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SUMMARY

Space exploration campaigns detail the ways and means to achieve goals for our human

spaceflight programs. Significant strategic, financial, and programmatic investments over

long timescales are required to execute them, and therefore must be justified to decision

makers. To make an informed down-selection, many alternative campaign designs are pre-

sented at the conceptual-level, as a set and sequence of individual missions to perform that

meets the goals and constraints of the campaign, either technical or programmatic. Each

mission is executed by in-space transportation systems, which deliver either crew or cargo

payloads to various destinations. Design of each of these transportation systems is highly

dependent on campaign goals and even small changes in subsystem design parameters can

prompt significant changes in the overall campaign strategy. However, the current state of

the art describes campaign and vehicle design processes that are generally performed inde-

pendently, which limits the ability to assess these sensitive impacts. The objective of this

research is to establish a methodology for space exploration campaign design that repre-

sents transportation systems as a collection of subsystems and integrates its design process

to enable concurrent trade space exploration. More specifically, the goal is to identify ex-

isting campaign and vehicle design processes to use as a foundation for improvement and

eventual integration.

In the past two decades, researchers have adopted terrestrial logistics and supply chain

optimization processes to the space campaign design problem by accounting for the chal-

lenges that accompany space travel. Fundamentally, a space campaign is formulated as a

network design problem where destinations, such as orbits or surfaces of planetary bodies,

are represented as nodes with the routes between them as arcs. The objective of this design

problem is to optimize the flow of commodities within network using available transport

systems. Given the dynamic nature and the number of commodities involved, each cam-

paign can be modeled as a time-expanded, generalized multi-commodity network flow and
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solved using a mixed integer programming algorithm. To address the challenge of mod-

eling complex concept of operations (ConOps), this formulation was extended to include

paths as a set of arcs, further enabling the inclusion of vehicle stacks and payload trans-

fers in the campaign optimization process. Further, with the focus of transportation system

within this research, the typical fixed orbital nodes in the logistics network are modified

to represent ranges of orbits, categorized by their characteristic energy. This enables the

vehicle design process to vary each orbit in the mission as it desires to find the best one per

vehicle. By extension, once integrated, arc costs of ∆V and ∆T are updated each itera-

tion. Once campaign goals and external constraints are included, the formulated campaign

design process generates alternatives at the conceptual level, where each one identifies the

optimal set and sequence of missions to perform.

Representing transportation systems as a collection of subsystems introduces chal-

lenges in the design of each vehicle, with a high degree of coupling between each subsystem

as well as the driving mission. Additionally, sizing of each subsystem can have many in-

puts and outputs linked across the system, resulting in a complex, multi-disciplinary anal-

ysis, and optimization problem. By leveraging the ontology within the Dynamic Rocket

Equation Tool, DYREQT, this problem can be solved rapidly by defining each system as

a hierarchy of elements and subelements, the latter corresponding to external subsystem-

level sizing models. DYREQT also enables the construction of individual missions as a

series of events, which can be directly driven and generated by the mission set found by the

campaign optimization process. This process produces sized vehicles iteratively by using

the mission input, subsystem level sizing models, and the ideal rocket equation.

By conducting a literature review of campaign and vehicle design processes, the dif-

ferent pieces of the overall methodology are identified, but not the structure. The specific

iterative solver, the corresponding convergence criteria, and initialization scheme are the

primary areas for experimentation of this thesis. Using NASA’s reference 3-element Hu-

man Landing System campaign, the results of these experiments show that the methodology
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performs best with the vehicle sizing and synthesis process initializing and a path guess that

minimizes ∆V . Further, a converged solution is found faster using non-linear Gauss Seidel

fixed point iteration over Jacobi and set of convergence criteria that covers vehicle masses

and mission data.

To show improvement over the state of the art, and how it enables concurrent trade

studies, this methodology is used at scale in a demonstration using NASA’s Design Refer-

ence Architecture 5.0. The LH2 Nuclear Thermal Propulsion (NTP) option is traded with

NH3 and H2O at the vehicle-level as a way to show the impacts of alternative propellants

on the vehicle sizing and campaign strategy. Martian surface stay duration is traded at the

campaign-level through two options: long-stay and short-stay. The methodology was able

to produce four alternative campaigns over the course of two weeks, which provided data

about the launch and aggregation strategy, mission profiles, high-level figures of merit, and

subsystem-level vehicle sizes for each alternative. Expectedly, with their lower Isp’s, alter-

native NTP propellants showed significant growth in the overall mass required to execute

each campaign, subsequently represented the number of drop tanks and launches. Fur-

ther, the short-stay campaign option showed a similar overall mass required compared to

its long-stay counterpart, but higher overall costs even given the fewer elements required.

Both trade studies supported the overall hypothesis and that integrating the campaign and

vehicle design processes addresses the coupling between then and directly shows the im-

pacts of their sensitivities on each other. As a result, the research objective was fulfilled

by producing a methodology that was able to address the key gaps identified in the current

state of the art.
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THESIS STRUCTURE

The logic structure of this dissertation and how it drives the organization of this docu-

ment is summarized in the following figure. Chapter 1 provides an introduction to Space

Exploration Campaigns and the motivations for integration of its design with that of trans-

portation systems using an initial literature review. It identifies the key gap to be filled and

the overarching objective of the research. Decomposition of the research objective guides

deeper dive into literature for space campaign design and transportation systems design in

Chapter 2 and Chapter 3, respectively. Both chapters identify the different pieces required

of the overall methodology and state formal questions this research aims to answer. A plan

is established in Chapter 4 to formulate hypotheses and answer these questions through

experimentation using a small-scale space campaign. The final methodology is assembled

using these experimental results, which is used to perform a large-scale Mars campaign

design and integrated trade study in Chapter 5. The document concludes with an additional

chapter, Chapter 6, to present the specific impacts and contributions of this research and

areas for further growth.
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SPACE EXPLORATION CAMPAIGNS

Ever since humans first set foot on the Moon just over 50 years ago, the desire to expand

physical presence in space has been growing. The initial completion of the International

Space Station (ISS) in 2011 established our permanent presence in Low Earth Orbit (LEO)

and since then, space agencies across the world have been setting their sights beyond, to the

Moon, Mars and even Near Earth Asteroids [1]. In December of 2017, the United States

released Space Policy Directive 1, which states “the United States will lead the return of

humans to the Moon for long-term exploration and utilization, followed by human missions

to Mars and other destinations” [2]. Although this set lunar exploration as the near term

goal, consistent messaging has put Mars as the horizon goal. In response, the National

Aeronautics and Space Administration (NASA) has introduced Artemis, the official pro-

gram to return humans to the Moon by 2024 and set up a lunar base for further exploration.

The Moon to Mars (M2M) campaign is a higher-level initiative to use the Moon as a step-

ping stone for future Mars missions, specifically to demonstrate applicable deep space and

surface systems [3, 4].

This Space Exploration Campaign (SEC) is the most recent of many previous attempts

at detailing the ways and means to achieve long-term goals of human space exploration.

Adapted from NASA and the United States Department of Defense (DoD), a campaign

can be defined as “a series of inter-related individual missions performed, aimed at achiev-

ing specific strategic goals for space exploration.”[5, 6, 7] Space campaigns are significant

technical and programmatic investments that involve the planning, design, development,

and execution of spaceflights from LEO to Mars. These spaceflights can have many differ-

ent types of payloads, though always falling in either crew or cargo categories. Payloads

drive the design and analysis of space transportation systems and missions, with the goal
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of being paired with one or more Launch Vehicles (LV) to put them in orbit. The oper-

ations of these transportation systems, hereby referred interchangeably with “vehicles” in

this disseration, over the course of many missions achieve the set campaign goals.

A prominent example of a SEC is detailed within NASA’s Design Reference Archi-

tecture 5.0 (DRA 5), released in 2008 which has been a long-standing reference as one of

the most well documented campaigns to date for long duration, crewed Mars Exploration

[8]. Within it, engineers at NASA decompose set goals to understand requirements for all

elements within the campaign. These requirements provide the basis for designs, trades,

and analyses that were performed for the necessary systems and a crew of 6 on a ∼1,500

day roundtrip mission. Figure 1.1 shows the high level Concept of Operations (ConOps)

of the DRA 5 mission using a Nuclear Thermal Propulsion (NTP) transportation system.

The ConOps is a summarizing visual of the overall campaign architecture, highlighting the

different elements within and how they interact with each other [9].

Figure 1.1: Mars DRA 5 ConOps for a nuclear thermal transportation system [8]

The overarching goal of the campaign is stated at the top, of ∼500 days on the Martian

surface. Several vehicles are proposed to meet this goal, both crewed and uncrewed, paired
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with the sequence of missions they fly. The set of launch vehicles chosen to assemble those

vehicles are identified and an overall timeline for the campaign is established. DRA 5’s

campaign called for a total of 850 metric tons of Initial Mass to Low Earth Orbit (IMLEO)

to execute all the necessary missions.

1.1 Challenges of Space Exploration Campaigns

1.1.1 Financial Costs

Given the unprecedented amount of mass required for a crewed Mars mission and the cost

of access to LEO, SECs are significant financial investments for many organizations. Al-

though NASA did not publish any official dollar cost estimates for DRA 5, mass can be

used as a surrogate metric. LEO departure mass for a single crewed Mars mission is equiv-

alent to 12 International Space Stations, as shown in Figure 1.2, and about 37 Saturn V

launches [10].
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Figure 1.2: Crewed Mars exploration LEO departure mass as compared to the ISS and
Saturn V [10].

From the start of the program to a previously projected end date of 2015, the ISS has

cost about FY19 $150 billion and a single Saturn V launch costed NASA about FY19 $1.23
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billion [11, 12]. Historically, NASA’s budget has only been a small fraction of the federal

budget, peaking to 4.41% during the Apollo program, shown in Figure 1.3. Recent trends

predict that this fraction will stay relatively constant over the next few years, and with a

federal budget of FY19 $3.5 trillion, a crewed Mars exploration mission would require a

budget orders of magnitude higher.
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Figure 1.3: NASA’s historical budget profile as a fraction of the total federal budget.

Therefore, to execute a SEC, these costs must be justified to stakeholders through de-

tails of the campaign and its elements as early in the design process as possible, with many

alternatives and their level of “goodness” relative to each other. Efforts to synergize the

campaign with other present or future space exploration programs will be important to

minimize independent development costs, as seen in the M2M campaign. A key strategy

of the lunar exploration campaign is to identify elements and capabilities that can be repur-

posed or leveraged for Mars, rather than developing new systems from the ground up. This

approach will increase affordability and reduce risk of the overall campaign by decreasing

reliance on completely new systems.

1.1.2 Campaign Timescales

The financial costs associated with executing SEC are accompanied by temporal costs.

DRA 5 estimated its Mars campaign would required 7 years to execute, end-to-end, whereas

the M2M is estimated to last more than 10 years [8, 13]. As goals of SECs are achieved

long after they are set and development programs for elements have begun, chosen goals
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and campaign plans will lock in future investments in required capabilities and assets. The

Space Launch System (SLS) is a Space Shuttle-derived, expendable, super-heavy class

launch vehicle that has been under development by NASA since 2011. After replacing sev-

eral previous launch vehicles that were under development at the time, SLS was intended

to be at the core of NASA’s deep space exploration plans throughout the decade [14]. SLS

was also paired with the Orion Multi-Purpose Crew Vehicle (MPCV), a crewed deep space

capsule to ferry astronauts between Earth and cis-lunar space. These two elements are crit-

ical pieces of the overall M2M campaign that were initially selected a decade ago and now

influence any future plans, regardless of the destination.

Technology developments are key enablers of a space campaign, as they help to aug-

ment the capabilities of existing assets like SLS and Orion. Viability of the long duration

crewed Mars exploration campaign in DRA 5 was dependent on the infusion of 65 key

technologies [8]. Development programs for each of these 65 technologies would be on the

critical path for successful completion of the campaign, further contributing to the temporal

and financial costs.

1.1.3 Increasing Complexities

During the first few decades of space exploration, missions were relatively as simple as

placing a satellite into orbit. As human spaceflights began, they followed a similar struc-

ture of placing humans into orbit and returning them safely home. They quickly grew

more complex in nature, in which each subsequent mission attempted to hit increasingly

important goals, such as on-orbit rendezvous and docking, spacewalks, and all the way to:

“...landing a man on the moon and returning him safely to the Earth.”

– J. F. Kennedy, Address to Joint Session of Congress, 1961[15]

Apollo operated by using the super-heavy launch vehicle, Saturn V, to launch and carry

along all elements required for the mission, end-to-end. Apollo 11 launched the crew

and the three different elements, Command Module (CM), Lunar Module (LM), Service
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Module (SM). The SM housed the power, propulsion, and Environmental Control and Life

Support Systems (ECLSS) for the CM and its cabin for three astronauts, which is the only

module returned to Earth. The LM integrated the lander and the ascent module for two of

the astronauts, while the third stayed in orbit in the CM.

Soon after, NASA designed and built a reusable vehicle, the Space Shuttle, with the

purpose of building a modular space station in LEO and establishing a permanent presence.

This ISS was built over the course of several decades, and with cooperation of international

partners, has been mostly continuously inhabited since then. Regular resupply missions

from Earth ensure that the crew, who rotate every few months to year, have all necessary

resources.

These two approaches used between Apollo and the ISS are fundamentally different

from an operational perspective, in which Apollo can be considered as a “carry-along”

strategy and the ISS a “resupply” strategy [16]. Future space exploration missions have

the potential to operate on a completely different paradigm, one that is highly dependent

on the resources available on other planetary bodies but also a combination of the previous

two, as depicted in Figure 1.4. Figure 1.2 shows that a Mars mission is extremely massive,

and given that Mars is on average, 200 times as far as the Moon, the level of operational

difficulty of future campaigns is apparent.

1.1.4 Campaign-level Decision Making

Compounding these financial expenses, long temporal nature, and increasing complexities

of SEC show that they investments into the future of a larger space exploration endeavor.

Decision makers are given many alternative campaigns up front to make an informed down-

selection, usually at the pre-conceptual to conceptual level of design [17]. Comparing

alternatives requires information about each campaign’s performance, affordability, and

risk. Performance can be summarized by high level Figures of Merit (FoM) that include:

number of launches, Life-Cycle Costs (LCC), sustainability, and more. An end-to-end
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Figure 1.4: Diagram showing the different operational strategies of space campaigns over
the years.

campaign design will translate and roll up many technical performance metrics into these

higher level metrics. As a result, the campaign must include the design of all elements

within it, such as the vehicles, payloads, trajectories, and more.
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1.2 Space Campaign Design Problem

As defined previously, a SEC is a series of inter-related individual missions performed,

aimed at achieving specific strategic goals for space exploration. Building a space cam-

paign architecture first starts with identifying the highest-level goals and understanding the

required set and sequence of missions to achieve them. Thus, missions can be thought

of as the first-level decomposition of a SEC, shown in Figure 1.5. Further, each mission

will need to transfer payloads to or from destinations, or both ways if the requirement is a

roundtrip.

MissionsVehicles

Transportation Payloads

Campaign

Figure 1.5: Decomposition of a campaign into its physical and functional elements.

These payloads could be crew or cargo, depending on the specific mission being per-

formed, and can be functionally treated as the carried loads that require separate trans-

portation systems to move them. Design of transportation systems depend heavily on the

missions they fly but can be categorized into three main types that are shown in Table 1.1.

Regardless of the mission or transportation type, a vehicle can be defined as a paring

of a transportation system and a payload. All previous proposed campaigns have called for

the use of one or more of these vehicles. Thus, vehicles can be considered key enablers of

SECs, and their significance is independent of the campaigns’ goals, overall strategy, and

payloads within. This leads to the first observation of this thesis:

Observation 1: Vehicle design choices are driven by campaign goals and the mission set

within.
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Table 1.1: Table of mission types in a campaign, their physical descriptions and the type of
vehicle responsible for performing the mission.

Mission Type Event Description Transportation
Type

Surface to Space Launch Inserting payloads into
orbit from the surface of a

planetary body

Launch Vehicle

Space to Space Transfer Transporting payloads
from one orbit to another

In-Space
Transportation

Space to Surface Entry, Descent
and Landing

Landing payloads onto the
surface of a planetary body

Descent
Stage/Capsule

The trade space for vehicle architectures and mission architectures each can contain an

exhaustive number of discrete options. [8] For each discrete architecture selection, there

exists a continuous design space that can be explored, creating a very computationally

expensive design problem. Although setting specific campaign goals can narrow down the

available options, it does so only very slightly.

To understand the importance of vehicles within a SEC, the previous decomposition

of a campaign in Figure 1.5 can be expanded, as shown in Figure 1.6 [18]. Trent defines

campaigns as a group of architectures, which are pairings of missions and the vehicles per-

forming them. This sets campaign design as a systems of systems problem that involves

identifying and understanding the interactions and dependencies between elements at all

levels. A final solution of this process would be the optimal set and sequence of architec-

tures to achieve set campaign goals.

Decomposing further, each pairing of a mission and vehicle is a complex, systems-level

Multidisciplinary Analysis and Optimization (MDAO) problem, requiring the sizing and

synthesis of many different individual subsystems [19]. Sizing is highly coupled with mis-

sion design due to the underlying physics of orbital mechanics as well as the composition

of many individual events within a single mission.

Although the vehicle sizing problem can be analyzed independently, the final selec-

tion of mission profiles and in-space vehicles are constrained by available launch vehicles
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MissionsVehicles

Transportation Payloads

Subsystems

Events

Campaign

System of Systems

Systems

Subsystems

Figure 1.6: Further decomposition of a campaign into its physical and functional elements
to show the different levels of systems, adapted from [18].

and their performance capabilities. All campaign problems are additionally constrained

by programmatic factors such as design and development timelines, cost and schedules,

stakeholder needs and concerns, and commercial and international partnerships. Aggregat-

ing these challenges within the campaign design problem can complicate the process for

finding one or more potential solutions.

Observation 1 established that the design of a vehicle within the campaign is dependent

on the chosen campaign goals. While the previous decomposition of the campaign problem

identified the relationship between vehicles and the overall campaign, it is also important

to understand the sensitivity of this relationship. For example, crewed vehicles tend to be

much heavier than their cargo counterparts, making robotic exploration programs far less

costly than crewed ones [10]. Establishing a long-term, surface presence on a planetary

body needs many launches, as seen shown by the latest M2M manifest in Figure 1.7 [20].

In contrast, vehicle designs can still vary greatly for a single destination, as seen by

previous Mars campaign concepts [21]. Figure 1.8 shows four different transportation ar-
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Figure 1.7: Moon 2 Mars program launch manifest through 2026 [20].

chitecture for a Mars campaign, where each one is vastly different from others in terms of

design characteristics and performance.

Figure 1.8: Previous Mars transportation architectures and concepts.

Since NASA’s SLS had been chosen as the human rated launch vehicle for future

crewed missions, its capabilities place limits on how much mass and volume can be thrown

to orbit. Similarly, Orion’s design does not allow for it fly beyond lunar orbit. Deciding

on a vehicle to build will narrow the scope of any future campaign design and planning,

leading to the next observation:
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Observation 2: Previous vehicle investments constrain campaign design space.

Observations 1 and 2, together, provide the basis for the third observation:

Observation 3: The design of a space campaign is highly coupled with the design of ve-

hicles used within.

Current state of the art for the design of conceptual-level space exploration campaigns

describe two main methods, highlighted in Table 1.2

Table 1.2: Two main methods of conceptual campaign design and the organizations utiliz-
ing them.

Method Organizations
Campaign Analysis NASA

Space Logistics Network Formulation MIT, Illinois, Georgia Tech

NASA documents their campaign analysis capability as a process that evaluates the

performance of exploration scenarios over the full life-cycle of the campaign [7, 17]. The

three main areas assessed are system performance, affordability, and risk. Campaign sce-

narios are driven by past work and trade spaces are filtered by hand through subject matter

expertise, resulting in the exploration of only a few alternatives. An example of this pro-

cess is depicted by the top level transportation architecture trade tree in DRA 5, Figure 1.9.

Vehicle design is performed independently, after parts of the trade tree has been trimmed,

meaning any changes in the campaign or vehicle designs have to be assessed manually.

This method provides a basis for the identification of a broad gap in the current state of

the art:

Broad Gap 1: Space transportation systems are traditionally designed separately, after

campaign designers have set individual mission requirements which limits the ability

to rapidly assess changes.

Space logistics is a recent area within the space campaign domain that has adopted

methods from terrestrial logistics and supply chain research. It applies a network-based
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Figure 1.9: DRA 5’s top-level in-space transportation architecture trade tree [8].

approach to model destinations as nodes and paths between them as arcs. An example

Earth-Moon-Mars network is depicted in Figure 1.10, showing the different orbits, bodies

as destinations and the possible transfers between them.

Depending on the network model and problem definition, different mathematical pro-

cesses are applied to solve the network. These solutions are in the form of necessary flow

of resources between the nodes, through their arcs, that satisfy any constraints and achieve

high level campaign requirements. Final flows are then used to drive requirements on pay-

loads and accompanying transportation systems.

The Campaign Analysis process by NASA details that vehicle sizing and synthesis is

done, but the campaign itself is manifested by hand using generated point designs [22].

This means that the optimal set of architectures may not be explored. Furthermore, the di-

rect impact of the vehicle on the campaign design is unknown without manually updating
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Figure 1.10: An example Earth-Moon-Mars network within a Space Logistics Network
Formulation

the campaign. In contrast, the Space Logistics formulations typically use historical regres-

sions or simplified equations to size vehicles as a way to reduce computational time and

complexity [23, 24]. The mission design is also simplified using assumptions for similar

reasons. In parallel with NASA’s method, the direct impact of the campaign on the vehicle

design is difficult to assess, leading the to the identification of another broad gap:

Broad Gap 2: Though a space vehicle is made up of many subsystems, processes for con-

ceptual design of space campaigns simplify their representation within the problem

to reduce computational complexity and enable rapid generation of campaign alter-

natives.
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1.3 Identified Gaps and Research Objective

The previous sections document the overarching motivations for this research by identify-

ing three key observations and two broad gaps within literature:

Observation 1: Vehicle design choices are driven by campaign goals and the mission set

within.

Observation 2: Previous vehicle investments constrain campaign design space.

Observation 3: The design of a space campaign is highly coupled with the design of ve-

hicles used within.

Broad Gap 1: Space transportation systems are traditionally designed separately after cam-

paign designers have set individual mission requirements which limits the ability to

rapidly assess changes.

Broad Gap 2: Though a space vehicle is made up of many subsystems, processes for con-

ceptual design of space campaigns simplify their representation within the problem

to reduce computational complexity and enable rapid generation of campaign alter-

natives.

These two broad gaps can be generalized to state an overarching key gap in the current

state of the art for campaign and vehicle design:

Key Gap: Although space vehicles are highly coupled to campaigns, their designs are

generally performed independently which limits (1) the quality of each campaign

solution and (2) the ability to perform integrated trade space exploration.

To fill this gap, the Research Objective is formally stated as follows:
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Research Objective: Establish a methodology for space exploration campaign design

that represents a transportation system as a collection of subsystems and integrates

its design process to enable concurrent trade space exploration.

This research aims to assemble a methodology to conduct campaign trades at the vehi-

cle level, supported by sizing at the subsystem level, and shall enable designers to answer

questions such as:

• How does a change in the vehicle architecture(s) impact the overall campaign?

• How does a change in campaign strategy affect the required vehicle(s) design?

The thesis structure introduced in the beginning of the document can be broken down

and filled in to show the logic used to identify this Research Objective, shown in Fig-

ure 1.11.
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Figure 1.11: Thesis structure up through the Research Objective.
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Two main questions need to be answered to fulfill the Research Objective and identify

a capable methodology:

Overarching Research Question 1: How can campaign and vehicle design processes

be linked to explore the sensitivities of their designs on each other?

Overarching Research Question 2: How does the integrated process improve the

current state of the art?

The fully developed methodology will be used to test the overarching hypothesis of this

research, stated as:

Overarching Hypothesis: If the Campaign Logistics Optimization (CLO) and

Vehicle Sizing and Synthesis (VSS) processes are integrated, then impacts of the

vehicle and campaign trades on each other can be directly quantified.

To appropriately fulfill the Research Objective, it is necessary to establish the scope

of this before proceeding. The goal is to identify individual processes for campaign and

vehicle design that addresses most of the challenges surrounding their own problems while

also finding the formal methods of integration between them. Figure 1.12 shows a notional,

high-level process diagram that describes the main purpose of the campaign and vehicle

design processes. Using some stated goals, the identified campaign design processes should

be able to find the optimal set and sequence of missions to perform to achieve those goals.

The vehicle design process should then take that set and size each vehicle in the campaign

individually at the subsystem level.
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Figure 1.12: Thesis structure up through the Research Objective.

Figure 1.12 can further be used to guide the scope of the literature review by identifying

three main resulting questions:

• Formulation Question 1: How is the campaign design problem formulated and

solved today?

• Formulation Question 2: How is conceptual level design of space vehicles done

today?

• Formulation Question 3: How are the two individual, but coupled problems inte-

grated?

Chapter 2 and Chapter 3 provide a literature review to answer these three questions

while the following chapter introduces the formal Research Questions of this thesis and

the accompanying experimental plan to answer them. Once again, the thesis structure can

be updated, shown in Figure 1.13.
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Figure 1.13: Decomposition of the Research Objective to identify the motivating questions for a deep dive literature review.
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2

SPACE CAMPAIGN DESIGN

2.1 Requirements for an Integrated Process

Formulating Question 1 sets the scope of this chapter, a review of previous and current

methods for SEC design, with the goal of identifying one for integration with vehicle de-

sign, either directly or with some modifications. As an initial step in formulating this

proposed capability, requirements must be set on the entire method and decomposed to

its piece-parts. Driven by decision-makers desiring more information early in the design

process, the first key feature is the rapid generation of alternatives at the conceptual level.

Rapid implementation of technical- and programmatic-level problem constraints to conduct

quick design reassessments would be advantageous for allowing flexibility in decision-

maker requests. Among others, examples of technical constraints would include a specific

cadence for a launch vehicle and its provider, vehicle aggregation orbits, or the Earth-Mars

opportunity windows. Similarly, programmatic constraints could be financial cost, overall

timelines, and previous vehicle investments.

Given the critical role of a vehicle within a campaign and in this thesis, a subsystem-

level representation would be required to properly perform any vehicle trades and assess

their impacts on the overall campaign. Consequently, the integrated methodology should

have the ability to explore campaign and vehicle trades space and assess impacts on each

other; a requirement that is key to achieving the overall research objective.

2.2 Requirements for Campaign Design

Decomposing the formal set of requirements from Section 2.1 can establish following set

for the one of two distinct processes necessary for this method: campaign design. Fore-
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most, the purpose of a campaign design process is to find the optimal set and sequence of

missions to perform that will achieve all set goals and requirements. These requirements

set demands for the flow of many resources throughout the campaign, from payloads to

crew and everything necessary to support them. As the scale of space exploration contin-

ues to increase, campaigns will need to employ increasingly complex ConOps to reduce

overall mass as much as possible. These include, but are not limited to: rendezvous of

many elements, in-space refueling, reuse and repurposing of elements. Although it maybe

more computationally expensive, those operations would additionally require the use of a

dynamic model as opposed to a static one. Finally, as the industry sets its aim towards

Mars, this design process should be capable of analyzing operations within Earth and Mars

spheres of influence, and transits between them.

2.3 NASA: Campaign Analysis

Although NASA has set the near-term goal for its human spaceflight program to be the

Moon, it still considers Mars to be the horizon goal. Along with other organizations, NASA

has half-century long history of mission planning for the red planet [25, 26]. Latest iter-

ations are DRA 5, Evolvable Mars Campaign (EMC) and the integrated M2M campaign

[3, 8, 27]. Cirillo et al. provides and overview of NASA’s Strategic Analysis capabilities

for Lunar exploration scenarios during their Constellation Program [28]. Three main con-

tributors to assessing the “satisfaction” of a single exploration scenario, or campaign, are:

performance, affordability, and risk. A combination of tools that perform separate analyses

are linked to generate these metrics for each campaign. These tools allow for definition of

the campaign itself, as well as evaluating its risk using probabilistics, affordability mod-

eling, micro-logistics logistics modeling, and sustainability evaluation. A depiction of the

relationships between each of these tools is shown in Figure 2.1

It is important to understand how space logistics fits in with NASA’s methodology

given its focus in this research. The term logistics may refer to different areas of the overall

22



Figure 2.1: Flow diagram of the Strategic Analysis methodology from [28].

SEC design problem, and Cirillo et al. provides the definition and distinction between them.

Specifically, macro-logistics focuses on the analysis of human space exploration systems as

a large-scale logistics network problem, introduced in Section 1.2, whereas micro-logistics

is the area of work that aims to understand how to handle the transport, and storage of

consumables or goods, use of which by the crew, and eventual disposal of waste, modeled

through a systems dynamics methodology [29]. Hereafter, macro-logistics is also referred

to as the space logistics network formulation, or space logistics, and will be described

further in this chapter. Both logistics concepts are important to understand and include

within overall campaign analysis.

Within this campaign analysis methodology, the design and sizing of individual ele-

ments within the campaign are not performed, but rather input. Their technical data is used

to build individual campaigns iteratively by manually changing campaign-level parame-

ters using subject matter expertise. Volume and mass capacities by available vehicles are

the driving constraints on this process, and are fixed throughout the process. Manifesting

of payloads is done manually, depending on campaign requirements and available launch

vehicles.
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The risk of the final campaign design point is evaluated using an event-tree analysis of

the probability of each mission within and the reliability of each vehicle. Results are ag-

gregated into high level figures of merit such as probability of loss of crew, mission, or key

elements. Affordability is driven primarily by the financial costs of the campaign, modeled

through various costing tools and methods that include LCC, cost of spares, launch costs,

and more. Identifying the level of sustainability of each campaign is done by analyzing the

interactions within, shown in Figure 2.2, and calculating the perceived “Level of Interest

(LOI)” by stakeholders. Once each campaign has been built, they are compared through

several FoM, described in Table 2.1.

Figure 2.2: Interactions of programmatic sustainability as shown in [28].

Given the method of scenario definition, this campaign analysis does not make any

assumptions about the overall trade space, meaning it would allow for broad exploration.

The many high-level, strategic FoM also allows for direct comparison of those alterna-

tive campaigns. However, the manual nature of this process means not many alternatives

are generated over time, and would not be responsive to quick changes in requirements.

Additionally, since the sequence of missions or events is modeled by hand, there is no

guarantee that the campaign solution is the optimum. Although the level of fidelity of the

vehicles within the process is not mentioned, their design process is completely decoupled
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Table 2.1: Table of FoM for comparing different exploration scenarios, or campaigns, in
the strategic analysis method.

Figure of Merit Description
Affordability Defined by three types of metrics: Total

Budget Delta to 2020 [RY$B], Max
Annual Deficit [RY$B], Max Cumulative

Difference [RY$B]
Benefit Measures the value of each campaign

across six themes from the Global
Exploration Strategy: Exploration
Preparation, Scientific Knowledge,

Human Civilization, Economic
Expansion, Global Partnership, and Public

Engagement [30].
Safety and Mission Assurance Expected losses in the campaign due to

uncertainty or unreliability, e.g, loss of
crew, mission, and/or elements

Programmatic Risk Encompassed by mission reliability,
which is a roll up of probabilities of loss

of crew, loss of mission, missed
rendezvous, anomalies, expected delay

periods, and contingency plans
Sustainability Expected LOI below the desired LOI

from campaign analysis, meaning its sensitivity to vehicle design changes would have to

be manually processed.

The previous process was utilized for the Lunar Exploration Program, which was a

much smaller campaign than the Mars campaign being developed around the same time,

DRA 5. For DRA 5, an overall trade space was established, shown in Figure 2.3, and used

to explore alternative campaigns, driven mainly by the transportation architecture.

Comparing individual options in this trade space involved the use of high-level models

developed using subject matter expertise, with the express goal of removing options that did

not meet performance, cost, and risk requirements. Models were also driven by previous

experience or existing data to ensure a rapid, comparative down-selection process, as shown

in Figure 2.4.
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Figure 2.3: The highest level trade tree that was explored in NASA’s DRA 5 [8].

Figure 2.4: Comparative architecture evaluation process used to down-select in NASA’s
DRA 5 [8].

Out of the 48 architectures in the trade tree, it took many months and over 185 people

to filter down to two options, while still leaving many unexplored. The Subject Matter

Experts (SME) and past experience-driven approach to exploring alternatives emphasizes
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a point-design philosophy and at most, creating clouds around them. Novel designs of

vehicles, campaign strategies, or trajectory options would be difficult to assess using this

process, potentially leaving more affordable, less risky options untouched. Given the desire

to build many alternatives for decision makers, there is a need to identify new processes for

designing campaigns at the conceptual level.

2.4 Academia: Space Logistics Network Optimization

Within the past two decades, researchers in the space campaign academic community have

focused on applying a specific methodology for their design. By representing space travel

as network of destinations and paths, mathematical techniques can be applied to optimize

the flow of resources within, with the aim of finding the best logistics scenario. This ap-

proach, dubbed Space Logistics (SL), is defined by its American Institute of Aeronautics

and Astronautics (AIAA) Technical Committee as, “the theory and practice of driving space

system design for operability and managing the flow of material, services, and information

needed throughout the system life-cycle” [31]. This definition leads to the fourth observa-

tion in this thesis:

Observation 4: Space campaign design is a complex logistics optimization problem.

Terrestrial logistics and supply chain optimization methods are extended to address the

complexities that accompany space travel such as: longer timescales, physics of orbital

mechanics, high degree of coupling between paths taken and resources used, and the long,

high-cost deployment phase for infrastructures. While improving upon each other by filling

technical gaps, the goal of each specific method within the field is to identify the optimal

flow of all commodities in a apace campaign. Observation 4 can be decomposed to un-

derstand how a logistics formulation can be applied to this research, specifically into the

following three formulating questions, also updating the thesis structure in Figure 2.5.

• Formulating Question 4: What type of space logistics problem is to be solved?
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• Formulating Question 5: How can complex ConOps be incorporated without increas-

ing the computational complexity?

• Formulating Question 6: Where and how can the vehicle be represented as a synthesis

of subsystems in the logistics formulation?
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Figure 2.5: Thesis structure updated to show the formulations questions for campaign design.
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2.4.1 Network Formulation Theory

Before conducting a review of applications of the logistics optimization problem to space

campaigns, it is important to understand the fundamental theories that are used as a foun-

dation. Network flow problems, or Network Design Problems (NDP), were considered as

early as the 1950s, initially as purely mathematical constructs, with goal of finding the

maximum flow using specific algorithms [32, 33]. Supply chain researchers have used

mathematical techniques to optimize the flow of resources for many applications in many

different sectors. Networks themselves, also called graphs, are readily apparent across

many different domains of humanity, from highway systems, airlines and airports, package

delivery services, all the way to the scheduling of football games for the National Football

League (NFL) [34]. The United States Air Force conducted research to identify the proper

locations of new Air and Sea Ports augmenting existing goods distribution centers to meet

demands [35]. Fedex developed an algorithm to efficiently routes all of their express pack-

ages within the United States in a single day while also scheduling the optimal vehicles

for those packages [36]. Although summarized here, Smith et al. provides a thorough in-

troduction to these types of problems as well as their applications and potential solutions

[37].

Of all of the ones mentioned above, the Minimum Cost Problem (MCP) is the problem

that is most fundamental to all NDP. The goal is to determine the cheapest transportation

strategy that meets all the demands at certain locations, while constrained by the supply

at others. Let G be a network with G = (N,A), where N is a set of n nodes and A is a

set of m directed arcs. Nodes represent locations where arcs represent routes of transport

between them. A directed arc is one in which commodities can flow in a single direction.

Each arc, (i, j) ∈ A in this generalized network, can be assigned a cost of travel, cij , that

defines the how expensive it is to travel along that arc. In this case, the cost is assumed to

scale linearly with the amount of commodity flow on the arc. Arc capacities, uij and lij ,

define the maximum or minimum amount of flow on the arc, respectively, to model those
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on physical transportation systems. Integer variables, b(i), for each node, i ∈ N , represent

the supply or demand of each node, where b(i) > 0 is a supply node i, b(i) < 0 is a demand

node i, and b(i) = 0 is neither. The latter is defined as a transshipment node by [37]. With

these components, the final MCP can be formulated as follows:

min
∑

(i,j)∈A cijxij (2.1)

s.t.
∑

j:(i,j)∈A xij −
∑

j:(j,i)∈A xji = b(i) for all i ∈ N (2.2)

lij ≤ xij ≤ uij for all (i, j) ∈ A (2.3)

where
∑n

i=1 b(i) = 0 (2.4)

The objective function, Equation 2.1, defines the total cost of traveling through arcs

with, in this case a single commodity, x. Equation 2.2 are called mass balance constraints

which serve to ensure the flow of the commodity through the node is continuous. The dif-

ference between the outflow and inflow, terms 1 and 2 respectively, must be equal to the

supply or demand at that node. If the node does not have either, the total outflow of the

node is then equal to the inflow. Capacity constraints on the commodity are represented by

flow bound constraints in Equation 2.3. Finally, Equation 2.4 enforces that total amount

of commodity within the network is conserved. Most notable NDP are variations of this

fundamental problem. Table 2.2 summarizes these variations and their mathematical for-

mulations, introduces generalizations of the problem itself, and other NDP problems of

note.
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Table 2.2: A summary of variations, generalizations of the MCP and other network problems, adapted from [37].

Group Title Descriptions Example

Variations Shortest Path Problem

(SPP)

The simplest NDP that

aims to find the minimum

cost or length path from

one destination to another,

using arc length cij for

(i, j) ∈ A. There are no

flow bounds on a SPP

Traffic Flow

Maximum Flow Problem

(MFP)

Similar to the SPP but

the flows are capped along

each arc while costs are

zero.

Electrical Grid
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Table 2.2: A summary of variations, generalizations of the MCP and other network problems, adapted from [37].

Group Title Descriptions Example

Variations Assignment Problem A collections of pairings

of individuals from two

larger, but equally sized,

sets, N1 and N2, have an

associated cost. The goal

is to find the set of pair-

ings that minimize the total

cost.

Class Scheduling

Transportation Problem Similar to the MCP but

node set N is divided into

two smaller subsets, N1

and N2, where one is set of

supply nodes and the latter

a set of demand nodes.

Package Delivery Services
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Table 2.2: A summary of variations, generalizations of the MCP and other network problems, adapted from [37].

Group Title Descriptions Example

Variations Circulation Problem The MCP with only trans-

shipment nodes, b(i) = 0

for all i ∈ N

Commercial Airline

Scheduling

Generalization Convex Cost Flow Prob-

lems

MCP assumes a linear cost

model, whereas here, the

cost is simply a convex

function of the amount of

flow. The flow costs varies

for different reasons in the

network.

Power losses in an electri-

cal grid

34



Table 2.2: A summary of variations, generalizations of the MCP and other network problems, adapted from [37].

Group Title Descriptions Example

Generalization Generalized Flow Prob-

lems

Arcs can consume or gen-

erate flow with rates µij for

each arc (i, j) ∈ A. If

0 < µij < 1, the arc is

lossy, whereas if µij > 1

the arc is gainy.

Pipeline flows with leaks

Multi-Commodity Flow

Problems

Simply the MCP with more

than one commodities.

Food Distribution

Other Problems Minimum Spanning Tree

Problem

Identification of the mini-

mum length path from one

end of a connected graph to

the other in an undirected

network.

Highway Construction
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Table 2.2: A summary of variations, generalizations of the MCP and other network problems, adapted from [37].

Group Title Descriptions Example

Other Problems Matching Problems In a network G = (N,A),

a matching is a set of arcs

where every node is inci-

dent to at most one arc.

A single node is matched

with at most, another sin-

gle node. The problem is

dependent on some certain

criteria being optimized to.

Roommate matching in

dorms
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As stated previously, these fundamental problems have many applications and each

individual problem is modified to include its own set of objectives, constraints, costs, ca-

pacities, and other parameters. Finding a numerical solution to these problems generally

require the use of some optimization algorithm.

2.4.2 Network Optimization Theory

Selection of an optimization method to solve network flow problems depend on the type of

problem and its parameters. Integer Programming (IP) is a type of optimization algorithm

that is reserved for problems where one or more of the decision variables can only be in-

tegers [38]. A Pure Integer Programming (PIP) problem is a subset of IP where all of the

variables are integers, whereas it is otherwise referred to as Mixed Integer Programming

(MIP) if they are not. If the objective function and all of the constraints are linear, they

can be considered as Linear Programming (LP), or if not, then as Nonlinear Programming

(NLP) As an example, the standardized Mixed Integer Linear Programming (MILP) for-

mulation represented as a MCP in matrix form is shown in Equation 2.5, Equation 2.6, and

Equation 2.7.

minx,y z = cTx+ dTy (2.5)

s.t. Ax+ Ey = or ≤ or ≥ b (2.6)

xmin ≤ x ≤ xmax y ∈ {0, 1}ny (2.7)

The objective function in Equation 2.5 represents the total costs of the problem where

c,d are the cost matrices for the linear and integer variables, x and y, respectively. Sim-

ilarly, A and B are the matrices of coefficients, representing the balance constraint, anal-

ogous to Equation 2.2. For purely LP problems, d and E are effectively zero as there are

no integer variables, y. If a LP problem has only two variables, x1, x2, and n inequality

37



constraints, the feasible region can be shown visually as a convex polygon with n sides

[39]. Figure 2.6 shows an example problem with 5 inequality constraints.

x2

x1

Figure 2.6: The feasible region of a LP problem with two variables and 5 inequality con-
straints.

For some small set of problems like this, a geometric solution can be found. The optimal

point exists at the intersection of two inequality constraints, or the corners, specifically

called extreme points. The coefficients of the objective function define the direction to

move within the feasible region towards the optimal point, in this example case, −c or

(−c1,−c2), which is shown in gray.

Depending on the constraints and objective function there are several other cases of the

type of optimal solution. Although the example case gave a unique optimal solution, the

feasible region in Figure 2.6 was bounded completely. A unique solution can still exist

on a corner point even if the feasible region is unbounded as shown in Figure 2.7. If the

direction of the anti-normal of the objective function is at an angle of 180o to that of one

of the constraints, there can exist a set of alternative optimal solutions, bounded or not, as

shown in Figure 2.8. Similarly, if the anti-normal is at an angle of 90o, and the region is

unbounded, there is no optimal solution, shown in Figure 2.10. Finally, if the constraints

38



are inconsistent, the feasible region is said to be empty. For all cases, an n-variable problem

will have a feasible region that is an n-dimensional convex polyhedron.

x2

x1

Figure 2.7: Example of a unique solution of a LP with an unbounded feasible region.

x2

x1

Figure 2.8: Example of a alternative optimal solutions of a LP for both, bounded and
unbounded, feasible regions.
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x2

x1

Figure 2.9: Example of LP where there is no optimal solution.

x2

x1

Figure 2.10: Example of LP where there is no optimal solution.

General algorithms for finding the optimal points in LP have roots as early as 1936

through mathematician Leonid Kantorovich [40]. However, his specific computational al-

gorithm was never complete and it was only nearly a decade later until which George

Dantzig developed the simplex method, one of the most popular for solving LPs [41]. The

simplex method is still considered a valuable approach and only a few modifications have
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been made since its introduction. Klee and Minty showed that the method’s worst case per-

formance is solved in exponential time, E , but it was not soon after that Hansen and Zwick

introduced the interior-point method which was able to solve the problem in polynomial

time, P [42, 43]. Simplex methods identify the optimal point by moving from vertex to

vertex along the edges of the feasible polyhedron region bounded by the constraints. In

contrast, interior-point methods search within the feasible region itself until the optimal

point is found [44].

The inclusion of integer variables in the problem reclassifies it as a MIP and requires

different methods to find a numerical solution. In comparison, the feasible region of a MIP

is no longer just defined by the constraints, but by the nearest integer feasible point, which

may be just inside the edge of the polyhedron. As a result, the simplex and interior-point

methods by themselves are inadequate to solve a MIP which resulted in the introduction of

the cutting plane and Branch and Bound (BB) methods [45, 46, 47, 48, 49, 50].

The cutting plane method works very similarly to the simplex method in that it tries

to identify a new edge of the polyhedron using the integer points. Near the region of the

optimal point of the LP, it uses the integer points to add constraints to the problem to create

a new edge with the integer points as the vertices, as shown in Figure 2.11. Similarly, to

Figure 2.6, the shaded area represents the feasible region of a generic, two variable LP

problem and the points are added to represent the integer variables. Since the optimal

solution must be an integer, it rules out the vertex created by the edges of the polygon,

which would have been the solution to the pure LP problem. Instead, the actual edges

of the polygon are the ones created by connecting the integer points closest to the that of

the larger one, shown in green. Cutting planes are added as constraints to the problem

to identify one of those new vertices as the optimal integer point, shown as dashed lines.

However, applying the right cutting planes is often considered as its own separate problem

and as a result, becomes computationally expensive.
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x2

x1

Figure 2.11: The addition of constraints on the LP problem to identify a the new edges for
the MIP problem using the cutting plane method.

The BB method may seem very similar to a brute force algorithm which explores every

feasible point to identify optimality, but rather searches for points in an intelligent manner.

[51] It partitions the entire feasible sections in to smaller sets to identify upper and lower

bounds to a new, smaller problem and repeats until the optimum is found, notionally shown

in Figure 2.12 [52].

Figure 2.12: Notional depiction of the BB algorithm of a 2-d feasible region of a MIP
problem, adapted from [52].

To further improve this technique, it was extended to include parts of the cutting plane

method, creating Branch and Cut (BC) [53]. By combining the benefits of both of the

previous methods, BC was considered to be very effective at solving MIP problems.

Up until now, the methods and techniques reviewed previously have been simple im-

plementations at solving basic problems. Commercial software solutions have used them

42



as a foundation to create advanced packages that increase the general performance of these

optimizers to solve much larger, more complex network problems. Anand et al. provides a

summary of open source and commercial optimizers as well as comparison of their perfor-

mance [54]. Although there are plenty of options, CPLEX, Gurobi, and XPRESS are the

top performers and the final selection of the specific package will depend on the character-

istics of the problem being solved [55, 56, 57].

Formulating the space logistics network optimization problem involves extending these

fundamental concepts to account for the complexities of space travel. The following sec-

tion will provide an overview of previous attempts at solving the space logistics network

problem, their specific formulations, and their gaps when considering the requirements for

campaign design in this thesis.

2.4.3 Space Logistics Network Optimization Processes

Christine Taylor, from Massachusetts Institute of Technology (MIT), formulated a process

that connected the transportation systems design optimization problem to the network flow

[23]. Specifically, the overall systems definition of a transportation architecture was ex-

panded to include the network of destinations it travels through and the resulting integrated

problem is solved through concurrent optimization of both elements. Though both aircraft

and spacecraft were considered, the problem decomposition of the integrated interplanetary

logistics model is show in Figure 2.13.

The integration of the vehicle and network problems is handled through the operations

model via two sets of constraints: capacity and capability. As vehicles are assigned to

specific arcs to perform their mission, their maximum mass capacity is translated to total

commodity mass on each arc. Capability constraints define whether or not that vehicle is

capable of traveling on that arc, ensuring their available fuel is more than what is required.

Further, vehicles are modeled to hold the commodities and propel them through the net-

work. As a result, the design of the vehicle is modeled as three main components: structural
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Figure 2.13: Functional decomposition of the integrated interplanetary logistics problem.

mass, propellant mass, and the required payload, shown in Figure 2.14 The structural mass

is estimated through a mathematical regression from empirical data while the propellant

mass is a design variable.

Figure 2.14: Vehicle representation within Taylor and Weck’s integrated design framework.

Though Taylor was able to integrated both the vehicle and campaign design processes,

the simplification of the vehicle model and its implementation though a regression means

vehicle-level trades cannot be performed without major modifications. Additionally, the

transportation network considered was an Earth-Moon system, and crewed missions were

not considered, closing of a large portion of the campaign design space.

Arney presented a methodology to explore the space systems design space using graph

theory and a rule-based algorithm [58]. This methodology was split into three main parts:
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graph generation, design space exploration, and evaluation. Graph generation is a user

driven process where they define a set of nodes and edges of a graph using a tabular for-

mat, representing the missions being considered. The nodes represent specific locations or

steady states and the edges the paths between them. With this formulation, the user can

define the system architectures with as many nodes and edges as desired, depending on the

complexity of the problem. Link nodes are specific nodes in the graph that represent loca-

tions that are static in nature, such that assets can be pre-positioned. Edges are also defined

by specific metadata that represent information about the type of transfer and how it relates

to the sizing of associated systems. For example, a propulsive maneuver edge includes ∆V ,

Thrust-to-Weight, Engine Type, Time of Flight, and Planet, whereas a In-Space Habitation

edge only includes a scenario and a stay time. During the design space exploration stage, a

system map is a matrix representation of how each system travels through the graph indi-

cating the order of events used for sizing tools. Enumerating all the available paths for each

system shows an exhaustive number of options to explore which necessitated the need for

the rule-based traversal algorithm. A total of ten rules were established, split in two groups

of Existence and Functional rules, all of which are shown in Table 2.3.
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Table 2.3: Rules established by Arney for the traversal of a system architecture graph [58].

Category Rule Description

Existence Rule Crew Instance Surface Habitat OR

In-Space Habitat OR Crew

Functional Rule Earth Launch Launch Vehicle

Propulsive Propulsive Stage OR

Descent Stage OR Ascent

Stage

Planetary Ascent Descent Stage OR Ascent

Stage

Planetary Descent Descent Stage

In-Space Habitation In-Space Habitat

Surface Habitation Surface Habitat OR Crew

Capsule

Planetary EDL Crew Capsule

Refuel Propellant Depot

Orbit Capture Aerocapture System OR

Crew Capsule

Existence rules force the existence of a specific system on an edge if another one also

exists there; if an edge contains crew, then the edge must also contain a type of habitation.

Functional rules force a system on an edge if the traversal of that edge requires the function

provided by that system; the Earth launch edge requires the use of a LV. Ant Colony Opti-

mization (ACO) is used to find the optimal set of system assignment to edges such that all

systems and all edges have satisfied the rules. Up until now, the algorithm has only assessed

functional feasibility, but not physical feasibility. Evaluation of each architecture is done

through sizing of each system using the graph and estimating the dollar costs. A system
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hierarchy is first established prior to sizing of systems to ensure each one is being sized

in the proper order. The sizing itself is depends on the specific system but each model is

either a Response Surface Equation (RSE) or using photographic scaling. Finally, costing

estimation is broken down into Design, Development, Testing and Evaluation (DDTE) and

flight unit costs using NASA Air Force Cost Model (NAFCOM) or Transcost depending

on the system type. A process diagram of this methodology is shown in Figure 2.15.

Figure 2.15: Process diagram of the graph theory-based system architecture design space
exploration method presented by Arney [58].

Since the definition of the graph is user-input and given its flexibility to node and

edge definition, many exploration scenarios can be assessed using this method. Complex

ConOps could be represented using the link nodes and the ability define as many nodes as

necessary. The rule-based traversal algorithm will automatically assign systems to certain

edges based on the functionality that is required on that edge, enabling very little user in-

teraction after graph generation. However, the strength of this method is also its limitation:

the user-driven definition of exploration scenarios. Defining the graph also means defining
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the transportation strategy of the payloads and the vehicles that push those payloads. This

means that certain exploration strategies may not be explored, potentially leaving the op-

timal one on the table. Additionally, vehicle design was included in this method, but its

limitations are discussed in the next chapter.

To build off of the success of the space logistics network formulation from Taylor, MIT

created SpaceNet through their Space Logistics Research Project [59]. This was an open-

source tool developed in part with NASA, with the goal of allowing campaign designers to

evaluate how the crew and cargo transportation systems will be used as a supply chain prob-

lem. A discrete event simulation was used as the framework for this software, enabling an

analysis of alternatives for various campaign architectures and trades [60, 16]. Although

various complex operations were considered and modeled, such as reusability, reconfig-

urability, commonality, and repairability, it requires an input transportation network and

mission sequence [61]. As such, it only finds the optimal logistics flow and manifest for

that given scenario, not exploring broad trade spaces.

In response to the previous gaps, Ishimatsu et al. formulated an optimization process

that allows for modeling of larger, and longer-term human exploration campaigns using the

Generalized Multi-Commodity Network Flow (GMCNF) model. Also adopting a network

approach, the author states that a space mission objective can be translated into demands

for a flow of cargo or commodities throughout. These commodities can be sourced from

different destinations, whether it be Earth, or even Mars using In-Situ Resource utilization

(ISRU), which results in a multi-commodity network. Further, the author formulates that

due to the complexities of space travel, flow on an arc is not conserved; some commodities

may be generated or consumed during the course of an arc. Propellant is used to by the

spacecraft to transfer from one node to another, and if the mission is crewed, they can con-

sume food and generate waste. Additionally the rate of consumption or generation of one

commodity may depend on another or even transform: propellant used by the spacecraft

is directly dependent on how much mass it is pushing, food turns into waste through the
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crew. This property allows the problem to be classified as one with generalized flow. To

address these modeling gaps, the concepts of a self-loop and multi-graphs were introduced,

as depicted in Figure 2.16 and Figure 2.17.

Node i

Figure 2.16: Fundamental depiction of a self loop on a node [60].

Node i Node j

Figure 2.17: Fundamental depiction of a multi-graph between two nodes [60].

With the objective of minimizing flow costs throughout the network, the problem is

fully formulated as follows:

min J =
∑

(i,j)∈A
(c+

T

ij x+
ij + c−

T

ij x−
ij) (2.8)

s.t.
∑

j:(i,j)∈A
A+

ijx
+
ij −

∑
j:(j,i)∈A

A−
jix

−
ji ≤ bi ∀ i ∈ N (2.9)

x−
ij = Bijx

+
ij ∀ (i, j) ∈ A (2.10)

C+
ijx

+
ij ≤ d+

ij and C−
ijx

−
ij ≤ d−

ij ∀ (i, j) ∈ A (2.11)

l+ij ≤ x+
ij ≤ u+

ij and l−ij ≤ x−
ij ≤ u−

ij ∀ (i, j) ∈ A (2.12)

Self-loops model resource gain or loss at a single node, whereas multi-graphs model

different transportation options between nodes. Fully formulated, this process gives the

optimal commodity flow that meets all demands. Due to the use of linear programming
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optimization, the problem is guaranteed and optimal solution if a solution is found. How-

ever, there is one fundamental assumption or simplification within this process that is a

key limitation: the static nature of the network. It does not handle the flow of resources

over time, which constrains the campaign design space considerably. Various operations

and missions cannot be considered such as: phased infrastructure build-up, ISRU stockpile

tracking, launch or departure windows, and more. Additionally, the vehicle design within

this framework is accomplished through Inert Mass Fraction (IMF) based sizing. The ideal

rocket equation, shown in Equation 2.13 is used to calculate the structures mass based on

an input ∆V and an assumed IMF of 0.08 for LOx/LH2 and 0.3 for NTP systems.

∆V = g0Isp ln(
mi

mf

) (2.13)

As a direct improvement to this limitation, Ho et al. extends the network formulation to

include unit timesteps [62]. The author shows that the full network is instantiated at each

timestep, creating a full time-space network of nodes and arcs, depicted in Figure 2.18.

Time
Figure 2.18: A notional time-expanded network.

A key assumption with this formulation is that each timestep, as well as any specific

times and windows, are rational numbers to ensure that overall timescales can be multi-

ples of the step. However, interplanetary missions introduce specific departure windows

for transportation systems and can complicate this network. The previous two properties

dramatically increase the computational complexity of the resulting optimization problem
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by linearly increasing the number of overall variables and constraints. The bi-scale net-

work to alleviate this issue by heuristically clustering nodes such that travel between any

node within a cluster can be done at any time. Although the computational efficiency was

greatly increased with this formulation, the author states it comes at the cost of linearization

and a lower level of fidelity. Within space vehicle design, these simplifications can have a

significant impact as their design is very tightly coupled with its mission [63].

In response to Formulating Question 1, the previous theories and formulations lead to

another observation on the type of formulation:

Observation 5 : Due to the characteristics of a space campaign, it is represented through

a dynamic, generalized, multi-commodity network.

Following Ho et al.’s dynamic formulation of the space logistics network, several re-

searchers have added multiple levels of functionality to this fundamental formulation, with

the purpose of addressing different areas of complexity in space campaign design. Im-

provements were made the modeling of the campaign itself and accompanying logistics

formulation, the design of spacecraft and infrastructure elements, or integrated design of

trajectories. The rest of this sections will detail these specific contributions and key limita-

tions using the requirements set in Section 2.1 and Section 2.2.

Chen and Ho extends the bi-scale, time-expanded GMCNF by including an alterable

timestep within the clusters themselves [24]. Rather than having a constant timestep within

each cluster, those for holdover arcs are calculated based on the interval for the time win-

dow. Shown in Figure 2.19, the time windows for node k is only open at t, t + 2, and t

+ 8. As a result, the length of the timestep can be analytically found by calculating the

difference between the times, 2 and 6, respectively.

Nonlinear sizing models for the ISRU and spacecraft are included as well, and the

resulting optimization problem is a Mixed Integer Nonlinear Programming (MINP) dealt

with in two main ways. The first linearizes each model and converts the entire problem
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Time
Figure 2.19: A time-expanded network with variable timesteps, adapted from Chen and Ho
[24].

into a MILP using a piecewise approximating method. The other utilizes the same approxi-

mating method for the ISRU sizing, but includes the full, nonlinear spacecraft model using

Simulated Annealing (SA). Specifically, the structural mass, S, is calculated using Equa-

tion 2.14, where f(C) is the linear function, based on payload capacity, C, and g(M) is the

nonlinear function, based on propellant capability M .

S = f(C) + g(M) (2.14)

With it being external to the campaign optimization problem, the model can have as

many design variables as necessary and the following MILP can use only the relevant

design parameters for its optimization, as shown in Figure 2.20.

Figure 2.20: Campaign logistics optimization with nonlinear spacecraft design using SA
[24].

Though the latter method allows for a higher fidelity spacecraft model, the author states

if the vehicle is represented as it is in Figure 2.14, the MILP method is always the better
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choice as the SA algorithm cannot guarantee an optimal solution. Regardless, the vehicle

model itself is the key gap, which will be discussed further in Chapter 3.

Chen et al. developed an analytical model to simplify and guide the complex network

formulation process [64]. A bootstrapping deployment strategy for infrastructure is used to

identify the optimal number of stages needed for different exploration scenarios. The main

contribution of the paper was aimed at improving the campaign level model and although

vehicle design was included, the process was the same as [60].

Following the integrated space infrastructure and spacecraft design method from Chen

and Ho, the same author added improvements to account for the uncertainty with rocket

launches and staging events [65]. However, the formulation of the space campaign is fun-

damentally the same time-expanded, GMCNF model and is optimized using MILP. This

formulation is changed in [66] with the inclusion of a partially periodic time-expended net-

work. Chen et al. models a campaign scenario that is executed in two main phases: a setup

phase for infrastructure and a periodic, steady phase afterwards. The first phase can be

considered as a smaller scale campaign with sole goal of deploying and setting up infras-

tructure that will be used in regular intervals during later missions. These regular intervals

define the periodic nature of the second phase, where a single transportation scenario is du-

plicated many times. As a result, only two separate optimization problems are required to

be solved, one for each phase, shown in Figure 2.21, rather than solving a large integrated

one, or many smaller ones.

Although this formulation is key in simplifying the computational complexity of model-

ing this much longer-term campaign scenario, it is only applicable to that specific scenario.

Only this two phase campaign can be solved using this formulation, which does not meet

the requirements for this thesis of enabling broad trade space exploration.

Large space campaigns can be difficult to model using the methods presented previ-

ously, as the number of missions within can significantly increase the computational ex-

pense of the optimization problem. Although the last method addresses that issue directly,
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Time
Cycle Cycle

Setup Phase Periodic Steady Phase

Figure 2.21: A partially periodic time-expanded network, with a setup phase and regular
transportation missions, as depicted in [66]

it does so at the cost of constraining the types of campaigns that could be considered. Chen

et al. attempts to address this scalability issue by implementing Approximate Dynamic

Programming (ADP) within the network formulation [67]. This solves the logistics opti-

mization problem in a forward manner, rather than the traditional backward of considering

all possible traversable paths at each timestep. It approximates the value, or performance,

of the initial missions and changes future ones based on that information.

In a similar manner, Chen and Ho reformulates the space logistics optimization prob-

lem as a Markov decision process [68]. Within each mission in the campaign, design

decisions are made as a hierarchy, from spacecraft design to infrastructure design, and fi-

nally scheduling. Using a value function approximation, the optimal spacecraft design is

found and drives the infrastructure design via a deep deterministic policy gradient algo-

rithm. Once the spacecraft and infrastructure designs are optimized, the resulting logistics

problem is solved.

Additional improvements have been made with the logistics formulation to include sub-

system level sizing of ISRU elements within the campaign [69, 70]. This is to address

limitations in previous formulations where ISRU sizing was done, but subsystem designs

are selected a priori to logistics optimization, compromising on the level of fidelity of the

designs themselves. Infrastructure design is out of the scope of this thesis, but the method-
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ology of integrating subsystem level sizing within the logistics formulation is analogous to

inclusion of that for the vehicle problem. Chen et al. considers a broad trade space for ISRU

sizing by treating each subsystem as a different commodity, thereby leaving the overall for-

mulation of the optimization problem the same, just with different constraints. Specifically,

the mass balance constraint in a time-expanded, GMCNF model is expanded to include the

resource production process. Additionally, the capacity constraints for spacecrafts have to

be extended to include storage and flow of these resources.

Since the formulation of the logistics problem is the same, these additional constraints

increase the computational complexity of the resulting optimization problem. The author

addresses this issue by introducing constraint aggregation and variable packing. Ultimately,

a full-scale subsystem level sizing problem is integrated with the space logistics network

optimization by including additional constraints on the problem. As the author states, that

addition only adds to the computational expense, requiring simplifying methods within the

optimization problem. To avoid this issue, and given the high degree of coupling between

vehicle sizing and missions, this thesis aims to link the logistics optimization with vehicle

design, each their own distinct process, similar to [24].

Researchers at Aerospace Systems Design Lab (ASDL) added capabilities to account

for the complex operations performed in some campaigns [71]. NASA’s Human Landing

System (HLS) requires the rendezvous and docking of three different propulsive elements

at the Gateway in a Near Rectilinear Halo Orbit (NRHO) and subsequent staging of each

one at different times [72]. Gateway’s goals within the M2M program also introduces sev-

eral unique issues within the logistics framework. Although it itself is a vehicle, designed

as one and assembled in orbit, it will serve as a staging point for HLS, future Mars mission

vehicles, and other deep space elements [73]. McBrayer et al. states, within the logistics

formulation, these and other complex operations can be modeled using the path-arc formu-

lation.
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Pre-defining specific paths for certain vehicles in the campaign can save computational

expenses by forcing the optimizer to chose those paths rather than having it spend resources

to find it on its own, as shown in [24]. The latter is technically feasible within the bi-scale,

time-expanded GMCNF formulation presented previously. However, it is not guaranteed

the optimizer will find it without adding many constraints and thereby increasing compu-

tational complexity greatly. This formulation addresses the fifth Formulating Question

through the following observation:

Observation 6: Vehicles can be assigned to specific nodes within the network without the

use of constraints.

Isaji et al. describes a methodology that integrates the coupled mission planning and

vehicle design problems using a decomposed optimization problem and Lagrangian coor-

dination [74]. The mission planning, or campaign problem is represented and solved as a

single Mixed Integer Quadratic Programming (MIQP) problem while each vehicle in the

campaign is solved using NLP and a piecewise linear approximation , notionally shown in

Figure 2.22 This structure is proposed due to the characteristics of each problem, where the

campaign side is linear with integer variables, while each vehicle problem is nonlinear, but

with only continuous variables.

In this formulation, the coupled subproblems are integrated using the master problem

which minimizes the Lagrangian penalty function of each vehicle problem and updates

all shared variables for each iteration. Using this decomposition, two loops connect the

subproblems, where the outer loop updates the penalty parameters while the inner loop

tries to solve the master problem as well as each subproblem. The former is considered

solved when each subsolution is feasibly within the tolerance and the change in consis-

tency constraints are below a tolerance as well. An initial guess is generated by solving

the full integrated campaign and vehicle design problem, where each nonlinear vehicle

model is approximated using a piecewise linearization. The solution to this problem may
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Figure 2.22: Process structure for the integrated mission planning and vehicle design opti-
mization problem proposed by Isaji et al. [74].

not be the global optimum, but provides a good initial guess for the iterative method pro-

posed; the overall decomposed process structure is shown in Figure 2.23. This method was

demonstrated on an exploration scenario with two individual missions, but a single vehicle

model of a single-stage lander was used for each vehicle. The author showed a signifi-

cant improvement in computational performance compared to an embedded optimization

problem, extended from [23], where the overall problem is solved in a matter of seconds

to minutes. This methodology does address the coupling between the individual campaign

and vehicle design problems, where each vehicle within is sized at the subsystem level for

its mission. Further, it is possible to assess changes in the campaign and vehicle designs on

each other, and although nonlinear approximations were used for this specific case study,

the author states the method can be easily extended to include more complex formulations

of vehicle design models.

However, there are several key limitations to be highlighted both for the campaign and

vehicle subproblems. It is unclear how complex ConOps such as integrated vehicle stacks,

aggregating, staging, payload transfers, and more can be formulated using this method,
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with the separation of each vehicle design problem into individual NLP problems. Further,

although more complex vehicle models can be included, as the author also states, all vari-

ables within must be continuous. This means changes in discrete variables such as number

of tanks, number of engines on the overall problem cannot be assessed without a reformu-

lation of the methodology. Overall this limits the type of trades that can be assessed using

this methodology.

Figure 2.23: Decomposed optimization problem structure for the integrated mission plan-
ning and vehicle design problems proposed by Isaji et al. [74].

Table 2.4 provides a summary of the major CLO formulations presented in this chapter,

which provide the basis for the formulation to be used in this research.
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Table 2.4: Summary of major Space Logistics formulations introduced in recent years and described in this chapter.

Formulation Description Strengths Weaknesses

Integrated Network-

Vehicle Design

Solved the concurrent net-

work flow-vehicle design

problems using a systems-

level and operational con-

straints of capacity and ca-

pability.

Full integration of both in-

dividual problems

Simplified vehicle design

Rule-based Space Systems

Architecting using Graph

Theory

Generation, evaluation of

space system architecture

alternatives using a graph

of locations and transfers

with rules to assign cam-

paign elements.

Flexibility to many dif-

ferent, complex scenarios,

Vehicle design in the loop,

little user interaction

Simplified Vehicle Design,

User-defined exploration

scenarios limit options.
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Table 2.4: Summary of major Space Logistics formulations introduced in recent years and described in this chapter.

Formulation Description Strengths Weaknesses

SpaceNet Integration of discrete

event simulation to enable

modeling of complex

ConOps using input net-

works and transportation

scenarios.

Ability to model many dif-

ferent complex ConOps

Input network and trans-

portation scenarios limit

broad trade space explo-

ration

GMCNF Models the many resources

in the problem as individ-

ual commodities and adds

generalized flows: con-

sumption of commodities

along arcs. Finds an op-

timal flow of commodities

using linear programming.

Can model all propellant

burned, Crew consum-

ables, ISRU

Simplified vehicle design,

Time-related inconsisten-

cies
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Table 2.4: Summary of major Space Logistics formulations introduced in recent years and described in this chapter.

Formulation Description Strengths Weaknesses

Time-Expanded Gener-

alized Multi-Commodity

Flow (TEGMCF)

Duplication of static net-

work of t timesteps

Accurately model cam-

paigns with vehicles and

crew using resources over

time

Simplified vehicle design,

computational complexity

with larger problems

Path-arc Introduction of paths as a

sets of arcs and vehicles

Ability to model complex

ConOps

Simplified vehicle design

Integrated Mission Plan-

ning and Spacecraft De-

sign

Optimization coupled cam-

paign and vehicle problems

using a decomposed prob-

lem architecture

Subsystem-level vehicle

design integrated with

campaign optimization

May not be able to model

complex ConOps and as-

sess certain trades
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2.5 Integrated Methodologies within Other Fields

Though this thesis focuses on SEC and the integration of vehicles within the campaign

design process, a review of analogous methods in other fields is presented in this section. As

Subsection 2.4.1 mentioned, the applications for NDPs are numerous, but each individual

formulation is built upon the fundamental concepts. This section does not focus those other

applications of NDPs by themselves, but rather the methods that integrated vehicle design

and their processes for doing so.

2.5.1 Air Transportation Networks and Aircraft

Taylor and Weck was mentioned in Subsection 2.4.3 to have an integrated methodology

for space campaigns and vehicles, which was built on the previous work of the same for

air transportation networks and aircraft [23]. Both problems extended the systems design

control volume to include both the NDP and vehicle design. The difference in the method

of integration of each individual process is negligible, leading to the same fundamental

technical gaps. With the control volume of the system-level optimizer being around both

processes, each one was simplified to reduce the overall computational complexity. As a

result, subsystem level sizing was not included in either formulation.

More in line with the objective of this thesis, Mane et al. used a System of Systems

(SoS) approach to integrated the aircraft design and fleet allocation problem [75]. An

initial aircraft design optimization problem was solved first based on an required range and

payload capacity. The resulting design was used to identify the new optimal routing with

the rest of the fleet using a MINP approach. However, this research focused assessing the

impact of a singular new aircraft design into an already existing fleet, rather than the design

of many architectures.

Bower and Kroo presented a methodology for the design of one or more aircraft that

are optimized to fly a given route network [76]. A Multi-Objective Genetic Algorithm
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(MOGA) was used on the aircraft design space to minimize direct operating costs, CO2

and NOx emissions for a test problem with 4 cities and 8 routes. Each aircraft was design

independently using a simplified, system level design model. Although the fleet assignment

problem was solved, the network itself was input and its design was not considered. Similar

methods have been proposed in [77, 78, 79].

Concurrent design optimization of air networks and aircraft design using economic

trends was presented in [80, 81]. The author captures the impact of specific aircraft con-

figurations on the market itself, as well as demands for routes. Again, each aircraft was

designed using a systems level design tool, and subsystem information was not represented.

Hwang and Martins extended the concurrent design problem by using surrogate models

for the aerodynamics and propulsion subsystems with a mission analysis tool [82, 83]. A

gradient-based optimization technique was used initially on a single aircraft configuration,

but was extended soon after for a full 128 route network. Though the aircraft design pro-

cess did not represent every subsystem individually, the author showed that the concurrent

aircraft-mission-allocation design problem is an important formulation with a 27% increase

airline expected profit.

Roy and Crossley formulated an optimization framework that drives the design of air-

craft using fleet level objectives as a MINP problem [84]. The author states that previous

methods have used a sequential strategy for the combined problem, which does not address

the coupling that exists between the two individual problems. An Efficient Global Opti-

mization (EGO) based framework was used to solve the integrated problem, but the design

of the aircraft was done at the systems level.

Most recently, Alexandre et al. proposed a methodology to determine the optimal air

transportation network concurrently with the optimal fleet for the network [85]. Passenger

demand information was used to identify the optimal network which drove the design of

the optimal set of aircraft for that network, analogous to the objective of this research.

The integrated framework is shown in Figure 2.24. Although not directly represented by a
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collection of subsystems, each aircraft had a total of 46 design variables that were selected

to ensure each design point adhered to FAR requirements.

Figure 2.24: An integrated aircraft-network optimization framework presented in [85].

2.5.2 Concurrent Network Design and Sizing of Unmanned Aerial Vehicles

Choi presents a methodology for the concurrent design and optimization of Unmanned

Aerial Vehicles (UAV) and their networks for delivery systems, also shown in Figure 2.25

[86, 87]. An initial urban flight network is generated using map data which is used to solve

an endurance constrained vehicle routing problem. This first optimization problem does

not size any individual vehicles but uses a reference set represented by payload capacity,

velocity, endurance, and a fixed cost. Endurance constraints are used to account for effects

of take-off and landing during delivery, which range constraints cannot do. The endurance

constrained problem is solved to identify an initial set of optimal network routes for the

UAV design process, represented by a Small Vertical Takeoff and Landing (sVTOL) UAV

sizing and synthesis process. A worst-case route is chosen as the sizing mission for each

UAV in the network using sVTOL UAV sizing and synthesis, as shown in Figure 2.26. The
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updated vehicle set is re-represented in the network using energy based parameters to solve

a new, energy-constrained vehicle routing problem, generating a new set of optimal routes.

Convergence is assessed using vehicle design parameters and the updated routes and the

process is repeated using Fixed Point Iteration (FPI) if necessary. The resulting converged

solution is an optimal network with each UAV sized as a collection of subsystems.

Figure 2.25: Integrated framework for network design and UAV sizing and synthesis from
[86].

Figure 2.26: Sizing and synthesis process of a sVTOL UAV in the integrated design frame-
work presented in [86].
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After reviewing these campaign logistics formulations, the following observation can

be stated regarding the representation of in-space transportation systems and their subsys-

tems:

Observation 7: Given logistics optimization processes require a set of vehicle capabilities,

the set can be extended to include subsystem information.

The information presented in this chapter and the observations made with regards to

specific CLO processes are used to construct hypotheses on the formulation of the cam-

paign design process for the proposed methodology. These hypotheses are shown below

and in the updated thesis structure in Figure 2.27.

• Formulation Hypothesis 1: If Mixed Integer Programming is used to optimize a time-

expanded, generalized multi-commodity network, broad areas of the campaign trade

space can be explored.

• Formulation Hypothesis 2: If certain paths are specified in the logistics formulation,

complex ConOps could be included without a significant increase in computational

load.

• Formulation Hypothesis 3: If the assumed vehicle capabilities in the logistics formu-

lation includes a set of subsystems, it could be updated on each iteration using the

sizing and synthesis process.

• Formulation Hypothesis 4: If the optimal mission set from campaign optimization is

used to drive vehicle design, each vehicle in the campaign will be sized individually

for its own mission.
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Figure 2.27: Thesis structure updated to show the formulation hypotheses for campaign design.
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2.6 Network Formulation and Optimization

The previous sections of literature review found that campaign design is a complex logistics

optimization problem that can be represented as a TEGMCF and that complex ConOps

can be modeled using paths. This section uses these findings as a basis and details the

specific technical formulations of the network considered for this thesis, the accompanying

improvements necessary to properly model in-space transportation systems, and any other

data required.

2.6.1 Nodes

The introduction of chapters 2 and 3 set one of the requirements of the network formulation

to be an Earth-Moon-Mars network. This enables analysis of many different campaigns,

from smaller cis-lunar aggregation to much larger crewed Mars exploration campaigns like

DRA 5. Within the TEGMCF, each planetary node can be extended to its own sphere of

influence to include orbital destinations within it. Each orbit in space is unique, parame-

terized, and defined by several continuous orbital elements, summarized in Table 2.5 and

visually represented in Figure 2.28 [88].

Table 2.5: Summary of the classical parameters used in orbital mechanics.

Orbital Element Variable Description

Radius at Apoapsis ra Distance from the center

of the orbital body to the

farthest point in orbit

(apoapsis).
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Table 2.5: Summary of the classical parameters used in orbital mechanics.

Orbital Element Variable Description

Radius at Periapsis rp Distance from the center

of the orbital body to the

closest point in orbit

(periapsis).

Eccentricity e Ratio of the radii of the

orbit that defines the shape

of the orbit.

Altitude h The distance of a point in

orbit above the surface of

the central body. The

radius of the orbit minus

the radius of the central

body

Semimajor Axis a Half of the sum of the Apo

and Periapsis radii.

Inclination i The angle of the orbital

plane with respect to the

reference plane

Longitude of Ascending

Node

Ω Angle in the reference

plane of the ascending

node, the point at which

the orbit passes upward

through the reference

plane.
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Table 2.5: Summary of the classical parameters used in orbital mechanics.

Orbital Element Variable Description

Argument of Periapsis ω Angle that defines the

orientation of the orbit

about its own axis.

True Anomaly θ Angle of the body in the

orbit with respect to

periapsis.

Specific Orbital Energy ξ Total energy state of the

orbit.

Characteristic Energy C3 Amount of energy

required to escape the

gravity of a central body.

Period T The amount of time it

takes to perform one full

revolution of an orbit.
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Figure 2.28: Visual representation of the main orbital elements used to define locations,
movements, and orbits in space [89].

Given the number of design variables, and dependence of reference frame and time,

full-scale orbital mechanics problems are very complex, with some taking many days to

arrive at a numerical solution even with high performance computing resources. Adding

travel to other bodies only exacerbates the problem, especially for Mars as the amount of

energy to reach is cyclical in nature, as Earth and Mars move about the Sun at different

speeds, closest every 26 months. Different types of transportation systems assumed can

also affect the closure and runtime of trajectory analysis. For these reasons, at the pre-

conceptual to conceptual level of design, full-scale trajectory analysis is either replaced by

surrogate models or simplified using assumptions [90]. For the scope of this research, the

latter is chosen to minimize runtime, while the former is left as a future area of growth.

Given the significance of vehicles in this thesis and their highly coupled nature to

their sizing missions, locking these degrees of freedom closes off parts off the design

space. However, to not significantly increase the computational with a large scale tra-
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jectory optimization problem, the orbital mechanics and mission analysis considered in

this research will be simplified. Each orbit will be parameterized semimajor axis (a), and

by extension, characteristic energy (C3), where the latter is defined by Equation 2.15.

The constant, µ, is the gravitational parameter, a product of the gravitational constant,

G = 6.67430 ∗ 10−11 m3

kg∗s2 , and the mass of the central body.

C3 = −µ

a
(2.15)

Although the orbital parameters are continuous, they can be grouped based on their

distance from the central body. Highly elliptical orbits may have a perigee in LEO but an

apogee in High Earth Orbit (HEO) which can complicate this schema. As a mitigation,

orbits can instead be grouped by their C3, as a measure of the distance from the central in

an energy perspective. That is, higher orbits will have higher C3s, and vice versa.

Earth Sphere

For the Earth Sphere of Influence (SoI), or Earth Sphere, there are five main orbital nodes:

Surface, LEO, Geosynchronous Orbit (GSO), Medium Earth Orbit (MEO), and HEO, cat-

egorized by their C3s in Table 2.6 [91]. The surface node is the most important, as every

campaign and mission has its origin at Earth during launch. LEO, MEO, and HEO are para-

metric orbits where many operations occur, from launch staging, to refueling, and more.

GSO is a specific circular orbit, where the period is exactly 24 Earth hours, corresponding

to an altitude of about 35,786 km. Geostationary Orbit (GEO) is a special case of GSO

with an inclination of zero and a groundtrack of a point rather than the figure eight of GSO.

Although departure for interplanetary missions can occur from anywhere, given the vehicle

has enough ∆V capability, most campaign concepts call for departure at higher orbits, after

refueling, as the vehicle would be far out from Earth’s gravity well. Departure opportunities

for the Moon are less complicated and much less energetically expensive.

72



Table 2.6: Summary of the Earth Sphere nodes formulated this research, categorized by
their C3s.

Node Minimum C3 (km2/s2) Maximum C3 (km2/s2)

Earth Surface Undefined Undefined
LEO -60 -47.578
MEO -47.58 -9.4536

GSO or GEO -9.4536 -9.4536
HEO -9.4536 -1.02106

Lunar Sphere

The Moon itself is within the Earth Sphere, but is treated as its own planetary node. Similar

to Earth, the Lunar surface node is very significant both as a goal destination for some

campaigns and as ISRU option for others. There are two orbits considered in the Lunar

Sphere: NRHO, Low Lunar Orbit (LLO). NRHO serves as the location of Gateway and

as a staging orbit for other vehicles, while LLO can serve as an intermediate orbit for

Lunar surface access, analogous to LEO. However, for problems involving cislunar space,

orbits are harder to parameterize as the Moon’s gravitational pull is not as strong as Earth’s,

limiting the range of stable orbits in its sphere of influence. As a result, within the lunar

sphere, the ∆V s will be varied directly, rather than the semimajor axis.

Mars Sphere

Mars is important to include in the network to assess longer, more complex campaigns,

and given its status as the horizon goal. Although it has two moons of its own, Phobos and

Deimos, they are not included in this formulation to reduce computational complexity and

given the focus of Mars as the destination. Adding them for future studies is possible with

little extra work. As a result, nodes within the Mars Sphere is similar to those in the Earth

Sphere, summarized in Table 2.7, although with different nomenclature. Orbits called n-

sol refer to their periods in integer number of Earth-days. For example, a 5-sol orbit is an

elliptical Mars orbit with a period of 5 Earth days.
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Table 2.7: Summary of the Mars Sphere nodes formulated this research, categorized by
their C3s.

Node Minimum C3 (km2/s2) Maximum C3 (km2/s2)

Mars Surface Undefined Undefined
Low Mars Orbit (LMO) -11.75 -11

n-sol -2.13 (1-sol) -0.58 (7-sol)

2.6.2 Arcs

Typically in within the logistics network formulation, each node is given an assumed orbit

and the arc cost to transfer from one node to another has set values of ∆V and ∆T . This

is an input data set that the optimizers uses to associate the cost of traveling on an arc in

the form of an energy and time penalty for the vehicle. With the nodal parameterization

mentioned in Subsection 2.6.1, that formulation needs to be augmented as the ∆V and

∆T of each arc can vary with the specific orbit of the node. The specific method for

calculating those values for each transfer will be discussed in the mission analysis portion

of the VSS section. That data table of network costs is updated at each iteration using the

this calculation, meaning the CLO process does not use them as additional design variables

within the optimizer. This reduces the computational load on the campaign side, which is

expected to be more computationally expensive than the VSS process. Vehicles traveling

on an arcs are denoted by binary variable, bv,a, for all vehicles and arcs in the network.

Interplanetary Arcs

Earth and Mars move about the Sun at different speeds, approaching each other at their

closest point about every 26 months. This means the energy required to transfer between

them is cyclical in nature, where the peaks signify transfers where the planets are not op-

timally aligned and the valleys are opportunities. Interplanetary trajectories to Mars are

typically split into two classes: conjunction or opposition. Conjunction class missions are

transfers between the two planets while they are on the same side of the Sun, while op-
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position trajectories have them on opposite sides. The former is characterized by longer

trip times and surface stays for relatively lower energy requirements. [92, 93] Opposi-

tion class trajectories trade higher energy requirements for lower trip times and surface

stays. Although both are considered for cargo and crew missions, opposition trajectories

are considered to reduce the crew exposure to the deep space radiation environment, while

conjunction missions can offer much lower propulsive requirements. Figure 2.29 shows the

cyclical nature of Earth-Mars trajectories over time and the quantitative difference in the

energy requirements between conjunction and opposition. Planetary flybys are often con-

sidered to reduce the energy requirements for opposition missions without a major increase

in trip times, which are also shown in Figure 2.29.

Figure 2.29: A plot of the ∆V requirements for Earth-Mars transfers between 2030 and
2050 [94].

The peaks in ∆V required for an interplanetary transfer when Earth and Mars are not

aligned can be over a 400% increase. As a result, Mars missions are typically conducted at

every valley, also called a transfer opportunity or transfer window.
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Another way of showing the trends depicted in Figure 2.29 and estimating the ∆V

is using a porkchop plot. They parameterize the total ∆V required by the departure and

arrival dates of the planets, creating a 2-D contoured version of Figure 2.29 [95]. An

example porkchop plot for a 2018 Earth-Mars opportunity is shown in Figure 2.30.

Figure 2.30: Porkchop plot of the 2018 Earth-Mars opportunity [95].

A single porkchop plot can be generated for many opportunities to show the cyclical

nature described previously. Each single porkchop will show the same trends, but the values

of the minimums will change with respect to the dates, shown in Figure 2.31.
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Figure 2.31: Porkchop plot extended to show different transfer opportunities [95].

For this research, transfers between Earth and Mars will be calculated using porkchop

data and parameterized by dates. That is, each interplanetary arc will be generated based

on the departure and arrival dates of generated porkchop data, shown notionally in Equa-

tion 2.16. This enables CLO to vary the dates as needed to find the best one for each vehicle

and size them accordingly.

∆V,∆T = porkchop(datedeparture, datearrival) (2.16)

2.6.3 Paths

As introduced in Subsection 2.4.3, the path-arc formulation is an addition to the overall

logistics formulation. It defines a path as a pre-specified set of arcs for a vehicle or crew to

travel through within the network so as to model certain complex ConOps. These ConOps

can be modeled without paths, by adding more, proper constraints on the overall optimiza-

tion problem at the cost of drastically increasing the computational expense and runtime.

77



Since the paths are pre-specified, the optimizer does not have to find it by itself, but rather it

has been defined as a part of the optimization problem itself. The implementation presented

by McBrayer et al. was used to model the launch, aggregation, and mission execution of

the 3-element government reference HLS mission. This approach included a crew launch

to the Gateway in NRHO via SLS and Orion.

Fundamentally, paths are the assignment of vehicles or crew to specific arcs and each

one is problem dependent and user driven. A notional example of a path for a generic

vehicle is shown in Figure 2.32. Note that while a path is defined as a series of events for

a vehicle, throughout the network, there may be several valid sets of these series of events,

depending on when the events initialize; these are called arc-sets. This distinction between

a path and arc-set is significant, where a path is chosen for use by the optimizer through

a binary variable, bp, it must select at most one of those valid arc-sets, governed by the

constraint in Equation 2.17.

Figure 2.32: Notional depiction of the path arc formulation showing a path as a set of
different, valid arc-sets that start at various times.

bp =
∑

arcset∈p

barcset,p ∀ p ∈ P (2.17)

Each path is defined as a series of events for a vehicle by specifying the departure

and arrival locations for each event and the event type. Table 2.8 summarize the different
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allowable path event types. Valid arcsets are built using these event definitions over the

time domain of the network, each assigned a binary variable, barcset,p. This binary variable

further constrains the use of the vehicles on each arc in the arc-set, through Equation 2.18.

Table 2.8: List of path event types and their descriptions.

Event Type Description
∆V Burn event that specifies a vehicle moving from one spatial location to

another
∆T Time passage event that specifies how long the vehicle stays at a spatial

location
∆m A mass change event that specifies a docking or undocking of a vehicle,

payload over the course of a single time step

barcset,p = 1 =⇒
∑

a∈arcset

∑
v∈arcset

bv,a =
∑

a∈arcset

∑
v∈arcset

1 (2.18)

2.6.4 Vehicles

Vehicles within this formulation are split into three types: launch vehicles, space vehicles,

and vehicle stacks. Launch vehicles govern the movement of space vehicles on every arc

leaving the Earth’s surface, and are defined by the parameters in Table 2.9. The dimensions

of each space vehicle constrain the valid set of available launch vehicles for it and which

launch arc chosen is constrained by the total mass of that space vehicle at the origin. Each

launch vehicle has some dollar costs associated with it, which can be used in the objective

function as a minimization term. The cadence constrains how many of that launch vehicle

can be used within a range of timesteps, corresponding to real operational constraints.

Similarly, space vehicles have their own set of design parameters, summarized in Ta-

ble 2.10. The main design variables in the optimization process is the amount of fuel and

oxidizer for each space vehicle, constrained by the vehicles’ Isp, OFR, and the arcs it ends

up traveling on. Within the CLO process, the inert mass is a fixed parameter, although it

may be updated during each iteration of the integrated process, produced by the VSS pro-
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Table 2.9: List of parameters and their descriptions that define a launch vehicle within this
network formulation.

Parameter Description
Throw Mass Maximum mass to LEO, GEO, HEO

Maximum Diameter Maximum allowable payload diameter
Maximum Height Maximum allowable payload height

Launch Cost Cost for each launch
Cadence Minimum time between consecutive launches

cess. It is important to note that the inert mass here is the total mass of the vehicle minus

the consumables, payloads, and propellants. For this research, in the CLO process, it is

assumed that there is a single main propulsion system on board for all burns, and no Reac-

tion Control System (RCS) is used. However, it is assumed to be accounted for in the inert

mass of each vehicle. If crew is involved in the campaign, variables for each consumables

are included to ensure they are on board.

To properly model transportation systems in SECs, the concept of vehicle stacks is

introduced to model the integration of multiple vehicle elements for larger transportation

systems and longer missions. Stacks are defined as a set of individual space vehicles that

travel together, with active element that provides propulsion for itself and the passive el-

ements. Implementation of vehicle stacks within the network is enabled solely because

of paths. As each path event is defined, the full stack and active element can be speci-

fied, and the usage of all corresponding vehicles is enforced through Equation 2.19 and

Equation 2.20. Of course, the amount of propellant burned differs between that of the pas-

sive and active vehicles in the stack, as well as if each vehicle was flying independently.

Constraints to ensure the proper amount of propellant is accounted for is presented in the

following subsection.
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Table 2.10: List of parameters and their descriptions that define a space vehicle within this
network formulation.

Parameter Description
Inert Mass (kg) Total mass of all non-propellants in the vehicle. In-

cludes RCS propellant.
Diameter (m) Overall diameter of the vehicle, used to assign valid

launch vehicles
Height (m) Overall height of the vehicle, used to assign valid

launch vehicles
Fuel Main fuel for the space vehicle

Oxidizer Main oxidizer for the space vehicle
Isp (s) Specific impulse of the propellant
OFR Mass ratio of the oxidizer and fuel

Max Payload Diameter (m) Maximum available diameter for potential payloads
Max Payload Height (m) Maximum available height for potential payloads
Max Payload Mass (kg) Maximum available mass for potential payloads

Boilofffuel (kg/day) Boiloff rate of the fuel
Boiloffox (kg/day) Boiloff rate of the oxidizer

Fuel Mass (kg) Design variable for the fuel mass for the vehicle, set as
a range

Oxidizer Mass (kg) Design variable for the oxidizer mass for the vehicle,
set as a range

Water Mass (kg) Design variable for the amount of water for crew, if on
board, set as a range

Oxygen Mass (kg) Design variable for the amount of oxygen for crew, if
on board, set as a range

Food Mass (kg) Design variable for the amount of food for crew, if on
board, set as a range

barcset = 1 =⇒
∑

a∈arcset

∑
v∈arcset

bv,a +
∑

a∈arcset

∑
stack∈arcset

bstack,a =

∑
a∈arcset

∑
v∈arcset

1 +
∑

a∈arcset

∑
stack∈arcset

1 (2.19)

bstack,a = 1 =⇒
∑

v∈stack

ba,stack =
∑

v∈stack

1 (2.20)
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2.6.5 Payloads and Crew

Payloads are key to each campaign as they directly relate to the mission objectives. Within

this formulation, payloads are divided in to crew and cargo, while the latter is further di-

vided into pathed and un-pathed. Fundamentally, all payloads must be attached to either

a vehicle or a location to model their transport and delivery to their target destinations.

All crew missions are pathed, as typically their ConOps are known a priori. Table 2.11

summarizes the different parameters that define a payload in this network formulation.

Table 2.11: List of parameters and their descriptions that define the different payload types.

Parameter Description
Type Crew or Cargo

Pathed Whether or not the payload is path defined
Final Destination Location where the payload is intended to reach

Diameter (m) Diameter of the payload
Height (m) Height of the payload
Mass (kg) Mass of the payload

Setup Time (days) The time it takes for the payload to be initialized
before it can be used (ex. ISRU)

Number of Crew Number of crew being transported
Commodities The commodities related to this payload

Capacity The capacity for each related commodity
Production Rate (kg/day) The rate of production of each related commodity

For payloads that are not pathed, the optimizer is able to select the vehicle that each

one is attached to based on the payloads configuration and vehicle’s capacities. The final

destination drives the optimizer to choose vehicles and arcs to deliver each payload while

minimizing the objective.

Pathed payloads operate in a simpler manner by defining the source vehicle for that

payload during a path definition. With constraints that enforce payloads are connected to

vehicles at all times, this ensures pathed payloads stick with the accompanying vehicle on

the path. Paths also enable transfer of payloads from one vehicle to another, assumed to
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occur over the course of a single timestep holdover arc. The constraints governing payload

transfer are covered in the subsequent sections.

2.6.6 Commodities

Commodities are categorized mainly by type: fuels, oxidizers and consumables and are

defined primarily by density. Crew consumables require one more parameter: consump-

tion rate of the commodity per timestep, per crew member. Each vehicle has a minimum

and maximum available commodity storage capacity, defined as a design variable for the

optimizer. Constraints are applied such that these commodities are being used at the proper

rates. Propellant usage, or arc burn constraints are defined later, but crew consumable con-

straints are simply driven by the previously mentioned rates and the number of crew on the

associated vehicle.

2.6.7 Constraints

Constraints bind the overall optimization problem to ensure the optimizer finds a numerical

solution that not only satisfies the objective, but is in fact feasible. These constraints can

be used to represent physical laws, such as mass conservation, or even external factors like

launch cadence, operations, and more. Two groups of constraints will be considered for

this research: technical and programmatic, each one covering a different subset, described

in the following subsections.

Technical Constraints - Vehicle Movement

The main set of technical constraints enforce that vehicles are moving properly and us-

ing the correct amount of propellants. These are broken down into three main subsets:

launches, in-space transfers, and paths. Although vehicles can be sourced in-space, to

model assets that have already launched, Earth-sourced vehicles must be launched by

launch vehicles and thus, no propellants are used by vehicles for these arcs. Valid launch
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vehicles are assigned to each vehicle based on their type and input dimensions and the

specific launch arc chosen depends on the mass of the vehicle and launch vehicle throw

capabilities. For the set of all launch vehicles, LV , and all vehicles, V , variable bv,lv rep-

resents the use of launch vehicle lv for vehicle v. These launch operations are enforced

through the constraints in Equation 2.21 and Equation 2.22, where Alaunch is the set of all

launch arcs.

∑
lv∈LV

bv,lv =
∑

a∈Alaunch

bv,a ≤ 1 ∀ v ∈ V (2.21)

bv,a = 1 =⇒∑
lv∈LV

bv,lv ∗ throwmasslv,a,arrival location ≥ total massv,a,departure location

∀ a ∈ Alaunch, v ∈ V (2.22)

Once launched and in-space, vehicles are conserved at the node level, where all vehicles

flowing into a node must leave it. Since the act of a vehicle traveling on an arc is associated

with binary variable, bv,a, this constraint is written in Equation 2.23, where N is the set of

all nodes, An,arrival is the set of all arcs that arrive at node n, and An,departure is the set of

all arcs that depart node n.

∑
a∈An,arrival

bv,a =
∑

a∈An,departure

bv,a ∀ v ∈ V, n ∈ N (2.23)

Technical Constraints - Payload Movement

Payloads must always be attached to either a vehicle, or a node, depending on where it is

in its mission. For non-pathed payload elements, there are several constraints necessary

to ensure continuity and model these operations. Each payload in the set of all payloads,
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ρ ∈ P , has a binary variable, bρv that denotes whether or not it is attached to vehicle v.

Similar to the relationship between vehicles and launch vehicles, invalid payload-vehicle

pairings are prefiltered based on the input parameters of mass and dimensions of each.

Payloads also have binary variables indicating which vehicle it is attached to at each node,

bρv,i,m and another to indicate whether it has been dropped off at a node, dρm. If a payload is

detached, both variables are 0; otherwise they are 1. Equation 2.24 shows the logic of the

constraints around these variables.

zρv,i,m


= 1 zρv = 1 and dρm = 1 and bv,a = 1

= 0 zρv = 1 and bv,a = 1 and (i = final destination or dρm = 0)

(2.24)

∀ρ ∈ P , v ∈ V ρ
valid, a ∈ A

Further, the dropoff indicators can also be constrained to:

dρm


= 1

∑
s∈S

∑
v∈V zρv,s,m = 1 or

∑
v∈V zρv = 0

= 0
∑

s∈S
∑

v∈V zρv,s,m = 0 and
∑

v∈V zρv = 1

∀ρ ∈ P ,m ∈ T (2.25)

Finally, for payloads like ISRU that are dropped off but are still utilized afterwards,

they are attached to nodes themselves through binary variable, bρi,m and constraints in Equa-

tion 2.26

zρi,m


= 1 dρm = 0

= 0 dρm = 1

∀ρ ∈ P , i ∈ S,m ∈ T (2.26)
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Pathed payloads, however, follow a different set of constraints, with all of them being

sourced at t = 0, as defined in Equation 2.27.

bρ,p = 1 =⇒
∑
v∈V

bρv,msource,0 = 1 ∀ p ∈, ρ ∈ P (2.27)

Binary variable, bρ,p, is the path variable for the payload and Pρ is the set of all payload

paths. To conserve the movement of these payloads, Equation 2.28 is written to ensure all

payloads are attached to the same vehicle at every node, unless otherwise specified.

bρ,p = 1 =⇒ barcset = 1 =⇒ bpv,a1,departure node +
n∑

i=1

zbpv,ai,arrival node

where n = number of arcs in arcset ∀ v, a ∈ arcset

(2.28)

Payload transfers are implemented in this formulation using paths. That is, during path

definition, a payload can be transferred from one vehicle to another over the course of

a single timestep holdover arc. Subsequently, this means that both the source and sink

vehicles must also be on the path and used on the arc, at least for the transfer event itself.

These operations are modeled through constraints in Equation 2.29 and Equation 2.30,

where bp corresponds to the path that the transfer is occurring on.

bp = 1 =⇒ barcset = 1 =⇒ bρvsource,atransfer,departure node
+ bρvsink,atransfer,arrival node

= 2

∀ atransfer, vsource, vsink, ρ ∈ arcset

(2.29)

bp = 1 =⇒ barcset = 1 =⇒ bvsource,atransfer
+ bvsink,atransfer

∀ atransfer, vsource, vsink ∈ arcset

(2.30)

Although payloads should also be conserved at the node and vehicle levels, the inclu-

sion of payload transfer in the network formulation subsequently breaks this conservation.
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As a result, an additional set of variables and constraints are implemented to ensure conti-

nuity. Table 2.12 summarizes the variables and Equation 2.31-Equation 2.34 are the con-

straints themselves. The last equation ensures that continuity constraints are only applied

for payloads on vehicles on specific arcs that are not transfer arcs. The auxiliary variables

help indicate whether or not those arcs have transfers through the logic shown.

Table 2.12: List of variables used to model payload transfers.

Variable Description
btransfera,v Binary variable that indicates whether or not vehicle v on arc a

is used for a payload transfer
dtransfer1a,v Auxiliary binary variable 1 that indicates if a vehicle v is used,

not part of a path on arc a, and therefore does not have a transfer
dtransfer2a,v Auxiliary binary variable 2 that indicates a pathed vehicle v on

arc a is used and does not have a transfer.

bp = 1 =⇒ barcset = 1 =⇒ btransfera,vsource + btransfera,vsink
= 2 ∀ρ ∈ Ptransfers (2.31)

dtransfer1a,v = bv,a − btransfera,v ∀v ∈ V (2.32)

dtransfer2a,v = AND(bv,a, d
transfer1
a,v ) ∀v ∈ V (2.33)

dtransfer2a,v = 1 =⇒ bρv,a,departure node = bρv,a,arrival node (2.34)

Technical Constraints - Commodity Usage and Conservation

Burns

As stated previously, commodities in the network are mainly divided into propellants

and crew consumables. Propellant usage is defined using the arc costs of ∆V and ∆T
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through engine burns and boiloff. Burns are performed by vehicles on all arcs that are

not holdover arcs, excluding launch arcs, which are performed by launch vehicles. The

amount of propellant burned depends on the vehicle configuration, propellant used, and

∆V through the ideal rocket equation, Equation 2.13

∆V = g0Ispln(
minitial

mfinal

) (2.35)

Rearranged, the mass ratio of mfinal

minitial
, or K, for a vehicle on an arc can be calculated

using Equation 2.36.

K = e
− ∆V

g0Isp (2.36)

Finally, using the input OFR for each vehicle, the amount of fuel and oxidizer burned

for each arc can be calculated, where the amount burned is the difference between the initial

and final total masses of a vehicle on an arc. A summary of the amount of propellants

burned for all arcs and vehicles in the network is shown Equation 2.37, where ytotal is the

total mass of each vehicle at the beginning of the arc.

xfuel,burned,a,v =


(1−K)(ytotal)

1
1+OFR

a ∈ Atransfer,discard and v = vburn

0 a ∈ Aholdover,launch or v ̸= vburn

(2.37)

∀a ∈ A, v ∈ V (2.38)

xox,burned,a,v =


(1−K)(ytotal)

1
1+1/OFR

a ∈ Atransfer,discard and v = vburn

0 a ∈ Aholdover,launch or v ̸= vburn

(2.39)

∀a ∈ A, v ∈ V (2.40)
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If a vehicle is burning on its own, the amount of propellant burned is different than that

of vehicles that are part of a stack, whether they are passive or active. Several auxiliary

variables are introduced and constrained to indicate the vehicle configuration for all burn

constraints; Table 2.13 summarizes these variables.

Table 2.13: List of variables used to model vehicle configurations for burn constraints.

Variable Description
ytotala,mdeparture,v

Continuous variable for the total mass of a vehicle v on arc a,
at the departure node, mdeparture

bstacka,v Binary variable that indicates vehicle v on arc a is part of a
vehicle stack.

bstack,activea,v Binary variable that indicates vehicle v on arc a is the active
vehicle in the stack

bstack,passivea,v Binary variable that indicates vehicle v on arc a is a passive
vehicle in the stack

bstack,passive,auxa,v Auxiliary binary variable that helps indicates vehicle v on arc a
is a passive vehicle in the stack

Rather than directly modify the burn constraints in Equation 2.37 to reflect the different

burn amounts, the initial total mass can be modified to reflect the vehicle configuration on

the arc. That is, continuous variable, ytotala,mdeparture,v
, can be constrained to the proper mass

depending on the vehicle, which will result in the proper mass change over the arc. For

vehicles flying on their own, their initial total mass is simply their own total mass. Passive

vehicle elements in stacks don’t burn any propellant even if the stack is burning, meaning

their initial total mass is effectively 0. The active element, however, has to push the rest of

the stack, meaning the initial total mass is the total mass of the entire stack. This logic is

summarized in Equation 2.41.

ytotala,mdeparture,v
=


yv,i,m if vehicle v is not in a stack∑

v∈Vstack
yv,i,m if vehicle v is active in a stack

0 if vehicle v is passive in a stack

(2.41)
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Since vehicles stacks can only be modeled through paths, they are also used to constrain

the variables in Table 2.13 to indicate the vehicle configuration for each vehicle on each

arc. If a vehicle is a part of a stack, Equation 2.42 constrains the stack indicator variable for

that vehicle and Equation 2.43 constrains the passive or active indicators. Equation 2.44 is

applied to ensure bstacka,v = 0 and subsequently, bstack,activea,v = 0 for vehicles that are flying

on their own in a path.

bp = 1 =⇒ barcset,p = 1 =⇒ bstacka,v = 1 ∀ v ∈ Vstack, a ∈ arcset (2.42)

bstacka,v = 1 =⇒


bstack,activea,v = 1, bstack,passivea,v = 0 v is active

bstack,activea,v = 0, bstack,passivea,v = 1 v is passive

(2.43)

bp = 1 =⇒ barcset,p = 1 =⇒ bstacka,v = 0, bstack,activea,v = 0 v is not in stack (2.44)

For arcs that aren’t used, these variables are all constrained to 0 in Equation 2.45 since

vehicles aren’t burning on those arcs.

ba,v = 0 =⇒ bstacka,v + bstack,activea,v + bstack,passivea,v = 0 ∀ v ∈ V, a ∈ A (2.45)

Finally, bstack,passive,auxa,v is constrained Equation 2.46 to indicate that a vehicle is in a

stack and the passive element. This is the variable used as the indicator for the final initial

mass constraints, shown in Equation 2.47.

bstack,passive,auxa,v = AND(bstacka,v , bstack,passivea,v ) ∀ v ∈ V, a ∈ A (2.46)
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ytotala,mdeparture,v
=


yv,i,m bstacka,v = 0∑

v∈Vstack
yv,i,m bstack,activea,v = 1

0 bstack,passive,auxa,v = 1

(2.47)

Boiloff

Given the significance of vehicle modeling for this research, there is a commodity that

is passively consumed as time passes by the vehicle that needs to be accounted for. Boiloff

is the passive vaporization of cryogenic propellants that are not stored at the optimal tem-

perature or pressure, in addition to the propellant used during a burn. Technologies for

minimizing or completely preventing boiloff is on the critical path for long-term space ex-

ploration, but the proper modeling of boiloff at the conceptual design level is a challenge of

its own [96]. Within the space logistics network formulation, Deguignet presents a method

for modeling boiloff for a TEGMCF. Two initial approaches were considered, with boiloff

implementations at the arc or node levels. The former was ruled out as the specification of

propellant loss due to a burn and boiloff cannot be set simultaneously. Instead, they should

be treated separately, where boiloff is accounted for at the nodes, tracking both the fuel and

oxidizer boiloff separately flowing into and out of each one. To track the amount of boiloff

loss through a node, two further methods of implementation were assessed: absolute and

relative boiloff modeling. Absolute boiloff calculates the propellant loss rate as a fixed

mass over time, meaning the boiloff mass towards the end of the mission is the same as of

that in the beginning. The rate itself, can be calculated using the enthalpy of vaporization

of the propellant, hvap, and the heat entering the tank, q:

boiloff rate =
q

hvap

(2.48)
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In contrast, relative boiloff models the rate of vaporization as a fixed percentage of

the remaining propellant over time, which means the daily boiloff mass is changing as the

amount of propellant left in the tank is changing. Using this formulation, the calculated

rate of decay is:

boiloff rate =
q

hvap

∗ 86400

mfulltank

(2.49)

where mfulltank is the mass of the propellant initially.

These two methods are shown comparatively in Figure 2.33, with a notional tank of

starting propellant mass of 2,000 kg and tracked over the course of 30 days. The absolute

boiloff method as a constant slope of 30 kg/day, while the slope of the relative boiloff model

decreases over time as the propellant left in the tank decreases. At the end of 30 days, the

former method leaves 1,100 kg of propellant in the tank while the latter leaves 1270.92 kg.
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Figure 2.33: Comparison of absolute and relative boiloff modeling using a notional propel-
lant and tank system, adapted from [97].

Fundamentally, since the propellant in the boiloff model sees losses as a fraction of

each load everyday, it will theoretically never reach zero if boiloff is the only factor. Over
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time, the relative model predicts a total boiloff mass that is lower than that of an absolute

model. In addition, the half-life is longer, meaning the propellant modeled will last longer,

leading to a less conservative estimate than the absolute model.

Within the network formulation, the absolute boiloff model can be represented as:

mboiloff,fuel = ratefuel∆T (2.50)

mboiloff,ox = rateox∆T (2.51)

Similarly, the relative model can be represented as:

mboiloff,fuel = ratefuelfin,fuel∆T (2.52)

mboiloff,ox = rateoxfin,ox∆T (2.53)

Both formulations were implemented using an example case to provide a direct com-

parison in conjunction with burn events. The results showed very different campaigns for

each of the two methods. Campaigns with the highest relative rates had cumulative boiloff

masses only slightly more than that of the lowest absolute rates. That is, the relative model

is much less conservative in calculating the overall boiloff mass. Although both methods

are shown in other literature, rates for existing cases of boiloff reduction look to be constant

in nature, leading to the selection of an absolute boiloff model [98].

Within the network formulation, boiloff occurs on all arcs for both the fuel and oxidizer,

except for holdover arcs on the Earth’s surface and arcs to a discard node. For the former, it

is assumed that the boiled off propellants are refueled immediately as the resource is readily

available. For the latter, since the vehicle is discarded, modeling boiloff is unnecessary.

Each vehicle is given an input rate per day of boiloff for the fuel and oxidizer, and if the

timesteps of the problem are greater than 1, this rate is scaled appropriately. The total
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propellant boiled off is calculated as the product of the rate and the ∆T on the arc and if

the arc is a burn arc, then the total propellant used is the sum of the boiled off and burned

propellant. A summary of these constraints is shown in Equation 2.54 and Equation 2.56.

xfuel,bo,a,v =


bo ratefuel∆t

tstep
a ∈ Atransfer,non−Earth holdover,launch

0 a ∈ AEarth holdover,discard

∀a ∈ A, v ∈ V (2.54)

xox,bo,a,v =


bo rateox∆t

tstep
a ∈ Atransfer,non−Earth holdover,launch

0 a ∈ AEarth holdover,discard

∀a ∈ A, v ∈ V (2.55)

xv,fuel,j,l = xv,fuel,i,m − xfuel,burned,a,v − xfuel,bo,a,v ∀a ∈ A, v ∈ V (2.56)

xv,ox,j,l = xv,ox,i,m − xox,burned,a,v − xox,bo,a,v ∀a ∈ A, v ∈ V (2.57)

Crew Consumables

Crew consumables are modeled very similarly to boiloff, just for arcs and vehicles that

have crew. Since crew are modeled as a type of payload, they must be attached to a vehicle

at all times. As a result, it is assumed that crew can only consume the resources that is on

the same vehicle. Using input rates of consumption and the number of crew attached to a

vehicle, ncrew,v, the total amount of consumables can be calculated using Equation 2.58,

for all consumables, Ccons. Just like boiloff, it also assumed that no consumables are used

on Earth and discard arcs.
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xc,cons,a,v =


ηcrew,vratecons∆t a ∈ Atransfer,non−Earthholdover,launch and ηcrew,v ≥ 1

0 a ∈ AEarthholdover,discard or ηcrew,v = 0

(2.58)

∀a ∈ A, v ∈ Vcrew, c ∈ Ccons

xv,c,j,l = xv,c,i,m − xc,cons,a,v ∀a ∈ A, v ∈ Vcrew, c ∈ Ccons

(2.59)

Programmatic Constraints

Some constraints can be added on the campaign from the perspective of a decision maker

or stakeholder. As they are not usually technical in nature, they can be considered pro-

grammatic level constraints. If overall costs are being modeled within the campaign, the

optimizer can be constrained to a maximum dollar costs, so as to not build a campaign al-

ternative that is cost prohibitive. Although launch cadence is a technical constraint, launch

rates are usually programmatic ones, dictated by costs. For example, the launch rate for

NASA’s SLS is expected to be only one per year [99, 100]. Additionally, some campaigns

have set dates for specific goals, such as NASA’s 2024 target for the next Moon landing.

Again, constraints like these are largely campaign-dependent, so for this formulation, no

blanket programmatic constraint is applied. Instead, they will be discussed when utilized

in the mathematical formulation for each use case.

2.6.8 Objective Function

Finding a numerical solution using an optimization algorithm requires the definition of

an objective function. Although they can vary depending on the specific problem, just

like constraints, a base function can be defined. Additionally, there are many FoMs to

track when comparing campaigns, but there is only a single objective function. An Overall
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Evaluation Criterion (OEC) can be used to represent all of these factors in a single, tracked

metric. That is, a weighted sum function where each FoM is normalized and weighted by

its importance relative to others.

Propellant Mass

The ideal rocket equation governs mass minimization of any SEC, as the amount of pro-

pellant it takes to push extra mass around the solar system grows in an exponential manner.

There for it is important to track and minimize the amount of propellant used, or in other

words minimize the energy expenditure of all vehicles in the network. Since propellant

is burned over time, the max amount will be at all nodes at t = 0. This can be calcu-

lated by summing up the fuel and oxidizer at the origin for each vehicle in the network, as

shown in Equation 2.60, where S is the set of all spatial nodes. An OEC objective term

can then be constructed by normalizing by a maximum propellant amount for all vehicles,

mprop ∗ numveh and applying weight, wprop, shown in Equation 2.61

masstotal,propellant =
∑
v∈V

∑
s∈S

(xv,fuel,s,0 + xv,ox,s,0) (2.60)

wprop

mpropnumveh

∑
v∈V

∑
s∈S

(xv,fuel,s,0 + xv,ox,s,0) (2.61)

Campaign Execution Time

In addition to mass, campaign execution time should be minimized to ensure the optimizer

choose the slowest paths and minimize energy expenditure. This also ensures the crew

is not spending too much time in space, which could be detrimental to their health. It

is challenging to properly estimate when the campaign can be considered “done”, so to

approximate this, execution time is calculated as the sum of the final arc time for each

vehicle, tv,final. The final arc is a user defined location that represents where the vehicle
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has completed its mission. The objective term is shown in Equation 2.62, where wtime is

the corresponding weight, tfinal is the final time for the campaign, and Vd is the subset of

vehicles that have been given a final location.

wtime

tmaxnumveh

∑
v∈Vd

tv,final (2.62)

Launch Costs

Financial costs are also significant, as discussed in Chapter 1, but estimating the total cost

of a campaign is out of the scope of this thesis. Rather, a surrogate for cost will be overall

campaign propellant mass, which is already included in the objective function. However,

launch costs can be minimized by assigning each launch vehicle a dollar cost per use.

This will discourage the optimizer from consistently choosing the most powerful launch

vehicles. Total launch cost for each campaign is simply the sum of the cost of all launch

vehicles used. This, and the accompanying objective term is shown in Equation 2.63, where

κmax is the max launch cost of all available launch vehicles, and κlv is each cost.

wcost

κmaxnumveh

∑
lv∈LV

∑
a∈Alaunch

blv,aκlv (2.63)

Burn Count

The final term in the objective function accounts for the total number of burns performed

throughout the campaign. Although this may seem the same as minimizing propellant

mass, the inclusion of this term avoids situations where a discard node is included in the

campaign and the optimizer choosing to discard vehicles as soon as possible to do so. Total

burn count is simply the sum of all arcs used that aren’t holdover arcs, and the full objective

term is shown in Equation 2.64, where nummaxburns is an input number of maximum burns.
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wburns

nummaxburnsnumveh

∑
a∈Aburns

∑
v∈V

bv,a (2.64)

Therefore, the full objective function is written as:

min
wprop

mpropnumveh

∑
v∈V

∑
s∈S

(xv,fuel,s,0 + xv,ox,s,0) +
wtime

tmaxηveh

∑
v∈Vd

tv,final+

wcost

κmaxnumveh

∑
lv∈LV

∑
a∈Alaunch

blv,aκlv +
wburns

nummaxburnsnumveh

∑
a∈Aburns

∑
v∈V

bv,a (2.65)

2.6.9 Reference Data

In addition to vehicle capabilities, the CLO process requires some reference data to prop-

erly execute: LV set and performance, arc costs, and consumable rates. In-space arcs costs

are discussed in Subsection 2.6.2, but for launch arcs, the throw capabilities for various

LVs are used to identify the farthest node each payload can be inserted into. This informa-

tion is typically tabulated for specific orbits by each LV provider, whether it be commercial

or NASA. Since the formulation of nodes in the CLO is parameterized, these points need

to be extended to include intermediate points, which can be accomplished by creating a

regression based on that existing data set. During each iteration of the CLO process itself,

however, the nodes are fixed.

The product of this regression will be a continuous curve of payload capacity vs C3

achieved by each LV being considered. During each iteration, the achievable C3 can be

calculated using these curves and a post-launch ∆V based on the closest orbital node’s C3.

Additionally, the volume capacity of each one will be included by way of max diameter and

max height of the fairing. Table 2.14 lists the providers and specific LVs that are being con-

sidered for this research, and their estimated performance capabilities from manufacturer

provided data. An approximate 10% performance hit was assumed for the crew versions
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of launch vehicles, if data was unavailable. All launch vehicles performance curves are of

the form shown in Equation 2.66, and Table 2.15 lists the constants found from the throw

capabilities data points and the R2 values.

C3 = −1

a
ln

mpayload

b
(2.66)

Table 2.14: List of launch vehicles considered for their study and their estimated throw
performance [101, 102, 103, 104, 105].

C3 -60 -47.56 -16.36 -9.46 -2
SLS 1B Crew 94,500 38,000
SLS 2B Crew 135,000 43,000
Falcon 9 Crew 20,520 7,470 2,826
Starship Crew 90,000 18,900

New Glenn Crew 34,983 20,272.5 8,707.5 6,376.5
SLS 1B Cargo 105,000 42,000
SLS 2B Cargo 150,000 46,000
Falcon 9 Cargo 22,800 8,300 3,140

Falcon Heavy Cargo 63,800 26,700 15,310
Starship Cargo 125,000 21,000

New Glenn Cargo 45,000 13,600 9,675 7,085
Centaur Cargo 27,910 21,200 12,650 11,215

Table 2.15: List of launch vehicles considered, the coefficients found for the exponential
form, and their R2 values.

Launch Vehicle a b R2

SLS 1B Crew 0.016 36825 1
SLS 2B Crew 0.02 41337 1
Falcon 9 Crew 0.032 3313.9 0.9758
Starship Crew 0.036 10529 1

New Glenn Crew 0.027 6263.5 0.9728
SLS 1B Cargo 0.016 20694 1
SLS 2B Cargo 0.02 44163 1
Falcon 9 Cargo 0.032 3682.1 0.9758

Falcon Heavy Cargo 0.024 16042 0.9902
Starship Cargo 0.036 11698 1

New Glenn Cargo 0.031 1474.1 0.9968
Centaur Cargo 0.015 10859 0.9882
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The rates of consumption of commodities used by the crew can be defined using data

from ISS, shown in Table 2.16 [106, 71].

Table 2.16: Rates of consumption of consumables by the crew.

Commodity Density (kg/m3) Rate (kg/crew/day)

Water 1,000 2.42

Oxygen 1,140 0.84

Food 500 1.77
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3

SPACE TRANSPORTATION SYSTEMS DESIGN

3.1 Requirements for Vehicle Design

The requirements set for the integrated process in Section 2.1 can also be used to decom-

pose vehicle design specific ones. Enabling vehicle level trade space exploration with

integrated campaign design requires the vehicle design process to have subsystem level

representation. Sizing of space transportation systems within the campaign means sizing

of each of the individual subsystems that make up that transportation system. The specific

set of subsystems depends on the type of cargo, the type of mission, and high level archi-

tecture decisions such as propulsion type. Exploring broad ranges of the trade space would

require flexibility in the ability to model many different subsystems, and integrate them

with a conceptual-level design process.

As the campaign design process finds the optimal set and sequence of mission events,

the vehicle design process should aim to size each of those transportation systems to that

set of missions. Depending on the subset of missions, the order may matter for sizing, as a

single vehicle could perform more than one mission.

3.2 Sizing and Synthesis Process

3.2.1 Aircraft Conceptual Design

Sizing and synthesis traditionally refers to the conceptual-level aircraft design problem

through constraint, mission, and weight analyses, described in [107, 108] and depicted in

Figure 3.1. The overall design process is driven by aircraft requirements, usually indi-

cating the level of performance, design characteristics, and types of missions to be con-

ducted. Constraint analysis establishes a feasible design space by converting these re-
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quirements into mathematical expressions and parameterizing them by Minimum Sea-level

Static Thrust to Takeoff Weight Ratio (TSL/WTO) and Wing Loading at Takeoff (WTO/S).

These are generalized scaling parameters that enable sizing of many different aircraft types

within this process. Following the identification of a feasible design point, the scale of the

aircraft can be calculated through mission analysis, which is driven by the specific mission

the aircraft is to fly. Breaking this mission down in to different segments allow for esti-

mation of fuel burn through physics-based expressions and propulsion and aerodynamic

design characteristics. The total weight of the aircraft is also discretized into smaller com-

ponents that are individually estimated using different techniques. In addition to the fuel

burn mentioned above, the empty weight is traditionally calculated through historical re-

gressions [109]. Payload and crew weights are either set as requirements or given by the

manufacturer. Weights of subsystems such as aerodynamics, propulsion, and structures can

be estimated through fundamental expressions and are highly coupled to each other. The

difference between the design point chosen through constraint analysis and the aggregated

take-off gross weight from mission analysis is iterated upon until converged. Within this

process, sizing can be defined as calculation of the physical scale of the conceptual-level

aircraft design point, whereas synthesis is the integration of different coupled subsystems

throughout [110]. This enables a physics-based analysis that is able to generate many valid,

feasible design points of aircraft as well as explore their trade spaces with the inclusion of

corresponding, higher fidelity subsystem analyses.

3.2.2 Spacecraft Conceptual Design

Researchers within the space systems community have been able to apply similar processes

for the conceptual design of spacecraft by extending the previous methods to account for

the challenges of space travel. Spacecraft, or space vehicles, used interchangeably in this

thesis, are defined as “devices, manned or unmanned, which are designed to be placed

into an orbit about the earth or into a trajectory to another celestial body” [111]. Using
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Figure 3.1: Flow diagram of the conceptual-level aircraft sizing and synthesis process
[110].

the decomposition posed in Figure 1.5, a space vehicle can be represented by two main

components, the transportation system and the payload. As Table 1.1 established, different

type of missions required different vehicle architectures, but each one has fundamentally

the same goal of transporting a payload from one destination to another. Regardless of the

type of payload, usually either crew or cargo, each vehicle is made up many individual but

interdependent subsystems. Each subsystem usually performs a specific function, and are

coupled to others as well as the mission being flown, notionally shown in Figure 3.2 [112,

113].

Specific design characteristics of the vehicle and its subsystems are defined by decom-

posing goals into mission requirements. Analogous to the mission analysis portion of the

aircraft sizing and synthesis process in Subsection 3.2.1, a space mission can be broken

down into individual events that establish an overall ConOps each vehicle can be sized to.

Regardless of the complexity of the ConOps, spacecraft sizing is driven primarily by the

ideal rocket equation, Equation 2.13. It defines the exponential relationship between the
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Figure 3.2: Notional breakdown of an uncrewed spacecraft into its subsystems and their
specific functions [114].

spacecraft’s mass and the amount energy required to transfer between orbits, ∆V. Tradi-

tionally, a set of ∆V s are used to calculate the overall propellant required to perform the

mission which further drives the sizing of the required systems to carry the propellant and

the payload. Sizing of the spacecraft can be as high a level of assuming an IMF, defined in

Equation 3.1, and calculating the inert mass based on the propellant loading.

IMF =
minert

minert +mpropellant

(3.1)

This is done mostly during pre-conceptual phase of design or for proof-of-concept as-

sessments. Higher fidelity formulations attempt to estimate the mass of each subsystem

for a more holistic estimate of the size of the vehicle, as notionally shown in Equation 3.2,

where the mass of payloads, mpayload is typically an input.
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minert = mavionics +mengines +mtanks +mstructures

+mengines +mpower +mthermal +mpayload + ...

mtotal = minert +mpropellant

where mpropellant = f(mission)

(3.2)

The specific methods for estimating the mass of individual subsystems depends on some

input design characteristics of the vehicle and the mission and their level of fidelity typi-

cally depends on the purpose of the analysis. For example, a high fidelity, parametric

finite-element analysis for the structures subsystem can be used to assess propulsive loads

on-orbit. However, at the conceptual level, subsystem models use historical regressions,

physics-based first principles and scaling parameters, or similar, with the goal of estimat-

ing the mass, volume, and power consumption [115]. Even at this level, however, models

can be linear or non-linear, with most having many inputs and outputs.

The overall sizing process is iterative in nature, where the mission informs the required

size of the vehicle and the vehicle size informs what missions it can fly. Using the input

mission, ideal rocket equation, and initial minert guess, the total mass of the spacecraft is

estimated by calculating the overall propellant required to perform the mission. Based on

the subsystems considered, their sizing may be dependent on the mission, other subsystems

or independent. As a result, the inert and subsequent total mass produced by the subsystem

sizing models may be different than what is required by the mission, necessitating some

iteration between the mission and vehicle problems. With more complex mission and vehi-

cle architectures, there can be many links between the many design variables and the entire

process can take many iterations between the sizing itself and the mission analysis to pro-

duce a converged solution. Identifying a process for creating these links and generating a

converged solution in a reasonable amount of time is key as this research aims to solve this

problem for each vehicle in the campaign.
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The following observations can be made regarding the vehicle design process, which

further prompt some Formulation Questions (FQ)s and the update of the thesis structure in

Figure 3.3.

Observation 8: Space vehicle design is a complex MDAO problem that requires the sizing

of many subsystems.

Observation 9: Space vehicles are traditionally sized to individual missions.

• Formulation Question 5: How can the sizing and synthesis (S&S) problem be solved

in a rapid manner without simplifying the vehicle and constraining the overall trade

space?

• Formulation Question 6: How can campaign parameters drive the design of the ve-

hicles within?

When considering the exhaustive, integrated vehicle and mission design trade space,

this problem can become intractable, even at the conceptual level. There have been many

attempts at formulating the VSS problem, with main differences usually being the assump-

tions made to simplify the problem, either on the mission or vehicle side. The goal of

the rest of this chapter is to identify if an existing VSS method for in-space transportation

systems can be integrated to a campaign logistics optimization process. Although the last

chapter showed a few campaign design methods do address vehicle design, the next sec-

tion will provide a brief overview of the limitations of those processes within the context

of VSS. Following, a review of existing methods for VSS will be provided with the goal of

identifying one that meets the requirements presented in Section 3.1.
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Figure 3.3: Thesis structure updated to show observations from the literature of Space Transportation Systems (STS) design.
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3.2.3 Transportation Systems Design in Previous Space Campaign Logistics Formulations

Several of the space logistics network formulations presented in Chapter 2 included vehicle

design within. Taylor and Weck established a concurrent design process where the space

vehicle was represented as a sum of three masses: dry, propellant, and payload. Fuel type,

fE , is the first design variable, which prompts a look-up table function to grab the Specific

Impulse (Isp) and structural fraction, α, for it. For each element, E, the second design

variable is the maximum fuel available for the vehicle, mE , which is bounded between 0

and an upper mass, mUB. Similarly, the final design variable is payload mass capacity,

cE , is also bounded between 0 and an upper mass, cUB. The dry mass was the sum of

the structures mass and engine mass, where the latter is calculated through Equation 3.3,

defined in Hofstetter and Maschinenwesen [116].

gE = 0.4189(tE)0.7764

g0
(3.3)

where tE = mEIsp(fE)g0
tb

(3.4)

The mass of the engine is driven by the thrust, calculated using Equation 3.4, and the

selected fuel type, where tb is the engine burn time set to 120s, and g0 is the sea-level

gravitational acceleration of Earth. The structural mass is split into two parts, the mass

required to support the propellant and the mass required to support the payload. The latter

is represented by the structural ratio, α, and the former by Equation 3.5, a least squares fit

of various different space vehicles and their mass data, shown in their appendix.

sE = 2.3931cE + α(fE)mE(1− 0.2mE

mUB

) (3.5)

Therefore, the full vehicle mass is represented as:
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vehicle = mE + 2.3931cE + α(fE)mE(1− 0.2mE

mUB

) +
0.4189(m

EIsp(fE)g0
tb

)0.7764

g0
(3.6)

The upper bound on the allowable fuel mass is set as 500,000 kg. Although this is

a nonlinear equation, it is a singular nonlinear equation that could be rapidly calculated

given the set of inputs for every function call, which is significant when the computational

complexity of the overall CLO process is relatively high. Given the high upper bound

for the propellant mass, a potentially wide range of mission scenarios and vehicle designs

can be accounted for. Additionally, this relationship is integrated within the optimization

problem, where the optimizer is concurrently varying campaign and vehicle level design

parameters.

Although computationally efficient and representative of space vehicle design, this pro-

cess limits the types of trades that can be assessed. Given the simplification of the vehicle

architecture, assessing changes in the subsystem level design parameters on the rest of ve-

hicle and campaign becomes challenging. Variation of the fuel type propagates the effect of

changing propellant species, but only on the mass of the vehicle. Propellant selection also

drives the sizing and configuration of storage systems, mostly limited by the volume of the

LVs being used. As a result, a propellant change that is expected to change the number of

launches due to volume limitations may not be captured by this representation. If cryogenic

propellants are considered, the necessary thermal control systems could also be affected in

conjunction with the thermal environment throughout the mission. Additionally, vehicle

architecture level trades, such as NTP vs all-chemical, can only be represented through the

fuel type variable. The effect of these different architectures on the operations within the

campaign may not be captured. These links between subsystems and the mission is what

makes the vehicle design a complex MDAO problem, one that may not be addressed using

the previous formulations.
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Most of the methods presented in Subsection 2.4.3 make significant improvements to

the space logistics network formulation, and some include vehicle design [24, 66, 68].

However, they also integrate Equation 3.6 from Taylor and Weck into the optimization

problem, leading to the same limitations.

Arney presented a method of a space systems architecting using graph theory and inte-

grates systems sizing [58]. Within this methodology, the modeling method for the sizing

of the system depends on the system itself, summarized in Table 3.1.

Table 3.1: System sizing methods for the graph theory-based space systems architecting
method [58].

System Modeling Method
Crew Capsule Photographic Scaling

Lunar Descent Stage Photographic Scaling
Launch Vehicle Photographic Scaling

Lunar Ascent Vehicle Photographic Scaling
Propellant Depot Regression, RSE
Propulsive Stage Regression, RSE
Surface Habitat Photographic Scaling

In-Space Habitat Photographic Scaling

Photographic scaling is the resizing of a baseline vehicle using a single characteristic

while keeping the rest, such as layout, configuration, tank pressure, and engine perfor-

mance, the same. Habitation systems are scaled using mission duration, number of crew,

or a combination, while propulsive systems are mainly driven by propellant mass. RSE

modeling involves fitting a 2nd order, multivariate, quadratic equation, shown in Equa-

tion 3.7, to a set of existing data points to create a regression that could be used to size

elements. Data points can be generated using higher fidelity models a priori using as many

input variables as necessary.

y = b0 +
k∑

i=1

bixi +
k∑

i=1

biix
2
i +

k−1∑
i=1

k∑
j=i+1

bijxixj + ε (3.7)
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Though RSEs can be very useful for representing subsystem level sizing models or even

the entire system using subsystem level inputs, photographic scaling may not accurately

represent the scaling of in-space transportation systems. For propulsive stages scaled by

propellant, larger systems may not fit inside fairings of LVs due to volume constraints.

Additionally the interdependencies between subsystems may not be captured.

3.3 Existing Capabilities

Mission Architecture Sizing Tool (MAST)

MAST was developed by Johnson Space center to perform integrated trajectory design and

spacecraft sizing of exploration architectures [117]. The main advantage of MAST was

the generalized logic of the code to enable assessment of mission architectures with any

number of vehicle. An entire exploration architecture is stored within a single array, which

contains any and all vehicles as well as their specific trajectory maneuvers, as shown in

Figure 3.4.
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Figure 3.4: Schematic of the data storage structure of exploration architectures in MAST
[117].

Using this hierarchy, each vehicle is sized using the ideal rocket equation and user input

performance data. Although integration with a trajectory analysis tool was planned, it was

not implemented due to time constraints. Additionally, because the sizing was simplified

to use the ideal rocket equation, the capability does not meet the requirement of modeling

subsystems.

Beyond LEO Architecture Sizing Tool (BLAST)

The BLAST was developed by Zero Point Frontiers with NASA Johnson Space Center to

enable rapid generation of design points for transportation systems and human exploration

architectures [118, 18]. It estimates the mass of each architecture using regressions built

off of historical data from the Apollo era up until 2012. Although it has a user-friendly
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interface that is setup to run trade space exploration, the underlying regressions themselves

are hard coded, which makes assessing new or revolutionary architectures challenging.

Exploration Architecture Model for In-space and Earth-to-orbit (EXAMINE)

In response to the growing need for rapid generation of alternatives for decision makers,

Komar et al. formulated a framework for parametric modeling of space exploration archi-

tectures at NASA Langley Research Center. The author identifies processes at the time,

focused on establishing a few point designs with many teams developing different com-

ponents, with the advantage of having SME level knowledge in the design loop itself.

However, these processes were ad-hoc, with verification of the systems design to meet

requirements being done manually. This limits the ability to generate many different alter-

natives without the necessity of many engineers and designers. EXAMINE was established

with the goal of having an integrated framework of many different models to assess relative

sensitivities of space exploration architectures in a very rapid manner. It accomplishes this

goal by allowing the user to define the system to model, as a collection of subsystem models

that are available in the tool itself, which is not limited to any specific group of space ar-

chitectures. EXAMINE has subsystem models that can be used for transportation systems,

surface systems, and even entry and hypersonic vehicles. A high level program is used to

manage all of the data between the subsystems and control any convergence needed but the

linking of coupled design parameters between subsystems is up to the user. It is important

to note that since system definition and linking of design parameters is entirely user driven,

it is up to that user to verify the system itself is being modeled properly and the model is

set up properly. A full N2 diagram of the EXAMINE framework is shown in Figure 3.5,

which depicts the overall data flow in the framework.

113



Figure 3.5: N2 diagram of the EXAMINE framework [119].

114



The entire framework is built in Microsoft Excel and Visual Basic, with individual sheet

performing different modeling functions from convergence methods to mission analysis

and trade space exploration. The underlying engine for the framework and the hierarchical

formulation enables broad trade space exploration of many different space architectures.

Additionally, it is very traceable, as each mathematical expression is visible in the pop-

ulated cells and the values of design parameters are shown in each sheet. EXAMINE’s

modularity also enables a user to create their own subsystem model on the fly and inte-

grate it into the system model in the event that the existing set does not include the desired

functional capabilities. Although Excel enables EXAMINE to be modular, traceable, and

evolvable, it also limits the capability to integrate the entire framework with other tools. For

this thesis, EXAMINE would be able to size and synthesize space transportation systems,

but the level of ease of integration with the campaign optimization process may be difficult

and overall runtimes for the vehicle design process may be long. The latter is significant as

the integrated process may involve the design of many vehicles with each iteration.

Dynamic Rocket Equation Tool (DYREQT)

Researchers at ASDL have formulated a python-based framework for rapid synthesis of

STS architectures using a Model-based Systems Engineering (MBSE) paradigm [19, 120,

121]. MBSE is an engineering philosophy that aims to apply specific modeling techniques

and standardized, automated processes to the augment current systems engineering princi-

ples. DYREQT is specifically formulated as an architecture synthesis tool to numerically

solve the complex MDAO problem of space transportation systems design for each enu-

merated architecture in the trade space. It automates the overall linking process of the

many design parameters across the problem using NASA’s OpenMDAO framework and

an established ontology of vehicle specification. Shown in Figure 3.6, an architecture is

defined as a pairing of a vehicle with the mission it is flying. Further, each mission can
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be made up of many individual events, with each one covering a different function for the

vehicle, such as: burn, idle, or mass change.

Figure 3.6: An ontology of the space transportation system design problem as defined
within DYREQT [19].

Analogously, the vehicle is made up of one or more elements, which can either be the

propulsion stage or the payload. Each of those two can be further defined as a collection

of any number of sub-elements, usually corresponding to specific subsystems for the vehi-

cle. Users are able to select existing or integrate external subsystem models, regardless of

format or fidelity, into DYREQT for that representation. The specific models themselves

contain their own inputs and outputs, either coupled with other systems, the overall vehicle,

or the mission.

Given the flexibility in mission and vehicle definition, DYREQT enables the definition

of many different, and potentially complex, mission scenarios and vehicle designs. Sizing

of the design point itself is driven by mapping the vehicle stages to mission events to create

virtual stages, as shown in Figure 3.7. This mapping is called the ConOps, which estab-

lishes the order of events and which specific vehicle and vehicle element is performing the

event.

116



Figure 3.7: Then notional mapping of physical vehicle stages, or elements, to mission
events to create virtual stages [19].

The mission definition is then used to generate a mass for the vehicle using the ideal

rocket equation and propagates sizing down to the subsystem level. Given the multi-

disciplinary nature of the vehicle, DYREQT uses the Modular Analysis and Unified Deriva-

tives (MAUD) Multidisciplinary Design Optimization (MDO) architecture to represent the

sizing problem and finds a converged solution using a Nonlinear Gauss-Seidel (NLGS) it-

erative solver. Runtimes vary depending on the architecture, but the case studies presented

in [19] took less than a second to converge each design point.

The flexible, modular nature of DYREQT lends itself well to solving the vehicle sizing

and synthesis problem for the integrated methodology in this thesis. Although subsystem

models are not included within it, DYREQT does not make assumptions about the format

of each model, only interfacing with its inputs and outputs. As a result, it can be supported

with an external library of subsystem models that can enable broad trade space exploration

of vehicle designs. Similarly, each mission can be defined flexibly using information from

the campaign logistics optimization process, with some translation of data products. Addi-

tionally, a python-based framework is much more easily integrable, both with the campaign

process as well as individual subsystem models.

Considering the current state of the art for conceptual design of STS, the following

observations can be stated:
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Observation 10: The rocket equation can be used to iteratively drive the sizing of the

vehicle through mission events, regardless of what the subsystems are.

Observation 11: Missions parameters are a product of campaign design and are key inputs

for the vehicle design problem.

Further, for the design of STS in the integrated methodology, the following hypothe-

sis is constructed using the literature presented in this chapter. A summary of the logic

structure for this literature review is shown in Figure 3.8.

• Formulation Hypothesis 5: If DYREQT is used as the synthesis capability, broad

areas of the vehicle trade space can be explored in a rapid manner with external

subsystem sizing models.
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Figure 3.8: Thesis structure updated to show the formulation hypothesis for STS design and the integration with CLO.
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3.4 Space Transportation System Sizing and Synthesis

As stated in Chapter 3, conceptual design of space transportation systems is a complex

MDAO problem that requires the sizing and synthesis of many subsystem. FH4 states

that if DYREQT is used as the synthesis capability, this problem can be solved in a rapid

manner for each vehicle in the campaign without closing off parts of the vehicle trade space.

Integration with the CLO process presented in the previous sections is done throughout the

overall optimal mission set it finds. This set drives the VSS process as the sizing missions

for each of those individual vehicles.

3.4.1 Mission Analysis

Subsection 2.6.1 described the parameterization of nodes within the CLO process, which

was added to the formulation to allow additional degrees of freedom for the VSS. Since

those additional degrees of freedom are not handled by the CLO, it needs to be addressed

elsewhere. DYREQT automates the linking and sizing of each subsystem in a vehicle using

an input sizing mission in the form of a set of individual events. These can be ∆V , ∆T ,

∆m events or a combination of them. Given the parameterization of orbits by semimajor

axis (a), eccentricity (e), and inclination (i), the ∆V and ∆T to transfer between orbits

must be calculated using these variables. This process can be split into two routes, where

transfers between Earth and Mars are handled separately from any other one.

Planetary Transfers

With the proper assumptions, planetary transfers can be calculated analytically without the

use of external tools and optimization processes. Specifically, this research assumes mini-

mum energy transfers for these cases. Hohmann transfers are the most common type, using

an elliptical transfer orbit to travel between two coplanar, circular orbits, either ascending

or descending. Although, they can be generalized for cases where the initial and final or-
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bits can be either circular or elliptical. A Hohmann transfer between two circular orbits,

shown in Figure 3.9, is executed by performing a series of burns to put the vehicle on an

elliptical transfer orbit [88]. For the case of a lower initial orbit, the first burn is used to

speed of the vehicle to match the periapsis velocity of the transfer orbit and the 2nd burn is

used to slow down once it has arrived in the higher, slower orbit. If the lower orbit is the

destination, the process is simply reversed. Between two elliptical orbits, the geometry can

be specific to the problem, but there are still two burns required [122]. A special case of a

Hohmann transfer that is typically used for large transfers is the bi-elliptic transfer, shown

in Figure 3.10

Figure 3.9: A Hohmann transfer between two circular orbits [122].
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Figure 3.10: A bi-elliptic transfer between two circular orbits [122].

In this case, the transfer is split into two different elliptical orbits rather than just one.

There is a third burn at the apoapsis of the first elliptic orbit to change the vehicle’s velocity

to match the 2nd elliptic orbit. A bi-elliptic transfer can be lower in energy requirements

than a Hohmann transfer in some cases.

Earth-Moon Transfers to NRHO

Transfers between the Earth and Moon can be assessed using the equations introduced in

the previous section. However, to simplify the mission analysis for these cases, a special

case of transferring from Earth to NRHO is discussed in this section. Depending on the

payload mass, pushing it to a trajectory aimed at the moon, called Trans-Lunar Injection

(TLI), is performed either by the LV itself or by the in-space transportation stage. From

TLI, the vehicle can perform a minimal energy transfer into other lunar orbits, but transfers

into NRHO are accomplished using a Ballistic Lunar Transfer (BLT), of which there are

two types: fast or slow [123]. These options can reduce the overall ∆V requirements by

200-400 m/s depending on the dates and targeted transfer time. For this research the fast

option is assumed to be a fixed ∆V of 450 m/s with a time of flight of 5 days, whereas the

slow option is 30 m/s for 100 days. Departure from NRHO assumes the same values.
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3.4.2 Vehicle Trade Space Synthesis

Sizing each vehicle for missions first requires the synthesis of the individual subsystems

based on the choices of vehicle architectures to explore. The latter is intended to be inputs

so that the methodology could be used to explore vehicle trade spaces. DYREQT’s formu-

lation allows the user to define the vehicle as they wish, using the hierarchical ontology in

Figure 3.6. That is, a vehicle can be defined as a collection of elements that are further indi-

vidually defined as a collection of subelements. An example setup of a vehicle architecture

is shown in Figure 3.11, with a propulsive stage and a payload.

Figure 3.11: An example 2 element vehicle architecture defined using DYREQT’s ontology

The vehicle is made up of elements: the propulsion or transportation stage and the pay-

load. In this case, the payload element is simply a fixed mass that is assigned by user input.

Payload masses can be either vehicles or mission payloads depending on mission itself. For

the scope of this research, only in-space transportation systems are being designed so the

propulsion stage can be represented as a set of subelements, with each one corresponding

to a specific subsystem. This specification of each vehicle is up to the user for the initial

setup phase, after which those vehicles designs are updated at each iteration.
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3.4.3 Subsystem Sizing Models

As DYREQT is just the synthesis tool for the VSS process, it is up to the user to bring

the necessary subsystem models that are required to represent the vehicle as subelements.

Though DYREQT is built in python, a subsystem model does not have to be, as the user

only has to specify the inputs and outputs of the model within DYREQT. It will treat each

model as a black box, regardless of the format or fidelity. The specific set of models to use

is driven by the vehicle architecture definition, discussed previously. It can be expected that

each model would have many inputs and outputs, even at the conceptual level of design.

Inputs can either be continuous or discrete values depending on the model which creates

a design space within each vehicle architecture selection to explore as well. Setting the

values for each one can either be user driven, or can be assigned as a design variable for

DYREQT. All subsystem models used are detailed in Appendix A.

3.4.4 ConOps Definition

DYREQT automates the process of linking the necessary design variables across the com-

plex MDAO problem and synthesizes a design point using the sizing missions from CLO.

Generation of a numerical solution is starts by defining the mission as a series of events

and assigning them to the physical elements of the vehicle, as shown in Figure 3.7. There

are different types of events to choose from to build each mission, summarized in Table 3.2

Table 3.2: Mission event types within DYREQT.

Event Type Description

∆V Burn event to change in energy state of the vehicle. Performed by

either the main propulsion system or RCS.

∆T Coast event that models a passage of time but the vehicle is not

executing an operation.
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Table 3.2: Mission event types within DYREQT.

Event Type Description

∆mcontinious A continuous change in mass of the vehicle over time, typically to

model propellant refueling.

∆mdiscrete A discrete change in mass instantaneously, typically to model a

dock or undock event.

Given the example Mars transport vehicle from section Subsection 3.4.2, the Table 3.3

provides a corresponding example mission to pickup a crewed habitat of 45t in orbit around

Earth for delivery to Mars. This assumes the Mars transport vehicle is already in the same

orbit as the payload at the start of the mission; that is, both elements are assumed to be

launched directly to the aggregation orbit.

Table 3.3: Example mission for a Mars transportation system.

Event Event Type Value
Phasing ∆V 45 m

s

Dock to Payload ∆mdiscrete +45,000 kg
Earth Departure Burn ∆V 3,000 m

s

Interplanetary Coast ∆T 500 days
Mars Arrival Burn ∆V 2,000 m

s

Payload Drop ∆mdiscrete -45,000 kg

The transportation stage pickups up the crewed habitat in the aggregation orbit and

performs the departure burn from Earth and an arrival burn at Mars after a long coast pe-

riod. The stage then drops off the payload which then performs its own individual mission.

ConOps definition within DYREQT is the assignment of each event in the mission to a

element that executes it. Thus, Table 3.3 can be extended to show which part of the vehicle

corresponds to the event in Table 3.4. For propulsion stages, this is especially important as

most have two individual propulsion stages on board, a Main Propulsion System (MPS) and
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RCS, where the former is used for larger burns and the latter for smaller ones or proximity

operations.

Table 3.4: Example ConOps definition in DYREQT for a Mars transportation system.

Event Event Type Value Element
Phasing ∆V 45 m

s
Stage, RCS

Dock to Payload ∆mdiscrete +45,000 kg Habitat
Earth Departure Burn ∆V 3,000 m

s
Stage, MPS

Interplanetary Coast ∆T 500 days Vehicle (Stage + Habitat)
Mars Arrival Burn ∆V 2,000 m

s
Stage

Payload Drop ∆mdiscrete -45,000 kg Habitat

Using the ConOps, DYREQT iteratively calculates the mass of the vehicle with the

ideal rocket equation and the individual subsystem models and finds a converged solution

between the two. If design variables are provided for either the mission or vehicle, the

integrated OpenMDAO framework within DYREQT will automatically find the values that

satisfies the mission and any additional objectives. This process finds a converged solution

for a typical conceptual vehicle stage and mission on the order of a few seconds. When

linked to the CLO, it is repeated for each vehicle in the campaign at every iteration.
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4

EXPERIMENTATION AND RESULTS

4.1 Research Plan and Questions

Although the different pieces of a methodology have been identified in the previous chap-

ters, the specific structure of it has yet to be defined. The primary tool for producing a

converged solution between the CLO and VSS is the numerical iterative solver. Within

the field of numerical methods, there are many solvers, each one varying in their specific

mathematical formulation for converging one or more coupled systems. The need to find

an appropriate iterative solver for the proposed methodology is formally stated as the first

Research Question of this thesis:

Research Question 1: What iterative solver is best for converging the CLO and VSS pro-

cesses?

The selection of specific stopping criteria is closely tied to the choice of the iterative

solver. Stopping criteria, or convergence criteria, is the set of coupled variables that can be

used to assess the relative difference between values produced by each process, which once

low enough, can tell the iterative algorithm the solution is valid. This motivates the second

Research Question:

Research Question 2: What is the proper set of convergence criteria for the chosen itera-

tive process?

Additionally, since there are two individual processes, either one could be executed

first, and this initialization could affect the performance of the overall methodology. As a

result, the final Research Question is stated as follows:
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Research Question 3: Which individual process should be executed first given a starting

guess from the other?

This chapter chapter discusses in detail the experimental plan developed to answer these

questions and the individual tests that will be conducted through the use of a small-scale

SEC.

4.2 Canonical Small-scale Campaign: Human Landing System 2024 Crewed Mis-

sion

4.2.1 Concept of Operations

To properly answer the research questions, a sample SEC is required as an experimental

apparatus to test different potential structures for the integrated design methodology. The

scale for this campaign should be relatively smaller in comparison to the one used for a final

demonstration, in terms of overall time and number of elements, to minimize computational

complexity for experimentation. As such, a lunar campaign would be more ideal for this

purpose, as opposed to a Mars-focused alternative. Further, it should still be relevant within

academia and industry, include complex ConOps for the path-arc formulation, and multiple

vehicles to size and synthesize. It is important to also require crew within the campaign to

set demands and drive the commodity flows within the network. These requirements guided

a literature review and ultimate selection of the Government Reference HLS 2024 Crewed

Lunar Landing as the canonical small-scale space campaign for the experimentation, shown

in Figure 4.1

Although NASA is planning on selecting a commercial lunar lander to perform the

mission, it released a reference campaign with a 3 element architecture. To return the next

humans to the Moon in 2024, NASA chose to design separate elements, each performing

as the propulsive element for a different portion of the overall campaign. That is, once

all three elements have aggregated at Gateway and the crew have arrived via SLS and
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Figure 4.1: Concept of operations of the 3 element, government reference, HLS crewed
lunar landing mission in 2024 [73].

Orion, the Transfer Element (TE) will perform the transfer burn from NRHO to LLO and

be disposed. Following, the Descent Element (DE) will provide a powered landing to the

surface and after a 7 day surface stay, the Ascent Element (AE) will leave the DE behind

on the surface to push the crew back up to Gateway. The crew will then depart on Orion

and return to Earth following a lunar flyby. The 6.5-day surface stay duration will set the

commodity flow demands for the network optimization and each HLS element can be sized

individually.

4.2.2 Campaign Optimization Problem Setup

Degrees of Freedom

As stated previously, the goal for CLO process is to be able to handle higher-level, cam-

paign ConOps trades while the VSS process sizes the vehicles. The baseline architecture

for HLS is to have all 3 propulsive elements and the crew aggregate at Gateway in NRHO.

Therefore, this aggregation location can be selected as the main degree of freedom for this

campaign, allowing the optimizer to choose between different orbits, or spatial nodes. For

the following experiments, in addition to NRHO, a HEO is used as an alternative aggrega-
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tion orbit. By aggregating closer to Earth, the optimizer may be more inclined to choose

less powerful, cheaper, launch vehicles that throw to lower orbits, and pushing more of the

propulsive load onto the elements themselves.

Another degree of freedom that can be opened up is the split of burns between the

elements, specifically, the TE and DE. Since the AE will solely be used for ascent back

to NRHO, the TE can potentially be used to share part of the descent burn with the DE.

These two degrees of freedom are implemented through the use of paths, where each path

represents a different set of ConOps.

Network Data

The list of spatial nodes considered for this campaign and their specific orbits are shown

in Table 4.1. Several Earth orbits were included as different throw locations for the launch

vehicles, while NRHO, LLO, and the lunar surface are required for the surface mission.

An LLOlow orbit was included to represent a theoretical lower LLO that signifies where the

TE burns to for the shared descent option. A set of ∆V s and ∆T s is required to represent

the costs of traveling on each arc between the spatial nodes. For each transfer, there exists

a range of possible values ∆V s, depending on how fast the transfer is. However, for the

purposes of this campaign, only two energy levels of transfer are considered, minimum

energy and minimum time, also only for specific arcs, which enables an additional degree

of freedom for the optimizer without significantly increasing the computation complexity.

These arc cost values are listed in Table 4.2 and Table 4.3, respectively, using data from

Deguignet, Ishimatsu et al., Sloss, Collins. Values denoted with an asterisk were calculated

analytically using a Hohmann transfer assumption.

Vehicle and Payload Data

Design traits for the configuration, propulsion systems, and optimization design variables

for each of the 4 in-space vehicles are summarized in Table 4.4, pulled from [126, 127,
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Table 4.1: The different spatial nodes considered for the problem and their corresponding
orbits.

Node Orbit/Surface C3/Orbit
ES Earth Surface -

LEO Low Earth Orbit -60
GEO Geosynchronous Orbit -9.454
HEO High Earth Orbit -2

NRHO Near Rectilinear Halo Orbit -
LLO Low Lunar Orbit 100 km Circ
LS Lunar Surface -

128, 129]. The inert mass and dimensions for each vehicle are left for Experiment 3. A

fixed set of launch vehicles for this problem was chosen, split into crew and cargo variants;

their parameters for the CLO process are listed in Table 4.5 and Table 4.6 [101, 102, 103,

130, 104]. Each of the 4 crew members are assumed to be 75 kg and 1.5 m in both diameter

and height [126]. They are the only payloads considered in the campaign, but only 2 of the

4 go down to the surface while the other pair stay at Gateway.
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Table 4.2: ∆V s and ∆T s for minimum energy arc costs, where the row headers are the
departure location and column headers are the arrival location.

∆T s [d]
ES LEO GEO HEO NRHO LLO LS

ES 0 1 1 1
LEO 1 0 0.21* 5.41*
GEO 0.21* 0 6.12*
HEO 5.41* 6.12* 0 100 100
NRHO 0 1
LLO 5 1 0 1
LS 1 0

∆V s [m/s]
ES LEO GEO HEO NRHO LLO LS

ES 0 0 0 0 0 0 0
LEO 950 0 4,508* 3,089*
GEO 4,508* 0 1,314*
HEO 3,089* 1,314* 0 30 640
NRHO 0 750
LLO 180 750 0 1,870
LS 1,870 0
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Table 4.3: ∆V s and ∆T s for minimum time arc costs, where the row headers are the
departure location and column headers are the arrival location.

∆T s [d]
ES LEO GEO HEO NRHO LLO LS

ES 0 1 1 1
LEO 1 0 0.2* 5.41*
GEO 0.2* 0 6.12*
HEO 5.41* 6.12* 0 5 3
NRHO 0 1
LLO 5 1 0 1
LS 1 0

∆V s [m/s]
ES LEO GEO HEO NRHO LLO LS

ES 0 0 0 0 0 0 0
LEO 950 0 5,581* 3,089*
GEO 5,581* 0 1,314*
HEO 3,089* 1,314* 0 450 900
NRHO 0 750
LLO 180 750 0 1,870
LS 1,870 0

Table 4.4: Design parameters and range input for the CLO process for each of the HLS
in-space vehicles.

Design Parameter Parameter Type TE DE AE Orion
Inert Mass (kg) Fixed Input - - - -
Diameter (m) Fixed Input - - - -
Height (m) Fixed Input - - - -

Fuel Fixed Input LH2 LH2 LCH4 MMH
Oxidizer Fixed Input LOx LOx LOx MON
Isp (s) Fixed Input 449 449 341 319
OFR Fixed Input 6.0 6.0 1.74 2.27

Max Payload Diameter (m) Fixed Input 4 4 4 4
Max Payload Height (m) Fixed Input 6 6 6 6
Max Payload Mass (kg) Fixed Input 5,000 10,000 5,000 10,000

Boilofffuel (kg/day) Fixed Input 6 10 0 0
Boiloffox (kg/day) Fixed Input 0 30 0 0

Fuel Mass [0,max] (kg) Design Variable 10,000 10,000 10,000 9,000
Oxidizer Mass [0,max] (kg) Design Variable 60,000 60,000 60,000 9,000

Water Mass [0,max] (kg) Design Variable 5,000 5,000 5,000 5,000
Oxygen Mass [0,max] (kg) Design Variable 5,000 5,000 5,000 5,000

Food Mass [0,max] (kg) Design Variable 5,000 5,000 5,000 5,000
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Table 4.5: Crew launch vehicle data set for the CLO process.

Type Vehicle Max Di-
ameter

(m)

Max
Height

(m)

Launch Cost Cadence
(days)

Throw Mass (kg)

Crew SpaceX Falcon 9 5.2 13.9 $80,000,000 90 LEO: 22,800, GEO: 8,300, HEO:
7,500

SpaceX Starship 9 18 $150,000,000* 30 LEO: 63,800, GEO: 15,000, HEO:
35,000

Blue Origin New
Glenn

7 21.9 $130,000,000* 45 LEO: 45,000, GEO: 13,000, HEO:
10,000

NASA SLS 1B
Crew

5 8 $3,000,000,000 365 LEO: 105,000, GEO: 75,000, HEO:
55,000

NASA SLS 2B
Crew

5 8 $4,100,000,000 365 LEO: 150,000, GEO: 75,000, HEO:
55,000
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Table 4.6: Cargo launch vehicle data set for the CLO process.

Type Vehicle Max Di-
ameter

(m)

Max
Height

(m)

Launch Cost Cadence
(days)

Throw Mass (kg)

Cargo SpaceX Falcon 9 5.2 13.9 $67,000,000 90 LEO: 22,800, MEO: 20,000, GEO:
8,300, HEO: 7,500

SpaceX Falcon
Heavy

5.2 13.9 $97,000,000 90 LEO: 63,800, MEO: 45,000, GEO:
26,700, HEO: 20,000

SpaceX Starship 9 18 $150,000,000* 30 LEO: 100,000, MEO: 60,000,
GEO: 40,000, HEO: 35,000

Blue Origin New
Glenn

7 21.9 $120,000,000* 45 LEO: 45,000, MEO: 30,000, GEO:
13,000, HEO: 10,000

Northrop Antares 3.9 9.5 $80,000,000 90 LEO: 8,000, MEO: 6,000, GEO:
5,000, HEO: 4,000

ULA Vulcan
Atlas V

5.4 23.4 $137,000,000 90 LEO: 12,030, MEO: 5,000, GEO:
1,935, HEO: 1,700

ULA Vulcan
Centaur

5.4 15.5 $150,000,000 90 LEO: 19,000, MEO: 3,900, GEO:
2,600, HEO: 2,500

NASA SLS 1B
Cargo

5 8 $2,700,000,000 365 LEO: 105,000, MEO: 90,000,
GEO: 75,000, HEO: 55,000
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Problem Specific Constraints

In addition to the technical constraints detailed in Section 2.6, constraints on the launch

and aggregation of the vehicles are necessary to accurately model those operations. These

include the cadence of each launch vehicle, the sequencing of each of the vehicles, as

well as the minimum processing time for ground operations at the launch site. Although

each launch vehicle has a different cadence, it is assumed that Kennedy Space Center can

handle a launch every 30 days, defined by the indicator constraints in Equation 4.1 and

Equation 4.2. Variable bvi,vj indicates the launch sequencing between vehicle pair, vi, vj;

whether vehicle vi launches before or after vehicle vj . Variable bvi indicates whether or not

vehicle i launches in the campaign and tlaunch,vi is the time of launch of that vehicle.

bvi,vj = 0 =⇒ tlaunch,vi − tlaunch,vj ≤ (bvi + bvj − 1) ∗ (−30) (4.1)

bvi,vj = 1 =⇒ tlaunch,vi − tlaunch,vj ≤ (bvi + bvj − 1) ∗ (30) (4.2)

for i, j in combination(v ∈ V ), i ̸= j (4.3)

Since the launch vehicle chosen for each vehicle is a variable, the cadence constraints

for those launch vehicles are more involved and require the introduction of several binary

variables, summarized in Table 4.7 These variables need to be constrained further to ensure

they relate to each other properly. Equation 4.4 constrains blv,t to be the equal to the sum of

all launch vehicles used for all vehicles, blv,v. Binary variable bv,t is constrained to be equal

to any vehicle used variable, bv,a, for all launch arcs at that timestep to denote whether or

not vehicle v is launched at timestep t. Equation 4.6 constraints variable blv,v,t to be true if

vehicle, v is launched at time t and launch vehicle, lv is used for that vehicle. Subsequently,

blv,t can be true at time t if any of the variables, blv,v,t are used at that time. The final cadence

constraint for each launch vehicles is shown in Equation 4.9, which identifies a range of
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timesteps based on the specific cadence and restricts a launch of that launch vehicle to be a

maximum of one.

Table 4.7: Summary of binary variables related to launch vehicle cadence constraints.

Variable Description
bv,lv Launch vehicle, lv, used for vehicle v
blv,t Launch vehicle, lv, used at time t
bv,t Vehicle, v, launched at time, t
blv,v,t Vehicle, v, launched at time, t, on launch vehicle lv

tfinal∑
t=0

blv,t =
∑
v∈V

bv,lv ∀ lv ∈ LV (4.4)

bv,t = OR(bv,a,t, ...) ∀ v ∈ V, t ∈ [t0, tfinal], a ∈ Alaunch (4.5)

blv,v,t = AND(bv,lv, bv,t) ∀ v ∈ V, t ∈ [t0, tfinal], lv ∈ LV (4.6)

blv,t = OR(bv1,lv,t, bvi,lv,t, ...) for i = 1, .., nvehicles,∀ v ∈ V, t ∈ [t0, tfinal], lv ∈ LV

(4.7)

trange,lv = [max((t− cadencelv), 0),min((t+ cadencelv), tfinal)]

∀ t ∈ [t0, tfinal], lv ∈ LV

(4.8)

trange,high∑
t=trange,low

blv,t ≤ 1 ∀ lv ∈ LV (4.9)

NASA’s reference HLS architecture requires a specific launch sequence for each of

the 4 vehicles to minimize boiloff; the AE is launched first, followed by the DE and TE,

respectively. Orion will only launch once all 3 propulsive elements have already reached

the aggregation location. The former sequence is implemented using a single constraint
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that relates the launch times for each of the vehicles, in Equation 4.10. The latter oper-

ational constraint requires the use of an additional integer variable, tloc,v, which indicates

the aggregation time at location, loc for vehicle v, constrained using Equation 4.12. Finally

Orion’s launch time, tlaunch,Orion can be constrained to be greater than the aggregation time

for each of the vehicles. However, this is augmented using an indicator constraint, to ensure

that the aggregation time corresponds to the proper location, dependent on the path chosen

in the campaign, shown in Equation 4.13.

tlaunch,v =
∑

a∈Alaunch
m(bv,aim,jl

)quad∀v ∈ V (4.10)

tlaunch,Orion > tlaunch,TE > tlaunch,DE > tlaunch,AE (4.11)

tloc,v = min(aloc,loc,t) ∀t ∈ [0, tfinal] (4.12)

bpath,agg loc = 1 =⇒ tlaunch,Orion ≥ tloc,v ∀v ∈ V (4.13)

Process Parameters

The maximum runtime for CLO was set at 4 hours and the MIP gap was set to 0.001. The

convergence tolerance is set at 5%, and the maximum number of iterations to 10. The table

below lists the weights used for the OEC objective function.

Table 4.8: Objective weights for the HLS campaign CLO problem.

Objective Term Weight Max Value
Propellant Mass 0.05 10,000

Number of Burns 0.65 5
Execution Time 0.22 270
Launch Costs 0.18 4,100,000,000
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4.2.3 Vehicle Sizing and Synthesis Problem Setup

Vehicle Architecture Definition

Only the 3 main propulsion elements will be sized for this lunar campaign, as Orion’s

mission is fixed as a crew transport to the aggregation location. Table 4.9 defines the sub-

systems used for each of the vehicles and a high level description of each subsystem model

and Table 4.10 details the main design parameters, with a blanket Mass Growth Allowance

(MGA). Due to the type of campaign, each of the propulsion elements are functionally

identical, comprised of the same subsystems. Further the differences in each of their sizes,

which will be determined through the whole VSS process and depending on their individual

missions.

Table 4.9: The different subsystems used for each of the 3 propulsive elements in the HLS
campaign.

Subsystem Description
Sensors Aggregation of different sensor components required

for navigation using a bottoms-up approach
Communications Models the communications equipment using a

bottoms-up approach
Structures Estimates the mass of all structural components in the

vehicle, excluding the propulsion system, as a fraction
of the inert mass of the vehicle

Radiator Sizes a radiator to reject the vehicle heat load
Power Sizes a photovoltaic array and accompanying power

storage and distribution systems
Tanks Sizes the tanks and estimates the thermal characteris-

tics of the propellant depending on the environment
Main Engines Sizes an input number of engines and defines the

propulsive capabilities for mission analysis
Reaction Control

System
Modeled as a fraction of the inert mass of the vehicle
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Table 4.10: Key design parameters used in VSS for each of the propulsive elements.

Subsystem Design Parameter AE DE TE
Propulsion Cryocooler 20K none none

Tank l/d 1 1 1
Tank Config 2x2 2x2 2x2

Tank Pressure [MPa] 0.207 0.207 0.207
Tank Temperature [K] 20 20 20

Tank Material AL2195 AL2195 AL2195
Num Engines 3 3 3

Engine Thrust [kN] 34 34 34
Isp 341 449 449

Avionics ngyros 3 3 3
nstar sensors 3 3 3

nhorizon sensors 1 1 1
Comms Package Deep

Space
Deep
Space

Deep
Space

Structures Structures Fraction 0.30 0.30 0.30
RCS RCS Fraction 0.25 0.25 0.25

Power ηcell 0.33 0.33 0.33
Array Density [kg/m2] 18.2 18.2 18.2

Operations Distance [AU] 1.5 1.5 1.5
Battery specific capacity [W*hr/kg] 125 125 125

Depth of Discharge 0.5 0.5 0.5

Mission Analysis

Within the mission analysis portion of the VSS, the goal is to allow degrees of freedom

in some mission parameters to ensure each vehicle is flying its most optimal mission. Al-

though the orbital nodes are parameterized in mission analysis, for the HLS campaign,

each vehicle will have to fly from its launch dropoff location to the aggregation point. This

means varying orbits below those points within this problem is unnecessary and the main

mission degrees of freedom should be within cislunar space. Due to the small sphere of

influence of the moon and its low gravitational pull, it is more difficult to specify concrete

orbits. As such, the degrees of freedom for this problem will be the ∆V splits between

the elements, constrained by the total ∆V between the aggregation location and return of

the AE. By defining these ∆V s as design variables within DYREQT, they are allowed to
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vary while the vehicle is being sized. Each variable is given a range of ±25% from the

baseline values defined in Table 4.2 and Table 4.3, giving some room for the mission to

play around without allowing too much variation that may cause the integrated process to

diverge. These degrees of freedom are summarized in Table 4.11, for each of the campaign

paths being considered. Note that for the TE Shared Descent path, there is one less degree

of freedom: AE’s ascent ∆V .

Table 4.11: The mission degrees of freedom defined in DYREQT for the VSS process.

Campaign Path Variables Constraint
Baseline ∆VNRHO,LLO, ∆VLLO,LS ,

∆VLS,LLO, ∆VLLO,NRHO

∆VNRHO,LLO +
∆VLLO,LS +∆VLS,LLO +
∆VLLO,NRHO = 5240

TE Shared Descent ∆VNRHO,LLO, ∆VLLO,LS ∆VNRHO,LLO +
∆VLLO,LS = 2882

HEO Aggregation ∆VHEO,LLO, ∆VLLO,LS ,
∆VLS,LLO, ∆VLLO,HEO

∆VHEO,LLO+∆VLLO,LS+
∆VLS,LLO+∆VLLO,HEO =

5188

4.3 Iterative Methods

4.3.1 MDO vs MDA

MDO is a field that aims to solve optimization problems of complex systems in which

multiple disciplines, or subsystems, are coupled. They are notably used within aerospace

systems design, where different aircraft or spacecraft subsystems are optimized to achieve

a specific objective, usually the minimization of mass. Distinct from a traditional opti-

mization problems, the design variables of the problem are no longer just input to a single

analysis, but rather can be input to multiple ones. The objective function can also depend on

a single analysis or multiple ones, depending on the problem. Figure 4.2 shows a notional

MDO problem with three coupled disciplines, A, B, and C. In this case, although there is

still only one set of design variables and one objective function, each variable are inputs to

multiple subsystems, with no structured scheme. An analogous problem in space systems
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design would be a coupled propulsion, structure and power sizing code, where there are in-

terdependencies between the variables, and the objective is to minimize mass of the vehicle,

very similar to the process used in DYREQT. Multidisciplinary Analysis (MDA), however,

is the definition of the process by which the coupled disciplines are solved numerically, as

shown in Figure 4.3, usually requiring the use of iterative methods to do so.

Figure 4.2: Notional MDO problem with 3 systems and 5 design variables [131].

With the methodology proposed in this chapter, the two integrated disciplines are CLO

and VSS, with the latter being a full MDAO problem by itself, as described in Subsec-

tion 3.2.2. Following the conventions of MDO, this problem is classified as a highly cou-

pled, single level system as changes in one can have large impacts on the other and there is

no parent problem to solve [132]. However, this research objective is to establish integrated

design methodology and as such, optimization of the integrated system is outside the scope

of this research The resulting problem is only MDA, rather than MDO

Solvers are numerical methods used to converge two or more coupled systems in the

MDA problem, and can be linear or non-linear. Non-linear solvers are iterative in nature
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Figure 4.3: Notional MDA problem within the overall MDO problem [131].

as the solution to the systems of equations is difficult to find analytically. A taxonomy of

iterative solvers reviewed for this experiment is shown in Figure 4.4

4.3.2 Newton-like Methods

Given a system with i design variables each, f(x1, x2, x3, ..., xi), the Jacobian and Hessian

matrices is defined as the first and second order gradients. Matrix elements of the Jacobian

and Hessian are defined by Equation 4.14 and Equation 4.15, respectively.

(Jf )i =
∂f
∂xi

(4.14)

(Hf )ij =
∂2f

∂xi∂xj
(4.15)

Newton methods use either Jacobian or Hessian information to calculate each step size

in the iteration, which can be ruled out immediately as each process is treated as a black box

for integration and neither is available. Quasi-newton methods were introduced for those

cases by either approximating the Jacobian (first order gradient) or the Hessian (second or-

143



Figure 4.4: Taxonomy of iterative solvers reviewed for this research.

der gradient). The Broyden-Fletcher-Goldfarb-Shanno (BFGS), Davidon-Fletcher-Powell

(DFP), and Symmetric Rank 1 (SR1) methods approximate the Hessian matrix using the

Jacobian, which also can be rules out for the same reason as above. The Broyden method,

however, approximates the Jacobian using the secant equation at each iteration in the pro-

cess. With the characteristics of the campaign logistics optimization process being driven

by integer design variables, calculating the derivatives may become problematic. For this

reason, the Broyden method was also ruled out as an iterative solver for the methodology.

4.3.3 Fixed Point Iteration

FPI is the process by which successive substitution is used to identify the fixed point of two

or more systems [133]. Given a single, non-linear equation of the form, f(x) = 0, it can

be transformed into the form, x = g(x) [134]. An initial guess, x0, a series of successive

substitution values can be computed:
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xk+1 = g(xk) k = 0, 1, 2, ... (4.16)

If the function g(x) is continuous and maps an interval, I , into itself, then there exists

a point, x∗ in g(x), called a fixed or stationary point, that satisfies x∗ = g(x∗). Further

this implies that x∗ is a solution of f , or f(x∗) = 0. This single variable, single system

procedure can be generalized to cover a problem with i systems, each with j variables:

f1(x1, x2, ..., xj) = 0 (4.17)

f2(x1, x2, ..., xj) = 0 (4.18)

... (4.19)

fi(x1, x2, ..., xj) = 0 (4.20)

Or simply in vector form in:

F(x) = 0 (4.21)

In this case, output variables from one system that are used as inputs to another are

called coupling variables. The analogous process of iteration is defined by transformation

into x = G(x) and an initial guess, x0:

xk+1 = G(xk) k = 0, 1, 2, ... (4.22)

Similarly, the existence of a fixed point, x∗ can be proven if the domain, D of G can be

mapped into D via G itself. A more detailed proof of this is presented in [133, 134]. If G is

145



continuous on D, then there exists a point, x∗ such that F(x∗) = 0. Using these concepts,

there are two main methods of implementation for real systems: NLGS or Jacobi iteration

[135]. NLGS for multiple systems is run in series, where the inputs for one system are

the outputs from another in the previous iteration [136]. In contrast, Jacobi iteration uses

parallel execution by turning the problem into matrix form and the outputs for each system

are calculated simultaneously using a full set of inputs from the previous iteration. Given

a good starting point, NLGS generally converges faster than Jacobi and is relatively easier

to implement [137]. Specific formulations for these to iterative methods will be discussed

during the design of experiment 1.

4.3.4 Hypothesis Development and Experiment Design

In terms of computational complexity, CLO is more intensive than VSS, given the poten-

tially highly constrained mixed-integer optimization problem. However, if many design

variables are included, the latter could become expensive as well. Since the integrated

process is iterative, the number of function calls drives the runtime of the whole process.

Between the two FPI methods, NLGS is expected to finish faster, which leads to the hy-

pothesis: [138]

Hypothesis 1: If non-linear, Gauss-Seidel iteration is used to iteratively converge the two

processes, then the solution will be found with minimal runtime.

An experiment to test this hypothesis should be the direct comparison of available iter-

ative methods to identify whether or not NLGS provides the best performance. From the

literature review of iterative solvers, since only the two FPI are valid for this problem, this

experiment should and will only have one independent variable with a total of two tests.

The dependent variables for this experiment are the number of iterations, and subsequently

the overall runtime it takes to produce a converged solution. These are necessary to directly

compare the performance of the two iterative solvers and identify the better performing one.
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This will enable the assessment of the validity of Hypothesis 1. The equations below pro-

vide the problem formulation of the overall experiment to test the performance of iterative

solvers.

V ehout, V ehout,c = VSS(V ehin, Campout,c) (4.23)

Campout, Campout,c = CLO(Campin, V ehout,c) (4.24)

V SS ≡ V ehicle Sizing and Synthesis (4.25)

CLO ≡ Campaign Logistics Optimization (4.26)

V ehout = V SS Specific outputs (4.27)

V ehin = V SS Specific inputs (4.28)

V ehout,c = V SS outputs coupled to CLO (4.29)

Campout = CLO Specific outputs (4.30)

Campin = CLO Specific inputs (4.31)

Campout,c = CLO outputs coupled to V SS (4.32)

Jacobi Iteration - Test 1

V ehout, V ehk+1
out,c = VSS(V ehin, Campkout,c) (4.33)

Campout, Campk+1
out,c = CLO(Campin, V ehk

out,c) (4.34)

k = iteration (4.35)
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NLGS - Test 2

V ehout, V ehk+1
out,c = VSS(V ehin, Campkout,c) (4.36)

Campout, Campk+1
out,c = CLO(Campin, V ehk+1

out,c) (4.37)

k = iteration (4.38)

4.4 Convergence Criteria

This section discusses Research Question 2:

What is the proper set of convergence criteria for the chosen iterative process?

Regardless of the final choice of iterative solver, a proper set of convergence criteria

is required to identify the when to stop the algorithm. The criteria could affect the per-

formance of the solver itself as well as the validity of the solution after convergence. For

problem of one or more systems, the convergence, or stopping criteria are defined by the

coupling variables between the systems. Depending on the coupled system, the magnitude

of the variables could be very large or very small, and identifying a specific tolerance could

be difficult. A normalized Error Sum of Squares (SSE) is typically used to mitigate this

issue, shown in Equation 4.39, for n design variables.

SSE =
n∑

i=1

(xi − x)2

x0

(4.39)

4.4.1 Hypothesis Development and Experiment Design

Two main disciplines, CLO and VSS, are linked for this thesis mainly through the overall

mission set provided by the former and the vehicle capabilities provided by the latter. The

mission set information is used to drive the VSS process through the overall number of

missions and ∆V , ∆T for each event in each mission. Vehicles in the CLO process are

updated at each iteration by VSS mainly through its inert mass.
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Since both sets of information, mission and vehicle, are updated at each iteration, both

could be used as convergence criteria. Considering the flow of resources throughout the

campaign are constrained by what vehicles are available to move those resources, the hy-

pothesis for Research Question 2 is stated as follows:

Hypothesis 2: If only vehicle masses is used as the convergence criteria, the errors will be

minimized.

To test this hypothesis, the convergence criteria can be first grouped by their informa-

tion: mission, vehicle, or a combined set. These are required as the main coupling variables

between the campaign and vehicle problems. The independent variables of this experiment

are the different set of criteria, while the dependent variables are the overall error magni-

tudes, runtime, and number of iterations. Tracking the errors is important as the converged

solution needs to be a closed design. That is, differences in magnitudes of the coupling

variables imply that a campaign requires nearly identical vehicle sizes than what the VSS

is providing. Runtime and number of iterations allow to characterize the performance of

each criteria, enabling identification of sets that may take too long to converge, if at all.

Equation 4.40 is the 2-norm error of the gross masses of each individual vehicle in the

campaign and Equation 4.41 is the same for propellant masses of each vehicle. Similarly,

the main mission parameters are ∆V and ∆T , the arc costs in the CLO formulation. The 2-

norm errors for those are shown in Equation 4.42 and Equation 4.43, respectively. Finally,

a combination of vehicle or mission parameters could be used, shown in Equation 4.45.

Each of these equations are an individual test for the convergence criteria experiment of

Research Question 2.

n∑
i=1

∥mgross,k+1 −mgross,k∥22
m0

< ε (4.40)

n∑
i=1

∥minert,k+1 −minert,k∥22
m0

< ε (4.41)
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n∑
j=1

∥∆Vk+1,j −∆Vk,j∥22
∆V0

< ε (4.42)

n∑
j=1

∥∆Tk+1,j −∆Tk,j∥22
∆T0

< ε (4.43)

n∑
j=1

∥∆Vk+1,j −∆Vk,j∥22
∆V0

+
∥∆Tk+1,j −∆Tk,j∥22

∆T0

< ε (4.44)

n∑
j=1

∥mgross,vss,i −mgross,clo,i∥22
m0

+
∥∆Vk+1,j −∆Vk,j∥22

∆V0

< ε (4.45)

4.5 Method Initialization

When fully integrated, regardless of the structure of methodology, the CLO process re-

quires vehicle capabilities to execute and the VSS process requires missions to size to. The

initialization of the integrated process requires one to be executed first, with a starting guess

of the other, with a total of two possible structures, shown in Figure 4.5.

Figure 4.5: Process diagrams of the two possible execution structures of the integrated
methodology.
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The converged solution may depend on this sequence of execution, where the initial

guess may drive the optimal campaign solution, necessitating the tracking of the technical

FoMs, through the objective value of provided by the CLO process.

4.5.1 Hypothesis Development and Experiment Design

With only two options available for initialization, a direct comparison can be made between

the two processes as the initial one to develop the hypothesis for this research question.

If a converged solution exists and the problem is setup correctly, either process structure

should theoretically find that solution. Vehicles in the CLO process primarily require a inert

mass to properly calculate the propellant burned throughout the network and VSS requires

the missions flown by the vehicles. Regardless of how that initial inert mass guess is given

if CLO starts, it drives the mission chosen by the optimizer as higher inert masses may

preclude certain missions. However, once a mission is chosen, the following VSS run is

expected to update the CLO input with the correct inert mass, opening up the proper options

in the CLO problem. Therefore, Hypothesis 3 can be stated as:

Hypothesis 3: If the CLO problem is solved first, the campaign will be at a minimum

without an appreciable change in runtime.

To test this hypothesis a simple experiment is setup that runs the integrated process with

both CLO and VSS. Similar to Experiment 1, since there are only two possible methods of

initialization, there is only one independent variable for this experiment, with a total of two

tests. Directly comparing these tests will identify which one provides better performance

of the overall methodology and subsequently the validity of Hypothesis 3. Since the initial

mass guess and initial process may drive the converged solution, it is necessary to track

the objective values as a dependent variable in addition to the performance parameters of

number of iterations and runtime. But two subsequent questions arise with the execution

of this experiment that need to be answered first; defined as Research Question 3.1 and

Research Question 3.2:
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Research Question 3.1: If CLO is executed first, how is the inert mass guess generated?

Research Question 3.2: If VSS is executed first, how is the mission event sequence guess

generated?

CLO Initialization

Starting with Research Questions 3.1, regardless of how that initial inert mass guess is

given if CLO starts, it drives the mission chosen by the optimizer as higher inert masses

may preclude certain missions. There are several ways to estimate the inert mass of an

in-space transportation system, whether information about its mission is available or not.

An IMF can be set such that the inert mass of each spacecraft is simply a fraction of the

total mass at the origin, the latter ensuring the inert mass does not change throughout the

mission. Since the CLO process does not account for RCS burns or propellant residuals

and reserves, but the inert mass does, the “inert mass” in CLO should include these masses.

In other words, the inert masses for each vehicle in CLO accounts for all masses that is not

used propellants by that vehicle.

All spacecraft are constrained by the mass and volume throw capabilities of available

launch vehicles. Depending on the density of the propellant and the type of vehicle, the vol-

ume can be more constraining than the mass. Therefore, vehicles can be sized to maximize

these constraints and the inert mass from this sizing can be used as the initial guess. This

provides the additional benefit in that there will be valid launch vehicles for each vehicle

for the CLO optimizer to chose from.

For the latter guess type, it could be possible that the inert masses are too high for

the mission required of each vehicle by CLO, creating an infeasible solution space. The

hypothesis for this research question is stated as follows:

Hypothesis 3.1: If CLO is solved first with an initial inert mass guess that is a fraction of

total mass, then the converged solution will be a minimum.
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Experiment 3.1 will test this hypothesis by running the integrated process with both

inert mass guess types with CLO running first. A blanket IMF of 0.45 is used for test 1,

which corresponds to a Propellant Mass Fraction (PMF) of 0.55. For in-space transporta-

tion systems, and especially for larger ones, this is a conservative estimate by design.

Sizing of each of the three propulsive elements in the HLS campaign for launch vehicles

in test 2 of this experiment uses the launch vehicles provided in Table 4.5 and Table 4.6. The

volume of each fairing was calculated as a cylinder based on the allowable diameter and

height, as Vlv = π
d2lv
4
hlv. Then, using the density of the fuel and oxidizer, ρfuel, ρoxidixzer,

of each vehicle along with the Oxidizer to Fuel Ratio (OFR), the total mass of propellant

that maximizes volume can be calculated as:

mfuel,v =
0.60 ∗ Vlvρfuel,vρoxidizer,v
OFRv ∗ ρfuel,v + ρoxidizer,v

(4.46)

moxidizer,v = OFRv ∗mfuel,v (4.47)

(4.48)

where it was assumed that all other systems of the spacecraft take up 40% of the volume.

Finally, the inert masses are calculated by using the PMF for each vehicle, which are shown

in Table 4.12 [126]. For this experiment, the minimum inert masses are used as the initial

guess so that it does not preclude the optimizer from using a different launch vehicle, if it

chooses to. That is, if a higher inert mass is chosen, it would filter out some other launch

vehicles for that vehicle.
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Table 4.12: Table of inert masses for each vehicle in the HLS campaign sized to maximize
the volume of each launch vehicle fairing.

Ascent Element Descent Element Transfer Element

Falcon 9 51,143 20,730 21,916

Falcon Heavy 51,143 20,730 21,916

New Glenn 86,816 35,190 37,203

Antares 28,626 11,603 12,267

Atlas V 50,478 20,461 21,631

Vulcan Centaur 82,418 33,407 35,319

SLS 1B 220,426 89,346 94,459

SLS 2B 220,001 89,174 94,277

VSS Initialization

Addressing Research Question 3.2 requires an initial guess of a mission sequence for the

VSS to size to. Given a main user input for the CLO process is the path set for the problem,

this can be used to tackle this problem. Specifically, since a path is a user input set of events

for a vehicle to follow, it can double as the sizing mission in the VSS. For problems with

multiple paths, the question arises of which path to choose from as the initial guess. The

hypothesis for this research question is stated as:

Hypothesis 3.2: If VSS is solved first with an initial path guess that minimizes ∆V , then

the integrated solution will be a minimum.

There are two available options for a path guess experiment, Experiment 3.1, to test

this hypothesis: the minimum ∆V path and a random guess. Test 1, with the former, is as

the name says, choosing a path with the minimum overall ∆V , where the overall ∆V is the

sum of ∆V s that each vehicle goes through. Test 2 is a simple random selection from all

available paths, and is run three times to ensure repeatability.
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4.6 Experimental Matrix and Plan Summary

Looking at the set of research questions and subsequent experiments, it could be said they

are all are interdependent. The convergence criteria set and initialization process could

directly affect the performance of the solvers. The initial guess could be good, but the

specific set of convergence criteria may not let the problem converge. All of the above

could affect the overall validity of the final campaign and vehicle solution. Therefore, it

is necessary to assess different combinations of tests to identify the best process, much

like an experimental trade space exploration. This experimental matrix of tests is shown

in Table 4.13, with a total of 42 different compatible combinations. As Jacobi iteration is

parallel in execution, both CLO and VSS need an initial guess, requiring two fewer tests

than the full combination set.

With a total of five research for this thesis, the overall research plan to address them,

presented in this chapter, is summarized in Figure 4.6. Once fully constructed using the

results from these experiments, the integrated methodology can be applied to a large-scale

Mars campaign to show the improvement over the state of the art.
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Table 4.13: A matrix of interdependent tests for all of the experiments.

Solver Jacobi NLGS
Convergence Criteria Mission Vehicle Both
Initial Process CLO VSS
Initial Guess for VSS Minimum ∆V Path Random Path 1 Random Path 2 Random Path 3
Initial Guess for CLO Inert Mass Fraction Launch Vehicle Sized

Vehicles
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Figure 4.6: Thesis structure updated to show a summary of the experimental plan for this research.
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4.7 Experiment Results

4.7.1 Experiment 2: Convergence Criteria

Before proceeding to the rest of the results, it is necessary to examine those for Experiment

2, run with a NLGS, CLO running first, and a IMF initial guess. The convergence criteria

for this combination of tests were the inert and gross mass errors, but the errors for the

cislunar arcs were also calculated, the former using Equation 4.49 and the latter using

Equation 4.50, where k is the number of iterations and n is the number of vehicles.

n∑
i=1

∥mgross,vss −mgross,clo∥22
m0

+
n∑

i=1

∥minert,k+1 −minert,k∥22
m0

< ε (4.49)

n∑
j=1

∥∆Vk+1,j −∆Vk,j∥22
∆V0

< ε (4.50)

Three plots follow, the first two showing the inert and gross mass errors, respectively,

over the course of the 10 allowed iterations, while the third shows the ∆V errors for the

cislunar arcs. It is a converged solution, by iteration 10, as the vehicle parameters of inert

and gross mass were chosen as the criteria for this combination of tests. However, at

iterations 7 and 8, all cislunar arc errors are below the tolerance.
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Figure 4.7: Errors for the vehicle inert masses per iteration.
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Figure 4.8: Errors for the vehicle gross masses per iteration.
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Figure 4.9: Errors for the vehicle gross masses per iteration.

If only the mission parameters, these ∆V , were chosen as the criteria rather than the

masses, the process would be considered converged by iteration 7, but because the masses

are not below the tolerance, the resulting solution would not be valid. This behavior leads

to the first significant finding among the experimentation results, that it does not make

sense to consider either mission or vehicle parameters solely as convergence criteria. That

is, a converged solution should mean that both sets of parameters are below the tolerance.

Therefore, Hypothesis 2 is rejected, and the rest of the combinatorial test space that don’t

use both sets can be skipped, resulting in only 14 remaining combinations, Equation 4.51

shows the required final convergence criterion.

ε ≥
n∑

i=1

∥mgross,vss −mgross,clo∥22
m0

+
n∑

i=1

∥minert,k+1 −minert,k∥22
m0

+

n∑
j=1

∥∆Vk+1,j −∆Vk,j∥22
∆V0

+
n∑

j=1

∥∆Tk+1,j −∆Tk,j∥22
∆V0

(4.51)
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4.7.2 Experiment 1: Iterative Solvers

Experiment 1 tests the performance of the different solvers for the integrated process. In-

cluding the other tests in the combinatorial space, there a total of 14 different combinations,

7 for NLGS and 7 for Jacobi iteration. Figure 4.10-Figure 4.19 show that all Jacobi itera-

tion cases Did Not Converge (DNC) in the 10 iteration limit, whereas all but a single NLGS

case converged. Although there is not enough information to say if Jacobi iteration does

close past 10 iterations, ignoring the one DNC case, NLGS converges in 10 iterations or

less. Therefore, Hypothesis 1 is accepted, and NLGS is the selected iterative solver for

the final methodology.
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Figure 4.10: Errors for the vehicle inert masses per iteration for Experiment 1, with Jacobi
iteration, CLO inert mass fraction guess and VSS Random Path Runs 1 and 2 - Baseline.
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Figure 4.11: Errors for the vehicle gross masses per iteration for Experiment 1, with Jacobi
iteration, CLO inert mass fraction guess and VSS Random Path Runs 1 and 2 - Baseline.
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Figure 4.12: Errors for the vehicle inert masses per iteration for Experiment 1, with Jacobi
iteration, CLO inert mass fraction guess and VSS Random Path Run 3 - TE Shared Descent.
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Figure 4.13: Errors for the vehicle gross masses per iteration for Experiment 1, with Jacobi
iteration, CLO inert mass fraction guess and VSS Random Path 3 - TE Shared Descent.
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Figure 4.14: Errors for the vehicle inert masses per iteration for Experiment 1, with Jacobi
iteration, CLO LV sized vehicles and VSS Random Path Runs 1-3 with Baseline initializa-
tion.
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Figure 4.15: Errors for the vehicle gross masses per iteration for Experiment 1, with Jacobi
iteration, CLO LV sized vehicles and VSS Random Path Runs 1-3 with Baseline initializa-
tion.
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Figure 4.16: Errors for the vehicle inert masses per iteration for Experiment 1, with Jacobi
iteration, CLO Inert Mass Fraction and VSS Min ∆V Path.
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Figure 4.17: Errors for the vehicle gross masses per iteration for Experiment 1, with Jacobi
iteration, CLO Inert Mass Fraction and VSS Min ∆V Path.
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Figure 4.18: Errors for the vehicle inert masses per iteration for Experiment 1, with Jacobi
iteration, CLO LV Sized Vehicles and VSS Min ∆V Path.
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Figure 4.19: Errors for the vehicle gross masses per iteration for Experiment 1, with Jacobi
iteration, CLO LV Sized Vehicles and VSS Min ∆V Path.

4.7.3 Experiment 3: Initialization

Experiment 3.1: CLO Initialization and Inert Mass Guess Type

Before addressing Hypothesis 3, Hypothesis 3.1 and Hypothesis 3.2 are assessed first

through their respective experiments. Since Jacobi iteration has been removed from con-

sideration, Experiment 3.1 has only two set of results to investigate with the different inert

mass guess types. Figure 4.20 - Figure 4.25 show the errors and mass convergence perfor-

mance for the IMF guess case, while Figure 4.26 shows the inert mass errors for LV sized

vehicles. The results of this experiment are relatively clear as the LV sized vehicles cause

the process to diverge, specifically in that CLO could not find a feasible campaign with the

inert masses given. This could be due to a number of different reasons, from propellant

loads that are too much to launch, even with super heavy class vehicles, to infeasible ca-

dence constraints. Specifically, with the inert masses being so high and the three elements

operating as stack from NRHO, the propellant required on the TE would be relatively high.
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If it did not exceed the mass limits for any LV it may have required multiple LVs that did

not fit with its cadence; for example, three SLS launches in the first 100 days. In contrast,

the IMF guess produces much lower inert masses for the initial CLO run with the AE,

DE, and TE having inert masses of 1,984 kg, 1,587 kg, and 2,654 kg, respectively. These

masses are much lower than those of the closed solution at iteration 10, which is accept-

able as the less conservative estimate for inert mass likely allows this closure. Synthesizing

all this data, the main findings show that the IMF guess for CLO initialization produces a

converged solution and therefore, Hypothesis 3.1 is accepted.
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Figure 4.20: Errors for the vehicle inert masses per iteration for Experiment 3.1, with
NLGS iteration, CLO First with Inert Mass Fraction Guess.
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Figure 4.21: Errors for the vehicle gross masses per iteration for Experiment 3.1, with
NLGS iteration, CLO First with Inert Mass Fraction Guess.
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Figure 4.22: Vehicle inert masses per iteration for Experiment 3.1, with NLGS iteration,
CLO First with Inert Mass Fraction Guess.
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Figure 4.23: Ascent Element gross mass per iteration for Experiment 3.1, with NLGS
iteration, CLO First with Inert Mass Fraction Guess.

1 2 3 4 5 6 7 8 9 10
0

5,000

10,000

15,000

20,000

25,000

30,000

Iteration

M
as

s
[k

g]

DE Gross Mass

NLGS, CLO Inert Mass Fraction

CLO
VSS

Figure 4.24: Descent Element gross mass per iteration for Experiment 3.1, with NLGS
iteration, CLO First with Inert Mass Fraction Guess.
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Figure 4.25: Transfer Element gross mass per iteration for Experiment 3.1, with NLGS
iteration, CLO First with Inert Mass Fraction Guess.
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Figure 4.26: Errors for the vehicle inert masses per iteration for Experiment 3.1, with
NLGS iteration, CLO First with LV Sized Vehicles.
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Experiment 3.2: VSS Initialization and Mission Sequence Guess Type

Since test 2 for Experiment 3.2 requires a random selection, it was run three times to

ensure repeatability, giving a total of four sets of results to investigate for Experiment

3.2. Figure 4.27-Figure 4.32 show the convergence for VSS initialization with a mini-

mum ∆V path, while Figure 4.33-Figure 4.38 show that of VSS initialization with random

path choice. For the latter, runs 1 and 3 were both chosen as Baseline path initialization

and performed exactly the same, while run 2 started with a HEO aggregation, which also

performed exactly the same as the previous set of charts. From the set of all paths, the

minimum ∆V path is the HEO aggregation one, with a total of 4,690 m/s. Although it

may be intuitive to think that the higher aggregation orbits mean lower overall ∆V s, it also

means each vehicle must burn individually to that aggregation location, if they are dropped

off by the launch vehicle at a lower location. With the three random tests, the baseline

NRHO aggregation path was chosen twice and the HEO aggregation path once. Both sets

of results are exactly the same, meaning that this process structure is repeatable. Cases with

the HEO aggregation initial guess close in 6 iterations and an overall runtime of just over

24 hours, while cases with the baseline NRHO aggregation close in 1 more iterations and

4 more hours.
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Figure 4.27: Errors for the vehicle inert masses per iteration for Experiment 3.2, with
NLGS iteration, VSS First with Min ∆V Path.
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Figure 4.28: Errors for the vehicle gross masses per iteration for Experiment 3.2, with
NLGS iteration, VSS First with Min ∆V Path.
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Figure 4.29: Vehicle inert masses per iteration for Experiment 3.2, with NLGS iteration,
VSS First with Min ∆V Path.
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Figure 4.30: Ascent Element gross mass per iteration for Experiment 3.2, with NLGS
iteration, VSS First with Min ∆V Path.
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Figure 4.31: Descent Element gross mass per iteration for Experiment 3.2, with NLGS
iteration, VSS First with Min ∆V Path.
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Figure 4.32: Transfer Element gross mass per iteration for Experiment 3.1, with NLGS
iteration, VSS First with Min ∆V Path.
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Figure 4.33: Errors for the vehicle inert masses per iteration for Experiment 3.2, with
NLGS iteration, VSS First with Random Path Runs 1 and 3.
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Figure 4.34: Errors for the vehicle gross masses per iteration for Experiment 3.2, with
NLGS iteration, VSS First with Random Path Runs 1 and 3.
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Figure 4.35: Vehicle inert masses per iteration for Experiment 3.2, with NLGS iteration,
VSS First with Random Path Runs 1 and 3.
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Figure 4.36: Ascent Element gross mass per iteration for Experiment 3.2, with NLGS
iteration, VSS First with Random Path Runs 1 and 3.
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Figure 4.37: Descent Element gross mass per iteration for Experiment 3.2, with NLGS
iteration, VSS First with Random Path Runs 1 and 3.
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Figure 4.38: Transfer Element gross mass per iteration for Experiment 3.2, with NLGS
iteration, VSS Random Path Runs 1 and 3.
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The two different initial guesses converge to two different final solutions. The minimum

∆V path guess produces a solution with an objective value of 0.724 and the other with

an objective value of 0.752. Examining the vehicle paths for both campaigns, which are

shown in Figure 4.39 and Figure 4.40, respectively, show the main difference between

the two is the TE taking a slow transfer to the aggregation location after being dropped

off in HEO. Both campaigns converge to the baseline NRHO aggregation location option,

but Table 4.14, shows that the TE shared descent option was chosen for a few iterations,

implying the optimizer is not only considering the ConOps trades, but actively changing

the optimal one based on updates from VSS. Since the TE is taking the slow transfer to

NRHO and it does not have any active Cryogenic Fluid Management (CFM) systems to

mitigate boiloff, the amount of propellant it loses during the slow transfer is greater than if

it just burned through a faster transfer. These findings show that a random path guess does

not always converge to the minimum solution, and therefore, Hypothesis 3.2 is accepted.
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Figure 4.39: Vehicle paths for the HLS campaign solution with objective value of 0.724.
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Figure 4.40: Vehicle paths for the HLS campaign solution with objective value of 0.752.

Iteration Path Chosen by CLO
1 TE Shared Descent
2 Baseline
3 Baseline
4 TE Shared Descent
5 Baseline
6 Baseline

Table 4.14: Table showing the chosen path by CLO for each iteration for the final solution
with an objective value of 0.724.

With the findings from Experiment 3.1 and Experiment 3.2, the higher level Experi-

ment 3 can be addressed. Filtering out combinations of tests that have been ruled out, there

remains only two: CLO initialization with an IMF guess and VSS with the minimum ∆V

path. The results of this experiments have already been shown in Figure 4.20 - Figure 4.25

and Figure 4.27-Figure 4.32. The difference in performance, and therefore findings for this

experiment, in these two process structures is relatively clear. Both final solutions are ex-

actly the same optimal campaign, with an objective value of 0.724. However, running VSS
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first requires four fewer iterations, and thereby 16 hours less runtime. As a result, Hypoth-

esis 3 is rejected, and a process structure with VSS initialization would be preferred.

4.7.4 Summary of Results and Final Methodology

Figure 4.41 shows the experiment structure for this research and the accompanying results

presented in the previous sections. Synthesizing all of the results, the final structure of the

concurrent trade space exploration methodology is shown in Figure 4.42

Figure 4.41: Summary of the experimentation structure for this thesis with the results of
the experiments.
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Figure 4.42: The process diagram of the final methodology, construct using results from experimentation.
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Using reference data, the vehicle architecture definition, and the minimum ∆V path,

the method is initialized using VSS, which provides an initial set of inert masses for the

subsequent CLO run. If Equation 4.51 is below the tolerance, the solution has converged,

and if not, the optimized mission set produced by CLO is given to VSS after some transla-

tion, and the process is run using NLGS iteration. A converged solution will produce a fully

optimized campaign in the form of vehicle paths, payload paths, chosen launch vehicles as

well as their launch dates, and vehicle mass histories of propellant, payloads, and consum-

ables. Each vehicle will also have a subsystem mass breakdown due to the inclusion of the

VSS process. The final HLS campaign solution found using this methodology and experi-

mentation is presented in Appendix B while the following chapter will detail a larger-scale

demonstration, while the validation of this method is presented in Appendix C.
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5

MARS CAMPAIGN DESIGN AND TRADE STUDY

5.1 Overarching Experiment

The overarching hypothesis for this is restated below:

Overarching Hypothesis: If the CLO and VSS processes are integrated, the impacts

of the vehicle and campaign trades on each other can be directly quantified.

With final methodology identified and assembled, the Overarching Experiment should

test this hypothesis by applying the methodology at scale. Specifically, the experiment

should show that integration of the two individual process allow for these trades to be con-

ducted in a relatively short amount of time. Trade studies can be conducted at the campaign

and vehicle levels to show the impacts of their design sensitivities on each other. In this

vain, with the lunar focus of experimentation, the overarching experiment can be executed

using a crewed Mars exploration campaign, which is larger scale with longer timescales

and higher number of overall elements.

5.2 Canonical Large-scale Campaign: DRA 5 NTP Crewed Mission

As the government reference HLS 2024 mission was used for the experimental apparatus,

a larger, more complex campaign can be used to formally demonstrate the methodology.

Though with mostly similar requirements as the smaller one, the key difference with this

campaign is the addition of Mars within the network. Requirements of a relevant, crewed,

large-scale Mars campaign with ample documentation for reference leads to NASA’s long

standing DRA 5, specifically Addendum 2, introduced in Chapter 1 [8]. Shown in Fig-

ure 5.1, this Mars campaign is a 900-day total duration, with 180-day transits and a 500-day
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surface stay with 6 crew. For the purposes of an initial demonstration, only the first surface

mission is considered.

Figure 5.1: Mars DRA 5 ConOps for a nuclear thermal transportation system[8]

The significant increase in timescales and distance to destination is accompanied by an

increase in number of launches and rendezvous operations. Prior to the first crew mission,

two cargo missions are executed to deploy systems necessary for surface operations and

the launch, aggregation and transit timelines are overlapping, depicted by the schedule in

the top half of Figure 5.2.

Figure 5.2: Mars DRA 5 timelines for the two crewed surface missions and four pre-deploy
cargo missions [8].
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The execution of the first two cargo payloads occur almost simultaneously, while the

launch campaign for the following crew mission does not start until they arrive at Mars.

Surface nuclear power, ISRU, and Mars Ascent Vehicle (MAV) land on Mars first, the

former produces the propellant for the latter. The crew arrives and rendezvous in the Mars

1-sol parking with the surface habitat before landing on the surface themselves. For both

crew and cargo, DRA 5 traded two propulsion architectures: all chemical and NTP, and this

demonstration will only be considering the latter, with Liquid Hydrogen (LH2) propellant.

However, each individual cargo and crew missions require their own specific NTP vehicle,

though the two cargo versions will be the same, shown in Figure 5.3.

Figure 5.3: Fully assembled vehicle configuration of the DRA 5 NTP cargo vehicle [8].

Each one is made up of three individual elements: a core stage that houses some pro-

pellant and two Nuclear Thermal Rocket (NTR) engines, an inline LH2 tank that houses

more propellant, and the payload which includes the landing systems. The crewed vehicle

is similar, but houses a much larger inline tank and a truss structure that is designed to

house a drop tank and dock with the transit habitat and Orion. The fully aggregated crew

transport vehicle configuration is shown in Figure 5.4, and is also referred to as the Mars

Transit Vehicle (MTV).

Orion is used to transport the crew both to the vehicle in the LEO aggregation orbit

and safely land them back on Earth after the Mars mission. A total of five SLS Block 2
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Figure 5.4: Fully assembled vehicle configuration of the DRA 5 NTP crew vehicle [8].

launches are required to assemble the two cargo vehicles, while only 4 are needed for the

crewed version, with a separate Block 1 launch for the crew. The vehicle assembly and

aggregation strategy for all vehicles is summarized in Figure 5.5.

5.3 Integrated Trade Study Definition

Now that the methodology has been constructed, it can be used to perform design a much

larger, campaign and perform a integrated trade study. Given the Mars campaign from

DRA 5, described in Section 5.2, the trade study can be split into two smaller ones to

explicitly represent campaign and vehicle level trade variables in each one. This process

can demonstrate how the sensitivities of changes in these variables affect the design of each

other to test the overarching hypothesis of this research.

5.3.1 Vehicle-level Trade Study

Changes in vehicle design parameters can potentially have a significant impact on the de-

sign and execution of the campaign, especially for crewed Mars exploration. Notably, the

propulsion system architecture and accompanying propellant are significant parameters in

the design of vehicles or Mars transportation systems. DRA 5 down-selected to NTP with

LH2 propellant after building a campaign around it and an all-chemical transportation alter-

native. Hydrogen is typically the go-to propellant for NTP systems for its high Isps of about
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Figure 5.5: Vehicle assembly and aggregation strategies for the crew and cargo NTP vehi-
cles in DRA 5 [8].

900s, at the cost of integrated CFM systems to keep the temperature low and minimize

boiloff. Even then, the density of LH2 is relatively low, at 70.85 kg/m3, requiring many

large tanks to store all of the propellant needed for a Mars mission. Since all space vehicles

are constrained by the mass, and more often the volume, of LV fairings, there are poten-

tially better options for NTP propellants that can reduce launch rates and leverage ISRU

systems to refuel [139]. Irvine et al. specially shows the benefit of ammonia as propellant,

with a much smaller vehicle stage [140]. NTP systems can theoretically use any propellant,

as they operate by using the heat generated by the nuclear reactor to expand it out a nozzle

to generate thrust. However, with ISRU systems being key to long-term space exploration,

it is beneficial to explore propellant options that can be generated using them. Figure 5.6

shows the densities of different in-situ propellant at different temperatures.
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Figure 5.6: Densities of different in-situ, liquid propellant densities [139].

These other propellants not only are more dense, but have wider ranges of liquid tem-

perature ranges, easing requirements on thermal control systems. Thus, the vehicle-level

trade for the large-scale campaign application will trade these four propellant species for

the two NTP vehicle designs in NASA’s DRA 5.

5.3.2 Campaign-level Trade Study

Chapter 1 introduced the behavior of vehicle design choices being highly dependent on

campaign goals, through Observation 2. A major campaign goal for Mars that has been

discussed when developing mission strategies is the total duration and more importantly the

surface stay duration. Although longer stays on Mars enable more science and exploration,

they come with higher risk profiles and exposure to the deep space radiation environment.

DRA 5 itself explored many different durations for both the transit and surface portions,

ultimately selecting the long-stay mission of 540 days on Mars with a conjunction class

trajectory. The amount of time spent on the surface of Mars drives the design of many
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other elements of the campaign, from the trajectory design within and out of the Mars

sphere, vehicle architecture selections, habitat design, and more [141]. Given the design of

a vehicle is driven by its mission, surface stay duration can have a significant impact the

vehicle mass and even vehicle configuration. This further drives the overall ConOps of the

campaign, specifically the strategies for launch and aggregation of all of the vehicles prior

to Earth departure. To directly assess these impacts, the campaign-level trade variable for

the Mars campaign is the total stay duration on the surface of Mars.

5.4 DRA 5 Campaign Problem Definition

5.4.1 Campaign Logistics Optimization

Nodes and Arcs

To perform the two trade studies, the campaign description in Section 5.2 is decomposed

to define the overall campaign problem and accompanying inputs. There are two cargo

pre-deploy mission prior to the crew mission, occurring over the course of two opportu-

nities. The main network information required to model DRA 5 are the interplanetary arc

costs of ∆V and ∆T . Subsubsection 2.6.2 defined the use of porkchop plots for interplan-

etary mission design problems. For these trade studies, porkchop data is generated across

the three Earth-Mars opportunities, separated into outbound and inbound. There are two

outbound opportunities, 2033 and 2035, where the former is reserved for the two cargo

missions while the latter for the crew. Although only the crew is returning from Mars, two

inbound opportunities must be explored: one for the short stay alternative and another for

long stay. For the short stay option, crew is allowed to return in the same opportunity they

depart Earth from, in 2035, whereas they must wait until 2037 to return after a long stay.

As the porkchop data depends on the specific dates of departure and arrival of a spacecraft,

the campaign time domain is anchored at a date; that is, time t = 0 is set equal to a real

date. Using porkchop data from DRA 5’s documentation and accounting for similar launch
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and aggregation campaigns, the anchor date for these campaigns is set as 7/4/2032. The

campaign is capped on the other end based on 2037 inbound porkchop data, allowing time

for the crew to return to Earth, if the optimizer chooses to take the last possible arc back.

Given the multi-year campaign, using single day timesteps would significantly increase

the computational complexity of the CLO problem and the its runtime. Seven day timesteps

are used for this trade study to allow the optimizer good enough play over when each

missions are executed while also balancing that computational complexity. This comes

with the caveat that smaller operations such as payload transfers and staging are modeled

as occurring over the course of a week, which in reality may not be the case.

Using the previous time domain definition, data was generated using an open source,

python framework, Poliastro, which solves the Lambert’s targeting problem between two

bodies [142]. For each opportunity, the solver is given a wide range of departure and

arrival dates to create the largest allowable dataset that could then be constrained based on

a maximum ∆V . Table 5.1 summarizes the inputs given to the Lambert’s solver for each

opportunity, where 39 7-day periods were given for each departure date and 96 for arrival

date. Figure 5.7-Figure 5.10 are the resulting plots that show the C3 required for each

opportunity, depicted by a 2-D contour plot where the red dashed lines indicate transfer

time.

Table 5.1: Ranges of dates and opportunities used to generate porkchop data.

2033 2035 2037
Outbound Departure Date 10/31/2033 1/28/2035 -

Arrival Date 2/13/2033 5/13/2035 -
Inbound Departure Date - 1/28/2035 4/12/2037

Arrival Date - 5/13/2035 7/26/2037

CLO is further given two additional ConOps level degrees of freedom in the Earth

aggregation and Mars parking orbits. NASA’s campaign aggregated all three vehicles in

LEO and used a 1-sol Mars parking orbit. This trade study will add a HEO aggregation

option as well as cover parking orbits from 1-sol to 7-sol and adding LMO. The HEO
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Figure 5.7: Porkchop plot for the outbound 2033 Earth-Mars opportunity.

aggregation option allows the optimizer to asses if more of a load can be put on the launch

vehicles rather than the in-space transportation systems. With the node parameterization,

the CLO process will consider the parking orbits as individual, n-sol and LMO nodes,

with each representing a range of orbits, defined in Subsection 2.6.1. This gives a total 4

combinations of aggregation and parking orbits for each vehicle. However, the porkchop

data now needs to be augmented as it assumes a direct transfer from Earth’s sphere of

influence to that of Mars. Depending on the departure and arrival orbits at either body,

the spacecraft must perform an escape or capture burn in addition to the interplanetary

transfer ∆V . With the porkchop data providing the departure and arrival hyperbolic excess
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Figure 5.8: Porkchop plot for the outbound 2035 Earth-Mars opportunity.

velocities, V∞,dep, V∞,arr, the total ∆V from an orbit can be calculated using Equation 5.1

[88].

∆Vtotal =|
√

(Vescape,body,dep)2 + (V∞,dep)2 − Vperiapsis,orbit,dep | +

|
√
(Vescape,body,arr)2 + (V∞,arr)2 − Vperiapsis,orbit,arr |

(5.1)

Cargo elements arriving at Mars use aerocapture to capture into Mars orbits, so the

additional capture ∆V is assumed to be zero for those cases. The same is true for the MTV

arriving at Earth, as capture is done via a Lunar Gravity Assist (LGA).

The number of interplanetary arcs are further reduced by filtering out ones that have

extremely high ∆V s. Table 5.2 defines the limits assumed for the interplanetary ∆V ’s
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Figure 5.9: Porkchop plot for the inbound 2035 Mars-Earth opportunity.

for each opportunity and transfer direction, where values were chosen based on mission

data from DRA 5. Launch arcs in the campaign are restricted based on the interplanetary

departure dates from Earth to reduce computational complexity. A similar process is used

for arcs towards Earth for Crew return. Figure 5.11 shows the full network of arcs and nodes

used for the Mars campaign trade study, which serves as the basis for the path definition,

detailed in the following section.

Table 5.2: Limits of interplanetary ∆V on arc generation depending on the opportunity and
transfer direction.

2033 [m/s] 2035 [m/s] 2037 [m/s]
Outbound 3,500 6,000 -
Inbound - 6,000 3,500
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Figure 5.10: Porkchop plot for the inbound 2037 Mars-Earth opportunity.
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Figure 5.11: Full Mars campaign network used for the vehicle and campaign-level trade studies.
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Vehicles and Other Elements

More than just the propulsive elements were modeled for this campaign in the network.

Each vehicle, whether crew or cargo, has a core stage and an inline tank, at the minimum.

The core stage has fuel tank for storage as well as the engines and accompanying subsys-

tems, making it the main propulsive stage for each element. The inline tank mainly provides

additional fuel storage for the core stage and is designed such that it is not discarded after

being spent; it stays with the vehicle until the mission is completed, both for crew and cargo

variants. Crew vehicles have an additional drop tank, design to be discarded immediately

following the Earth-Mars transfer, and further requires a structural truss element as hous-

ing. There are several crew elements in the campaign, each providing a different function

in the crew stack. The Transit Habitat (THAB) houses the 6 crew members during the

outbound and inbound interplanetary transits, and an Orion is docked to it throughout the

mission for additional habitable volume while also doubling as the Earth reentry vehicle.

A shorter truss connects the propulsive elements to the THAB and houses a container of

contingency consumables for the crew, as well as a docking module for another Orion that

delivers the crew to the MTV, but does not go to Mars. It is assumed that the truss payload

element also includes the mass of the shorter truss as the consumables container is modeled

as a vehicle since it is staged prior to Mars departure.

For the cargo vehicles, the individual payload elements are modeled as fixed masses

as well as the cargo aeroshell stages that carry them, and it is assumed that the masses of

the latter include the propellant required Entry, Descent, and Landing (EDL) to descend to

the Martian surface. Cargo 1 will carry the MAV, ISRU, and Fission Surface Power (FSP)

required to power the ISRU, while Cargo 2 will carry the Surface Habitat (SHAB). Some

of the payload elements are also modeled as vehicles to accurately model the flow of crew

consumables throughout the network and limitations within the CLO process. Both the

THAB and SHAB are modeled as such, but their masses are effectively zero as a vehicle

to avoid double-counting with their payload counterparts. The MAV is also modeled as
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a vehicle, as the crew is on board during ascent from the Martian surface, and its mass

assumes that it has the appropriate amount of propellant to ascend to the parking orbit. Ta-

ble 5.3-Table 5.5 list of all the elements, separated in to categories based on their function,

included in the network, as well as their roles and main parameters.

Table 5.3: List of vehicle elements representing the cargo stacks, their roles within the
network and initial design parameters.

Design Parameter Cargo Core Cargo Inline Payload Element
Role Propulsive Element Propulsive Element Fixed Vehicle

Inert Mass (kg) 37,200 12,500 115,000
Diameter (m) 10 8.9 10
Height (m) 26.6 16.3 30

Fuel LH2,NH3,H2O LH2,NH3,H2O -
Isp (s) 900,360,315 900,360,315 -

Boilofffuel (kg/day) 0 0 0
Max Fuel Mass (kg) 1,000,000 1,000,000 1,000,000
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Table 5.4: List of vehicle elements representing the crew stack, their roles within the network and initial design parameters.

Design
Parameter

Crew Core Crew Inline Crew Drop
Tank

Truss Consumables
Container

Transit
Habitat

Role Propulsive
Element

Propulsive
Element

Propulsive
Element

Fixed Vehicle Fixed
Vehicle

Fixed
Vehicle

Inert Mass
(kg)

51,600 27,000 21,000 15,600 13,500 27,500

Diameter (m) 10 10 10 8.9 7.5 4.5
Height (m) 30 30 30 25 7 20

Fuel LH2,NH3,H2O LH2,NH3,H2O LH2,NH3,H2O - - -
Isp (s) 900,360,315 900,360,315 900,360,315 - - -

Boilofffuel
(kg/day)

0 0 0 0 0 0

Max Fuel
Mass (kg)

1,000,000 1,000,000 1,000,000 - - -
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Table 5.5: List of payload elements and their roles within the network and initial design
parameters.

Design
Parameter

Surface
Habitat

MAV Orion 1 Orion 2 Crew

Role Fixed
Vehicle

Fixed
Vehicle

Fixed
Vehicle

Fixed
Vehicle

Fixed
Payload

Inert Mass (kg) - - 14,000 14,000 600
Diameter (m) 7.6 4 4 4 0.5
Height (m) 3 4 4 4 0.5

NASA’s DRA 5 concept launches several sets of multiple elements on a single Ares

V vehicle, but due to further limitations in the CLO process, every individual element in

this network must be launched separately. The full crew element of the THAB, Orion

Two, Consumables Container, Short Truss, and Docking Module is launched separately

rather than on one SLS Block 2B. The same is true for the crew drop tank and its large

truss housing. This limitation comes with the added risk of more launches, but potentially

using smaller, cheaper launch vehicles for those extra launches. Additionally, to facilitate

a more apples to apples comparison between the results of using this methodology to that

of generated by NASA in DRA 5, the cadence of SLS launches is reduced to 30 days,

mimicking the capability that was expected of the Ares V.

Paths

Paths are used extensively to model the proper operations for the NTP vehicle for both of

the vehicle and campaign level trade studies. Rather than defining one large path for each

vehicle, many smaller paths are used to define parts of each vehicle’s overall mission. Each

path is also given a small time domain that the optimizer can choose from to further reduce

computational complexity. Table 5.6 detail all paths that are defined for CLO and Table 5.7

list the inline and drop tank ranges given as options to open up higher energy transfer

options. Each path input is repeated for the different number of tank configurations.
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Table 5.6: Defined paths for the Mars campaign trade studies.

Path Event Type Arc Options Timestep Range
Cargo 1 Aggregation and

Departure
∆V Departure: LEO,HEO,

Arrival: n-sol,LMO
238-329

Cargo 1 Arrival and EDL ∆V Departure: n-sol,LMO,
Arrival: Martian surface

392-749

Cargo 2 Aggregation and
Departure

∆V Departure: LEO,HEO,
Arrival: n-sol,LMO

238-329

Crew Aggregation and
Departure

∆m Crew from Orion 1 to
THAB

1022-1113

∆V Departure: LEO,HEO,
Arrival: n-sol,LMO

-

Crew Mars Ops 1 ∆m Crew from THAB to
SHAB

1232-1442

Crew Surface Ops ∆V Departure: n-sol,LMO,
Arrival: Martian Surface

1253-1463

∆T 504 days -
∆V Departure: Martian

Surface, Arrival:
n-sol,LMO

-

Crew Mars Ops 2 ∆m Crew from SHAB to
THAB

1785-1972

∆V Departure: n-sol,LMO,
Arrival: LEO,HEO

-

Crew Return Ops ∆m Crew from SHAB to Orion
2

1988-2240

∆V Departure: LEO,HEO,
Arrival: Earth Surface

-
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Table 5.7: List of different tank configurations given to the optimizer to trade as a range
[min,max].

LH2 (Long Stay) NH3 H2O Short Stay
Cargo Inline 1 1-2 2-3 1

Crew Drop Tanks 1 10-15 20-25 2-4

For paths with multiple drop tanks or multiple propellant sources, it is assumed that

over the course of a single arc and single burn, the amount of propellant burned is split

evenly amongst those elements. Further, spent elements are not discarded until the after

the transfer, rather than being discarded immediately after being spent. These two points

are key limitations within the CLO process, identified as points of departure for future

work.

5.4.2 Vehicle Sizing and Synthesis

As with the HLS campaign example, only the propulsive elements are sized by the VSS

process for the crew and cargo vehicles. Table 5.8 lists the subsystems used for each of

these propulsive elements and what part of the vehicle they are modeling. The core, inline,

and drop stages largely have similar architectures, and the only difference between them

being the inclusion of engines on the core. If a stack requires more than one inline or drop

tanks, they use exactly the same architecture definition as the original. For the vehicle-

level trade study, although the architecture definitions are identical between the different

propellant species, the main difference in the fuel tank models would be the inclusion of

active CFM systems for the LH2 NTP option compared to H2O and NH3. Table 5.9 detail

the main design parameters used in VSS for the main propulsive elements, and a 15% MGA

was used across all subsystems.
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Table 5.8: List of crew vehicle elements and the subsystems that were modeled for each of
them in VSS.

Core Stage Inline Stage Drop Tank
Propulsion NTP Fuel Tank NTP Fuel Tank NTP Fuel Tank

NTR - -
RCS RCS RCS

Avionics Sensors Sensors Sensors
Comms Comms Comms

Structures Structures Structures Structures
Power Power Power Power

Thermal Radiator Radiator Radiator
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Table 5.9: Key design parameters used in VSS for each of the propulsive elements across the different alternative campaigns: [LH2-Long
Stay, NH3, H2O, LH2-Short Stay].

Subsystem Design Parameter Core Stage Inline Stage Drop Tank
Propulsion Cryocooler 20K, none, none, 20K 20K, none, none, 20K 20K, none, none, 20K

Tank l/d 1.4 1.4 1.4
Tank Pressure [psi] 40 40 40

Tank Temperature [K] 20, 245, 323, 20 20, 245, 323, 20 20, 245, 323, 20
Tank Material AL2195 AL219 5 AL2195
Num Engines 3 0 0

Engine Thrust [klbf] 25 0 0
Isp 900,360,315,900 900,360,315,900 900,360,315,900

Tchamber [K] 2,800 0 0
Pchamber [MPa] 3.5 0 0

Avionics ngyros 6 6 6
nsun senors 8 8 8
nstar sensors 4 4 4

nhorizon sensors 3 3 3
Accuracy 1 1 1

Comms Package Deep Space Deep Space Deep Space
Structures Structures Fraction 0.30 0.30 0.30

RCS RCS Fraction 0.20 0.20 0.20
Power ηcell 0.33 0.33 0.33

Array Density [kg/m2] 18.2 18.2 18.2
Operations Distance [AU] 1.5 1.5 1.5

Battery specific capacity [W*hr/kg] 125 125 125
Depth of Discharge 0.5 0.5 0.5
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The VSS process handles the mission level degrees of freedom for the problem, which

in this cases is the semimajor axis, or orbital energy of the two parking node options at

Mars. The valid ranges are shown below in Table 2.7. A notional rubberized MAV is

included the VSS optimization problem to properly assess the split between the in-space

and ascent transportation systems. Though not being fully sized at the subsystem-level,

excluding this element from this part of the problem would only unintentionally force the

optimizer to push the orbit up as high as possible to reduce the load on the in-space systems.

In other words, the MAV serves as a penalty function for the optimizer choosing higher

orbits.

The MAV is represented as a scalable propulsive element with the 6 crew members

serving as its payload. It is assumed to have a PMF of 0.6, and using Liquid Oxygen

(LOx)/Liquid Methane (LCH4) propellant with an Isp of 340s. These two parameters are

used to directly size the MAV using the propellant mass calculated using the ideal rocket

equation and the resulting ∆V from mission analysis, as shown in Equation 5.2. This

process is included regardless if CLO decides to choose an n-sol or LMO Mars parking

node.

minert = mprop ∗
1

PMF − 1
(5.2)

5.4.3 Process Parameters

Given the increased computational complexity of the Mars campaign design compared to

that of HLS, the maximum runtime of CLO is increased to 24 hours. The MIP gap for

the Gurobi optimizer is set to 0.001 and the convergence tolerance is still set at 5%. The

maximum number of iterations is set to 20. With the inclusion of tank configuration degrees

of freedom and interplanetary arcs, the objective function presented in Subsection 2.6.8

should be augmented to minimize both. The deep space time term is formulated as:
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wdst

1000

∑
a∈ALEO,ES

tdeparture ∗ borion2,a −
∑

a∈Ainterplanetary,outbound

tdeparture ∗ borion2,a (5.3)

which replaces the execution time objective term. Further, the tank configuration choice

can be minimized by adding a term for the number of launches:

wnlaunches

ntanks,max

∑
lv∈LV

∑
v∈V

blv,v (5.4)

Table 5.10 shows the weights used for the CLO problem.

Table 5.10: Objective weights for the Mars campaign CLO problem.

Objective Term Weight Max Value
Propellant Mass 0.25 80,000

Number of Burns 0.22 10
Number of Launches 0.15 30

Deep Space Time 0.23 1,000
Launch Costs 0.15 4,100,000,000

5.5 Vehicle Trade Study Results

Solutions generated by the integrated methodology are defined by large datasets given the

full campaign and vehicle design processes. Each vehicle-propellant species option is a

fully optimized campaign with vehicle ConOps, payload paths, and vehicle mass histories.

Table 5.11 lists the total runtimes to generate the campaign and vehicles for each of the 3

propellant options. VSS provides a subsystem-level mass breakdown for each vehicle that

was included in the sizing, in this case the core, inline, and drop stages for each campaign

option. In addition to the three options explored, NASA’s own DRA 5 results are presented

in order to compare how the method performs comparatively. DRA 5 provides sets of

alternatives for its NTP architectures across a series of Earth-Mars opportunities, but to

offer a fair comparison with the results generated for this research, only campaigns and
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vehicles designed for the same 2033-2035 opportunities were included. The convergence

performance for each solution is presented in Section D.1.

Table 5.11: Runtimes to produce each integrated solution in the vehicle-level trade study.

Propellant Option CLO [d] VSS [s] Total [d]
LH2 4 385 4.00445
NH3 4 424 4.00491
H2O 4 481 4.00557

A comparison of the total campaign mass for each option is shown in Figure 5.12 as an

initial campaign comparison. Between the three new options generated by the methodol-

ogy, the LH2 option is significantly less massive than those of the non-cryogenic propellants

of NH3 and H2O. Given the exponential nature of the ideal rocket equation, the propellant

mass required to execute the same missions will be more than 3x higher than that required

with LH2.
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Figure 5.12: Total mass required to execute each campaign alternative.

The primary differences in mass between the alternatives can be further broken down

into propellant and inert masses, as shown in Figure 5.14. Expected trends in propellant
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requirements based on the differences in Isp is clear in this figure. Comparing the propellant

masses, labeled as (1), using ammonia requires an increase of almost 1,400t, or 4x more

fuel, than LH2, and using water requires another 1,200t. One of the primary purposes of

considering these two propellants in addition to the better performing LH2 is the investi-

gation of how much the inclusion of active CFM systems affect the inert mass of the LH2

alternative. Although the propellant masses for water and ammonia are significantly higher,

Figure 5.14 also shows through label (2) that the inert mass required does not increase at

the same rate. The inert mass for ammonia is only nearly 10t higher than that for LH2

which is only a 1.6% difference.
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Figure 5.13: Total mass required to execute each campaign alternative.

Another way to assess the efficiency of the size of these elements between each al-

ternative campaign is the ratio of inert mass to required propellant mass, or a measure of

how much hardware is necessary to carry the propellant. This can be calculated using Fig-

ure 5.13, where it shows the value is significantly higher for the LH2 campaign than that of

the other two propellants. For the former, at a value of 1.41, the inert mass contributes more

to the overall campaign mass than the propellant, where the opposite is true for ammonia
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Figure 5.14: Breakdown of campaign mass into propellant and inert masses.

and water. The jump is most significant between LH2 and ammonia, and using water over

ammonia does not offer as much of a benefit.

Figure 5.15 and Figure 5.16 show the launch counts and launch costs, respectively,

for each campaign alternative. For the three new campaigns generated, only four separate

launch vehicles were chosen: NASA’s SLS 1B and 2B, and SpaceX’s Falcon Heavy and

Starship. Distribution of launches between the three campaign alternatives are very similar,

with a very Starship driven launch strategy. Given the price to performance ratio of Starship

as well as the dimensions of its fairing, this is expected behavior. However, SLS 2B is still

used for larger and more massive elements. Figure 5.16 shows the launch costs expectedly

follows the same trends as the counts, and each campaign costs is dominated by the use of

SLS 2B even though the number of Starship launches is much more. Figure 5.17 depicts

the dollar launch costs per unit campaign mass for campaign option showing that the lower

Isp propellants are much more costs effective. By itself, this may indicate it is a feasible

alternative, but the new methodology provides the capability to assess many different parts

of the campaign, telling the whole story. In this case the financial costs are accompanied by
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a significant increase in launch and element counts, potentially increasing risk with more

points of failure.
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Figure 5.15: Total launch counts required to execute each campaign alternative.
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Figure 5.16: Total launch costs required to execute each campaign alternative.
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Figure 5.17: The launch costs per unit campaign mass for each campaign alternative.

With the CLO process, the ConOps and missions for each campaign can be compared

directly; where Figure 5.18-Figure 5.20 show the vehicle paths for each alternative. Ta-

ble 5.12 supplements the paths with the accompanying dates and ∆V data for those alter-

natives. Both show that the integrated methods closes on the same interplanetary mission

for all three propellant species. For the 504-day long-stay mission, all campaigns have the

same departure dates for both cargo missions and the subsequent crew missions. All cam-

paigns have both crew and cargo vehicles departing from LEO and parking at LMO. Cargo

1 departs on May 1st, 2033 and arrives at Mars 273 days later on January 19th, 2034, with

Cargo 2 only a week behind at both ends. As Cargo 1 stages its propulsive elements and

descents immediately to setup necessary surface systems, Cargo 2 stages its and waits in

LMO for the crew to arrive. After MTV aggregation and crew rendezvous, the crew trans-

fer from Orion to the THAB and depart towards Mars on June 24th, 2035 with an outbound

flight time of 203 days. The MTV stages its drop tanks and the crew transfers to Cargo 2

for descent to the Martian surface. They then transfer to the MAV after a 504-day surface

exploration phase which takes them back to the MTV, just in time for a Mars departure
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date of July 29th, 2037. The crew transfer to the pre-docked Orion after a 266-day trans-

fer which returns them to Earth with a splashdown date of April 11th, 2038. This mission

results in a total deep space time for the crew of 1,022 days, or nearly 3 years.

Table 5.12: Summary of dates and transit times produced by the new methodology and
DRA 5.

New Methodology
Earth Aggregation LEO

Mars Parking LMO (271km x
271km)

Cargo 1 Earth Departure Date 5/1/2033
Mars Arrival Date 1/29/2034

Time of Flight [days] 273
Cargo 2 Earth Departure Date 5/8/2033

Mars Arrival Date 2/5/2034
Time of Flight [days] 273

Crew Earth Departure Date 6/24/2035
Mars Arrival Date 1/13/2036

Outbound ToF [days] 203
Mars Stay Time

[days]
532

Surface Stay Time
[days]

504

Mars Departure Date 7/19/2037
Earth Arrival Date 4/11/2038

Inbound ToF [days] 266
Splashdown Date 4/25/2038
Total Deep Space

Time [days]
1022

Although the mission profiles are the same for each campaign alternatives, the main

differences lie in each of their vehicle configuration and subsequent aggregation timelines.

Differences in the Isp for each propellant option is reflected in the overall propellant required

for the campaign and further affects the number of required inline and propellant tanks. The

final count of each of them are shown in Table 5.13. For both cargo missions, ammonia and

water options require one and two more inline tanks than that of LH2, respectively. The

MTV requires significantly more drop tanks for its ammonia and water options, increasing
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Figure 5.18: Vehicle paths for the long stay LH2 NTP campaign option.

from just a single to 14 for the former and 22 for the latter. The Isp change further propagates

down to the launch and aggregation strategy, as seen in Figure 5.18-Figure 5.20, and further

detailed in Table 5.15 and Table 5.14. Compared to the LH2 option, the ammonia campaign

requires an additional two launches for the two extra cargo inline tanks, which pushes

the assembly start date from October 8th, 2034 to July 10th, 2033. This means the MTV

assembly must start before either cargo vehicle has arrived at Mars to be able to depart by
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Figure 5.19: Vehicle paths for the long stay NH3 NTP campaign option.

June 24th 2035, potentially increasing the risk of the overall mission in the event one of

those missions fail. For water, the campaign time domain anchor date was pushed back to
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Figure 5.20: Vehicle paths for the long stay H2O NTP campaign option.
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allow for the 22 crew drop tanks and 6 total cargo inline tanks to be launched while still

being properly constrained by launch vehicle capabilities. The spacing between the cargo

and crew vehicle assembly timelines is non existent as every launch opportunity is taken to

assemble all elements in time for their Earth departure dates.

Table 5.13: Tank counts for each campaign alternative.

LH2 NH3 H2O
Crew Inline 1 1 1

Crew Drop Tanks 1 14 22
Cargo 1 Inline 1 2 3
Cargo 2 Inline 1 2 3

CLO calculates the consumables required on both habitats to support the crew through-

out the mission. Figure 5.21 and Figure 5.22 show the mass histories of food, water, oxygen

on the THAB and SHAB throughout the campaign as well as indicating when the crew is

on board. The THAB requires slightly less consumables than the SHAB as the crew spends

more time on the surface than in transit, a difference of 95 days. Notice the consumables

mass only decreases on each element during periods when the crew is on board.

The subsystem mass breakdowns in Figure 5.23-Figure 5.25 shows the inert masses are

similar across each element type. Core stages, labeled as (1) are dominated by the massive

size of the NTP engines and are several times more massive than the inline or drop tank

engines, regardless of the propellant species. Ammonia and water do not require active

CFM systems and the masses between them and LH2 reflects a significant difference. The

inline and drop tanks for ammonia and water are very mass efficient, the ammonia crew

inline tank reaching as low as 5t, labeled as (2).

5.6 Campaign Trade Study Results

Short stay focused campaigns are expected to have very different mission profiles compared

to that of longer stay options due to the Earth-Mars synodic cycle. The former typically

targets a crew return in the same opportunity that they departed from, otherwise would be
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Table 5.14: Launch dates for every element in each campaign alternative.

LH2 NH3 H2O
Crew Core 10/8/2034 7/10/2033 10/3/2032

Crew Inline Tank 11/12/2034 8/14/2033 11/7/2032
Crew Drop Tank 1 12/17/2034 9/18/2033 12/12/2032
Crew Drop Tank 2 10/23/2033 1/16/2033
Crew Drop Tank 3 11/27/2033 2/20/2033
Crew Drop Tank 4 1/1/2034 3/27/2033
Crew Drop Tank 5 2/5/2034 5/1/2033
Crew Drop Tank 6 3/12/2034 6/5/2033
Crew Drop Tank 7 4/16/2034 7/10/2033
Crew Drop Tank 8 5/21/2034 8/14/2033
Crew Drop Tank 9 6/25/2034 9/18/2033

Crew Drop Tank 10 7/30/2034 10/23/2033
Crew Drop Tank 11 9/3/2034 11/27/2033
Crew Drop Tank 12 10/8/2034 1/1/2034
Crew Drop Tank 13 11/12/2034 2/5/2034
Crew Drop Tank 14 12/17/2034 3/12/2034
Crew Drop Tank 15 4/16/2034
Crew Drop Tank 16 5/21/2034
Crew Drop Tank 17 6/25/2034
Crew Drop Tank 18 7/30/2034
Crew Drop Tank 19 9/3/2034
Crew Drop Tank 20 10/8/2034
Crew Drop Tank 21 11/12/2034
Crew Drop Tank 22 12/17/2034

Truss 1/21/2035 1/21/2035 1/21/2035
Cons. Container 2/25/2035 2/25/2035 2/25/2035

TransHab 4/1/2035 4/1/2035 4/1/2035
Orion Two 5/6/2035 5/6/2035 5/6/2035
Orion One 6/10/2035 6/10/2035 6/10/2035

Cargo 1 - MAV & ISRU 11/7/2032 8/29/2032 10/19/2031
Cargo 2 - SHAB 12/12/2032 10/3/2032 11/23/2031

Cargo 1 Core 1/16/2033 11/7/2032 12/28/2031
Cargo 1 Inline 1 2/20/2033 12/12/2032 2/1/2032
Cargo 1 Inline 2 - 1/16/2033 3/7/2032
Cargo 1 Inline 3 - 4/11/2032

Cargo 2 Core 3/27/2033 2/20/2033 5/16/2032
Cargo 2 Inline 1 5/1/2033 3/27/2033 6/20/2032
Cargo 2 Inline 2 5/1/2033 7/25/2032
Cargo 2 Inline 3 8/29/2032
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Table 5.15: Launch vehicles selected for every element in each campaign alternative.

LH2 NH3 H2O
Crew Core Starship Starship SLS 2B

Crew Inline Tank SLS 2B Starship Starship
Crew Drop Tank 1 SLS 2B Starship Starship
Crew Drop Tank 2 Starship Starship
Crew Drop Tank 3 Starship Starship
Crew Drop Tank 4 Starship Starship
Crew Drop Tank 5 Starship Starship
Crew Drop Tank 6 Starship Starship
Crew Drop Tank 7 Starship Starship
Crew Drop Tank 8 Starship Starship
Crew Drop Tank 9 Starship Starship

Crew Drop Tank 10 Starship Starship
Crew Drop Tank 11 Starship Starship
Crew Drop Tank 12 Starship Starship
Crew Drop Tank 13 Starship Starship
Crew Drop Tank 14 Starship Starship
Crew Drop Tank 15 Starship
Crew Drop Tank 16 Starship
Crew Drop Tank 17 Starship
Crew Drop Tank 18 Starship
Crew Drop Tank 19 Starship
Crew Drop Tank 20 Starship
Crew Drop Tank 21 Starship
Crew Drop Tank 22 Starship

Truss SLS 2B SLS 2B SLS 2B
Cons. Container Starship Starship Starship

TransHab FH FH FH
Orion Two SLS 1B SLS 1B SLS 1B
Orion One SLS 1B SLS 1B SLS 1B

Cargo 1 - MAV & ISRU SLS 2B SLS 2B SLS 2B
Cargo 2 - SHAB SLS 2B SLS 2B SLS 2B

Cargo 1 Core Starship SLS 2B SLS 2B
Cargo 1 Inline 1 Starship Starship Starship
Cargo 1 Inline 2 Starship Starship
Cargo 1 Inline 3 Starship

Cargo 2 Core Starship SLS 2B SLS 2B
Cargo 2 Inline 1 Starship Starship Starship
Cargo 2 Inline 2 Starship Starship
Cargo 2 Inline 3 Starship
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Figure 5.21: Consumables mass history on the THAB for the long stay campaigns.

stranded near Mars waiting for the next one 26 months later. Pushing this quick return

increases energy, or ∆V requirements on the in-space transportation systems. For this

trade study, the crew departure and return opportunities occur during the 2035 opportunity,

immediately following the cargo missions in 2035 and both stay options will use LH2 to

reduce the number of variables. The long stay campaign option with a target of 500 days

is the same solution provided in the previous section for the LH2 NTP option. Shorter

stays at Mars are typically between 30-50 days, and so this trade study will explore a 28

day option to potentially identify a lower bound on the design space and keep consistent
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Figure 5.22: Consumables mass history on the SHAB for the long stay campaigns.

with the 7-day timesteps of the network. NASA has not detailed a full short stay campaign

within DRA 5 and so it will not be use in the comparison. A key architecture change for

the short stay option is the removal of a SHAB and its transportation system as the MAV

has the capabilities to house the crew for the short stay time [8]. The short stay option took

a total of 3.003113 days to close, after 3 iterations. The convergence performance for each

solution is presented in Section D.2.

Figure 5.26 shows the overall campaign mass for each alternative is very similar in

magnitude to each other. Although it is expected that the shorter stay missions require
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Figure 5.23: Subsystem-level mass breakdown for vehicles in LH2 long stay campaign.

more propellant, the added mass is offset by the remove of an entire cargo pre-deploy

mission. Investigating further with Figure 5.27, which shows that the mass growth of the

propulsive elements is significant, meaning most of the savings is due to the removal of the

massive 115t payload. Figure 5.28 further supports this observation showing that although

the propellant mass required is significantly higher for the short stay alternative, its inert

mass is actually lower.

Figure 5.29, Figure 5.30, and Figure 5.31 tell an interesting story regarding the launch

strategy between the two surface stay options. The long stay campaign leans heavily on

Starship to launch its elements, whereas the short stay solution added an SLS 2B, which
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Figure 5.24: Subsystem-level mass breakdown for vehicles in NH3 long stay campaign.

increases the costs enough to overtake the launch costs for the longer stay option. This

results in a higher costs per unit mass for the short stay option.

For the short stay campaign depicted in Figure 5.32, the crew departs Earth on June

10th, 2035 and arrive at Mars just 182 days later on December 9th, 2035, with an outbound

∆V of 5,666 m/s. After transferring to the MAV for descent and 28-day surface stay, the

crew ascends and transfers back to the THAB, departing from Mars on February 3rd, 2036.

The crew then arrive at Earth 245 days later on October 10th, 2036 with a splashdown date

exactly 2 weeks later. The inbound transfer has a ∆V value of 5,145 m/s. Although the

second cargo mission is not executed, the MTV requires 2 additional drop tanks to perform

the higher energy short stay mission. The launch dates and chosen launch vehicles for
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Figure 5.25: Subsystem-level mass breakdown for vehicles in H2O long stay campaign.

the short stay campaign, as compared to the long stay option are shown in Table 5.16 and

Table 5.17.

Figure 5.33 shows the subsystem-level breakdown of the inert mass for each propulsive

element in the short stay campaign. These results line up well the previous sets with the

core stages being more massive than others, due to the NTRs themselves. The short stays

impact only affects the crew elements with the higher outbound and inbound ∆V s. The

single cargo mission takes the same opportunity as it does for the long stay missions, as

their transit times are independent of that of the MTV.
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Figure 5.26: Total mass required to execute each surface stay campaign alternative.
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Figure 5.28: Breakdown of campaign mass into propellant and inert masses for the long
and short stay alternatives.
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Figure 5.30: Launch costs distribution for each campaign-level trade option.
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Table 5.16: Launch dates for every element in each surface stay campaign alternative.

LH2 Long Stay LH2 Short Stay
Crew Core 10/8/2034 7/16/2034

Crew Inline Tank 11/12/2034 8/20/2034
Crew Drop Tank 1 12/17/2034 9/24/2034
Crew Drop Tank 2 10/29/2034
Crew Drop Tank 3 12/3/2034

Truss 1/21/2035 1/7/2035
Cons. Container 2/25/2035 2/11/2035

TransHab 4/1/2035 3/18/2035
Orion Two 5/6/2035 4/22/2035
Orion One 6/10/2035 5/27/2035

Cargo 1 - MAV & ISRU 11/7/2032 2/13/2033
Cargo 2 - SHAB 12/12/2032

Cargo 1 Core 1/16/2033 3/20/2033
Cargo 1 Inline 1 2/20/2033 4/24/2033

Cargo 2 Core 3/27/2033
Cargo 2 Inline 1 5/1/2033

Table 5.17: Launch vehicle selections for every element in each surface stay campaign
alternative.

LH2 Long Stay LH2 Short Stay
Crew Core Starship SLS 2B

Crew Inline Tank SLS 2B Starship
Crew Drop Tank 1 SLS 2B SLS 2B
Crew Drop Tank 2 SLS 2B
Crew Drop Tank 3 SLS 2B

Truss SLS 2B SLS 2B
Cons. Container Starship Starship

TransHab FH FH
Orion Two SLS 1B SLS 1B
Orion One SLS 1B SLS 1B

Cargo 1 - MAV & ISRU SLS 2B SLS 2B
Cargo 2 - SHAB SLS 2B

Cargo 1 Core Starship Starship
Cargo 1 Inline 1 Starship Starship

Cargo 2 Core Starship
Cargo 2 Inline 1 Starship
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Figure 5.33: Subsystem-level mass breakdown for vehicles in LH2 short stay campaign.
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5.7 Analysis and Discussion

With these results, the main point to address is how they fill the gaps identified in the first

three chapters and if they prove the overall hypothesis proposed by this research, restated

below:

Overarching Hypothesis: If the CLO and VSS processes are integrated, then impacts

of the vehicle and campaign trades on each other can be directly quantified.

Many effects between the different parts of the campaign and vehicle design problems

that were identified through running the Mars campaign trade studies with this methodol-

ogy. The chosen interplanetary missions affect the sizing of each individual subsystems,

which also affect each other. These sizes not only affect the front end of the campaign, but

that front end also affects the sizes themselves as all vehicles are constrained by what capa-

bility launch vehicles have. Depending on the campaign objective function, it may prefer

larger, more expensive vehicles to reduce the number of launches with bigger vehicles or

tend towards more, smaller launches. These questions are now answered in the loop with

the direct integration and the large set of results; discussion from the previous two sections

show that claim in the Overarching Hypothesis is supported.

As found during literature review, this iterative process is executed in the state-of-the-

art, but the campaign and vehicle design processes are disintegrated and each one is run

separately, limiting the ability to run trades in a relatively short amount of time. Further,

although the set of results produced by CLO were also produced by DRA 5, sizing for

the vehicles in DRA 5 was done at the system-level, meaning their NTP solution did not

have a subsystem-level mass breakdown. Any vehicle trades performed using their method

would not include the effects on the rest of the vehicle. That is a propellant species change

would only show impacts on the mission and the overall system mass; it would be difficult

to show how it affects the design of the tanks, the accompanying power, structural, and
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more. Figure 5.34 is an n2 diagram of the crewed mission VSS problem, showing all of the

different design variables across the problem and their connections. Including these vari-

ables within CLO would likely significantly increase the runtime and by solving the vehicle

MDAO problem externally, these subsystem-level sizing solutions can found more quickly.

Other CLO formulations presented in Chapter 2 have the same limitations, as typically they

do not represent the vehicle at the subsystem-level. The methodology proposed by Isaji et

al. does integrate the vehicle MDAO problem and though it was stated that higher fidelity

subsystem models could be integrated in a similar manner, but given the formulation itself,

more complex ConOps like the ones found in DRA 5 may be harder to include.

With this integrated method, there is more information available even at this early stage

of design, enabling more informed decision making. The relative speed in generating these

solutions is another key improvement as these four alternative solutions with their detailed

campaign and vehicle design information was generated over the course of 15 days. As

mentioned in Chapter 2, NASA’s took many months and hundreds of employees to build

DRA 5, which still lacked some information at both, the campaign and vehicle levels.

Tweaks in either design processes or running an additional trade can be done relatively

quickly.

Since the primary input to VSS is the mission sequence and vehicle ConOps, if the

optimal missions were known a priori, the VSS process could be used to find these solutions

in more quickly. However, the only way to know the mission set is optimal is if you

explored many of the available options, which is exactly what the CLO process is doing,

but in a more algorithmic manner. It provides the optimal interplanetary transfers, launch

and aggregation strategy, and even trading between the number of drop tanks and their size.

Although it may be feasible to manually find this solution using only VSS, it may not be

viable. The two processes are synergistic with each other and their integration improves

the way campaign and vehicle design is done.
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As the data from the vehicle and campaign-level trade studies supports it, the Overar-

ching Hypothesis can be accepted, thereby achieving the Research Objective and filling

the Key Gap.

231



Figure 5.34: An n2 diagram of the VSS problem for the short stay crew mission with LH2.
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6

CONCLUSIONS

With the goal of offering decision makers more information earlier on the SEC design

process, the research objective was to establish a methodology for the concurrent design of

SECs and transportation systems, enabling trade space exploration.

Fully integrated, the process is iterative in nature, where the converged solution is a

final campaign, optimized for its goals, and each vehicle sized optimally at the subsystem

level for its individual mission in the campaign. Integrating the two processes enables con-

current trade space exploration of the campaign and vehicle, where the impacts of changes

in either can be directly assessed. The inclusion of VSS enables the assessment changes

in subsystem level parameters on not only other subsystems on the vehicle, but the overall

campaign and overall ConOps. Different campaign goals in this methodology could be

implemented in CLO, which changes the mission set and sequence and further changes the

sizes of the vehicles within. Ultimately, this methodology enables the generation of many

different campaign alternatives in a relatively quick amount of time. Each vehicle in the

campaign is supported by sizing of vehicles at the subsystem level, all of which provides

decision makers more information up front to help make more informed down-selections.

The detailed state of the current state of the art was explored through a deep dive lit-

erature review to identify pieces that could be used to construct this methodology. The

campaign design problem was found to be a complex, logistics optimization problem that

can be represented through a TEGMCF. Paths enabled the modeling of complex ConOps

of vehicle stacks and payload transfer in the campaign. By representing SEC as a space

logistics network, the design problem could solved using mixed-integer programming to

identify the optimal flow of resources throughout, and by extension, the optimal set and se-

quence of missions in the campaign. This solution drives the design of each vehicle in the
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campaign, where each complex MDAO problem of transportation systems design is solved

using a VSS process.

The final process structure of the integrated methodology was constructed by iden-

tifying the three main research questions and subsequent hypotheses and experiments.

Through the first experiment, it was found that a NLGS solver performs better than Ja-

cobi iterations by solving in fewer iterations. Experiment 2 showed that for the problem

to be considered fully converged, both vehicle and mission coupling variables should be

used as the convergence criteria. That is, a valid solution must be both below the allowable

tolerance on the mission and vehicle side. Before addressing Hypothesis 3 directly, it was

decomposed into two smaller research questions. From these two, it was found that solving

the VSS problem first with a path guess that minimizes ∆V performs best for the overall

methodology. With these results and the previous formulations identified from literature,

the final process structure for the methodology was constructed in Figure 4.42.

Two trade studies were conducted at scale on a multi-year Mars campaign based on

NASA’s DRA 5. The NTP propellant species was used as the vehicle-level trade param-

eter, while surface stay duration was used for the campaign-level. Three propellants were

explored: LH2, NH3, and H2O, while a long stay of 504 days and short stay of 28 days

were used as the campaign-level parameters. The vehicle trade study showed the drastic

increase in mass required to used the higher density propellants, due to their much lower

Isp. The short-stay campaign was found to require a similar amount of mass to execute

compared to the long-stay option, but with higher costs. All of the data exhibited expected

behaviors showed that the methodology was successfully able to show the design sensi-

tivities of campaigns and vehicles on each other, therefore resulting the acceptance of the

overall hypothesis. The overall, fully decomposed structure of this research is presented in

Figure 6.1.
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Figure 6.1: Fully formulated logic structure for this thesis.
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6.1 Summary of Research Contributions

The primary contribution of this research is the methodology proposed to enable concurrent

trade space exploration of campaigns and vehicles. Integrating these two individual pro-

cesses allows decision makers to develop campaigns at the conceptual-level of design, but

supported by sizing of individual transportation systems within at the subsystem-level. Not

only does this mean this methodology provides more information earlier on in the design

process, but because of the runtimes, any changes or trades can be conducted in a relatively

quick amount of time. By formulating the campaign design problem as a logistics network

to optimize, each solution produced can be considered the best strategy, given some objec-

tive. Inclusion of the VSS further means that each vehicle in the campaign is optimized for

the specific mission it flies and changes in subsystem=level parameters can be propagated

up to the campaign-level.

Although this research used the foundation of previous space logistics formulations, the

specific implantation of CLO in this methodology includes the addition of nodal parameter-

ization. Instead of representing each node as a fixed orbit, they represent a range of orbits,

grouped by their orbital energy rather than a distance measurement. This way, launch arcs

can also be parameterized to include a continuous function for the throw capabilities of

each LV which allows each payload to be thrown as far as possible. For fixed node loca-

tions, if a payload mass is only slightly above the throw limit to a node, it is bumped down

to a lower node, even though it may not be the optimal one. The nodal parameterization

also enables the VSS to find the best orbit for each vehicle being sized. Higher fidelity tra-

jectory analyses could be integrated through surrogate models to enable more mission-level

trades that impact both the campaign and vehicle designs.

This specific implementation of CLO includes several features that model in-space op-

erations that are key to looking at the campaign design problem with a more transportation

centric approach. The concept of vehicle stacks was introduced with the previously es-
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tablished idea of paths, which enabled the investigation of more complex campaigns and

ConOps. Modeling payload transfers also enable proper modeling of crew and other dy-

namic payloads that are not simply sent to a single destination.

6.1.1 Expected Publications

The research proposed is expected to be the basis of a journal paper and a few conference

publications that describe the methodology and specific technical contributions to the field.

Improving the state of the art for SEC design by including VSS is the primary contribu-

tion that will be documented in a journal and conference paper. They will motivate the need

for this capability and describe how each individual process was selected, implemented and

eventually integrated for the methodology while also providing the results of the Mars cam-

paign trade study. As a supplement, an additional paper can be written on the translation of

campaign goals and mission scenarios for each lunar and Mars canonical example into the

CLO formulation. Although an initial trade study for the Mars campaign was done, further

studies can be performed using other trade variables and additional degrees of freedom,

such as the vehicle architectures in Figure 1.8, as well as apply quantitative technology

assessments. The same could be done for the lunar campaign, providing an independent

assessment of the different HLS options to identify potential areas of improvement. Both

papers will describe the CLO formulation as well as the subsystem level modeling used to

generate the vehicle point designs.

6.1.2 Future Work

Technical improvements should directly contribute to adding capability or fidelity to the

different design processes. Although vehicle stacks and payload transfers were added to

the CLO process, some assumptions potentially limit the type of campaigns that could

be assessed with this methodology. A key assumption is that any staged elements are

done so at the end of an arc conflicting with the ideal operation of staging spent elements
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immediately. This significantly affects modeling vehicles with many drop tanks used over

the course of a single transfer, just like the ones shown in the previous chapter. For example,

for the outbound opportunity, if four drop tanks are required for the burn, all 4 burn at the

same time, rather than burning one and staging immediately. This is because a single arc

requires the propellant load for the entire ∆V that arc requires. In other words, it would

be beneficial to investigate how to break up large transfers into smaller ones for proper

staging. A directly related limitation is the assumption that those large propellant burns are

split evenly amongst the elements performing the burn.

Further blurring the line between how vehicles and payloads are modeled within CLO

may not only help in addressing the previously mentioned limitation, but could enable

exploration of more complex campaign strategies. Currently, due to the underlying dif-

ferent assumptions, variables, and constraints between a vehicle and payload, modeling

specific architectures may required creative path definitions and other external constraints.

By defining what moves through the campaign as a generic element, these elements can

be utilized or built up in different ways much like the ontology defined in DYREQT. Fun-

damentally, this makes sense as more and more complicated vehicle architectures require

resource sharing across elements in a stack, which is further exacerbated with crew, ISRU,

or regular resupply missions. The combination of a more general definition of an element

and paths may offer more flexibility in what campaigns can be modeled and what more

trades can be conducted. Smaller fidelity improvements include: multi-element launches,

path-enabled auto resupply logic from multiple locations, and ISRU refueling.

Although a rudimentary translation tool is integrated between CLO and VSS, a more

robust solution is necessary for full automation. Currently, the translation tool must be

setup for each problem, but runs automatically til convergence. To improve runtimes, the

technical variables and constraints in Chapter 2 could be consolidated and refined so as to

be sure none are overlapping.
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APPENDIX A

SUBSYSTEM MODEL DESCRIPTIONS

A.1 Avionics

Avionics subsystems are modeled and sized primarily by user defined component set, di-

vided into the main groups of: Actuators, Sensors, Communications, and other miscella-

neous devices. Sizing algorithms are mainly sourced from [112] and are used to estimate

the mass and power draws for every component. Miscellaneous devices require a user in-

put count, unit mass, and unit power. It is assumed that 90% of the power required by all

avionics equipment is waste heat that needs to be rejected by the thermal subsystem.

A.1.1 Actuators

There are three main actuators considered for the avionics subsystems for in-space trans-

portation systems: reaction wheels, Control Moment Gyros (CMG), and Magnetic Tor-

quers (MT). Both the mass and power of each component is estimated using a piecewise

linear approximating function, a general form shown in Equation A.1, where the dependent

variable is the overall system mass. The slope and intercept for this approximating function

depends on the actual component, and a list is shown in Table A.1

mavionics = ncomponent ∗


ycomp,max−ycomp,min

10000
∗mv + ycomp,min if mv < 10000

ycomp,max ∗mv if mv ≥ 10000

(A.1)
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Table A.1: List of coefficients for estimating the mass of actuators as a linear approxima-
tion.

Component ymin ymax

Mass Reaction Wheels 2 20
CMGs 0.1 10
MTs 0.4 50

Power Reaction Wheels 10 100
CMGs 90 150
MTs 0.6 16

A.1.2 Sensors

The sensors follow the same model as the actuators, of a linear approximating function,

but the dependent variable here is the accuracy required. There are a total of six sensor

components considered, listed below in Table A.2, along with their linear coefficients.

Table A.2: List of coefficients for estimating the mass of sensors as a linear approximation.

Component ymin ymax

Mass Gyros 0.1 15
Sun Sensors 0.1 2

Star Sensor (Scanner) 2 5
Star Sensor (Fixed) 1 4

Horizon Sensor 0.5 3.5
Magnetometer 0.3 1.2

Power Gyros 0.6 16
Sun Sensors 0 3

Star Sensor (Scanner) 0.6 16
Star Sensor (Fixed) 5 10

Horizon Sensor 0.3 5
Magnetometer 0 1

A.1.3 Communications

The mass and power estimation of communications equipment is done via simple Master

Equipment List (MEL) aggregation. That is, the total mass of equipment is the sum of

the number of equipment and their mass densities, again sourced from [112]. The power

required calculation is handled the same way. A table of the considered communications
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equipment and their mass densities are listed in Table A.3, while the power densities are

listed in Table A.3.

Table A.3: List of unit mass values used to estimate the total mass of communications
equipment.

Component Unit Mass [kg/count]
S-Band Transponder 3.5

S-Band Diplexer 0.2
S-Band Cables 3

S-Band Antenna 0.4
X-Band Transmitter 0.2

X-Band Cables 0.2
X-Band Antenna 0.2

X-Band Transponder 3
X-Band TWTA 2.5

X-Band Diplexer 0.6
X-Band Switching Network 0.75

X-Band Cables (Deep Space) 5
X-Band Low Gain Antenna 0.7
X-Band Med Gain Antenna 1.5
X-Band High Gain Antenna 6

Ka-Band Exciter 0.3
Ka-Band TWTA 2.8

Ka-Band Waveguide 3
Ka-Band Antenna 2.5

Ka-Band Oscillator 1.3
Wireless Sensors Input

A.2 Propulsion

A.2.1 Tanks

The tanks subsystem model sizes many different components related to propellant storage

and distribution, all for a single tank. For vehicles with multiple tanks, this subsystem

model is called multiple times. Based on the inputs and amount of propellant required, the

geometry of each tank is calculated and used to estimate the bare dry mass. Additional
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Table A.4: List of unit power values used to estimate the total power required of commu-
nications equipment.

Component Unit Power [W/count]
S-Band Transponder 22

S-Band Diplexer 0
S-Band Cables 0

S-Band Antenna 0
X-Band Transmitter 0

X-Band Cables 0
X-Band Antenna 0

X-Band Transponder 0
X-Band TWTA 25

X-Band Diplexer 0
X-Band Switching Network 0

X-Band Cables (Deep Space) 0
X-Band Low Gain Antenna 0
X-Band Med Gain Antenna 0
X-Band High Gain Antenna 0

Ka-Band Exciter 1.5
Ka-Band TWTA 40.5

Ka-Band Waveguide 0
Ka-Band Antenna 0

Ka-Band Oscillator 2.5
Wireless Sensors Input

mass is added to account for any propellant management devices, as well as active and

passive thermal control systems.

Geometry

The geometry of the tank is driven primarily by an input l/d ratio and the total propellant

required calculated using the sizing mission. Given the density of the propellant in the tank,

the diameter of the tank can be calculated analytically using Equation A.2-Equation A.4.

The length of the tank is then simply the product of the diameter and the l/d ratio. If the

ratio is 1, the length of the tank is zero as the tank is a sphere.

Vprop,total = ullage ∗ ((mprop,required +mprop,trapped)/ρprop) (A.2)
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dtank =


(12 ∗ Vprop,total/(π ∗ (3(l/d)− 1)))1/3 if l/d ≥ 1

(24 ∗ Vprop,total/(π ∗ (l/d) ∗ (3 + (l/d)2)))1/3 if l/d < 1

(A.3)

ltank =


l/d ∗ dtank if l/d ≥ 1

0 if l/d < 1

(A.4)

Hardware Mass

To estimate the bare dry mass of the tank, the thickness of the tank is calculated using the set

tank pressure and the structural properties of the material. The mass can then be calculated

using the material density, surface area and thickness of the tank, all shown below.

t =
pksafetyd

4σ
(A.5)

mtank = Asurface,tank ∗ t ∗ ρmaterial (A.6)

mseparator = 0.2mtank (A.7)

mmisc,hardware = 0.05 ∗mtank (A.8)

mlad = 0.537 ∗mtank (A.9)
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mtotal = mtank +mseparator +mlad +mmisc,hardware +mmli +mpressurant,sys +mcrycooler

(A.10)

Thermal Control Systems Mass

Both passive and active thermal control systems are accounted for in this subsystem. Spray

On Foam Insulation (SOFI) and Multi-Layer Insulation (MLI) are the primary drivers of

passive systems, with the main inputs being SOFI thickness and the number of MLI layers.

The sizing algorithms are shown below:

Asurface,mli = 2π(dtank/2)
2 + (πdtankltank) (A.11)

mmli = 1.1 ∗ Asurface,mli ∗ 0.018 ∗ nmli (A.12)

245



ltank,out = ltank + 2t (A.13)

dtank,out = dtank + 2t (A.14)

Rc = dtank,out/2 (A.15)

Hc = ltank,out − dtank,out (A.16)

Rd = dtank,out/2 (A.17)

Hd = dtank,out/2 (A.18)

V0 = πR2
cHc + 4.0R2

d ∗Hd/3.0 (A.19)

Rc = Rc + tsofi (A.20)

Rd = Rd + tsofi (A.21)

Hd = Hd + tsofi (A.22)

Vf = πR2
cHc + 4.0 ∗R2

d ∗Hd/3.0 (A.23)

msofi = (Vf − V0) ∗ ρsofi (A.24)

Given the use of cryogenic propellants for both campaigns considered for this thesis,

it is important to establish a process for estimating the mass of active CFM systems. This

starts with estimating the thermal penetration into the tank based on the environment it is

operating in. The heat absorbed by the spacecraft from the sun, reflected heat from the

orbiting body, and radiated heat from the orbiting body are calculated as: [143]

Qsun =
1, 368

(dsun)2
(A.25)

Qbody,reflected = albedo ∗ viewfactor ∗Qsun (A.26)

Qbody,radiated = kb ∗ viewfactor ∗ (Tbody)
4 (A.27)

(A.28)
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The heat penetrating the MLI of the tank is estimated using: [144]

Tc = Ttank (A.29)

Th = ((
αmli

kbϵmli

) ∗ (Qsun +Qbody,reflected + (A.30)

ϵmli

αmli

Qbody,radiated) ∗ (
Across,tank

Asurface,mli

))0.25 (A.31)

(A.32)

Qmli = 3 ∗ (Asurface,mli ∗ (2.4e− 4 ∗ (.017 + 7e− 6 ∗ (800− (Th − Tc)/2)+

.0228 ∗ log((Th − Tc)/2)) ∗ 102.63 ∗ (Th − Tc)+

4.944e− 10 ∗ ϵmli ∗ (T 4.67
h − T 4.67

c ))/nmli)

(A.33)

Using the estimate of heat penetrating the MLI layers, the cryocooler power and the

boiloff rate can be calculated using Equation A.34 and Equation A.35, taken from [145].

Qcryocooler = Qmli

Pcryocooler = 7.0677 ∗ δpbac
pinlet

+ (8.435Qcryocooler − 14.83)
(A.34)

rateboiloff =
0.15Qmli

hvap,prop

(A.35)

Finally, the mass of the cryocoolers are estimated using a scaling function based off of

ongoing test elements from [146], with a 50% margin included:

mcrycoolers = 1.5 ∗ 26

208
∗ 0.15 ∗Qmli (A.36)
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A.2.2 Chemical Engines

Chemical engines are sized using first principle physics-based relationships. The main

inputs for this model are the number of engines to size, thrust, Isp, and the engine Thrust to

Weight Ratio (T2W). The dry mass is simply calculated using:

mengines = nengines
Tmax,engine

g0
T
W

(A.37)

A.2.3 Nuclear Thermal Rockets

Sizing of NTRs are critical to this thesis given their use in the final case study. This model

estimates the mass of the engine assembly, nuclear reactor, radiation shield, and accompa-

nying structures for an NTR, adapted from [147].

A.2.4 RCS

Sizing of RCS is typically performed similarly to main chemical propulsion systems, in-

cluding engines and tanks. However, since RCS burns are not modeled in CLO, there are

no equivalent burns in the sizing missions in VSS. Therefore, the previous models cannot

be used. Instead, for the purposes of this research, the RCS for each vehicle is modeled as

a fraction of the inert mass, in this case as 20%. The fraction includes the propellant itself,

as well as storage and distribution systems and engines.

A.3 Structures

Estimating the mass of the structural components of a spacecraft can be very challeng-

ing due its dependence on the configuration. Creating a general sizing algorithm for this

subsystem that is valid for many different types of transportation systems is even more

challenging. As a result, the structural mass of each vehicle considered in this method
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will be estimated as a fraction of the total inert mass of the vehicle. The specific ratio is

dependant on the problem, and furthermore the vehicle, and so it is user input.

A.4 Thermal

For this research, the thermal subsystem only sizes the radiators required to reject heat loads

from the spacecraft. Systems for propellant thermal control are sized by the tank subsystem

model. Radiators are sized using an input area mass density, which should include the

mass of any hardware for plumbing of coolants in the radiator systems. The radiator area

is calculated using Equation A.38 below, where the temperature space is assumed to be 3K

and the surface temperature of the radiator is 250K.

Arad =
Qrej

kbϵradηfin(t4rad − t4space)
(A.38)

mrad = ρradArad (A.39)

A.5 Power

The power subsystem sizing model includes power generation, distribution, and storage.

Generation of power in-space is assumed to be sourced fully by solar energy and therefore

requiring photovoltaic systems. The sum of all power requirements on the system is treated

as peak power, and the average power is used to size the solar array. Based on input solar

cell efficiencies, degradation, and eclipse time, the power generation required is defined by

Equation A.40

Parray =
(
Preqtecllpse,max

0.8ηtransmission
) + (

Preq(tperiod−teclipse,max)

0.8
)

tperiod − teclipse,max

(A.40)

249



The solar energy available depends on the distance from the sun, scaled using the in-

verse square law, anchored to 1,368 W/m2 at 1 AU. Using the solar flux, the beginning of

life power, PBOL, can be calculated using the cell efficiency, as shown in Equation A.41.

PBOL = ηcell ∗
1, 368

(dsun)2
(A.41)

Given the mission duration and cell degradation rate, the end of life power can then be

estimated, in Equation A.42

PEOL = PBOL ∗ 1− degcell
100

t

mission
(A.42)

Finally, the required solar array area and subsequent mass is calculated using:

Aarray = Parray/PEOL (A.43)

marray = ρarrayAarray (A.44)

Batteries are assumed for power storage, sized based on a given depth of discharge,

energy density, and eclipse time, as shown in Equation A.47

capbatt = Preq ∗
tecllpse,max

dodηtransmission

(A.45)

mbatt =
capbatt
ρbatt

(A.46)

Finally, the power distribution system mass is estimated using:

mpmad =
0.17

0.83
(marray +mbatt) (A.47)
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The waste heat is estimated just as a fraction of the power generation required of the

subsystem.
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APPENDIX B

HLS CAMPAIGN SOLUTION

Though the objective of this research is to establish an integrated design methodology as

the main contribution, the results produced by it can be investigated as well. Figure B.1

shows the optimized mission sequence for the HLS campaign, or set of arcs that each of the

three propulsive elements take. The AE is launched first on a SpaceX Falcon Heavy at 0,

and takes the 100 day slow transfer to NRHO for aggregation. A SpaceX Starship launches

the DE on day 30, which also takes the slow transfer to NRHO. When the TE launches at

Day 101, the AE will have arrived in NRHO, while DE will have not, meaning it is the last

to arrive at the aggregation location. Since Orion and the Crew are constrained to launch

after all three elements have aggregated, they are launched at Day 130. Once the Crew

arrive after a fast transfer, two of them transfer to the AE over the course of a day, before

the whole stack descents to LLO and the TE is spent. The DE performs the descent burn

and is spent on the surface. After the 7 day surface stay the Crew ascends back to NRHO

through LLO, to transfer back to Orion for departure. Figure B.2 show the transfer of the

two sets of crew between the AE and Orion, and can also be seen in the mass history of

both vehicles. Orion then performs a lunar flyby to return to Earth on Day 156.
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Figure B.1: Vehicle paths for the HLS campaign solution with objective value of 0.724.
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Figure B.2: Optimized paths for the Gateway and Surface Crews for the three element HLS
campaign, showing the two transfers between the AE and Orion.
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Figure B.3-Figure B.5 show the mass histories of each vehicle, including the propel-

lants, payloads, and any consumables. Since the AE is the only element with active CFM

systems, its propellant masses do not passively decrease over time, reflected in the flat

slopes after launch. In contrast, both the TE and DE have nonzero slopes between their‘’

transfers. With the implementation of stacks in the CLO process, the propellant mass histo-

ries properly reflect the difference between the passive and active elements. For example, at

time 138, the TE burns nearly all of its propellant before discarding itself and immediately

after, the DE does the same. Table B.2 summarizes the final, optimized ∆V splits for each

vehicle and Table B.1 summarizes the launch architecture.
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Table B.1: Table summarizing the launch architecture for the optimized HLS campaign.

Vehicle Launch Vehicle Launch Day Launch Cost
AE SpaceX Falcon Heavy 0 $97,000,000
DE SpaceX Starship 30 $250,000,000
TE SpaceX Falcon Heavy 101 $97,000,000

Orion SLS 1B 131 $3,000,000,000

Table B.2: Table of optimized cislunar ∆V s [m/s] for the final HLS campaign, where row
headers are departure locations and column headers are arrival locations.

NRHO LLO LLOlow LS
NRHO 0 393.75 1,750 0
LLO 656.25 0 0 1,636.25

LLOlow 1,750 0 0 870
LS 0 1,636.25 870 0

With each of the three elements represented as a collection of subsystems, the VSS

process can provide a subsystem mass breakdown for each one, shown in Table B.3. The

AE has the highest inert mass, primarily driven by the 1.1t crew cabin that it carries. The

DE and TE have very similar mass breakdowns, which is expected as they perform very

similar missions. Tanks on the DE are slightly more massive than those on the TE as its

propellant load is higher.
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Figure B.3: Mass history of the AE in the optimized HLS campaign.
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Figure B.4: Mass history of the TE in the optimized HLS campaign.
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Figure B.5: Mass history of the DE in the optimized HLS campaign.

Table B.3: Table summarizing the launch architecture for the optimized HLS campaign.

Subsystem AE [kg] DE [kg] TE [kg]
Fuel Tank 1 95.89 101.29 94.88
Fuel Tank 2 95.89 101.29 94.88
Ox Tank 1 99.40 95.73 91.03
Ox Tank 2 99.40 95.73 91.03

RCS 497.11 857.26 862.42
Engines 72.60 72.60 72.60
Sensors 10.13 10.13 10.13
Comms 95.89 101.29 94.88

Structures 1,395.52 1,061.37 1,067.76
Power 209.65 134.54 210.83

Thermal 52.97 100.01 57.73

Crew Cabin 1,136.00 0 0

Propellant Reserves 277.21 404.56 163.12
Propellant Residuals 138.60 8202.28 81.56

Total 5,307.53 4,536.93 4,198.14
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APPENDIX C

METHOD EXECUTION PROCEDURE AND VALIDATION - HLS BASELINE

Though experimentation in Chapter 4 produced a final methodology structure and cam-

paign solution for HLS, it is important to ensure the data produced by the methodology is

accurate. The HLS solution in Appendix B was produced independently through exper-

imentation, but the reference campaign presented by Trent and Edwards and reproduced

by Zhu et al. can be considered as the baseline. In this campaign, the overall ConOps are

very similar to the one presented in Chapter 4 but all three elements take a fast transfers

to NRHO. To see if this methodology can reproduce these results, the degrees of freedom

on the mission and ConOps are removed. All other assumptions and inputs are the same,

including the network, vehicle subsystem definition, and vehicle design parameters. Since

the launch vehicle selection was not presented in the government reference architecture,

only the differences in masses for each vehicle are assessed. This validation will also serve

as a description of steps required to execute the overall methodology.

C.1 Step 1: Campaign Problem Definition

Define the Network

Definition of the campaign network is driven primarily by defining the spatial nodes being

considered as well as the time domain and timesteps. The latter could also be anchored

to a specific date for campaigns that need that information, for example, interplanetary

transfers. For this HLS problem, the following spatial nodes are chosen: Earth Surface,

LEO, HEO, NRHO, LLO, and the Lunar Surface. With these nodes, a valid set of arcs is

generated entirely by the user, with the main set of inputs to support them being a dataset

of ∆V and ∆T costs for them, as shown in Table 4.2. In other words, it is entirely on the

258



user to generate the full set of arcs that model the types of transfers being considered. For

this problem, launch arcs cover connections from to Earth LEO and HEO, and transfers

to NRHO are can only be done through HEO. Since all three elements in the reference

architecture use a fast transfer only minimum energy data is required. Transfers between

NRHO and LLO occur at every timestep and in both directions, and descent arcs to the

Lunar Surface from LLO are the same. However, ascents from the Lunar surface to LLO

occur once every 7 timesteps, to model the phasing required into NRHO

Define the Vehicles and Payloads

Vehicles in the CLO problem are split into two groups: in-space and launch. Launch vehi-

cles are defined by the parameters listed in Table 4.5 and Table 4.6, while in-space vehicles

are defined as in Table 4.4. Further, for in-space vehicles, all stacks being considered must

be defined as a set of the elements that they comprise of. In this case, the HLS stack is

made up of the three propulsive elements: AE, DE, and TE. Though Orion is considered in

the network, it stays in NRHO for the duration of the surface mission. Payloads are defined

in a similar manner, as defined in Subsection 2.6.5.

Define the Paths

With the vehicles, payloads, and network defined, paths can be defined as a series of events

of five types: ∆V , ∆T , ∆M , aggregate, or launch. For ∆V events that have stacks, the

operating stack must be defined, as well as the active or propulsive element. Orion is pathed

to launch on an SLS 1B with both the surface and gateway crews, but all other elements’

launches are not. For this problem, the HLS path starts with aggregation of all four elements

in NRHO, followed immediately by the surface crew transferring from Orion to the AE.

Afterwards, the HLS stack descends to LLO using the TE as the active element, which is

then staged. For vehicles that are staged, a staging location must be defined, or otherwise

defaults to a discard node at the final timestep. Similarly, the DE performs the descent burn
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to the lunar surface and is staged there. After the surface stay, the AE ascends to NRHO

through LLO where the crew transfers back to Orion, which performs a lunar flyby on its

way to Earth.

Define Campaign Optimization Problem

The code behind the methodology will generate the corresponding MIP variables for the

defined problem, but it is necessary to define any additional, external constraints on the

problem beyond in the ones detailed in Subsection 2.6.7. This is in addition to any more

objective terms that may be necessary to properly model the campaign goals. Finally,

specific Gurobi parameters can be set to constrain the runtime, set the tolerance, and flag

any input or output files to save.

C.2 Step 2: Vehicle Problem Definition

Establish Vehicle Architectures and Design Parameters

The main set of inputs for the VSS problem is the breakdown of vehicles into the subsys-

tems that are being modeled. Since DYREQT primary purpose is to be the synthesis tool,

it is entirely on the user to bring in subsystem sizing models in the form of python code to

integrate within. For this problem and others considered for this research, the subsystem

models are described in Appendix A. Accompanying the subsystem models, listed in Ta-

ble 4.9, will be the design parameters for each one, which for this problem are the same as

listed in Table 4.10.

Define Mission Translation

The main purpose of the mission translation is to convert the data output format of the

CLO process to the data input format of DYREQT. Due to the complexity between path

definition and mission input definition, this translation procedure must be user defined per

problem; there is no catch all translation. However, the writing of inputs to each individual
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problem is already built; that is, based on the output values, those values are written to the

appropriate locations for each problem. For example, once each vehicle is sized by VSS,

code is already built to take those values and write them to the vehicle input file for CLO.

Therefore, the primary purpose of mission translation is to update the sizing missions for

VSS as solved by CLO.

Define Mission Analysis Optimization Problem

Since the use of parameterized orbital nodes is problem dependent, the setup of the mission

analysis optimization problem is also problem dependent. That is, based on what nodes in

the problem should be parameterized, those nodes should be defined as design variables

and the accompanying objective function should be constructed. As the problem being

considered for this chapter is a validation case, no nodes are parameterized and so there

are no mission degrees of freedom. For the HLS problem used for experimentation, the

parameterized nodes and the accompanying ranges for mission analysis are presented in

Subsection 4.2.3.

With all of this defined, a final convergence tolerance can be set, but the default is 5%.

Based on the input paths, the method will initialize the vehicle problem by identifying the

path with the minimum ∆V . If the mission translation is written correctly, this process

should then require no user interaction, and will either produce a converged this result or

diverge. This process can be repeated for each campaign that is being considered, as well

as each trade variable.

C.3 Validation

For the HLS baseline mission used here, the reference ConOps is depicted in Figure C.1

and the final solution is detailed in Table C.1. Since modeling of RCS burns and subsequent

propellant is not being considered for this thesis, in order to model total propellant usage

in line with the reference, it was assumed that 5% of the total propellant in the reference
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solution is RCS. It is then bookkept in the inert mass just as it is in both the CLO and VSS

processes. The methodology was able to converge on a solution in the first iteration, and the

mass results for both the initialized VSS problem as well as the subsequent solution found

by CLO with those vehicle masses are also listed in Table C.1. Validation of the subsystem

models was performed by Trent in [18]. All errors are either at or below 5%, which is

sufficient for this research. The largest difference in masses occurs in the descent element,

which is likely due to the difference in how boiloff is modeled between the reference and

VSS. Over the course of the entire campaign, even small difference in boiloff rates can be

significant.

Figure C.1: Reference ConOps for the HLS baseline mission used for validation, adapted
from [148].
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Table C.1: Table showing the comparison of results between the methodology and reference HLS architecture [148, 126].

Mass Type (kg) Reference VSS CLO Error Between
VSS and Refer-
ence

Error Between
CLO and Refer-
ence

Ascent Element Inert 5,173 5,210 5,210 1% 1%
Propellant 7,621 7,674 7,664 1% 1%

Gross 12,794 12,884 12,874 1% 1%
Descent Element Inert 5,784 5,567 5,567 4% 4%

Propellant 10,547 11,067 11,045 5% 5%
Gross 16,331 16,634 16,612 2% 2%

Transfer Element Inert 5,473 5,356 5,356 2% 2%
Propellant 9,490 9,256 9,253 2% 2%

Gross 14,963 14,612 14,609 2% 2%
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APPENDIX D

MARS TRADE STUDIES CONVERGENCE PERFORMANCE

D.1 Vehicle-level Trade Study

D.1.1 LH2 NTP

Figure D.1: Errors for the vehicle inert masses per iteration for the LH2 NTP option.
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Figure D.2: Errors for the vehicle gross masses per iteration for the LH2 NTP option.
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D.1.2 NH3 NTP

Figure D.3: Errors for the vehicle inert masses per iteration for the NH3 NTP option.
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Figure D.4: Errors for the vehicle gross masses per iteration for the NH3 NTP option.
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D.1.3 H2O NTP

Figure D.5: Errors for the vehicle inert masses per iteration for the H2O NTP option.
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Figure D.6: Errors for the vehicle gross masses per iteration for the H2O NTP option.
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D.2 Campaign-level Trade Study

D.2.1 Long Stay

See Section D.1.
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D.2.2 Short Stay

Figure D.7: Errors for the vehicle inert masses per iteration for the LH2 NTP short stay
option.
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Figure D.8: Errors for the vehicle gross masses per iteration for the LH2 NTP short stay
option.
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