stress '
|
|
30000b——= i
! |
' |
! |
|
| I
I |
1
0 ! -
¢.001 0.002 Strain

Figure 13. Stress-Strain Diagram

g = E(E—YES) ., ©Or

59900 = 30 x 10° [0.002 - v(0.002)°]

From which we obtain y = 555.66




For v = 555.668, we have

For this study, we are going to consider various values of y.

For each value of y, K is detefmined.

Y K
0 0
500 4. 68u8
1000 3.3696 -
5000 45.8#81
10000 93.6962

Calculation of P

1. Simply Supported Beam

2 _ 97.39

gt At

= 8102

F = 90 rad. per sec,

76
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2. Cantilever Beam

2 _ 12.38

PT =
R’-I- )h"-l

= 16453

P=128.3 rad.per sec.

Calculation of g

The next few pages cover the procedure for determining the ratio

q to P for the simply Supported beam and the cantilever beam.

Simply Supported Beam Linearized Curvature and
Non-Linear Stress-Strain Relation

2
54,78 K —
_ ) B
Amplitude a,
! RO
_ 2 Yy = 500 1000 . §000 16000
in. x 1070 ' x 107°
_ 0 0 _ 0 0 0 0
I '
. 0.2 1.56 400 801 4000 8010
0.4 6.25 1603 3207 16030 32070
0.6 i 14,06 3608 7217 36080 72170
0.8 ' 95.00 6415 12833 BH1SO - 128310
1.0 39.06 10024 20049 100240 200490




Simply Supported Beam
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Linearized Curvature and Non-Linear Stress-Strain Relation

Amplitude
¥y = 500 1000 5000 10000
in.
0 1.0 1.0 1.0 1.0
0.2 10,99999600 0.99999199 0.99995991 0.99991981
0.4 0.99998397 0.99996793 0.99983961 0.99967921
0.6 0.99996392 - 0.99992783 0.99963911 0.99927822
0.8 0.99993585 0.99987169 0.9993584? 0.9987168Y4
1.0 0.,99989976 0.99979951 0.99899753 0.99799506
Amplitude
Y = 500 1000 5000 10000
in.
0 1.0. 1.0 1.0 1.0
0.2 0.99999799 0.99999599 0.99997995 0.99995990
0.4 0.99999198 0.99998396 0.99991980 0.99983959
0.6 0.99998329 0.99996391 0.999320“8 0.99963904
0.8 0.99996792 0.99993584 0.99967915 0.99935821
1.0 0.999839974 0.99950172 0.99899702

0.99994987




Amplitude - in.

1.0 ] , l

0.8}~

0.6

0.uf

0.2

0 ] | | | | |
0.9960 0.9970 0.9980 0.9990 1.0

n

Figure 14. Simply Supported Beam--Response Curves for Linearized Curvature

and Non-Linear Stress-Strain Relation.
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Simply Supported Beam
Non-Linear Curvature and Linearized Stress-Strain Relation

Amplitude ai ai ai a; ai a;
al -7 _14. 2.77 —2 11.40 _14 - 2.77 —2- + 11.40 _LI-
2 £ 2 2 £ R
in x 107 [ x 108 ] x 1078 x 107° x 1078
0 0 0 0 0 0
0.2 0.25 0.0625 6925 0.7 6aZ24
0.4 1.00 1.0000 27700 11.4 27689
0.6 2.25 5.0600 62325 57.6 62268
0.8 L.06 16.0060 1108G0 182.4 110618
1.0 6.25 39.1015 173125 uus5.,7 172680
. 2z
Amplitude n n
in.
0 1.0 1.0
0.2 0.99993076 0.999956535
0.4 0.99972311 0.99986154
0.6 0.99937732 © 0.999688861
0.29889382 0.99944675
0,99827320 0.99913622




1.0 [ ] T | T T

OQ8—
e
l’—i 3 )
, 0.6k :
@ i
E
+.
-
. 0.4L.
g
sl

0.2F

0 I | I | N

0.9960 0.9970 0.9980 0.9990 1.0

Figure 15. Simply Supported Beam~-~Response Curve for Non-Linear Curvature
and Linearigzed Stress-Strain Relation.
(v=0}
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Simply Supported Beam
Non-Linear Curvature and Non-Linear Stress-Straln Relation

82

.a”
2672.16 K —%
. y *
Amplitude a,
%1 g ¥ = 500 1000 5000 10000
in. x 10710 x 107°
0 0 0 0 0 0
. 0.0039 0.48 0.97 4,86 9.72
0.4 0.0625 7.82 15.64 78,24 156.48
0.3164 39.60 79.21 396,06 792.13
. 1.0000 125.18 250.37 1251.85 2503.70
1.0 2.u41y 305,82 611.25 3056.25 6112.51
2 5 2 b
[ {-2.77 =5 + 11.40 = - 58.78K — + 2672.16K — }
% ) ) )
Amplitude .
v = 500 1000 5000 10000
in, 1078
0 0 0 0 0
] 7323 7724 10920 14925
0.4 29285 30881 43641 59603
c. 65837 69406 97952 113638
116908 123199 173517 236425
1.0 182399 192118 269864 367058




Simply Supported Beam
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Non-Linear Curvature and Non-Linear Stress-Strain Relation

Amplitude
Y = 500 1000 5000 10000 |
in.
¢ 1.0 1.0 1.0 1.0
0.2 0.99992677 0.99992276 0.998983080 0.99985075
A 0,99970715 0.98969119 0.99956359 0.99940397
0.6 0.,99334163 0.99930594 0.999062048 0.99885362
. 0.99883082 0.99876801 0.99826483 0.99763575
1.0 0.,99817601 0.99B07882 0.9§730136 0.996329u42
Amplitude
¥ = 500 1000 5000 10000
in.
0 1.0 1.0 1.0 1.0
0.2 0.99996338 0.99996137 0.99984539 0.99992537
0.4 0.99985356 0,99984558 0.,99978177 0.99970194
0.6 0.99967076 .99965290 0.99951012 0.99947851
0.8 0.99941528 0.99938381 0.99913203 0.99881717
1.0 0.993908758 0.99864976 0.99816302

0.99903894




1.0 : I '
0.8
a
L
1 0.6
@O
J
=
R
-
A
0.4
Z
0.2}
0 I J | _
0.9960 0.,9970 .9980 0.9990 1.0
n

Figure 18. Simply Supported Beam--Response Curves for Non-Linear Curvature
’ and Non-Linear Stress-Strain Relation.
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Figure 17, Cantilever Beamﬁ—Response Curves for Linearized Curvature
' and Non-Linear Stress-Strain Relation.

1.0

18




88

Cantilever Beam
Nen-Linear Curvature and Linear Stress-Strain Relation

2| a Al i o
Amplitude _% _{5 12.73 " 367.14 ;E'Z [-12.73 £§-+ 367. 1 = B
4 2 2
in. |x 10k 107% x 107 | x 1078 Cx 1070
0 0 0 0 0 0
0.2 1 12 367.14 119633
0.4 4 16 50 5874, 24 494126
0.6 9 81 114 29738, 3u 1110262
0.8 16 256 203 93987.84 1936013
1.0 25 625 318 [229462.50 2950538
1 Amplitude n? n
0 1.0 1.0
| 0.2 0.99880367 0.999%0165
0.4 0.9950587L 0.99752632
0.6 0.98889738 0.99443319
0.8 0.98063987 0.99027262
1.0 0.97049462 0.98513685




008—

0.2

0 | | |

0.9600 - 0.9700 0.9800 0.9900 1.0

Figure 18, Cantilever Beam--Responsze Curve for Non-Linear Curvature
and Linearized Stress-Strain Relation.
(y=0) '

68




Cantilever Beam
. Non-Linear Curvature and Non-Linear Stress-Strain Relation

90

2
232.57 K =
in £
Amplitude i]_._ .
a 26 Yy = 500 1000 5000 10000
in. x lO_lo % 10flo
0 0 0 0 0 0
0.25 272.38 5uly .77 2723.85 - 5447.71
0.4 4.00 | 4358.17 8716.35 43581.75 - 87163.51
20.25 | 22063.26 41412652 220632.64 4141265.28
64.00 | 69730.81 139461.62  697308.11 1394616 .23
. 156.25 |170241.24  3u0482.48  1702412.40 3404824 , 80
2 i 2 au
§ {-12.73 —%—+ 367. 14 —%--7.32KL—%-+ 232.57K —% }
Amplitude L , X 2
Y = 500 1000 5000 10000
in. % 10
0 0 0 0 0
.2 |120u488 121342 128179 126725
0.4 497512 500897 527983 561840
1117757 1125252 1185214 1260167
1949033 1962053 2066210 3196418
1.0 2989998 3147843 3345148

2970268




Cantilever Beam
Non-Linear Curvature and Non-Linear Stress-Strain Relation

91

Amplitude
¥y = 500 1000 5000 10600
in.
D 1.0 1.0 1.0 1.0
0.99879512 0.99878658 0.99871821 0.99873275
0.4 0.29502488 0.93485102 0.99472017 0.98438150
. 0.98882243 0.988747u48 0.,98814785 0.98739833
. 0.98050967 0.98038947 0.97933790 0.96803582
. 0.97029732° 0.97010002 0.96852157 0.96654852
Amplitude
y = 500 1000 5000 10000
in.
0] 1.0 1.0 1.0 1.0
0.2 0.99933737 0.99939310 0.99935910 0.99936617
o.4 0.99750933 0.9974925]1 (,997358659 0.99718679
0.6 0.99439550 0.99435782 0.99405626 0.99367918
. 0.99020688 0.89014618 0.98961502 . 0.98888811
.0 0.98503670 0.98493655 0.98413493 0.98313199




0.8

Amplitude - im.

0 L ] I I
0.9600 : 0.9700 0.9800 0.9900 1.0
n .

Figure 19. Cantilever Beam-~Response Curves for Non-Linear Curvature
and Non-Linear Stress-Strain Relation.
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