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Abstract. Recent research in ubiquitous computing has focused both on how to 
infer human activity from a variety of signals sensed in the environment as well 
as how to use that information to support interactions. In this paper, we exam-
ine the feasibility and usefulness of sound source localization (SSL) in a home 
environment, which is an implicit location system to support monitoring of a 
remote space as well as to infer key activities, such as face-to-face conversa-
tions.  We present a microphone array system that covers a significant portion 
of the public space in a realistic home setting and discuss monitoring and auto-
mated inferring applications that are made possible with this technology in a 
domestic setting.  

1   Introduction 

Context aware computing is one of the main themes in ubiquitous computing. In pra c-
tice, certain types of context, such as location, identity, time and activity are more 
important than others  [1]. Since the early 1990’s much research effort has been fo-
cused on how to acquire, refine, and use location context information [2].Traditional 
location-sensing systems rely on either explicit or implicit means of localization. In 
explicit localization, the user must wear or carry a device or tag which is used to locate 
them, while implicit localization systems do not require instrumenting the user. Most 
implicit localization systems use computer vision to track users. We are interested in 
the use of sound source localization in the home environment, arguing that under-
standing the location of sound sources can be valuable for context aware computing. 
Sound events are often associated with human activities in the home, but little effort in 
the ubiquitous computing community has tried to exploit this. 

There are social concerns when sensing video and audio in the home environment. 
When the actual information retrieved is not the rich signal that a human would see or 
hear, there is potential for alleviating those concerns. We designed a sound source 
localization (SSL) system which locates sound events in the environment using micro-
phone arrays. The only information extracted in this case is  solely the location of 



sound sources. Our system is based on a standard SSL algorithm which uses the time 
of delay method and PHAse Transform (PHAT) filtering in the frequency domain to 
locate sound sources  [3]. In Section 3 we describe the additions we made to this stan-
dard algorithm to make it robustly cover a significant portion of the public space in a 
realistic home setting. The system runs continuously (24/7) and feeds the detected 
sound events into a database which is shared with other applic ations in the home.  
From our experiments , the accuracy of our system is sufficient to provide rich context 
information, such as identifying conversations by their pattern of alternating location 
events .  

To demonstrate the feasibility and usefulness of data generated by our SSL system, 
we built two applications described in Section 4. One is the Sound Event Map, which 
visualizes the sound events in 3D space allowing a home owner to monitor activities in 
his house. The other application demonstrates the potentially rich context information 
that can be distilled from sound events. By using simple heuristics, we are able to 
distinguish between a two-person conversation and a single person talking, e.g., on 
the phone or to themselves . We believe this is a promising starting point towards more 
sophis ticated activity recognition based on audio sensing. 
 

2. Related Work: User Location Systems  

In more formal environments such as the office, the wearing of an explicit tag or badge 
can be mandated. However, from our experiences in the home environment, deploying 
a RFID proximity location system, we observed that one important re ason why the 
system was not extensively used is that some users forget to wear or even lost their 
tags. User satisfaction and cooperation is the final decisive factor in adoption of ubiq-
uitous location services that require explicit tags or devices to function. For this re a-
son, we have chosen to categorize related work in the location-sensing field by their 
reliance on explicit tags or devices for user tracking. 

2.1 Explicit Systems 

Most current location systems in ubiquitous computing are focusing on explicit loca-
tion methods. Many explicit localization systems , that require users to wear extra de-
vices, have been developed since the 1990s. The Active Badge system, one of the first 
succes sful indoor proximity location systems, required users to wear a badge that 
emitted infrared ID information giving zone level location information [4]. With the 
improved Active Bat system, users carried a 5cm by 3cm by 2cm Bat that received 
radio information and emitted an ultrasonic signal to ceiling mounted receivers. This 
provided location accuracy of 9cm with 95% reliability [5]. The Cricket location system 
requires user to host the Listener on a laptop or PDA and obtains  the location granu-
larity of 4 by 4 feet [6]. 



We designed our own indoor location service using RFID. Users wear passive 
RFID tags which are queried by RFID readers at fixed locations to obtain a unique ID 
[7]. RFID tags are small and passive, and hence, easy to carry and do not require bat-
teries. However, instrumenting an environment with enough readers to obtain decent 
location info rmation can be expensive.  

In order to take advantage of existing radio beacon infrastructure, such as WiFi a c-
cess points, passive wireless positioning systems use the signal strength of access 
points received by a wireless network card to determine the location of mobile users 
with an accuracy of 1-3 meters [8]. This technology has been used on several cam-
puses such as the Active Campus project at UCSD and CMUSKY project at CMU. 

For outdoor localization, users can carry GPS receiver and get the global position at 
the accuracy of 1-5m. Many projects use GPS as the primary outdoors positioning 
system, including Lancaster’s Guide [9], and Place Lab [10]. A good taxonomy of cur-
rent location systems that mainly focuses on explicit localization systems is described 
in [2]. 

Explicit systems generally tend to be more robust than implicit systems, and almost 
always provide identification information (e.g., unique tag ID) in addition to location. 
They also allow users to determine for themselves if they wish to be tracked; by 
choosing whether or not to carry the tag/device. The largest drawback of explicit loca-
tion systems  from the user’s perspective is the size and weight of the tag or device 
they must carry. Many devices require a certain amount of local computation or signal-
ing capability.  GPS receivers need a processor to compute their location after receiv-
ing satellite signals , while beacons must expend enough energy to be detected. The 
requirement for computation and/or broadcast power adds  to the size and weight of 
the device. Although different methods are suggested to reduce energy consumption 
such as human powered computing [11], we feel that the power supply problem will 
still exist for some time  [12]. It seems  these user-worn location devices will not be small 
or light enough to be considered invisible in the near future. 

2.2 Implicit Systems 

The other category of location system uses implicit characteristics of the users to 
sense their location, including visual clues , weight, body heat or audio signals. Implicit 
tracking does not  require users  to wear tags or carry devices , which pushes  the track-
ing technology into the background. They come closer to meeting Mark Weiser’s goal 
of calm technology [13].  

Motion detectors and floor mats open supermarket doors, and motion sensing 
flood lights and sound activated night-lights ease light pollution while still providing 
illumination when needed. Although these simple appliances do not track the location 
of specific users, they implicitly know the location of whoever has activated them for a 
brief period of time. 
With the development of artificial intelligence and increasing computing power, more 
perception technologies are used to support a natural interaction with the enviro n-
ment. Vision-based tracking and SSL are two important location strategies which have 



the ability to passively monitor large spatial areas with only modest amounts of in-
stalled hardware. In contrast to motion detectors and contact-based floor sensors they 
provide greater resolution and discrimination capabilities. 

Techniques for tracking people using multiple cameras can be divided into two 
groups, methods that track parts of the body such as faces [14] and limbs [15], and 
methods that treat the body holistically as a single moving target [16], often using a 
"blob" model to describe the targets appearance. See [17] for a recent survey. In a 
home setting, multiple users can be tracked in real-time using ceiling or wall-mounted 
cameras. The region corresponding to each user in each of the camera images is de-
scribed as a blob of pixels, and it can be segmented from the background image using 
a variety of statistical methods[16, 18, 19]. By triangulating on the blob’s centroid in 
two or more calibrated cameras, the location of the user can be estimated in 3-D. In the 
EasyLiving project at Microsoft Research, the blob’s location c an be updated at 1-3Hz 
in a room environment with two cameras for up to 3 users. Vision requires significant 
processing power and broadband networking infrastructure in order to get satisfactory 
real time location updates  [19].  

Passive sound source localization provides another natural tracking method that 
uses difference in time of flight from a sound source to a microphone array. With com-
puter audio processing, sound source location can determine the location of sound 
events in 3-D space. We will discuss SSL in more detail in Section 3. 

Because users do not need to explicitly carry tags or devices, these systems allow 
for implicit interaction, but may not provide identification information. With the help of 
face recognition, fingerprint, or voiceprint recognition, computer perception based 
location systems can provide identity information in addition to location.  

Although implicit location systems do not allow users to physically opt-out of b e-
ing tracked (by not carrying a tag/device), we believe that privacy issues can be 
solved by legal mandate and technical solutio ns in higher level sensing architectures. 

2.3 Implicit Vision Based Tracking versus Sound Source Localization 

Vision based tracking and SSL are more accurate than other simple implicit location 
system, like contact based smart mats or motion detectors.  Computer v ision systems 
usually use multiple cameras to circumvent visual obstacles or provide continuous 
tracking for moving objects over multiple rooms. Vision systems require significant 
bandwidth and processing power, as  a typical color camera with 320x160 resolution at 
10 frames per second generates about 1.54Mbyte of data per second.   

In comparison, the data throughput of a microphone array is significantly less than 
a camera system. One microphone generates about 88.2KByte per second for CD qual-
ity sound with 16 bit sampling resolution. Because of the relatively lower bandwidth, a 
microphone array of 16 to 32 sensors can be supported by one Intel PIII desktop com-
puter. 

Current vision based location tracking systems suffer from variance in circumstan-
tial light, color, geometric changes of the scene and motion patterns in the view, while 
sound source localization systems suffer from environmental noise. A sound localiza-



tion system can more easily detect activities that have specific sound features such as 
a conversation or watching TV, which might be difficult to detect using computer 
vision alone. However, sound source localization also has obvious disadvantages . 
Only activities which generate sounds (which may be intermittent) can be detected by 
the system.  

An active research community is addressing the problem of fusing audio and video 
cues in solving various tasks such as speaker detection [15] and human tracking [20]. 
For example, the initial localization of a speaker using SSL can be refined through the 
use of visual tracking [21]. 

 

2.4 Sound Source Location as Important Source of Context 

One important context  from the audio is the capability to detect the sound event’s 
location with some  accuracy.  We can find a cordless phone when it rings  based solely 
on sound source location. Among the activities which take place in the home, identi-
fied by Venkatesh [22], a large portion of them are connected with sound events. 
Sound events happen when we have conversation, watch TV, listen to the radio, make 
phone calls, walk over the floor, move chairs around, drop objects onto tables, cook 
dinner,  wash, or eat.  

In domestic environments, different activities are often conducted in particular loca-
tions. Many researchers in ubiquitous computing are focusing on inferring human 
activity from a variety of signals sensed in the environment. Noticing the activities are 
usually connected with sub-areas in the room, a semi-automated method can be used 
to divide the room into sub-areas which are called activity zones and provide intera c-
tion based on status with regard to different zones [23].  

Kitchen activities, such as cooking and washing dishes, are most likely to occur in 
the kitchen around the stove and sink.  If the system observes sound events from the 
kitchen and stove for thirty minutes, followed by sound events surrounding the din-
ning room table, it can make a good prediction that a meal is occurring. If contin uous 
sound events are detected from where the TV is located, you are probably watching 
television. Also if you analyze  the height of the sound events , footsteps occur at floor 
level, sound events from the table may indicate that an object was dropped, while 
conversational noises are likely to be located at a higher position or above chairs.  

SSL is good at summarizing activ ities that generate sound events over a period of 
time and providing answers to questions like: when did we have dinner yesterday? 
Did I cook yesterday? The update frequency of sound event location is fast enough 
to recognize some patterns of sound event sequences, like the switching between two 
persons in a convers ation.  Sound events can be used to determine the status of the 
users: Is the user in a conversation? It provides  substantial information towards high 
level context such as interruptability determination [24].  

Despite the fact that sound location can be an important source of context informa-
tion in domestic environments , there is little to no research designed to investigate the 
location of sound events  as an important context source to support recognizing 



household activities.  Most current SSL systems are still in the prototype stage in 
controlled research lab environments due to the difficulty of deploying a working 
system in a home. 

3   Sound Source Localization in the Home  

Sound Source Localization (SSL) systems determine the location of sound sources 
based on the audio signals received by an array of microphones at different known 
positions in the environment. All microphones receive time-shifted signals mixed with 
environmental noise and reverberation. In this section, we first summarize challenges 
for sound source localization in home environments. Then, we present the improve-
ments to the standard PHAse Transform (PHAT) SSL algorithm we implemented to 
overcome these challenges. Additionally, we report our strategies to improve the use-
fulness of the system. We report on the accuracy of our SSL system measured at 6 
representative sample locations. 

3.1 Challenges to Deploy SSL System in Domestic Environment 

Sound source localization research started many decades ago; however, there exists 
no general commercial SSL system. Based on current SSL research literature [25] and 
our own experiences [26], the main challenges for deploying SSL systems in domestic 
enviro nment are:  

1. Background noise - The background noise in home  environments can in-
clude traffic noise, noise from household appliances and heating and air con-
ditioners. For single SSL system, noise from the microwave will pose a pro b-
lem for localizing the person talking at the same time.  

2. Reverberation (echoes) – Reverberation in the home is difficult to model and 
can le ad to corrupted location predictions when indirect (bounced) sound 
paths interfere with direct sound paths.  

3. Broadband - The speech signals  and sounds generated from household ac-
tivities are broadband signals . The failure of narrowband signal-processing 
algorithms, applied in radar/sonar systems, requires the use of more compli-
cated processing algorithms. 

4. Intermittency & Movement - The sounds to be detected are usually intermit-
tent and non-stationary. This makes it hard to use adaptive filtering which 
uses stationery source assumptions.   

5. Multiple Simultaneous Sound Sources – Current single source sound local-
ization algorithms fail when faced with multiple simultaneous sound sources.  

 
Despite these general challenges, our research system shows that it is feasible and 
useful to start investigating how sound source location can help to locate human 
generated sound events which can be used to infer activity both manually and auto-
matically. 



 

3.2 Fundamentals in Passive Sound Localization 

SSL systems can be traced back to earlier active radar and sonar localization systems. 
An active system sends  out preset signals  to the target and compare s it with the echo 
signal in order to locate the target, similar to how a bat locates its prey  using ultrasonic 
pings. In passive localization, the system only receives signal generated by the tar-
gets.  If a user wears  an explicit tag (such as the Active Bat ultrasonic badge) the re-
ceiver can compute the location with high accuracy because of high signal to noise 
ratio (SNR) in the narrow frequency range. However, for the implicit sound sources in 
a domestic environment we intend to explore, the signal is often noisy and with 
broader frequency ranges .  
    Different effective algorithms with an array of microphones are used in sound 
source localization. They can be divided into three main categories [25]. Most current 
sound source location systems are based on computing Time-of-Delay and using 
PHAT based filtering because they are simple, effective and suitable for real-time local-
ization in most environments. The locating process is divided into two steps: Comput-
ing time delay estimation for each pair of microphones and searching for the location 
of the sound source. Different systems vary in the geometric deployment of sensors, 
pairing up, filtering and space searching strategies. We will explain the design of our 
SSL system after a simple introduction to PHAT and correlation based time of delay 
computations . More details are available in [26]. 
 The incoming signal x received at  microphone i can be modeled as  
        )()()( tntstx iiii +−= τα                             (1) 

where: )( ii ts τ−  is the signal delay; )(tni is the noise; iα  is the attenuation factor 

for microphone i. For every pair of microphones, we compute the correlation. Us ually it 
is done is frequency domain in order to save time. However, because of noise and 
reverberation in the environment, some weight functions in frequency domain are 
applied to enhance the quality of the estimation, such as Phase Transform(PHA T), and 
Roth Processor etc [3, 27]. The general cross correlation with the PHAT filter is equa-
tion 2. 
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 Where Conj is the complex conjugation function, X1(f)  and X2(f) are the Fourier trans-
form of x1(t) and x2(t).   Ideally, the shift of the peak point from the center is the time 
delay of signal arrival between these two microphones.  



3.3 Peak weight-based SSL and other design decisions  

We deployed our sound source localization system in an actual home setting and 
improved the location evaluation function to perform well in a home environment. 
Figure 1 shows the floor map of the target area. 

 

 
Figure 1. 2D Floor map of covered space in the first floor with four microphone 

Quads 
 
We improved our system by the following measures: 
1) The house is close to a busy street and the noise level is variable throughout 

the day, so we dynamically update the noise energy threshold in processing 
before actual localization to ignore street noise. 

2) Our target area consists of a living room, dining room and kitchen. To cover 
the large space 16 microphones were used. However, the microphones were 
organized into 4 separate Quads (set of 4 microphones in a square pattern). 
By only computing time of delay between micro phones in the same Quad, it 
effectively limits  the peak search range and rules  out false delays. 

3) To fully utilize the information from each Quad, we correlate sound signals 
between all six pair-wise combinations of the four microphones. 

4) Quads which are closer to the sound source make better location predictions. 
We calculate the location as determined by each Quad and then use the data 
from the most reliable Quad. Quads which are far away from the sound source 
suffer corrupted Time -of-Delay data because of the low signal to noise ratio.  

 
In addition to the above measure s , we find it is necessary  to reflect the reliability of 

each Time-of-Delay estimation into the final localization goal function.  We use the 



ratio of the second peak with the maximum peak in equation (4) to convey the reliabil-
ity of computed time of delay. Specifically, we define the peak-weight of ith pair of 
microphones  to be: 

PeakMax peak Second V/ V-1=iW     (3) 

We discard the data items whose peak-weights ( iW ) are less than a constant cho-

sen to filter about 60-80% of the measurements. In a home environment with a s ignal to 
noise ratio between 5 and 15 db we experimentally determined this constant to be 0.3. 

In the second phase of searching for the sound source location, we use deepest 
gradient methods and final evaluation function E of each potential location is  calcu-
lated by equation (4). Note that we consider the peak weight ( iW ) in the final evalu a-

tion function.   
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TDOAi  and TDOAExp
i is the measured and the expected time delay from a potential 

location. During the search for the location of a sound event , we added more initial 
searching points from the more probable sound source locations, like the kitchen area, 
dining and living room tables in addition to the previous detected sound source loca-
tions. By seeding the initial search points in this manner, we increase the responsiv e-
ness of the system to common sound events.  

3.4 System design in a home environment and results  

Although our system design is not sophisticated enough to work in different envi-
ronments, it does work well in our target area, a realistic home environment on our 
campus, where  the research initiative is to explore varieties of technologies and 
applications for futuristic home environments. The dime nsion of the area is: 820(L)* 
506(W)*272(H)cm. The microphone array is deployed in the connected areas including 
the living room, dining room in the first floor (also see Fig. 1).  We are using 16 omni-
directional pre-amplified microphones (cost: 10 USD each) that receive audio signals in 
the 20Hz to 16KHz range. In the living room, one Quad is in the ceiling, two are on the 
front wall and one is at the corner of the dining room which faces the dining room and 
kitchen. Figure 2 shows the pictures of arrays (Quads), each of which has 4 micro-
phones . The microphones  are small enough to be mounted in the wall or picture 
frames. 



 
 

Figure 2. (a)-(d) Microphone Quads, each has 4 microphones. (e) Single microphone with a 
quarter. (f) PTZ camera driven by detected sound location events.  

Currently, one of our demo applications is to drive a pan-tilt-zoom camera to focus 
on locations where sound events are detected and display it though a large plasma 
screen. In our home environment the current system can locate sound events from 
talking, footsteps, putting glasses on the table, chewing food, and clashes of silver-
ware with dishes. Our location updating rate for continuous talking that faces the 
quads are 1-5 seconds per reading. Generally, it is especially responsive to crisp sound 
events such as  eating, sniffing, or putting a backpack on a table .  To test the accuracy 
of the SSL system, we placed a computer speaker broadcasting a radio news program 
in 6 representative locations in the space. The SNR of the speaker was set to around 
10db. The standard deviation of measured location from sound source  is  between 6 
and 33 cm (Table 1, using coordinate system in Fig. 1), which is enough to generally 
locate sound events to specific areas in the rooms such as a tabletop, floor, kitchen 
sink, TV, and to disambiguate between multiple non-moving speakers.   

 
  Table 1. The accuracy of sound source in the living room  
 
 

Source Location (cm) Location 
in Room x y z 

Num of 
Measur e-

ments 

Std Error 
    (cm)  

Left -Front 126 -348 147  1237 31 
Left -Behind 286 -325 150  1182 33 
Mid-Front  80 -98 148  1002 17 
Mid-Behind 299 -76 146  1262 29 
Right-Front 147 233 146  1471   6 
Right-Behind 310 247 149  1249 14 



The standard deviation varies with the source location relative to microphone 
Quads.  Generally, the more Quads which are closer to the sound source, the higher 
the SNR is and thus the results are more accurate. 

4. Applications of SSL in Home Environments 

An initial application we developed, mainly to test whether the SSL technology works, 
drove a pan-tilt-zoom camera to show the area where sound was detected. While this 
kind of application might be useful for remote monitoring of meetings or for childcare, 
it was never intended to be the motivating application for our work. With the current 
sensing capabilities we have in our home environment, we see at least two uses that 
are now possible, and the potential for other applications that might continue to drive 
how to improve the sensing.  The first application demonstrates a visualization of 
activity over time, and the second application explores the ability to infer some under-
standing of human activity. 

4.1 Sound Event Map  

In a domestic environment, the owner of a home might be interested in viewing what 
happened in his house yesterday morning, see a summary of activ ity over longer peri-
ods , or remotely access the house of older adults. We developed a sound event map 
to facilitate this. In the sound localization system, all the sound location data with time 
stamps are stored into the house database server.  The sound event map application 
connects to the server and retrieves the sound location history. It also pulls the geo-
metric data of the rooms and furniture. Because each sound source location event 
consists of 16 bytes (X,Y,Z,Timestamp) and events detected are at most a few read-
ings  per second, the Sound Event Map application requires very low bandwidth, using 
orders of magnitude less than a webcam or audio broadcast from the same space. 

Our sound event map allows the users to virtually move and turn around in 3D 
space. It also supports top view, front view and lateral view to better determine what is 
happening in a particular area. We are assuming the user of the application, mostly the 
owner of the home, is  familiar enough with the area to work with a simplified floor-plan 
and simplified representations of furniture.  

The user can select a timeslot of interest (e.g., 7:30am to 10:00am yesterday morn-
ing) or select an area of interest -- the system automatically determines timeslots where 
activity in the chosen area (e.g., kitchen, dinin g table) occurred. Events are colored 
from green to red depending upon their age. Another mode is  designed to display a 
series of sound events in sequence , such as moving from the kitchen to the living 
room.  During the automatic replay, the current event is highlighted with the largest 
size dot, while the five previous events are rendered with smaller dots.  

 



 

                  Figure 3   Sound Event Map application, showing sound events (red/green dots) for 
a day in the home. 

4.2 Distinguishing Two-person Conversations from Single-person Talking  

The primary benefit of collecting sound location history is the ability to recognize 
activities in the home. As we mentioned before, the sound location context is usually 
associated with human activity. Certain household  activities are usually linked with 
specific locations in the home, such as dining, cooking and watching TV. 

Currently, users examining the data we collect using the sound event map are able 
to manually recognize dinning activities by looking for events around the dining room 
table. Kitchen related activities are also easy to recognize. A little more difficult pro b-
lem is how to differentiate between single-person talking and two-person convers a-
tions. For example, if a smart home would like to visually display a private message to 
the homeowner, it would be useful to determine if they are alone (talking on the phone) 
or having a conversation with another person. This problem is difficult to solve using 
only voice detection algorithms without sound source location. 

To demonstrate that the data from our SSL system can differentiate between these 
two situations, we recorded 10 two-person conversations and 10 people  talking over a 
tele phone. These activities are distributed in different places of the covere d area. The 
distances  between the two people in conversations  ranged from 0.5m to 5m. For peo-
ple talking over the phone, we have 5 situations where their position is  semi-fixed 
(sitting, but able to sway less than 1m) and 5 situations where the user paced around 
the area (representing a cordless handset). Three typical cases with dots re presenting 
events are shown in Fig.4. Each activity lasted between 2-5 minutes.  



 
Figure 4 Three typical talking cases 

To detect two-person conversations, we used a K-means clustering algorithm to 
separate the data points into two clusters. Then we counted the frequency of the back 
and forth between these two clus ters with their timestamp information.  

 
Table 2. The clustering of 10 two -person conversations and 5 one –person talking 

at fixed location and 5 single -person talking and moving around. 
Cases  total number  

of readings 
Number of  
Flip-flops 

Distance be-
tween clusters 

(cm)  

Two -person 
Conversation? 

2-person 1 79 23 191 Yes 
2-person 2 29 16 160 Yes 

2-person 3 32 12 202 Yes 
2-person 4 47 15 118 Yes 
2-person 5 59 17 120 Yes 
2-person 6 44 16 440 Yes 
2-person 7 44 12 258 Yes 
2-person 8 51 17 150 Yes 
2-person 9 44 12 134 Yes 
2-person 10  79 23 191 Yes 
1-person mv 1  22 8 201 Yes 
1-person mv 2  32 5 118 No 
1-person mv 3  43 2 322 No 
1-person fix 4 48 22 69 No 
1-person fix 5 34 4 101 No 
1-person fix 6 31 12 97 No 
1-person fix 7 39 18 61 No 
1-person fix 8 36 19 64 Yes 
1-person mv 9  32 2 340 No 
1-person mv10  35 7 283 No 

 



Our proof-of-concept algorithm uses the following two heuristic rules: 
1. If (# of flip -flops between two clusters/ # all reading>R1 and distance <  D)  

it is a conversation; 
2. If (# of flip -flops between two clusters/ # all reading> R2 and distance >= D) 

it is a conversation; 
3. else 

 it is a single person talking; 
Before our experiment, we assigned the parameters R1=0.5; R2=0.25; and D = 100cm. 

The meaning of these parameters is that when sound clusters are closer than 
D=100cm, we requite 50% of the sound events to represent the flip-flop between the 
clusters before the activity is judged to be a conversation. When the sound clusters 
are farther apart than D=100 cm, then we only require 25% of the sound events to 
represent the  flip-flop before the activity is judged to be a conversation. 

When two persons are having a conversation, they will form two clusters of data 
points in the space and there should be sufficient flip-flopping between these two 
clusters. However, for a single-person talking around a fixed location, detected loca-
tion events vary randomly around the true location. We choose D=100 cm to be larger 
than the maximum distance traveled by a swaying person plus sensing error. 

The results in Table 2 show that all 10 two-person conversations were correctly 
categorized. Four of our five single-person fixed location cases  and single-person 
moving cases were correctly categorized, while one of each was incorrectly judged to 
be a two-person conversation, giving our proof-of-concept algorithm an accuracy rate 
of 90% over all 20 cases. 

We must point out that we are only using simple heuristic rules to distinguish con-
versations  between two-people and a single-person talking on the phone in the home 
environment. More sophisticated linear dynamic models should be used to recognize 
patterns and provide inference for a dynamic number of people. But this work demo n-
strates the context information inherent within sound source location events; ready to 
be harvested with more sophisticated inference algorithms. 

5. Conclusion and Future Work 

In this paper, we summarized two different categories of localization systems and 
pointed out that implicit localization systems have advantages for deployment in a 
ubiquitous computing environment. By adapting current SSL technologies, we built a 
SSL system in a real life home setting and collecting sounds from cooking, dining and 
conversation. To support a home  owner’s access to the sound event history, we built 
the Sound Event Map to allow access to past sound events  to determine what has 
happened in their home. With addit ional input from other sensors like a camera, 
speaker identification system and more sophisticated processing, SSL can be used to 
recognize activities  in the home  and summa rize the habits of users.  

By capturing the sound event locations during conversation, we can dynamically 
cluster the points according to the number of people in the conversation. With more 



sophisticated modeling of conversations , we can also find interesting patterns  such as 
who is dominating the conversation. 
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