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SUMMARY

In this dissertation, we address the statistical analysis under the multiscale frame-

work for the self-similar process. Motivated by the problems arising from geophysics and

health informatics, we develop a set of statistical measures as discriminative summaries

of the self-similar process. These measures include Multiscale Schur Monotone (MSM)

measures, Geometric Attributes of Multifractal Spectrum (GAMFS), Quasi-Hurst expo-

nents, Mallat Model and Tsallis Maxent Model. These measures are used as methods to

quantify the difference (or similarities) or as input (feature) vectors in the classification

model. As the cornstone of GAMFS, we study the estimation of multifractal spectrum and

adopt a Weighted Least Squares (WLS) schemes in the wavelet domain to minimize the

heteroskedastic effects , which is inherent because the sample variances of the wavelet co-

efficients depend on the scale. We also propose a Combined K-Nearest-Neighbor classifier

(Comb-K-NN) to address the inhomogeneity of the class attributes, which is indicated by

the large variations between subsets of input vectors. The Comb-K-NN classifier stabilizes

the variations in the sense of reducing the misclassification rates. Bayesian justifications of

Comb-K-NN classifier are provided.

GAMFS, Quasi-Hurst exponents, Mallat Model and Tsallis Maxent Model are used in

the study of assessing the effects of atmospheric stability on the turbulence measurements

in the inertial subrange. We also formulate the criteria for success in evaluating how atmo-

spheric stability alters the MFS of a single flow variable time series as a statistical classifi-

cation model. We use the multifractal discriminate model as the solution of this problem.

Also, high frequency pupil-diameter dynamic measurements, which are well documented

as measures of mental workload, are summarized using both GAMFS and MSM. These

summaries are further used as the feature vector in the Comb-K-NN classifier. The serious

xiv



inhomogeneity among subjects in the same user group makes classification difficult. These

difficulties are overcome by using Comb-K-NN classifier.
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CHAPTER I

INTRODUCTION

Classes of random processes which intrinsically have invariant statistical properties at dif-

ferent scales are often referred as self-similar process. Self-similar process has been very

common in science, finance, manufacturing and other areas since the last two decades. An-

alyzing self-similar process was often requested for purpose of scientific research, medical

study, business management, quality improvements etc. However, the non-trivial structures

of the self-similar process make it hard to directly use the classical statistical model. Self-

similarity is always associated with scaling invariance, mono- and multi-fratality, long-rang

dependent, heavy tailness etc. Therefore, it is necessary and urgent to develop some so-

phisticate models to address these structures associated with the self-similar process. This

thesis focus on contributing some statistical models under the multi-scale framework to an-

alyze the self-similar process with several case studies arising from geophysics and health

informatics.

1.1 Self-similarity, Scaling, Fractality and Long Range De-
pendence

The notion of self-similarity is pioneered by Mandelbrot (1968), in which the sequence

of stock returns was studied. Mandelbrot argued that Brownian motion is not an adequate

statistical description of the true stochastic process generating securities returns. The notion

of self-similar process is defined as follows.

Definition 1.1.1 A random processX(t), t > 0 is called self-similar if for anya > 0, there

existsb > 0 such that

X(at)
d
= bX(t). (1)
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We assume that all processes discussed are real valued and defined on the same param-

eter space. Two processesX(t) andY (t) , equal in all finite dimensional distributions,

will be denoted asX(t)
d
= Y (t). This means that for any selection of “times”0 ≤ t1 <

t2 < . . . tk < ∞ random vectors(X(ω, t1), . . . , X(ω, tk)) and (Y (ω, t1), . . . , Y (ω, tk))

have the same distribution. Informally, processes equal-in-distribution are statistically in-

distinguishable.

Random processX(t) is called stochastically continuous att0 if limh→0 P (|X(t0+h)−
X(t0)| > ε) = 0, for any fixedε > 0.

Also, we consider processes not to be trivial.1

Lamperti (1962) proved the result,

Theorem 1.1.1 (Lamperti, 62.) If random processX(t), t ≥ 0 is nontrivial, stochastically

continuous at 0, and self-similar, then there exists uniqueH ≥ 0 such thatb = aH . If

X(0) = 0, a.s. thenH > 0.

Standard definition of self-similar processes is as follows,

Definition 1.1.2 ProcessX(t), t ≥ 0 is self-similar, with self-similarity indexH (H-ss) if

and only if there existsH > 0 such that for anya > 0, X(at)
d
= aHX(t).

Uniqueness ofH is not obvious from this definition, although,H is unique by the Lam-

perti’s theorem. Also, from Definition 1.1.2 it followsX(0) = 0.

This definition implies that sample paths(t,X) and (at, (1/a)HX) are statistically

equivalent to each other, which tells thatX(t) is statistically similar to the its dilated

version. Fig. 1 illustrates the self-similarity using fractional Brownian motion (H =

1/3)(discussions about fractional Brownian motion is postpone to Chapter 2), which is

the classical model for self-similar process.

1ProcessX(t) is trivial if the distribution of random variableX(ω, t), t fixed is a point mass measure.
For example,X(t) = const orX(t) = sin(t) would be examples of trivial processes.
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(a) Orginal sample (b) Dilated version of subsample

Figure 1: Self-similar processX(t) and the dilated version of its subsample. 2048 points
were sampled between 0 and 1 forX(t) as shown in (a). 512 points were sampled between
0.25 and 0.5 as subsample and the subsample is dilated as shown in (b).

The notion of long-range dependent (LRD) is defined through spectral density. How-

ever, the discussion of spectral density in time series usually requires the stationarity and

unfortunately the self-similarity usually implies nonstationarity. On the other side, it is pos-

sible define a counterpart of a spectral density of a nonstationary process if, for example,

linear filtering will produce a stationary process. In such cases, we define a pseudo (quasi)

spectral density as a function of spectral density of filtered stationary process and transfer

function of a filter. An example is spectrum for the fractional Brownian motion.

Definition 1.1.3 A stationary processY (t) is called long-range dependent (LRD) process

if its autocorrelation function or spectral density behave as

γY (h) ∼ Cγ|h|α−1, h →∞, α ∈ (0, 1), (2)

or

fY (ω) ∼ Cf |ω|−α, ω → 0, α ∈ (0, 1), (3)
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whereCγ andCf are two related constants.

These two relations are equivalent, subject to mild asymptotic monotonicity assumptions

onγ.

Next, we will make link between self-similarity and LRD.

Let X(t), t ∈ R beH-ss process. If its increments are stationary, i.e, if the distribution

of X(t + h)−X(t) is independent oft, it will be calledH-sssi process.

The following theorem gives the form of autocorrelation function of anyH-sssi process

with finite second moment.

Theorem 1.1.2 LetX(t), t ∈ IR be anH-sssi process for whichE|X(1)|2 < ∞. Then,

γ(t, s) = EX(t)X(s) =
E|X(1)|2

2

[|t|2H + |s|2H − |t− s|2H
]
. (4)

On the other hand, LetX(t) be anH-sssi process with0 < H < 1 andE|X(1)|2 < ∞.

Define stationary sequence of random variablesY (n) as

Y (n) = X(n + 1)−X(n).

It is well known thatY (n) is asymptotically second-order self-similar, i.e., the second

order moments ofYn and aggregated time seriesY (m) coincide. The seriesY (m)(k) is

defined as series of averages of non-overlapping blocks of sizem from the sequenceY (n),

Y (m)(k) =
Y (km−m + 1) + · · ·+ Y (km)

m
, (5)

It is easy to see that if1/2 < H < 1, the asymptotic behavior ofV arY (m) is influenced by

asymptotic behavior ofγY (n). Indeed,

V arY (m) ∼ 1/m γY (0) +
m−1∑

k=1

k2H−2(m− k) ∼ m2H−2.

Informally, Y (m)(k) andY (n) look similar at all scales.

Fractality is borrowed from the fractal geometry to describe the self-similar process.

The self-similarity leads to the facts that the whole processX(t) can not be distinguished
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from it is subpartcHX(t/c), c > 1 in statistical sense. This coincides the original defini-

tions of fractality about the geometric objects.

More generally, multifractal measures are proposed to model temporal heterogeneity of

the self-similar process.

Definition 1.1.4 A random processX(t), t > 0 is called Multifractal Process if for any

a > 0, there exists a random functionM(a) such that

X(at)
d
= M(a)X(t). (6)

Here the scaling (self-similar) factorM(a) is a random variable, whose distribution

does not depend on the particular instantt. Exact Self-similar processes is a degenerate

example of multifractal, withM(a) = aH and sometimes is referred as mono-fractal pro-

cess. The generalized self-similarity index is definedH(a) = loga M(a). Therefore we can

rewrite the above relation 6 as:X(at)
d
= aH(a)X(t): In contrast to self-similar processes,

the indexH(a) is a random function ofa.

An alternative definition, which allows more convinces, about the multifractal process

can be described as:

Definition 1.1.5 A random processX(t), t > 0 is called Multifractal Process if it has

stationary increments and satisfies

E(|X(t)|q) = c(q)τ(q)+1, for all t ∈ T ; q ∈ Q (7)

whereT andQ are intervals on the real line,τ(q) andc(q) are functions with domainQ.

Moreover, we assume thatT andQ have positive lengths, and that0 ∈ T , [0 1] ⊆ Q.

Functionτ(q) is thescaling functionfor multifractal process. Allτ(q) has the intercept

-1, which is implied byE(|X(t)|q) = 0 at q = 0. As a special case, monofractal has the

linear scaling functionτ(q) = Hq − 1. It is also shown that theτ(q) is always a concave

function for all multifractal function.
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Another immediate consequence of self-similarity is that we can not find a characteristic

scale of time or space (frequency) which is more important to describe the process than

others. This fact is usually referred as scaling. In scaling process, all scales incorporate

identically information about the dynamics of the stochastic process. Therefore, it is not

the major task to identify just a few scales in modeling the self-similarity, instead, the

similarities across between scales are of great interests.

1.2 Motivation Problems

In this section, problems arising from geophysics, health informatics and manufacturing

will be given to illustrate the importance and challenges of analyzing the self-similar pro-

cess.

1.2.1 Geophysics Problems

Theoretical arguments based on the Navier-Stokes equations have suggested that turbulence

is representative of complex processes rich in variability across broad range of time scales.

This scaling behavior has been verified by many numerical and field experiments. Statis-

tically modeling of the scaling behavior is of great interests in geophysics community. In

turbulence research, there are many unresolved scientific questions, some of which depend

on very much the understanding of the self-similarity of the turbulence measurements.

A set of turbulence measurements have been obtained by the team from Duke Univer-

sity. Time series measurements ofu,v w, andT were collected over a grass-covered forest

clearing at Duke Forest near Durham, North Carolina. The measurements were collected on

June, 12-16,1995 at5.2 m above the grass surface using aGILL triaxial sonic anemometer.

In Geophysics convention, the velocitiesu,v andw are called turbulence velocities while

temperature velocitiesT is referred as turbulence scaler. The components of turbulence

velocitiesu, v andw are usually orthogonal each other after necessary rotation operation

on the raw data. Componentu is also aligned with the direction of the wind.
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The time series plots of the four components of a typical turbulence measurement in

the stable regime are shown in Fig. 2. Apparently, these plots suggest some interesting

characteristics of turbulence measurements, i.e. very noisy, intermittent, non-stationary,

highly peaky etc. On the other hand, if we study the turbulence in the frequency domain,

as shown in Fig. 3, a consistent phenomena, logarithm linearity, is observed over these

four components. This logarithm linearity in the frequency domain is known as the scaling

behavior or power law. This is related to famous Kolmogorov (1941) view of universal

scaling, which interpreters the physical process of the energy cascade over a range of scales.
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Figure 2: The time series plots of the four components of a typical turbulence measurement
under stable condition.

The departure from the so-called Kolmogorov (1941) view of universal scaling and

subsequent refinements (Kolmogorov, 1962) is now supported by numerous observations

and theoretical arguments regarding the anomalous scaling in measured structure functions,
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Figure 3: Spectral density in the log-log scale for the data shown in Fig. 2
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particularly for passive scalars (Pumir and Shraiman, 1995, Sreenivasan and Antonia, 1997,

Celani et al, 2000, Warhaft, 2000, Antonov and Honkonen, 2001), and static pressure (

Albertson et al., 1998). The anomalous scaling is commonly attributed to short-circuiting

of the energy cascade process due to the existence of organized large-scale features such as

ramp-like structures, which are influenced by boundary conditions, and themselves directly

influence small scale turbulence (Warhaft, 2000, Celani and Vergassola, 2001).

There is a need in geophysics to quantify whether boundary conditions influence the

statistical properties of the inertial subrange for the atmospheric surface layer (ASL). This

influence is also called satiability effects. In this thesis, this quantification is studied in sev-

eral ways. By appropriate modeling these turbulence measurements, we expect to quantify

the stability effects with both accuracy and meaningful physical interpretation.

1.2.2 Health Informatics Problems

In the human visual system, pupil functions as a gain control device, which response to

the external stimuli, such as luminance change, color and pattern change, onset of mo-

tion, attention, social signaling etc., in a very subtle way. In Human-Computer-Interaction

(HCI), pupillary response (in terms of the dynamic pupil size) is becoming an important

mental workload measure, which is useful in designing the computer or equipments for

some special needs. HCI community is interested in the mental workload of low vision

user. Low vision user usually have vision impairment, which should causes different pupil-

lary response from normal user during some computer interaction tasks, such as iconic

target selection , drag-and-drop, reading, searching, object positioning etc. The interests

in the low vision users stem from the large magnitude of eye disorder population in USA.

Almost One-third (80 million) of Americans are recognized with ocular abnormality that

may affect visual function. A deep investigation of how the vision ability affects the pupil-

lary response is clearly important and valuable. This helps better understand the unique

interaction needs and behaviors of individuals with varying abilities.
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To study the pupillary response in low vision user group, an experiment has been done

on different individuals within four categories of vision ability (See Chapter 4 for details).

The pupillary response was collected when they were performing some simple computer

tasks. Fig. 4 illustrates the pupillary response (pupil size) time series for individuals from

four different vision ability categories. It is intuitive that there are statistical differences in

the pupillary response among these categories. However, it turns out to be hard to quantify

these difference by only using the simple descriptive statistics, such as mean and standard

deviations. This is caused by the long range dependence effects of the pupil signal. A

simple example could be used to illustrated this. We simulated a fractional Gaussian Noise

(fGn) {Xi, i = 1, 2, · · ·, 2048} with H = 0.8, which is a popular model for stationary

long range dependent time series in many literatures. HereXi ∼ N(0, 1). The time series

and its sample autocorrelation function are presented in Fig. 5. We run 1000 replicates

of such a fGn process and estimate the sample mean and sample standard deviations from

each of them. Those sample statistics are summarized in Fig. 6. It is apparent that the

sample standard deviation is seriously biased. The sample mean looks unbiased however

the estimates are quite unstable since it could rand from -0.5 to 0.5 very likely. This exam-

ple tells that the long range dependence easily destroys the accuracy of the sample mean

and other sample moments. This fact makes it hard to tell the differences among various

groups using such simple statistics as sample mean and sample standard deviation because

the sample autocorrelations of the pupil size dynamic measurements from wide range of

subjects universally suggest the long range dependent structure.

An important characteristic of the pupil size measurements, is the apparent scaling

behavior, which is similar to the turbulence data. We illustrate this in Fig. 7.

1.3 Thesis Contributions

The overall objective of this dissertation is to model the self-similarity process with sta-

tistical accuracy and to apply the theory to solve the scientific, engineering and medical
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Chapter 4.
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problems. In particular, we study and develop techniques that are able to derive meaning-

ful summaries, which include global and local scaling measures, multifractal broadness,

slopes and Hurst, multiscale Schur monotone measures etc., from self-similar processes.

As a by-product, we investigate the combinedk-nearest-neighbor classification. The main

contribution of the this dissertation can be summarized as follows:

• We propose to apply global and local scaling measures (e.g. quasi-Hurst exponent,

distributional properties of the wavelet coefficients, and Tsallis’s thermostatic en-

tropy measures) to quantify the differences (similarities) between self-similar pro-

cesses. Quasi-Hurst generalizes the the idea of defining self-similarity parameters

and extend this to the non-stationary self-similar process. Probabilistic models of the

wavelet coefficients are studied in the context of Mallat’s model and Tsallis Maxent

model. A theoretical link between these two models is derived. These measures are

used to assess whether atmospheric stability impacts both local and global inertial

subrange scaling in the the atmospheric surface layer (ASL).

• We propose a Weighted Least Squares (WLS) scheme in wavelet domain to estimate

the multifractal spectrum (MFS). By applying this, we minimize the heteroskedastic

effects which is inherent because the sample variances of the wavelet coefficients

depend on the scale. We also derived the discriminative measures including the left

slope (rise), Hurst exponent (maxima), and broadness. We attempted to use these

summaries to quantify how atemospheric stability affects turbulent velocity and tem-

perature fluctuations in the atmospheric surface layer. These summary measures are

applied to the MFS of velocity and temperature time series collected in the atmo-

spheric surface layer for a wide range of atmospheric stability conditions. In a simi-

lar spirit, we develop a multifractal discrimination model (MDM) to discriminate the

HCI user group using the measures of the left slope (rise), Hurst exponent (maxima),

and broadness in MFS estimated from the high frequency pupil size data.
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• We propose a combinedk-Nearest-Neighbor (Comb-k-NN) classification model to

address the inhomogeneous property of discriminative vectors. This method is pro-

posed to minimize and stabilize the misclassification rate in training and test sets

with the goal of improving classification accuracy. It is also justified by a Bayesian

paradigm. We use Comb-k-NN as ingredients in the classification problem for the

HCI users based on high frequency pupil size data. Reasonable accuracy has been

achieved.

• We propose a multiscale Schur monotone (MSM) measure as summaries of self-

similar processes. MSM measure is derived to characterize the disbalance properties

of the data distribution at different frequency scales. In contrast to the global disbal-

ance measures, the MSM measure carries information not only about the disbalance

characteristics of the data, but also about its correlation structure. Thus, the MSM

summary is more likely to be more sensitive to the differences in dynamics between

different self-similar processes than any other single measure, such as correlation and

global Schur Monotone measures. MSM measures also allow the adaptive summary

of the process through wavelet basis selection and the choice of scale resolutions.

1.4 Thesis Organization

This dissertation is organized as follows:

In Chapter 2, we provide mathematical preliminaries including wavelet transform, self-

similarity, multifractal theory, long range dependence. Definition and properties of self-

similar process are provided.

In Chapter 3, we survey different mechanisms that explain what causes self-similarity

in processes.

In Chapter 4, we introduce the multiscale Schur monotone (MSM) measure as sum-

maries of self-similar processes. Meanwhile, we provide the details of the combined k-

Nearest-Neighbor (Comb-k-NN) classification model. As an application, we use MSM
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and Comb-k-NN to classify the HCI users based on the dynamic pupil size measurements.

In Chapter 5, we define the broadness, slopes (rises) and Hurst exponent (maxima)

for multifractal spectrum (MFS). Also, the estimation of the multifractal spectrum using

Weighted Least Squares (WLS) in the wavelet domain is introduced to minimize the het-

eroskedastic effects and achieve robust estimations. Numerical issues about computing

the broadness, rises and maxima are discussed. These summary measures are applied to

the MFS of turbulent (velocity and temperature) time series collected in the atmospheric

surface layer for a wide range of atmospheric stability conditions.

In Chapter 6, we adopt the mulitfractal discrimination model in the classification prob-

lem, in which classifying the pupil-size measurements for HCI users is presented as an

application example.

In Chapter 7, we assess the effects of atmospheric stability on the turbulence in the

inertial subrange using both global and local scaling measures. The quasi-Hurst exponent,

Mallat’s Model and Tsallis MaxEnt model are studied in details.

Last, Chapter 8 contains concluding remarks and future research directions.
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CHAPTER II

PRELIMINARIES: FBM AND WAVELET ANALYSIS
FOR SELF-SIMILAR PROCESS

2.1 Fractional Brownian Motion (fBm) and Fractional Gaus-
sian Noise (fGn)

Fractional Brownian motion (fBm) is generalization of Brownian motion (Wienner Pro-

cess). Brownian motionB(t) is standardly defined as random process satisfying:

1. B(0) = 0;

2. for any choicen and0 ≤ t1 < t2 < · · · < tn, the incrementsB(t2)−B(t1), . . . , B(tn)−
B(tn−1) are independent and stationary;

3. B(t) is Gaussian random variable with zero mean and variancet, and

4. B(t) is a continuous function oft, a.s.

It is easy to check that Brownian motion is an 1/2-sssi process, sinceB(t) = a−1/2B(at)

satisfies properties (1)-(4) as well.

Brownian motion is a Gausian process and Gaussian processes are fully determined by

their second order properties. Therefore, Brownian motion is the unique Gaussian process

having covariance functionγ(t, s) = min{t, s}.
The theorem 1.1.2 gave the covariance structure for anH-sssi process. If such a process

is gaussian, it is unique and it is called fractional Brownian motion (fBm).

Definition 2.1.1 A zero mean gaussian processBH(t) is called fractional Brownian mo-

tion with Hurst exponentH, if EX(t)X(s) = E|X(1)|2
2

[|t|2H + |s|2H − |t− s|2H
]
, where

E|X(1)|2 = Γ(2−2H) cos(πH)
πH(1−2H)

.
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The processBH(t) is unique, in the sense that class of all fractional Brownian motions

with exponentH coincides with the class of all GaussianH-ss processes. However, a

Gaussian process isH-ss with independent increments, if and only if itH = 1/2, i.e., if it

is a Brownian motion.

The difference process,Y (n) = BH(n+1)−BH(n) is called fractional Gaussian noise

(fGn). As for more generalH-sssi processes, covariance function of fGn is

γ(h) =
E|X(1)|2

2

[
(h + 1)2H − h2H + (h− 1)2H

]
. (8)

An alternative definition of fractional Brownian motion can be given via stochastic

integration. Mandelbrot and Van Ness (1968), Taqqu (1986) defined fBm as the process for

which:

(i) BH(0) = 0, and

(ii) BH(t) = 1/CH ·
[∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]B(ds) +

∫ t

0

(t− s)H−1/2B(ds)

]
,

whereB(dt) is the Wiener measure, and1/CH = Γ(H + 1/2)/(Γ(2H + 1) sin(πH))1/2.

This representation can be discretized, in the sense that discrete counterpart ofB(dt) is

normal noise, and as such it provides a way to simulate fBm.

Sample paths of fractional Brownian motion are behaving similarly to those of standard

Brownian motion. They are continuous almost surely for allH ∈ (0, 1) and nowhere

differentiable. The fractal (Hausdorff) dimension of sample paths isD = 2 − H. That

means that for smallH (say,H < 0.5) the sample paths are quite irregular andspace-filling.

It is interesting that sample paths of fractional Brownian motions are also continuous inH,

a result of Peltier and Ĺevy-Véhel (2000).

There is a Central Limit Theorem (CLT) for fBm. Let∆(i) = BH( i+1
n

) − BH( i
n
),

for i = 1, . . . , n − 1. Let ∆1:n ≤ . . . ∆n:n be the corresponding order statistics. Define

the polynomialV BH,n(t) =
∑[nt]−1

i=0 ∆i:n + (nt − [nt])∆[nt]:n. Phillpe and Thilly (2000)

demonstrated that

V BH,n(t)

n1−H
√

C
→ L(t), (9)
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Figure 8: Simulated paths of fractional Brownian motion, (a)H = 1/4, (b) H = 1/2, and
(c) H = 3/4.

whereL(t) = − 1√
2π

exp−1
2
Φ−1(t), andΦ is the standard Gaussian cdf. This result can be

utilized to estimateH.

2.1.1 Simulation of fGn/fBm

There is several methods for simulating fGn/fBm. In fact if fGn is simulated, then a dis-

cretized realization of fBm can be obtained as partial sums of fGn, and also, if we have

realization if fBm, a fGn can be obtained by differencing. Here we describe the method

Based on Circulants since it has overwhelming advantages comparing to other methods and

we universally use this method to generate the sample paths of fBm/fGn in this disseration.

This battery of this method is based on embedding the covariance matrixΓ of any stationary

process in a larger cieculant matrix,C. It is initially proposed by Davies and Harte (1987).

See also Wood and Chan (1994). If realization of lengthN is to be generated, then the size

of circulantM should be a power of 2 exceeding2(N − 1), i.e.,M = 2p ≥ 2(N − 1).
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Define matrixC as

C =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

c0 c1 c2 . . . cM−1

cM−1 c0 c1 . . . cM−2

cM−2 cM−1 c0 . . . cM−3

· · · ·
· · · ·
· · · ·
c1 c2 c3 . . . c0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(10)

whereci =





γ(i/N) 0 ≤ i < M/2

γ((M − i)/N) M/2 ≤ i < M − 1

By standard result in matrix theory, the matrixC can be diagonalized by the unitary

Fourier transformation matrix,C = F ′∆F, where

F = 1/
√

M

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 1 1 . . . 1

1 ω ω2 . . . ωM−1

1 ω2 ω4 . . . ω2(M−1)

· · ·
· · ·
· · ·
1 ωM−1 ω2(M−1) . . . ω(M−1)(M−1)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(11)

whereω = e−2πi/M and∆ is a diagonal matrix whose diagonal is a discrete Fourier trans-

formation of the first column inC (the diagonal is also the set of eigenvalues ofC). Now,

C can be represented asF ′∆1/2F · F ′∆1/2F , sinceF is unitary, and one can generate a

Gaussian vector that hasMVN (0, C) distribution viaF ′∆1/2FZ, for Z ∼MVNM(0, I).

Thus, matrix multiplication is replaced by FFT and the calculational complexity of this

algorithm isO(N log N).

The algorithm can be described as follows:
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1. Fourier Transformation of(c0, . . . , cM−1) is the diagonal of∆ : δk =
∑M−1

j=0 cjω
ij.

Eigenvalues need to be non-negative. If, at this step, there exist a negative value ofδk, one

should doubleM , and start again.

2. SimulateFZ in two parts: (i) For1 ≤ j < M/2, generate standard normal ran-

dom variablesUj andVj and define conjugate pairsWj = 1/
√

2(Uj + iVj) andWM−j =

1/
√

2(Uj − iVj) and (ii) Fill-in the “gaps” with two standard normal random variablesU

andV : W0 = U andWM/2 = V.

3. FindY (k/N) = 1/
√

M
∑M−1

j=0

√
δjWjω

jk, using FFT again.

2.2 Wavelets and Self-Similar Processes

Wavelets are capable tools in detecting self-similarity in the signals. In this section we

discuss some properties of self-similar signals in the wavelet domain. Some important

pioneering work in this area was done by Flandrin and his collaborators [Flandrin 1989a,b,

1992a,b; Flandrin and Gonçlavès, 1993; Abry, Gonçlav̀es and Flandrin 1993]. The body of

recent literature is quite large.

2.2.1 Wavelets and Stationary Processes

Wavelets and stationary processes are well researched area. Highlights of the research

include several topics: preservation of stationarity, whitening property of wavelets and as-

sessing correlations in the wavelet domain, wavelet shrinkage in the presence of stationary

noise, to list a few.

Let X(t) be a second order process with autocorrelation functionγ(t, s). The discrete

wavelet transformation ofX(t) is a discrete random field

{djk, j, k ∈ ZZ} =

{∫

IR

X(t)ψjk(t) dt, j, k ∈ ZZ

}
, (12)

which is well defined if the path integrals in (12) are defined and
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∫

IR

√
γ(t, t) |ψjk(t)| dt < ∞. (13)

Thus, when (13) is satisfied

Edjkdj′k′ =

∫ ∫

IR2

γ(t, s)ψjk(t)ψj′k′(s) dt ds. (14)

If the processX(t) is stationary, then (14) becomes

Edjkdj′k′ =

∫ ∫

IR2

γ(h)ψjk(s)ψj′k′(s + h) ds dh, (15)

or in the Fourier domain,

Edjkdj′k′ =
1

2π

∫

IR

f(ω)Ψ
( ω

2j

)
Ψ

( ω

2j′

)
(16)

· e−iωk2−j

eiωk′2−j′
2−j/22−j′/2 dω,

whereΨ andf are the Fourier transformations ofψ andγ, respectively.

Relations (15) and (24) are critical in assessing the whitening property of wavelet trans-

formations for in case of stationary processes as well as the second order properties of

wavelet coefficients of self-similar processes.

2.2.1.1 Approximation and Production of Stationarity

For a stationary processX(t), t ∈ IR and its wavelet approximationXm(t) =
∑

k cmkφmk(t),

holds

E|Xm(t)−X(t)|2 → 0 whenm →∞, (17)

i.e., degraded processXm(t) goes in the mean-square to the original.
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Indeed, forr-regular waveletφ and a wavelet-based reproducing kernel ofVm, IKm(t, s) =

2m
∑

k φ(2mt− k)φ(2ms− k),

E|X(t)−Xm(t)|2 = EX(t)2 − 2EX(t)Xm(t) + EXm(t)2

= γ(0)− 2

∫
γ(t− s)IKm(t, s) ds

+

∫ ∫
γ(u− s)IKm(s, t)IKm(t, u) du ds

and
∫

γ(u− s)IKm(t, s) ds → γ(u− t),

uniformly on bounded sets, implying (17). In general caseXm(t) is not projection ofX(t)

onVm since the sample paths may not beIL2 integrable.

It is well known that wavelet transformations of stationary processes and sequences

yield level-wise stationary sequences of coefficients.

More general, wavelet transformation of a process with stationary increments yields a

stationary sequences of wavelet coefficients in any fixed levelj. The following lemma is

straightforward.

Lemma 2.2.1 LetX(t), t ∈ IR be a process with stationary (in strong sense) increments,

i.e., for all finite-dimensional vectors(X(t+h1)−X(t), . . . , X(t+hk)−X(t))
d
= (X(h1)−

X(0), . . . , X(hk)−X(0)), for all t ∈ IR. Then for a fixedj, dj,k is a stationary sequence.

Proof: Select arbitrarym ∈ ZZ and fixj. Then

dj,k =

∫

IR

X(t)ψjk(t)dt

=

∫

IR

X(t− 2−jm)ψjk(t− 2−jm)dt

=

∫

IR

X(t− 2−jm) · 2j/2ψ(2j(t− 2−jm)− k)dt (18)

=

∫

IR

(
X(t− 2−jm)−X(2−jm)

)
ψj,k+m(t)dt [ because

∫
ψjk = 0]

d
=

∫

IR

(X(t)−X(0)) ψj,k+m(t)dt [ because increments are stationary]

= dj,k+m.
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Standard arguments probabilistic arguments involving characteristic functions of finite

linear combinations ofd’s [see Abry, Flandrin, Taqqu, and Veitch, 2000] lead to conclusion

that finite-dimensional distributions are free ofm, implying that the sequence{dj,k, k ∈ ZZ}
is stationary.

2.2.2 KL Expansions and Whitening of Stationary Processes

The represenation

X(t) =
∑

j,k

djkψjk(t),

with

djk =

∫

IR

X(t)ψjk(t) dt. (19)

would remind the Karhunen-Loève (KL) representation if thedjk are uncorrelated. It turns

out that wavelet transformations are indeed decorrelating and because of that, wavelets are

sometimes calledapproximate KL expansions.

The KL expansions convert continuous-time random processes to sequences of uncor-

related random variables. More formally, ifX(t), t ∈ IR is a real, mean-square continu-

ous, zero-mean process, then there exists an orthonormal system of nonrandom functions

φ1(t), φ2(t), . . . , and a set of uncorrelated random variablesZ1, Z2, . . . , such that

X(t) =
∑

i

Ziφi(t),

whereZi =
∫
IR

X(t)φi(t) dt. The functionsφi(t) are eigenfunctions of an associated inte-

gral operator

(Γf)(t) =

∫

IR

γ(t, s)f(s) ds, (20)

whereγ(t, s) = EX(t)X(s) is the autocovariance function. The K-L transformation is

“energy packing.” The firstk coefficients, corresponding to thek largest eigenvalues of
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the operator (20) minimize the MSE among all orthogonal (unitary in the complex case)

transformations.

Even though the K-L is an elegant theory, it has limited applicability. As a rule, it is

difficult to obtain exact solutions of the eigenvalue problem. The transformation is data-

dependent and approximate solutions are computationally intensive. For a discussion see

Wornell (1992).

For a given (wide-sense) stationary process, one can construct a wavelet-like biorthog-

onal system so that the associated coefficients are uncorrelated, a feature similar to K-L

expansions.

The informal statement “Wavelets whiten data” can be well formalized if the data on

input is a stationary process.

2.2.3 Wavelet Analysis of Self-Similar Processes

Let {X(t), t ∈ IR} be aH-ss process. Then for a fixed levelj,

djk
d
= 2−j(H+1/2) d0,k. (21)

Indeed,

djk =

∫
X(t)2j/2ψ(2jt− k)dt

=

∫
X(2−ju)2j/2ψ(u− k)d(2−ju)

d
= 2−jH−j/2

∫
X(u)ψ(u− k)du

= 2−j(H+1/2) d0,k.

Note that 1/2 in the exponent is because ofIL2 normalizing of wavelets, forIL1 normal-

ized waveletsψj,k = 2jψ(2j − k) the scaling is(2−j)H .

Let X(t) be aH-sssi process. Thend0,k, k ∈ ZZ is stationary sequence and for any

k,IEd0k = 0 andIEd2
0k = IEd2

00. Then,

IEd2
jk = C 2−j(2H+1), (22)
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with C = IEd2
00. The re-expression of equation (22) as

log2 IEd2
jk = −(2H + 1) · j + C ′, (23)

is a basis for wavelet based estimation ofH, as we will see later.

If the process is LRD, i.e., its spectra is behaving as|ω|−α at 0, then from (24)

IEd2
jk =

2−j

2π

∫
f(ω)|Ψ(2−jω)|2dω

∼ c · 2−αj

∫ |Ψ(ω)|2
|ω|α dω,

This relation is a basis for estimatingα (or H = 1+α
2

) by taking logarithms of both sides.

If in (24), j = j′, we can explore covariance structure of wavelet coefficients belonging

to a single level and separated by distance of|k − k′|.

IEdjkdj′k′ =
1

2π

∫

IR

f(ω)
∣∣∣Ψ

( ω

2j

)∣∣∣
2

· e−iω(k−k′)2−j

dω, (24)

The correlationIEdjkdj′k′ is thus a function of the difference(k−k′), and the asymptotic

behavior of integral in (24) when|k−k′| → ∞ is influenced by behavior off(ω)
∣∣Ψ (

ω
2j

)∣∣2

asω → 0.

As we saw before, if the wavelet has exactlyN vanishing moments, then its Fourier

transformation is differentiableN times at the origin, and for0 ≤ i ≤ N − 1, Ψ(i)(0) =

0, andΨ(N)(0) 6= 0. By Taylor series argument, the behavior of|Ψ(ω)| matches that of

|ω|N · |Ψ(N)(0)| at origin. On the other end, the spectra of LRD process is singular at zero

and behaves as|ω|−α. Thus, when the decomposing wavelet hasN vanishing moments,

singularity at 0 of spectra is compensated; the behavior atω ∼ 0 of f(ω)
∣∣Ψ (

ω
2j

)∣∣2 is

|ω|2N−α.

Two comments. (i) IfN > α/2 then sequence of wavelet coefficients is not LRD, even-

though the original signal is, and (ii) looked as Fourier pair, the autocorrelationsIEdjkdj′k′

behave as|k − k′|α−N−1 when|k − k′| → ∞.

This means, the LRD processes are better decorrelated with wavelets possessing more

vanishing moments.
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2.2.4 LogScale Diagrams or Scalograms

The totality of squared wavelet coefficients represents the energy content of the zero-mean

signal and expected levelwise energies form wavelet counterpart of Fourier spectra. The

following definitions are as in Abry, Flandrin, Taqqu, and Veitch (1998, 2000).

Definition 2.2.1 Theoretical Wavelet Spectra of a processX(t) with stationary increments

is the sequence

e(j) = IE(dj,•), (25)

where because of stationarity,dj,• stands for an arbitrary coefficient from the levelj. The

plot of (j, e(j)) is referred as Theoretical Logscale Diagram.

Let E(j) be an estimator ofe(j). Then, the plot of (j, E(j)) is called simply Logscale

Diagram or Scalogram.

Because of linearity of wavelet transformation, the wavelet spectra gives complete

second-order description of the random process.

The logscale diagram was originally proposed and utilized as a tool for detecting and

estimating periodicities, since, as in the case of Fourier counterparts, energy is large at

dominant scales. In our context, logscale diagram is used to estimate the scaling exponent

of a signal.

Definition 2.2.2 Let, for someq ∈ IR

eq(j) = IE|dj,•|q, (26)

The plot of(j, e(j)) is referred as q-th Order Theoretical Logscale Diagram.

Let Eq(j) be an estimator ofeq(j). Then, the plot of(j, Eq(j)) is called q-th Order

Logscale Diagram or Scalogram.
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2.2.5 Detection and Assessment of Scaling

By observing the data at time domain it is impossible to detect scaling without resorting to

such tools such as, for example, Structure Functions, Spectrograms, Logscale Diagrams,

Structure Functions, q-th order Logscale Diagrams, etc.

If, for example, in Fourier Log-Spectrograms or Logscale Diagrams it is possible to

align a straight line with particular slope of−α, over duration of several decades (octaves,

“binary-decades”) then the scaling in the data is present.

The task is to estimate the range of scaling, in frequences for Fourier tools or in scales

for wavelet-based tools, as well as the slope and its variation.

The key tool is of course the linear regression analysis for which the goodness of fit

is assessed by standard regression measure, such asR2. Plethora of tests are available

here including nonparametric goodness of fit tests (χ2, Kolmogorov-Smirnov), bootstrap,

empirical MSE, etc.

It is possible also to automatically select the range of scales[j1, j2] for which the good-

ness of fit measure is minimized. The selection of this range is important since in many

situations estimation of the slope is non-robust to change inj1 and/orj2. This robustness is

influenced by several factors, including quality of data, a slope close to zero, presence of a

periodicity, or injection of energy at a particular scale.

Especially critical is the selection of low scalej1. The high variability of spectra at low

scales is influenced by several factors – some of which have nothing to do with the nature of

data. For example, in the Logscale diagrams points at low scales are obtained by averaging

substantially less empirical values of energy (squared wavelet coefficients). The difference

in the number of averaged values is huge, for example if the scalej2 = 10 averages 1024

energies, the scalej1 = 3 averages only 8 values.

By the assessment of scaling we consider two tasks: identification of the phenomenon

(model selection) and evaluation of the scaling slope.

As in any model selection task, it is important to have some prior information about the
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data – because that may be decisive in the model selection and subsequent inference.

If the observed scalingα is in (0, 1) [slope of−α], and we believe (or confirm) that

data are stationary – then the estimated slopeα corresponds to the LRD parameterα and

the link with Hurst exponent isH = 1−α
2

.

If , on the other hand, the estimated slopes are greater than one, and the data may

have been obtained as cumulative process and/or are not stationary (stock market prices,

turbulence measurements, seizure data) then they correspond to an stationary increments

or even stationaryk-th increments,k > 1. Another case is, as in some synthetic dynamic

systems or ON-OFF processes, that the data may be fractal.

In this casesH = α−1
2

and in case of fractal,H coincides with the regularity (in Ḧolder

sense) of the non-differentiable sample paths. For instance, the turbulence signals give

slope of−5/3, definingH = 1/3.

2.2.6 Estimation of the Scaling Law

We discuss methods for estimating the scaling exponentα or equivalently corresponding

Hurst exponent,H. We limit our discussions in the wavelet-based methods.

The wavelet method has some connections to the variance plot. Recalling the vari-

ance expression when studying aggregated seriesXj over dyadic blocks of size2j , j =

0, 1, 2, ...,

V ar[Xj] ∼ 2j(2H−2), j = 0, 1, 2, ... (27)

This estimator could be very biased (not very reliable). In the wavelet framework we

study differences of aggregated series. In the most simplest case we compute the difference

between to points in non-overlapping blocks of size 2 (the Haar wavelet).

Let Y j+1 be the series made by differenceY j (Y 0 is the data series at highest time

resolution).

Y j+1
k = (Y j

2k − Y j
2k−1)

1√
2
, k = 1, 2, ...,

N

2j
andj = 0, 1, 2... (28)
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Then the variance ofY j decay according to a similar power-law as above.

V ar[Y j] ∼ 2j(2H−1), j = 0, 1, 2, ... (29)

.

It turns out that the variance is equal to the second order moment, i.e. the expectation

of Y is zero. In the frequency domain,IE[(Y j)2] corresponds to the signal energy in a

frequency band depending onj.
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CHAPTER III

WHAT CAUSES SELF-SIMILARITY?

The sources of self-similarity in the observations are discussed in a general sense. We

survey six types of distinct mechanisms, which may be regarded as the sources of self-

similarity. These mechanisms are not subject-specific and they can be used in different

application contexts, though it might be originally proposed in a certain discipline.

3.1 Introduction

Statistical tools have been extensively used in the analysis of self-similar data arising in

many application fields. Many efforts in the past have been dedicated in estimation of

parameters (e.g. Hurst exponent) which describes the structure of the process. However,

there are few explorations about the sources of the self-similarity in the data. The study

of what causes self-similarity in the data is important because of three reasons. (1) It

provides convincing justifications of modeling the data as self-similar process more than

the pure statistical analysis; (2) The better knowledge about the source of self-similarity,

the more accurate we can fit the data into an appropriate model and according the more

physical explanation we can give about the estimated parameters; (3) The understanding of

the source makes it easy to analyze the data and may provide more meaningful insights to

the people in the application area.

In this chapter, we are going to survey the possible sources of self-similarities. The

survey is set to in a general sense and should be shared among the people with different

application interests. We provide six distinct mechanisms to address the possible sources

of self-similarities.
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3.2 Aggregation
3.2.1 AR Processes

Granger (1980) shows that the aggregation of many stationary processes would potentially

exhibit self-similarity. Suppose that there areN stationary Autoregressive processes of

order 1 (AR(1)), denoted by

X
(m)
t = φ(m)X

(m)
t−1 + ε

(m)
t , for t = 0, 1, 2, · · · and m = 1, 2, · · ·, N. (30)

If parametersφ(m), m = 1, 2, · · ·, N are i.i.d from Beta(p, q) distribution, which has the pdf

f(φ) =
2

B(p, q)
φ2p−1(1− φ2)q−1, for 0 ≤ φ ≤ 1, (31)

the aggregate processXt =
∑N

m=1 X
(m)
t exhibits the self-similarity with Hurst exponent

H = 1.5− q/2 asN → +∞.

To illustrate this aggregate process, we provide a simulation examples in Fig. 9. We

generate 100 sample paths of the AR(1)process.

Following the idea of Granger, Oppenheim and Viano (2001) extended the analysis to

the case of AR(p), with p > 1, processes and proved that the aggregation process will

converge to the self-similar process with seasonal components under certain assumptions

on the parameters.

Recently, Zaffaroni (2004) also studied the case for AR processes driven by both dis-

turbances for each individual process and common disturbances for all processes. The

result shows that the distribution assumption is not necessary to be Beta, instead it can be

anything with a semi-parametric form, i.e.

f(φ; b) ∼ cb(1− φ)b, for 0 ≤ φ ≤ 1, (32)

wherecb is a normalizing constant.

3.2.2 Poisson Shot Noise

The shot noise model, originally introduced by Rice (1944) and Parzen (1962), is exten-

sively used in the areas of computer engineering (Lewis, 1964), geophysics (Vere-Jones,

36



Individual Process

time index

x(
t)

0 1000 2000 3000 4000

−
4

−
2

0
2

0 5 10 15 20 25 30 35

0
.0

0
.4

0
.8

lag index

A
C

F

4 5 6 7 8 9 10 11

−
0

.1
5

−
0

.0
5

0
.0

0

Scale

L
o

g
 E

n
e

rg
y

Aggregated Process

time index

x(
t)

0 1000 2000 3000 4000

−
1

.0
−

0
.5

0
.0

0
.5

0 5 10 15 20 25 30 35

0
.0

0
.4

0
.8

lag index

A
C

F

4 5 6 7 8 9 10 11

−
5

−
3

−
1

0
1

Scale

L
o

g
 E

n
e

rg
y
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1970), acoustics (Kuno and Ikegaya, 1973), risk theory (Klüppelberg and Mikosch, 1995)

and finance (Samorodnitsky 1995). This model is characterized by the superposing of “shot

effects” which initiate at random times and persist through random durations, possibly in-

finite.

A Poison shot noise process,S(t, t ≥ 0), is defined as

S(t) =

N(t)∑
i=1

Xi(t− Ti) +
−∞∑
i=−1

[Xi(t− Ti)−Xi(−Ti)], t ≥ 0 (33)

whereXi(t), i ∈ {· · ·,−3,−2,−1, 1, 2, 3, · · ·, N(t)} are i.i.d stochastic processes with

Xi(t) = 0 for t < 0, N(t) is the two-sided Poisson process with rateα > 0, andTi’s are

points of Poisson processN(t).

Kl üppelberg and K̈uhn (2004) show that Poisson shot noise model weakly converge

to limit of fractional Brownian Motion, which has been known as a famous example of

self-similar processes.

3.2.3 Renewal Process

As known to most of us, the renewal processNt is a counting process defined as

Nt =
∞∑

n=1

I(Sn > t) and Sn =
n∑

i=1

Ti, (34)

whereTi’s are the i.i.d non-negative random variables (i.e. renewal interval).

Taqqu and Levy (1986) show that the superposition of a large number of identical re-

newal processes will produce self-similarity in the aggregate process, though the inter-

renewal-time (Ti) distribution has to be heavy-tailed, i.e., it has infinite variance.

3.3 Random Walks
3.3.1 Correlated Random Walks

A correlated random walk (CRW) model is a discrete processes such that the law of each

move is ruled by the value of the previous move. We note that the decay of correlation

for such processes is exponential, but that a mixture of these processes may lead to walks
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exhibiting self-similarity. Taqqu (1975) show that the superposition of a large number of

CRW processes yields a discrete Gaussian process with a long-range dependent memory

structure, so that its scaling limit is the fractional Brownian motion.

3.3.2 Random Walks in Random Sceneries

A random walk in random sceneries (RWRS) is a stochastic process{Kn}n≥1 with defini-

tion

Kn :=
n∑

k=1

δ([Sk]), (35)

whereSk is a standard random walk,[Sk] is an integer such thatSk ≤ [Sk] ≤ Sk + 1,

andδ(x)’s are i.i.d random variables with zero mean and unit variance. Kesten and Spitzer

(1979) and Bolthausen (1989) proved that{Kn} can be rescaled so as to converge in law to

a nondegenerate process. A consequence of these results is that the proper normalization is

Kn

n3/4 if Kn is defined in the real line space. This is equivalent to say that it converge to self-

similar process with Hurst exponentH = 3/4. Kesten and Spitzer (1979) also show thatKn

may converge to the self-similar process with Hurst exponentH > 3/4 if the unit-variance

is dropped and random steps(Sk − Sk−1) andδ’s are i.i.d random variables fromα-stable

distribution with indices (not necessary to be the same for(Sk − Sk−1) andδ) 0 < α ≤ 1.

Piau (2002) showed that, even if good integrability properties hold, the convergence to the

self-similar process with Hurst exponentH > 3/4 can still be obtained assuming that the

transition probability in the random walkSk has a suitable nonparametric form. This result

is extended in Piau (2004) to achieve the convergence to the self-similar process with Hurst

exponent1/2 ≤ H < 3/4 through an further modification on the nonparametric form of the

transition probability in the random walkSk. Though there is a natural extension of Kesten

and Spitzer (1979) results to obtain convergence to the self-similar process with Hurst

exponentH < 1/2 (anti-persistent process), no published work reports the convergence to

the anti-persistent process without theα-stable assumption. Employing such a model, Cox

(1984) explained the self-similarity in a stochastic process of the coefficients of mass per

39



unit length of worsted yarn (two hundred sections of the yarn are randomly chosen with

lengths ranging from 1cm to 100m).

3.4 Nonlinear Dynamics

A classical example of self-similarity caused by nonlinear dynamics is turbulence.

Kolmogorov (1941) developed his theory, often referred to asK41 theory, forlocally

isotropicturbulence. Letx = (x1, x2, x3) be the position vector andu = (u1(x), u2(x), u3(x))

be the velocity components. Locally isotropic turbulence describes the flow in which the

probability distribution of the relative velocity differences

∆u(r) = u(x + r)− u(x), (36)

is independent of time, and invariant under translations, reflections, and rotations. The

fundamental objects inK41 theory arestructure functions.Structure functions are closely

related to correlations of two-point velocity differences,

〈∆u(r)2〉 = 2σ2
u(1− ρu(r)). (37)

A (longitudinal) structure function of orderp is defined as

Dp(r) = 〈||∆u(r)||p〉 (38)

where the angular brackets denote time averaging.

A functional description for the moments of velocity differences and thus for the struc-

ture functions can be derived usingdimensional analysisand leads to

Dp(r) = Cp[〈ε〉 r]
p
3 , (39)

whereCp is a universal constant. For the third-order structure function, it can be inferred

directly from the Navier-Stokes equations thatC3 = −4
5
. From (39) it follows that structure

functions possess scaling behavior. Let the symbol∝ denote “proportional to.” Then,

Dp(r) ∝ rζp . (40)
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The exponentζp is called thescaling exponent.The K41 theory gives the simple model

ζp = p
3

.

Similarly, as for the structure functions, a description of the energy of the turbulent

fluctuations per unit of mass of fluid in scalesr can be derived from the hypotheses and by

dimensional analysis,

Er ∝ (r)
2
3 . (41)

Via the Fourier transform ofEr, which results in the spectral densityφ(k), the celebrated

“−5
3

law” for the power spectrum is obtained,

Ek = 2R−1k2φ(k)

∝ k−
5
3 . (42)

3.5 Critical Phenomena
3.5.1 Ising Model

A notable example is the Ising model, which has been used in describing the thermody-

namic systems. Ising tried to explain certain empirically observed facts about ferromag-

netic materials using a model of proposed by Lenz (1920). It was referred to in Heisenbergs

(1928) paper which used the exchange mechanism to describe ferromagnetism. The Ising

Model considers an idealized system of interacting particles, arranged onto a regular planar

grid. Each particle can have one of two magnetic spin orientations, generally labelled up

(+1) and down (-1). Each particle interacts only with its nearest neighbors; the contribution

of each particle to the total energy of the system depends upon the orientation of its spin

compared to its neighbors. Adjacent particles that have the same spin (-1;1) or (1; 1) are

in a lower energy state that those with antithetic spins (1; -1) or (-1; 1). Given the spin

orientations of all particles in the system, one may compute the total energy. If the variable

xi denotes the spin of particlei, then the total energy of the system (Hamiltonian) is

MΛ = −J
∑

i∼j∈Λ

xixj, (43)

41



wherei ∼ j denotes the a pair of neighbor indices defined in a larged-dimensional lattice

Λ ⊂ Zd and the constantJ represents the strength of the interaction betweenxi andxj.

Statistical mechanics states that the probability of any particular configurationc in the

configuration spaceC is proportional to

exp

{
−MΛ(c)

kT

}
, (44)

where the parameter T is temperature in◦K and the valuek is the Boltzmanns constant, a

fundamental constant in physics. From (44) it follows that low energy configurations are

more probable, but the influence of energy is more pronounced at low temperatures. At low

temperatures, the energy of a configuration is very important in determining its likelihood,

and so the most likely states are those with lowest energy. At high temperatures, energy

is less important, and so the states with high entropy are not unlikely, in fact there are far

more states that are disordered than ordered.

Under normal condition, the normalized variable

M∗
Λ =

MΛ − E[MΛ]

|Λ| 12
, (45)

converges to a non-degenerate random variable, where|Λ| is equal to the number of ele-

ments inΛ. This implies thatSi is at most weakly dependent. However, there is always a

critical temperature such that the normalized variable

M∗
Λ =

MΛ − E[MΛ]

|Λ|α , for 1/2 < α < 1, (46)

converges to a non-degenerate random variable, which is the result ofSi being a self-similar

process with Hurst exponentα. This model with self-similarity is actually used in many

natural process. For example, this is actually a model for the transition from a liquid phase

to a gaseous phase.
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3.6 Randomly Killed Processes

Reed and Hughes (2002) show that if stochastic processes with exponential growth in ex-

pectation are killed or observed randomly, the killed or observed states exhibiting self-

similarity. Suppose the expectation of stochastic processXt has the form

E(Xt|X0) = X0µ
ψ(t) (47)

whereµ is a real number andψ(t) and real-valued function oft. Assuming the probability

of killing the states is

P (killed at time≥ t) = e−νt. (48)

where theν is called hazard rate. In the case ofXt being a Geometric Brownian Motion

(GBM), the killed process has self-similarity with Hurst index approximately

H =
1

1− s
, (49)

wheres is a root of the equation1
2
σ2s2 + (µ− 1

2
σ2)s− ν = 0 andµ andσ are the drift and

volatility parameters of the GBM.

Reed and Hughes (2004) proposed a simple birth-and-death process model to explain

the self-similarity in the size of gene and protein family. Though this is derived in a ge-

nomic setting, it could be easily extended to other scenarios. In this model, new genes in a

family arise from mutations of existing genes independently and at random at a fixed prob-

ability rate, individual genes in a family can be eliminated independently and at random at a

fixed probability rate, and new families arise from the random splitting of existing families

at a fixed probability rate. They showed that the states of a homogeneous birth-and-death

process after exponentially distributed times forms a self-similar process with Hurst index

as a function of the birth rate (λ), death (µ), splitting rates (ρ), which is 1
1+ρ/(λ−µ)

.
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3.7 Differential Equation
3.7.1 Supra Diffusion

It is well known that Brownian Motion (BM) is governed by a diffusive equation and can be

explained as random walk as well. In BM the number of jumps is assume to be proportional

to the time elapsed. If we make the number of steps grows att2, the states of the random

walk would be converge to self-similar processes. Actually, this random walk can be stated

in
∂P (x, t)

∂t
= D(t)

∂2P (x, t)

∂x2
(50)

whereD(t) is a time dependent diffusion constant andP (x, t) is the probability that the

random walk has the displacementx at time t. The analytical solution of (50) can be

obtained through Fourier transform and it is

P (x, t) =
1√

4πd(t)
exp

[
x2

4d(t)

]
, (51)

whered(t) =
∫

D(t)dt. This result implies that

V ar(x(t)) ∝ d(t) (52)

. Therefore, the resulting processesx(t) have varying self-similarities depending on the

form of D(t).

3.7.2 Stochastic Differential Equation

Chenet al (1997) modeled the body movementx(t) of synchronizing one’s limb to a peri-

odic environmental signal as Stochastic Differential Equation

d2x(t)

dt2
+

(
dx(t)

d(t)

)3

− dx(t)

d(t)
+

dx(t)

d(t)
x(t)2 +x(t) = β[sin(ωt)−x(t−τ)]2 +

√
Qξt, (53)

whereβ is the strength of the coupling between input periodic stimulussin(ωt) and history

movementx(t − τ), ξt represents Gaussian white noise of unit variance, andQ is noise

amplitude. Numerical simulation shows that with appropriate parametersβ, ω, andQ the

simulate time series exhibits apparent self-similarity, which is consistent with the finding

obtained from the observed data.
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3.7.3 Differential Equation with a Singular Term

Vicsek and Vicsek (1995) consider a differential equation with a singular term,

∂h(x, t)

∂t
= ∆2h(x, t)−B ln(|∆h|+ A), (54)

where the positive parameterA is used to control the largest possible value of the singu-

lar term andB is used to monitor the relative strength of a singular term. By numerical

integration, Vicsek and Vicsek (1995) show that the discretized version of this simple deter-

ministic partial differential equations with singular terms (model (54)) exhibit rich spatio-

temporal behaviour representing a mixture of stochastic and deterministic regimes. The

fractal roughness of the growing surfaceh(x, t) for B = 0.002 is indicated by a power-law

relationship and the self-similarity exponent is found to beH ≈ 0.7

In a directed polymer problem, Zhang (1992) adopted a model that reads

∂h(x, t)

∂t
= ∆2h(x, t)− ln(∆h|), (55)

and the corresponding self-similarity exponent is found to beH ≈ 0.2.

3.8 Conclusions

In this chapter, we surveyed the mechanism of producing self-similarities in the observed

data. These mechanisms are representative physics or mathematics which have been com-

monly used in exploring the problems in science, engineering and other areas. The links

between these mechanisms and the observed self-similarities suggest that the self-similar

process is not a enforced statistical model solely based on data. Also this survey provides

researchers with different possible directions to explain the self-similarities in the data. For

example, the self-similarities in the pupil data could be explained from different points of

view.
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CHAPTER IV

MULTISCALE SCHUR MONOTONE DESCRIPTORS
FOR HIGH FREQUENCY PUPIL DATA

This chapter addresses the problem of classifying users with different visual abilities based

on their pupillary response while performing computer-based tasks. Multiscale Schur

Monotone (MSM) summaries of high frequency pupil diameter measurements are utilized

as feature (or input) vectors in this classification. Various MSM measures, such as Shannon,

Picard, and Emlen entropies, the Gini coefficient and the Fishlow measure, are investigated

to assess their discriminatory characteristics. A combination of classifiers, motivated by

a Bayesian paradigm, is proposed to minimize and stabilize the misclassification rate in

training and test sets with the goal of improving classification accuracy. In addition, the

issue of wavelet basis selection for optimal classification performance is discussed. The

members of the Pollen wavelet library are included as competitors. The proposed method-

ology is validated with extensive simulation and applied to high-frequency pupil diameter

measurements collected from 36 individuals with varying ocular abilities and pathologies.

The expected misclassification rate of our procedure can be as low as 21% by appropriately

choosing the Schur Monotone summary and using a properly selected wavelet basis.

4.1 Introduction

The HCI (human-computer interaction) community is interested in understanding the unique

interaction needs and behaviors of individuals with visual impairments who retain visual

capabilities, albeit at a below ‘normal’ level (Biglanet al., 1988). Therefore, there is a need

for methods and procedures that can provide meaningful classification of individuals with

varying visual abilities. In the human visual system, the pupil functions as a gain control
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device, which responds to external stimuli, such as luminance changes, color and pattern

changes, onset of motion, attention and social signaling, in a very subtle way. It is widely

accepted (Backs and Walrath, 1992; Hess and Polt, 1960; 1964) that pupillary response (in

terms of the dynamic pupil size) is an important measure of mental workload, which may

be useful for classifying users with different abilities.

However, the pupil has an extremely complex control mechanism, which is moderated

by several variables (Sahraie and Barbur, 1997), as well as various neural control pathways

(Barbur, 2003). As such, it is very difficult to tease out the underlying differences in mental

workload from point differences in pupil diameter. The inherent complexity of pupillary

behavior requires that robust and valid measures be developed to extract the meaningful

components from dynamic pupil behavior. While smoothing large aberrations in data val-

ues, and using global or local means may be suitable in helping to highlight even slight

changes in pupil diameter for short, simple tasks, this averaging typically does not work

for longer, more complex tasks that will inherently include more natural fluctuations in

pupillary response and a larger number of confounding, non-cognitive effects. This being

said, it is necessary to develop analytical techniques that can isolate these small changes in

pupillary behavior. A more sensitive tool for the analysis of pupil measurement data may

provide a solution to this problem and provide a unique characterization of interaction for

individuals who are aging and/or have visual impairments.

This study examines the dynamic pupillary behavior of four groups of individuals, in

which known performance differences were exhibited, during a computer-based task. Ad-

ditionally, this study aims to examine if these behavioral differences can be sufficiently

modeled for purposes of user classification, proposing the application of low dimensional

summaries of high frequency data. Specifically, a summary measure called the Multiscale

Schur Monotone (MSM) measure is derived to characterize the disbalance properties of the

data distribution at different frequency scales. The MSM measure carries information not

only about the disbalance characteristics of the data, but also about its correlation structure.
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Thus, the MSM summary is likely to be more sensitive to the differences in visual func-

tioning between users than any other single measure, such as correlation and global Schur

Monotone measures. The combination of classifiers is proposed to address the inhomoge-

neous discriminatory information in the pupil diameter measurements.

The remainder of this chapter presents these MSM measures and their application in the

classification of individuals with varying visual functioning. Section 4.2 derives a mean-

ingful summary for high-frequency measurements for the purpose of classification, with

wavelet transform and Schur Monotone measures briefly reviewed. Additionally, the con-

cept of Schur Monotone summaries in the multiscale domain (MSM) is introduced and

its application is illustrated via examples. Section 4.3 describes the classifier combining

procedure and provides a Bayesian justification. Section 4.4 discusses the high frequency

pupil diameter measurements used in this study. Section 4.5 illustrates the use of the MSM

summaries of the high frequency pupillary behavior to classify the users. TheK-nearest-

neighbor (K-NN) classifier, equipped with combining techniques, is used for classification.

Finally, Section 4.6 discusses the factors affecting the classification performance and the

practical implications of the findings for the research in HCI.

4.2 Schur Monotone Summaries

In this section, we briefly review wavelet transforms. Next, the concepts of Schur Mono-

tone ordering and Schur Monotone (SM) measures are presented. Then, we introduce the

Multiscale Schur Monotone (MSM) measure as a natural way to combine multiscale rep-

resentations and Schur ordering and give two illustrative examples to demonstrate this new

measure.

4.2.1 Wavelet Transforms

Discrete wavelet transformations (DWT) have become indispensable tools in the analy-

sis of data with complex stochastic structure. The DWT is an appropriate tool to model
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non-stationary, non-Gaussian and long memory measurements. DWTs are simply linear

transformations. Lety be a data vector of dimension (size)n. To avoid algorithmic com-

plications we assume thatn is an integer power of 2. The vectord representing a wavelet

transform of vectory can be written as

d = Wy,

whereW is an orthogonal matrix of sizen× n.

In practice, the choice of the orthogonal matrixW is related to the selection of wavelet

basis, and ultimately, to the selection of a wavelet filter needed to implement the transform.

The details on theories and statistical applications of wavelets can be found in (Vidakovic,

1999). Due to the properties of the wavelet functions,W usually admits a factorization in

terms of a series of sparse matrices. A fast algorithm based on filtering to (equivalently)

factorize the matrixW and calculate the wavelet-transformed vectord was proposed by

(Mallat, 1989). This algorithm is easily implemented and is a part of many standard

wavelet packages, such as the WAVELAB module for MATLAB by Stanford University

(http://www-stat.stanford.edu/∼wavelab/).

4.2.2 Schur Monotone (SM) Ordering

Schur Monotone orderings are based on the SM measure of a vector. This is used to order

the vectors in terms of the their “disbalancing” characteristics. The definition of Schur

ordering utilizes the inverted order statistic of two normalized vectors with non-negative

components. For a pair ofn-dimensional vectorsx andy with non-negative components,

the Schur ordering is defined as

x ≺ y if





∑k
i=1 x[i] <

∑k
i=1 y[i], k = 1, ..., n− 1

∑n
i=1 xi =

∑n
i=1 yi

, (56)

with x[i] andy[i] being theith largest components ofx andy respectively. Whenx ≺ y,

then it is said thatx is Schur majorized byy.

51



4.2.3 Schur Monotone Measures

The Schur Monotone measure is a scalar value assigned to a vector that is sensitive to the

Schur Monotone order. There are many available Schur Monotone measures, which have

been previously used in economics and biology. In fact, any functionφ such that

(1) x ≺ y ⇐⇒ φ(x) ≤ φ(y), and φ(ax) = φ(x) for all a > 0,

OR

(2) x ≺ y ⇐⇒ φ(x) ≥ φ(y), and φ(ax) = φ(x) for all a > 0

can be used to measure the disbalance of a vectorx. If the first condition is satisfied,φ(·)
is called a Schur convex measure. If the second condition is true,φ(·) is called a Schur

concave measure. In both cases,φ(·) is a Schur Monotone measure. In this chapter, we are

interested in a SM measure defined as

φ2(x) = −
n∑
i

log
xi

S
,

whereS =
∑

i xi. This SM measure is usually called the Picard entropy (Picard, 1979),

which is slightly different from Shannon’s entropy (Shannon, 1948). Other SM measures

utilized in this study include Gini’s coefficient (Gini, 1912), Fishlow’s measure (Fishlow,

1973) and Emlen’s modified entropy measure (Emlen, 1973). There is a comprehensive

theoretical description and comparison of different SM measures in Marshall and Olkin,

1979. The choice of Picard entropy is substantiated by the relatively good performance in

discriminations as shown in Section 4.5.

4.2.4 Multiscale Schur Monotone Measures

As previously noted, Schur Monotone (SM) measures have been popular in economics and

biology. SM summaries usually measure disbalance (or non-uniformity) in an observed

vector. Therefore, this measure is expected to provide good discriminative information

if the analyzed vectors have different uniformity characteristics. Unfortunately, in some

practical examples, the global disbalance (in the time domain) among the data vectors are
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too weak to result in powerful discriminatory information. However, if we transform data

to the time-scale (wavelet) domain and compare the disbalance at corresponding frequency

scales, the discriminatory power may increase. This increase in sensitivity is apparently due

to the unmasking of the balance caused by the interplay of different scale structures and the

trends in the data. Through DWTs, the data vector is transformed to several wavelet coeffi-

cient vectors at different frequency scales (also called resolution levels). Therefore, we are

able to define the SM measure at each level, with each measure summarizing the disbalance

information of the data vector within distinguishable scales. This natural concept is named

the Multiscale Schur Monotone (MSM) measure. The computation of MSM is illustrated

in Figure 10.

Data in the time domain


Level j=1


….


Level: j=2


Level: j=3


DWT


Wavelet


Domain


MSM at j=1


MSM at j=2


MSM at j=3


MSM at  ….


Figure 10: Computation Diagram of Multiscale Schur Monotone Measures.

We provide an example to illustrate the case when the Multiscale Schur Monotone mea-

sure is beneficial compared to global, time domain disbalance measures. The exemplary

datasets are the two functions:

f(t) = Doppler + fGn(H = 0.2);

g(t) = a fixed permutation off(t),
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whereDoppler is a standard nonstationary testing function commonly used in nonpara-

metric regression (Donoho and Johnson, 1994) andfGn(H = 0.2) is a fractional Gaussian

noise with Hurst exponentH = 0.2 (Mandelbrotet al., 1968). Time series plots of the

typical data simulated fromf(·) andg(·) are presented in Figure 11. Clearly, these two

functions do not differ from each other as far the Schur Monotone measures in the time

domain is concerned, since this measure is invariant with respect to permutation. However,

if we map the data into the wavelet domain and compute the MSM measures, the different

scale levels become evident in their disbalancing measures. The apparent differences are

demonstrated by Figure 12, which is obtained by the analysis of simulated data. We simu-

lated200 sample paths fromf(·) andg(·) respectively, each of lengthN = 2048. Next, the

MSM measures were computed for each sample path. The disbalance measure employed

here within each scale in the MSM is the Picard entropy as defined in 4.2.3, though other

disbalance measures will show similar results. To examine the differences of the MSM

measures betweenf(·) andg(·), we provide box plots of the MSM at each scale, which are

included in Figure 12. The ability to distinguishf(·) andg(·) using MSM measures can be

explained by the disbalancing property of DWTs. The total inequality exhibited in the time

domain is allocated to different frequency scales depending on the correlation structure.

Statistically speaking,f(·) has higher values of the MSM in the first three scales thang(·)
with large probability. This pattern is more pronounced in the finer scales because of the

smoothing effect of wavelet filtering.

4.3 K-Nearest-Neighbor Classifiers and Their Combinations

The Nearest Neighbor (NN) method is one of the simplest ideas for modeling the regres-

sion (or classification) function between the response and predictor variables. It can be

expressed as

ŷ(xj) =
1

K

∑

xi∈NK(xj)

yi, (57)
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Figure 11: Typical time series plot for the data simulated from functionsf(t) andg(t),
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whereŷ(xj) is the fitted value of the response atxj andNK(xj) is the set of firstK nearest

points toxj in the predictor variable space. In our classification problem, the response

variabley (user group) is categorical and takes only discrete values (e.g., control, group

#1, etc.). The closeness concept used here is based on Euclidean distance. The Nearest

Neighbor method makes minimal assumptions on the underlying data and is very flexible

with respect to finding an arbitrary boundary. The crucial part ofK-NN modeling is the

tuning of the parameterK. It is well known (Hastieet al., 2001) that in classification

problems withK = 1, the misclassification rate is zero for training data set. However, the

classification boundary resulting from the Nearest Neighbor method depends very much

on the data adequacy of the training set. As a result, the boundary is often very wiggly

and unstable in the test set. In other words,K-NN classifiers often have a large amount of

variance in the prediction for the independent test data set.

An individual classifier usually performs best for certain types of data. However, due

to the complexity of certain types of datasets and/or those with a small number of sample

paths, the true properties of a population are not adequately described by a single classi-

fier. In other words, the inhomogeneities of the dataset make it difficult to find a single

K-NN classifier that optimally fits the data into. Although optimal results are achieved

from individual classifiers, each classifier describes the dataset by emphasizing certain lo-

cal aspects of features. The misclassification of aspects of different classifiers does not

necessarily overlap. The non-overlapped misclassified measurements suggest that those

individual classifiers provide complementary information for the prediction. Therefore,

a scheme using a combination of the classification rules may result in better predictive

performance. A diagrammatic representation of the classifier combining procedure is pre-

sented in Figure 13. In this chapter, the classifiers to be combined areK-NN with different

tuning parametersK. We employedR = 8 andC1, C2, ..., CR areK-NN classifiers with

K = 3, 4, . . . , 10 in our simulation studies afterward.

The combined classifier was originally proposed as an ad hoc procedure, which was
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Figure 13: Diagram of Classifier Combining

then justified by Bayesian decision theory (Kittleret al., 1998). Consider a classification

problem where four classes (y = 0, 1, 2, 3) are to be distinguished. Suppose that there are

R possible classifiers available, which we note asC1, C2, ..., CR. Each inputxj is assumed

to have prior probabilityP [y(xj) = k], with k = 1, 2, ..., 4. According to Bayesian theory,

the predicated clasŝy(xj) of measurementj with feature vectorxj, j = 1, 2, ..., N is

ŷ(xj) = arg max
k∈{0,1,2,3}

P [y(xj) = k|C1, C2, ..., CR]. (58)

Using Bayes theorem, the posteriori probability in (58) is

P [y(xj) = k|C1, C2, ..., CR] =
P [C1, C2, ..., CR|y(xj) = k]P [y(xj) = k]

P [C1, C2, ..., CR]
(59)

=
P [C1, C2, ..., CR|y(xj) = k]P [y(xj) = k]∑3

m=0 P [C1, C2, ..., CR|y(xj) = m]P [y(xj) = m]
.

Several combination rules can be derived from (59), based on different assumptions on

the model probability distributionP [C1, C2, ..., CR|y(xj) = k] and the prior probability

P [y(xj) = k]. These combining rules are summarized in Table 1. The final decision from

combined classifiers is

ŷ(xj) = arg max
k∈{0,1,2,3}

G(k), (60)

where the decision criteria functionG(.) is chosen from one of six rules in the second

column of Table 1 .
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4.4 High Frequency Pupil Dataset

In this section, we briefly describe the datasets used in this study and how the data was

preprocessed.

4.4.1 Dataset description

The equipment used to collect the pupillary response data during this study was the Ap-

plied Science Laboratories (ASL) Model 501 head-mounted optics system. Pupil size was

recorded, at a rate of 60 Hz, for each participant over 105 trials of a computer-based task

using a graphical user interface (GUI). A camera records the pupil image, which has been

brightened by a near-infrared beam that illuminates the interior of the eye. Pupil size is as-

sessed as the number of pixels attributed to the pupil’s image, which has been determined

by real-time edge detection processing of the image. Actual pupil diameter measurements

(in millimeters) are then calculated by multiplying each pixel count by a scaling factor,

which is based on the physical distance of the camera from the participant’s eye.

The dataset is comprised of pupillary response data streams for 36 individuals, as de-

scribed in Table 12. In this table,N refers to the number of individuals comprising this

user group. Visual acuity refers to the range of Snellen visual acuity scores of the better

eye for participants of each group. AMD refers to the presence (Yes) or absence (No) of

the disease AMD (age-related macular degeneration) in individuals within each group. The

number of data sets refers to the number of 2048-length data sets that were obtained from

the data streams for each group. For this study, data was collected from four groups of

individuals, classified by visual acuity and the presence or absence of AMD. Visual acuity,

an individual’s ability to resolve fine visual detail, was assessed via the protocol outlined

in the Early Treatment of Diabetic Retinopathy Study (ETDRS) (University of Maryland

School of Medicine, 2002). The experimental protocol from this study is fully described in

studies by Jacko and colleagues (Jackoet al., 2003).
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Table 2: Group characterization summary

Group N Visual Acuity AMD? Number of Data Sets

Control 19 20/20 - 20/40 No 111
#1 6 20/20 - 20/50 Yes 59
#2 5 20/60 - 20/100 Yes 57
#3 6 > 20/100 Yes 124

4.4.2 Preprocessing

Studies of pupillary responses are faced with the problem of how to remove blink artifacts.

A blink generally lasts about 70-100 msec. (producing an artifact spanning 4-6 observa-

tions under 60 Hz sampling) during which time the camera registers a loss and a pupil

diameter of zero is recorded. Thus, it is generally straightforward to detect and eliminate

these contiguous zero observation artifacts from the record. However, on either side of a

blink, one may also observe highly unusual recordings because the pupil may be measured

inaccurately when the eyelid partially obscures the pupil. The result may be an impossibly

small value for the pupil’s size.

To ensure that the analysis is conducted on pupil constriction or dilation and not on

misleading discontinuities caused by blinks or partial blinks, one either remove the blink

observations from the data entirely or replace them with interpolated values. Blinks (i.e.,

zero recordings) have been found to account for approximately 3-4% of all observations,

with partial blinks accounting for another 1% of the total number of observations. The

blink-removal procedure removes all observations having zero values (i.e., the blink) as

well as any extreme values that occur within six additional observations on either side of

the zero value (i.e., partial blinks). Figure 24 presents a preprocessed result of the typical

measurements from a healthy subject (control group).

Because of the difficulty in collecting these measurements, especially from individuals

with AMD, the original datasets were cut into equal length pieces to exploit their usage.

Another reason for the segmentation is that the original data streams were not equally

60



20 40 60 80 100 120
2

3

4

5

Time(second)

P
up

il 
D

ia
m

et
er

Data collected every 1/60 second 

20 40 60 80 100 120
2.5

3

3.5

4

4.5

5
Data collected every 1/2 second 

P
up

il 
D

ia
m

et
er

Figure 14: Typical measurements with different resolutions from a heathy subject (control
group)

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function (ACF)

Figure 15: Sample autocorrelation of Figure 24 (top) measurements

61



long among participants. The segmentation is conducted after the ’Six Law’ filtering, as

mentioned above. After segmentation and necessary outlier detection, the overall dataset

contains the sum of 351 segments of measurements. Each segment has a length of 2048

readings. The distribution of the number of the segments among the four groups (Control,

#1, #2 and #3) is reported in Table 12.

4.5 User Classification using Multiscale Schur Monotone
Measures

In this section, we attempt to classify the user groups based on their high frequency pupil

diameter measurements. Due to the high dimensionality of these measurements, it is neces-

sary to derive low dimensional summaries from these measurements to characterize these

users. The disbalance feature of the pupil-diameter measurements could be a good sum-

mary measure to describe the eye behaviors during computer-interaction tasks. However,

by simply looking at the statistics of the SM measure in the time domain as shown in Ta-

ble 3, no significant differences were found to distinguish these four groups. To increase

the sensitivity of the disbalance measures, we employed MSM measures. This choice is

also motivated by the fact that there are apparent long range correlations within these mea-

surements as displayed in Figure 25. The MSM measure characterizes the measurement

by considering both the disbalance and correlation structure simultaneously, which is not

possible in the time domain. Summary statistics of MSM measures are provided in Table

4. As we can see from this table, the differences among these groups are reflected by the

MSM measures, especially at the fine scales. For example, at the finest scale, level 1, the

mean MSM measures of group #1 and #2 are much smaller than that of the control group.

Group #3 tends to have similar mean disbalance at level 1 as the control group while they

apparently have different medians. These results are interesting, as the MSM measures

may provide evidences of the erratic effect that ocular diseases (in the case of groups #1
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and #2), particularly central field deficiencies, have on pupillary response behavior, as pre-

viously discussed. While the distinction between groups #1 and #2 and the control group

is expected, given the presence of ocular diseases in the experimental groups, the similarity

of the control group and group #3 is unexpected. As seen in Table 12, the control group and

group #3 are the most diverse with respect to both the presence of AMD and the level of

visual acuity. However, the MSM measures at level 2 indicate considerably more distance

between these two groups.

The addressed differences in the MSM measures imply the discriminatory information.

To fully integrate this information, we propose to use the combinedK-NN classifiers to de-

velop a statistical classification procedure to automatically distinguish the MSM measures

of the different user groups.

Table 3: Summary statistics of Schur Monotone Measures (104) in the time domain

Control #1 #2 #3

Min 1.563 1.5624 1.5625 1.5632
Mean 1.5619 1.5617 1.5618 1.5618

Median 1.5617 1.5617 1.5617 1.5618
Max 1.5616 1.5616 1.5616 1.5616

Std. Dev. 0.0003 0.0002 0.0002 0.0002

A 5-fold cross-validation scheme is used to guarantee the robustness of our procedure.

The datasets described in Section 4.4 are randomly divided into two parts: 80% of the

measurements are used in a training set, which is used to estimate the classification model;

and the remaining 20% of the measurements are regarded as a test set, used to validate the

classification model. The default scheme of combiningK-NN classifiers (see Section 4.3)

is employed to classify the MSM measures computed from pupil diameter measurements.

The cross-validation is repeated twenty times in order to estimate the mean and standard

deviation of the misclassification rate. The classification result is summarized in Table

14. The MSM measures at the three finest scales are considered here as input vectors in

the classification model and the wavelet basis used in DWT is the Daubechies wavelet
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Table 4: Group characterization summary in terms of the Schur Monotone measures in
the wavelet domain. Level 1-4 represent the first, second, third, and fourth finest scales
respectively.

Statistics Level4 Level3 Level2 Level1

Control Min 583.02 1358.64 5467.64 19404.85
Group Mean 470.32 1100.71 3739.06 15526.69

Median 459.57 1093.07 3629.92 15703.12
Max 390.71 944.39 2861.20 12335.15

Std Dev. 54.45 106.53 578.94 2154.64
Group Min 564.35 1559.91 5169.51 19261.05

#1 Mean 447.78 1073.71 3458.55 13626.51
Median 444.43 1006.24 3282.31 14814.35

Max 389.91 875.12 1954.61 6770.97
Std Dev. 37.34 166.40 1001.68 3610.46

Group Min 516.56 1297.45 4777.68 18714.94
#2 Mean 429.85 1030.24 3423.02 14160.38

Median 431.18 1024.13 3538.62 15387.57
Max 380.67 885.53 2187.12 7871.65

Std Dev. 30.24 79.17 728.43 3287.20
Group Min 733.43 2366.90 9005.10 25460.81

#3 Mean 452.76 1304.61 4738.77 15989.98
Median 432.37 1198.93 4800.60 18413.07

Max 375.40 872.74 1933.66 4266.89
Std. Dev. 58.81 385.70 2215.99 7435.45
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with two vanishing moments. The product combining rule, which assumes independence

among the classifiers to be combined, does not work very well in our study because we

combine a family ofK-NN classifiers with different tuning parameters, which are quite

likely dependent on each other. Therefore, the results for the product combining rule are

not reported here and thereafter. The rest of the combining rules mentioned in Section 4.3

work comparably in terms of the misclassification rate for the test set, although the MAX

rule seems to slightly outperform the others.

Table 5: Error rates after combining Nearest Neighbor classifiers using MSM measures at
three finest levels

rule mean median max min majority voting

Test avg. 0.2566 0.2592 0.2408 0.2592 0.25
Error std. 0.0345 0.0344 0.036 0.0382 0.0462

Training avg. 0.2474 0.2551 0.245 0.2257 0.2489
error std. 0.0098 0.0089 0.0104 0.0166 0.0093

4.6 Discussions

In this section, we discuss the possibility of improving the classification performance of the

default model used in Section 4.5 by choosing the appropriate coarsest level and wavelet

basis in the DWT.

4.6.1 Choice of the Coarsest Level

The number of scales included in the MSM measure is a parameter to be decided in our

classification model. This is equivalent to choosing the coarsest level in DWT, which affects

the size of the input vector and is further related to the fitting quality of the classifier. Too

many scales in the coarsest levels may result in overfitting, while not enough DWT levels

results in oversmoothing. Table 15 illustrates the fact that if we use MSM measures from

the two finest scales, the performance will be decremented at least 3%, which implies an

underfitted case. On the other hand, if we include MSM measures at the first four scales,
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the performance will still be decremented at least 2% - a case of overfitting. Therefore,

MSM measures at the first three finest scales are the optimal choice for our pupil diameter

classification.

Table 6: Error rates after combining Nearest Neighbor classifiers using MSM measures at
two finest levels (underfitting)

rule mean median max min majority voting

test avg. 0.2763 0.2796 0.2875 0.2855 0.2987
error std. 0.0347 0.0316 0.035 0.0334 0.0328

training avg. 0.232 0.236 0.2465 0.232 0.2523
error std. 0.0105 0.0088 0.0112 0.0097 0.0081

Table 7: Error rates after combining the Nearest Neighbor classifiers using MSM measures
at four finest levels (overfitting)

rule mean median max min majority voting

test avg. 0.2605 0.2664 0.2678 0.2711 0.2704
error std. 0.0463 0.0471 0.043 0.0442 0.0504

training avg. 0.2342 0.2384 0.2391 0.223 0.237
error std. 0.0116 0.0123 0.0134 0.0127 0.0116

4.6.2 Wavelet Basis Selection

The wavelet basis has substantial influence on the transformed coefficients of pupil di-

ameter measurements and is, therefore, an important factor in determining the classifier

quality. We formulate an optimization study to search for the best wavelet basis, which

results in the most accurate classification. The search will be limited to the Pollen wavelets

library. Pollen wavelets are a family of wavelet basis with a continuous mapping from

[0, 2π]N−1 to a set of “wavelet solutions” in terms of the quadratic mirror filters ofh =

{h0, h1, · · ·, h2N−1}, whereN is the number of vanishing moments. Pollen representation

of all wavelet solutions of length 4 (N = 2) and length 6 (N = 3) is given in Tables 8 and

9. The Daubechies wavelet family is included in the Pollen library as a special case.

There are many measures of classifier performance. Some popular measures include

scatter-matrix and Bayesian risk, among others. Though these separability measures are
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Table 8: Pollen paramterization forN = 2 (four-tap filters).[s = 2
√

2]

n hn for N = 2
0 (1 + cos(θ)− sin(θ))/s
1 (1 + cos(θ) + sin(θ))/s
2 (1− cos(θ) + sin(θ))/s
3 (1− cos(θ)− sin(θ))/s

Table 9: Pollen paramterization forN = 3 (six-tap filters).[s = 2
√

2]

n hn for N = 3
0 [1 + cos(θ1) + cos(θ2) + sin(θ1)− sin(θ2)− cos(θ1 − θ2)− sin(θ1 − θ2)]/2s
1 [1− cos(θ1) + cos(θ2) + sin(θ1)− sin(θ2)− cos(θ1 − θ2) + sin(θ1 − θ2)]/2s
2 [1 + cos(θ1 − θ2) + sin(θ1 − θ2)]/s
3 [1 + cos(θ1 − θ2)− sin(θ1 − θ2)]/s
4 [1− cos(θ1) + cos(θ2)− sin(θ1) + sin(θ2)− cos(θ1 − θ2)− sin(θ1 − θ2)]/2s
5 [1 + cos(θ1)− cos(θ2)− sin(θ1) + sin(θ2)− cos(θ1 − θ2) + sin(θ1 − θ2)]/2s

optimal (or almost optimal) under certain assumptions, computational issues like matrix

inversion and prior statistical knowledge about the data often make this impractical. For a

detailed discussion of these measures, the readers are directed to Fukunaga, 1990. A more

practical and easily implemented measure of the separability is the misclassification rate

associated with the choice of wavelet filterH = (h0, h1, ..., hn).

As a result, our search procedure focuses on minimizing the misclassification rate in the

test set with respect to the wavelet filters. The first search is done in the Pollen library with

N = 2. The results are presented in Figure 16. As shown in this figure, the performance

varies up to about 9% with different values ofθ and the best performance is achieved

aroundθ = 100◦. The scaling and wavelet functions corresponding to this optimal Pollen

wavelet basis are plotted in Figure 17. To compare the performance of the different pollen

wavelet basis with a different number of vanishing moments, the search is conducted for

Pollen wavelets withN = 3. The results are shown in Figure 18. ForN = 3, there is more

variability in performance with these different parameters than those in the case ofN = 2,

resulting in worse overall performance compared withN = 2. This can be attributed
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to the locality and smoothness of the wavelet bases. The Pollen wavelet withN = 3 is

smoother and, hence, tends to smooth the data more thanN = 2. It may be the case that

some of the discriminatory information has been smoothed, which causes the classification

performance to become worse.
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Figure 16: Misclassification rates using a Pollen wavelet basis with different parameter
θ ∈ [0, 2π]. The classifiers here are the combinedk-NN with MsSC measure input vectors.
The error rates shown in the figure are the average values for 20 randomly selections of test
set from the whole dataset. The minimum error rate here is 21.32%, which is achieved at
θ = 100◦.
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Figure 17: GT wavelet basis (Four-tap Pollen wavelet basis withθ = 100o).
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Figure 18: Misclassification rates using Pollen wavelet basis with different parameterθ ∈
[0, 2π]2. The classifiers here are the combinedk-NN with MsSC measure input vectors.
The error rates shown in the figure are the average values for 20 randomly selections of test
set from the whole dataset. The error rates here are obviously quite larger than 4-tap Pollen
wavelet filter. The 6 curves correspond to different values ofθ1.

4.7 Conclusions and Future Work

The classification procedure for the user group is developed utilizing the Multiscale Schur

Monotone measures in the wavelet domain and ad hoc classifier combination schemes.

We investigated the performance of different Multiscale Schur Monotone measures in this

particular user classification problem. The Picard entropy measure works best among the

considered candidates. We also considered the stabilization of misclassification rates by

using combinations of single basic classifiers. This heuristic procedure implies some ap-

proximation of Bayesian model averaging. Our user classification example validates this

procedure through the relatively low misclassification rate, which resulted in the randomly

selected test set. Additionally, we studied the problem of searching for the optimal wavelet

basis among certain candidate wavelet families. Those families includes Daubechies and

Pollen. In the Pollen wavelet family (limited to four tap filters), we found that the ba-

sis with parameterφ = 100◦ achieves the best classification performance for the pupil-

diameter measurements. Overall, the expected misclassification could be at least around

21% by choosing the appropriate wavelet basis and Multiscale Schur Monotone measure.
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This exciting result is of much importance in the HCI community.

The utility of these analytical tools for applied research in HCI has tremendous poten-

tial, as user classification is of primary importance in this field of research. The use of novel

statistical methods, as shown in this chapter, shows promise for the ability to use complex

physiological data from users to better understand their unique needs and behaviors. While

further data collection is needed to help increase the amount of data being analyzed, the

initial results suggest that the presence of ocular disease and/or acuity loss does result in

dynamic, complex differences in pupil behavior. In essence, MSM measures can be used

to ‘tease-out’ differences in the pupillary behavior of individuals with and without ocular

disease, possessing a range of visual acuity. The results not only show the fairly reliable

classification or distinction of individuals with and without ocular disease (AMD), as the

separation of the control group and group #1 illustrates, but the results also illustrate finer

distinctions amongst groups with a similar ocular disease, but with varying visual function-

ing (e.g., visual acuity), as the separation of groups #1, #2, and #3 illustrates. This ability

to separate these groups, based on dynamic pupillary behavior, illustrates the usefulness of

these analytical procedures for user classification.

One of the overreaching goals of this study was to examine the use of high-frequency

pupillary behavior as a means of quantitatively assessing differences between users during

performance of a computer-based task. The results of this study show great potential toward

this goal, as MSM measures were employed to distinguish the user groups. This distinction

between user groups was used to generate a promising predictive model of user classifica-

tion. The future implications of this study include the application of these, and similar,

analytical tools for other high frequency physiological data, such as eye movement, heart

rate and brain signals.
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CHAPTER V

MULITFRACTAL DISCRIMINATION MODEL FOR
TURBULENCE

Numerous studies have already demonstrated the multifractal properties of turbulence

within the inertial subrange. How atmospheric stability (i.e. a boundary condition) alters

the multifractal spectrum (MFS) of turbulent velocity and temperature fluctuations in the

atmospheric surface layer (ASL) remains to be investigated. A challenge to estimating the

MFS from time series via traditional regression approaches is the heteroskedastic problem

because the variance of the error term are shown to depend on scale. Using a combination

of Discrete Wavelet Transforms (DWT) and a Weighted Least Squares (WLS) scheme, het-

eroskedastic effects are minimized and a robust estimator of the scaling parameters needed

to compute the MFS is derived. Next, to quantify the effects of atmospheric stability on

the MFS function, we examine how stability impacts three canonical geometric attributes

of the MFS - left slope (rise), mode, and broadness. For stationary conditions, the MFS

mode can be related to the scaling or Hurst exponent. These geometric attributes of MFS

(or GAMFS) are computed for the three velocity components and temperature time series

collected in the ASL for a wide range of atmospheric stability conditions. The evalua-

tion of how atmospheric stability alters the MFS of a single flow variable is conducted via

ANOVA tests and Box-plots. We found that atmospheric stability impacts most the MFS

mode for all four variables. In particular, we showed that the MFS mode appears smaller

for stable than for unstable conditions. We also showed that the left slope is the least

impacted GAMFS by atmospheric stability. Finally, we demonstrated that the GAMFS for

temperature under near neutral and stable stability conditions significantly depart from their

velocity counterparts. The latter finding indicates clear dissimilarity in the MFS statistical

properties of temperature and velocity within the ASL inertial subrange. This dissimilarity
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between temperature and velocity within the inertial subrange is consistent with numerous

laboratory studies that utilized higher order structure function approaches.

5.1 Introduction

One of the main challenges to describing land-atmosphere momentum and sensible heat

turbulent exchange is attributed to the nonlinearities in the Navier-Stokes equations, which

lead to rich spectral variability at numerous turbulent scales and possible non-local interac-

tions among them. Recent attempts to quantify the multiscale properties of such variability

made use of wavelet transforms as an analyzing tool (e.g. [Meneveau,1991; Addison,

2002]) and the multifractal formalism as a theoretical tool (e.g. [Sreenivasan,1991;Mene-

veau,1991;Frisch,1995;Antonia and Sreenivasan,1997;Yakhot and Sreenivasan,2004]).

In particular, the multifractal framework assumes that local singularities exist within tur-

bulence [Frisch and Parisi, 1985] but are nested in fractal sets (see [Riedi,1999; 2002] for

reviews). This assumption deviates from the classical and widely used KolmogorovK41

scaling in which turbulence is assumed to posses a constant scaling behavior characterized

by a single Hurst exponent of1/3 ([Mandelbrot,1968; Frisch, 1995]). The anomalous

scaling (i.e. multifractality) of turbulence is commonly attributed to short-circuiting of the

energy cascade due to the existence of organized large-scale features such as ramp-like

structures, which are influenced by boundary conditions, and themselves directly influence

small scale turbulence ([Warhaft,2000; Celani and Vergasola,2001]). Hence, a logical

question to explore is whether measures of multifractality, such as the multifractal spectrum

(MFS), are affected by boundary conditions such as surface heating and friction velocity

or a combination thereof such as atmospheric stability. The MFS describes the “richness”

of the local irregularity or disorder in turbulence in terms of local strengths of singular-

ities. Furthermore,K41, and models that employK41 (e.g. subgrid closure in Large

Eddy Simulations; high frequency spectral corrections to eddy correlation measurements,

synthetic turbulence generators, etc...) implicitly assume that the MFS is independent of

atmospheric stability for velocity within the inertial subrange. Finally, while the inertial
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subrange similarity (or dissimilarity) between temperature and velocity has already been

explored in numerous studies via the structure function approach (e.g. [Warhaft, 2000;

Katul et al., 1997]), few studies considered this similarity (or dissimilarity) for the MFS

within the context of different atmospheric stability regimes, the subject of this study.

In this chapter, we seek to address the following problem: how does atmospheric stabil-

ity alter the multifractal spectrum of atmospheric surface layer (ASL) turbulence. Towards

this end, we use longitudinal (u), lateral (v), and vertical (w) velocity along with virtual

potential temperature (T ) time series measurements collected in the ASL for a wide range

of atmospheric stability conditions of a grass-covered surface.

There are two obstacles to addressing this problem: The first deals with the estimation

of the MFS from limited time series, and the second deals with assessing the statistical

significance of whether atmospheric stability alters the MFS. To address the first issue, we

explore the estimation of MFS via discrete wavelet transforms (DWT) because of (i) the

availability of fast algorithms (vis-a-vis box counting), (ii) automatic separation of trends

and fluctuations, and (iii) the widely demonstrated effectiveness in various applications

([Arneodo et al.,1998; Vehel et al.,1997]). To address the second issue, we propose a

general approach that does not a priori assume a cascade model but directly analyzes the

effects of atmospheric stability on the geometric attributes of the MFS.

However, before we describe these approaches, a brief summary of the experiment and

resulting data is presented next.

5.2 Data

Time series measurements ofu, v, and verticalw velocity components, and air tempera-

tureT were collected at the Duke Forest near Durham, North Carolina. The measurements

were conducted June, 12-16,1995 at 5.2 m above a grass surface. The measured time

series were sampled at56Hz and were subsequently divided into19.5 minute intervals
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to produceN = 65, 536 time measurement per flow variable per run. We use an ensem-

ble of 95 runs,6 collected in a stable regime,23 in a near-neutral regime, and the rest in

unstable atmospheric stability conditions. Further details about the experimental setup, at-

mospheric stability conditions, inertial subrange identification, and instrumentation details

can be found elsewhere [Katul et al., 1997; 2000]. To overcome the limited sample size of

stable and neutral runs, each time series was further segmented into4096 data points for

the purposes of MFS estimation, described next.

5.3 Wavelet-based Multifractal Spectrum

Unlike power spectra, which describe the distribution of signal energy, the MFS describes

the distribution of local singularities expressed in terms of the so-called Holder exponents.

Geometrically, a local singularity at timeto can be visualized as a relation between neigh-

borhood fluctuations of a functiong(t) and two bounding curves as shown in Fig. 1. To

estimate such a singularity, construct two curves given byg(to) ± c|t − to|α, wherec is a

constant. The maximum value ofα that locally boundsg(t) in the neighborhood ofto be-

tween these two curves is the local singularity (see bottom-left of Fig. 1). Note that when

α is large, the curvatures are narrow thus limiting local fluctuations (see bottom-right of

Fig. 1). On the hand, whenα is small, the two curves have small curvature, thus allowing

g(t) to take on large local excursions (i.e. irregular). Asto slides across the time series, the

distribution of the resultingα is described by MFS. Formal definitions of local singularities

are discussed elsewhere [Seuret and Vehel,2001;Pesquet-Popescu and Vehel,2002]. While

this geometric interpretation is intuitive, it is computationally not feasible.

Several authors have explored the link between the size of the wavelet coefficient and

Holder exponent, and hence, it is natural to consider wavelets as a basis for computing MFS

([Meneveau,1991;Muzy et al.,1993]). The wavelet-based calculation of MFS relies on
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Figure 19: The geometric interpretation of local scaling exponents for a time series. The
distribution ofα derived from the time series at various times is the Multifractal spectrum.

the concepts ofpartition function, but for fast estimation algorithms, relies on the concept

of Legendre transform. In brief, the partition functionT (q) is defined as

T (q) = lim
j→−∞

log2 E|dj,k|q, (61)

wheredj,k is theL1-normalized wavelet coefficient at level (or scale index)j and time (or

position index)k, andq is the order of moment. Note that such normalization of the wavelet

coefficient departs from the standardL2 normalization often employed in fast wavelet al-

gorithms. We emphasize thatq is real and can be positive or negative though negative

moments do not have clear physical interpretations. While this definition ofT (q) is of the-

oretical significance, it also cannot be readily employed to time series with finite durations.

To circumvent this limitation, it has been proposed that the local singularity strength

can be measured in terms of the wavelet coefficients via [Gonçalv̀es et al.,1998]

α(t) = lim
k2j→t

1

j
log2 |dj,k| (62)
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With α determined, the MFS, denoted byf(α), measures the distribution ofα(t) within

a time series and can be obtained using the standard box-counting technique,

f(α) = lim
ε→0

#{α(t) : α− ε < α(t) < α + ε,−∞ < t < ∞}. (63)

For an efficient algorithm that estimates the MFS by weighted least squares and the

Legendre transform in the wavelet domain, see next section.

5.4 Estimation of MFS

Although it is feasible to estimate the MFS using (72) and (63), the method is not practical

due to the difficulty in approximating the finite limit and the computational expense. A

useful tool to improve the estimation efficiency is the Legendre transform. The Legendre

transform of the partition function is

fL(α) = inf
q
{qα− T (q)}. (64)

It can be shown thatfL(α) converges to the true MFS using the theory of large deviations

([Ellis, 1984]).

From a practical point of view, we still require a robust estimator of the partition func-

tion. If we rearrange (61), it becomes,

E|dj,k|q ∼ 2jT (q), as j → −∞ (65)

It was shown that theqth moment of the wavelet coefficients of a power law process ([Ar-

neodo et al., 1998]) satisfies the following equation:

E|dj,k|q = Cq2
jqH (66)

whereH is the so-called self-similarity exponent andCq is a constant depending only on

q. Comparing (65) and (66), one can relate the partition function estimation with the self-

similarity exponent estimation problem. It is a standard practice to use linear regression to
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identify the self-similarity exponentH since the valuesE|dj,k|q can be easily obtained by

a moment-matching method thereby facilitating the estimation ofT (q). Formally,

log2 Ŝj(q) ∼ jT (q) + εj, (67)

whereŜj(q) = 1
N2−j

∑N2−j

k=1 |dj,k|q is the empiricalqth moment of the wavelet coefficients

(N is the length of the entire time series) and the error termεj is introduced from the

moment matching method when replacing the true moments with the empirical ones. Sim-

ple ordinary least square (OLS) is the most convenient choice for estimating the partition

function. However, the bias can be large in some extreme cases since the variance of the

empiricalqth moments is not constant with respect to scalej. The variance oflog2 Ŝj(q) is

V ar(log2 Ŝj(q)) =
A(q)

N2−j
+

B(q)

N24−j
+ · · · (68)

whereA(q) andB(q) are constants depending only on the underlying distribution function

of the finest wavelet coefficient. Therefore, it is clear that the regression problem in (67)

is a heteroskedastic problem in which the variances of the error terms are not constant

across the scales. Even though the OLS solution ofT (q) is still unbiased and consistent

asymptotically, it is no longer robust due to the heteroskedasticity. To resolve this problem,

[Audit et al., 2002] proposed a weighted least squares (WLS) method to obtain unbiased

estimates ofT (q). The WLS estimator down-weights the squared residuals for scales with

large variances, in proportion to those variances. If one findswj = V ar−1(log2 Ŝj(q)), a

WLS estimator ofT (q) is given by

T̂ (q) =

∑J
j=1 wj

∑J
j=1 jwj log2 Ŝj(q)−

∑J
j=1 jwj

∑J
j=1 wj log2 Ŝj(q)∑J

j=1 wj

∑J
j=1 j2wj − (

∑J
j=1 jwj)2

(69)

In practice, the exact analytical formulaV ar(log2 Ŝj(q)) is too complicated to be used

directly. However, if theN is reasonably large (as is the case here), the first term in (68)

will be dominant. Therefore, the approximate weights arepj = N2−j.

This WLS estimator results in a variance given by,

V ar(T̂ (q)) =
A(q)C(J)

N
+

B(q)D(J)

N2
(70)

79



where the constantsC(J) andD(J) can be evaluated from the formula provided in [Audit

et al., 2002].

Once theT (q) is estimated, the next step is to perform the Legendre transform. Since

∂(αq−T (q))
∂q

= α − T ′(q) andT ′′(q) < 0 (Gonçalv̀eset al., 1998), the maximum value of

αq − T (q) is achieved atq = T ′(−1)(α). So, performing the Legendre transform is divided

into two steps: First, the numerical derivative ofT (q) is obtained using finite differencing;

then, the value of Legendre spectrum atα = T̂ ′(q) is evaluated. We point out that the

Legendre transform is not able to estimate the MFS value at arbitrary singularity strength

α. The set of the MFS values are determined by a pre-specified vector ofq values. The

moreq values used, the finer the MFS will appear, i.e., the resolution of the spectrum is

determined by the “(order) sampling frequency” of the moments. Note that the resolution

of theq vector does impact the calculation of broadness measure throughcf .

5.5 Geometric Attributes of the Multifractal Spectrum

To assess how atmospheric stability impacts the MFS, we first introduce three geometric

features of the MFS and then track how variations across stability classes result in vari-

ations in the three features. These three features originate from the fact that the MFS of

a fractional Brownian Motion or an fBm process (i.e. mono-fractal) is known to consist

of three canonical descriptors: the vertical line (slope=+∞), the maximum point, and the

right slope (slope=-1) ([Gonçalv̀es et al.,1998 ]). Mathematically, this fact is stated in the

following theorem.

Theorem 5.5.1 For the standard fractional Brownian Motion (fBm) with Hurst exponent

H, its multifractal spectrumf(α), which describes the distribution of local singularities

(i.e. α’s ), is

f(α) =





−∞, α < H

0, α = H

H − α, α = H

(71)
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The maximum point corresponds to the mode and the vertical line and the right slope

are thought to be inherent features that distinguish fBm from a multifractal process. To

illustrate, consider the two processes in Fig. 2. One of them is a synthetically generated

fBm while the other one is taken from the turbulence measurements (widely believed to be

a multifractal process). Several observations can be drawn from this figure:

1) for the fBm process, it is rare to obtain a perfect spectrum (i.e. vertical line, maxi-

mum point at the Hurst exponent, and a unity right slope) because of imperfections in the

MFS estimation processes.

2) the left slope of the fBm MFS is much closer to the vertical line when compared to

the MFS of turbulence.

3) the width spread of the fBm MFS is much smaller than that of the turbulence MFS

indicating lack of richness in singularity indices for the fBm process (as expected).
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Estimated Turbulence
Estimated fBm
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Figure 20: Multifractal Spectra for mono- (dashed line) and multi-fractal (solid line) pro-
cesses. The dotted line indicates the theoretical slope of the spectrum for an fBm process
(mono-fractal) with a Hurst exponent of1/3

In short, this figure demonstrates that even for a multifractal process, the key attributes

of the MFS can be quantitatively described with a left slope, mode, and width spread.
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While the left and right slopes can be obtained from linear regression, the width spread

cannot be computed automatically. This difficulty is attributed to (i) automatically locating

the start and end points of the width spread, and (ii) the discreteness of the MFS. The

former is difficult conceptually while the latter is difficult computationally. There are many

ways to define the width spread. In this chapter, we define the broadness of the MFS as

follows:

Suppose thatα1 andα2 are two roots that satisfy the equationf(α) + cf = 0, with cf

being a constant andα1 < α2. The broadness atcf of the MFS is defined asB = α2 − α1.

This definition is also presented in Fig. 3. The deviation from the mono-fractal can be

computed according to this Broadness measure since it posts a universal standard on the

width spread (i.e. defined at levelcf ). It is worth to point out the constantcf can be adjusted

empirically to insure that this measure is well defined for all analyzed signals. For this

experiment, we found thatcf = −0.2 is optimum for broadness calculations. The choice of

cf is correlated with the choice of theq discretization and the inherent data characteristics.

The discreteness may also produce difficulties in the computation of broadness because of

the difficulty in obtaining exact roots of the equationf(α)+0.2 = 0 from the set of discrete

values ofα. To bypass this problem, we compute the minimum value of|f(α) + 0.2| with

respect toα instead of directly solving the equation.

5.6 The Effects of Atmospheric Stability Conditions on the
MFS

In this section, how atmospheric stability influences these three geometric attributes of

the MFS (or GAMFS) for all the four flow variables is discussed. Towards this end, we

computed the broadness, the mode, and left slope for each measurement run and each flow

variable. Table 1 summarizes these GAMFS characteristics foru, v, w, andT .
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Figure 21: Canonical features of the multifractal spectrum defining the geometric at-
tributes (GAMFS), including the left slope, the Broadness measure, and the mode.

Table 10: Ensemble summary statistics of the three geometric components of the MFS for
the three velocity components and temperature and for each stability class.

Variable Stability Left slope Mode Broadness

Stable Mean 0.341 0.375 0.631
Std. 0.069 0.061 0.205

u Neutral Mean 0.348 0.409 0.612
Std. 0.067 0.067 0.183

Unstable Mean 0.340 0.407 0.631
Std. 0.053 0.062 0.180

Stable Mean 0.357 0.359 0.564
Std. 0.113 0.095 0.202

v Neutral Mean 0.337 0.396 0.594
Std. 0.046 0.053 0.151

Unstable Mean 0.343 0.399 0.632
Std. 0.054 0.068 0.187

Stable Mean 0.343 0.369 0.612
Std. 0.044 0.074 0.167

w Neutral Mean 0.354 0.378 0.589
Std. 0.045 0.062 0.143

Unstable Mean 0.349 0.392 0.653
Std. 0.057 0.073 0.183

Stable Mean 0.340 0.331 0.589
Std. 0.073 0.111 0.184

T Neutral Mean 0.321 0.280 0.613
Std. 0.066 0.066 0.241

Unstable Mean 0.371 0.413 0.623
Std. 0.081 0.139 0.203
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To investigate whether the left slope, the mode, and the broadness vary with stability

class, ANOVA tests were conducted and the correspondingp-values are reported in Table

2. This analysis demonstrated that atmospheric stability significantly impacts:

1) the mode of the MFS for all four variables.

2) the broadness forv andw.

3) the left slopes ofT .

Table 11: p-values from an ANOVA test to determine whether atmospheric stability sta-
tistically impacts GAMFS for all four flow variables. Statistically significant effects are
indicated by ap-value< 0.05

Variable Left slope Mode Broadness

u 0.576 0.003 0.922
v 0.216 0.001 0.026
w 0.597 0.046 0.02
T 0 0 0.502

The fact that the MFS of all four variables is impacted by atmospheric stability suggests

that the mode (or the scaling exponent) may be the most sensitive indicator among the three

GAMFS. Recall that forK41 theory, the mode must be1/3. Here, we found that the mode

of all three velocity variables and all stability classes exceed1/3. Only for unstable atmo-

spheric stability conditions does the MFS mode forT exceed1/3. For neutral conditions,

it appears that the mode of the MFS drops significantly below1/3 (i.e. high intermittency).

Beside the ANOVA tests, we also provide Box-plots to examine how stability alters the

mode and broadness between two different stability classes (Fig. 4 and Fig. 5 respectively).

In Fig. 4, we found that the modes corresponding to the stable regime are generally smaller
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than those corresponding to the unstable regime and this appears general for all flow vari-

ables. For velocity, the main difference between the two stability classes is that surface

heating contributes to the production of turbulent kinetic energy (TKE) for unstable con-

ditions and the destruction of TKE for stable conditions. The smaller exponent for stable

conditions indicates a higher irregular or intermittent phenomena - at least when compared

to their unstable counterparts. Possible causes may be attributed to the fact that pockets

of weak to no turbulence within the time series are interrupted by mechanical production

of TKE thereby producing higher irregularity and more frequent small local scaling expo-

nents.

Finally, the fact that the MFS mode for temperature significantly departs from its veloc-

ity counterpart for near-neutral and stable conditions suggests clear dissimilarities between

inertial scale thermal and velocity fluctuations. These results are not surprising as several

studies already suggested statistical dissimilarity betweenT andu fluctuations within the

inertial subrange (e.g. see review by [Warhaft,2000]). What is new here is that the quan-

tification of these dissimilarities is conducted within the context of MFS. For example, the

MFS mode forT is consistently smaller than the MFS mode ofu, v, andw for near neutral

and stable conditions, suggesting more “local irregularities” in theT time series (see Fig.

1). This MFS analysis further confirms the global scaling analysis conducted via higher or-

der structure functions elsewhere [Warhaft,2000], which argued thatT is more intermittent

thanu. However, what is surprising is the fact that the largest difference between velocity

and temperature MFS modes are for near-neutral conditions, when temperature acts as a

passive scalar.
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Figure 22: Box-plots of the MFS mode versus stability class for all four flow variables. In
these plots, ‘+’ indicates outlier, the length of the bars reflects the variability, and the lines
in the middle of these bars correspond to the median values. The dashed line represents
K41 theory.
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5.7 Conclusions

Theoretical arguments based on the Navier-Stokes equations and statistical analysis of nu-

merous experiments have shown that ASL turbulence, the dominant transport agent in mo-

mentum and heat transfer between the land surface and the atmosphere, is multifractal.

How boundary conditions at the land surface, such as surface heating or shear stresses,

impact the multifractal properties of ASL turbulence within the inertial subrange remains

to be investigated. This study is among the first to address the problem of quantifying the

effects of atmospheric stability on the multifractal spectrum (MFS) of turbulent flow vari-

ablesu, v, w andT within the ASL inertial subrange. We used a wavelet-based estimator of

the MFS in conjunction with a weighted least squares to improve the robustness of the MFS

estimation. To efficiently compare the MFS for different variables and stability conditions,

we defined a set of geometric attributes (GA) that describe the main features of the MFS

(referred to as GAMFS). The GAMFS ofu, v, w andT within different stability are then

estimated and empirically compared using descriptive statistics. ¿From the ANOVA tests,

we found that stability conditions impact all four variables in terms of the mode of MFS

while broadness and left slope are less sensitive to the stability conditions. We also showed

that the MFS mode for temperature significantly depart from their velocity counterpart for

stable and even more so for near-neutral conditions suggesting clear dissimilarity in thermal

and velocity inertial subrange statistical properties. This conclusion lends indirect support

to simulation results that showed extra irregularities (or anomalous scaling) in small scale

scalar concentration statistics originate from the “passive scalar mixing process” itself and

not from the complexities in the turbulent velocity [Shraiman and Siggia,2000].

While we showed that the certain components in GAMFS parameters in the inertial

subrange vary with atmospheric stability class for velocity and temperature, several thorny

issues remain to be explored in the future. For example, can the stability dependence of

the GAMFS components guide new subgrid models for Large Eddy Simulations of the

atmospheric boundary layers; assist in analytical high frequency spectral corrections to
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turbulent flux measurements for different stability regimes; or aid in the development of

low-dimensional dynamical models that describe the interaction between high frequency

turbulence statistics and atmospheric stability?

¿From a methodological point of view, we proposed an approach that can detect shifts

in the multi-scale properties of stochastic processes (e.g. MFS) with potential applications

that go beyond ASL turbulence. For example, the GAMFS can shed some light on several

on-going debates about the similarity between ASL turbulence and the price dynamics in

the foreign exchange market (e.g. [Mantegna and Stanley,1996]), or about the connection

between precipitation formation and their MFS properties (e.g. [Carsteanu et al., 1999]).

5.8 References
1. Addison, P. (2002).The illustrated wavelet transform handbook: Introductory theory

and applications in the science, engineering, medicine, and finance,353 pp, Institute
of Physics Publishing, Philadelphia, USA.

2. Arneodo, A, E. Bacry, S. Jaffard, and J.F. Muzy (1998). Singularity spectrum of
multifractal functions involving oscillating singularities,Journal of fourier analysis
and applications. 4, 159-174.

3. Audit, B, E. Bacry, J.F. Muzy, and A. Arneodo (2002). Wavelets based estimators of
scaling behavior,IEEE, Trans. in Information Theory, 48, 2938-2954.

4. Carsteanu, A., V. Venugopal, and E. Foufoula-Georgiou (1999). Event-specific mul-
tiplicative cascade models and an application to rainfall,Journal of Geophysical
Research-Atmospheres, 104(D24), 31611-31622.

5. Celani, A, and M. Vergassola (2001). Statistical geometry in scalar turbulence,Phys.
Rev. Lett, 86, 424-427.

6. Ellis, R. (1984). Large deviations for a general class of random vectors,Ann. Prob.,
12,1-12.

7. Frisch, U and G. Parisi (1985). Fully developed turbulence and intermittency.Pro-
ceeding of Intenational School in Physics.

8. Frisch, U. (1995). Turbulence, 296 pp,Cambridge University Press.
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CHAPTER VI

MULITFRACTAL DISCRIMINATION MODEL FOR
HIGH FREQUENCY PUPIL DATA

Multifractality present in high frequency pupil diameter measurements, usually con-

nected with irregular scaling behavior and self-similarity, is modeled with statistical accu-

racy and discriminatory power. The Multifractal Discrimination Model (MDM) is proposed

to determine the ocular pathologies based on the pupil diameter measurements during the

interaction with graphical user interfaces. The MDM consists of two parts: (1) multifractal

spectrum and (2) combinedk-nearest-neighbor classifier. Analysis based on descriptive

statistics and kernel density estimation is provided to obtain the statistical description of

the inherited multifractality. The multifractal spectrum is used to discriminate pupil behav-

ior measurements from four groups differing in ocular pathology. The spectrum broadness

and maximum (Hurst exponent), two measures characterizing the multifractal spectrum of

observations, are proposed as the distinguishing features among the groups. The combined

nearest neighbor classifier is a model free and robust classifier, which is thought to be a

appropriate classifier for the accurate prediction of ocular pathologies of the pupil diameter

measurements.

6.1 Introduction

The discipline of human computer interaction (HCI) strives to evaluate and improve user

performance and interaction with information technologies for many different users in

many different contexts. Mental workload has long been recognized as an important com-

ponent of human performance during interaction with complex systems (Gopher & Donchin,

1986),, such as computers. Notably, extreme levels of workload (high and low) have been

shown predictive of performance decrements for different users under different conditions.

To this end, this study examines the workload of visually-impaired users when performing
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a computer-based task.

Previous investigations have examined the interactions of users with the visual im-

pairments caused by age-related macular degeneration (AMD) (Jacko et al, 2001, 2003a,

2003b). AMD is one of the leading causes of visual impairment and blindness for indi-

viduals 55 years of age and older (The Schepens Eye Research Institute, 2002). Since

the majority of information offered by computers is presented visually on a screen, these

users are at a clear disadvantage. Research efforts directed towards the characterization

of computer interaction for users with visual impairments can provide designers with the

knowledge to better anticipate user needs in the development of information technologies.

AMD affects central, high-resolution vision, which has a large impact on the individ-

ual’s ability to perform focus-intensive tasks, such as using a computer (The Center for the

Study of Macular, 2002). Researchers have found that users with AMD tend to perform

worse than normally-sighted users, as measured by performance metrics such as task times

and errors, on simple computer-based tasks (Jacko et al, 2001, 2003a, 2003b). However,

little work has been done to examine how these performance decrements are affected by

increases in mental workload due to sensory impairments. Mental workload has long been

recognized as an important component of human performance during interaction with com-

plex systems (Gopher & Donchin, 1986).. Notably, extreme levels of workload (high and

low) have been shown predictive of performance decrements. Measures of workload can

be performance-based, survey-based, or physiologically assessed.

Pupil diameter is a well-documented, physiological measure of mental workload (see

Loewenfeld (1999) and Andreassi (2000)). While research has shown pupillary activity to

be related to changes in mental workload and task difficulty in a number of domains (Backs,

1992, Kahneman, 1973, Beatty, 1982, Marshall et al, 2002), the complex control mecha-

nism of the pupil has made it difficult to extract the small, meaningful signals, related to

changes in mental workload from the larger, overall noisy signal of pupillary activity (Bar-

bur, 2003.). This being said, it is necessary to develop analytical techniques that can isolate
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these small changes in pupillary behavior. A more comprehensive analysis of the pupil

measurement may provide a solution to this problem and provide a unique characterization

of interaction for individuals with AMD.

The development of analytical tools for high frequency data lends strong support to the

analysis of the pupil signal. The high frequency pupil measurements share many impor-

tant features with other extensively studied measurements, such as the turbulence (Shi et

al, 2003), internet traffic (Abry & Veitch, 1998) and high frequency financial time series

(Mandelbrot et al, 1997). This type of measurements are considered as selfsimilar sig-

nals, which are always connected with fractals. Fractal signals are usually divided into

two classes – the mono-fractal signal and the multifractal signal. Although a multifractal

signal model has been applied in many other fields, no previous work has been done with

pupil measurements. This chapter addresses the modeling of pupil measurements, which

are intractable using traditional statistical models and we propose a Multifractal Discrim-

ination Model (MDM) to predict the ocular pathologies of the pupil measurements. We

describe a multifractal spectral model to fit the pupil measurements and then extract the

signal features from this model in order to discriminate the measurements coming from

the different visual acuity groups. The challenge of this problem is due to the complexity

of the pupil measurement (high-dimensional, irregular etc), the non-Gaussian distribution

of the multifractal spectral characteristics and the difficulty of building a stable classifiers

for multi-class data. The choice of taking the multifractal spectral characteristics as the

classifier input is convinced by the descriptive statistics. To overcome the difficulty of

building a multi-class classifier for non-Gaussian data, the combination of the predictors

from individual model-free classifiers is adopted for more robust and accurate results.

The chapter is organized as follows. The dataset is described in Section 6.2. Section 6.3

includes the description of multifractal spectrum model and the features based on the mul-

tifractal spectrum. Discriminate analysis of the pupil measurements using the multifractal

model is presented in Section 6.4. Section 6.5 provides conclusions.
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6.2 Pupil-diameter Measurement

In this section, we briefly describe the datasets and how the data is preprocessed to fit the

further analysis.

6.2.1 Datasets description

The equipment used to collect pupillary response data during this study was the Applied

Science Laboratories (ASL) Model 501 head-mounted optics systems. Pupil size was

recorded, at a rate of 60 Hz, for each participant over 105 trials of a computer-based task

using a graphical user interface (GUI). A camera records the pupil image, which has been

illuminated by a near-infrared beam that illuminates the interior of the eye. Pupil size is

assessed as the number of pixels attributed to the pupil’s image, which has been determined

by real-time edge detection processing of the image. Actual pupil diameter measurements

(in millimeters) are then calculated by multiplying each pixel value by a scaling factor that

is based on the physical distance of the camera from the participant’s eye.

The dataset is comprised of pupillary response data streams for 36 individuals, as de-

scribed in Table 12. In this table,N refers to the number of individuals comprising this

user group. Visual acuity refers to the range of Snellen visual acuity scores (assessed by

ETDRS) of the better eye for participants of each group. AMD? refers to the presence

(Yes) or absence (No) of this ocular disease in individuals within each group. Number of

data sets refers to the number of 2048-length data sets that were obtained from the data

streams for each group. For this study, data was collected from four groups of individuals,

classified by visual acuity and the presence or absence of age-related macular degeneration

(AMD). Visual acuity, an individual’s ability to resolve fine visual detail, was assessed via

the protocol outlined in the Early Treatment of Diabetic Retinopathy Study (ETDRS) (Uni-

versity of Maryland School of Medicine, 2002). The experimental protocol from this study

is fully described in studies by Jacko and colleagues (Jacko, 2003a).
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Table 12: Group characterization summary.
Group N Visual Acuity AMD? Number of Data Sets

Control 19 20/20 - 20/40 No 111
#1 6 20/20 - 20/50 Yes 59
#2 5 20/60 - 20/100 Yes 57
#3 6 20/100 Yes 124

6.2.2 Preprocessing

Studies of pupillary response are faced with the problem of how to remove blink artifacts. A

blink generally lasts about 70-100 msec. (producing an artifact spanning 4-6 observations

under 60 Hz sampling) during which time the camera registers loss and a pupil diameter

of zero is recorded. Thus, it is generally relatively straightforward to detect and eliminate

these contiguous zero observation artifacts from the record. However, on either side of a

blink, one may also observe highly unusual recordings because the pupil may be measured

inaccurately as the eye lid partially obscures the pupil. The result may be an impossibly

small value for the pupil’s size.

To insure that the analysis is conducted on pupil constriction or dilation and not on

misleading discontinuities caused by blinks or partial blinks, one must either remove the

blink observations from the data entirely or replace them with linearly interpolated values.

Blinks (i.e., zero recordings) have been found to account for approximately 3-4% of all

observations. Partial blinks account for another 1% of the total number of observations.

The blink-removal procedure removes all observations having zero values (i.e., the blink)

as well as any extreme values that occur within six additional observations on either side of

the zero value (i.e., partial blinks). Figure 24 presents a preprocessed result of the typical

measurements from a heathy subject (Control Group). Because of difficulty of collecting

the measurements, especially from individuals with AMD, the original datasets were cut

into equal length pieces to exploit their usage. Another reason of the segmentation is that

the original measurements are not equally long. The segmentation is conducted after the

’Six Law’ filtering, which was mentioned above. The dataset contains the sum of 351
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Figure 25: Sample autocorrelation of the measurements in Figure 24
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segments of measurements after segmentation and necessary outlier detection and each

have the length of 2048. The distribution of the number of the segments among the four

groups (Control, #1, #2 and #3) is reported in Table 12.

6.3 Multifractality Features

In this section, we discuss the concept of multifractality and the definition of the multifrac-

tal spectrum and analyze the features of the multifractal spectrum from the perspective of

discrimination.

6.3.1 Scaling and multifractal spectrum

Many measurements encountered in nature, industry, science, etc. are characterized by

complex scaling behavior, namely multifractality. Multifractals are signals that, instead

of a single irregularity indexH (usually the worst overall index of irregularity) typical of

monofractality, possess a continuous range of Hurst exponents. Prime examples of multi-

fractals are turbulence measurements where the deviation from the constant scaling, char-

acterized by a Hurst exponent of 1/3 and called the Kolmogorov K41 law, is explained by

multifractality of such measurements (Mandelbrot, 1968).

Wavelet-based energy spectrum is a commonly used tool to check the scaling behavior

of the signal. This spectrum describes the second order statistics (i.e. variance) of the signal

at different scales (frequency points). The linearity (or curvature) of this spectrum reflects

the fractality of the signal and this connection could be utilized to the estimation of the

Hurst exponent of the signal. The exact definition of the wavelet-based energy spectrum

and its estimation could be found in Vidakovic (1999). Figure 26 shows the wavelet-based

energy spectrum of a typical pupil measurement. This spectrum suggests that the fractal

behavior exists in pupil measurement and the multifractal model is possible to recover the

inherent features.
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Figure 26: Wavelet-based energy spectrum for the measurements in Figure 24 The slope
in the intermediate scales is found to be -1.9484 corresponding to the Hurst exponent of
0.4742. The hockey-stick effect in the finest two scales is caused by quantization and
possible smoothing of high frequencies of the measuring instrument.

The measure of multifractality is given by multifractal spectra that describe the “rich-

ness” of the signal in terms of various Holder regularity indices. The term spectrum con-

notes the spectral decomposition of the signal into components characterized by their irreg-

ularity. Thus, multifractal analysis is not focused on the irregularity/self-similarity of the

data set as measured by a single parameter, but rather on a measure of inhomogeneity of

such a parameter. In recent years, the multifractal formalism is implemented with wavelet

tools (Arneodo et al., 1998, Riedi, 2002) and hence could be efficiently used in practice.

The wavelet-based multifractal spectrum is based on the local singularity strength measure:

α(t) = lim
k2j→t

1

j
log2 |dj,k| (72)

wheredj,k is the wavelet coefficient at scalej and locationk. It has been shown (Jaf-

fard, 1995) that the wavelet coefficients can carry the scaling behavior of the process if the

wavelet is more regular than the process and the local singularity strength measure (72)

converges to the local Holder index the process at timet. As the name tells,α(t) indicates

the oscillation of process at timet. Small values ofα(t) reflect the more irregular behavior
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at timet. It can be imagined that any inhomogeneous process has a collection of local sin-

gularity strength measures and their distributionf(α) formulates the multifractal spectrum.

The detailed estimation procedure of the wavelet-based multifractal spectrum is directed to

(Gonçalv̀es, 1998).

6.3.2 Features based on multifractal spectrum

Theoretically, the multifractal spectrum of fBm (a representative of mono-fractal) consists

of three geometric parts: the vertical line, the maximum point and the right slope. The

maximum point corresponds to the Hurst exponent and the vertical line is thought to be

an inherent feature, which distinguishes fBm from the multifractal process. However, it

is rare to obtain such a perfect spectrum in practice. Even for the simulated fBm, due

to error of estimation, its spectrum may deviate from the theoretical form, as shown in

Figure 27. Even with the lack of precise estimation of the spectrum, the deviation from the

vertical line could be still utilized in the discrimination between the mono- and multi-fractal

processes. In Figure 27, two type processes are presented in the multifractal spectra. One

is the fBm and the other is the turbulence measurement, which is widely believed to be a

multifractal process. Comparing with the turbulence measurement, the fBm is much closer

to the vertical line and this closeness may be quantified by the left slope of the spectra.

Another important difference between these two spectra is the width spread of the spectra.

It is obvious that the width spread of the fBm is much smaller than that of the turbulence

measurement.

Despite the existence of the estimation error, the spectrum can be approximately de-

scribed by two slopes and one point without loss of the discriminant information. Alterna-

tively, we can also approximate the spectrum by the left slope, the maximum point and the

width spread. A typical multifractal spectrum is described as shown in Figure 28.

The left and right slopes can be obtained easily using the linear regression technique.
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Figure 27: Multifractal Spectra for mono- (dash line) and multi-fractal (solid line) pro-
cesses (The dotted line indicates the theoretical slope of the spectrum for monofractal pro-
cess)

However, it is not as straightforward to define the width spread automatically. The diffi-

culties are related to two aspects - one being how to locate the start and end points of the

width spread, while the other is what to do with the discreteness of the spectrum. It is easy

to see that the former is difficult conceptually, while the latter is computationally difficult.

There are many ways to define the width spread. In this chapter, we give one definition of

width spread and we name the width spread thebroadnessof the spectrum.

Definition 6.3.1 Suppose thatα1 andα2 are two roots which satisfy the equationf(α) +

0.2 = 0 andα1 < α2 , the the broadness of multifractal spectrum is defined asB = α2−α1,

wheref(α) is the spectrum function in terms of Holder regularity indicesα’s.

This definition is also graphically presented in Figure 28. The deviation from the mono-

fractal could be fairly compared according to this Broadness measure since it posts a uni-

versal standard on the width spread. It is worth to point out the threshold value 0.2 used

in this definition could be adjusted empirically in the practice analysis to insure that this

measure is well defined for all analyzed signals.

As mentioned earlier, the discreteness may produce difficulties in the computation. The

problem is that it may be hard to find the exact roots of the equationf(α) + 0.2 = 0
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among the discrete values ofα’s. To get around this, we try to find the minimum value of

|f(α) + 0.2| with respect ofα instead of solving the equation directly.

Applying our idea about extracting the spectral features from the pupil measurements,

we obtain the broadness, Hurst exponent and left slope for each measurement. Table 13

summarizes the spectral characteristics of the pupil datsets that we are using in our study.

We will use this result in Section 6.4.
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Figure 28: Approximate description of the spectral characteristics

Table 13: Summary statistics of the multifractal spectral characteristics for our pupil
datasets

Group Left slope Hurst Broadness

Control Mean 0.5053 0.4177 0.8591
Median 0.4725 0.4153 0.7668

Std. 0.1658 0.1517 0.4956
#1 Mean 0.3787 0.3561 0.8404

Median 0.3701 0.3214 0.7266
Std. 0.0738 0.1511 0.6796

#2 Mean 0.4049 0.4233 0.6989
Median 0.3908 0.4104 0.6804

Std. 0.1105 0.0985 0.1655
#3 Mean 0.484 0.3965 1.348

Median 0.4608 0.3926 0.8562
Std. 0.139 0.1723 1.1761
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6.4 Pupillary Responses Analysis

As mentioned previously, we attempt to find the inherent features which can separate the

measurements with different ocular pathologies from each other. The empirical evidence

(e.g. wavelet-based energy spectrum) has shown that Pupil-diameter measurements pos-

sess self-similarity and fractality. Hence, it is natural to apply the multifractal spectra to

discriminate these measurements.

We have discussed the features of multifractal spectra in section 6.3. The most impor-

tant feature of the spectra is the maximum point, which corresponds to the Hurst exponent.

The Hurst exponent is a measure of “roughness” of the self-similar process. The Hurst

exponent coincides with the Holder regularity index, and signals withH close to 0 look

quite irregular and intermittent while forH close to 1, the signals look smooth. Such an

important property of the Hurst exponent enables us to explain the dynamics of pupillary

behavior. Informally speaking, large values of Hurst exponent correspond to less dynamic

changes in pupil size (“frozen eye”) while low values of the exponent indicate bursty and

frequent changes. Therefore, the Hurst exponent could discriminate the measurements.

The boxplots of the Hurst exponents for the four groups are shown in Figure 6.4. Accord-

ing to this figure, the group #1 have exponents much lower than the control group, which

reflects that the individuals from this group have more irregular pupillary responses than

those from the control group.

As can be seen in Figure 6.4, the Hurst exponent could not completely discriminate the

groups. This motivates us to introduce other discriminatory quantities. Another measure we

just defined is the broadness, which is able to distinguish the deviation from monofractality.

Broadness describes richness in the distribution of the Hurst exponent. Pupil-diameter

measurements with narrow multifractal spectra are close to monofractals (i.e., the scaling

is quite uniform over all scales). The boxplot of the broadness are given in Figure 6.4.

It is very hard to tell the difference among the four groups. However, the last group #3
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Figure 29: Boxplot for the Hurst exponent of multifractality.
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Figure 30: Boxplot for the Broadness measure of multifractality.
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significantly differs in terms of the broadness from other experimental groups (#1, #2).

Group #3 has relatively high large broadness measure, which indicates that the pupillary

responses of the individuals from this group deviates from monofractal much more than

groups #1 and #2. Physiologically speaking, more change patterns of the pupil dynamics

exist in group #3.

Neither the Hurst exponent nor the Broadness measure are able to achieve the complete

discrimination separately. Thus, we need to increase the analysis into the 2D plane, ana-

lyzing the data with both measures simultaneously. Figure 31 presents the centroid points

for the four groups. These four points look nearly evenly distributed on the plane. From

this figure, we can see that the Hurst exponent from the control group is relatively large

although it is not the largest. Only group #2 has a larger Hurst exponent than the control

group. Comparing these two groups, we can tell that the Pupil-diameter measurement from

the control group is further from monofractal than group #2 since the broadness measure of

group #2 is the smallest. Therefore, we can claim that the pupillary responses of individuals

from the control group is very smooth although the fractal properties are relatively inho-

mogeneous, which implies the causes of the regularity are quite rich. Group #1 is located

on the very left-bottom side of the plane and hence it represents measurements with much

more irregular dynamics and homogeneous fractal properties, which indicates the cause of

the irregularity is relatively simple. Group #3 located near the top left side signifies that

the measurements are quite irregular and have inhomogeneous fractal properties, which

indicates the cause of the irregularity is not single.

To further address how the Hurst exponent and Broadness could be the discriminating

measures, we estimate bivariate kernel densities of them for each group. The contours of

these densities are given in the Figure 32. This figure includes all the information shown

in Figure 31. The variability information of the two measures within each group, however,

provides more discriminating features. It is easy to see that measures in group #2 are very

compact while those in group #3 are dispersed.
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Another important task in the analysis of these measurements is classifier building.

Among the many candidates, thek-nearest-neighbor classifier is chosen because it is model

free. The original datasets are divided into two parts, one of them is assigned to training set

and the other is used to test the trained classifier. The training set includes a 90% randomly

selected sample of each group from the whole datasets and the rest is taken to be the test

set. To choose the nearest neighbor parameterk, the classifier is built as a learning process.

The learning curve, which includes the test error and training error corresponding to dif-

ferent parametersk, is given in Figure 6.4. Although, relatively low training error could be

achieved by choosing smallk, the test error is too big for a practically useful classifier. To

overcome these drawbacks, we adapt the model by combining techniques. Model combin-

ing is a technique of combining the predictions from different classifiers. The results have

shown to be promising. For the details of this combining technique, the reader is directed

to Xu (1992. The advantage of using model combining is due to its ability of overcoming

the instability of the single classifier. In our study, the singlek-nearest-neighbor classifier

is not very accurate and robust according to Figure 6.4. By applying the model combining

technique to thesek-nearest-neighbor classifiers (3 ≤ k ≤ 10), the test errors get much

smaller as we can see from Table 14. Although the combining rules do not make much
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difference, the result from mean-combining rule is shown to be optimal among the alter-

natives. Up to now, all analysis is done according to two features: the Hurst exponent and

Broadness. To demonstrate how an additional measure may affect the classifier quality, we

add the left slopes into the feature vectors and the result of classification design is reported

in Table 15. It is apparent that both the test and training errors decrease a lot as the new

feature is added (e.g. the test errors drops down about 6%).

Table 14: Error rate after combining the nearest neighbor classifiers
rule mean median max min majority voting

Training mean 0.42 0.43 0.44 0.42 0.46
Errors std. dev. 0.01 0.01 0.02 0.02 0.01
Test mean 0.51 0.53 0.52 0.52 0.55

Errors std. dev. 0.09 0.07 0.08 0.09 0.07

Table 15: Error rate after combining the nearest neighbor classifiers(adding slope feature)
rule mean median max min majority voting

Training mean 0.407 0.414 0.417 0.401 0.432
Errors std. dev. 0.013 0.012 0.015 0.015 0.013
Test mean 0.446 0.450 0.439 0.459 0.475

Errors std. dev. 0.051 0.045 0.048 0.057 0.050
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6.5 Conclusions

The overreaching goal of this detailed analysis was to determine if individuals with dif-

ferent ocular pathologies exhibit quantifiable differences in their interaction with graphical

user interfaces. These distinctions between classes of users can enable developers to design

improved interfaces for more efficient and effective human-computer interactions. Pupil-

lary behavior is an informative, yet complex, means of quantifiably assessing differences

in the interaction behaviors of users.

Measurements of pupil diameter during task performance is one way to study the ef-

fects of mental workload on users. However, the inherent complexity of pupillary behavior

requires that robust and valid measures should be developed to extract the meaningful com-

ponents of the data stream in order to characterize those changes in pupillary behavior that

distinguish changes in mental workload. In this way, the relative mental workload of users

with different visual capabilities can be examined. These distinctions between user needs

can be used to modify visual interfaces and interaction paradigms in order to best adapt

information technologies for users with visual impairments.

In this chapter, we study how to incorporate characteristics of the multifractal spec-

trum into the modeling and discrimination of the pupil-diameter high frequency measure-

ment. The multifractal process was validated to be appropriate in the analysis of the pupil-

diameter measurements. By decomposing the spectrum into describable parts, the feature

extraction is discussed to do further discrimination. The concept of the Broadness of a mul-

tifractal spectrum was defined. The analysis based on the Hurst exponent and Broadness

measures gave distinguishable characteristics of the pupillary responses from the individ-

uals with different visual acuity ranges. The model-free classification method,k-nearest-

neighbor classifier, is applied with the model combining technique to build a robust and

accurate classifier.
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CHAPTER VII

ASSESSING THE EFFECTS OF ATMOSPHERIC
STABILITY ON TURBULENCE USING LOCAL AND

GLOBAL MULTISCALE APPROACHES

The conceptual framework for modelling the inertial subrange is strongly influenced

by the Richardson cascade, now the subject of various reinterpretations. One apparent

departure from the Richardson cascade is attributed to boundary conditions influencing

large-scale motion, which in turn, can directly interact with smaller scales thereby de-

stroying the universal statistical scaling attributes of the inertial subrange. Investigating

whether boundary conditions and inertial subrange eddies interact continues to be an ac-

tive research problem in contemporary turbulence research. Using longitudinal (u), lateral

(v), and vertical (w) velocities co-located with temperature (T ) time series measurements

collected in the atmospheric surface layer (ASL), we evaluate whether the inertial subrange

is influenced by different stability regimes. The different stability regimes are proxies for

different boundary conditions, as upper boundary condition force the mechanical shear and

lower boundary condition force surface heating and buoyancy. The novelty of the present

work lies in its combined use of global and local scaling properties (e.g. quasi-Hurst expo-

nent, distributional properties of the wavelet coefficients, and Tsallis’s thermostatic entropy

measures) to assess whether atmospheric stability impacts both local and global inertial

subrange scaling for velocity and temperature.

7.1 Introduction

The structure of turbulence in the inertial subrange has received much research attention

over the past50 years (Someria, 2001).. This strong interest is attributed to the possible

emergence of universal or quasi-universal theories of turbulence (Frisch, 1995, Sreeni-

vasan and Antonia, 1997, Frisch et al., 1998, Schraiman and Siggia, 2000), which is a
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research area of interest in many fields (including finance). The inertial subrange encom-

passes eddies much larger than the viscous dissipation scales yet much smaller than the

integral length scale (LI) of the flow. The basic premise for the emergence of universal

scaling is that large-scale anisotropic forcing characteristics (i.e. boundary effect condi-

tions) are lost during the Richardson cascade process, thereby achieving local isotropy and

universality at sufficiently smaller inertial scales (Biferale etc., 2001). However, several ex-

periments and simulations over the past2 decades suggest persistent effects of large scale

anisotropies at these so-called inertial scales, even for very high Reynolds numbers and

after many cascading steps (Warhaft, 2000). The departure from the so-called Kolmogorov

(Kolmogorov, 1941) view of universal scaling and subsequent refinements (Kolmogorov,

1962) is now supported by numerous observations and theoretical arguments regarding the

anomalous scaling in measured structure functions, particularly for passive scalars (Pumir

and Shraiman 1995, Sreenivasan and Antonia, 1997, Celani et al, 2000,Warhaft, 2000,

Antonov and Honkonen, 2001), and static pressure (Albertson et al., 1998).. The anoma-

lous scaling is commonly attributed to short-circuiting of the energy cascade process due to

the existence of organized large-scale features such as ramp-like structures, which are in-

fluenced by boundary conditions, and themselves directly influence small scale turbulence

(Warhaft, 2000, Celani and Vergassola, 2001). Several theoretical arguments have been put

forth to explain the apparent departure between experiments andK41. For example, Qian

(1997, 1999) demonstrated that 1) K41 scaling can only be attained at infinite Reynolds

number (Rλ = λ× σu/ν; whereλ is the Taylor microscale,σu is the longitudinal velocity

standard deviation, andν is the kinematic viscosity), 2) the effects of finiteRλ on the struc-

ture function statistics decay slowly with increasingRλ (e.g. Qian’s work demonstrated

that the decay is on the order ofR−µ
λ for third order structure function, andµ ≤ 6/5), and

3) the energy injection mechanism may be important. Recently, Gagne et al. (2004) in-

directly confirmed all three findings experimentally using data collected for different flow

types (i.e. different injection mechanism) and differentRλ.
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Hence, it is clear that in addition toRλ, surface heating (or cooling), and thereby at-

mospheric stability class, can be responsible for differences in kinetic energy injection (or

removal in the case of stable flows) mechanism, thereby, introducing significant departure

from K41.

To quantify whether boundary conditions (or energy injection mechanism) influence

the statistical properties of the fine scale structure of the atmospheric surface layer (ASL),

we utilize two methods: (i) a global scaling self-similarity index, and (ii) a scale-wise

evolution of non-parametric estimates of probability densities in the wavelet domain. Each

of these measures will be applied to turbulence time series measurements collected for three

atmospheric stability regimes: unstable, near-neutral, and stable stratification. An ANOVA-

type technique will then be applied to asses the significance of atmospheric stability factors

on these two multi-scale measures. The main novelty of this work is in utilizing both

global and local multi-scale measures to assess the effects of atmospheric stability on the

statistical structure of the inertial subrange of several flow variables. However, before we

describe these multi-scale methods, a brief description of the experiment and the data set

will be provided.

7.2 Data

Time series measurements of longitudinal (u), lateral (v), and vertical (w) velocities and

air temperature (T ) were collected over a grass surface at the Blackwood Division of the

Duke Forest near Durham, North Carolina. The measurements were collected on June,

12-16,1995 at 5.2 m using aGILL triaxial sonic anemometer. The measurements were

sampled atfs = 56Hz and were subsequently divided into19.5 minute intervals to produce

N = 65, 536 time measurement per flow variable per run. Our choice of19.5 minute

intervals for a run is a compromise between the need for stationary conditions at long

time scales and maximizing the statistical sample size within a given run. The experiment

resulted in an ensemble of95 runs over a wide range of atmospheric stability conditions
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ranging from near convective to stable atmospheric flows (Katul et al., 1997). Using the

atmospheric surface layer stability parameter,ξ(= z/L), these 95 runs were then classified

into one of the three stability classes: stable, near neutral, and unstable. Here,L is the

Obukhov length andz is the height from the ground surface. With this classification, 6

runs were collected in stable stability conditions, 23 runs were collected under near-neutral

atmospheric stability conditions, and the rest were collected under unstable atmospheric

stability conditions. We then selected6 runs from the near neutral class and 6 runs from

the unstable stability class such that the ensemble mean wind speed (U ) of these 6 runs

were comparable to those 6 runs collected under stable atmospheric stability conditions.

The scale-wise analysis only utilizes these 18 runs while the global analysis makes use

of all 95 runs. The wind speed ensemble mean and standard deviation of the 6 runs for

unstable, stable, and neutral conditions are provided in Table 16. Further details about

the experimental setup, atmospheric stability conditions, the various measures used in the

inertial subrange identification, and instrumentation details can be found elsewhere (Katul

et al., 1997, Katul et al., 2001b) though we note thatRλ exceeded103 for all runs (Katul et

al., 1997).

Table 16: Mean and standard deviation of the 6 runs for unstable, stable, and neutral wind
speed

Unstable Neutral Stable

Mean(U ) 1.8096 1.9782 1.814
Std.(U ) 0.0789 0.2502 0.4678

7.3 Methods of Analysis

In this section, the methodologies for quantifying the effects ofξ on the local and global

scaling properties of the inertial subrange are described. These methods include: (i) zero-

crossing analysis to estimate the so-called quasi-Hurst exponent, and (ii) scale-wise param-

eter fitting of exponential power distributions,EPD, in the wavelet domain. We also show
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that the latter approach has theoretical links to the well-known Tsallis entropy measure.

Linking these empirical exponential power distribution parameter to the Tsallis entropy

measure is of interest here given the recent theoretical results that demonstrate how a non-

linear Fokker-Plank equation can reproduce essential features about the inertial cascade via

Tsallis entropy.

These analytic tools will be utilized to assess whetherξ affects the inertial subrange.

We note that these measures are sensitive to different assumptions; hence, ifξ significantly

affects the inertial subrange, it is likely to be resolved by these two methods.

7.3.1 Global Index: Quasi-Hurst Exponent

The Hurst exponent (after British hydrologist H. E. Hurst (1951)) is a measure of “rough-

ness” of self-affine time series. There are many methods to estimate the Hurst exponent of

a stationary process. The zero-crossing method (Coeurjolly, 2000) is based on counting the

number of zero crossingsZN , producing an estimate of the Hurst exponent given by:

Ĥ =
1

2
{1 + log2(1± | cos(πSN)|)}, (73)

whereSN = ZN/(N − 1) is an average number of zero-crossings for the differenced time

series of lengthN , and sign + (alternativelly –) in± is taken if the true exponentH is above

(below) 1/2. Usually, it is not difficult to decide whether the true exponentH is above or

below 1/2 by observing the time series, unless the trueH is close to 1/2. It was also

demonstrated (Coeurjolly, 2000) that thêH is asymptotically Gaussian for the fractional

Brownian motion (fBm) process when the true Hurst exponent does not exceed3/4.

The estimation ofĤ via (73) is valid only for time series with stationary increments.

For time series lacking stationary increments, as may be the case in turbulence time series

measurements, we call̂H the quasi-Hurstexponent. One of the attributes distinguishing

turbulence signals from fBm is the distinction between the quasi-Hurst and Hurst expo-

nents. Theoretically, the quasi-Hurst and Hurst exponents coincide for fBm (since fBm has

stationary increments). We empirically confirmed this convergence using1000 fBm paths
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constructed with a true hurst exponent of 1/3. The resulting averageĤ is 0.3331 with stan-

dard deviation of 0.06. Thep-value of at-test for the equality of̂H to 1/3 is 0.9. Such a

largep-value suggests that thêH is an adequate estimator of the Hurst exponent for an fBm

process. On the other hand, the quasi-Hurst exponent for turbulence time series measure-

ment is quite variable and significantly exceeds1/3. This discrepancy may be utilized to

diagnose how atmospheric stability alters the global scaling parameter. That is, by analyz-

ing deviations ofĤ from 1/3 (or the Kolmogorov scaling) for turbulence measured under

different stability conditions, a logical basis for tracking howξ impacts global scaling of

inertial subrange turbulence can be developed.

7.3.2 Local Index: Evolutionary Models of Scale-Wise Empirical Densities of Wavelet
Coefficients

Another method for assessing the effects of atmospheric stability on the inertial subrange

is the sensitivity of the probability density function (pdf) of the wavelet coefficients of a

given flow variable to variations inξ. It is a case-verified fact that the scale-wise distribu-

tion of wavelet coefficients appear similar for a variety of signals and images. Typically,

their empirical distributions are symmetric with a sharp peak at zero. Guided by this op-

ulent evidence, Mallat (1989) proposed modelling a “typical” wavelet coefficientX by an

exponential power family of distributions,EPD(α, β), having the following pdf:

f(x) = Ke−(|x|/α)β

, (74)

whereα is the scale parameter,β is the shape parameter, andK is a normalizing constant

given byK = β/(2αΓ(1/β)). In the context of wavelet modelling, this approach is often

referred to as Mallat’s model and reduces to Gaussian forβ = 2, to double exponential for

β = 1 and trivially to uniform forβ = 0. Hence, by investigating howξ affectsα andβ at

various scales, we can assess whether atmospheric stability impacts the scale-wise wavelet

coefficients. Such coefficients, belonging to single scale, can be thought of as independent

due to the de-correlation property of discrete wavelet transformations (DWT). To estimate
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these pdf parameters inEPD(α, β), a moment-matching method is adopted. The method

is based on matching the theoretical moments, given by

E(|X|) = 2K
α2Γ( 2

β
)

β
and E(X2) = 2K

α3Γ( 3
β
)

β
, (75)

with their empirical counterparts:1
N

∑ |xi| and 1
N

∑
x2

i . Computation of these estimators

is not difficult and involves solving one non-linear equation, and the empirical counterparts

for two quantities in (75) can be readily obtained. While the Mallat distribution model ap-

pears arbitrary, we explore in the appendix its potential relationship with the Tsallis Maxent

distribution, now receiving significant attention in turbulence research (e.g. Beck,2002).

Beck (2002) demonstrated that the scaling properties of high Reynolds number turbulence,

including the probability densities and scaling exponents can be well described using non-

extensive measures.

From the appendix, we show that Mallat’s model parameters can be related to the non-

extensive Tsallis entropy parameters, which themselves are shown (e.g. Beck, 2002) to be

connected to parameters from a nonlinear Fokker-Plank equation with random frictional

force. In particular, we show in the appendix that whenβ is assumed from a particu-

lar prior, the marginal likelihood obtained from theEPD model in a Bayesian fashion is

the Maximum Tsallis Entropy solution. Because Mallat’s model parameters can be easily

linked to geometric attributes of the wavelet coefficient probability distributions, much of

our discussion will focus on the effect of atmospheric stability on Mallat model parame-

ters (scale by scale). However, these model parameters do have an unambiguous physical

interpretation within the context of Maximum Tsallis Entropy distribution.

7.3.3 Fitting the fBm to Mallat’s Model

We generated 100 independent runs of fBm using the Wood-Chan algorithm and com-

puted their wavelet coefficients. We normalized the coefficients at each scale to have a unit

variance and fitted the Mallat model to these normalized coefficients. At each scale, we
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obtained 100 shape parameters. Finally, we performed the nonparametric ANOVA analy-

sis (Kruskal-Wallis test) to assess whether the scale index affects the shape parameters. We

found a highp-value (=0.7180) that indicates the shape parameter is invariant to scale. This

finding is crucial for turbulence data as increased intermittency with scale can be readily

measured as scale-wise shift in the Mallat shape parameters. To illustrate, we show the

fittedEPD of the scale-wise wavelet coefficients for the fBm in Fig. 1. Unlike turbulence,

these pdf’s are nearly Gaussian at all levels (scales), as theoretically expected.
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7.4 EPD Distribution as Tsallis MaxEnt Solution

The traditional entropy theory is based on Shannon’s definition; more general measures,

such as Renyi and Tsallis (sometimes called Tsallis-Havrda-Charvat (THC), or Havrda-

Charvat entropy, since the definition of this entropy measure was first given in (Havrda and

Charvat, 1967)) have also been proposed. Practical applications and theoretical implica-

tions of Tsallis-type entropy are active research areas in the physical sciences, especially

turbulence (Beck, 2001, Beck, 2002, Arimitsu, T. and Arimitsu,2000, Arimitsu, T. and

Arimitsu,2002a, Arimitsu, T. and Arimitsu,2002b, Ramosa et al., 2001). For example,

Tsallis thermostatisticis based on Tsallis entropy which is a generalization of the Shannon

(Boltzmann-Gibbs) entropy. The Tsallis entropy (Tsallis 1988, Tsallis et al., 1998) is given

by

Sq =
1

q − 1

(
1−

∫ ∞

−∞
p(x)qdx

)
, (76)

wherep(x) is the probability density of the microstatex of the system (in our case, the

microstate refers to the individual velocity of the turbulence) andq is the non-extensive

parameter (also regarded as a measure of the information incompleteness). The ordinary

Shannon entropy is obtained as a special case whenq → 1 . Tsallis’ measure of entropy

is more flexible than Shannon’s due to its adaptive parametrization. We find that the max-

ent (maximum-entropy) probability distribution of a random variableX representing the

turbulent measurements is constrained as follows:

∫ ∞

−∞
p(x)dx = 1, and (77)

∫ ∞

−∞
p(x)εxdx = E, (78)
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whereE is the energy content ofx and should be a known constant, andεx’s denote the

energies at various microstates. The exact definition ofεx in reality depends on the condi-

tion of the flow; roughly it can be taken asεx = x2/2 (x is assumed to be the velocity at

this microstate). The general maximizing solution or Maxent distribution has the following

form (Prato et al., 1999):

p(x) =
1

Kq

(1 + (q − 1)β1εx))
1

1−q , (79)

where

Kq =

∫ ∞

−∞
(1 + (q − 1)β1εx)

1
1−q dx (80)

is the so-called partition function andβ1 = 2/(5 − 3q) is a suitable inversetemperature-

like variable. Interestingly, the value ofq can be related to the properties of the Maxent

distribution as follows.

If 1 < q < 3, we could evaluate (80) withεx = x2/2 as

Kq =

∫ ∞

−∞

(
1 +

1

2
(q − 1)β1x

2

) 1
1−q

dx

=

[
π

β1(q − 1)

]0.5
Γ(1/(q − 1)− 1/2)

Γ(1/(q − 1))
, (81)

whereΓ(·) represents the standard Gamma function. Furthermore, the second moment is

calculated when1 < q < 5/3 as

EX2 =
2

β1(5− 3q)
. (82)

However, this second moment tends to infinity ifq ≥ 5/3 and the so-called heavy-tailed

distribution, which is universally recognized as a basic characteristic of turbulence, is re-

covered in this case.

If q > 3, the integral definingKq would diverge and hence the probability density

function does not exist.

If q → 1, the distribution in (79) converges to normal.
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If q < 1, the distribution in (79) would resemble a cut-off distribution. Below, we

briefly explore further links between Mallat’s model and the Tsallis Maxent model.

Comparison of canonical forms of Mallat’s and Tsallis models indicate close relation-

ship between theEPD family and the Maxent distribution. Both of them include the uni-

form, normal, and Laplace distributions as special cases, as well as an infinite number of

distributions with arbitrary variances and kurtosis. We demonstrate this link empirically

using turbulent velocity time series. First, the turbulence time series is decomposed into

three successive finest scales using discrete wavelet transformation. These scales are within

the inertial subrange as discussed in (Katul et al., 2001a). We utilize the Daubechies 4-tap

filter to ensure a balance of localization in time and frequency domains (i.e. a compromise

between the Haar and Fourier bases). Next, we estimate the non-extensive parameterq for

each scale using the relationship betweenq and the moments,

EXm =
1

2m

m−1∏
j=0

5 + 2j

4 + j − (3 + j)q
, (83)

whereX is a Maxent distributed random variable. To give an estimator ofq, we utilize the

kurtosisκ, which is usually defined as:

κ =
EX4

(EX2)2
. (84)

We substitute the expressions forEX4 andEX2 evaluated by (83) and solve (84) with

respect toq. The solution is:

q =
7κ− 15

5κ− 9
. (85)

Once the parameterq is evaluated, the complete form of the normalized Tsallis Maxent

distribution of unit variance, which is assumed to be the theoretical distribution of wavelet

coefficients, is specified. The empirical pdf’s of the scale-wise wavelet coefficients are

compared with the corresponding Tsallis Maxent distribution in Fig. 2. In addition, we

also fit Mallat’s model for the scales-wise coefficients. For simplicity, the variances of

these scales-wise coefficients have been normalized to unity.
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The results shown in Fig. 2 suggest an almost perfect match among these three types of

pdf’s, especially at the tails. The large departures from the measured pdf around the center

points is attributed to the “zoom effect” of logarithmic representation. The turbulence data

we analyzed in Fig. 2 is for a longitudinal velocity run collected in stable atmospheric

conditions. The pdf’s of wavelet coefficients for the other flow variablesv, w andT and

for different stability regimes behave similarly as those in Fig. 2. We conclude that the

marginal distribution of the turbulence wavelet coefficients at a fixed scale well match the

maximum Tsallis entropy distribution. At the same time, theEPD-model also fits well the

empirical pdf. This empirical closeness demonstrates the inherent link between theEPD
and the Tsallis Maxent distribution, explored next.

It is demonstrated that the Maxent solution is the marginal likelihood obtained from the

EPD(α, β) model when the prior onβ is the Inverse Gamma. In other words, the Max-

ent solution is the scale mixture ofEPD distributions with the inverse gamma as mixing

distribution.

Consider a random variableX distributed as the Exponential Power Family with con-

ditional pdf given by

f(x|α, β) = K exp
(−(|x|/α)β

)
. (86)

Under the Bayesian paradigm, the scale parameterα is considered random and given

a prior distribution. The marginal likelihood distribution ofX givenβ is then obtained by

integrating outα. Assume thatλ = α−1 has prior distribution Gamma(n
2
, n

2λ0
) with density

g(λ) =
1

Γ(n
2
)

(
n

2λ0

)n
2

λ
2
n
−1 exp

{
− nλ

2λ0

}
, (87)

with λ0 = E(λ).

Combining (86)and (87) we have

f(x|β) =

∫ ∞

−∞
f (x|1/λ, β) g(λ)dλ. (88)

There exists a closed form solution of this integral given by

f(x|β) =
1

Kq

(1 + (q − 1)λ1|x|β)
1

1−q , (89)
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where

q = 1 + β/(βn/2 + 1) (90)

λ1 =
β

1 + β − q
λ0, (91)

and

Kq =

∫ ∞

−∞
(1 + (q − 1)λ1|x|β)

1
1−q dx. (92)

Hence, when the shape parameter is assumed from a particular prior, the marginal likeli-

hood obtained from the modelEPD in a Bayesian fashion is the Maximum Tsallis Entropy

solution.

7.5 Atmospheric Stability Effects on the Inertial Subrange

In this section, we discuss the effects of atmospheric stability on the quasi-Hurst exponent

(global scaling) and the parameters of theEPD distribution (local scaling). As mentioned

before, the quasi-Hurst exponent (Ĥ) is a global fractal index of a time series. System-

atic variability of global scaling property with respect to stability factors can be used as

indicator of interactions between boundary conditions and inertial subrange scaling.

For each stability class, a descriptive summary of the quasi-Hurst exponent of the four

turbulent flow variables is reported in Table 17. These exponents are all calculated by

the zero-crossing method. Interestingly, we found that foru andv, the scaling exponents

exceed those computed fromK41 (i.e. 0.333) and do not vary appreciably with stability

class. In fact, the scaling exponents foru andv lead to fractal dimensions (in a mono-fractal

model (Frisch, 1995)) on the order of2.86. When compared to other intermittency models,

these exponents (0.42−0.44) are somewhat higher than predicted by the She-Leveque (She,

1994) or K62 (Kolmogorov, 1962) models (0.39) hinting that external effects that are not

entirely connected with classical internal intermittency buildup are at play.
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Ĥ
m

ea
n

st
d.

m
ea

n
st

d.
m

ea
n

st
d.

m
ea

n
st

d.

s
un

st
ab

le
0.

41
9

0.
05

3
0.

44
4

0.
04

9
0.

40
3

0.
05

1
0.

39
2

0.
08

6
t

(0
.4

17
)

(0
.0

43
)

(0
.4

46
)

(0
.0

26
)

(0
.4

04
)

(0
.0

45
)

(0
.3

28
)

(0
.0

32
)

a
ne

ut
ra

l
0.

45
7

0.
04

7
0.

45
4

0.
02

8
0.

39
5

0.
03

4
0.

25
15

0.
05

9
b

(0
.4

31
)

(0
.0

44
)

(0
.4

49
)

(0
.0

40
)

(0
.3

99
)

(0
.0

60
)

(0
.2

85
)

(0
.0

95
)

i
st

ab
le

0.
38

8
0.

05
2

0.
41

9
0.

05
0

0.
43

7
0.

03
8

0.
35

6
0.

04
5

l
(0

.3
88

)
(0

.0
52

)
(0

.4
19

)
(0

.0
50

)
(0

.4
37

)
(0

.0
38

)
(0

.3
56

)
(0

.0
45

)
i

A
ll

0.
42

7
0.

05
5

0.
44

6
0.

04
5

0.
40

3
0.

04
7

0.
35

6
0.

09
8

t
(0

.4
12

)
(0

.0
47

)
(0

.4
38

)
(0

.0
40

)
(0

.4
13

)
(0

.0
49

)
(0

.3
23

)
(0

.0
67

)

126



The exponents for thew time series for unstable and stable conditions are bounded by

K41 and the She-Leveque (or K62) predictions. Surprisingly, for neutral flows (and forw

only), the exponent was lower than K41. The difference between the global exponents for

u andw clearly suggests anisotropy not consistent withK41 assumptions.

Upon comparing the global exponents ofT and u, we find that the two exponents

significantly differ for unstable conditions at the99% level (using a studentt-test) but not

for near-neutral flows. This analysis lends support to a recent study by Aivalis et al. (2002)

who found that for strongly unstable conditions, two scaling ranges emerge in higher order

structure functions. One towards the smaller scales, which is the classical inertial range,

while the other for larger scales in which the effects of buoyant convective production may

still persist. Aivalis et al. (2002) attributed the buoyant-convective scaling to the active role

of temperature in the production of turbulent kinetic energy (see also Katul and Parlange

(1994) for further evidence of the active role of temperature using multiple scalars). We

note that for stable flows, theu andT global exponents do not differ at the99% level. This

may be attributed to the small number of runs (= 6) for statistical significance testing, or

alternatively, that the weak removal of turbulent kinetic energy for stable flows is occurring

at larger scales than the injection of kinetic energy at near-convective conditions.

We tested the significance of the ANOVA components for the above quasi-Hurst expo-

nents to quantify how the atmospheric stability condition affects the global fractal geometry

of each variable. The results are summarized by thep-values, which are used again to test

the equality of the quasi-Hurst exponents under three different stability conditions.

It is clear from Table 17 that the stability does not impact the global scaling of the

longitudinal and lateral velocities significantly and this is supported by their relatively large

p-values (0.22 and 0.16 respectively). Meanwhile, the air temperature and vertical velocity

are significantly influenced by atmospheric stability and the corresponding ANOVA test

p-values are quite small (0.0027 and 0 respectively). Hence, we conclude that atmospheric

stability has a statistically discernable effect on the global scaling properties of the inertial
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subrange ofT andw.
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We use Mallat’sEPD model in the wavelet domain to further explore this finding at

the finest scales. The first step is to determine the pdf parameters of the normalized wavelet

coefficients in theEPD model at each scale. After estimating the parameters for each flow

variable, we can assess the significance of atmospheric stability at a specific scale. In this

analysis, we restrict the scale-wise calculations to the finest 3 (out of 16) detail levels to

insure that these wavelet coefficients fall within the inertial subrange (identified as in Katul

et al.(1997, 2001a)) and ensure minimum distortions due to Taylor’s hypothesis.

Both pdf plots (Fig. 2) and Q-Q plots (Fig. 3) show thatEPD model fits well the tur-

bulence measurements. Thus, it is natural to regard the scale-wise parameters of this model

as local scale indices of turbulence. We estimated these parameters for each of the runs

within each stability class and tested their equality across different atmospheric stability

classes. The results from this analysis should be taken with caution because the param-

eter comparisons across stability regimes for a specified scale index (j) assume that the

eddy sizes represented byj are the same irrespective of stability (here - the larger thej

the smaller the turbulent scale). While every effort was made to select the 6 runs across

different stability classes with comparable mean wind speeds, the distortions due to Tay-

lor’s hypothesis may dependent on atmospheric stability itself. That is, a scale index of

j = 15 may not precisely reflect identical eddy sizes for unstable, near neutral, and stable

atmospheric stability because of differences in the turbulent intensities (despite equality in

mean wind speed). What makes this analysis robust to such a limitation is that the use of

orthonormal wavelet transforms means that the scalej = 15 is not precisely mapped onto

one unique frequency or wavenumber (as is the case with Fourier spectra) but a distribution

of frequencies (or wavenumbers) set by the wavelet basis. Hence, as long as the relative

distortions attributed to the use of Taylors hypothesis across different stability classes (for

the same mean wind) are much smaller thanln(2), the scale indexj may represent the

mean eddy sizes across different atmospheric stability regimes. Furthermore, we are re-

stricting this local scale-wise analysis to the three finest scales known to be least affected
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by distortions due to finite turbulent intensity.
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Figure 35: The logarithms of the empirical density and Mallat’s model at different scales
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For each of the 6 runs within each stability class, we fitted the Mallat model for j=14,15,

and 16 (out of 16) and all four flow variables. Table 18 gives the mean and standard errors of

the shape parameters for each flow variable and stability class. Unlike the global analysis,

we are not able to provide the ANOVAp-values since we only have six runs for each

regime. This small number of runs makes the statistical inference difficult. As a remedy

procedure, we provide the Box plots for these shape coefficients to compare the difference

across the stability regimes in Fig. 4. Figure 4 demonstrates thatβ for all the flow variables,

stability regimes, and inertial scales is far from Gaussian (β = 2), and is closer to a double

exponential (β = 1). The lowestβ (i.e. most heavy-tailed) is for temperature at the finest

level (irrespective of stability regime). Furthermore, the fastest change inβ with scale

(i.e. a measure of increased intermittency with decreasing scale) is also for the temperature

irrespective of stability class. Hence, the local analysis here clearly demonstrates scale-

wise dissimilarity between temperature andu within the inertial subrange.

7.6 Discussion

To explore how atmospheric stability impacts the global scaling properties, we show Box-

plots (Fig. 5) of the quasi-Hurst exponents for all the95 turbulence measurements.

In the w andT cases the ranges at different stability regimes differ. Their ranges in

stable and neutral regimes are totally separated and the median quasi-Hurst values in three

regimes are different. Among the three regimes, the median quasi-Hurst values in the stable

case tends to be closer toH = 1/3, which is the theoretical value based on K41. Foru

andv, it is also noted that the median quasi-Hurst values in the unstable and neutral are

very close to each other (i.e., the neutral measurements tend to be similar on average as the

unstable ones in terms of the global fractal characteristics), while the those in the stable

regime are quite different.

Another important finding is that the ranges of quasi-Hurst exponents in neutral regime
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Figure 37: Box plots of the shape coefficientsβ in EPD model across different stability
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are much tighter foru than for the other flow variables. This implies that for neutral at-

mospheric stability conditions, the global fractal fluctuation of the horizontal velocity is

much smaller than for the other variables. Also, the longitudinal velocity is characterized

by greater quasi-Hurst exponents in the unstable and neutral regimes than in the stable one,

which means thatu is more intermittent in the stable regime. The fractal property ofu

in the stable regime tends to have more global fractal fluctuation than in unstable regime

because the quasi-Hurst range is broader. However, this pattern seems opposite in the lat-

eral velocity. This difference may be attributed to random shifts in wind direction. As an

almost common phenomena foru, v andT , their quasi-Hurst values are generally larger

thanH = 1/3. However, the quasi-Hurst values ofw is overall smaller than the other three

flow variables, and, interestingly, the quasi-Hurst values in the neutral are much smaller.

The scale-wise comparison provides complementary evidence for the above arguments.

The “average” pdf’s (in Mallat’s model) associated with atmospheric stability conditions

of the four flow variables at the three finest scales are computed. To obtain such pdf’s,

we averaged the estimated parameters (including both the shape parameters and scale pa-

rameters) within a stability regime and use these averages as new parameters to specify the

scale-wise pdf’s for each flow variable (see Fig. 6). The plots in Fig. 6 suggest thatu, v and

T appear to be sensitive to atmospheric stability whilew is not. The results here suggest

that the local scaling parameters are more sensitive to the effects of atmospheric stability

than the global scaling parameters.

7.7 Conclusions

This study assessed the effects of atmospheric stability on the inertial subrange structure

of u, v, w, andT using both local and global measures in the wavelet domain. The global

measure relied on a quasi-hurst exponent calculation while the local measure was based on

the Tsallis thermostatistic entropy approach shown to be analogous toEPD(α, β) family.

The analysis here demonstrated the following:
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Figure 39: The average logarithm pdf’s associated with atmospheric stability conditions
of the four flow variables(u, v, w, T ) at first three finest scales. The four rows are corre-
sponding to measurementu, v, w andT respectively from the top to the bottom. Three
finest scales of wavelet coefficients are used here. The results in the left panels are from
the coarsest level (j = 14) of wavelet coefficients while the right panels refer to the finest
level (j = 16).
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(i) Both EPD(α, β) and the Tsallis thermostatistic entropy approach reproduces rea-

sonably well the scale-wise velocity and temperature properties within the inertial subrange

and for all stability classes, consistent with several recent studies.

(ii) The scale-wise analysis demonstrates that the distributional properties of the veloc-

ity and temperature within the inertial subrange are far from Gaussian and with tails even

heavier than a double-exponential for all stability classes.

(iii) The local or scale-wise analysis clearly identified dissimilarities between tempera-

ture and velocity even within the same stability class.

(iv) The global measures were less sensitive to atmospheric stability than the scale-

wise measures. In particular, the global measure identified theT andw components as

the only flow variables whose inertial subrange has been statistically impacted by atmo-

spheric stability. On the other hand, atmospheric stability clearly impacted the parameters

of EPD(α, β) for u, v andT . This analysis is in agreement with an earlier analysis by

Katul et al. (2003) who demonstrated, via a Functional ANOVA (FANOVA), that atmo-

spheric stability impacts the wavelet-based multifractal spectrum ofu, v andT .

When conclusions (iii) and (iv) are taken together, it is clear that the inertial subrange

of temperature is unambiguously impacted by atmospheric stability - both locally and glob-

ally. This analysis lends some support to the conclusions by Shraiman and Siggia (2000)

who suggested that the statistical properties of ‘scalar’ turbulence are decoupled from those

of the underlying velocity. That is, the added complexity in scalar turbulence (e.g., here

added complexity refers to greater intermittency and overall sensitivity to boundary con-

ditions) is not derived from the complexity in the velocity field, but also from the mixing

process itself, and boundary conditions (or injection of energy). Finally, we note that the

symbiotic use of global and local scaling analysis proposed here lends further confidence

in the validity of the above conclusion forT .
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CHAPTER VIII

CONCLUSIONS

The dissertation is concluded as follows.

• Global and local scaling measures (e.g. quasi-Hurst exponent, distributional prop-

erties of the wavelet coefficients, and Tsallis’s thermostatic entropy measures) are

effective in quantifying the differences (similarities) between self-similar processes.

Quasi-Hurst provides an global measures of self-similarities. Mallat model and Tsal-

lis Maxent model examine the local behavior and it has been shown that these two

models are related to each other in a Bayesian fashion. These measures are used to

assess whether atmospheric stability impacts both local and global inertial subrange

scaling in the the atmospheric surface layer and reveal some important facts about

the turbulence.

• A Weighted Least Squares (WLS) scheme in wavelet domain to estimate the mul-

tifractal spectrum (MFS) is derived. This scheme is shown to minimize the het-

eroskedastic effects which is inherent because the sample variances of the wavelet

coefficients depend on the scale. We also derived the discriminative measures includ-

ing the left slope (rise), Hurst exponent (maxima), and broadness. These summary

measures are applied to the MFS of velocity and temperature time series collected in

the atmospheric surface layer for a wide range of atmospheric stability conditions.

We successfully quantify the difference of turbulence series collected at different sta-

bility conditions. In a similar spirit, we develop a multifractal discrimination model

(MDM) to discriminate the HCI user group using the measures of the left slope (rise),

Hurst exponent (maxima), and broadness in MFS estimated from the high frequency
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pupil size data. The discrimination is supported by some physiological interpreta-

tions.

• A combined k-Nearest-Neighbor (Comb-k-NN) classification model is proposed to

address the inhomogeneous property of discriminative vectors. This method is pro-

posed to minimize and stabilize the misclassification rate in training and test sets

with the goal of improving classification accuracy. It is also justified by a Bayesian

paradigm. We use Comb-k-NN as ingredients in the classification problem for the

HCI users based on high frequency pupil size data. Reasonable accuracy has been

achieved.

• We propose a multiscale Schur monotone (MSM) measure as summaries of self-

similar processes. MSM measure is derived to characterize the disbalance properties

of the data distribution at different frequency scales. In contrast to the global disbal-

ance measures, the MSM measure carries information not only about the disbalance

characteristics of the data, but also about its correlation structure. Thus, the MSM

summary is more likely to be more sensitive to the differences in dynamics between

different self-similar processes than any other single measure, such as correlation and

global Schur Monotone measures. MSM measures also allow the adaptive summary

of the process through wavelet basis selection and the choice of scale resolutions.
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