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SUMMARY 

An analytical study is presented of the effect which com-

pressibility of the airstream has on the flütter condition of rotary 

wings. An unsteady, compressible aerodynamlc theory is first developed. 

By assuming axial flight and low inflow conditions for the helicopter 

rotor, the complicated three-dimensional flow field is reduced to 

the more easily managed two-dimensional one used successfully by 

other investigators studying incompressible rotor flow. 

The aerodynairri.es of the two-dimensional flow model are 

formulated using a kernel function approach. Using an acceleration 

Potential the governing integral equation for the flow together with 

its attendant downwash bcundary condition are developed. In solving 

the integral equation numerically, a pressure mode assumption in 

conjunction with a collocation technique is used. The pressure 

distribution thus determined is integrated to give the usual two-

dimensional aerodynamic coefficients. 

The flutter model used for the study is a rigid two-dimensional 

airfoil section free to pitch and plunge. The equations of motion for 

this model are established using a Lagrangian approach and are solved 

using the velocity-damping technique typical of most flutter analyses. 

The aerodynamic forcing functions necessary for the flutter analysis 

are taken from the previously developed aerodynamic theory. 

The compressible aerodynamic theory is compared analytically 

with two other existing theories, one incompressible and one compressible, 

aerodynairri.es
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and shown to agree with these theories provided the flow modeis used 

are made to agree. The difference in flow modeis comes about as a 

result of the kernel function approach used. in this study. The effect 

of the difference in flow modeis is evaluated by comparing the 

numerical results of the different theories. The aerodynamic coeffi-

cients from the three theories are compared and shown to be in good 

agreement for values of the frequency ratio parameter near unity? 

biit the disagreement is substantial for lower values of frequency 

ratio. The frequency ratio parameter is shown to be an indication of 

the degree of difference in the flow modeis; the higher the frequency 

ratio3 the better the agreement. 

The many parameters entering the flutter problem are varied 

systematically and their effect on the flutter condition under 

compressible flow conditions presented. A comparison is also made of 

the flutter speeds obtained using the aerodynamic theory of this 

study for zero Mach number with those obtained using a previous 

incompressible theory. The agreement between the two sets of flutter 

results is excellent for all values of the structural parameters 

investigated. However, for low values of the frec[uency ratio parameter 

it is shown that differences in the results exist.. This again is due 

to the increasing difference in flow modeis as the frequency ratio is 

decreased. Comparison could not be made with flutter results obtained 

using the other recently developed compressible aerodynamic theory due 

to unavailability of the necessary aerodynamic data. 

The Variation of the flutter speed with the various flutter 
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Parameters was found to be essentially the same for compresslble as 

for incompressible flow. However, it is shown that the flutter speed 

for almost all conditions is decreased when the Mach number of the 

airstream is increased. The exceptions to this trend occur when the 

elastic axis and center of gravity locations coincide. For this case 

static divergence is shown to be more critical than flutter for certain 

combinations of the remaining parameters. Static divergence was not 

Important when the center of gravity was shifted aft of the elastic 

axis by one-tenth of a semi-chord. 
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CHARTER I 

INTRODUCTIOR 

The determination of the aerodynaird.cs associated with a 

helicopter rotor has presented a challenge to the helicopter analyst 

since the conception of helicopters. Due to the complexity of this 

problem, helicopter aerodynamicists and aeroelasticians are still 

striving to obtain a satisfactory incompressible theory — even though 

helicopters are presently flying with rotor tip Mach numbers in excess 

of unity (see, for example, Reference [1])» This lack of adequate 

aerodynarrdc theories has led helicopter designers to rely heavily on 

experimental data and past experience in designing new helicopters« 

However, with the advent of higher helicopter spee:ds it is imperative 

that adequate theories be developed in order to cope with problems 

similar to those which have arisen in conjunction with fixed wing 

vehicles as a result of high speed. 

Aeroelastic analyses depend heavily on the knowledge of unsteady 

aerodynamics» As fixed wing vehicles have progressed from low subsordc 

speeds through high subsonic speeds to supersonic speeds and even to 

hypersonlc speeds in the case of missiles, appropriate unsteady 

aerodynamic theories have been developed to assist in predicting any 

aeroelastic instabilities which might occur. Unfortunately, the 

stäte-of-the-art in unsteady helicopter aerodynamics has not progressed 

as rapidly as that for unsteady fixed wing aerodynamics» This is due 

aerodynaird.cs
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in part to the fact that the rotary wing, especially in the forward 

flight mode, is not as amenable to analysis as its fixed wing 

counterpart. In dealing with the unsteady flow fields associated with 

helicopter rotors, the analyses developed for fixed wings must be 

drastically modified or abandoned altogether as a result of the rotor 

blade being forced to pass in proximity to its wake on each revolution. 

Many of the first attempts to analyze the unsteady rotor blade 

aerodynamic problem were based on the supposition that the rotor blade 

could be replaced by an equivalent fixed wirig with an appropriate free 

stream velocity. The Important fact that the helicopter blade is 

forced to pass over its wake was neglected. (It might be noted here 

that this same procedure is currently being employed by some helicopter 

companies in attempting to ascertain the effect of compressibility on 

the aeroelastic instabilities of rotor blades). The first significant 

unsteady approach to the rotor blade aerodynamic problem which 

considered the rotor blade to be a separate entity from the fixed wing 

was made by Loewy [2], Jones [3], and Timman and van de Vooren [_h~\. 

In this approachj which considered the flow to be incompressible, 

certain assumptions were made in order to make the mathematical 

analysis more tractable. The rotor was first considered to be operating 

in axial flight or in a hovering condition. Further, it was assumed 

that the rotor inflow velocity was low compared to the rotational 

velocity. With these assumptions it was possible to reduce the 

complicated three-dimensional rotor flow field to a more manageable 

two-dimensional flow field. The resulting two-dimensional mathematical 

model included a reference airfoil together with a complete System of 
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wakes shed by other blades in the rotor as well as the wake shed by the 

reference "bla&e on previous revolut ions. This System of wakes i s the 

one thing which makes the heücopter aerodynamic analysis so rauch 

more compücated than the fixed wing aerodynamic problem. Whereas 

for the fixed wing the wake i s assinned to l i e in the same plane as the 

wing, the heücopter rotor wake i s blown below the plane of the rotor 

by the inflow veloci ty and the determination of the blade loading 

depends on knowing the location of the wake. Using th i s two-dimensional 

approximation to the rotor flow f i e ld , Loewy [2] was able to show tha t 

the two-dimensional loading on the reference a i r f o i l could be wri t ten 

in the same form as the loading on a two-dimensional fixed wirig a i r f o i l 

with the s t ipu la t ion tha t Theodorsenfs [5] l i f t deficiency function be 

replaced by a modified l i f t deficiency function applicable to rotor 

aerodjraamics . 

In a recent study, Hammond [6] has presented a comparison 

between the f l u t t e r speed obtained for a two degree of freedorn System 

using Loewy's aerodynamics and the f l u t t e r speed for the same System 

using Theodorsen*s [5] fixed wing aerodynamics. The resu l t s of t h i s 

study indicated that given the same i n e r t i a l conditions the f l u t t e r 

speed obtained using Loewy*s aerodynamics was generally lower than the 

f l u t t e r speed obtained using Theodorsen's aerodynamics. The 

impücations of t h i s r e su l t are tha t the rotor wake which l i e s below 

the reference a i r f o i l exerts a destabi l iz ing influence on the two 

degree of freedom f lu t t e r condition and hence that the use of unsteady 

fixed wing aerodynamics in rotor blade f l u t t e r calculations wi l l lead 

to unconservative r e s u l t s . 
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Miller [7] has presented a summary of many of the past 

approaches taken in obtaining rotor blade harmonic air loads. In 

addition he presents a technique for obtaining the three-dimensional 

unsteady aerodynamics for a rotor in forward flight. In this approach 

the flow Is considered incompressible and the air loads on the blade 

resulting from the near wake are treated using lifting surface theories, 

while the far wake is treated using the lifting line approximation. 

In a recent publication Ichikawa [8] presents a comprehensive 

lifting surface theory for a helicopter rotor in forward flight through 

an incompressible medium. In this theory the lifting surface equations 

are developed for a rotor in forward flight and then a reduction to the 

lifting line equations is made through approximations equivalent to 

those of Weissinger!s [9] L-method9 It was shown that agreement with 

experimental results was fairly good and stated that disagreement was 

probably caused by wake roll-up which was neglected in the theory. 

The wake roll-up problem which appears to be a significant source of 

error in helicopter aerodynamic theories has been treated very 

successfully and efficiently by Landgrebe [10]. 

In all the aerodynamic theories mentioned above the flow is 

assumed to be incompressible. However, as indicated by Reference [1], 

present day helicopters operate with tip speeds in the high subsonic 

speed ränge, thus suggesting that compressibility effects should be 

included in any realistic analysis of helicopter rotor blade loads. 

Unlike the steady flow case, the transition from incompressible to 

compressible unsteady flow results cannot be accomplished by simple 

transformations such as the Prandtl-Glauert transformation. This 
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dlfficulty follows from the result that in an incompressible fluid a 

disturbance is propagated at an infinite velocity and thus no time lag 

occurs between the Initiation of a disturbance and its effect at some 

other point in the flow. However, in a compressible medium a definite 

time is required for a signal to reach a distant field point so that 

both a phase lag and a change in magnitude result. 

The compressible flow results for a two-dimensional oscillating 

fixed wing have been known for some time. The first theoretical 

development of the problem was presented by Possio [ll]. Dietze [12], 

Shade [13] 5 Küssner [1^-], and others presented refinements of Possio's 

derivation and method of Solution. Most of these early works are 

summarized by Karp, Shu, and Weil [15]» In more recent years Fettis [lo], 

Frazer [17] 5 Jordan [18], Jones [19]? and a multitude of others have 

published papers on the oscillating airfoil in a compressible stream 

using basically the same integral equation developed by Possio» A 

different type of Solution which essentially presents a closed form 

Solution in terms of an infinite series of MatJaleu functions has been 

published by Reissner and Sherman [20], Haskind [21], and Timman et al 

[22,23] among others. 

In this thesis an unsteady aerodynamic theory for helicopter 

rotors which allows for the compressibility of the fluid medium is 

presented. Since the logical development of complex problems proceeds 

from the relatively simple to the more difficult problems, the approach 

taken here is to develop a compressible aerodynamic theory based on 

the assumptions made by Loewy [2]. The result is a two-dimensional 

unsteady compressible aerodynamic theory for rotor blades. 
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The method used to obtaln the two-dimensional oscillatory 

loading on a reference airfoil section of the rotor is essentially 

the same as that used in many of the above mentioned fixed wing 

analyses. An acceleration potential is employed in developing the 

integral relation between the downwash and pressure distribution on 

the reference airfoil. The integral equation thus obtained, which is 

the same as Possio's [11] fixed wing integral equation with the 

addition of a correction term to account for the helicopter wake5 is 

finally solved by collocation for the unknown pressure distribution« 

Jones and Rao [24] have recently published a siirdlar theory 

for the compressible aerodynamic loading on rotor blades. This theory 

differs from the theory developed in the present research in that a 

velocity potential approach was used in conjunction with the identical 

flow model used by Loewy [2]. One of the major conclusions reached in 

Reference [24] was that the helicopter wake had exactly the same effect 

on the unsteady aerodynamic blade loading in both compressible and 

incompressible flows. As will be shown later, this conclusion was a 

direct consequence of the flow model employed. The flow model used 

in the present study is a modified version of the two-dimensional model 

used by Loewy [2], and Jones and Rao [24] ; the modifications being 

necessary to accommodate the acceleration potential approach. 

The purpose of this research is to establish the effect of 

compressibility on the flutter condition for rotary wings operating in 

hovering or axial flight conditions. The major portion of the research 

is the development of the unsteady two-dimensional compressible 

aerodynamic theory discussed above. Also presê nted is a classical two 
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degree of freedom flutter analysis. The compressible unsteady 

aerodynamics are used in conjunction with the flutter analysis and a 

Variation of the parameters occurring in the flutter problem is made 

to evaluate the effect of these parameters on the flutter condition 

when compressibility is included in the aerodynamics. Further, the 

results of this analysis are compared with the: results obtained by 

Hammond [6] using Loewy's incompressible aerodynamics in order to 

demonstrate the overall effect of compressibility on the flutter 

condition for rotary wings. 
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CHAPTER II 

THEORETICAL DEVELOPMENT 

In this chapter the theoretical development necessary for 

computation of the compressible aerodynamic loading on the reference 

blade of a helicopter rotor is presented. Appropriate simplifying 

assumptions are made so that the complicated three-dimensional rotor 

flow field is reduced to a more tractable two-dimensional flow field. 

Finally using this two-dimensional mathematicai model of the flow the 

Integral relation between the downwash at the reference airfoil and the 

pressure differential across the reference airfoil is established. 

Also included In this Chapter is the theoretical development 

underlying a classical two degree of freedom flutter analysis„ The 

reference airfoil of the two-dimensional approximation to the rotor 

flow field is assumed to have two degrees of freedom, pitching and 

plunging, and the characteristic equation is developed for the double 

eigenvalue flutter problem. 

Unsteady Aerodynamic Development 

The general flow phenomena associated with a helicopter rotor 

has been described in some detail by Loewy [2]. With the assumptions 

of axial flight and low inflow velocity Loewy was able to reduce the 

complicated three-dimensional flow to a more tractable two-dimensional 

flow. The basic premise underlying this reduction Is that under axial 
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flight and low inflow conditions, only that vorticity which lies in a 

srnall azimuth angle on either side of the reference blade significantly 

affects the loading on that blade. This assumption allows one to take 

a pie-shaped cut through the plane of rotation and on down through the 

heücal vortex sheet which forms the wake from the blade« If then a 

vertical slice is taken perpendicular to the radial line passing from 

the center of rotation out along the reference blade, a plane is formed 

in which the flow may be considered to be two-dimensional. For low 

inflow the inclination of the vortex wake layers below the reference 

section may also be neglected« These assumptions thus lead to a two-

dimensional representation of the flow made up of a reference airfoil 

section and its immediate trailing wake (both in the same horizontal 

plane) together with a System of horizontal wake layers lying at 

regulärly spaced intervals below the reference section. These wake 

layers below the reference section account for the wake which has 

been shed by other blades in the rotor as well as for that shed by the 

reference blade in previous revolutions, with the spacing between the 

layers being determined by the inflow .and relational velocities. This 

flow model is shown in Figure 1 where it should be noted that the 

horizontal length of the vortex layers below the reference airfoil is 

finite. The length of the layers is determined by the azimuth angle on 

each side of the reference blade, inside of which the wake vorticity 

has a significant influence on the blade loading. In order to make 

the problem more mathematically manageable Loewy allowed the wake 

layers to extend to infinity both upstream and downstream. This final 

step is justified by the following argumenta, If the blade loading is 
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Reference Airfoil 

Figure 1. Two-Dimensional Model of the Unsteady Rotor 
Flow Field Under Assumptions of Axial Flight 
and Low Inflow 
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significantly affected by only that vorticity within a small azimuth 

angle on either side of the blade, then the vorticity added by allowing 

the horizontal rows of wake to extend to infirrlty both upstream and 

do-wnstream cannot have any appreciable effect on blade loading and 

thus this device is acceptable. Loewy's final two-dimensional 

representation of the flow is shown in Flgure 2. 

In Loe¥yfs analysis the flow is considered to be incompressible 

and a velocity potential approach is used to obtain the nonstationary 

loading on the reference blade. In a recent paper Jones and Rao \_2h~\ 

have used the velocity potential approach in conjunction with Loewyfs 

flow model and included compressibility ef fects. They obtained the 

result that the effect of the infinite layers of wake below the 

reference airfoil was exactly the same for both compressible and 

incompressible flow. This result is due to the fact that the infinite 

layers of wake below the reference airfoil can be considered as wake 

layers shed by fixed wing airfoils regulärly spaced below the reference 

airfoil and leading it by an infinite distance. The irnportant concept 

which distinguishes compressible from incompressible unsteady flows, 

that of a time delay between the Initiation of a disturbance and the 

time it is feit at some other point In the flow, is thus lost and the 

wake layers indeed appear as incompressible wakes. 

In the present dissertation Loewyfs work Is extended to include 

the effect of compressibility, but the theoretlcal approach taken to the 

problem of determining the unsteady aerodynamic reactions on the 

reference airfoil differs in technique and, as a result, in flow model 

from the approach taken by Jones and Rao. The acceleration potential 
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Reference Airfoil 
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n=oD q=Q-l q - Blade number 

n == Rotor revolution index 

Figure 2. Loewy's Incompressible Aerodynamic Model 
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approach which has proved fruitful in fixed wiiig compressible flow 

analyses is adopted as the basic method of attacking the problem. The 

use of the acceleration potential approach, however, leads to 

difficulties when one attempts to apply the method to Loewy's flow model. 

With a velocity potential approach such as that used by Loewy, 

and Jones and Rao, the elemental flows from which the overall flow is 

to be developed must be distributed in the wake as well as on the 

airfoil itself in order to account for the velocity discontinuity 

which exists across the wake and across the airfoil. In contrast, 

however, the acceleration potential is associated with a pressure 

discontinuity and thus the elemental flows may be distributed on the 

airfoil only since no pressure discontinuity is allowed to exist in 

the wake. With the acceleration potential approach, therefore, it is 

necessary to introduce a device by which the layers of wake lying 

below the reference airfoil can be taken into account. 

Consider first a Single bladed rotor and a reference blade 

section lying a radial distance r from the axis of rotation. As the 

blade traverses the azimuth it trails a wake which is blown below the 

blade by the inflow velocity and forms a helical sheet. (Loewy's 

model would give an infinite number of wake layers below the reference 

airfoil). Wow when the reference section has made one complete 

revolution it has traveled a distance of 2-nr. As the blade makes its 

second revolution it sees a wake which was shed on its first 

revolution and which has been blown downward by the inflow velocity. 

This wake can be thought of as being shed by an airfoil identical to 

the reference airfoil which is flying under the reference airfoil and 
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leading it by a distance of 2TTr. Ori the third revolution the reference 

airfoil sees two layers of wake; the lowermost layer being shed on the 

first revolution and the upper layer being shed on the second 

revolution. The reference section has now traveled a distance of knr 

since the wake was shed on the first revolution and a distance of 2n"r 

since the wake was shed on the second revolution. To account for these 

wake layers, two airfoils are placed below the reference airfoil; the 

lowermost one leading the reference airfoil by a distance of knv and 

the upper one leading the reference airfoil by a distance of 2nr. The 

vertical spacing of the individual layers is governed by the inflow and 

rotational velocities and is the same as for Loewy's model. By 

continuing the above process the entire wake can be represented by a 

send.-infinite cascade of airfoils regulärly spaced below the reference 

airfoil and leading it by integer multiples of 2nr„ 

The argument for a multibladed rotor is precisely the same as 

for a Single bladed rotor. The passage of blades other than the 

reference blade is accounted for by airfoils below the reference 

airfoil and interspersed between the nwake airfoils" representing 

previous passages of the reference airfoil. The resulting two-

dimensional flow model for a multibladed rotor which will be used in 

the mathematical development to f ollow is shown in Figure 3. 

With the mathematical flow model thus established the problem 

remains to determine the nonstationary lift and moment on the 

reference airfoil when it is permitted to oscillate with simple 

harmonic motion as it moves through a compressible medium. The 
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Figure 3. Compressible Aerodynamic Model for a Multlbladed 
Rotor Showing Notation for Mathematical Analysis 
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c l a s s i c a l small d i s tu rbance assumptions are made so t h a t the governing 

p a r t i a l d i f f e r e n t i a l equat ion for the flow may be taken as the 

l i n e a r l i z e d a c c e l e r a t i o n p o t e n t i a l equat ion 

2... ^2.„ _ . 2 . 2 ^ 2 
LI + LI J: 

2 2 ~ 2 
dx dz a 

00 

^ | + 2Ü ^ - 1 + 

d t ötöx öx' 
u2 LJL 1 = o (l) 

The a c c e l e r a t i o n p o t e n t i a l , Y3 i s r e l a t e d t o t he d i s tu rbance v e l o c i t y 

p o t e n t i a l , cp3 by 

¥ ™ TT + U ^ ~ (2) 

which is seen to be the linearized form of the substantial derivative 

of cp with respect to time. The acceleration potential is related also 

to the pressure at any point in the flow through the equation 

p _ p = - p Y (3) 

The pressure on the reference airfoil is obtained in the manner 

typical of most linearized aerodynamic analyses. An. elementary flow 

Solution is first found for the governing differential Equation (l). 

The total flow Solution is then found by superimposing the elemental 

flow Solutions and satisfying the two boundary conditions for potential 

flows: (l) all disturbances must vanish at fiel! points far removed 

from the body with the exception of the wake , and (2) the flow at the 

body must be tangent to the body. 
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In this case, as in most compressible flow analyses, the 

elementary flow Solution is taken to be the doublet. Since 

oscillatory motions of the reference airfoil are to be permitted, the 

strength of the doublet must also pulsate with time. The acceleration 

Potential of such a pulsating doublet located at the origin of the 

coordinate System is developed in Appendix A to be 

where 

. , , . M 2 

10) 

s 

\ ß^ u/ 
i K "" TT(2) / «M I 2 ± 2 2 

Y 0 - TTET e Ho "2~V X + p z 

Up, = doublet strength. 

It may be noted here that the pulsating doublet Solution also satisfies 

the boundary condition that disturbances vanish at points far away 

from the doublet. 

In order to obtain the complete flow Solution, these pulsating 

doublets are distributed over the chord of the reference airfoil and 

over the chords of the airfoils below the reference airfoil which 

account for the rotor wake. The total acceleration potential at any 

field point (x3z) in the flow is then found by integrating the 

acceleration potentials of the distributed doublets. That is 
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10 f iu){t + [M2(x-?)/ß2u]] 
Y(x,z;t) = J % ( § ? o ) ^ - j j f ß - e (5) 

H 
(2) 

U 2 u V (x-§)2 + ß2z2 W 

0,-1 b-^qr^nnr ^ . i(JU{t + [M^x-^/ß 2 ! ! ]} + iY 

n=o q_=l -b- -—• qr »2nrrr 

(f-V 
\ ß U V 

H(2) / «jM J ( x „ ? ) 2 + ß2 [ z + ( n Q + c [ ) h f ] 2 j ^ d § 

1 ß 

oo b -2nrrr 

+ / U ^ ( | ? o ) 
Dv*' ' öz 

n=l -b -2nrri* 

± iiu{t + [M^x-sVß^U]} 

5ß e 

H 
(2) / UJM / «|_ ^ ( x „ § )

2
 + ß

2
(z + n Q ; h t )

2 j j d? 
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if 
The e was introduced in the second integral above to allow for the 

fact that other blades in the rotor might be oscillating out of phase 

with the reference blade. The assumption is now made that the strength 

of the doublet distribution on all the airfoils in the cascade is the 

same. This is equivalent to saying that the motions of all the blades 

are identical which in turn implies that all blades of the rotor are 

identical5 and this condition met as nearly as manufacturing tolerances 

will allow on most helicopter rotors. Now in the second integral let 

^ - g + JEL q r + 2nTTr 

and in the third integral let 

§Q = § + 2nrrr 

so t h a t t h e t o t a l a c c e l e r a t i o n p o t e n t i a l becomes 

Y ( x , z ; t ) = r~- e 
icüt f „ " ia) l^(x-§) /ß 2U 

-b 
^ D ( § ) e (6) 

^ H Q | ^ ^ ( x - § ) + ß z j d | 
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oo 0-1 2. , v / 2 "b ? , v / 2 
2 iY + 12TTUUM r(nQ+q)/Qß U , iu)M"(x-S ) /ß U 

^ I nJS> ° 
V"1 

+ '> ) e 
U L-i 

J H T J o ' 
n=o q=l -b 

ÖZ ° Iß2!.! 
(x - gQ) + %£• (nQ + q) 

—12 
+ ß z + (nQ, + q)h f 

fe 

+ ) e 

n=l 

i2nTrr(uüM2/ß2U) 
^ D ( § 0 ) e 

iwM2(x-E )/ß^U 

-b 

• -§- H ( 2 ) 

dz o f **§- J"(7"^^ + nOJis)2 \ d? ) 
\ B U I °J 

In Appendix B i t i s shown tha t the pressure discontinuity across the 

reference a i r f o i l i s re la ted to the doublet d is t r ibut ion strength by 

A P a
( x ) = " Poo % ( X ) (7) 

where 

Ap ( x ; t ) = Ap (x)e 
a a 

iüüt 



Using this fact and defining the parameters 
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J J> buü bu) 
K. = reduced frequency = ~ = pr— 

(8) 

_c , . o) „ kr 
m = frequency ratio = — - •:— 

h = inflow ratio = — 
b 

the total acceleration potential becomes 

iüüt ( b 

Y(x,z;t) = -g-0-jJ APa(§)e 
-b 

i k M 2 ^ ) / ^ 

(9) 

•h^2) ( { N W •>2U)S> 

Q-l i ¥ + i [2rrmM2(nQ + q ) / ß \ ] b 
+ i ) e I Apo(§)e 

i i s M ^ x - g ) / ^ 

n=o q =1 -b 

|_H(2)(M / r ^ + ^ ( n Q + q ) 
-2. 

+ ß 
„2 

V" y7 """ l 

, r - + (nQ + q) kh 1 d^ 
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™ i2nmnM 2 / ß 2 ^ ikM^x-^J/ß^b 

) e A P a
( § ) e + > e 

Z-J 

n=l -b 

ö „(2) f M /|"k(x-g) ,_ 0 I 2 _,_ S 

* ^ H o \ ^ v L b 1 + 2 n l m J +^ 
kz ~' 
•7— + nQ,kh d§ 

The second boundary condition on the flow, namely that the flow 

be tangent to the body, is specified in terms of the downwash velocity 

at the body. The boundary condition is 

dz dz 
wa(x,t) - ̂ p + U — - for z = 0, - b £ x < b (10) 

Thus in order to apply the boundary condition the relationship between 

the total acceleration potential, Y(x,z;t), and the downwash velocity, 

w(x,z;t), must be known» The downwash may be expressed in terms of the 

dlsturbance velocity potential, cp, as 

v = |2 dl) 
3z 

The acceleration potential and dlsturbance velocity potential are also 

related and the relationship is given by Equation (2). Since Y, and 

therefore cp3 are simple harmordc time dependent functions (due to the 

linearity of the problem) 
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Y ( x , z ; t ) = Y(x,z)e iuot 

cp(x3z;t) = cp(x?z)e 
i y j t 

(12) 

and. Equation (2) may be w r i t t e n 

Y(x3z) =iu)cp(x,z) + U ^ (13) 

This l a s t equat ion can be i n t e g r a t e d along a pa th of cons tan t z t o 

ob ta in 

cp(x,z) = 
$ \i/ ÜJLsl 

i Ä ( § . X ) 

u 
d§ + C(z) (1^) 

The function C(.z) is set equal to zero in order to satisfy the first 

boundary condition that all disturbances vanish at points far from the 

body. Thus 

cp(x,z;t) = - j Y(§,z;t)e 

-i g(x-|) 
d§ (15) 

The dowrwash a t any po in t i n t h e flow i s now given by 

( .+\ - i f dY(x9z;t) 
v ? ' ' U J dz 

• C D / - N »1 f7(x-5) 
u 

d§ (16) 
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In t roduc ing the a c c e l e r a t i o n p o t e n t l a l 

. io)t [ „ x p b 
w ( x , z ; t ) = - ^ — \ Ap (§)• 

Up Uß [ J - *ib a 

i l sM 2 (§ , -§) /ß a b - ia)(x-§«) /u 
(17) 
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Reversing the order of Integration and collecting the exponentials 

w(x,«;t) = - i ^ f j \ p (5) e"
ik(X"5)/b r Xe *&*)/& 

k9 uß I -b a 
(18) 

^M^--"-' ir-, , ^ ^ , ( * _ * . , + ß /-j d §« d§ 

Q-l iY + i[21rmT42(nQ+q)/ß2Q] 

+ ) } e 
/L. Z-. 

n=o q=l 

r, b __ - i k ( x - 5 ) / b r x i k ( § ' - § ) / ß ^ 
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i _ H(2) M ^ ^ + ^ ( ^ -
0 2 \ p 

+ ß" , ^ + (nQ+q)kh dgf d§ 

+ ) e 
L—i 

n=l 

iSn-rrml^/ß2
 p h _ - i k ( x - § ) / b . x i k ( § l - ? ) / ß 2 b 

-b 
APa(S)e 

^ » r ( ^ [ ^ + 2n-nm 
2 fkz 

+ ß " i -r- + nQkh id§* d? 



26 

The three interior Integrals appearing in the above equation may be 

simplified somewhat to produce the kerne! of the integral equation. 

These three Integrals may be evaluated by considering a generalized 

form which encompasses all three Integrals5 namely 

X ik(§t-§)/ßeb 2 ( } . L ( . n2 

J e .2 % \ 2 V L b j + P 
-co OZ p -1 

"kz d§ 

(19) 

where A and B are cons tan t s with r e s p e c t t o the I n t e g r a t i o n . This 

i n t e g r a l i s eva lua ted i n Appendix C where i t i s showi t h a t 

I = 
UÜM 

r k(x-g) ., Al i k ( x ^ ) / ß ^ (2) /M 
- A - ^ U L + A e H- l—0 

L b J i \ 2 
_ _ _ _ _ _ _ _ £ 

b 
+ ß —r—fB 

L D _ 

g U 

A / [ ¥ ^ V ^ ! ^ : 

(20) 
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Using t h i s r e s u l t and def in ing the fol lowing k e r n e l 

K r M k(x-g) kz -j = iM -k(x-g) - | e i k M ^ x - ^ / ß ^ 
L ? b ' b J i+ß L b J 

(21) 

V L b J + P Lb J 
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P L b 

1
 Q 

5F e 
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H ^J^xf +f[ 

kz "!' 
L b" J 

+ i _ e 

- i k ( x ~ § ) / b ^ ) / b ^ ^ / 

° U2 
2 2 r k7 H^ \ 

fl + ß [ ^ j 1 d^ 

the dowrwash may be w r i t t e n as 

/ , \ oue / P _ /_\ _. r.., k ( x - e ) kz "1 .,_ 
w ( x , z ; t ) = - — ^ - < Ap (?) K M3 - ^ — ^ , — d§ 

n IT l J - b a L b b - j 

(22) 

co Q - l b 

+ > ) e 
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The downwash at the reference airfoil may now be found by 

allowing z to go to zero3 i.e. 

w (x:t) = w(x.z:t) 
. a ' ' z-»o ? (23) 

Requir ing the downwash t o vary harmonical ly with time 

w ( x , t ) = w (x) e 
cl a, 

iüüt (.2h) 

t h e do-wnwash a t the r e fe rence a i r f o i l becomes 

V x ) = - —"2 1 
o LT -b 

APa(§) K M, ^ ™ = ^ , o ] d§ (25) 

Q-l iY q. » b 
£ ][ e j APa(§) K [M, ^ S i + 2TT(nQ+q.)| , (nQ+q)khjd§ 

n "U 
n=o q=l 

+ Y j APa(§) K [~M, ^~~zl + 2nTTm5 nQ^h d§ } 

n=l 
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The first integral above is precisely the integral derived 

first by Possio [11] for a t-wo-dimensional fixed wing airfoil 

oscillating in a compressible medium. The second term represents the 

downwash at the reference airfoil caused by previous passages of blades 

in the rotor other than the reference blade. Fina.lJ.y5 the third term 

represents the downwash at the reference airfoil due to previous 

passages of the reference airfoil. 

Comparison with Jones and Rao 

As was stated earlier Jones and Rao [2 V] have presented an 

analysis of the same aerodynamic problem considered here using a 

different flow model and a different mathematical approach. It is 

shown in Appendix E that the downwash equation., Equation (l8), can be 

made equivalent to the downwash equation given by Jones and Rao 

provided that the flow model of Figure 3 is made to agree with the flow 

model which they used, namely the same model used by Loewy and shown in 

Figure 2. The model of Figure 3 is made to agree with that of Figure 2 

by forcing the "wake airfoils" to lead the reference airfoil by an 

infinite distance. This presents no real problem in the case of 

incompressible flow; however, the Situation is somewhat different in 

compressible flow. 'Whereas a disturbance is propagated at an infinite 

velocity in an incompressible fluidj the speed of propagation is 

finite in a compressible medium so that both a time lag and a decay in 

the magnitude of the disturbance result as the disturbance is 

transmitted through the fluid. Wien the "wake airfoils" are allowed 

to go to infinity this means that the perturbations in the flow caused 

Fina.lJ.y5
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by each "wake airfoil" must travel an infinite distance before reach-

ing the reference airfoil. This in effect means that as far as the 

reference airfoil is concerned the wakes which are trailed by the 

"wake airfoils" are the same as the ones which would occur if the flow 

were incompressible. This is indeed one of the major conclusions of 

Reference [2^]. That is3 Jones and Rao found that the infinite layers 

of wake below the reference airfoil, as shcwn in Figure 23 had exactly 

the same influence on the downwash at the reference airfoil in 

compressible flow as in incompressible flow. 

This conclusion of an incompressible wake is not possible when 

the flow model of Figure 3 is used. The dependence of the wake terms 

on Mach number is shown explicitly by Equations (2l) and (25). 

Comparison with hoewy's Incompressible Theory 

It is desirable to reduce the kernel of Equation (2l) for zero 

Mach number so that comparison with. Loewyfs work can subsequently be 

made. This reduction is accomplished in Appendix F where it is shown 

that for zero Mach number the kernel given by Equation (2l) reduces to 

K 03 
k(x-g) kz ± ^r1

 2 -(kz/b)-i[k(X-§)/b] 

b ' b J 2TT rk(*-g "2, r^" 
. b _ Lb„ 

e 

(26) 

i ~^/^ " iC^-5)A] r r- kz . k^gj 
TT 1 L b " b 
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(kz/b) - i[k(x-?)/b] 

^ TT 
E. M „ i ̂ ± 1 

b b 

Using this kernel it can be shown, as is done in Appendix G, 

that for zero Mach number the downwash relation of Equation (25) 

reduces to that given by Loewy provided, of course, that the flow 

raodel of Figure 3 is made to agree with that used by Loewy (Figure 2) 

by forcing the "wake airfoils" to lead the reference airfoils by an 

infinite dlstance. 

The Equivalent Single Eladed Rotor 

Up to this point in the theoretical development all blades of 

the rotor have been perrriitted to oscillate out of phase; the phasing 
iY 

being determined by the e ^ factor in the second term of Equation (25) 

If, however, it is assumed that all the blades are oscillating in phase, 

then the second term of Equation (25) containing the double sum can be 

combined with the third term and the downwash written 

w, (x) = - JU. { 
r. b 

-b 
APa(§) K Ms , 0 ^ (27) 

+ 

n=l 

Ap 
d-b a 

(?) K[M5 % s i + 2 n n a , 
Q j nKn 

j 
di 
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It may be noted that this last expression is exactly the saine as the 

dowrwash expression one would obtain for a Single bladed rotor having 

m. 
a frequency ratio ™ and an inflovz ratio h. Tims with the 

assumption that all the blades are oscillating in phase the aerodynamic 

development for a multibladed rotor can be reduced to the consideration 

of an equivalent Single bladed rotor with 

m 
m 

eq Q 

h = h 
eq 

(28) 

Since this reduction to an equivalent Single bladed rotor is 

possible, all further considerations \d.ll be restricted to a Single 

bladed rotor. The integral equation to be solved for the pressure 

distribution on the reference airfoil thus becom.es 

w (x) = U) 

u2 
-b 

AP (?) K 
et 

M, i sü s^ l 1 dg (29) 

D "\ 

+ £ j APa(§) K [M, ii££l + 2nTTin, nkh ] dg\ 
n=l -b "' ^ 

subjeet to the boundary conditlon 

becom.es
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dz (x) 
w (x) = ia)5 (x) + U ~ ^ — , - b < x < b (30) 

a a dx 

where simple harmonic motion has been assumed for t h e r e fe rence a i r f o i l , 

itut 
z ( x ; t ) = 5 (x) e (31) 

a a 

Convergence of the Wake Series 

The downwash equation, Equation (29), which is to be solved for 

the unknown pressure distribution on the reference airfoil contains an 

infinite series and hence some discussion is in order concerning the 

convergence of this series. In Appendix H it Is shown that the series 

appearing in Equation (29) converges except for those values of the flow 

Parameters where the relation 

M2 M m 
2 2 
ß 2nß 

•yj (2rTm)2 + (ßkh)2 - 8, 6 = 0,1,2,... (32) 

I s s a t i s f i e d . 

A cond i t ion s i m i l a r t o t h a t of Equation (32) has been encountered 

by Runyan and Watkins [25] and by Car ta [26] . Runyan and Watkins were 

I n v e s t l g a t i n g the unsteady flow over a two-dimensional a i r f o i l i n a 

compressible wind- tunnel stream whlle Carta. was s tudying t h e compress-

I b l e flow over an i n f i n i t e cascade of o s c i l l a t i n g a i r f o i l s r e p r e s e n t i n g 
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the compressor blades of a turbine engine. In each of these cases the 

condition s±m±lar to Equation (32) was interpreted as an acoustical 

resonance condition. 

For the present study5 however, the Interpretation of Equation 

(32) as an acoustical resonance condition in the physical flow is not 

Justified. Whereas in References [,2p] and [26] there were present in 

the physical flow field objects from which pressure waves could be 

initiated or reflected and thus create a resonance condition., there are 

no such objects in the physical. rotor flow field. The "wake airfoils" 

in Figure 3 were introduced simply to account for the phase relation-

ship between the reference airfoil and the wake, and to accommodate the 

mathematical analysis. Therefore, Equation (32) must be interpreted as 

only a mathematical instabil!ty associated with the flow model. 

Two Degree of Freedom Flutter Analysis 

When an elastic body is placed in an airstream the reaction of 

the aerodynamic forces on the body will cause the body to deform. This 

distortion of the body in turn causes an alteration of the aerodynamic 

reactionSj and under most conditions the resulting aerodynamic forces 

tend to return the body to its original configuration. However, under 

some conditions the aerodynamic forces can cause the body to deform 

even more so that an instabil!ty of the body motion occurs. The 

instabil!ty of the motion may be either static or dynamic. 

Flutter is a case of dynamic instability of an elastic body in 

an airstream. 'The flutter speed and flutter frequency are defined 
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respectively as the airspeed and corresponding circular frequency at 

which a given elastic body flying at given atmospheric conditions will 

exhibit self-sustained simple harmonic motion. This definition of 

flutter allows one to find the flutter boundary between stability and 

instability by assuming the body to be undergoing simple harmonic 

motion, calculating the unsteady aerodynamie forces based on simple 

harmonic motion of the body5 and finally calculating the two eigenvalues 

of the flutter problem — flutter speed and frequency. 

In this section the classical two degree of freedom flutter 

analysis is presented for the reference airfoil shown in Figure 3» 

The airfoil is considered to be restrained by Springs against 

independent vertical motion (bending) and angular motion (torsion) as 

shown in Figure k. No chordwise bending of the airfoil section is 

permitted. In the development which follows a Lagrangian approach is 

taken in arriving at the equations of motion for the two degree of 

freedom System shown in Figure k, 

The kinetic energy of the System is given by 

„ dz .2 
T=IIb(-äf)

 5to 03) 

where m is the mass per unit chord and z is the deflection of some 
a 

point on the a i r f o i l midsurface from i t s equilibrium pos i t ion . From 

Figure +̂ 

z = a 
__ ""i 

h + (x - ab)of j (3^) 
_ . i 
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Flgure k. Two Degree of Freedom Flutter Model Showing 
Notation for Mathematical Analysis 
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c 

St" h + (x - ab)of (35) 

The k i n e t i c energy thus becomes 

b _ . 2 
= p- h + 2d h (x - ab) + a (x - ab) m dx (36) 

-b 

Now def ine the parameters 

m = 
» b 

-b 
m dx 

n * 

s = 
CK J 

(x - ab) m d i 
-b 

•* o „ 

I = (x - ab) m dx 
-b 

> (37) 

With t he se s u b s t i t u t i o n s t h e k i n e t i c energy mety be w r i t t e n as 

.2 
T = i (m h + 2S d ü + I &2N) 2 \ a a J (38) 



The potential energy is simply the energy stored m the 

Springs, or 

v = I (v2 + v2) (39) 

Using Lagrangefs equations for a conservative System the 

equations of motion for the System "become 

m E + s « 8 + V = % 

a OL OL ot 

) (ho) 

Introducing the uncoupled free Vibration frequencies 

% 
*h 

m 

o K 
£ OL 

CD = Z — 
Of I 

a 

^ 

(hl) 

the equat ions become 

m h + S et + m ui ri = (1 

I S + S h + I u)"ö = Q 
a a 01 et a 

} (h2) 
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S t r u c t u r a l Damping 
4 • • • • • •III Hill II MIHI U ' • • ' • " • I " " " " T*"^ 

It can "be shown (see for example BsLker, Woolam and Young [27] ) 

that the structural damping force in an elastic System is proportional 

to the amplitude and in phase with the velocity of oscillation. Also,, 

it can be shown experimentally that the energy dissipated per cycle is 

proportional to the Square of the amplitude and independent of the 

frequency of oscillation. 

In the usual derivation of the equations of motion3 structural 

damping is introduced in the following manner. The Lagrangian equations 

of motion are set up and then the restoring force terms are modified by 

r^> 2 - r^t 2 - 2 2 

replacing m ^ ü by (l + ig^ m u^ h , and I^uy* by (l + ig ) I ^ a 
~ 2 - 2 

where the terms igjn <sv h and ig 1 m a are seen to be proportional to 
11 11 U£ (JC KJ, 

amplitude and in phase with velocity under the assumption of simple 

harmonic motion. 

Scanlan and Rosenbaum [28] point out that for the simple 

harmonic motions being considered here, a dissipation function may be 

defined as follows 

D = | ^^Z2*opA .2 - — — h + ----------- oi 
ü) 0) 

(̂ 3) 

"where u) is the coupled frequency of the System. 

In either case, when structural damping is introduced the 

equations of motion become 
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2 -
m h + S a 8 + ( 1 + l B h ) m % h = Q^ 

\ (W) 

I c ? + S h + ( l + i g ) I (DQ/ = Q 
a a er a ot a 

G e n e r a l i z e d F o r c e s 

The g e n e r a l i z e d f o r c e i s d e f i n e d as t h e V i r t u a l work done 

d u r i n g a V i r t u a l d i s p l a c e m e n t . Thus 

8 to = 0 , 6 h + Q 6a (W 

But 

b 

-b 

b 

-b 

6W = J (% " PL) §h d z + J (Py " P L ) ( X ™ a b ) öa dx (46) 

so t h a t 

b 

J-b 
= J (py - p ) dx = L 

b 

J-b 
%=[ (% " P L ) ( X " ab) ta = M e . a . 

(W 
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where the total lift, L, has been defined as positive down and the 

moment about the elastic axis, M , has been defined as positive 
5 e . a . 

nose -up . Using the r e s u l t s of Equat ions (k'j) ~the equat ions of motion 

become 

2 -
h + S ä + ( l + iff ) m m h = L 

I ä + S h + ( l + i g ) l o ) Q f = M 
oi oi o> Qf oi e . a . 

/ (kd) 

In unsteady aerodynamic analyses it is customary to write the 

total lift and moment in component form so that the lift and moment due 

to each of the degrees of freedom can readily be determined. The 

expressions used most often in this country are those given by 

Smilg and Wasserman [29] and shown below in terms of the displacement 

of the quarter-chord point and rotation about the quarter chord point 

•u3 2 L = np b uo [\ (I),+ L„w 1 \UJ I ce c / , J 

k 2 
M / = np b CD 

. "h 
, , + M (a) i ~] 
hJc/k « CA. J 

\ 

(^9) 



k2 

These expressions with the lift and moment referenced to the quarter 

chord point are used in conjunction with the unsteady aerodynamic 

analysis presented in the first part of this chapter and the 

aerodynamic coefficients L, , L , M, , and M are calculated numerically, 

The lift and moment expressions needed in the equations of motion, 

Equations (U8), must be referenced to the elastic axis. This 

transformation is easily made and in terms of the displacement of the 

elastic axis and rotation about the elastic axis the lift and moment 

expressions become 

L = TTPab
3c/ { \ £ + [L, " Ife (| + a)]a } 

M 
k 2 a .a. -TTP^O) \ \ ~ \ \2 + aj> 

h 

fl 
% " IV \Ä2 + V + \ II + a / l 

<y 

(50) 

/ 

Now restrict all considerations to simple harmonic motion in 

order to establish the flutter boundary. The displacement of the 

elastic axis and rotation about the elastic axis are thus written 

h = h eiu)t 

o 

(51) 

a = a e 
o 

icut 
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where a may be complex to denote the phase relationship between h 

and oi. Substituting this restriction and the expressions for lift and 

moment, Equations (̂ 8) become 

CD m h - ( i ) S a + ( l + i g , ) m cu, h 
a g j j m ^ 

=̂ y * {\ i+h - \ (i+ai *} 

2 2 - / \ 2 
( i ) I f f - ü ) S h + i l + i g ) I in of 

Ol Ol \ 0 7 OL Ol 

> > 2 

TTp D (jü \ - \ 2 + — + a 

LM* " ( L * + \) (I + a) + Lh ( I + a 
2-, 

a> 

^ 

\ (52) 

q 2 
Divinding t h e f i r s t of Equat ions (52) by TTp b"(u and the second by 

^ 2 TTp b o) and c o ü e c t i n g terms t h e equat ions may be d r i t t e n i n t h e 
~ 00 

fol lowing form 
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{ m 

TTp£ 

/^-uX ' 
1 + i 

^ + LhJ b" 

S 
i 

TTp t>" 

+ ( ~3 + [L
a " ^ (I + a)]l ff = 

{^3+K"^(l + a ) ]} l 
^PJ3 

*{ 
"Qf 

rrp 
T 

/ V 2 
1 - ^ ) ( l + i g 

07 J 

2_ 
+ h - fo+ «J ( I + a ) + ^ ( I + a) ]}« = 

> (53) 

The problem has now been reduced to that of solving a System 

of two homogeneous algebraic equations. A nontrivial Solution can 

thus exist only if the determinant of the coefficients vanishes. This 

determinant is called the "flutter determinant" and for this two 

degree of freedom problem it is given by 

= 0 (5*0 

D 
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where 

'% A a 4 1 - R ) (1 + i gh)]+ Lh 

B s v*a
 + \ - \ II + a 1 

+ a C = 11 x + M — T -— 
a ii h 12 

2 - / ^ \ 2 / \ ' 
D = ̂  L1 • (w ) i 1 + *«<*/ 

> (55) 

+ [M„ " (L* + «J(l + a) + Lh ( I + a) 

and the fol lowing nondimensional parameters have been in t roduced 

m 

x = 
a 

np 1 
r CO 

s 
Qf 

m "b 
> (56) 

2 j _ 
Qf 

r = ——-5-
a ~ , 2 

m b / 

Equation (5̂ -) represents the characteristic equation for the 

flutter problem and it is a complex qiiadratic equation. Since the 
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characteristic equation is complex, the flutter problem is thus seen 

to be a double eigenvalue problem, the eigenvalues being the flutter 

speed and flutter frequency. The aerodynamic coefficients appearing 

in Equation {^h) are complicated trancendental functions of both speed 

and frequency and must be calculated numerically using the unsteady 

aerodynamic analysis presented in the first part of this chapter. Thus 

a trial and error process must be used in solving the characteristic 

equation, Equation (5*+) ? for the flutter speed and flutter frequency. 

The process used is described in detail in Chapter III. 

Static Divergence 

As stated earlier, an elastic body in an airstream can experience 

either static or dynamic instabilities of motion. Divergence is a case 

of static instabil!ty. The static divergence speed is found by allow-

ing the reduced frequency to go to zero in the equations of motion, 

Equations (U8). "When this is done, all the inertial terms as well as 

the damping terms g, and g go to zero. The equations of motion for 

static divergence thus become 

mox h = L 

2 
I ÜJ OL = M 

a a> e.a. 

where the lift and moment expressions are evaiLuated at zero reduced 

frequency. A more complete discussion of the divergence condition is 

presented in Chapter III. 

In summary, a compressible aerodynamic theory has been presented 
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for the determination of unsteady aerodynamic loads on rotary wings. 

Under the assumptions of axial flight and low inflow conditions, the 

three-dimensional rotor flow field was reduced to a two-dimensional 

flow field which was used for the mathematical development. The 

integral equation relating downwash on the reference airfoil to the 

pressure distribution on the reference airfoil was subsequently 

developed and the downwash boundary condition stated. This integral 

equation with its boundary condition represents the governing equation 

which must be solved for the unfcnown pressure distribution on the 

reference airfoil. 

A dassieal two degree of freedom flutter analysis was also 

presented in this chapter. This flutter anal.ysis is used later in the 

thesis with aerodynamic data computed using the aerodynamic analysis 

presented in this chapter to establish the ef'fect of compressibility on 

the flutter condition for rotary wings. 
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CHAPTEE III 

FORMÖLATION OF THE MMERICAL SOLUTIONS 

In the previous chapter an integral equation and its attendant 

boimdary condition were developed to relate the downwash on a reference 

airfoil section of a helicopter rotor blade to the pressure differential 

across the reference section. In the present chapter a nuraerical method 

of solvlng the integral equation for the unknown pressure distribution 

on the reference airfoil section Is presented. The difficulties 

involved in tliis method of Solution are discussed along with techniques 

used for surmounting the difficulties. 

The numerical procedure employed in solving the two degree of 

freedom flutter problem is also discussed in this chapter. Since one 

of the eigenvalues of the flutter problern appears only implicitly in 

the unsteady aerodynamic derivatives it is necessary to solve the 

problem indirectly. This is done by taMng oscillatory frequency and 

structural damping as unknowns, varying reduced frequency, and plotting 

structural damping versus nondimensional velocity to obtain the flutter 

speed, 

Numerical Solution of the Unsteady Aerodynamic Problem 

In Chapter II an integral equation was developed for the down­

wash in terms of the pressure distribution on a reference airfoil 

section of an equivalent Single bladed rotor. The downwash equation is 
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given by Equation (29) and its boundary condition by Equation (30). 

It is the purpose of this section to describe the method used in 

solving the integral equation for the unknown pressure distribution 

subject to the given boundary condition. 

First note that the unknown in Equation (29), Ap (x), is 
a 

contained under the Integrals on the right side of the equation and the 

downwash on the left side of the equation is Imown through the boundary 

condition. If somehow the equation could be inverted so that the 

pressure distribution Ap (x) appeared on the left side and the downwash 

appeared under the integral9 the Integrals could be evaluated directly 

to obtain the pressure distribution. However;, since no Inversion 

formula is known for Equation (29) a collocation technique in 

conjunction with a pressure mode assumption is employed in extracting 

the Solution. 

It is first assumed that the pressure distribution may be 

written in the form of a Fourier type series given by 

CO 

Apa(9) - A Q cot | + ^ A^ sin j 9 (57) 

0=1 

cos e = - — 
b 

The form of this series is based somewhat on physical reasoning. It is 

known that in subsonic small disturbance theory the linearizing 

assumptions break down at the leading edge of the airfoil and cause a 
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singularity in the pressure distribution. This fact is accounted for 

by the first term of Equation (5?) • Also, the pressure distribution 

must go to zero at the trailing edge to satisfy Kutta's hypothesis 

that the flow traverse the trailing edge smoothly. This requirement 

is satisfied by using the Fourier sine series instead of the cosine 

series. In the numerical computations it is necessary to truncate the 

series after J terms, so in the analysis which follows the firiite 

series 

J-l 

APa(9) = A Q cot | + £ A sin j G 

j=l 

is used. 

If the pressure distribution series, Equation (58), is 

substituted in the downwash integral equation, the Integrals appearing 

on the right side of Equation (29) can be evaluated in terms of the J 

pressure series coefficients» If the boundary condition, Equation (30), 

is then evaluated at J points on the chord of the reference airfoil 

there results a System of J alg^braic equations which may be solved 

for the J unknown coefficients of the pressure series . The location of 

the collocation points, as the points at which the boundary condition 

is to be satisfied are called, is somewhat arbitrary. Two spacings 

which are populär in fixed wing analyses are the equal spacing and 

the Multhopp spacing. The Multhopp spacing is obtained by writing 

(58) 
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x. 

-J- = - cos e. o < e. <> rr (59) 
b ü ü 

and using an equal spacing on the 8..» T'his type of spacing results in 
d 

a higher density of points near the leading and trailing; edge than in 

the center of the chord. Although the spacing of the collocation 

points is arbitrary,, Hsu [30] has shown that for the fixed wing airfoil 

an Optimum set of collocation points exists and is given by 

x 

J. = _ cos (J&£) j = 1, 2, ... , j (60) 

where J is the total numfaer of collocation points being used. It 'will 

be noted that the Optimum distribution for the collocation points is 

very much similar to the Multhopp spacing, since for the Multhopp 

spacing 

) . — _ j " — _ L 3 £ - 2 " * '
, ? J ^ O l } 

The method used by Hsu in obtaining the Optimum distribution of 

collocation points was general enough so that his result can be used 

equally well in the present study of two dimensional flow over rotary 

wings. During the course of the present research all three of the 

above mentioned collocation point distributions (equal., Multhopp3 

and Optimum) were used and it was found that all three yielded 
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essentially the same results. However, in Computing the final results 

presented in Chapter IV the Optimum distribution was used. 

With the pressure mode assumption, Equation (58), the Integrals 

occurring in Equation (29) can be evaluated numerically. However, it 

will be noted that the first integral of Equation (29) contains a 

singularity at the point 5 - x. This is a streng singularity and can 

seriously affect the numerical results if not handled properly. Since 

this integral is precisely the one which occurs in the fixed wing theory., 

the works of the many fixed wing investigators cited in Chapter I can 

be employed advantageously here, The method of handling the singularity 

adopted for the present analysis is that used by Frazer [17]• 

Let the kerne1 of the first integral of Equation (29) be 

written as follows 

Kf M U^isl ~] = K TM_ USSI 5 b M, Z&Zl , ol (62) 

K rM> üxzSil = 1 r /Ä-?) /^ r i ^ 1 (2)r [x-s 

k(x-§) /ß 2 b 

- Hj2VHLkiL)] + l ß V i k ( x - § ) / b J H^2)(M |7l|)ei7l cLTl} 
ß ^ "" 
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The infinite portion of the integral appearing in Equation (62) can 

be evaluated in closed form and has been shown by Fung [31] to be 

J>(Mh|)e^a,=^to^ (63) 

With this Substitution Equation (62) becomes 

K, rM Mä^i 1 = i (e
ikM2(X"l)/ß2lTiM ^ l l K{Z) (m l X^h 

L ' * J •* i L • | x . | ( i v ß2b ; 
(6U) 

k(x-§)/f jb • 
„(2) /kM I X - E | \ 1 L .„2 - ik (x- j ) /b r 2 , 1+ß , T „ ( ' P V „ I _ I N Ml™' 

Now write Equation (29) in two p a r t s ; a par t due to the reference 

a l r f o i l i t s e l f (which i s analogous to the fixed wing downwash equation) , 

and a par t due to the in f in i t e System of wakes . Th.e following notation 

wi l l be used 

w (x) = w_(x) + w, (x) a f h (65) 

where 

wf(x) = ÜÜ ^ J b A P a ( ? ) K f [ M ? ^ &l {66) 



5^ 

w
hW = U) v1 

TT L—I 

o n=l -b 

\ Ap (?) K |"M, • ^ ^ i + 2nrTm, nkh 
«J a L b <3? (67) 

The only singularity of the downwash integral equation, Equation (65), 

occurs in Equation (66) when f = x. This singularity is treated as 

follows. First make the change of variables 

§ = - b cos (68) 

Equation (66) then becomes 

w f (x) = •^2 J " APa(e) Kf [M, k ( | + cos e)~ s i n 0 d.0 (69) 

The singularity occurs when the second argument of K„ becomes zero. 

The procedure used is to subtract out the Singular portion of the 

kernel and then integrate the Singular portion in closed form. If 

K represents the asymptotic expression for K„ when. the second argument 

of K„ becomes small, then Frazer [17] shows that 

K M, s = r JL i 

i 2TTS " £{3j 

(70) 

4- -• f t o | s | ^ 1 rQ P M , , YEM .21 \ 
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where 

s = k — + cos 
Co 

•tn v^ = Eulerfs constant = 0.57721566 
E 

Equation (66) is now written as follows 

wf(x) = - -^2 { J Apa(9) Kf [M, k ( M, k - + cos 3 \b 
03 O 

sin 9 d0 (71) 

TT 

+ I AP (e) K 
d U 

M, k ( r- + cos 9 i j sin 9 d.9 r 

where 

K, [M, k ( — + cos 
k D 

= K, M, k f™ + cos 9j] - K M, k (™ + cos 9J 1 

(72) 

The first integral of Equation (71) is now free of singularities because 

when the second argument of iL, approaches zero, K approaches zero as 

well. The second integral of Equation (71) contains a singularity, 

but this integral has been evaluated by Frazer [17]• When the series 

expression assumed for Ap (9), Equation (58), is substituted into the 

second integral of Equation (71) the integral can be evaluated in terms 

of the pressure series coefficients and Equation (7l) becomes 
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w f(x) M J n^a<6> Rf ["' k (I + C°S 9 ) j Sln 6 

u 

de (73) 

v M « 
+ 2nk J 0 +

 2TT3
 Z l L 2rrß Uß + 2rrß V^ ^ 1-ß ^ 2 ß 2 M ^ J 1 

•where 

Io = 

J - l 
- TT A + TT ) A . COS j 0 

o U J r 

J l - ~^ (Ao + I Al) £n 2 - TT A cos 9 + f c o s 2 9 
o r 4 r 

J - l 
TT 

+ '£ ) A 
rcos(j+i)er cos(j-i)e n 

n L j + 1 " j - l 
J=l 

I ^ T T ( A O + ^ A I ; 

x = - "b cos 6 = l o c a t i o n of r t h c o l l o c a t i o n po in t 
T T 

For a given collocation point location Equation (73) can he evaluated 

numerically to give the first part of Equation (65). No particular 

difficulty is involved in evaluating the second part of Equation (65) 

given hy Equation (67) since the kernel of Equation (67) contains no 
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singularities. However, for the numerical computations only a finite 

number of wake terms can "be used so that Equation (67) must "be written as 

N TT 

wh(x) = - —»2 /_ j Apa(9) K M, k ( - + cos Q) + 2nTTm, nkhj (7U) 

PoT IÄL o 

. sin 9 d9 

It should "be noted here that the number of wake terms taken is 

independent of the nuniber of collocation points taken so that w, (x) 

can "be computed to any desired degree of accuracy for a given number of 

collocation points. 

With the method of handling the singularity thus established 

the pressure series can be substituted into Equations (73) and (7̂ 0 . 

Then if a point x on the chord is picked, the right hand side of 

Equation (65) can be evaluated in terms of the pressure series 

coefficients. The left side of Equation (65) can also be evaluated 

by applying the boundary condition, Equation (30). In evaluating the 

boundary condition, the reference airfoil is assumed to be undergoing 

plunging and pitching oscillations referenced to the quarter-chord 

point as shown in Figure 5• From this figure the displacement of any 

point on the reference airfoil midsurface is seen to be 

za(x;t) = - \ j - (x + |) or (75) 

Assuming simple harmonic motion 
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»x 

Figure 5« Assumed Motion of Reference Airfoil Used to 
Calculate Aerodynamic Coefficients 
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h / = h e 
c/k ° 

iüüt 

ot = a e 
o 

iüüt 

> (76) 

t h e downwash express ion becomes 

w (x) a 
U = - ik 

hoA 

r; >/ 
if 

1 + i k (r- + ~-
Vb 2 

Qf (77) 

The ultimate goal of the aerodynarnic analysis is the determina-

tion of the unsteady lift and moment on the reference airfoil. These 

quantities are obtained by integrating the pressure distribution. The 

total lift on the reference airfoil (measured positive down) is given 

by 

L = 4 (% - PL) ** (78) 

Since the a i r f o i l i s undergoing simple harmonic motions t h e p r e s s u r e 

v a r i e s simple harmonica l ly and hence the l i f t must vary harmonica l ly 

as 

_ - iujt 
L = L e (79) 

Thus 

p U 

L = i Ap_(x) dx 
tJ - ÖJ 

-b 

(80) 
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Making the change of variables 

x = - TD COS 9 (8l) 

and substituting the pressure series assumption the lift becomes 

L = b { 2 A f cos2 | de + V A„ [ sin je sin 9 de} (82) 
L ° " o 2 A, J ' o J 

3=1 

Because of the orthogonality of the sine functions., all the Integrals 

except the first in the infinite series are zero and the lift becomes 

TT o r\ f« TT 

L = b J2 AQ cos 2 | de + ^ J s i n 2 9 de} (83) 
o o 

Performing the necessa ry i n t e g r a t i o n s 

L =TT b (AQ + | A ] _ ) (81+) 

The aerodynamic moment about the quarter-chord point 

(measured positive nose up) is given by 

Kc/k
 = l (pu " P L X X + I) to (85) 

Again5 since the pressure varies simple harmonically the moment must 

vary simple harmonically as 
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M , = M / e i c ü t (86) 
c 4 c/k 

so t h a t Equation (85) becomes 

b 
"c/, = [ ^a(x) (x + I) <b: (87) 

MakLng the change of variables given by Equation (8l) and substituting 

the pressure series assumption 

TT 

= r 2 f r A _,. e fi 
h 

M / = b i I A cot - - - cos 9 sin 6 d0 
c/j L ,J o 2 V2 

o 

^ r17 n \ 
+ ) A | s i n je ;r " c o s ö ) s i n 9 cLG 

j = l o 

Performing the integrations 

fi,/k = ¥ " l > 2 (\ - 2̂) ^ C; 

It is of interest to note here that the aerodynamic lift and 

moment on the reference airfoil section given by Equations (Sk) and (89) 

depend only on the first three terms of the: pressure series. This 

does not mean5 however, that one needs only to use the first three 



62 

terms of the series and hence only three collocation points. The 

values of the first three coefficients of the series "will change as 

more and more collocation points and terms in the series are used and 

the boundary condition is satisfied more exactly. The advantage of 

Equations {QK) and (89) is that the lift and moment expressions do not 

contain a series involving all the coefficients of the pressure series, 

As stated in Chapter II it is customary to write the lift and 

moment on the reference airfoil in the form given by Equations (1+9). 

However, It was found that the coefficients L, , L , M,, and M become 

relatively large for small values of reduced frequency and thus for 

the numerical computatlons it was better to write the lift moment 

expressions as 

L = rrp U^b lh Vb 
+ l a 

°U a 

M c ,. = "P. 
'A 

uV ^i Vb + m a 
,/ a -J 
Vi, 

(90) 

where 

\ " k \ 

2 
OL a 

"% 
= k \ 

m = k M a, a 
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Consistent with the preceding analysis the lift in Equations (90) is 

measured positive down and the moment is measured positive nose-up. 

The aerodynamic coefficients L 9 & 5 m, ? and m are now obtained 
n ot 11 of 

as follows. By evaluating the boundary condition., Equation (77) 5 at 

each of J collocation points there results frora Equation (65) a set of 

J simultaneous equations with the coefficients of the pressure series 

as unknowns. These equations can be written in matrix form as 

{ f} = - - S w w (91) 
tf 

Then the coefficients of the pressure series are given by 

w 
{A} = - i p y CC]_1{-§} (92) 

or 

"W 

{ÄJ =[C] - 1 { I f} (93) 

where 
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The coefficient matrix, [C], appearing on the right hand side 

of Equation (91) can be evaluated independent of the motions which the 

reference airfoil is performing. The left hand side of the equation 

depends on the motion. First consider that the reference airfoil is 

performing only a plunging motion of unit nondimensional amplitude 

h 
b 

= 1 e 
iüüt 

c/l 

a = 0 

(95) 

The dowrwash boundary condi t ion then becomes 

w (x) a 
U = - ik (96) 

and the lift and moment become 

L = up jfTj ^ 

\/h = "P» 1^ 2 
h 

(97) 

Using the boundary condition Equation (96) in Equation (93) the {Ä} 

coefficients can be obtained, and denoted by {Ä} - . Then from 

Equations (8^) and (89) 
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L = - p l^b (Ä + i R 
^0° \ O £-' 1 

> (98) 

M c/, 
1 

U^b 
2 / r 

T ü U D I A. - A, 
4- co \ 1 c 

Comparing Equations (9?) and (98) t h e aerodynamic c o e f f i c i e n t s <L and 

m, are given by 

1 / - 1 - \ 
> = - ± I A -1- ™ A ) 

n TT V o 2 1/• 

^ = - h (Äi" Vi •-
h 

(99) 

Similarily, by using the same process as that above and assuming that 

the reference airfoil is performing only a pitching motion of unit 

amplitude the remaining aerodynamic coefficients t and m can be 

determined. 

Numerical Procedures 

The above procedures were programmed in FORTRAN V for the 

UNIVAC 1108 digital Computer. Since all the numerical techniques used 

are completely described in the literature only a brief mention of 

some of the more important aspects of the numerical computations will 

be given here. 

All finite Integrals involved in the computations were evaluated 

using a Gaussian quadrature technique. It was found that for evaluating 
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the chordid.se integrals of Equations (66) and (67) ten Integration 

points were needed to yield accurate results. Ten Integration points 

were also found to be satisfactory for evaluating the finite integral 

appearing in Equation (6̂ -) . In evaluating the kernel of Equation (67) 

it is necessary to evaluate finite integrals of the form 

2 
[k(x-§)/b]+2nnm 

I = J Hf) ( \ ^ J ^ T ^ Ä 1 1 ^ dTl (100) 
o ß 

Separa t ing i n t o r e a l and imaginary p a r t s 

[k(x~g)/b]+2nmn 

Ifc(l) = j JQ ( ^;^J^F + (ßnkh)2 ') cos 4 j dTl (101) 
o ß ß 

[k(x-§)/D]+2nrrm 

J0
 Yo ( ^ - \ / 7 " + (ß1*11)2) sin \ dT 1T| 

ß ß' 

[k(x-§)/b]+2nnm 

J ( l ) = f J ( ~ J A / T 1 2 + (ßnkh)2 '} s i n ^r- dl] (102) 
J o ° V V '' ß2 

[k(x-§)/b]+2nTTm 

Yn ( 4^/7 ' + (ßridi)2) c o s ^ ^ 
o ° V ß 2 ; ß 

chordid.se
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It was found that as the summation index n increases more and more 

Integration points are necessary to compute these integrals accurately, 

To illustrate the process used in establishing the number of points 

needed, consider the first integral of Equation (lOl). This integral 

may he "written as 

2nrrm 

TR1 1 *% 
I 1 J 

«J 1 o 
\-\h\2 + (®nkh)2) cos \ dT] (103) 
ß2 V J ß 2 

k(x-§) /b 

+ cos (2nrrm/ß2) [ J f-™- -v/Ol + 2nrrm')2 + (ßixkh)2%) cos \ dTl 
J o ° Kß j ß2 

k(x -§) /b 

" S in (2nWß2) JQ JQ (_| ^ / ^ T ^ ^ T T ß ^ ) sin i dTl 
ß ß 

It was found that integrals similar to the last two in Equation (103) 

could he evaluated accurately for all n with only six Integration 

points. However, due to the oscillatory nature of the integrand, 

integrals similar to the first of Equation (103) required the use of 

at least four Integration points per period of the trigonometric 

function. This was necessary because the trigonometric function is 

the primary contributor to the oscillatory character of the integrand 

and as the summation index n becomes large, more and more oscillations 

of the integrand occur. Thus for evaluating integrals similar to the 

file:///-/h/2
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first integral in Equation (103) the number of Integration points 

needed is given by 

MIP = U(2nTTm)/(2nß2) = kn ~ (lÔ t-) 

ß 

Also in the evaluation of the kernel of Equation (67) i t i s 

necessary to evaluate an in tegra l with an in f in i t e l im i t , namely 

I = f H f ( f ,/T,2 + (ßnM,)2 ) e^/ß 2
 d̂  (105) 

-CO ß 

Writing the exponential in real and imaginary parts and changing 

variables 

I = f H(2) (^J^T^Ö^f ) cos -~ dv (106) Jo ° V J ^ 

- i I H (~""pv v + (ßnkh) ) sin "o" dv Jo ° X ß^ ß 

The first integral of Equation (106) can be evaluated in closed form 

using the results of Infeld, Smithj and Chen [32]. Thus 

H(2) (^yhFTi^f ) cos -£ dv = iße"3^ (107) 
o ° V ' ß̂  
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The second integral of Epilation (106) must be evaluated numerically. 

After separating the Hankel fimction into real and imaginary parts the 

resulting two real Integrals were easily and accurately evaluated 

using the numerical quadrature method of Hurwitz sind Zweifel [33] . 

In the evaluation of Equations (66) and (67) for zero Mach 

number it becomes necessary to evaluate the Sine? Cosine5 and 

Exponential Integrals. The Sine and Cosine Integrals were evaluated 

numerically using their respective series representations given by 

Lebedev [3̂ -]» Trouble was encountered3 however, when the series 

representation of the Exponential integral was used. This occurred 

when the wake series summation index and hence the argument of the 

Exponential integral became large. Following the approach of Todd [35] 

the Laguerre quadrature formula was used to evaluate the integral 

directly and the technique was found to give excellent results not 

only for large arguments, but for small arguments as well. Conse-

quently5 the technique was used to evaluate the Exponential integral 

for all values of the argument. 

During the course of the numerical investigations it was 

found that the number of collocation points and hence the number of 

terms in the pressure series necessary for reliable results increased 

as the reduced frequency increased. For reduced frequencies between 

0.0 and 0.12., three collocation points provided satisfactory results, 

whereas for reduced frequencies between 0.35 and 0.50, five collocation 

points were necessary. Since the primary interest of this research is 

the flutter condition for rotary wings no extensive computations were 
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made for reduced frequencies greater than 0.5« However, it is feit 

that the methods employed are good up to at least a reduced frequency 

of unity provided, of course, that a sufficient number of collocation 

points are used. 

Except for low values of frequency ratio, the number of wake 

terms necessary to give convergence of the aerodynamic coefficients 

within one percent was found to be essentially independent of all 

Parameters in the problem. For all the conditions investigated 

approximately forty terms were required to give satisfactory results. 

For low values of frequency ratio,, many more terms were required. The 

number of terms required could possibly be reduced by using an elegant 

summing procedure on the wake series. For the present research, 

however, a simple summation of the terms was feit to be adequate. 

Numerical Solution of the Two Degree of Freedom Flutter Problem 

In Chapter II the characteristic equation for the two degree of 

freedom flutter problem was developed. This equation is a complex 

quadratic equation and is given by Equation (5^) . In this section a 

method is presented whereby Equation (5̂ -) can be solved for the two 

eigenvalues of the flutter problem; the flutter speed and the flutter 

frequency. 

Since one of the eigenvalues, the flutter speed, does not appear 

explicitly in Equation (5̂4-) but is contained rather implicitly in the 

aerodynamic coefficients L, , L , M. , and M it becomes necessary to 

solve the characteristic equation in an indirect manner. The method 

to be used is that suggested by Smilg and Wasserman [29] . They suggest 
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= g„. = g %i = S a 
(108) 

and "writing the c h a r a c t e r i s t i c equat ion i n the form 

A + CA + C = 0 (109) 

where 

/U) v 2 
(110) 

Following this Suggestion, Equation (5^) may be expanded and Witten as 

B A + BnA + B„ = 0 o 1 2 (111) 

where 

2 2 / % 
B = u, r — -

O ® \ (ü 
et 

B-, = - p, 

p p 

Q:) l > « + \ - i\+ «Od + a ) + Lh(l+ a) ] - ̂  (» + LJ 

B2 = ( , + Lj^ + Mff . ^ + ^)(i + a ) + ^i + a 
2_ 
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Or? 

A + C A + C = 0 (112) 

where 

Cl = V B o C2 = B2/
Bo 

In the present method of Solution the unknowns in Equation 

(112) are taken as structural damping, g, and oscillatory frequency, u) 

The Solutions of Equation (112) are given by the quadratic formula as 

1 An 0 = ~ ] - Cn ± ^JcTTliC, ll,2 2 L 1 (113) 

Now if 

A = ^ f i J 

A 2 = Bö
 + i ^p 

in ,2, 

$ (1 + l g i 

0) x2 
— j ( 1 + ig 
.(i>2 / \ 2 

> (i^) 



73 

then the unknowns g and cu are determined as 

Ü 

cü-, v 2 
iL 
R-L 

ß, 

Cur 

(D 
a 

g2 

(115) 

In determining the flutter speedj the procedure is as follows. 

When the Mach number ( M ) , inflow ratio (h), and frequency ratio (m) 

are given, the aerodynamic coefficients may be calculated by assuming 

a value of reduced frequency (k). Then for a given structural 

configuratlon the structural damping and oscillatory frequency for each 

of the two modes may be calculated as Solutions of the characteristic 

equation, Equation (112). Finally, the nondimensional velocity for 

each mode is calculated using the assumed value of reduced frequency 

and the frequencies for each mode as calculated from Equations (115), 

JL « 6 « 

u 
bm 

1 /ÜJ 

a '1,2 
k \ÜD 

(116) 
ot 1,2 

The flutter speed is obtained by assuming several values of reduced 

frequency and plotting curves of the structural damping versus 

nondimensional velocity for each mode. V/hen one of the curves passes 

through the value of structural damping which the System actually has, 
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the corresponding nondimensional velocity is the flutter speed. If 

both the modes have a flutter speed, the flutter speed for the System 

is taken to be the lower of the two. Since the value of structural 

damping is known to be small for conventional aircraft structures, it 

was conservatively taken to be zero for the present research. 

Discussion of the Velocity-Damping Plot 

A typical plot of structural damping versus nondimensional 

airspeed is showi in Figure 6. As can be seen from the plot, the 

flutter speed occurs in the second mode at a nondimensional airspeed of 

approximately 3«3« From the previous discussion it is obvious that 

the only physically meaningful point on the plot is the point where the 

g-, -curve passes through zero damping since it is assumed that the 

System has zero structural damping. However, other points on the curve 

may be interpreted as follows. Since it is known that the structural 

damping of the System is zero, the damping; indicated on the plot can be 

interpreted as aerodynamic damping as this is the only other damping 

entering the problem. For points on the curve where the airspeed is 

less than the flutter speed the damping is negative, indicating that 

the aerodynamics are taking energy out of the System and thus the 

motion is stable. Conversely, for airspeeds greater than the flutter 

speed the damping is positive and thus indicates that the aerodynamics 

are feeding energy into the System and the resulting motion is unstable. 

The flutter speed, therefore, represents the transition point between 

stable and unstable motion» 
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Static Divergence 

In Chapter II is was shown that for static. divergence the 

equations of motion become 

2 - , 
m CD, h = L 

h 

I u) of = M 
OL OL e .a, 

(117) 

where the lift and moment expressions are evaluated at zero reduced 

frequency. The lift and moment expressions from Equations (50) may be 

Witten as 

L = TTp b̂ b \l, I 
3 l h b 

/ l 
. 01 h \ 2 + a 

1 
i a 
1 

M = TTp u2*2 l\ " \(l+ a (118) 

From Equations (77) and (93) together with Equations (8^) and (89) it 

can be shown that only the real part of t and the real part of m can 
OL OL 

have value's different from zero as k -» 0. Further? numerical calculations 

show that the real part of m is also zero. Thus the equations of 

motion for static divergence become 

2 ,-
m CD, h = rrp —p.--^ 

h K0O J3 Q/ 
\&>l OL 

(119) 

I CD OL = TTp UZb - l (— + a ) 
OL Ol Koo D \_ 01 \2 / 

Ol 
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where t I S the value of & at k = 0 and I S a, real, quantity. The 
OL OL ^ ° 
O 

static divergence speed can then be calculated from the second of 

Equations (119) as 
T 2 

0 I CD 
u 2

 = „ Q L 9 L _ _ _ (120) 
D 2 

np b - t (i + a 
OL \2 
o 

•)] 

The negative sign in the denominator of Equation (120) causes no 

problem, since it may be observed from numerical calculations that 

& is always negative. 
o 

Introducing the parameters given by Equations (56) the non-

dimensional divergence speed becomes 

D ' a
 v (121) 

büJa 
o 

In this chapter a numerical method has been presented for 

solving the downwash integral equation developed in Chapter II«, The 

method was shown to involve the use of a pressure mode assumption in 

conjunction with a collocation technique for deterinining the unknown 

pressure distribution on the reference airfoil section. The method 

for handling the singularity occurring in the downwash integral equation 

was presented along with a discussion of some of the compuational 

techniques used in the numerical Solution. Finally the method for 

obtaining the aerodynamic coefficients from the pressure mode 
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assumption was presented. 

The numerical method employed in solving the two degree of 

fFeedom flutter problem was also presented in this chapter. The 

aerodynamic coefficients from the compressible sterodynamic analysis 

were seen to be necessary input for the flutter analysis. Since one of 

the eigenvalues of the flutter problem is contained only implicitly in 

the aerodynamic coefficients the flutter problem was solved indirectly 

by taking structural damping and oscillatory frequency as unlmowns . 

The flutter speed was finally obtaJ.ned by plotting structural damping 

versus nondimensional airspeed and noting where the curve passed through 

the actual value of structural damping present in the System. The 

corresponding value of nondimensional airspeed was then taken as the 

flutter speed. The results of both the aerodynamic and the flutter 

analysis are presented in Chapter IV. 
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CHAPTER IV 

DISCUSSION OF RESULTS 

In the previous chapters of this thesis an unsteady compressible 

aerodynamic theory for rotor blades has been presented based on certain 

two-dimensionalizing assumptions. Also presented has been a two degree 

of freedom flutter analysis which made use of the previously developed 

aerodynamic theory. In this chapter numerical results of these analyti-

cal developments are presented together with a discussion of their 

overall significance. 

Comparison of Aerodynamic Theories 

In Chapter II analytical comparisons were made of the aero­

dynamic theory of the present study with the theories of Loewy [2] and 

Jones and Rao \_2h~\ . In that chapter it was shown that if the flow 

model of the present research is made to agree with the model used by 

Loewy and Jones and Rao then the downwash equations and hence the 

aerodynamic coefficients calculated using the three theories also 

agree, However, for realistic values of the parameters entering the 

aerodynamic problem the two flow modeis cannot be expected to be 

identical. For this reason3 a numerical comparison of the three 

theories is presented in this section. 

th 
For the equivalent Single bladed rotor the n nwake airfoil" 

of Figure 3 leads the reference airfoil by a distance 
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D = 2nnr n 

Introducing the reduced frequency and frequency r a t i o parameters 

Equation (122) may be written as 

D = 2nn ~ (123) 
n k 

Thus from Equation (123) it can be seen that if the frequency ratio, 

m, is increased while all the other aerodynamic parameters are held 

constant, the effect of increasing the distance by which the "wake 

airfoils" lead the reference airfoil can be determined, This in turn 

allows one to determine quantitatively the effect of the two flow 

modeis on the aerodynamic coefficients. 

In Appendix E it is shown that if the ,rwake airfoils" are made 

to lead the reference airfoil by an infinite distance, then the 

analysis of the present study is identical to that of Jones and Rao [24]. 

A simdLlar result is presented in Appendix G for the case of zero Mach 

number and comparison with Loewy's [2] theory. Thus by increasing the 

frequency ratio, m, while holding the other aerodynamic parameters 

constant the aerodynamie theory of the present study should approach 

those of Loewy and Jones and Rao. 

This Variation of the frequency ratio was made and the results 

are presented in Figures 7-10« It should be noted that for convenience 

the aerodynamic coefficients of Reference [2U] have been plotted 

instead of the coefficients used in the present study. In the notation 

of Jones and Rao the llft (positive down) and moment about the quarter-

(122) 
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chord (posit ive nose-up) are W i t t e n as 

L = - rrp ißb 
3 

l + ik£ . ) fr) + ' -̂  + i k - t . ) CY z z / \b/ c/2 Q? 

M /), = rrp 
C / 4 r ' 

U^D' i m + ikm. 
V z z / Vb 

K + ( m + ikm 
0 / 2 ^ a 

[ ä ) a ] 

Ul2k) 

Thus the coefficients of the present study are re la ted to those of 

Equations (124) by the equations 

l = 
z 

O/ « — 
Z 

l = 
cv 

• V « — 
Of 

- R ( ^ ) 

1 
- t J (V 

1 
% 0/ 2 ii 

1 1 

m == 
z 

m. 

=: föO^) 

1 
J^) 

1 
>(125) 

m = R(m ) - ^ ^ V 

1 r 1 
- E LJ(V ' 2 J(VJ % = E W - 2 ^Vj y 

As can be seen from Figur es 7 - 10 "the agreement between the 

aerodynamic theories does indeed improve a,s the frequency ratio is 

increased. It might also be observed that some of the coefficients 

tend to agree better over the entire ränge of frequency ratios investi-

gated than others; for instance, the t derivative appears to agree less 

than most of the other derivatives. 

It is also of interest to point out that the aerodynamic 

theories of Loewy [2] and Jones and Rao [24] are cyclic in frequency 

ratio -whereas the theory presented in the present research is not. 
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Thus if Figures 7 - 10 were plotted for 1 <, m <, 2 the Loe-wy and Jones 

and Rao curves would remain exactly as shown., but the curves from the 

present study would change and should be in better agreement with the 

other two theories. 

The significant point about Figures 7 - 10 is that they show 

the effect of the two possible mathematical representations of the two-

dimensional flow over helicopter blades. As shown in the figures, the 

effect can be considerable at low values of frequency ratio, but tends 

to diminish as frequency ratio is increased. 

Flutter Results 

The basic goal of the present research is to determine the 

effect of compressibility on the flutter speed of rotary wings. To 

accomplish this goal a two-dimensional, compressible, unsteady aero-

dynamic theory has been developed for helicopter rotors and some 

results of that theory presented in the preceding section. However, to 

demonsträte the effect of compressibility on the flutter condition the 

aerodynamic theory must be used in conjunction with a flutter analysis. 

For the present study a two degree of freedom structural model was 

used in the flutter analysis. This model is described in detail in 

Chapter II. Numerical results of the analysis are presented in this 

section. 

In ascertaining the effect of compressibility a Variation of 

the parameters entering the flutter problem was made. VThen varylng the 

aerodynamic parameters the structural parameters were held constant at 

a set of values typical of current blade designs. The following values 
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were used 

fj, = 80.00 > 

r 2 = 0.25 
0f 

üü /̂üü = 0 . 5 0 > (126) 
l r of I 

a = -O.lK) 

x = 0.10 j 

When vary ing the s t r u c t u r a l pa ramete r s , t h e parameters which were not 

v a r i e d were he ld cons tan t a t t h e i r r e s p e c t i v e va lues given by Equations 

(126) and the aerodynamic parameters were h e l d cons tant a t the t y p i c a l 

va lues 

h = 2.00 > 
> (127) 

m = 0.80 / 

Three values of Mach number were investigated; 0.0, 0.6, and 0.8. 

Shown in Figures 11 - 13 is the Variation of nondimensional 

flutter speed with inflow ratio for frequency ratios of 0.2, 0.5? and 

0.8 respectively. As can be seen from these curves the nondimensional 

flutter speed generally decreases as the Mach number is increased. 

Also shown on these curves is the flutter speed obtained using Loewy [2] 

aerodynamics. The zero Mach number data obtained using the aerodynamic 

theory of the present study are seen to agree better with the Loewy 

curves as the frequency ratio, m, is increased. This is a consequence 

of the two flow modeis being brought into closer agreement when the 
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frequency ratio is increased as was pointed out earlier. From Figure 

11 it is apparent also that as the inflow ratio is increased the zero 

Mach number data come closer to the Loewy curve. This too is caused 

by the two flow modeis being brought into better agreement. For, 

as the inflow ratio increases, the "wake airfoils" are moved further 

and further from the reference airfoil and hence their influenae on the 

aerodynamic loading of the reference airfoil becom.es less and less . 

It is of interest here to point out the relationship between 

the rotary wing flutter speed and the fixed wing flutter speed. As the 

inflow ratio, h, increases the vertical distance between the reference 

airfoil and the first ftwake airfoiln increases . Thus as h becomes very 

large the rotary wing results should asymptotically approach the fixed 

wing results. In Reference [6] this was shown to indeed be true for 

the incompressible case when Loewy [2] aerodynamics were used. Shown 

in Table 1 are the nondimensional fixed wing flutter speeds for the 

structural parameters given by Equations (126). 

Table 1. Nondimensional Fixed Wing 
Flutter Speeds 

Mach Flutter Speed, 
Number. M Û /TDCJÜ 

0 k.75 

0.6 U.36 

Oo8 3.82 

becom.es
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By comparison of these data with Figures 11 - 13 it can be seen that 

the rotary wing data do appear to be asymptotically approaching the 

fixed wing data. 

The increasing agreement of the zero Mach number data with the 

Loewy curves as frequency ratio increases is more apparent from 

Figures 1^ - 16. On these figures the Variation of flutter speed -with 

frequency ratio is shown for inflow ratios of 2.0, 6.03 and 10.0 

respectively. Again the trend is for decrea.sing flutter speed with 

increasing Mach number. 

Figures 17 and 18 show the Variation of nondimensional flutter 

speed with density ratio for nondimensional center of gravity locations 

of 0.0 and 0.1 respectively. In addition to the nondimensional flutter 

speed, the nondimensional divergence speed is also plotted on these 

figures. From Figure 17 it can be seen that for the larger values of 

density ratio the flutter speed decreases with increasing Mach number, 

but for lower values of JJ, the trend reverses . However, note that the 

divergence curves cross their respective flutter curves at low values of 

the density ratio, so that stabil!ty of the System is determined from 

divergence considerations rather than flutter considerations. In 

general then, for x =0.0 the nondimensional speed at which the 

system becomes unstable decreases with increasing Mach number and the 

stability criterion is sometimes divergence and sometimes flutter. 

For x = 0.1, such is not the case as can be seen from Figure 

18. In this case the stabiüty criterion is always flutter. and the 

flutter speed decreases with increasing Mach number. For both values 

of x , the flutter results for incompressible flow are shown to be 
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almost identical -with. the results obtained using Loewy [2] aerodynamics . 

The Variation of nondimensional flutter speed -with. nondimen­

sional radius of gyration is shown in Figures 19 and 20 for nondimen­

sional center of gravity locations of 0.0 and 0.1 respectively. The 

trends of these curves are very much similar to the trends of Figures 

17 and 18. Divergence again is an important consideration for 

x =0.0 but is not critical for x =0.1. Flutter speeds again 

decrease -with Mach number and correlation with results using Loewy 

aerodynamics is excellent. 

Finally, Figures 21 and 22 show the effect of bending-torsion 

frequency ratio on the nondimensional flutter speed for nondimensional 

center of gravity locations of 0.0 and 0.1 respectively. Again5 

divergence is important for x =0,0, but not for x =0.1. Note from 

Figure 21 that beyond a certain value of bending-torsion frequency 

ratio? the exact value being Mach number dependent, there is no 

possibility of flutter when x =0.0. Beyond these values the stabil!ty 

of the System is based on divergence considerations. Note also that 

for x =0.0 the flutter speed decreases with Mach number for low 
Qf 

values of bending-torsion frequency r a t i o } but t h i s trend reverses as 

the bending-torsion frequency r a t i o approacnes the values where the 

curves turn v e r t i c a l . For x = 0 . 0 , the agreement of the zero Mach 
a 

number data with the data obtained using Loewy aerodynamics is so 

close that the two curves are indistinguishable on Figure 21. 

For x =0.1 the Variation of flutter speed with bending-

torsion frequency ratio is somewhat different than when x = 0.05 as seen 

from Figure 22. In this case there is no Sharp turning upward of the 
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curves as was noted from Figure 21. For this case the effect of Mach 

number is to decrease the flutter speed, and. agreement with results 

obtained using Loewy aerodynamics is very close. 

It will be noted that in all the preceding flutter results 

comparison was made with results obtained using Loewy aerodynamics but 

no comparisons were made with flutter results using Jones1 and Raofs 

theory. This is because insufficient data from their theory exist at 

the present time. It might be noted here that the excellent agreement 

between the flutter results obtained using the two incompressible 

theories should not lead one to expect the same sort of agreement 

between the compressible results of the present study and those obtained 

using Jones1 and Raofs theory. Phase lag effects which were lost in 

their theory could have a significant effect on flutter results . How-

ever5 further study after more of their aerodynamic data become avail-

able will be necessary to substantiate this conjeeture. 

As a final result, it should be mentioned that for all the 

aerodynamic conditions considered in the preceding results the 

divergence of the wake series discussed in Chapter II presented no 

problem. For all the conditions considered, the divergence criterion, 

Equation (32), was satisfied for reduced frequencies substantially 

greater than those required. for the flutter analysis. 
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CHAPTER V 

C0NCLUSI0NS AI© KECOMMEM)ATIONS 

The effect of compressibiUty on the flutter condition of 

rotary wings has been investigated analytlcally. A two-dimensional 

model of the complicated three-dimensional helicopter flow field was 

postulated and a compressible, unsteady aerodynamic theory developed 

using the two-dimensional model« The governing integral equation for 

the two-dimensional flow with its attendant boundary condition was 

generated and solved. numerically by collocation using a pressure mode 

assumption. After comparing the aerodynamic theory thus developed 

with other similar theories, it was used in conjunction with a two 

degree of freedom flutter analysis to establish the role of compress-

ibility in helicopter rotor blade flutter„ The many parameters, both 

aerodynamic and structural, entering the flutter problem were varied 

systematically so that their influence on the rotor blade flutter 

phenomenon under compressible flow conditions could be determined. 

Conclusions 

The results of the research indicate that the following con­

clusions can be drawn. 

1. The difference in flow modeis used by Loewy [2] and Jones 

and Rao [2^-], and that used in the present investigation can lead to 

substantial differences in the aerodynamic coefficients computed for 
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moderate values of frequency ratio? m. For larger values of frequency 

ratio (in the neighborhood of unity) the agreement between the aero­

dynamic coefficients computed using the three theories improves. 

2. The flutter results obtained using the present aerodynamic 

theory with zero Mach number are in excellent agreement with the results 

obtained using Loewy's incompressible aerodynamic theory. Aerodynamic 

data from Jones1 and Rao*s theory were not readily available and there-

fore no flutter calculations could be made using their results. It 

should be pointed out, however, that the agreement between the incom­

pressible results should not necessarily lead one to expect the same 

degree of agreement between the compressible results due to the basic 

difference between the two types of flow. 

3. The general trend is for decreasing flutter speed with 

increasing Mach number. Thus the effect of compressibility on the 

rotary wing flutter speed is the same as its effect on the fixed wing 

flutter speed, i.e., compressibility has a destabilizing influence on 

the flutter condition. 

k. Static divergence is an important consideration when the 

elastic axis and center of gravity locations coincide. For this 

particiliar case as the Mach number increases the stability criterion 

changes from flutter to static divergence. For a center of gravity 

location one-tenth of a semi-chord aft of the elastic axis, flutter 

considerations always dictated the stability boundary. 

5. From the limited fixed wing calculations it appears that the 

rotary wing flutter speeds are generaHy lower than the corresponding 

fixed wing flutter speeds for all Mach numbers. This indicates that 
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the use of compressible fixed "wing aerodynamics in the design of rotor 

blades against flutter "will lead to unconservative results. 

Recommendations 

A number of general suggestions are offered concerning the 

directions future studies of the rotary -wing flutter problem might take. 

1. First of all, since a comparison of the flutter results 

obtained using the present aerodynamic theory "with those obtained using 

Loewy's [2] theory was made, a most interesting comparison could be 

made using the theory of Jones and Rao [2^]. This study would provide 

results for evaluating the effect of the two different flow modeis 

under compressible flow conditions. A study of this type would 

substantiate or refute the con;jecture made earlier that the compressible 

flow results might not agree as well as the incompressible results . 

2. The flutter analysis used in the present study considered 

a rigid airfoil section free to pitch and plunge. A more realistic 

approach would be to consider the rotor blade as a rotating beam free 

to deflect and twist. This would necessitate using the aerodynamic 

theory of the present study in a strip theory fashion. This could be 

done as follows. First consider the tip Mach number fixed. This in 

turn specifies the Mach number at each radial Station on the blade. 

Since the blade geometry is specified, the inflow ratio, h, could be 

calculated as a function of spanwise location using, for example, the 

combined blade element axial momentum theory. Two remaining parameters 

need to be determinedj reduced frequency, k, and frequency ratio, m. 

As in all flutter analyses the three-dimensional flutter problem must 
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be solved by a trial and error process. The reduced frequency is 

always one of the trial variables. Thus if reduced frequency is 

specified as constant along the span then the frequency ratio can be 

computed as a function of span since k and m are related as 

m = kr/b 

With all the aerodynamic parameters thus specified as functions of 

radial location., the spanwise aerodynamic loading could be determined 

and the three-dimensional flutter analysis conducted. 

3. Probably one of the greatest needs is an experimental 

prograiri to corroborate the results of this and other theoretical studies 

of rotor blade aeroelastic phenomena. The program should definitely 

include the possibility of operating the rotor under compressible flow 

conditions., since the trend in present helicopter design is toward 

the high subsonic speed ränge. 

k. An obvious extension of the present study is an unsteady 

three-dimensional aerodynamic theory for rotor blades which includes 

compressibility effects. This type of theory is desirable in order to 

more realistically represent the three-dimensional loading on a rotor 

blade. 

The effect of compressibility on the flutter condition of 

rotory wings has been determined under two-dimensional aerodynamic 

conditions. More investigations, both experimental and analytical, 

are needed to substantiate this study and extend the results to include 

more of the three-dimensional effects of the physical aerodynamic and 

structural rotor System. 
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APPENDIX A 

DEVELOPMENT OF THE PULSATING DOUBLET SOLUTION 

In this appendix a fundamental Solution of the linearized 

acceleration potential equation is developed. This Solution Is called 

the pulsating doublet Solution because it represents the acceleration 

potential of a doublet whose strength is allowed to vary harmonically 

mth time. The Solution will first be developed for three-dimensional 

flow and then reduced to that for two-dimensional flow. 

Three-Dimensional Flow 

In steady incompressible flow the governing equation can be 

taken as the linearized velocity potential equation 

V2cp = 0 (A-l) 

A familiär Solution to this equation is the simple source Solution 

given by 

s 1 qi 
cp„ = - r—- --—---—-—————--- (A-2) 
1 n , f 2 ± 2~~7~"2 

V x + y + z 

where q is the source strength and is constant. 
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In compressible subsonic flow the governing equation becomes 

2 2 ^ 2 

öx öy dz ' 

where M is the free stream Mach number. The simple source Solution, 

Equation (A-2), can be extended to this case by noting that under the 

tr ans formation 

y = ß y ^ 

z = ß z > (A-i+) 

ß=^TZ" 

Equation (A-3) becomes Laplace's equation. Thus the compressible 

source Solution for steady subsonic flow is written 

1 qi 

tf = - i- .-_™.__-_±™..^_ (A-5) ^ST 

t i t + zc) 
.fTT -2, 2 . 2-

In the case of unsteady flow the simple source Solution may 

again be used. However, for the unsteady case the strength of the 

source is considered to be a function of time. For incompressible 

unsteady flow the governing equation is again Laplace's equation and 

the simple source Solution is given by 
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q-^t) 
9s = i _ _ _ _ _ (A.6) 

\/x + y + z 

where it will be noted that the source strength, q 5 is now a function 

of time. 

For compressible unsteady flow the linearized perturbation 

Potential equation is given by 

v2 1 

V cp - --g 

r- 2 2 2 - i 

Lia + 2U ~ ^ £ + u2 ^ 
2 _ . _ .. 2-a dt dtöx dx 

= 0 (A-7) 

In this case the fact that a disturbance in the flow is propagated at 

a finite velocity, namely the sound speed of the medium, must be taken 

into account. Thus the simple source Solution is written 

s 1 
5c = - T S f 

^ ( T ) 

•4^V^{Y
2 + z2) 

(A-8) 

where T is the time that a disturbance leaves the source. 

Letting t represent the time at which the disturbance reaches 

the point (x,y,z)5 the relationship between T and t may be developed 

as follows. If the source is considered to be located at the point 

(0,0,0) as was done above, then a pressure pulse which emanates at time 

T propagates outward in a spherical region while being swept downstream 

at a velocity U by the main flow, and reaches the point (x,y,z) at 

time to The relationship between T and t may be derived from the 
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geometry of the flow shown in Figure A-l. Since the flow is compress-

ible, the disturbance propagates outward at the sound speed of the 

medium, a . The radius of the spherical propagation front at time t 
7 00 

may be written 

r = a (t - T) 
I OD 

(A-9) 

Also, from the geometry 

rf = v [x " U(^t " T^ + yC + (A-10) 

Equating Equations (A-9) and (A-10) 

a (t - T) = A/ x - U(t - T) a. 2 JU 2 

+ y + z 
(A-n) 

Solving for T 

T = t + —j..^]^. ± ̂ yx + ß^y*" + 2^) 
a ß^ 

(A-12) 

The minus sign in Equation (A-12) is now chosen for the following 

reason. The radical of Equation (A-12) will produce a ntmiber which is 

2 
greater than x since ß is less than unity. Also because M is less 

than unity, Mx is less than x. Therefore by choosing the minus sign 

the number inside the brackets of Equation (A-12) will be negative and 
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thus T will be less than t which is required by the physics of the 

problem. The final relation between T and t thus becomes 

«- .— — _——_—_ -

= 1 + - ^ L ^ - v * 2 + ß2(y2 + *2) J (A"13) 
O 2 

a ß 

Now the governing differential equation for the acceleration 

potential, Y, in three-dimensional flow is given by 

V 2 Y . .|_ [af| + 2V J&L + u2 il ] = o (A-14) 
a 3t ötöx dx 

which is exactly the same as Equation (A-7). Thus any Solution of 

Equation (A-7) vdll also be a Solution of Equation (A-lU). The 

acceleration potential for an unsteady source located at the origin may 

then be written 

-1 ^O(T) 
Y = - f̂ - — — £ — _ _ (A-15) 

^ A r
2 4- ö

2^ 2"7-"27 v x + ß (y + z ) 

where T is as given by Equation (A-13). It should be noted here that 
g 

Y and cp are not identical because the boundary condition on Y and the 

boundary condition on cp are different. The relationship between Y and 

cp is 

Y = |? + U !* (A-16) 
dt dx 
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Requiring the unsteady source strength to vary simple 

harmonically with time 

H ,(T) = q e 
- 1(A)T >- i7 ) 

where q is constant, the acceleration potential for the source becornes 

Y = - -1-
1(1) T 

S ^ TT P2T. 27 2 
+ ß (y + z ) 

>-l8) 

Substituting the expression for T 

1(JÜ 

\JJ ^^ _ »-an» 

S k TT 

t + Mx R 

a ß a ß 
00 CO _ 

R1 
(A-19) 

where 

R' = \/x + ß (y^ + z ) 

Ys = Ys(x,y,z;t) 

Now place a sink below the x-axis and a source above the x-axis 

such that they are a distance e apart and have equal strength. The 

acceleration potential for the sum of the source and the sink is given 

by 
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*Bink (X'y'Z + 2 ' t ) + 'source (X>S">Z " I ; *) 

Let 

Y = - -£L_ Y (A-20) 
source 4 rr 

then 

Y + Y — 
source sink/ 4 rr 

^ . e i Lf(x'y*z + e2;t) ~ * ( x » y ' z " I ; *) 
./ Frr e 

(A-21) 

The transformation to the doublet is made by shrinking the 

distance between the source and the sink (e -* 0) in such a way that the 

quantity y£ remains constant, say A. Thus 

Y = lim *2L ) -~A^__J_^_^V_ ! _ ! (A„22) 
doublet e-»o \%T / e 

But the limit of the second factor is just the partial derivative with 

respect to z, so that 

Y. ,_ , = A -f™ f(x5y?z: t̂l (A-23) 
doublet dz \ 5t/? " / v ' 
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or 

iu> t + Mx 
R* 

Y doublet dz 

a ß a ß' 

R' 

R. = ̂ /T^/V*?-) 
(A-2l̂ ) 

; 

Equations (A-2̂ 4-) represent the acceleration potential of a 

doublet located at the point (0,0,0). The acceleration potential for 

a doublet at the point (§5T],£) is obtainecL from Equations (A-2̂ 1-) by 

replacing x with (x - 5)5 y with (y - T|) and z with (z - £ ) . The 

acceleration potential for a harmonically pulsating doublet at the 

general point (§3T],^) in three-dimensional flow is thus given by 

3-0) 

Y-n = A I™ 
D Bz 

t + feil . _£ 
a ß£ a ß£ 

R 

R = \/7x~^F^ (2 ~ 0 2n 

A = Magnitude of doublet strength 

(A-25) 
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Two-Dimension al Flow 

The reduction of the pulsating doublet acceleration potential 

for two-dimensional flow is obtained by first returning to the pulsating 

source acceleration potential., Equation (A-15) and integrating out the 

spanwise or y-dependence. Thus for two-dimensional flow the 

acceleration potential for the pulsating source becomes 

Y (x,z;t) = 1 r 
TT J 

I IX«ZI~GJ — "™ TT ' . 

S 2lT J 

q^T(y) J dy 

A/~2 + V x + ß (y + z ) 

i^T(y) ) dy 

\/x2 + ß2(y2 + z2) 

\ 

> (A-26) 

Now from Equation (A-13) 

äT _ _ JL 
a 

dy 

nr~™~ 2, 2 2N 

V x + ß (y + z ) 

(A-27) 

and 

-,2 
y = V *J^ - T) - I x - U(t •- T) ; - z (A-28) 

so t h a t Equation (A-26) becomes 
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a n 

Ys(x3z;t) = - — ^ 
q2(T) dT 

V?(t^T?™^ - T)] 
(A-29) 

2 2 
- z 

where 

T = t + o 
a ß£ 

Mx - ̂ /x2 + ß2 z2 (A-30) 

and T represents the time at which the last disturbance arriving 
o 

at the point (x,z) at time t left the source. 

If the source is considered to be pulsating harmonically, then 

^ 
( T ) = q e 

- 1(JÜT 
(A-31) 

and 

Y s ( x , z ; t ) = 
a ^ q 1. 

• ~ J 
IÜÜT -, e dr 

-N/^777)2 - [x~ ( t»T ) f - z2 
(A-32) 

I n order t o s impl i fy t h e above i n t e g r a l l e t 

v = 
a ß ( t - T ) +Mx 

, r r , Q2 "2 
\j X + ß Z 

(A-33) 
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Equation (A-32) then becomes 

iu) [ t + ( ^ x / ß ^ ) ] 

Y s (x 5 z; t ) = - g ^ e 
r1^ 

dv 
1 A / 2 V - 1 

coM / 2 2 2 
C = " ^ o V x + ß z" 

U ß 

> (A-3U) 

But the integral in Equation (A-3̂ 4-) is a kno-wn. representation of the 

(2) 
Hankel function H \C,) > i.e. 

r1^ 
- 1 A/7T7 

d v ^ f n f ö (A-35) 

so that Equation (A-3̂ 4-) becomes 

Y (x,z;t) 
s 3 y ' 

w 
iu) [t + (^x/ß2!!)] 

H 
(2 )(JIM . / 7 T 7 7 
° W 

(A-36) 

The transformation to a doublet is now made as before by 

placing a sink above the x-axis5 a source below the x-axis and letting 

the distance between the two approach zero while holding the resultant 

strength constant. The acceleration potential for the pulsating doublet 
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is thus given by 

Y_(x,z;t) - TY . . (x,z - |;t) + Y (x,z + |; t) 
D e-*o L sink 2 source 2 

YD(x,z;t) = ̂  (eq ) 
Ys(x,z + | ; t) - Ys(x,z - |; t) 

> (A-37) 

vhere 

M2 

Ys(x,z;t) 

±m\t + - ^ 

JFß" H (2) KV 
\ Uß 

2 2 2 
x + ß z (A-38) 

Letting Ui-L represent the magnitude of the doublet strength the 

acceleration potential for a pulsating doublet at the origin of a 

two-dimensional flow field is given by 

öY 
yx3z;t) = U^ — (A-39) 

The transformation to a doublet located at the general point 

(§,£) is then made as before to give 

ioü 

YD(x,z5t) % h (5te 
2 U 

L. ß . Hf K ^ - o V W 
\Uß 

(A-4o) 
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The acceleration potential has thus been developed for a 

harmonically pulsating doublet in both a three-dimensional and a 

two-dimensional uniform compressible stream. These basic Solutions 

of the linearized acceleration potential eqaation provide the starting 

point for many unsteady compressible flow aaalyses. 
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APPENDIX B 

RELATIONSHIP BETWEEN THE DOUBLET DISTRIBUTION 
AND THE PRESSURE DISTRIBUTION 

In this appendix the relationship between the strength of the 

pulsating doublet distributions on the reference airfoil and the 

'Vake airfoils" shown in Figure 3 and the pressure distribution on the 

reference airfoil is developed. This relationship is desirable since 

it is ultimately the pressure distribution on the reference airfoil 

-which is used to determine the lift and moment on the airfoil. 

Introducing the quantities defined by Equation (8) the 

acceleration potential may be written as 

.„ icüt , « b iKMT(x-§)/ß b 
¥ ( x , z ; t ) = ̂ e { j nD(§) e (B-l) 

~b 

hA2)(f^lm2 + f(sf )« 

- t1 "q + i^^CnQ + q)/ß£Q] h iÄ-s)/^ 
+ l L e J. ^D (? ) e 

- b n=o q=l 
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|_ H G 0 (M ^J-Sfccgü. + Iffi (nQ + q) ] 2
 + ß 2 ̂  + (nQ + q) ^ ) d5 

.." 12nTrmM /ß « b 
+ L e 1 >V5) 

- -b n=l 

ikM 2 (x-g) /ß 2 b 

L„H(2) (IL. 
dz o VQ2 

P 

(^ J [ ^ i + Sfcnm] + ß2 [f + nQih] ) d? } 

Let 

t KM fx~£\2
 M ß2 fz N2 

w 7VW + ß VF ) 
(B-2) 

then 

dH^(w') dH^(w') öv1 o v J o 
3z dw' 3 z (B-3) 

The Hankel function satisfies a recurrence relation given by Lebedev 

[3*0 as 

|-H(p)(z) -iH(s)(Z) = -H
(p)(z) 

dz v z v v+1 (B-U) 
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so tha t f ina l ly 

a^2)(w) 
öz 

o) M z „ ( 2 ) , ,s 

-JI ~Hi (w) (B-5) 

Similar i ly by l e t t i n g 

" M /i~k(x-%) , 2TTHI / A , \~| , n2 "kz , , _ , \ . , 1 = __^/ „ J ^ X + _ _ (nQ + q j j + ß ^__ + (nQ + q) j ^ j 
ß 

•'" = W p ^ + 2nwi1]2 + ß2 [T + nH2 

2 \ 

> (B-6) 

the other partial derivatives appearing in Equation (B-l) may be 

evaluated as 

ÖH^V') 
dz T,n2 Dß "W 

H^V') 

> (B-7) 

öH(2)(w/,/) 
o v J 

öz 

= _ä>£ [ l r + "«& (2) 

ÜB 
2 wm Hl <w ) 
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Using these results the total acceleration potential "becomes 

iü)t 
iU Y(.x?z|t; — i e 
•* r u ^ {- (JÜ2^2 

« b 

-b 

O Q 

ikM'"(x-e;)/ß b H ( 2 ) , fj 

nD(§)
 e J ^ 7 — • " d§ 

(B-8) 

P <» Q-l iY + i[2TrmM
2(nQ + q)/ß Q] rVr, 

~ L L e Lb + (nQ + q.) kh 

Uß n=o q=l 

r 
^(g) e 

-b 

ikW?(X-§)/ß
2b ,pN 

H^V) 
W 

TT— d g 

ü^f 

uß 2 

.2vmyP/& 
r— + nQkh 

n=l 

J HjjCf) e 
~b 

i k M ^ x - f ) / ^ H(2)(w^) 

w 
77—— d§ 

Now as z approaches zero from elther the upper half plane or the lower 

half plane the integrands of the second and third terms are well 

behaved and these terms remain finite. The first term, however, 

approaches zero except at the point §=x where the integrand becomes 

infinite. This condition will now be investigated in detail. Let 
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I = z 
tb 

M.D(§) e 

iMV^(x-§)/ß2b H ( 2 ) ( w l ) 

w 
d§ (B-9) 

When z is allowed to approach zero isolate the point §=x with a strip 

of length 2e sufficiently small so that the ccntinuous Functions 

M<TJ(§) a n ä e S//P c a n be replaced by their values at the center 

of the interval, i.e. 

l im _. l im 
I = 1 z 

Z~*0 Z~*0 

x-e 

-b 
^ ( § ) e 

ikN?(x~§)/ß2b H;2^(w*) 
d§ (B-10) 

+ z u^(x) 
x+e H|2^(W') 

x-e w 

+ z 
x+e 

^(5) e 
ikNpU-^/ß^ H;2)(W«) 

•w 
d§ 

The limit of the first and third term of Equation (B-10) is zero and 

the value of w* in the second term is very small throughout the Integra­

tion ränge so that the Hankel function can be replaced by its asymptotic 

representation given by Lebedev [3̂ -] as 

H 2 > ' ) as §i-_ ^en wf - 0 
1 TTW1 

(B-ll) 



128 

When z is allowed to approach zero from the upper half plane 

let 

T lim T lTT = + ± 
U z-+o 

lim r r x4^ ^ 2 \ ^ ) 
iTT = p,_(x) l i m

+ {z - i _ _ d § 
U ^D z-*oT l J wr 3 

> (B-12) 

x-e 

S u b s t i t u t i n g the asymptotic r e p r e s e n t a t i o n of the Hankel func t ion 

/ N l im f2iz f 
^ = ^D ( x ) z-o+ {— J 

x+e 

x-e k M 

~7~ 

iL 

¥)2 * ^ (tf ] 
(B-13) 

This i n t e g r a l can be evalua ted t o give 

h - 5 r ^(x) ~+ ̂  W - ^ ® > (B-̂  

or 

3 2 
T - 2 i ß P r ^ 

u " Ä 2 ^ 
(B-15) 
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Similarily -when z is allowed to approach zero from the lower half plane 

let 

I 
L 

lim 
z-*o" 

(B-16) 

then 

2iBnD / v l im f, -1 / g \ , - 1 f-e\ \ (ri nr7\ 

h = ~ZJ~ ^{) *°- i \&) ' täJ J ( 7) 

TTKM 

and 

3 2 
LL n 2,2 V X j 

k M 

(B-18) 

. A » 

The a c c e l e r a t i o n po t en t i e l l , Y(x,0 ; t ) , on t h e upper sur face 

of the r e f e rence a i r f o i l may now "be v ; r i t t en as 

Y(X 0
+-t) ^ e i ü ) t | - ^ r ^ ^ 1 u U) YU?U , t ; - ^ß e ^ I j H , D W 

üV L Ä 2 (B-19) 

^ " ^ iV + i[2niQM2(nQ-Hi)/ß2Q] r 
„ ä*L y y 

US n 
K n=o q=l 

LlnQ + q i kh 
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- "b ikM 2(x»5)/ß ab K^\w") 
I HD(S) e — Z T — d§ 

, 2 £ i2nTTmM2/ß2 « b i r f ( x « § ) / ß 2 b H^2 ' (w"') 
- C ) e (nQ*h) J n (§) e - i — — 

Uß _ -b W 
K n=l 

di} 

where 

>/ = 
l im // w M 
z-*o 

J ^ + l f (*Q + d)] + ß2[(nQ + q) 3* 
2 \ 

> (B-20; 

-,// __ l im /// „ M_ / r k (x -g ) 
w z-»o w = 

ß 2 \ 1 L b 
"1 2/ ' ' 

+ 2n-nm + ß 1 nQkh) 

S i m i l a r i l y the a c c e l e r a t i o n p o t e n t i a l , Y(x,0 ; t ) , on t h e lower sur face 

of t he r e fe rence a i r f o i l i s given by 

Y(x30 ; t ) = y~ e iU l a ) t f / M 2 r 2 iß3b 2 1 

uV ^ l?t J *DW (B-21) 

^ " V-1 iYn + ^^^(nQ+q)^ 2 ^] 

Uß 2 Z, L 
n=o q=l 

nQ + q. )kh_ 
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r» b 

-b 
M.D(§) e 

.kM^x-^/ßS) H_(2)(^) 

d? 

ÜÜM2 V : 

2 ,2 
.2nrrmM /ß 

(nQ£h) 
Uß =1 

b 

~b D 

iMvf-(x-§)/ß2b H(2)(^„) 

d§ 
w 

The pressure on the reference airfoil is finally obtained by 

using the relation between pressure and the acceleratiori potential, 

Equation (3)• For the upper surface of the reference airfoil 

Py(x;t) ~ P„ = ~ P„ Y(x,0 ;t) (B-22) 

and for the lower surface 

p (x;t) - p = 
L CO 

- P„ Y(x,0";t) (B-23) 

ue pressure differential across the reference airfoil vrill be denoted 

DV 

Apa(x;t) - Py(x;t) - PL(x;t) 

Apa(x;t) = - Pco jj(x,0
+;t) - Y(x,ü~;t) 

> (E-2U) 



Substituting the acceleration potential expressions 

A ' 4-̂  f iu l a j t ( û M2 \ /2ißV" x, / 
APalx;t) = - P„ [ ^ e (" ^ 2 ) ^ ~ ) ^ ) ( x 

iüüt 
i u e f ÜO 2^ \ / ?-i3';b 

^ • r #2) \r k2lvI2 

Then collecting terms 

1 ix) i 

Ap_(x;t) = - p U p, (x) e 
d, co JJ 

Since the pressure oscillates simple harmonically 

then 

or 

Ap_(x;t) = Ap" (x) eld' 
d a 

APa(x) = - p^ U M,D(X) 

|i-n(X) = -

Ap„(x) 
a 
U 



The relationship is thus established between the strength of 

the pulsating doublet distributions on the reference alrfoil and the 

"wake airfoils" of Figure 3 and the pressui'e differential across the 

reference airfoil. 
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APPENDIX C 

EVALUATION OF THE INTEGRAL LEASING TO THE KERNEL 
OF THE DOWNWASH INTEGRAL EQUATION 

The three in te r io r Integrals of Equation (l8) may be evaluated 

to produce the kernel of the doimwash in tegra l equation, Equation (22) 

A generalized in tegra l which encompasses a l l three of these In tegra ls 

wi l l be evaluated in th i s appendix. 

Consider the in tegra l 

px ik(5 f~5)/ß b a
2 (2) /M / n s f e H O , n l 2 , n2 pkz , „1 

-oo ö Z B 

z 

(C-l) 

where A and B are constants -with respect to the In tegra t ion. A 

c r i t i c a l step in the evaluation of th is in tegra l i s the use of a 

p a r t i a l d i f fe ren t ia l equation which has been used by other invest igators 

(see e .g . References [15?36]) to determine the airloads on a two-

dimensional fixed-wing a i r f o i l osc i l l a t ing in a compressible medium. 

This equation i s derived in Appendix D where i t i s shown that 

2 ä^ 2 ) (£ ) ^{
0

2)(0 «? ( 2 ) 

P - 2 + - 2 + ~ Ho (0 = ° (C"2) 
ö? öz S a 
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M 
C =

 ß 2 V L b 
HL& f\} 

-2 

+ ß2 r^i 
.b „ 

Change v a r i a b l e s i n Equation (C-l) by l e t t i n g 

Ui^l^^d^l + A 

> (C-3) 

kz 
b 

= -:— + JD 

b 

Equat ion (C-l) then becomes 

/ c. 
" i A / ß x+(bA/k) i k ( | - 5 ) / ß 2 b ..2 (2) 

T = e e -~2— H (— 
g J ^"2 o VQ2 

-«= dz ß 

2 - 2 
rMs^ii + B2 r^"" 
_ b J p Lb _ 

(c-k) 

The d l f f e r e n t i a l Equation (C-2) may now be s u b s t i t u t e d t o y i e l d 

- iA/ß ' 

I = ~e 
• g (e 2J 

x+(bA/k) i k ( | - § ) / ß 2 b Ö2H(2) ( } 

- 2 
öS 

^ (C-5) 

2 p x+(bA/k) i k ( f - ^ ) / ß a b r p s 

- ^ 2 " I e Hf)( C )d § -} 
ß a -oo 
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Lett ing 

(C-6) 

the equation becomes 

I = 
g 

o 

" i A / ß
 r ? P (*-?) + (bA/k) ik 5 / ß ^ ä V 2 ) ( c " ) 

- e d5, 
^1 

(C-7) 

2 p
 ( x ^ + ^ A A ) ik5; ifa 

o 2 2 J 
ß a 

where 

r - M / rk§ 
G = 

ße i 
n 2 „ 2 
T / - l r— 1 —lC— 

2 V L T + ß 
"kz 
"b 

A pair of integrat ions by par ts on the f i r s t i n t eg ra l of Equation (C-7) 

yields the r e su l t tha t 

-iA/ß2 m,J^o ^ ( 2 ) , -

I = - e i ß2 f 2 r 0-- a n y a 
e — — * § , 

(C-8) 
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i k 

ß^b 

ik§ /$% £ = (x-§) + (bA/k) 

H ( 2 ) (C) 
o to . F = — oo 

• V i • ° Hf(c)aeo} 
U -00 

The l i m i t s of the f i r s t term i n Equation (C-8) can be eva lua ted us ing 

the p r o p e r t i e s of Hankel funct ions given by Lebedev [3^-] so t h a t 

g g 2 J_ b '#sn7 + ß 
•1 - - 2 

kz (c-9) 

. e
ik(X"§)/ß2b

 H f ( ^ ^ / ^ x ^ . Af + ß2 fkz 2 

i M x ^ ) ^ . ^ / K . ( 2 ) /rk(x^) Tf 2 rkz f \ 
+ F e Ho l ^ V L"~b + AJ + ß LF J j 

p 

+ —rr e 

O 

2 " i A / P „ (x-5) + (bA/k) i k S /ß2*, 

t r 

o' ' „(2)/M /r!SrLl2
J.02rkz "• Ho t ä V L b J + H ~ J 

P 

i^, 
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The f ina l desired resu l t i s obtained by retiirning to the or ig ina l 

variables and l e t t i n g 

Tl = 5 '' b ^o 

in the integral of Equation (C~9) • Thus 

T ~ ~ 
g " U 

| j-£kll + A] / ^^^iVlf + ß
2 [52. + B ] 2 } (c~io) 

i k U - ^ / ß ^ 
. e H(2) ( ^ p x ü + A] + p2 [ ¥ + B] } 

2 
ik(x-s)/ß -b ( 2 ) / rn(x-0 , ,-

+ - e Ho i T ä A / l b + A 

p 

2 ; kz 
+ p i T~- + B 

-Z 

+ a> e "
iA/ß' 

u 

[k(x-?) /b] + A 
iVß2

 H(2)^ ^ [ T ^ f ^ )dT] 
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APPENDIX D 

DEVELOPMENT OF A USEFUL PARTIAL 
DIFFERENTIAL EQUATION 

In this appendix a partial differential equation is developed 

which proves useful in reducing the kernel of the downwash integral 

equation for two-dimensional airfoils oscillating in a compressible 

stream. The equation was first used by investigators (see e.g. 

References [15,36]) considering oscillating fixed wing type airfoils, 

but as shown in Appendix C the equation is equally useful when 

considering oscillating rotary wing airfoils„ 

The governing linearized equation for the acceleration potential 

in two-dimensional5 unsteady, compressible flow may be written as 

2 2 2 2 

JL LJL . gM d Y 2 d 'Y d Y 
2 2 ~ p 2 ~ 2 
a öt a dxdt dx dz 

(D-l) 

If the transformation 

T = t + M 
o2 
ß a 

C = 
ß a 

\ 

> (D-2) 
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i s made Equation (D-2) becomes 

2 2 2 

O. O. - O. 
2 2 "" 2 

ÖT ö£ ST] 

(D-3) 

Wow introduce the polar coordinates 

Q - r cos 

T| = r sin 

= VC +T1 = 2 
1 / 2 n 2 2 

Ö — V x + ß z 

ß a 

9 = tan" 1^ = t a n " 1 ^ ) 

> (D-U) 

Equation (D-3) then becomes 

d2Y = öfx , 2 52Y 1 SY 
2 - 2 - 2 2 » -

ÖT ör r 59 r ör 
(D-5) 

Assuming a Solution of the form 

¥(r,e,T) = e
lü)T ein6 R(r) (D-6) 

and substituting in Equation (D-5) it is foimd that R(r) satisfies 

the equation 



iia 

d ^ 1 dE / 2 n£ , p n 
""1p" 3 — + (u) -•^p')R = 0 
dr r dr r 

(D-7) 

•which is Bessel's differential equation of order n. Taking the Hankel 

( (1)/ -N functions of the first and second kinds and order n H (,u)r) and 
\ n 

(2) - \ 
H (cor) respectively) as the fundamental Solutions of Equation (D-7) 5 

the general Solution of Equation (D-5) "becomes 

• ( 2 ) 
Y(?,6,T) = eimT £ ein9 [ A H ^ V ) + B ^ (cur) ] 

n~o 

Thus a particular Solution of Equation (D-5) would be 

(D-8) 

Y 0 ( r , 9 , T ) =H^ 2 ) (a ) r ) e±m (D-9) 

But t h i s i s a l so a p a r t i c u l a r Solu t ion of Equation (D-3) so t h a t 

o 

ÖT 

• ( 2 ) < \ . ^ e 1 ^ [H<2)(O£) 
ö 

ac 
(2) 

L o 
.io)Ti ., ö- r „ ( 2 ) 

~ 1 n IT '(cur) e j + —-g | IT ' ( e r ) e i(DT" (D-10) 

or 

- cuV^Otf?) = ^ r H ( 2 ) ( ü ) r ) ' o ' ^ 2 o v ' 
ÖT] 

H^2)(a)r) (D- l l ) 
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Returning to the original coordinates 

ß2 L _ H ( 2 ) ( . V7777) • K =f {-t- 4TVT7 ) 
öx p a dz ß a 

(D-12) 

+ / 2 « f ( / - A / x 2
+ ß

2
Z

£ ) = 0 
ß a ß a 

CO ' CO 

In t roduc ing t h e reduced frequency parameter 

büü k = — 

Equation (D-12) becomes 

ß2^Hf (f A / Ö ^ W )
 +ÄHf ^-M^W 

3x p dz p 

(D-13) 

2 , „ x „ „ / , , 2 _ 2 \ Ätf*?®' * # ä =f( f f l
2 A/ (f > * ^* - I - o 

P aco ß 

I f t he change of v a r i a b l e s 

f = x + § (D-HO 



1^3 

i s made and § i s considered to be constant tlien Equation (D-lU) 

becomes 

f $ <2) (fWf^W) 
o§ P 

which is the desired result. 
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APPENDIX E 

ANALYTICAL COMPARISON WITH THE RESULTS OF JONES AND RAO 

Since Jones and Rao [2̂ -] have presented an analysis of 

essentially the same aerodynamic problem considered in the present 

research but incorporating a different mathematical model and approach 

to the problem., it is desirable to make a comparison of their downwash 

equation and Equation (l8). This comparison is made in the present 

appendix by manipulating Equation (18) and reducing it to such a form 

that it can be readily identified with the downwash equation given in 

Reference [2k~\ . 

In the inner integrals of Equation (18) make the change of 

variables 

l0 = ̂  ~ V + § (E-l) 

and then r e v e r s e the order of I n t e g r a t i o n . The downwash then becomes 

- ikx /b 

-7 \ i e 

b i k ( x ~ § o ) / ß b 

^ b ^ ° \2\H—)+*U J 

(E-2) 

' J APa(§) e d§ d§Q 
-b 
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r - . * * « ^ ^ « ^ ••"©•) 
dz % ß 

P b ik§ /b 
Ap\(§) e d§ d§ 

J-b a 

Q-l IYq + i[2TTmM2(nQ+q)/ß2Q] b i k ( x > | yfa 

+ Z I * q { j 
n=o q=l -b 

ö 2 „ (2 ) /M / r k ( x - i o ) ^ 2rrm ö „ (2 ) /M /r-Kkx-^o^ ^ 2rrm/ A_, x l ^ Q2 rkz ^ , nj_ v . , 1 \ 

~ o Uv L~T— + —(nQ q)J + ß LT + (nQ+q) ^J j öz xß 

c ? i k ? / b 
° APa(§) e d§ d§Q 

~b 

oo i k (x -e )/b 
o " w .2 

+ | e 
'b 

ö2
 tT(2)/M / r k(x-?o) ^ 2nm, nj_ vi J.fl2rkz , nj_ ,., 1 

72" Ho v^ v L - b ~ + — (nQ+q)J ß
 LT+^+^J dz xß 

i k§ /b 

i j , -b 
APQ(§) e d§ d§ .1 
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" e i2nWM2 /0^ j b
e L k ( x . 5 o ) / ß 2 b 

n=l 

_2 . <L_ H(2) ( ! ^ p £ S f l l + 2 r a T m ] + ß2 [!« + n ^ -
dz ß 

° AP (I) e 
i kg /b 

ü-b 
dg d£ a 3 ^o 

» i k U - ^ / ß S 2 (2) / ( } .2 „ ,2 , 

+1 e - I B
0 (-zvL^b + 2 H + p L~+ n Q ö l J i az - ^ 

r- ^> ^ s / b -i 
J APa(?) e d5 d?Q } 
-b 

Now Jones and Rao introduce a distribution function K(x) which is 

related to Ap (x) as shown below 
a 

"•1.KX / ß ^ 

Üb 

A X 

-b 

ik§/b 
e d§ f or x < b 

K(x) = < (E-3) 

""lJQs. /ß2b 

üb 

P b _ ikg/b 
Ap (§) e d§ for x > b J, a -b 
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Using t h i s d i s t r i "bu t ion funct ion the do"wnwash equat ion "becomes 

i"b w(x5z) = ^ e 
. k ^ x / ß 2 ^ 

-b 
(•E-k) 

^(S^Hrf+ ?$>*. 
dz w vß 

n=o q=l 

Q-l iY + iCanrnN^Cnft+qJ/ß^] 
r °° 

1 K(50) 
~b 

L̂ H ( ^ ^ p ^ ^ + (n Q + q ) k h] 2 ) d§ 
öz % ß 

+ L e 

n - 1 

2 / 2 
i2nTrmM /ß -

K(§Q) 

-TD 

ä L H ( 2 ) / M / rk(xj iJa l ~2 

2 n o V 2 V L 1̂  dz p 
+ 2nTrnil + ß 2 ~p + nQkh ) d§ j 
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This is exactly the downwash equation one would. obtain by setting 

up Jones and Rao's approach using the model of Figure 3« However to 

see how the equation can be reduced to downwash equation of 

Reference [2̂ -] it is necessary to return to the form of Equation (E-2) . 

First note that Jones and Rao introduce more notation for K(x) in the 

wake by defining 

-ikx 
K (x) = - —77T-oov ' p Üb 

/ ^ ik|/b 
APn(§) e d§ (E-5) 

J-b a 

Now define the parameters 

- f^ni 4. D = ( ™ ^ + 2IITI-V 
nq \ Q / 

D = 2nrrr n 

> (E-6) 

which characterize the distance by which the "wake airfoils" represent-

ing previous passages of blades other than the reference blade and 

previous passages of the reference blade respectively lead the reference 

airfoil. By introducing these parameters and making the appropriate 

changes of variables Equation (E-2) may be written as follows 



l k - 9 

-f v I b w ( x ^ z ) = IJ^ e 
i ldy^x/ß^ 

{ 
- b 

K(e ) (E-7) 

dz p 

» Q-l iY - i[2TTm(nQ+q)/Q] » g 

+ moo(x) Y T e [ e " i k 5 /ß 

n=o q_=l - [ ( x - b ) / b ] - (D n q /b) 

4^> (M^ + ß 2 [ f + ( n ^ ) a | 
dz Nß 

+ bKoo(x) ^ e " i 2 ^ J e-ik? /ß' 

n=l ~[(x~b) /b] - ( D / b ) n 

(f ̂ /T^fT^) d§ Ö _ H ( 2 ) ^ M t _ / B 2 , nZ 

öz2 ° ß̂ 

ibe-ikx/b v „ 
» Q - l . . r n , W n ^ ( x - b ) / b ] + (D / b ) 

"* x iY -i[2TTm(nQ+q)/Q] „ _ ._ , Ä 2 n ( l 

n=o q=l [(x+b)/b] + ( D A ) 
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^ f m^jn2 + ß2 [f + (nQ^)hf ) J X " ^ + D n < 1 Apji) e1^/13 ag dT[ 

hz X ß L J -b 

ibe 
-ikx/b °° C(x-b)/b] + (D /b) 

l fcX/b y e-i2nnm T n ^ / ß 
Poo ß n=l [(x+b)/b] + (D /b) 

^ 2 H o V ^ V ^ + P L b + H j J_b APa(§) e d§ dH 

Wow if all the "wake airfoils" of Figure 3 are allowed to lead the 

reference airfoil by an infinite distance, i.e. if 

D —»co 
nq. 

D —»co 

n 

(E-8) 

then the mathematical model used in the present study would agree with 

the model used by Jones and Rao and hence the do-wnwash equations from 

both approaches should agree. Letting D and D approach infirdty 
nq n 

Equation (E-7) becomes 
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- / % i b w(x3z) = r r e 
M^x/^b 

I I K(?o) 
-b 

(E-9) 

i*r sW^s2)^ 3z N ß 

- ^ ^ i[2^(nQn)/Q] f ^ _ . k ? / ß 2 

oo - ' z^ A 
+ bK__(x) T ) e q 

1 £__i 

n=o q_=l 

ö w (2) (m / 2 R2 
_ H Q ^ § + ß 

"z T \ 
™ + (nQ+q)h j d§ 

+ bK (xj ) e oo ' L. 
- i kg /ß ' 

n=l 

^ 2 ) ( W ^ 2 l t + 
nQh 

dz vß 
d^ 
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Introducing the nondimensional notation of Reference [24] 

v _ — 7 - ££. 
A = — Li — J T — 

TD l> 

W(X,Z) = ~ w (X,Z) e 
P 

-ikM^X/ß 

(E-10) 

Eqjuat ion (E-9) may "be w r i t t e n 

2* [W(X,Z) - Wl(X,Z)] = j ; K(H) ä L ^ H ^ f y ^ T T ^ + Z dH 

"wiiere 

( E - l l ) 

~ »i2nnm * - i k ( H - X ) / ß 

2„ W.(X,z) = KQo(X) l e Je 
n = l -CX3 

(E-12) 

2 _ 
5 
-, 2 
SZ 

[ f nf) (3f V(B-x) 2
 + (Z+nftPh)2 y 

ß 
dH 

+ K 
oo 

co Q - l iY -i[2TTm(nQ+q)/Q] « , „ w 2 
^n c~» q. « -IKAö " X J / ß 

(X) Y ) e I e 
n=o q_=l 

• ^ [ f H<2> (3f ^(H-X^.CZ^nQ^ßh]2 ) ] dH 
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Except for the sign this is precisely the downwash equation given by 

Jones and Rao» The difference in sign is accounted for by the fact 

that their z-axis is opposite to that used here? and thus their dovn-

-wash should be opposite in sign to that of Equation (E-12) . 

Therefore if the mathematical model used in the present study 

is modified to agree with that of Jones and Rao then the downwash 

equation is the same for both cases and hence the loads calculated 

must be the same for both cases. However the difference in modeis 

can cause considerable differences in loads for those cases where the 

flow parameters dictate that the "wake airfoils" of Figure 3 lead 

the reference airfoil by a relatively Short distance. A discussion of 

this Situation is presented in Chapter IV along with a numerical 

comparison of the two methods. 
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APPENDIX F 

REDUCTION OF THE KERNEL FOR ZER.O MACH NUMBER 

The downwash integral equation developed in Chapter II is for 

compressible flow over the model shown in Figure 3- As in most 

compressible flow analyses, it is convenient in the present study to 

reduce the analysis for the case of zero Mach number in order to 

facilitate comparison with kno-wn incompresslble results and thus obtain 

a partial check of the analysis. In the present research this is 

accomplished by reducing the kernel of the downwash integral equation 

presented In Chapter II for zero Mach number and comparing the result-

ing incompresslble downwash integral equation with the downwash equa­

tion given by Loewy [2]. The reduction of the compressible flow kernel 

for zero Mach number is presented in this appendix. 

The kernel of the compressible downwash Integral equation Is 

given by Equation (2l) of Chapter II and is repeated here for complete-

ness 

K[M, so*!, f j - iM j rk(x-^)" 
b 

+ ß 
"kz 
b 

(F-l) 

. H
(2) (^F^^f\^{^f ) e ^(x-'D/fc 

1 \Q2 V L b J Lb J / 
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i k M ^ x - ^ / ß ^ b 

^3 ° V b + 
2. rkz"l \ 

ß bd ) 

+ 4 e "±k(X"5)/b J k(X"§)A e^/ß2
 H(2) ^J^77\^)*l 

-CO ß 

First consider the integral appearing in Equation (F-l). For small 

arguments the Hankel function of the second kind and order zero can be 

represented by its asymptotic value given by Lebedev [3̂ -] as 

IT2)(v) ~ ~ In - as v - 0 
O TT V 

(F-2) 

Making t h i s S u b s t i t u t i o n the i n t e g r a l becomes 

_ l im f 2i_ r k ^ x " § ) / b iT]/ß2 
l i m 
M-*o M-*O <. rr 

In 
M _2 , R 2 Tkz 

dTl } (F-3) 

I n t e g r a t i n g by p a r t s 

l im 
M-*o 

l i m f 
M-»o 1 

2 ß 2 i k ( x - § ) / ß b 

TT 
to 

M "k&ll* 
b 

n̂ _ ÜZ 
+ p r— 

Lt> _ 

(F-4) 
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2 ß 2 r k(x~5)/b 

TT 

1 1 -W 
2 ^ Q2 / k z \ 2 

dl] 

Now the Hankel funct ion of t he second kind and order one has 

the asymptotic r e p r e s e n t a t i o n given by Lebedev [3^+] as 

H ^ ( v ) ~ — as v - 0 
1 "TTV 

(F-5) 

Making t h i s S u b s t i t u t i o n along with Equations (F-2) and (F-^-), 

Equation (F- l ) becomes for smaU M 

l i m
 K fM

 k(-x~g) kz 
M-o L ' b 5 

b J 
__ l im f 

M-o l 2TT 

r k ( x - g ) l ^ ( x - ? ) / ? ^ 

L b J 6 

rM f̂ 
. "b J 

+ ß 
_, - 2 kz 

b 

± ikM 2 (x-§) /ß 2 b 

2rrß to 

^^[p¥T7^ m 

(F-6) 

+ M e 
2TT 

ikM 2 (x-5) /ß 2 b 
t n 

M rH*<)f + 2 rkz-
Q 2 \ / L b J M Lb. 
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- i k ( x - § ) / b p k ( x - | ) / b ^ eiT]/ß t 

2TT 

^2 - ß2 (¥ 
dT] 

Thus i n the l i m i t as M -• 0 , ß -» 1 and the k e r n e l becomes 

K [o, k(x-gQ kz~ JL 
2rr 

k & l l 
b 

"k(s=lil2 + f^f 
(F-7) 

k^x-g) 
_ b _ + L13J 

± - i k ( x - § ) / b f k ( x - § ) / b 

—CO 

JLe 
IT] 

, 2 / kz \ 
äT) 

The form of the zero Mach number k e r n e l given by Equation (F-7) 

i s t he form which i s u se fu l when comparison i s made with Loewy's [ 2 ] 

r e s u l t s » However, t he i n t e g r a l whieh appears i n Equation (F-7) can be 

eva lua ted i n terms of known t r a n s c e n d e n t a l f u n c t i o n s . This i s 

accompüshed as fo l lows . F i r s t s p l i t t he i n t e g r a l i n t o Wo p a r t s 

JU 17)/ß' 
k ( x - § ) / b 

—OD 2 

T] + (¥)' 
dT] + J e 171 

^_ , kzY 
Ti + i T ; 

dT) (F-8) 
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Making an appropr i a t e change of v a r i a b l e s the f i r s t i n t e g r a l of 

Equation (F-8) may be w r i t t e n 

x i = -
V COS V 

o 2 _,_ / k z \ v +lTj 

dv + i I v s i n v 
r 

2 /kzV 
dv (F-9) 

Now from E r d e l y i , e t a l . [37] 

«°° t COS X t nj. _ 1 
2 • 2 du - 2 

o a + t 

ax / \ -ax _̂ " / \ 
e E (ax) - e E (ax) 

(F-10) 

where E.. (x) and E (x) are the exponential and modified exponential 

Integrals respectively. Then from Dwight [38] 

x sin mx , _ TJ_ -ma 
2 2 ̂  - 2

 e 

a + x 
(F-ll) 

Using these results Equation (F-9) becomes 

1 r kz/b „ /kz\ -kz/b * /kz\l J in -kz/b 

• i B " 2 L e E i W " e v- (~~]l + ~ ^ P E l=ftt*T* (F-12) 

Turning now to the second integral of Equation (F-8) let 

k(x-g)/b ^ eiTl 

2
 + fkzV 

d*n (F-13) 

Tl 
w 
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From Äbramowitz and Stegun [39] 

I x e 
i x 

2 2 a "t* x 
dx 

"I r~ «-Q p *n 

= - p- e En ( -a - ix ) + e E1 (a - ix ) + cons tan t (F- l^ ) 

so t h a t 

I ~ 2 
i r 

kz_ kz 
b _ / kz ._\ _̂  b 

E J - F - 171) + e Ei ( T - iTi 

= 3*(£Sl 
b 

Tj=o 

Evalua t ing a t the l i m i t s and us ing the f a c t t h a t 

(F-15) 

E (-x - iO) = - E (x) + i n (F-16) 

from Abramowitz and Stegun [39] 5 Equat ion (F-l|?) becomes 

1 f -kz /b _ r kz . k ( x - g ) l ^ kz/b _ 
= - 2 | e E l L" b~ " 1 bj + e E l 

"kz 
b 

i IzS&Sl 
b 

(F-17) 

- -kz/b 
+ — e 

2 
* / k z \ . - E ( F ] + 11T 

1 b \ /kz 
+ 2 e E I Vb~ 

Using the above r e s u l t s t he i n t e g r a l of EquatiLon (F-8) becomes 

I = ITT e 
-kz/b n r -kz/b 

TP f k Z n k ( x - g ) l (F-18) 

, kz/b _ fkz . kfx-5)" 
+ e ' En T ~ - i •~^-T-~U-

1 L b b . 
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and finally the kernel given by Equation (F-7) becomes 

K o M^rSi. k z 
W 5 Ö 3 "b 2TT 

k ( x - | ) 
b o M^rSi. k z 

W 5 Ö 3 "b 2TT 

L b J 
2 _2 

, rkz 

- (kz /b)- i [k(x-§) /b] 
- ;r e _2 2 

i " ( k z / b ) ~ M X x - O / b ] r k z . Hx<) -i 
~ TKT

 e E I L F " 1 b ^ _ 

(F-19) 

(kz/b) - i [k(x-§) /b] 

^ 
kz . ± Ts&gL 

Lb b 

The case where z = 0 is also of interest because it is this 

case which gives the kernel for the integral representing the downwash 

caused by the reference airfoil itself. Furthermore, this is the entire 

kernel of the downwash integral equation for a two-dimensional fixed 

wing airfoil. If z is set equal to zero in Equation (F-7) the kernel 

becomes 

K [ 0 , £ÜpSl, 0] = -i;[k(x-gVb 
-1 

+ "kl e 
2TT 

-k(x-§)/b k(x-§)/b 
±T| 
e 
— ^ 

(F-20) 

The integral appearing in this kernel may be Witten as 

, k(x-|)/b n n _ - k(x-g)/b . _ 
j = | cos T) dl, + .

 x w / sin T1 
11 T] 

d.T| (F-21) 
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Now the sine and cosine Integrals are defined respectively by 

Lebedev [3*0 as 

Si ( Z ) = J 

«j 

sin t 
t 

cos t 
t 

dt f or all z 

> (F-22) 

dt f or z S: 0 
(undefined for z < 0) / 

The second integral of Equation (F-2l) may be written as 

k(x-§)/b 
I = f £HLJi d u + f £HLH 

2 J u J Tl 
dT| (F-23) 

so tha t 

I n = Si(oo) + Si i M * - ^ ! 
2 L b . 

I 2 = | + Si k(x-g)l 
L b j 

) (F-2U) 

; 

By changing variables the f i r s t in tegra l of Equation (F-2l) may be 

writ ten in the following forms 

* -k(x-§)/b 
- 1 COS £ K (F-25) 
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I = 
1 

k(x-§)/b 
cos C 

<K 
p-k(x-§)/b eos C 

k(x-§)/b c 
dC (F-26) 

The second integral of Equation (F-26) is seen to be zero because it 

is the integral of an odd function over an even interval. Now if 

—^ •""•"- is negative then from Equation (F-25) 

I 1 = Ci 
'k(x-g) 

b 
(F-27) 

k(x— 5"") and i f -Ar- *•*- i s p o s i t i v e t h e value of I i s given by Equation (F-26) 

as 

I = Ci "£ki£l (F-28) 

k(x-£) Thus for a l l va lues of A-; *•*- t he i n t e g r a l may be W i t t e n as 

Z l " Ci Li b 
^zSl (F-29) 

Using the above eva lua t ions of the i n t e g r a l s appearing i n Equat ion 

(F-2l) t h e ke rne l given i n Equation (F-20) becomes 

K 0? £fe=Sl , o 
1 1 i " k ( x - § ) / b . 

b 

^ z S l 

(F-30) 

+ i ~ + i Si P *£xz5l 
b 
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The reduction for zero Mach number of the kernel given by 

Equation (21) of Chapter II for the compressible flow downwash integral 

equation is thus completed. By using this reduced kernel, the 

compressible downwash integral equation developed for the flow model 

of Figure 3 becomes the downwash equation for incompressible flow over 

the model of Figure 3» This reduction then permits comparison with 

Loewy's incompressible results and hence a partial check of the 

compressible flow analysis• 
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APEEMDIX G 

AKALYTICAL COMPARISON ItfITH LOEWYTS KESULTS 

In most compressible flow analyses it is beneficial at some 

point to make the reduction to zero Mach number so that a comparison 

can be made with known incompressible results„ In this appendix the 

downwash integral equation developed in Chapter II for two-dimensional 

rotary wings in compressible flow is reduced for zero Mach number to 

a form which can readily be compared with the downwash expression 

given by Loewy [2] for incompressible flow. This comparison indicates 

analytically the effect of the different flow modeis used in the two 

analyses. 

Using the kernel developed in Appendix F for zero Mach number 

the downwash integral equation developed in Chapter II becomes for 

incompressible flow 

f f <> b 

w (x) = 
0) 

^ ' 2TTP U2 -b 
Apa(§) { [kfx-^/b]"1 (G-1) 

-ik(x-§)/b r k ( x - § ) / b 
™ i e J ~ e• 'I dTj } d§ 



165 

- Q - l i Y q ^ 

l l e J, A^a(5) { 
^ r l l + 2n(nQ^) | 

n=o q=l -b ^~~^~ + 2TT(nQ+q) | ] + (nQ+q)kh 

- l e 

-i[[k(X-S)/b] ^WnQ+qVQ]} f^(x-)/b] + 2TTm(nQ+q)/Q} 

JUi; 

Tl2 + [(nQ+q)kh]2 

dT]} d§ 

+ 
b 

r—1 f* f 

1 J_b <($n 

k(x-E) , _ 
" " T ^ " + 2nTrm 

r v / F ^ i r ~i 
" ~ ^ r ^ + 2nTim + nQkh 

- l e 

-d{[k(*-g)/b] + 2nr*n] p £«-5)M + * * » ! 17) • 
" P — J L ^ — ^ dT] f dg 
71 + (nQkh) 

In reducing Equation (G-l) to a form which ean be cornpared 

d i rec t ly with the downwash equ.ation given by Loewy a generalized form 

of the three chordwise Integrals appearing in Equation (G-l) i s f i r s t 

considered. The generalized ehordid.se in tegra l i s given by 

I = 
APa(§) 

l b Kco 
U 

läzdü + A 
b 

püp£)+ A]2 
(G-2) 

+ 

ehordid.se
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_ i e 

-i{[k(x-i)/b] + A} C*(*-S)/b] + A 

-p—2 an } d? 
-oo T] + B 

where A and B are constants "with respect to the integrations. 

For incompressible flow the pressure differential across the 

reference airfoil, Ap (x), is related to the vorticity distribution, 
a 

Y (x), used by Loe-wy through the following equ.ation given by a 

Bisplinghoff, Ashley, and Halfman [36] 

APa(x) 

"o U - Y (x) - ̂  f Y (§) d§ 
Ta J U J, Ta s 5 

-b 

(G-3) 

S u b s t i t u t i n g Equation (G-3) i n t o Equation (G-2) 

-b 

'MszLl + A] Ya(§) 

^Sdü + A! + B' 
b J 

dg (G-U) 

ig) 
U 

b [ f e i + A~ 
-b fk(x-g) i 2 , ^ 

• V + A + B 
L b J 

2 '-b 
va(C) ^ §̂ 

+ i f b
 e^ [k (x~^] + A5 Y (§) [ 

-b a -

[ k ( x - ? ) / b ] + A 
* H „ J L £ _ dT] d ? 

Tl + B 
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o) r p - i { [ k ( x - § ) / b ] + A} 

-b -b 
Ya(0 ^ J 

[ k (x - | ) /b ] + A ^ e±T\ 
o o 

r\ + B " 

dTj d§ 

I f t h e t r i p l e i n t e g r a l appearing i n Equation (G-4) i s i n t e g r a t e d by 

p a r t s once then Equat ion (G-k) reduces t o 

I = -
-b 

*!£Sl + A 
— — T — Y O (§) ^ 

b J 

(G-5) 

i e - i { [ k ( x ~ b ) / b ] + A} r J b - ( c ) n j W ^ ) / b ] + A ^ eiT] 

- b -oo „2 2 
T) + B 

dTl 

or changing v a r i a b l e s 

- (bA/k) +b k ( x < ) 

_ _ L _ _ Y (C) dr 

(bA/k)~b r k ( x < ) - j + ß 2 
L " J 

(G-6) 

. l k + 7— e b 

i k -iA _ « b 

" I Ya(C) ^ 1 
L ib J --(bA/k)+b 

k(SzSi( 
b 

- b J 

- i kg /b 

d | 

+ 
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Defining the total circulation given by Loewy as 

Ä 1 

r = r e 

b 

ik - b 

I ^ a ( ^ ̂  
-b 

(G-7) 

Equation (G-6) becomes 

»(bA/k)+b k(x-c) 

I = -J V -(bA/k)-b fk(x<) 
b + B 

Ya(C) ^ (G-8) 

-iA 
+ ik T e 

fcklSl e "ik?Al 

b 

-(bA/k)+b fk(x-g) "T . _2 
dg 

b i + B 

Before applying the result of Equation (G-8) to the downwash 

equation? Equation (G-l)s the distance by which each 'Vake airfoil" 

leads the reference airfoil will be defined* For the airfoils 

representing previous passages of blades other than the reference blade 

the distance is given by 

Dnq = 2TT(nQ+q) - (G-9) 

where n is the revolution index and q is the blade index. For the 

airfoils representing previous passages of the reference blade the 

distance is given by 
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D = 2nrrr 
n 

(G-10) 

Using the d e f l n i t i o n s given by Equations (G-9) and (G-10) 

t oge the r with the r e s u l t given by Equation (G-8) with the proper 

choices for the cons tan t s A and B the downwash equat ion 5 Equat ion ( G - l ) , 

may be v / r i t t en as follows 

w (x) = 
a 

JL 
2rr J 1» -b 

Ya(?) ^ 
- ikr 

^b 

s - ik§/b 
(G- l l ) 

+ 

00 Q-l 
V1 

/ J 

iY 
q { 

-r 
•» 

+b 
nq 

n=o q = l -D 
vi 

-b 

(x-§) Ya(§) 

( x - § ) 2 + [(nQ+q)bh]2 
d§ 

nq 

-i2Trra(nQ,+q)/Q ° 
- i k f e 

, , - i k | / b 

ixd&jL-JL—^ j 
-D +b 

nq 

(x»§) 2 + [(nQ+q)bh]2 

ZU 
-D +b n 

(x-§) Ya(§) 

n=l -D -b ( x - e ) 2 + (nQbh)2 

n 

d§ 

-i2nnm « °° 
- i k f e 

-D +b 
n 

(x-g) e - l k S / b ^ 

( x - ? ) 2 + (nQbh)2 
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From Equation (G-ll) the difference between the flow model 

used by Loewy and the flow model used in the present research becornes 

apparent. The most obvious dissimilarities between this equation and 

the downwash equation given by Loewy are the first Integrals in each 

of the summations of Equation (G-ll). These Integrals represent the 

downwash associated with the bound vorticity of each of the wake 

airfoils and hence the terms do not appear in Loewyfs downwash 

equation. In Loewy's flow model the wake layers are made up of shed 

vorticity from the reference blade and from other blades of the rotor. 

Since these wake layers are allowed by Loewy to extend from minus 

infinity to plus infinity the summation terms which appear in Loewy!s 

downwash equation are shed vorticity terms only and are similar to 

the second terms appearing in each of the summations of Equation (G-ll) 

The flow model being used in the present research, shown in 

Figure 33 can be made to agree with that used by Loewy, shown in 

Figure 2, by forcing each of the "wake airfoils" of Figure 3 to lead 

the reference airfoil by an infinite distance. If this is done then 

D - » 0 0 

nq 

n 

(G-12) 

and Equat ion (G- l l ) becornes 

*> Y n ( S ) 
- ik§ /b 

- / N i r r Y a v s / - r e 
a 2TT l J_b (x-§) b J (x-5) 

d§ (G-13) 
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co Q-i I Y - i[2Trm(nQ-H1)/Q] co -Ikg/b 
• T ? V V r (x-g) e _ 

„ l k r \ \ e __™^7^^_™__™-«_Tr d£ 
U n (x-§)£_ + [(nQ+q)bh]" 

n=o q=l -oo ' ' J 

co co -ik^/b 
. n - V -i2nnm T (x-jü e ,_ 

n=l 
»co (x-§) + (nQbli)' 

which is exactly the downwash equation obtained by Loewy. 

I t has thus been shown that if the flow model used by Loewy 

and the flow model used in the present dissertation are made to agree5 

then the downwash equation obtained from the present approach for 

zero Mach nuniber agrees with that given by Loewy. This agreement of 

the downwash equations then implies agreement of the unsteady aero-

dynamic loading on the reference airfoil obtained from the tvro different 

approaches. If the flow modeis are not made to agree then the differences 

between the two downwash equations are explained in terms of the bound 

vorticity as soci ated with the "wake airfoils" of Figure 3® The 

numerical significance of these differences is presented in Ghapter IV* 
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APEEHDIX H 

CONVERGENCE OF THE WAKE SERIES 

The integral equation for the downwash at the reference airfoil 

section of a helicopter rotor blade is developed in terms of the 

pressure differential across that section in Chapter II. This integral 

equation is shown to contain an infinite series which must be truncated 

in the numerical evaluation of the integral equation. Consequently the 

question of convergence of this series is of utmost importance. In 

this appendix the convergence of the series is investigated and it is 

shovm that the series converges except for a certain combination of 

the aerodynamic parameters. 

In Chapter II it is shown that the dorarwash integral equation 

for the pressure distribution on the reference airfoil of an equivalent 

Single bladed rotor can be Witten as 

b 
w(x) = - - ^ j { J APa(§) K [M, ^ ^ , 0 " ä% (H-l) 

o IT -b 

b 
+ 7 f AP (§) K [u, ^ S l S i + 2nTTm5 nkh] d§ ) 

Z_J «J a L. D J J 

n=l -b 

where the kerneis of the above Integrals are given by Equation (21) . 

If the Integration and summation Operations in the second term 
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)f Equation (H-l) are reversed then Equation (H-l) may be written as 

w(x) r 

P u2 -b 
J APJ§) K[M, £kp£l , o ] d§ (H-2) 

- D 

•where 

i A - j ) / ^ -ikU-D/ß^b 
^ = 5ß e L iMSi - s

2
 + i e 

'3 J (H-3) 

and 

S = Y { P ^ " ^ + 2n.TTm ] / -W [^f-^" + 2lKTm ] + (ßi*h) } (H-1*) 

• H{£) (^pf^ + 2ram]2
 + <w 2 \ i 2 I M M

2 /ß : 

_2 / .2 i2nrraM / ß ' 

=X*?UW[^ + H2 + (^f) (H-5) 

n=l 



Yjh 

^ _ - ;i2rwm j WK- §)/,] + 2 ™ H(2) ^ 2 + ^ / ^ 

(H-6) 

It should be noted here that the justification for reversing 

the order of Integration and summation accomplished above lies in the 

f act that Equation (H-l) can be developed with the summation either 

inside or outside the integral,, depending on the approach taken. In 

the present study Equation (H-l) was developed with the summation out­

side the integral, while in a similar study by Carta [26] the equation 

was developed with the summation inside the integral. 

The series given by Equations (E-k), (H-5)3 and (H-6) will now 

be investigated in detail to determine under what conditions the series 

converge. The approach taken parallels that used by Carta [26], since 

these series are similar to the ones which he encountered. The 

approach is to look at the terms in the series as the summation index 

becomes large and apply the results of the theorem appearing in 

Appendix I. First consider the series S.. . Define the parameter 

P = M _ / B|zSi + 2nrrm + fßhkh) (H-7) 

Then i f the following are defined 

_ _ _ _ ^ 

2rrC = \y(2™) + (^kl1) (H-8) 
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hm (IQ [^zSl^ 

2TT£ 

(H-9) 

'M\2 r*(x^lf 
vR2/ L b J 

^2 , , 2 
2TTC) 

(H-10) 

Equation (H-7) may be W i t t e n as 

P = 2nCnJTT|^TrD2) (H-ll) 

For large values of n the radical in Equation (H-ll) can be expanded 

using the binomial theorem. Retaining only the first two terms 

P == 2TTCII [l + TT (D-, + ~ A-,) fa L 2n 1 n 2 ' 
(H-12) 

th 
If S.. represents the n term of Equation (E-k), then for large 

values of n 

JZbr 

2rrm 
In 

+ n 
1 

B^[1+s(v^i 
i2nTtrr^f"/ß£ 

(H-13) 

42} fan [l + ̂  (D l + i D2) 
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For large values of the argument the Hankel function can be expanded 

in a series given by Lebedev [3̂ -] as 

H | 2 ) ( Z ) ^ 
-1[Z-(3ITA)] (l .31 

l 8z 
15 

128z': 
(H«li+) 

S u b s t i t u t i n g t h i s expansion i n t o Equation (H-13) and r e t a i n i n g only 

the f i r s t two terms 

i n 
mMe i3rrA 
- 2 3 / ^ " 

[rrß £ ' 

n + 
2D2™| -i{2rrCn+2TTCl);L+ ( T T C ^ / H ) ~ (2mrmM2/ß2)} 

D. 

H1 + k ( D i + s V]} 
3/2 

(H-15) 

. { ! 31 . } 
I6 .cn [ l + 5L ( D l + i D£)_ 

Since n i s assumed t o be l a r g e . — D0 i s n e g l i g i b l e compared t o Dn and 
n d. 1 

1 / I N 

__ (̂ D + - D ) i s n e g l i g i b l e compared t o u n l t y so t h a t 

S T ^ I n 

I3TT/V 
mMe 
—2T372 

[nß £ 

-irrCD-, f i2rm[ ( m ^ / ß 2 ) - £] 
(H-16) 

' 1 +
 ( 2VV 3i(2D2 /D1) 

( l 6 n C ) n ^ (l6rr {;)n5 / 2 
Ji. 

I6.cn
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low the series containing the last three terms of Equation 

(H-l6) can be shown to have absolute convergence because the power of 

n in the denominator is greater than unity in each case. The 

convergence of the series containing the first terra,., however, must be 

determined by applying the following theorem which is proved In 

Appendix I• 

Consider the series 

id 
l € 

n 
n=l 

id. 
= ) a e 

L n 

If a is a positive decreasing sequence approaching zero monotonically 
n 

as n increases indefinitely and if d monotonically approaches nd where 

d is a constant and is not äqual to any Integral multiple of 2TT5 the 

series converges. If d monotonically approaches nd where d is constant 
n 

and is equal to any integral multiple of 2rr5 or if d is a constant or 

asymptotically approaches a constant, the convergence or divergence of 

the series depends on the behavior of the series 

1 = ) a 
L n 
n=l 

Applying this theorem, the series containing the first terra, of 

Equation (H-l6) will converge if 

°™*Q*™" "" « / ^ 0 ~ U j J « j C _ j » a » ^II ""_L ( J 

ß 
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and t h e s e r i e s d iverges i f e q u a l i t y h o l d s . Thus the o r i g i n a l s e r i e s 

S •will converge "unless 

4 _ JL-J {2mf + {mf „, 8 „ 0 , 1 , 2 , . . . (H-X8) 
ß 2TTß 

Now deal -with the series Sp given by Equation (H-5). Using 

th 
the notation given earlier, the n term of the series, S„ , becomes 

for large values of n 

S0 ~ H ( 2 ) ( 2 n £ n h + i (n, + i D j T ) e ±2™^/f ( H _i 9 ) 
2n o \ t e L n 1 n 2 J / 

For l a r g e va lues of t h e argument, t h e Hankel func t ion can be approxi -

mated as follows 

H ( 2 ) ( z ) a JE e -iCz-^A)]/! + i + mm\ (H„20) 
o l VTTZ \ 8Z / 

Reta in ing only the f i r s t two terms of t h e expansion 

i{2TTn(mM2/ß2) -2-rrnT -rrCCD
1

+( V n ) ] 5 

irr/1!-
S2n ~ ~ 1 7 2 i L — " ^ ^ (H"21) 

f̂l̂ -̂  
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Since n is assumed to be large, — D is negligible compared to D and 

1 1 
TT- (D_ + — D0) is negligible compared to unity so that 
2n 1 n c. 

2n 

iLUA)^^] ? P 
i2Trn[(mr/ß ) < ] 

_ 7 _ _ 
TT C" n 

i7s + 
löTT^n 

Jj2 [11-22) 

The series contairdng the second term of the above equation can be 

shown to have absolute convergence because of the power of n in the 

denominator. The convergence of the series containing the first term 

of Equation (H-22) is determined using the theorem appearing in 

Appendix I. Applying the theorem, the series will converge except when 

the relation 

mM 0 

—p~~ - £ = 6 6 = 0 3 1, 2., ... 
ß 

(H-23) 

i s s a t i s f i e d . Thus the s e r i e s Sp -will converge un less 

mM M 
2 2 

ß 2rrß 

y] {2rm)2 + (ßkh) 2 ^ 6 6 = 0 , 1 , 2 , . . . (H-2U) 

-which i s the same as the divergence c r i t e r i o n found for t he s e r i e s Sn . 

Turning t o the t h i r d s e r i e s , S~5 given by Equation (H-6) , t h e 

th 
n term of the series is given by 
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[k(x-§)/b]+2nrrm 2 

S, o e - 1 2 ™ f H(2)(5L ^ T 2
 + (ßl]Ha)2 ) ei1l/p d̂  

3n J o VQ^ ' 

(H-25) 

For l a r g e va lues of t h e index , n 

-i2nrrm 
S0 ~ e 3n 

rH'^llTT^)«^ du (H-26) 
-co p 

The i n t e g r a l appearing i n Equat ion (H~26) cati be eva lua ted as 

; " H<2) ( * L ^ 2
 + ( P n a i ) 2 ) e ^ / P a , = a i ß e ' 1 ^ (H-27) 

-30 ß 

Thus 

„ 0 . 0 -hkh -letorrm /TT 0 Q \ 
S0 — 2iße e (H-2ö) 

3n 

Applying t h e theorem appearing i n Appendix 1, t he s e r i e s S~ i s seen 

t o converge for a l l va lues of t he pa ramete r s . 

Thus the s e r i e s occur r ing i n the dov/nwash i n t e g r a l equat ion 

are sho-wn t o converge except for those va lues of t he parameters for 

which t h e r e l a t i o n 
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is satisfied. 

A condition similar to Equation (H-29) was encountered by 

Garta [26] when studying the compressible imsteady flow over an infinite 

cascade of airfoils. In Cartafs study the ca-scade airfoils represented 

compressor blades which are present in the physical flow field of a 

turbine engine. Fanti and Carta [̂4-0] were subsequently able to show 

that their condition similar to Equation (H-29) corresponded physically 

to an acoustic resonance condition. However, in the present study the 

"wake airfoils" of Figure 3 are not present in the physical helicopter 

flow field and thus Equation (H-29) should be interpreted as only a 

mathematical instabil!ty associated with the flow model. 

It should be noted here that the technique used in determining 

the convergence of the series denoted by S , 30, and S is not applicable 
1 2 j) 

in a general sense. Consider the series 

03 

V a L n 
n=l 

and denote by ä an asymptotic approximation for the a valid for large n5 

say n > f-1. Suppose that ä has the form 

S (-IT 4. ("l)n + 1 + /IN a ~ T̂"7T"" + "xT7*r" + — + OV—) 

n 1/2 3/2 n n 

Then even though the series 
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L L j72 yjz j 
n~N 

converges, the original series will not converge because if one takes 

the third term of the asymptotic expansion the series 

4 L^V2 ™3/2 n J 
n=K n 

diverges. 

This dilema does not arise, however, with the particular 

examples investigated in this appendix. For the series denoted by 

S.. , Sp, and S„ the asymptotic representations for the a are either of 

the form 

-i2rrnd * A . B , / 1 
an " 172 + 172 Y372 

n ' n ' \n ' 

where 

* ffM^ r d = "ö~ - Q 
ß 

and A and B are cons t an t s 5 or 

* 0 . n -nkh ™i2nrrm a = 2iß e e 
n 
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Now by applying the theorem given in Appendix I series of the 

form 

_-, i2TTnd 

L ™iTn72) s * ° 
n=N 

will converge provided d is not an integer. If d is an integer the 

series diverges for s = 0 and converges for all s > 0. Further, series 

of the form 

r—i 

L-t 

n=N 

-hkh i2nmn 
e e 

clearly converge so that the original series denoted by S;L and S£ 

converge whenever 

Q" ™ Q f ® ö — U jljC. j j j «et 

ß 

and the series denoted by SQ converges for all values of the parameters 
o 

Finally, it should be pointed out that throughout this entire argument 

it is implied that since the a are bounded the sum 

N-l 

V . 
u n 
n=l 

can only produce a firdte sum and hence cannot affect convergence or 

divergence of the infinite series. 
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APPENDIX I 

A THEOREM ON THE CONVERGENCE OF 
A CERTAIN INFINITE SERIES 

In this appendix a mathematical theorem and its proof are 

presented which establish the convergence of a particular type of 

infinite series. Both the theorem and its proof are due to Dr. E. N. 

Nilson of Pratt and Whitney Aircraft? East Hartford, Connecticut, 

THEOREM: If a. is a positive decreasing sequence approaching 

zero monoton!cally as k -* <» and if 

d^ = kd + e 
k 

where d is not an integral multiple of 2TT and either e, = 0 for all k, 

or e, is positive and decreasing monotonically to zero as k -» » 5 or 

e, is negative and increasing monotonically to zero as k -» »^ then the 

series 

ca 

\ 
) a e (l-l) 

k=l 

converges. If d is an integral multiple of 2TT and e, = 0 for all k 

then the convergence of the series given by Equation (l-l) depends on 

the convergence of the series 
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L K 

PROOF: The following Lemma is needed in the proof of the 

theorem and Covers the case -where e, = 0 for all k. 
k 

00 

V ikd 

Lemma: The series ) a, e converges. 
k=l 

Proof of Lemma: Abe l ' s t r ans fo rmat ion 

n n - 1 

) IL v, = ) Ü. (v? - v, ^ _) - Ü _ v + Ü v 0 <; m £ n 
Li s. k L* k k k+1 m-1 m. n n 

k=m k=m 

Ü, s = u _ + - u u + . . . + u . Ü = 0 
k 1 c. k o 

is used as follows• Set 

ikd 
\ = e \ = \ 

Then if d is not an integral multiple of 2-rr 

~ ld , i2d , , ikd 
U. = e + e + ... + e 
k 
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i (k+l)d id 
ü = ^ - — - — - J L ^ . - . 

k i d 
e - 1 

- = i (k+l)d/2 sin(kd/2) 

sin(d/2) 

Then from th i s l a s t r e la t ion 

U, 
sin(kd/2) 

sin(d/2) sin(d/2) 

Further, i f a i s posi t ive and decreasing monotonically to zero as 

k -+ OD then 

a l = a l " a2 + a2 " % + a3 " % + \ " " *" 

Since 

a l = ' a l ' a 2 ' + ' a 2 ' a 3 ' + la3 ' alfl + 

XK - Vii= 1 K -\+il 
k=l k=l 

converges (to a_ , as a matter of fact) the Ca.uchy criterion for con-

vergence implies that (for arbitrary e > 0) 

n-1 

I I 
L i 

\ - W Ke 
k=m 
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provided m is sufficiently large (n ̂  m of course). Hence by the Abel 

t r ans f ormati on 

n n - 1 
V1 i kd 

L \ e = I V\ - v ) 
k + l ; - Ü v + Ü v 

m-1 m n n 
k=m k=-m 

n - 1 

I l\l K - \+ll + I V l l iVml + W K\ 
k=m 

n - 1 

sin(d/2) — I 
A In \ I l La 

I v, " v. , _ + v + v i k k+11 ' ml ' xv 
k=m 

s i n ( d / 2 ) 
(e + |v I + |v I ) 
\ ' m1 ' n1 / 

Now I "k 
i kd 

k=m 

can be made as small as d e s i r e d simply by 

making m s u f f i c i e n t l y l a r g e (v - + 0 , | v | < | v | ) . There fore , by t h e 
m n in. m • n1 

Cauchy test for convergence, the series 

I 
k=l 

ikd 

converges. This completes the proof of the lemma. 

To prove the theorem5 it will be shown that the difference of 

the two series 
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*—~j * «L v^L> JLx \ . vAk 

L \ (e "e ) 
k=l 

converges. Then the convergence of the series given by Equation (l-l) 

follows from the convergence of the series 

r—i 

L-i 

k=l 
\ 

ikd 

The method employed in the proof of the lemma wiH again be used, 

In this case let 

k " \ 

I f i t can be shown t h a t 

IL ^ M for some M k = 1 , 2 ? . . . 

then 

L&\ 
i e , v ikd 

k _ \ e - 1 e 

k=m 

n - 1 

I 
k=m 

Ü. (v - v ) k k k+1 
- U n v + U v 

m-1 m n n 
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n 
Y a, (e1Sk - l) 

i kd 

k=m 

n - 1 

I \\\\ k k+1 1 ' m - 1 1 ' m1 * n ' l n1 

k==m 

n - 1 

* I K-Vil \ " Vll + IV + IV 
k=m 

< M ( c + | v | + | v | ) 

and the absolute value of the sum can be made as small as desired by 

making m sufficiently large. Again the Cauchy criterion gives con-

vergence. 

It must be shovm then? that 

l G
k l = K 

0-1 

ie . x • . -, 
i \ i n d e ü - 1 e J £ M (1-2) 

for some M and a l l k . Again employ the Abel transformation. Set 

* i j d * l e j 
u . = e ü v . = e J - l 

3 3 

so tha t 

TT* * ^ * j . j . * i d e 1 ^ - 1 

• 0 1 i2 j i d 
u ° e - 1 



As "before 

I **"A | 

U. £ 
^ |sin(d/2)| 

Finally, the boundedness of 

n 

I lvl " Vi1 

is needed. This shall be obtained from the convergence of 

Y lv'.; - v'„ *- *- , 
- v 

J J+l1 

"When e, is positive and decreasing monotonically to zero 

00 0° . . 

„ „. .̂ ,_, ie . ie 
e J - e J + 1 | 

e . - e 

= 1—(-V^) 
j~rri 

Drovided m is large enough to insure that (e . - e . ,n) < 2TT. Thus 
3 J +l 

I K " Vi' < Hs;i "Vi) 

< e m 
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When e i s negative and increasing monotonicalJLy to zero 
k 

CO 00 

• * • * 

r - v 
j j + 1 Xi 

e .. . , - e 
v . - v . . . | = £ 2sin "'i+1

g '1 < ^ ( , - . ) < - em 

j=9Jl 

I t may thus be concluded tha t 

uu 

IK • v J < i 
j=*tt 

Applying the Abel transformation 

j=m 

U . V . 
J 3 

n-1 

H Ü*| |v* - v* I + lu* _| |v*| + |Ü*| |v*| j 1 ' j j+11 ' m-11 ' ml ' n' ' n1 

'n-1 

|.in(a/2)| L t , 3 I »V. J + IV I + IV I 
j + 1 1 ' m1 ' n1 

j=ro 

* l s in (d /2 ) | ^ + 'V m ' + ' ^ 

Since |v | -»0 , the convergence of TJ in Equation (1-2) i s 

obtained and hence |Ü. | i s bounded. 

I f d i s an in tegra l multiple of 2TT and e = 0 for a l l k then 
k 

the expontial in Equation (l~l) disappears an.d the series becomes 
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) \ (I"3) 

k=l 

Thus the convergence of the original series depends on the convergence 

of the series given by Equation (1-3). 

This completes the proof of the theorem. It is to be noted, 

of course, that the requirements on a, and e need only be valid from 

a certain point on, not for k at the beginning. It is important also 

to note the necessity for the requirements on a, and e, • 
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