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Abstract— Motion planners for autonomous vehicles often the literature. For instance, a mixed integer linear progra
involve a two-level hierarchical structure consisting of ahigh-  ming (MILP) formulation of the motion planning problem,
level, discrete planner and a low-level trajectory generdon \yhich involves the introduction of several binary decision

scheme. To ensure compatibility between these two levels of iables to obtai i that d bstacl
planning, we previously introduced a motion planning frame variables 10 obtain a linear program that encodes obstacie-

work based on multiple-edge transition costs in the graph usd ~ @voidance constraints, has been developed [7], [8], and
by the discrete planner. This framework is enabled by a speai  applied for planar path planning [9] and three dimensional
local trajectory generation problem, which we address in ths  path planning [10] for UAVs in cluttered environments
paper. In particular, we discuss a trajectory planner based e jncluding minimum turn radius constraints. Similarl

on model predictive control for complex vehicle dynamical . . . . . .
models. We demonstrate the efficacy of our overall motion receding horizon .p.ath planning has_been investigated in
planning approach via examples involving non-trivial vehtle the contexts of vision-based navigation [11]; of obstacle
models and complex environments, and we offer comparisong o avoidance for a bicycle model [12]; of trajectory genenatio
our motion planner with state-of-the-art randomized samping-  for wheeled vehicles moving over rough terrain [13]; of path
based motion planners. planning for environments involving both static and moving

[. INTRODUCTION obstacles [14]; and of robust path planning [15], [16].
Motion planning for autonomous vehicles [1], i.e., the IA s_erlqusthproblem .3ssb(|)<:|ated wmhpcf-based motlont t
problem of finding control inputs that enable vehicles td anrtnng tls € unfav0| t?1 € tf)rtes?nce qd non—convgés ate
satisfy high-level task specifications, is often solved roveflz_?]nsl\ﬁz ‘;’ ansTgt_ rorg_ €o sda_c e—7av_0| ance reque rr]nt
two hierarchical levels. The higher levgleometric path N ormulation discussed in [7] is one approach to

plannertypically uses a discrete representation of the vehF—‘”e\”""tedth'S t(;l.fflculty. In the tile trtr:ot!gn pltz;lgntl_ng fCheT
cle’s workspace (such as workspace cell decompositiorb) aHrct)pols7e tmt IS fpaper, we use et|teae (f['v.et arge th
deals with the satisfaction of the task specifications (ash sets| ]. 0 transform non-convex state constraints on the
obstacle avoidance). The lower levedjectory plannerdeals MPC optlmlgatmn problem m'Fq convex constraints, along
with the vehicle’s kinematic and dynamic constraints. W|t_|t1ha spe_C|aI b(:qutgry cor;dt;;qon. foll Th
The hierarchical approach described above suffers fron? € Ta'n clon n u:jqns 0 dls' pil%?r are as Toflows. 'el
a lack of “consistency” between the two planners, in thaﬁ!e mo |ont pfatr;]ner |sc|L|Jsset. n | IS pap?r IS a cliugla
the geometric path may be infeasible or unacceptably syf2mponent of the overall motion planning framework de-
optimal when the vehicle dynamical constraints are coriicnbed in [2]. This motion planning framework is powerful
sidered at the trajectory planning level. To address thid that it allows the discrete and continuous facets of mmtio
problem, we introduced in [2] a motion planning frameworlplanning to be separaj[ed from one another while maintaining
based on assigning costs rtaultiple edge transitions in the a guarantee of “consistency” between the two planners. In

graphs associated with cell decompositions. In particuar this paper, we prowple concrete examples qf_apphcz_;thons
introduced in [2] the so-calletile motion planningproblem of thls.mot|on planning framework for non-trivial ve_hlcle
which facilitates an interaction between the two plc';\nnerg.yn""r_nlcal models. Alsq, we demonstrate that t_he idea of
In [2], [3], we discussed the solution of the tile motionmcfec'['ve target sets (which may be compgted offline) can be
planning problem, using purely geometric constructions, f used to reduce the complexity of local trajectory genematio

the Dubins car [4] kinematic model. In this paper, we preserW light of the limited on-board computational resources

a general scheme, based on the well-known model predicti\% autonomous vehicles, the proposed method of trajectory

control paradigm, for implementing the tile motion pIannelgener"jltlon requires the solution of a simpler online pmoble
for complex vehicle dynamical models. with fewer variables and constraints, as compared to a

Model predictive control KiPC) is a popular approach nonlinear programming formulation orniLp formulation.

for control design in the presence of state- and input coinally, we demonstrate via numerical simulation resii t

straints [5], [6], andupc-based approaches for trajectorythe overall motion planner, which is enabled by the local

generation and motion planning have previously appeared ﬁtﬁajec_tory generaﬂqn s_c_:heme discussed n this pap(_eﬂxsesu
in trajectories of significantly lower-cost in comparisan t
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tion and the computation of effective target sets for s@vin Tile Motion Planning Algorithm (T ILE PLAN)
the tile motion problem usingnpc. Finally, in Section V,
we provide numerical simulation results demonstrating thel”
efficacy of the overall motion planner.

Determine if there exist; € R and admissible control
input u € U;, such thats(- ; &, u) satisfies

x(E(t;&,u) € Upycel(Gr), € (0.), (1)

Workspace cell decompositions [1, Ch. 5], which partition A(Eltbo,w)) € celllinr) N cell(iie) @)
the workspace into convex regions calklls are frequently ~ 2: if 3¢ andJu then
used in path planning. A grapi = (V, E) is associated 3: Find¢; such that
with the decomposition, such that each cell corresponds to a . , '
unique vertex inV/ and each pair of geometrically adjacent X(&(t1; &0, u)) € cell(n) N cell(j2) @)
cells corresponds to a unique edgefin We will denote by 4:  Returnty, up ), &1 := £(t1; &0, ), and
cell(j) the cell associated with the vertgx V. "

It has been noted in several previous works [9], [18], [19], A= / C(E(t; €0, u), u,t) dt (4)
including ours [2], that single-edge transition costs @d#nn 0
capture adequately the vehicle’s kinematic and dynamics: else
constraints. In light of this observation, we discussed aé: ReturnA = co
motion planning framework [2] based on the solution of the
so-calledH-cost shortest path problermwhich is defined as Fig. 1. General form of the tile motion planning algorithm.
the problem finding a path of least cost in a graph where

transition costs are defined amultiple successive edges . o )
(called H-historied. In this motion planner, the transition The concept of effective target sets is informally desctibe

costs on H-histories are assigned by solving a low-levePS _foIIows. Consider a discrete-time dynamical system de-
trajectory generation problem described next. scribed byS(k+1) = fa(§(k), u(k)), k € N. Leto = £(0)

We consider a vehicle model described as follows. Let€ the initial state of the system, and let a horizéne N
(z,y,0) € C := R? x S! denote the position coordinates of2nd a target sek’y C D be pre-specified. Consider now
the vehicle in a pre-specified Cartesian axis system, and f&€ problem of finding a sequence &f control inputs such
¢ denote any additional state variables required to descrilf@até(IV) € An. Suppose that such a control input sequence
the state of the vehicle. We assume tiiat ¥, where® js  Xists, and consider the s&ty_; C D defined by
a n-dimensional smooth manifold. The state of the vehicle
is thus described by := (x,9,6,v9) € D = C x V. Let An-1:={{ €D: uy_1 €U st fa(§ un-1) € An}.

U € R™ denote the set of admissible control values; and fof toj1ows that¢é(N —1) € Xy_,. In other words, the original

t > 0, letU,; denote the set of piecewise continuous funCtionBroblem can be reduced to the problem of finding a sequence
defined on the interval0,¢] that take values inU. We of N — 1 inputs with the constraing(N — 1) € Xy_1.

assume that the evolution of the vehicle statver a given Continuing recursively.
time interval [0, ;] is described by the differential equation

II. H-COoSTMOTION PLANNING

we may define sets by

E(t) = f(&(t),u(t)) for all t > [0,t], whereu € U, is Xy = {£€D:3u, U st fa(€ up) € Xpi1},
an admissible control input, and is sufficiently smooth
to guarantee global existence and uniqueness of solutiofigt £ = 1,..., N — 2, and then reduce the original problem

We denote byé(- ;&,u) the state trajectory that is the of finding a sequence oV inputs to the problem of finding
unique solution to the preceding differential equationhwit @ single admissible input(0) such thatf(£(0), «(0)) € X;.
initial condition £(0) = &. Finally, we denote by(¢) the

projection of a stat¢ on R2. A. Definitions of Effective Target Sets forLEPLAN

We define atile as the sequence of cells associated with ~gnsider the

a H-history (jo, ..., ju+1), wherej, € V' for eachk = (jo,-- -, jr+1)- We define a sequendety } 1! of subsets

O"',"H +_1’ and (jx, jk+1) € H fo.r eachk = 0_""7H' of the vehicle state space, calledfective target setsas
A tile motion planner(TILEPLAN) is any algorithm that follows. Let Xy := (cell(jz) N cell (1)) X [—m, 7] x ©.

determines if a given tile may be feasibly traversed. A m@®ci or each = 1.... . H — 1. we define the effective
and general description ofiTEPLAN is given in Fig. 1. target setX, as the set of all state, € D such

thatx(&y,) € cell(jx) N cell(jx+1) and such that there exists

tr41 € R, and an admissible control input,,; € U,
The implementation of LEPLAN is difficult mainly such that the state trajectogy- ; &k, ur+1) satisfies

because (1) imposes a non-convex constraint on the state

trajectory. To alleviate this difficulty, we take advantanfe x(E(t; Epsur1)) € cell(Grrr), t € (0,tk11), (5)

the fact that each cell in the sequence of cells associatbd Wi ¢(t,,1; &, upy1) € g1 (6)

a tile is a convex region, using the idea effective target

setsintroduced in [17]. Now suppose there exist a tinie and a controk, € Uy,

tile associated with thdi-history
H

IIl. MPC-BASED TILE MOTION PLANNING



such that the resultant state trajectg(y ; £y, u;) satisfies

x(é(t;é.Ovul)) € Ce“(jl)a te (Oatl)a (7)
& =¢(t1;60,u1) € AL (8)

Becauset; € X, it follows by (5)-(6) that there exists a
to € R, and aus € Uy, such that

X(&(t: €1, uz)) € cell(j2), &(t2;&1,u2) € Ao, t € (0,t2).

In other words, the admissible control input_- defined as
the concatenation of the inputs andus by

i (t) — { Ul(t), te [O,tl),

2 ua(t), tE€ [t1,(t1 +t2)],
enables the vehicle’s traversal through the cells cormedpo
ing to the verticesj; and j,. Continuing recursively the
preceding arguments, it follows that for eagh> 2, there
exist tx11 € R, and inputsupy:r € Uy, for k
1,..., H — 1, such that the admissible inputdefined by

u(t) == ug(t), t € [To-1,Th), Thi=3F tm, (9)

for k =1,..., H, solves the tile motion planning problem.
Thus, if the effective target set8), the corresponding
times of traversat;; and the control inputs,, in (9) are
known for eachk = 1,..., H, then the tile motion planning
problem is equivalent to the problem of finding and ¢,

5.

as described above. Crucially, (7) constrains the positio§
components of the state trajectory to lie within a convey

set. Furthermore, we may repladg in (8) by an interior
convex approximating set; C X; thus transforming the
tile motion planning problem into the problem of finding
andt; subject to convex constraints.

B. MPC Problem Formulation

In the mpc formulation of TILEPLAN, we first approxi-
mate the vehicle dynamical model by the linear system

A&+Biu+B,, whered := 5L 7 s 7
(£0,u0) (&o0,u0)
and By := f(&,uo) — Ay — Biug, and then consider the

corresponding discrete-time linear system. We denoté&/ py
the prediction horizon, by : D x U — R, a pre-specified
incremental cost function, and by : D — R, a pre-
specified terminal cost function. Therc problem is then
described as follows:

Hp—1
O {Af(ﬁ(Hp)) + k; e(é(k),u(k))} :

subject to¢(Hp) € Xy,  &(k) € cell(j1),
andu(k) € U, for eachk € {0,...,Hp — 1}.

(10)
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Fig. 2. Setup for Problem 3.

IV. COMPUTATION OF EFFECTIVE TARGET SETS

In this section, we discuss the construction of the effectiv
target sets that were previously defined for simplifying the
MPC implementation of TLEPLAN. First, we consider the
computation of the intersections of the effective targés$ se
with the configuration spac€ = R? x S'. To this end,
we define theeffective target configuration setsy Cy. :=
X, NC, and, in what follows, we outline a geometric scheme
of computing the set§;.

Assumption 1:The geometric curves in the plane that can
be feasibly traversed by the vehicle satisfy a local upper
bound on their curvatures.

We will comment on the validity of Assumption 1 in
ection IV-A. First, we use this Assumption to compute the
etsCy, by solving the following problems in plane geometry.
Let ABCD be a rectangle. We attach a Cartesian axes
system as shown in Fig. 2. Let the dimensions of the
rectangle bel; andd,, and letr > 0 be fixed.

Definition 2: Let 5(x), 3(x), = € [0, d2] be functions such
that—% < f(z) < B(z) < 5. LetY = (d1,y), Z = (dy, 2)
be points on the segme®C with y < 2. A pathIl is a
Type 1 admissible patiit satisfies the following properties:

1) The curvature at any point di is at mostr—*,
2) II intersects the segmetC' in exactly one pointX =
(dq,x) suchthatr € [y, z], and it may intersect segment
AB and/orCD in at most one point each, and
3) I (X) € [B(x), B(x)],
wherell’ (X) is the angle of the tangentibat X. A Type 2
admissible path is defined analogously for traversal across
adjacent edges. Next, we state two geometric problems as
follows. Let3, 3, Y, andZ be as in the preceding definitions.
Let W = (0,w) andr > 0 be fixed.

Problem 3 (resp. Problem 4) - Traversal across parallel
(resp. adjacent) edgefind o, @ such that for alk € [«, @],
there exists a Type 1 (resp. Type 2) admissible path with

Note that the incremental coéin (10) need not be the same initial configuration(W, «).

as the incremental cogtin (4): the role of TLEPLAN in

Problems 3 and 4 appear in the recursive computation of

the overall motion planning framework is that of ensuringeffective target configurations as follows. Suppose that th
feasibility of traversal of tiles, while it is the higher-level effective target configuration sél;,.; is known. We may
discrete planner that searches for an optimal sequencél of dben expres€;; as the product set of the line segment

transitions. To implementTEPLAN, the MPC-problem (10)

cell(jx+1) N cell(jr4+2) with a set of allowable orientations

is solved; the first input of the resulting input sequence isn this line segment. We may then solve Problem 3 or 4, as
chosen and applied to the actual (nonlinear) vehicle modelpplicable for the celtell(j.+1), for each point on the line
the linearization is performed about the new state [6]; ansegmentell(ji)Ncell(jx+1) to obtain allowable orientations

the preceding steps are repeated.

for each point on this line segment, and thus constfict



The solutions to Problems 3 and 4 are outlined in [3]that the upper and lower bounds for the vehicle speed
and a detailed analysis of these problems appears in [20]. dach of the boundaries of adjacent cells in the tile are
this paper, we focus on the application of these solutions

: _ Te = min{ole, o /o e feg
to TILEPLAN for different vehicle models. Note that the Uk mm{v]k Ui V Okl + efi b
computation of effective target sets over rectangular nbkn v, = max {v;r;in’ v;r;ifl’ Uy — 26},

also enables motion planning for vehicles with a finite size. i o
Specifically, one may constrain allowable trajectoriestgh Whenever the cell corresponding f involves traversal

a given tile to a shruken channel within the tile. This2Cr0OSS .parililfl edges, and hy. = min{v}®™, Ui},
shrunken channel will itself be a rectangular channel, thu#&: = m{n{“jk ,Uk41), Whenever th? cell corresponding to
allowing direct application the preceding analysis. jr € V involves traversal across adjacent edges. The upper
bound x*** on the curvature of paths traversing the cell
A. Computing Curvature Bounds on Feasible Paths corresponding tg € V for k = 1,..., H — 1, Is, by (13),
We may characterize as follows the curvature of the R = [V — €2/ (max {Tg, Ui })?. (15)
geometric paths corresponding to projectionsRonof fea- The bound (15) on the curvature of feasible paths is

sible state trajectories. Note that the following kinemalti .,nservative because the bound on the vehicle speed in

equations relate the inertial position coordinateg to the the denominator does not involve the initial spegd i.e.,

orientationd irrespective of the vehicle dynamical model: he maximum reachable speed within each of the cells in
N } SN . the tile may be lower thamax{vy,7r11}, and may be a
2(t) = v(t)cos (1), §(t) = v(t)sin O(t). (11) less conservative bound on the speed (and consequently, on

The curvature of the planar curgét) = (z(t), y(t)) is [21]:  the curvature). A heuristic approximation to the maximum
reachable speed may be obtained by considering maximum

k() =/ (D, p) (B, B) — (0, 9)2) ) (P, p)° = ‘é/v (12) acceleration along the longest linear path within the cell
(i.e., the diagonal of length/2d). Thus, a less conservative,

by (11). In the context of the vehicle dynamical model, théeuristic bound on the curvature is given by

)

curvature of feasible paths is related to the set of adnméssib fmax /T 22
control values via the term in the numerator of (12), and thes; ™ = s -
upper bounds™** on the curvature of a feasible path over (min{max{Ty, Tpy1}, /0§ + 2V2f"*d})?

a given time interval of intereso, #;] is C. lllustrative Example: Aircraft Navigational Model

KX H[loin] I(n)aXU 9'(5(15)#@)/”@ _ (13) Consider an aircraft navigational model described by
tel0,te] u(t)e

Z(t) v(t) cosy(t) cos (i),
B. lllustrative Example: Particle Dynamical Model g(t) = v(t)cosy(t)sin(t),
Consider a vehicle dynamical model described by 2(t) = wv(t)siny(t),
1) — , SEY — off) s B(t) = —q(t)Cu(t)/mu(t) cosy(t),
&(t) = v(t) cosO(t), y(t) =ov(t)sind(t),
0(t) = w(t), g(t) = a(t), o) = (T(t) = q(v(t))Cpo — KCE(L)) /m,
V() = (q(u(t))CL(t) cos p(t) — mg cos(t)) /mu(t),

wherewv > 0 is the forward speed of the vehicle; = a is o N )

the acceleration input, andh = w is the steering input. The Wherez, y, and 2 denote the inertial position coordinates,

speedv is constrained to lie within pre-specified boungs, ~ denotes the speed, denotes the aircraft heading,denotes

anduy,.; these bounds may be different for different regionghe flight path angleg(v) := 5pv*S denotes the dynamic

of the workspace. The set of admissible control inputs is Pressuresn denotes the mass of the aircraft, arid o and K
are pre-specified constants. The control inputs are thestthru

U = {(a,w): (vw/f™)? 4+ (a/f*¥)* < 1},(14) T, the lift coefficientCy,, and the bank angle.

We consider the motion of the aircraft in the horizontal
where f{"** and f{"** are pre-specified. The input constraintplane, i.e.;y(t) = 0 and4(t) = 0, and to this end we set
defined by (14) is an example of a “friction ellipse” constitai
that models the limited tire frictional forces availabler fo Cr(t) = mg/(q(v(t)) cos ¢(2))-
acceleration and steering of the vehicle. Finally, we denote may assume the aircraft's cruise speed to be a constant
by vjex andv;-nm pre-specified bounds on the vehicle speed,.,. The thrust input is then given by
inside the cell corresponding to the vertgx V. 5

We may now compute the effective target sets for thisT(vcr’(b(t)) = (ver)Cp.o — K((mg/(q(ver) cos §(t))".
vehicle model as follows. We may transform, as in [22], the Alternatively, we may assume a constant thrust input
input constraint (14) to a strict inequality by adding to theof value T'(v.;,0), and allow small decreases in the air-
L.H.S. of the inequality a small positive quantity, where craft speed during turning flight. In either case, the upper
0 < e < 1. The tightened constraint implies that acceleratiobbound on the curvature, by (13), is given by =
of the vehicle with|o| > e f*** is always feasible. It follows g tan (min |@minl, |Pmax|)/Ver, fOr k=1,..., H — 1.
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Fig. 5. The blue curve corresponds to the resultant stajectomy, while
o the channel of cells in black is the result of path planninghaut vehicle

. (535 30 35 40 dynamical constraints. The initial position is at the tofi terner.

(c) Speed profiles

Fig. 3. The colored areas represent different speed limits:;x = 1.25  states towards randomly selected new states, we programmed

units/s for the darkest are@max = 2 UNits/s, vmax = 2.5 UNits/s, and  tha prT-hased planners to randomly select an input vector

vmax = 3.5 UNIts/s, respectively, for progressively lighter areas. . . . .
from the set of admissible inputs and integrate the vehicle

80 model for a fixed timed, as recommended in [23]. We

60 conducted trials of the standareRT andT-RRT algorithms

for different values ofd, and we compared the results with

= the proposed algorithm on the same environment with three

2 i different values off.

B R = TR R W= R R Figures 3(a) and 3(b) show the two environments that
~ Proposed RRT  FRRT we used for the numerical simulations. The black colored
(a) Data for the “lanes” environment in Fig. 3(a). regions represent obstacles, and the other colors indicate

160 different bounds on the speed of the vehicle. The blue curve

in Figs. 3(a) and 3(b) corresponds to the trajectory found by

the proposed algorithm.
The green curve in Fig. 3(a) corresponds to a sample
path found by ther-RRT planner. This example illustrates

‘ =05 1 15 that the “travel as fast as possible” objective is not always

Proposed RRT a satisfactory alternative to the minimum-time criterion:
(b) Data for the maze-like environment in Fig. 3(b). Figure 3(c) shows that the vehicle achieves higher speeds

Fig. 4. Comparison of trajectory costs: for tR&T and T-RRT data, the along theT'RRT trajectory but the travel time 1$5.2% hlghel’

blue (left), red (middle), and green (right) bars represesspectively, the than the trajectory found by the proposed planner. Thigltresu

maximum, the minimum, and the average values @éetrials. is a consequence of the input constraint (14), which forces

the vehicle to traverse paths of lower curvature at higher
speeds, thus producing longer geometric paths. Figure 4(a)
V. SIMULATION RESULTS AND DISCUSSIONS shows comparative data for the trajectory costs (i.e., time
In this section, we present numerical simulation resultef traversal) resulting from the simulations describedvabo
that show that the overall motion planner enabled byhe proposed motion planner returned trajectories with al-

TILEPLAN results in trajectories of significantly lower costmost identical costs for eacH, in particular, the trajectory

compared to randomized sampling-based algorithms basedst corresponding td = 6 was 26.626 s. On the other

on RRTs [23]. We compared the proposed motion planndnand, both the standamiRT and T-RRT planners returned,

against the standarerT-based planner [23], and the- on an average, significantly costlier trajectories.

RRT planner recently reported in [24] for planning minimum- The green curve in Fig 3(b) corresponds to a sample tra-

time trajectories for the particle dynamical mod@l Sec- jectory found by the standarRT motion plannet. Note that

tion IV-B. The T-RRT planner finds low-cost trajectories this environment has a narrow “short-cut” between theahiti

with respect to a pre-specified state space cost map. As tbell and the goal cell. Figure 4(b) shows comparative data fo

minimum-time criterion cannot be expressed as a state spdbe trajectory costs for this environment. The proposed mo-
cost map, we executed therRT planner with the objective tion planner returned trajectories with almost identiaadts

“travel as fast as possible,” which is immediately definedor eachH; in particular, the trajectory cost corresponding

by the state space cost maff) = v. For extending known to H = 5 was 56.23 s. The trajectory costs returned by

40

Trajectory cost (s)

120

80

., I I
0
4 5 6 L)
L
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Trajectory cost (s)

1The “friction ellipse” parameters were fixed®2* = 1, firex = 0.25. 2The T-RRT planner was found to be impractically slow for this example.



the standardkRT planner were significantly higher, mainly [3] —, “On the existence and synthesis of curvature-bodngaths

because it failed to traverse the aforementioned “shdtt-cu
on several occasions, as illustrated in Fig. 3(b). Clearly,
the average costs of trajectories returned myT-based
planners may be further worsened in environments where the
differences between the costs of trajectories correspgrtdi
“short-cuts” and the costs of alternative trajectoriesaigér.
Finally, Fig. 5 shows the result of simulating the overall
motion planner using the aircraft navigational model dis-

cussed in Section IV-C withlCp o = 0.02, K = 0.04,

S =30 m?, mg = 50 kN, andv., = 85 m/s. The aircraft
speed was assumed to be constant, and the limits on the
bank angle control input were set th,;, = —45° and
dmax = 20°. The objective was to minimize a cost defined on
the workspace (indicated by regions of different intemsiti
in Fig. 5; the darker regions correspond to higher costs).
The preceding simulations were all implemented in the
MATLAB simulation environment. Therefore, accurate indi-
cations of the computation time of the proposed planner inoj
a real-time implementation are not yet available. However,
the reader may refer [20] for comments on implementatioqll]
independent performance indicators of the proposed work.
The RRT* algorithm [25] is a recent development in
randomized sampling-based optimal kinodynamic motion
planning, and a thorough comparison of the proposed work {ee]
RRT* for motion planning with complex vehicle dynamical
models is currently under investigation. The primary chaI[13
lenge in implementingRRT* for complex dynamical models
is the development of an asymptotically optimal point-to-
point steering algorithm for the given dynamical model,[
which is, in general, a more difficult problem than the tile

motion planning problem discussed in this work.

VI. CONCLUSIONS ANDFUTURE WORK

We presented avpc-based local trajectory generation(ie]
scheme, called iTEPLAN, to enable a hierarchical motion
planner that incorporates vehicle kinematic and dynamic
constraints in the geometric planning stage. The proposed)
TILEPLAN scheme relies on the idea of effective target
sets to transform non-convex state constraints into convex
constraints. We illustrated the proposed scheme using twvie)
non-trivial examples of vehicle dynamical models. Also, we
demonstrated the efficacy of the overall motion planner vi@0
numerical simulation results that show significantly lower
costs of resultant trajectories as compared to stateenfth

. . . 21]
randomized sampling-based planners. Future work includ&d
applications of the proposediTEPLAN scheme to more [22]
complex vehicle models and multi-resolution implementa-

tions of the overall motion planner.
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