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CHAPTER I 

INTRODUCTION 

In the past few years, there has been a renewed interest in the 

analysis of large frame- and truss-type structures, due to the current 

dreams of many to deploy very large structures in outerspace. One of 

the primary topics of current interest is to analyze parts of such 

structures, that may be subject to large local disturbances, with the 

ultimate goal of controlling the dynamic deformations through active or 

passive mechanisms. The research reported herein, however, is limited, 

as a first step, to considerations of simple, yet highly accurate, 

methods of nonlinear analyses of space-trusses and space-frames under 

quasi-static loads. 

The phenomena of structural instability are generally classfied 

as: 

(1) bifurcation phenomenon, such as the response of elastic 

columns and plates subject to compressive loads in the axial and the 

inplane directions, respectively, or the response of an elastic-plastic 

bar in tension (also often referred to as the necking phenomenon). 

(2) limit phenomenon, such as the response of laterally loaded 

shallow arches and shells. This may result in a dynamic snap-through 

or snap-back phenomenon depending on whether load control or 

displacement control exists in the system. A detailed discussion of 

the classification of these instability phenomena may be found, for 

instance, in Refs. [1,2,28]. 
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An extensive, literature exists concerning computational methods 

for analyzing structural stability [3-7]. In a majority of these works 

dealing with elastic stability, the onset of instability is treated as 

a linear or nonlinear eigenvalue problem. 

Large deformation and post-buckling analyses of structures have 

also been the subjects of extensive research in the past decade [8-10]. 

In all these studies, an incremental approach, either of the 

"total Lagrangean type" or of the "updated Lagrangean type", is 

employed. Also, a number of incremental solution methods, to find the 

response in the "post-buckling" range, i.e., beyond a bifurcation or a 

limit point, have been proposed. These include: 

(1) the standard load control method 

(2) the displacement control method [11,12] 

(3) the artificial spring method [13] 

(4) the perturbation method [2] 

(5) the current-stiffness parameter method [14,15] 

(6) the arc-length method [13,16-20] 

In calculating the non-linear pre-buckling as well as 

post-buckling response, an incremental finite element approach, which 

results in a "tangent stiffness matrix" (which includes all the non-

linear geometric as well as mechanical effects) is often employed. In 

all the literature, including, for instance, Refs. [8-10], the 

derivation of the "tangent-stiffness matrix" of an element (which may 

be based, alternatively, on potential energy, complementary energy, or 

general mixed-hybrid formulations) is, in general, quite a complicated 

task and involves: 
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(1) Simple polynomial basis functions for displacements and/or 

stress and moment resultants in each element; 

(2) Numerical integration of matrices (dependent on the assumed 

basis functions and their spatial derivatives) over the 

domain of the element. 

It is now well recognized that the key factors that determine the 

economic feasibility of the routine use of the above non-linear 

analysis methods are: 

(1) The computational time involved in forming the 

tangent-stiffness matrix of each element, and of the entire 

structure, at each increment of external loading; 

(2) The degree of refinement of the finite element grid, when 

elements with simple polynomial basis functions are used; 

(3) The techniques for solution of the system stiffness 

equations especially at or beyond the critical (buckling) 

points in the load-path. 

It can easily be seen that the above "incremental" finite element 

methods [8-10] (wherein, in each element, a tangent stiffness matrix 

for each member, and thus for the whole structure, may be routinely 

evaluated from appropriate variational principles or weak forms, using 

simple basis functions for the element variables) become prohibitively 

expensive to treat realistic structures. Examples of such structures 

of current interest include the very large space-structures and 

antennae that may be deployed in outer space. 

A majority of nonlinear analyses of typical engineering struc-

tures, and especially the truss- and frame-type large space-structures, 

can be vastly simplified if an explicit expression (i.e., without 
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involving assumed basis functions for displacement/stress, and without 

involving element-wise numerical integrations) for the tangent 

stiffness matrix of an element (incorporating the effects of initial 

displacements on the current stiffness) can be derived. 

Thus, the primary objective of the work reported herein is to 

derive explicit expressions for the tangent stiffness matrices of each 

of the members of either three-dimensional (space) truss- or frame-type 

structures. Such explicit expressions are derived in both the  

pre-buckling as well as post-buckling regimes of behavior of each of  

the members. Further, the derived stiffness matrices are exact even 

when each member undergoes arbitrarily large rigid motions. Such 

derivations for planary truss- and frame-type structures were initially 

given by Kondoh and Atluri [21,22], who also demonstrated that the 

resultant procedures were not only very inexpensive but also highly 

accurate in a wide variety of problems involving very large 

deformations and highly nonlinear pre- and post-buckling responses. 

The extension of the concepts in [21,22] to three-dimensional cases is 

a further major step and is presented in the subsequent chapters in 

this report. 

Each member of a space-truss type structure is assumed to 

undergo an axial stretching deformation and to carry only an axial load. 

On the other hand, each member of a space-frame type structure 

is assumed to undergo bending deformations in two mutually independent 

planes, stretching (which is coupled to bending), as well as torsional 

deformations, and thus carry two bending moments, an axial load as well 

as a torsional moment. Explicit expressions for the coefficients of 

the tangent stiffness matrix of an element (applicable over a wide 
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range of deformations) are derived. Here, "explicit" means that the 

procedure does not involve assumptions of basis functions for the 

element nor of numerical integrations over each element. 

The derivation of an explicit tangent stiffness matrix for a 

three-dimensional (space) frame is a rather complicated task. A reason 

for this is that a general three-dimensional non-linear formulation for 

a member of a space-frame is not a simple extension of a 

two-dimensional formulation because the three-dimensional large 

rotations defy a simple mathematical description. In this context, the 

concept of "semi-tangential" rotations is introduced to express 

arbitrary three-dimensional rotations [24,25]. Also, the concept of a 

"polar-decomposition" of the deformation [26,27] is employed to 

decompose the arbitrary deformation of the element into rigid rotations 

and pure stretches. 

The present derivation of the explicit expression for the 

stiffness matrix of an element is based on the assumptions: 

(1) Arbitrarily large, rigid translations and rotations of each 

member/element of a space-structure (both truss- and 

frame-type) are accounted for. 

(2) For a member of a space-frame, the local relative 

(non-rigid) rotations of a differential segment of a 

member/element are moderately small, and that only their 

squares enter into the expression for axial stretch, in a 

manner analogous to that in the well-known Von Kaman theory 

for plates. 
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(3) The non-linear coupling between the bending and stretching 

motions of the member/element of a space-frame is inherently 

accounted for. 

The ranges of validity of these approximations are critically 

examined. This simplified procedure of forming the stiffness matrix, 

in conjunction with the arc length method [13,16-20], which is 

appropriately modified herein to account for an individual member's 

buckling, is used to study the post-buckling behavior. 

In a structural assembly such as a truss, frame, stiffened plate, 

etc., the response may involve both local buckling as well as global 

buckling. In present context, local buckling implies the buckling of a 

discrete member in the structure under consideration. The local 

buckling is often of the bifurcation type. The influence of local 

buckling on subsequent load transfer in the structure and on the 

overall response of the structure is another subject of prime concern 

in this report. However, the literature that deals with the effect of 

local instability (or instability of one or a few members of the 

structure) on the overall buckling and post-buckling response of the 

structure, is rather sparse. Reference [23] presents an interesting 

study of such phenomena. However, the study of Ref. [23] pertains to 

the effects of interaction of local and global imperfections on the 

overall response of the structure. Further, the methodology employed 

in Ref. [23] makes it difficult to compute the post-buckling response 

of the structure. 

Several numerical examples dealing with the non-linear pre- and 

post-buckling responses of space-trusses and -frames are presented. 

All these examples also serve to effectively bring out the ranges of 
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applicability and the advantages of the presently proposed simplified 

procedures for forming the tangent stiffness of the members as well ass 

that of the structure. It is demonstrated that in most of the cases a 

single element, with the presently derived explicit stiffness matrix, 

is adequate to model each member. It is also demonstrated that the 

methodology presented herein is not only very inexpensive but is also 

highly accurate even for ranges of deformations that are well beyond 
• 

those likely to be encountered in practice. 

The remainder of this report is organized as follows: Chapters 

II and III give detailed accounts of the present procedures for 

explicit evaluations of the tangent stiffness matrices of a member of a 

space-truss and space-frame, respectively, at any point in the 

non-linear load-deformation path. Chapter IV is devoted to a brief 

account of the "arc length" method employed to solve the system 

stiffness equations in the pre- and post-buckled range. Several 

numerical examples are presented and discussed in Chapter V, to bring 

out the advantageous features of economy as well as accuracy of the 

present methodology. Some concluding comments are made in Chapter VI. 
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CHAPTER II 

DERIVATION OF AN EXPLICIT TANGENT STIFFNESS MATRIX 
FOR FINITE-DEFORMATION, POST-BUCKLING ANALYSIS OF SPACE TRUSSES 

The space truss structures discussed herein are assumed to remain 

elastic. Also, only a conservative system of concentrated loads at the 

nodes of the space truss structures is considered. 

II.1 Relation Between Stretch and Axial Force in a Truss Member  

Consider a typical slender truss member spanning between nodes 1 

and 2 as shown in Fig. 1. This member is considered to have a uniform 

cross section, and its length before deformation is L. The coordinates 

x1, x2, and x3 are the member's local coordinates; while u1, u2, and u3 

denote the displacements at the centroidal axis of a member along the 

coordinate directions x1, x2, and x3, respectively. 

From the polar decomposition theorem, the relation between the 

total axial stretch and displacements of the member is (see Appendix 

A): 

	

= [( 171 02 	( 132 )2 	( 1 	133)2]1/2 
- 

where 	 d: Total axial stretch 

- 	2 	1 u = u 	u 

	

1 	1 	1 

(2.1) 
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- 
u
2 

= 2u 2 

21 u3 	- u3 	u3  

Equation (2.1) holds for both the pre- and post-buckled states of the 

member. 

The incremental relation between the incremental total stretch 

and the incremental axial force in the member is written as: 

AN = k•Ad 	 (2.2) 

where LINN Incremental axial force in the member 

AS: Incremental total axial stretch in the member 

k = EA/t 	in the pre-buckled state 

= 72 •EI/225 	in the post-buckled state (for the 
range of deformations considered) 

E : Young's modulus 

A : Cross section area of the member 

I : Moment of inertia 

Equation (2.3a) simply follows from the linear-elastic 

(isotropic) stress-strain law of the material of the member. 1  On 

the other hand, Eq. (2.3b) for the post-buckled state of the member is 

derived in the Appendix B by simplifying and modifying the governing 

1 While the material is assumed to be linear elastic in the present, the 
subsequent derivations of the tangent stiffness matrix remain valid, 
with straight forward modifications, even when the material stress-
strain law is of a Ramberg-Osgood type: o = Ec + Ben. 
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equations of the problem of the elastica, which is treated as a simply 

supported beam. 

Here, one should note that N is in the direction of the straight 

line connecting node 1 and node 2 of the member after its deformation 

(see Fig. 1), and 6 is calculated from Eq. (2.1). Hence, Eq. (2.2) 

holds even when the rigid motion of the member is very large. Also, 

note that the stiffness-coefficient k is a constant  in each of the two 

states, such as pre-buckled and post-buckled, of each member, of a 

space-truss. 

The condition for the buckling of a member, treated as a simply 

supported beam, is given by the following well-known equation. 

N = rN 
	

(2. 11) 

where 
	 crN 	-7t.2EI/t2 , 	 (2.5) 

the negative sign being used to denote the compressive axial force. 

11.2 Tangent Stiffness Matrix of a Member  
for Arbitrarily Large Deformation  

The only force acting on a truss-member is considered to be the 

axial force. Hence, the strain energy of the member, U, in either the 

pre- or post-buckled states of the member, is given by: 

1 0 



) 
U = 	f ( EA-E2  + EI-K

2 
 )dx

3 
(2.6) 

= f N ciS 
0 

where 	 c: Point-wise axial stretch 

K: Curvature 

= 0 for the pre-buckled state 

* 0 for the post-buckled state 

The incremental form of Eq. (2.6) is represented, using Eq. (2.2), as: 

r 
AU = N•Ad + 

k 
 —,Sj2 2 (2.7) 

The incremental form of Eq. (2.1) is given by: 

AS = •Au 1u + b-Au 2 + c-Au 
	

(2.8) 

+2 
 1 r(b 2 	c2 

5t* LL  
( c 2 	a2) .A112 	(a2 	c2) .A1321 

	

2 	 ) 	3 J 

1 	F 	, 	 , 
77L

,
a•b) ,, Au l au 2  + (13 ,, c)Au 2Au 3 + (c.a)Au 3Au] 

+ Higher order terms 

11 



where 
	

[(131 ) 2 	(d2) 2 	(9 	d3) 2 T4  

a = u 1 /t* 

b = u2

- 

/9.* 

c = 	11 3 )/9,* 

A171 1, Au 2' and Au 3 
represent the increments 

of u u2' and u 3
, respectively. 

Substituting Eq. (2.8) into Eq. (2.7), one finds that: 

AU = N(a.Ati 1  + b.Ad2 + c.All3
) 

	

+(b2  + c 2 )• * 	k.a2 lAd2  2 	 * 	1 

r(c2 	a2) .N k.b 23 6,112 
2

▪  

" 	' 	 2 

▪ li(a2 	b2) . N + k.clAd2  2" 	" 	2 3 

( 2.9) 
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N )1-  , , 

+ 	- —)-L a.•b) Au 1 Au 2 + (b •c )Du 2 AU-3 + (c •a)Au-3 6,13 1  

+ High order terms 

Furthermore, neglecting terms of higher than the second order, the 

variation in the incremental strain-energy may be derived from Eq. 

(2.9) as: 

(5( AU) = dAu 1

- 

 (N•a) + dAu 2

- 

(N•b) + 8Au
3

- 

(N•c ) 
	

(2.1 0) 

4. 0 2) 1+1_ 	k 4a2 -" Au- 
+ sou l  {[ (b2  1 

- 
-a•b•Au2 

+ (k -
* 

)

• 

-c •a. • Au-
3 

1 

- rr r 2 	2) N 	21 - 	N 
+ 6Au 2 H.  Lc + a ) • Z—* + k 	JAu 2 + 	- *) •b•c •Au 

	

+ (k - —)

• 

 •a•b 	1 } 
*  

56,1713 1[( a 2 	b 2) N + k •0 2 ]Au."
3 
 + (k - * IL) •a•Au 

1 3 



Z* ) •b 	•Au
2 

I 

-- 	t t 
dAdm  •R

m 
 + SAdm ••Ad

m 

where 
	

dm : Vector of generalized nodal displacements 

R
m : Vector of internal forces 

Km  : Stiffness matrix of the element 

t 
Ad

m 
 = lA 

, 2 2 
u2; U 4 1u 3 -Au 3]. 1  

(N•a)•{I} 

R
m 	

(N•b)*{I} 

(N•c)*{I} 

C 1  [E] C 4 [E] C6 [E] 

K
m 

= C4 [E] C2 [E] C
5

[E] 

C 6 [E] C
5
[E] C

3
[E] 

C 1  = (b 2 	c 2 ).; 	k •a2  

C 2  = (c 2  + a2 ) +1:*  + k •b 2 

r 	2) N 
C

3 
= 	2 + b Z* + k •c 2 
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(I) 	= -1  [E] = 
[ 1 -1] 

(2.11) 
-1 1 

One should note that Eqs. 	(2.10) and (2.11) are written in the 

local coordinate system, so that it is necessary to transform the 

displacement vector from the local coordinate system to the global 

coordinate system in the usual fashion. 

It should be emphasized again that Eqs. (2.10) and (2.11) (and 

thus the tangent-stiffness matrix and the load vector) are applicable 

for both the pre- and post-buckled states of the member, and that k has 

a constant value in each of the two states as given in Eq. (2.3). 

Consequently, if a member buckles, it is only necessary for the value 

of k to be changed. In view of this, it is seen that it is very simple 

to derive the tangent stiffness of the member. 
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CHAPTER III 

DERIVATION OF AN EXPLICIT TANGENT STIFFNESS MATRIX 
FOR FINITE-DEFORMATION, POST-BUCKLING ANALYSIS OF SPACE FRAMES 

The frame-type structures discussed herein are assumed to remain 

elastic, and only a conservative system of concentrated loads are 

assumed to act at the nodes of the frame. 

III.1 Three-Dimensional Kinematics of Deformation  
of a Member/Element of a Space-Frame  

Consider a typical frame member, modeled here as a beam element, 

that spans between nodes 1 and 2 as shown in Fig. 2. The element is 

considered to have a uniform cross section and to be of length 2, before 

deformation. The coordinates jxi are the local coordinates at the node 

j (j = 1,2) of an undeformed element. Likewise, jui (i = 1,2,3) denote 

the displacements at the centroidal axis of the element along the 

coordinate directions xi, i 1,2,3, respectively. Also, as shown in 

Fig. 2, JOi are the angles of rotation about the axes of xi. After a 

deformation of the element, two coordinate systems are introduced to 

represent the rigid and relative (non-rigid) rotations of the element. 

One is the coordinate system xi which is locally "tangential" and 

"normal" to the deformed centroidal axis; another is x i  which 
characterizes the rigid translations and rotations of the member (see 

Fig. 2). 

Considering each rotation as a semi-tangential rotation, we can 

treat rotations as vectors. Thus, the relation among the total, rigid, 

and relative rotation vectors is given by: 

1 6 



Y = S + 
i s 	(i = 1,2) 
	

(3.1) 

where 
	i

Y : Total rotation vector at the node i 

: Rigid rotation vector of the element 

i s : Relative rotation vector at the node i 

Using Eq. (3.1), the total rotation vector at the node 2, 2 Y, is 

represented as: 

 

2 	1 y 	+a + (3.2) 

where 

a, . 21 	1 y  
(3.3) 

Therefore, the relative rotation vector at the node 2 can be defined 

using Eqs. (3.1) and (3.2) as: 

2a=  1
a+ a' 
	

(3.14) 

On the other hand, the expressions of the rotation vectors may be 

written, by using their components in any coordinate system, as follows 

[24,25]. Using the local coordinate system, the total rotation vector 

at the node i may be written [24,25] as: 

1 7 



e. 
Y = tan 	• e 

2 

(i = 1,2) 
(j = 1,2,3) ( 3. 5 ) 

The relative rotation vector at the node i in the coordinate system xi 

is given by: 

j a = tan 
2 

• e .  (i = 1,2) 
(j = 1,2,3) (3.6) 

Substituting Eq. (3.5) into Eq. (3.3), the difference between the 

rotation vectors at nodes 1 and 2 is given by: 

2 0. 	1 e. 
a' = (tan 	- 	• e 

2 	2 

= (a'•e )-& 
J 	j 

0 . 1 
g tan

3  

2 
• e 

(3. 7) 

(3.8) 

Also substituting Eqs. (3.6) and (3.8) into Eq. (3.4), the relative 

rotation at node 2 is represented as: 

2^ e 2 
	tan 	•• e 

2 
(3.9) 

	

16. 	ii , 

	

J 	J = (tan-- + tan --- ) • ez 
 

	

 
2 	2 	'j 

(3.10) 

1 8 



Furthermore, the action of a rotation R, which transforms a vector dX 

to dXR, is represented by the relation [24,25]; 

R 	1  
dX 
	r 

1( 1  - R•R)•dX + 2(R•dX)•R + 2R x dX] 
1 + R•R 

(3.11) 

Substituting the unit vectors et and the total rotation vector, iY 

at the node i not Eq. (3.11), one obtains the following equations: 

where 

i A = 

iB 

i c = 

i D = 

*  e 	= i T 
	

•e 
-j 	jk 

iTjk = 

1 [1 	+ tan 

k 

jA 	IB 

1D 	iE 
i
G 	

i
H 

 

2
1
0 1 

(i 	= 

I C 

i F 
i I  

2
1 tan 

1,2) 

6 2 2
1
0 

tan 	3 1 

(3.12) 

(3.13) 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d ) 

1 
2 

+ 	0
2 

	

lei 	i 00 
2 	[tan 	' 	tan + tan 

- tan=2

- tan 

2 

(3 
J ] 

2-1 

1 + i 6
2 	2 	2" 

e 	i 0  
2 [tan-3 

2 

1 
0,, 

] 

i(:) 
—"L-1 

1 i e 2 	2 + 

i 

[tan 21 

2 tan 

1
02 tan 2  1 +2i 	2 + 2 
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i 2 i 6 i 
= 	i 	218 1 	2 	2

1
6
3 E 	 1 [1 - tan--- + tan 	- tan 	j 

	

2 	2 	3 1 + i 8 2 

i e 	i e 	i
0 i

F =1 	 [tan --- tan 	+ tan - 1  i 2 	2
2 	

2
3 	

21 ' 1 + 6 

i
e 	

i 	i
6  

1 G = 	 21 
0 

	

2
i 2 

[tan- 1 tan 	---j 
2

1 + tan 2 

	

1 + 	8 

i 6 	i e 	i e  
i
H -

2
. 
	
[tan 22 

tan 23 - tan-7
1] 

1 + 1 6 2 

(3.14e) 

(3.I4f) 

(3.1 )4g) 

(3,14h) 

i 	1 	 21 61 
 2 1

62 	2
i 6

31 I = 	i 	 2  [1 - tan 2 81 - tan 2 
	3 
+ tan --j 

1 + 6 

i
6 1  2162 	210

3 1 	282 
= tan--- + tan+ tan2

2 	2 

(3.141) 

(3.15) 

A 

On the other hand, e3, as a unit vector in the direction of the 

line joining node 1 to 2 in the deformed configuration, may be 

represented as: 

e= r.e + s.e + t.e   _ 
3 	1 	2 	3 

(3.16) 

where 

20 



12 1 	
u
2 

r = -97  , s 
R* (3.17a,b) 

t 
+ u3  

(3.18) 

 

9.* 

and 2 	1 u.
1 	

U. - U. (3.19) 

„„ 	„„ 
Other unit vectors, el, e2 corresponding to the coordinate system, xi, 

may be written, using Eq. (3.11) and the rotation vector, 1 w, at 

node 

* ). 1 w + 2( 1 w x l e * )] 	(3.20) 

where 

1, shown in 

1 

Fig. 

[(1 	- 	1 14. 1 w). 1 e *  

3, 	as: 

+ 	2( 1 14. 1 e 

1 + 	
1 w • 1 w 

	

1 * 	„ e x e_ _ 
1 	w 	3 	3  w = tan , • 1 * ` 	1 e x e 

	

3 	3 

w = cos -1 ( 1 e *  • es  ) 
3 	3 

1 w • e = 0 
3 

l w • [ ( 1 e *  x e ) x ( 1 e *  + e )] = 0 
3 	3 	3 	3 

(3. 21) 

(3.22) 

(3.23a) 

(3.23b) 

From Eqs. (3.12) to (3.19) and Eqs. (3.21) to (3.22), the relative 

rotation vector at node 1 is represented as: 

21 



1 w = h.e + i•e + m.e 
	

(3.23) 
1 	2 	3 

where 

h - 	
1
1-1•t - 

1 I.s  

1 + 
1
G•r + 

1
H•s + 

1
I•t 

1 	1 I.r 	G•t  

1 + 
1 
 G.r + 

1
H•S + 

1
I•t 

(3.24a) 

(3.24b) 

1 	1 G-s 	H•r  
(3.24c) 

1 + 
1
G.r + 1

H.S + 
1
I.t 

Substituting Eqs. (3.12) to (3.15) and Eqs. (3.23) to (3.24) into Eq. 

(3.20), the following equations are obtained: 

e = o.e + p•e + q•e 	 (3.25) 
1 	1 	2 	3 

 

e = 	+ Ar.e + w-e 
2 	1 	2 	-3 

(3.26) 

where 

r 	1 	 ( 	1 	1 	)/ 
0 = LC

1 
A + 2h•C2 + 2(9,- C - m. BLI/C 3 

r 	1 	 ( 	1 	1 	)1 
P = LC 1 • B + 2i•C 2 

+ 201- A - h. CLI/C
3 

(3.27a) 

(3.27b) 

r 	1 	 ( 	1 	1 	)1 
q = LC 1 • C + 2m•C 2 + 201. B - 	AjI/C 3 (3.27c) 
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r 	1 	 r 	1 	1 	)1 

	

u = 1C
1 

D + 2h•C 4  + 2Lt• 	- m- Ejj/C
3 

r 	 r 	1 	1 	11 v 	LC 1 E + 22,-C 4 + 2Lm- D - h- Ffl/C
3 

(3.27d) 

(3.27e) 

r 	1 	 r 	1 	1 )1
/C w = LC • F 	2m•C + 201- E - 	Djj 1 3 

(3.27f) 

C 1 - 1 - h
2 

- 2,
2 

- m
2 	

(3.28a) 

C 2  = h•
1
A +

1 
+ m• 1

C 
	

(3.28b) 

C 3
= 1 + h

2 
+ t2 

+ m
2 	

(3.28c) 

C = h•
1
D +

1
E + m- 1 

 F 
	

(3.28d) 

We denote by la the relative rotation at node 1. Thus, la 

characterizes the transformation of the coordinate system xi to xi 

at node 1. From Eq. (3.23), one obtains: 

( 1
a = - 1

w = - Oa-
1 
 e + 2. 

1
e + ml e ) ) 

	

1 	2 	3 

Also, using Eqs. (3.16), (3.25), and (3.26), 

1 	1 
a = ( a•e 	+ Ca.& 	+ ( 1 a-e )-e 

(3.29) 

(3.30) 
1 	1 	2 	2 

	
3 	3 
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Therefore, the components of the relative rotation at node 1, i.e., la , 

 are obtained from Eqs. (3.6), (3.16), (3.25), (3.26), and (3.29) to 

(3.30), as: 

1^ el tan 2 1 - 	(h•o + X•p + m•q) (3.31a) 

1^ 
82 
2 

tan-- = - (h•u + Z•v + m•w) (3.31b) 

1^ 

2

e
3 tan-- = - (h •r + Z.s + m-t) (3.31c) 

Also, the components of the relative rotation at node 2, 2 a, are 

obtained from Eqs. (3.7) to (3.10), (3.16), (3.25), and (3.26), as: 

29
2) 

e 	 l e l , 	
2 	1 
82 

8 1 	1 	r  
tan 	- tan— + tan 2

1 
 - tan-rj.0 + (tan 22 tan 22 ) •p 2 	2 

1 8 3 	e3, q + (tan

2 	

tan--f-p 2 (3.32a) 

	

2^ 	16 0
2 	1 

1 	e 1) 	
2 	1 e2 

	

2 	r 	 ) tan 22 = tan-- + tan-i- - tan -T-j u + (tan 2  

	

2 	2 	 - tan 22)  v 

2 14 



1 2-8
3 	3) + (tan 	- tan —) .w 

2 	2 (3.32 h ) 

1 	2 	1 n  2 	1 8
3 

82 

	

3 	r 	
e 1 	el ) 	 '21 tan 	- tan 	+ (tan 	- tan -7-J r + (tan 	- tan --Tj-s 2 	2 	2 	 2 

2 

+ (tan 2 3 - tan1 3) 	 (3.32c) 

It should be noted that the component 1 83 of the relative 

rotation at node 1 is zero due to the rotation 1 w being as in Eq. 

(3.21). 

Finally, as shown in Chapter II, the relation between the total 

axial stretch and displacements of the member is: 

a= 1- 112 4. 112 4. rz 	,--, ) 2 114_ t  
L  1 	2 	̀ 	3 ) .1 (3.33) 

where 	(5: Total axial stretch 

2 	1 	
(i = 1,2, and 3) 

111.2 Relations Between the "Stretch and Relative Rotations" and  
the "Axial Force and Bending Moments" for a Frame Member  

In preparation for the task of deriving an explicit expression 

for the tangent stiffness matrix that is valid for a wide range of 
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deformations of a frame member, in this section, certain explicit 

relations are derived between the kinematic variables of stretch and 

relative rotations, on the one hand the mechanical variables of axial 

force and bending moments on the other, of an individual frame member 

(or of a finite element if more than one finite element is contemplated 

for modeling an individual member). These "generalized" 

force-displacement relations for an individual member/element are also 

intended to be valid over a range of deformations that may be 

considered as "large". 

To achieve the above purpose, a beam-column, as shown in Fig. 4, 

is considered. It should be noted that all of the rotations are 

semitangential rotations [24,25], and 1 93 at node 1 is zero. Using the 

relative rotations, 61, 62, and 63, and the relative rotation vector, 

la which is given by Eq. (3.6), the relation between unit vectors 0 

and ei is written, using Eq. (3.11), as: 

e = S 
i 	ij j 

where 

[S 11 S 12 S 13 

ij S = S 	S 	S 21 	22 S23 
S31 S 32 S33 

(3.34) 

(3.35) 

 

	

2^
0 	

2-6 	2-0  2  
S 11  = 	

1 	r 

	

21 
	

2
2 

-2 L1 + tan 	- tan 	- tan—] 2 1 + e 
(3.36a) 
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2 	r1 	
(3;

2 	
a31 S 12 

-- ^2 Ltan-2
-tan— + tan 

	

2 	2 
1 + 6 

(3.36b) 

	

g, 	i 1 	 1 g  

	

S 13 = 	2  -2  [tan ---1 	-tan- - tan — 

	

2 	 ] 
1 + 8 

(3.36c) 

134 
S 21 

- 	
2 	

, r 	( 1 	1`i2 - tan 
^2 Ltan-2-tan- 

2 
1 + 6 

(3.36d) 

2-
0 	

2-
0 	

2- 
0 2  

S 22 
 = 	1 -2 [1 	--- 	

22 
tan 	+ tan 	- tan--T=] 

1 + 6 
(3.36e) 

2 	r2 	
'd 11 

S
23 

 = 	
^2

Ltan-.tan-1 + tan -- 
2 	2 ]  

1 + 
(3.36f) 

g 1 
S 31 - 	2 

2 	2 
[tan 	- + tan 

2 
1 + 

(3.36g) 

2 	r 	
(32 	i33 	i3 1 

S 32 
 = 

^2 L tan 	- tan -- 

	

2 	2 J  
1 + 6 

(3.36h) 

	

2- 	2- 	2- 

	

e 	0 
S

33 
= 	1 

2 	 2
l 	2 

-[1 - tan 	- tan-T- + tan 2 '] - 
1 + 6 

(3.36i) 



	

2.e 	2.e 	2, 
-2 

	

= tan
. 

2 1 

	

2
2 	

2 + tan 	+ tan-] (3. 37 ) 

The curvatures along a centroidal axis of.a deformed member are given 

by: 

* de 
 

1 K 1  = 	e
3  1 	* 	- dx

3 

(3.38a) 

* 
de 2 

K2 - --- • e 3  2 	* 	- 
dx3  

(3.38b) 

d
* * 

* 	e 1 • * 	2 K 	 • e 1  12 	* 	e 2 or 	
de 

dx3  - 

	

dx
3 	 3 

(3.38c) 

Substituting Eqs. (3.34) and (3.35) into Eq. (3.38), the following 

equations are obtained: 

	

dS 11 	dS12 	dS13 
1 	dx* K = 	• S31 + 

dx
* 	

dx*  S 32 + 	• S
33 

	

3 	 3 	 3 

(3.39a) 

* dS21 	dS22 	dS23 K2 dx 
3 

= 	• S 31 + 	

3 
dx 	

• S
32 

+ 	S
33 * * dx 3 

3 

(3.39b) 
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K*
dS 11 	dS12 	dS13 

12 - 	• S21 + 	• S22 + 	• S23 * 
dx

*  

	

dx
* 

3 	
dx

3 	 3 

(3.39c) 

Also, the moments along a centroidal axis of a deformed member are 

given by: 

* * 
M 1 = EI 1 • K 1 
	 (3.40a) 

* * 
M2 = EI 2 • K 2 (3.40b) 

* * 
M12 = GJ • K 12 (3.40c) 

where 	Eli : Bending stiffness about X2 axis 

EI2 : Bending stiffness about xi axis 

GJ : Torsional stiffness 

As shown in Fig. 5, the moments Ai, ii2, and M3  are represented, 

in terms of M* , M* , M*  , and Sid, as: 

* * 
-S 	M +S 	•M -S 	•M*  A 1 	12 	2 	22 • 1 	32 • 12 (3.41a) 
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4'1 1 	
Q • (e *  • i ) 	k • (t*- e)= 0  

dx* 	
1 • 	 - 	• 

3 	3 	 3 	1 
3 

(3.42a) 

Q 2 + d 	2 	2 
1 	(1F4  _ 2M j (3.43b) 

^ 
M2 

A
3 
.s•m2  S

11 

S 13 

	

• M2 - S 21 	• M 1 	+ S 31 	• M 12 

	

-s•m+s33 	• m*  

	

23 	 12 

(3.41b) 

(3.41c) 

The equation of equilibrium in the two transverse directions of 

the beam may be witten [29,30,361 as: 

dM 2 4. 
Q2 

• re* 

dx3 	 3 
) - N • ( e *  • e ) = 0 _ 

3 	 3 	2 
(3.42b) 

Also 

where 

dM
3 0 

dx
3 

= 	1 	r  1 	- + 	1 

(3.42c) 

(3.43a) 

Substituting Eqs. (3.34) to (3.36) and (3.39) to (3.41) into Eq. 

(3.42), the following equilibrium equations are obtained: 
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(
dS

21 	dS
22 	

dS,y2 d r EI 	LS 	+ 	S 	+ 	"J -S )] 

	

2 
 dx3 S12 ( dx 3 
	31 	

dx 3 
	32 

dx * 	33 
3 	3 	 3 	 3 

EI d rs ( dS
11 s 	LIS12.s 	dS 13•s )1 - 

	

1 
dx

* L 22 
dx

* 	31 
3 	3 	

dx * 	32 	
dx * 	33)1 

	

3 	 3 

( dS
11, 	

dS
12 , 	

dS
13 	)] + GJ 

dx3 	 dx 

	

dx
* [S32

--- 
21 	

--7- 
"322 dx 3 	23 

3 	3 	 3 	 3 

+ 6 1 •s 33 
- 14•s 31 = 0 
	

(3.44a) 

dS 
	dS 	 dS 

- d r , ( 

 EI
2 	* L ''10 * .'", 31 	

22 
-S 	+ --LLS )1 

	

dx
3 	

dx
3 	 3 

dx * 	
3 

32 	dx 3 	33 

d 

	

(
dS 11 	dS

12 	dS 13 

	

.s 	)1 r + EI 	LS L----•S + 	S + 

	

1 
dx

3 
	dx 3  21 dx * 	31 

3 
dx

* 	32 
3 

dx * 	33)1 

d 

	

r
dS 11 	dS

12 	
dS

13 r 
- GJ •LS L 	S 	+ S + 	S 

	

dx
* 	31 

dx
* 	21 

	

3 	3 	
dx* 

3 	
22 	dx * 	23 

3 

+ i;22.s33 - h•s 32 = 0 (3. 44 b ) 
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and d 	dS21 	dS22 	dS r - EI --- LS 	 + 	S 	+ 	S )] 2 	* 	13
r 	

* 	31 dx* 	32 	dx* 	33 

	

dx
3 	

dx
3 	3 	3 

d rs ( dS 11.s 	dS12.s 	dS13.s 11 
+ EI • 

	

1 dx * 	23L * 	31 	* 	32 	dx 	33 

	

3 	
dx

3 	
dx

3 	3 

d 

	

dS 11 	dS12 	dS13.s )1 r - GJLS 	S + 	S 	+ 

	

dx* 	33 dx* 	21 dx* 22 dx * 	23 

	

3 	3 	3 	3 

. 0 
	

(3,44c) 

On the other hand, the expression for the total axial stretch, 6, 

of the beam may be written [29,30] as: 

	

6 = 	+-1---41■1•(e 	) + 	49_ •9_ ) 
* 

EA 	-3 -3 	1 	3 1 

t* 	]1.( 	
dx* (:) 2 4_3 *.f2 ) 	t3  •f3 ) 	3  

where 	A: Cross-sectional area of the member 

E: Young's modulus 

Using Eq. (3.34), it is seen that: 

(3.45) 

0 
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J 

9. 
11 + 

EA
-[N -S 33  + Q 1 -S 31  + 2 -S32 ]I-S 33 3 -dx *  - 2. 	(3.46) 

Eqs. 

i n  
Ni 

(3.43), 

zr;  

(3.44), 

— 
- N-02 = 0 

+ 	
= 0 "1 

and 	(3.46) 	may be 

(3.47a) 

(3.47b) 

(3.47c) 

1- 
M
2 

- 2- 
42 

- 

9, 

For the type of problems contemplated, we assume that the 

deformation of the frame as a whole is such that the relative 

rotations, 41, 62, and 63 (non-rigid rotations) in each individual 

member/its elements of the frame may be considered as being small. 

Under this assumption, 

approximated as follows: 

2- d 6
2 

EI
1 	*2 dx

3 

2 ^ d A l 
- EI 2 	*2 dx

3 

2 ^ d 6
3 - GJ 	*2 dx 3 

 

Also, the boundary conditions are given by: 
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dA2  

dx
3  

2 
- I 1 m- 

1 

x=0 

2M 1 (3.48a,b) - EI 1 
dx

3 

"a, l * 	= 0 , GJ 	3 

' 
3
=0 	 dx

3 

de 

 

2^ 
M
3 

(3.48e,f) 

x
3 
 =9, 

  

 

1- 	 dA
1 

m2 	EI2 	* 
dx

3 x=0 

  

de l 
EI 2 	* dx

3 

 

2- . M
2 	(3.48c,d) 

x
3
=2, 

 

The total axial stretch becomes: 

t. "2 	̂2) 	* 	iN d 	- 	+ 02 )dx,. + — 3 EA 
0 

(3.49) 

Thus, the non-linear terms, i 2  and 62 , are retained in the 
1 	2 

axial stretch relation as, for instance, in the Von Karman plate theory. 

Eqs. (3.47) to (3.49) form the basis of the present derivation of the 

relations between the generalized displacements and forces in the 

element. 

The non-dimensional axial forces and bending moments, denoted as 

nl, n2, ml, and m2 may be defined, respectively, through the relations: 

3 14 



M 1  Q R t2 

	

n 	 m = 

	

1 	EI1 	1 	El l  
(3.50a,b) 

Re 	A2 
n2  2 	EI2 	2 	EI2 

(3.50c,d) 

The solutions of Eqs. (3. 147a) and (3.48a,b) are given by: 

(1) for n1 < 0 

d-x 3 	1 	 d-x
31 .0 - 1 sin  

A 2 1m 	d 	 acot d•cos ( 3.51) 

   

* 

 

 

ci-x
31 2 	r 	1 	1 

	

+ m1 •L 	+ --cosec d-cos ----j 
d
2 d  

 

where d 

  

(3.52) 

(2) for n1 > 0 

e•x 	 e- 
* 

	

1 	 1 
2 	m 1 

r 	
2 	sinh 	+ --coth 	

xl 

	

e 	e 	
3 

 (3.53) 
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e •x 
2 	rl 

2 + m L — - 1-cosech e•cosh 	3 1 
1 	e 	e 	 2. 	1  

where 	 e 	1 
	 (3.54) 

The solutions of Eqs. (3.47b) and (3.48c,d) are given by: 

(3) 	for n2 < 0 

	

f.x
* 	 * 

f.x 

°1 	
31 

t, 
. _ 1m 

2 
 .11  2 - 1 

f 	
3 	1 - sin --- - F.cot f-cos i  (3.55) 

where 

* 
2 	r 	1 	1 f•x 

2 	f  •cosec f.cos 

f = 2 (3.56) 

(4) 	for n2 > 0 

1 

	

* 	 * 

	

g.x 3 	1 	 g.xl 1 	1 	1 2 • 1. 	2 	sink 	+ -.coth 1g-cos 	2,  JI 
g 

(3.57) 
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g-x3  
2 	0 _ 1 

2
. 1-- 	

2
-cosech g•cosh -7-1 

g 

m   

where 	 g 	
2 
	 (3.58) 

Equation (3.51) through Eq. (3.58) lead to the following 

relations between the relative rotations, 16 1,  26 1 , 162, and 2 62, at 

the ends of the member and the corresponding bending moments, 1 m1,  2m1,  

1 m2, and 2m2: 

(1)for n1 < 0 

2 	
1 	[1 	cot di 	2 	r 1 	cosec di m  . 	 m 	+ 

	

1 	d2 	
d 	1  1 

d
2 	d 

(3.59a) 

2; = 1 m .r 1 	cosec di  4.  2m .r _ 1 4.  cot di 
1 

d
2 2 	 d 1 	1 L  d 2 	d (3.59b) 

(2)for n1 > 0 

1"0
2 	

1 m  [- 1 	coth 	 el 4.  2m  r1 	cosech el 
(3.60a) 1• 

	
e 	 e 	J  e 2 

+ 	
1 e2 

1 	[ 	coseh ei 	[ h  l 	
(3.60b) 

2 0
2 	

m  • - 1 c 	+ 2  m 
1 	 e 

e 2 	 1 
1 

e 	
cot e 
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(3) for n2 < 0 

1";1 	r1 	cot fi _ 2 .r _ 	cosec Pi 
1 = 	m2 •L—  

	

f
2 	f 	2 L 

 f
2 	f (3.61a) 

1 	0 	cosec  fi 	2 	r 1 	cot f ] 
1 6  = 	m 2  • L— 	J 	m2 2 	

f
2 (3.61b) 

(4)for n2 > 0 

1- 	1 	r 1 	coth gi 	2 	rl 	cosech gi 
0  = 	m *L - 	 J 	m'I_ 2 1 	2 	2 	g 	 g (3.62a) 

1 	r 1 	cosech  gi 	2m2, [1 2 	coth gi 

g 	 g 

9
1 = - m •L- — + 	J 	m'4. 2 2 	2 	 g 

(3.62b) 

Also, using Eqs. (3.49) and Eq. (3.51) through (3.58), the following 

expressions concerning the total axial stretch, (5, are obtained as 

(1) for the case in which ni < 0 (i = 1,2) 

2 	 cosec i-n. 	cot./717 
= / {[ 	

1 

2 	
1  	 ]( i m2.  + 221 

	

) 	(3.63a) 
, i=1 	2(-ni ) 	4(-ni ) 	4(-yi7r7171 	1 
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cotr-rit-coseci7E-  cosec171-  

	

+ [ 	1 	 1  i 	11 m. 2m  

. 2(-n 1 )1-c. 	1 i  (-ni ) 2 2(-ni ) 

EA 

(2) for the case in which ni > 0 (i = 1,2) 

r---- 2 	 cosech 2  n. 	cothi-T 

7 	
1 	 ii 

 m 
d 	f[ 	1  r1_2 	21112) 	

(3.63b ) L 	i 	1) i=1 	2n. 2 

	

4n. 	4n . 1/77. 
1 

cothliri•cosech17- 	ri cosech 

	

1 	 ii1 	2 j m 	1. . m./ 
ni

2 2n. 	 2n 1-77 i 	1 

EA 

The set of Eqs. (3.59) to (3.63) may be written in a more 

convenient form by decomposing the kinematic and mechanical variables 

of the beam into "symmetric" and "antisymmetric" parts, as 

ag . 	1/ (1g . 4.  2g ) 	sg . 	y(1g. - 26,  ) 
2` 	i )  ' 	1 	 i )  (3.64a,b) 

a 	1 	2 	 1 also 	 - m. , s 
1 	i 	1 	1 	1 	1 	= 1,2) 	(3.65a,b)  

where the subscripts "a" and "s" refer to "antisymmetric" and 

"symmetric" parts, respectively. 
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Therefore, in terms of the variables, a6i, s6i,  ami, and smi, 

Eqs. (3.59) to (3.62) may be written as: 

a2 	ah .am 	s; 	sh .sm  
2 	2 	1 	2 	2 (3.66a,b) 

wherein 

(1) for n1 < 0 

ai 	ah .am  , 8 ,6 . sh • ms 
2 	1 	2 	1 	1 

ah  _ 	1 	1 ----- cot 1 1 	(-nl) 	
2  - 
	 2 1:11-  1 

(3.67a,b) 

(3.68a) 

(2) for ni > 0 

i=n 

	

sh 	1 	1 •tan 

	

1 	2 	2 V71-  

1 
ah l = - — 	

1 •coth 1  n 1 2 2,/ri-  1 

(3.68b) 

(3.69a) 

AT s 	1 	1 - 	•tank h 1 	2 	2 AT 
(3.69b) 

(3) for n2 < 0 

ah2 

1/71-  1 	1 	4. 	2 
( _ 11  ) • 2 
	

2 
2 	,47-ri-  2 

(3.70a) 
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(4) for n2 > 0 

1/71-  

	

s
h2 	

1 	2 tan 
2171-2  171-  

a,  n 	- 	coun ---- 	2 

	

2 	n2 	2iirT- 	2 
2 

( 3.70b) 

(3.71a) 

h
2 	

2 1 

	2 tank 
1/T 

(3.71b) 

Also, in terms of the new variables, Eqs. (3.63a,b) may be rewritten in 

a unified form as follows: 

2 a 	s 	s 2 
a 
 m. d h. 	m. d h. d 	r 	1 + 

	

1 	11 .1.  

EA 2 dn. 	2 dn. J  i=1 

a-2 a 
	set 

 2 d  sh 	a-2 a 	01 d s  h2 R 
e2 d h11 	01  d h2 

-- 

2a,2 dn, 	2sh2 dn i 	2ah2 dn 2 	2sh2 dn 2 	EA 
` 1 1 	 1 	 2 	 2 

(3.72a) 

( 3.72 b ) 

where 

(1) for n1 < 0 

ah 1 	 177 

(-n
1

) 	4( -n

1

1 )17 
cot 	 -cosec 	(3.73a) dn 	

1 
2 1 	 2 	8( -n 1

) 	2 1-  
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2 

	

dsh 	 1771- 	 /7F- 

	

1 	1 	 1 	1  -tan 

	

dn 1 	 2 	8(...n \ -sec  2  
14(-n )147- 	 ' 1' 1 

(3.73b) 

(2) for n1 > 0 

da 	 2 ,-- 
-7 	 v n 1 1 	 1  	1 	1 	

cosech 	(3.74a) 
1 

-oath dn
h1 

	

	
2 	 2 n 1

2 
4n 1/7-  1 	1 	 8n 1 

	

dsh 	 2 
v n 

	

1 	1 	 1 	1 	 1  -tanh 	 sech 
2 do 	 2 1 	4n

1  VT 	
8n 1 

(3.74b) 

(3) for n2 < 0 

2 ,--- dah2  
1 

2 	
1 	 1 

147-  

	

2 	 v-n2 cot 	+ 	-cosec 	(3.75a) do 2 	 2 	 2 ( -n2 ) 	4(-n2  )1717 	 8( - n2 ) 

dsh 	 2 ,--- v7H- 
v-n2  2 	1 	 1 2  -tan 2  + 17717-7 sec 2  - 4( -n )1/-77 	 2 	

(3.75b) dn 2 
2 

(4) for n2 > 0 

2 dah 	 /TT 	 77,72- 
2 

n2 

	•coth 	 1 	
-cosech 	(3.76a) do 

2 	
2 	

1 

2 	 2 	 2 4n
2  17 	 8n 2 

dsh2 	1 	
2 ,--- AT 	

1 	v n2  2  . 	 -twill 	 sech dn
2 	 2 	8n 2 	2 4n ir-i-  2 2 

(3.76b) 

Equations (3.66), (3.67), and (3.72) are the sought-after 
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relations between the generalized displacements and forces at the nodes 

of an individual frame member, for the range of deformations considered. 

In connection with Eqs. (3.66), (3.67), and (3.72), it is worthwhile to 

recall that: 

(1) N is in the direction of the straight line connecting the nodes 

of the frame member after its deformation. 

(2) The parameters 6, 161,  41,  162, and 2 62 are calculated from Eqs. 

(3.31) to (3.33), which are valid in the presence of arbitrarily 

large rigid motions (translations and rotations) of the 

individual member. 

Thus, while the local stretch (pure strain) and relative 

rotation (non-rigid) of a differential element of an individual 

frame-member may be small, the individual member as a whole (and as a 

part of the overall frame) may undergo arbitrarily large rigid motion. 

Hence, the generalized force-displacement relations embodied in Eqs. 

(3.66), (3.67), and (3.72) remain valid in the presence of arbitrarily 

large rigid motions of the individual member of the frame. Also, it is 

important to note that the present relations for each element account, 

as in the Von Karman plate theory, the non-linear coupling between the 

bending and stretching deformations, as seen from Eqs. (3.66), (3.67), 

and (3.72). 

111.3 Tangent Stiffness Matrix of a Space Frame Member/Element  

Recall that, for the most part of the previous subsection, each 

member of the frame is treated as a beam column; but in extreme cases, 

i.e., of "pathological" deformations, it may be modeled by two or three 

elements utmost. 
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^2 2,•N 
Ir

S 	
N•6 2EA (3.77) 

Now we consider the strain energy due to axial stretch of the 

member. Since the total axial stretch, 6, is related in a highly 
A 

non-linear fashion to the axial force, N, as well as the bending 

moments, ami and smi, (i = 1,2), from Eq. (3.72), the inversion of this 

relation in an explicit form, which expresses the axial force N as a 

function of 6, appears impossible. With a view towards carrying out 

this inversion of the 6 vs. N relation incrementally, the strain energy 

due to stretching, which is denoted as rr s , needs to be expressed in._a 

"mixed" form using the well-known concept of a Legendre contact 

transformation [31] as: 

On the other hand, the strain energy due to bending is introduced 

as follows. The "flexibility" coefficients, ahi and shi (i = 1,2), are 

highly non-linear functions of the axial force in Eqs. (3.66) to (3.71). 

However, unless the flexibility coeffients are equal to zero, one may 

invert Eqs. (3.66) and (3.67) to write the "force-displacement" 

relations as: 

	

a- 	 s" 
a 

	

6
2 	s 	

e2 

	

m 1 	 m = 

	

1 	a 	' 	1 	s 

	

h1 	 h1 

(3.78a,b) 

	

a- 	 s^ 
a

m 	
1 	 el 

, 	m - 

	

2 a
h2 	

2 	s h
2 

(3.79a,b) 
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Using the definition of non-dimensional moments as in Eq. (3.50), 

one may express the strain energy due to bending, which is denoted as 

nb, as: 

	

aA2 set 	aA2 sA2 

	

EI 1 r 62 	21 	EI 	e 1 	El 11 nb 	2t La, 
4. e 

s h 	2Z Lah 	sh2
1 

	

n 1 	1 	 2 

(3.80) 

However, when in the limit as N tends to (-47 2EIi/t2 ), as 

explained in [22], shi (i = 1,2) tend to zero; thus, the inversions of 

Eqs. (3.66) and (3.67) to obtain Eqs. (3.78) and (3.79) are not 

meaningful. In such a case, one may use a mixed form for the bending 

energy of the symmetric mode, treating both smi and 313i (i = 1,2) as 

variables, as: 

	

5-2 	 s - s 2 EI1 	82 	EI 1 rs 	 1 h 1 m 1  
L  2t sh 	 m 1 . 8 2 - 	2 -I  

1 

(3.80a) 

s-2 	 s s 2 EI2  8 1 a 
EI2 r ms 	

- 
h
2 - m21  

2t sh 	L  2 	1 	2 	J  
2 

(3.80b) 

However, as explained in [22], without loss of generality for a 

practical frame-structure, we may consider the strain energy in the 

form of Eq. (3.80). It should be noted that in the view of the 

dependence of ahi and ahi on ni (i = 1,2) as in Eqs. (3.68) to (3.71), 

there is coupling between "bending" and "stretching" variables. 

The strain energy due to torsion, which is denoted as 7t, may be 

written as: 
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(3.81) 

The internal energy in the member due to combined bending, 

stretching, and torsion is represented as: 

	

a^2 	s^2 	a^2 s^2 

	

EI 1.r 82 	e21 	EI2.F 9 1 1. 	e11 n - 2i L ah 	sh 1 	2t La
h2 	

sh2 1  

	

1 	1 

(.3.82) 

2 

3 
GJ ^2 	̂ 	t-N 

+ N-6 2EA 

The condition of vanishing of the first variation of n, which is 

denoted here as n*, in Eq. (3.82) due to a variation in N, which is 

denoted here as N*, is given by: 

	

a4 	dah 	s e 	dsh 	a4 	dah  Tr* rr 	2)2 	1 	r 	2)2 . 	1 1.  ( 	1)2 . 	2 = 0 = - 1/ij---) • 	+ (
sh ) dn 1 
	ah 	dn2 

	

2 
ah 	

dn 1 	1 	 2  

(3.83) 

s 	dsh 
( s  1 1 2 . 	2 1.i* 	1.15..1,1* 

h2 	
dn2 ' 	't 	EA' 

Equation (3.83) leads clearly to the relation between S and the 

generalized forces as given in Eq. (3.72). 

The reason for using the "mixed" form for the stretching energy 

in Eq. (3.77) is now clear from the above result. By using a similar 

mixed form for the increment of stretching energy, the incremental 
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axial stretch vs. incremental generalized force relation can be derived 

in a manner analogous to that used in obtaining Eq. (3.83) from Eq. 

(3.82). This incremental relation, which is, by definition, piecewise 

linear, may easily be inverted, as demonstrated in the following. 

Also, it is shown in the following that Eq. (3.82) froms the basis for 

generating an explicit form for the "tangent-stiffness" of the member. 

The increment of the internal energy of the member, which is 

denoted as Am. , involving terms up to second order in the "incremental" 

variables, eae1, es e1, Aa62, es A2, AR, and Ad can be seen from Eq. 

(3.82) as: 

	

a- 	a,2 
EI 1 r 62 	A 62 	62 

	

bar = -T—La
h 	a 
	1 ) A(7 . 1--) 	(3.84) 

	

1 	2 h 1 	h 1 	 h 1 

	

s^ 	s ^2 A 62 s^ + 62  ---.6 0 	 + 
2 2 hs 

	

h l 	 1 

1 ) 	se,
2 	

A (s 1 )] 
s
h1  h i  

a^ 	a^2 a^2 
___. 	.6 
EI2 [ 6 1 	4. A 6 1 + 	61 •Ar 1 1 

2 
a
h2 	

2
ah 	2 	ah2

) 

s^ 	s^2 	s-2 e l 	̂ 	A 6 
•A

s 
 6 + 
	) 	s-e •A s e  .Ar 	11  

h 2 s 	1 	s 	 1 L' 	1 	̀s )1  

	

2
1 	

s
1 

h 2 	 h2 2 	2 h

1 

2 

+ 2142-6 	+ Ae] 2Z 	3 	3 	3 
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r 	
EA 
2,41 	t

2EA 
 .AN 	 — 

+ 	- 	 + A6.AN + N•A6 

In the above equation, it should be recalled that ahi and shi (i - 1,2) 

are functions of N. 

Now, using Eqs. (3.31) to (3.33), (3.66), and (3.67), the 

incremental quantities, Aa91, As A1, Aa62, AsA2, and A6 may be expressed 

in terms of Jui and :JO'.  (i = 1,2,3, j = 1,2) and/or their increments. 

Henceforth, we use the notation for the vector dm that: 

dmt = 11 u . 2u . 1 u . 2u . 1 u . 211 . 1 8 . 28 . 1 8 . 2 8 . 1 8 . 2 8 	(3.85)  
L 	1' 	1' 	2' 	2' 	3' 	3' 	1' 	1' 	2' 	2' 	3' 	3-1  

as shown in Fig. 2. 

In terms of the increment Adm, Eq. (3.84) may be written as: 

t 
Alf 	14 Ad

m 
 -A .Ad

m 
 + AN.A

t 
 .Ad 

m 
2 	dd - 	-nd - (3.86) 

A nn ^2 	t m 
+ 	+ Bd .Ad + B ri •AN 

2 

The details of Add, And, Ann , Bd, and Bn  are as shown in Appendix D. 

By setting to zero the variation of Ar in Eq. (3.86) with respect 

to AN, one obtains the following relation as: 

At d  .Adm  + Bn = - Ann •AR n - (3.87) 

Thus, the above equation is the incremental counterpart of 6 vs. 

/.• 
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the generalized force relation obtained in Eq. (3.83). Unlike the 

non-linear relation in Eq. (3.83), the piecewise linear relation, Eq. 

(3.87), can be inverted to express N in terms of the generalized 

displacements as: 

= - 

	

rA t .64 	3  

	

Ann

L-nd - 	n i  (3.88) 

Subtituting Eq. (3.88) into Eq. (3.86), one obtains the internal energy 

expression as: 

2 . 	t 	 B 
An = I/2Ad

ra 
 ..Km -Adm  + Adm  -Rm 	

n 
 

2Ann 

where 

Km : Tangent stiffness matrix of member/element 

1 
Add 	A A -dd 	-nd - -nd A - 

nn 

(3.89) 

( 3. 90) 

: Internal generalized force vector for member/element 

Bn B 	And -d 	- 
Ann 

(3.9 1 ) 

Recall that the tangent stiffness matrix and the internal force 

vector are written in the member coordinate system as shown in Fig. 2. 
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Thus, it is necessary to transform dm from a member coordinate system 
• 

to a global coordinate system as shown in Appendix E. 

It should be emphasized once again that the tangent stiffness 

matrix Km of Eq. (3.90) is given an explicit expression, as in 

Appendix D; and likewise, the internal generalized force vector Rm is 

also given explicitly. No member-wise numerical integrations are 

involved. During the course of deformation of the frame, once the 

nodal displacements of the frame at stage CN are known, the tangent 

stiffness of each of the members and hence of the frame structure, 

which governs the deformation of the frame from stage CN to an 

incrementally close neighboring stage CN + 1, can easily be evaluated 

from Eq. (3.90). This distinguishing feature of the present 

formulation renders the large deformation analysis of framed structures 

much more computationally inexpensive than the standard incremental 

(updated or total Lagrangean) finite element formulations reported in 

current literature [3]. Numerical examples illustrating this are given 

later. 
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CHAPTER IV 

SOLUTION STRATEGY 

Although a number of solution procedures are available for 

non-linear structural analyses, a reliable approach to trace the 

structural response near limit points, and in a post-buckled range, is 

the arc-length method which was proposed by Riks [16] and Wempner [18] 

and modified by Chrisfield [19,20] and Ramm [13]. This method is the 

incremental/iterative procedure which represents a generalization of 

the displacement control approach. The arc length method, in which the 

Euclidian norm of the increment in the displacement and load space is 

adopted as the prescribed increment, allows one to trace the 

equilibrium path beyond limit points such as in snap-through and 

snap-back phenomena. 

The i-th iteration in any incremental stiffness equation may be 

written, as shown in Fig. 6, as: 

p 	•13  - 
R(i-1) 

 + Ap.P = K
(i) -Ad 

i-1 

where 

P 	: Standard load vector 

Total load parameter after the (i-1)th iteration 

R (1-1) . Internal force vector after the (i-1)th iteration 

Ap : Iterative load parameter during this iteration 
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K (i) : Stiffness matrix during this iteration 

Ad 	: Iterative displacement vector during this iteration 

In the numerical implementation of Eq. ( 14.1), the standard 

Newton-Raphson procedure or the modified Newton-Raphson procedure may 

be employed. 

We decompose Ad into two parts, 

* 	** 
Ad = Ad + Ap.Ad 
	

(4.2) 

where 

• * 
Ad : Displacement vector due to the unbalanced force 

K(i)-1  • 	.1" - Rr 	
(i-1)) ip  

i-1 
( 14.3a) 

** 
Ad : Displacement vector to the external load 

(i)
-1  

= K 	.p (4. 3b) 

Also it is seen that: 

Ad (i)  - Ad (i-1) **  
+ Ad + Ap -Ad ( 14.14) 
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where (i) Ad 	: Incremental displacement vector after the 

i-th iteration during the current increment 

Ad (i)  = Ad (i-1) + Ad 

The incremental arc length, ani, after the i-th iteration during 

the current increment is defined as [20]: 

An (i)
t
.ad (i) 	i.Ap 2 .pt .p f4 

I  - - (4. 5 ) 

where 	Api: Incremental load parameter after the 
i-th iteration during this increment 

Y : Scaling parameter which represents 
the contribution of the load term 

Numerical experience has shown that it is preferable to ignore 

the contribution of the load term [13,19-20]. Consequently, using Eq. 

(4.4), Eq. (4.5) may be written as: 

t 
r 11./ 

an = Lad (i)  'Aduj 2  

**t 	** 	2 	**t  r 	(i- 1) = LAd 	'Ad •Ap + 2Ad 	-(Ad 	+ Ad)-Ap 

( 	(i - 1) t 	*t ) 	(i- 1) + Lad 	+ Ad j • ( Ad 	+ Ad * ) 

(14. 6) 
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In order to decide the incremental/iterative displacement Ad, it 

is needed to compute Op. In the case of a truss structure, two 

procedures, such as by the prescribed incremental arc length and by the 

criterion of member buckling, are used. 

As for the procedure of the prescribed incremental arc length 

which is used for both truss and frame structures, Ap is decided by 

Eq. (4.6) and the following equation. 

On= 
	 ( 14.7) 

where 	An: Prescribed incremental arc length 

Substituting Eq. (4.7) into Eq. (4.6), it is seen that: 

a• p + b-Ap + c = 0 	 (4.8) 

where 

** t • ** 
a = Ad 	•Ad 
	

(4.9) 

** t 	(i 1) 
b 	2-Ad 	 + Ad) 

C = 
	(i-1)

t 
+ Ad * )•( 
	

i - 1) 	Ad*) - ( T1 )2 

5 14 



Then, the following conditions, are imposed on the incremental 

displacements to avoid "doubling back" [19]. 

t (i) 
Ad 	•Ad 	> 	0 	(i = 1) (4.10a) 

(i) t 	(i- 1) •Ad 	> 	0 	(i > 1) (4.10b) 

where 	ad: Incremental displacement vector of the previous increment 

It should be noted that in Eq. (4.10), i = 1 represents the incremental 

process and i > 1 the iterative process. 

Another procedure to decide Op, which is used only for truss 

structures, can be developed based on the criterion for member buckling. 

According to Eqs. (2.1) and (4.4), the total axial stretch of the 

member after the i-th iteration prior to its buckling, di, at any point 

in the load history is given by: 

di = [(u 1 	

d*1 

	
ap.Ad** )2 	(d

2 
	Au g 	

Ap.Ad**2 ) 2  (4.11) 

+ (t + 71 (
3
i-1)  + Ae 	

3 
+ Ap•Ad** )14  - 

3  

The axial force after the i-th iteration, Ni, is also given by: 

Ni = k-d. 	 (4.12) 
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Substituting Eqs. (4.11) and (4.12) into the buckling condition for the 

member Eqs. (2.4) and (2.5), it is seen that: 

r.Ap + s-Ap + t = 0 	 (4.13) 

where 

_**2 	-**2 	-**2 r = Au 	+ A 	+ AU
3 1 	u2 (4.14) 

-* 
s = 2• -Ad** .(13 (1-1)  + Au) + 2.,64* .(4 2  i-1)  + Au* )) 1 	1 	l 

+ 2-Ad*
3
* •(1 + d (

3
i-1)  + 61;*

3
) 

t 	r_7(i - 1) + :7'1 )2 	rd(i - 1) 	Adif i 2 	(1 	du - 1) 	-,6114 1 2 
au 1 ) 	1/4  2 	2 ) 	3 	3 )  

( rN  
/k + t) 2  

In order to avoid "doubling back", the constraint equations, 

Eq. (4.10), are imposed on Ap; and in addition, the following condition 

for i > 1 is imposed: 

A6.1•A6.1-1 	> 0 	 (4.15) 
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where AL: Incremental total axial stretch after the 1 i-th iteration 

Finally, in the load parameter AP computed by Eqs. (4.8) and 

(4.13), the value for AP which satisfies the constraint equations, 

Eqs. (4.10) and (4.15) and gives the minimum value for Arii is employed. 

Moreover, an additional precaution is necessary in certain cases 

in using the constraint Eq. (4.10a) to avoid "doubling back". In the 

case that any member had undergone bifurcation buckling in the previous 

increment, the incremental deformation of the member during the current 

increment may change significantly due to the abrupt change in the 

tangent stiffness. Therefore, in this case, the following constraint 

condition is employed instead of Eq. (4.10a): 

1 < 0 	(i = 1) 	 (4.16) 

So far, the situation of the progressive buckling of an 

individual member has been discussed. It might happen that the member 

might be forced to undergo a "restraightening" after the member has 

buckled during the continued deformation of the structure. In this 

case, the numerical procedure is similar to the one treated above, 

wherein a member begins to undergo buckling. Instead of Eqs. (4.12) 

and (4.16), the following equations are used: 

N. = 	+ crN 1 	1 
(4. 1 7) 
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(4.18) 

where 	Ei: Total stretch in the post-buckled state 
after the i-th iteration 

k : Stiffness in the post-buckled state 

Equation ( 14.8) usually provides two roots for (Dp), one of which 

usually satisfies Eqs. (4.10) and the other does not. It it happens 

that both of the roots of Eq. (4.8) satisfy Eqs. (4.10), the 

appropriate value of (Ap) is the closest to the solution of the 

following linear equation [19,20]: 

b(Ap) + c 	0 	 (4.19) 

Finally, it should be noted that, in Eq. (4.5), if a large value 

for Y is adopted, Ani tends to be proportional to the incremental load; 

and the method tends toward the standard load control method. On the 

other hand, for a small value of Y, the arc length method may be 

interpreted as a generalized displacement control method, wherein the 

Euclidian norm of the increment in the displacement space is 

prescribed, instead of the increment of a specific displacement. 
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CHAPTER V 

NUMERICAL EXAMPLES 

Several numerical examples are considered in this chapter, to 

demonstrate the validity of the present study. 

As a criterion for the convergence of the iteration in solving 

the incremental equations, the following equation using the modified 

Euclidean norm is employed. 

< e 

C-Ad (i)  -Ad (iT2  

where 	n: Total number of degrees of freedom 

e = 1.0 x 10 -3  for all the numerical examples 

V.1 	Truss Structures  

In subsection V.1.1, we present several examples of plane 

trusses; while in subsection V.1.2, we treat examples of space 

(three-dimensional) trusses. 

V.1.1. Plane Trusses 

Examples 1 and 2 are those of simple truss structures, for which 

theoretical solutions for the buckling load and the initial slope of 

the post-buckling load-displacement curve are given by Britvec [36]. 

For these structures, experiments were also carried out by Britvec, who 

[1 dt -Ae2  n 
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found good correlation between his theoretical and experimental 

solutions. 

These structures are composed of two and three member, 

respectively. All the members have a rectangular cross-section of 

width 2.54(cm), depth of 0.16(cm), and each has a length of 38.1(cm). 

Also, the buckling loads of the individual members are 13.26(kg) for 

Example 1, 13.15(kg) for Example 2, respectively. 

The schematics of the structures and the results obtained are 

summarized in Fig. 7. Both of these structures have a special type of 

structural behavior in which the global buckling is caused by the 

buckling of one of the members. The present solutions agree 

excellently with Britvec's theoretical solutions concerning the 

buckling load and the initial slope of the post-buckling curve. 

However, the present solutions develop the tendencies that the 

stiffnesses of the structure gradually increase as the post-buckling 

deformations progress. This phenomenon is brought out by the effect of 

the geometrical nonlinearity, and the result of Britvec's experiments 

also show the same tendencies in the post-buckling range. Thus, the 

present results appear to be reasonably accurate. 

Example 3 is that of a simple structural model [see Fig. 8(a)], 

which exhibits a snap-through phenomenon and is chosen here to study 

the effect of member buckling on such phenomena. In this example, the 

range of deformations is much larger than in the earlier examples. The 

structure is composed of two identical members, which have a solid 

circular cross section of area 96.77(cm 2), a length of 38.1(cm), and a 

Young's modulus of 7.03 x 10 5 (kg/cm2 ). To study the influence of the 

member's buckling, three different cases are investigated. In Case 1 
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the buckling of both the members is ignored, in Case 2 the buckling of 

only one of the members is considered, and in Case 3 the buckling of 

both the members is considered. 

Figure 8(b) shows the relations between the applied load and the 

vertical displacement of the center. Case 1 exhibits a typical 

snap-through phenomenon and reaches the limit point at a load of 3.76 x 

106 (kg). In Cases 2 and 3, the individual members buckle at a load of 

2.93 x 10 6 (kg) and cause the structure to be in the unstable region 

just after this load. There is little difference to be found between 

Cases 2 and 3. 

The fourth example is that of a strut structure, which was first 

suggested by Thompson and Hunt [37] and later analyzed by Rosen and 

Schmit [23] to study the influence of local as well as global geometric 

imperfections on global stability. 

The outline of this structure is shown in Fig. 9(a) and Table 1. 

The structure is composed of 35 members, all of which have a solid 

circular cross section and an identical Young's modulus of 7.03 x 

10 5 (kg.cm 2 ). As in the case of Example 3, four different cases are 

dealt with in this example also, to investigate the influence of the 

member's buckling and of a slight difference of the cross-sectional 

area of individual members on global buckling. The cross-sectional 

areas of the members for each ases are shown in Table 1. Note that the 

structure of this example is not strictly symmetric about the z axis, 

and this unsymmetry causes the effective neutral axis of the strut to 

be slightly above the z axis for Cases 1-3 or slightly below the z axis 

for Case 4. In Case 1, the buckling of all of the members is ignored. 

In the other cases, the buckling of all of the members is considered; 
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however, the cross-sectional area of the members is slightly different 

for each case, as shown in Table 1. The results obtained are shown in 

Figs. 9(b)-(d). 

Case 1 exhibits an entirely stable equilibrium path in the 

load-displacement space. At a load of about 7.2 x 10 5 (kg), the global 

buckling occurs; and the stiffness of the structure goes down and tends 

to zero after that. However, the equilibrium path is still stable. 

The difference between Cases 1 and 2 is that member buckling is 

considered only in the latter, while the cross-sectional areas of the 

members are the same in both the cases. Thus, the structure of Case 2 

exhibits exactly the same behavior as that of Case 1 until a load of 

6.916 x 10 5 (kg), when the member of no. 15 buckles. 

In Case 3, the cross-sectional area of the member with no. 15 is 

set to be about 5.89 percent smaller than the corresponding area in 

Case 2. However, the structural behavior is almost the same as that in 

Case 2. With this slight reduction in cross-sectional area of one 

member, the stiffness of the structure as well as the load level when 

the member of no. 15 buckles are reduced as compared with Case 2. 

In Case 4, the cross-sectional areas of the members 14 and 16 are 

set to be 94.11 percent of the corresponding areas of Case 1. This 

reduction of the cross-sectional areas causes the effective neutral 

axis of the strut to be slightly below the z axis. Also, the members 

14 and 16 buckle at an external load P of 6.323 (kg). 

It is interesting to see that even in a fairly complicated 

structure such as in Fig. 9(a), the buckling of only one or a few 

members renders the structure to be unstable. It is also noted that 

even a slight difference of the cross-sectional area of the members has 
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a great influence on the overall behavior of the structure. In Fig. 

9(c), the z-displacement of node 19 [see Fig. 9(a)] is shown as a 

function of the load P for each of the four cases. The variations of 

axial forces (directed along the undeformed axes of the members) in 

members 14 and 15 as a function of the external load P are shown in 

Fig. 9(d) for each of the four cases. It is instructive, while 

examining Fig. 9(d), to remember that Case 1 precludes buckling of any 

member; in Cases 2 and 3, member 15 buckles (this load is lower in Case 

3 than in Case 2); and in Case 4, member 14 buckles first. Figure 9(d) 

indicates that the load transfer mechanism in a structure after the 

buckling of an individual member is rather complicated. 

Example 5 is an idealized model of a truss of the plane arch 

shape. This structure was also analyzed by Rosen and Schmit [22] to 

investigate the influence of geometric imperfections. This thin, 

shallow arch is made up of 35 truss members, all of which have a solid 

circular cross section and a Young modulus of 7.03 x 10 6 (kg/cm 2 ). It 

is shown schematically in Fig. 10(a) and in Tables 2(a,b). Again, 

three cases are considred for this example. In Case 1, the buckling of 

any member is entirely ignored, while it is considered in Cases 2 and 3. 

The difference between Cases 2 and 3 is only that the cross-sectional 

areas of members 27 and 28 in Case 3 are 25.00 percent smaller than the 

corresponding areas in Case 2. The results obtained are given in Figs. 

10(b-d). 

Case 1 indicates the snap-through phenomenon similar to that of 

the behavior of thin shallow arches made of homogeneous isotropic 

elastic materials. The limit point is reached at a load of about 2.64 

x 10 3 (kg). 
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In Case 2, members 11 and 12 buckle slightly after the whole 

structure passes the limit point. As seen from Fig. 10(b), the global 

structural response in Case 2 is markedly different from that in Case 1. 

In Case 3, the cross-sectional areas of two members (i.e., nos. 27, 28) 

are smaller than the corresponding areas in the other cases. Thus, the 

overall response in Case 3 is slightly different form the other two 

cases, until buckling occurs first in members 27 and 28, after passing 

the limit point of the structure as a whole. However, in spite of the 

buckling of members 27 and 28, there is little change in the overall 

behavior of the structure as compared with the former cases. However, 

when the deformation progresses further, the members 21 and 22 buckle; 

and this alters the load-carrying capacity of the structure more 

decisively. 

The sixth and final example of plane-truss structures deals with 

the interactive effects of imperfections of the structure at the global 

level and the possibility of local buckling of individual members. The 

structure considered is identical to that in Example 4 and shown in 

Fig. 9(a). While Example 4 treated a perfect structure, now two cases 

of global imperfections are considered. The imperfection is of a 

half-sine-wave form. Two different values of the amplitude of this 

imperfection mode, 1.32(cm) and 2.64(cm), respectively, are considered. 

In both the cases of imperfection, individual member buckling is 

considered; and the cross-sectional areas of members are identical to 

those in Cases 1 and 2 of Example 4, as shown in Table 1. The present 

example is summarized in Table 3. The results are shown in Figs. 

11(a-c). Cases 1 and 2 as marked in Fig. 11(a) are identical to Cases 

1 and 2 as marked in Fig. 9(b) for a perfect structure. Comparing 
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these cases with Cases 3 and 4 in Fig. 11(a), the dramatic combined 

effects of small global imperfections of the structure, and of the 

buckling of individual members, on global response, may be noted. The 

variation of z-displacement, at node 19, with the external load, is 

shown in Fig. 11(b). The complicated nature of load-transfer in the 

structure after an individual member's buckling, in an imperfect 

structure, may be seen from Fig. 11(c). 

The present numerical examples thus delineate: (i) the effect of 

buckling of an individual member or members on the response of the 

structure as a whole and on the subsequent load-distribution in the 

structure, (ii) the effects of even minor variations in the 

cross-sectional areas of individual members, and (iii) the effects of 

imperfections at the global level, while imperfections at the local 

level, in each member, may be expected to have similar effects. The 

present numerical examples also serve to point out the relative 

efficiency of simple procedures adopted in the present work for 

obtaining tangent stiffnesses. 

V.1.2 Space (Three-Dimensional) Trusses 

The first example considered in this category is the shallow 

geodesic dome shown in Fig. 12. This structure, which exhibits a 

snap-through phenomenon, is subjected to one concentrated load at the 

central node. Two initial configurations of the structure, one 

geometrically perfect and the other with slight imperfections, as 

specified in Table 4, are considered. This example was also analyzed, 

using a perturbation method by Hangai [2] to study global stability. 

In the present study, however, the influence of local buckling on 

global stability is also examined. 
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Figures 13 and 14, for the case of perfect geometry, show a 

typical snap-through phenomenon wherein the first limit point is 

reached at a load of 3.15 x 10 -4 EA (Kg). The present results are seen 

to be in good agreement with those of Hangai [2]. 

The influence of local buckling on global instability is 

illustrated in Figs. 15, 16, and 19, which indicate that a global 

behavior strongly depends on the local buckling of a single member. In 

a practical design of a three-dimensional truss structure, this 

understanding is very essential and useful. Also, the effects of 

slight geometric imperfection are illustrated in Figs. 17 and 18, 

wherein the comparison results of Hangai [2] are also included. 

Example 2 is also that of a shallow geodesic dome, analyzed 

earlier by Noor [32] and shown in Fig. 20. Two types of loading 

systems are considered: the first loading system consists of lateral 

concentrated loads P1 over the entire dome; the second one, P2, 

consists of concentrated lateral loads only over a quarter of the dome. 

An important difference between the present analysis and that of Noor 

[32] should be mentioned. Noor [32] ignores local buckling and assumes 

each member of the truss to remain straight and stable. On the other 

hand, in the present analysis, local buckling of each member is 

allowed; and only for comparison purposes, results are also obtained 

using the present procedure with local buckling being intentionally 

suppressed. 

Figure 21 provides a comparison of the vertical displacement of 

the central node in the present and Noor's solutions for various conbi-

nations of P1 and P2, when local member buckling is ignored. The 

present results agree well with those of Noor [32] except beyond the 
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limit point of P1 = -5.132 x 10 -5 . The stability boundary, i.e., the 

combinations load parameters P1 and P2 which render the structure 

unstable when local member buckling is ignored, is shown in Fig. 22, 

from which an excellent correlation of the present results (with 

member-buckling being suppressed) with those of Noor [32] may also be 

noted. 

Figures 23 to 26 show the present results when local buckling is 

considered. Figure 23 shows the variation of vertical displacement of 

the central node; Fig. 24 shows the stability boundary under the 

various conbinations of Pi and P2; Fig. 25 shows the equilibrium path 

under the load system P2 = 0 and P1 * O. 

From this numerical example (especially Fig. 24), it is clear 

that the decrease in the magnitude of critical loads for the structure, 

due to buckling of an individual member or members, i.e., the influence 

of local buckling on the response of the structure as a whole, is quite 

remarkable. 

The third example of space trusses is that of a beam-like space 

truss (PACOSS Truss) subjected to axial and bending loads. The 

structure is that of a twelve-bay truss whose member properties are 

shown in Figs. 27 and 29. In order to trigger the coupling between the 

axial and transverse displacements, which is characteristic of the 

buckling mode, in the case of only axial-load application, a "load 

imperfection" equal to P/1000 is added in the transverse direction at 

one of the end nodes, as shown in Fig. 27. 

For the above predominantly axial-load case, Fig. 28 shows the 

relation between the magnitudes of the axial load and that of the 

transverse displacement at the loaded end, for two scenarios: (i) when 
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local (member) buckling is suppressed and each member is assumed to 

remain straight and stable and (ii) when each member is allowed to 

undergo local buckling. Fig. 28 clearly demonstrates the advantageous 

effects of controlling  the local buckling deformations of individual 

members and forcing them to remain straight and stable. This leads one 

to the concept of active/passive control of member deformations. 

Figure 29 shows the schematic of the PACOSS Truss subject to 

predominantly bending loads. Fig. 30 shows the relation between the 

magnitudes of transverse (bending) load and transverse displacement, 

respectively, once again for two scenarios: (i) when local member 

buckling is suppressed and (ii) when member buckling is allowed. 

Figure 30 again demonstrates the beneficial effects of control  of 

deformations of each member. Figure 31 shows a computer plot of the 

deformed shape of the PACOSS Truss under bending loads. 

It should be noted that in Figs. 28 and 30, the letters A, B, C, 

etc. indicate the stages at which the respective members, whose numbers 

are identified in Figs. 28 and 30 respectively, undergo local buckling. 

V.2 	Frame Structures  

In subsection V.2.1, we present several examples of plane frames, 

while in subsection V. 2. 2, we treat examples of space 

(three-dimensional) frames. 

V.2.1 Plane Frames 

We first examine the ranges of deformation of a frame element, 

for which the presently developed tangent-stiffness matrices are valid. 

Recall that the principal assumptions underlying the present 

development of an explicit expression for the tangent-stiffness matrix 

of an element are as follows: (i) arbitrarily large rigid translations 
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and rigid rotations of the element are accounted for; (ii) however, the 

local (non-rigid) rotations ei  (i - 1,2) are restricted to be small 

such that singi :2  gi amd cosgi - 1; (iii) the local axial stretch c is 

restricted to be small; (iv) the non-linear coupling between the 

bending deformation (characterized by Eli) and stretching deformation 

(characterized by total axial stretch 6) is accounted for. 

We consider the problem of an "elastica" - a simply supported 

(but axially movable beam, of length Z, that is subjected to an axial 

compressive load, with a load eccentricity of (Z/1000) from the 

undeformed axis of the beam, as shown schematically in Fig. 32a. The 

beam has a square cross-section of area 1.0 (in 2 ), I = 100.0 (in), E = 

10 7 (psi), and I = 0.8333 (in it ). For testing the range of deformations, 

over which the present explicit expression for tangent stiffness matrix 

of an element are valid, the beam is idealized, successively, by 1, 2, 

14, and 8 elements over its length, respectively. As shown in Fig. 32a, 

dv is the total axial "stretch" of the beam, while 6H is the transverse 

displacement at midspan, in the post-buckling range. Figure 32b shows 

the dependence of (dv and dH) on the axial load N, for the range of 

deformations [(6 /2) and (6H/Z)] :: 0.30. On the other hand, Fig. 32c 

shows the dependence of (6v and 6H) on the axial load N, for a much 

wider range of deformations, viz., (dv/Z) = 1.0 and (6H/Z) :2.  0.5. 

From Figs. 32b and 32c, it is seen that, while a "single-element" 

representation of the entire beam does account for the non-linear 

coupling between bending and stretching (as seen from the large values 

of 6v and 6H at N = NE), the slope of the post-buckling response curve 

for N vs. (dv or 6H) is not accurately represented. On the other hand, 

Figs. 32b and 32c clearly indicate that even a two-element 
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representation of the beam yields results for post-buckling response, 

that are in close agreement with the classical "elastica" solution, 

even for very large deformations of the order (41/2.) = 0.4 and (dv/t) 

0.5. It is also seen from Figs. 32b and 32c that a four-element 

representation produces solutions that are in exact agreement with the 

"elastica" solutions for the entire range of deformations considered. 

The reason for this excellent behavior of the "two-" or "multi-"element 

models of the elastica is due to the fact that the present element 

development can account for arbitrarily large rigid motions, even if 

for element-wise small-strain motions, as discussed under assumptions 

(i) to (iv) at the beginning of this section. 

It is worth pointing out that while arbitrarily large 

deformaitons (such as the straight beam folding into a circle) have 

been considered in the present example of a single beam, when a 

practical frame-structure is considered, it is unlikely that each of 

its members will undergo such gross deformations. Thus, inasmuch as 

the present element development accounts for nonlinear 

bending-stretching coupling, it may be sufficient to model each member 

of the frame by only one or two of the present elements, whose 

stiffness matrices are given explicitly in Chapter III. The following 

five numerical examples illustrate this assertion. 

The first example is that of the so-called Wiliams' toggle frame, 

which was first treated by Williams [38] and later analyzed by Wood and 

Zienkiewicz [39] and Karamanlidis, Honecker, and Knothe [40]. A 

schematic of the structure is shown in Fig. 33a. The structure has a 

semispan of 12.943 (in), a raise of 0.386 (in), and is composed of two 

identical members, each with a rectangular cross section of width 0.753 
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(in), depth of 0.243 (in), and E = 1.03 x 10 7  (psi). Each member of 

the frame is modeled by a single element of the type derived in Chapter 

III. Figure 33 shows the presently computed relation between the 

external load P and the conjugate displacement 15, and also that between 

P and the horizontal reaction (R) at the fixed end. Also, shown in 

Fig. 33b are the comparison experimental results of Williams [38] as 

well as the numerical solutions obtained by Wood and Zienkiewicz [39]. 

Excellent agreement between all the three sets of results may be noted. 

However, the efficiency of the present method is clearly borne out by 

the facts that: (a) the present solution uses one element to model 

each member, while Ref. [39] uses five elements to model each member; 

and (b) no numerical integrations are used, in the present, to derive 

the tangent stiffness of the element during each step of deformation, 

since an explicit expression for such is given in Chapter III. 

The next two examples concern frames, with two and three members, 

respectively, which bring out rather fascinating features of responses 

of frames. For these examples, experimental results were reported by 

Britvec and Chilver [29], while theoretical solutions for the buckling 

load and post-buckling responses were also reported in [29,30]. In 

these two examples, each of the members has a rectangular cross-section 

of width 1.0 (in), depth 0.0625 (in), and 2, - 20.0 (in). Also, the 

buckling load of each member, when considered individually as a 

pinned-pinned column, is 8.1 (lb). The schematics of the two examples 

are given in Figs. 34 and 35a, respectively. In both these examples, 

each member of the frames is modeled by a single element. 

Each of the structures shown in Figs. 34a and 35a, respectively, 

has two distinctly different post-buckling load-displacement curves, 
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corresponding to the two types of buckling modes, designated, 

respectively, as (a) and (13) in the insets of Figs. 3 14b and 35b. Each 

of the modes (a) and (B) may be excited by considering a corresponding 

type of load eccentricity, designated also as cases (a) and ($) 

respectively, in Figs. 3 14a and 35a. 

Figure 3 14b shows the presently computed post-buckling P vs. d 

relation for the two-member frame of Fig. 3 14a, along with the 

experimental and analytical results reported in [29,30]. The present 

results agree excellently with those in [29,30], except for the Mode 

(B) deformation, in which case, the present results are close to the 

analytical results of [29,30], while experiment appears to predict a 

much stiffer response than either the present results or the analytical 

results of [29,30]. Similar observations apply to the results given in 

Fig. 35b for the post-buckling response of the three-member frame of 

Fig. 35a. 

The fourth example is that of a right-angled frame, shown 

schematically in Fig. 36a. This structure was first studied 

experimentally and analytically by Roorda [ 141] and Koiter [ 142], and 

later analyzed by Argyris and dunne [ 143] to demonstrate the 

imperfection sensitivities of structures. Recently, this problem was 

also analyzed in Ref. [ 140]. The dimensions and material properties of 

the members are identical to those used in Ref. [ 140] and are indicated 

in Fig. 36a. Based on the experience with the example of a beam 

considered in Fig. 32a, each of the members in Fig. 36a is modeled by 

two elements of the present type, derived in Chapter III. Five 

different cases of load-eccentricity, with e as marked in Fig. 36a 

being given the values (en) = 0.0001; 0.01; 0.05; -0.001; -0.01, 
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respectively, are considered. Figure 36b shows the presently computed 

results (for each of the five e values) for the P vs. 8 (the rotation 

at the corner, as defined in Fig. 36a) relations, along with the 

available numerical results of Karamanlidis, Honecker, and Knothe [40] 

(i.e., for (e/t) = 0.01 and 0.05) and the analytical results of Koiter 

[42] for th case of zero eccentricity (e = 0) of the load. From Fig. 

36b, it is seen that when the imperfection (e) is very small (i.e., e = 

±.001), the present solutions agree excellently with those of Koiter 

[42] (e = 0), in the range of small deformations (8 = 10 degrees). 

However, the present numerical results indicate that the structure 

stiffens gradually, as the post-buckling deformation progresses. This 

apparent effect of very large deformations is also confirmed by 

Roorda's [41] experimental results. Thus, the present results appear 

to be accurate over a wide range of deformations. Moreover, for the 

values of (e/t) = =0.001 and (e/t) = 0.05, the present results are in 

excellent agreement with those of Karamanlidis et al. [40]. However, 

it should be remarked that the present solutions are based on using 

four elements to model this two-member frame, while Ref. [40] uses 18 

elements to model the same frame. To provide a further insight into 

the post-buckling response, and imperfection sensitivity, of this 

simple frame, the presently computed variations of the displacement 6 

(see Fig. 36a) with load P, for each of the five values of load 

eccentricity, e, are shown in Fig. 36c. 

The final example concerns a four-member frame subjected to point 

loads, as sketched in Fig. 37a. The geometric and material data of the 

members, which are identical, is given in Fig. 37a. Because of 

symmetry, one-quarter of the frame (the rectangle 1-2-3) alone is 
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modeled by using four elements (two each in segments 1-2 and 2-3, 

respectively, as in Fig. 37a). The presently computed variations of 

displacements 61 and 63 (as defined in Fig. 37a) with the applied load 

P are shown in Fig. 37b, along with comparison results of Lee et al. 

[44] and the theoretical results [45]. The variations of the presently 

computed moments M1 and M2 (at points 1 and 2, respectively) with the 

applied load are shown in Fig. 37c along with the theoretical results 

[45]. Figures 37b and 37c illustrate the excellent accuracy of the 

present sumplified method. Lastly, the profiles of deformation of the 

frame at various levels of applied load P are sketched in Fig. 37d. 

V.2.2 Space (Three-Dimensional) Frames 

Prior to consideration of space frames, we consider the case of 

large-deformation bending response of a single member, through the 

example of a cantilever beam subject to a transverse load at the tip, 

as shown in Fig. 38. It is seen that the present results, using just 

two elements agree excellently with those of Bathe and Bolourchi [33]. 

The relative rotation at tip, as computed from the present procedure, 

is shown in Fig. 29 and is found to agree excellently with an 

independent analytical solution. 

We now consider the example of a space frame, whose geometry is 

identical to that of the space truss shown in Fig. 27. Here, it is 

assumed that the joint-design in the structure is such that each member 

can withstand bending moments, twisting moments, and transverse shear 

forces, in addition to an axial force; and hence, the structure can be 

modeled as a space frame. The pertinent geometric as well as material 

parameters of the considered space frame are indicated in Fig. 40. 
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The results for the case of axial loading are shown in Fig. 41. 

In this case, to trigger global buckling, a loading imperfection of 

magnitude (P/1000) is considered in the transvers direction (where 4P 

is the axial load) as shown in the inset of Fig. 41. Also shown in 

Fig. 41 is the comparison response of the structure when modeled as a 

space truss, with local buckling, as also shown in Fig. 28. An 

examination and comparison of Figs. 28 and 41 shows that the response 

of the space frame  under an axial load system indicated in Fig. 41 is 

is nearly the same as that predicted when a space-truss-type  model is 

employed and when the local (member) buckling is accounted for. (Note 

that both the responses, i.e., those predicted by a space-frame 

modeling as well as a space-truss modeling with member buckling, are 

considerably more flexible  than that predicted by a space-truss 

modeling without local buckling being considered.) This points to the 

potential use of space-truss-type modeling with local buckling being 

accounted for. 

The results for the case of transverse (bending) loading are 

shown in Fig. 42, when the structure is modeled as a space frame. Also 

included in Fig. 42 are the comparison results, shown earlier in Fig. 

30, when the structure was modeled as a space truss and when local 

buckling was suppressed. A comparison of Figs. 30 and 42 again reveals 

that the bending response of the structure of Fig. 40, when modeled as 

a space frame  is nearly similar to that of a space truss  when local 

(individual) buckling is properly accounted for. 



CHAPTER VI 

CLOSURE 

In this report, simple and effective procedures of explictly 

determining the tangent stiffness matrix, and an arc length method, 

have been presented for analyzing the large deformation and 

post-buckling response of (three-dimensional) space-truss and frame 

structures. The influence of local (member) buckling on the global 

response has been systematically explored. In each category of 

modeling of a large space structure, i.e., a space truss or a space 

frame, certain salient features of the present methodology are 

indicated below. 

VI.1 Space-Truss Structures  

The salient features of the present methodology are: 

(1) The stiffness matrix of an individual member is formed explicitly 

(without element-numerical integration) in both the pre- and 

post-buckled ranges of behavior of each individual member. 

(2) The range of validity of the invoked approximations, such that 

the stiffness coefficient, k, for each member has constant values 

in the pre- and post-buckled states respectively, has been 

demonstrated to cover most practical situations of space-truss 

structures. 

(3) As the result of (1) and (2), the tangent stiffness matrix of the 

structure as a whole is evaluated very simply. 

(4) The arc length method is efficient to trace the non-linear 

response of the structure beyond limit points. 
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(5) 	The consideration of the local (member) buckling is very 

significant for understanding the global instability of 

space-truss structures. 

Thus, it can be concluded that the methodology proposed in this 

report is very useful in analyzing practical space truss-type 

structures. 

VI.2 Space-Frame Structures  

(1 ) 	An explicit expression (i.e. requiring no further 

element-numerical integration) is given for the "tangent-stiffness" 

matrix of an individual element (which may then be assembled in the 

usual fashion to form the "tangent-stiffness matrix" of the frame 

structure). The formulation that is employed accounts for (a) 

arbitrarily large rigid rotations and translations of the individual 

element, (b) the non-linear coupling between the bending and axial 

stretching motions of the element. Each element can withstand bending 

moments, a twisting moment, transverse shear forces, and an axial 

force. 

(2) 	The presently proposed siimplified methodology has excellent 

accuracy in that only one element may be sufficient, in most cases (of 

practical interest in the behavior of structural frames), to model each 

member of the frame structure. Inasmuch as the relative (non-rigid) 

rotation of a differential segment of the present element is restricted 

to be small, a single element alone is not enough to model the 

post-buckling response of an entire beam column undergoing excessively 

large deformations as in an elastica. However, when considered as a 

part of a practical frame structure, the situation of each member of 
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the frame undergoing abnormally large deformations, as in an elastica, 

represents a pathological case. 

(3) 	Because of (1) and (2), the present method is by far the most 

computationally inexpensive method to analyze three-dimensional (space) 

frame structures and, therefore, is of considerable potential 

applicability in analyzing large practical space-structures. 

78 



ax 3 
au2 

3x 2 

3x 2 

au2 1 + ax 2 	ax3 
au31 	au3  

ax 3  

F = 

au2 
ax 1  
au3 
a x 1 

a u 1 (A. 2 ) 
a u 1 

APPENDIX A 

DERIVATION OF EQ. (2.1) USING POLAR DECOMPOSITION 

Deformation tensor is defined as follow [27]: 

F = R • U 
	

(A.1) 

where 
	

F: Deformation tensor 

R: Rotation tensor 

U: Pure stretching tensor 

R = cosecosipcost 
-sinipsint 

cosesinipcost 
+cosipsint 

-cosOsinipsint 
+cos*cost 

sinOsinip 

-sinecost 

sinesint 

cos 6 

(A.3) 

 

-cos9cosOin0 
-sinVcost 

sinecosip 

 

     

     

where the rotations 	6, t are defined as point-wise Euler angles (the 

order of rotation is i  + 9 4  4)) [34]. 
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or 

- (1 + E)[cosecosvcos. 	sinipsino] 	 (A.5) ax 1  

Consider an initially straight one-dimensional member aligned 

initially along the x1 axis. Then, it is appropriate to introduce the 

plausible kinematic assumption that the displacements ui are functions 

of x1 alone. Thus, in this case, E is approximated as: 

3u 1 
	 3u2 	

31_13  
F

11
F 	 F 

3x
1 

' 	21 	3x
1 

' 	31 	ax 1 
(A.4) 

Thus, Fil * 0 (i = 1,2,3) and all other Fij = 0. Likewise, the 

stretch tensor U may be approximated as: 

U 11 = (1 + E) ' • 	U 22  = 1 ' • U
33 

 = 1 
	

(A. 5) 

andallother— Ulj  are zero. For the present kinematic assumptions, one 

obtains: 

F
i1 	

R
ik

U
k1 
	[i = 1,2,3; k = 1,2,3] 

3u 2 
- (1 + E)[-cosecoslpsin0 - sintpcosqh] ax 1 

so 



au
3 	, k1 + e)sinecoslp 

On the other hand, if the member is initially along x3 axis, one may 

introduce the kinematic assumptions: 

a x 1 
 

Du i  au2 	 au
3 F 13 - 	F23  = 	F

33 	
1 + 

3x
3 

' 	3x
3 

' 	 Dx3  

U 11 = 1 ; U22 = 1 ; U33 
= (1 + 6) 

au2 au 	 au 
- (1 + e) sinecos$ ; ax3  - (1 + 6) sinesin0 ; ax 3  

1 + ax3 - (1 + e) case 

Thus, in general, from (A.5) and (A.6) one obtains: 

6 = [( 1302 	(1712 )2 4.  ( 133  4.  2, )2f4 

au 

3 

(A.6) 
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. s 	 (B.1c) :5-  2 
f 

APPENDIX B 

POST-BUCKLING BEHAVIOR OF A TRUSS MEMBER 

In this appendix, Eq. (2.3b) for the post-buckled state of the 

truss member is derived. 

Consider the truss member being subjected to the compressive force 

( -N), as shown in Fig. 1. When N satisfies Eq. (2.4), this member 

undergoes bifurcation buckling. From the detailed treatment of the 

elastica problem given in Ref. [28], the post-buckling behavior of this 

member, treated as a simply-supported beam, is governed by the following 

equations: 

1 t = — • F(B) (B.1a) 

 + 5 = 2 — • E(8) 
	

(B.1b) 

where 

Tr 

F(s) = f d4

1 	2 . - _ 
2 	1 - a sin2  4) 
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7 

2 
E(B) = j 	V 	 2 	. 2 • d0 

1 - a sin 0 
2 

f
2 
=EI 	B 	sing!) 

	

' 	 2 

a = 	u3=o 
	?Di 

u
3
=2, (B.2) 

and F(S), E(a) are the elliptic integrals of the first and the second 

kind, respectively. Also, 3 is the stretch after the buckling of the 

member; and d is the lateral deflection at the middle of the centroidal 

axis of the element. Note that the total stretch 6 is given by the sum 

of 6 and the stretch, crN • 2/EA, before the buckling of the member. 

Also, it should be noted that in the derivation of Eqs. (B.1), the 

change in the length of the member due to the compressive force is 

neglected. 

Equations (B.1) give the exact relations between N, 6, and S in 

the post-buckled range, except for the assumption concerning the length 

of the element. We now simplify and modify these relations to a form 

more useful for the present purposes of evaluating a tangent stiffness 

matrix. To this end, we start by expanding F(B), E(B) in terms of 0 

[see Ref. 357. 

1 	1.3 

	

F(B) = / + 2  a
2  .s 2 + 7J71 	a

4 .s + 	 (B.3a) 

8 3 



 
E(B) = it 	

2 	
2

1
.4 • a4•S 4 + 
	

(B. 3b) 

where 

Sn = I 2 
	

sinn  (1)-d0 
	

(B.4) 

2 

We shall retain the terms of Eqs. (B.3) up to the second order for the 

approximations of F(B), E(a): 

7 F(B) = 	7  -  (B.5a) 

(B.5b) 

The range of validity of these approximations will be demonstrated 

momentarily. 

Then, Eqs. (B.1a) and (B.1b), respectively, become: 

f
1 ( Tr  + 

4 
a2) 	 (B.6a) 

E 	(n - y B 2 ) - Q 	 (B.6b) 

From Eqs. (B.6) one obtains: 
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^ 4 
4t + S= — • 7  (B.7)  

Noting that f 2  = (-N/EI), one sees from Eq. (B.7): 

N = N (cr) 	1  

(1 + 1t ) 2  4 
(B.8)  

where N (0 r )  is the critical axial force for bifurcation buckling as 

given in Eq. (2.5). 

For small values of -(E/2.), Eq. (B.8) may be approximated as: 

N = N (cr) [1 - 14)] 2 t (3.9) 

The incremental form of Eq. (B.9) results in Eq. (2.3). The 

linear relation (B.9), and its incremental counterpart, are useful in 

tangent stiffness evaluations. 

We now derive the relation between S and S. This relation is not 

necessary for the construction of the tangent stiffness, but it is 

useful for the determination of maximum and/or minimum stress in each of 

the members. 

Noting that a is non-negative except for a > 21r, one obtains from 

Eq. (B.6a): 

= 2/ 1  • f • 2, - 1 
	 (B.10) 

85 



Substituting Eq. (B.10) into Eq. (B.1c), it is seen that: 

• /- • f • Z - 1 
7 	7 

(B.11) 

Substituting for f in terms of N and using Eq. (B.8), the following 

relation between e and (5 is obtained: 

(B.12) 

Thus, when the axial contraction d is solved for from the finite element 

stiffness equation, Eq. (B.12) may be used to calculate the transverse 

displacement (5 at midspan of the member; and from it, one may calculate 

the maximum or minimum stress in the member. 

Figure 43 shows the relations between N, e, and d as given by Eqs. 
(B.9) and (B.12) and their comparisons with the exact solutions for the 

elastica problem. The dotted lines indicate the present solutions and 

the solid ones indicate the exact. From this figure, it is seen that 

Eqs. (B.9) and (B.12) are good approximations in the range of values for 

-(d/Z) and (E/Z) being smaller than about 0.15 and 0.25, respectively. 

It is also seen that this range of values for -(/Z) and (d/i) is 

typical in the problem of local (member) buckling in a practical truss 

structure. 
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APPENDIX C 

COORDINATION TRANSFORMATION OF ROTATIONS 

The coordinate transformation for semi-tangential rotations from 

the global to the local system is considered as a usual coordinate 

transformation, because a rotation vector can be defined, when 

semi-tangential rotations are used as rotational variables. 

Therefore, using a rotation vector R, from Fig. 44, the following 

equations are obtained: 

(C.1) 

6. 
= tan — e' 
	

(C.2) 
2 	i 

From Eq. (C.1) and (C.2), 

6. 
tan 2 — = c ij • tan 7  (i,j = 1,2,3) 	 (C.3) 

where cij: direction cosines: c 	= e.-et ij 	-1 -j 

Finally, the following relations are obtained. 

-1( 
6.=2 • tan 	• tan 2 1 	 ij (c .4) 
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APPENDIX D 

REPRESENTATIONS OF MATRICES FORMING TANGENT STIFFNESS MATRIX 
OF A FRAME MEMBER 

The vectors for representing Eq. (3.86), herein, are defined as: 

Mt 	a^ s- a^ s^ 	
J M  = L ml ml M2 M2 M 3  

(D. 1) 

T
t 

=L  a^ 62 0 2 0 1 	0 1 
e3 J (D.2) 

Ct  
EI 1 EI 1 EI2 EI2 GJ 

L  Lahl ishl tah2 tsh2  (D.3) 

	

(A • J) t 	 (D.4) 

-1 	1 
	

(D.5) 

(D.6) 
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D
t 	d 	(1 ) 2, 	d 	(1 ) i 	(1 ) 2,  d 	(1 

L 	 ) 0 1 	(D.7) 

dn1 ah1 	
dn

1 
s
h1 	

dn 2  a
h2 	

an
2 

s
h 

2 

(D.8) 

J = unit vector 	(5 x 1) 	 (D.9) 

1. 	Add 

Add is represented as a (12 x 12) matrix as shown in Table (D.1), 

which the components Fij, mGij, and mnHij are given by: 

a2
Tk 	3Tk 	DT

t^ 	3
2

(5  
F = M • 	+ 	• A

la 
• 	+ N 

ij 	k   
3u.3u 

j 	 3 
3u. 	 au. 	 j au 

1 	1 	 1  

(D.10)  

a2T
k 	DTk 	 DT t 

G. - M • 	 • Akt • 
ij 	k 	o5.o(me.) 	o5 	a ( m et

) 
) j 

(D.11)  

a2T
k 	DTk  mn 	

DT R.  
H.. - M • 	 • Akt • 
1j 	k 	a ( m e i  )a ( ne.) 	a (me i  ) 	o(ne.i 

j ) 
(D.12)  

where 	i,j = 1,2,3 ; m,n = 1,2 
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2. 	And 

And is represented as a (12 x 1) vector as shown in Table D.2, 

which the components Li and jNi are given by: 

L. = Tk  • Bk2, 
 • 

	

aT t 	a6 
- 

	

au. 	au. 

	

1 	1 

(D.13)  

aT 
N. = T 	• B 	• 	. k 	kt w ei)  (D.14) 

where 	i = 1,2,3 ; j = 1,2 

Ann 

Ann  is a scalar factor as follows. 

Ann 
r a;2 	d

2 
 r 1 ) 
	set 

 ^2 	d
2 	

1 6 	. • 	I.  
2 	 2 	2 ( s 

)1 

1 2E1 dn1 	
'ah

1 	dn 1 	h 1  

t 3 

	

[ ag2 	d2 ( 1 ) 	e 1 
sA2 	d

2 

2E12 	
1 

	

dn 2 ah
2 	

dn 2 
2 	 2 

2, - 
EA 

2 

(D.15) 
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4. 	B d 

Bd is represented as a (12 x 1) vector as shown in Table D.3, 

which the components Ri and jSi are given by: 

DTk 
R. =M • -- + N 

38 
1 	k 	- 

	

3u. 	Du. 

	

1 	1 

(D.16) 

aT 
S. = 1,4 	- 	 k 	a(j e  i)  

(D.17) 

where 	 = 1,2,3 ; j = 1,2 

5. 	13n 

Bn  is a scalar factor as follows. 

Bn = 
a.^2 	d r 	+ s•(.3•2 	d 	( 1 

0
2 

▪  

dn
1 	

2 

▪  

dn
1h1 1 

(D.18) 
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"2 	 2 

+ 6 - 
2,•N 
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APPENDIX E 

APPROXIMATIONS OF RELATION BETWEEN TOTAL AND RELATIVE ROTATIONS 
OF A FRAME MEMBER 

It is necessary that Eqs. (3.31) and (3,32) are approximated to 

form the tangent stiffness matrix for frame-type elements because 

Eqs. (3.31) and (3.32) have high order terms and are too complicated to 

formulate. To keep simplicity of the formulations and get the original 

purpose, the following approximations from Eqs. (3.24), (3.27), and 

(3.28) need to be considered at most on Eqs. (3.31) and (3.32). 

1g,  

tan2  
_11 	

(
a

•
1 A + 	1 • + m 1 C) (E.1)  

1^ 82 tan 2 = 	(h. 1  D + 	1

• 

E + m. 1  F) (E.2)  

1" 

tan 23 = 	(1•r + 1•s + m•t) 
	

(E.3) 

2^ 

2

0 1 
tan — - tan 

1 6 1  + (tan 
2e 1  

- tan 

1 e l  
2 	16 	1 1 	
2 
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2 • A + (tan 	- tan ---j• 

 

2 2 

 

2 
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6
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2 	2 	2 	2 	 2 	2 

	

1 6 	
2
6
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2 	2 ) 

1
F (E.5) • 

6 
1 8 	 2

82 63 
	r 	

2
1 	1) tan —3 = tan 	+ (tan 	- tan ---) • r + (tan 2 - tan 

2 	2 	2 	2 

1
e3 	

2
e3 + (tan 	- tan 

2 	2 ) 
•t 	 (E.6) 

Substituting Eqs. (3.14), (3.15), and (3.24) into Eqs. (E.1) to 

(E.3), one obtains the following equations as: 

	

1 - 	 1
6 	

1
82 

 

	

e l 	1 	r 
tan 	+ 	t2r • (tan 	tan 	

- tan -7=-) 

	

2 	1 	e 	 2 	2 (E.7) 
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1
61 	

1
6 	

1 	 1
89 	

2 

1
01 1

01 
+ s•(1 - tan + tan2 22 - tan 2  2
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1A 1 0 
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e
2 -1 	r tan 	 { r • (1 + tan 2 

2
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1
e 1 	102 	

1

83) + 2s•(tan — tan 	+ tan j 2 	2 	2 

1 e 1 	1 e 

2 	2
3 	

1
89 

+ 2t•(tan —•tan 	
2 tan----)1 

1 A 

tan 23 = 0 (E.9) 

where 	e= 1G •r 	1H• s 	1I.t 

Equations (E.4) to (E.9) are the approximated relations between 

the relative and total (rigid plus relative) rotations for forming the 

tangent stiffness matrix of the element. 
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Table 1 Cross-sectional areas of the members 
of Thompson's strut structure 

Member's 
Number 

Case 	1, 	2 Case 3 Case 4 

1-13, 	17-21 54.84(cm) 2 54.84 54.84 

15 54.84 51.61 54.84 

14, 	16 54.84 54.84 51.61 

22 - 35 51.61 51.61 51.61 

All members have solid circular cross sections. 

Young's modulus is 7.03 x 10 5 (kg/cm2 ). 

In Case 1, the local buckling of individual is not considered. 
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Table 2(a) Nodal coordinates of the arch-truss structure 

Nodal 
Number 

z Coordinate x Coordinate 

1, 	19 T 3429.0 0.00 

•2, 	18 T 3048.0 50.65 

3, 17 T 2667.0 34,75 

4, 16 T 2286.0 83.82 
_ 

5, 15 T 1905.0 65.30 

6, 14 T 1524.0 110.85 

7, 13 T 1143.0 87.99 

8, 12 T. 	762.0 128.50 

9, 11 T 	381.0 100.05 

10 0.0 134.6 

In the second column, (-) and (+) respectively indicate the z -coordinates of 
the first and second members identified in the first column. 



Table 2(b) Cross—sectional areas of the members 
of the arch—truss structure 

Member's 
Number 

Case 	1, 	2 Case 3 

1 	— 10, 	35 51.61(cm
2 ) 51.61 

11, 	12 64.52 64.52 

13 — 16 83.87 83.87 

-- 17, 	18 96.77 96.77 

19 — 22 103.23 103.23 

23, 	24 161.29 161.29 

25, 	26 193.55 193.55 

27, 	28 258.06 193.55 

29 — 32 290.32 290.32 

33, 	34 309.68 309.68 

All members have solid circular cross sections. 

Young's modulus is 7.03 x 10
5
(kg/cm

2
). 

In Case 1, the local buckling of individual members is not considered. 



Table 3 Thompson's strut structure with global imperfections 

All members have solid circular cross sections, with areas as follows: 

No. 1 - No. 21 	 54.84(cm
2

) 

No. 22 - No. 35 

 

51.61(cm
2 ) 

 

Young's modulus is 7.03 x 10 5
(kg/cm

2
). 

Member's Buckling System Imperfection* 

Case 1 No No 

Case 2 Yes No 

Case 3 Yes Yes 
Maximum value of the 
imperfection is 1.32(cm) 

Case 4 Yes Yes 
Maximum value of the 
imperfection is 2.64(cm) 

-- 	- 

* Imperfection mode is of a half sine wave shape, from node no. 1 to node no. 
19; and the initial x positions of the nodes are located along the half sine 
wave. 



Table 4. Coordinates of the Nodes of Example 1 

node 

(1) Perfect Geometry 

x2 

(2) 

x3 

Imperfect 
Geometry 

x3 

1 0.0 0.0 0.0 0.0 

2 25.0 0.0 2.0 1.8 

3 12.5 -21.65 2.0 2.0 

4 -12.5 -21.65 2.0 2.0 

5 -25.0 0.0 2.0 1.8 

6 -12.5 21.65 2.0 2.0 

7 12.5 21.65 2.0 2.0 

8 43.30 -25.0 8.216 8.216 

9 0.0 -50.0 8.216 8.216 

10 -43.30 -25.0 8.216 8.216 

11 -43.30 25.0 8.216 8.216 

12 0.0 50.0 8.216 8.216 

13 43.30 25.0 8.216 8.216 
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Fig. 1. Nomenclature for Kinematics of Deformation 
of a Space Truss Member. 
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Fig. 2. 	Nomenclature for Kinematics of Deformation 
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Fig. 3. 	Nomenclature for Transformation of Vectors 
by a Finite Rotation Vector 1w  at Node 1 of a - 
Framed Member 
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Fig. 4. 	Sign-Convention for System of Generalized 
Force on a Framed Member 
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)A( 21 16 2 

Fig. 5. 	Representation of Moments M *  and M of a 
Framed Member 
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Fig. 6. 	A Schematic Representation of the Arc-Length 
Method for a One-Degree-of-Freedom System 
(Y = 1) with Newton-Raphson Procedure 
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Fig. 7b. Britvec's Truss Structure (Example 2) 



P 

L= 38.1 (cm) 

All members have solid circular sections, 

each of area 96.77(cm 2 ). 

Young's modulus is 7.03 X 10 5  (kg/cm 2 ). 

Case 1 	Local buckling of each of the 

two members is ignored 

Case 2 	Local buckling of only one of 

the two members is considered 

Case 3 	Local buckling of both the 

members is considered 

Fig. 8a. A Simple Truss Structure (Example 3) 
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Fig. 8b. Load-Displacement Relation from the Simple 
Truss Structure of Fig. 8a 
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Fig. 9b. Load-Displacement Relation for Thompson's Strut 
of Fig. 9a 
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of Fig. 9a 
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Fig. 10c. Load-Displacement Relation for the Arch-Truss 
Structure of Fig. 10a 

120 



X10 (kg) 
—o-- Case 

Case 2 

--o-- Case 3 

CD Buckled Member 

IT  Re-straightened 

3-0 

2.5 

2.0 -`• 

1.5 

1 

1.0 

0.5 

Displacement of Node No. 3 

in the X Direction 

0.0 

0.0 	 -10.0 	 -20.0   	-3C0 
Fig. 10d. Load-Displacement Relation for the Arch-Truss 

(CM) Structure of Fig. 10a 

121 



A, \ 

—0 	 Case I 

4C"' 2 

P x 105  (K9) 

7.0 - 

6.0 - 

5.0- 

4.0 

/ 	 `A, \,, 
/ 

/ 

/I 	, 	 'Cl"---„, 	,, ,_ .5‘, 

Cl/ 	
--... 	- -6,...... ,  ---„..... 

i 	 - -0-- 
I 

1 55  

3.0 
r 

, 	 # 	4 
►
I/ 

rf 
1.0 T ii 

1 	Displacement of Node No. 10 in the X Directior 
0.0 	 

' 0.0 2.0 	4.0 	 10.0 12.0 14.0 

(cm) 

2.0 

Fig. 11a. Load-Displacement Relation for Thompson's Strut 
with Initial Global Imperfections 

177 



P 
x 105 (Kg) 

7.0 

6.0 - 

5.0-- 

4.0- 

3.0- 
—0--  Case 1 

2 

2.0- 	 3 

-- --- 	 4 

1.0- 

0.0 
0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0 -7.0 

(CM) Fig. 11b. Load-Displacement Relation for Thompson's Strut 
with Initial Global Imperfections 

Displacement of Node No. 19 in the Z Direction 

121 



Member's No.14 Member's No. 

P x 105  (K9) 

7.0 - 

6.0 - 

5.0 - 

4.0 -

3.0 - 

2.0 

1.0- 

z 

—0 Case 

0.0 
0.0 - LO -4.0 - 2.0 - 3.0 

N 

Fig. 11c. Relation between External Load and Member Forces for x 10
5 

(K9) Thompson's Strut with Initial Global Imperfections 

2 

3 

4 



X3 

1-4-  25 —)4-4- 25 

43.3 cm 

8.216 
	

XI 

Fig. 12. Schematic of Shallow Geodesic Dome 

125 



Present 

Pcr= 3 . 15  

/ 

1.0 	'2.0 	3.0 

\ 
\11 
\)1 
'.\ 

\ cx, 
Pcr= -2.75 \ 

`•, 

47 
 b 

x 4.0 

4 
■. 3.0 

2.0 

1.0 

0 

-1.0 

-2.0 

-3.0 

-4.0 

/ ! 

/ 	Hangai Is [2] 

./.4  

I 

/ 1 
d I / 

5.0 	d (cm ) 

Fig. 13. Vertical Displacements of Central Node without the 
-- Influence of Local Buckling of Truss Members. 



Present 	 • Hangoi ls [2] 

o Present 
4.0 

3.0 

2.0 

-5.0 -4.0 -3.0 

A/ 	Han ai ls f: 
\NV d 

/\/\/\. 
• 

-1.0 	1.0 20 3.0 	5.0 	d x 	cm) 

(j)  
\ -2.0 

■ 	.0.0.D; 

-4.0 

Fig. 14. Horizontal Radial Displacements of Non-Central Nodes without 
the Influence of Local Buckling of Truss Members. 

   



'o 
4  5 

4 
a- 

Local Buckling 

• 	\I 	With Local Buckling 

N)Cit.„4, 	(EI= 4.22 x 104  kg.cm2 ) 

'x'sx 
\XN>4  

lk X. 
X 

NX■x 

N:t 
-o-cr 

d ( cm ) 

Without 

Fig. 15. Vertical Displacements of Central Node with and without the 
Influence of Local Buckling of Truss Members. 



w 5  
4 

drr 
00• ••Ck. 

k 

-7 	-6 -5 -4 	-3 	-2 	-I 	 3 	5 

	

I 	I 

4 

p. 

■AD 

d (x102cm) 

Without Local Bucklin 

With Local Buckling  

(EI= 4.22 x i0 kg•cm2 ) 

Fig. 16 • Horizontal Radial Displacements of Non-Central Nodes with and 

without the Influence of Local Buckling of Truss Members. 



yr 
b 
X 

<I 
L-i  4.0 
a. 

3.0 

2.0 

1.0 

0 

-ID 

-2.0 

-3.0 

-4.0 

/ 

i / Hangai ls [2]  

/ V 

/ 

1 

Present 

1.0 	2.0 	3.0 	4.0.
/ 	

5.0 

il. 

 

I i  
\ 

\It 	 1 / 
N ,„.. 

Nct A/ 	./ ... 0-0-  

\ 	r 
•-.....-- 

d (cm) 

Fig. 17. 1 Vertical Displacements of Central Node under Imperfect Geometry 
without the Influence of Local Buckling of Truss Members 



Node B  

—• Node A 
—x Node B 

--0 Node A 
Node B 

Hangars [2] 

Present 

Node 

-5.0 -4.0 	-2.0 

2.0 

vf.a 

0 	2.0 3.0 4 

Node A = Imperfect Geometry Node 

x\  

`a,2% 	 _at 

ilcs-x-x..44-1` 

.\N  

4.0 

3.0 

Fig. 18. 1 Horizontal Radial Displacements of Non-Central Nodes under Imperfect 
Geometry without the Influence of Local Buckling of Truss Members. 



°111111111111111111  
EA 2.2 7x10-4 EA =— 

Fig. 19. Deformed Configurations of the Geodesic Dome 
Shown in Fig. 12. 

132 



Equation of Surface 

2 X2 + X2 	X3 + 7. 2)2 = 60.84 

Loading System  
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direction at all nodes 
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Fig. 20. Schematic of Shallow Geodesic Dome 
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Noors Full System [34 
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f: Vertical Displacements of Central Node under Various Combinations 
of Loads, 13 & P2  , without the Influence of Local Buckling of Truss Members. 
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Fig. 22. Stability Boudary under Various Combinations of Loads, 13 EN 
without the Influence of Local Buckling of Truss Members. 
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Loads, P 1  & RZ  , with and without the influence of Local Buckling 
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Fig. 27. Schematic of a Twelve-Bay Space Truss under 
Axial Loads 
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Fig. 28. Deflections at Free end under Axial Loads with 
and without the Influence of Local Buckling of 
Truss Members .  
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Fig. 29. Schematic of a Twelve-Bay Space Truss under 
Bending Loads 
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Fig. 31. Deformed Configurations of a Twelve-Bay Space 
Truss Shown in Fig. 27 
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Fig. 32a. Problem Definition for an Eccentrically Loaded Column 
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Cross-sectional Area of Members = 0.0625 (in 2 ) 

Euler Buckling Load of Each Member (Treated 
as a Pinned-Pinned Beam) = 8.1 (lb) 

Case I e/1 = -0.001 (Mode (a)) 

Case 2 e/I = 0.001 (Mode (i9)) 

Fig. 34a. Schematic of Britvec and Chilver's Two-Bar Frame 
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Fig. 314b. Two Modes of Post-Buckling Deformation for 

Problem of Fig. 34a 
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Cross-sectional Area of Members = 0.0625 (in 2 ) 

Euler Buckling Load of Each Member (Treated 
as a Pinned-Pinned Beam) = 8.1 (lb) 

Case 1 e/1 = -0.001 (Mode (a)) 

Case 2 e/1 = 0.001 (Mode (S)) 

Fig. 35a. Schematic of Britvec and Chilver's Three-Bar Frame 
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Fig. 35b. Two Modes of Deformation of the Three-Bar Frame 
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A = 600.0 (in2 ) , 	I= 60000.0 (in4) 

I =1000.0 (in) , 	E= 10000.0 (psi) 

P 685 El/ 1 2  (e=0) 

Fig. 36a. Eccentrically Loaded Right-Angled Frame 
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Fig. 36b. Variation of Corner-Rotation of a Right-Angled Frame 

for Various Values of Load-Eccentricity (e/O, in the 
Post-Buckling Range  
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Fig. 36c. Variation of Vertical -Displacement (of the Corner) 

with Load, for Various Values of Load Eccentricity 
(e/Z), in the Post-Buckling Range 
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Fig. 37a. Schematic of a Four Member Square Frame 
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Fig. 37b. Variation of Displacements 61 and 63 (See Fig. 37a] 

with Load for a Square-Frame 
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Fig. 37c. Variation of Moments M1 and M2 (at Points 1, 2 in 
Fig. 37a) with Load, for a Square-Frame 
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Fig. 37d. Deformation Profiles at Various Load Levels 
for a Square-Frame 
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Fig. 40. Schematic of a Twelve-Bay Space Frame 
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Fig. 41. Deflections at Free End under Axial Loads 
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Fig. 42. Deflections at the Free End under Bending Loads 
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