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warmest thanks go to Predrag Cvitanović for his support in my research. I would

like to acknowledge all members of the thesis committee for their work and time. I

also would like to thank Ji Il Choi for his help and encouragement. Finally I want to

thank my family for their love, support and understandings.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation and Contribution of the Thesis . . . . . . . . . . . . . . 7

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 8

II LOCAL CONTROL METHOD ON CHAOTIC SYSTEM . . . . . . . . 10

2.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Brief description of the local control formula . . . . . . . . . . . . . 11

III REDUCING MULTIPHOTON IONIZATION IN A LINEARLY POLAR-
IZED MICROWAVE FIELD BY LOCAL CONTROL . . . . . . . . . . 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Computation of the control term . . . . . . . . . . . . . . . . . . . 16

3.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Analysis of the control term . . . . . . . . . . . . . . . . . . 21
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SUMMARY

Many seemingly simple systems can display extraordinarily complex dynam-

ics which has been studied and uncovered through nonlinear dynamical theory. The

leitmotif of this thesis is changing phase-space structures and their (linear or non-

linear) stabilities by adding control functions (which act on the system as external

perturbations) to the relevant Hamiltonians. These phase-space structures may be

periodic orbits, invariant tori or their stable and unstable manifolds. One-electron

systems and diatomic molecules are fundamental and important staging ground for

new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort

has been put on the control or manipulation of these systems. Recent developments of

nonlinear dynamical tools can provide efficient ways of doing so. In the first subtopic

of the thesis, we are adding a control function to restore tori at prescribed locations

in phase space. In the remainder of the thesis, a control function with parameters is

used to change the linear stability of the periodic orbits which govern the processes

in question.

In this thesis, we report our theoretical analyses on multiphoton ionization of

Rydberg atoms exposed to strong microwave fields and the dissociation of diatomic

molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis

is composed of three subtopics. In the first subtopic, we employ local control theory

to reduce the stochastic ionization of hydrogen atom in a strong microwave field by

adding a relatively small control term to the original Hamiltonian. In the second

subtopic, we perform periodic orbit analysis to investigate multiphoton ionization

driven by a bichromatic microwave field. Our results show quantitative and quali-

tative agreement with previous studies, and hence identify the mechanism through

xiii



which short periodic orbits organize the dynamics in multiphoton ionization. In ad-

dition, we achieve substantial time savings with this approach. In the third subtopic

we extend our periodic orbit analysis to the dissociation of diatomic molecules driven

by a bichromatic laser. In this problem, our results based on periodic orbit analysis

again show good agreement with previous work, and hence promise more potential

applications of this approach in molecular physics.

xiv



CHAPTER I

INTRODUCTION

The leitmotif of this thesis is changing phase-space structures and their (linear or

nonlinear) stabilities by adding control functions (which act on the system as exter-

nal perturbations) to the relevant Hamiltonians. These phase-space structures may

be periodic orbits, invariant tori or their stable and unstable manifolds. In this the-

sis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms

exposed to strong microwave fields and the dissociation of diatomic molecules driven

by bichromatic lasers using nonlinear dynamics. In the first subtopic, we are adding

a control function to restore tori at prescribed locations in phase space. In the re-

mainder of the thesis, a control function with parameters is used to change the linear

stability of the periodic orbits which govern the processes in question.

1.1 Background

In 1974, Bayfield and Koch [7], while experimentally studying multiphoton ionization

of highly excited hydrogen atoms exposed to a strong microwave field, discovered

that a high proportion of hydrogen atoms at principal quantum number n ' 66 (in

Rydberg states) were unexpectedly ionized by absorption of about 80 photons of

9.9GHz frequency. They also performed additional experiments at lower microwave

frequencies, for which a lot more photons were required to ionize hydrogen atoms,

and again observed this striking phenomenon that a significant proportion of atoms

were ionized. It should be pointed out that according to quantum perturbation the-

ory, to compute multiphoton (for instance, 80 photons) ionization, one needs imple-

ment perturbation for many (for instance, 80) times. This theoretical approach to
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Bayfield and Koch’s experiment would produce an extremely small ionization prob-

ability resulting from the product of 80 small transition probability values, which

is clearly in conflict with the experimental results. In other words, for highly ex-

cited hydrogen atoms, the actual microwave field strength required for ionization

is much lower than that predicted by quantum perturbation theory. While early

methods such as quantum perturbation theory failed to provide satisfactory expla-

nations to the amazing multiphoton ionization, convincing illustrations of this ex-

periment from the perspective of classical nonlinear dynamics (chaos) were presented

by Meerson et al quantitatively [80]. The success of classical mechanics for this

highly excited (high principal quantum number) hydrogen atoms experiment is not

a surprise. Orbits with high principal quantum numbers are very closely-spaced and

hence can be classically treated as continuous. A survey of the extensive research

results can be found in review papers published by Casati et al [17], Jensen et al [60]

and Koch and van Leeuwen [65]. Recently, more emphasis has been put on ma-

nipulating or controlling atomic or molecular systems, as elaborated by Rabitz [93],

Shapiro and Brumer [103, 104], Gordon et al [46] and Charron et al [21]. Among

control tools, bichromatic pulses are important because they provide many control-

ling parameters such as polarization, amplitudes and phases, as discussed by many

references [6,14,21,29,36,43,46,51,52,54,57,63,66,74,89,94,103,106–108]. However,

most previous theoretical studies were based on time-consuming large-scale numerical

simulations. There is still a great need for more efficient approaches to these systems

governed by classical mechanisms. This thesis was written to address this need.

1.2 Brief Review

In this section, we will present a brief review on the application of classical mechanics

to microwave-induced hydrogen (Rydberg) atom ionization.

The hydrogen atom problem is a very famous textbook example which may date

2



back to early twentieth century, when Bohr proposed his well-known model [12] which

is considered a milestone of the history of quantum mechanics. With the development

of microwaves and lasers, the interaction between atom/molecule and electromagnetic

field has triggered many intensive studies since middle 1970’s [65]. One of these

topics is the hydrogen electron dynamics in the Coulomb potential driven by strong

external microwave field. Meanwhile, this important problem has also been of great

interest to nonlinear dynamicists since the microwave ionization behavior can be very

well explained and understood through classical stochasticity [17, 60, 65], instead of

quantum perturbation theory. From the perspective of microscopic systems, this

typical quantum system exhibits chaotic dynamics and has been a good paradigm for

the application of nonlinear dynamics for the past several decades. The quantum-

classical correspondence is an attractive topic that has been investigated extensively

to study the relationship between the classical domain and the quantum domain

[17, 60, 65]. In quantum mechanics, the dynamical results depend on the numerical

solutions of Schrödinger equation while in its classical counterpart, the numerical

solutions of coupled Hamilton’s equations of motion (linear differential equations) are

the key. Specifically, in order to describe the dynamics of hydrogen atom exposed

to an external linearly polarized microwave field, a commonly used one-dimensional

model, namely surface-state-electrons (SSE) model in atomic units (a.u.) [17,33,58,59]

reads

H(x, p, t) =
p2

2
+




− 1

x
, x > 0

∞, x ≤ 0





+ xλ cos ωt, (1.2.1)

which has proven to be successful in illustrating the real three-dimensional exper-

imental hydrogen atoms ionization thresholds in linearly polarized microwave field

using the classical chaotic dynamics [17, 60, 65]. The striking success is due to the

fact that the three-dimensional electronic states that are highly elongated along the

field direction are the easiest to ionize, and those along other directions almost do not

3



make contributions to ionization [69]. As a result, the one-dimensional model (1.2.1)

can actually simulate the process very accurately. Following the model (1.2.1), many

classical investigations have been implemented and then compared to results based

on quantum mechanics. Here we need to mention an important quantity, scaled

frequency [17,60,65], which is defined as

$ = n3ω, (1.2.2)

where n is the principal quantum number and ω is the frequency of the external mi-

crowave field in atomic units. Previous studies [64] have shown that for 0.1 ≤ $ ≤ 1.2,

the onset ionization threshold based on classical treatment agrees very well with

quantum calculations and experimental results. The agreement in this regime re-

sults from the relatively high principal quantum numbers and correspondingly many

closely-spaced states that can induce the transition from quantum to classical me-

chanics [17, 70, 71]. It should be pointed out that a large number of strongly and

continuously coupled quantum states can make quantum simulations much more

complicated than classical calculations [17, 60, 65]. Classical methods have proven

to be very practically effective in this regime. When the scaled frequency $ rises

above 1, quantum localization will start to take effect. This phenomenon was first

explained using a theory presented by Casati et al [17]. They successfully analyzed

the quantum suppression of classical diffusion that comes from quantum state inter-

ference. According to some studies [41, 77], this quantum localization effect appears

significant only when the scaled frequency $ rises above 2. As a result, for the

regime 1 ≤ $ ≤ 2, classical calculations still agree with quantum treatment or ex-

perimental results [41], though not as well as for the regime 0.1 ≤ $ ≤ 1. While for

$ > 2, quantum localization effect dominates to make the onset ionization threshold

a lot higher than what classical calculation indicates and hence disagreement between

classical and quantum approaches grows sharply [17]. At the low end of the regime

0.1 ≤ $ ≤ 1.2, some tiny bumps or peaks appear on the onset ionization curve due
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to quantal resonance effect [10, 64, 97]. However this phenomenon does not affect

the overall agreement between classical and quantum calculations. For the regime

0.07 < $ < 0.1, classical-quantum correspondence is still close though quantum tun-

neling effect starts to rise. At $ ≤ 0.07, the quantum tunneling effect reflected by

the onset of ionization was observed in experiments [64]. In this regime ($ < 0.07),

the multiphoton ionization occurs by quantum tunneling through a slowly oscillating

barrier composed of the Coulomb potential and microwave fields [17,60,65], and hence

some quantum theories such as Ammosov-Delone-Krainov (ADK) [1] and Keldysh-

Faisal-Reiss (KFR) [37, 62, 96] methods should apply. Generally speaking, for the

scaled frequency regime 0.1 ≤ $ ≤ 1.2, classical calculations agree strikingly well

with quantum simulations. For the regime 1.2 < $ ≤ 2 and 0.07 < $ < 0.1, classical-

quantum correspondence is still close. In this thesis, all hydrogen atom-related prob-

lems are discussed within the regime 0.095 ≤ $ ≤ 1.49 where the classical-quantum

correspondence is close enough for us to implement classical approach.

From a chaos point of view, the stochastic ionization of hydrogen atoms in external

field is a process of classical chaotic diffusion, which can be well described by classical

Hamilton’s equations of motion under small perturbations [17,60,65,70,71] using the

Chirikov resonance overlap criterion [23] in phase space. The Chirikov criterion has

been traditionally used to determine the chaos border. According to the Chirikov cri-

terion, the overlap of resonant zones in phase space results in large-scale chaos [23].

The linearly polarized field in (1.2.1) is the perturbation for the originally unperturbed

hydrogen Hamiltonian. With this small perturbation, the Hamiltonian of hydrogen

atom becomes nearly integrable. Usually, the one-dimensional model (1.2.1) is written

in terms of action-angle variables in order to make the analysis much easier because

only action variable survives in unperturbed Hamiltonian [3]. In general, the equa-

tions of motion for an integrable Hamiltonian (unperturbed) H0(A) with L degrees
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of freedom are written as 


dA
dt

= 0

dφ
dt

= ∂H0

∂A
= ω0(A)


 , (1.2.3)

where action-angle variables (A, φ) ∈ RL × TL, T being an angle space typically

within [0, 2π[. ω0 are frequency vectors of invariant tori. For the particular one-

dimensional hydrogen atom problem, the unperturbed Hamiltonian in terms of action-

angle variables reads

H0(J) = − 1

2J2
. (1.2.4)

The action variable J directly corresponds to the principal quantum number. The

angle variable does not appear because (1.2.4) is integrable. However, for perturbed

(non-integrable) Hamiltonian H(A, φ), the equations of motion (1.2.3) should be

replaced by 


dA
dt

= −∂H
∂φ
6= 0

dφ
dt

= ∂H
∂A


 . (1.2.5)

The system then behaves chaotically. Following (1.2.5), we construct Hamilton’s

equations of motion for hydrogen atom in a linearly polarized microwave field, which

will be discussed in detail in Chapter III. The Kolmogorov-Arnold-Moser theorem

(KAM theorem) [2, 67, 84] provides a systematic theory illustrating the survival or

breakup of periodic orbits or invariant tori in phase space for Hamiltonian systems

under small perturbations. The KAM theorem states that with small perturbations,

those tori with rational frequency vectors (commensurate) are destroyed while those

with “sufficiently irrational” (incommensurate) frequency vectors are only slightly

deformed but still survive [2, 67, 84]. For the hydrogen atom ionization problem,

with small perturbations of an external microwave field, some originally invariant

tori are broken and chaotic diffusion appears. This is the mechanism of the onset of

multiphoton ionization according to chaotic theory [95]. In addition to the ioniza-

tion thresholds of hydrogen atom in linearly polarized microwave field, many other
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interesting results have also been obtained using classical chaotic theory, such as ion-

ization of Rydberg atoms in circularly polarized microwave field [39, 55, 81, 85, 98]

and in elliptically polarized microwave field [48, 105]. In recent years, with better

understanding of these perturbed atomic or molecular systems experimentally and

theoretically, more attention has been focused on manipulating them by some control

parameters [21,46,93,103,104]. This work was thus initiated to analyze and identify

the functions of control parameters for some multiphoton phenomena in atomic or

molecular systems through the classical approach.

1.3 Motivation and Contribution of the Thesis

In this thesis, we perform theoretical analyses on the ionization of hydrogen atoms

exposed to microwave fields based on classical dynamical tools such as local control

theory and stability analysis of periodic orbits, and then extend the classical investiga-

tion to the dissociation of diatomic molecules driven by a laser field. The motivation

to perform these studies lies in manipulating these atomic or molecular systems using

control parameters through the understanding of the underlying classical mechanisms

governing these systems. Our results have shown excellent agreement, either quan-

titatively or qualitatively, with experimental results, direct simulations of classical

mechanics or quantum mechanical calculations in the regime where the quantum-

classical correspondence is pretty close. In addition, our computations achieve sub-

stantial time savings compared to traditional large-scale numerical simulations. We

also make predictions for various parameters based on our analyses. Our work has

demonstrated that in some appropriate regimes, calculations based on our classical

analyses yield very accurate results with very high efficiency. These outcomes heuris-

tically pave the way of controlling and manipulating more complex systems or making

significant predictions in a very efficient style through classical mechanics.
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1.4 Organization of the Thesis

In this thesis we illustrate our investigation of multiphoton ionization of hydrogen

atoms and dissociation of diatomic molecules exposed to external fields for one-

dimensional model through classical approaches. Following a summary of local control

method in Chapter II, we present a procedure in Chapter III to reduce the stochas-

tic ionization of hydrogen atom in a strong microwave field. The way of ionization

reduction lies in adding to the original Hamiltonian a comparatively small control

term which might consist of an additional set of microwave fields. This modification

restores select invariant tori in the dynamics and prevents ionization. The complete

control term is derived based on local control theory [20]. We then simplify the com-

plete control term using fast Fourier transformation. The approximate form of control

term is obtained by modification of the simplified control term. We demonstrate the

procedure on the one-dimensional model of microwave ionization. Numerical simu-

lations give Poincaré sections and laminar plots showing the reduction of ionization.

After a brief introduction on some key concepts of linear stability analysis in Chapter

IV, we perform periodic orbit analysis in Chapter V to investigate the multiphoton

ionization of hydrogen atom driven by strong bichromatic microwave fields. The

Newton-Raphson multi-shooting algorithm [30] is employed to capture and monitor

specific periodic orbits. The stability of picked periodic orbits is reflected by an in-

dicator: Green’s residue [47, 76]. Through the stability of periodic orbits we can

match qualitatively the variation of experimental ionization rates with a control pa-

rameter, the relative phase between the two modes of the field. Moreover, we devise

an empirical formula which reproduces quantum simulations [66] to a high degree of

accuracy. This quantitative agreement shows how short periodic orbits organize the

dynamics in multiphoton ionization. In Chapter VI, we extend the stability analysis

of periodic orbits to the dissociation of hydrogen fluoride (HF) molecules exposed to

a bichromatic laser. The results based on our periodic orbit analysis shows striking
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agreement with direct simulations [29] on most parameter space. General conclusions

are in Chapter VII.
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CHAPTER II

LOCAL CONTROL METHOD ON CHAOTIC SYSTEM

For many complex dynamical systems, equations of motion based on the Hamiltonian

show chaotic behavior due to sensitivity to external small perturbations [91]. In

these systems, a slight deviation on the initial conditions may be amplified and then

cause drastically different trajectories afterwards. In many fields ranging from physics

to engineering, various efforts have been made to control these chaotic behaviors

[13, 22, 35, 42, 61, 75, 90, 101]. In this chapter, we give a brief introduction on a local

control method intensively reported by Ciraolo et al [25], Vittot et al [110] and

Chandre et al [20] for near-integrable Hamiltonian system. With this control strategy,

one can significantly reduce or even shut off Hamiltonian chaos. In Chapter III, we

apply this technique to reduce multiphoton ionization of hydrogen atom in a linearly

polarized microwave field.

2.1 Basic idea

A near-integrable Hamiltonian systems with L degrees of freedom can be written into

action-angle variables (A, φ) in the form

H(A, φ) = H0(A) + εV (A, φ), (2.1.1)

where (A, φ) ∈ RL×TL, T being an angle space typically within [0, 2π[. The H0(A)

in Eq. (2.1.1) represents the integrable part of the Hamiltonian while εV (A, φ) is

the small perturbation. The KAM theorem [2, 67, 84] presents complete analyses

on stability of invariant tori. Between these tori exist chaotic regions. For nearly

integrable Hamiltonians like Eq. (2.1.1), the increase of perturbation term εV leads

to successive break-ups of invariant tori [75, 95]. As a consequence, the dynamical
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system becomes more chaotic such that a large number of trajectories diffuse across

the action-angle space.

The idea of the local control method is to devise a control term f such that when

it is added to the nearly integrable Hamiltonian, it makes the trajectories of the

controlled Hamiltonian H0 + εV + f more regular. Meanwhile, other properties of

the dynamical system in phase space should not be affected. The feasibility of this

design is justified as long as the perturbed Hamiltonian is nearly integrable (ε is very

small). Moreover, the desired control term f has to be small when compared with

perturbation term εV for practical energy concerns. Therefore the acceptable control

term has to be of the order of ε2 or smaller.

Following Hamiltonian (2.1.1), the phase space in the integrable case (ε = 0) is

foliated by invariant tori with frequency ω(A) = ∂H0/∂A. Now consider one of

these invariant tori with frequency ω and position A0. ω is assumed non-resonant,

i.e. there is no non-zero integer vector k such that ω · k = 0. This invariant torus

is generally destroyed by the perturbation V (A, φ) when the parameter ε is greater

than a critical value εc. The idea of the control is to rebuild this invariant torus with

frequency ω for ε > εc by adding a small control term f to the original Hamiltonian

H. Thus the controlled Hamiltonian Hc can be constructed as

Hc(A, φ) = H(A, φ) + f(φ). (2.1.2)

2.2 Brief description of the local control formula

With an appropriate expansion around a region near A = 0, Hamiltonian (2.1.1) can

be written in the form

H(A, φ) = ω ·A + εp(φ) + w(A, φ). (2.2.1)

It should be pointed out that for ε = 0 the Hamiltonian (2.2.1) has an invariant

torus at A = 0 with frequency vector ω. As can be seen here, Hamiltonian (2.2.1)
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is composed of three terms. The first term, ω ·A, represents the integrable part of

the Hamiltonian. The second term stands for a small perturbation. The third term

is a higher order term in action-angle variables. The controlled Hamiltonian is hence

desired in the form

Hc(A, φ) = ω ·A + εp(φ) + w(A, φ) + f(φ). (2.2.2)

Hamiltonian (2.2.2) is exactly the same as (2.1.2). The control term f(φ) is given by

f(φ) = −w(−εΓ∂φp, φ), (2.2.3)

where Γ is a linear operator defined as a pseudo-inverse of ω·∂θ. Its explicit expression

is

Γp(φ) =
∑

ω·k6=0

pk

iω · keik·φ. (2.2.4)

The operators Γ and ∂φ do commute with each other. Consequently, the invariant

torus for Hamiltonian (2.2.2) is located at

A = −εΓ∂φp. (2.2.5)

The detailed mathematical proof on control term (2.2.3) can be found in Refs. [20,

25,110].
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CHAPTER III

REDUCING MULTIPHOTON IONIZATION IN A

LINEARLY POLARIZED MICROWAVE FIELD BY

LOCAL CONTROL

With permission from American Physical Society, this chapter is modified from the

paper originally published as:

S. Huang, C. Chandre and T. Uzer, “Reducing multiphoton ionization in a lin-

early polarized microwave field by local control”, Phys. Rev. A 74, 053408 (2006).

(Copyright by the American Physical Society.)

http://dx.doi.org/10.1103/PhysRevA.74.053408

3.1 Introduction

The multiphoton ionization of hydrogen Rydberg atoms [40] in a strong microwave

field [7] is an experiment which revolutionized the way we view the physics of highly

excited atoms [26]. Some previous thorough reviews have been completed by Koch and

Leeuwen [65], Casati et al [17,19] and Jensen [60]. The interpretation of multiphoton

ionization of Rydberg atoms remained a puzzle until its stochastic, diffusive nature

was uncovered through the then-new theory of chaos by Casati et al [17,19], Meerson

et al [80], Leopold and Percival [71] and Jensen [59]. Casati et al [17,19], Mackay and

Meiss [77], Farrelly and Uzer [38], Howard [54,55] and Reichl [95] have pointed out that

the multiphoton ionization occurs when the electrons diffuse to increasingly higher

energies chaotically by taking advantage of the breakups of local invariant tori in phase

space. Classical theory can be applied to the ionization of hydrogen in the parameter

regime where the microwave and Kepler frequencies are nearly equal [60,77]. Because
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the classical dynamics of this system is chaotic, Blümel and Reinhardt [9], Buchleitner

et al [14] and Krug and Buchleitner [68] used the Rydberg states of hydrogen as an

excellent testbed for investigating the quantal manifestations of classical chaos, i.e.,

the field of “quantum chaology” as introduced by Casati et al [17,19], Reichl [95] and

Berry [8]. Indeed, the literature on the correspondence between classical and quantum

behavior in the ionization of Rydberg atoms is extensive [8, 9, 11, 14,17,19, 32,38, 54,

55,59,60,68,71–73,77,80,88,95]. We perform our purely classical calculations in the

regime where the quantum-classical correspondence is particularly close [60].

Recently, the research focus in this field has shifted from understanding to ma-

nipulating the ionization process [63, 66, 78, 79, 106, 107]. Since microwave ionization

of Rydberg states is a paradigm for time-dependent nonintegrable systems, learning

to manipulate stochastic ionization is expected to pave the way of controlling other,

more involved systems. The control of stochastic ionization has been investigated us-

ing both quantum and classical approaches in the past few years [66,78,92,106,107].

Here, we return to the basic dynamics of the stochastic ionization process to answer

the most elementary manipulation question: If the multiphoton ionization is made

possible by broken invariant tori, can ionization be reduced (or even stopped) by

restoring invariant tori at carefully chosen locations in phase space?

In this chapter, we will show how to reduce or shut off the ionization of Rydberg

atoms using a “local” control strategy which originates in plasma physics [20]. The

premise of the procedure is to reduce the chaos (and thus ionization) in a selected

parameter range through a small perturbation which regularizes the dynamics in that

narrow area but does not affect the dynamics elsewhere. Technically, local control

achieves this by creating an invariant torus in a selected region of phase space without

significantly changing other parts of phase space.

The problem of finding such a modification of the original Hamiltonian system

is, a priori, nontrivial : A generic modification term would lead to the enhancement
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of the chaotic behavior (following the intuition given by Chirikov’s criterion [23]).

Modification terms with a regularizing effect are, of course, rare. However, there

is a general strategy and an explicit algorithm to design such modifications which

indeed drastically reduce chaos and its attendant diffusion by building barriers in

phase space [20,24], as we will show on the one-dimensional hydrogen Rydberg atom

in a strong microwave field.

One-dimensional models of microwave ionization in linearly polarized microwave

fields have proven perfectly adequate to explain most experimental observations [17,

19,60,65] since many of the experiments considered extended, quasi-one-dimensional

hydrogen atoms [7,60,65,95] in which the angular momentum of the Rydberg electrons

is much smaller than their principal quantum number. As a result, the atoms resemble

needles in which the electron bombards the core with zero angular momentum. The

one-dimensional Hamiltonian model in atomic units reads

H(p, x, t) =
p2

2
− 1

x
+ λx cos ωt, (3.1.1)

where λ is the amplitude of the external field and x > 0.

The desired Hamiltonian with the control field reads

H(p, x, t) =
p2

2
− 1

x
+ λx cos ωt + xg(t), (3.1.2)

where x > 0. For practical purposes, we expect that the control field g(t) has the

same form as the perturbation field but with relatively small amplitude. Despite the

fact that g introduces an additional set of resonances, its effect, if it is appropriately

chosen, is to restore specific invariant tori.

This chapter is organized as follows: In Sec. 3.2, we implement the local control

method on a one-dimensional hydrogen atom driven by a linearly polarized microwave

field. In Sec. 3.3, we present the numerics of the control term and show its efficiency

by using Poincaré sections, laminar plots and diffusion curves. In order to be relevant
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and feasible for physical implementations, the control term has to be robust, i.e.,

sufficiently good approximations to it should reduce chaos effectively, too. We pay

particular attention to this point and show numerically that reasonable approxima-

tions to our control terms are effective in reducing chaos also. Conclusions are in

Sec. 3.4.

3.2 Computation of the control term

In order to apply this method [20,25,110] to a one-dimensional hydrogen atom driven

by a microwave field, we first need to map Hamiltonian (3.1.1) into action-angle

variables of the unperturbed system (λ = 0). Its action-angle variables (J, θ) are [72]

x = 2J2 sin2 ϕ,

p =
1

J
cot ϕ,

with

θ = 2ϕ− sin 2ϕ.

After rescaling energy, time, position and momentum as H ′ = ω−2/3H, t′ = ωt, x′ =

ω2/3x, p′ = ω−1/3p, we obtain the rescaled field amplitude λ′ = ω−4/3λ. The rescaled

Hamiltonian (dimensionless) still satisfies the equations of motion, and we assume

ω = 1 without loss of generality in Eq. (3.1.1). The scaled frequency, or say, winding

ratio in the rescaled system is thus defined as $ ≡ J3ω = J3. Expanding x′, we

rewrite Hamiltonian (3.1.1) [17]

H = − 1

2J2
+ 2J2λ(

a0

2
+

∞∑
n=1

an cos nθ) cos t, (3.2.1)

where

an =
Jn(n)− Jn−1(n)

n
,

Jn’s are Bessel functions of the first kind and a0 = 1.5. We abbreviate the Hamilto-

nian (3.2.1) as

H = − 1

2J2
+ λJ2v(θ, t).
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where

v(θ, t) = a0 cos t +
∞∑

n=1

an[cos(nθ + t) + cos(nθ − t)]. (3.2.2)

The Hamiltonian (3.2.1) displays a set of primary resonances approximately located

at Jn = n1/3. The overlap of these resonances [23] leads to large-scale chaos and hence

ionization. We expect the lower action region to be more regular, and it is chaotic for

sufficiently large λ by resonance overlap. The idea is, given a value of n, to restore

an invariant torus in between the resonances approximately located at Jn and Jn+1.

For λ = 0, this invariant torus with (Kepler) frequency ω0 is located at J0 = ω
−1/3
0 .

In order to do this, we need to compute the control term.

The step of the control algorithm is to map the time-dependent Hamiltonian into

an autonomous one. We consider that t (modulus 2π) is an additional angle variable

and we call its corresponding action variable E. The autonomous Hamiltonian be-

comes H(J, θ, t) + E. The action-angle variables are A = (J,E) and φ = (θ, t). The

frequency vector of the torus is ω = (ω0, 1). In particular, the detailed derivation of

the control term f(θ, t) is as follows:

We have Hamiltonian Eqn. (3.2.1)

H = − 1

2J2
+ 2J2λ(

a0

2
+

∞∑
n=1

an cos nθ) cos t,

where

an =
Jn(n)− Jn−1(n)

n
,

which leads to

H = − 1

2J2
+ λJ2(a0 cos t +

∞∑
n=1

an[cos(nθ + t) + cos(nθ − t)]).

After shifting the action J such that the torus is located at J = 0, we have

H = − 1

2(J + ω
− 1

3
0 )2

+ λ(J + ω
− 1

3
0 )2(a0 cos t +

∞∑
n=1

an[cos(nθ + t) + cos(nθ − t)]).
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Implementing Taylor expansion on the first term of right hand side with respect to

J = 0 leads to

H = − 1

2ω
− 2

3
0

+ω0J+
∞∑

k=2

CkJ
k+λ(J2+2ω

− 1
3

0 J+ω
− 2

3
0 )(a0 cos t+

∞∑
n=1

an[cos(nθ+t)+cos(nθ−t)]),

(3.2.3)

where

Ck = (−1)k+1k + 1

2
ω

k+2
3

0 .

Here we drop the first term of the Hamiltonian (3.2.3) since it is a constant and

does not affect the dynamics of this system. In order to make the Hamiltonian time-

independent, we add an additional term E to this Hamiltonian as the second action

variable which is canonically conjugate to time. Then the autonomous Hamiltonian

becomes

H = E+ω0J+
∞∑

k=2

CkJ
k+λ(J2+2ω

− 1
3

0 J+ω
− 2

3
0 )(a0 cos t+

∞∑
n=1

an[cos(nθ+t)+cos(nθ−t)]).

(3.2.4)

Note this Hamiltonian is the expansion of the original Hamiltonian (3.2.1) around

A0 = 0.

Following the local control method introduced in Chapter II, we identify that in

Hamiltonian (3.2.4),

E + ω0J = ω ·A,

λω
− 2

3
0 (a0 cos t +

∞∑
n=1

an[cos(nθ + t) + cos(nθ − t)] = εp(φ)

and

∞∑

k=2

CkJ
k + λ(J2 + 2ω

− 1
3

0 J)(a0 cos t +
∞∑

n=1

an[cos(nθ + t) + cos(nθ − t)]) = w(A, φ)

in Eqn. (2.2.1) respectively. For this problem, the control term (2.2.3) can be rewritten
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in an alternative way more clearly as

f(φ) = −H(A0 − ∂φΓb(φ), φ), (3.2.5)

where b(φ) = H(A0, φ) and A0 = 0 (Note here A0 = 0 because we have shifted the

original Hamiltonian (3.2.1) by ω
− 1

3
0 in order to make the targeted invariant torus at

J = 0. If there were no such shift, A0 should be equal to (ω
− 1

3
0 , 0)). Γ is a linear

operator defined as a pseudo-inverse of ω · ∂φ. Its explicit expression is

Γb(φ) =
∑

ω·k6=0

bk
iω · keik·φ. (3.2.6)

for b(φ) =
∑

k∈ZL bke
ik·φ. The restored invariant torus of the controlled Hamiltonian

Hc has the equation :

A = A0 − Γ∂φH(A0, φ), (3.2.7)

which is equivalent to Eqn. (2.2.5). Here A0 = 0 for the shifted Hamiltonian. Such

an invariant torus acts as a barrier to diffusion for Hamiltonian systems with two

degrees of freedom. The frequency vector is (ω0, 1). The action variables is A =

(J,E) and the angle variables is φ = (θ, t). Following the Eqn. (3.2.5) and (3.2.6),

b(φ) = H(A0, φ) = H((J = 0, E = 0), (θ, t)). Therefore,

b(φ) = H(A0, φ) = λω
− 2

3
0 (a0 cos t +

∞∑
n=1

an[cos(nθ + t) + cos(nθ − t)]). (3.2.8)

Then

∂φΓH(A0, φ) = (∂θΓH(A0, φ), ∂tΓH(A0, φ)), (3.2.9)

where

∂θΓH(A0, φ) = λω
− 2

3
0

∞∑
n=1

nan[
cos(nθ + t)

nω0 + 1
+

cos(nθ − t)

nω0 − 1
],

∂tΓH(A0, φ) = λω
− 2

3
0 (a0cos t +

∞∑
n=1

an[
cos(nθ + t)

nω0 + 1
− cos(nθ − t)

nω0 − 1
]).

Since A0 = (0,0) for the shifted Hamiltonian (3.2.4),

A0 − ∂φΓH(A0, φ) = (−∂θΓH(A0, φ),−∂tΓH(A0, φ)). (3.2.10)
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Recall the expression of control term Eqn. (3.2.5), we have

f(φ) = −H(A0 − ∂φΓH(A0, φ), φ). (3.2.11)

Therefore in Hamiltonian (3.2.4) we replace J with −∂θΓH(A0, φ), replace E with

−∂tΓH(A0, φ)) and then put a negative sign in front. Consequently, we obtain the

control term

f(θ, t) =
∞∑

k=2

k + 1

2
λkω

2−k
3

0 (Γ∂θv)k

+ (2λ2ω−1
0 Γ∂θv − λ3ω

− 4
3

0 (Γ∂θv)2)v, (3.2.12)

where

Γ∂θv =
∞∑

n=1

nan

[
cos(nθ + t)

nω0 + 1
+

cos(nθ − t)

nω0 − 1

]
.

For λ small, we approximate the control term f by its leading order in λ2 which is

given by

f2(θ, t) =
3

2
λ2(Γ∂θv)2 + 2λ2ω−1

0 vΓ∂θv. (3.2.13)

Obviously, the location of the restored invariant torus depends on the choice of

Kepler frequency ω0 or equivalently of its location in the integrable case J0. The

theoretical torus curve for the shifted Hamiltonian is given by

Jshifted = −λω
− 2

3
0 Γ∂θv(θ, t).

After this torus is shifted back by ω
− 1

3
0 , we obtain the torus for the controlled original

Hamiltonian (Hamiltonian (3.2.1) plus control term (3.2.12)) located at

J = J(θ, t) = ω
− 1

3
0 − λω

− 2
3

0 Γ∂θv(θ, t). (3.2.14)

This torus is λ-close to J0 = ω
−1/3
0 . We notice that the control term as well as the

invariant torus are 2π-periodic in θ and time t.

Remark : In the local control method, we have searched for control terms only

dependent on φ. However, in order to be more consistent with the specific shape of
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the control waves, it can be appropriate to search for controlled Hamiltonian of the

form

Hc(A, φ) = H(A, φ) + (Ω ·A)2f(φ),

where Ω is a fixed vector, e.g., Ω = (1, 0) in that case. Following the same arguments

as in Ref. [20], the formula of the control term is

f(φ) = − H(A0 − ∂θΓb, φ)

(Ω ·A0 −Ω · ∂φΓb)2 , (3.2.15)

where b(φ) = H(A0, φ). We notice that the control term (3.2.15) is still of the same

order as the one given by Eq. (3.2.12) and it is ε3-close to the one given by Eq. (3.2.5)

divided by (Ω ·A0)
2, since ∂φb is of order ε.

3.3 Numerical analysis

In what follows, the series which give v and Γ∂θv are truncated at n = 30 for numerical

purposes, and the first series of f is truncated at k = 20. Also, we choose ω0 in the

interval [ 1
n0+1

, 1
n0

] which corresponds to a region in between two primary resonances,

and n0 is in general chosen equal to 1, 2, 3... (With a relatively big n0, local control

theory still holds though quantum suppression leads to a higher ionization threshold

[18]).

3.3.1 Analysis of the control term

Figure 3.3.1 depicts a contour plot of f given by Eqn. (3.2.12) and f2 given by

Eqn. (3.2.13) for ω0 = 0.6750 (which corresponds to n0 = 1) and λ = 0.03. In this

case, the scaled frequency at the intended invariant torus for λ = 0 is $ = J3
0 =

ω−1
0 = 1.4815 < 2 which justifies the application of classical theory to the regime we

are interested [41, 77]. Since f and f2 are 2π-periodic in t and θ, these contour plots

are represented for (t, θ) ∈ [0, 2π]2. In order to compare the control term with the

perturbation, Fig. 3.3.2 represents a contour plot of the perturbation at an action

J = J0 where the control acts. These figures show that for this value of λ the control
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term is small (by a factor approximately equal to 10) compared with the value of the

external field λJ2
0v(θ, t).

However, the control terms f and f2 given by Eqs. (3.2.12) and (3.2.13) appear

to have a much richer Fourier spectrum. We have represented in Fig. 3.3.3 their

two-dimensional Fourier transforms. They have an infinite number of Fourier modes

and therefore not practical for a numerical or experimental realization. However, it

is seen on Fig. 3.3.3 that only few Fourier coefficients contribute significantly to the

control terms. Therefore, it is feasible to truncate them since the method has been

shown to be robust [24]. The tailored control term results in general from a trade-off

between the ability to control chaos and restrictions on the desired shape for the

specific problem at hand.

In order to identify the main Fourier modes, we introduce a parameter A defined

as

Ak1,k2 ≡
|fk1,k2|

|k1ω0 + k2| , (3.3.1)

where fk1,k2 is the Fourier coefficient with wavevector (k1, k2) of f or f2. The dominant

Fourier mode is supposed to have maximal A. We notice that this definition contains

two effects : First a dominant Fourier mode has to have a significant amplitude, and

second, its corresponding wavevector has to be close to a resonance with the frequency

vector of the integrable motion (and hence close to a resonance). For ω0 = 0.6750

(which corresponds to n0 = 1) and λ = 0.03, there is only one dominant Fourier

mode in f or f2 which has a frequency which is twice the microwave frequency. The

truncated control term is given by

fa(θ, t) = f3,−2 cos(3θ − 2t), (3.3.2)

where f3,−2 ≈ −9.772 × 10−4 for control term f given by Eqn. (3.2.12) and f3,−2 ≈
−9.739× 10−4 for the approximate control term f2 given by Eqn. (3.2.13). We notice

that these two values are very close. For this mode, we have A3,−2 ≈ 3.90 × 10−2
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Figure 3.3.1: Contour plots of (a) f given by Eqn. (3.2.12) and (b) f2 given by
Eqn. (3.2.13) for λ = 0.03 and ω0 = 0.6750.
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and ω0 = 0.6750.
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Figure 3.3.3: Two-dimensional Fourier transforms of (a) f given by Eqn. (3.2.12)
and (b) f2 given by Eqn. (3.2.13) for λ = 0.03 and ω0 = 0.6750.
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which is more than ten times larger than the second largest one A1,−2 ≈ 1.90 ×
10−3. We notice that the continued fraction expansion of ω0 is [0, 1, 2, . . .]. One best

approximant is [0, 1, 2] = 2/3 which is the frequency of the mode of fa.

3.3.2 Poincaré sections

In order to test the efficiency of the control terms to restore invariant tori in phase

space, we perform Poincaré sections of H + f , H + f2 and H + fa and compare them

to the Poincaré section of H given by Eqn. (3.2.1). Since all these Hamiltonians are

periodic in time with period 2π, the natural Poincaré section is a stroboscopic plot

with period 2π.

Figure 3.3.4 depicts Poincaré sections of Hamiltonian (3.2.1) in panel (a), Hamil-

tonian H + f where f is given by Eqn. (3.2.12) in panel (b), Hamiltonian H + f2

where f2 is given by Eqn. (3.2.13) in panel (c) and Hamiltonian H + fa where fa is

given by Eqn. (3.3.2) in panel (d) for ω0 = 0.6750 and λ = 0.03. We notice that with

the addition of the control terms, an invariant torus has been restored which prevent

the diffusion from below to above the invariant torus. It is also worth noticing that

all of these control terms are efficient although only f is expected to be, indicating

that the presence of the control field f2 contributes dominantly to a restoration of

invariant tori at specific locations such that higher order resonances are eliminated

which, in the Chirikov’s approach [23], leads to less chaos and hence less stochastic

ionization [16, 20] in our problem. It reinforces the robustness of the method and

allows one to tailor a control term which is simpler to implement.
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Figure 3.3.4: Poincaré sections of (a) The uncontrolled Hamiltonian H given by
Eqn. (3.2.1), (b) The controlled Hamiltonian H +f where f is given by Eqn. (3.2.12),
(c) The controlled Hamiltonian H + f2 where f2 is given by Eqn. (3.2.13), and (d)
The controlled Hamiltonian H + fa where fa is given by Eqn. (3.3.2) for λ = 0.03
and ω0 = 0.6750. The thin wary curve indicates the location where the invariant
torus is restored. The black dots are from trajectories launched below this curve,
and gray dots are from trajectories launched above this curve. Note how they are
interspersed in (a), as is expected of chaotic trajectories, and how the control restricts
their movements in phase space through the invariant torus.
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3.3.3 A control term as an additional wave

In Sec. 5.3.1, we show that the frequency of the control wave should be twice the one

of the initial wave 1. Therefore, a possible controlled Hamiltonian is

H =
p2

2
− 1

x
+ λx cos t + µx cos 2t, (3.3.3)

which corresponds to a control term g(t) = µ cos 2t in Eqn. (3.1.2). In order to obtain

the value of µ, we use the Fourier decomposition of the control term f obtained

previously. First we map the controlled Hamiltonian into action-angle variables :

H = − 1

2J2
+ 2J2 (λ cos t + µ cos 2t) u(θ), (3.3.4)

where

u(θ) =
a0

2
+

∞∑
n=1

an cos nθ.

If we give a value of the action J0 where the invariant torus has to be restored, we

have seen that the dominant Fourier mode is proportional to cos[(2n+1)θ−2t] where

n is obtained using the continued fraction expansion of ω0 = J−3
0 . This mode is

present in Eqn. (3.3.4) and has an amplitude given by µJ2
0a2n+1. If f2n+1,−2 denotes

the amplitude of the dominant Fourier mode in Eqn. (3.2.12) for the values of the

parameters ω0 and λ, then the amplitude of the control field is chosen to be

µ =
f2n+1,−2

J2
0a2n+1

. (3.3.5)

The real parameters taken for the external microwave field and control field are flexible

for a set of rescaled amplitude of external field λ = 0.03 and frequency ω = 1 as long

as they satisfy rescaling relationships.

Figure 3.3.5 depicts the Poincaré section of the controlled Hamiltonian (3.3.4) with

λ = 0.03 and µ = 0.0127. Figure 3.3.5 does not show the restoration of an invariant

1Bichromatic microwave experiments are commonly used in manipulating microwave ionization
[?, 63, 66,107].
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torus as in the previous cases and hence, the ionization reduction is not obvious. This

comes from the fact that the additional wave is quite far from the control term (3.2.12)

due to additional resonances which break-up the restored invariant torus.

However, the ionization process is still reduced, and this can be seen from the

laminar plots. Such plots are obtained by looking at a grid of initial conditions and

plotting the number of iterations it takes the action to exceed a certain threshold.

Figure 3.3.6 depicts the laminar plots for Hamiltonian (3.2.1) and Hamiltonian (3.3.4)

with λ = 0.03 and µ = 0.0127. The action threshold is chosen to be Jth = 1.30. The

maximum integration time is 600π. The darker the region is the smaller time it takes

to have J ≥ Jth. It is expected that the laminar plots with brighter regions are cases

where there is less ionization.

In order to compare the diffusion time of trajectories for Hamiltonian (3.2.1) with

that of the controlled Hamiltonian (3.3.4), we have taken a set of N initial angles

evenly distributed in [0, 2π] for one initial action J and then computed the mean

diffusion time for each J in both controlled and uncontrolled cases :

〈Td〉(J) =
1

N

N∑
i=1

Td(J, θi). (3.3.6)

Figure 3.3.7 depicts the the curve of mean diffusion time 〈Td〉 versus initial action

J . In the numerical computation of Td(J, θi), the integration is performed till the cut-

off time t = 600π. Therefore for some trajectories the actual diffusion time is certainly

above the cut-off time or even goes to infinity. The double frequency control field also

works for the regime 1.14 < J < 1.20 for the reason that the rebuilt invariant torus

is a curve which goes beyond J0 = ω
−1/3
0 = 1.14 in some areas. Figure 3.3.7 shows

that the mean diffusion time for controlled Hamiltonian (3.3.4) is significantly larger

than that for Hamiltonian (3.2.1) which clearly shows the effect of the additional

microwave field in reducing ionization.
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Figure 3.3.5: Poincaré sections of Hamiltonian (3.3.4) for λ = 0.03 and µ = 0.0127.

30



θ

J

0 2 4 6
0.9

0.95

1

1.05

1.1

1.15

1.2

50

100

150

200

250

(a)

θ

J

0 2 4 6
0.9

0.95

1

1.05

1.1

1.15

1.2

50

100

150

200

250

(b)

Figure 3.3.6: Laminar plots of (a) Hamiltonian (3.2.1) and (b) Hamiltonian (3.3.4)
for λ = 0.03 and µ = 0.0127. Cut-off time is 600π and diffusion threshold is Jth = 1.30.
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for Hamiltonian (3.3.4) for µ = 0.0127. Cut-off time is 600π and diffusion threshold
is Jth = 1.30.
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3.4 Conclusion

In this chapter we implemented a local control method on the ionization of one-

dimensional hydrogen atom model in a linearly polarized (LP) microwave field in order

to reduce ionization. After simplifying the originally complicated control function

numerically, we obtained an extremely simple control term which is in the same form

as the external LP microwave field but with smaller amplitude. Adding the small

control field to the perturbed Hamiltonian leads to a reduction of ionization. We

have done the calculations in a regime where the quantum and classical methods

agree, and our classical computations show efficient suppression of ionization. This

work exhibits a heuristic way of controlling ionization in higher dimensions.
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CHAPTER IV

LINEAR STABILITY ANALYSIS FOR PERIODIC

ORBITS WITH HIGH EFFICIENCY

Chaotic behavior can exist in many simple Hamiltonian systems with deterministic

properties. Kolmogorov [67], Arnold [2] and Moser [84] (KAM) introduced a theorem

regarding periodic orbits or tori that are lying in phase space and governing these

chaotic systems. The variation of either initial conditions or parameters of the systems

can make the type of these orbits change drastically. In this chapter, we review some

important concepts regarding periodic orbits analysis that we will use in the following

chapters to investigate multiphoton ionization or dissociation phenomena.

4.1 “Residue”

In this section, we make a brief introduction on a quantity namely “residue”, which

was first presented by Greene [47] and further analyzed in depth by Mackay [76], Cary

and Hanson [16] and Bachelard et al [4] to describe the linear stability properties of

these orbits.

4.1.1 Definition

For a d-dimensional flow depending on a set of parameters β, according to Hamilton’s

equations of motion, we have

dx

dt
= Jd∇xH(x, t; β), (4.1.1)
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where x =




p

q


 =




x1

x2

...

xd




is a vector of the flow, H is the Hamiltonian of this flow

and Jd =




0 Id

−Id 0


. Here




p

q


 are canonically conjugate variables and Id is

the d-dimensional identity matrix. With the objective of characterizing the periodic

orbits that reflect the linear stability of the Hamiltonian systems, in general, one

should consider the tangent flow matrix J t
β described by

d

dt
J t

β = Jd∇2H(x, t; β)J t
β. (4.1.2)

In particular, the Hamiltonian of one-dimensional perturbed hydrogen atom in terms

of action-angle variables (J, θ) is a two-dimensional flow plus an additional dimension

for time, and hence Eqn. (4.1.2) reads

d

dt
J t

β = J∇2H(J, θ, t; β)J t
β, (4.1.3)

where J =




0 1

−1 0


, ∇2H is the two-dimensional Hessian matrix whose elements

are second derivatives of H with respect to its action-angle variables J and θ, and

the initial condition is J 0
β = I2 (the two-dimensional identity matrix). Eqn. (4.1.3)

can be written as

J̇11 J̇12

J̇21 J̇22


 =




0 1

−1 0







∂2H
∂θ2

∂2H
∂θ∂J

∂2H
∂J∂θ

∂2H
∂J2






J11 J12

J21 J22


 ,

which can further be expressed as four differential equations



J̇11 = J11
∂2H
∂J∂θ

+ J21
∂2H
∂J2

J̇12 = J12
∂2H
∂J∂θ

+ J22
∂2H
∂J2

J̇21 = −J11
∂2H
∂θ2 − J21

∂2H
∂θ∂J

J̇22 = −J12
∂2H
∂θ2 − J22

∂2H
∂θ∂J




. (4.1.4)
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The initial condition for matrix J t
β is

J 0
β =



J 0

11 J 0
12

J 0
21 J 0

22


 =




1 0

0 1


 .

In Eqn. (4.1.3), the matrix J t
β is of great importance because for a considered periodic

orbit with period T , the spectrum of the monodromy matrix J T
β determine the linear

stability properties. Here one should notice that the determinant of J T
β is equal

to 1 because the flow is volume preserving. Therefore the numerical solution to

Eqn. (4.1.4) is key to study the linear stability of the dynamical system. Since the two

eigenvalues of matrix J T
β are dependent on its trace only, a quantity called “residue”

was concisely defined by Greene to describe the state of periodic orbits [47,76] as

R =
2− trJ T

β

4
. (4.1.5)

4.1.2 Analysis based on residue

With the definition of residue (4.1.5), the two eigenvalues of matrix J T
β are given by

λ(β) = 1− 2R± 2
√

R(R− 1). (4.1.6)

For 0 < R < 1, the two eigenvalues are complex and can be rewritten as (eiω(β), e−iω(β)).

In this case, tangent space orbits rotate about the origin for many repetitions steadily

and the periodic orbits are hence stable and called elliptical periodic orbits. For R > 1

or R < 0, the two eigenvalues are real and can be expressed in the form (λ(β), 1/λ(β))

with λ(β) ∈ R∗. Under this condition, tangent space orbits are in hyperbolic shape

and tend to escape from the system. Therefore the periodic orbits are unstable then

called hyperbolic periodic orbits. For R = 1 or R = 0, the periodic orbits are called

parabolic and higher order expansions are responsible for the stability of these peri-

odic orbits. More detailed mathematical analyses are shown in Refs. [47, 76]. Some

concrete examples can be found in Refs. [4, 16]. In Chapter V, we show our work

based on residue analysis to investigate the ionization probability of hydrogen atoms

driven by a linearly polarized bichromatic microwave field.
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4.2 Monitoring periodic orbits with the Newton-Raphson
multi-shooting algorithm

In many chaotic systems, the periodic orbits governing the dynamics are varied slowly

and continuously in phase space along with the small change of parameters. In order

to follow the stability properties of a certain periodic orbit, one should monitor the or-

bit which deforms with the continuous variation of parameters. In order to efficiently

monitor the periodic orbits which are crucial to some multiphoton phenomena, we

want to employ a modified Newton-Raphson multi-shooting algorithm as elaborated

in Ref. [30]. In this section, we give a brief introduction to this algorithm based on

Ref. [30].

4.2.1 Fixed points

The d-dimensional mappings can be expressed as

x′ = f(x),

where both x =




x1

x2

...

xd




and x′ =




x′1

x′2
...

x′d




are vectors. In order to search for fixed

points, one solves F (x∗) = x∗ − f(x∗) = 0 using Newton-Raphson method with an

initial guess for x0. Provided that Id− ∂f
∂x

is invertible, the Newton-Raphson iteration

for a search of fixed points is given by

x1 = x0 −
(
Id − ∂f

∂x

)−1

(x0 − f(x0)), (4.2.1)

where Id is the d-dimensional identity matrix and ∂f
∂x

is a d × d matrix of variations

whose elements are (
∂f

∂x

)

ij

=
∂fi

∂xj

.
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4.2.2 Multipoint cycle orbit

Here, we briefly recall the basic equations for the determination of multipoint cycle

orbit by the Newton-Raphson multi-shooting method following Ref. [30, 87].

For d-dimensional multipoint cycle orbit, we assume that the periodic orbit has

n points on the Poincaré section. In order to search for n-point orbits, one uses

Newton-Raphson method to solve

F(x(1), x(2), . . . , x(n)) =




x(1) − f(x(n))

x(2) − f(x(1))

...

x(n) − f(x(n−1))




= 0, (4.2.2)

where x(k) =




x
(k)
1

x
(k)
2

...

x
(k)
d




. Apparently in Eqn. (4.2.2) the dimension of the vector is

dn. The equation for New-Raphson iteration for n-point orbits search reads

x1 = x0 −M−1G, (4.2.3)

where x0 is an initial guess for [(d + 1)n] dimensional vector




x(1)

x(2)

...

x(n)

T0




, where T0 =




T
(1)
0

T
(2)
0

...

T
(n)
0




is the initial time for each point. G =




F

0

...

0




is a [(d + 1)n] dimensional
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vector. M is a [(d + 1)n× (d + 1)n] matrix which reads

M =




K V
A 0


 .

Here K is a [dn× dn] matrix given by

K =




Id 0 . . . 0 −∂f(x(n))
∂x

−∂f(x(1))
∂x

Id
. . . . . . 0

0 −∂f(x(2))
∂x

. . . . . .
...

...
. . . . . . . . . 0

0 . . . 0 −∂f(x(n−1))
∂x

Id




, (4.2.4)

where Id is the d-dimensional identity matrix and ∂f(x(m))
∂x

is the monodromy matrix

J (m)
β for mth point. Here 1 ≤ m ≤ n and m is an integer. V is a [dn × n] matrix

which is

V =




v(1) 0

. . .

0 v(n)




,

where v(m) = ẋ(m) is a d-dimensional velocity vector (column vector) for each point.

A is an [n× dn] matrix given by

A =




a 0

. . .

0 a




,

where a is a d-dimensional vector (row vector) normal to Poincaré section. It should

be pointed out that the crucial information regarding the dynamics in matrix M is in

fact included in matrix K. However, matrix K is not invertible while matrix M is in

general. The invertibility of matrix M is required for the iteration equation (4.2.3).

The initial guess can be made in Poincaré section with accuracy such that the “guess”

is almost guaranteed to be a good “guess”. With the Newton-Raphson multi-shooting
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algorithm, we can monitor the considered periodic orbits with variation of parameters

β very efficiently and investigate the role that the orbits play in the dynamics.
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CHAPTER V

PERIODIC ORBIT BIFURCATIONS AS AN IONIZATION

MECHANISM: THE BICHROMATICALLY DRIVEN

HYDROGEN ATOM

With permission from IOP Publishing Ltd, this chapter is modified from the papers

originally published as:

S. Huang, C. Chandre and T. Uzer, “Periodic orbit bifurcations as an ionization

mechanism: The bichromatically driven hydrogen atom”, J. Phys. B: At. Mol. Opt.

Phys. 41, 035604 (2008). http://stacks.iop.org/JPhysB/41/035604

and

S. Huang, C. Chandre and T. Uzer, “How periodic orbit bifurcations drive multi-

photon ionization”, J. Phys. B: At. Mol. Opt. Phys. 40, F181 (2007).

http://dx.doi.org/10.1088/0953-4075/40/11/F02

The homepage of Journal of Physics B is http://www.iop.org/journals/JPhysB

5.1 Introduction

Among systems at the atomic level, one-electron systems are the most fundamental

and have proven to be a source of numerous surprising discoveries [9] : The multi-

photon ionization of hydrogen in a strong microwave field [7] is such a simple system

with surprisingly complex dynamics. With the development of theory of chaos, its

stochastic and diffusional nature was elucidated [80], and intense research activity in

the last three decades has resulted in a rather complete understanding of this prob-

lem [17,60,65]. In the recent years, the attention has shifted from understanding the

physical process to manipulating or controlling it [93, 104]. In this context control
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refers to tailoring the physical behavior of dynamical systems (which generically show

chaotic dynamics) using “knobs” (i.e., suitable external parameters). Identifying such

knobs and understanding the mechanism by which they affect the dynamics is the

ultimate goal of such research.

Bichromatic pulses [36, 63] are natural tools in atomic control research because

they offer practical control parameters such as polarization, amplitudes and phases

[6, 14, 29, 51, 54, 57, 66, 89, 94, 106, 107]. It has even been shown that it is possible to

use the direction of transport in a ratchet by varying the phase lag in the bichromatic

pulse [15]. In this chapter we consider the ionization behavior of a one-dimensional

hydrogen atom driven by a strong bichromatic linearly polarized electric field which

is modeled by the following one-dimensional Hamiltonian (x > 0) in atomic units

H =
p2

2
− 1

x
+ Fhx sin(hωt) + Flx sin(lωt + φ), (5.1.1)

where the indices l and h refer to the low and high frequency modes with frequencies

lω and hω, respectively. These two modes are frequency locked (and denoted h:l), i.e.

l and h are integers. The experimental results as well as the quantum calculations

results on ionization probability obtained in Refs. [66,106] for two cases, mode lockings

3:1 and 3:2, show two very distinct regimes as the phase lag φ is varied : For 3:1,

the ionization probability shows a plateau in phase located at a rather high value of

ionization probability, and for 3:2, the ionization probability shows no such plateau

but rather a small value of ionization probability.

In this chapter, we want to show that these experimental observations are quali-

tatively and quantitatively captured using a periodic orbit analysis, which reveals the

classical bifurcations responsible for ionization. Our analysis also allows the predic-

tion of ionization at other values of parameters without resorting to large numerical

simulations.

This chapter is organized as follows: First, in Sec. 5.2, we summarize the residue

analysis of periodic orbits [4] in the bichromatically driven hydrogen atom. In Sec. 5.3
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and Sec. 5.4, we consider two cases, the 3:1 mode locking and 3:2 one, respec-

tively. These two cases show drastically different ionization behavior which we explain

through bifurcations of selected periodic orbits. In these two cases, we described the

bifurcations (if any) in the system. We also compute the bifurcation surface which is

defined by the set of parameters where a change of linear stability (associated with

a period doubling or halving) has occurred in the chaotic sea. In Sec. 5.5 we discuss

the generalities of residue curve behavior for other mode lockings.

5.2 Residue analysis of periodic orbits

First, we map Hamiltonian (5.1.1) into action-angle variables (of the unperturbed

system Fh = Fl = 0) such that the principal quantum number n is reflected by action

J . The relationship between J and n reads

J = (t0ω)1/3n,

where t0 = 2.4188843243×10−17s (atomic time unit) and ω = 2πf = 12π GHz in both

cases. The action-angle variables [72] are denoted (J, θ) and obtained through the

canonical change of coordinates x = 2J2 sin2 ϕ, p = J−1 cot ϕ with θ = 2ϕ− sin 2ϕ.

We assume ω = 1 without loss of generality (after a rescaling H ′ = ω−2/3H,

t′ = ωt, x′ = ω2/3x, p′ = ω−1/3p and consequently φ′ = φ and F ′ = ω−4/3F ). The

Hamiltonian (5.1.1) becomes [17]

H = − 1

2J2
+ 2J2[Fh sin(ht)

+Fl sin(lt + φ)]

(
a0/2 +

∞∑

k=1

ak cos kθ

)
, (5.2.1)

where an = [Jn(n)− Jn−1(n)]/n and Jn’s are Bessel functions of the first kind. Note

that for a given mode locking h:l, there are three variables (J, θ, t) and three param-

eters (Fh, Fl, φ). We denote this Hamiltonian H(J, θ, t; Fh, Fl, φ). In general, for a

given set of parameter values, the phase space as depicted on a Poincaré section (a
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stroboscopic plot with period 2π, see Fig. 5.3.1), is composed of a mixture of regular

structures surrounded by a chaotic sea. More precisely, the lower part of phase space

(J small) is composed of rotational invariant tori (which persist from the integrable

case Fh = Fl = 0 as asserted by KAM theorem). The upper part is formed by regular

islands surrounded by an unbounded chaotic sea. The ionizing trajectories are the

ones in the chaotic sea which are unbounded (J , or equivalently n, becomes progres-

sively large). At the center of the regular islands, there are elliptic (stable) periodic

orbits which organize the regular motion around them. These periodic orbits result

partly from the break-up of resonant tori into a pair of elliptic/hyperbolic orbits (ac-

cording to Birkhoff’s theorem). Other periodic orbits result from the bifurcation of

these orbits.

The general idea which is applied here is to follow a finite set of periodic orbits

(both elliptic or hyperbolic) which have been identified as important. The criteria

of choice combine several factors: the size of the island, the period and the location.

For each periodic orbit of this set, we compute its location (J, θ) and its linear sta-

bility property as given by the residue (which is to be defined below). As the three

parameters are varied, we follow the locations and residues of these orbits instead of

computing the Poincaré section for each value of parameters. This allows us to form

a clear idea of what is going on in phase space and to predict ionization thresholds.

In what follows, we perform two kinds of computations : First, we compute the

residue curves which are obtained as functions of the relative phase φ for fixed values

of the amplitudes (Fh, Fl). Second, we compute bifurcation surfaces which are defined

as the set of parameters (Fh, Fl, φ) where a change of linear stability has occurred.

In order to start monitoring the stability of a family of periodic orbits, we first

consider a specific periodic orbit, denotedO(0), of Hamiltonian (5.2.1) for φ = 0 which

is our reference case. Numerically it is determined using a modified Newton-Raphson

multi-shooting algorithm as described in Ref. [30]. The initial condition for launching
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the iterative algorithm can be taken from a Poincaré section, for instance. As φ is

continuously varied, the orbit O(0) deforms continuously into O(φ), whose period is

denoted T (φ). In addition to its location, we also monitor its linear stability properties

given by the integration of the reduced tangent flow as introduced in Sec. 4.1.1

dJ t
φ

dt
= J∇2H(J, θ, t; φ)J t

φ,

where J =




0 1

−1 0


 and ∇2H is the two-dimensional Hessian matrix. The initial

condition is J 0
φ = I2 (the two-dimensional identity matrix). The two eigenvalues

of the monodromy matrix J T (φ)
φ which make a pair (λ(φ), 1/λ(φ)) determine the

stability properties. The linear stability properties are described by a concise form

using Greene’s residue R [47, 76]

R(φ) =
2− trJ T (φ)

φ

4
.

If R(φ) ∈]0, 1[, the periodic orbit is elliptic and the spectrum is (eiω(φ), e−iω(φ)) (stable,

except for some particular cases); if R(φ) < 0 or R(φ) > 1 it is hyperbolic and the

spectrum is (λ(φ), 1/λ(φ)) with λ(φ) ∈ R∗ (unstable); and if R(φ) = 0 and R(φ) = 1,

it is parabolic. Generically, periodic orbits and their linear stabilities are robust

against small changes of parameters, except at specific values where bifurcations

occur [16]. These rare events affect the dynamical behavior drastically. They can be

associated with an enhancement as well as a reduction of stability depending on the

type of bifurcations, as shown in Refs. [4,16]. We identify the bifurcations (if any) of a

set of short periodic orbits, i.e., the type and the value of the parameter φc where they

bifurcate. This provides a way to foretell if a relatively high ionization rate should

be expected or not. The importance of considering two associated Birkhoff periodic

orbits (i.e. periodic orbits with the same action but different angles in the integrable

case, one elliptic and one hyperbolic), was emphasized in Ref. [4]. The main reason is

that it allows one to discard some specific bifurcations (like collisions or exchanges of
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stability) and draw appropriate conclusions concerning the enhancement or reduction

of stability.

In the following sections, we analyze the short-time dynamics through residues of

selected periodic orbits. We compute residue curves φ 7→ R(φ, Fh, Fl) for fixed values

of the amplitudes Fh and Fl, and bifurcation surfaces associated with a given periodic

orbit defined as the set of parameters such that R(φ, Fh, Fl) = 1. We correlate these

results with ionization probabilities obtained experimentally and also by quantum

simulations through an empirical formula.

5.3 3:1 mode locking

For this mode locking, we consider Fh = 24 Vcm−1 and Fl = 53.4 Vcm−1 as in

Ref. [66]. These values correspond to the dimensionless values Fh = 24v0(t0ω)−4/3/d0 =

0.5278 and Fl = 53.4v0(t0ω)−4/3/d0 = 1.1743, where v0 = 0.036749326 and d0 =

1.88972613 × 108 are both conversion factors, t0 = 2.4188843243 × 10−17s (atomic

time unit). These values are referred as Case (I) in what follows.

5.3.1 Poincaré section

Figure 5.3.1 shows a Poincaré section of Hamiltonian (5.2.1) for Case (I) at φ = 0.

The phase space is divided into two main parts : a lower regular containing many

invariant tori, and a upper chaotic sea where trajectories escape rapidly to unbounded

actions J (ionized trajectories). We notice two main islands in the chaotic sea. At

the centers of these islands sit elliptic periodic orbits with period 2π (indicated by

full circles). In addition, there is also a period 2 island in between these two main

islands (associated with an elliptic and hyperbolic periodic orbits with period 4π). In

the region of phase space around Ji ≈ 0.49 (indicated by a straight line) where the

initial states n = 51 are prepared [66], any regular structures like the main islands

and smaller ones are associated with trappings and hence reduce the ionization rate.

Figure 5.3.2 shows a Poincaré section of Hamiltonian (5.2.1) for Case (I) at φ =
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Figure 5.3.1: Poincaré section of Hamiltonian (5.2.1) for Case (I) at φ = 0. Full
big circles (or big crosses, respectively ) indicate the two elliptic (resp. hyperbolic)
periodic orbits with period 2π we consider. Full small circles ( or small crosses,
respectively) indicate the two elliptic (resp. hyperbolic) periodic orbits with period
4π we consider. The horizontal line corresponds to the principal quantum number
n = 51.
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Figure 5.3.2: Poincaré section of Hamiltonian (5.2.1) for Case (I) at φ = π/3. Full
circle (respectively cross) indicates the elliptic (resp. hyperbolic) periodic orbit with
period 2π we consider. The horizontal line corresponds to the principal quantum
number n = 51.
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π/3. Apparently the upper elliptic periodic orbit of period 2π in Fig. 5.3.1 has

disappeared in chaotic sea. This case is associated with a higher ionization probability.

Therefore, the loss of stability of the main periodic orbit near Ji plays a major role

in the ionization process.

The residue method will monitor the location and stability of elliptic periodic

orbits as well as their associated hyperbolic periodic orbits [4] as a function of the

parameters of the system.

For Case (I), Figure 5.3.3 shows the positions of the upper elliptic and hyperbolic

periodic orbits of period 2π on the Poincaré section as functions of φ. We notice that

the action J is changing weakly as φ is varied. In contrast, its angle θ is very sensitive

to this parameter.

5.3.2 Residue curve

We follow the residue for each of the elliptic and hyperbolic periodic orbits mentioned

above as the parameter φ varies for Case (I). Figure 5.3.4 shows the residue curves

of these orbits.

In Fig. 5.3.4, we monitor the upper elliptic periodic orbit (period 2π) of Fig. 5.3.1

from φ = 0. This periodic orbit remains elliptic (R(φ) ∈]0, 1[) until φc ≈ 0.49 where

a bifurcation occurs. At this critical point, the orbit turns parabolic. Increasing φ

further, it turns and remains hyperbolic (R(φ) > 1) until 2π/3 − φc where another

bifurcation appears, making the orbit elliptic again. This bifurcation process is of the

period doubling kind at φc and a period halving at 2π/3− φc (by symmetry).

The bifurcation diagram for Case (I) is shown in Fig. 5.3.5. The computation

of log |λ±(φ)| (where λ±(φ) are the two eigenvalues of the monodromy matrix J T (φ)
φ

associated with the upper elliptic periodic orbit) gives log |λ±(φ)| = 0 before the

bifurcation and log |λ±(φ)| ∝ ±√φ− φc right after the bifurcation.

Figure 5.3.6 shows a projection of the upper elliptic periodic orbit undergoing the
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Figure 5.3.3: The positions of the upper elliptic and hyperbolic periodic orbits with
period 2π on the Poincaré section as functions of φ for Case (I). The solid curves
and the dashed ones correspond to the upper elliptic and hyperbolic periodic orbits
of Fig. 5.3.1 respectively.
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Figure 5.3.4: Residue curves for the four periodic orbits with period 2π (solid
curves) and the two periodic orbits with period 4π (dashed bold curves), indicated by
crosses and circles on Fig. 5.3.1 for Case (I). The solid bold curves are for the upper
set of elliptic/hyperbolic orbits of period 2π. Small arrows indicate where bifurcations
happen. The dotted bold curve between two arrows is associated with the residues
of the elliptic periodic orbit with period 4π born of the period doubling bifurcation.
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Figure 5.3.5: Bifurcation diagram for Case (I) showing the bifurcations indicated
by arrows in Fig. 5.3.4.
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period doubling bifurcation in x−p representation where we note the doubling of the

number of branches.

Note that while the upper elliptic periodic orbit undergoes a bifurcation as φ is

varied, the other three periodic orbits with period 2π retain the stability properties

they had at φ = 0.

In the parameter range φ ∈]φc, 2π/3 − φc[, the upper part of phase space does

exhibit more chaos as it can be shown on the Poincaré section for φ = π/3 (see

Fig. 5.3.2).

Since the initial atomic beam is taken in the region with principal quantum number

n = 51 which corresponds to action Ji ≈ 0.495, the ionization rate is expected to

be higher in the regime where there are no big islands in the chaotic sea, i.e. for

φ ∈]φc, 2π/3− φc[. On a finer scale, one has to take into account the smaller regular

structures that are present in the chaotic sea, like for instance the period-2 island

on the Poincaré section (period 4π). A similar period doubling and halving occur

at φc,1 ≈ 0.199 and 2π/3 − φc,1 ≈ 1.895 respectively, as can be seen on Fig. 5.3.4

(upper bold dashed curve). We notice that the residue curve for the period 4π orbit

is higher than the upper solid curve (for the period 2π orbit) and the phase region

between period doubling (φc,1) and period halving (2π/3 − φc,1) is much wider than

the one based on the period 2π. This observation indicates that for longer pulse

duration for which longer periodic orbits have to be taken into account, the period 4π

orbit obtained by a repetition of the period 2π orbit is more important (as a limiting

factor) for ionization than the orbit with primary period 4π. As a by-product, the

bifurcation at φc,1 does not affect significantly the leading ionization behavior based

on period 2π. Another important periodic orbit with period 4π is the one born of

the period doubling bifurcation of the upper periodic orbit at φc. This orbit is close

to the newly hyperbolic periodic orbit and is at first elliptic, as seen on Fig. 5.3.4.

It is expected that the associated elliptic islands slow down ionization. This orbit
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Figure 5.3.6: Upper elliptic periodic orbit (period 2π) of Case (I) undergoing the
periodic doubling bifurcation in x − p representation. The insets shows the doubled
number of branches indicating periodic doubling bifurcation.
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experiences a period doubling bifurcation at φc,2 ≈ 0.643 and halving bifurcation at

2π/3−φc,2 ≈ 1.451. In summary, the shortest periodic orbits (period 2π) always play

the most dominant role on ionizations rates, although with larger pulse durations

longer periodic orbits might be taken into account for a more detailed analysis.

For values of φ around π/3, a plateau is expected in the ionization probability

versus φ. The reason is that a strongly hyperbolic orbit only influences the ionization

time and not the value of the ionization probability. Of course, this is true provided

that the duration of the maximum pulse envelope is large enough. In the experiment,

this is approximately 15 times the period of the shortest periodic orbits considered.

Roughly speaking, this means that in the chaotic region all the orbits ionize (i.e.,

escape to a value of the action Jion & 1.26) regardless of the hyperbolicity degree.

In Ref. [66], experimental results as well as one-dimensional quantum calculations

show this plateau. From quantum calculations, φc ≈ 0.5 was obtained in Ref. [66]

which is in very good agreement with the parameter value φc ≈ 0.49 at which the

bifurcation of the upper elliptic periodic orbit (period 2π) occurs. If the duration of

the experiment or simulations is longer (two or three times longer), then higher-order

regular structures (like the regular island of period 4π in the Poincaré section and

the elliptic periodic orbit with period 4π born of bifurcations) will play a role and we

expect a similar, but smaller, plateau for φ ∈]φc,2, 2π/3− φc,2[.

The periodic orbit analysis above elucidates whether or not there is a significant

ionization probability for specific parameter values, and also where plateaus are ex-

pected to occur. This qualitative agreement highlights the important role played

by these orbits. Furthermore, we can obtain quantitative agreement concerning the

shape of the ionization curve versus phase lag φ by using the residue curves. Here we

devise an empirical formula for relative ionization probability in the following way :

First, the values of φ giving the highest ionization would be the ones associated with

the highest variations of the residues (in absolute value) with respect to the minimum
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ionization. Second, if the periodic orbit is too far (in action) from the considered ac-

tion Ji then it will not influence the dynamics so there should be a penalizing term

depending on its position with respect to the chosen rescaled action. The relative

ionization probability formula reads :

Pion(φ) = A + B
M∑

m=1

exp |Rm(φ)−Rm(φ0)|
exp |Jm(φ)− Ji|

, (5.3.1)

where the sum is taken over the M different periodic orbits considered and Jm(φ) =
∫ 2π

0
J(θ)dθ/2π is the action of the periodic orbit m. The parameters A and B in

Eqn. (5.3.1) are merely a translation and a dilatation of the curve in order to match the

mean value and the amplitude of variations of Pion obtained in Ref. [66]. This formula

takes into account the value of the residues at φ0, where the minimum ionization takes

place for each case. The aim is to set up a baseline for each of the periodic orbits

(which is taken here at the value of the parameter where the ionization is minimal).

Specifically for Case (I) φ0 = 0 [66]. In general, Eqn. (5.3.1) can exhibit values which

are greater than 1, which are not relevant. In order to remedy to this problem, we

truncate Pion at the value where a bifurcation occurs in accordance with the previous

discussion on the relevance of the degree of hyperbolicity. Therefore in the range

where Rn(φ) is larger than one, Pion is constant (taken as the value of the residue at

φc where the bifurcation occurs).

Figure 5.3.7 depicts Pion given by Eqn. (5.3.1) versus parameter φ as well as

the data taken from Ref. [66] for Case (I). Only the shortest periodic orbits with

period 2π are considered as relevant. We notice that the empirical formula reproduces

accurately the results obtained from quantum calculations. If we take into account

the period 4π orbits for longer pulse duration, then a second plateau appears for

φ ∈]φc,2, 2π/3− φc,2[ together with an increase at φc,1 and a decrease at 2π/3− φc,1.
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Figure 5.3.7: Normalized ionization probability vs φ based on Eqn. (5.3.1) for Case
(I) with A = −2.52 and B = 0.65. Circles represent the data obtained by one-
dimensional quantum calculations, taken from Ref. [66]. Only periodic orbits with
period 2π are considered.
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Table 1: Ionization thresholds obtained for Fh = 6 Vcm−1, experimentally in
Ref. [106] and by the residue method (see Fig. 5.3.4). The 1f case corresponds to
Fh = 0.

Fl( Vcm−1) φ = 0 φ = π/3 1f

[106] 107 85 96
residue 109.6 81.4 94.8

5.3.3 Bifurcation surface

The residue method is also carried out to predict the behavior of the system as all

three parameters (the two amplitudes Fh and Fl and the phase lag φ) are varied.

In Fig. 5.3.8, we represent the set of parameters where the upper elliptic periodic

orbit (with period 2π) of Fig. 5.3.1 is in fact parabolic (i.e., the set of parameters

where the system undergoes a major bifurcation). The equation of this surface in

parameter space is R(φ, Fh, Fl) = 1. The boundaries of the plateaus in parameter φ

of Fig. 5.3.7 obtained by fixing the two values for Fh and Fl are on this surface. When

Fh approaches zero, this surface is less dependent on parameter φ. Table 1 reports

some values based on our analysis which are in good agreement with experimental

results from Ref. [106].

Of course, the surface of Fig. 5.3.8 could also have been obtained from tedious

numerical simulations of a large number of classical trajectories for each value of the

parameters (φ, Fh, Fl). This integration needs to be performed for a sufficiently long

time in order to decide if a given trajectory leads to ionization or not. In contrast,

only one orbit for a short time (typically the period of the field) is needed for the

residue analysis. Furthermore, using residues, this surface can be constructed locally

without any need to consider all possible values of the parameters.

Remark : In Table 1, we actually compare the onset of the plateau for one-

dimensional hydrogen model to 10% onset ionization thresholds for three-dimensional

experimental results. Since all one-dimensional classical simulation curves have roughly
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Figure 5.3.8: (a) Bifurcation surface in parameter space (φ, Fh, Fl) for h:l=3:1. (b)
The continuous curve is a section of the bifurcation surface (a) at φ = π/3, whereas
the dashed one is for φ = 1.95.
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identical shape between 10% ionization (onset of ionization) and 95% ionization

(onset of plateau) and meanwhile there is a fixed shift (15V/cm) between the one-

dimensional and three-dimensional onset of ionization [106], this comparison is justi-

fied and very heuristic.

5.4 3:2 mode locking

In what follows, we study in detail one set of values for the amplitudes of the fields

Fh = 25 Vcm−1 and Fl = 33.5 Vcm−1 which correspond to Fh = 0.5498 and Fl =

0.7367 in dimensionless units. This case will be referred as Case (II).

5.4.1 Poincaré section

Figure 5.4.1 shows a Poincaré section of Hamiltonian (5.2.1) for Case (II) at φ = 0.

Similar to Case (I), there are two primary islands in the chaotic sea where two elliptic

periodic orbits with period 2π sit at the centers, and the two associated hyperbolic

orbits are in the chaotic sea. In addition, there are also two associated hyperbolic

periodic orbits with period 4π as indicated by small crosses. One should notice that

the (rescaled) principal quantum number considered in Ref. [66] lies in between these

two islands (see the continuous horizontal line). We monitor the stability of this set

of periodic orbits as we have performed for Case (I).

5.4.2 Residue curve

Figure 5.4.2 shows the four residue curves of period 2π orbits and the two residue

curves of period 4π orbits. For short periodic orbits (period 2π), the elliptic periodic

orbits remain elliptic and the hyperbolic ones remain hyperbolic for all values of φ.

No bifurcation occurs except in a small range of phase (see inset of Fig. 5.4.2) where

no significant stability change is observed. Consequently, the ionization probability is

expected to be approximately independent of φ and to be lower than Case (I) since

for these values of amplitudes, the chaotic region is smaller. This is consistent with
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Figure 5.4.1: Poincaré section of Hamiltonian (5.2.1) for Case (II) at φ = 0. Full
circles (respectively crosses) indicate the two elliptic (resp. hyperbolic) periodic orbits
with period 2π we consider. Small crosses indicate the two hyperbolic periodic orbits
with period 4π we consider. The horizontal line corresponds to the principal quantum
number n = 51.
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Figure 5.4.2: Residue curves for the four periodic orbits with period 2π indicated
by crosses and circles on Fig. 5.4.1 and the two periodic orbits indicated by small
crosses with period 4π for Case (II). The bold solid curves are for the upper set
of elliptic/hyperbolic orbits with period 2π. The thin solid curves are for the lower
set of elliptic/hyperbolic orbits with period 2π. The dashed curves are for the two
initially hyperbolic periodic orbits with period 4π. The inset shows irregular behavior
of residue at φ ' π/6. The same behavior also occurs at φ ' 5π/6 for that residue
curve.
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the experimental and quantum calculations of Ref. [66]. The experimental results

show a nearly flat curve for the ionization probability versus φ, whereas the quantum

calculations show significant variations for this probability but no sharp increase and

decrease as in Case (I).

When the duration of pulse is longer we should take into account the effect of

longer periodic orbits whose residues are shown by bold dashed curves in Fig. 5.4.2

with period 4π in this particular case. Apparently the upper period 4π orbit expe-

riences period halving bifurcations at φ ≈ 0.07 and φ ≈ 2.164; and period doubling

bifurcations at φ ≈ 0.977 and φ ≈ 3.072.

Figure 5.4.3 depicts Pion given by Eqn. (5.3.1) versus the parameter φ as well as

the data taken from Ref. [66] for Case (II). Only periodic orbits with period 2π

are considered. In Eqn. (5.3.1) we again take φ0 = 0 since the ionization is minimal

at φ = 0 for Case (II) [66]. We notice that it captures some essential features of

the ionization curve, like the two unequal-sized peaks and the specific shape of both

peaks (one more peaked, the other one, more round). This feature results from the

asymmetry property of bichromatic microwave amplitude [100]. For this case, the

bichromatic microwave field at φ = π/6 ± 4φ has exactly the same amplitude but

opposite direction as at φ = π/2 ± 4φ, where 0 < 4φ < π/6. Replacing “+”

in front of the bichromatic field by “-” in Eqn. (5.1.1) leads to a Hamiltonian for

the other direction. Because of this symmetry property of bichromatic field, the

ionization probability along the other direction can be obtained from Fig. 5.4.3 by

a horizontal translation of π/3. The total ionization rate should be the sum of the

rates for both directions, which shows equally high peaks for total ionization rate

in φ. For longer pulse duration, we should consider longer periodic orbits like those

with period 4π. Again we should take the baseline (minimal ionization point) at

φ = 0. Since in Fig. 5.4.2 the residue value of elliptic periodic orbit with period 4π

(upper dashed curve) at minimal ionization point (φ = 0) is already greater than
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Figure 5.4.3: Normalized ionization probability vs φ based on Eqn. (5.3.1) for Case
(II) with A = −0.485 and B = 0.17. Circles represent the data obtained by one-
dimensional quantum calculations, taken from Ref. [66]. Only periodic orbits with
period 2π are considered.
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1, the ionization rate should be high and roughly identical on the whole φ space.

This indicates that when pulse duration gets longer, the ionization rate for any φ

goes higher and suggests ionization rate for any φ will reach a roughly constant

upper limit if the time duration is sufficiently long. This property is obviously true

because when the system is exposed to external microwave field for a longer time, more

electrons will gain sufficient energy to escape. However, as mentioned in Sec. 5.3, the

shortest periodic orbits (period 2π) always play the most dominant role on ionizations

rates, while the longer periodic orbits might be taken into account heuristically for

a finer analysis when the pulse duration gets a lot longer. Finally, our analysis also

indicates the asymmetric ionization property does not exist for 3:1 mode locking case,

in agreement with Ref. [100].

5.5 Generalization to h:l mode locking

In order to generalize this approach, we also investigate h:l=2:1, denoted Case (III),

and 5:1, denoted Case (IV ) mode locking.

5.5.1 Residue curves

For Case (III), we take Fh = 24 Vcm−1, Fl = 53.4 Vcm−1 and the high frequency

of 12 GHz. Figure 5.5.1 shows Poincaré section at φ = 0. It indicates the relevant

periodic orbits to consider in the residue analysis. Figure 5.5.2 shows the residue

curves based on the two periodic orbits with period 2π in the chaotic sea of Fig. 5.5.1.

No bifurcations take place for these orbits. Figure 5.5.3 depicts relative ionization rate

with respect to φ based on Eqn. (5.3.1). For this case we take φ0 = 0 in Eqn. (5.3.1)

since the minimal ionization point is at φ = 0 according to the maximum field rule

(see next section). Based on our approach, the asymmetric ionization property along

a single direction (unequal-sized peaks) does appear for the 2 : 1 mode locking, in

agreement with Ref. [100].

For Case (IV ), we take Fh = 24 Vcm−1, Fl = 53.4 Vcm−1 and the high frequency
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Figure 5.5.1: Poincaré section of Hamiltonian (5.2.1) for Case (III) at φ = 0. Full
circle (respectively cross) indicates the elliptic (resp. hyperbolic) periodic orbit with
period 2π we consider. The horizontal line corresponds to the principal quantum
number n = 51.
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Figure 5.5.2: Residue curves for the two periodic orbits with period 2π indicated
by cross and circle on Fig. 5.5.1 for Case (III).
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Figure 5.5.3: Relative ionization probability vs φ at principal quantum number
n = 51 based on Eqn. (5.3.1) for Case (III) with A = 0 and B = 0.1. The absolute
ionization rate may differ according to the pulse duration.
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Figure 5.5.4: Poincaré section of Hamiltonian (5.2.1) for Case (IV ) at φ = 0. Full
circles (respectively crosses) indicate the elliptic (resp. hyperbolic) periodic orbits
with period 2π we consider. The horizontal line corresponds to the principal quantum
number n = 47.
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Figure 5.5.5: Residue curves of the six periodic orbits with period 2π indicated by
crosses and circles on Fig. 5.5.4 for Case (IV ).

70



0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.15

0.2

0.25

0.3

0.35

0.4

φ

P
io

n

Figure 5.5.6: Relative ionization probability vs φ at principal quantum number
n = 47 based on Eqn. (5.3.1) according to Fig. 5.5.5 for Case (IV ) with A = −0.2
and B = 0.1. The absolute ionization rate may differ according to the pulse duration.
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is 30 GHz. Figure 5.5.4 shows a Poincaré section at φ = 0, and Fig. 5.5.5 shows

the residue curves based on the six periodic orbits of period 2π in the chaotic sea

of Fig. 5.5.4. We notice that the residue based on the upper elliptic periodic orbit

has similar behavior to the one of the lower elliptic periodic orbit for Case (II) as

shown in the inset of Fig. 5.4.2. The two residue curves (two thin lines) in Fig. 5.5.5

from the two lower periodic orbits in Fig. 5.5.4 are almost constant and therefore

have little influence on ionization probability. Figure 5.5.6 depicts relative ionization

rate with respect to φ based on Eqn. (5.3.1) according to Fig. 5.5.5 (The lowest two

periodic orbits are not considered since their corresponding residue curves are almost

constant). For this case we take φ0 = π/5 in Eqn. (5.3.1) since the minimal ionization

point is at φ = π/5 according to the maximum field rule. This asymmetry in the

ionization property does not exist for the 5:1 mode locking.

Generally speaking, with Hamiltonian (5.2.1) plus empirical formula (5.3.1), we

can obtain the directional ionization for Case (II) and Case (III) for the model that

the electrons ionize along both directions. For Case (I) and Case (IV ), the directional

ionization does not appear due to the symmetry property [100] of the bichromatic

pulse.

5.5.2 Comparison with the maximum field rule

A traditional way of explaining ionization probability behavior is the maximum field

rule (peak field amplitude rule) formulated in Ref. [99, 106]. The relative ionization

probability vs φ based on the maximum field rule can be written in the form

Pion(φ) = C + Dmaxt∈[0,2π]|Fh sin(ht) + Fl sin(lt + φ)|. (5.5.1)

The parameters C and D in Eqn. (5.5.1) are merely a translation and a dilatation of

the curve in order to make the curves from the maximum field rule comparable to those

based on bifurcation analysis. Figure 5.5.7 shows relative ionization probability based

on Eqn. (5.5.1) for four different cases. Compared with our periodic orbit bifurcation
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analysis in finite pulse duration, apparently the maximum field rule does not result in

quantitative agreement with the quantum simulation results of Ref. [66] for either Case

(I) or (II). In Case (III), the maximum field rule does not produce the two unequal-

sized peaks as our bifurcation analysis does. Only in Case (IV ) do the results based

on the maximum field rule agree with our bifurcation analysis because there is neither

bifurcation nor asymmetric ionization property for this case. Insets of Fig. 5.5.7 show

one cycle (t ∈ [0, 2π]) bichromatic field ε(t) = Fh sin(ht) + Fl sin(lt + φ) with typical

parameters as used for our previous analyses in dimensionless units for different φ

values. Arrows indicate the φ values for which the bichromatic fields are drawn.

Generally for Case (I) the positive component of the bichromatic field is the same as

the negative component for any φ in each full cycle (directional symmetry), whereas

this directional symmetry does not appear for Case (III) [100] except for some specific

φ values like φ = 0, π
2
, π. Similarly, for Case (II) this directional symmetry generally

does not appear except for some specific φ values like φ = 0, π
3
, 2π

3
, π, 4π

3
, whereas for

Case (IV ), this directional symmetry does appear for any φ values. Although the

maximum field rule can be used to determine qualitative features like the minimal

ionization point with respect to φ, the quantitative agreement is not as satisfactory

as the one given by a method which relies on analyzing the chaotic dynamics like the

one used in this article based on periodic orbit bifurcation analysis to depict relative

ionization.

5.6 Conclusion

In this chapter we carried out investigations on bichromatic microwave-driven mul-

tiphoton ionization through classical tools and identified useful ”knobs” as control

parameters such as amplitudes and phase of the external bichromatic microwave field.

The role that the periodic orbits play in this system was illustrated through linear sta-

bility analysis. Our analyses based on classical nonlinear dynamics are in quantitative
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Figure 5.5.7: Relative ionization probability based on the maximum field rule, on
Eqn. (5.5.1), for (a) Case (I) with C = −2.42 and D = 2. Insets show the bichromatic
field for φ = 0 (bottom panel) and φ = π/3 (top panel).(b) Case (II) with C = −2.25
and D = 2. Insets show the bichromatic field for φ = π/6 (bottom panel) and
φ = π/2 (top panel). (c) Case (III) with C = −0.24 and D = 0.3. Insets show the
bichromatic field for φ = π/4 (bottom panel) and φ = 3π/4 (top panel). and (d) Case
(IV ) with C = −0.625 and D = 0.55. Insets show the bichromatic field for φ = 0
(bottom panel) and φ = π/5 (top panel). Arrows indicate the φ values for which the
bichromatic fields are drawn.
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agreement with quantum simulations and qualitative agreement with experimental re-

sults. The high efficiency of numerical computation in our analysis is an additional

advantage.
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CHAPTER VI

PERIODIC ORBIT ANALYSIS OF THE DISSOCIATION

OF DRIVEN DIATOMIC MORSE MOLECULES

6.1 Introduction

The dissociation behavior of molecules driven by bichromatic fields with commensu-

rate frequencies has emerged as a rich research subject, especially for the control of

molecular processes [45, 46, 102, 103]. The interplay of the two radiation fields opens

up many new dissociation pathways. It is well known that the relative phase between

the two fields can affect these pathways drastically, which makes the relative phase

a useful means to control the outcome of the reaction [6, 21]. The relative phase is a

very convenient control parameter since it does not require additional energy input

from the fields (as opposed to their amplitudes). However, the mechanisms by which

the relative phase controls the dissociation behavior are less well-known.

The two-color laser-driven dissociation of molecules is of great interest to re-

searchers, mainly because these seemingly simple systems display complex dynamics

and behavior that single-component laser field cannot exhibit [6, 21, 29, 43, 46, 52, 74,

103, 108]. In the past three decades, the literature on theoretical studies of laser-

driven dissociation of molecules has been extensive [5,6,21,27–29,31,34,43,44,49,50,

52, 53, 74, 82, 86, 108, 109, 111]. In Ref. [29] the dissociation probability of a diatomic

Morse molecule exposed to a two-color laser field has been investigated for various

parameters using direct simulations of classical mechanical equations.

In this chapter, we report how dissociation probability as obtained in Ref. [29]

by direct numerical simulations can be predicted qualitatively using a linear stability

analysis of a small set of periodic orbits. Our main result is that for most values of the
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parameters the features of the dissociation probability can be reproduced using two

short periodic orbits (with the period equal to the one of the field), and in particular

by the identification of the main bifurcations which will have a drastic effect on the

dissociation probability. In this way, our approach allows the qualitative prediction

of the dynamics with significant time savings as parameters are varied. Theoretically,

the necessary time is of the same order as the period of the considered orbit which

is also the period of the laser field. Our findings echo similarly the ones obtained in

the microwave ionization of Rydberg atoms in a strong bichromatic field, for which a

qualitative agreement has been reached with experimental data (and a quantitative

agreement with quantum simulations) based on a specific bifurcation of just a few

periodic orbits [56].

The Hamiltonian of a diatomic Morse [83] molecule exposed to a strong bichro-

matic field in atomic units reads [29]

H(r, p, τ) =
p2

2m
+ D(1− e−α(r−re))2

+(r − re)[A1 sin(Ω1τ) + A2 sin(Ω2τ + φ)], (6.1.1)

where the parameters are m (the reduced mass), D (the dissociation energy) and re

(the equilibrium distance). Here we take the envelop of the pulses constant since the

pulse duration effect has very minor impact on this system, as suggested in Ref. [29].

Dimensionless variables are r̃ = α(r − re), p̃ = p/
√

2Dm, t = α
√

2D/mτ , Fi =

Ai/(2Dα), ωi = Ωi/
√

2Dα2/m as given by Ref. [49] . The Hamiltonian (6.1.1)

expressed in these new coordinates is

H̃(r̃, p̃, t) =
p̃2

2
+

1

2

(
1− e−r̃

)2

+r̃ (F1 sin ω1t + F2 sin(ω2t + φ)) , (6.1.2)

where r̃ and p̃ are canonically conjugate.

In what follows, we consider hydrogen fluoride (HF) molecule for which m = 1732,

D = 0.2101, re = 1.75 and α = 1.22 in atomic units. In order to compare our
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results with direct numerical simulations [29] later, we want to use the same field

parameters as Ref. [29] used. Therefore, we consider a field with two commensurate

frequencies such that ω1 = ω2/3 = 0.28, which corresponds to the fast laser frequency

Ω2

2πc
= 3476cm−1 [29]. A normalized dimensionless amplitude Fi = 1 equals a laser

intensity of 320TW/cm2 [29]. We notice that Hamiltonian (6.1.2) is time-periodic

with period 2π/ω1.

In Sec. 6.2, we briefly recall the method which monitors the position and the

residue of periodic orbits. In Sec. 6.3, we analyze the dynamics using short a selection

of periodic orbits, as parameters are varied. We relate a linear stability measure (the

residue of a given periodic orbit) to the dissociation probability. Good agreement is

found for most of the values of the parameters. However, a discrepancy for small

phases is observed and discussed at the end.

6.2 Residue method

The general idea of the method is to follow a set of periodic orbits as parameters are

varied in order to determine qualitative properties of the dynamics. As it was shown

in the bichromatic microwave driven multiphton ionization problem, short periodic

orbits play the role of organizing centers of the dynamics. Higher order periodic orbits

give more refined details of the dynamics, especially the ones on longer time scales. In

principle, for atomic and molecular systems where short pulses are considered, only

short periodic orbits should influence the dynamics. We determine the location of

a periodic orbit (given by its number of intersections with the Poincaré surface of

section) using a modified Newton-Raphson multi-shooting algorithm [30], as we did

for the bichromatic microwave driven multiphton ionization problem. We also take

the same residue analysis as we described in Sec. 5.2.

For a given periodic orbit, we follow its location in phase space and residue as

parameters are varied. In this case, there are three parameters, two amplitudes F1
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and F2, and a phase lag φ. We compute R(F1, F2, φ) and identify the points in

parameter space where bifurcations occur. The bifurcations we are interested in are

when a periodic orbit is likely to change its linear stability, which occurs in particular

for R(F1, F2, φ) = 0 or R(F1, F2, φ) = 1. In general such bifurcations (based on a

linear stability analysis) will also play an important role in the nearby phase space

region (by continuity in phase space).

6.3 Dissociation probability

6.3.1 Identification of fundamental periodic orbits

In Fig. 6.3.1, we represent a Poincaré section (stroboscopic plot of phase space with

period 2π/ω1) of Hamiltonian (6.1.2) for amplitudes F1 = 0.18, F2 = 0.02 and phase

φ = 0. We notice that an elliptic island is present at the entrance of the dissociation

channel. At the center of this island sits an elliptic periodic orbit with one intersection

with the Poincaré surface of section (i.e. with period 2π/ω1). Standard Hamiltonian

dynamics show that the trajectories that are likely to dissociate can get trapped

around the resonant island for a while before finding a way to escape. Therefore,

this particular periodic orbit plays a crucial role on the dissociation probability. This

periodic orbit, named Oe, is the main focus of this problem: We investigate its

role on dissociation as parameter are varied. Due to a symmetry (φ 7→ π − φ) the

fundamental domain of variations of φ is [0, π[. We also restrict the amplitudes to

(F1, F2) ∈ [0, 0.22]× [0, 0.06].

We anticipate two mechanisms which may influence dissociation: one is the lo-

cation of this orbit, and the other is the change of its stability. In Fig. 6.3.2, we

represented the position of Oe or more precisely its action and angle as defined by [49]

I = 2
(
1−

√
1− E

)
,

tan θ = − p̃
√

1− E

1− e−r̃ − E
, (6.3.1)

where E(r̃, p̃) = p̃2+(1−e−r̃)2, for a typical set of parameters F1 = 0.18 and F2 = 0.02,
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Figure 6.3.1: Stroboscopic plot of phase space of Hamiltonian (6.1.1) for F1 = 0.18,
F2 = 0.02 and φ = 0. The dot and the cross indicate the elliptic periodic orbit Oe

and its associated hyperbolic one, respectively. The inset depicts a projection of Oe

in the (r, p) plane.
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while φ is varied. As can be seen in Fig. 6.3.2, the action of Oe does not vary a lot

with the change of relative phase, whereas the angle does vary more rapidly and

irregularly. Considering that in this case the increase of the relative phase in [0, π[

leads to a monotonic increase of dissociation probability [29], we have come to the

conclusion that the position of the specific periodic orbit does not appear to have a

significant relationship to dissociation probability.

The second mechanism based on a bifurcation has a more drastic influence on

dissociation. In order to monitor this bifurcation properly, we also need to follow

the associated hyperbolic orbit. We have to make sure that the hyperbolic orbit

stays hyperbolic while the elliptic one turns hyperbolic (in order to discard a stability

exchange which would not affect significantly the dissociation probability). A typical

residue plot (the residue as a function of φ) is represented on Fig. 6.3.3 for F1 = 0.18

and F2 = 0.02. At φ = 0.75, the residue crosses one and a bifurcation (which is

a period doubling as shown in Fig. 6.3.4) occurs. This increase of hyperbolicity is

associated with more chaos and hence more likely to dissociate. This is in agreement

with direct simulations as obtained in Ref. [29].

We should point out that the computation of Ref. [29] was done for initial condi-

tions in the ground level (E = 0.045), which is lower than the set of periodic orbits we

consider (E = 0.29) in Fig. 6.3.1. This justifies the importance of the chosen periodic

orbits for dissociating trajectories. For other values of parameters we consider, the

energy level of the periodic orbit Oe is always well above E = 0.045.

6.3.2 Residue contour plots in parameter space

For fixed values of φ, we vary the amplitudes F1 and F2 and track the residue value

of the elliptic periodic orbit Oe. We depict the contour plots of these residues in

Fig. 6.3.5 in the (F1, F2) plane for φ = 0, π/6, π/2 and π. This figure should be

compared to Fig. 2 of Ref. [29].
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Figure 6.3.2: Action(solid) and angle(dashed) curves for F1 = 0.18 and F2 = 0.02.
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Figure 6.3.3: Residue curves (bold solid) for the considered set of periodic orbits
for F1 = 0.18 and F2 = 0.02. The arrow indicates where the bifurcation happens.

83



1 1.5 2 2.5 3
−20

0

20

p

1 1.5 2 2.5 3
−20

0

20

r

p

φ=0.74

φ=0.76

Figure 6.3.4: The considered elliptic periodic orbit undergoes the periodic doubling
bifurcation around φ = 0.75 for F1 = 0.18 and F2 = 0.02. This figure shows a
projection of the considered elliptic periodic orbit right before (upper panel) and
right after (lower panel) of this bifurcation.
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Figure 6.3.5: F1-F2 plane contour plot of residue value that originates from the
elliptic periodic orbit in Fig. 3.3.1 for (a) φ = 0, (b) φ = π/6, (c) φ = π/2 and
(d)φ = π. White dashed curves indicate R = 1, where bifurcations happen . Two
white solid curves in (a) indicate R = 0, between which a loop structure appears.
The extremely tiny area enclosed by two thin white curves around the up-right corner
in (b) indicates where Oh turns to elliptic and then turns back to hyperbolic.
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We have plotted the curves R(F1, F2) = 1 through which the periodic orbit Oe

changes its stability. The corresponding bifurcation from elliptic to hyperbolic linear

stability indicates a possible increase in dissociation probability due to an increase

of hyperbolicity in this region. Since the trajectories are no longer trapped when Oe

is hyperbolic, it is expected that the dissociation probability increases. This is in

good agreement with Ref. [29] where we notice that for φ=π/6, π/2 and π, there is

a qualitative agreement in the shape of the dissociation probability. In particular,

the following features are reproduced : the non-monotonicity for φ = π/6 as F2 is

increased (with a fixed value of F1), and the monotonicity for φ = π/2 and π with a

sharper downward bifurcation curve (dashed line) for φ = π as F2 is increased in the

region F2 ∈ [0, 0.05]. Our analysis also confirms that the stabilization effect decreases

when φ is increased (from 0 to π). For φ = 0 case, the contour plot shows agreement

with direct simulations for most regions in the (F1, F2) plane once more, and the

property that it reproduces the two upper-right bumps observed in the dissociation

probability contour plot. These are interpreted as remnants of the ellipticity of the

bifurcated Oe. We notice that the corresponding hyperbolic periodic orbitOh remains

hyperbolic (R < 0) for most values of the parameters. However, for φ ∈ [π/6, π],

there is a tiny region around the upper-right corner of the (F1, F2) plane where the

Oh turns to elliptic and then turns back to hyperbolic, as it is shown on (F1, F2)

plane contour plot of Fig. 6.3.5 (b). In general, this bifurcation does not affect the

dissociation probability because, due to its location, this periodic orbit does not play

an important role compared to the periodic orbit Oe which has already bifurcated

(R > 1) for these values of parameters (see Figs. 6.3.5 (c) and (d)). However, for

low values of φ and high values of the amplitudes Fi, the orbit Oe is still elliptic and

Oh undergoes a bifurcation, as shown in Figs. 6.3.7 which we discuss in the following

section. This region corresponds to the disagreement observed for φ = 0 on Fig. 6.3.5

with the direct simulations of Ref. [29].

86



6.3.3 Low values of φ : Influence of loop structure of Oh orbit

For φ = 0, we observe two branches on Fig. 6.3.5 (a) where the residues of Oe

vanish. Along these lines we expect from a linear stability analysis that there is

locally a constant degree of chaos in the system, and hence a dissociation probability.

However this is not what is seen in direct simulations since the dissociation probability

increases along these lines as F1 is increased. This feature is represented using laminar

plots which represent contour plots of the number of return times on the Poincaré

section before dissociation (defined as trajectories for which E becomes greater than

Eth = 2). The maximum integration time is 200π/ω1 ≈ 2244. Figures 6.3.6 show

laminar plots for amplitudes on the line as marked by “x” in Fig. 6.3.5 (a). In these

laminar plots, it takes longer time for trajectories launched from the whiter region to

have E ≥ Eth, which shows clearly that dissociation is increasing as F1 is increased.

Figure 6.3.6 clearly displays that dissociation for the case (c) > (b) > (a).

In order to gain further insight into the parameter region where this discrepancy

occurs, we describe here the associated bifurcation. In Fig. 6.3.7 and Fig. 6.3.8 the

residue as a function of F1 is plotted for both Oe and Oh with fixed F2 and φ. We

see clearly that there is a loop around R = 0, indicating that the Oh undergoes

a bifurcation at R = 0 which involves three periodic orbits of the same period, two

hyperbolic ones and an elliptic one. When φ is equal to 0, the upper loop in hyperbolic

residue curve will merge with the small part of elliptic residue curve right above it,

as shown in Fig. 6.3.7(b), and meanwhile the loop size reaches its maximum size.

Clearly a smaller φ leads to a bigger size loop area, as shown in Fig. 6.3.7(a). With

fixed φ and smaller F2, the loop area will drift towards the direction of less F1 with

smaller size, as shown in Fig. 6.3.8. The following picture emerges : Without a

loop in the residue curve, the system has two periodic orbits with the period of the

field, Oe and Oh. In the region of parameters where there is a loop in the residues,

the system has four of these periodic orbits, two elliptic ones (which are close to
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Figure 6.3.6: Laminar plots with φ = 0 for (a) F1 = 0.1405, F2 = 0.025, (b)
F1 = 0.1559, F2 = 0.04 and (c) F1 = 0.165, and F2 = 0.055. The cutoff time is
200π
ω1

≈ 2244 and diffusion threshold is Eth = 2.
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Figure 6.3.7: Residue versus F1 for both elliptic and hyperbolic periodic orbits at
F2 = 0.03 for (a) several different φs (Dash-dotted, solid, dotted and dashed curves
correspond to φ = π/6, 0.35, 0.2 and 0.06 respectively.) and (b) φ = 0.
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Figure 6.3.8: Residue versus F1 for fixed φ = 0.06 (Dash-dotted, solid, dotted and
dashed curves correspond to F2 = 0.04, 0.03, 0.02 and 0.01 respectively).
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Figure 6.3.9: Laminar plots with φ = 0 for (a) F1 = 0.19, F2 = 0.055, (b) F1 =
0.165, F2 = 0.055 and (c) F1 = 0.14, and F2 = 0.055. The cutoff time is 200π

ω1
≈ 2244

and diffusion threshold is Eth = 2.
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each other or even coincides at φ = 0) and two hyperbolic ones. This additional

hyperbolicity increases chaos locally and hence increases dissociation. However, these

two thin branch areas only appear when φ is low (approximately 0 < φ < π/6)

and amplitudes Fi are high. Therefore for most parameters this loop structure will

not appear and our analyses show striking agreement with direct simulation of our

residue analysis Ref. [29]. Figures 6.3.9 show three laminar plots at φ = 0 for fixed

F2 = 0.055. Figure 6.3.9 (b) corresponds to the rightmost “x” in Fig. 6.3.5 (a). We

can see that the three pictures in Figs. 6.3.9 show almost the same high dissociation

probability due to high F2.

6.4 Conclusion

We have analyzed the dynamics of the dissociation of a model diatomic molecule

driven by a bichromatic field in terms of periodic orbit bifurcations. Following the

linear stability of a few selected periodic orbits, we can reproduce the dissociation

probability qualitatively in parameter space (two field amplitudes and one relative

phase). For relatively low φ and high amplitudes Fi, the original hyperbolic periodic

orbit Oh undergoes a particular bifurcation, which leads to two branch lines on F1-F2

residue plane. Along these two branch lines, there is a discrepancy between the pre-

diction based on the residues and direct simulations. The role of additional periodic

orbits is underlined regardless of whether the discrepancy originates from bifurcated

orbits (and the resulted increase of hyperbolicity) or from higher-order periodic ones.
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CHAPTER VII

GENERAL CONCLUSIONS

In this thesis, we have presented our classical-mechanical analyses on multiphoton

ionization of hydrogen atom in the regime where classical and quantum simulations

agree.

We applied a local control method to one-dimensional hydrogen atom exposed to

linearly polarized microwave field to obtain a control term which might consist of ad-

ditional microwave fields. The modification of this control term leads to a microwave

field with frequency twice the one of initial driving field. Using Poincaré sections and

laminar plots, we have demonstrated that adding the complete or modified control

term to the original non-integrable hydrogen Hamiltonian can shut off or significantly

reduce ionization.

Using the stability analysis of periodic orbits, we investigated multiphoton ion-

ization probability of hydrogen atom driven by a bichromatic microwave field. Our

results show good agreement with previous experimental or quantum studies for the

variation of parameters. These parameters are useful tools to control this system.

Compared with the traditional and empirical peak amplitude rule, our analysis can

achieve more accurate results. Moreover, our computation based on short periodic

orbits is a lot more efficient than traditional simulations such as Monte Carlo method.

We extended the stability analysis of periodic orbits to the bichromatic laser driven

diatomic molecule problem. Our results show good qualitative agreement with direct

simulations of classical mechanics on most parameter space, again with great time

savings.

Generally, our work has demonstrated several reliable classical approaches for

93



some complex atomic and molecular systems in the quantum-classical correspondence

regime. We believe our research will help find new ways of controlling or manipulating

more complex dynamical systems ranging from atoms to plasmas.

Some future research topics may be the extension of our classical analysis for

multi-dimensional hydrogen atom problems, non-hydrogenic Rydberg atoms and more

complicated molecule systems such as polyatomic molecule problems. Other work

that remains to be done includes the application of these classical tools for Rydberg

atoms exposed to circularly/elliptically polarized microwave fields. Our work reported

in the thesis shows the promise of broader applications on these problems, although

they are beyond the scope of this thesis.
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