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Main message

Entropy inequalities established in the 1970s are a mathematical
consequence of the postulates of quantum physics

They have a number of applications: for determining the ultimate
limits on many physical processes (communication, thermodynamics,
uncertainty relations, cloning)

Many of these entropy inequalities are equivalent to each other, so we
can say that together they constitute a fundamental law of quantum
information theory

There has been recent interest in refining these inequalities, trying to
understand how well one can attempt to reverse an irreversible
physical process

We discuss progress in this direction
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Background — entropies

Umegaki relative entropy [Ume62]

The quantum relative entropy is a measure of dissimilarity between two
quantum states. Defined for state ρ and positive semi-definite σ as

D(ρ‖σ) ≡ Tr{ρ[log ρ− log σ]}

whenever supp(ρ) ⊆ supp(σ) and +∞ otherwise

Operational interpretation (quantum Stein’s lemma) [HP91, NO00]

Given are n quantum systems, all of which are prepared in either the state
ρ or σ. With a constraint of ε ∈ (0, 1) on the Type I error of
misidentifying ρ, then the optimal error exponent for the Type II error of
misidentifying σ is D(ρ‖σ).
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Fundamental law of quantum information theory

Monotonicity of quantum relative entropy [Lin75, Uhl77]

Let ρ be a state, let σ be positive semi-definite, and let N be a quantum
channel. Then

D(ρ‖σ) ≥ D(N (ρ)‖N (σ))

“Distinguishability does not increase under a physical process”
Characterizes a fundamental irreversibility in any physical process

Proof approaches (among many)

Lieb concavity theorem [L73]

relative modular operator method (see, e.g., [NP04])

quantum Stein’s lemma [BS03]
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Equality conditions [Pet86, Pet88]

When does equality in monotonicity of relative entropy hold?

D(ρ‖σ) = D(N (ρ)‖N (σ)) iff ∃ a recovery map Pσ,N such that

ρ = (Pσ,N ◦ N )(ρ), σ = (Pσ,N ◦ N )(σ)

This “Petz” recovery map has the following explicit form [HJPW04]:

Pσ,N (ω) ≡ σ1/2N †
(

(N (σ))−1/2ω(N (σ))−1/2
)
σ1/2

Classical case: Distributions pX and qX and a channel N (y |x). Then
the Petz recovery map P(x |y) is given by the Bayes theorem:

P(x |y)qY (y) = N (y |x)qX (x)

where qY (y) ≡
∑

x N (y |x)qX (x)
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Approximate case

Approximate case would be useful for applications

Approximate case for monotonicity of relative entropy

What can we say when D(ρ‖σ)− D(N (ρ)‖N (σ)) = ε ?

Does there exist a CPTP map R that recovers σ perfectly from N (σ)
while recovering ρ from N (ρ) approximately? [WL12]
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One-shot measure of similarity for quantum states

Fidelity [Uhl76]

Fidelity between ρ and σ is F (ρ, σ) ≡ ‖√ρ
√
σ‖21. Has a one-shot

operational interpretation as the probability with which a purification of ρ
could pass a test for being a purification of σ.
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New result of [Wil15, JSRWW15]

Recoverability Theorem

Let ρ and σ satisfy supp(ρ) ⊆ supp(σ) and let N be a channel. Then

D(ρ‖σ)− D(N (ρ)‖N (σ)) ≥ −
∫ ∞
−∞

dt p(t) log
[
F
(
ρ,Pt/2

σ,N (N (ρ))
)]
,

where p(t) is a distribution and Pt
σ,N is a rotated Petz recovery map:

Pt
σ,N (·) ≡

(
Uσ,t ◦ Pσ,N ◦ UN (σ),−t

)
(·) ,

Pσ,N is the Petz recovery map, and Uσ,t and UN (σ),−t are defined from

Uω,t(·) ≡ ωit (·)ω−it , with ω a positive semi-definite operator.

Two tools for proof

Rényi generalization of a relative entropy difference and the
Stein–Hirschman operator interpolation theorem
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Universal Recovery

Universal Recoverability Corollary

Let ρ and σ satisfy supp(ρ) ⊆ supp(σ) and let N be a channel. Then

D(ρ‖σ)− D(N (ρ)‖N (σ)) ≥ − log F (ρ,Rσ,N (N (ρ))),

where

Rσ,N ≡
∫ ∞
−∞

dt p(t)Pt/2
σ,N

(follows from concavity of logarithm and fidelity)
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Universal Distribution
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Figure: This plot depicts the probability density p(t) := π
2

(
cosh(πt) + 1

)−1
as a

function of t ∈ R. We see that it is peaked around t = 0 which corresponds to
the Petz recovery map.
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Rényi generalizations of a relative entropy difference

Definition from [BSW14, SBW14]

∆̃α(ρ, σ,N ) ≡ 2

α′
log
∥∥∥(N (ρ)−α

′/2N (σ)α
′/2 ⊗ IE

)
Uσ−α

′/2ρ1/2
∥∥∥
2α
,

where α ∈ (0, 1) ∪ (1,∞), α′ ≡ (α− 1)/α, and US→BE is an isometric
extension of N .

Important properties

lim
α→1

∆̃α(ρ, σ,N ) = D(ρ‖σ)− D(N (ρ)‖N (σ)).

∆̃1/2(ρ, σ,N ) = − log F (ρ,Pσ,N (N (ρ))).
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Stein–Hirschman operator interpolation theorem (setup)

Let S ≡ {z ∈ C : 0 < Re {z} < 1} , and let L (H) be the space of bounded
linear operators acting on H. Let G : S → L(H) be an operator-valued
function bounded on S , holomorphic on S , and continuous on the
boundary ∂S . Let θ ∈ (0, 1) and define pθ by

1

pθ
=

1− θ
p0

+
θ

p1
,

where p0, p1 ∈ [1,∞].
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Stein–Hirschman operator interp. theorem (statement)

Then the following bound holds

log ‖G (θ)‖pθ ≤∫ ∞
−∞

dt
(
αθ(t) log

[
‖G (it)‖1−θp0

]
+ βθ(t) log

[
‖G (1 + it)‖θp1

])
,

where αθ(t) ≡ sin(πθ)

2(1− θ) [cosh(πt)− cos(πθ)]
,

βθ(t) ≡ sin(πθ)

2θ [cosh(πt) + cos(πθ)]
,

lim
θ↘0

βθ(t) = p(t).
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Proof of Recoverability Theorem

Tune parameters

Pick G (z) ≡
(

[N (ρ)]z/2 [N (σ)]−z/2 ⊗ IE

)
Uσz/2ρ1/2,

p0 = 2, p1 = 1, θ ∈ (0, 1) ⇒ pθ =
2

1 + θ

Evaluate norms

‖G (it)‖2 =
∥∥∥(N (ρ)it/2N (σ)−it/2 ⊗ IE

)
Uσit/2ρ1/2

∥∥∥
2
≤
∥∥∥ρ1/2∥∥∥

2
= 1,

‖G (1 + it)‖1 =
[
F
(
ρ,Pt/2

σ,N (N (ρ))
)]1/2

.
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Proof of Recoverability Theorem (ctd.)

Apply the Stein–Hirschman theorem

log
∥∥∥([N (ρ)]θ/2 [N (σ)]−θ/2 ⊗ IE

)
Uσθ/2ρ1/2

∥∥∥
2/(1+θ)

≤
∫ ∞
−∞

dt βθ(t) log

[
F
(
ρ, (Pt/2

σ,N ◦ N )(ρ)
)θ/2]

.

Final step

Apply a minus sign, multiply both sides by 2/θ, and take the limit as
θ ↘ 0 to conclude.
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Specializing to the Holevo Bound

Specializing to the Holevo bound leads to a refinement. Given

ρXB ≡
∑
x

pX (x)|x〉〈x |X⊗ρxB , ωXY ≡
∑
y

〈ϕy |BρXB |ϕy 〉B |y〉〈y |Y .

Then the following inequality holds

I (X ;B)ρ − I (X ;Y )ω ≥ −2 log
∑
x

pX (x)
√
F (ρxB , EB(ρxB)),

where EB is an entanglement-breaking map of the form

EB(·) ≡
∫ ∞
−∞

dt β0(t)
∑
y

〈ϕy |B(·)|ϕy 〉B
ρ
(1+it)/2
B |ϕy 〉〈ϕy |Bρ

(1−it)/2
B

〈ϕy |BρB |ϕy 〉B
.
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Applying to Entropy

Special case: Entropy gain (also called Entropy Production)

Specializing to entropy gives the following bound for a unital
quantum channel N :

H(N (ρ))− H(ρ) ≥ − log F (ρ,N †(N (ρ)))

A different approach [BDW16] gives a stronger bound and applies to
more general maps. For N a positive, subunital, trace-preserving map:

H(N (ρ))− H(ρ) ≥ D(ρ‖N †(N (ρ))) ≥ 0
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Application to entropy uncertainty relations [BWW15]

Let ρABE be a state for Alice, Bob, and Eve, and let X ≡ {Px
A} and

Z = {Qz
A} be projection-valued measures for Alice’s system

Define the post-measurement states:

σXBE ≡
∑
x

|x〉〈x |X ⊗ σxBE where

σxBE ≡ TrA{(Px
A ⊗ IBE )ρABE}

ωZBE ≡
∑
z

|z〉〈z |Z ⊗ ωz
BE where

ωz
BE ≡ TrA{(Qz

A ⊗ IBE )ρABE}

Then

H(Z |E )ω + H(X |B)σ

≥ − log max
x ,z
‖Px

AQ
z
A‖2∞ − log F (ρAB ,RXB→AB(σXB))
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Case of quantum Gaussian channels

If σ is a Gaussian state and N is a Gaussian channel, then the Petz
recovery map Pσ,N is a Gaussian channel (result with Lami and Das).

We have an explicit form for the Petz recovery map in terms of its
action on the mean vector and covariance matrix of a quantum
Gaussian state.

We have the same for rotated Petz recovery maps.
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Quantum cloning, partial trace, and recovery [LW16]

Let ω(n) be a state with support in the symmetric subspace of
(Cd)⊗n, let πd ,nsym denote the maximally mixed state on this symmetric
subspace, let Ck→n denote a universal quantum cloning machine, and
Pn→k the symmetrize partial trace. Then

D(ω(n)‖πd ,nsym) ≥ D(Pn→k(ω(n))‖Pn→k(πd ,nsym))

+ D(ω(n)‖(Ck→n ◦ Pn→k)(ω(n))).

With the same notation, the following inequality holds

D(ω(k)‖πd ,ksym) ≥ D(Ck→n(ω(k))‖Ck→n(πd ,ksym))

+ D(ω(k)‖(Pn→k ◦ Ck→n)(ω(k))).

So cloning machines and partial trace are dual to each other in the
above sense.
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Generality of approach [DW15]

Technique is very general and can be used to prove inequalities for
norms of multiple operators chained together (called “Swiveled Renyi
Entropies” in [DW15], due to presence of “unitary swivels”)

Example: The following quantity

L̃′α (ρA1···Al
) ≡ 2

α′
max
{VρS}S

log

∥∥∥∥∥
[ ∏
S∈P ′

ρ
−aSα′/2
S VρS

]
ρ
1/2
A1···Al

∥∥∥∥∥
2α

,

where α′ = (α− 1) /α is monotone increasing in α for α ∈ [1/2,∞].

Another example: for positive semi-definite operators C1, . . . , CL, a
unitary VCi

commuting with Ci , and p ≥ 1, the quantity

max
VC1

,...,VCL

∥∥∥C 1/p
1 VC1 · · ·C

1/p
L VCL

∥∥∥p
p

is monotone decreasing in p for p ≥ 1. (See also [Wil16])
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Generality of approach (ctd.) [DW15]

Another example: Let C1, . . . ,CL be positive semi-definite operators,
and let p > q ≥ 1. Then the following holds [DW15, Wil16]:

log
∥∥∥C 1/p

1 C
1/p
2 · · ·C 1/p

L

∥∥∥p
p

≤
∫ ∞
−∞

dt βq/p(t) log
∥∥∥C (1+it)/q

1 C
(1+it)/q
2 · · ·C (1+it)/q

L

∥∥∥q
q
.

By taking a limit: Let C1, . . . ,CL be positive definite operators, and
let q ≥ 1. Then the following inequality holds [DW15, Wil16]:

log Tr {exp {logC1 + · · ·+ logCL}}

≤
∫ ∞
−∞

dt β0(t) log
∥∥∥C (1+it)/q

1 C
(1+it)/q
2 · · ·C (1+it)/q

L

∥∥∥q
q
.
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Conclusions

The result in [Wil15, JSRWW15] applies to relative entropy
differences, has a brief proof, and yields a universal recovery map
(depending only on σ and N ).

Applications in a variety of areas, including entropy gain [BDW16],
entropic uncertainty [BWW15], quantum cloning [LW16], quantum
Gaussian channels, etc.

Later results of [DW15] clarify how the approach is very general and
leads to many other inequalities

It has been conjectured that the recovery map can be the Petz
recovery map alone (not a rotated Petz map), but it is unclear
whether this will be true.
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