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CHAPTER I
INTRODUCTION

In the past few years, there has been a renewed interest in the
analysis of large frame- and truss-type structures, due to the current
dreams of many to deploy very large structures in outerspace. One of
the primary topies of current interest is to analyze parts of such-
structures, that may be subject to large local disturbances, with the
ultimate goal of controlling the dynamic deformations through active or
passive mechanisms. The research reported herein, however, is limited,
as a first step, to considerations of simple, yet highly accurate,
methods of nonlinear analyses of space-trusses and space-frames under
quasi-static loads.

The phenomena of structural instability are generally classfied
as:

(1) bifurcation phenomenon, such as the response of elastic
columns and plates subject to compressive loads in the axial and the
inplane directions, respectively, or the response of an elastic-plastic
bar in tension (also often referred to as the necking phenomenon).

(2) 1limit phenomenon, such as the response of laterally loaded
shallow arches and shells. This may result in a dynamiec snap-through
or snap-back phenomenon depending on whether load control or
displacement control exists in the system. A detailed discussion of
the claésification of these instability phenomena may be found, for

instance, in Refs. [1,2,28].



.An extensive literature exists concerning computational methods
for analyzing structural stability [3-7]. In a majority of these works
dealing with elastié stability, the onset of instability is treated as
a linear or nonlinear eigenvalue problem.

Large deformation and post-buckling analyses of structufes have
also been the subjects of extensive research in the past decade [8-101].

In all these studies, an incremental approach, either of the
"total Lagrangean type" or of the "updated Lagrangean type", is
employed. Also, a number of incremental solution methods, to find the
response in the "post-buckling" range, i.e., beyond a bifurcation or a
limit point, have been proposed. These include:

(1) the standard load control method

(2) the displacement control method [11,12]

(3) the artificial spring method [13]

(4) the perturbation method [2]

(5) the current-stiffness parameter method [14,15]

(6) the arc-length method [13,16-20]

In calculating the non-linear pre-buckling as well as
post-buckling response, an incremental finite element approach, which
results in a "tangent stiffness matrix" (which includes all the non-
linear geometric as well as mechanical effects) is often employed. In
all the literature, including, for instance, Refs. [8-10], the
derivation of the "tangent-stiffness matrix" of an element (which may
be based, alternatively, on potential energy, complementary energy, or
general mixed-hybrid formulations) is, in general, quite a complicated

task and involves:



(1) Simple polynomial basis functions for displacements and/or

| stress and moment resultants in each elemént;

(2) Numerical integration of matrices {(dependent on the assumed
basis functions and their spatial derivatives) over the
domain of the element.

It- is now well recognized that the key factors that determine the
economic feasibility of the routine use of the above ﬁon—linear
analysis methods are:

(1) The computational time involved in forming the
tangent-stiffness matrix of each element, and of the entire
structure, at each increment of external loading;

(2) The degree of refinement of the finite element grid, when
elements with simple polynomial basis functions are used;

(3) The techniques for solution of the system stiffness
equations especially at or beyond the eritiecal (buckling)
points in the load-path.

It can easily be seen that the above "incremental" finite element
methods [8~10] (wherein, in each element, a tangent stiffness matrix
for each member, and thus for the whole structure, may be routinely
evaluated from appropriate variational principles or weak forms, using
simple basis functions for the element variables) become prohibitively
expensive to treat realistic structures. Examples of such structures
of current interest include the very large space-structures and
antennae that may be deployed in outer space.

A majority of nonlinear analyses of typical engineering struec-
tures, and especially the truss—- and frame-type large space-structures,
can be vastly simplified if an explicit expression (i.e., without

3



involving assumed basis functions for displacement/stress, and without
involving element-wise numerical integrations) for the tangent
stiffness matrix of an element (incorporating the effects of initial
displacements on the current stiffness) can be derived.

Thus, the primary objective of the work reported herein is to

derive explicit expressions for the tangent stiffness matrices of each

of the members of either three-dimensional (space) truss— or frame-type

structures. Such explicit expressions are derived in both the

pre-buckling as well as post-buckling regimes of behavior of each of

the members. Further, the derived stiffness matrices are exact even

when each member undergoes arbitrarily large rigid motions. Such
derivations for planary truss- and frame-type structures were initially
given by Kondoh and Atluri [21,22], who also demonstrated that the
resultant procedures were not only very inexpensive but also highly
accurate in a wide variety of problems involving very large
deformations and highl_y nonlinear pre- and post-buckling responses.
The extension of the concepts in [21,22] to three-dimensional cases is
a further major step and is presented in the subsequent chapters in
this report.

Each member of a space-truss type structure is assumed to
undergo an axial stretching deformation and to carry only an axial load.
On the other hand, each member of a space-frame type structure
is assumed to undergo bending deformations in two mutually independent
planes, stretching (which is coupled to bending), as well as torsional
deformations, and thus carry two bending moments, an axial load as well
as a torsional moment. Explicit expressions for the coefficients of
the tangent stiffness matrix of an element (applicable over a wide

M



e BT e

range of deformations) are derived. Here, "explicit" means that the
procedure does not involve assumptions of basis functions for the
element nor of numerical integrations over each element.

The derivation of an expliecit tangent stiffness matrix for a
three-dimensional (space) frame is a rather complicated task. A reason
for this is that a general three-dimensional non-linear formulation for
a member of a space-frame is not a simple extension of a
two-dimensional formulation because the three-dimensional large
rotations defy a simple mathematical description. In this context, the
concept of "semi-tangential" rotations is introduced to express
arbitrary three-dimensional rotations [24,25]. Also, the concept of a
"polar-decomposition" of the deformation [26,27] is employed to
decompose the arbitrary deformation of the element into rigid rotations
and pure stretches.

The present derivation of the explicit expression for the
stiffness matrix of an element is based on the assumptions:

(1) Arbitrarily large, rigid translations and rotations of each
member/element of a space-structure (both truss- and
frame-type) are accounted for.

(2) For a member of a space-frame, the local relative
(non-rigid) rotations of a differential segment of a
member/element are moderately small, and that only their
squares enter into the expression for axial stretech, in a
manner analogous to that in the well-known Von Karman theory

for plates.



(3) The non-linear coupling between the bending and stretching
motions of the member/element of a space~frame is inherently
accounted for.

The ranges of validity of these approximations are critically
examined. This simplified procedure of forming the stiffness matrix,
in conjunction with the arc length method [13,16-20], which is
appropriately modified herein to account for an individual member's
buckling, is used to study the post-buckling behavior.

In a structural assembly such as a truss, frame, stiffened plate,
etc., the response may involve both local buckling as well as global
buckling. In present context, local buckling implies the buckling of a
discrete member in the structure under consideration. The local
buckling is often of the bifurcation tAype. The influence of local
buckling on subsequent 1qad transfer in the structure and on the
overall response of the structure is another subject of prime concern
in this report. However, the literature that deals with the effect of
local instability (or instability of one or a few members of the
structure) on the overall buckling and post-buckling response of the
structure, is rather sparse. Reference [23] presents an interesting
study of such phenomena. However, the study of Ref. [23] pertains to
the effects of interaction of local and global imperfections on the
overall response of the structure. Further, the methodology employed
in Ref. [23] makes it difficult to compute the post-buckling response
of the structure.

Several numerical examples dealing with the non-linear pre- and
post-buckling responses of space-trusses and -frames are presented.

All these examples also serve to effectively bring out the ranges of

6



applicability and the advantages of the present].y proposed simplified
procedures for forming the tangent stiffness of the members as well ass
that of the structure. It is demonstrated that in most of the casés a
single element, with the presently derived explicit stiffness matrix,
is adequate to model each member. It is also demonstrated that the
methodology presented herein is not only very inexpensive but is also
highly accurate even for ranges of deformations that are well beyond
those likely to be encountered in practice.

The remainder of this report 1s organized as follows: Chapters
ITI and III give detailed accounts of the present procedures for
explicit evaluations of the tangent stiffness matrices of a member of a
space~truss and space~-frame, respectively, at any point in the
non;linear load-deformation path. Chapter IV 1s devoted to a brief
account of the "arc length" method employed to solve the system
stiffness equations in the pre- and post-buckled range. Several
numerical examples are presented and discussed in Chapter V, to bring
out the advantageous features of economy as well as accuracy of the

present methodology. Some concluding comments are made in Chapter VI.



CHAPTER II

DERIVATION OF AN EXPLICIT TANGENT STIFFNESS MATRIX
FOR FINITE-DEFORMATION, POST-BUCKLING ANALYSIS OF SPACE TRUSSES

The space truss structures discussed herein are assumed to remain
elastic. Also, only a conservative system of concentrated loads at the

nodes of the space truss structures is considered.

ITI.1 Relation Between Stretch and Axial Force in a Truss Member

Consider a typical slender truss member spanning between nodes 1
and 2 as shown in Fig. 1. This member is considered to have a uniform
cross section, and its length before deformation is &. The coordinates
X1, Xp, and X3 are the member's local coordinates; while uq, up, and us
denote the displacements at the centroidal axis of a member along the
coordinate directions xq, x», and X3, respectively.

From the polar decomposition theorem, the relation between the

total axial stretch and displacements of the member is (see Appendix

A):
~ - - 1
5= [(3,)%+ (@)% + (1+uy)%T%- 2 (2.1)
where 6: Total axial stretch
-~ 2 1
u, = u, - u



Equation (2.1) holds for both the pre~ and post-buckled states of the
member. -

The incremental relation between the incremental total stretch

and the incremental axial force in the member is written as:

AN = k*A§ (2.2)

where AN: Incremental axial force in the member
Ad: Incremental total axial stretch in the member
k = EA/% in the pre-buckled state (2.3a)

= 12+EI/283 in the post-buckled state (for the
range of deformations considered) (2.3b)

E : Young's modulus

=

Cross section area of the member

I : Moment of inertia

Equation (2.3a) simply follows from the linear-elastic
(isotropic) stress-strain law of the material of the member.! 0On
the other hand, Eq. (2.3b) for the post-buckled state of the member is

derived in the Appendix B by simplifying and modifying the governing

'While the material is assumed to be linear elastic in the present, the
subsequent derivations of the tangent stiffness matrix remain valid,
with straight forward modifications, even when the material stress-
strain law is of a Ramberg-Osgood type: ¢ = Ee + Bel,
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equations of the problem of the elastica; which is treated as a simply
supported beam.

Here, one should note that N is in the direction of the straight
line connecting node 1 and node 2 of the member after its deformation
(see Fig. 1), and & is calculated from Eq. (2.1). Hence, Eq. (2.2)
holds even when the rigid motion of the member is very large. Also,
note that the stiffness-coefficient k is a constant in each of the two
states, such as pre-buckled and post-buckled, of each member, of a
space—truss.

The condition for the buckling of a member, treated as a simply

supported beam, is given by the following well—known equation.

N =N (2.4)

where Ty a -1r2EI/SL2 ’ (2.5)

the negative sign being used to denote the compressive axial force,.

I1.2 Tangent Stiffness Matrix of a Member
for Arbitrarily Large Deformation

The only force acting on a truss-member is considered to be the
axial force. Hence, the strain energy of the member, U, in either the

pre~ or post-buckled states of the member, is given by:

10



%
U= % J (EA-c® + EI-x?)dx

(2.6)
o .

3

8
ARE
o
where ' €: Point-wise axial stretch

k: Curvature
= 0 for the pre-buckled state

#= 0 for the post-buckled state

The incremental form of Eq. {(2.6) is represented, using Eq. (2.2), as:

AU = NeAS + %(Ad]z (2.7)

The incremental form of Eq. (2.1) is given by:

asAu, + beAU, + c-AU (2.8)

As 1 > 3

+ o[ (07 + ¢®)ead? + (e + a®)eais + (a° + v%)-ad

+ (cea)Au.Au

-1 r(aww)-ad. a0 o) AT AT
gEL(30) sau duy + (bec)au U, 3 ]

1772

+

Higher order terms

11
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where A

~ 12 ~ 32 -~ 2%
(@)% (3,)% + (2 +3,)%0%
a = 61/1*

b = 62/1*

e = (& +u,)/ex

5)

oY and Aﬁs represent the Ilncrements

of 51, 62, and u

Au1, Au

, respectively.

3
Substituting Eq. (2.8) into Eq. (2.7), one finds that:

AU = N(a-Au1 + bedu, + c-Aus] (2.9)

12



+ (b-c)AﬁzAﬁ + (c-a)muau, |

+ (k 4-5—}[(a-b)lﬁ1lﬁ 3 3

L* 2

+ High order terms

Furthermore, neglecting terms of higher than the second order, the

variation in the incremental strain-energy may be derived from Eq.

(2.9) as:
§(AU) = 5AG1(N~a) + 5A62(N~b) + 5AG3(N-c) (2.10)
e 2 2y N 2.~ N .
+ 6Au1{[(b +c ).F +kea ]Au1 + (k - F)-a~b-Au‘2

N -
+ (k ~ —9‘—*)-c-a-Au3}

- 2 AN | 21,7 N =
+ 6Au2 {[(c + a ]'ﬁ + kb ]Au2 + [k ~ ﬁ)-b-cmu3

N -
+ [k - F]-a-b-Au1 }

. 5A53{[(a2 c03) s kee?lan ¢ (k- X )eceaend

13



-t R :
= GAgm .Bm . GAgm .Em.Agm

where d" : Vector of generalized nodal displacements

R : Vector of internal forces

Em Stiffness matrix of the element
Admt T C R CR L |
u1, u1, u2, u2,, 3, 3

(Nea)-{I}

R™ = {(Neb)+{I}
(Nec)+{I}
C1[E] Cu[E] C6[E]

m
K~ = Cu[E] CZEE] CSEE]

C6[E] C5[E] c3[E]
c, = (b2 + 02]-%; + xoa®

c, = (c? + az]'%; + Kkob2

c. = (a% + bz]m%; + ke

14



iy =4 ¢ » _[E]l-= (2.11)

One should note that Eqs. (2.10) and (2.11) are written in the
local coordinate system, so that it is necessary to transform the
displacement vector from the local coordinate system to the global
coordinate system in the usual fashion.

It should be emphasized again that Egs. (2.10) and (2.11) (and
thus the tangent-stiffness matrix and the load vector) are applicable
for both the pre- and post-buckled states of the member, and that k has
a constant value in each of the two states as given in Eq. (2.3).
Consequently, if a member buckles, it is only necessary for thé value
of k to be changed. 1In viéw of this, it is seen that it is very simple

to derive the tangent stiffness of the member.

15



CHAPTER III

DERIVATION QF AN EXPLICIT TANGENT STIFFNESS MATRIX
FOR FINITE-DEFORMATION, POST-BUCKLING ANALYSIS OF SPACE FRAMES
The frame~type structures discussed herein are assumed to remain
elastic, and only a conservative system of concentrated loads are
assumed to act at the nodes of the frame. -

III.1 Three-Dimensional Kinematics of Deformation
of a Member/Element of a Space-Frame

Consider a typical frame member, modeled here as a beam element,
that spans between nodes 1 and 2 as shown in Fig. 2. The element is
considered to have a uniform cross sectiori and to be of length & before
deformation. The coordinates jxi are the local coordinates at the node
j (j = 1,2) of an undeformed element. Likewise, jui (i = 1,2,3) denote
the displacements at the centroidal axis of the element along the
coordinate directions x;, i = 1,2,3, respectively. Also, as shown in
Fig. 2, Je-l are the angles of rotation about the axes of xj. After a
deformation of the element, two coordinate systems ére introduced to
represent the rigid and relative (non-rigid) rotations of the element.
One is the coordinate system x*{ which is locally "tangential" and
"normal"™ to the deformed centroidal axis; another is Xj which
characterizes the rigid translations and rotations of the member (see
Fig. 2).

Considering each rotation as a semi-tangential rotation, we can
treat rotations as vectors. Thus, the relation among the total, rigid,
and relative rotation vectors is given by:

16



where Y

1Q

<
[}

[Res]
+
Q

(i = 1,2) (3.1)

Total rotation vector at the node i

Rigid rotation vector of the element

Relative rotation vector at the node i

Using Eq. (3.1), the total rotation vector at the node 2, 2Y, is

represented as:

where

Therefore, the

Y=8+ a+a (3.2)

a' = Y - Y (3.3)

relative rotation vector at the node 2 can be defined

using Egs. (3.1) and (3.2) as:

a= a+al (3.4)

On the other hand, the expressions of the rotation vectors may be

written, by using their components in any coordinate system, as follows

(24,25]. Using the local coordinate system, the total rotation vector

at the node i may be written [24,25] as:

17



i. 3 (i =1,2)

(3.5)
2 J (j = 11213)

The relative rotation vector at the node i in the coordinate system 'ﬁi

is given by:

(i = 112)

i (3 =1,2,3) (3.6)

Substituting Eq. (3.5) into Eq. (3.3), the difference between the

rotation vectors at nodes 1 and 2 is given by:

%9, Ye,

a' = (tan—3 - tan—31] - e (3.7)
2 2 J

X
tan—— - & (3.8)

2 J

Also substituting Eqs. (3.6) and (3.8) into Eq. (3.4), the relative

rotation at node 2 is represented as:

2/\
2 8 .
a = tan -] (3.9
2 J
15, 8.
= (tan—2L + tani) - é (3.10)
2 2 3

18



{

Furthermore, the action of a rotation R, which transforms a vector dX

to dXR, is represented by the relation [24,25]:

dx" = ———— [(1 - R*R)+dX + 2(R+dX)-R + 2R x dX] (3.11)

Substituting the unit vectors g? and the total rotation vector, iy

~

at the node i not Eq. (3.11), one obtains the following equations:

c = I .g (i = 152) (3-12)
J Jjk k
where
i iB i
iT.k -1 & ir (3.13)
J i1, i
G H
: : 2191 2192 2193
A = Y [1 + tan 5 - tan—s— - tan—s ] (3.14a)
i i i
15 - 2 [tan—-Ezl tan—Eg + tan—Ei] (3.14b)
1+ i 2 2 2 2 ‘
i i 1
3] 8 8
a2 3 ran_ ' - _2
C = - 192 [tan 5= tan 5 tan— ] (3.14e)
i i i
iD -2 [tan—sl tan—Eg - tan—Ei] (3.144d)
1+ 182 2 2 2 *

19
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; i 2191 2192 2193
E = —313 [1 - tan——E + tan——E - tan 3 ] (3.14e)
1 + 78 :
i 2 182 ia3 ia1
F = ———1—2- [tan-—z—- tan—2— + tan—2—] (3.14F)
1 + 78
i 2 8 o, "o,
G = T [tan—2— tan—z— + tan—z—] (3.1143)
1 + 78
i 2 iez ia3 "o,
H = T [tan—2 tan—2 - tan—2 ] {3.14n)
1 + 78
{ 1 218 2182 2183
I= 313 [1 - tan——E - tan——E + tan 3 ] (3.141)
1 + 78
i 2191 2192 2193
8 = tan 5— + tan 5 + tan 5 (3.15)

On the other hand, §3, as a unit vector in the direction of the
line joining node 1 to 2 in the deformed configuration, may be

represented as:

€ =ree + s'e + tee (3.16)

where

20



r = = 8 = = (3.17a,b)
g+ 53
t = — (3.18)
~ 2 1
and U= tu oy (3.19)

Other unit vectors, §1, §2, corresponding to the coordinate system, ﬁi,
may be written, using Eq. (3.11) and the rotation vector, lw, at

node 1, shown in Fig. 3, as:

g = —1— [0 -Telw) et w2l e e v 2le x )] 20
i 1 + 1w-1w 1 i '
We W (L =1,2)
where
1 * ~
e x8
1 W 3 3
w=tan§--l1* (3.21)
e xe |
3 3
—1 1 * A~
w=cos | e, g3) (3.22)
W2 -0 (3.23a)
3
e [(le"xa)x (e +8)]=0 (3.23p)
3 3 3 3

From Egs. (3.12) to (3.19) and Eqs. (3.21) to (3.22), the relative

rotation vector at node 1 is represented as:
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1v1 = hee + Qe + mee ‘ (3.23)

where

1 1
h = H-t IS (3.24a)

1 + 1G-r' + 1H-s +V1I-t

1 1
% = I-r G-t {3.24b)

1 + 1(}-r' + 1H-S + 1Io't:

1 -1
m= Gs Her (3.24e)

1 + 1G-r' + 1H-S + 1I-'t:

Substituting Egs. (3.12) to (3.15) and Egs. (3.23) to (3.24) into Eq.

(3.20), the following equations are obtained:

e =o0%e +pre + qee (3.25)

1 1 2 3
é = U*e + Vvee + wee (3.26)

2 1 2 3

where

0 = [C1-1A + 2nec, + 2(2-'c - m-1B]]/C3 (3.27a)
p = [C1-1B + 20-C, + 2(m-"a - n-1c]]/c3 (3.27b)
q = [c1-1c v amec, + 2(n+'B - 2°1A]]/C3 (3.27¢)
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u=[c,-'o+anc, +2(2'F - m°1E]]/C3 (3.27d)

v = [c1.1E + 29,-(:“ + 2[m°1D - h~1F)]/C3 (3.27e)
w=[c,-'F+ amec, + 2(n-'g - 1-101]/03 (3.27¢)

» c,=1-hn-¢%-n (3.28a)
C,=he'A+ 2'B+mec (3.28b)

Cy= 1+ n? + 92 + m? (3.28¢c)

Cy=he'D+ 2 'E+m'F (3.284)

We denote by l'ao the relative rotation at node 1. Thus, la

-~

characterizes the transformation of the coordinate system %; to x{

at node 1. From Eq. (3.23), one obtains:

@a=- W=~ (h-1g + l-1g + m1g ) (3.29)
1 2 3
Also, using Egs. (3.16), (3.25), and (3.26),
1g = (1g-§ ]o§ + [1a-§ )-é + [1g'é ]'é (3-30)
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Therefore, the components of the relative rotation at node 1, iQe., 195,

are obtained from Eqs. (3.6), (3.16), (3.25), (3.26), and (3.29) to

(3.30), as:

1/\
6

t:anT1 = -~ (h+o + 2+p + m+q) (3.31a)
162

tan—" = - (heu + %+v + mew) © (3.31b)
163

tan—~ = - (her + 23 + met) (3.31e)

Also, the components of the relative rotation at node 2, Zg, are

obtained from Egs. (3.7) to (3.10), (3.16), (3.25), and (3.26), as:

2@1 1 § 29 1 91 2B 1 92
tan—2— = tanT (tan-—z— - tan—2—) 0+ (tan—z— - tan—z—) *p
263 1 83
+ (tan—z—— - tan——) q (3.32a)
2
2§ 1 32 2e 1 61 2e 1 82
tan—" = tan—" + (tan—z—— - tanT] ‘u + (tan—z— - tan—2——) v

24



ae 16

+ (tan—ii - tan—ii]-w (3.32b)
29“3 1 63 24 ! 0, 29 .1 0,
tan—E— = tan—i— + (tan—z— - tan—z—]-r + (tan—z— - tan—z—)-s
263 163
+ (tan—2- - tan-—2———] ot {3.32¢)

It should be noted that the component 133 of the relative
rotation at node 1 is zero due to the rotation 15 being as in Eq.
(3.21).

Finally, as shown in Chapter II, the relation between the total

axial stretch and displacements of the member is:

-~ - - 1
§= [0 +d2+ (2+4d,)%)2- 2 (3.33)
1 2 3
where 6: Total axial stretch
~ 2 1
u; = Tuy uy (i =1,2, and 3)

III.2 Relations Between the "Stretch and Relative Rotations" and
the "Axial Force and Bending Moments" for a Frame Member

In preparation for the task of deriving an explicit expression

for the tangent stiffness matrix that is valid for a wide range of

25



deformations of a frame member, in this section, certain explicit
relations are derived between the kinematic variables of stretch and
relative rotations, on the one hand the mechanical variables of axial
force and bending moments on the other, of an individual frame member
(or of a finite element if more than one finite element is contemplated
for modeling an individual member). These "generallized”
force-displacement relations for an individual member/element are also
intended to be valid over a range of deformations that may be
considered as "large".

To achieve the above purpose, a beam-column, as shown in Fig. 4,
is considered. It should be noted that all of the rotations are
semitangential rotations [24,25], and 153 at node 1 is zero. Using the
relative rotations, 8, 85, and 53, and the relative rotation vector,
1g which is given by Eq. (3.6), the relation between unit vectors gf

and &; 1s written, using Eq. (3.11), as:

e =S & (3.34)
i 13
where

S11 512 Sy
iy 321 322 323 (3.35)

531 S32 S33

1 261 262 263

811 = —_"—2[1 + tanT - tan—z— - tanT] (3-363)

1 +8
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12

13

21

22

23

31

32

33

~ A

2 9 8 33]
tan—-tan— + tan —
1+ a2 2 2 2
[) 8 [)
2 [ 3 2
—~————| tan—=-tan— - tan ——]
1+ 62 2 2 2
8 8 [
2 [ 1 2 3
—s| tan—5-tan— - tan-——]
1+ 62 2 2 2
1 [ 2§ 262 233]
1 - tan— + tan—— — tan——
1+ 32 2 2 2
8 (] 8
2 [ 3 1
tan-—=-<tan—= + tan ——]
1+ 62 2 2 2
8 ) 8
2 [ 3 1 2
————|tan—=-tan— + tan-——]
1+ 62 2 2 2
8 [ 8
2 [ 3 1
-—| tan—-+tan—5 - tan-——]
1+ 62 2 2 2
1 2§1 Zé\2 263
_— 62[1 - tan—— - tan—= + tan—=> ]

27

(3.360)

(3.36¢)

(3.36d)

(3.36e)

(3.36f)

(3.368)

(3.36h)

(3.361)



24 2 24
] )
° 3

a2 T 2 :
5" = tan—— + tan—— + tan—E—] (3.37)

The curvatures along a centroidal axis of a deformed member are given

by:

*
*  de, * g
Ky = = " &3 (3.38a)
3
*
* d§2 *
Ky=—x° g3 (3.38b)
dx
3 B
* *
* de, * de, *
Kipg=—% "¢ or - —x ¢, (3.38¢)
dx3 dx3

Substituting Eqs. (3.34) and (3.35) into Eq. (3.38), the following

equations are obtained:

ds ds ds
*_ 11, 12 13 .,
K1 i dx.. 331 ’ dx* S32 ’ dx* S33 3-3%)
-3 3 3
ds ds ds
e N 532 * 2 533 (3.39)
dx3 dx3 dx3



Also,
given by:
where EI4
EIo
GJ
As shown

in terms of M*,

ds ds as
11 12 13 :
- — Sy * — S,, * ¥ So3 (3.39¢)
3 3 3

the moments along a centroidal axis of a deformed member are

M1 = EI1 . K1 (3.40a)
* * ’4 )
M, = EI, - K, (3.40b
* * ( ’4 )
My = GJ o+ Ky, 3. 40c

Bending stiffness about %p axis

Bending stiffness about §1 axis

Torsional stiffness

in Fig. 5, the moments M, ﬁg, and ﬁ3 are represented,

M*, M* , and S;j, as:

3 (3.41a)
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My = S,y = My= S, + M+ Sy ¢ M, (3.41b)

A S * M* * u )
= L4 Ed . + .

M3 13 " My 7 Sp3 Myt Si My, (3.41c

The equation of equilibrium in the two transverse directions of

the beam may be witten [29,30,36] as:

d'bla ~ ~ ~ ~
- 1+Q1-(§*-g]-N-(g*-g]=0 (3.42a)
* 3 3 3 1
dx3
M
-2, ()R- e ) =0 (3.42b)
dx* 3 3 3 2
3
Als0
dﬁ3
-—5 =0 (3.42¢)
dx3
where
A 1 12 -
Q1=—2+6(M1-2M1] (3-”33-)
~ - 1 1=
Q, = - (i, - &) (3.43b)

Substituting Eqs. (3.34) to (3.36) and (3.39) to (3.41) into Eq.
(3.42), the following equilibrium equations are obtained:
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3

(3.44a)

(3.44p)



- E1. -9 21, 22, 23.
=n EIZ dx* [813[dx* 331 dx* S32 dx* 833)]
3 3 3 3
ds ds ds
d 11 12 13
+ BI, — [s__( S, + S, + *s..)]
T4t 237,,.% 731 * 732 * 733
dx3 dx3 dx3 dx3
ds ds ds
- . d 11, 12, 13,
* dx* [833(dx* 2 dx* 822 ' dx* 823]]
3 3 3 3
=0 _ (3.44¢c)

On the other hand, the expression for the total axial stretch, &,

of the beam may be written [29,30] as:

+ Qye(e58,) 11+ (g5 8,) rax] - 2 (3.45)

where A: Cross-sectiocnal area of the member

E: Young's modulus

Using Eq. (3.34), it is seen that:
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v-dx* -2 (3.46)

2
1 ~ ~ A
§ = J {1+ gpe[Nesy, + Q * Q2-S32]}-S33 3

=S
o 33 1T 73

For the type of problems contemplated, we assume that the
deformation of the frame as a whole is such that the relative
rotations, 84, 85, and 53 (non-rigid rotations) in each individual
member/its elements of the frame may be considered as being small.
Under this assumption, Eqs. (3.43), (3.44), and (3.46) may be

approximated as follows:

ET - - N+, =0 (3.47a)

- EI - + N8, =0 (3.47b)

- GJ 3.0 (3.47¢)

Also, the boundary conditions are given by:
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- EI, —2 - 1ﬁ1 , - EI, —2 - 231 (3.48a,b)
dx3 * v dx3 * _
=0 32:
d8 d®
1 1o 1 2
EI -y = M, , EIZ—? = MZ (3.48c,d)
2 2
dxs | 4 dx, | 4
=O 332:
R a8, o
CR L* =0, GJ—% =M, (3.48e,f)
370 dxs | 4
=4

The total axial stretch becomes:

:
§ = - l/zj (8% + az]dx; . (3.49)
o]

Thus, the non-linear terms, ai and §§, are retained in the
axial stretch relation as, for instance, in the Von Karman plate theory.
Eqs. (3.47) to (3.49) form the basis of the present derivation of the
relations between the generalized displacements and forces in the
element.

The non-dimensional axial forces and bending moments, denoted as

ny, np, mq, and mp may be defined, respectively, through the relations:
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. ﬁ22 . M12
= —_-— , " —
1 EI1 1 EI1
I

2 E12 2 E12

The solutions of Eqs. (3.47a) and (3.48a,b) are given by:

(1)  for ny <0

*

dex
a 1—1— 3—1—. *
92 m, [d2 3 in ) 3 cot d-cos
d *
+ 2m -[— L + 1—-cosec d -cos -
1 2 d L
d
where d = /—n1
(2) for n1 >0
*
esx
8. = ‘mof-1 -1 3
62 = m [ 5 " 3 sinh )
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(3.50a,b)

(3.50¢,d)

(3.51)

(3.52)

(3.53)



- e x
2 1 — 1—. L] 3
+ “m, [;E S-cosech e-cosh — ]
where e = /E:

The solutions of Eqgs. (3.47b) and (3.48¢,d) are given by:

(3) for np <O

* *
~ f-x3 f-x3
8, = - mz-{f2 - Fsin ——= - ecot fecos — }
£ *
X
- 2 [ ] - — 1—. L] 3
m2 { f2 + F cosec f+cos T }
where f = J-nz
() for ns > 0
* *
g X g X
8 AU R SR R I 3., 1. . 3
6, m, { 5 " g sinh——= + Z coth g-cos — }
g
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*

. g X
-2 1 1

m, {;5 grcosech gecosh — }

where g = /ﬁ;

(3.58)

Equation (3.51) through Eq. (3.58) lead to the following

relations between the relative rotations, 18y, 28y, 185, and 28,, at

the ends of the member and the corresponding bending moments,

1m2, and 2m2:

(1) for ny < O

1« 1 1 cot d 2 1 cosec d
8, = m [ - =1 mpel- e =
d d
27 1 1 cosec d 2 1 cot d
6, = mye[— - run AT i
d d
(2) for nqy > 0
1~ 1 1 coth e 2 1 cosech e
0, = myc[- 5+ =] = - e |
e e
20 1 1.1 cosech ey . 2 ] coth e
92"“1[?+ s | m1[92 =
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14 1 1 cot f 2 1 cosec f
8, = m,, [_5 5 ] m,, [ — + —-—?r—-—] (3.61a)
f f
24 _ 1 .1l _cosee f7_2 _1 _cotf
R 8, = m,, [ 5T ] m,, [ 5+ —F ] (3.61b)
f f
(4) for np > 0
12 1 .1 ,cothgy 2 1 _ cosech g
0, m, [ 82 + 2 ] m, [82 — ] (3.62a)

22 -1 .1 ,cosech gy _2 .1 _cothg
8, m,e g2+—g 1 - “m, [82 =] (3.62b)

Also, using Eqs. (3.49) and Eq. (3.51) through (3.58), the following

expressions concerning the total axial stretch, §, are obtained as:

(1) for the case in which n; < 0 (i = 1,2)

cosec2w/—n.1 cot#-ni ]

. 2
i=1 2(-ni) 4(-ni) l&(-ni)\/-ni
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(2)

cotv-n. *cosecv-n cosecv—n
1 i i i 1.2
+ [ 2 * * I'm; “m, |
(-ni) 2(-ni) .2(-ni)/-ni
+
EA
(i =1,2)

for the case in which njy > 0

2+ %2) (3.63b)

2
o1
D= - m
. =1 Zni2 uni uni/ ni i 1
1 cothv ni-cosech/ ni cosechy ni 1 2
+ [- z ' ¥ I'm “n; |
ni 2ni 2ni/ ni
+
EA

(3.59) to (3.63) may be written in a more

The set of Egs.
convenient form by decomposing the kinematic¢ and mechanical variables

of the beam into "symmetric" and "antisymmetric" parts, as:

a/\ 1 1/\ 2/\ SA 1 1/\ - 2,\
ERA| 6, + 8,) . 6, = Al N 8,) (3.64a,b)
a 1 2 s 1 2
also mo= mgo-mgo, Tmpo=omo+Tm (1 =1,2) (3.65a,b)
"a" and "s" refer to "antisymmetric" and

where the subscripts

"symmetric" parts, respectively.
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Therefore, in terms of the variables, 2%, 84, 3my,

Egs. (3.59) to {3.62) may be written as:

as a sa s
B2’;1}_‘1 Mo 8= hyem
wherein
(1) for n1 <0
1 "
°n, = - scot

v-n
s 1 1
h1 = tan 5
2»/—n1
(2) for ny >0
ah 1 1 /H;
1=~ * scoth )
1 2/HT
s /g
h1 = -tanh—z-
2/rﬁ
(3) for np <0
¥-n
ah 1 . 1 £ 2

= = CQ
2 (=n,) 2/~ 2
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and Smj,

(3.66a,b)

(3.67a,b)

(3.68a)

(3.68b)

(3.69a)

(3.69b)

(3.70a)



=
(3.70Db)

Sh2 - - —' tan >
2¢—n2
(4) for np > 0
ah2 - — = ——coth—~ (3.71a)

2 2/55

3 1 /E;

h2 = - tanh—E— (3.71p)

2/55 :

Also, in terms of the new variables, Egs. (3.63a,b) may be rewritten in

a unified form as follows:

s 2 amf a%nh smf dshi i
1- Ll x 2 dn, 1 ' FA (3.72a)
i=1 i
a§2 dah 362 dsh a62 dah 332 dsh
L2 2 1 1 -2 2.8 5o
2ah2 dn1 2sh2 dn1 2ah2 dn2 2sn2 dn2 EA
1 1 2 2
where
(1) for ng <0
dah ¥Y-n 2/-n
1 1 1 1
scot - scosec (3.73a)
2 2
8(-n1)
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1 1 1 1 1

= etan - = sec (3.73b)
W ey, 2 Bmpd T2 .
(2) forny >0
a*n, 1 1 /n, 1 2, n
— = > - scoth—— - -cosech —— (3.74a)
1 n, 4n1 v n, 8n1
dsh1 1 g 1 g Ny
= - stanh 5= * g, -sech 3 (3.74D)
1 Un n 1
1 1
(3) for np <O
4%n — 2/
2 1 1 2 1
= - 5+ : -cot > * ; ~cosec—; (3.75a)
2 (-n2) (-nz)‘/-n2 (-nz)
d>h v-n 2¢-n
= 2 _ _ 1 “tan—; 2N 8(-; y sec—s (3.75b)
2 4(-n2)¢-n2 2
(4) for ny >0
a’n, 1 1 Y 0, ° /7
2
5 = - + scoth + scosech (3.76a)
n, n 2 bn, v n 2 8n 2
2 2 2 2
s 2
d™h, /n_ Y n
1 2 1 2
= " «tanh 5> " & +sech 3 (3.76Db)
2 unz /rg 2

Equations (3.66), (3.67), and (3.72) are the sought-after
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relations between the generalized displacements and forces at the nodes

of an individual frame member, for the range of deformations considered.

In connection with Eqs. (3.66), (3.67), and (3.72), it is worthwhile to

recall that:

(1) ﬁ is in the direction of the straight line connecting the nodes
of the frame member after its deformation.

(2) The parameters §, 131, 231, 182, and 232 are calculated from Egs.
(3.31) to (3.33), which are valid in the presence:of arbitrarily
large rigid motions (translations and rotations) of the
individual member.

Thus, while the local stretch (pure strain) and relative
rotation (non-rigid) of a differential element of an individual
frame-member may be small, the individual member as a whole (and as a
part of the overall frame) may undergo arbitrarily large rigid motion.
Hence, the generalized force-displacement relations embodied in Eqgs.
(3.66), (3.67), and (3.72) remain valid in the presence of arbitrarily
large rigid motions of the individual member of the frame. Alsb, it is
important to note that the present relations for each element account,
as in the Von Karman plate theory, the non-linear coﬁpling between the
bending and stretching deformations, as seen from Eqs. (3.66), (3.67),

and (3.72).

III.3 Tangent Stiffness Matrix of a Space Frame Member/Element

Recall that, for the most part of the previous subsection, each
member of the frame is treated as a beam column; but in extreme cases,
i.e., of "pathological" deformations, it may be modeled by two or three

elements utmost.
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Now we consider the strain energy due to axlal stretch of the
member. Since the total axial stretch, §, is related in a highly
non-linear fashion to the axial force, ﬁ, as well as the bending
moments, @mj and Sm;, (1 = 1,2), from Eq. (3.72), the inversion of this
relation in an explicit form, which expresses the axial force ﬁ as a
function of §, appears impossible. With a view towards carrying out
this inversion of the & vs. N relation incrementally, the strain energy
due to stretching, which is denoted as wg, needs to be expressed in.a
"mixed" form using the well-known concept of a Legendre contact
transformation [31] as:

-2
~ L*N
‘lrs = N-§ SEA (3-77)

On the other hand, the strain energy due to bending is introduced
as follows. The "flexibility" coefficients, 3h; and S%h; (i = 1,2), are
highly non-linear functions of the axial force in Eqs. (3.66) to (3.71).
However, unless the flexibility coeffients are equal to zero, one may

invert Egs. (3.66) and (3.67) to write the "force-displacement"

relations as:

an~ sa
8 a8
"n, = 2, 8 __2 (3.78a,b)
a 1 s
h h
1 1
. a/\1 5 Sé‘]
"2Ta  "2Ts (3.792,0)
2 2
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Using the definition of non-dimensional moments as in Eq. (3;50);

one may express the strain energy due to bending, which is denoted as

T, aS:
BT a62 362 eI a62 362
T = 1.[ 2 N 2] + 2.[ 1 . 1] (3.80)
b 2% ah Sh 2% ah sh :
1 1 2 2

However, when in the limit as N tends to (-472E1;/22), as
explained in [22], Sh; (1 = 1,2) tend to zero; thus, the inversions of
Eqs. (3.66) and (3.67) to obtain Eqs. (3.78) and (3.79) are not
meaningful. 1In such a case, one may use a mixed form for the bending
energy of the symmetric mode, treating both Smj and 331 (1 =1,2) as

variables, as:

822 s 2
EI. °8 EI h,*"m
1 °2 1 rs_ 87 1" ™
ST Ll e T ] (3.80a)
h
1
sa2 3 s 2
2. . EI?.[E’»rrl - il (3.80b)
2L s ) 2° 2 .
B,

However, as explained in [22], without loss of generality for a
practical frame-structure, we may consider the strain energy in the
form of Egq. (3.80). It should be noted that in the view of the
dependence of @hj and 2hj on nj (1 = 1,2) as in Eqs. (3.68) to (3.71),
there is coupling between "bending" and "stretching" variables..

The strain energy due to torsion, which is denoted as m, may be

written as:
45



T, = 5748 (3.81)

The internal energy in the member due to combined bending,

stretching, and torsion is represented as:

BT a62 332 ET a,ég 362
T = 1‘[ 2 . 2] . 2'[ 1 . 1] (3.82)
24 ay Sy 24 a, Sy )
1 1 2 2
a2
GJ 2 a LN
*23°% NS - oy

The condition of vanishing of the first variation of w, which is
denoted here as 7%, in Eq. (3.82) due to a variation in N, which is

denoted here as N*, is given by:

an Sa s as
LA e.2)2 Z:h1 . 92)2 Znh1 . (12 Z:hz (3.83)
ah1 1 E’n1 1 ah2 2
37 3
8, . a%n -
+ (8_1.)20 ]cﬁ* + [E - g_A)oﬁ*
h, 2

Equation (3.83) leads clearly to the relation between § and the
generalized forces as given in Eq. (3.72).

The reason for using the "mixed" form for the stretching energy
in Eq. (3.77) is now clear from the above result. By using a similar
mixed form for the increment of stretching energy, the incremental
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axial stretch vs. incremental generalized force relation can be derived
in a manner analogous to that used in obtaining Eq. (3.83) from Eq.
(3.82). This incremental relation, which is, by definition, piecewise
linear, may easily be inverted, as demonstrated in the following.
Also, 1t is shown in the following that Eq. (3.82) froms the basis for
generating an explicit form for the "tangent-stiffness" of the member.
The increment of the internal energy of the member, thch is
denoted as iw, involving terms up to second order in the "incremental"®

variables, A28, ASé;, A28, aS6,, AN, and A§ can be seen from Eq.

(3.82) as:
an~ ans2 an2
EI 8 o AB 8 ~ ~
A o= e[ —2ep2h s —2 ¢ —2p() + B aa%h aa(c) (3.84)
L a 2 a 2 a 2 2 a
h 2'h h h
1 1 1 1
sA 322 sa2
8 A8 8
+ 2%, + — IR 22-A(s1 )+ SBZ'Asez'A(—)]
h 2°h h h
1 1 1 1
an a2 a~2
EI 8, . A8
+ 2.[_1_.Aag + ! + 1'A(—-) + a’é .Aag 'A(—1—-]
2 ah 1 2ah 2 ah 1 1 ah
2 2 2 : 2
T L R IR
+—enT8, + + ——ea(—) + 78,-278,-al—]]
Sy 1 % 2 Sy 1 Sy,
2 2 2 2
GJ A ~ /\2
+ 2.[28, .08, + AB
57128548, + 483
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+ AS°AN + N-A§

..... i &;;ﬁ_
2EA
In the above equation, it should be recalled that 3h; and.Shi (1 =1,2)
are functions of N.
Now, using Egqs. (3.31) to (3.33), (3.66), and (3.67), the
incremental quantities, Aa§1, As§1, Aéﬁg, Asgg, and A8 may be expressed
in terms of Juj; and Jg; (i = 1,2,3, j = 1,2) and/or their increments.

Henceforth, we use the notation for the vector d that:

(o

mt _ L1u1;2u .2 1 2 3;1 1;2 1;‘I 2;292;1

2
833 e3j (3.85)

as shown in Fig. 2.

In terms of the increment Ad®, Eq. (3.84) may be written as:

t

aw = ¥, ad" eay cad” + A&-gﬁd-Agm (3.86)

A
+ —rlrlnA,I:I
2

2, g% ad™ + B .ol
=d "~ n

The details of A4d,» Ands Ann» ?d: and Bp are as shown in Appendix D.
By setting to zero the variation of Aw in Eq. (3.86) with respect

to Aﬁ, one obtains the following relation as:

t m o
A gcad” + B =~ A AN (3.87)

Thus, the above equation is the incremental counterpart of § vs.
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the generalized force relation obtained in Eq. (3.83). Unlike the

non-linear relation in Eq. (3.83), the piecewise linear relation, Egq.

(3.87), can be inverted to express ﬁ in terms of the generalized
displacements as:

C A 1 .t m
AN = - —-[gnd-ag +3 ] (3.88)

nn

Subtituting Eq. (3.88) into Eq. (3.86), one obtains the internal energy
expression as:

' ' mt m .m "mt m Bi
AT = YAd K -Ad” + Ad R - — (3.89)
2A '
nn
where
&m : Tangent stiffness matrix of member/element
= A - -ab (3.90)
~dd A -nd =nd '
nn
ﬂm Internal generalized force vector for member/element
Bn
= Ed - A—-'énd (3.91)
nn

Recall that the tangent stiffness matrix and the internal force

vector are written in the member coordinate system as shown in Fig.

2.
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Thus, it is necessary to transform d® from a member coordinate system
to a global coordinate system as shown in Appendix E.

It should be emphasized once again that the tangent stiffness
matrix K™ of Eq. (3.90) is giveh an explicit expression, as in
Appendix D; and likewise, the internal generalized force vector gm is
also given explicitly. No member—-wise numerical integrations are
involved. During the course of deformation of the frame, once the
nodal displacements of the frame at stage Cy are known, the tangent
stiffness of each of the members and hence of the frame structure,
which governs the deformation of the frame from stage Cy to an
incrementally close neighboring stage Cy+1, can easily be evaluated
from Eq. (3.90). This distinguishing feature of the present
formulation renders the large deformation'analysis of framed structures
much more computationally inexpensive than the standard incremental
(updated or total Lagrangean) finite element formulations reported in
current literature [3]. Numerical examples illustrating this are given

later.
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CHAPTER IV
SOLUTION STRATEGY

Although a number of solution procedures are available for
non-linear structural analyses, a reliable approach to trace the
structural response near limit points, and in a post-buckled range, is
the arc-length method which was proposed by Riks [16] and Wempner [18]
and modified by Chrisfield [19,20] and Ramm [13]. This method is the
Incremental/iterative procedure which represents a generalization of
the displacement control approach. The arc length method, in which the
Euclidian norm of the increment in the displacement and load space is
adopted as the prescribed increment, allows one to trace the
equilibrium path beyond 1limit points such as in snap-through and
snap—back phencmena.

The i-th iteration in any incremental stiffness equation may be

written, as shown in Fig. 6, as:

p P -R + Ap*P = K77 ead (4.1)
i-1
where
P : Standard load vector
P;.q ¢ Total load parameter after the (i-1)th iteration
5(1-1): Internal force vector after the (i-1)th iteration
Ap : Iterative load parameter during this iteration
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K : Stiffness matrix during this iteration

Ad : Iterative displacement vector during this iteration
In the numerical implementation of Eq. (4.1), the standard
Newton-Raphson procedure or the modified Newton-Raphson procedure may

be employed.

We decompose Ad into two parts,
.. - o kw
Ad = Ad + Ap-ad (4.2)

where

Ad : Displacement vector due to the unbalanced force

= K (p P - 3(1'1)) (4.3a)

COkX%
Ad : Displacement vector to the external load

= K P (4.3b)
Also it is seen that:
- % * %
aat) - Aq(i R Ad + Ap-Ad (4.4)
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where Ad : Incremental displacement vector after the

i-th iteration during the current increment

+ Ad

Ad

PISSINRVICES)

The incremental arc length, Anj, after the i-th iteration during

the current increment is defined as [20]:

R - . - 1
An = [Ag_(l) -Ag_(i) + Y-pp2-ptopl (4.5)
i i
where Apj: Incremental load parameter after the

i~th iteration during this increment

Y : Scaling parameter which represents
the contribution of the load term

Numerical experience has shown that it is preferable to ignore
the contribution of the load term [13,19~20]. Consequently, using Eq.

(4.4), Eq. (4.5) may be written as:

. L\t
an = [adD) pau T’ (4.6)

i

**t *t’

*x% * ]~ *
cad” eap? v 280" (aaTY 4 aa")egp

- [ad

«L

. [Ag(i_1) + Ad )'[Ag(i-1) . Ad*]fg
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In order to decide the incremental/iterative displacement Ag, it
is needed to compute Ap. In the case of a truss structure, two
procedures, such as by the prescribed incremental arc length and by the
criterion of member buckling, are used.

As for the procedure of the prescribed incremental arc length
which is used for both truss and frame structures, Ap is decided by

Eq. (4.6) and the following equation.

An. = An (4.7)

where An: Prescribed incremental arc length
Substituting Eq. (4.7) into Eq. (4.6), it is seen that:

a,-Ap2 + DeAp + Cc =0 (4.8)

where

A -ad (4.9)

W
1]

t .

b 2-Ad** .(Ag(l"'l) . Ag_*)
(-t * (i-1) * -
c = (ad + Ad )+(ad + ad ) - (an
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.Then, the following conditions, are imposed on the incremental

displacements to avoid "doubling back" [19].

A > 0 (1=1) | (4.10a)

> 0 (i>1) (4.10b)

where Aé: Incremental displacement vector of the previous increment

It should be noted that in Eq. (4.10), 1 = 1 represents the incremental
process and i > 1 the iterative process.

Another procedure to decide Ap, which is used only for truss
structures, can be developed based on the criterion for member buckling.
According to Egs. (2.1) and (4.4), the total axial stretch of the
member after the i-th iteration prior to its buckling, 6§;, at any point

in the load history is given by:

_ -(i-1) —* o =¥RND -(i-1) —%* JaTHEN2
51 = [[u1 tu, o+ Ap *Au ) + [u2 + Au2 + Ap-Au 2) (4.11)
~(1-1) g xRN
+ 12 +u . 2 -
( 3 + NI+ Bpeaily )2 - 2

The axial force after the i-th iteration, Nj, is also given by:

N, = K*4 (4.12)



Substituting Eqs. (4.11) and (4.12) into the buckling condition for the

member Eqs. (2.4) and (2.5), it is seen that:

r‘-Ap2 + SepAp +t =20 (4.13)
where
= - P X )
r = Au 2 4 Au**2 + Au 2 (4.14)
1 2 3 v
Tekk o o(1-1) =k Sk =(i-1)
8 =2 Au1 (u1 + Au1] + 2 Au2 (uz + Auz]
=T - - R )
+ 2t (o + u;i R Au3]
~(i-1) ~%.2 -(i-1) ~#~2 ~(i-1) Nh Y
t = [u1 + Au1] + [u2 + Auz] + (2 + ug + Au3]
er
- Nk s 2)?

In order to avoid "doubling back", the constraint equations,
Eq. (4.10), are imposed on Ap; and in addition, the following condition

for i > 1 is imposed:

A8 <88, _, > O (4.15)
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where AS.: Incremental total axial stretch after the
: i-th iteration

Finally, in the load parameter AP combuted by Eqs. (4.8) and
(4.13), the value for AP which satisfies the constraint equations,
Eqs. (4.10) and (4.15) and gives the minimum value for An; is employed.

Moreover, an additional precaution is necessary in certain cases
in using the constraint Eq. (4.10a) to avoid "doubling back"™. In the
case that any member had undergone bifurcation buckling in the previous
increment, the incremental deformation of the member during the current
increment may change significantly due to the abrupt change in the
tangent stiffness. Therefore, in this case, the following constraint

condition is employed instead of Eq. (4.10a):

Asi <0 (1 =1) (4.16)

So far, the situation of the progressive buckling of an
individual member has been discussed. It might happen that the member
might be forced to undergo a "restraightening” after the member has
buckled during the continued deformation of the structure. In this
case, the numerical procedure is similar to the one treated above,
wherein a member begins to undergo buckling. Instead of Eqs. (4.12)

and (4.16), the following equations are used:

N, = ks, + &N (4.17)
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6. > 0 (1 =1) (4.18)

where 31= Total stretch in the post-buckled state
after the i-th iteration

kK :+ Stiffness in the post-buckled state

Equation (4.8) usudlly provides two roots for (Ap), one of which
usually satisfies Egs. (4.10) and the other does not. It it happens
that both of the roots of Eq. (4.8) satisfy Eqs. (4.10), the
appropriate value of (Ap) is the closest to the solution of the

following linear equation [19,20]:
b(Ap) + ¢ = 0 (4.19)

Finally, it should be noted that, in Eq. (4.5), if a large value
for Y is adopted, An; tends to be proportional to the inc?emental load;
and the method tends toward the standard load control method. ©On the
other hand, for a small value of Y, the arc length method may be
interpreted as a generalized displacement control method, wherein the
Euclidian norm of the increment in the displacement space is

prescribed, instead of the increment of a specific displacement.
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CHAPTER V
NUMERICAL EXAMPLES

Several numerical examples are considered in this chapter, to
demonstrate the validity of the present study.
As a criterion for the conver‘éence of the iteration in solving

the incremental equations, the following equation using the modified

Euclidean norm is employed.

1
[1ag®-aa]?

{ €

I
[Lag®) ag D

where n: Total number of degrees of freedom

e = 1.0 x 1073 for all the numerical examples

V.1 Truss Structures

In subsection V.1.1, we present several examples of plane
trusses; while in subsection V.1.2, we treat examples of space
(three-dimensional) trusses.

V.1.1. Plane Trusses
Examples 1 and 2 are those of simple truss structures, for which

theoretical solutions for the buckling load and the initial slope of

the post-buckling load~displacement curve are given by Britvec [36].

For these structures, experiments were also carried out by Britvec, who
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found good correlation between his theoretical and experimental
solutions. |

These structures are composed of two and three member,
respectively. All the members have a rectangular cross-section of
width 2.54(cm), depth of 0.16(cm), and each has a length of 38.1(em).
Also, the buckling loads of the individual members are 13.26(kg) for
Example 1, 13.15(kg) for Example 2, respectively.

The schematics of the structures and the results obtained are
summarized in Fig. 7. Both of these structures have a special type of
structural behavior in which the global buckling is caused by the
buckling of one of the members. The present solutions agree
excellently with Britvec's theoretical solutions concerning the
buckling load and the initial ME of the post-buckling curve.
However, the present solutions develop the tendencies that the
stiffnesses of the structure gradually increase as the post-buckling
deformations progress. This phenomenon is brought out by the effect of
the geometrical nonlinearity, and the result of Britvec's experiments
also show the same tendencies in the post-buckling range. Thus, the
present results appear to be reasonably accurate.

Example 3 is that of a simple structural model [see Fig. 8(a)],
which exhibits a snap-through phenomenon and is chosen here to study
the effect of member buckling on such phenomena. In this example, the
range of deformations 1s much larger than in the earlier examples. The
structure is composed of two identical members, which have a solid
circular cross section of area 96.77(em?), a length of 38.1(em), and a
Young's modulus of 7.03 x 105(kg/em2). To study the influence of the
member's buckling, three different cases are investigated. 1In Case 1
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the buckling of bqth the members is ignored, ivn Case 2 the buckling of
only one of the members is considered, and in Case 3 thé buckling of
both the members is considered.

Figure 8(b) shows the relations between the applied load and the
vertical displacement of the center. Case 1 exhibits a typical
snap-through phenomenon and reaches the limit point at a load of 3.76 x
106(kg). In Cases 2 and 3, the individual members buckle at a“load of
2.93 x 106(kg) and cause the structure to be in the unstable region
just after this load. There is little difference to be found between
Cases 2 and 3.

The fourth example is that of a strut structure, which was first
suggested by Thompson and Hunt [37] and later analyzed by Rosen and
Sehmit [23] to study the influence of local as well as global geometric
imperfections on global stability.

The outline of this structure is shown in Fig. 9(a) and Table 1.
The structure is composed of 35 members, all of which have a solid
circular cross section and an identical Young's modulus of 7.03 x
105(kg.cm?). As in the case of Example 3, four different cases are
dealt with in this example also, to investigate the influence of the
member's buckling and of a slight difference of the cross-sectional
area of individual members on global buckling. The cross-sectional
areas of the members for each ases are shown in Table 1. Note that the
structure of this example is not strictly symmetric about the z axis,
and this unsymmetry causes the effective neutral axis of the strut to
be slightly above the z axis for Cases 1-3 or slightly below the z axis
for Case 4. 1In Case 1, the buckling of all of the members 1is ignored.
In the other cases, the buckling of all of the members is considered;

61



however; the crossfsectional area éf the members is slightly different
for ea;h case, as shown in Table 1. The results obtained are shown in
Figs. 9(b)-(d).

Case 1 exhibits an entirely stable equilibrium path in the
load~displacement space. At a load of about 7.2 x 105(kg), the global
buckling occurs; and the stiffness of the structure goes down and tends
to zero after that. However, the equilibrium path is still stable.

The difference between Cases 1 and 2 is that member buckling is
considered only in the latter, while the cross-sectional areas of the
members are the same in both the cases. Thus, the structure of Case 2
exhibits exactly the same behavior as that of Case 1 until a load of
6.916 x 105(kg), when the member of no. 15 buckles.

In Case 3, the cross-sectional area of the member with no. 15 is
set to be about 5.89 percent smaller than the corresponding area in
Case 2. However, the structural behavior is almost the same as that in
Case 2. With this slight reduction in cross—-sectional area of one
member, the stiffness of the structure as well as the load level when
the member of no. 15 buckles are reduced as compared with Case 2.

In Case 4, the cross-sectional areas of the members 14 and 16 are
set to be 94.11 percent of the corresponding areas of Case 1. This
reduction of the cross-sectional areas causes the effective neutral
axis of the strut to be slightly below the z axis. Also, the members
14 and 16 buckle at an external load P of 6.323 (kg).

It is interesting to see that even in a fairly complicated
structure such as in Fig. 9(a), the buckling of only one or a few
members renders the structure to be unstable. It is also noted that

even a slight difference of the cross-sectional area of the members has
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a great influencé on the overall behavior of the structure. In Fig;
9(e), the z-displacement of node 19 [see Fig. 9(a)] is shown as a
function of the load P for each of the four cases. The variations of
axial forces (directed along the undeformed axes of the members) in
members 14 and 15 as a function of the external load P are shown in
Fig. 9(d) for each of the four cases. It is instructive, while
examining Fig. 9(d), to remember that Case 1 precludes buckling of any
member; in Cases 2 and 3, member 15 buckles (this load is lower in Case
3 than in Case 2); and in Case 4, member 14 buckles first. Figure 9(d)
indicates that the load transfer mechanism in a structure after the
buckling of an individual member is rather complicated.

Example 5 is an idealized model of a truss of the plane arch
shape. This structure was also analyzed by Rosen and Schmit [22] to
investigate the influence of geometric imperfections. This thin,
shallow arch is made up of 35 truss members, all of which have a solid
circular cross section and a Young modulus of T7.03 x 106(kg/cm2). It
is shown schematically in Fig. 10(a) and in Tables 2(a,b). Again,
three cases are considred for this example. 1In Case 1, the buckling of
any member is entirely ignored, while ii: is considered in Cases 2 and 3.
The difference between Cases 2 and 3 is only that the cross—sectional
areas of members 27 and 28 in Case 3 are 25.00 percent smaller than the
corresponding areas in Case 2. The results obtained are given in Figs.
10(b-d).

Case 1 indlicates the snap-through phenomenon similar to that of
the behavior of thin shallow arches made of homogeneous isotropic
elastic materials. The limit point is reached at a load of about 2.64
x 103(kg).
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In Case 2, members 11 and 12 buckle slightly after the whole
structure passes the 1limit point. As seen from Fig. 10(b), the global
structural response in Case 2 is markedly different from that in Case 1.
In Case 3, the cross-sectional areas of two members (i.e., nos. 27, 28)
are smaller than the corresponding areas in the other cases. Thus, the
overall response in Case 3 is slightly different form the other two
cases, until buckling occurs first in members 27 and 28, after passing
the 1imit point of the structure as a whole., However, in spite of the
buckling of members 27 and 28, there is little change in the overall
behavior of the structure as compared with the former cases. However,
when the deformation progresses further, the members 21 and 22 buckle;
and this alters the load-carrying capacity of the structure more
decisively.

The sixth and final example of plane-truss structures deals with
the interactive effects of imperfections of the structure at the global
level and the possibility of local buckling of individual members. The
structure considered is identical to that in Example 4 and shown in
Fig. 9(a). While Example U4 treated a perfect structure, now two cases
of global imperfections are considered. The imperfection is of a
half-sine~-wave form. Two different values of the amplitude of this
imperfection mode, 1.32(cm) and 2.64(cm), respectively, are considered.
In both the cases of imperfection, individual member buckling is
considered; and the cross~sectional areas of members are identical to
those in Cases 1 and 2 of Example 4, as shown in Table 1. The present
example is summarized in Table 3. The results are shown in Figs.
11(a-c). Cases 1 and 2 as marked in Fig. 11(a) are identical to Cases

1 and 2 as marked in Fig. 9(b) for a perfect structure. Comparing
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these cases with Qases 3 and 4 in Fig. 11(a), the dramatic combined
effect:s of small global imperfections of the structure, and of ﬁhe
buckling of individual members, on global response, may be noted. The
variation of z-displacement, at node 19, with the external load, is
shown in Fig. 11(b). The complicated nature of load-transfer in the
structure after an individual member's buckling, in an imperfect
structure, may be seen from Fig. 11(e).

The present numerical examples thus delineate: (i) the effect of
buckling of an individual member or members on the response of the
structure as a whole and on the subsequent load-distribution in the
structure, (ii) the effects of even minor variations in the
cross-sectional areas of individual members, and (iii) the effects of
imperfections at the global level, while imperfections at the local
level, in each member, may be expected to have similar effects. The
present numerical examples also serve to point out the relative
efficiency of simple procedures adopted in the present work for
obtaining tangent stiffnesses.

V.1.2 Space (Three-Dimensional) Trusses

The first example considered in this category is the shallow
geodesic dome shown in Fig. 12. This structure, which exhibits a
snap~through phenomenon, is subjected to one concentrated load at the
central node. Two initial configurations of the structure, one
geometrically perfect and the other with slight imperfections, as
specified in Table 4, are considered. This example was also analyze'd,
using a perturbation method by Hangai [2] to study global stability.
In the present study, however, the influence of local buckling on
global stability is also examined.
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Figures 13 gnd 14; for the case of perfect geometry, show a
typical snap-through phenomenon wherein the first limit point is
reached at a load of 3.15 x 10~YEa (Kg). The present results are seen
to be in good agreement with those of Hangai [2].

The influence of local buckling on global instability is
illustrated in Figs. 15, 16, and 19, which indicate that a global
behavior strongly depends on the local buckling of a single member. 1In
a practical design of a three-dimensional truss structure, this
understanding is very essential and useful. Also, the effects of
slight geometric imperfection are illustrated in Figs. 17 and 18,
wherein the comparison results of Hangai [2] are also included.

Example 2 is also that of a shallow geodesic dome, analyzed
earlier by Noor [32] and shown in Fig. 20. Two types of loading
systems are considered: the first loading system consists of lateral
concentrated loads P¢{ over the entire dome; the second one, Po,
consists of concentrated lateral loads only over a quarter of the dome.
An important difference between the present analysis and that of Noor
[32] should be mentioned. Noor [32] ignores local buckling and assumes
each member of the truss to remain straight and stable. On the other
hand, in the present analysis, local buckling of each member is
allowed; and only for comparison purposes, results are also obtained
using the present procedure with local buckling being intentionally
suppressed.

Figure 21 provides a comparison of the vertical displacement of
the central node in the present and Noor's solutions for various conbi-
nations of Py and Py, when local member buckling is ignored. The

present results agree well with those of Noor [32] except beyond the
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limit point of Py = =5.132 x 1072. The stability boundary, i.e., the
combinations load parameters Py and P, which render the structure
unstable when local member buckling is ignored, is shown in Fig. 22,
from which an excellent correlation of the present results (With
member-buckling being suppressed) with those of Noor [32] may also be
noted.

Figures 23 to 26 show the present results when local buckling is
considered, Figure 23 shows the variation of vertical displacement of
the central node; Fig. 24 shows the stability boundary under the
various conbinations of Pq and Pp; Fig. 25 shows the equilibrium path
under the load system Pp - 0 and Py = 0.

From this numerical example (especially Fig. 24), it is clear
that the decrease in the magnitude of critical loads for the structure,
due to buckling of an individual member or members, i.e., the influence
of local buckling on the response of the structure as a whole, is quite
remarkable.

The third example of space trusses is that of a beam-like space
truss (PACOSS Truss) subjected to axial and bending loads. The
structure is that of a twelve-bay truss whose member properties are
shown in Figs. 27 and 29. 1In order to trigger the coupling between the
axial and transverse displacements, which is characteristic of the
buckling mode, in the case of only axial-load application, a "load
imperfection” equal to P/1000 is added in the transverse direction at
one of the end nodes, as shown in Fig. 27.

For the above predominantly axial-load case, Fig. 28 shows the
relation between the magnitudes of the axial load and that of the
transverse displacement at the loaded end, for two scenarios: (i) when
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local (member) buckling is suppressed and each member is assumed to
remain straight and stable and (ii) when each member is allowed to
undergo local buckling. Fig. 28 clearly demonstrates the advantageous
effects of controlling the local buckling deformations of individual
members and forcing them to remain straight and stable. This leads one
to the concept of active/passive control of member deformations.

Fiéure 29 shows the schematic of the PACOSS Truss subject to
predominantly bending loads. Fig. 30 shows the relation between the
magnitudes of transverse (bending) load and transverse displacement,
respectively, once again for two scenarios: (1) when local member
buckling is suppressed and (ii) when member buckling is allowed.
Figure 30 again demonstrates the beneficial effects of control of
deformations of each member. Figure 31 shows a computer plot of the
deformed shape of the PACOSS Truss under bending loads.

It should be noted that in Figs. 28 and 30, the letters A, B, C,
etc. indicate the stages at which the respective members, whose numbers

are identified in Figs. 28 and 30 respectively, undergo local buckling.

V.2 Frame Structures

In subsection V.2.1, we present several examples of plane frames,
while in subsection V.2.2, we treat examples of space
(three~-dimensional) frames.

V.2.1 Plane Frames

We first examine the ranges of deformation of a frame element,
for which the presently developed tangent-stiffness matrices are valid.

Recall that the principal assumptions underlying the present
development of an explicit expression for the tangent-stiffness matrix

of an element are as follows: (i) arbitrarily large rigid translations
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and rigid rotations of the element are accounted for; (ii) howéver, the
local (non-rigid) rotations 8; (i = 1,2v) ér-e restricted to be small
such that sin; = B; amd coséy = 1; (1i1) the local axial stretch ¢ is
restricted to be small; (iv) the non-linear coupling between the
bending deformation {(characterized by é}) and stretching deformation
{characterized by total axial stretch §) is accounted for.

We consider the problem of an "elastica" - a simply supported
(but axially movable beam, of length %, that is subjected to an axial
compressive load, with a load eccentricity of (2/1000) from the
undeformed axis of the beam, as shown schematically in Fig. 32a. The
beam has a square cross-section of area 1.0 (in2), & = 100.0 (in), E =
107(psi), and I = 0.8333 (in%). For testing the range of deformations,
over which the present explicit expr-essiori for tangent stiffness matrix
of an element are valid, the beam is idealized, successively, by 1, 2,
4, and 8 elements over its length, respectively. As shown in Fig. 32a,
8y is the total axial "stretch" of the beam, while §y is the transverse
displacement at midspan, in the post-buckling range. Figure 32b shows
the dependence of (&y and &y) on the axial load N, for the range of
deformations [(&y/2) and (§g/2)] = 0.30. On the other hand, Fig. 32¢
shows the dependence of (8y and §y) on the axial load N, for a much
wider range of deformations, viz., (8y/%) = 1.0 and (§y/%) = 0.5.

From Figs. 32b and 32¢, it is seen that, while a "single~-element"
representation of the entir'e’beam does account for the non-linear
coupling between bending and stretching (as seen from the large values
of 8y and 8§y at N = Ng), the slope of the post-buckling response curve
for N vs. (&y or &y) is not accurately represented. On the other hand,

Figs. 32b and 32¢ clearly indicate that even a two-element

69



representation of the beam yields results for post-~buckling besponse,
that are in close agreement with the c¢lassical "™elastica" solution,
even for very large deformations of the order (GH/l) = 0.4 and (sv/z) =
0.5. 1t is also seen from Figs. 32b and 32c¢c that a four-~-element
representation produces solutions that are in exact agreement with the
"elastica" solutions for the entire range of deformations considered.
The reason for this excellent behavior of the "two-" or "multi~"element
models of the elastica is due to the fact that the present element
development can account for arbitrarily large rigid motions, even if
for element-wise small-strain motions, as discussed under assumptions
(1) to (iv) at the beginning of this section.

It is worth pointing out that while arbitrarily large
deformaitons (such as the straight beam folding inﬁo a cirele) have
been considered in the present example of a single beam, when a
practical frame-structure is considered, it is unlikely that each of
its members will undergo such gross deformations. Thus, inasmuch as
the present element development accounts for nonlinear
bending-stretching coupling, it may be sufficient to model each member
of the frame by only one or two of the present elements, whose
stiffness matrices are given explicitly in Chapter III. The following
five numerical examples illustrate this assertion.

The first example is that of the so~called Wiliams' toggle frame,
which was first treated by Williams [38] and later analyzed by Wood and
Zienkiewicz [39] and Karamanlidis, Honecker, and Knothe [40]. A
schematic of the structure is shown in Fig. 33a. The structure has a
semispan of 12.943 (in), a raise of 0.386 (in), and is composed of two

identical members, each with a rectangular cross section of width 0.753
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(in),_depﬁh of 0.243 (in), and E = 1.03 x 107 (psi). Each member of
the frame is modeled by a single element of the type derived in Chapter
III. Figure 33 shows the presently computed relation between the
external load P and the conjugate displacement §, and also that between
P and the horizontal reaction (R) at the fixed end. Also, shown in
Fig. 33b are the comparison experimental results of Williams [38] as
well as tk"xe numerical solutions obtained by Wood and Zienkiewicz [39].
Excellent agreement between all the three sets of results may be noted.
However, the efficiency of the present method is clearly borne out by
the facts that: (a) the present solution uses one element to model
each member, while Ref. [39] uses five elements to model each member;
and (b) no numerical integrations are used, in the present, to derive
the tangent stiffness of the element dﬁring each step of deformation,
since an explicit expression for such is given in Chapter III.

The next two examples concern frames, with two and three members,
respectively, which bring out rather fascinating features of responses
of frames. For these examples, experimental results were reported by
Britvec and Chilver [29], while theoretical solutions for the buckling
load and post-buckling responses were also reported in [29,30]. 1In
these two examples, each of the members has a rectangular cross—-section
of width 1.0 (in), depth 0.0625 (in), and & = 20.0 (in). Also, the
buckling load of each member, when considered individually as a
pinned-pinned column, is 8.1 (1b). The schematics of the two examples
are given in Figs. 34 and 35a, respectively. 1In both these examples,
each member of the frames is modeled by a single element.

Each of the structures shown in Figs. 34a and 35a, respectively,

has two distinetly different post-buckling load-displacement curves,
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corresponding to the two types of buckling modes, des'ignéted,
respectively, as (a) and (B) in the insets of Figs. 34b and 35b. Each
of the modes (a) and (B) may be excited by considering a corresponding
type of load eccentricity, designated also as éases (a) and (8),
respectively, in Figs. 34a and 35a.

Figure 34b shows the presently computed post-buckling P vs. &
relation for the two~member frame of Fig. 34a, along with the
experimental and analytical results reported in [29,30]. The present
results agree excellently with those in [29,30], except for the Mode
(8) deformation, in which case, the present results are close to the
analytical results of [29,30], while experiment appears to predict a
much stiffer response than either the present results or the analytical
results of {29,30]. Similar obser-vations-apply to the results given in
Fig. 35b for the post-buckling response of the three-member frame of
Fig. 35a.

The fourth example is that of a right-angled frame, shown
schematically in Fig. 36a. This structure was first studied
experimentally and analytically by Roorda ({41] and Koiter [42], and
later analyzed by Argyris and dunne {43] to demonstrate the
imperfection sensitivities of structures. Recently, this problem was
also analyzed in Ref. [40]. The dimensions and material properties of
the members are identical to those used in Ref. [40] and are indicated
in Fig. 36a. Based on the experience with the example of a beam
considered in Fig. 32a, each of the members in Fig. 36a is modeled by
two elements of the present type, derived in Chapter III. Five
different cases of load-eccentricity, with e as marked in Fig. 36a
being given the values (e/%) = 0.0001; 0.01; 0.05; ~0.001; ~0.01,
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respectively, are considered. Figure 36b shows the presently computed
results (for each of the five e values) for the P vs. 6 (the rotation
at the corner, as defined in Fig. 36a) relations, along with the
available numerical results of Karamanlidis, Honecker, and Knothe [40]
(i.e., for (e/%) = 0.01 and 0.05) and the analytical results of Koiter
[42] for th case of zero eccentricity (e = 0) of the load. From Fig.
36b, it is seen that when the imperfection (e) is very small (i.e., e =
+.001), the present solutions agree excellently with those of Koiter
[42] (e = 0), in the range of small deformations (8 = 10 degrees).
However, the present numerical results indicate that the structure
stiffens gradually, as the post-buckling deformation progresses. This
apparent effect of very large deformations is also confirmed by
Roorda's [41] experimental results. Thus, the present results appear
to be accurate over a wide range of deformations. Moreover, for the
values of (e/%) = =0.001 and (e/%) = 0.05, the present results are in
excellent agreement with those of Karamanlidis et al. [40]. However,
it should be remarked that the present solutions are based on using
four elements to model this two-member frame, while Ref. [40] uses 18
elements to model the same frame. To provide a further insight into
the post-buckling response, and imperfection sensitivity, of this
simple frame, the presently computed variations of the displacement §
(see Fig. 36a) with load P, for each of the five values of load
eccentricity, e, are shown in Fig. 36c.

The final example concerns a four-member frame subjected to point
loads, as sketched in Fig. 37a. The geometric and material data of the
members, which are identical, is given in Fig. 37a. Because of
symmetry, one-~quarter of the frame (the rectangle 1-2-3) alone is
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modeled by using four elements (two each in segments 1-2 and 2-3,
respectively, as in Fig. 37a). The presently computed variations of
displacements §1 and 63 (as defined in Fig. 37a) with the applied load
P are shown in Fig. 37b, along with comparison results of Lee et al.
[44] and the theoretical results [45]. The variations of the presently
computed moments My and Mp (at points 1 and 2, respectively) with the
applied load are shown in Fig. 37¢ along with the theoretical results
[45], Figures 37b and 3T7c illustrate the excellent accuracy of the
present sumplified method. Lastly, the profiles of deformation of the
frame at various levels of applied load P are sketched in Fig. 37d.
V.2.2 Space (Three~Dimensional) Frames

Prior to consideration of space frames, we consider the case of
large-deformation bending response of a single member, through the
example of a cantilever beam subject to a transverse load at the tip,
as shown in Fig. 38. It is seen that the present results, using just
two elements agree excellently with those of Bathe and Bolourchi [33].
The relative rotation at tip, as computed from the present procedure,
is shown in Fig. 29 and is found to agree excellently with an
independent analytical solution.

We now consider the example of a space frame, whose geometry is
identical to that of the space truss shown in Fig. 27. Here, it is
assumed that the joint-design in the structure is such that each member
can withstand bending moments, twisting moments, and transverse shear
forces, in addition to an axial force; and hence, the structure can be
modeled as a space frame. The pertinent geometric as well as material

parameters of the considered space frame are indicated in Fig. 40.
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The results for the case of axial loading are shown in Fig. 41.
In this case, to trigger global buckling, a loading imperfection of
magnitude (P/1000) is considered in the transvers direction (where UP
is the axial load) as shown in the inset of Fig. U41. Also shown in
Fig. 41 is the comparison response of the structure when modeled as a
space truss, with local buckling, as alsc shown in Fig. 28. An
examination and comparison of Figs. 28 and 41 shows that the response
of the space frame under an axial load system indicated in Fig. 41 is
is nearly the same as that predicted when a space-truss~type model is
employed and when the local (member) buckling is accounted for. (Note
that both the responses, i.e., those predicted by a space-frame
modeling as well as a space~truss modeling with member buckling, are
considerably more flexible than that predicted by a space-~truss
modeling without local buckling being considered.) This points to the
potential use of space-truss—-type modeling with local buckling being
accounted for.

The results for the case of transverse (bending) loading are
shown in Fig. 42, when the structure is modeled as a space frame. Also
included in Fig. 42 are the comparison results, shown earlier in Fig.
30, when the structure was modeled as a space truss and when local
buckling was suppressed. A comparison of Figs. 30 and 42 again reveals
that the bending response of the structure of Fig. 40, when modeled as

a space frame is nearly similar to that of a space truss when local

(individual) buckling is properly accounted for.



CHAPTER VI
CLOSURE

In this report, simple and effective procedures of explictly
determining the tangent stiffness matrix, and an arc length method,
have been presented for analyzing the large deformation and
post-buckling response of (three-dimensional) space-truss and frame
structures. The influence of local (member) buckling on the global
response has been systematically explored. In each category of
modeling of a large space structure, i.e., a space truss or a space
frame, certain salient features of the present methodology are

indicated below.

VI.1 Space-Truss Structures

The salient features of the present methodology are:

(1) The stiffness matrix of an individual member is formed explicitly
(without element-numerical integration) in both the pre- and
post-buckled ranges of behavior of each individual member.

(2) The range of validity of the invoked approximations, such that
the stiffness coefficient, k, for each member has constant values
in the pre- and post-buckled states respectively, has been
demonstrated to cover most practical situations of space-truss
structures.

(3) As the result of (1) and (2), the tangent stiffness matrix of the
structure as a whole is evaluated very simply.

(4) The arc length method is efficient to trace the non-linear

response of the structure beyond limit points.
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(5) The consideration of the local (member) buckling is very
significant for understanding the global instability of
space~truss structures.

Thus, it can be concluded that the methodology proposed in this
report is very useful in analyzing practical space truss-type

structures.

VI.2 Space~Frame Structures

(1) An explicit expression {(i.e. requiring no further
element-numerical integration) is given for the "tangent-stiffness"
matrix of an individual element (which may then be assembled in the
usual fashion to form the "tangent-stiffness matrix" of the frame
structure). The formulation that is employed accounts for (a)
arbitrarily large rigid rotations and translations of the individual
element, {(b) the non~linear coupling between the bending and axial
stretching motions of the element. Each element can withstand bending
moments, a twisting moment, transverse shear forces, and an axial
force.

(2) The presently proposed siimplified methodology has excellent
accuracy in that only one element may be sufficient, in most cases (of
practical interest in the behavior of structural frames), to model each
member of the frame structure. Inasmuch as the relative (non-rigid)
rotation of a differential segment of the present element is restricted
to be small, a single element alone is not enocugh to model the
post—-buckling response of an entire beam column undergoing excessively
large deformations as in an elastica. However, when considered as a

part of a practical frame structure, the situation of each member of
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the frame undergoing abnormally large deformations, as ih an elastica;
represents a pathological case.

(3 Because of {1) and (2), the present method is by far the most
computationally inexpensive method to analyze three~dimensional (space)
frame structures and, therefore, is of considerable potential

applicability in analyzing large practical space-structures.
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APPENDIX A

DERIVATION OF EQ. (2.1) USING POLAR DECOMPOSITION

Deformation tensor is defined as follow [27]:

F=R-U (A1)

where Deformation tensor

1™

R: Rotation tensor

U: Pure stretching tensor

Bu1 Bu1 au1
F=11+ -_— a (4.2)
Bx1 sz 3x3
31..2_ 1+31.f_2.' E_JE
3x1 sz 3x3
9x ax X
1 2 3
R= [ cosécosycoss cos@sinpcoss ~sinBcose | (A.3)
~sinysing +cosysing
—cos gcosysing ~cosBsinysing singsing
~sinycos +COSYPCcos
singcosy singsiny cos 8§

where the rotations vy, 8, ¢ are defined as point-wise Euler angles (the
order of rotation is ¢ = 8 » ¢) [34].

79



Consider an initially straight one-dimensional member aligned
initially along the xy axis. Then, it is appropriate to introduce the
plausible kinematic assumption that the displacements uj are functions

of xq alone. Thus, in this case, [ 1s approximated as:

Ju Ju

Ju
. 1, .2, .3
Fipo= 1 7, Fo i, Far = 3%, (a.4)

Thus, Fy1 = 0 (i = 1,2,3) and all other Fij = 0. Likewise, the

stretch tensor [J may be approximated as:

~

Upq = (1 +e); U,.=13 U, =1 (A.5)

and all other Uij are zero., For the present kinematic assumptions, one

obtains:
Fi1 = RikUk1 (1 =1,2,3; k=1,2,3]
or
Bu1
1+ o= (1 + e)[cosecosycosd ~ sinysing] (a.5)
1
3u2

(1 + e)[-cosbcosysing ~- sinpcoss]

ar
»
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Ju

5;; = (1 + e)sinecosy

On the other hand, if the member is initially along X3 axis, one may

introduce the kinematic assumptions:

au1 8u2 8u3
Foo =53 Foo=m0—; Fo,=1+=—= (A.6)
13 8x3 23 8x3 33 8x3
U11 1 3 U22 =1 3 U33 = (1 + g)
Bu1 8u2
Tt (1 + €) sindcos¢ ; —— = (1 + €) sinBsing ;
X ax
3 3
3u3
1 + —= = (1 + €) cosb
8x3

Thus, in general, from (A.5) and (A.6) one obtains:

¢ = L@)2+ (@2 0 5y 90212
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APPENDIX B
POST-BUCKLING BEHAVIOR OF A TRUSS MEMBER

In this appendix, Eq. (2.3b) for the post-~buckled state of the
truss member 1s derived.

Consider the truss member being subjected to the compressive force
(=N), as shown in Fig. 1. When N satisfies Eq. (2.4), this member
undergoes bifurcation buckling. From the detailed treatment of the
elastica problem given in Ref. [28], the post-buckling behavior of this
member, treated as a simply-supported beam, is governed by the following

equations:

4 = F hd F(B) (B-]&)
~ 2
1+6=F-E(B)~1 (B.1b)
- 2
§ = i 8 (B.1¢)
where
T
2
F(B) =J dé
—-g-f1 - 8%sin®s
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E(B) =J Tr\/1 _ ﬁzsinz(b - d¢
-2
2 N a
£9 = - 25 B=sin(§]
a=a N =-a __ ) (B.2)
u3—o u3—2 .

and F(B), E(B) are the elliptic integrals of the first and the second
kind, respectively. Also, & is the stretch after the buckling of the
member; and g is the lateral deflection at the middle of the centroidal
axis of the element. Note that the total stretch § is given by the sum
of § and the stretch, CI'N - 2/EA, before the buckling of the member.
Also, it should be noted that in the derivation of Egs. (B.1), the
change in the length of the member due to the compressive force is
neglected.

Equations (B.1) give the exact relations between N, g, and § in
the post-buckled range, except for the assumption concerning the length
of the element. We now simplify and modify these relations to a form
more useful for the present purposes of evaluating a tangent stiffness
matrix. To this end, we start by expanding F(B), é(B) in terms of 8

[see Ref. 35].

"B S, + ... (B.3a)



E(8) = 7 ~ 4+ 3.5, = . B"-s oo (B.3b)

2 2 2-4 b
where
x
2 n .
S, = J sin ¢-d¢ (B.4)
-I
2

We shall retain the terms of Eqgs. (B.3) up to the second order for the
approximations of F(B), E(B):

2

F(B) = 7 + % - 8 (B.5a)

E(B) = = - % - B (B.5b)

The range of validity of these approximations will be demonstrated

momentarily.

Then, Eqs. (B.l1a) and (B.1b), respectively, become:

, .
2=z (r + % a2) (B.6a)
4 + g = % [-n' —% 82] - 4 (B.6b)

From Eqs. (B.6) one obtains:
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uz+§=§-w (B.7T)

Noting that £2 = (~N/EI), one sees from Eq. (B.T):

(cr) 1

N=N (1 + 5 ]2 » (B.8)

Iy}

where N(cr) is the c¢ritical axial force for bifurcation buckling as
given in Eq. (2.5).

For small values of -(§/z), Eq. (B.8) may be approximated as:

v = v - 1) (8.9)

=0

The incremental form of Eq. (B.9) results in Eq. (2.3). The
linear relation (B.9), and its incremental counterpart, are useful in
tangent stiffness evaluations.

We now derive the relation between 3 and 5. This relation is not
necessary for the construction of the tangent stiffness, but it is
useful for the determination of maximum and/or minimum stress in each of
the members.

Noting that 8 is non-negative except for « > 27, one obtains from

Eq. (B.6a):

8 = 2//% e f e Q-1 (B.10)
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Substituting Eq. (B.10) into Eq. (B.1¢c), it is seen that:

(B.11)

-/

e f -8~ 1

o
(]
A&

1
1r

Substituting for f in terms of N and using Eq. (B.8), the following

relation between & and & is obtained:

.-%(

j

N
=

(B.12)

o
'}
o=

Thus, when the axial contraction g is solved for from the finite element
stiffness equation, Eq. (B.12) may be used to calculate the transverse
displacement 6~'at midspan of the member; and from it, one may calculate
the maximum or minimum stress in the member.

Figure 43 shows the relations between N, GA, and 6~ as given by Egs.
(B.9) and (B.12) and their comparisons with the exact solutions for the
elastica problem. The dotted lines indicate the present solutions and
the so0lid ones indicate the exact. From this figure, it is seen that
Egs. (B.9) and (B.12) are good approximations in the range of values for
~(8§/%) and (§/2%) being smaller than about 0.15 and 0.25, respectively.
It is also seen that this range of values for =(8/%) and (&8/%) 1is
typical in the problem of local (member) buckling in a practical truss

structure.
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APPENDIX C
COORDINATION TRANSFORMATION OF ROTATIONS

The coordinate transfoémation for semi-tangential rotations from
the global to the local system is considered as é usual coordinate
transformati;n, because a rotation vector can be defined, when
semi~tangential rotations are used as rotational variables.

Therefore, using a rotation vector R, from Fig. 44, the following

equations are obtained:

(&
tan —
2

R = e (c.1n
i B

®
= tan — ¢ (c.2)

2 1
From Eq. (C.1) and (C.2),

8, @

tan == = 5 " tan == (i,j = j,2,3) (c._3)

where cjjy: direction cosines: cij = gi-gj

Finally, the following relations are obtained.

' ®] (C.4)

ei =2 + tan ‘cij » tan 5
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APPENDIX D

REPRESENTATIONS OF MATRICES FORMING TANGENT STIFFNESS MATRIX
OF A FRAME MEMBER

The vectors for representing Eq. (3.86), herein, are defined as:

i, My | (D.1)

t asr S~ as Sa a
T0= 179,76, 76 76y 6y (b.2)
ot EI, EI, EIL, EI, a 0.3)
s s, .
| 2%, ® n, 2°n, 2 n, © |
= (4 - e (D.4)
;t = | -1 1] (D.5)
1 -1
E = (D.6)
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b o ()t () (g4 (1) o (0.7)
T TS T T T
- (8-t (D.8)
J = unit vector (5 x 1) (D79)
1. Add

Aqq is represented as a (12 x 12) matrix as shown in Table (D.1),

which the components Fjj, mGij, and mnHiJ are given by:

3°T aT 3T R 2
Fog =Moo — E + _k T At ~2 + N -a f (D.10)
J du, 3u. ou, du. du, du, '
i77] i J 13
. a%k T, T,
GlJ -M M N (D.11)
auia( ej) 3u, a( BJ)
32T 3T 3T
mnHlJ = Mk : m “ n * : * Akl : n : (D.12)
a( el]a( ej] 3 ( ei) 3 ( eJ)
where i,j=1,2,3; myns=1,2
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2. Ang

Apng 1s represented as a (12 x 1) vector as shown in Table D.2,

which the components Lj and JNj are given by:

aT
L1=Tk'BkQ‘.T2'+'§'§—'
du, du,
i i
aT
JN = Tk . Bkl . .Q
3(7e, )
i
where i=1,2,3;3=1,2
30 Ann
App 1s a scalar factor as follows.
3 2 2
2 an2 d 1 s"2 d 1
A =z L% = () ey 5 (5]
1 dn h dn h
1 1 1 1
23 an2 d2 1 542 d2 ( 1
2E1, [ 12 (ah]+ 12 sh]]
2 2 : 2 2
- X
EA
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b B,

B4y is represented as a (12 x 1) vector as shown in Table D.3,

which the components Rj and JS; are given by:

R, = M L L (D.16)
du, du
1 1
. 3T :
Jg, =M - —K_ (D.17)

]
——
[\¥]

where i=1,2,3;

5. By

Bh 1s a scalar factor as follows.

A aaz d 1 sa2 d 1
B ==[ “8% - (—) + %85 « — (=—) (D.18)
n 2 2 dn1j a]'11 2 dn1 Sh1
. a'6~2 . g (_1__) . 862 . (_1___]]
1 dn 1 dn s
2 ah2 ! 2 n,
2N
* 8 TR
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APPENDIX E

APPROXIMATIONS OF RELATION BETWEEN TOTAL AND RELATIVE ROTATIONS
OF A FRAME MEMBER
It is necessary that Egqs. (3.31) and (3.32) are approximated to
form the tangent stiffness matrix for frame~type elements because
Egs. (3.31) and (3.32) have high order terms and are too complicated to
formulate. To keep simplicity of the formulations and get the original
purpose, the following approximations from Eqgqs. (3.24), (3.27), and

(3.28) need to be considered at most on Eqs. (3.31) and (3.32).

161 1 1 1
tanT=-(h-A+2.-B+m-C) (E.1)
162 1 1 1
tanT=-— (he'D + 2« E + m* F) (E.2)
193
tan - =" (her + 23 + met) (E.3)
251 16A1 % 191 1 262 Te2 1
tan —— = tan —— + [tan—-2-—~ tan TJ A+ (tan—2—~ tan T]- B
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+ (tan -3 - tan —3]-10 (E.Y4)
2 2 ,
é\2 162 261 161 1 26 162 1
tan - = tan 5 + (tan - - tan -'-2—')‘ D + (tan 5~ tan —E—]‘ E
193 293 1
+ (tan —=2 - tan —=2}-'F (E.5)
2 2
263 163 %0, Te 2 le,
tan —= = tan —=> + (tan —— - tan —)+r + (tan —~ - tan —2-)'5
o, "o,
+ [tan —2— - tan —2—) £ (E.6)

Substituting Eqs. (3.14), (3.15), and (3.24) into Egs. (E.1) to

(E.3), one obtains the following equations as:

'8, 1 191 192 193
tan —— = 7 {or + (tan —- tan —= - tan —2—) (E.7)
1 1 1 1 1 1
0 0 0 0 0 0
a2 2 % 2 93 ] 2 3. 1
+ s+(1 - tan —— + tan® —= - tan® — ) + 2t+(tan 5 tan —>¢ tan— )}
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[ ; s L P

: 2 -1 2 1 2 2 2 3
tanT=1—+-E{r' [1+tan——2— tan —2——tan T]
191 j92 193
+ 25-(tan T-tan > + tan—2—]
191 19 192
+ 2t-(tan —-§—°tan ~5 - tan—-2-—-]}
133
tan = 0
where e = 1Ger + THes + T1.¢

(E.8)

(E.9)

Equations (E.4) to (E.9) are the approximated relations between

the relative and total (rigid plus relative) rotations for forming the

tangent stiffness matrix of the element.
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APPENDIX F

TABLES
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Table 1 Cross—-sectional areas of the members
of Thompson's strut structure

Member's Case 1, 2 ) Case 3 Case 4
Number
1-13, 17-21 54.84(cm) 2 54.84 54.84
15 54.84 51.61 54.84
14, 16 54.84 54.84 - 51.61
22 - 35 51.61 51.61 51.61

All members have solid circular cross sections.
Young's modulus is 7.03 x 105 (kg/cmz).

In Case 1, the local buckling of individual is not considered.
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Table 2(a) Nodal coordinates of the arch-truss structure

Nodal z Coordinate x Coordinate
Number

1, 19 F 3429.0 0.00
-2, 18 F 3048.0 50.65
3, 17 F 2667.0 | 34.75
4, 16 F 2286.0 83.82
5, 15 ¥ 1905.0 - 65.30
6, 14 F 1524.0 110.85
7, 13 F 1143.0 87.99
38, 12 F 762.0 128.50
9, 11 F 381.0 100.05

10 0.0 134.6

In the second column, (-) and (+) respectively indicate the z-coordinates of
the first and second members identified in the first column.
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Table 2(b) Cross—sectional areas of the members
of the arch~truss structure

Member's Case 1, 2 Case 3
Number

1 - 10, 35 Sl.él(cmz) 51.61
11, 12 64.52 64.52
13 - 16 83.87 83.87

-7, 18 96.77 96.77
19 - 22 103.23 - 103.23
23, 24 161.29 161.29
25, 26 193.55 193.55
27, 28 258.06 193.55
29 - 32 290.32 290.32
33, 34 309.68 309. 68

All members have solid circular cross sections.
Young's modulus is 7.03 x los(kg/cmz).

In Case 1, the local buckling of individual members is not considered.
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Table 3 Thompson's strut structure with global imperfections

All members have solid circular cross sections, with areas as follows:
2
No. 1 = No. 21 ————————— 54.84(cm”)
Now 22 = No. 35 —————-—m—v 51.61(cn’)

Young's modulus is 7.03 x 105(kg/cm2).

Member's Buckling System Imperfection*
Case 1 No No
Case 2 Yes | No
Case 3 Yes Yes

Maximum value of the
imperfection is 1.32(cm)

Case 4 Yes Yes
Maximum value of the
imperfection is 2.64(cm)

* Imperfection mode is of a half sine wave shape, from node no. 1 to node no.
19; and the initial x positions of the nodes are located along the half sine
wave.

99



Table 4.

(1) Perfect Geometry

Coordinates of the Nodes of Example 1

node X1 X2 X3
1 0.0 0.0 0.0
2 25.0 0.0 2.0
3 12.5 -21.65 2.0
4 _ =12.5 -21.65 2.0
5 -25.0 0.0 2.0
6 ~12.5 21.65 2.0
12.5 21.65 2.0
8 43.30 =25.0 é.216—
9 0.0 =50.0 8.216
10 =43.30 -25.0 8.216
11 -43.30 25.0 8.216
12 0.0 50.0 8.216
13 43.30 25.0 8.216

100

- (2) Imperfect

Geometry

X3
0.0

1.8

e———

2.0

2.0

2.0

8.216
8.216
8.216
8.216
8.216
8.21%



T0T

Table D.1., Matrix of édd
2 1 2 1 2 1 2 1 2
u, u uy ug 0, 0 0, 6, 0, 0,
1 2 1 2 1 2
1°E FiaE Fi3°E Gppol| Gppl] Gyt Gyprl| Gy3el G501
1 2 1 2 1 2
FaoE Fa3'E Gop 1] "GpyI| GppeIf Gyptl) "Gygel | Gpz-l
1 2 1 2 1 2
F._+E 6..-1| %.. 1| Ye..-1] %._-1|Ya..-1]|%..-
33"k 3171 Gyl Gyprl] Gypol] "Gyzel ) G33el
1 12 1 12 1 12
Hiq Hy Hio Hyo H, 3 Hi3
22 21 22 21 22
Symmetry H11 H12 H12 H13 H13
- 1 12 | 11 12
Hoo Hyo Hag Hyg
22 21 22
o Haq Hyg
1 12
M3z | 33
22,




Table D.2. Vector of A4 Table D.3. Vector of By

( N ( 3
L1 -1 - R1 1
Lzol RZ.Z
L. R_-
3°1 3L
1 1
N 34

{2 2 L

[ Ny . S
1 1
N, | s,

2 2
N, So
1 1
N, 's,
2 2
Ny S3
. / L J
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APPENDIX G

ILLUSTRATIONS
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X3, Uz

29— g
('u; Juslug)
I After Deformation
-N
Before Deformation Q
| -
Xp 5 Uy
N : Axial force
S : Total axial stretch
xIa'-'l
Fig. 1i Nomenclature for Kinematics of Deformation

of a Space Truss Member.
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N
N

X2'§21u2
>
2

2, 8,

2 2 2
xl1§lrul

Note: in this case,

I _2 -
€i =€ ~ g;

Fig, 2, Nomeneclature for Kinematies of Deformation

of a Space Framed Member ‘ }
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A A A
X31€3
| » |_#
X3,83 -
*
X2,€5
A
X 8,
~—_
»
X582
*

I 1]

Fig. 3. Nomeneclature for Transformation of Vectors
by a Finite Rotation Vector 1»_! at Node 1 of a
Framed Member '
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L0T

2+8

Fig.

h,

Sign-Convention for System of Generalized
Force on a Framed Member ’




8,

~

A
XI1

2>
(]

A ~3
M,
» »
» M X3183
M,
A A
X2,€2
L 3
x21522
Fig. 5. Representation of Moments M* and M of a

Framed Member
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A Schematic Representation of the Arc-Length
Method for a One-Degree-of-Freedom System

6.

Fig.

(Y = 1) with Newton-Raphson Procedure
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‘ k() é
25‘0‘-

20.0 +
Theoretical Solution

(By Britvec)

150 T
Buckling Load of
10.0 + :
the Members = 13.26 (kqg)
50 +
0.0 1 3 — >
0.0 0.5 1.0 1.5 U(Cm)

Fig. 7Ta. Britvec's Truss Structure (Example 1)
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- ° °
Theoretical Solution \‘\ | ‘

(by Britvec) T~

200 T

150 T — _
u | Buckling Load of
‘the Members=13.15(kg)
0.0 T
50T
0.0 — + : >
0.0 | 1.0 2.0 3.0 Utem)

Fig. 7b. Britvec's Truss Structure (Example 2)



L=38.1 (cm)

All members have solid circular sections,
each of area 96.77(cm?2).

Young's modulus is 7.03 X 105 (kg/cm?2).

Case 1 — Local buckling of each of the
two members is ignored

Case 2 — Local buckling of only one of

the two members is considered

Case 3 — Local buckling of both the

members is considered

Fig. 8a. A Simple Truss Structure (Example 3}
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P x108(kg)
—O— C(Case |

—a-— Case 2

--%-- Case 3

0-0

—3.0-

-4.0T

Fig. 8b. Load-Displacement Relation from the Simple
Truss Structure of Fig. 8a
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—0O— Case |

——+~— Case?’?

-—-&-— Case 3

—L08--— Case 4.

Displacement of Node No. IO

in the x Direction (cm)

4 e L |
T T L

-+ T 1 4 4~
-80 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0

Fig. 9b. Load-Displacement Relation for Thompséh;;—éikut
of Fig. 9a
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x 10° (kg).

6.0 T

4.07

3.0 +

——

2.0 - —+— Case 2
-—~--&--—-- Case 3
—-g--— Case 4

Displacement of Node No.I9 in the Z Direction (¢m)

0.0 } —t — — - } }
00 =-1.0 -20 -30 -40 -50 -6.0 -7.0
Fig. 9c. Load-Displacement Relation for Thompson's Strut:

of Fig. 9a !
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% 10° (kq)

304+ Case |
A 4 Case 2
| A A Case 3
2.0 T
O = Case 4
O——=—0 Member designated as No.I5
ok
! “O-v-a--a- Member designated as No.l4
’ N
o -1.0 ,;2£~__\:§_.0____‘_'._:__5;9‘, X lOs(kg)

Fig. 9d. Relation between External Load and Member Forces :
for Thompson's Strut in the Pre- and Post-Buckled Ranges:
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(Wo) 29o-vel

&

118

3429.0 (cm)

3429.0 (cm)

Fig. 10a. Arch-Truss Structure (Example 5)




© Buckled Member

3
x]0 (kg) Re-straightened

25 T

/ - !

&1 | g
. XL

1.5 T ' \ Tl

Xeor
—O0— Case | \ ARV

/ —-x-- Case 2 \\

1.0T / —&- Case 3 N\
: \3\\

Displacement of Node No. IO in the X Direction

0.0 } : = !
0.0 -20.0 -40.0 -60.0 -80.0

Fig. 10b. Load-Displacement Relation for the Arch-Truss (cm)
Structure of Fig. 10a
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’ —o— Case |

=% Case 2

2.51

2.0+

1.5 1

© Buckled Member

t\\c\ E Re-straigtened

05+

Displacement of Node No.7 in the X Direction

0.0 : — 4 .
0.0 -10.0 -20.0 -30.0 -40.0
Fig. 10c. Load-Displacement Relation for the Arch-Truss (cm)

Structure of Fig. 10a
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3
x [0~ (kq)
—0— Case |
30T
> (Cagse 2
-3- Case 3
2.5 1 -
O Buckled Member
[ Re-straight ened
207
X
\‘x‘
X
1.5 T X
XX '
O
X
. l’x"
1.0 T s
0.5 71
Displacement of Node No. 3
in the X Direction
Q.0 } } }
00 -l0.0 =200  -3C0
Fig. 10d. Load-Displacement Relation for the Arch-Truss . (Chﬁ)

© Structure of Fig. 10a
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x 10" (Kg)

E]p / /l | — > — ” 2
'y s
, - -
!
EZ.C)" ; Eﬁ S oy B V4 4}
1’/
/
| o--:’/
{,
{ Displacement of Node No. 10 in the X Directior
0.0 — — — ; — +~
C.0 20 40 6.0 SO IOO 120 140 16C
tg. (M)

Fig 11a. Load-Displacement Relation for Thompson s Strut
with Initial Global Imperfectlons
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x10° (Kg)

7.0 1

©.0

I
\..,_x\

>0 7'

407 / ENEN

3.0+ /)
. —Oo— Case |
— - — ¥4 22
2.07 ' S SR 3
_.-_B,____ 7 4
.07
00 Displacement of Node No. 19 in the Z Direction

00 -10 20 -30 -40 50 -60 -7.0

Fig. 11b. Load-Displacement Relation for Thompson's Strut (C:hﬂ)
with Initial Global Imperfections
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Member's No. 14 Members No. |
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SXOR

|
,f’ / —O— Case |

/
30 T : / ,/
/ /
/ . // —%— P
, / V4
£/ X, .
/

y &/ -
2.0+ -
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Fig. 11¢c. Relation between External Load and Member Forces for X |05 (K )
" Thompson's Strut with Initial Global Imperfections 9
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Fig. 19. Deformed Configurations of the Geodesic Dome
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Equation of Surface

2

X2 + X5 + X3+ 7.2 =60.84

Loading System

P|= Concentraoted Load In X3
direction at all nodes

P2= Concentrated Load in Xg
direction at nodes having X;z0, X,*0
X2
| a=6.0m
w ol % f=0.60m
L=075m
2 s
X
VAN ‘
°
%ﬁ\\ >
AVAVAVAVAVARY
/ \{
I
e
¥
-
a X|

Fig. 20, Schematic of Shallow Geodesic Dome i
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Noor's Full System [32]

x 1073
=7+ o Present
-6l O - /p, =-5132 x 1075
-54 ’ - " S
-4r . 0 . , x—P=-7.184 x 107
-31 *
y K—p=-10263x 10°°
-24
-l" () (J
p =—p,=-15.395 x 107°
o 10 -20 -30 xI0™%

W/D.

21. Vertical Displacements of Central Node under Various Combinations
of Loads, R & B, , without the Influence of Local Buckiing of Truss Members.
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\ —=— Noor's Full System [32]
Ll | c\ O  Present

0 5 10 15 ~20 25 xI0°3

P =R 7EA

fig. 22. Stability Boudary under Various Combinations of Loads, R & B,
without the Influence of Local Buckling of Truss Members.
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O 0 & Without Local Buckling
-14 ® O & With Local Buckling N
(EI = 342.75 kg-m?2) "
0 -10 -20 -20 x10°4

W/D

"'fz’é.Verticol Displacements of Central Node under Various Combinations of
Loads, P, & R, with and without the Influence of Local Buckling
of Truss Members.
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EI=342.75 kg-m?

Without Local Buckling

o
A
a With Local Buckling
v

-24
| \EI I238'X \
1 kg-m?
\ \ \
\ *A + +H +
o - -5 -10 -15 -20 25 x1075

p = P /EA
T 24, ‘Stabibility Boundaries under Various Combinations of Loads, R &R,
~ with and without the Influence of Local Buckling of Truss Members
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20;
<
E Without
a— Local Buckling
[]
a Loading

R =0
15+ F{ %0 (uniform concentrated loads)

ol .
l \Wh‘h Local Buckling

(EI = 342.75 kg-m2)

0 5 10 15 20 25 30 x10°4
w/D

g. 25. Vertical Displacements of Central Node under Load P, with
and without the Influence of Local Buckling of Truss Members
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Fig. 28. Deflections at Free end under Axial Loads with

and without the Influence of Local Buckling of

Truss Members:
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Fig. 29. Schematic of a Twelve-Bay Space Truss under

Bending Loads

142

240"

L, 145

‘[:¢' 60" X 4

>

60" X 4 = 240"

60" X 4 = 240"




P(xI0% b

L oading |

1.O ¢ 1)(3 P
&= P 2
P % % °°o§
- P ' ,d §
Buckled Members - X2 ,o’ L
XI7U| ,, (:)
A 9,23 33,47, 65, p i
ost 79, 89, 103, 121, 135, g §
' 145, 159 . :
B 5,17 ) .
C 145 (recover) ,P ;
D 121 (recover) y ;
E 89 (recover) , i
- p
G 89 g ;
06 H 121 , .
| 6 /I 3
J 145 o | 4
1
/I 'I
’ o
’ !
// '0
04 i QII l'
," — U, without Local h
g Buckling ;
‘,0’ '(!)
! !
S u; with Local ;
Buckling ',°
N .
o e
H | 6
2]
s
e
’ )
-1 —L - L 1
30 40 50 60 70
U| (in)

Flg 30. Deflections at Free End under Bending Loads
' ' with and without the Influence of Local Buckling

of Truss Members

143



155.69 |p
18,52 in

At State E
P
Y

n .....

A nll‘sz?.;’ : % = Y\ ¥
I AA“MVIJ\ . VV.A.W Bl o Ny

.. . \’lrr“/mf \ \ . Eﬁﬁ“ﬂ ‘1 ‘
F BN S B I SIS P AR LR "SR NS aamees O .:_wmawﬂwﬂnﬂwwummm&mMmmnwanm.. k

quul

——

Deformed Configurations of a Twelve—-Bay Space
144

Truss Shown in Fig. 27

Fig. 31.



e k
-
,d 2y
/
:A = IO (lnz) //
I = 08333 (in9) ,/
f
| = 100.0 (in) /
)
E = 107 (psi) R
e/1=0.00! \
\\
\
\
\
\
\
\
Y . \\<]
o= ].
N

I

Fig. 32a; Problem Definition for an Eccentrically Loaded Column
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Fig. 33b. Variations of Load-Point Displacement and Support

Reaction with Load, for Williams' Toggle in the

Post-Buckling Range
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I= 20 (in)

Cross-secticnal Area of Members - 0.0625 (in?)

Euler Buckiing Load of Each Member (Treated
as a Pinned-Pinned Beam) = 8.1 {Ib)

Casel e/l =-0.001 (Mode (a))
Case 2 e/l = 0.001 (Mode (B))

Fig. 34a. Schematic of Britvec and Chilver's Two-Bar Frame
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Fig. 34b. Two Modes of Post-Buckling Deformation for
Problem of Fig. 3la S
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Fig. 35a. Schematic of Britvec and Chilver's Three-Bar Frame .
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Fig. 36a. Eccentrically Loaded Right-Angled Frame

154



P/R

| L0
e/1=-0.001 ~2

e/1==0. 0l

—O—@- Present

e/1=0.0l

(4 Elements)

-8 Karamanlidis' et dl.
(18 Elements)

— _— Koiter's
(e=0)
-8(deq)
20 -1Q0__ 0 10 20 30

Fig. 36b. Variation of Corner-Rotation of a Right-Angled Frame |
for Various Values of Load-Eccentricity (e/), in the

Post-Buckling Range
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