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SUMMARY

An analytical study is presented of the effect which com-
pressibility of the airstream has on the flutter condition of rotary
wings. An unsteady, compressible aerodynamic theory is first developed.
By assuming axial flight and low inflow conditions for the helicopter
rotor, the complicated three-dimensional flow field is reduced to
the more easily managed two-dimensional one used successfully by
other investigators studying incampressible rotor flow.

The aerodynamics of the two-dimensioral flow model are
formulated using a kernel function approach. Using an acceleration
potential the governing integral equation for the flow together with
its atftendant downwash boundary condition sre developed. In solving
the integral equation numerically, a pressure mode assumption in
conjunction with a ceollocation technigue is used. The pressure
distribution thus determined is integrated to give the usual two-
dimensional aerodynamic coefficients.

The flutter model used for the study is a rigid two-dimensional
airfoil section free to pitch and plunge. The equations of motion for
this model are established using a Lagrangian approach and are solved
using the velocity-damping technique typical of most flutter analyses.
The aerodynamic forcing functions necessary for the flutter analysis
are taken from the previously developed aercdynsmic theory.

The compressible aercodynamic theory is compared analytically

with two other existing theories, one incompressible and one compressible,
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and shown to agree with these theories provided the flow models used
are made to agree. The difference in flow models comes about as a
result of the kernel function aepproach used in this study. The effect
of the difference in flow models is evaluated by comparing the
numerical results of the different theories. The aerodynamic coeffi-
ecients from the three theories are compared and shown to be in good
agreement for values of the frequency ratic paramefer near unity,

but the dissagreement iz substantisl for lower values of freguency
ratio. The frequency ratioc parameter is shown to be an indication of
the degree of difference in the flow models; the higher the frequency
ratio, the better the agreement.

The many parameters entering the flutter problem are varied
gystematically and their effect on the flutter condition under
compressible flow conditions presented. A comparison is also made of
the flutter speeds obtained using the aercdynamic theory of this
study for zero Mach number with those cobtained using a previous
incompressible theory. The sgreement between the two sefs of flutter
results is excellent for all values of the structural parsmeters
investigated. However, for low values of the frequency ratic parameter
it is shown that differences in the results exist, This again is due
to the increasing difference in flow models as the frequency ratio is
decreased., Comparison could not be made with flutter results obtained
using the other recently developed compressible aerodynamic theory due

to unavailability of the necessary serodynamic data.

The variation of the flutter speed with the various flutter




parameters was found to be essentially the same for compressible as

for incompressible flow. However, 1t is shown that the flutter speed
for aimost all conditions is decreased when the Mach number of the
airstream is increaged. The exceptions to this trend occur when the
elastic axis and center of gravity locations coincide., For this case
static divergence is shown to be more critical than flutter for certain
combinations of the remaining parameters. Static divergence was not

important when the center of gravity was shifted aft of the elastic

axis by one~tenth of a semi-chord.




CHAPTER I

INTRCDUCTION

The determination of the aerodynamics associated with a
helicopter rotor has presented a challenge to the helicopter analyst
since the conception of helicopters. Due to the complexity of this
problem, heliccpter aerodynamicists and aercelasticians are still
striving to obtain a satisfactory incompressible theory — even though
helicopters are presently flying with rotor tip Mach numbers in excess
of unity (see, for example, Reference [1]). This lack of adequate
aerodynamic theories has led@ helicopter designers to rely heavily on
experimental data and past experience in designing new helicopters.
However, with the advent of higher helicopter speeds it is imperative
that adequate theories be developed in order to cope with problems
gimilar to those which have arisen in conjunction with fixed wing
vehicles ag a result of high speed.

Aeroelastic analyses depend heavily on the knowledge of unsteady
aerodynamics, As fixed wing vehicles have progressed from low subsonic
speeds through high subsonic speeds to supersonic speeds and even to
hypersonic speeds in the case of missiles, appropriate unsteady
aerodynamic theories have been developed to assist in predicting any
aeroelastic instabilities which might oceur., Unfortunately, the

state-of'-the-art in unsteady helicopter aerodynamics has not progressed

as rapidly as that for unsteady fixed wing aerodynamics. This is due
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in part to the fact that the rotary wing, especially in the forward
flight mode, is not as smenable to analysis as its fixed wing
counterpart. In dealing with the unsteady flcw fields associated with
helicopter rotors, the analyses developed for fixed wings must be
drastically modified or abandoned altogether as a result of the rotor
blade being forced to pass in proximity to its wake on each revolution.
Many of the first attempts to analyze the unsteady rotor hlade
aerodynamic problem were based on the supposition that the rotor blade
could be replaced by an equivalent fixed wing with an appropriate free
stream velocity. The important fact that the helicopter blade is
forced to pass over its wake was neglected. (It might be noted here
that this same procedure is currently being employed by some helicopter
companies in attempting to ascertain the effect of compressibility on
the aercelastic instabilities of rotor blades). The first significant
unsteady approach to the rotor blade aercdynaric problem which
considered the rotor blade o he a separate entity from the fixed wing
was made by Loewy [2], Jones [3], and Timman and van de Vooren [4].
In this approach, which considered the flow to be incompressible,
certain assumptions were made in order to make the mathematical
analysis more tractable. The rotor was first considered to be operating
in axial flight or in & hovering condition. ¥Further, it was assumed
that the rotor inflow velocity was low compared to the rotational ‘
velocity. With these assumptions it was possible to reduce the
complicated three-dimensional rotor flow field to a more manageable

two-dimensional flow field. The resulting two-dimensionsl mathematical ‘

model included a reference airfoil together with a complete system of




wakes shed by other blades in the rotor as well as the wake shed by the
reference blade on previous revolutions. This system of wakes is the
one thing which mekes the helicopter aerodynamic analysis so much

more complicated than the fixed wing aerodynamic problem. Whereas

for the fixed wing the wake is assumed to lie in the same plane as the
wing, the helicopter rotor weke is blown below the plane of the roter
by the inflow velocity and the debtermination of the blade loading
depends on knowing the locgtion of the wake. Using this two-dimensional
approximation to the rotor flow field, Loewy [2] was able to show that
the two-dimensional loading on the reference airfoil could be writien
in the same form as the loading on a two-dimensional fixed wing airfoil
with the stipulation that Theodorsen's [5] 1lift deficiency function be
replaced by a modified 1if{ deficiency function spplicable to rotor
aerodynamics.

In a recent study, Hammond [6] has presented a comparison
between the flubtter speed obtained for a two degree of freedom system
using Loewy's aerodynamics and the flutter speed for the same system
using Theodorsen's [5] fixed wing aerodynamics. The results of this
study indicated that given the same inertial conditicns the flutter
speed obtained using Loewy's aerodynamics was generally lower than the
flutter speed cbtained using Theodorsen's aerodynamics., The ‘
implications of this result are that the rotor wake which lies bhelow

the reference airfoil exerts a destabilizing influence on the two
degree of freedom flutter condition and hence that the use of unsteady

fixed wing aserodynamics in rotor blade flubter caleulations will lead

to nnconservative results.,




Miller [7] has presented a summary of many of the past
approaches teken in obtaining rotor blade harmonic alr loads., In
addition he presents & technigque for obtaining the three-dimensional
unsteady aerodynamics for a rotor in forward flight. In this approach
the flow is considered incompressible and the air loads on the blade
resulting from the near wake are treated using lifting surface theories,
while the far wake is treated using the 1lifting line approximation.

In & recent publication Ichikawa [8] presents a comprehensive
lifting surface theory for a helicopter rotor in forward flight through
an incompressible medium, In this theory the lifting surface eguations
are developed for a rotor in forward flight and then a reduction to the
lifting line equations is made through approximations equivalent to
thoge of Weissinger's [9] L-method. It was shown that sgreement with
experimental results was fairly good and stated that disagreement was
probably caused by wake roll-up which was neglected in the theory.

The wake roll-up problem which appears to be a significant source of
error in helicopter aerodynamic theories has been treated very
successfully and efficiently by Landgrebe [10].

In all the aerodynamic theorles mentioned above the flow is ‘
assumed to be incompressible. However, as indicated by Reference [1],
present day helicopters operate with tip speeds in the high subsonic
speed range, thus suggesting that compressibility effects should be ‘
included in any realistic analysis of helicopter rotor blade loads.

Unlike the steady flow case, the transition from incompressible to

transformations such as the Prandtl-Glauert transformation. This

compressible unsteady flow results cannot be accomplished by simple ‘




difficulty follows from the result that in an incompressible fluid a
disturbance is propagated at an infinite velocity and thus no time lag
occurs between the initiation of a disturbance and its effect at some
other point in the flow. However, in a compressible medium a definite
time is required for a signal to reach a distant field point so that
both a phase lag and a change in magnitude result,

The compressible flow results for a two-dimensional oscillating
fixed wing have Deen known for some time. The first theoretical
development of the problem was presented by Possio [11]. Dietze [127,
Shade [13], Kussner [14], and others presented refinements of Possio's
derivation and method of solution. Most of these early works are
summarized by Karp, Shu, and Weil [15]. In more recent years Fettis [16],
Frazer [17], Jordan [187, Jones [19], and a multitude of others have
published papers on the oscillating airfoll in a compressible stream
using bhasically the same integral equation developed by Possio. A
different type of solution which essentially presents a closed form
solution in terms of an infinite series of Mathieu functions has been
published by Reissner and Sherman [20], Haskind [217], and Timman et al
[22,23] among others.

In this thesis an unsteady aercdynamic theory for helicopter
rotors which allows for the compressibility of the fluld medium is
presented. Since the logical development of complex problems proceeds
from the relatively simple to the more difficult problems, the approach
taken here 1s to develop a compressible aerodynamic theory based on

the assumptions made by Loewy [2]. The result is a two-dimengional

unsteady compressible aerodynamic theory for rotor blades.




The method used to obtain the two-dimensional oscillatory
loading on a reference airfoil section of the rotor is essentially
the same as that used in many of the dbhove mentioned fixed wing
analyses. An acceleration potential is employed in developing the
integral relation between the downwash and pressure distribution on
the reference airfoil. The integral equation thus cobtained, which is
the same as Possio's [11] fixed wing integral equation with the
addition of a correction term to account for the helicopter wake, is
finally solved by collocation for the unknown pressure distribution.

Jones and Rao [24] have recently published & similer theory
for the compressible serodynamic loading on rotor blades. This theory
differs from the theory developed in the present research in that a
velocity potential approach was used in conjunction with the identical
flow model used by Loewy [2]. One of the major conclusions reached in
Reference [24] was that the helicopter wake had exactly the same effect
on the unsteady aerodynamic blade loading in both compressible and
incompressible flows. As will be shown later, this conclusion was a
direct consequence of the flow model employed. The flow model used
in the present study is a modified version of the two-dimensional model
used by Loewy [2], and Jones and Rao [2L4]; the modifications being
necessary to accommodate the acceleration potential approach.

The purpose of this research is to establish the effect of
compressibility on the flutter condition for rotary wings operating in
hovering or axial flight conditions. The major portion of the research

is the development of the unsteady two-dimensional. compressible

aerodynamic theory discussed above, Alsc presented is a classical two




degree of freedom flutter analysis. The compressible unsteady
aerodynamics are used in conjunction with the flutter analysis and a
variation of the parameters cccurring in the flutter problem is made
to evaluate the effect of these parameters on the flutter condition
vwhen compressibility is included in the aerodynamics. Further, the
results of this analysis are compared with the results obtained by
Hammond [6] using Loewy's incompressible serodynamics in order to

demonstrate the overall effect of compressibility on the flutter

condition for rotary wings.




CHAPTER TII

THEORETICAL DEVELOPMENT

In this chapter the thecretical development necessary for
computation of the compressible aerodynamic loading on the reference
blade of a helicopter rotor is presented. Appropriste simplifying
assumpblons are made so that the complicated three-dimensional rotor
flow field is reduced to a more tractable two-dimensional flow field.
Finally using this two-dimensional mathematicsal model of the flow the
integral relation between the downwash al the reference airfoil and the
pressure differential across the reference airfoil is established.

Also included in this Chapler is the theoretical development
underlying a classical two degree of freedom flutter analysis. The
reference alrfoil of the two-dimensional approximation to the rotor
flow field 1s assumed to have two degrees of freedom, pitching and
plunging, and the characteristic equation is developed for the double

eigenvalue flutter problem.

Unsteady Aerodynamic Development

The general flow phenomena asscociated with a helicopter rotor
has been described in some detail by Loewy [2]. With the assumptions
of axial flight and low inflow velccity Loewy was sble to reduce the

complicated three-dimensional flow to a more tractable two-dimensional

flow. The basic premise underlying thisg reduction is that under axial




flight and low inflow conditions, only that vortieity which lies in a
small azimuth angle on either side of the reference blade significantly
affects the loading on that blade. This assumption allows one to take
a pie-shaped cut through the plane of rotation and on down through the
helical vortex sheet which forms the walke from the blade. If then a
vertical slice is taken perpendicular 4o the radial line passing from
the center of rotation out along the reference blade, & plane 1s formed
in which the flow may be considered to be two-dimensicnal. Tor low
inflow the inclinastion of the vortex wake layers below the reference
section may also be neglected. These assumptions thus lead to a two-
dimensional representation of the flow made up of a reference airfoil
section and its immediate trailing wake (both in the same horizontal
plane) together with a system of horizontal wake layers lying at
regularly spaced intervals below the reference section. These wake
layers below the reference section account for the wake which has

been shed by other blades in the rotor as well as for that shed by the
reference blade in previous revclutions, with the spacing between the
layers being determined by the inflow and rotational velocities. This
flow model is shown in Figure 1 where it should be noted that the
horizontal Iength of the vortex layers below the reference airfoil is
finite.l The length of the layers is determined by the azimuth angle on
each side of the reference blade, inside of which the wake wvorticity
has a significant influence on the blade loading. In order to make

the problem more mathematically manasgeable Loewy allowed the wake

layers to extend to infinity both upstiream and downstream. This final

step 1s justified by the following argument. If the blade loading is




Reference Adrfoil

Figure 1. Two~Dimensional Model of the Unsteady Rotor
Flow Field Under Assumptlions of Axdial Flight
and Low Inflow
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significantly affected by only that vorticity within a small azimuth
angle on either side of the blade, then the vorticity added by allowing
the horizontal rows of wake to extend to infinity both upstream and
downstream cannot have any appreciasble effect on blade loading and

thus this device i1s acceptable. Loewy's final two-dimensional
representation of the flow is shown in Figure 2.

In Loewy's enalysis the flow is considered 5o be incompressible
and a velocity potential approach is used to obtain the nonstationary
loading on the reference blade. In a recent paper Jones and Rao [24]
have used the velcocity potential approach in conjunction with Loewy's
flow model and included compressibility effects. They obtained the
result that the effect of the infinite layers of wake below the
reference airfoil was exactly the same for both compressible and
incompressible flow. This vesult is due to the fact that the infinite
layers of wake below the reference airfoll can be considered as wake
layers shed by fixed wing airfolls regularly spaced helow the reference
alrfolil and leading it by an infinite distance., The important concept
vhich distinguishes compressible from incompressible unsteady flows,
that of a time delsy between the initiation of & disturbance and the
time 1t is felt at some other point in the flow, 1s thus lost and the
wake layers indeed mppesr as incompressible wakes.

In the present dissertation Loewy's work is extended to include
the effect of compressibility, but the theoretical approach taken to the
problem of determining the unsteady aerodynamic reactions on the

reference airfoll differs in technigue and, as a result, in fiow model

from the approach taken by Jones and Rac. The acceleration potential
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Figure 2. Loewy's Incompressible Aerodynamic Model




approach which has proved fruitful in fixed wing compressible flow
analyses is adopted as the hasic method of attacking the problem. The
use of the acceleration potential approach, however, leads o
difficulties when aone attempts to apply the method to Leoewy's flow model.

With a veloclty potentisl approach such as that used by Loewy,
and Jones and Rac, the elemental flows from which the overall {low is
to be developed must be distributed in the wake as well as on the
airfoil itself in order to account for the veloelty discontinuity
which exists across the wake and across the airfoil. In contrast,
however, the acceleration potentisl is associated with a pressure
dlscontinuity and thus the elemental flows may be distributed on the
airfoil only since no pressure discontinuity is allowed to exist in
the wake. With the sacceleration potential approach, therefore, it is
necessary to introduce a device by which the layers of wake lying
below the reference airfoll can be taken into account,

Consider first a single bladed rotor and a reference blade
section lying a radial distance r from the sxis of rotation. As the
blade traverses the azimuth it trails a wake which is bhlown below the
blade by the inflow velocity and forms a helical sheet. (Loewy's
medel would give an infinite number of wake layers below the reference
airfoil). Now when the reference section has made one complete
revolution 1t has traveled a distance of 2mr. As the blade makes its
second revolution 1t sees & wake which was shed on its first
revolution and which has been blowm downward by the Inflow velocity.

This wake can be thought of as being shed by an airfoil identical to

the reference airfoil which is flying under the reference airfoil and ‘




1h

leading it by a distance of 2Mr., On the third revolution the reference
airfoil sees two layers of wake; the lowermost layer being shed on the
first revolution and the upper layer being shed on the second
revolution. The reference section has now traveled a distance of hrr
gince the wake was shed on the first revelution and a distance of 2ur
since the wake was shed on the second revolution., To account for these
wake layers, two alrfoils are placed below the reference airfoil; the
lowermost one leading the reference airfoil by a distance of Wmr and
the upper one leading the reference airfoll by a distance of 2rr. fThe
vertical spacing of the individual layers is governed by the inflow and
rotational velocities and is the same as for Loewy's model. By
continuing the sbove process the entire wake can be represented by a
semi-infinite cascade of airfoils regularly spaced below the reference
airfoil and leading it by integer multiples of Zrr.

The argument for a multibladed rotor is precisely the same as
for a single bladed rotor. The passage of blades other than the
reference blade 1s accounted for by airfoils helow the reference
airfoil and interspersed between the "wake airfoils" representing
previocus passages of the reference ajirfoil. The resulting two-
dimensional flow model for a multibladed rotor which will be used in
the mathematical development to follow is shown in Figure 3.

With the mathematical flow model thus established the problem
remains to determine the nonstationary lift and moment on the

reference airfoil when it is permitted to oscillate with simple

harmonic moticn as it moves through a compressible medium. The
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classical small disturbance assumptions are made sc that the governing

partial differential equetion for the {low may be taken as the

linearlized acceleration potential egquation

2 2 2 2 2
Bg.l.ag_é E5§+2U———5Y+IJZE’J,,]=O (1)
3% 3z a at dtdx ax”

The acceleration potential, ¥, is related to the disturbance velocity

potential, @, by

. 09 3g
Y=tV (2)

which is seen to be the linearized form of the substantial deriveative
of ¢ with respect to time. The acceleration potential is related also

to the pressure at any point in the flow through the eguation

P-P, = -p¥ (3)

The pressure on the reference airfoill is obtained in the mamner
typical of most linearized aerodynamic analyses. An elementary flow
solution is first found for the governing differential Eguation (1).
The total flow solution is then found by superimposing the elemental
flow solutions and satisfying the two boundary conditions for potential
flows: (1) all disturbances must vanish at field points far removed

from the body with the exception of the wake, and (2) the flow at the

body must be tangent to the body.
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In this case, as in most compressible flow analyses, the
elementary flow solution ia taken to be the doublet. Since
oscillatory motions of the reference airfoil are to be permitted, the
strength of the doublet must also pulsaete with time. The acceleration
potential of such a pulsating doublet located &t the origin of the
coordinate system is developed in Appendix A to be

B?S
¥y = Uy 377 (&)

where

im('b-rﬁe E)
- B° U ———
A H(()a)(_u@ x2+|32z2)

570

Up, = doublet strength.

D

It may be noted here that the pulsating doublet solution also satisfies
the boundary condition that disturbances vanish at points far away
from the doublet.

In order to obtain the complete flow solution, these pulsating
doublets are distributed over the chord of the reference airfoll and
over the chords of the airfoils below the reference airfoil which
account for the rotor wake. The total acceleration potential at any

field point (x,z) in the flow is then found by integrating the

acceleration potentials of the distributed doublets. That is
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b . 2, 2
. def{t + [MT(x-€)/B7y
Y(x,z3t) = J‘b Up,D(g,o) a—z—{fé—— e B (5)

f)(s%\/(x%) + 8z )} ag

> _\g-l b- T ar-2nrr 3 g doft + [ (x-€) /6707) + ¥,
+ L. 13 . UU*D g, -(nQ + gq)h') 3% E €

n=o0 g=1 =h- = Q qr -2nrr

. 52 ( Gl [ Gee)® + 8% [z + (o0 + 0] )}dg

o> b-2n-nr

‘W 4
+ Z_. J UMD (§ » 0) LLB
n=1 -b-2nmnr

ot + (M (x-8) /8707

. 2 2 2 2
HO)(;U%IU— \/(x-g) + B (z + nqn') )}dg
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iy
The e & was introduced in the second integral above to allow for the

fact {that other blades in the rotor might be oscillating out of phase
with the reference blade. The asswiption is now made that the strength
of the doublet distribution on all the airfoils in the cascade is the
same. This is equivalent to saying that the motions of all the blades
are identical which in turn implies that all blades of the rotor are
identical, and this condition met as nearly as mamufacturing tolerances

will allow on most helicopter rotors, Wow in the zecond integral let

go =g -+ %F qr + 2nmr

and in the third integral let
go = E + 2nuy

sc that the total acceleration potential becomes

. dgt P 100 (x-8) /B0
¥(x,z3t) = i—g e {Ib up(E)e : (6)
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=8t g 1ormadfr (aqt) /as2T - - ‘ iu:l*fz(X~§o)/BEU
) S ouplyle
n=o Q= ~b

_2 12nnr wmz/ﬁau)
L dr pp(Egte
n=1 -b

iuM2(X~§O) /87U

. az (2) ( B2U \/(x -E,* 2nnr) + B (z + nGh*) ) dgo}

In Appendixz B it is shown that the pressure discontinuity scross the

reference airfoil is related to the doublet distribution strength by

8B, (%) = = o Uup(x) (7)

where

L pyld
ap, (x3t) = AF_(x)e "
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Using this fact and defining the parameters

e (8)

k = reduced frequency

m = frequency ratio = = = B

]

h = inflow ratlio = ~

the total acceleration potential becomes

iwt b ikM2(x-§) /Bab

¥(x,23%) = - B {‘ a_ﬁa(g)e (9)
-b

B
= G-l d¥ i [omdi(nQ + 0)/8%] b 106 (x-£) /8% |
el ‘-jl"— r
P e { 4B, (E)e
n=o0 q=1 -b

3z o

_,Q_H(2)(:_i.2_ Eﬂ%ﬁl+%ﬂl(m+q)]+52[1%5+(nt;z+q)kh])dg ‘
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t 12nrrmM2/E2 L 1kM2(x-§)/B2b

+ Ei ap (g)e

n=1l b

. § g{2) ( \/_;35151 + ,nnm_] +g° Lkz + anhJE )dg

The second boundary condition on the flow, namely that the flow
be tangent to the body, is specified in terms of the downwash velocity

at the body. The boundary condition is

aza aza
_Wa(x’t)=aT+U§3c“ for z=0, -b<x<b (10)

Thus in order to apply the boundary condition the relaticnship between
the total acceleration potential, Y(x,z;t), and the downwash velocity,
w(x,z3t), must be known., The downwash may be expressed in terms of the

disturbance velocity potential, ¢, as

w = 22 (11)

The acceleration potential and disturhence velocity potential are also

related and the relationship ig given by Equation (2). Since ¥, and

therefore ¢, are simple harmonic time dependent functions (due to the

linesrity of the problem)




¥(x,z;t) = @(:‘:,z)elwG
(12)
- iwt
o(x,23t) = §(x,z)e
and Equation (2) may be written
¥(x,2) =iw§(x,z) + U2 (13)
This last equation can be integrated along a path of constant z to
obtain
_ i 5(g-x)
B(x,2) = ]‘ ‘ﬂ%ﬁl e ag + ¢(z) (14)
-l

The function C({Z) is set equal to zero in order to satisfy the first
boundary condition that all disturbances vamish at points far from the

body. Thus
-1 §lx-g)

o(x,23t) = = Y(E,z3t)e dg (15)

e | o
é’——‘—aN

The downwash at any point in the flow is now given by

X -i %(x-g)
w(x,z;t) = %- I @gﬁﬁgéiﬁl e ag (16)




Introducing the acceleration potential

| tfb apa(g)e

w{x,z:t) = -

o, 08

S (B ) )

¥

® Q-1 ¥ + ifomm (s0tq) /87Q)

“w b

n=o q=1
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e

+ z X e f _}r ap_(8) e

~w(x-E") /U

T\)
Of—"\

® i2rrrrml‘412/[32 X ob
+ze j' J 6p,(8) =

=b

af (g1 ) /8%

~iw(x-g') /U
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an

(17)

1 (g 1) /6% ~iw(x-£') /U

1 -2 2
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Reversing the order of integration and collecting the exponentials

. duwt b “ik(x-E) D o X el
w(x,zst) = - 28 [Jb AB,() e [T wEDEY (g

u i}
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The three interior integrals appearing in the sbove eguation may be
simplified somewhat to produce the kernel of the integral egquation.
These three integrals may be evaluated by considering a generalized

form which encompasses all three integrals, nemely

X ax(gt-g)/BD L2 2
=Le x(g'-€)/B a'a"e‘Hz) \/[_(g__glJrA—! - g2 1-‘5+B:5 )ag'
(19)

where A and B are constants with respect to the integration. This

integral ig evaluated in Appendixz C wvhere it is shown that

| klxg) +A] et /A (") Nﬂ/‘ J_‘E_).m +B2[ ])

- -_I i
N VI

(20)

L]

. ik(x-g)/Bab (2)( M (% -2 5 2
+%”‘-’e H (?\/[J%L)--PAJ + B [TJE+B} )

_iA/Be [k(x-g)/0]+A iT]/E12
e
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e .
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Using this result and defining the following kernel

(1)

iwlng) fo E(xE) /b
+%§e k( €)/bj eiﬂ/a (2)( \/’ﬁ v g2 1{312)

an
the downwash may be written as
N ’ k(x-E)
t) = - we = X [ K(xX= kz 7 g
W(X;Z ) WU2 {I_b ﬁpa(g) LM: N _j £ (22)
® Q-1 iy b
+5 7 e a0 k[ KBS L o) B 4 (e e
n=o q=1 ~b
e b
r
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The downwash at the reference airfoil may now be found by

allowing z to go %o zero, i.e.

1i
ya(xgt) = z;g w(x,z3t) (232)

Requiring the downwash to vary harmonically with time

w (x,t) = % (x) & (2k)

the downwash at the reference airfoil becomes

b

i (x) = - —“’Ug{ er a,(2) k[, EEED o] ae (25)
P -
w Q-1 i‘f'q b
+ Y Y e T [ an,(e) x [m, HEED 4 on(rar)R , (notq)in ot
n=o ¢=1 e
> o

85, (8) X [M, 5(?5)- + 2nrm, nQkh ] 3 }

v

=

b
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The first integral shove is precisely the integral derived
first by Possio [11] for a two-dimensional fixed wing alrfoil
oscillating in a compressible medium. The second term represents the
downwash at the reference airfoll caused by previous passages of blades
in the rotor other than the reference blade. Finally, the third term
represents the downwash at the reference airfoil due to previous
passages of the reference airfoil.

Comparison with Jones and Rao

As was stated earlier Jones and Rao [24] have presented an
analysis of the same aserodynamic problem considered here using a
different flow model and a different mathematical approach. It is
shown in Appendix E that the downwash equation, Equation (18), can be
made equivalent to the downwash equation given by Jones and Rao
provided that the flow model of Figure 3 is made to agree with the flow
model which they used, namely the same model used by Loewy and shown in
Figure 2. The model of Figure 3 is made to agree with that of Figure 2
by forcing the "wake airfoils" to lead the reference airfoil by an
infinite distance. This presents no real problem in the cese of
incompressible flow; however, the situalion is somewhal different in
compressible flow. Whereas a disturbance is jpropagsted at an infinlte
velociby in an incompressible fluid, the speed of propagation is
finite in a compressible medium so that both a time lag and a decay in
the magnitude of the disturbance result as the disturbance is

transmitted through the fluid. When the "wake airfoils" are allowed

t0o go to infinity this means that the perturbstions in the flow caused



Fina.lJ.y5

30

by each "wake airfoil” must travel an infinite distance before reach-
ing the reference airfoil. This in effect means that as far as the
reference airfoil is concerned the wakes which are trailed by the
"wake airfoils" are the same as the ones which would occur 1f the flow
were incompressible. This is indeed one of the major conclusions of
Reference [2L]., That is, Jones and Rao found that the infinite layers
of wake below the reference airfoil, as shcwn in Figure 2, had exactly
the same influence on the downwash at the reference airfoil in
compressible flow as in incompressible flow.

This conclusion of an incompressible wake is not possible when
the flow model of Figure 3 is used. The dependence of the wake terms
on Mach number is shown explicitly by Equations (21} and (25).

Comparison with Loewy's Incompressible Theory

It is desirable to reduce the kernel of Equation (21) for zero
Mach number so that comparison with Loewy's work can subseguently be
made. This reduction is accomplished in Appendix F where it is shown

that for zero Mach number the kernel given by Equation (21) reduces to

k!x-g! .

% [o, & BGeg) k27l L 0 _ 1 (ee/e)-alulxeg) /o]
K o [_SEEEL_r + xz

Lol (26)

P2

~(kz/b) - i[k(x-E)/b] kz . k(x-€) J

“Tq° T R
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(kz/b) - il[k(x-g)/v]
e E

Ky
1Lb

| o

i

Using this kernel it can be shown, as is done in Appendix G,
that for zero Mach number the downwash relation of Equation (25)
reduces to that given by Loewy provided, of course, that the flow
model of Figure 3 is made to agree with that used by Loewy (Figure 2)
by foreing the "wake airfoils” to lead the reference airfoils by an
infinite distance,

The Equivalent Single Bladed Rotor

Up to this point in the thecretical development all blades of
the rotor have been permi!;ted to oscillate out of phase; the phasing
being determined by the equ factor in the second term of Equation (25).
If, however, it is assumed that all the blades are oscillating in phase,

then the second term of Equation (25) containing the double sum can be

combined with the third term and the downwash written

- b - |
Wa(x) = = pwUz { [b ﬁpa(g) K EMs M%E'l 2 O:, dg (27)

o

+ Jbb a5, (g) K[M, l{-%-E*l+2nr% , nkh_] dg}

n=1
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It mey be noted that this last expression is exactly the same as the

dowvnwash expression one would cbtain for a single bladed rotor having

a frequency rstio % and an inflow ratio h. Thus with the ‘
assumption that all the blades are oscillating in phase the serodymemic |

development for a multibladed rotor can be reduced to the consideration

of an equivalent single bladed rotor with

(28)

Since this reduction %o an equivalent single bladed rotor is
possible, all further considerations will be restricted %o a single
bladed rotor. The integral eguation to be solved for the pressure

distribution on the reference airfoil thus beconmes

b

ﬁa(x) - . pti@ { ib 5ﬁa(g) K [M,Eﬁﬁégl , 0 ] dg (29) ‘

@ b
" _ -1

+§; 1 85, (8) K [M, gg)_ + 2mm, nkho | dg}
n=l -b

subject to the boundary condition
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= Lz () b D (30}
Wa(x) = :sza(x) +U -Ex—— s -b=sx= .

vhere simple harmonic motion has been assumed for the reference airfeoil,

lneo’

iwt

z (%3t) = Ea(x) e (31)

Convergence of the Wake Series

The downwash equation, Equation (29), which is to be solved for
the unknown pressure distribution on the reference alrfoill contains an
infinite series and hence some discussion is in order concerning the
convergence of this serles. In Appendix H it is shown thal the series
appearing in Equation (29) converges except for those values of the flow

paraneters where the relation

mﬁ—i’#\ﬁmh (Bkn)® =8, 6 =0,1,2,...  (32)

is sabisfied.

A condition similar to that of Equation (32) has been encountered
by Runyan end Watkins [25] and by Carta [26]. Runyan and Watkins were
investigating the unsteady flow over a two-dimensional alrfoil in a

compressible wind-tunnel stream while Carta was studying the compress-

ible flow over an infinite cascade of oscillating airfoils representing
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the compressor blades of & bturbine engine. In each of these cases the
condition similar to Equation (32) was interpreted as an acoustical
resonance condition.

For the present study, however, the interpretation of Equation
(32) as an acoustical resonance condition in the physical flow is not
justified. Whereas in References [25] and [26] there were present in
the physical flow field cbjects from which pressure waves could he
initiated or reflected and thus create a resonance condition, there are
no such objects in the physical rotor flow field. The "wake airfoils”
in Figure 3 were introduced simply to account for the phase relation-
ship between the reference sirfoil and the wake, and to accommodate the
methematical analysis. Therefore, Equation (32) must be interpreted as

only a mathematical instability associated with the flow model.

Two Degree of Freedom Flubter Analysis

When an elastic body is placed in an adrstream the reaction of
the azerodynamic forces on the body will cause the body to deform. This
distortion of the body in turn causes an alteration of the aerodynamic
reactions, and wnder most conditions the resulting aercdynamic forces
tend to return the beody teo its original configurstion. However, under
some conditions the aerodynamic forces can cause the body to deform
even more so that an instabllity of the body motion occurs. The
instability of the motion may be eilther static or dymamic,

Flutter is a case of dynamic instability of an elastic body in

an alrstream. The flutter speed and flutter frequency are defined
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respectively as the airspeed and corresponding circular frequency at
which a given elastic body flying at given atmospheric conditions will
exhibit self-sustained simple harmonic motion. This definition of
flutter allows one to find the flutter boundary between stability and
instability by assuming the body to be undergoing simple harmonic
motion, calculating the unsteady aerodynamic forces based on simple
harmonic motion of the body, end finally caleculating the two eigenvalues
of the flutter problem -— flutter speed and frequency.

In this section the classical two degree of freedom flutter
analysis is presented for the reference airfoil shown in Figure 3.
The airfoil is considered to be restrained by springs against
independent vertical motion (bending) and angular motion (torsion) as
shown in Figure 4. No chordwise bending of the airfoil section is
permitted. In the development which follows a Lagrangian approach is
taken in arriving at the equations of motion for the two degree of
freedom system shown in Figure 4.

The kinetic energy of the system is given by

b
o1 (59 n e (33)

where m is the mass per unit chord and Z, is the deflection of some
point on the airfoil midsurface from its equilibrium position. From

Figure 4

z = - [ﬁ + (x - a.b)afj (31)
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Figure 4. Two Degree of Freedom Flutter Model Showing
Notation for Mathematical Analysis




and

a—zi-_-_[ﬁ+(x-ab)&]

The kinetic energy thus becomes

b .2 .
m:%j [ﬁ +2&E(x-ab)+&2(x—ab)2]ﬁdx
=h

Now define the parameters

s = I (x - ab) m dx
*
b 5 .
Io:':I {(x - ab)” m dx
p o /

With theae substitutions the kinetic energy may be written as

.—; '.' L) '.' .2
T = 5\ h +25 oh + Ia )
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The potential energy is simply the energy stored in the

springs, or

= % (K o+ Khh (39)

Using Lagrange's equations for a conservative system the

eguations of motion for the system become

(ko)
I a+5 h o+ Ko=g
o o
Introducing the uncoupled free vibration freguencies
o K )
I
) (1)
fee
] Ia )
the equations bhecome
RE+sf+Rak-o,
(42)
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Structural Damping

It can be shown (see for example Baker, Woolam and Young [27])
that the structural damping force in an elastic sysftem is proportional
to the amplitude and in phase with the velocity of oscillation. Also,
it can be shown experimentally that the energy dissipated per cycle is
rroportional to the square of the amplitude and independent of the
frequency of oscillation,

In the usual derivation of the equations of motion, structural
damping is introduced in the feollowing manner. The Lagrangian equations
of motion are set up and then the restoring force terms are modified by
replacing m wi h by (1 + igh)‘ﬁ wi L, and Iamza‘by (1 + iga) Iawza
vhere the terms igﬂﬁ wi h and igalawza are seen to be proporticnal to
amplitude and in phase with velocity under the assumption of simple
harmonic motion.

Scanlen and Rosenbaum [28] point out that for the simple
harmonic motions being considered here, a dissipation function may be

defined s Tollows

s 2 5o 2
&, s g W
D= 32:[ wwh ho+ 22 &e] (43)

where @ is the coupled frequency of the systemn.

In either case, when structural damping is introduced the

aquations of meotion become




~ 2 . ~ 2=
mh+8a&+(l+igh)mmhh..Qh

(Bk)
I&+Sﬁ+(l+ig)lw2a=Q
o o Qoo o
Generalized Forces
The generalized force is defined as the virtual work done
during & virtual displacement. Thus
fw = Qeh + 0 s (45)
But
b b
- f
sw = 'fb (pU - pL) ph dz + "lb (pU - pL)(x - ab) s dx  (L6)
s0 that
b \ '
Qn=j (g = o) &x =L
~b
N
Is]
9, =J (py - pp)(x - &b) dz = M,

- )
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where the total 1ift, L, has been defined as positive down and the

moment about the elastic mxis, M

.5’ has been defined as positive

nose-up. Using the results of Equations {47) the equations of motion

become

KA +s@+ (1+ig) Ho hel
(48)
I&+sﬁ+(1+ig)lm2u=m
o o ¢ oo e.a,
In unsteady aerodynamic analyses it is customary to write the
total lift and moment in component form so that the 1ift and moment due
to each of the degrees of freedom can readily be determined. The
expressions used most often in this country are those given by
Smilg and Wasserman [29] and shown below in terms of the displacement

of the quarter-chord peoint and rotation about the quarter chord peoint

1= o p? [1, (%.)C/; by, ] \

) (49)

IR INCRRTTEN




These expressions with the 1ift and moment refersnced to the gquarter
chord point are used in conjunction with the unsteady aerodynamic
analysis presgented in the first part of this chapter and the
serodynamic coefficients Lh’ La’ Mh, and M& are calculated numerically.
The 1lift and moment expressions needed in the equations of motion,
BEquations (48), must be referenced to the elastic axis. This
trensformation is easily made and in terms of the displacement of the
elastic axis and rotation about the elastic axis the 1lift and moment

expressions become

ool fo[n om Grok)

=
i

=l f=

> (50)

=
il

v e 3 (3 0]

o[- () B o) v o) )

Now restrict all considerations to simple harmeonic motion in
order to establish the flutter boundary. The displacement of the

elastic axis and rotation about the elastic axis are thus written
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vhere a_ may be complex to dencte the phase relationship between h

and o, Substituting this restriction and the expressions for lift and
moment, Equations (48) become

= m b w {Lh.E-+LL- G+e)] e}

P (52)

2 2 - ! . ",
- - + 1
wlIlo-ao Sah + \l 1ga/ Iawaa

= mp_b't? {[Mh Lh( +a.}:]

Pt (g t) o) +my (e o) J o) )

Divinding the first of Equations (52) by b w and the second by

mp b w and collecting terms the equations may be writfen in the

following form




Lh
~ 2 ~ - \
(5 (- (re)]+nd
Sa L
*{ﬂp b3+[La’Lh(§+a)]}“’=°
o] -
1 i :3 SN R b (53)
I ’ubﬁz
Bl ERI R CRES]
(o) Ged)rn Geo) Jun ,

The problem has now been reduced to that of solving a system
of two homogeneous algebraic equations. A nontrivial solution can
thus exist only if the determinant of the coefficlents vanishes. This
determinant is called the "flutter determinsnt" and for this two

degree of freedom problem it is given by

=0 (54)
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where

2 \

SERICORNCRTTNIN

.
It

_ L
e 1y - (B )

[}
1l

ux, +M -3 (34 8) > (55)

2 -
2T Yo .\J
D= BTy Ll (w ) (l Tigy)

| 2
e[, - (Gt )G o) <1 (Be) )

and the following nondimensional parameters have been infroduced

. m \

u -—

mp b

Sa’ >
X o= = (56)
¥ o
2 _ Ia |
o "~ .0
& mhb /

Equation (54) represents the characteristic equation for the

flutter problem and it is a complex quadratic equation. Since the ‘




characteristic equation is complex, the flutter problem is thus seen
to be a double eigenvalue problem, the eigenvalues being the flutter
gpeed and flutter frequency. The aerodynamic coefficients sppearing
in Bquation (54) are complicated trancendental functions of both speed
and frequency and must be calculated numerically using the unsteady
gerodynamic analysis presented in the first part of this chapter. Thus
a trial and error process must be used in solving the characteristic
equation, Equation (54), for the flutter speed and flutter frequency.

The process used is described in detail in Chapter III.

Static Divergence

As stated earlier, an elastic body in an alrstream can experience
either static or dynamic instabilities of motion. Divergence is a case
of static instability. The static divergence speed is found by allow-
ing the reduced frequency to go to zero in the equations of motion,
Equations (L48). When this is dome, all the inertial terms as well as
the damping terms g, and g, 8° te zero. The egquations of motion for

static divergence thus bhecome

where the 1ift and moment expressions are evaluated at gero reduced
frequency. A more complete discussion of the divergence condition is
presented in Chapter IIT.

In summary, a compressible asercdynamic theory has been presented
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for the determination of unsteady aerodynamic lcads on rotery wings.
Under the assumptions of axial flight and low inflow conditions, the
three~dimensicnal rotor flow field was reduced to a ftwo-dimensional
filow field which was used for the mathematical development. The
integral equation relating downwash on the reference airfoil to the
pressure distribution on the reference airfoil was subsequently
developed and the downwash boundsry condition stated, This integral
equation with its boundary condition represents the governing egquation
which must be solved for the unknown pressure distribution on the
reference airfoil.

A classical two degree of freedom flutter analysis was also
presented in this chapter., This flutter =nslysis is used later in the
thesis with aerodynamic data computed using the aerodynamic analysis
presented in this chapter to establish the effect of compressibility on

the flutter condition for rotary wings.
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CHAPTER ITT1

PORMULATION OF THE NUMERICAL SOLUTTONS

In the previous chapter an integral ejuation and its attendant
houndayy condition were developed to relate the downwash on & reference
airfoil section of & helicopter rotor blade to the pressure differential
across the reference section. In the present chapter a numerical method
of sclving the integral equation for the unknown pressure distribution
on the reference alrfoil section is presented. The difficulties
involved in this method of solution are discussed along with technigques
used for surmounting the difficulties.

The mumerical procedure employed in solving the two degree of
freedom flutter problem is also discussed in this chapter. Since one
of the eigenvalues of the flutter problem appears only implicitly in
the unsteady aerodynamic derivatives it is necessary to solve the
problem indirectly. This is done by taking oscillatory frequency and
structural damping as uwnknowms, varying reduced frequency, and plotting
structural damping versus nondimepnsiongl, velocity to obiain the flutier

speed.

Numerical Solution of the Unsteady Aerodynamic Problem

In Chapter II an integral equation was developed for the down-
wash in terms of the pressure distribution cn a reference airfoil

section of an equivalent single bladed rotor. The downwash equation is




given by Equation (29) and its boundary condition by Equation (30).
It is the purpose of this section to describe the method used in
golving the integral equation for the unknown pressure distribution
subject to the given boundary condition.

First note that the unknown in Equation (29), aﬁa(x), is
contained under the integrals on the right side of the equation and the
downwash on the left side of the equation is known through the boundary
condition. 1If somehow the equation could be inverted so that the
pressure distribution aﬁa(x) eppeared on the left side and the downwash
appeared under the integral, the integrals could be evaluated directly
to obtain the pressure distribution. However, since no inversion
formula is known for Equation (29) a collocation technique in
conjunction with a pressure mode assumption is employed in extracting
the solution.

It is first assumed that the pressure distribution may be

written in the form of a Fourier type series given hy

£0
- - 8 . v A
apa(e) =& cot 3+ ) Aj sin j © (57)
3=
cosS @ = - %

The form of this series is based somewhat on physical reasoning. It is

known that in subsonic small disturbance theory the linearizing

agsumptions break down at the leading edge of the airfoil and cause gz
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singulerity in the pressure distribution. This fact is accounted for
by the first term of Equation (57). Also, the pressure distribution
mist go to zero at the trailing edge to satisfy Kutta's hypothesis
that the flow ftraverse the frailing edge smoothly. This requirement
iz matisfied by using the Fourier sine series instead of the cosine
series., In the numerical computations 1t is necessary to truncate the

series after J terms, sc in the analysis which follows the finite

series
J=1
Ap (8) = A cot &+ ¥ A sin § 6 (58)
a o 57 L% '
j=
is used.

If the pressure distribution series, Equation (38}, is
substituted in the downwash integral equation, the integrals appearing
on the right side of Equation (29) can be evaluated in terms of the J
pressure series coefficients. If the boundary condition, Equation (30),
is then evaluated at J points on the chord of the reference sirfolil
there results a system of J algebralc equations which may be solved
for the J uwnknown coefficients of the pressure seriesz. The location of
the collocatlon points, as the points at which the boundary condition
is to be satisfied are called, is scmewhat arbitrary. Two spacings

which are popular in fixed wing analyses are the egual spacing and

the Multhopp spacing. The Multhopp spacing is obtained by writing




|

- cos 6§, D=8, = 5
5 5 T (59)

and using an equal spacing on the ej. This type of spacing results in
a higher density of points near the leading and trailing edge than in
the center of the chord. Although the spacing of the collocation
points is arbitrary, Hsu [30] has shown that for the fixed wing airfoil

an optimum set of collocation points exdsts and is given by

X, .
—Jl:_ .—g.il?l) ] = g
T cos (2J%1 J=1ly2, vee 5 J (60)
where J ig the toftal number of collocation points bheing used. It will
be noted that the optimum distribution for the collocation points is
very much similar to the Multhopp spacing, since for the Multhopp

gpacing

ej=§-}:-i 3=1,2, vee 5 J {$1)

The method used by Hsu in obtaining the optimum distribution of
collocation points was general encugh sc that his result can be used
equally well in the present study of two dimensional {low over rotary
wings. During the course of the present research all three of the

above mentioned collecation point distributions (equal, Multhopp,

and optimum) were used and it wes found that all three yielded
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essentially the same results. However, in computing the final results
presented in Chapter IV the optimum distribution was used.

With the pressure mode assumption, Equation (58), the integrals
oceurring in Equation {29) can be evaluated numerically. However, it
will he noted that the first integral of Equation (29) contains a
gingularity at the point £ = x, This is a strong singularity and can
seriously affect the numerical results if not handied properly. Since
this integral is precisely the one which occurs in the fixed wing theory,
the works of the meny fixed wing investigators cited in Chapter I can
be employed advantageously here., The methed of handling the singularity
adopted for the present analysis is that used by Frazer [17].

Let the kernel of the first integral of Eguation {29) be

written as follows

k(x~ - k{x-E g
K, [:M, —1—5)-] = x [1, 0] (62)

b

K, [, BE)) . 2 {eimg("‘g)/ﬁa‘“ [ ) (21 22y

—— .

| x| 5%

o K(x-£) /6D |
- Héz)(m____;zgl):l + 1p8e"1k(x-8) /o «L Hé‘)(m lnl)e‘fn dﬂ}




The infinite portion of the integral appearing in Equation (62) can

be evaluated in closed form and has been shown by Fung [3L1] to be

With this substitution Equation (62) becomes

. ikM? X 2b
K, [M, @] = H:'Le-{e (=£)/p [m 5(2) (M) (6l)

|xg| * 8%
K(x—g)/ﬁab
(2) ("—L“E‘J'x“ j:l + 1% e(x-£) /b lr_; n —E J r{(e)/MI'ﬁI lelﬂd’ﬂT

Now write Equation (29) in two parts; a part due to the reference
airfoil itself (which is analogous to the fixed wing downwash equation),

and a part due t¢ the infinite system of wakes. The following notation

will be used

ﬁa(x) = wf(x) + Wh(x) (65)

where

b
wo(x) = - -piug[b K5, (5) Ky [ M, ﬁ%g)-j ag (66)




S5k

w, (%) = - -—UZ- L j 85,(8) K l:M + 2nm, ] a€ (67)
o« n=l -b

The only singularity of the downwash integral equation, Fquation (65),
occurs in Equation (66) when £ = x. This singularity is treated as

follows., First make the change of variables

E=-bcos 9 (68)

Bguation (66} then becomes

wf(x) = I 3p {8) K [M k ( + cos 8)] sin 6 48 (69)

The singularity oceurs when the second argument of K, becomes zero,

f
The procedure used is to subtract out the singular portion of the
kernel and then integrate the singular portion in closed form. If

KO represents the asymptotic expression for Kf vwhen the second argument

of K, becomes small, then Frazer [17] shows that

][ 2
Y
+1 { 2B ZnB LB{M'-_§-+ {niggﬁ-- Mg‘ }
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where

x Y
= = +
s k (b cos 8)

4n v = Euler's constant = 0.57721566...

E

Equation {66) is now written as follows
wh Toa - x i

Wf(X) = - ;—Eﬁ-{ I Apa(e) K [M, X (E-+ cos e)J sin & 46 (71)
® o

™
- N
+ I ﬁPa(e) Kb [M, k (%-+ cos 9)} sin 8 de}

0

where

R, [M, K (% + cos 9)] = K, [M, X (% + cos e\)] - K, [M, X (% + cos 8)_].

(72)

The first integral of Equation (71) is now free of singularities because

when the second argument of ﬁf approaches Zzero, Kf

well. The second integral of Equation (71l) contains a singularity,

appreoaches zero as

but this integral has been evaluated by Frazer [17]. When the series
expression assumed for aﬁa(e), Bgquation {58), is substituted into the

second integral of Equation (71) the integral can be evaluated in terms

of the pressure series coefficients and Equation (71) becomes
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T .
_ _ .wb { [ - = [ /X V1o
wf(x) = ._:F? J apa(e) Kf M, k (b + cos G)J sin ¢ de {73)
poo 8]
e e don RE DL L S8 2T
2mk "0 2nf "1 L 2mB B 2mB \ 1-B 22 2
where
J-1
IOZ-T[A +1Tl_A cos Jjé
J=1
I =-1'T(A + 2 A Mn2-pA coss +Tcos2s
1 o 271/ o r L T
ﬂ{:l -cos(3+1)8,  cos(3-1)8_
oo n|_ TFL 3 C1 :|
J=1
I.= (A +EA
o =T AR FE A

=
n

- b cos er = location of rth collocation point

For & given collocation point locetion Equation (73) can be evaluated
numerically to give the first part of Equation (65). No particular

difficulty is involved in evaluating the second part of Equation (65)

given by Equation (67) since the kernel of Equation (67) contains no
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singularities, However, for the numerical computations only a finite

nunber of wake terms can be used so that Equation (67) must be written as

X n N
w, (%) = - —-“qug / d[‘ AB,(8) X I:M, k (% + cos e) + 2nmm, nkh] (7h)
Peo

n= fo)

. 3ln 8 dg

It should be noted here that the number of wake terms taken is
independent of the number of collocaticn points teken sc that Wh(x)
can be computed to any desired degree of accuracy for a given number of
collocation points.

With the method of handling the singularity thus established
the pressure series can be substituted into Equations (73) and (74).
Then if a pecint X, on the chord is picked, the right hand side of
Equation {65) can be evaluated in terms of the pressure series
coefficients, The left side of Equation (65) can alsc be evaluated
by applying the boundary condition, Equation (30). In evaluating the
boundery condition, the reference airfoil is assumed to be undergoing
plunging and pitching oscillations referenced to the quarter-chord
point as shown in Pigure 5. From this figure the displacement of any

point on the reference airfoil midsurface is seen to be

2 (5t) = - By -+ 2) « (75)

Agsuming simple harmonic motion
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Figure 5., Assumed Motion of Reference Alrfolil Used to
Calculate Aerodynamic Coefficients
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- lwt
=h e
7
o= eiwt
o
the downwash expression becomes
w {x) Jh o
a e _ s [N _ s (X ;.]
5 = - ik kb ) Ll + ix Lb + 2) @, (77)
C/h

The ultimate goal of the aercdynamic analysis is the determina-
tion of the unsteady 1ift and moment on the reference airfoil. These
gquantities are obtained by integrating the pressure distribution. The

total 1ift on the reference alrfoil (measured positive down) is given

by
T = r (pU - pL> dx (78)

Since the airfoil is undergeoing simple harmonic motions the pressure
varies simple harmonically and hence the 1lift must vary harmonically

as

=T e (79)

Thus

i=" 8B, (x) ax (80)
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Making the change of varisbles
x=+~bcos @ (81)

and substituting the pressure series assumption the 1ift becomes

oo

2 9 : " . N
cos Eds + Z A, r gin j6 sin 8 dej (82)
O 521 Jd g

o
i:b{zaof

Because of the orthogonality of the sine functions, all the integrals

except the first in the infinite series are zero and the 1ift becomes

I:—b{EA‘[n 28 4 + ‘fﬂ'e d} (83)
= o cos 5 Al sin~ 9 48 {03
o) 0
Performing the necessary integrations
iznb(A v E ) (8k)
o 2 A1

The aerodynamic moment ahout the gquarter-chord point

(measured positive nose up) is given by

b

Yep), = J:b (pU - PLXX * g'\) ax (85)

Again, since the pressure varies simple harmonically the moment must

vary simple harmconically as
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- iwt
M, =M 36
C/h C/h e (86)
so that Equation (85) beccmes
1 —rb-()'/x-l-ll\"bc (87)
ofy Ty PP AFTE) S !

Making the change of varisbles given by Equation (81) and substituting

the pressure serles assumption

iy
- 8 (1 _ .
Mb/h =p°{ | A, cot 5 (2 cos e) sin 9 as (88)
)
[we]
w o 1 \
+5 A, | sin jé (— - ¢os 9 sin & de}
P Jt‘- 2 }
J=L

iy, =0 (- ) 2

It is of interest to note here that the aerodynamic 1lift and
moment on the reference airfoil section given by Equations (84) and (89)

depend only on the first three terms of the pressure series. This

does not mean, however, that one needs only to use the first three




terms of the series and hence only three collocation points. The
values of the first three ccefficients of the series will change as
more and more collocation peints and terms in the series are used and
the boundary condition is satisfied more exactly. The advantage of
Bquations (84) and (89) is that the 1lift and moment expressions do not
contain a serles involving all the coefficilents of the pressure series,

As stabed in Chapter II it is customary to write the 1ift and
mome_nt on the reference airfoil in the form given by Equations (49).
However, it was found that the coefficients I‘h’ La” Mh’ and Mcv become
relatively large for small values of reduced frequency and thus for
the numerical computations it was betier to write the 1ift moment

expressions as

L = rrmeE'b [{’h (.I-E )c/u + Laa* ] N

M /i - “pmuabg l:mh (% ) o /l: ma'a]

where

B
;
o

I
e
tt

ot
=
- o

m =kM
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Consistent with the preceding analysis the 1lif%s in Equations (90) is
measured positive down and the moment is measured positive nose-up.

The aercdynamic coefficients &h’ {d’ m > and m, are now chtained
as follows. By evalusting the boundary condition, Equation (77), at
each of J collocation points there results from Equation (05) a set of
J simultaneous equations with the coefficlents of the pressure series

as unknowns. These eguations can be written in matrix form as

SIS

{

}=- pradis (91)

[++]

Then the coefficlents of the pressure series are given by

(A} = ~ =5 0" (a1 { ] (92)
B =)™ { #} (93)

where
(£} = - T (8] (o)




6L

The ccefficient matrix, [C], appearing on the right haad side

of Bquation (91) can be evaluated independent of the motions which the

reference airfoll is performing. The left hand side of the equation

depends on the motion. First consider tha: the reference airfoil is

performing only a plunging motion of unit nondimensional amplitude

( E) 1 eiuﬁ:
b
C/}_l'
(95)
& =0
The downwash boundary condition then becomes
w_(x)
=— = - ik {96)
and the 1ift and moment become
L= ﬂmezb Lh
(97)

= 00 m

Using the boundary condition Equation (96) in Equation (93) the {A&)

coefficients can be obtained, and denoted by {ﬁ}ﬁ,' Then from

Equations (84) and (89)
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(98)

ﬁC/f - %pmuzbz (5‘1 ) ‘Eie)

Comparing Fouations (97) and (98) the aerodynamic coefficients L, and

mh are given by

’ (99)

Similarily, by using the same process as that above and assuming that
the reference airfoil is performing only a pitching motion of unit
amplitude the remaining aerodynamic coefficients Ld and ma can be
determined.

Numerical Procedures

The above procedures were programmed in FORTRAN V for the
UNIVAC 1108 digitsl computer. Since all the numerical technigues used
gre completely described in the literature only a brief mention of
some of the more important aspects of the nmumerical computations will
be given here.

A1l finite integrals involved in the computations were evaluated

using a Gaussian gquadrature technigue. It was found that for evaluating
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the chordwise integrals of Equations (66) and (67) ten integration

points were needed to yield accurate results. Ten integration points
were also found to be satisfactory for evaluating the finite integral
appearing in Equetion (64). In evaluating the kernmel of Equation (67)

it is necessary to evaluate finite integrals of the form

[k(x-£) /o]+20m )
I-= J' ng) ( ;‘%\/f * (Bm‘:h)e)‘c-.iﬂ/B an (100)

o]

Separating into real and imaginary parts

[k(x-g)/b]+2nm

R(I) = jo Jq i: :1—2\/ T]2 + (Bnld‘.n)z) cos é]é-d.’ﬂ (101)
(k(x~E )/b] +2nmn
+‘[o Yo(ﬁﬂz--\/'nz +(Bnkh)2) sinélg—dﬂ

[i(x-g) /o] +20mm

1) = _j’o 1 (g‘g\/ﬂz + (pukn)”) sin gg af (102)
(x(x-g) /b}+enmn
_I T ( l%- 'T]2 + (Bnkh)e} cos 32— an

o B B



chordid.se

67

It was found that as the sumation index n increases more and more
integration points are necessary to compute these integrals accurately.
To illustrate the process used in establishing the number of points
needed, consider the first integral of Eguation (101). This integral

may be vwritten as

2nmm

Paf (AT ) e L a0
k(x-) fo

+ cos (Ennm/Be) I I, (J%-\/(ﬂ + Enﬂm)2 + (Bnkh)g) cos j% an
o B
k(x-€) /o

) ey [
- sin (20mm/8%) Jo I (2%-\j(ﬂ + 2nnm)2 + (Bnkh)g) sin J% an
8 g

It was found that integrals similar to the last two in Equation {(103)
could bhe evaluated accurately for all n with only six integration
points. However, due to the oscillatory nature of the integrand,
inﬁegrals similar to the first of Equation {103) regquired the use of
at least four integration points per period of the trigonometric
function. This was necessary because the trigonometrie function is
the primary contributor to the oscillatory character of the integrand

and as the summation index n becomes large, more and more oscillations

of the integrand occur. Thus for evaluating integrals similar to the
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first integral in Equation (103) the number of integration points

needed is given by

NIP = k(2om)/(2np") = n & (10k)

o

Also in the evaluation of the kernel of Equation (67) it is

necessary to evaluate an integral with an infinite limit, neamely

I= JO Hée) (—%—\]nz + (ﬁrﬂ:h)2 ) ei'ﬂ/ﬂ‘2 dn (105)
el B

Writing the exponential in real end imaginary parts and changing

varisbles

7@ M 2 z ha
I= ‘[o H, .\B2 \/v + (pnkh) ) cos 52 dv (106)

-1 I: Hég) (-I“;—z—\/vg + (gnin)° ) sin ;’5 av

The first integral of Equation (106) can be evaluated in closed form

using the results of Infeld, Smith, and Chen [32]. Thus

nkh (207)

Io ng) (-B%-\jvg + (Bnl«:h)2 :j cos -;QL dv = ipe”
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The second integral of Equation (106) must be evaluated numerically.
After separating the Hankel function into resl and imaginary parts the
resulting two real integrals were easily and accurately evaluated
using the numeriecal quadrature method of Hurwitz and Zweifel [33].

In the evaluation of Equations (66) snd (67) for zero Mach
number 1t becomes necessary to evaluate the Sine, Cosine, and
Exponential integrals. The Sine and Cosine integrals were evaluated
numerically using their respective series representations given by
Lebedev [34]. Trouble was encountered, however, when the series
repregsentation of the Exponential integral was used. This occurred
when the wake serles summation index and hence the srgument of the
Exponential integral became large. Following the approach of Todd [35]
the Laguerre quadrature formuils was used to evaluate the integral
directly and the technique was found to give excellent results not
only for large arguments, but for small arguments as well, Conse-
quently, the technique was used to evaluate the Exponential integral
for all values cof the zrgument.

During the course of the mmericel investigations it was
found that the number of collocation points and hence the number of
terms in the pressure series necessary for reliable results increased
ag the reduced frequency increased. For reduced frequencies between
0.0 and 0.12, three collocation points provided satisfactory resulis,
vhereas for reduced frequencies between 0.35 and 0,50, five collocation

points were necessary. Since the primary interest of this research is

the flutter condition for rotary wings no extensive computations were
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made for reduced frequencies greater than 0.95. However, it is felt
thet the methods employed are good up to at least a reduced freguency
of unity provided, of course, that a sufficient number of collocation
points are used.

Except for low values of frequency ratio, the mumber of wake
terms necessary to give convergence of the aerodynamic coefficients
within one percent was found to be essentially independent of all
parameters in the problem. For zll the conditions investigated
approximately forty terms were reguired to give satisfactory results.
For low values of frequency ratio, many more terms were reguired. The
number of terms reguired could possibly be reduced by using an elegant
sunming procedure on the wake series., For the present research,

however, a simple surmation of the terms was felt to be adequate.

Mumerical Solution of the Two Degree of Freedom Flutter Problem

In Chapter IT the characteristic equation for the two degree of
freedom flutter problem was developed. This eguation is a complex
quadratic equation and is given by Equation (54}, In this section a
method is presented whereby Equation (54) can be solved for the two
eigenvalues of the flutter problem; the flutter speed and the flutter
frequency.

Since one of the eigenvalues, the flutter speed, does not appear
explicitly in Equation (54) but is contained rather implicitly in the
gerodynamic coefficients Lh’ La, Mh, and Ma it becomes necessary to

solve the characteristic eguation in an indirect manner. The method

to be used is that suggested by Smilg and Wasserman [29]. They suggest
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letting

g, =€, ~E (108)

and writing the characteristic equation in the form

2

A%+ O+, =0 (109)
where
w 2
A = (—g—) (1 - ig) (110)

2 _
BA” +BJA + B, =0 (112)

where

[ve)
I

A 2 , .
RIS RTINS CORRINCINy B Ay

B. =

RN E T RS (R RENCY
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Or,
A2 £ G A +C. =0 (112)
1 2
where

¢, = Bl/BO ¢, = }3,2/13O

In the present method of sclution the unkuowns in Equation
(112) are taken as structural damping, g, and oscillatory frequency, w.
3

The solutions of Equation (112) are given by the quadratic formula as

Ao = %[- c, * \/cje_ - %0, (113)
Now if
2 N
A1=R1+1°91‘G§) (l+lgl)
> (1b)
Ay =fy +1 3, = (?ug >2(1 * lg2)
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then the unknowns g and ¢ are determined as

3 J \
_ 1 _e
& = Ry s R,
> (115)
(‘i )2 1 W2 )i 1
Py Rl ®y 92 /

In determining the flutter speed, the procedure is as follows.
When the Mach number (M), inflow ratic (h), and frequency ratio (m)
are given, the aerodynamic coefficients may be calculated by assuming
a value of reduced frequency (k). Then for a given structural
configuration the structural damping and oscillatory frequency for each
of the two modes may be calculated as solutions of the characteristic
equation, Eguation (112). PFinally, the nondimensional velocity for
each mode 1s caleculated using the assumed value of reduced frequency
and the frequencies for each mode &s calculated from Equations (115),

i.e.

oy

The flutter speed is obtained by assuming seversl values of reduced
frequency and plotting curves of the structural damping versus

nondimensional velocity for each mode. When one of the curves passes

through the value of structural damping which the system actually has,
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the corresponding nondimensional velocity is the flutter speed. If
both the modes have a flutter speed, the flutter speed for the system
is taken to be the lower of the two. Since the value of structural
damping is known to be small for conventional airecraft struetures, it
was conservatively taken to be zero for the present research.

Discussion of the Velocity-Damping Plot

A typical plot of structural damping versus nondimensional
airspeed is ghown in Figure 6, As can be seen from the plot, the
flutter speed occurs in the second mode at a nondimensional alrspeed of
approximately 3.3, From the previous discussion it is obvious that
the only physically meaningful point on the plot is the point where the
g, -Curve passes through zero damping since it is assumed thsat the
system has gzero structursl damping. However, other points on the curve
may be interpreted as follows. B3ince it is known that the structural
damping of the system is zero, the damping indicated on the plot cean be
interpreted as aserodynamic damping as this is the only other damping
entering the problem. For points on the curve where the airspeed is
less than the flutter speed the demping is negative, indicating that
the aerodynamics are taking energy cut of the system and thus the
motion is stable. Conversely, for airspeeds greater than the flutter
speed the damping is positive and thus indicates that the aerodynamics
are feeding energy intec the system and the resulting motion is unstable.

The flutter speed, therefore, represents the transition point between

gtable and unstsble motion.
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Static Divergence

In Chapter II is was shown that for static divergence the

equations of motion become

m u)i h=1
(117)
2
IC? ma’m = ME.&.

where the 1ift and moment expressions are evaluated at zero reduced
frequency. The 1lift and moment expressions from Equations (50) may be

written as

L= ﬂmeEb {th %-+ [{d - Lh(%-+ a) j o } 3
Ye.a. = “mezbz { [mh - {h(% * a) ] % > (118)

[ - (e m)E e ) s 0B T0)

From Equations (77) and (93) together with Fquations (84) and (89) it

can be shown that only the real part of Q& and the real part of m, can
have values different from zero as k —+ 0. Further, numerical calculations
show that the real part of m, is alsc zero, Thus the equations of

motion for static divergence hecome

° (119)
2 2 1
Ia w o = ﬂme%b [- &ao (§ + a) ] o




7

where {a is the value of Qw at k = O and is a real guantity. The
0
static divergence speed can then bhe calculated from the second of

Equations (119) as

I w2

_ oo (120)

P [ 1 (B )]
[a]

The negative sign in the dencminator of Equation (120) causes no

U

2
D

problem, since it may be cbserved from numerical calculations that
{b is always negative.
o
Introducing the parsmeters given by Equations (56) the non-

dimensional divergence speed becomes

(121)

In this chapter a numerical method has been presented for
solving the downwash integral equation developed in Chapter II., The
method was shown to involve the use of a pressure mode assumption in
conjunction with a collocation technique for determining the unknown
pressure distribution on the reference airfoil section. The method
for handling the singularity cccurring in the downwash integral equation
was presented along with a discussion of some of the compuational

techniques used in the numerical solution. PFinally the method for

obtaining the aerodynamic ccefficients from the pressure mode
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assunption was presented.

The numerical method employed in solving the two degree of
freedom flutter problem was also presented in this chapter. The
aerodynamic coefficients from the compressible aerodynamic analysis
were seen to be necessary input for the flutter analysis. Since one of
the eigenvalues of the flutter problem is contained only implicitly in
the aerodynamic coefficients the flutter problem was solved indirectly
by taking strvectural demping and oscillatory freguency as unknowns.

The flutter speed was finally obtained by plotting structural damping
versus nondimensional airspeed and noting where the curve passed through
the actuwal value of structural damping present in the system. The
corresponding value of nondimensional airspeed was then taken as the

flutter speed. The results of both the aercdynamic and the flutter

analysis are presented in Chapter IV.
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CHAPTER IV

DISCUSSION OF RE3ULTS

In the previous chaptersg of this thesis an unsteady compressible
aerodynamic theory for rotor blades has been presented based on certain
two=dimensionalizing assumptions., Alsc presented has been & two degree
of freedom flutter analysis which made use of the previously developed
aerodynamic theory. In this chepter numerical results of these analyti~
cal developments are presented together with a discussion of their

overall significance.

Comperison of Aerodynamic Theories

In Chapter ITI snalytical comparisons were made of the aero-
dynemic theory of the.present study with the theories of Loewy [2] and
Jones and Rso [24]. 1In that chapter it was shown that if the flow
model of the present research is made to agres with the model used by
Loewy and Jones and Rao then the downwash equations and hence the
aerodynemic coefficients calculated using the three theories slso
agree, However, for realistic values of the parameters entering the
serodynamic problem the two flow models cannot be expected to be
identical. ¥For this reason, a numericsl comparison of the three
theories is presented in this section.

For the equivalent single bladed rotor the att Teake airfoil"

of Figure 3 leads the reference airfoil by a distence
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D, = 2mr (122)

Introducing the reduced freguency and freguency ratio parameters

Equation (122) may be written as
D = opn B2 (123)

Thus from BEguation (123) it can be seen that if the frequency ratio,
m, is increased while all the other aerodynamic parsameters are held
constant, the effect of incressing the distance by which the "wake
airfoils" lead the reference airfoil can be determined., This in turn
allows one to determine guantitatively the effect of the two flow
models on the acrodynamic coefficients.

In Appendix E it is shown that if the "wake airfoils™ are made
to lead the reference airfoil by an infinite distance, then the
analysis of the present study is identical to that of Jones and Rac [2Lh].
A gimiiar result is presented in Appendix ¢ for the case of zero Mach
number and comparison with Loewy's [2] theory. Thus by increasing the
frequency ratio, m, while holding the other aerodynamic parameters
constant the aercdynamic thecory of the present study should approach
those of Loewy and Jones and Rac.

This wvariation of the freguency ratio was made and the results
are presented in Figures 7-10. It should be noted that for convenience
the aerodynamic coefficients of Reference [Z4] have been plotted

instead of the coefficients used in the present study. In the notation

of Jones and Rao the 1ift (positive down) and moment about the quarter-
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chord (positive nose-up) are written as

L = -'nmeZb [{EZ + 11952\) (%—) P +I'f,a +ik'& ) oe] )
o \
» (124)
M, = TTmezb [I\n-l + ilkm, ) (E)c/”+ (m + i}m?o.! ) o ] }

Thus the coefficients of the present study are related to these of

Equations (124) by the eguations

I, =-r() m, = R(m,) )

;- .1 s Lo

1y =-23() g = 3% Im) | (125)
- Ra)] -l - Fate)

- 1 1 ~ 1 1 o

¢~ "k LJ(LQ) - 5'3({h)] Uy Tk Lﬁ(ma) -] J(mh)J )

As can be seen from Flgures 7 - 10 the sgreement between the
aerodynamic theories does indeed improve as the frequency ratio is
increased. It might also be observed that some of the coefficients
tend to agree better over the entire renge of frequency ratios investi-
gated then others; for instance, the iz derivative appears to agree less
than most of the other derivatives.

Tt is also of interest to point out that the aerodynamic

theories of Loewy [2] and Jones and Rao [24] are cyclic in frequency

ratio vhereas the theory presented in the present research is not.
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Thus if FPigures 7 - 10 were plotied for 1 < m < 2 the Loewy snd Jones
and Rao curves would remain exactly as shown, but the curves from the
present study would change and should be in better agreement with the
other two theories.

The significant point about Figures 7 - 10 is that they show
the effect of the two possible mathematical rapresentations of the two-
dimensional flow over helicopter blades. As shown in the figures, the
effect can be considerable at low values of fregquency ratio, but tends

to diminish as frequency ratic is increased.

Flutter Results

The basic goal of the present research is 4o determine the
effect of compressibility on the flutter speed of rotsry wings. To
accomplish this goal a two-dimensional, compressible, unsteady aero-
dynamic theory has been developed for helicopter rotors and some
results of that theory presented in the preceding section. However, to
demonstrate the effect of compressibility on the flubtter condition the
aerodynamic theory must be used in conjunction with a flutter analysis.
FPor the present study a two degree of freedom structural model was
used in the flutter analysis. This model is described in detail in
Chapter TI. Numerical results of the analysis are presented in this
section.

In ascertaining the effect of compressibility a variation of
the parameters entering the flutter problem wag made. When varying the

aerodynamic parameters the structural parametezrs were held consbvant at

a set of values typical of current blade designs. The following values
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were used
p = 80.00 A
2 _
ra = (.25
wh/ba = 0.50 ) (126)
g = =040
Xd = 0,10 Y,

When varying the structural parameters, the parameters vhich were not
varied were held constant at their respective values given by Equations
(126) and the aerodynamic parsmeters were held constant at the typical

values

=
1

= 0.80

B
|

= 2.00
b e

Three values of Mach number were investigated; 0.0, 0.6, and 0.8.

Shown in Figures 11 - 13 is the variation of nondimensional
flutter speed with infiow ratic for frequency ratios of 0.2, 0.5, and
0.8 respectively. As can be seen from these curves the nondimensional
flutter speed generally decreases as the Mach number is increased.

Also shown on these curves is the flutter speed obtained using Loewy [2]
acrodynamics. The zZero Mach number data obtained using the aerodynamic
thecry of the present study are seen to sgree hetter with the Loewy

curves as the frequency ratic, m, is increased. This is a consegquence

of the two flow models being brought into closer agreement when the ‘
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frequency ratio is increased as was pointed out earlier. From Figure
11 it is apparent also that as the inflow ratio is increased the zero
Mach number data come closer to the Loewy curve., This too is caused
by the two flow models being brought into betier agreement. For,

as the inflow ratio increases, the "wake airfoils" are moved further
and further from the reference airfoil and hence their influence on the
aerodynemic loading of the reference airfcil becomes less and less.,

It is of interest here to point out the relationship between
the rotary wing flutter speed and the fixed wing flutter speed. As the
inflow ratioc, h, increases the vertical distance between the reference
airfoil and the first "wake airfoil increases. Thus as h becomes very
large the rotary wing results should asymptotically approach the fixed
wing results. In Reference [6] this was shown to indeed be true for
the incompressible case when Loewy [2] aerodynamics were uged. Shown
in Table 1 are the nondimensicnal fixed wing flutter speeds for the

structural parameters given by Equations (126).

Table 1. Nondimensional Fixed Wing
Flutter Speeds

Mach Flutter Speed,
Nuniber , M Uf,/'bu.ua
0 L.75
0.6 b,36

c.8 3.82



becom.es

By comparison of these data with Figures 11 - 13 it can be seen that
the rotary wing data do appear to be asymptotically approaching the
Tixed wing data,

The increasing agreement of the zero Mach number data with the
Toewy curves as frequency ratio increases is more apparent from
Figures 14 - 16. On these figures the varistion of flutter speed with
frequency ratio is shown for inflow ratios of 2.0, 6.0, and 10.0
respectively. Again the trend is for decressing flutter speed with
increasing Mach number.

Figures 17 and 18 show the variation of nondimensional flutter
speed with density ratic for nondimensional center of gravity locations
of 0.0 end 0.1 respectively. In addition to the nondimensional flutter
speed, the nondimensicnal divergence speed is also plotted on these
figures. From Figure 17 it can be seen that for the larger values of
density ratic the flutter speed decreases with increasing Mach number,
but for lower values of p the trend reverses. However, note that the
divergence curves cross thelr respective flutter curves at low values of
the density ratic, so that stability of the system is determined from
divergence considerations rather than flutter considerations. In
general then, for X, = 0.0 the nondimensicnal speed st which the
system becomes unstable decreases with increasing Mach number and the
stability criterion is sometimes divergence and sometimes flutter.

For x, = ¢.l, such is not the case as can be seen from Figure
18. In this case the stability eriterion is elways flutter, and the

flutter speed decreasses with increasing Mach number. For both values

of X, the flutter results for incompressible flow are shown to be ‘
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almost identical with the results obtained using Loewy [2] aerodynamics.,

The variation of nondimensional fiutter speed with nondimen-
sional radius of gyration is shown in Figures 19 and 2C for nondimen-
sional center of gravity locations of 0.0 and 0.1 respectively. The
trends of these curves are very much similar o the trends of Figures
17 and 18, Divergence asgain is an important consideration for
Xy = 0.0 but is not critical for X, = 0.1. TFlutter speeds again
decrease with Mach number and correlation with results using Loewy
aerodynamics is excellent.

Finally, Figures 21 and 22 show the effect of bending-torsion
frequency ratio on the nondimensional flutter speed for nondimensional
center of gravity locations of C.0 and 0.1 respectively. Again,
divergence is important for X, = 0,0, bub not for X, = 0.l. Note from
Figure 21 that beyond a certain value of bending~-torsion frequency
ratio, the exact value being Mach number dependent, there is no
possibility of flutter when_xa = 0.0. Beyond these values the stability
of the system is based on divergence considerations. MNote also that
for X, = 0.0 the flutter speed decreases with Mach number for low
values of bending-torsion frequency ratio, but this trend reverses as
the bending-torsion frequency ratio approaches the values where the
curves turn vertical. For X, = 0.0, the agreement of the zero Mach
number data with the data obtained using Loewy serodynamics is so
close that the two curves are indistinguishable on Figure 21.

For X, = 0.1 the variation of flutter speed with bending-

torsion frequency ratio is somewhat different than when X, = 0.0, as seen

from Figure 22, 1In this case there is no sharp turning upward of the
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Frequency Ratio, X, = 0.0




102

12 T T T I
M=0.0
lo . -
. M=0,6
3
<
l-}q_‘
- 8 M=0.8 -
o . - - .
1]
[11]
o,
w2
I
Q
e 6
EI — —
B
E
8]
o
1]
5
i T 7
=
e,
2 2 _ -
Ty = 0-25 - Present Study
a=-0,4
h - 2.0 - —— Toewy (2]
m= 0.8 = s— Divergence
0 i ) | |
0.0 0.3 0.6 C.9 1.2 1.5

Bending-Tersion Frequency Ratio, mh/wa

Figure 22, Varlation of Flutter Speed with Bending-Torsion
Frequency Ratio, X, = 0.1
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curves as was noted from Figure 21, Tor this case the effect of Mach
number 1s to decrease the flutter speed, and agreement with results
obtained using Loewy acrodynamics is very close.

It will be noted that in all the preceding flutter results
comparison was made with results obtained using lLoewy aerodynamics but
no comparisons were made with flubter results using Jones'! and Rao's
theory. This is because insufficient data from their theory exist at
the present time. Tt might be noted here that the excellent sagreement
between the flutter resulits obtained using the two incompressible
theories should not lead cone to expect the same sort of agreement
between the compressible results of the present study and those obtained
using Jones' and Rac's theory. Phase lag effects which were lost in
their thecry could have a significant effect on flubter results. How-
ever, further study after more of their serodynamic data become avaell-
able will be necessary to substantiate this conjecture.

As a final result, it should be mentioned that for all the
aerodynamic conditions considered in the preceding resulis the
divergence of the wake serles Qiscussed in Chapter II presented no
problem. ¥or all the conditions considered, the divergence criterion,
Equation (32), was satisfied for reduced frequencies substantially

greater than those required for the flutter analysis.
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CHAPTER V

CONCLUSTONS AND RECOMMENDATIONS

The effect of compressibility on the flutter condition of
rotary wings has been investigated analytically. A two-dimensional
model of the complicated three-dimensional helicopter flow field was
postulated and a compressible, unsteady aerodynamic theory developed
using the two-dimensional medel, The governing integral equation for
the two-dimensional flow with its attendent boundary condition was
generated and solved numerically by collocation using a pressure mode
assumption. After comparing the aervodynamic theory thus developed
with other similsr theories, it was used in conjunction with a two
degree of freedom flutter analysis to establish the role of compress-
ibility in helicopter rotor blade flutter. The many parameters, both
aerodynamic and structural, entering the flutfer problem were varied
systematically so that thelr influence on the roftor blade flutter

phencmenon under compressible flow conditions could he determined.

Conclusions
The resuvlts of the research indicabte thati the following con-

clusiong can be drawn.

1. 'The difference in flow models used by Loewy [2] and Jones
and Rao [24], and that used in the present investigation can lead to

substantial differences in the serodynamic coefficients computed for
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moderate values of frequency ratio, m. For larger values of frequency
ratio (in the neighborhood of unity) the agreement between the sero-
dynamic coefficients computed using the thres theories improves.

2, The flutter results obtained using the present aerodynamic
theory with zero Mach number are in excellent agreement with the results
obtained using Loewy's incompressible aerodynamic theory. Aerodynamic
data from Jones' and Rao's theory were not readily available and there-
fore no flutter calculations could be made using their results., It
should be pointed out, however, that the agreement between the incom-
pressible results should not necessarily lead one to expect the same
degree of agreement between the compressible resulis due to the basie
difference between the two types of flow.

3. The general trend is for decreasing flutter speed with
increasing Mach number. Thus the effect of compressibility on the
rotary wing flutter speed is the same as its effect on the fixed wing
flutter speed, i.e., compressibility has a destabilizing influence on
the flutter condition,

4. Static divergence is an important consideration when the
elastic axis and center of gravity locations coincide. For this
particular case as the Mach number increases the stability criterion
changes from flutter to static divergence. Yor a center of gravity
location one-tenth of a semi-chord aft of the elastic axis, flutter
considerations alweys dictated the stability boundary.

5. ¥From the limited fixed wing calculations it appears that the

rotary wing flutter speeds are generally lower than the corresponding

fixed wing flutter speeds for all Mach numbers. Thig indicates that
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the use of compressible fixed wing aerodynamics in the design of rotor

blades sgainst flutter will lead to unconservative resulis.

Recommendations

A nunber of general suggestions are offered concerning the
directions future studies of +the rotary wing flutter problem might take.

l. TFirst of 2ll, since a comparison of the flutter results
obtained using the present aerodynamic theory with those obtained using
Loewy's [2] theory was made, & most interestirg comparison could be
made using the theory of Jones and Rao [24]. This study would provide
results for evaluating the effect of the two different flow models
under compressible flow conditions. A study cf this type would
substantiate or refute the conjecture made earlier that the compressible
flow results might not agree as well as the incompressible results.

2. The flutter analysls used in the present study considered
a rigid airfoil section free to pitch and plunge. A more reallstic
approach would be to consider the rotor blade as & rotating beam free
to deflect and twist. This would necessitate using the aerodynamic
theory of the present study in a strip theory fashion. This could be
donie as follows. First consider the tip Mach nmunber fixed. This in
turn specifies the Mach number at each radial station on the blade.
Since the blade geometry is specified, the inflow ratic, h, could he
calculated as a function of spanwise location using, for example, the
combined blade element axial momentum theory. Two remaining parameters

need to be determined; reduced freguency, k, and frequency ratioc, m.

As in all flutter analyses the three-dimensional flutter problem must
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be solved by 2 trial and error process. The reduced frequency lis
always one of the trial variables. Thus if reduced frequency is
specified as constant along the span then the frequency ratio can bhe

computed as a function of span since k and m are related as
m = kr/b

With all the aerodynamic parameters thus speclified as funcitions of
radial location, the spanwise aercdynamiec loading could be determined
and the three-dimensional flutter analysis conducted.

3, Probably one of the greatest needs is an experimental
program to corrcborate the results of this and other theoretical studies
of rotor blade aercelastic phencmena, The program should definitely
include the possibility of operating the rotor under compressible flow
conditions, since the trend in present helicopler design is toward
the high subsonic speed range.

h. BAn obvious extension of the present study is an unsteady
three-dimensional aerodynamic thecry for rotor blades which includes
compressibility effects. This type of theory is desirable in order to
more realistically represent the three-dimensicnal loading on a rotor
blade.

The effect of compressibility on the flutter condition of
rotory wings has been determined under two-dimensional aerodynamic
conditions. More investigations, both experimental and analytical,
are needed to substantiate this study and extend the resulis to include

more of the three-dimensional effects of the physical aerodynamic and

gtructural rotor system.
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APPENDIX A

DEVELOPMENT OF THE PULSATING DOUBLET SCOLUTION

In this appendix a fundamental sclution of themlinearized
acceleration potential equation is developed. This solution is called
the pulsating doublet solution because iy represents the acceleration
potential of a doublet whose strength is allowed to vary harmonically
with time. The soluticn will first be developed for three-~dimensicnal

flow and then reduced to that for two-dimensiocnal flow.

Three-Dimensional Flow

In steady incompressible flow the governing eguation can be

taken asg the linearized velocity potential equation

V=0 (A-1)

A familiar solution %o this equation is the simple source solution

given by

s 1 4

¢i=_

1

b (A-2)
\/X2+_y2+22

where e is the source strength and is constant.
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In compressible subsonic flow the governing equation becomes

2 s

2 2 2
1-6)22+224+82. (A-3)
ox Y oz

where M is the free stream Mach number. The simple source solution,
Equation (A-2), can be extended to this case by noting that under the

transformation

y=8y
E =p z (A'l‘l‘)
p = 1 - M?
Fguation {A-3) becomes Laplace's equation. Thus the compressible
source golution for steady subsonic flow is written
d
1 1
(A-5)

In the case of unsteady flow the simple source solution may
again be uged., However, for the unsteady case the strength of the
source is considered to be a function of time. For incompressible

unsteady flow the governing eauaticn is agein Laplace's equation and

the simple source solution is given by
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) a, (t) )
¥ T T Iy - -
\jx2 + yg + 27

where it will be noted that the socurce strength, o is now & function
of time.
For compressible unsteady flow the lihearized perturbation

potential equation is given by

2 2 2 -
veq;, .= [:-ﬁ vou 22 4 P a—ER_J = 0 (A-T7)
z .2 2
a_ ot otax 9x

In this case the fact that a disturbance in the flow is propagated at
a finite velocity, namely the sound speed of the medium, must be taken

into account. Thus the simple source solutior is written

a, (1)
R — wa
\[x2 + 85" + )

where 1t is the time that a disturbance leaves the source.

Letting t represent the time at which the disturbance reaches
the point (x,y,2z), the relationship between 7 and t may be developed
as follows, If the source is considered to be located at the point
{0,0,0) as was done sbove, then a pressure pulse which emanates at time
T propagates outward in a spherical region while being swept downstream

at a velocity U by the main flow, and reaches the point (x,y,2) at

time t. The relationship between v and ¢ may be derived from the
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geometry of the flow shown in Figure A-1. Since the flow is compress-
ible, the disturbance propagates outward at the sound speed of the
medium, a_ . The radiug of the spherical propsgation front at time t
may be written

I‘f = am(‘o - T) (A'9)

Also, from the geometry

2 .
r, = \/[x - Ut - T)] + ¥+ 22 (A-10)

Egquating Equations (A-9) and (A-10)

2
a (6 - 1) =\/ [x -0t - 0)] +5° + 4 (A-11)

Solving for T

T=4t ot lZ[MX:I:\/X2+BE(Y2+ZE)] (A-12)

The minus sign in Equation (A-12) is now chosen for the following
reason. The radical of Equation (A-12) will produce a number which is
greater than x since 62 is less than unity. Also because M is less

than wnity, Mx is lesg than x, Therefore by choosing the minus sign

the number inside the brackets of Equation (A-12) will be negative and
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conre | T = N (x552)
i
'&
oy
L
v — - X

‘\\“—PTopagation
Front

U(t-T)

Figure A-1. The Disturbance Produced by a Subsonic Source
Pulse at the Origin at Time T as it Reaches the
Point (x,y,z} at Time &
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thus 7 will be less than t which is required by the physice of the

problem. The fingl relation between v and t thus becomes

To=t 4 12 [Ivbc - \/xz e Ca 22)] (A-13)
a P

»=

Now the governing differential equation for the acceleration

potential, ¥, in three-dimensional flow is given by

2 o 2
Va‘f--;'—l_g-—g-l-ZU—g—i-l—Uzé—g-:I:O (A-14)
a_ 2t otax e

which is exactly the same as Equation {(A~7). Thus any solution of
Bquation (A-7) will also be a solution of Equation (A~14k)., The
acceleration potential for an unsteady source located at the origin may

then be written

qz(T)
V2 + 822 + )

(4-15)

S
‘YB— E

where v is as given by Equation (A-13). It should be noted here that
YS and cpi are not identical because the boundary condition on ¥ and the

boundary condition on ¢ are different. The relationship between ¥ and

@ is

-1 1] -
y =2 +Uu gt (A-16)




115

Requiring the unsteady source strength to vary simple

harmonically with time

afr) =a e (8-17)

where g is constant, the acceleration potertial for the source becomes

- iwT
Yy o= - c (A-18)

8 i =
) \fx2 + By + )

Substituting the expression for r

y o= - 8 (A-19)

where

Rt = i+ BEGE + 2D

5
It

YS(X,Y,Z;t)

Now place a sink below the x-axis and a scurce above the x-axis
such that they are a distance ¢ apart and have equal strength. The

acceleration potential for the sum of the source and the sink is given

by




Let

Ysaurce - - Hg; ¥ (A-20)

then

[?ixﬁﬁz +§2" 3 t) - @{(x:y,Z - Z— 3 t)

€

J (A~21)}

g
(ysource + Ysink) T

q
m

The transformation to the doublet is made by shrinking the
distance between the source and the sink (¢ — 0) in such a way that the

quantity %%» remains constant, say A. Thus

§( € .t - §{x,y,z - 5
_ 1im req ™ kaﬂysz * 5 3 t) - ‘f(x,g,z -5 'b)

doublet  e~o \ - (A-22)

¥

But the limit of the second factor is just the partial derivative with

respect to 3z, so that

- N
R CEXTY (A-23)

¥ oublet =




117

or

\
ofer 2]
2 2
a B a p
[=F] o]
¥ -2 8
doublet Bz Rt

p (a-2k)

Equations (A-2L4) represent the acceleration potential of a
doublet located at the point (0,0,0). The acceleration potential for
a doublet at the point (g,1,{) is obtained from Equations (A-24) by
replacing x with (x - €), y with (¥ - 1) and z with (z - ). The
acceleration potential for a harmonically pulsating doublet at the

general point (E,7,L) in three-dimensional flow is thus given by

iw t+M(K-§)~ R \
amﬂz qwﬁz
a
iy = A7 : R
R = \/(x—g)2+ag[(y-n>2+(z-g)2] Y (a-es)

e
]

Magnitude of doublet strength /




Two~-Timensional Flow
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The reduction of the pulsating doublet acceleration potential

for two-dimensional flow is obtained by first returning to the pulsating

source acceleration potential, Equation (A-15) and integrating out the

spanwvise or y-dependence. Thus for two-dimensional flow the

acceleration potential for the pulsating scurce becomes

1 ® qg('r {(¥) ) dy
m

Ty

¢

¥ (x,25%) = - =
s
Vi + B2 ° + 20

0 qEKT(Y) ) dy

YS(XaZEt) = = —J;— j‘
- \lx‘2 + g2(y° + 2°)

Now from Equation (A-13)

ar = - L ay
a.
* \/xe r 3R + 28

and

~e
2 :
y = \/%(’G"T)Q-EX*U(‘G "T)J .

so that Equation (A-26) becomes

b (4-26)

(A~27)

(A-28)
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a jo q, (1) dr

— \/;i(t - - x - Ut - 1) -

(A-29)

where

ettty [ F g ] (4-30)

2
qnﬁ

and_TO represents the time at which the lasgt disturbance arriving
at the point (x,z) at time t left the source.

If the source is considered to be pulsating harmonically, then

afr) =q " (A-31)
and
- T )
& q o iwr
¥ (x,z3t) = - 5 ‘[ £ dr {(a~32)

RN E O S SRR TR L

In order to simplify the above integral let

ama2(t -T) +Mx

v = (A-33)

X2 + 8222
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Equation {A-32) then becomes

iw [t + (M?x/aau)] ® _ )
I o iry
¥ (x,z3t) = - Egh-e —_————— v
) e 1 5
v~ 1
) (A-3k)
c - wMé 2 4 62 2
U B /

But the integral in Fquation (A-34) is a known representation of the

Hankel function H£2)(g), i.e.

® Y ir . (2)
Il v =- T e) (A-35)

v -1
so that Fquation (A-34) becomes

iw [t + (sz/aau)]

Ys(x,z;t) = %% e ng)(_g% : x2 + B2 22 ) (A-36)

The transformation to a doublet is now made as before by
placing a sink above the x-axis, a source below the x-axis and letting

the distance between the twc approach zero while holding the resultant

strength constant. The acceleraticn potential for the pulsating doublet
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is thus given by

t) = M E. €, 3

YD(K’Z’t) T gm0 [Ysink(x’Z - Z’t) * Tsource(x’z * 2? t) ]
b (A-37)
) ¥ (x,2 +& 5 ¢) =¥ (x,2 - & ¢)

Loy lim /= g 7?2 2’ s’ 2
YD(x,z,t) = o (eq ) " /
where
_ i B 5 7 O
Ys(x,zgt) = ﬁg e Hée)( ﬁfg-\}x + 8”7 z ) (A-38)

Letting Upb represent the magnitude of the doublet strength the
acceleration potential for a pulsating doublen at the origin of a
two-dimensional flow field is given by
¥
Yo (x,25t) = Uy 5= (A-39)

The transformation to a doublet located at the general point

(€,¢) is then made as before to give

. J
¥ (x,25t) = Upy %-Z-{ 5 e 7% ("iM—g \/(x-g)2+52(z-g)2)}
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The acceleration potehtial has thus been developed for a
harmenically pulsating doublet in both a three~dimensional and a
two-dimensional uniform compressible stream. These basic solutions

of the linearized acceleration potential equation provide the starting

point for many unsteady compressible flow analyses.




APPENDIX B

RELATTONSHIP BETWEEN THE DOUBLET DISTRIBUTION
AND THE PRESSURE DISTRIRUTION

In this sppendix the relationship between the strength of the
pulssting doublet distributions on the reference airfeoil and the
"wake sirfoils" shown in Figure 3 and the pressure distribution on the
reference airfoil is developed. This relationship is desirable since
it is uwltimately the pressure distribution on the reference asirfoil
which is used to determine the 1ift and moment on the ajirfoil.

Introducing the quantities defined by Equation (8) the

acceleration potential may be written as

110 (x-¢) /87D

iwt
¥(x,23%) = EE e { I pD e (B-1)

R S R )

o Q{:‘l i‘fq + i[2mnM2(nQ + q)/BgQ] b img(x-g)/aab

+\Z L [ up(8) e
n=o g=1

~b
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.o 4@ _\/rk(x-§) 2 e+ q) ] + B [kz + (nQ + q) khJ ) dg

aZO

®  onm/p® b i (x-2) /8%
+ z el J F-"D(g) = :

=D
n=

) ([ s ] 2 (B n] ) )

Let

.2 2
_ ?MQ_\/ (%} + p° (%) (B~2)

then

BHC(F)(W') dHéz) (w') oW’

ST a5 (B-3)

The Hankel function satisfies a recurrence relation given by Lebedev

[34] as

1(2) (5 “%H\(,P)(Z) - (p)(z)

dzv
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so that finally

aﬂée)(W')
3z

2 18 (o) (8-5)

£
&
(3%
5

Similarily by letting

3
¥ = ‘:—2-\/[1‘(’;'5) + 208 (g + Q)J PR g w]
> (B-6)
2 2
w = ;_Ié_ \/ [k_LE.lX; + 21'1'!11'11] + 52 [‘}‘:% + HQ,kh] )

the other paritial derivatives appearing in Equation (B-1) may be

evalusted as

(2)
2 () 2 [ (et ]

= = 4 H (WH
dz UBe W 1

S (B-T)

aHé2)(ww) _ wM? [ + anh] Hie)( P

D7 B B )
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Using these results the total acceleration potential becomes

¥(x,z3t) =

iwt ikM?(X'g)/sz (@), ,
N 2M? b H 77 (w?)

1Y+ il2mf (g + q)/BEQ] .
. q Eﬂ + {nQ + q) kh]

wt
2

U

E ~18
D
[\*’_1|l_.

al

I

q

11 (x-2) /6%

b

'J “‘D(g) e

£ ()
s &

o i2nm /B

.} . [%E + anh]

b ikM?(x‘g)/ﬁzb Hiz)(ww)

* I I-LD(E) e — &

1

J. J

Now as z approaches zero from eilther the upper half plane or the lower
half plane the integrands of the second and third terms are well

behaved and these terms remain finite. The first term, however,

approaches zero except at the point £=x vhere the integrand becomes

infinite. This condition will now be investigated in detail. Let
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N 1 (x-£) /67D 1) (1)
I=2z j up(8) e — at (8-9)
b W

When z is allowed to approach zZero isolate the peint £=x with a strip

of length 2¢ sufficiently small so that the continucus functions

11 (x-5) /8%

I_I,D(g) and e can be replaced by their values at the center

of the interval, i.e.

‘m im X ikMz(x-g)fBZb H(2)(w')
o T lzio { z Jb euD(g) e g ag (B-10)

xhe HLE) (i)

+ 7 p,D(x) J — &

X=¢

b imf(x-g)/aab H](_E) (wt) 5

*+e Le up () = g }

The limit of the first and third term of Equation (B-10)} is zero and
the value of w' in the second term is very small throughout the integra-
tion range so that the Hankel function can be replaced by its asymptotic

representation given by Lebedev [34] as

2 2i
H£ )(w') === when w' =0 (B-11)
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When z is allowed to approach zero from the upper half plane

let

1i \
Iy = zi2+ 1
y  (B-12)
(2)
xhe H)(w')
Ty = up) e = ] A )

/

Substituting the asympiotice representation of the Hankel function

R S

o SIS R (D) ]

This integral can be evaluated to give

I, = i—% g (2) 228 Jan” (B_e - ten™t (ﬂ—;) } (B-14)

or

‘o3, 2
1. = 21@ b
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Similarily when z is allowed to approach zero from the lower half plane

let
_ lim
I, = - I (B-16)
then
2132 1im 1/e AL /=6
G2 B et () e ()] e
and

iy
I, = - - ) (8-18)

L &

The acceleration potential, ?(x,0+;t), on the upper surface

of the reference airfoll may now be written as

v(x,075t) = { [21 ] (B-19)

S Q'-l

iy +i[ an?(n 2 \
mM-? Z ze ¥ 2 Q+q)/87Q] Kn“‘l) “‘]

n=o q=1

[\)




b ) 10 (x£ ) /85D Hie) (W)

* (g i &3
'L; "D © W
R r— b 11 (x-5) /6% L2 (7)
- ﬁz z e (nQkh) J. uD(g) € -lT
U8t o b W
where

. - 2 2
= ia;rél W = ME\/LK(Z’; E) " Eam (nQ + q):l + Bg-ir(nQ +q) k_h]
. L
. 2 .2
- iircn)' w-"w = %\/ E@ + 2111'[111] + Beinwl)

p
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a |

\

Y (B-20)

Similarily the acceleration potential, ¥(x,0 ;t), on the lower surface

of the reference airfeoil is given by

- iv Wt B2 o012
¥(x,075%) = 5 e {- ﬁése [- .y

:l pplx)

1y, + ilemi (n+q) /6°0)

[(=a + 0]

(B~21)



b 10 (x-€) /8% Hie) (W)

’ J:b wplE) e g

" senmit /8" f(n0) 6% (2),;
u)Mz — iZnmmM /B b 1 kN (x g)/ﬁ H(Q)(w.w)
- T ' Qkh 1
82 I£5E { n ) Ib UD(g) e = ag }

The pressure on the reference airloil is finally obtalned by
using the relation between pressure and the acceleration potential,

Equation (3). TFor the upper surface of the reference airfoil

+
pylxst) = p, = - p ¥(x,0;:¢t) (1-22)

and for the lower surface

p(x38) - p_ = -0, ¥(x,075t) (B-23)

L

tae pressure differential across the reference airfoil will be Acnicted

oy

ap, (x38) = py(xst) - py (x3t)

(B-2h)

r + -
apy (23%) = - o | ¥(x,0758) - ¥(x,0 ;t)]




substituting the acceleration potential expressions

iwt 2 2 32
iU w M-\ /248 T
pp (x5t} = -p_ |77 e (- = . b (36} (B-29)
. w | I8 UeBL)KkzMa)D
iwt P
_ it . (_ N ) ( PAIZYT L (1) ]
e UEB‘2 ]:21\-12 /o
Then coliecting terms
_ igt )
apa(x;t) =-p U pD(X} e (B=2E)

Since the pressure oscillates simple harmonically

- j. t - Py
bp, (x3t) = ap (x) & (1-27)

+hen
8pg(x} = = o U py(x) CLnB)
or
ap, (x)
i i (B-29)
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The relationship is thus established between the strength of
the pulsating doublet distributions on the reference ajrfoil and the

"wake airfoils" of Figure 3 and the pressure differentisl across the

reference airfoil.
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APPENDIX C

EVALUATION OF THE INTEGRAL LEADING TO THE KERNEL
OF THE DOWNWASH INTEGRAIL EQUATTICNW
The three interior integrals of Equation (18) may be evalusated
to produce the kernel of the downwash integral equation, Equation (22).
A generalized integral which encompasses all three of these integrals
will be evaluated in this appendix.

Consider the integral

ik(g'-g) /8 2
rr [ 0 (P S ] )

32"
(¢-1)

where A and B are constants with respect to the integration., A
eritical step in the evaluation of this integral is the use of a
partial differential. equation which has been used by other investigators
(see e.g. References [15,36]) to determine the airloads on a two-
dimensional fixed-wing airfoil oscillating in a compressible medium.

This equation is derived in Appendix D where it is shown that

gz aaﬂéz)(c) D) o

=3 s+t H, () =0 (c-2)
Z
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and

c- iP5

Change varisbles in Rguation (C-1) by letting

k(g-g) k(gé-g) . A 3
? (c-3)
Xz _ kg
--b— = ? + B /

Equation (C-1) then becomes

uiA/Bz x Sk(Fo 2
- I +(bA/k)e k(E-€)/80 2 i M_z\/[ E gzj . 6P [k )

-—rr)

(c-k)

The differential Equation (C-2) may now be subsbituted to yield

a2 = R
A ease) RER)/ED 2 ()

I = -e B e 5 & (c-5)
—c ag

2
w

~47 |

fa =

x+(bAfs)  ik(E-g)/p%D ) |
e Hézj(g) ag }
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Letting

€, =8 - ¢ (C-6)

the equation becomes

. 2
-1A/B 5 (x-€) + (bA/k) ikgo/azb BEHCEQ)(Q- )
I =-e { B I e — 5 %,
e ag,
(c-7)
(x-€)} + (bA/K) | 2
2 ikE /B (2},
’ Bgai - e Hy (©) o }
where

-l ] 2[R T

A pair of integrations by parts on the first integral of Equation {C-7)

yields the result that

-1 /5° 1 /87D 4 (2) o2y
Ig = - e { Be [e —(B'EE-;———- (C-B)_
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B
&
i
™
o
LA
I

_ (x-£) + (bA/k)
8% ° T e

(2-g) + (bA/k) $kE /Bab
e o wRE) ag |

G
:

The limits of the first term in Equation (C-8) can be evaluated using

the properties of Hankel functions given by Lebedev [34] so that

% PSR VISRl ST e

g 2

T

1 ik(x-g)/BQb j _2 = 2
SN (P T R [E T

2
2 -14/8 (x-€) + (bA/K) ikgo/ﬁab 2

oL 5T TS T e,




138

The final desired result is obtained by returning to the original

varisbhles and letting

=3
]
o=
Al

in the integral of Equation {€~9). Thus

e A R R R

ik(x-£) Bab 2 2
SOE ) (P T T

. ik(x-g)/Bab (e 2
i 1) G55+ 4 v 2 s])

el o [kx-£)/] + A L2 -2
i SV D 1P o [ ex]

acle
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APPENDIX D

DEVELOPMENT OF A USEFUL, PARTIAL
DIFFERENTIAL EQUATION

In this appendix = partial differential equation is developed
vhich proves useful in reducing the kernel of the downwash integral
equation for two-dimensional airfoils coscillating in a compressible
stream. The equation was first used by investigators (sece e.g.
References [15,36]) considering oscillating fixed wing type airfoils,
but as shown in Appendix C the equaticn is equally useful when
considering oscillating rotary wing airfoils.

The governinhg linearized equation for the acceleration potential

in two-dimensional, unsteady, compressible flow may be written as

1 39y oM 3%y .2 ?v 2%y
T e tT o8 =Tz (D-1)
& at a_ Axot o 3z
If the transformation
Tt =t + 51 X 3
B a
=]
= -5 5 (p-2)
B a_
A
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is made Equation (D-2) becomes

Q¥ 3y 3y (D-3)

Now introduce the polar c¢coordinates

{ =1 cos B \
M= r sin 8
> (D-b)
r = c2+'ﬂgz ;‘ \/:ce—t-,szzg
Ba_
- ) - a2
= =1
8 tan (!; an = /l /
Equation (D-3) then becomes
Qi:ﬁ.{..:';_ﬁ_l.g:_ai. (D-5)
S o VO S
Assuming a solution of the form
¥(F,8,1) = T & R(¥) (0-6)

and substituting in Equation (D-5) it is found that R(r) satisfies

the equation
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2
%+% 2‘5_—{+(w2—%§-)3=0 (D~7)
dr r dr r

which is Bessel's differential equation of order n. Taking the Hankel
T -

functions of the first and second kinds and order n (Hé )(wr) and

Hée)(mf) respectively) as the fundamental solutions of Equation (D-7),

the general solution of Equation (D-5) becomes

¥(7,6,7) = T Z 08 [Anﬂlil)(wa - BnHr(lz)(wf) ] (D-8)

n=0

Thus a particular solution of Eguation (D-5) would be
- 2 - i
¥ (F,8,1) = Hc(, )(wr) R (D-9)

But this is also a particular sclution of Ecuation {D-3) so that

2 . 2 o ]
2’5 [Hé'?)(w;) ] = :? [Héz)(mﬁ 7] + -:?1-2-{}1&2)(&) &) (p-10)
. )

ar

2 2 -
- ngée)(wf) = sgﬁ-[Hé2)(wf)] G 2——-[Hée)(w;): (D-11)

2
1




Returning to the original ccordinates

1h2

2 2
52 23_5 ng) ( 2w < + 32 22) + g-—-a- H£2) (-—-ép—— X * 52 e )
25 Ba_ z 87a_
(D-12)
2) w__[.2 2 2
+ = H( ——jx +B z =0
EQai fe) (BEam )
Introducing the reduced frequency parameter
= b
k=3
Equetion {D-12) becomes
2 e 2 2 : 2 2
21_(2)1‘7_“\/32 2 (2NN 3 (@) (mM frx 2 (z
g 2Ho 2 ('b) * P (b>)+ 2Ho (2 \'b) B (b))
fek:s g oz B
(D-13)
2 2 2
(@) fix 22\ Y o
P B (E) +6(f) ) -0
Ba, B
If the change of varisbles
E=x+¢ (D-14)
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is made and E is considered to be constant then Equation (D-1L)

becomes

2 = 2 e
2 (YER) 2 () )

v (8 ED 4 ()

a

2 - 2 2
5 (@ R G )

B a

which is the desired resuli.
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APPENDIX E
ANATYTICAL COMPARTSON WITH THE RESULTS OF JONES AND RAO

Since Jones and Rao [24] have presented an analysis of
essentially the same aerodynamic problem considered in the present
research but incorporating a different mathematicel model and approach
to the problem, it is desirable to make 2 comparison of thelr downwash
equation and Equation (18), This comparison is made in the present
appendix by masnipulating Fquation (18) and reducing it to such a form
that it can be readily identified with the downwash equation given in
Reference [2L],

In the inner integrals of Equation (18) meke the change of

variables

E, =X ~E' +§ (E-1)

and then reverse the order of integration. The downwash then becomes

ik /o b ik(x-§o)/32b

. 2 2
- _ ie a 2) kM K= g 2f = \\_
w(x,Z)--W Ibe _2H \/ — “3(%) /

(E~2)
. - ixg fo
’ I ap,(€) e dg dg

-
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D (5 D)

3z B

1KE /b
g df

© Q-1 iy, i[2an?(nQ+Q)f32Q] b ik(x"go)/ﬁab

bT T e L], e

n=c q=l ”

(2) M \/[ x~ go) 2TT1nrnQ+q)] + 52 [KZ (nQ+q) kh]g )

g 1KE /o
J © ﬁpa(g) e dg dgo

w ik( ~E )/b '
+J . *%0 (2) M \/[ k(x-€0) ‘gm{ nQ+q) FBel:l%i-(nQ'*‘Q)kh]z)

. I i 4, (€) eikg/b dg dg, }
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C e R ey
+z e {Ibe O

n=1
2
a (2) i \/ k(x-go) + Z2om |+ kz
- B” [ 22 + nqun
@ (2T e+ [ 4 0] )
g ik /b
Jom,@ e T aa,
“b
© ik(x-g ) /6D 2 (2) 2
o[ e =, (= [Etal s onn] + 62 [52 4 ] )
b 18 /o
SR ACEIE X3 }ﬂ
Now Jones and Rao introduce a digtribution function K(x) which is
related to m}a(x) as shown below
[ 1 —ikX/Bab - ikE/b
- _E e ‘[b apa(g) e d§ for x<b
K(x) = ¢ (E-3)
-ikx/Bab b sk /o
\. Eﬁ'ﬁ e J, ﬁﬁa(g) e d§ for x>0
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Using this distribution function the downwash equation becomes

iksz/ Bab

w(x,z) = % e { i: K(EO) (E-4)
2 2 2
N R C
© Q-1 1Y + 1[2an?(nQ+q)/B Q]
+ z Ze I K(go)
n=o0 g=1 -b
”: (2) M \/ [_ﬁﬁal + 2 (nQ.+q):| +p [-— + (nQ+q)1m:| ) aE

120 Be
] xe)

n=l ~b

o0
+Ze

2

- ([l ] B v0n] ) )

oz




This is exactly the downwash equation one would obtain by setting
up Jones and Rac's approach using the model of Pigure 3. However to
3ee how the equation can be reduced to downwash equation of

Reference [24] it is necessary to return to the form of Equation (E-2).

First note that Jones and Rao introduce more notation for K(x) in the

wake by defining

N /g% b 1kE /b
ool%) = - = jb MB,(€) e ag  (B-5)

Now define the parameters

which characterize the distance by which the "wake airfoils" represent-
ing previcus passages of blades other than the reference blade and
previous passages of the reference blade respectively lead the reference
airfoil. By introducing these parameters and making the appropriate

changes of variables Equation (E-2) may be written as follows
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in 1kM?x/sz ®
W(x,2) = g5 e { fb K(g,) o (®-7)

P R )

® Q-1 i¥ - i[2m(nQ+q)/Q] =

> -
+Wm@)2 Ze J‘eqﬂm
n=o g=1 Lx0) /o] - (D /)

= s é‘e) 1;—%\/5 +8° [2+ (nQ-f-q)h]E ) &

o o

. , 2
+ bKoo(x) ze-:Lann I e-:l'kg/5

= L(xb)/0] - (D,/b)

. 32 ?) I‘M\/g +p° [E+ th] JE:

® Q-1 [Ge) /o) + (D, /o)

ibe 'lbc/b iy "'1[2TTID(HQ+Q)/Q] I ilfﬂ/ﬁz
e

e L L

n=o g=l [ (x+b)/b] + (D7)
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: 32 r?) E“\/n ¢ 62 [E + mv)n] )]‘ a5 (6) S ag
. © {x-b D
+ ibe-lkx/b T"e-i2nnn1I[ /o] + n/b) eikﬂ/ﬂe
bp_UB n=1 [ (x+0)/p] + (Dn/b)

X-bN+D_
" ap,(8) /P ag o

S (SR [Ee] ) [

Now if all the "wake airfoils" of Figure 3 are allowed to lead the

reference airfoil by an infinite distence, i.e. if
(E-8)

then the mathematical model used in the present study would agree with
the model used by Jones and Rac and hence the downwash equations from

both approaches should agree. Letting an and Dn approach infinity

Bguation (E-7) becomes




B TY ) S
w(xz)—]]i—e}d & {“[b K(go)

2

S ) o )

= 9l gy - ilem(mar) /@] L 2
T~ _'k
+ K (x) 2 ) e d J o IKE/R
n=o q=l -

Q)WJ§+¥B+W@Q)@

s, -
+ bKOO(x) YE e ~12nm J e-lkg/B

n=l =

2y 5P kM\/§ " [ eon] ) as )
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(£-9)
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Introducing the nondimensional notation of Reference [24]

(E-10)

Equation (E-9) may be written

o s -woxn] - oo K 0 (- A

where

“donm , © -ik(z - X)/8°
2 Wi(X,Z) = KOD(X) Z e j e (E-12)
n=1 -

im (2) EM\I(T-‘—X) + (% +I1Qﬁh) )]d_.

Sl

A T C VY B

+K(X)ZZ e

n=o g=1

4

ZE [ (¥ \/( - %)% [z + (mara)en)® ) ] =




Except for the sign this is precisely the downwash equation given by
Jones and Rao, The difference in sign is accounted for by the fact
that their z-axis is opposite to that used here, and thus their dowm-
wash should be opposite in sign to that of Egquation (E-12).

Therefore if the mathematical model used in the present study
is modified to agree with that of Jones and Rao then the dowmwash
equation is the same for both cases and hence the léads caleulated
must be the same for both cases. However the difference in models
can cause considerable differences in loads for those cases where the
flow parameters dictate that the "wake airfoils" of Figure 3 lead
the reference airfoil by a relatively short distance., A discussion of

this situstion is presented in Chapter IV along with a numerical

comparison of the two methods.
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APPENDIX ¥
REDUCTICH OF THE KERNEL FOR ZERO MACH NUMBER

The downwash integral equation developed in Chapter II is for
compresslble flow over the model shown in Figure 3. As in most
compressible {low analyses, it is convenient in the present study to
reduce the analysis for the case of zerc Mach number in order to
facilitate comparison with known incompressible results and thus cbtain
g partial check of the analysis. 1In the present research this is
accomplished by reducing the kernel of the downwash integral equation
presented in Chapter IT for zero Mach number and comparing the result-
ing incompressible dowawash integral equation with the dowanwash equa-
tion given by Loewy [2]. The reduction of the compressible flow kernel
for zero Mach number is presented in this appendix.

The kernel of the compressible downwash integral equation is
given by Equation (21) of Chapter II and is repeated here for complete-

ness

. (g 12 2
i, M) ety /st g ey

(F-1)

P ([ 6 [ ) o e
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e 110 (x-g) /8% @ (fg\[[kgx" :]2 L 7 )

g ciklx-g)/o L k(x-g)/b Lo 02 2
ko ) /6 4(2) G:@-\/f-»sg i ey

First consider the integral appearing in Equation (F-1). For small
arguments the Hankel function of the second kind and order zero can be

represented by its asymptotic value given by Lebedev [34] as

(2)()y ., 28 40 2 .
H, (v)Nﬁmv as v -0 {r-2)

Making this substitution the integral becomes

. . oms o R(x-E)/D L2

lim .. _ lim ( 24 in/e 2

M—»oI"M—’oLnL © Jt.nM > 5 rpg2 dﬂ}(F'3)
S e ks
B

Integrating by parts

Tin _ _ lim [ pgo  iE(x-€)/ X 2

Moo T T Moo { T in (F-4)

2 2
8T s 2 [
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c o fa?
NS LA WL
J

T d n2 . 62 (%?)2 an }

How the Hankel function of the second kind and order one has

the asymptotic representation given by Lebedev [3&] as

Hig)(v) ~.§% as v =0 (P-5)

Malking this substitution along with Equations (F-2) and (F-k),

Equation (F-1) becomes for small M

k(e ikM?(x-g)/ng

lim [ B L b ] ©

2 2 - 2
] 6 5

it

lim k!g-g} kz
M-*OK[M’ P ’b:l

(F-6)
1 ikM?(X-g)/sz n j2)
T2 C W TEGa) P, 2 kP
= [ o ) T8 [To'ﬂ

Ln 2
-
L[0T 2 [
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. . 2
N i_& R —lk(x-g)/b I k(x-g)/b -n elﬂ/ﬁ

” = 12 +s(kzzdn}

Thus in the limit as M - ¢, B — 1 and the kernel becomes

k!x-g)
K [0’ ELE:El. kz = - x b (F_T)

b ) 2 [_K_:El] [k ]

-ik(x-g) /b (x-g) 3
o ‘Lk o (kz) 2
'ﬂ +\3

The form of the zero Mach nunber kernel given by Equation (F-7)
is the form which is useful when compsrison is made with Loewy's (2]
results. However, the integral which appears in Equation (F-7) can be
evaluated in terms of known transcendental funztions. This is

accomplished as follows. Pirst split the integral into two parts

i—f —H—————--2—c111+f —Te g (F-8)

~ee (e R
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Making an appropriate change of variables the first integral of

Equation (F-8) may be written

© @ .

Il - . I v COS v2 dv + i I vsinyv .o (F-9)
o) v2 + (Eg o v2 + k2
b \b

Now from Erdélyi, et al. [37]

at = %— [e ax E, (ax) - e F (ax) (F-10)

Jm t cos xt

o a? + t2

#
where El(x) and B (x) are the exponential and modified exponential

integrals respectively. Then from Dwight [38]

oo L]
i L0 B ax = L™ (F-11)
a +x

Using these results Equation (F-9) becomes

1 - B[ u () o R g ()] ip @-12)

Turning now to the second integral of Equation (F-8) let

k(x-E) N
I. = f * /b __H_Ei___, an (F-l3)
e o 2 kz 2
1+ (%)




From Abramowitz and Stegun [39]

e B El(-a -ix) + e” El(a -ix)] + constant  (F-14)

so that

k{x-€)

kz kz S

-

kz 1=
= %‘[e bEl('%E"ﬂ>+eb El(}%"in)]’
T=0

Evaluating at the limite and using the fact that

El(ux - i0) = - E*(x) + im

from Abramowitz and Stegun [39], Equation (F-15) becomes

__1f -kz/b kz . k(x-€) kz /b kz .kgx-gg}
51° El\__"b':L B ]*e El[?"‘ b :J

2

(F-17)

-kz/b kz /b

* [ka\ . . 1 Kz
tze ['E (3‘)+1"J+2e EZL<_

b
Using the above results the integral of Equation (F-8) becomes

-z /b ~kz/b
I=ine -%{e Ell:-.liz-..ilﬂx_;ﬁ.)_]

b

P e/ g [E L Ka)) )
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and finslly the kernel given by Equation (F-7) becomes

k(x-g) -(kz/b) -i[x(x-E) /b)

L

b
o 2 -]
ESE|

(F-19)

-(kz/p) - i[k(x-€)/b .
_ﬁe /b [ g/]El[_%E_iﬂz‘;—-gl]

(kz/b) -i[k(x-€)/b]
. E [E -3 MI
1Lk b .

o

The case where 2 = 0 is also of interest because it is this
case which gives the kernel for the integral representing the downwash
cauged by the reference airfoil itself, Furthermore, this is the entire
kernel of the downwash integral equation for a two-dimensional fixed

wing airfoil, If z is set equal to zero in Equation (F-7) the kernel

becomes
-1 . -k(x-g) /b k(x-E) /o i1
X [O; EL%:QL, O} = n_%;-[k(x-g)/bj + é% e lm sﬁ_ an
(7-20)

The integrsl appearing in this kernel may be written as

o k(x- k{x~ .
I=J Xg)/bLﬁTlcm«LiI (x2)/o E-J;%—Ii-d’n (F-21)

- -
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Now the sine and cosine integrals are defined respectively by

Lebedev [34] as

? sin t )
S8i(z) =_[ L dt for all =z
]
Y (F-22)
z cos
Ci(z)=_f —— it for z z O
® (undefined for z < Q) /

The second integral of Equation (F«21) may be written as

© . k(x-€)/v .
_ gin w gin T _
Iz—jo === du +IO Tlcl'r] (F-23)
go that
= aj . T R(X-E)
I, = 8i(e) + 8i L—ig—gl]
(F-24)
ST g [B(x-E)
I, =T+si [ : ]

By changing varisbles the first integral of Equation {(F-21) may be

written in the following forms

“k(x-g) /b
1, = L EE-E—Q ac (F-25)
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k(x-€) /b ~k(x-£) /b
I. = Co8 L g7 + cos [ (F-26)
. "L c Ik(x—g)/b A

The second integral of Equation (F-26) is seen to be zerc because it

is the integral of an odd function over an even infterval., Now if

@ is negative then from Equation (F-25)

I, =ci U@H (F-27)

end if 5(%5)- is positive the value of I. is given by Equation (F-26)

1

as
T. =i l:k_(x_‘i)_] (P-28)
1 b

Thus for all values of @ the integral may be written as

I, =01 [Iﬁ%‘ﬁlu (F-29)

Using the sbove evaluations of the integrals appearing in Equation

(F~21) the kernel gilven in Equation (F-20) becomes

- y , ~k(x-g)/b )
k[0, HERL o] =- 2 g i ci [|HE5L
b

(F-30)

+1g+131[5§—”9-]}
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The reduction for zero Mach number of the kernel given by
Equation {21) of Chapter II for the compressible flow downwash integral
equation is thus completed, 3By using this reduced kernel, the
compressible downwash integral equation developed for the flow model
of Figure 3 becomes the downwash equation for incompressible fiow over
the model of Figure 3. Thils reduction then permits comparison with

Loewy's incompressible results and hence a partial check of the

compressible flow enalysis.




164

AFPENDIX G
ANATYTICAL COMPARISON WITH LOEWY'S RESULTS

In most compressible flow analyses it is beneficial at some
point to make the reduction to zero Mach number so that a comparison
can be made with known incompressible results. In this appendix the
dovmwash integral eguation developed in Chapter IT for two-dimensional
rotary wings in compressible flow is reduced flor zero Mach number to
a form which can readily be compared with the downwash expression
given by Loewy [2] for incompressible flow. This comparison indicates
anslytically the effect of the different flow models used in the two
analyses.

Using the kernel developed in Appendix F for zero Mach number
the downwash integral equation developed in Chapter II becomes for

incompressible flow

b

) = o LJ 8B, (8) { [xtx-)/0]™ (6-1)

@

- ie

“ik(x£€)/o o k(z-€)/o .
| ,I-]-]:e Tan }ae

-
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o Q-1 l‘f b - g%:;)_ + 2TT(1’1Q+(1) 8_

z Z J. L\‘Pa(g) { Kk 2 5
n=o0 q=1 [J%il + 2n{nQ+q) g-:l + [(nQ+q)kh]
A(leg) ] + o) 1) (ED/] + el o)

| an} ag
L . il
1° + [(n@+q)kh]

J_il
z _f ap (&) { * o
o [wi—-gl + 2nnm] [anq]
. -i{{k(x-g)/b] + 2nmm} {(x(x-) /o] + 2omn] g & 1 ﬂ
- ie Im n2 + (anh)2 an J a

In reducing Equation {G-1) to a form which can be compared
directly with the downwash equation given by Leoewy a generalized form
of the three chordwise integrals appearing in Equation (G-1) is first

considered. The generalized chordwise integral is given by

- k(x~E)
- ap,(€) { kA (6-2)

w me _ 2
~b [EL%—§)+ A] + B2
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A{lk(xg) o] + 4}  [EEE)RI A
1" + B

bt——ﬂ

vhere A and B are constants with respect to the integrations.

For incompressible flow the pressure differential across the
reference airfoil, aﬁa(x), is related to the vorticity distripution,
;a(x) ; used by Loewy through the following equation given by

Bisplinghoff, Ashley, and Helfman [ 36]

8, (x)
p.U

A X
= -3, -2 [ 7. % (6-3)
b
Substituting Bquation {G-3) into Bquation (G-2)

b l:k :3{- * A] ~;,ﬂ,(g)
r--[ — (6-1)
p [k(xlgg) + A:l + B

ip b [k ?g + A § .
‘GDLJ = +A]2+32 [b Y,(0) g a

. .
i L[b -i{lk(x-g) /o] + 4] 5. L n—T‘:eB— an ag
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b g [k(x-E)/b] + & . 4N
Jb e-l{[k(x~§)fb] + A} I Ya(g) ar I e an de

-b - N +B

e

If the triple integral appearing in Equation {(G-4) is integrated by

parts once then Equation (G-L) reduces %o

'b g.;zg-l + A _
I = .-j 7,(8) ag (G-5)
-h

2
[El%fil + A] + B

(k(x-b)/0] + 4

. = b - ein
1t lO0)/) AT 105 o] [ L

n +B

or changing varisbles

-(bA/K)+b k(x-}

b
-(bA/k) -b Ekgx-g1]2 + Bz

I=-

v,(€) ag (G-6)

~1kE /b

k(x-E)

g

T el 2

~(vA/k}+b [51%:5112 + B2
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Defining the total circulation given by Loewy as

ik . b
Fede [ 3,0 % (G-7)
b
Equation (G-6) becomes
-(bA/K) o k{x~r)
b -
I=- ,[ S v, (g) ag (a-8)
“(bA/K)-b  [kix-c)} p 8
(bA/K) L % QIJ -

T k(x€) -1kE /b
+1k T e J

b
~{bA/ %)+ ‘_ §§-g2

ag
e
2
T 4B
Before applying the result of Equation {G-8) to the downwash
equation, Equstion (G-l), the distance by which each "wske airfoil”
leads the reference airfoil will be defined, For the sirfeils

representing previous passsges of blades other than the reference blade

the distance is given by

- r -
an = 2r{nQ+g) ) (G-9)

vhere n is the revolution index and g is the blade index. For the

airfoils representing ﬁrevious passages of the reference blade the

distance is given by
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Dn = 2nmr (G-10)

Using the definitions given by Equations (G-9) and (G-10)
together with the result given by Equation {(G-8) with the proper
choices for the constants A and B the downwash equation, BEquation (G-1),

may be written as follows

] WA (g) ag _-ixe/
wa(X) = - 3= . - ixT I —-(—m ag (G-11)
w Q-1 i¥ - +b -
q ng (x-E} v, (§)
+Z L€ {I 2 )b,h2d§
n=o g=1 -an-b (x-g)" + [(nQ+q)bh]
b ;iQﬂm(nQ+q)/Q I (x-) e-ikgfb . }

D +b(x-§)2 + [ (na+q)th]®
ng

—D +b

. Z (7 &9 5,0

n=1 -D b (x-g) + (nQbh)2

[
[
2
[

~i2nmm w© <~ e-ikg/b
) {x-g) - a }ﬂ

I s (x-€)% + (nqbn)
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From Bquation (G-11) the difference between the flow model
used by Loewy and the flow model used in the present research becomes
apparent, The most cbvious dissimilarities hetween this equation and
the downwash equation given by Loewy are the first integrals in each
of the summations of Equation (G-11). These integrals represent the
downwash asscciated with the bound vorticity of each of the wake
alrfoils and hence the terms do not appear in Loewy's downwash
equation, In Loewy's flow model the wsake layers are made up of shed
vorticity from the reference blade and from other blades of the rotor.
Since these wake layers are allowed by Loewy <o extend from minus
infinity te plus infinity the sumation terms which appear in Leoewy's
downwash eguation are shed veorticity terms only and are similar to
the second terms appearing in each of the summations of Equation (G-11)}.

The flow model being used in the present research, shown in
Figure 3, can be made to agree with that used by Loewy,.shown in
Figure 2, by forcing each of the "wake airfoils" of Figure 3 to lead

the reference airfoil by an infinite disftance. If this is done then

an -
(G-12)
D, ==

and Equation (G-11) becomes

Leb 5,00 L
- a e q,= e
Wa(x) = -5 { Ib -(;{:@— df - ikI Jb 'TX—‘_gT‘" dg (G-13)
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= Q-1 iy, - ilem(n@tq)/Q] = -1k fo
L kT N (x-E) e
- ikl Z Z’ e > 5 ag
n=o g=1 - (x”g) + [(nQ"'q}bh]
@ w () ~1XE fb
- 11F =1, 2nmm x=-£) ¢ ag

n=1

vhichh 1s exactly the downwash equation obtained by Loewy.

It has thus been shown that if the flow model used by Loewy
and the flow model used in the present dissertation are made to agree,
then the downwash equation obtained from the present approach for
zero Mach number agrees with thet given by Loewy. This agreement of
the downwash equations then implies agreement of the unstesady aero-
dynamic loading on the reference airfoil obbained from the two different
approaches. If the flow models are nﬁt made to agree then the differences
between the two downwash equations are explained in terms of the bound

vorticity associsted with the "weke sirfoils” of Figure 3. The

numerical significance of these differences is presented in Chapter IV.
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APPENDIX H

CONVERGENCE OF THE WAKE SERIES

The integral equeticon for the downwash at the reference airfoil
section of a helicaopter rotor blade is developed in terms of the
pressure differential across that section in Chapter IX. This integral
equation is shown to contein an infinite series which must be truncated
in the numerical evaluation of the integral equation. Consequently the
question of convergence of this series is of utmost importance. In
this gppendix the convergence of the series is investigated and it is
shown that the series converges except for a certain combination of
the aerodynamic parameters.

In Chapter II it is shown that the downwash integral eguation
for the pressure distribution on the reference airfoil of an equivalent

single bladed rotor can be written as

(H-1)

L

b
w(x) =-pw02{[baﬁa(§)ﬁ[m,§x—;§)-,o] d

-]

=z b _
+z J[' ap,(8) X [M, 1513%'51 + 2nmm, nkh] dg }
n=l -b

where the kernels of the above integrals sre given by Equation (21).

If the integration and summation operations in the second term
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of Equation (H-1) are reversed then Equation (H-1) may be written as

W) = - iﬁz— {J'z ap,(e) x [, EEEL 07 g (1-2)
+ ij 85,(8) %, [0, KEEL & anm, e ] a }

where

Gk 1" (x-g) /6 i, - 5, + ie-ik(x-g)/ﬁab ‘] -

and

5 = i {[H?Q'*QMJ/\/ [g?)-wmm]e%ammﬁ (H-14)

n=1

< 2 2 3 2o /32
) (T o]+ () ) o

i2rmut /p°

2 5 z
s, =z HC(}E) (;—42-\/[@ + emn] + (Bnkh ) )e (H-5)

n=1




17k

.ﬁ -i2nmm o (k(x-£}/b] + 2nm > 5\ in/el
5= e | e R

n=1

(H-6)

It should be noted here that the justification for reversing
the order of integretion and sumation accomplished above lies in the
fact that Equation (H-1) can be developed with the summetion either
inside or outside the integral, depending on the appreach taken. In
the present study Equation (H-1) was developed with the sunmation out-
gide the irtegral, while in e similer study by Carta [26] the equation
was developed with the summation inside tﬁe integral.

The series given by Bquations (H-4), (H-5), and (H-6) will now
be investigated in detail to determine under what conditions the series
converge, The approach taken parallels that used by Carta [267, since
these series are similar to the ones which he encountered. The
approach is to look at the terms in the series as the summstion index
becomes large and apply the results of the theorem appearing in

Appendix T. First congider the series Sl’ Define the parsmeter

;- bﬁ_d.z.\/[ﬂ;;_ﬂ oo+ (pmn) )

Then if the following are defined

2

ot = :—%\/ (2mn\)2 o (mm) (2-8)
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2
o () (2521 ]
D, = - )2 (H-9)
g
M 2 re(x-e)"?
. %9( [u); o
2ng
Equation (H-7) may be written as
P=21-rgn~\/1 +%(Dl+%]}2) (H-11)

For large values of n the radical in Equation (H-11) can be expanded

using the binomial theorem. Retaining conly the first two terms

. Lo oilp) ]
P = 2rrn [1 +5- (D, +1D,) | (H-12)

If 8, represents the nth term of Equation (H-U4), then for large

values of n

2D

2
2“1“[5—*”] 2.2
g 1 o i2nmuM” /B

m” . N (H-13)
() antn [2+ 55 0 + 5 D))

. H§2) (Zm;n [:L + EJI’T (Dl +%D2)] )
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For large values of the argument the Hankel function can be expanded

in a series given by Lebedev [34] as

W@ = T w5

8z 1082 (g-14)

Substituting this expansion into Equation (H-13) and retaining only

the first two terms

2D2J ~i{2ngn+2ngD, + (n'gDz/n) - (2J:rrrmM2/i32)]

nMei?m/u] [11 i —51-
{n [1 * %E (D, + iL'I De)]}3/2

g ~
in [nﬁe C3/2

(H-15)

.{1- 3L -

1énen |:1 o+ ;'—n (Dl + DE)]

Sinece n is assumed to be large, i D2 iz negligible compared to Dl and
—11—1 (Dl l ) is negligible compared to unity so that

(H=16)

aveidn/k] -ingd,  i2mnl (mf /6%) - ¢]
Sln ~ 1—;—-752 g?’ 5| € e

. [ N (20,/D)) a4 31(2]32/131)}

a7z * 32 (16n;;)n3f2 - (Lo )22
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Now the series containing the last three terms of Equation
(H-16) can be shown to have absolute convergence because the power of
n in the denominator ls greater than unity in each case. The
convergence of the series containing the first term, however, must be
determined by applying the following theorem which is proved in
Appendix I,

Consider the series

=+

ia
5= EZ an e o

n=1

It &, is a positive decreasing sequence approaching Zero monotonically
83 n increases indefinitely and if dn monotonically approaches nd where
d is a constant and is not egual to any intezral maltiple of 2n, the
series converges. If dn monctonically approaches nd where d is constant
and is egual to any integral multiple of 2m, or if dn is a constant or
agymptotically approaches a constant, the convergence or divergence of

the series depends on the behavior of the series

Applying this theorem, the series containing the first term of

Equation (H-16) will converge if

m

_a?-r;;éa §=0,1, 2, ... (H-17)
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and the series diverges if equality holds. Thus the original series

Sl will converge unless

I.EMZ— - -EI— -\/(2-”]]1)2 + (Bkh)a = § 6 =0, 1, 2, «vo (H-la)
52 2ﬁ52

Now deal with the series S, given by Equation (H-5}., Using
the notation given earlier, the nth term of the series, S2n’ becomes

for large values of n

1
1 + n DE)

o 8 [1 01 0, + 1) ¢

For large values of the srgument, the Hankel function can bhe approxi-

mated as follows

Hc()z)(z) = |2 . 'i[Z"(“/h)](l + -gl- + ) (H-20)

ma z.

Retaining only the first two terms of the expansion

/i 1{2m (" /§%) ~2rmg g (D, +(D,/0) 1)
elﬁ
Son ™~ TTAJB =

" Vel + & @ +20,)]

(H-21)

1
AR T
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Since n is assumed to be large, % D2 is negligible compared to D1 and

%H (D1 + % D2) is negligible compared to unity so that
il (/%) =ng D, ]
s = : o toml (“ME/BE)";][ L_ 3 ] (H-22)
2n "~ 1/2 172 3/2
m e l6ngn

The series containing the second term of the above equation can be
shown to have shsclute convergence because of the power of n in the
denominator. The convergence of the series containing the first term
of Bquation (H-22) is determined using the theorem appesring in
Appendix I. Applying the theorem, the series will converge excepl when

the relation
- =6 6§=0,1,2, ... (H-23}

mt
B2

is satisfied. Thus the series 82 will converge unless

- "'111—2\] (2mn)2 * (Eikh)2 55 §=0,1,2, veu (H-24)
2nd

nf”
52

which is the same as the divergence criterion found for the series Sl.

Turning to the third series, 83, given by Equation (H-6), the

nth term of the series is given by
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[k(x-§) /b]+2nm

. 2
_  =iZnm ym_ [-2 Z N /B
s3n =e L H (32 \]n + (Bnkh) ) e an
(H-25)
For large values of the index, n
o . 2
-i2nm 2)M 2 2 3
s3n~ e * L H(g )(;-2-\/1] + (Bnkh) \ e n/e an (H~26)
The integral appearing in Equation {H~26) can be evaluated as
© o 2

J‘ Hgg) (]%\fnz + (Bnkh) ) EN/BT g = pige ™ (H-27)
- B
Thus

8, ~ 2ie +kh  -32mm (1-28)

Applying the theorem appearing in Appendix I, the series 83 is seen
to converge for all values of the parameters.

Thus the series occurring in the downwash integral equation
are shown to converge except for those values of the parameters for

which the relation

m%g - -M—é- ‘\/(21'“]1)2 + (Bkh)2 = § 6§ =0, 1, 2, ... (H-29)
B 2nf
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is satisfied.

A condition similar to Bguation (H-29) was encountered by
Carta [26] when studying the compressible uﬁsteady flow over an infinite
cascade of airfoils, In Carta'’s study the cascade airfoils represented
compressor blades which sre present in the physical flow field of a
turbine engine. Fanti and Carta [40] were subsequently able to show
that their condition similar to Equation (H-29) corresponded physically
to an acoustic rescnance condition. However, in the present study the
"wake airfoils' of Figure 3 are not present in the physical helicopter
flow field and thus Equetion (H-29) should be interpreted as only a
mathematical instability associated with the flow model.

It should be noted here that the technique used in determining

the convergence of the seriesgs denoted by S and 8, is not applicable

l, 32, 3

in a general sense, Consider the series

and denote by ﬁn an asymptotic approximation for the 8 valid for large n,

say n > N-1. BSuppose that &n has the form

n n -
a ~1 -1 1l L
& =.(_7.)_+ .(_7)_4._.{-0(..)
n 172 n/2 n n

Then even though the series
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Y [+ G
an

converges , the original series will not converge because if one takes

the third term of the asymptotic expansion the series

L[ et

n=N

diverges.
This dilema does not arise, however, with the particular

examples investigated in this appendix. For the series denoted by

Sl’ SE’ and S3 the asymptotic representations for the a, are either of
the form
=-121nd 4 A B o( 1 )
e a = + +
n n1/2 n3/2 n3/2
vhere

and A and B are constants, or

-1nkh e—ianm

) -
a = 2ip e
0 B
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Now by applying the theorem given in Appendix 1 series of the

form
il i2ma
L S 50
-~ 1]

n=N

will converge provided 4 is not an integer. If 4 is an integer the

series diverges for s = 0 and converges for all s » 0. Further, series

of the form

w

2 -nkh _iZnmm
e =
n=f

¢clearly converge so that the coriginsal series dencted by Sl and 82

converge whenever

mf”

—Q_'-Q%ﬁ 6':0;1,2,3, "re
p

and the series denoted by 83 convergeg for all values of the parameters.
Finally, it should be pointed ocut that throughout this entire argument
it is implied that since the a, are bounded the sum

¥-1.

—
) e
n

n=1

can only produce a finite sum and hence cannct affect convergence or

divergence of the infinite series.
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APTENDIX I

A THEOREM CN THE CONVERGENCE OF
A CERTAIN INFINITE SERIES

In this appendix a mathematical theorem and lts proof are
presented which establish the convergence of a particular type of
infinite series. Both the theorem and its proof are due to Dr. E, N,

Nilson of Pratt and Whitney Aircraft, East Hartford, Comnecticut.

THEOREM: If &, is a positive decreasing sequence approaching

zero monotonically as k = « gnd if
= +
dk kd €y

where d is not an integral multiple of 2m and either ¢, = 0 for s&ll k,

k

or ¢, 1is positive and decreasing monotonically to zero as k — =, or

k

¢, is negative and increasing monotonically to zero as k = «, then the

k

series
z N o (1-1)
k=1

converges., If d is an integral muliiple of 2 and € = 0 for a1l k

then the convergence of the series given by Equation (I-1) depends on

the convergence of the series
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) &
Yo

PROOF': The following Lemms is needed in the proof of the

theorem and covers the case where € = 0 for all k.

o

i
Lermma: The series Zak e kd converges.
k=1

Proof of Lemma: Abel's transformation

n n-1

= U - -0 + U <
E Y % Z Uy = Viggg? = Uy Y ¥ 0, v, O0Smsm
k=m k=m

is used as follows. BSet

ﬁk= eld. + eiEd + o+ eikd
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i(k+l)a id
[-].' = e - g

k eld -1

g, - Ji(k+1)a/2 sin(ka/2)

sin(d/2)
Then from this last relation
15,| = sin(kd/2) < 1
sin(a/2) |sin(a/2)|

Further, if 8 is positive and decreasing monotonically to zerc as

k = = then
al = al - a2 + a2 - 33 + a3 - ah + ah - van

a, = |al - 32| + |32 - a3| + |a3 - ah| + e
Bince
[+=]

Z|ak g 2 IV = Ve

k=1 k=1

éonverges (to a), 85 & matter of fact) the Ceuchy criterion for con-

vergence implies that (for arbitrary ¢ > 0)

n-1

Z |, = Vel <¢
k=m
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provided m is sufficiently ierge (n = m of course). Hence by the Abel

transformation
n n-1i
ikd - —~ -
2 & ¢ = Z O = Viaa) = Uy Vi P UL Yo
k=m k=m

-1
s ) T v = vl # 18] Bl + 18] vy
k=m

n=-1
1 -V + |v + v
" \etn(a/2)| ém e~ el 1l + Tl
1
< e + |v. | +|v ]
|sin(d/2)[ ( l n n )

n
Now Z & eik'd can be made as small as desired simply by
k=m :

meking w sufficiently large (v - 0, [vn| < [vm|). Therefore, by the

Cauchy test for convergence, the series

o

EE ikd
e

k=1

converges. This completes the proof of the lemma.

To prove the theorem, it will be shown that the difference of

the two geries
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e i ik
Yo (e Foe )
k=1

converges. Then the convergence of the series given by Equation (I-1)

follows from the convergence of the series
oy
E ikd
% e
=1

The method employed in the proof of the lerms will again be used.

In this case let

If it can be shown that

lﬁk' £ M for some M k=1, 2, vos

then

n-1

i , le, . dka )
% (e B l) © = Zuk(vk - VZE';-P{L) B Um-l vm * nn
k=m k=m

o]}
<
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n . n-1 )
isk ikd - - -
zak (e - 1) € = 2 lUk' |Vk - vk+l| + lUm_ll |Vm[ + IUni |vn|
k=m k=m
n~i
=N Z e = Ve Il + 1y
k=m

<M (g + [vm| + [vnl)

and the absolute value of the sum cen be made as small a8 desired by
making m sufficliently lerge. Again the Cauchy criterion gives con-
vergence.

Tt must be shown then, that

k ie . .
1G4 = | V(e d-2) & < (1-2)

J=1

for some M and all k. Again empley the Abel transformation. Set

. . ie
u, = elad v, =e 9.1
d J
so that
i3d
¥ * * * id elJ - 1
= + + - w + - ]
Uy =y + Uy JETR
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As before

|9 | =
J |sin(d/2)|

Finally, the boundedness of

n

* +*
) ¥y - )
Jj=m
is needed. This shall be ohtained from the convergence of
=]

* *
L 1¥5 - Vil

J=m

When ey is positive and decreasing monotonically to zero

o o

< i“"j iejﬂ.
) | e 4 -e

~)

c,r.(: *

+{:>‘<

uli
l

J=m J=m

)

o
e. — &,
j=m

provided m is large enough to insure that (ej - ej+l) < 2m. Thus

= -] 0
Loy Vil < 20 D,
v. - ' g, = N

J J¥l 5 %+
J=m J=m

<
m
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When €4 is negative and increasing monotonically to zero

J=m

=+ oo -3
€ -¢
* = i bt S | ( - )<_
Z|vj v;]-I-lI = Z 2sin 5 < z o4 " 8y €
J=m J=m

It may thus be concluded that

* *
LIS = Vil < eyl

J=m
Applying the Abel transformation

n-1

[+:]

* * ¥ #* * % #* % *
Zuj vj 5 ZlUj| lvj - vj+l| + lUm-l' |vml + ‘Un[ lvn|
J= Jj=m

nel
1 * * * *
$ v, = vl +1v ) +]v ]
|sin(a/2)| jZ‘:n J L m n
1 * *
g = {le_| +|v. | +|v |
vy Ul # Dl = 1)

Since |v:1| -~ 0, the convergence of ﬁk in Equation (I-2) is
obtained and hence |T | is bounded.
If d is an integral multiple of 2m and € = Q for all k then

the expontial in Equation (I-1) disappesrs and the series becomes
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==}

s (1-3)
k=1

Thus the convergence of the original series depends on the convergence
of the series given by Equation (I-3).
This completes the proof of the theorem. It is to be noted,

of course, that the requirements on 2 and ¢, need cnly be valid from

k

a certain point on, not for k at the begimming. It is important also

to note the necessity for the requirements on a and €y °
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