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SUMMARY 

An integral method is presented for the solution of the near 

wake problem in supersonic flight for the case of fully turbulent, 

axially symmetric flow behind bluff-base bodies. The method is an 

extension of the developments in wake flow associated with the names of 

Crocco-Lees, Reeves-Lees and Alber-Lees. The present model is for the 

case of adiabatic flow and essentially involves the investigation of 

three regions — the corner region, the inviscid outer region, and the 

inner viscous region. 

The solution of the corner region provides the initial conditions 

for the solution of the wake downstream of the base. Exact modelling of 

this region, at present, is not possible. Here, a simple model is pro

posed and used. The outer inviscid region, which is partially rotational 

(due to the presence of entropy gradients near the shear layer) and par

tially irrotational, is treated by an approximate method of characteris

tics. The use of this method results in an appreciable saving of computer 

time, and is in harmony with the present approximate technique used for 

solving the inner region. The inner region is represented by the inte

grated boundary layer equations. The shear stress is represented by the 

Boussinesq turbulent viscosity. The turbulent viscosity, in turn, is 

related to the product of a length and a velocity scale. The unknowns 

are obtained by a comparison with the self-preserving shear layer 

solution and far wake solution. Finally, by comparing with base 

flow experiments, a small compressibility correction factor is added to 
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shear stress term. The solutions have been obtained using two sets of 

velocity profiles. A compressible-incompressible transformation and the 

condition of isoenergeticity are used to evaluate necessary integrals 

in closed form. Out of the many possible starting solutions, a unique 

solution is singled out due to the existence of the Crocco-Lees singu

larity in the analysis. 

The variation of various parameters such as initial boundary layer 

thickness, Mach number and base bleed, on the near wake has been studied, 

and the solutions are compared with experiments. The major conclusions 

arrived at are as follows: 

1) Mach number is the primary variable affecting the base pres

sure. Base pressure decreases with the increase of Mach number. There 

is good agreement between theory and experiment. 

2) The upstream boundary layer thickness is a secondary param

eter; the base pressure increases with the increase of boundary layer 

thickness. Again, good agreement with experimental data is obtained. 

This indicates that the present modelling of the corner region and shear 

stress is reasonable for this approximate analysis. 

3) The detailed results, such as centerline pressure variation, 

centerline Mach number variation and shear layer thickness variation 

agree well with the experiments. Usually, at high Mach numbers, the 

theory gives smaller pressure gradients in the compression region than 

the experiments. This is apparently due to the radial variation of 

pressure in the shear layer in the experiments, which is neglected in 

the present analysis. 
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4) At low base bleed rates, the theory shows a much smaller 

base pressure rise when compared to experiments. The inaccuracy of the 

boundary layer equations, in representing the region close to the base, 

may be the major reason for this result. 

In general, good agreement with the experimental data is obtained. 

Result (4) is not considered a serious handicap as the motivation of the 

present investigation is to provide a computationally fast, yet reason

ably accurate, base flow theory for later use in external burning studies. 



1 

CHAPTER I 

INTRODUCTION 

The reduced pressure acting behind the base of a projectile 

results in a drag component called base drag. The base drag of a body 

in supersonic flight usually constitutes a substantial portion of the 

total drag and its calculation and reduction is of great practical 

importance. 

The base flow pattern of a projectile in supersonic flight is 

shown in Figure 1. A uniform stream with a turbulent boundary layer 

approaches the base and separates near the corner. Experimentally, it 

has been observed that the expansion region is followed by a weak lip 

shock. The viscous part of the separated boundary layer develops 

into a free shear layer in a region of approximately constant pressure. 

This constant pressure region is followed by a compression, compression 

waves coalesce to form a wake or trailing shock away from the axis. The 

final base pressure is the outcome of the equilibrium of the scavenging 

effect of the outer flow which tries to reduce the base pressure and 

the viscous transport effect, which forms a non-uniform velocity flow. 

The flow velocity of the shear layer which is unable to overcome the 

sharp pressure rise is reversed to form a recirculatory region, while 

higher velocity fluid escapes to the downstream wake. 

A number of methods are presently under investigation for reducing 

the base drag. These methods can be categorized under base bleed, base 
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burning, external burning, or a combination of these, and are sche

matically shown in Figure 2. Inclusion of these methods may bring a 

slight change in the conventional base flow picture described above. 

For example, it is possible to blow off the complete recirculatory 

(2) 
region by large mass injection through the base or have a compression 

in the initial region instead of a corner expansion fan with external 

(3,4) burning. 

The external burning method, as shown in Figure 2, usually 

involves combustion in the inviscid portion of the near wake. This 

(3) method, as first applied by Strahle to the simple two dimensional 

case, showed that significant base drag reduction can be obtained using 

this concept. In order to apply this concept to a practical projectile, 

which is often axisymmetric, it is first necessary to construct a satis

factory axisymmetric base flow theory. The complete solution of the 

Navier-Stokes equations for the turbulent recirculatory flows are still 

in the early stages of development. Further, these solutions are tedious 

and very time consuming and, hence, are not very attractive for prelimi

nary investigations and design. In this dissertation, an approximate 

axisymmetric base flow theory for the near supersonic turbulent wake, 

based on the Crocco-Lees approach is described. The present model 

allows for base bleed, as base bleed may be a promising adjunct to 

external burning to improve the performance. Also, an entropy layer in 

the inviscid stream has been included, because several concepts of exter

nal burning would introduce the fuel by injection into the supersonic 

stream, causing injection shocks. 
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Background 

Early studies of base flow problems concentrated upon obtaining 

a correlation between base pressure and Mach number. Cope 

(14) 
and Chapman, working independently, presented a model elucidating 

the essential features of the flow behind the base of a bluff-body. 

Chapman, in his correlation, also included the effect of the Reynolds 

number and the boundary layer thickness. 

In the early 1950's, two approximate methods of solving the base 

flow problem appeared in the literature, and are known as the Crocco-

Lees method and the Chapman ' and Korst^ method. These two 

lines of approach are still attractive for current research in the field 

of base flows. The Chapman and Korst approach rests on the dissection 

of the complete near wake flow field into its constituent parts, each of 

which is solved separately. The complete solution is then obtained by 

merging these individual solutions together with appropriate matching 

conditions. Chapman ' assumed a constant pressure behind the base. 

The dividing streamline, calculated using the boundary layer equations, 

is a straight line. The unique base pressure solution is then obtained 

by imposing the condition that the total pressure obtained by isentropic 

compression along the dividing streamline is equal to the terminal static 

pressure. Korst^ ' and Kirk independently tackled the corresponding 

turbulent base flow problem using an expression for the mixing coeffi

cient. Korst assumed that compression in the inviscid flow takes place 

through the trailing shock. Nash ' pointed out that if the boundary 

layer was properly accounted for, the Korst and Kirk results were at 
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variance with the experimental results. He further pointed out 

that it is erroneous to assume that the reattachment factor, 

M ( Reattachment pressure^ . i ,. i n J ^ J ^ U . - M U - U 

N (= c r ) , is equal to 1.0 and suggested that N should 
Total pressure rise ' M 6 6 

be evaluated empirically. It was found that N varies from 1.6 to 0.35 
(19) 

from the incompressible to the high supersonic range. McDonald 

regarded the use of the factor N too empirical, as it depended upon 

both Reynolds number and Mach number. He suggested that the shape 

6* 
parameter (—) of the boundary layer at reattachment should be used as 

0 
(20 21) (22) 

the downstream boundary condition. McDonald, ' Hill, Przirembel 

and Page, Mueller, and Roache extended the analysis to axi-

symmetric flow configurations. The strong point of this approach is its 

simplicity. However, certain basic uncertainties and restrictions, such 

as (a) matching conditions and their dependence on various parameters 

like boundary layer thickness, Mach number, and base bleed, (b) the 

effect of loss of detail in the recompression region because of sudden 

recompression in this model, and (c) an unsatisfactory explanation for 

the Crocco-Lees singular point, still mar this physically easily under

standable model. Ref. (26) presents a survey of the literature related 

to this method. 

The Crocco and Lees method can be called an extension of 

Karman's momentum integral method, applied to separated flows. Surpris

ingly good results and trends were obtained even though the validity of 

the boundary layer approximation in the near wake still remains in ques

tion. The method essentially involves maintaining a balance between 

the external flow described by inviscid flow equations, and the inner 

viscous flow, represented by integral equations. Using a compressibility 
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transformation and a semi-empirical model for viscous mixing, with 

other simplifications, a relation between the integral properties of 

the flow was obtained for the two dimensional case. It was established 

that unlike the potential flow solutions of the problem, a unique solu

tion is obtained because of the presence of a saddle point singularity 

(called the critical point in the solution), and no empirical downstream 

boundary condition is required. The saddle point singularity has a 

physical significance similar to that: of the throat of a deLaval nozzle. 

Thus, in spite of the use of the boundary layer equations, the base flow 

problem is found to be of boundary value nature (unlike the usual bound

ary layer problem where all the conditions are applied on the starting 

(o~i\ (28^ 

boundary). Davis and deKrasinski extended this analysis to the 
(29) 

axisymmetric case. Reeves and Lees ' replaced the semi-empirical 

mixing rate of Crocco-Lees by a mechanical energy relation for the two 

dimensional laminar case. The velocity profiles chosen were Stewartson 

solutions of the Falkner-Skan equation (or Cohen and Reshotko 

(32) solutions for the non-adiabatic case). Golik, Webb and Lees tried 

to improve the solution using higher moment equations and more free 

parameters. They ran into a large recirculation region and matching 

(33) difficulties. Alber and Lees, using an eddy viscosity model, 

extended Reeves and Lees' analysis to the two dimensional turbulent 

case, with very good quantitative comparison with experiments (for a 

more complete list of references, see Ref. (34)). 

Recently, some attempts have been made to employ the differen

tial equations to either partially or completely solve the near wake. 
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Ohrenberger and Baum used the integral laminar boundary layer equa

tions for the recirculatory region. The flow was taken as non-iso-

energetic and the shear stress contribution near the axis in the center-

line energy equation was included. This resulted in another saddle 

point singularity which determined the initial condition for enthalpy 

near the base. The outer flow, governed by the parabolic type equations, 

was solved using an implicit-finite difference scheme and was matched 

with the inner region. Weiss treated the recirculation region using 

the complete Navier-Stokes equations and coupled it with an adjacent 

shear layer (computed by using the boundary layer equations) and an outer 

rotational inviscid flow. The method required large computation time, 

particularly at higher Reynolds number. Some other studies made using 

the full Navier-Stokes equations are given in Refs. (37-39). However, 

the solutions of the complete Navier-Stokes equations applicable to the 

turbulent near wake are still in the early stages of development. 

Objectives 

The objective of the present work is to provide a comparatively 

fast, yet reasonably accurate, axisymmetric turbulent supersonic base 

flow theory for preliminary design purposes and for later use in exter

nal burning studies. Any attempt at employing the full Navier-Stokes 

equations is ruled out, as it would be both complex and time consuming 

on a computer. As pointed out earlier, the Chapman and Korst approach 

has certain basic deficiencies, and, without many experimental guide

lines, it is not clear what changes in assumptions would be required to 

accommodate external burning. Hence, the Crocco-Lees approach is 
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selected, and it is decided to extend the work of Alber and Lees with 

necessary modifications. In this dissertation, the effect of the 

upstream boundary layer thickness, upstream Mach number and base bleed 

on the supersonic, turbulent near wake flow field of an axisymmetric 

body are studied, and the results are compared with the experiments.* 

An independent work, closely related to the present one, recently 
appeared in the report literature and will be discussed in the last 
chapter. 
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CHAPTER II 

FLOW MODEL AND OUTLINE OF PROBLEM APPROACH 

Base flow is one problem where theory lags behind experiment. 

Experimental studies made on the flow behind the bluff bodies have 

helped to delineate the various features of the near wake flow field and 

also have shed light on their relative importance. This, in turn, has 

helped in making justifiable approximations in order to simplify analyti

cal modelling. In this chapter, these experimental observations and 

the flow model adopted for analytic investigation are described. Also, 

an outline of the present approach is given. 

Flow Model 

The conventional base flow pattern of a projectile in supersonic 

flight is shown in Fig. 1 and has been described in the Introduction. 

However, some of the features described are found to be of secondary 

importance and can be neglected, under certain situations, in a simpli

fied theory, such as the present one. It has been shown by previous 

(1 41 42) 
studies ' ' that at moderate Mach numbers, the lip shock and the 

lip shock-wake shock interactions have secondary effects on the base 

flow and hence will be neglected in the present analysis of the near 

(42) 
wake. Also the work of Hastings showed that after such extreme 

expansions, as occurring in most cases, the viscous forces remain pre

dominant only in a small portion of the initial boundary layer. The 

outer portion of the boundary layer transforms into an almost inviscid 
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but rotational layer. Also, a rotational layer can be caused in the 

inviscid stream due to the presence of injection shocks and external 

burning. 

Hence, with the inclusion of these modifications, the near wake 

flow field (without base bleed or combustion) considered here for the 

analytical modelling can be schematically represented by Figure 3. A 

uniform supersonic flow at constant pressure and Mach number, with a 

finite boundary layer thickness, approaches the base of an axisyrametric 

body. It undergoes a corner expansion near the corner. The viscous 

part beyond the base consists of (1) the recirculatory region and (2) 

the shear layer, while the inviscid part consists of (3) the rotational 

layer, which merges into the shear layer, and (4) the irrotational region. 

Outline of the Problem Approach 

Figure 4 is the flow diagram for the present approach. The 

input variables are M ni 6n/R and I. The unknown of the problem is base 
el i 

pressure, p . The complete flow field is assumed to be adiabatic with 

turbulent Prandtl number equal to 1 and to obey the perfect gas laws. 

For analysis' sake, the flow field is divided into two parts, viz., the 

corner flow region and the flow downstream of the base. The flow down

stream of the base is further divided into an outer inviscid part and 

an inner viscous part. To start with, p, is assumed. The solution of 

the corner region provides the initial conditions for the flow down

stream of the base and is solved by an approximate model described in 

Chapter III. The outer inviscid part is solved using an approximate 

method of characteristics (Chapter IV), while the inner viscous part is 
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assumed to be governed by the boundary layer equations. Since the flow 

is turbulent, some modelling of shear stress is required. Here the 

turbulent viscosity concept is used to evaluate the shear stress. The 

boundary layer equations are integrated in the radial direction using 

an appropriate set of velocity profiles. The details of handling of 

shear stress, the governing equations and their solution are discussed 

in Chapter V. Thus, the simultaneous solution of the inviscid and vis

cous parts is started as an initial value problem, with a guessed value 

of base pressure. Downstream of the base, the solution encounters a 

saddle point singularity (known as the Crocco-Lees critical point). The 

physical significance of this singularity is the same as that of the 

throat in the deLaval nozzle, i.e., the flow which is subsonic in the 

mean to begin with in the shear layer turns supersonic in the mean. This 

saddle point singularity, in the computer program, arises because the 

denominator of the solution matrix changes sign before or after the 

numerator goes through zero, depending on the initial condition. It 

allows only one of the many solutions that can be started from the base 

to pass through it smoothly (for which both the numerators and denomina

tor become zero simultaneously), i.e., it provides an extra constraint 

in the problem. Thus, in spite of the use of the parabolic boundary 

layer equations in the viscous part, the problem turns out to be a 

boundary value problem, with base pressure as the eigenvalue, and a 

unique solution is obtained to the base flow problem. 
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CHAPTER III 

CORNER FLOW REGION 

It is necessary to solve the corner flow region in order to 

obtain the initial conditions for the wake analysis. This region pre

sents one of the most difficult problems in fluid mechanics because of 

the presence of both axial and transverse pressure gradients. Pressure 

signals can travel upstream through the subsonic portion of the boundary 

layer. Some of the work done in this field is given in Refs. (43-47). 

Experimental evidence shows that the subsonic portion of the bound

ary layer turns through 90° at the corner and separation occurs below the 

corner. The major interest in solving the corner region for the present 

integral approach is to find the thickness of that portion of the bound

ary layer in which the viscous forces remain predominant. Alber and Lees 

used an approximate method of finding the thickness of this layer based 

on a streamtube analysis. The integrated continuity and momentum equa

tions were applied to the control volume (shown in Figure 3 by dotted 

lines) at the corner. These are 

A2 Ax 
/ pUrdY = / pUrdY 
0 0 

/ 2 2 Z 1 2 r
A2 _ _ 

/ plTdY - / pU dY + A p -A p - / pdY - ( T - T )Ax 
0 0 Z Z 1 - L A 1 

(Alber et^ _al. ignored the JpdY term in their analysis.) To obtain the 

integrals, the velocity profiles chosen were one seventh power profiles 

before the expansion and a quadratic profile after the expansion. Ax 
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is the shear stress interaction length. The shear stress was obtained 

using the Mellor and Gibson result for a turbulent boundary layer 

undergoing maximum acceleration. Edge Mach numbers at stations (1) and 

(2) were related assuming isentropic flow along the boundary streamline. 

A and A_ were obtained by iteration. Two shortcomings were noticed when 

this analysis, including the JpdY term in the momentum equation, was 

tried. First, the magnitude of the shear stress term at the corner is 

unknown. Second, the results were sensitive to the magnitude of the 

shear stress term and the shape of the profile after expansion. Some 

of the profiles tried were quadratic, cubic, one-ninth power and constant 

velocity profiles. Because of this sensitivity, the above procedure was 

abandoned, and a simplified model was used. 

Corner Expansion Model 

The boundary layer is divided into an outer and an inner por

tion because the shear stresses become negligibly small in the outer 

portion after expansion. Hence, only the inner portion will contribute 

to the shear flow after separation. The present approach is to locate 

the dividing line such that the velocity gradient is smaller than a pre

defined quantity after expansion. 

As the dissipation term is small in the outer portion of the 

boundary layer, this portion is assumed to undergo an isentropic expan

sion in the corner region. Thus, the velocity profile of the outer 

portion after expansion is obtained using the continuity equation and the 

isentropic relation. Then the ad. hoc assumption is made that 

— ) = K TTT ) . K is an arbitrary constant; it is of the order of 
3Y A2

 X W 5 1 
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one as the gradients at the edge of the viscous boundaries are related, 

and is here taken equal to 1. The implication of this assumption is 

that the edge of the boundary layer after expansion is defined where the 

shear stress is of the same order as that on the edge of the boundary 

layer before expansion. Referring to Figure 5, the procedure followed 

for obtaining A and M for given 6 ,R,M , p /p (assumed) and using a 

1/7th power velocity profile at station 1 is given below. 

1) A_ . for i=l is initially defined as the thickness where 
l,i 

M-. . = 1 using a l/7th power law. (From experience, it is found that the 

final value of A is greater than A) ), that is 

Other variables at this point are obtained using the following 

equations 

( & 1 ± / v
2 / 7 

Ml i " / Y-l 2 °'2) 

1,1 ' l + V r , i A, . 2/7 
M2, 2 Sl el 

%,i - ^ V T T ^ I 
2 Ml,i 

(3-3) 

Pl „ . Y-l w2 a +-—-K .) (3-4) Kl,i RT v 2 l,i 
o 

2) M0 . etc., the corresponding quantities after expansion, 

then solved for using the isentropic relations along the streamline. 

r_ .. is taken equal to r n . 
Z , J. J. , -L 

are 
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Figure 5. Corner Region Model. 
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"2,1 -V1 3ri """ 
2 

«2 1 
U0 . = /YRT ' 4/ — — - ^ 0 (3-6) 
2,i o \ 1 + y-1 .-2 

2 M2,l 

p, =rf -^(l+^M^ .) (3-7) 
2,1 RT p 2 2,1 

3) An increment of e (to start with 0.16 ) is given to A- . 
l J. i, i 

to obtain A . M1 _ U etc., using Eqs. (3-2) to (3-7). s , 

the corresponding incremental thickness at station 2 is then obtained 

using the continuity equation. 

A i , i + i • n < i + i " r i , i > ( 3 " 8 ) 

(pU) + (PU) 
^ ^ ^ A, .,, (3-9) 2,1+1 (pU)2 ± + (pU)2 i + 1 1,1+1 

E2 " V ^ + i i - r2,i (3"10) 

r2,i+l " r2,l + E2 ( 3- U ) 

4) The slope at station 2 is then equal to (IL _ - U ,)/e . 

3U 
If it is larger than — ) , which is here U /76.., steps 3 and 4 are 

o Y r e J. 
6 1 

repeated. 
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p b / p l 61 /R V61 V 6 i 

1 0.2 1 1 

0.6 0 .2 0.56 1.33 

0 .6 0 .2 0.57 1.78 

0.4 0.2 0.36 1.41 

0.4 0.6 0.37 1.26 

Convergence is then obtained by reducing the increment by half. 

The error in A allowed in the present calculations is 0.01 6... Table 1 

gives some sample results. 

Table 1. Sample Results for the Corner Flow Region 

M 
el 

1.5 

1.5 

3.0 

3.0 

3.0 

As intuitively expected, this formulation says that with no 

expansion (as with mass bleed or external burning), the whole of the 

boundary layer should be considered. The above results show that as 

the expansion ratio becomes larger, a smaller amount of the initial 

boundary layer will form the initial shear layer after expansion (which 

agrees with Hastings' observation). Admittedly, this analysis is sim

plified, but it will be later shown to pick up proper experimental 

trends. 

Next, the Mach number, entropy, etc., on the initial character

istic are determined by assuming a one seventh power law again in 

the boundary layer, isoenergetic flow and constant pressure along the 

characteristic. The relations used in the outer portion of the bound

ary layer are 
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, 2 / 7 1 

M= /(f-> * — - ^ T ~ 2 (3-12) 

°1 1 + V M i i 2/7 2 el _ xii (JL\ 
M 2 2 \5/ 
M n 1 
el 

/ 1 + - ^ M \ \ 
S = c * log ~ - ~ ^ (3-13) 

P V ! + -Yzl M2 J 

assuming that the entropy of freestream is zero. 

In reality, the expansion at the base, even for a body with 

sharp corner, is distributed over a finite distance because of the 

presence of the boundary layer. However, this distance is small for 

sharp edged bodies, and here, the expansion at the base is assumed to 

be corner expansion. The origin for this corner expansion is taken at 

a distance equal to the thickness of the viscous layer after separation, 

69, as shown in Figure 3. 6_ and A^ are related through mass conserva

tion equation. 
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CHAPTER IV 

OUTER INVISCID REGION 

In a strong interaction problem, as the present one, the solu

tion of the outer inviscid portion is not known a. priori and has to be 

obtained by solving both the viscous and inviscid regions simultaneously. 

Specifically, the unknowns obtained by solving the outer region are 

entropy and the flow angle at the edge of the shear layer. The outer 

flow after the base in the present formulation, as described in Chapter 

II and shown in Figure 3, in general consists of two parts, viz., the 

rotational inviscid region adjacent to the shear layer, and the irrota-

tional inviscid region. As these regions are both supersonic and inviscid, 

the governing equations are hyperbolic in nature, and the method of char

acteristics can be used to solve these regions. However in contrast with 

the irrotational planar case, the external flow in the present axisym-

metric case is more complicated. In the former case, the geometry of 

the flow field is not involved in the relations of flow variables (that 

is, the characteristics are reducible) and for an initially uniform flow, 

the Prandtl-Meyer relation can be employed to relate M and 0. In the 

present case, the flow variables are functions of location, and the com

plete characteristic net has to be created. Thus, the accuracy of the 

solution in this region depends on the mesh size and on the allowable 

errors in the iterations. The present modelling of the inner viscous 
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flow region is approximate, and hence, there is no need to solve the 

outer flow with extreme accuracy, as this would result in a large com-

(49) 

puter time with no assurance of accuracy improvements. Webb sug

gested the use of only right running characteristics, as the left 

running characteristics have only a weak effect. He showed that while 

the Prandtl-Meyer relation is a very poor approximation in the axisym-

metric case, his approximate method compares favorably with the exact 

solution, except where the flow angles are small. A preliminary inves

tigation showed additionally that at large distances downstream, Webb's 

method is inaccurate. 

Here, an approximate method of characteristics (AMC), which is a 

combination of Webb's approach and the complete method of characteris

tics is used in solving the outer inviscid region. The AMC and its 

use is described below. 

The Approximate Method of Characteristics 

The governing equations for steady, inviscid, isoenergetic axi-

symmetric flow assuming a perfect gas in streamline coordinates are: 

continuity 

pUr An = constant (4-1) 

s-momentum 

P U ^ — f * (4-2) 
ds 3s 

n-momentum 

U2 3p 2 36 .. oN 
p T = " toi == PU to (4"3) 
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Energy 

2 
h + \ = H (4-4) 

I o 

Auxilliary thermodynamic relation 

TdS = dh - - dp (4-5) 

These equations can be combined to give the following relations: 

T f - 0 (4-6) 

2 
cot u dV_ _ _96 = sin 9 (L-i\ 
V 9s 9n r ^ /; 

V an 3s ~ v2 dn ^ b; 

Eq. (4-6) states that entropy is constant along streamlines. Eqs. (4-7) 

and (4-8) can next be written in terms of characteristic coordinates. 

As shown in Figure 6, characteristic directions are inclined at the 

Mach angle to the streamline, i.e., inclined at 9 i p to the horizontal 

direction. Eqs. (4-7) and (4-8) become 

9 , -v . sin 0 cos u _ dS 
— (v-6) = sin u — r — - — - 1 T — 
9n r 2 dn 

9 / ,/SN . sin 0 . cos u _ dS _ (v+9) = sin M — ; - + - j - T -

Using the geometrical relations 
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A S 

Figure 6. Relation of Characteristics to Natural Coordinates, 
and the Characteristic Net Work. 
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—— = cosec y and -r— = - cosec y 
8n 9n 

one gets, 

— (v-G) = s i n y x— — along n - c h a r a c t e r i s t i c (4-9) 
8n r yRM2 8n 

and ~ (v+0) = s m u — ^— —- along ^-characteristic (4-10) 
H r yRM2 ^ 

Referring to Figure 6, if the properties at points 1 and 2 are 

known, the properties at point 3 can be written in finite difference 

form as follows: 

sin 0 cot y 

v3 + e3 - v + e + sm P — - A ? - — - j - (s - Sl) (4-ii) 
1 yRM 

sin G cot y 
v3 - 63 - v2 - 92 + sin „ — - An23 - — y - (S - S ) (4-12) 

2 yRM~ 

Eqs. (4-6), (4-11) and (4-12) with the geometrical relations are 

sufficient to locate and to find the properties of point 3. Here, how

ever, two points should be noted. First, to solve for v„ and 0_ using 

Eqs. (4-11) and (4-12), a priori knowledge of the entropy at point 3 is 

required. Hence, S„ has to be assumed, and then fixed by iteration using 

the continuity relation to find the streamline passing through point 3. 

Usually two iterations are sufficient. Second, the Prandtl-Meyer func

tion is difficult to invert to find the Mach number or the Mach angle. 

It is found very advantageous from a computer time point of view to 
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curve fit M as a function of v using a rational function technique 

(given in the Appendix), and the error in M is found to be less than 

-4 10 in the Mach number range of 1*5 and 4*0. 

Knowing the properties on the initial characteristic (Chapter 

III), the pressure ratio, p /p , using Prandtl-Meyer expansion at the 

corner, and N number of corner characteristics (usually 5), properties 

on the final characteristic are found. Also, the streamline separating 

the rotational and irrotational inviscid regions is traced resulting 

in N-1 more points on the final corner characteristic than on the initial 

corner characteristic in the rotational region. Next the location and 

pressure of the point Ax downstream at the edge of the shear layer are 

found by solving the inner viscous flow (Chapter V). The entropy is 

found by tracing the streamline passing through this point. M, v and y 

are calculated using the relations 

+ JCl„ 2 
M - . - ' - ^ 

Y-l ,S R. 
2 ( 6 X P ( ~ " — } 

P P 

= /O^lT * tan "^^TT 1 " tan 1V tan 1\/M2 - 1 

y = sin 1 (|) (4-13) 

Now 9 at this point can be found using Eq. (4-11) if the origin 

of the right running characteristic passing through this point on the 

left running characteristic at the previous point can be located. This 

is done by iteration. Because of the discontinuity of the properties 
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at the lattice points, sometimes convergence is not obtained. To over

come this difficulty, r, 8 and v are curve fitted as functions of x 

using second degree polynomials. 

As shown in Figure 7, if the net is drawn after each streamwise 

step, Ax, an extra point can be added on the left running characteris

tic in the rotational region. Also, as previously stated, such a con

struction will absorb a lot of computer time. Here, the idea of Webb 

that the reflected left running characteristics have only a weak effect 

is employed. The conditions at various points at the edge of the shear 

layer are found using the right running characteristics only, and the 

complete characteristic net is constructed only after one of the initial 

points is absorbed. In the irrotational region, the effect of the left 

running characteristics is much weaker due to the absence of entropy gra

dients, and the complete net is constructed only after about fifty steps, 

with intermediate points again being calculated by Webb's approximate 

technique. Near the wake region, where the flow angles are small, the 

error is reduced by taking a smaller step size in the streamwise direc

tion. The present method is found to give a large reduction in com

puter time without appreciable loss in accuracy. 
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CHAPTER V 

• INNER REGION AND SOLUTION METHOD 

The inner region consists of (1) a recirculatory region which is 

almost inviscid but rotational, and (2) a shear flow region. Even though 

experiments have shown that radial velocities and radial pressure varia

tions are not negligible in the near wake, the application of the integral 

boundary layer equations to this region, initially by Crocco and Lees, 

and later by many others, has yielded quite satisfactory results and 

experimentally proven trends. Because of the use of the boundary layer 

equations, the solution is started as an initial value problem. This 

would have resulted in a non-unique value of the base pressure and hence 

a non-physical type of solution for the near wake, just like in the 

inviscid case, were it not for the presence of a saddle point singu

larity downstream of the base. This singularity imposes an extra con

straint on the problem, resulting in a unique solution. Alber and Lees' 

extension to the two-dimensional turbulent case, employing an eddy vis

cosity model, has shown very encouraging results. Proper length scales 

such as the position of rear-stagnation point, the centerline pressure 

variation, etc., were obtained. The approach followed for the present 

axisymmetric case is similar to that of Alber and Lees. 

Governing Equations 

The flow is assumed adiabatic with turbulent Prandtl number 

equal to unity. The field equations used in the inner regime, neglecting 
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normal Reynolds stresses, density correlations etc., are the boundary 

layer equations for axisymmetric flow, viz. 

continuity equation 

|^(pU)+-J-|7(pvr) =0 (5-1) 

momentum equation 

TT 9U , 8U dp , 1 d . . ._ 0. 
p uyx + p v ^ = - d ^ + 7^(rV (5"2) 

energy equation 

2 
H = h + "Y" = constant (5-3) 

The fluid is assumed to be a perfect gas and therefore obeys the 

following constitutive relations: 

equation of state 

P = pRT (5-4) 

caloric equation 

h = c T (5-5) 
P 

Next, independent integral equations (partial differential equa

tions integrated in radial direction to obtain ordinary differential 

equations) are obtained using Eqs. (5-1) and (5-2). As many integral 

equations as required can be obtained by multiplying the basic equations 

by different functions of dependent variables before integrating in the 

radial direction. Although there is no clear-cut proof whether the 
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lower order momentum equations give better result than the higher order 

one, it is essential that the equations chosen should be able to cover 

all the essential physical characteristics of the flow. In the present 

analysis, three integral equations, namely the overall continuity equa

tion, the overall momentum equation and the mechanical energy equation, 

are used and are next obtained. 

Multiply the continuity equation, Eq. (5-1), by r and integrate 

from the axis to the edge of the boundary layer, 5. 

6 3 S 
/ T - (pU) rdr + / — (pvr)dr = 0 
0 dX 0 dr 

<5 . 
or / — (pU)rdr + p v 5 = 0 

J
 n 3x e e 

Interchanging the order of integration and differentiation, one gets 

f ( P U A j - p U 6 j - = -p v 6 (5-6) 
d x e e l e e d x e e 

The first term physically represents the rate of change of mass 

in the shear layer, while the second and the third terms give the net 

mass inflow (or outflow) rate into the shear layer. It should be noted 

that this equation does not usually enter in the treatment of boundary 

layer flows as it is normally assumed that perturbations caused by the 

boundary layer on the external flow are negligible. Here v is obtained 

from the solution of the external flow. 

Next multiply Eq. (5-2) by r and integrate from 0 to 6, 
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r 6
T ^ u J ^ f

6 3U , f
6 d p J j r

6 i 8 / N , 
JQ

 PU ̂  rdr + JQ
 pV 3? rdr = " /Q dx" rdr + /Q r" ̂ r" ( r T T ) r d r 

r 9 

From the continuity equation, J — (pU) rdr = -pvr. Therefore, 
0 

V U f rd- /Q
6f '/J!; Wrdr >dr - - £ ^ + J V (rV<lr 

Integrating by parts and again interchanging the order of integration 

and differentiation operations, one gets 

2 
f (pU 2AJ - u X - ( p U A n ) = - ^ 4 r + T 1 (5-7) dx VKe e 2 e dx VKe e l dx 2 1 

Finally, one obtains a mechanical energy equation by multiplying 

Eq. (5-2) by Ur and integrating from 0 to 6, 

/ p U 2 | ^ r d r + /
6

p U v M r d r . _ j 6 £ U r d r + j ' u i L (rT ) dr 
Q 3x o 9 0 d x 0 9 r T 

r 2 3U , r
6

T T 3U, r
r 3 ( p U ) , , , r dP TT , 

o r / pU — r d r - / U — { / ~ ^ - r d r } d r - - / -r~ Urdr 
Q 3x Q 3r Q 3x Q dx 

+ / u - ^ ( r x T ) d r 

Again interchanging the order of differentiation and integration, one 

gets 

3 2 
p ITA U 

^ - ( e o ) - - ^ - l ~ ( P U A i ) = - 7 £ u A " P U J R +x 0 (5-8) dx 2 2 dx e e 1 dx e u e e 1 2 
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Here x and x are calculated from the momentum equation, and 

are taken non-zero when there is a vorticity layer, as this causes a 

velocity gradient at the edge. Inclusion of these results in an imbal

ance of the shear force at the edge. However, the magnitude of these 

quantities is small, and the change of base pressure caused by including 

these terms is less than 2%. On the other hand, keeping of these terms 

overcomes a computational difficulty (caused by negative mass flow rate 

into the shear layer) in the initial region of compression. 

The mechanical energy equation has gained a prestigious position 

in near wake analysis, as usually it is the only equation which contains 

the viscous dissipation terra and hence the information about the physical 

features of the flow, i.e., whether the flow is turbulent or laminar. 

An extra equation will be required near the base to make the prob

lem solvable, as described later. For simplicity, it is taken as the 

centerline momentum equation 

A d U 

^ = " P U -=-* (5-9) 
dx o o dx 

No shear stress term is included in Eq. (5-9) because uniform flow is 

assumed along the centerline near the base, although this is suspected 

as the cause of some difficulty. 

Shear Stress 

In addition to the above, an auxiliary relation describing the 

shear stress in terms of the known or calculable flow variables is 

required. This is the basic difficulty in extending the laminar flow 

treatment to the turbulent flows. However, many turbulent flow problems 
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have been satisfactorily solved using a functional relationship similar 

to the one which exists in laminar flows, viz., 

3U T T = -p u'v' = yT ̂  (5-10) 

and y is defined as pP . This turbulent viscosity concept was first 

7 
proposed by Boussinesq, and is used in the present analysis. The 

basic criterion for the eddy viscosity model to give reasonable results 

is that the Reynolds shear stress caused by the rate of strain on the 

mean flow reaches the equilibrium or final value before the interaction 

(52) 
between the Reynolds stress and the rate of strain becomes important. 

To employ the turbulent viscosity concept, it is further necessary to 

describe the unknown y or e in terms of some known or calculable quanti

ties. Here, an algebraic model of the mixing length form is employed, 

viz., 

eT = K £ u (5-11) 
l c c 

where £ and U are the characteristic velocity and length of the turbu

lence scales which dominate in the Reynolds stress. They are conceptu

ally similar to the molecular velocity and the mean free bath. However, 

they are not fluid properties but are flow dependent. 

In general, £ and U vary from point to point in the flow field, 

both across and along the flow. But in similar flows, where there is 

only one characteristic length scale and one characteristic velocity 

scale, the variation of these quantities across the flow is small. 

Examples of these flows are shear layers, jets and wakes far downstream. 
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The near wake behind the body does not fall in such categories. However, as 

Alber and Lees' work with the two-dimensional near wake indicates, the 

assumption of local similarity in which £ and U are related to the 

velocity profile scales can lead to satisfactory results in integral 

formulations, where the global influence of turbulence is important. 

Such an assumption is made in the present analysis. The values of the 

quantities on the right hand side of Eq. (5-11) are first fixed by com

paring with incompressible simple flows, for which more reliable data 

is available. Then a compressibility correction is applied to obtain 

the final form. 

Incompressible Eddy Viscosity Model 

In near wake problems, the initial flow development is similar 

to that of a free shear layer, and the coefficient K of Eq. (5-11) can 

be chosen by comparing it with self-preserving shear layer results. 

However, the form and coefficient should be consistent with the far wake 

-1/3 (53) 
flow, which in the axisymmetric case requires that e varies as x 

After a comparison of various form, the following form is chosen 

for the characteristic length upstream of the rear stagnation point 

/ V ± U. - U . 

-,i f Jn U . - U . * 0 e,i o,i 

7 

4c,i = V ^ û  . - T . c1 - I T ^ T >?id?i (5"12a> 
" ~ ~ ~ e,i o,i 

Downstream of the rear stagnation point (U . = 0), the characteristic 

length is taken as 
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which is proportional to the square root of the momentum area. 

(54) 
On the basis of Abramovich's study of the mixing between two 

layers moving at different velocities, U . is selected as (U .-U .) 
(_ ̂  J- " j l vj j J-

in the initial region; that is, in the initial region 

U . = (U . - U .) (5-12b) 
c,i e,i 0,1 

For free shear layers, the velocity profile is accurately repre

sented by an error function, viz. 

U. . a.y. 

e,i 

where a. is the spreading parameter. The value of a. is approximately 

11 for incompressible flow. Comparing the value of eddy viscosity 

(55) 
obtained using Eqs. (5-12a) and (5-12b) with Schlichting's value, 

one gets 

K), , • ^ 0.07 (5-14a) 
free shear layer 

(52) 
Townsend suggested that the two dimensional wake profile, 

U . - U. , 2 , 0 e» 1 1 / J - H N , 1 —^N /c:ni.. -^—— = exp(- -- - — ) = exp(- - n ) (5-15) 
e,i o,i l 

o 

is an adequate representation of an axisymmetric wake also. H is the 

width of the mean velocity distribution defined by the condition 

u . - u .a ) n /0 
e,i 1 o -1/2 
-Z _ = e 

U . - U . 
e,i 0,1 
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Substituting the velocity profile given by Eq. (5-15) into Eq. (5-13a), 

one gets 

• - ^ 

* e,i e,i 

1 

— u > - - - u 7 ^ T~2 T-^ ~~~. T~i ] 

/ e,i o,i „ 2 c , 1 —2s— j— , e.i o,iN 2 /• , , L —A , — ,— 
= / L _ » _ z J exp(_ n ) n dn (—1_ >_) ^ J {exp(-- n ) } ndn 
* e,i 0 e,i 0 

As the second term is much smaller than the first one in the far wake, 

/u . - u 7~n ~ ~" " ' 
/ e, I o, I n 2 r r 1 —2.— — 

*c, l "V U
e i ° ' 0 ^ ^ " 

/u . - u : r1 /u . - u T1 

'-Sii °ii 4
 2 = /_£«i 2,1. t ( 5 _ 1 6 ) 

U o X U o 
e , i " e . i 

For the axisymmetric wake, Townsend also gives 

£rT, . = ~ — (U . - U . ) % = TT^T (U . - U .) I 
T, i R . e,i o,i o 14*7 v e,i o,i o 

-L » 1 

= K. . £ . U . 
far wake c,I c,I 

Substituting Eq. (5-16), one gets 

K ) * i = °- 0 7 (^ i/i^ 

far wake (5-14b) 

if one defines 
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Therefore, the above chosen £ . and U . give the same value of 
c,i c,i 

the coefficient K in the regions where the flow development is similar 

to free shear layer and to the far wake. Hence, K is taken as 0.07 

throughout. 

Compressible-Incompressible Transformation 
and Compressible Eddy Viscosity Form 

For a closed form integration to evaluate the integrals and the 

proper modelling of the eddy viscosity, the following transformation has 

been used: 

pae 
ndn = — rdr 

P a 
00 00 

Because 

and 

P a 
d ? = _§_e d x 

P a 
"^00 00 

V = $ (5-17) 

i pur _ pvr 
\b = -^— and \b = - *1— , 

y P~ x P „ 

y a 
U. = -11 = — U 
I n a e 

i n 

ui _u 
u . u 

The field equations are transformed into incompressible form; that is 
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3(u n) 3(v.n) 
—_J—+ i— = o 
9£ 9n 

and 

3U. 3U. dU . - „ 3U. 
TT i , i TT e , i . 1 3 , iN 

i f i t i s assumed 

2 2 

P P T) 

" e °° 

(5-18) 

e ( x ) , i f i t has the proper Mach number dependence, i s t he coun te rpa r t 

of the incompress ib le eddy v i s c o s i t y . Alber , in the two-dimensional 

2 2 2 
t u r b u l e n t c a s e , assuming em = p em/p p = p /p em . (where 

T T eK°° • r e T,i 
em . = K U .0.), showed that for p = p , a proper Mach number depend-
T,i e,i I Kr Ko 

ence is obtained, at least for the asymptotic or similar shear layer 

2 2 2 
case. Making a similar assumption, i.e., p em/p p = p /p em ., and 

T e ° ° o e T, l 
2 2 /~2 7 2 2 

further assuming that r /n = v& /&. p /p (because for n "* <S ., r./n 
2 2 2 2 

behaves as 6 /6. and for n~*0, r /n behaves as p /p ), the following 
expression for e is obtained: 

2 2. 
P eTr 

eT(x) = 

(5-19) 

2 
P e

P oo n 

Pn 3/2 
= K (f) -6 ' 

e 
' Hf 1 ) U. -i o . c , l 
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Unfortunately, a detailed check on the eddy viscosity model 

cannot be made due to lack of experimental data in the axisymmetric 

case. An approximate calculation of the value of pressure gradient 

at the rear stagnation point, obtained by curve fitting the n = 0.648 

Kubota-Reeves-Buss velocity profile, gave the same order of magni-

(4) tude on the centerline as obtained through experiment. Although a 

comparison of an integral quantity like the dissipation integral with 

the experimental data, if available, would have been much better, the 

above check at least shows that the order of magnitude is correct at a 

point in between the two extreme matched regions — that is, between the 

free shear layer and the asymptotic far wake. Further verification of 

this model will have to come from a comparison of theoretical and 

experimental values of base pressure at various Mach numbers. 

Using Eqs. (5-17), one can obtain the following relations between 

the compressible and incompressible quantities: 

n p a H - U 2A * Q 2 Koo oo e e 2 „ 2 
ft = __ :—.— ft 

p a h i 
e e e 
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h 9 H U 2 

A ^ 6 1 { - ^ A.' - ̂ f- A'} 
u 2 . i h x 2h 3 

H - U A„ e e 
e e 2 
eT(x) a 

Ri • - « — r V <5-20> 

where A ', A ', A ', R ' are incompressible non-dimensional integral 

quantities defined in the Nomenclature. 

Profile Selection 

In order to evaluate the integrals, it is next necessary to 

select the velocity profile for the inner region. An inadequate repre

sentation of the actual velocity profile will result in improper magni

tudes of the appropriate integrals. On the other hand, a profile with 

too many free parameter will require too many integral equations, and 

hence may involve more complexity. 

Near the base, Green's profiles (a uniform velocity central 

core with cosine profile in the shear layer) are employed as they seem 

to give a good representation with and without uniform base bleed. This 

profile is shown in Figure 8, and is given by 

U. 
rr^— = 1 - 2 A 0 < n < h . 
U — — l 

e » 1 r, U 

n-h 
= 1 - A - A cos 7T i-—1) h . < n < f i . ( 5 - 2 1 ) 

i 

where £. = 6. - h. = shear layer thickness. Here two parameters, namely 

A, the centerline velocity parameter and P = h./6., the central core 

parameter define the velocity profile completely. From Eq. (5-21) and 

Figure 8, it can be seen that A is equal to 0.5 at the base with no base 



Edge of the W a k e 

^ ^ Dividing Sfn 

U = i - A - A cosTrf^lhi 
/ ; 

- t 
= 0-*-A=0.5 

Figure 8. Incompressible Velocity Profiles Near the 
Base—Green's Two Parameter Profiles. 
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bleed (IL = 0) and is less than 0.5 with base bleed. Using Eq. 
D3.SG 

(5-21), the integrals can be readily written in terms of these param

eters. These are 

Al 2 A *1 

, _ (1-A)2 OA/1 ANT, , A2, 

where 

A^ = ̂ —f1 2A(1-A)F1 + A F2 

3 
A3 = (1"2

A) " 3A(1-A)2F + 3A2(1-A)F2 - A
3F. 

2A2 1-P 2 

Rl ~ 2
 ( ~ } 

x (i - p r 
v 

2 2 
P 2(1-P ) 

T. V V 
x l ~ 2 2 

7T 

P 2 1 - P 2 

F2 = 
V 

2 
+ V F2 = 

V 

2 
+ 

4 

Pv2 14 (1-V2 

F3 " — " ̂  T ~ (5"22) 

The other quantities of interest are U ./U . and £ /S. in Eq. (5-19). 
c , i e , i c . i 

l 
U ./U .in the initial region is given by Eq. (5-12b) and is equal to 
c, I e, I 

* i 2k. n./5. is obtained from its definition, i.e., 
l l 

Hi U. 
/ ^— T, dn = 0 
0 e,i 

This gives the equation 
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A ( l - h ' ) 2 U - h ' ) A 2 
_ ^ _ c o s ^x + — { ( 1 - h ' )X + h ' } s i n TTX - ( l - A ) ( l - h ! ) ±-
Z IT i i l I 

IT 

f , h : 2 ( i - h : ) 2 A 
- ( l-A) (l-h!_)h iX = (1-2A) - y - + | (5-23) 

* * * ' ?C 7C « ' | 

h. n. n. - h . n. - h . 
, i i *» l v i i 'i i where h = — , n = -=—, X = ——-— = . 

1 6 i 1 «± V h
± 1-h.' 

l 

Knowing h. and A, Eq. (5-23) is solved for r\./6. by iteration using the 

(58) 
Regula Falsi method. £ ,/6. is then obtained by substituting into 

L j J. _L 

Eq. (5-12a). This gives 

£c,i/6i = °*5\ r (l-h^)Z(S3-XS4) (5-24) 

f c r /-. „2N X sin 2TTX , 1 - cos 2TTX n where S3 = [ (1-X ) ^ + 2 ] 

8TT 

sA . 1 ia.x) . •IzJULl 

Away from the base, the Kubota-Reeves-Buss one parameter pro-

files (similar solutions for axisymmetric wakes analogous to the 

Stewartson solution of the Falkner-Shan equation in the two-dimensional 

case), which describe the wake flow adequately away from the base, are 

selected to represent the velocity profile, and are shown in Figure 9. 

These profiles are integrated using Simpson's rule to determine the 

integral properties. These properties, U /U , U*/U and £ ./6. (based on 
O 6 6 C j 1 1 

(Eqs. (5-12) and (5-13)) are shown in Figure 10, and are curve fitted as a 

function of n (pressure gradient parameter in the Kubota et al. analysis) 

using the method described in the Appendix, n varies from 0.5 to 0.75, 
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Figure 10. Behavior of Properties of the Kubota et_ al. 
Profiles with the Parameter, n. 
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with n = 0.75 corresponding to a solution for uniform flow (U/U = 1). 

For 0.5 < n < 0.648, the centerline velocity is negative, while for 

0.648 < n < 0.75, it is positive. The expressions (up to the 5 deci

mal place) obtained for the above quantities are: 

For 0.5025 < n < 0.648 

A 
, = 1.0 - 3.21497n + 0.54279n + 3.77499n  

1 5.85466 - 28.02885n + 40.16253n2 - 15.04077n3 

H' =
 Al A2 = 1.0 - 5.88952n + 11.56213n

2 - 7.56621n3 

1 0.5 - A| _i.91873 + 9.31737n- 14.4851n2- 7.04084n3 

„, _ Al " A3 _ 1 - 6.48586n + 14.07363n2 - 10.20602n3 
n_ — ~ — 
2 0.5 A± _2.65934 + l4.62566n - 25.88102n

2 + 14.50306n 

,, _ 1 - 6.36621n + 12.87586n - 8.26446n" 
Kl = 

1 -0 .19518 + 1.23131n- 2.92122n2 + 2.48644n3 

^o = 1 - 5.61534n + 1 0 . 4 2 5 9 2 n 2 - 6.39048n2 

Ue -0.85508 + 4.53164n - 7.74194n2 + 4.19 771n3 

U^ = 1 - 5.41081n + 9.75168n2 - 5.78188n3 

U e 1.02865 - 5.13842n + 8.33606n2 - 4.33627n3 

1Ci = 1 - 12.73157n + 35.47935n2 - 27.96182n3 

i 100(-2.50149 + 12.3204n - 19.93211n2 + 10.61832n3) 

For 0.648 < n < 0.675 

, _ 1 - 3.2157n + 2.87905n - 0.45486n~ A = 
1 6.54662- 26.20812n+ 34.39566n2 - 14.71123n3 
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„, _ 1 - 4.88463n + 7.84174n2 - 4.14984n3 

H -
-2.02297 + 7.8138n - 9.93104n + 4.13772n 

t _ 1 - 5.05386n + 8.37624n - 4.5745n~ 
H : = 
2 2.06367 + 8.39312n - 11.32596n2 + 5.06155n3 

t = 1 + 3.36972n - 14.3410n
2 + 10.76Q48n3 

1 0.64539 - 1.42794n + 1.90580n2 - 1.38008n3 

^o = 1 - 3.40084n + 3.59654n
2 - 1.12534n3 

Ue -1.41253 + 4.72459n - 5.25292n2 + 1.94731n3 
(5.25) 

Solution Method 

As mentioned in the previous section, the Green profile described 

by Eq. (5-21) is employed to start the solution from the base. As these 

profiles introduce two parameters, A and P , and there are four basic 

unknown variables, p (or u ), v , <5 and S , the total number of unknowns 

to be solved for are six. Eqs. (5-6) to (5-8) are rewritten, after 

simplification, in the following forms: 

dA' U 2 A' dAl JA dAl U 2 A,' dAl dP 
, 1 e 1 2 v dA , 1 e 1 2 . v 
ldA „ T T2 A tdA

 ; dx ldP „ T T 2 A l dp'dx 
H -U Al v H -U Al 
e e 2 e e 2 

H -U2Al 
2A: - e e 2 

V 

1 h AR 

+ _ S _ f = R u (5.26) 
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d ( A 2 - V + i _ ( A , A , ^ U J ^ P +
 Ue 

dA 2 2 1 ' dA dx dPv 2 
e e 2 ' e e l 

dAi ) dP (A;-A') M 

^ - ^ d T dT + 2 ~ V - f = R22 (5"27) 

d(A^-AM Ug
2 d A ; ) J A (d (A; -A ' ) 

+ 
dA ,A d A - A 

_ CA'-AM -^ — + )—l—L 
' CA3 V dA j dx + > dP <* H - U 2 A 9 

e e 2 

Uo2(AV"Ai> dA^ ) dP 2 ( A l - A M 
+ 6 3 X - ^ ^ + —-2—i- f = R,, (5-28) 

H - u 2 A ; d p v J d x 6 d x 3 3 

e e 2 ' 

where 

V H - U 2 A ' U 2 h dS 
n = _ §. JL e e Z _L A I / I I O A I e \ e -f- e 

K l l U 6 h + V 1 + Z A 2 U T T 2 A f
;

T T 2 c dx 
e e H -U A' U p 

e e 2 e 

( U 2 * h J -. dp 
+ A! ( I + 2A; e

 9 )—-V- i - -r^ 
1 ( 2 H - U 2 A ' C p U 2 J P e d x 

e e 2 e 

__ ( U 2 ) h dS 
R2 2 = x + (2A- - A;) + 2A 2 (A 2 - A p — ^ - - | - c ^ 

e e 2 e 

U 2 „ h 
+ ^(2Al - A' + 2A' A! - A' ^- ) A . e 

z L z z 1 H - U Z A : P U Z 

e e 2 e 

n p H - U 2 A ' ) , dp 
( A 2 A l + 2c TT 2 ^ ( P dx 

P ue ) *e 
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R33 " " 2 R1 X + 2T 

( U 2 ) h dS 
+ {(3AI-A!) + 2AL(A'-A') ^y- \-^- f- —^ 

3 1 2 3 1 H _ U 2 A , ^2 c dx 
e e 2 e 

" 2 

e N R e + <(3Al - A') + 2AI Al-A! ^ ) — 
3 1 2 3 1 H _ U 2 A ; C W 2 

e e 2 e 

T = 

p 2H dp 

(A: - A; + — -i K - K )> — ^— 
3 1 cp y 2 1 3 ) pe dx 

e 

dS /dx 
e_ 

H -U 2 Al 2 

u 2 ( V ^ir-1) 
c * _ j e _ J _ _ e ± 
P H -UI Al ( X 6 U e e 2 e 

H -U 2 Al £ T 

* = ^L~H<ir i ) 
h 6 e,i 
e 

V H " U 2 A9 

_ jC e e 2 
6 h 

e 

P 3 / 2 I . U 
— ) c , i c 
p e 6. 

l. 
U 

e 
(5-29) 

The values of A' A^, A' R|, dA^/dA, dA^/dA, dA'/dA, dA|/dPv, dA^/dPv 

and dA'/dP are obtained using Eqs. (5-22) to (5-24). Eqs. (5-26) to 

(5-28) are solved simultaneously for dA/dx, dP /dx and d6/dx using the 

(59) 
Gauss-Jordan complete elimination method with maximum pivot strategy, 

and new values of 6, A and P are found at the next station using Eulerrs 

method with a variable step size (0.01 of the base radius in most por

tions of the flow). The pressure is evaluated from the centerline 
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momentum Eq. (5-9). v and S at the new station are found using the 
e e 

approximate method of characteristics described in Chapter IV. 

Away from the base, the Kubota-Reeves-Buss profiles were used. 

The reason that these profiles are inadequate near the base is that as 

n -* 0.5 (or U -> 0 for no base bleed) at the base, fr* -* 0.546 for these pro-
o 

files; while at the separation point or base, U* = 0. Only one param

eter is necessary to describe these profiles, and this parameter here 

is taken as the pressure gradient parameter in the Kubota _et_ JLL. analysis. 

All the properties required for computation are curve fitted and given 

by Eq. (5-25) in terms of this parameter, n. As the Green's profiles 

and the Kubota ejt jQ. profiles are different with different shape fac

tors, there will be a discontinuity in some quantities when transfer

ring from the solution using the Green profiles to the solution using 

the Kubota _et al. profiles. A sufficient number of conditions next 

should be provided to obtain a unique transfer point. It was decided 

to maintain the continuity of the mass flow rate through the shear layer, 

the thickness of the shear layer and the Mach number at the edge of the 

shear layer as the basic conditions so as to cause no discontinuity in 

the external flow solution. For the same thickness of the shear layer 

and edge Mach number, it is always possible to find the value of the 

parameter, n, for the given mass flow rate through the shear layer. In 

order to achieve a unique location, an extra constraint or condition 

is required, and an integral quantity, related to drag seems to be a 

reasonable choice. Hence the momentum shape parameter, H-, was used as 

the final joining condition. However, later it was found that with the 

present set of profiles, the location of the joining point varied very 
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little when either the dividing streamline velocity (chosen by Alber 

et al.) or the momentum shape parameter was chosen as the last joining 

condition. 

In almost all cases, before the profile changeover or matching 

occurred, the negative pressure gradient obtained through the use of 

Eq. (5-9) becomes very large resulting in an inflection point in the 

dividing streamline velocity distribution. This runaway tendency of 

pressure gradient is believed to be due to the absence of shear stress 

in the centerline momentum equation. To avoid this, the centerline 

momentum equation is replaced by 

d E ^ ) + d ! E ) ( x _ x ) 

dx dx v , 2 o 
x dx x 

o o 

d2U* 
downstream of the point — x ~ = 0 (i.e., x = x ), until a match occurs 

dx2 

with the Kubota ̂ t aJ. profiles. This _ad_ hoc assumption is usually only 

required over a very short distance (about 0.5 R). 

For large boundary layer thickness, high Mach numbers and large 

base bleed, the two profiles could not be matched in the near wake. An 

attempt to find another family of starting profiles that would match 

with the Kubota et^ a\^. profiles was not successful. Hence the Green 

profiles were used throughout for most of the calculations. However as 

one moves away from the base, the constant velocity core is eaten up by 

the shear layer. Once the value of the parameter, P , drops to 0.2, it 

is maintained constant as the magnitude of the centerline velocity 

becomes much larger than the experimentally measured reverse velocity 
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if P is allowed to go to zero. These profiles with P =0.2 will be 

referred to as Green's one parameter profiles. 

The unknowns, using one parameter profiles (Kubota et^ al_. or 

Green), are U , 6 , n or A, v and S ; that is, the unknowns are reduced 
e e e 

by one. Therefore, the three integrated equations, Eqs. (5-6) to (5-8), 

coupled with the solution of the external flow are sufficient to solve 

the problem. These integrated equations, after simplification, are 

dA! u 2 dA; H -u 2 A ; , , , 
( — 1 + e • A » —?• ) ^ + (2k - e e 2 ) I ii + 
K dn u T T 2 Al

 A l dn ; dx + U A 1 h J H x f 

H -U A' e 
e e 2 

(5-30) 

d(Al-A ' ) U 2 dA! ) , - , . 
2 _ l _ + _ e ( A ' - A J ) - r ^ } ^ + 2(AI-Ai) ^ + 

dn TT TT 2 A, 2 1 dn I dx 2 1 6 dx 
H -U A' J 

e e 2 

2 2 

j ( 2 A 2 " Ai> " <A2 " Ai> J r i f + 2 ( A2 - A i ) A 2 ^ 2 ^ 7 
' e e e 2 

V U e kl\ 1 dUe 
e ; e 

d(A'-A») U 2 dA!) 
— T - ^ - + e

 9 ( A ; - A ; ) - ^ ^ + 2 ( A - - A ; ) ^ + 

dn „ __ 2 . , 3 1 dn ( dx 3 1 5 dx 
H -U A' J 

e e 2 ' 
( U 2 c U 2 

<(3A1- A') - ( A l - A' ) 7 — - £ + 2 ( A I - A')A' — — 3 1 ' ^ 3 1 ' h e R ^ 3 " 1 ' 2 R _ u 2 

e e 2 

) 1 d U e 
- 2 A u f dT = R H33 ( 5"3 2 ) 
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v n H - U 2 Al A' dS 
, „ „ e l e e 2 , 1 e 

where R1L _ = - -— — —r— 1- ——-— 
11 U 6 h R dx 

e e 

( c i y 2 ) i d S 

R H 2 2 . T + J(A'-Ai)f + 1 - A - - f ^ H - u A ; 
e e 2 

RH3 3 = - 2 R | X + 2 T 

( c 2H i dS 
+ <A^Ai>f +(-fAi-A3> 7 5 T < 5 " 3 3 ) 

• u J p 

When t h e Kubota e t a l . p r o f i l e s a r e u s e d , A ' , A' e t c . a r e g i v e n by Eq. 

( 5 - 2 5 ) , w h i l e f o r t h e Green one p a r a m e t e r p r o f i l e s , t h e s e a r e g i v e n by 

E q s . ( 5 - 2 2 ) t o (5 -24 ) . X and 7 a r e d e f i n e d by Eq. ( 5 - 2 9 ) . 

The s i m u l t a n e o u s s o l u t i o n of Eqs . ( 5 - 3 0 ) t o ( 5 - 3 2 ) f o r t h e t h r e e 

v a r i a b l e s c a n be w r i t t e n i n t h e form 

dU 
e 

N u 
e dx D 

d6 
dx 

.A 
D 

N 
d n ( o r A) _ n ( o r A) ( S - - ^ 

dx D l J ; 

The complete solution is continued until the Crocco-Lees singularity is 

encountered. Near the singularity, for an incorrect value of p , either 

D goes to zero first or one of N's go to zero first, i.e., either the 

solution diverges or there is an extremum in one of the variables. On 

the other hand, if the value of p, is correct, both N's and D go to 
b 

zero simultaneously and the transition from subcritical to supercritical 
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flow is possible. It is only necessary to assure that ^ > 0 

(or <0), as n (or A) must increase (or decrease) monotonically through 

the critical point. In the present formulation, if the initial value 

of base pressure is too low, the determinant of the solution matrix 

goes through zero before the numerator, N and vice versa. For given 
n 

initial conditions and a trial value of p., the present program is 

designed to give an increment in the proper direction to obtain the next 

trial value of p . Convergence is obtained by halving successive incre

ments. It requires from about three to ten seconds (depending upon the 

initial boundary layer thickness and Mach number) on a CDC CYBER 70-74 

using the central processing unit, CPU '0', to complete one iteration 

and about three iterations to enclose the base pressure by one signifi

cant figure. For making a proper jump (so that there is no change in 

sign of the derivatives) over the singularity to get to the far wake, it 

is usually found that the base pressure should be iterated at least to the 

sixth significant figure. The flow diagram for the inner region is given 

by Figure 11. 

Comments 

The present solution has been the result of a lot of trial and 

error attempts because of certain unforeseen difficulties. It seems 

advisable to mention various other alternatives pursued and their short

comings as an aid to other investigators. The present investigation was 

initially started using Green's type profiles for both momentum and 

enthalpy, viz., 



57 

INPUT 

( P . S . V V V B 

Solve for (A, P )_ 
v B 

of the Green Profiles 

Obtain integrals like A ' 

and derivatives like dA.. /dA 

—Subroutine AUX 

1 
Obtain I ./6. 

c,i i 

—Subroutine CLENGTH 

T 
Obtain coefficients of: 

Overall < zontinuit} ' equation 

Overall momentum equation 

Mechanical energy equation 

Obtain dS/dx, dA/dx,dP /dx 

using Gauss-Jordan Reduction 

Technique — Subroutine SIMUL 

I 
Obtain dp/dx through 

Centerline momentum equation 

A,P ,6, p at next point r 

S and v using AMC 
e e fo 

—Subroutines ROTAT 
and IRROT 

No Kubota atL _al. profiles used: Matching occurs?/ 

Green's one-parameter profiles used: P =0.2 

Yes 

contd. 

Figure 11. Flow Diagram for the Inner Region. 
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Obtain coefficients of: 

Overall continuity equation 

Overall momentum equation 

Mechanical energy equation 

Subroutines GREEN, AUX, CLENGTH 
or 

Subroutine KUBOTA 

I 
d6/dx, dA(or n)/dx, dU /dx 

Subroutine SIMUL 

No 

A(or n), U , 6 at next point 
S and v using AMC 
e e 

H*-
— Subroutines ROTAT 

and IRROT 

CROCCO - LEES SINGULARITY 
NA/ . changes signup,) , > p, ) . -, A(or n) b assumed b actual 

b assumed b actual D changes sign 

Figure 11. Flow Diagram for the Inner Region. 
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r " h 

= 1 - A - A cos 7T (,- • ) 
p U v6-h 
e e c 

h r~h 

JL = l - B - B c o s 7 r (̂ -~) 
h o-h 
e c 

where h is the thickness of the constant velocity and enthalpy core. The 

parameter h /S was to be dropped once it becomes zero. The use of above 

profiles resulted in seven unknowns, p (or U ) , v , 6 , h/6, S , A and B. 
e e c e 

As mentioned in the previous section, v and S are determined from the 
e e 

solution of external flow. Four equations, overall continuity, overall 

momentum, mechanical energy and overall energy, were taken as the govern

ing equations. The solution was started with a constant pressure assump

tion, and this assumption was to be dropped once h /S reached zero. How

ever, it was found that before this parameter approached zero, the center-

line Mach number attained a very high value. Also the initial drop in 

pressure observed in experiments (the drop in the axisymmetric case is 

much larger than in the two dimensional case) can not be achieved using the 

constant pressure assumption. So, alternatively, the half momentum equa

tion (momentum equation integrated up to the U = 0 line) was used. This 

resulted in a singular point in the solution very close to the base. Use 

of other equations like the centerline momentum equation and second moment 

of momentum equation did not alleviate the problem, and no physical explan

ation of this singularity could be reached. Also, various other profiles 

like 
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P U 1 A /I ~ Z N 2 

= ! . A (i _ r ) 
e e 

f = X - B l ( l - ? )
2 

e 

— r 
where r = — , and A , B and z are profile parameters, and straight line 

profiles were tried, but with no success. The reason for choosing the 

above profiles was the simplicity in evaluating the integrals in closed 

form. However, these profiles do not satisfy the isoenergetic condition 

at every point in the shear layer; this was believed to be responsible 

for some of the troubles. 

The next step in the investigation was to assume only the velocity 

profile and to use the isoenergetic condition. In order to again avoid 

the numerical integration, a compressible-incompressible transformation 

was used. Although this transformation requires certain additional 

approximations or assumptions on the behavior of the shear stress term, the 

accuracy of the assumptions seems to be compatible with the present approach. 

Qualitatively again, the same results were obtained. 

Next, to circumvent the problems, it was decided to join the ini

tial two parameter profiles with a single parameter profile. The Kubota-

Reeves-Buss profiles were chosen. At moderate boundary layer thicknesses, 

the joining point occurred before the above mentioned singularity, and 

the complete solution was obtained with no trouble. But, as pointed out 

in the previous section of this chapter for high boundary layer thick

nesses and Mach numbers, it was found that matching between these two 

profiles was not possible, while for very small boundary layer thickness, 

the singularity occurred before the matching could take place. Again the 
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use of other kinds of conservation equations did not succeed. 

The next attempt was based on the result that no singularity 

was observed in the solution if an arbitrary dp/dx was imposed externally 

(whether zero or non-zero). That is, the simultaneous solution of the 

three equations (here continuity, momentum and mechanical energy), did 

not result in any singularity near the base as one marched away from the 

base. Consequently, dp/dx was then obtained using the centerline momen

tum equation, applied one step later than the solution for the other 

variables. This eliminated the singularity near the base. 

Initially, it was thought that the above singularity should be of 

(59) 
nodal type ; that is, N?s and D should go to zero simultaneously 

regardless of the initial value of p, . Thus, no extra constraint on the 

problem would be imposed. Golik-Webb-Lees and Ai , in their ana

lytical solutions of the two-dimensional laminar case, starting from the 

rear stagnation point and using simple profiles, found many singular 

points. These singularities, other than that at the Crocco-Lees critical 

point, turned out to be of the nodal type, and they occurred at high 

centerline velocities. The velocity in the present axisymmetric analysis 

is about twice as high as in Alberfs two dimensional analysis. However, 

it was not possible to jump through the present singularity properly even 

with the use of a more accurate numerical scheme (Runga-Kutta method). 

Presently, it is conjectured that the present system of equations becomes 

unstable as one marches towards the rear stagnation point, and the solu

tion of dp/dx one step later lends stability to the solution. 

Thus the complete solutions was possible with the above line of 

approach, for a wide range of Mach number and boundary layer thickness, 
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without any computational difficulty. However, there was still an 

unwanted feature of a higher magnitude of centerline Mach number than 

experimentally observed. The way in which this has been dealt with in 

the present analysis has already been discussed in the previous section 

of this chapter. 
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CHAPTER VI 

RESULTS AND COMPARISON WITH EXPERIMENTS 

Figure 12 shows a typical centerline pressure distribution 

obtained using the present analysis and illustrates the convergence of 

the solution as the correct base pressure is approached. As shown, if 

the base pressure is smaller than the correct value, there is sudden 

drop of pressure and the solution blows up (denominator of the solution 

matrix going through zero first); while if the base pressure is larger 

than the correct value, the pressure keeps increasing and the centerline 

velocity drops (numerators of the solution matrix going through zero 

first). If the solution is allowed to continue in the latter case, 

another stagnation point is obtained (a very large value of assumed base 

pressure results in open wake, i.e., no stagnation point). Usually, if 

the solution is carried up to sixth decimal accuracy, it is possible to 

make a proper jump through the Crocco-Lees singularity; that is, numera

tors and denominator go through zero almost simultaneously. The numeri

cal accuracy of the solution is checked by reducing the step size by 

one-half, both in the characteristics net as well as in the streamwise 

direction; the deviation of the pressure from the original step size 

solution is of the order of 0.5% (Figure 12). 

Also shown in the figure is the solution obtained using the 

Prandtl-Meyer relation for the outer regime. Interestingly, the overshoot 

feature in the centerline pressure curve, peculiar to the axisymmetric 
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base flow disappears with the Prandtl-Meyer law, and, also as expected, 

the base pressure obtained is much smaller than that obtained with the 

axisymmetric method of characteristics. This demonstrates that the 

solution of the external flow plays a very important role in the present 

problem and must be adequately solved to get good results. 

Another preliminary investigation made, was to study the effect 

of value of eddy viscosity coefficient, K. As explained in Chapter V, 

this was empirically selected as 0.07 by comparing with incompressible 

self-preserving flows. As shown in Figure 13, base pressure has quite 

strong dependence on the magnitude of K. However, it will be shown later 

that K= 0.07 is quite satisfactory from the standpoint of comparison 

between analytical and experimental results. 

Figures 14 and 15 show the effect of the velocity profile on the 

near wake solution. The solution is started using the Green two parameter 

profiles. In one case, this solution is matched with the solution using 

the Green one parameter profiles, while in the other case, it is matched 

with the solution using the Kubota et al. one parameter profiles. The 

variation of shape parameters with the non-dimensional mass flow rate in 

shear layer is shown in Figure 16 for these two profiles. From Figures 

14 and 15, it is seen that pressure and wake thickness are affected in a 

minor way due to change in profile, while detailed features like location 

of the rear stagnation point and the centerline Mach number distribution 

are found to be more profile dependent. This profile dependency of the 

detailed quantities is one of the major drawbacks of the integral methods. 

For accurate prediction of the flow field details, a good velocity profile 

is essential. 
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Figure 13. Effect of Coefficient of Eddy Viscosity on 
Centerline Pressure Distribution. 
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Figures 17 and 18 show comparison of the centerline pressure 

and centerline Mach number distributions with experimental data of three 

different investigators for Mach number near 2.0. The boundary 

layer thickness, for these test cases, varies over a wide range, from 

thin (61/R = 0.0061, 6 /R = 0.0771) to quite thick (e^R = 0.05575, 

6../R = 0.59). In all three cases, very good comparison between theory 

and experiment occurs, lending credibility to the present analysis. 

Experimental data of Ref. (64) seems to suffer from.some tunnel wall 

interference because of a large wake thickness to test section height 

ratio (- 0.6). It should be pointed out that the present analysis does 

not take into account the presence of the tunnel walls, model supports 

and probe, which are essential in an experimental set up. The experi-

( f>2} 
ments have shown that if the probe diameter is less than 10% of the 

base diameter, the effect of probe on the base pressure is negligible 

(3 to 5%). But there are no data concerning its effect on the centerline 

pressure variation and location of rear stagnation point etc. 

Figure 19 shows the effect of Mach number on the base pressure. 

Mach number is the primary variable affecting the base pressure. In 

spite of the large scatter in data available in the literature, Refs. 

(62-68), the present theory shows a respectable matching with the experi

ments, particularly at moderate Mach numbers. It seems, however, to 

slightly overpredict the base pressure at large Mach numbers (~ above 2.5) 

and slightly underpredict the base pressure at low Mach numbers (~ below 

1.8) consistently. It is found that if instead of assuming the equivalent 

compressible eddy viscosity, e , behavior as described by Eq. (5-19), one 
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Figure 17. Comparison of Theoretical Centerline Pressure Variation 
with Axial Distance with Experiments Near Mach 2. 
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multiplies the right hand side by a factor /M /2, a much better cor

relation with the experimental results can be obtained for a wider range 

of Mach number, and hence, is recommended for further work. This new 

form for e has been used for some of the computation at high Mach num

bers and will be referred to as modified viscosity form (MVF). 

Figures 20 and 21 show the effect of Mach number on the near wake 

flow field for a given initial boundary layer thickness. The pressure 

overshoot downstream of the RSP increases with Mach number. It is also 

observed that for lower Mach numbers, the critical point occurs before the 

maximum pressure point, while for higher Mach numbers, the critical point 

occurs before the minimum thickness point and in the large pressure gra

dient region. Another interesting feature to note is that there is not as 

strong an effect of Mach number on detailed quantities like location of 

rear stagnation point as on base pressure. 

Figures 22 and 23 give the results at Mach 3 for which detailed 

experimental information ' is available to the author. The experi

mental results show a slightly higher base pressure than the usual because 

of a slight compression caused by the boundary layer on the tunnel wall. 

The usually accepted value of the base pressure at this Mach number is 

about 0.4 (Refs. 67-68). This is also approximately the value obtained 

by using MVF as shown in Figure 22. A slightly disturbing trend that the 

slope of the experimental curve is higher than the analytical one near 

This is completely an empirical factor, purely based on the comparison 
between the present theory and the experimental results. However, to 
obtain the proper form of incompressible eddy viscosity (M -, « 1) one can 

2 1+n-iM*. . 
fit a polynomial, 1+aM+bM +.., or a rational function, to obtain 

r—j~ l+b-,M+.. 
a behavior of ^ei'

2 in the range of 1.4 <M< 4.0. x 
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the rear stagnation point is observed. This is probably due to the larger 

radial variation of pressure at higher Mach numbers. The area mean of 

the experimental radial pressure shows a better comparison with the theo

retical curve in this respect. Also, Figure 23 shows a very good matching 

with the experimental U = 0 curve and the outer edge of the shear layer. 

There are quite large differences in the locations of the rear stagnation 

point and M = 1 points. The reason again can be the inadequacy of the 

cosine profile to represent the far wake satisfactorily. Also, it is diffi

cult to find the exact location of the rear stagnation point experimentally, 

as the reversed flow velocities are very small. 

Figure 24 shows the centerline pressure variation at about Mach 4 

using MVF and the experimental result. Base pressure prediction is 

very good, but again the slope of the experimental centerline pressure 

curve is higher than the theoretical one near the rear stagnation point, 

probably due to the reasons mentioned before. However at this and higher 

Mach numbers, one should start considering the lip shock, the wake shock 

and their interactions. 

Figure 25 shows the effect of the upstream boundary layer thick

ness on the base pressure. The analysis shows an increase in base pressure 

or base pressure coefficient with the boundary layer thickness. Apart from 

the region of thin boundary layers the effect is small. The experimental 

evidence available regarding this parameter is somewhat contradictory. 

( f.O\ 
Reid and Hastings data shows a comparatively strong dependence of base 

(14) pressure on boundary layer thickness at Mach 2.03, while Chapman's 

data shows almost no variation at Mach 2.0. This is because the boundary 
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layer thickness effect is of secondary importance and probably is of 

the same order of magnitude as a) the effect of variation of pressure 

distribution on the model due to change in dimensions or shape, and 

b) the errors in experimental measurements. However, it is very encour

aging that the base pressure predicted by this model near Mach number 

of two for boundary layer thicknesses varying from 0.07 to 0.6 base 

radii match well with the experimental data (Figures 17 and 18). This 

shows the adequacy of the present corner model, at least for moderate 

boundary layer thicknesses. 

Figures 26 and 27 show the variation of various quantities in 

the near wake with variation of initial boundary layer thickness for 

fixed Mach number. Unlike the Mach number parametric study, the base 

pressure is seen to be a weak function of boundary layer thickness; all 

other quantities, such as centerline Mach number, velocity on the dividing 

streamline, centerline pressure, pressure overshoot are strong functions 

of the initial boundary layer thicknesses. Hence, measurement of the 

latter quantities can shed more light on the effect of boundary layer 

thickness rather than the measurement of base pressure and can help in 

improving the corner expansion model. 

Figure 28 shows the effect of base bleed on the base pressure. 

The analytical results show a slower base pressure rise compared to experi-

(63 68^ 
mental data * at lower values of the mass injection parameter, I, 

but attain the same slope as the experimental curve for large base bleed. 

This inability to match the low bleed effect may be due to the inaccuracy 

of the boundary layer approximation near the base, where both radial and 

axial pressure gradients are of the same order. Figures 29(a), 29(b) and 
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30 show the base pressure variation with base bleed and the change of 

near wake flow field quantities that can be expected with base bleed, for 

constant upstream boundary layer thickness and Mach number. There are 

two stagnation points with small base bleed, and the recirculation region 

shrinks with base bleed. Also, the wake thickness increases with base 

bleed, resulting in smaller convergence of streamlines in the outer flow 

field, and the overshoot feature in the centerline pressure curve of the 

axisymmetric bodies reduces. 
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CHAPTER VII 

DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

As mentioned in the Introduction, a recent report has appeared 

which contains a theory very similar to the present one. Because of the 

apparent similarity, it is thought necessary to point out the major dif

ferences between them. First, the present program takes significantly less 

computer run time compared to the work of Ref. 40. Although it is diffi

cult to make an exact comparison between the two run times, as the programs 

were run on two different computers, they are believed to differ by a 

factor of 10 or so. This is primarily due to the approximate method of 

characteristics employed in this work. Second, the employment of a center-

line momentum equation, instead of the constant pressure assumption of 

Ref. 40, in the initial development of wake, results in better prediction 

of the length of the approximately constant pressure region. Third, the 

mechanical energy equation has been employed in the present analysis 

instead of the half-radius momentum equation used in Ref. (40). Further, 

there is a difference in the treatment of the corner expansion region and 

the eddy viscosity model. Ref. (40) divides the upcoming boundary layer 

into inner and outer portions at the sonic line. The turbulent Reynolds 

number in the eddy viscosity model is treated as a function of geometry, 

Mach number, boundary layer thickness and pressure gradient. The exact 

form is obtained by comparison with the experimental base pressure data. 

In the present analysis, the eddy viscosity model has been derived from 
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the behavior of well known asymptotic simple flows. Using the corner 

model proposed, it was possible to predict the base pressure, and its 

dependence on Mach number and initial boundary layer thickness satisfac

torily. However, as pointed out in the previous chapter, the eddy 

viscosity form should be slightly modified in order to have better agree

ment with experiment at large and small Mach numbers. 

The major conclusions arrived at are as follows: 

1) Mach number is the primary variable affecting the base pres

sure. Base pressure decreases with the increase of Mach number. There 

is good agreement between theory and experiment. 

2) The upstream boundary layer thickness is a secondary param

eter; the base pressure increases with the increase of boundary layer 

thickness. Again good agreement with a number of experimental data is 

obtained. This indicates that the present modelling of corner region and 

shear stress is reasonable for this approximate analysis. 

3) The detailed results, such as centerline pressure variation, 

centerline Mach number variation and shear layer thickness variation, agree 

well with the experiments. At high Mach numbers, however, the theory 

gives smaller pressure gradients in the compression region than do the 

experiments. This is found due to the radial variation of pressure in 

the shear layer in the experiments. 

4) At low base bleeds, the theory shows much smaller base pres

sure rise compare to experiments. The inaccuracy of the boundary layer 

equation, in representing the region close to the base, may be the major 

cause for this result. 
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In summary, the method developed here provides adequate details 

of the field structure, when compared with experiment, to provide the 

analytical framework for external burning studies. Apart from the inclu

sion of radial pressure gradient, which would require a major modifications 

to the present theory, necessary improvement in the theory should cer

tainly include the removal of the adiabatic assumption. The theory should 

further be generalized, by including species conservation equations, in 

order to take care of various species generated during combustion. More 

experimental information about the boundary layer thickness influence is 

required to judge and improve the corner flow model. Here its effect on 

the centerline Mach number, rather than on the base pressure, should be 

measured, as the present analysis indicates that the centerline Mach num

ber distribution is very sensitive to upstream boundary layer thickness. 

Also, experiments are necessary to verify the present handling of the eddy 

viscosity, particularly concerning the effect of compressibility. 

The theory presented here is currently being used for external 

burning studies in situations where the near wake remains in an adiabatic 

condition. 



92 

APPENDIX 

CURVE FITTING UTILIZING RATIONAL FUNCTION TECHNIQUE 

In this dissertation, curve fitting is found advantageous at two 

places, viz., for obtaining intermediate values (interpolation) and 

derivatives, and secondly, for solving an implicit equation. 

The first problem occurs when the Kubota ̂ it al. solutions are 

employed for representing the velocity profile of the inner region. Here 

the values of various properties (Figure 10) of these profiles at discrete 

points are known in terms of the parameter, n. It is necessary in the 

solution of the problem to obtain the value of these properties for any 

arbitrary n (requiring an interpolation scheme) and the derivatives with 

respect to n. Also, when the solution with the Green profiles is matched 

with the solution using the Kubota et̂  _al. profiles, it is necessary to 

obtain n for given A' (so easy inversion is preferable). The method of 

least squares using exponential functions and polynomials is found unsatis

factory for these curves as high degree polynomials, required to obtain 

reasonable accuracy, give peaks and troughs in the range of interest, and 

this results in odd behavior of derivatives. Also computation time 

increases with the increase in degree of the polynomial. On the other hand, 

phenomenal success is obtained using rational functions. 

A rational function is a quotient of two polynomials, and in general 

can be written as 
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2 3 1 + a x + a x + a~x + .. 
R(x) = — ^— j ~ (A-l) 

b + b x + b0x + b0x
J+ .. 

0 1 2 3 

Again the complexity and the possibility of extrema occurring in the range 

of interest increases with the use of higher degree polynomials. But it 

is obvious that (i) even with a finite degree of polynomial of the denomi

nator, it has the characteristics of infinite series, (ii) one can satisfy 

the function at more points using lower degree polynomials, for example, 

at seven points using third degree polynomials for both numerator and 

denominator, and hence more accuracy but easy inversion. In the present 

case, it is found necessary to split the range of n into two parts, 

0.5025 to 0.675, and 0.65 to 0.75. A third degree polynomial for both 

numerator and denominator is used, and the coefficients are found by solving 

seven algebraic equations simultaneously, viz., 

2 3 2 3 
x_a_ + x..a_ + x_a0 - IL b - R ^ b - - R-x^b. - R-X-b- = -1 
± 1 L L ± 3 l o 1 1 1 l l z 1 1 J 

(A-2) 

2 3 2 3 
x_a_ + x^a0 + x_a_ - R_b - R_x_bn - R_x_b0 - R_x_b = -1 71 II 73 7o 111 111 115 

Sometimes, a little trial and error is found necessary to avoid the 

denominator going through zero in the range of interest. This is done 

by perturbing the values of properties slightly. The range of the two 

parts is allowed to overlap slightly and continuity of the first deriva

tive is maintained at n = 0.65. 

The second problem occurs in the solution of the external flow — 

to get the Mach number from Prandtl-Meyer angle. This requires the 
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solution of Eq. (4-13) which contains hyperbolic functions. A direct 

solution method will involve an iteration scheme. And if a simple curve 

can be fitted in the range of interest with sufficient accuracy, it will 

save computational time. Again, a third degree polynomial is chosen for 

both numerator and denominator of Eq. (A-l), viz. 

2 3 
1 + a..v + a»v + a_v 

M = ± ^—2 ^-3 (A-3) 
b + b-v + b_v + b0v o 1 L 3 

It is found necessary to split the Mach number range in two parts for 

better accuracy. The maximum error, in the range 1.2 < M < 1.72, is in 

the fifth significant figure of M, and in the range 1.72 < M < 4.2 is in 

the seventh significant figure of M. 
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