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SUMMARY 

 

 Previous research has underscored the importance of protein dynamics during 

light-induced electron transfer; however, specific interactions have not been well 

characterized.  It is of particular importance to understand the role of protein dynamics 

and cofactor interactions in controlling electron transfer in oxygenic photosynthesis.  

These factors include hydrogen bonding, π-stacking and electrostatic interactions.  

Reaction-induced FT-IR spectroscopy is sensitive to these interactions as well as isotopic 

incorporation, and is useful to probe protein dynamics associated with light-induced 

electron transfer in Photosystem I (PSI).  Density functional theory (DFT) provides 

information concerning the vibrational frequencies of molecules as well as the amplitudes 

of the vibrations and sensitivity to isotope incorporation.   Combining these approaches, 

protein dynamics associated with light-induced electron transfer in PSI were studied.  

The work presented here describes specific protein cofactor interactions and specific 

protein relaxation events associated with light-induced electron transfer.  The results 

reported here are consistent with noncovalent protein cofactor interactions that modulate 

the redox potential of the secondary electron acceptor of PSI.  Furthermore, the studies 

presented here describe novel protein dynamics associated with the oxidation of the 

terminal electron donor of PSI.  These results characterize specific protein dynamics that 

may be associated with interactions of the soluble electron donors.  These studies 

highlight the importance of protein dynamics in oxygenic photosynthesis. 

 

 



 1

CHAPTER 1 

INTRODUCTION 

 

 

 Photosynthesis is a biological process, which utilizes light energy to produce a 

charge separated state across a membrane.  This biological process occurs in plants, green 

algae and cyanobacteria.  In plants, the organelles known as the chloroplasts house the 

photosynthetic machinery responsible for light-induced charge separation. Inner 

membranes known as thylakoid membranes are stacked within the chloroplasts.  

Embedded within the thylakoid membranes are the proteins involved in light-induced 

charge separation and electron transfer.  The overall reaction consists of CO2 being 

reduced to an aldehyde via the Calvin cycle, and water being oxidized to molecular 

oxygen and H+. 

 Figure 1 shows a schematic diagram of the proteins involved in the electron 

transfer reactions of photosynthesis.  There are two protein complexes directly 

responsible for light-induced charge separation and electron transfer across the thylakoid 

membrane, Photosystem II (PSII) and Photosystem I (PSI).  PSII is responsible for the 

reduction of quinone to quinol via two sequential electron transfer events, and the 

oxidation of water to molecular oxygen and H+ via four sequential photon absorption 

events.  The cytochrome b6f complex oxidizes the quinol molecule produced by PSII to 

quinone.  The cytochrome b6f complex transfers electrons between PSII and Photosystem 

I (PSI), and participates in the formation of the transmembrane electrochemical proton 

gradient by transferring protons from the stromal side of the thylakoid membrane to the 
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luminal side (Figure 1).  The hydrogen gradient produced by these reactions is used by 

ATP synthase to produce ATP from ADP and inorganic phosphate.  The cytochrome b6f 

complex is also responsible for the reduction of plastocyanin, a monomeric, copper-

containing protein.  

 PSI is responsible for the light-induced reduction of ferredoxin, an iron-sulfur 

protein, which reduces the enzyme NADP+ reductase.  NADP+ reductase is an 

oxidoreductase, and functions to reduce NADP+ to NADPH.  NADPH is the reducing 

power for the biosynthetic reactions of the Calvin cycle in photosynthesis.  Plastocyanin 

reduces PSI, resetting the system. 

1.1 Photosystem I 

 Photosystem I (PSI) is responsible for the reduction of ferredoxin and the 

oxidation of plastocyanin or cytochrome c6.  It is a membrane-bound protein consisting of 

twelve subunits, three of which are responsible for binding the electron transfer cofactors.  

Figure 2 depicts the polypeptide composition of PSI from the 2.5 Å resolution crystal 

structure (Jordan et al. 2001).  The crystal structure reveals that subunits PsaA and PsaB 

form a heterodimer spanning the membrane and bind chlorophyll (chl), phylloquinone, 

and an iron-sulfur cluster as shown in Figure 3A.  The subunit PsaC, located on the 

stromal side of the thylakoid membrane, is responsible for binding the terminal electron 

acceptors, two iron-sulfur clusters as shown in Figure 3B (Jordan et al. 2001). 

 Charge separation is believed to begin on an accessory chl monomer, which 

reduces a second chl monomer designated A0 (Holzwarth et al. 2006).  A0 reduces a 

phylloquinone known as A1.  From here, the iron sulfur cluster known as FX accepts the 
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electron from A1, and reduces FA, a second iron-sulfur cluster.  FA reduces FB, a third 

iron-sulfur cluster, and the terminal electron acceptor of PSI.   

 The primary donor is reduced by P700, a chl heterodimer comprised of a chl a 

molecule and a chl a’ molecule.  P700 is the terminal electron donor of PSI and is reduced 

by the soluble electron carrier plastocyanin, or cytochrome c depending on copper 

availability.  The electron transfer scheme in PSI starting with the radical species P700
+ 

A0
- is shown in Figure 4. The arrangement of electron cofactors in PSI is depicted in 

Figure 5.  The accessory chl along with the electron acceptors A0 and A1 are arranged 

with apparent C2 structural symmetry around P700.  The arrangement of the cofactors 

results in two branches; the A branch representing the cofactors bound by the PsaA 

subunit, and the B branch representing the cofactors bound by the PsaB subunit.  Recent 

studies have suggested both branches support light-induced electron transfer (Guergova-

Kuras et al. 2001; Hastings et al. 2001b; Muhiuddin et al. 2001; Rigby et al. 2002; 

Fairclough et al. 2003; Ramesh et al. 2004; Santabarbara et al. 2005a; Santabarbara et al. 

2005b; Li et al. 2006; Santabarbara et al. 2006).  

1.2 Primary Donor 

 As stated previously, recent studies have revealed an accessory chl monomer may 

be the primary donor in PSI (Holzwarth et al. 2006).  These studies utilized ultrafast 

transient absorption spectroscopy in the femtosecond and nanosecond time range to 

characterize the electron transfer reactions.  These studies reported charge separation 

occurring in the picosecond time scale, with the first radical pair being accessory chl+/A0
-

.  P700 reduces the accessory chl cation during a second electron transfer event on the 
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picosecond time scale.  The ultrafast transient absorption studies indicate that electron 

transfer in PSI is similar to PSII, with the initial charge separated state originating on an 

accessory chl and the positive charge being transferred to the chl dimer (Diner et al. 

2002; Groot et al. 2005; Holzwarth et al. 2006). 

1.3 Primary Electron Acceptor: A0 

 The first electron acceptor in PSI is A0, a chl monomer located between the 

accessory chl and the phylloquinone, A1.   From the crystal structure, A0 is most likely 

the chlorophyll designated eC2 or eC3 (Figure 5) (Fromme et al. 2001; Jordan et al. 

2001; Grotjohann et al. 2005).  Measurements of the first electron transfer step by optical 

spectroscopy is difficult; due to the common time scale of excitation energy transfer from 

antenna chl to the primary donor and electron transfer from the primary electron donor to 

acceptor.  Furthermore, both processes give rise to absorbance changes in the same 

spectral region (Brettel, K. et al. 2001).  However, spectroscopic studies have suggested 

A0 is reduced in 7-10 ps ((Brettel, Klaus 1997; Brettel, K. et al. 2001; Ramesh et al. 

2007) and references therein).  The time constant of electron transfer from A0
- to the 

phylloquinone electron acceptor A1 has been estimated from kinetic absorption 

spectroscopy by monitoring the reoxidation of A0
-, and has been reported to be 30 ps 

(reviewed in (Brettel, K. et al. 2001)).  Other spectroscopic techniques used to determine 

the time constant for the oxidation of A0
- include photo-voltage measurements, and 

monitoring the reduction of A1 by ultra-fast spectroscopy in the near-UV (Hecks et al. 

1994; Brettel, K. et al. 1999).  All the mentioned spectroscopic studies have assigned the 

time constant for oxidation of A0
- to be in the range of 21-50 ps. 
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1.4 Secondary Electron Acceptor: A1 

 The secondary electron acceptor of PSI is a phylloquinone molecule (vitamin K) 

designated A1.  It is reduced by A0, a chl monomer, and is oxidized by the iron-sulfur 

[4Fe4S] cluster FX.  There are two A1 molecules per PSI reaction center designated A1A 

and A1B (Figure 5).  Previous studies have revealed biphasic oxidation kinetics of A1, 

with a fast decaying component of 20 ns and a longer decaying component of 150 ns 

(Setif et al. 1993; Brettel, K. et al. 1999).  These two phases have been proposed to 

represent electron transfer from A1B and A1A to FX respectively.  Both molecules have 

been suggested to be active during electron transfer reactions.  However, quantitative 

treatments reveal slightly different kinetics in eukaryotes and prokaryotes (Guergova-

Kuras et al. 2001; Hastings et al. 2001b; Muhiuddin et al. 2001; Purton et al. 2001; Rigby 

et al. 2002; Fairclough et al. 2003; Xu et al. 2003a; Xu et al. 2003b; Cohen et al. 2004; 

Ramesh et al. 2004; Dashdorj et al. 2005; Santabarbara et al. 2005a; Santabarbara et al. 

2005b; Ali et al. 2006; Li et al. 2006; Santabarbara et al. 2006).  A1 has the lowest known 

redox potential of any quinone found in nature.  Substitution of the A1 phylloquinone 

with other quinones such as ubiquinone give a reduction in midpoint potential of up to 

300 mV (Iwaki et al. 1994; Itoh et al. 2001). The redox potential measured for 

phylloquinone in DMF is -581 mV (Prince et al. 1983). These results suggest that protein 

interactions at the A1 site lower the midpoint potential of the quinone bound.  The protein 

binding pocket consists of a conserved tryptophan within π-π stacking distance, with the 

ring planes being almost parallel, and an asymmetric hydrogen bond to the C4O carbonyl 

group from the amide backbone of Leu (Jordan et al. 2001; Grotjohann et al. 2005).  

Recent studies have also revealed an aspartate residue which may interact 
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electrostatically with A1 (Feldman et al. 2007).  Figure 6 depicts the noncovalent 

interactions of the A1 binding site in PSI. 

 The protein environment of A1 in PSI has been compared to the QA binding site in 

the bacterial reaction center.  In this system, a tryptophan residue is within π-π stacking 

distance to the quinone.  The bacterial reaction center also contains a hydrogen bond to 

the C4O group of QA, however a second hydrogen bond is observed at the  C1O position 

as well.  One method applied to the study of the secondary electron acceptor in PSI and 

the bacterial reaction center is EPR spectroscopy.  This technique has determined 

hyperfine coupling (hfc) tensors of the protons of the two quinones.  Drastically different 

hfc tensors have been measured for the two molecules, illustrating the difference in 

protein interactions during reduction, and protein dynamics during electron transfer in 

PSI and the bacterial reaction center (Van der Est et al. 1997). 

1.5 Terminal Electron Donor: P700 

 P700, the terminal electron donor of PSI, is comprised of two chl molecules 

designated PB and PA.  The difference between the chl molecules comprising P700 arises 

from the stereochemistry at the 132 carbon position.  An examination of the protein 

environment of the two halves of the dimer reveals an asymmetric hydrogen bonding 

pattern.  PA’s keto group is known to be involved in a hydrogen bonding network with a 

conserved threonine (Thr 743).  A water molecule and tyrosine (Tyr 603) complete the 

network, which also involves the ester group of PA (Fromme et al. 2001; Jordan et al. 

2001; Pantelidou et al. 2004).  The corresponding protein environment around PB lacks 

hydrogen bond donors to the carbonyl or ester group of PB.  Comparing the midpoint 
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potential of P700 to chl in solution reveals a 400mV decrease in redox potential of the 

terminal electron donor (Wasielewski et al. 1981).  The hydrogen bonding network of PA 

has been implicated to modulate the redox properties. 

 EPR studies of P700
+ have revealed the spin density is mainly localized on the PB 

half of P700, and that PA carries little to no charge density (Kaess et al. 1995; Kaess et al. 

2001).  The lack of spin density delocalization of the dimer might be the result of small 

coupling between the two chl molecules, or because the energetic difference between the 

two chls is rather large.  In contrast, FTIR studies have concluded the spin density is 

equally shared between PB and PA (Breton et al. 1999; Breton et al. 2002). 

 Reduction of P700
+ to P700 is catalyzed by plastocyanin or cytochrome c in 

cyanobacteria.  Unlike eukaryotes, which form a transient complex with plastocyanin, in 

cyanobacteria, PSI interacts with plastocyanin or cytochrome c by following a collisional 

reaction mechanism, with no formation of any kinetically detectable transient complex in 

vitro (Bottin et al. 1985; Drepper et al. 1996; Hervas et al. 1996; Hippler et al. 1996).  

However, recent in vivo studies of whole cells have indicated a transient complex of PSI 

with cytochrome c.  The interaction between plastocyanin and PSI is believed to proceed 

through long-range electrostatic interactions and hydrophobic contacts during random 

collisions.  In both plastocyanin and cytochrome c, there is a large flat hydrophobic 

surface around the redox centers.  Mutations to residues residing in this hydrophobic 

patch have revealed this area is essential for electron transfer to PSI (Sigfridsson et al. 

1997; Young et al. 1997; Sigfridsson et al. 1998; Xue et al. 1998). 
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 The subunits PsaA and PsaB contain extra-membrane luminal loops that have 

been reported to be important for interactions with plastocyanin (Navarro et al. 2000; 

Fromme et al. 2003).  In eukaryotes, the subunit PsaF has an amphipatic helix consisting 

of basic residues facing the binding site of plastocyanin (Hippler et al. 1998; Sommer et 

al. 2006).  In contrast to eukaryotic organisms, the cyanobacterium Synechocystis sp PCC 

6803 does not require the PsaF subunit for efficient electron transfer from plastocyanin or 

cytochrome c to PSI (Van Der Est et al. 2004).   Therefore, PsaA and PsaB are solely 

responsible for interacting with plastocyanin and cytochrome c in cyanobacteria.  

Mutation studies of the luminal J loop of the PsaB protein from cyanobacteria 

demonstrated the importance of the loop in interacting with soluble electron donor 

proteins (Fromme et al. 2003). 

 Two conserved tryptophan residues have been reported to be important in electron 

transfer from plastocyanin to P700
+.  Mutation studies in Chlamydomonas reinhardtii 

show both tryptophan molecules are crucial for high affinity binding of plastocyanin and 

cytochrome c to PSI (Sommer et al. 2004).  These two Trp residues are within π-π 

stacking distance and are located in the proposed binding pocket of the soluble electron 

carriers to PSI (Fromme et al. 2003). 

1.6 Iron Sulfur Clusters: FX, FA and FB 

 PSI contains three iron sulfur clusters: FX, FA and FB.  Before the crystal structure 

was resolved to 2.5 Å, and the arrangement of cofactors was resolved, it was difficult to 

distinguish spectroscopically among the three iron sulfur clusters (Brettel, K. et al. 2001; 

Vassiliev et al. 2001).  FX is bound by the subunits PsaA and PsaB, (Figure 3A) while FA 
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and FB are bound to the PsaC subunit located on the stromal side of the membrane 

(Figure 3B).  FX is reduced by the phylloquinone molecule A1
-, and is oxidized by the 

iron-sulfur cluster FA.  The terminal electron acceptor of PSI FB, which mediates electron 

transfer to ferredoxin, by oxidizing FA
-.   

 The reduction potential for FX measured by reductive titration of PSI by low 

temperature EPR spectroscopy was found to be -705 ± 15 mV ((Vassiliev et al. 2001) and 

references therein).  Higher values of -670 mV using room temperature optical 

spectroscopy were reported in PSI samples that did not contain the iron-sulfur clusters FA 

and FB (Parrett et al. 1989).  The protein interactions that make FX one of the most 

electronegative iron-sulfur clusters is not well understood.  

 Electron transfer from FX
- to FA occurs in about 200 ns ((Brettel, K. et al. 2001; 

Vassiliev et al. 2001) and references therein). The midpoint potential of FA, measured by 

low temperature EPR studies, was found to be -540 mV and -590 mV for FB.  However, a 

different technique, employing optical detection of charge recombination between the FA, 

FB and P700, measured a midpoint potential of -440 mV for FB and -465 mV for FA 

((Vassiliev et al. 2001) and references therein).  The range of redox potentials comes 

from the different techniques used in the studies.  Both techniques required the pre-

reduction of FA to measure the redox potential of FB.  Furthermore, neither study used 

PSI samples containing ferredoxin, which may influence the redox potential of FB.  

Binding of ferredoxin may decrease the reduction potential of FB. This mechanism may 

avoid reducing oxygen, which is potentially harmful to PSI (Setif 2001). 
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1.7 Interaction of PSI with Ferredoxin and Flavodoxin 

 Electrons from PSI are transferred to the iron sulfur protein ferredoxin in the 

microsecond time regime ((Setif 2001) and references therein).  Flavodoxin may 

substitute for ferredoxin in cyanobacteria and some algae under iron limiting conditions.  

Ferredoxin reduces ferredoxin-NADP+ reductase, which acts in reducing NADP+ to form 

NADPH.  The subunits PsaC, PsaD, and PsaE, located on the stromal side of the 

membrane, participate in the docking of ferredoxin/flavodoxin.  A patch of basic residues 

on the PsaD, PsaA and PsaE subunits has been suggested to be the docking site for 

ferredoxin (Fromme et al. 2001; Grotjohann et al. 2005).  Mutagenesis studies along with 

chemical crosslinking experiments have shown direct evidence for the interaction of 

ferredoxin to this docking site (Zanetti et al. 1987; Zilber et al. 1988; Wynn et al. 1989; 

Andersen et al. 1992; Lelong et al. 1994; Fischer et al. 1998).  Upon binding to PSI, it has 

been postulated that ferredoxin modulates the redox potential of FB for efficient electron 

transfer between the proteins.   

1.8 Fourier-Transform Infrared Spectroscopy 

 Vibrational spectroscopy such as Fourier transform-infrared (FT-IR) spectroscopy 

is a highly sensitive technique used to obtain information about enzymatic reactions, 

dynamics, and structure.  For membrane-bound proteins, such as PSI, it is one of the few 

techniques sensitive enough to identify changes accompanied with charge separation.  An 

FT-IR spectrum reflects important information concerning amino acid side chains such as 

charge, hydrogen bonding, conformation, and the protein environment of cofactors.  For a 

diatomic molecule, the vibrational frequency is proportional to the reduced masses of the 
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atoms that are involved in the chemical bond, as well as the bond strength.  Assignment 

of the stretching frequencies of the molecule can be approximated with the application of 

Hooke’s law in which the bond connecting the two atoms together is regarded as a spring.  

The system is treated as a simple harmonic oscillator (Wilson et al. 1980).     

 However, larger molecules consisting of more than two atoms have 3N-6 

vibrations, where N is the number of atoms comprising the molecule (Wilson et al. 1980).  

Normal mode of vibrations of molecules consists of each atom of the molecule oscillating 

about its equilibrium position in space by simple harmonic motion (outlined above).  

When the frequency and phase of the motion of the atoms are the same, each atom will 

reach its maximum displacement position at the same time.  Furthermore, each atom will 

pass through its equilibrium at the same time.  The position and momentum of the atoms 

can be represented by vectors and theoretical calculations of the vibrational frequencies 

of molecule can be calculated.  Density functional theory (DFT) is a quantum mechanical 

theory used to describe the electronic structure of a molecule.  DFT calculations describe 

normal mode vibrations of a molecule and are able to predict frequencies, amplitudes, 

and isotope shifts of the molecule.  In DFT calculations, the electronic state of the 

molecule can be described as a wavefunction, satisfying the many-electron Shrödinger 

equation.  Gaussian basis sets are functions used as atomic orbitals for the computation of 

electron orbitals in molecules.  The Gaussian basis DFT method breaks down the 

Hamiltonian described in the wavefunction into basic one-electron and two electron 

components, which can be solved by computational chemistry (Lewer 2003). 

 Vibrational transitions are narrow in line-shape; however in non-homogeneous 

mixtures, such as proteins, the lineshape will broaden due to the multiple vibrations 
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contributing to the absorption spectrum.   Difference FT-IR spectroscopy is technique 

that simplifies a rather complex spectrum.  To obtain a difference spectrum, an 

absorption spectrum is obtained before and after the reaction has occurred.  These spectra 

are subtracting from one another, the resulting spectrum consists of frequencies that were 

perturbed due to the reaction.  Those vibrational frequencies not affected will be 

subtracted from the difference spectrum.  Light-induced difference spectroscopy is a 

technique able to monitor the oxidized and reduced states of PSI electron-transfer 

cofactors.  Detection of changes in the electronic structure is possible because of the high 

signal to noise and internal frequency calibration of FT-IR spectrophotometers (Kim et 

al. 1998; Breton et al. 1999)  

 Although the FT-IR spectrum is characteristic to an entire molecule, certain 

groups of atoms give rise to characteristic frequencies regardless of the structure of the 

rest of the molecule.  Therefore, these characteristic bands can be used as molecular 

probes of the system.  One application that has been widely used in the study of 

photosynthetic proteins is isotope incorporation into amino acids or cofactors involved in 

electron transfer reactions.  IR frequencies are dependent on the reduced masses of the 

atoms involved; therefore FT-IR spectroscopy is a technique that is sensitive to isotope 

incorporation.  Previous studies have incorporated various isotopes into the electron 

donor and acceptor molecules of PSI (Kim et al. 2000; Hastings et al. 2001a; Hastings et 

al. 2001b). Isotope-edited spectra have been invaluable in the study of electron transfer in 

various photosystems and bacterial reaction centers (Rothschild et al. 1981; Rothschild et 

al. 1982; MacDonald et al. 1993; Breton et al. 1994; Breton 1997). 
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1.9 Thesis Outline 

To gain greater knowledge about protein dynamics and electron cofactor interactions, 

isotope labeling of amino acid side chains, electron acceptors, and electron donors of PSI 

was performed to generate isotope-edited spectra.  The spectra presented here will have 

contributions for only those groups perturbed by the isotope incorporation, and light-

induced electron transfer.  The results presented here have shown profound effects on 

protein environment of the vibration spectra of the electron cofactors of PSI, and have 

given novel insight into protein dynamic effects on electron transfer. 

 In this thesis, light-induced Fourier-transform infrared (FT-IR) spectroscopy is 

utilized to probe the spectroscopic properties of the secondary electron acceptor, A1, the 

terminal electron donor, P700, and protein dynamics during light-induced electron 

transfer.  This work utilizes isotope incorporation into particular functional groups of the 

cofactors and amino acids.  Chapter 2 reviews the biosynthetic pathway of chl, 

phylloquinone and the aromatic amino acids.  The particular steps in the biosynthetic 

pathways that were utilized to incorporate the isotopes are also discussed.  In Chapter 3, 

the isotope-edited vibrational spectrum of A1
--minus-A1 is presented.  Bands arising from 

the reduced and oxidized forms of A1 are assigned, and the effects of protein interactions 

with A1 are discussed. 

 Chapter 4 described the spectroscopic studies performed on the terminal electron 

donor P700.  Assignments for the reduced and oxidized forms of P700 are discussed, as 

well as protein dynamics associated with oxidation of P700. These studies are very 

important because they suggest novel protein dynamics that may be associated with 
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charge transfer from plastocyanin to PSI. An examination of the protein dynamics 

associated with the PsaA and PsaB subunits is given in Chapter 5. Isotope-edited spectra 

of amino acid side chains perturbed doing electron transfer are analyzed and a discussion 

of the importance of the protein dynamics is presented.   
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Figure 1.  The protein complexes embedded in the thylakoid membrane involved in the 

light-induced electron transfer reactions in photosynthesis.  Stoichiometry of the 

oxidation of water is not implied.  Original figure can be found at 

http://en.wikipedia.org/wiki/Image:Thylakoid_membrane.png. 
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Figure 2.  The arrangement of subunits in PSI:  PsaA subunit, yellow; PsaB, blue; PsaC, 

green; PsaD, red; PsaE, grey; PsaF, purple; PsaI, cyan; PsaJ, pink; PsaK, dark grey; PsaL, 

light brown; and PsaM, dark brown.  The figure is reproduced from the 2.5 Å resolution 

crystal structure of PSI from S. elongatus (PDB file accession number 1JB0 (Jordan et al. 

2001)) using Swiss-Pdb viewer (v3.7; www.expasy.ch/spdbc) and rendered using POV-

Ray (v3.5; www.povray.org). 
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Figure 3.  The arrangement of electron cofactors bound to PsaA, PsaB, or PsaC. (A). The  

PsaA and PsaB subunits that form the heterodimeric core of PSI and the electron transfer 

molecules bound to each subunit.  PsaA is depicted in yellow and PsaB is depicted in 

blue.  The electron transfer cofactors from the luminal side toward the stromal side of the 

membrane include P700, eCA2, eCB2, eCB3, eCA3, A1A, A1B and FX.  The subscripts 

designate the subunit which binds the cofactor.  FX is bound to both the PsaA and PsaB 

subunits. (B). The terminal electron acceptors bound to the PsaC subunit located on the  



 25

Figure 3 continued  

stromal side of PSI.  FA and FB are depicted as spherical balls in yellow and the PsaC 

subunit is colored green.  The figure is reproduced from the 2.5 Å resolution crystal 

structure of PSI from S. elongatus (PDB file accession number 1JB0 (Jordan et al. 2001)) 

using Swiss-Pdb viewer (v3.7; www.expasy.ch/spdbc) and rendered using POV-Ray 

(v3.5; www.povray.org).  
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Figure 4.   Electron transfer scheme in PSI starting with the radical pair P700
+ A0

- 

(Brettel, K. et al. 2001; Vassiliev et al. 2001 and references therein). 
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Figure 5.  Arrangement of the electron cofactors of PSI.  The figure is reproduced from 

the 2.5 Å resolution crystal structure of PSI from S. elongatus (PDB file accession 

number 1JB0 (Jordan et al. 2001)) using Swiss-Pdb viewer (v3.7; www.expasy.ch/spdbc) 

and rendered using POV-Ray (v3.5; www.povray.org).  The nomenclature of the 

accessory chl comes from ref (Grotjohann et al. 2005).  The subscripts indicate the 

subunit to which the cofactor is bound. 
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Figure 6.  The prominent features of the A1 binding pocket.  Both A1 molecules are in 

hydrogen bonding distance to the backbone of a leucine molecule as well as π-stacking 

distance to a tryptophan residue.  The aspartate B575 residue has been implicated in the 

modulation of the redox potential of A1. 
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 CHAPTER 2   

BIOSYNTHETIC PATHWAYS OF CHLOROPHYLL, 

PHYLLOQUINONE AND AROMATIC AMINO ACIDS 

 

 

 

 The research presented in the following chapters applies isotope labeling 

techniques to characterize protein dynamics during electron transfer in PSI.  These 

labeling techniques utilize the biosynthetic pathways of chlorophyll, phylloquinone, and 

the aromatic amino acids to specifically isotope label hydrogen, carbon or oxygen atoms.  

In order to incorporate isotopes into specific positions of the molecules, the biosynthetic 

pathways were manipulated at precise steps.  Here I present a brief overview of the 

biosynthetic pathways for chlorophyll, phylloquinone and the aromatic amino acids and 

outline the enzymatic steps that were utilized to incorporate the desired isotope.  

2.1 Biosynthetic Pathway of Chlorophyll 

 Chlorophyll contains a tetrapyrrole ring structure known as a prophyrin, common 

to that found in the heme prosthetic group of hemoglobin and cytochrome.  There are 

several biosynthetic steps shared by chlorophyll and heme, however chlorophyll contains 

a magnesium atom coordinated by four nitrogen atoms whereas heme binds an iron atom.  

The biosynthetic pathway of chlorophyll has been elucidated through the use of various 

biochemical techniques such as isotope labeling, enzyme biochemistry, and mutation 

studies.((Beale 1999) and references therein). 
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  In all organisms that synthesize tetrapyrroles the universal precursor is 

aminolevulinic acid (ALA).  In animals, the enzyme known as aminolevulinic acid 

synthase performs three enzymatic steps which convert glycine and succinyl-CoA to 

ALA (Gibson et al. 1958; Kikuchi et al. 1958).  In plants, green algae, and cyanobacteria, 

there are three enzymes responsible for the production of ALA.  The chl biosynthetic 

pathway begins with glutamic acid, ligated to a tRNA molecule (Beale et al. 1974; Beale 

et al. 1975; Kannangara et al. 1988).  Glutamyl-tRNA synthatase (EC 6.1.1.17) activates 

glutamate by ligating it to a tRNAglu molecule. Glutamyl tRNA reductase reduces the 

activated carboxyl group of the tRNAglu to a formyl group; producing glutamate-1-

semialdehyde.  This step is followed by an amino-exchange reaction, to form δ-

aminolevulinic acid (ALA), and is catalyzed by glutamate-1-semialdehyde 

aminotransferase (EC 5.4.3.8) (Beale 1999).  These three enzymatic steps are outlined in 

Figure 1.   

 Two molecules of ALA are condensed to form a pyrrole molecule known as 

porphobilinogen.  This step in the chlorophyll biosynthetic pathway is catalyzed by the 

enzyme ALA dehydratase (Schmidt et al. 1955; Calisson et al. 1966; Nandi et al. 1967).  

Four molecules of porphobilinogen are combined in the synthesis of 1-

hydroxymethylbilane by the enzyme porphobilinogen deaminase; with four molecules of 

NH3 being released (Frydman et al. 1970).  The next step in the synthesis pathway is the 

production of the macrocycle ring.  The macrocycle ring formation is carried out by the 

enzyme referred to as uroporphyrinogen III synthase (EC 4.2.1.75) (Hart et al. 1985).  

This enzyme has undergone intensive studies due to the proposed mechanism of 

cyclization (Crockett et al. 1991; Beale 1999) and references therein). Uroporphyrinogen 
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III synthase catalyzes a ring inversion, which interchanges of the carbons that constitute 

part of the tetrapyrrole ring  From Figure 2, the acetate group and propionate group do 

not simply exchange; instead the enzyme catalyzes a ring flip and subsequent 

interchange.  Uroporhyrinogen III decarboxylase decarboxylates the macrocycle ring, 

resulting in four molecules of CO2 to be released.  The formation of the macrocycle ring 

is shown in Figure 2. 

  Three enzymes are involved in the conversion of uroporphyrinogen III to 

protoporphyrin IX  and are responsible for transforming the molecule from a hydrophilic 

and photochemically unreactive molecule to a hydrophobic, photochemically active 

molecule.  These reactions are shown in Figure 3.  The first two steps in the conversion 

require oxygen to oxidize multiple single bonds to double bonds on the macrocycle ring, 

resulting in the production of water and CO2.  These reactions are carried out by 

coporphyrinogen III oxidase (EC 4.1.1.37) and protoporphyrinogen IX oxidase (EC 

1.3.34) to produce protoporphyrin IX (Jacobs et al. 1979; Hart et al. 1985; Robinson et al. 

1985).  The reactions outlined above to form protoporphyrin IX are common to both 

plants and animals.  Although the synthesis of ALA differs, the reactions that convert 

ALA to protoporphyrin are common to both groups of organisms.  To form a heme 

molecule, ferrochelatase (EC 4.99.1) inserts an iron atom into the center of 

protoporphyrin IX.  In plants and cyanobacteria, magnesium chelatase is responsible for 

the addition of a magnesium atom into the center of protoporphyrin IX, as shown in 

Figure 3 (Gorchein 1972; Walker et al. 1991). 

 Once the magnesium has been incorporated into the macrocycle ring, a methyl 

group is added to the 132 carboxyl group to form an ester by the enzyme Mg-
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protporphyrin IX methyltransferase (EC 2.1.1.11) (Figure 4) (Ellswort et al. 1972). This 

enzyme uses the substrate S-adenosylmethionine as the methyl donor.  Previous studies 

have used this step to incorporate C2H3 at this carbon position (Kim et al. 2000).  This 

was accomplished by growing methionine tolerant Synechocystis supplemented with L- 

C2H3-methionine.  After the methyl group has been added to the macrocycle, the fifth 

ring is formed. 

    Figure 4 depicts the last steps of the chl biosynthesis pathway.  The fifth ring is 

formed by an oxygen dependent cyclase; the mechanism of which is not well understood.  

The cyclase catalyzes carbon bond formation as well as the oxidation of the 131 carbon to 

a carbonyl, using O2 as a substrate (Bollivar et al. 1995, 1996).  Further processing of the 

macrocycle is accomplished by 8-vinyl reductase which reduces a double bond on the 82 

carbon to a single bond to produce monovinyl protochlorophyllide a, and uses the 

oxidation of NADPH to NADP+ to drive the reaction to completion.  The reduction of 

ring IV by protochlorophyllide oxidoreductase (EC 1.3.1.33) requires light energy and 

NADPH to produce chlorophyllide a (Oliver et al. 1980).  The final step in the formation 

of chlorophyll a is the attachment of the phytol tail, which is accomplished with the use 

of chlorophyll synthatase (EC 3.1.1.14) (Rudiger et al. 1980).   

 For the isotope labeling studies presented here, I was able to utilize the first three 

enzymatic steps in the production of ALA, which utilizes glutamate as the sole carbon 

source.  Eight molecules of glutamate are used in the production of one molecule of chl.  

In order to specifically label the 131 keto group of chl, a glutamate-tolerant strain of 

Synechocystis PCC 6803 was cultured in glutamic -13C-3-acid.  Figures 1-4 illustrate the 

incorporation glutamic-13C-3- acid with the green carbons showing the 13C isotope. 
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 A second set of studies were conducted to incorporate 18O into chl.  As outlined 

above, the chl synthesis pathway contains an oxygen-dependent cyclase that catalyzes the 

formation of ring V and the oxidation of the 131C to a carbonyl carbon.  Synechocystis 

cultures were grown in the presence of 18O2, bubbled through the media.  Figure 4 depicts 

the cyclase reaction and the incorporation of molecular oxygen (colored blue) into chl. 

2.2 Chorismate Biosynthesis 

 Synthesis of chorismate constitutes a common step in aromatic amino acids and 

quinone biosynthetic pathways in plants and microorganisms (Herrmann 1995, 1995).  

The seven enzymes involved in the production of chorismate have been studied 

extensively in plants and bacteria (Bentley 1990; Pittard 1996).  The biosynthetic 

pathway for chorismate production, also referred to as the shikimate pathay, is depicted 

in Figure 5.  The biosynthetic pathway begins with phosphoenolpyruvate, an intermediate 

in glycolysis, and erythrose-4-phosphate derived from the pentose phosphate pathway.  3-

deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase catalyzes the 

condensation reaction to produce DAHP.  DAHP synthase has similar kinetic properties 

in bacteria and plants, however the bacterial DAHP synthase is feedback inhibited by any 

of the three aromatic amino acids, whereas plant DAHP synthase is activated by 

tryptophan (Srinivasan et al. 1959; Smith 1962).   

 The second step in the biosynthetic pathway involves the formation of a six 

carbon ring, catalyzed by 3-dehydroquinate synthase to produce 3-dehydroquinate.  This 

molecule is converted to 3-dehydroshikimate by a dehydration step catalyzed by 3-

dehydroquinnate dehydratase.  A reduction reaction utilizing NADPH and shikimate 
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dehydrogenase reduces 3-dehydroshikimate to shikimate (Balinsky et al. 1971).  In 

plants, both these steps are catalyzed on the bifunctional enzyme shikimate:NADP+ 

oxidoreductase (Bentley 1990).   

 Shikimate is phosphorlated by shikimate kinase to produce shikimate-3-phosphate 

(Gollube 1966, 1966; Koshiba 1979).  Once this molecule is formed, 5-

enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the transfer of 

enolpyruvate (PEP) to shikimate-3-phosphate to produce EPSP (Bondinell et al. 1971).  

This enzyme is the most studied of all the enzymes involved in chorismate biosynthesis 

and has been the target of many herbicides including glyphosphate (Roundup ™) and for 

novel antimicrobials (Marques et al. 2007).  The final step of the pathway, the conversion 

of EPSP to chorismate, involves a 1,4-trans elimination of phosphate from EPSP.  This 

reaction is catalyzed by chorismate synthase to produce chorismate (Gaertner et al. 1973).  

The reaction is considered unusual due to its absolute requirement for a reduced flavin 

mononucleotide, which is not consumed during the reaction (Macheroux et al. 1999). 

2.3 Phylloquinone Biosynthesis 

 The biosynthetic pathway of the phylloquinone A1 which functions as a secondary 

electron acceptor in PSI has not been fully investigated.  The bacterial menoquinone 

biosynthesis pathway has been elucidated, and it believed that formation of the 

napthoquinone ring follows the same enzymatic steps for phylloquinone.  The best 

studied system for menoquinone biosynthesis is E. coli, and the genes encoding the 

enzymes are designated as men genes.  Genetic comparisons of E. coli genome to the 

Synechocystis sp. PCC 6803 genome have shown that all the expected E. coli men genes 

are present in Synechocystis.  Furthermore, knockout mutants of the five genes for PhQ 
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biosynthesis have been created and disruption of four of them, menD, menE, menB, and 

menA, resulted in a complete absence of PhQ accumulation (Johnson et al. 2000; Johnson 

et al. 2001).  The addition of exogenous phylloquinone and other naphthoquinones can 

partially restore the activity of PSI (Johnson, T.W. et al. 2000; Johnson, T. W. et al. 

2001) confirming the biosynthetic pathway of phylloquinone in cyanobacteria.  The 

proposed biosynthetic scheme for phylloquinone is shown in Figure 6. 

  The phylloquinone biosynthetic pathway begins with chorismate, a six membered 

ring synthesized through the shikimate biosynthetic pathway (as described previously).  

Isochorismate synthetase catalyzes the isomerization reaction of chorismate to 

isochorismate (Simantiras et al. 1989).  Little research has been done on the mechanism 

of the enzyme in cyanobacteria and higher plants.  The next enzymatic reaction involves 

the decarboxylation of isochorismate and the addition of 2-ketoglutarate by the enzyme 

known as 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase to form 2-

succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (Palaniappan et al. 1992).  The 

following step in the phylloquinone biosynthetic pathway involves dehydration of the 

molecule to form o-succinyl benzoate by o-succinyl benzoate synthase (Sharma et al. 

1993). 

 Formation of the quinone ring is catalyzed by 1,4-dihydroxy-2-naphthoyl-CoA 

synthase.  In this enzymatic step, the napthoquinone ring structure is formed, and a CoA 

is attached via a sulfur bond to the ring structure.  The CoA is released by thioesterase 

resulting in production of a 1,4-dihydroxy-2-napthoate molecule (Sharma et al. 1992; 

Meganathan 2001).  Once CoA is removed from the ring structure, an isoprenyl tail is 

added, catalyzed by 1,4-dihydroxy-2-napthoate phytyltransferase, resulting in the 
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formation of demethylphylloquinone (Johnson et al. 2000).  The last enzymatic step is the 

transfer of a methyl group from methionine to produce phylloquinone, which is catalyzed 

by the enzyme demethylphylloquinone methyl transferase (Suvarna et al. 1992; Koiki-

Takeshita et al. 1997).  

 In order to incoporate C2H3 into the methyl group of phylloquinone, I utilzed the 

last step in the biosynthetic pathway.  Methionine-tolerant Synechocystis PCC 6803 were 

grown in the presence of L- C2H3 -methionine.  As outlined above, methionine is used as 

a methyl donor in the last enzymatic step of phylloquinone biosynthesis.  The chlorophyll 

biosynthesis pathway also utlizes methionine as a methyl donor.  Previous experiments 

have shown 42-68% incorporation of C2H3 into chl and plastoquinone using this 

experimental method (Barry 1995; Razeghifard et al. 1999; Bender et al. 2008) 

2.4 Aromatic Amino Acid Biosynthesis 

 Tyrosine and phenylalanine are produced by the same pathway, branching at the 

last enzymatic step as shown in Figure 7.  First, chorismate is converted to prephenate by 

the enzyme chorismate mutase.  This enzymatic step catalyzes the intramolecular 

rearrangement of the enolpyruvyl side chain of chorismate, reducing the double bond, 

and moves the enolpyruval group in a Claisen rearrangement (Poulson et al. 1991).  This 

is the committed step for phenylalanine and tyrosine synthesis.  Chorismate mutase is 

feedback inhibited by each of the end products, phenylalanine and tyrosine, and is 

activated by tryptophan (Poulson et al. 1991).   

 In plants and cyanobacteria, prephenate aminotransferase is responsible for the 

production of arogenate, which contains the amide group common to both phenylalanine 
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and tyrosine.  The enzyme uses glutamate to transfer the amino group to prephenate, 

producing alpha-ketoglutarate (Bonner et al. 1987).  Arogenate is the last common 

precursor of phenylalanine and tyrosine.  Arogenate dehydratase catalyzes the 

decarboxylation of arogenate to produce phenylalanine (Hall et al. 1982).  Arogenate 

dehydrogenase uses NADP+ as an oxidizing agent to oxidize arogenate to tyrosine 

through a two step process.  First the enzyme oxidizes the alcohol group on the ring to a 

carbonyl, and  then catalyzes a decarboxylation to form tyrosine and CO2(Hall et al. 

1982).  

 Figure 7 outlines the biosynthetic pathway and the structure of the intermediates 

involved in the synthesis of tryprophan from chorismate.  Anthranilate synthase catalyzes 

the committing step in tryptophan biosynthesis. This enzyme catalyzes the amination of 

chorismate and the removal of the enolpyruvyl side chain to produce anthranilate.  

Anthranilate synthase utilizes either glutamine or ammonium as the amine donor, a Mg2+ 

as a cofactor and is feedback inhibited by the end product of the pathway, tryptophan 

(Braus 1991).  The formation of anthranilate and the following biosynthetic pathway to 

produce tryptophan are identical in all the prokaryotes and eukaryotes that have been 

examined (Gilchrist et al. 1980).   

 The second step in the tryptophan biosynthesis pathway involves a transfer of a 5-

phosphoribosyl pyrophosphate to anthranilate by the enzyme phosphoribosylanthranilate 

transferase.  N-phosphoribosyl-anthranilate is converted to 1-(o-carboxyphenylamino)-1-

deoxyribulose-5-phosphate by the enzyme known as phosphoribosylanthranilate 

isomerase.  Relatively little is known about the previous two enzymes in plants; however, 
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both enzymes have been the focus of genetic and molecular testing and analysis (Furter et 

al. 1986; Hutter et al. 1986; Hommel et al. 1989).   

 The enzyme, indole-3-glycerol-phosphate (IGP) synthase catalyzes the 

decarboxylation and ring closure of carboxyphenylamino-l-deoxyribulose 5-phosphate 

(CDRP). This is the least well-studied step in the plant tryptophan synthesis pathway.  

The crystal structures of indole-3-glycerol-phosphate (IGP) synthase have been reported 

from E. coli, and research comparing the indole-3-glycerol-phosphate (IGP) synthase 

genes from various organisms has been performed (Priestle et al. 1987; Braus 1991). 

From these studies it is known that IGP synthase is bifunctional, and it is the second 

domain that catalyzes the second ring closure of IGP.  Tryptophan synthase catalyzes the 

final step in tryptophan synthesis by converting indole-3-glycerol phosphate and serine to 

tryptophan. Tryptophan synthase from E. coli is the best studied enzyme of the 

biosynthetic pathway (Pittard 1996).  

 In order to incorporate ring-labeled 2H5-tryptophan into PSI, I utilized feedback 

inhibition in Synechocystis PCC 6803 cells. Cultures were grown in the presence of 

millimolar concentrations of phenylalanine, tyrosine, with tryptophan or 2H5-trpytophan.  

This method will inhibit DAHP synthase, an enzyme in the chorismate biosynthesis 

pathway (explained above).  Chorismate is a common precursor to the aromatic amino 

acids.  Previous studies using ring-labeled, 2H4-tyrosine have shown little scrambling of 

the isotope into chlorophyll and plastoquinone (Barry et al. 1987). 

 The previous sections have outlined the biosynthetic approaches for incorporation 

of isotopes into cofactors and amino acids in PSI.  These in vivo biochemical techniques 

allow precise assignments of the light-induced FT-IR difference spectrum of PSI.  The 
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following chapters illustrate the usefulness of these techniques in identifying protein 

dynamics and protein-cofactor interactions during light-induced electron transfer. 
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Figure 1.  Formation of delta-aminolevulinic acid from L-glutamic acid.  Carbon 3 

(green) will be incorporated into eight positions of the tetrapyrrole ring of chlorophyll, 

including the 131 keto position. 
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Figure 2.  Formation of uroporphyrinogen III from porphobilinogen.  The carbons in 

green are from L-glutamic-3-13C-acid.  Uroporphyrinogen is the branching point for heme 

synthesis and chlorophyll synthesis. 
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Figure 3.  Enzymatic steps involved in synthesis of Mg-protophorphyrin IX.  The 

carbons in green are from L-glutamic-3-13C-acid. 
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Figure 4.  Final enzymatic steps in the formation of chlorophyll a including formation of 

ring V.  The oxygen (blue) will be incorporated from O2 by the cyclase enzymatic 

reaction.   The carbons in green are from L-glutamic-3-13C-acid. 
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Figure 5.  Biosynthetic steps involved in the production of chorismate from 

phosphoenolpyruvate and erythrose 4-phosphate. 
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Figure 6.  Enzymes and cofactors involved in the production of phylloquinone from 

chorismate.  The methyl group (blue) will be incorporated from S-adenosylmethionine. 
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Figure 7.  Biosynthetic pathway of the aromatic amino acids: phenylalanine, tryptophan, and 

tyrosine, starting with the common precursor, chorismate.
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CHAPTER 3 

THE VIBRATIONAL SPECTRUM OF THE SECONDARY ELECTRON 

ACCEPTOR,   

A1,  IN PHOTOSYSTEM I 

Reproduced with permission from “The Vibrational Spectrum of the Secondary Electron 

Acceptor, A1, in Photosystem I.” Bender, S. L.; J. M. Keough; , S. E. Boesch; R. A. Wheeler; 

B. A. Barry, Journal of Physical Chemistry B, 112; 3844-3852. Copyright 2008 American 

Chemical Society 

 

 

3.1 Abstract 

 Photosystem I (PSI) is a multisubunit protein complex, which carries out light-

induced, transmembrane charge separation in oxygenic photosynthesis.  In PSI, the electron 

transfer pathway consists of chlorophyll and phylloquinone molecules, as well as iron-sulfur 

clusters.  There are two phylloquinone molecules, which are located in structurally 

symmetric positions in the reaction center.  It has been proposed that both phylloquinone 

molecules are active as the A1 secondary electron acceptor in bi-directional electron transfer 

reactions.  The PSI A1 acceptors are of interest because they have the lowest reduction 

potential of any quinone found in nature.  In this work using light-induced FTIR 
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spectroscopy, isotope-edited spectra are presented, which attribute vibrational bands to the 

carbonyl stretching vibrations of A1 and A1
- and the quinoid ring stretching vibration of A1.  

Bands are assigned by comparison with hybrid Hartee-Fock density functional calculations, 

which predict vibrational frequencies, amplitudes, and isotope shifts for the phylloquinone 

singlet and radical anion states.  The results are consistent with an environmental interaction 

increasing the frequency of the singlet CO vibration and decreasing the frequency of the 

anion radical CO vibration, relative to model compounds.  This environmental interaction 

may be the asymmetric hydrogen bond to A1/A1
-, electrostatic interactions with charged 

amino acid side chains, or a pi-pi interaction with the indole ring of a nearby tryptophan.  

Such differential effects on the structure of A1 and A1
- may be associated with a 

destabilization of the anion radical.  These studies give novel information concerning the 

effect of the protein matrix on the PSI electron transfer cofactor. 
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3.2 Introduction 

 In oxygenic photosynthesis, photosystem I carries out the light-driven oxidation of 

plastocyanin and the reduction of ferredoxin. These reactions lead to a charge separation 

across the thylakoid membrane.  Electron transfer is initiated by photoexcitation of the 

photosystem I primary chlorophyll donor, which reduces the primary acceptor, A0, a chl a 

monomer (Holzwarth et al. 2006).  The resulting positive charge resides on P700, a 

heterodimeric chlorophyll, which is composed of chl a and its epimer, chl a' (Fromme et al. 

2001; Jordan et al. 2001).  A0 reduces the secondary electron acceptor, A1, which is a 

phylloquinone (Rustandi et al. 1990).  Sequential electron transfer reactions then lead to the 

reduction of FX, FA and FB, which are iron-sulfur clusters.  FA and FB are bound to the 

extrinsic PsaC subunit, while the other electron transfer cofactors are bound to the intrinsic, 

membrane-associated PsaA and PsaB subunits (Fromme et al. 2001; Jordan et al. 2001). 

 The structure of PSI from Synechococcus elongates has been solved at 2.5 Å 

resolution by X-ray diffraction (Jordan et al. 2001).  There are two phylloquinone acceptor 

molecules, which are located in C2 structurally symmetric positions.  The two phylloquinone 

cofactors will be designated here as A1A and A1B, where the subscripts designate the subunit 

to which the phylloquinone molecule is bound.  It has been proposed that both sets of 

phylloquinone cofactors are reduced in PSI electron transfer reactions, but with different time 

constants (Rigby, S. E. et al. 1996; Joliot et al. 1999; Boudreaux et al. 2001; Guergova-Kuras 

et al. 2001; Purton et al. 2001; Rigby, S. E. J. et al. 2002; Ramesh et al. 2004; Bautista et al. 

2005; Poluektov et al. 2005; Santabarbara et al. 2005a; Santabarbara et al. 2005b; Ali et al. 

2006; Li et al. 2006; Santabarbara et al. 2006; Ramesh et al. 2007). In Chlamydomonas 
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reinhardtii, electron transfer has been deduced to be bidirectional with a 1:1 ratio of the 

kinetic phases (Joliot et al. 1999; Guergova-Kuras et al. 2001). In cyanobacteria, electron 

transfer is more unidirectional along the PsaA branch with ratios of 1:2-3 (Klughammer et al. 

1999; Guergova-Kuras et al. 2001; Xu et al. 2003a; Xu et al. 2003b; Cohen et al. 2004; 

Dashdorj et al. 2005).  In particular, PSI from Synechocystis PCC 6803 shows a fast phase 

(time constant 11 ns) and slow phase, which have been assigned to electron transfer down the 

B and A branch, respectively.  The slow phase was observed to have a 340 ns time constant 

at 295 K and to slow upon cooling, with an activation energy of 110 meV (Aglarov et al. 

2003).  The minor fast phase was observed to be temperature independent. 

The structure of phylloquinone is shown in Figure 1, along with its IUPAC 

numbering scheme.  Figure 2 displays the binding pockets of A1A (left) and A1B (right) from 

the 2.5 Å PSI structure (Jordan et al. 2001).  A predominant feature of both binding pockets 

is a tryptophan residue, which is within π-stacking distance of each A1 acceptor.  These two 

conserved tryptophans are located on the stromal side of A1A and A1B.  The distances between 

the indole ring and the quinone are approximately 3 Å for A1A and 3.5 Å for A1B.  Another 

striking feature of the A1 protein environment is an asymmetric hydrogen bond from the 

amide NH groups of LeuA722 and LeuB706 respectively, to the C4=O groups of each A1 

molecule (Jordan et al. 2001; Pushkar, Y. et al. 2004; Teutloff et al. 2004).   The lack of a 

second hydrogen bond to C1=O distinguishes the A1 binding site, when compared to the QA 

binding site in bacterial reaction centers, in which two hydrogen bonds are formed to QA
-.  A 

tryptophan-QA pi-pi interaction also occurs in the bacterial reaction center (Allen et al.; 

Deisenhofer et al. 1989; Kamlowski et al. 1998; Fromme et al. 2001; Pushkar, Y. et al. 

2004). 
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 A1 has the lowest known redox potential of any quinone found in nature.  

Measurements for the A1 redox potential range from -750 to -810 mV (Brettel, Klaus 1997).  

Previous studies in which A1 has been exchanged for various quinone molecules, such as 

benzoquinone, have shown a -0.3 V change in the redox potential compared to the measured 

reduction potential in solution (Itoh et al. 2001).  These results indicated that specific protein-

cofactor interactions, such as the NH...CO asymmetric hydrogen bond (Pushkar, Y. et al. 

2004; Li et al. 2006; Feldman et al. 2007) and possibly the pi-pi interaction, modulate the 

redox potential of quinones bound to the A1 binding site (van der Est 2001).  Recent work 

has also implicated an electrostatic interaction with an aspartate as a modulator of A1 redox 

potential (Karyagina et al. 2007). 

 To understand the structure of A1/A1
- and their interaction with the protein 

environment, we have used FTIR spectroscopy.  Vibrational spectroscopy supplies dynamic 

structural information concerning the electron transfer cofactors in vivo.  Previously, A1
-/A1 

spectra have been constructed, and multiple assignments have been suggested for the A1 and 

A1
- vibrational bands (Hastings et al. 2001; Sivakumar et al. 2005; Bandaranayake, K. M.; et 

al. 2006; Bandaranayake, K. M. et al. 2006a; Bandaranayake, K. M. et al. 2006b). However, 

there are discrepancies in these assignments, and different spectroscopic methods have 

yielded contradictory results.   

  In this study, we have used isotopic labeling of phylloquinone in order to identify the 

vibrational modes of A1 and A1
-, under conditions in which A1 is the terminal electron 

acceptor in PSI.  When the iron-sulfur clusters, Fx, FA, and FB are removed, the P700
+A1

- state 

can be photo-generated (Warren et al. 1990; Van der Est et al. 1994; Shen et al. 2002a).  We 

have incorporated C2H3 into the methyl group of A1 using a methionine-tolerant strain of the 
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cyanobacterium, Synechocystis sp. PCC 6803.  This approach has been used previously to 

assign bands to the plastoquinone acceptors, QA and QA
-, in cyanobacterial photosystem II 

(Razeghifard et al. 1999).  In our current work, light-minus-dark FT-IR spectroscopy 

identifies C2H3-sensitive bands of A1 and A1
-.  The data presented here support the 

interpretation that an asymmetric hydrogen bond, electrostatic interactions, and/or a pi-pi 

interaction shifts the CO stretching and quinone ring stretching frequencies of A1 and A1
-, 

relative to model compounds.    

3.3 Materials and Methods 

 3.3.1 Isotopic labeling and PSI purification.  A methionine-tolerant strain of 

Synechocystis PCC 6803 was grown on solid media, containing 90 μM methionine BG-11, 5 

mM TES-NaOH, pH 8.0, and 6 mM NaS2O3 (Rippka et al. 1979; Barry, B.A. 1995).  Liquid 

cultures (15 L) were supplemented either with 200 μM natural abundance C1H3-methionine 

or C2H3-methionine (98% enrichment, Cambridge Isotope Laboratories, Andover, MA) 

(Razeghifard et al. 1999).  Trimeric PSI was purified as described previously (Kim et al. 

2001).  Purified trimeric PSI samples were dialyzed overnight in 5 mM HEPES-NaOH pH 

7.5, 0.04% dodecyl-β-D-maltoside (LM) and were concentrated using an Amicon (Bedford, 

MA) Ultra 100,000 MWCO centrifugal filter device to a final concentration of 4.6 mg 

chl/ml. 

 3.3.2 Apo-Fx preparations.  PSI (0.25 mg chl/ml) was incubated in a buffer 

containing 6.8 M urea, 50 mM Tris, 10 mM glycine-NaOH, pH 10 for 70 minutes as 

previously described (Parrett, K. G. et al. 1989). The PSI sample was then dialyzed overnight 

against 50 mM Tris-HCl, pH 8.3.  The sample was incubated in 3 M urea, 5 mM Ke3FeCN6 
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50 mM Tris-HCl, pH 8.3 for 2 hours to remove the Fx cluster (Warren et al. 1990).  The 

sample was dialyzed overnight against 50 mM Tris-HCl, pH 8.3, and then again overnight 

against a buffer containing 50 mM Tris-HCl, pH 8.3, 5 mM 4,5-dihydroxy-1,3-benzene-

disulfonic acid, which was supplied as the disodium salt.  The sample was dialyzed a third 

night against 50 mM Tris, pH 8.3, 0.035% LM (Parrett, K. G.; et al. 1990; Warren et al. 

1990; Warren et al. 1993).  The sample was buffer exchanged with 5 mM HEPES-NaOH, pH 

7.5 and concentrated using an Amicon Ultra 100,000 MWCO centrifugal filter device.  The 

final chl concentration was 3 mg/ml.   

Transient absorption spectroscopy, monitoring the decay of the P700
+ signal at 820 

nm, was performed to verify iron-sulfur cluster removal, as previously described (Warren et 

al. 1990).  The PSI concentration was 41-58 micrograms chl/ml, and the samples were in 50 

mM Tris pH 8.3, and 0.035% LM.  Sodium ascorbate (5 mM) and dichloroindophenol 

(DCPIP, 4 μM) were added as exogenous electron donors.  The 532 nm photolysis laser had 

an energy of 1.5-1.8 mJ/cm2.  SDS gel electrophoresis was also used to verify PsaC removal  

(Piccioni et al. 1982; Kruip et al. 1997). 

 3.3.3 Assessment of isotope enrichment through mass spectrometry.  Previous 

quantitative work has shown that both the 134-methyl of chl (Kim et al. 2000a) and the 

phylloquinone ring C2 methyl group (Barry, B. A. et al. 1987; Kim et al. 2001) are labeled 

from C2H3-methionine, which is a methyl group donor to both cofactors. Therefore, 

phylloquinone isotopic enrichment can be monitored indirectly by measuring the amount of 

chl isotopic labeling in cyanobacterial cultures grown on C2H3-methionine (Kim et al. 

2000b). The control sample was isolated from cyanobacteria grown on natural abundance 

methionine.  Chlorophyll was extracted from PSI with a solution of 80% acetone/20% 
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methanol. The extracted pigments were vortexed, sonicated, centrifuged, and filtered as 

previously described (Patzlaff et al. 1996). Chlorophyll was concentrated and dried using a 

Thermo-savant SpeedVac concentrator with VLP120 pump and RVT 400 refrigerated vapor 

trap (Thermo Electron Corporation, Waltham, MA).  Chlorophyll samples were stored at        

-70°C until use.  Matrix assisted laser desorption ionization mass spectrometry on a 4700 

Proteomics Analyzer (Applied Biosystems Foster City, CA) was performed to determine the 

amount of C2H3 incorporation.  Immediately before the measurement, chlorophyll was 

dissolved in a mixture of 80% methanol, 19% water, and 1% acetic acid; this treatment 

removes the central Mg+2 ion of chlorophyll and generates pheophytin.  The matrix used was 

alpha-cyano-4-hydroxy cinnamonic acid.  The 871.5 m/z peak of pheophytin [M+H] was 

used for quantitation. Data were analyzed using IGOR (Wavemetrics, Lake Oswego, OR) 

software. The data were normalized to the [M+H] peak, and the isotope distribution was 

calculated. This approach showed 40 + 1% labeling of the chlorophyll methyl group from 

C2H3-methionine and implies a similar amount of phylloquinone labeling (Barry, B. A. et al. 

1987; Kim et al. 2000b).  Previous work has shown that there is no significant scrambling 

into other amino acids besides methionine, suggesting that there will be no detectable 

labeling of the peptide backbone (Razeghifard et al. 1999). 

 3.3.4. FTIR Spectroscopy:  FT-IR spectra were collected at -10°C (Kim et al. 1998)  

or at room temperature (20oC). Samples contained 3 mM potassium ferricyanide and 3 mM 

potassium ferrocyanide and were concentrated at room temperature under a steady flow of 

nitrogen gas. Concentration times were 20-30 minutes.  Spectral conditions were as follows: 

resolution, 4 cm-1; zero filling, 1; data acquisition time, 4.0 min.  Difference spectra (light-

minus-dark) were generated by taking the ratio of single beam spectra collected before and 
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during illumination and converting to absorbance.  A1
-/A1 spectra were generated by 

subtraction of data from intact and apo-Fx PSI.  The A1
-/A1 isotope edited spectra were 

generated by subtracting difference FT-IR spectra, acquired from C2H3-PSI samples, from 

difference FT-IR spectra, acquired from natural abundance, C1H3-PSI samples (Kim et al. 

2000b; Kim et al. 2001; Sacksteder et al. 2005).  FT-IR spectra were obtained in the dark or 

under continuous illumination with red- and heat-filtered light, as previously described (Kim 

et al. 2001; Sacksteder et al. 2005).  A 90 min dark relaxation time was used between 

successive illuminations.  The final averaged difference FT-IR spectra were an average of 45 

spectra and were normalized for small differences in sample concentration and path length, 

using the amplitude of the amide II band in the infrared absorption spectrum.  The infrared 

absorption spectrum was created using a dark and a background scan, which were acquired 

with infrared windows, but no PSI sample.  Previous studies have found that changes in 

hydration levels alter the details of PSI charge separation (Sacksteder et al. 2005).  Therefore, 

water content in all the FTIR samples was held constant, as assessed by the ratio (1.1-1.3) of 

the 3300 cm-1 band to the  amide I band at 1656 cm-1 (Kim et al. 2001). 

 3.3.5 Density Functional Calculations.  Density functional methods were used to 

predict the vibrational frequencies, IR intensities, and isotopic frequency shifts for the normal 

modes of models for phylloquinone and the phylloquinone anion radical.  Figure 1 displays 

the structure of phylloquinone, and for the model the isoprenyl chain of phylloquinone was 

truncated to a single isoprenyl unit for ease in computation.  The methyl group on the 

quinone ring was completely deuterated in order to estimate the maximum isotopic frequency 

shifts. 
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 The B3LYP hybrid Hartree-Fock density functional (HF/DF) method (Becke 1993) 

was used to calculate the vibrational frequencies for a model of phylloquinone and its radical 

anion.  The B3LYP method was chosen because it is known to give harmonic vibrational 

frequencies within approximately 4% of experiment, for approximately the same computer 

time investment as a Hartree-Fock calculation, in which estimated frequencies vary from 

experiment by more than 10% (Scott et al. 1996).  The three-parameter B3LYP method uses 

a weighted sum of Hartree-Fock, local DF, and gradient-corrected DF expressions for the 

exchange and correlation energies where (EX
Slater) is Slater’s local spin density functional for 

exchange, (Slater 1974) EX
Becke is Becke’s gradient correct exchange functional, (Becke 

1988) EC
VWN is the local density correlation functional of Vosko, Wilk, and Nusair, (Vosko et 

al. 1980) and EC
LYP is the gradient-corrected correlation functional of Lee, Yang, and Parr 

(Lee et al. 1988).  Coefficients giving the relative weights of various approximations for the 

exchange and correlation energies in this method were optimized to reproduce 

thermochemical data for a variety of small molecules (Becke 1993).  All calculations 

reported here were performed using the 6-31G(d) split-valence plus polarization basis set 

(Hehre et al. 1986; Helgaker et al. 1995).  This basis set was chosen because it reproduces the 

properties of medium-sized organic molecules, including a variety of p-benzoquinones and 

their radical anions and is small enough for rapid calculations (Boesch et al. 1995, 1997a, 

1997b; Wise et al. 1997; Grafton et al. 1998a, 1998b). 

 The quantum chemistry program Gaussian 03 (Frisch et al. 2004) was used for all 

calculations.  Berny’s optimization algorithm was used to perform full geometry 

optimizations in C1 symmetry using internal coordinates (Schlegel 1986).  Frequency 

calculations were performed for the optimized geometries.  It has been customary to scale 
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calculated vibrational frequencies, and we adopt the scaling factor of 0.9614 suggested by 

Scott and Radom (Scott et al. 1996). 

Vibrational mode assignments were performed by animating each mode using the 

program XMOL (Wasikowski et al. 1993) and comparing the modes of one molecule to 

another using the program ViPA, an acronym for Vibrational Projection Analysis (Grafton et 

al. 1998a, 1998b).  The ViPA program (Grafton et al. 1998a, 1998b) exploits the vector 

properties of vibrational normal modes to assess the similarity between modes of an object 

molecule and a structurally similar basis molecule.  The program first aligns the two 

molecules and calculates each molecule’s normal modes and vibrational frequencies.  For 

each molecule, each of the normal vibrational modes is a column vector, which is 

orthonormal to all other normal modes of the same molecule.  The vector projection 

operation is done by sequentially projecting each normal mode of the object molecule to the 

modes of the basis molecule. The similarity of any mode of the object molecule to any mode 

of the basis molecule can then be expressed as a percentage by calculating the sum of the 

squares of the matrix elements and multiplying by 100.  Vibrational projection analysis has 

been exploited to compare normal modes modified by isotopic substitution, 

oxidation/reduction, as well as covalent (Grafton et al. 1998a; Wise et al. 1999) and non-

covalent (Razeghifard et al. 1999) modifications. 

3.4 Results 

Transient absorption experiments were performed to verify the removal of the iron-

sulfur clusters in the apo-Fx samples.  In the absence of FX, FA, and FB, P700
+ recombines 

with A1
-, and an acceleration in the decay rate of P700

+, is expected (Parrett, K. G.; et al. 
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1990; Warren et al. 1990; Golbeck 1994; Brettel, Klaus 1997; Brettel, K. et al. 2001; Shen et 

al. 2002a; Shen et al. 2002b).  P700
+ decay can be detected at 820 nm (Figure 3) after a 532 

nm flash.  At the low 532 nm excitation energies employed here, previous work has shown 

that chl triplets do not make a significant contribution to 820 nm decay kinetics either in 

intact or apo-FX PSI (Vassiliev et al. 1997).    Therefore, the decay of 820 nm absorbance is 

attributed to P700
+ recombination with PSI electron acceptors (Vassiliev et al. 1997).   Note 

that the effects of changes in 532 nm excitation energy on intact and apo-Fx PSI have been 

previously described (Vassiliev et al. 1997). 

Figures 3A and 3B show P700
+ decay kinetics in intact PSI samples, which contain FX, 

FA, and FB.  Figure 3A was obtained from cells cultured on C1H3 methionine; Figure 3B was 

obtained from cells cultured on C2H3 methionine.  These intact samples show the expected 

P700
+ FA

-/FB
- recombination kinetics (Parrett, K. G.; et al. 1990; Warren et al. 1990) with 

lifetimes of 15-17 ms and 84-95 ms. A third slower phase (lifetime 3-6 s) is assigned to the 

reduction of P700
+ by the exogenous electron donor, DCPIP.  Figure 3C and 3D exhibit the 

P700
+ decay kinetics, which were measured in apo-FX PSI.  Figure 3C was obtained from cells 

cultured on C1H3 methionine, and Figure 3D was obtained from cells cultured on C2H3 

methionine.  In Figures 3C and 3D, the lifetime of P700 has decreased dramatically, as 

predicted for samples with A1 as the terminal electron acceptor.  The slow phases of 15-17 

and 84-96 ms have been replaced by faster biphasic kinetics with lifetimes of 11-13 μs and 

69-115 μs (Brettel, K. et al. 1995).  These results demonstrate that FA, FB, and FX have been 

removed in the apo-FX preparation. 

In Figure 4, we present difference (light-minus-dark) FT-IR spectra acquired either 

from apo-FX (Figure 4A) or intact PSI (Figure 4B) at room temperature (solid lines) or at -
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10oC (dotted lines).  The data in Figure 4A correspond to P700
+A1

--minus-P700A1 spectra, and 

the data in Figure. 4B correspond to P700
+FB

--minus-P700FB spectra.  The spectrum in Figure 

4A is in good agreement with previous published time-resolved spectra of P700
+/A1, 

confirming the accumulation of the A1
- species (Sivakumar et al. 2005; Bandaranayake, K. 

M. et al. 2006a) and the generation of P700
+ and not the P700 triplet, 3P700 (Breton et al. 1999; 

Sivakumar et al. 2005).    

 In Figure 4C (room temperature) and Figure 4D, (-10oC), construction of the double 

difference spectrum, A1
--minus-A1, was performed by subtraction of data in Figure 4B from 

Figure 4A.  In construction of these double difference spectra, data in Figure 4A were 

divided by a factor of 3 to account for an overall difference in spectral amplitude in the two 

PSI preparations.  The increased spectral amplitude in Figure 4B, compared to Figure 4A, 

may be attributable to an increased efficiency of charge separation in intact PSI, compared to 

apo-FX PSI, under the low intensity, continuous, red-filtered illumination used for the FT-IR 

measurements.   

In the resulting double difference spectra (Figures 4C and 4D), unique vibrational 

bands of A1 appear as negative signals; unique vibrational contributions from A1
- are positive 

bands.  The reduction spectrum of FB is not expected to contribute significantly in this 

spectral region (Breton et al. 1999).  Figure 4 demonstrates that the A1
--minus-A1 spectra 

acquired at room temperature and -10oC are similar (Figure 4C and 4D), except for an 

increased amplitude at ~1620 cm-1 in the room temperature data, which may be due to an 

increased contribution from water at the higher temperature (Figure 4C).  Previously, the 

difference FT-IR A1
--minus-A1 spectrum has been reported in apo-FX PSI preparations at 

room temperature.  Comparison of our data with this previously reported work is difficult 
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due to the use of 2H2O buffers in ref (Hastings et al. 2001).  However, the spectra in Figure 

4C and 4D do show similarities to the transient spectrum, attributed to A1
--minus-A1, in intact 

cyanobacterial PSI.  The transient spectrum was acquired by microsecond, time resolved, 

step-scan FT-IR techniques in 1H2O buffers at 77K (Sivakumar et al. 2005). 

 In Figure 5, we present difference (light-minus-dark) FT-IR spectra obtained from 

apo-Fx PSI samples and attributable to P700
+A1

--minus-P700A1.  Figure 5A shows the 

difference spectrum acquired from the natural abundance, C1H3 phylloquinone control, which 

was isolated from cells cultured on C1H3-methionine.  Figure 5B shows the spectrum 

acquired from C2H3 phylloquinone labeled samples. The isotope-edited C1H3-minus-C2H3 

double difference spectrum (Figure 5C) was constructed by subtraction of Figure 5B from 

5A and was multiplied by a factor of ten for presentation.  C2H3-induced shifts are observed 

as derivative-shaped spectral features.  To appear in the isotope-edited spectrum, the 

frequencies must be perturbed by charge separation (for example, by the reduction of A1) and 

by isotope-incorporation.  Figure 5D shows a control subtraction that was generated by 

subtracting one-half of the C1H3-PSI data set from the other half of the data set.  The 

spectrum will not contain any vibrational bands and allows an estimate of the noise in the 

averaged data.  Comparison of Figure 5C and Figure 5D demonstrates that the vibrational 

frequencies observed in Figure 5C are significant.  Figure 5E is the dark-minus-dark 

spectrum, showing that the observed spectra in A and B are dependent on illumination of the 

sample. 

Both the 134-methyl of chl and the phylloquinone ring C2 methyl group (Figure 1) are 

labeled from methionine (Barry, B. A. et al. 1987; Kim et al. 2000b).  Chl methyl labeling 

has been shown to shift the ester and keto vibrational bands of P700
+-minus-P700 (Kim et al. 
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2000a).  The ester vibrational bands of P700
+-minus-P700 have been previously assigned to 

spectral features observed between 1760 and 1700 cm-1, (Kim et al. 2000a) and in Figure 5C, 

the expected spectral shifts due to the P700/P700
+ ester bands are observed.  Therefore, the 

isotope-edited spectrum in Figure 5C exhibits contributions from isotope labeling of P700, as 

well as from labeling of A1.   

To identify isotope shifts due to A1/A1
-, the C2H3-spectrum derived from intact PSI 

(Figure 6B) was subtracted from the C2H3-edited spectrum derived from apo-FX PSI (Figure 

6A), after normalization for the chl ester bands.  This normalization accounts for the lower 

amplitude of the difference spectrum, acquired from the apo-FX preparation.  This lower 

amplitude may be due to a smaller amount of charge separation in the apo-FX preparation, as 

described above.  The resulting isotope-edited spectrum (Figure 6C) will reflect isotope-

induced shifts in vibrational bands of A1 and A1
-.  Unique vibrational bands of A1 appear as 

negative signals, with the corresponding isotope-shifted components appearing as positive 

bands.  Unique vibrational contributions from A1
- are positive bands; the corresponding 

isotope-shifted components are negative bands.  Figure 6D shows a negative control, in 

which no vibrational bands are expected. 

To assign spectral features in Figure 6C to normal modes of the phylloquinone singlet 

and anion radical, DFT calculations were used to predict the frequencies, intensities, and 

C2H3 isotope shifts.  The predicted frequencies and intensities are in reasonable agreement 

with those reported previously (Bandaranayake, K. M. et al. 2006a).  Of particular interest 

are the carbonyl and quinone ring stretching vibrations (Table 1), which have frequencies and 

intensities that may respond to environmental perturbations, such as hydrogen bonding, 

electrostatic interactions, and pi-pi stacking.  Table 1 shows that only the CO stretching and 
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CC quinoid ring stretching vibrations are predicted to have vibrational frequencies that are 

sensitive to phylloquinone reduction.  Aromatic ring modes are expected to cancel 

approximately in the difference spectrum, due to the lack of reduction induced frequency 

shift, and are not considered further.  The CO antisymmetric stretching vibration is predicted 

to be the most intense band both in the singlet and the anion spectrum (Table 1).  Although in 

principle, two CO bands are expected, the symmetric CO vibrational mode is predicted to be 

significantly less intense compared to the antisymmetric mode, and the frequencies are 

predicted to be similar (Table 1).  Therefore, the two CO bands may overlap.  Upon 

phylloquinone reduction, the CO band is predicted to downshift 174 cm-1. The most intense 

quinoid CC stretching vibration is predicted to downshift by 100 cm-1 and to change from a 

"symmetric" stretch (predominantly C2C3 stretching) to an "antisymmetric" stretch (mainly 

C9C10 stretching).  The predicted isotope shifts in Table 1 are accurate only to approximately 

5 cm-1 and, therefore, the expected isotope-induced downshifts for these bands are similar 

and less than 8 cm-1.  The CO and quinoid normal modes are predicted to have similar 

intensities both in the singlet and in the anion spectrum, and thus should be observable in the 

isotope-edited spectrum. 

Based on comparison to these DFT calculations, bands in Figure 6C are assigned to 

A1
- and A1 in Table 1.  For comparison, previous experimental assignments of phylloquinone 

singlet and anion radical bands are summarized in Table 2 (Bauscher et al. 1992; Breton et al. 

1994; Breton 1997; Bandaranayake, K. M. et al. 2006a). In our isotope-based assignments, a 

negative-positive-negative complex spectral feature is observed with frequencies of 1695 

(neg.), 1655 (pos.) and 1637 (neg.) cm-1.  The data were simulated by the generation of 

Gaussian curves (data not shown).  These simulations were dominated by two bands centered 
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at 1688(-) cm-1 and 1685(+) cm-1, which we assign to the singlet CO stretching vibration and 

its induced isotope shift.  The complexity of the observed spectral lineshape may be due to 

overlapping contributions from the CO antisymmetric and symmetric stretching vibrations in 

each of two A1 molecules (Table 1).  Our scaled DFT calculations predict a frequency of 

1672 cm-1 for the CO antisymmetric vibrational mode, supporting this assignment.  

The singlet quinoid CC stretching mode is predicted in Table 1 with reasonable 

intensity at 1610 (scaled) cm-1.  Therefore, the negative spectral feature at 1557 cm-1 in 

Figure 6C is assigned to the A1 quinoid ring stretching vibration.  The corresponding isotope-

shifted component is shifted in the predicted direction, but the magnitude of the shift is larger 

than predicted (Table 1). This observation suggests significant motion of the methyl group in 

these singlet CO and quinoid normal modes.  This is supported by the fact that the calculated 

mode also contains some methyl group motion. 

As discussed above, the CO stretching vibration is predicted to be the most intense 

A1
- band (Table 1).  In Figure 6C, the only positive band, which is assignable to the A1

- CO, 

is at 1393 cm-1.  Therefore, the broad spectral features (Figure 6C) at positive 1393 cm-1 and 

negative 1371 cm-1 are assigned to the CO vibration of the anion and its isotope-shifted 

component (Table 1).  Broadening of these bands may be due to overlapping contributions 

from two A1
- molecules and from the antisymmetric and symmetric CO bands. The scaled 

CO antisymmetric stretching frequency (Table 1) predicts a frequency of 1498 cm-1 for this 

mode.  We speculate that the lower than expected intensity and frequency for the CO band 

(Table 1) may be due to the asymmetric hydrogen bond, an electrostatic interaction, or to the 

pi-pi interaction with the quinone binding site tryptophan (see discussion below).  In Figure 

6C, candidates for the quinoid CC stretching vibrations are not observed in the expected 
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1500-1400 cm-1 spectral region, perhaps because the isotope shifts are small and the bands 

have low intrinsic intensity (Table 1).   

3.5 Discussion 

 In this work, we have incorporated C2H3 into the C2 methyl group of the A1 electron 

acceptor, and we have used this approach to assign vibrational bands to A1
- and A1.  This 

experiment was performed in apo-FX PSI preparations, in which A1 is the terminal electron 

acceptor (Warren et al. 1990; Warren et al. 1993). Previous studies have shown that 

inactivation of the rubA gene resulted in PSI complexes lacking the stromal subunits, PsaC, 

PsaD and PsaE.  Furthermore, this mutant was unable to assemble FX (Shen et al. 2002a).  

This work led to the conclusion that removal of the iron-sulfur clusters does not appreciably 

alter the orientation of A1
- or the distance between A1

- and P700
+.  However, that study did 

find that the motion of A1 in the mutants may be greater due to the absence of FX and the 

stromal subunits (Shen et al. 2002b).  Previous work studying chemically extracted P700-A1 

core proteins have concluded that there is a change in the A1 hydrogen bonding environment 

(Warren et al. 1990; Warren et al. 1993; Van der Est et al. 1994; Shen et al. 2002a).  

However, our approach of using apo-FX samples has the advantage of simplifying the 

spectrum, increasing the amplitude of A1
- spectral contributions, and avoiding complex 

spectral deconvolution techniques, which are required to study A1
- in intact PSI, where the 

anion radical has a short (microsecond) lifetime (Brettel, K. et al. 2001).  

The PSI crystal structure (Figure 2) reveals that the C1O groups of the A1 acceptors 

do not participate in hydrogen bonding.  However, the C4O groups accept a hydrogen bond 

from the backbone NH group of LeuA722 for A1A or LeuB706 for A1B (Fromme et al. 2001; 
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Jordan et al. 2001; Pushkar, Y. et al. 2004; Grotjohann et al. 2005).  EPR studies have shown 

asymmetric hydrogen bonding to A1
- and an asymmetric distribution of spin density (Shen et 

al. 2002b; Pushkar, Y. et al. 2004; Teutloff et al. 2004; Pushkar, Y. N. et al. 2005). This 

result suggests that the hydrogen bond to C4O is sustained upon reduction of A1.  Evidence 

for a pi-pi stacking interaction with a nearby tryptophan comes from analysis of the PSI 

structure and from EPR and mutational studies (Hanley et al. 1997; Fromme et al. 2001; 

Guergova-Kuras et al. 2001; Jordan et al. 2001; Purton et al. 2001). 

 Our assignments, which are presented in Table 1, are based on DFT calculations as 

well as isotope labeling of the phylloquinone molecule.  An analysis of these results and 

comparison to previous work is presented below. 

3.5.1 Comparison to previous A1
-/A1 assignments in apo-FX PSI.  Our results, based 

on phylloquinone labeling, are congruent with previous interpretations of the apo-FX A1/A1
-

spectrum at room temperature (Table 2) (Hastings et al. 2001).  In those experiments, a 1680 

cm-1 band was assigned to the C1O stretching of A1; the hydrogen bonded C4O group was 

assigned at 1643 cm-1.  The previously assigned 1680 cm-1 band may correspond to our 1688 

cm-1 band.  The previous 1643 cm-1 assignment may correspond to the negative 1637 cm-1 

band, which we observe in our data.  The A1
- CO stretching frequencies were assigned at 

1455 and 1445 cm-1 in that previous work (Table 2).  A band at 1396 cm-1 was observed, but 

assigned to a CC stretching vibration of the anion radical.  Because our DFT calculations 

indicate that the most intense A1
- band will be the CO antisymmetric stretching vibration, we 

favor the assignment of our 1393 cm-1 band to a carbonyl stretching vibration.  Other, 

previously reported bands in the 1500-1400 cm-1 region (Table 2) are predicted by our 

calculations to be less isotope-sensitive and are not observed here with significant intensity.   
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 3.5.2 Comparison to previous A1
-/A1 assignments in intact PSI.  Recently, A1

-/A1 

spectra were generated using time-resolved FTIR measurements at 77 K in intact PSI.  

Overall, the spectra exhibit similarities to the A1
-/A1 data reported here.  However, in this 

previous time-resolved work, bands at 1655 and 1607 cm-1 were identified as the A1 CO 

stretching vibrations (Table 2), consistent with two distinct carbonyl stretching vibrations for 

A1.  Quinoid CC stretching and benzene aromatic stretching vibrations were assigned at 1651 

and 1634 cm-1.  Upon anion formation, the CO stretching and CC stretching vibrational 

bands were assigned at 1495 and 1414 cm-1, respectively (Sivakumar et al. 2005).  These 

assignments are in contrast to ours (Table 1), as well as to previous assignments derived from 

FT-IR studies of apo-FX PS1 (Table 2 and (Hastings et al. 2001)).  These differences could 

arise from the deconvolution of the complex, time resolved FT-IR spectra, which was 

interpreted to contain chl A0 keto vibrational bands in the 1680 cm-1 region (Sivakumar et al. 

2005).   It is also possible that removal of the polypeptides PsaC, PsaD, and PsaE, and FX 

causes subtle changes in the binding pocket of A1, which are reflected in the vibrational 

frequencies of A1 and A1
- in the apo-Fx preparation.           

 3.5.3 Comparison to previous studies of model phylloquinone and phylloquinone 

anion radicals in vitro.  Previous electrochemical FTIR studies of phylloquinone in vitro 

assigned two singlet CO stretching vibrations at 1658 and 1616 cm-1 (Table 2) and an 

aromatic ring stretching vibration at 1596 cm-1.  Upon quinone reduction, the anion CO 

stretching band was observed at 1488 cm-1, and the quinoid stretching was not assigned 

(Bauscher et al. 1992).  However, other FTIR studies of phylloquinone (Table 2) have 

observed only one singlet CO stretching band at 1661 cm-1, in agreement with our 
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predictions (Table 1).  In this second study, the quinoid stretching was assigned at 1618 cm-1, 

and the aromatic ring stretching band was assigned at 1597 cm-1 (Breton et al. 1994).  

We assign the A1 CO vibration at 1688 cm-1, the A1 quinoid stretching vibration at 

1557 cm-1, and the A1
- CO vibration at 1393 cm-1 (Table 1).  Compared to previous model 

compound work (Table 2), these data suggest significant environmental perturbations of A1 

and A1
- in PSI.  This environmental perturbation upshifts the singlet CO stretching vibration 

(by ~30 cm-1), downshifts the singlet quinoid ring vibration (by ~40 cm-1), and downshifts 

the radical CO vibration (by ~95 cm-1).  

3.5.4 Comparison to previous studies of phylloquinone in the bacterial reaction 

center.  In the bacterial reaction center, phylloquinone can be substituted and can function as 

the primary quinone acceptor, QA.  In contrast to the PSI A1 acceptor, in the bacterial reaction 

center, two hydrogen bond bonds are formed, one to each QA carbonyl oxygen.  In R. viridis, 

it has been reported that the QA carbonyl oxygens are hydrogen bonded to the peptide NH of 

Ala M258 and to a non-heme iron histidine ligand (Deisenhofer et al. 1989).  In R. 

sphaeroides, it has been reported that the quinone carbonyl oxygens are hydrogen bonded to 

the peptide NH of Ala M258 and to Thr M222 (Breton et al. 1997).  The indole group of a 

tryptophan is nearly parallel to the QA ring at a distance of 3.1 Å (Deisenhofer et al. 1989; 

Breton et al. 1997). 

When phylloquinone was substituted into QA binding site in the bacterial reaction 

center, (Breton et al. 1994; Breton 1997) two CO bands were observed, with frequencies at 

~1650 and 1640 cm-1 (Table 2).  These bands were attributed to the asymmetric CO vibration 

of the two different carbonyl groups, which have different frequencies due to differential 
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hydrogen bonding (Breton et al. 1994; Breton 1997).  The anion CO band was assigned 

either at 1438 or 1444 cm-1, ~40 cm-1 lower than frequency compared to in vitro 

phylloquinone studies and ~50 cm-1 higher in frequency compared to our assignments for A1
- 

(Table 1 and 2).  

 3.5.5 Rationalization of environmental perturbations to the A1 and A1
- vibrational 

spectra.   We suggest that observed perturbations, when PSI is compared to model 

compounds or to phylloquinone-substituted bacterial reaction centers, are due to a 

combination of the asymmetric hydrogen bonding pattern, electrostatic interactions, and the 

pi-pi stacking interaction with a tryptophan (Figure 2).  We propose that these protein-

quinone interactions have differential effects on the anion and singlet CO vibrational bands 

(see below).  

From the crystal structure, the secondary electron acceptor A1 is known to be in pi-pi 

stacking distance with a tryptophan residue.  The distance between the aromatic ring system 

of the Trp residues, TrpA697 and TrpB677, and the quinone A1A and A1B range between 3-

3.5 Å respectively (Fromme et al. 2001).  Previous ESEEM studies have suggested a 

quinone-tryptophan interaction, because it was shown that the unpaired electron on A1
- is 

coupled to the nitrogen of tryptophan (Hanley et al. 1997; Van der Est et al. 1997).  An 

increase in the gx value of A1
-, compared to phylloquinone in solution, has been interpreted to 

imply that A1 exists in a negative electrostatic environment (MacMillan et al. 1997; 

Karyagina et al. 2007).  Quantum chemical calculation have suggested that a fixed pi-stacked 

arrangement, as observed in the PSI structure, may lower the redox potential of the A1 

electron acceptor (Kaupp 2002).   A charged aspartate may also modify the quinone redox 

potential (Karyagina et al. 2007). 
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It should be noted that in model studies, symmetric hydrogen bonding in protic 

solvents had little effect on phylloquinone ring or CO frequencies (Bauscher et al. 1992).  In 

phylloquinone-substituted bacterial reaction centers, two hydrogen bonds to phylloquinone 

produced a splitting of only 10 cm-1 in the CO vibrational bands (Breton et al. 1994; Breton 

1997).  In addition, DFT calculations have predicted only small splittings and shifts of the 

CO vibrational bands (6-14 cm-1), when an asymmetric hydrogen bond to phylloquinone and 

the phylloquinone anion radical is included in a simple model system.  Therefore, prediction 

of the spectral changes due to the introduction of an unusual, asymmetric hydrogen bond 

awaits more detailed theoretical approaches based on the PSI structure, which must also 

include the effect of electrostatic or Stark interactions on the vibrational spectrum (Suydam 

et al. 2003). 

 Pi-pi interactions have complex effects on vibrational frequencies, perhaps due to 

difficulties in separating the effects of hydrogen bonding, geometry, dispersive, and 

electrostatic interactions in many biologically relevant systems (McCarthy et al. 1997; 

Plokhotnichenko et al. 1998; Hobza et al. 2000; Hermansson 2002; Sacksteder et al. 2005; 

Lee et al. 2006; Saeki et al. 2006). Therefore, the expected effects of pi-pi interactions on 

quinone and tryptophan vibrational frequencies and amplitudes must also be addressed in 

future studies.  Currently, DNA base stacking provides one possible model system for 

assessing the effect of pi-pi interactions.  IR studies of poly-uracil/poly-adenine have shown 

that shifts of IR bands occur with helix formation.  The uracil CO stretching frequency 

increased 19 cm-1, and the uracil ring stretching vibration decreased in frequency (Miles et al. 

1978). The transition from non-ordered to ordered structures was observed to shift the 

carbonyl vibration towards higher frequency (Liquier et al. 1996). Studies of 1,3-
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dimethyluracil, cytidine, caffeine, inosine and 2’-deoxyadenosine found that stacking of 

these molecules also had an effect on the IR spectra.  The carbonyl stretching band increased 

in frequency, and a decrease in the intensity of the skeletal ring stretching vibrational bands 

were observed (Maevsky et al. 1980). These experimental results concerning the effect of pi 

stacking on nucleobases are congruent with our A1/A1
- assignments. 
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Table 1.  Assignments of A1 and A1
- Vibrational Bands, Based on Isotopic Labeling of 

the Phylloquinone Acceptor and DFT Calculations  

Singlet 
Frequency# 
C1H3 

Frequency 

C2H3 
Δ 
C2H3 

Predicted‡ 
Frequency 

Predicted‡*  
Δ C2H3 

Predicted‡ 
Intensity 

CO antisymmetric 
stretching 

1688 1685 3 1672 0  279 

CO symmetric 
stretching 

NA∫ NA ---- 1666 0  26 

Aromatic ring 
stretching 

NA NA ---- 1584 1 52 

Quinoid 
"symmetric" 
stretching** 

1557 1544 13 1610 3 42 

Quinoid 
"antisymmetric"  
stretching** 

NA NA ---- 1571 1 2 

Anion radical 
Frequency 
C1H3 

Frequency 

C2H3 
 Δ 
C2H3 

Predicted‡ 
Frequency 

Predicted‡  
CΔ 2H3 

Predicted‡ 
Intensity 

Quinoid 
antisymmetric 
stretching  

NA NA ---- 1510 1 35 

Quinoid symmetric 
stretching 

NA NA ---- 1576 1 3 

Aromatic ring 
stretching 

NA NA ---- 1585 0 3 

CO antisymmetric 
stretching 

1393 1371 22 1498 1 310 

CO symmetric 
stretching 

NA NA ---- 1483 8 17 

#Frequencies reported in wavenumber (cm-1) 

‡Predicted frequencies (scaled by 0.9614), isotope shifts (Δ 2H3), and intensities from DFT calculations 

*Predicted shifts accurate to + 5 cm-1 

∫NA, not assigned 

**Although singlet quinoid stretching modes are labeled “symmetric” and “antisymmetric”, the modes are 
mixed and highly localized.  Thus, the “symmetric” mode contains predominantly C2C3 stretching, whereas the 
“antisymmetric” stretch contains predominantly C9C10 stretching. 
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Table 2.  Previous Assignments of Phylloquinone Singlet and Anion Radical IR  Bands 

In vitro phylloquinone vibrational assignments 
 

Description of normal mode Solvent and sample type Singlet (cm-1) Anion Radical (cm-1) 
carbonyl stretching 
 

CH2Cl2 (Bauscher et al. 1992) 1658, 1616 1488 

quinoid stretching 
 

CH2Cl2 (Bauscher et al. 1992) 1596 ∫NA 

aromatic ring stretching 
 

CH2Cl2 (Bauscher et al. 1992) 1596 NA 

carbonyl stretching 
 

Film (Breton et al. 1994) 1661 NA 

quinone stretching 
 

Film  (Breton et al. 1994) 1618 NA 

aromatic stretching 
 

Film (Breton et al. 1994) 1597 NA 

Bacterial reaction center vibrational assignments 
 

Description of normal mode Bacterial reaction center sample Singlet (cm-1) Anion Radical (cm-1) 
carbonyl stretching 
 

Rb. viridis (Breton 1997) 1653,1637 1438 

quinoid stretching  
 

Rb. viridis (Breton 1997) NA NA 

aromatic ring stretching 
 

Rb. viridis (Breton 1997) 1590 NA 

carbonyl stretching 
 

Rb. sphaeroides (Breton et al. 
1994) 

1651, 1640 1444 

quinoid stretching 
 

Rb. sphaeroides (Breton et al. 
1994) 

1608 1478, 1394-1388 

aromatic ring stretching 
 

Rb. sphaeroides (Breton et al. 
1994) 

1588 1478, 1394-1388 

Photosystem I vibrational assignments 
 

Description of normal mode Photosystem I sample Singlet (cm-1) Anion Radical (cm-1) 
carbonyl stretching 
 

Intact (Sivakumar et al. 2005) 1655, 1607 1495 

quinoid stretching 
 

Intact (Sivakumar et al. 2005) 1651, 1634 1414 

aromatic ring stretching 
 

Intact (Sivakumar et al. 2005) 1651, 1634 1414 

carbonyl stretching  
 

Apo-FX (Hastings et al. 2001) 1680, 1643 1455, 1445 

quinoid stretching 
 

Apo-FX (Hastings et al. 2001) NA 1396, 1381 

aromatic ring stretching Apo-FX (Hastings et al. 2001) NA 1396, 1381 
 

∫NA, not assigned 
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Figure 1.  The structure of the secondary electron acceptor A1 in photosystem I.  Numbering 

is according to IUPAC nomenclature.  Phy represents the phytol tail bonded to carbon 3. 
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Figure 2.   The binding site of A1A left and A1B right  in Photosystem I from the PSI crystal 

structure at 2.5Å.resolution (Jordan et al. 2001)  The tryptophan residues are within π-

stacking distance (3-3.5 Å) of the quinone ring.   
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Figure 3.   Decay of P700
+, as assessed by 820 nm kinetic measurements, in (A) natural 

abundance, C1H3-A1 intact PSI, (C) natural abundance, C1H3-A1 apo-FX PSI, (B) labeled 

C2H3-A1 intact PSI, and (D) labeled C2H3 apo-FX PSI.  The reaction medium contained 50 

mM Tris buffer (pH 8.3), 0.04% n-dodecyl-β-D-maltoside, 4 μM DCPIP, and 5 mM sodium 

ascorbate.  See Materials and Methods for additional experimental details. 

 



90

 

Figure 4.  Light-induced FT-IR difference spectra of (A) natural abundance, apo-FX and (B) 

natural abundance, intact PSI.  Spectra were recorded either at room temperature (20oC, solid 

lines) or at -10oC (dotted lines).  The data in (B) were divided by a factor of 3 to correct for a 

difference in the amount of stable charge separation.  The room temperature A1
--minus-A1 

spectrum in (C) was constructed by subtracting (B, solid line) from (A, solid line).  The  

-10°C A1
--minus-A1 spectrum in (D) was constructed by subtracting (B, dotted line) from (A, 

dotted line).   Spectrum (E) is room temperature, dark-minus-dark control, which was derived 

from the apo-FX PSI data set.  The solid lines in A, B, and E are the average of 21, 22, and 21 

spectra, respectively.  The dotted lines in A and B are the average of 45 and 27 spectra 

respectively.  See Materials and Methods for additional experimental details.     
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Figure 5.  Light-induced FTIR difference spectra of (A) natural abundance C1H3-A1, apo-FX 

PSI and (B) labeled C2H3-A1, apo-FX PSI.  The isotope-edited spectrum shown in (C) is a 

C1H3-minus-C2H3 double difference spectrum created by subtraction of (B) from (A) and 

multiplying by a factor of 10.  Spectrum (D) is a control double difference spectrum 

generated by taking one-half of the data in A, subtracting the other half of the data set, and 

dividing by √2.  Spectrum (E) is a dark-minus-dark control.  A, B, D, and E are the average 

of 45 spectra.  See Materials and Methods for additional experimental details. 
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Figure 6.  Isotope-edited FT-IR spectra of PSI.  (A) shows the C1H3-minus-C2H3 double 

difference spectrum, acquired from apo-FX PSI, (B) shows the C1H3-minus-C2H3 double 

difference spectrum, acquired from intact PSI, and  (C) shows a subtraction of (A) minus (B), 

revealing isotopic shifts in A1
- (positive) and A1 (negative) bands.  The spectra in A and B 

were normalized to give the same intensity in the P700
+ ester vibrational bands between 1752 

and 1748 cm-1. Spectrum (D) is a control double difference spectrum generated by taking 

one-half of the data in A, subtracting the other half of the data set, and dividing by √2.  See 

Materials and Methods for additional experimental details. 
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CHAPTER 4 

LIGHT-INDUCED DYNAMICS IN PHOTOSYSTEM I ELECTRON 

TRANSFER 

Reproduced with permission from “Light-induced Dynamics in Photosystem I Electron 

Transfer,” Bender, S. L. and B.A. Barry., Biophysical Journal, 95; 3927-3934. Copyright 

2008 

 

 

4.1 Abstract 

Protein dynamics are likely to play important, regulatory roles in many aspects of 

photosynthetic electron transfer, but a detailed description of these coupled protein 

conformational changes has been lacking.  In oxygenic photosynthesis, photosystem I 

(PSI) catalyzes the light-driven oxidation of plastocyanin or cytochrome c and the 

reduction of ferredoxin.  A chl a/a' heterodimer, P700, is the secondary electron donor, and 

the two P700 chl, are designated PA and PB.  In this work, we have used specific chl 

isotopic labeling and reaction-induced FT-IR spectroscopy to assign chl keto vibrational 

bands to PA and PB.  In the cyanobacterium, Synechocystis sp. PCC 6803, the chl keto 

carbon was labeled from 13C-labeled glutamate, and the chl keto oxygen was labeled 

from 18O2.  These isotope-based assignments provide new information concerning the 

structure of PA
+.  PA

+ is found to give rise to two chl keto vibrational bands, with 

frequencies at 1653 and 1687 cm-1.  In contrast, PA gives rise to one chl keto band at 1638 
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cm-1. Observation of two PA
+ keto frequencies is consistent with a protein relaxation-

induced distribution in PA
+ hydrogen bonding. These results suggest a light-induced 

conformational change in PSI, which may regulate the oxidation of soluble electron 

donors and other electron transfer reactions.   This work provides novel information 

concerning the role of protein dynamics in oxygenic photosynthesis. 
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4.2 Introduction  

 In oxygenic photosynthesis, Photosystem I (PSI) is a multi-subunit, membrane 

protein complex, which carries out the light-induced reduction of ferredoxin and the 

oxidation of plastocyanin or cytochrome c (Golbeck et al. 1991).  These redox events are 

initiated by light-induced electron transfer, which leads to the oxidation of a chlorophyll 

dimer, P700, and the reduction of an iron sulfur cluster, FB.(Brettel et al. 2001; Jordan et 

al. 2001)  Other electron transfer cofactors include the primary chlorophyll donor (eC-2 

or eC-3), two A0 chlorophyll and two A1 phylloquinone electron acceptors, and two 

additional iron-sulfur clusters, FX and FA.  The PSI reaction center contains two large 

intrinsic polypeptides, PsaA and PsaB (Jordan et al. 2001).  The 2.5 Å resolution crystal 

structure reveals a pseudo-C2 symmetric arrangement of the accessory chl molecules and 

of the two A0 and the two A1 electron acceptors. These two branches of electron transfer 

cofactors are referred to as the PsaA and PsaB branches (Jordan et al. 2001).  Studies 

have suggested that both branches carry out light-induced electron transfer (Joliot et al. 

1999; Guergova-Kuras et al. 2001).   

 Recent studies have suggested that charge separation begins on an accessory chl 

monomer (either eC-2 or eC-3), which donates its electron to an A0 acceptor (Holzwarth 

et al. 2006).  This primary donor is reduced by P700, a chl a/a’ heterodimer, which is the 

terminal electron donor in the PSI reaction center (Webber et al. 2001).  P700 is present in 

the dark, and P700
+ is produced under illumination.  P700 is composed of a chl a molecule, 

designated PB, and of a chl a’ molecule, designated PA.  While the X-ray structure 

supports the interpretation that PA has hydrogen bonding interactions with its protein 
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environment, PB does not appear to be hydrogen bonded (Jordan et al. 2001; Grotjohann 

et al. 2005).  

 The soluble copper-containing protein, plastocyanin, acts as the electron donor to 

P700
+ in plants, algae, and cyanobacteria.  Under copper limiting conditions, a cytochrome 

c can replace plastocyanin as the electron donor in cyanobacteria (Merchant et al. 1986).  

In plants and algae, plastocyanin docks with the luminal side of PSI to form an 

interaction complex, in which electron transfer from the reduced copper to P700
+ occurs 

on the microsecond time scale (Bottin et al. 1985; Hippler et al. 1997).  In cyanobacteria, 

the cytochrome, but not plastocyanin, has been proposed to form an electron transfer 

complex in vivo (Durán et al. 2004).  In both cyanobacteria and algae, mutations in a 

hydrophobic region near P700
+, which contains luminal PsaA and PsaB helices and a 

conserved tryptophan dimer, disrupt electron transfer (Sun et al. 1999; Sommer et al. 

2002; Sommer et al. 2004).   It has been proposed that conformational rearrangements 

may regulate electron transfer in the interaction complex {(Bottin et al. 1985; Sigfridsson 

et al. 1997), but see (Drepper et al. 1996)}. 

 Previously, site-directed mutagenesis and various spectroscopic techniques have 

been used to study the interaction of the cation radical, P700
+, with its protein environment 

(Breton 2001; Brettel et al. 2001; van der Est 2001; Webber et al. 2001; Grotjohann et al. 

2005).  EPR studies have concluded that the unpaired spin is localized mainly on PB, 

while FT-IR studies have concluded that the spin-density is evenly distributed over the 

dimer (Breton et al. 1999; Kaess et al. 2001).   This discrepancy may be due to unsolved 

questions concerning the assignment of the FT-IR vibrational bands, as described below. 
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 Recent experimental (Wang et al. 2007) and previous theoretical (Warshel et al. 

1989; Gehlen et al. 1994; Parson et al. 2004) studies have underscored the role of protein 

dynamics in the control of primary electron transfer in the bacterial reaction center.  In 

the chl-containing reaction center, photosystem II, an influence of protein dynamics on 

the photosynthetic water-splitting cycle has also been suggested by vibrational 

spectroscopic experiments on different time scales (Halverson et al. 2003; Barry et al. 

2006; De Riso et al. 2006).  In PSI, conformational dynamics have the potential to 

regulate bidirectionality of electron transfer in the reaction center and also to control the 

mechanism of plastocyanin/cytochrome c oxidation.  The effect of light-induced 

dynamics on P700 and P700
+ can be detected in real time using vibrational spectroscopic 

techniques, such as FT-IR spectroscopy.  Previously, evidence for structural 

heterogeneity in P700/P700
+ has been obtained by methyl ester labeling of chl (Kim et al. 

2000). 

 The light-minus-dark, P700
+-minus-P700, FT-IR spectrum is dominated by keto 

vibrational bands from chl and chl+, which, in model compounds, are upshifted in 

frequency by oxidation (Nabedryk et al. 1990; Breton et al. 1999; Hastings et al. 2001).  

Keto vibrational frequencies are expected to reflect changes in polarity, hydrogen 

bonding, and electrostatics (Bellamy 1980).  Previously keto vibrational bands have been 

assigned to PA, PA
+, PB, and PB

+ in the P700
+-minus-P700 spectrum.  The observation of 

four keto vibrational bands has been attributed to the oxidation-induced change in force 

constant, as well as differences in hydrogen bonding interactions between the two halves 

of the dimer, PA and PB (Breton et al. 1999; Hastings et al. 2001; Witt et al. 2002; Li et al. 

2004; Pantelidou et al. 2004).  However, there has also been controversy over the 
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assignment of the keto FT-IR bands of P700 and P700
+ (Breton et al. 1999; Hastings et al. 

2001), and the spectrum still contains unassigned bands.  Therefore, the development of 

methods to specifically isotopically label chl, with minimal interference from protein 

labeling, is of particular importance.  

 In this work, we describe methods to 13C and 18O label the chl keto position 

(Figure 1) through manipulation of the cyanobacterial chl biosynthetic pathway (Beale 

1999; Porra et al. 2001).  These isotopically labeled samples were used to assign the 131-

keto stretching bands of the P700
+-minus-P700 FT-IR spectrum.  These data reveal 

unexpected cofactor-protein relaxation events, which accompany light-induced electron 

transfer in PSI. 

4.3 Materials and Methods 

 For 13C chl labeling, glutamate-tolerant Synechocystis PCC 6803 cultures were 

grown on solid media containing BG-11 (Rippka et al. 1979), 250 μM L-glutamic acid 

buffered with 1mM TES-NaOH pH 8.0, 5 mM TES-NaOH, pH 8.0, and 6 mM Na2S2O3 

(Barry 1995).  Liquid cultures (400 ml) were grown in BG-11, 5 mM TES-NaOH, pH 

8.0, and 5 μg/ml kanamycin and were bubbled with sterile air.  The cultures were 

supplemented with 1 mM L-glutamic acid or L-glutamic-3-13C acid (99% enrichment, 

Isotec Inc., Miamisburg, OH), which were buffered with 1 mM TES-NaOH, pH 8.0.   

Cultures were harvested at an OD730 nm of 1.1-1.4. 

 For 18O chl labeling, Synechocystis PCC 6803 cultures were grown on solid media 

containing BG-11, 5 mM TES-NaOH, pH 8.0, 6 mM Na2S2O3, and 5 mM glucose..  

Liquid cultures were grown as described above, except that the cultures were 
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continuously shaken on a cell culture agitator (New Brunswick Scientific, Edison, NJ).  

CO2 was bubbled into the cell cultures at a rate of 1 ml/min for 5 minutes daily.  

Immediately following this, 16O2 or 18O2 (99% enrichment, Isotec Inc., Miamisburg, OH) 

was bubbled into the cell cultures at a rate of 1 ml/min for 5 minutes.  Cultures were 

grown a total of 10 days.  The OD730 for the cultures ranged from 1.0-1.1. 

 4.3.1 Purification of PSI. Thylakoid membranes were solubilized (Noren et al. 

1991), and trimeric PSI was purified by ion exchange liquid chromatography using a 

Mono QTM HR 5/5 column (Amersham Biosciences, Arlington, IL) and an ÄKTA 

explorer instrument (Amersham Biosciences, Arlington, IL) (Barry 1995). The fraction 

size collected was 0.5 ml, and the visible absorption spectrum of each fraction was 

recorded on a Hitachi (San Jose, CA) U-3000 UV-visible spectrophotometer using 1cm 

path length cuvettes.  Fractions with absorption maxima greater than 679 nm were 

pooled.  Purified trimeric PSI was dialyzed overnight in 5 mM HEPES-NaOH pH 7.5, 

0.04% dodecyl-ß-D-maltoside (LM) and then concentrated using an Amicon (Bedford, 

MA) Ultra 100,000 MWCO centrifugal filter device to a final concentration of 2-3 mg 

chl/ml.  

4.3.2 FTIR Spectroscopy.  FT-IR spectra were collected at -10 °C as described 

previously (Sacksteder et al. 2005; Bender et al. 2008).  Samples contained 2 mM 

potassium ferricyanide and 2 mM potassium ferrocyanide and were concentrated at room 

temperature under a steady flow of nitrogen gas.  Concentration times were 20-30 

minutes.  Spectral conditions were as follows: resolution, 4 cm-1; zero filling, 1; data 

acquisition time, 4.0 min.  Difference spectra (light-minus-dark) were generated by 

taking the ratio of single beam spectra collected before and during illumination and 
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converting to absorbance.  FT-IR spectra were obtained in the dark or under continuous 

illumination with red and heat-filtered light, as previously described (Kim et al. 2001; 

Sacksteder et al. 2005; Bender et al. 2008).  A 60 min dark relaxation time was used 

between successive illuminations.  Spectra were normalized to account for small 

differences in sample concentration and path length, using the amplitude of the amide II 

band in the infrared absorption spectrum.   All spectra were normalized to 0.5 AU.  

Infrared absorption spectra were created by use of a background.  

Isotope-edited spectra were generated by subtracting the isotope-labeled 

difference spectrum from the natural abundance difference spectrum.  For the 18O-isotope 

edited spectrum (Fig. 3C), a direct one-to-one subtraction (C, dotted line), as well as an 

interactive subtraction (C, solid line), were performed.  A subtraction factor of 0.9663 

was chosen (Fig. 3C, solid line) in the interactive subtraction to minimize ester 

contributions, relative to the keto vibrational bands.  For the 13C-isotope edited spectrum 

(Fig. 4C), a direct one-to-one subtraction (C, dotted line) as well as an interactive 

subtraction (C, solid line) were performed.  A subtraction factor of 0.9584 was chosen 

(Fig. 4C, solid line) in the interactive subtraction to minimize ester contributions relative 

to the keto vibrational bands.  In Figs. 3C and Fig. 4C, the 18O-isotope edited spectrum 

was multiplied by 8 and the 13C-isotope edited spectrum was multiplied by 5 to equalize 

spectral amplitudes for comparison.  In Figure 5, the interactive subtractions are 

displayed.  To estimate the level of noise in the isotope-edited spectra, control double 

difference spectra (Figs. 3D and 4D) were generated by taking one-half of the control 

data set (either 12C or 16O-chl PSI), subtracting from it the second half of the data set, and 

dividing by the √2.  Dark-minus-dark spectra were generated from data recorded before 
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illumination (Figs. 3E and Fig. 4E).  Fig. 6A shows an overlay of Fig. 3A (blue, natural 

abundance) and Fig. 3B (black, 18O-labeled); Fig. 6B shows an overlay of Fig. 4A (blue, 

natural abundance) and Fig. 4B (black, 13C-labeled).  

 4.3.3 Assessment of chlorophyll (chl) isotopic enrichment.  To determine the 

amount of isotope incorporation into chl from cell cultures grown with L-glutamic-3-13C-

acid or 18O2, matrix-assisted laser desorption/ionization mass spectrometry was 

employed.  The control samples were cultures grown in the presence of natural 

abundance L-12C-glutamic acid or 16O2.  Chl was extracted from PSI samples with a 

solution of 80% acetone/20% methanol. The extracted pigments were vortexed, 

sonicated, centrifuged, and filtered as previously described (Patzlaff et al. 1996; Bender 

et al. 2008).  For NMR spectroscopy, chl was HPLC purified (Patzlaff et al. 1996).  Chl 

was concentrated and dried using a Thermo-Savant SpeedVac concentrator with VLP120 

pump and RVT 400 refrigerated vapor trap (Thermo Electron Corporation, Waltham, 

MA).  Chl samples were stored at -70°C until use.  A 4700 Proteomics Analyzer (Applied 

Biosystems Foster City, CA) was used for the mass spectral measurements (Bender et al. 

2008).  Immediately before the measurement, chl was dissolved in a mixture of 80% 

methanol, 19% water, and 1% acetic acid; this treatment removes the Mg+2 ion of chl and 

generates pheophytin.  The matrix used was alpha-cyano-4-hydroxy cinnamonic acid.  

The 871.5 m/z peak of pheophytin was used for quantitation. Data were analyzed using 

IGOR (Wavemetrics, Lake Oswego, OR) and Excel (Microsoft, Redmond, WA) 

software.  The data were normalized to the [M+H] peak before the isotope distribution 

was calculated.  Measurements were repeated twice for 12C-chl and 13C-chl, three times 
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for 18O-chl, and four times for 16O-chl, the error in the measurements was estimated from 

the range or standard deviation of the measurements. 

4.3.4 18O labeling of chl.  Mass spectral data from the 16O2 control were 

subtracted from data derived from the 18O2 labeled sample.  Analysis of the remaining 

873.5 peak {M+H+2} amplitude showed that 15 ± 6% of chl was labeled from 18O2.  

 4.3.5 13C labeling of chl.  In order to calculate the amount of 13C incorporation, 

mass spectral data derived from the natural abundance sample (Table 1, column 2) were 

subtracted from the 13C labeled data (Table 1, column 3).  The resulting values are given 

in Table S1, column 4.   The 872.5 m/z [M+H+1] peak amplitude gives the amount of the 

+1 chl isotopomer, generated by 13C-glutamate labeling (43 + 8%).  Because eight 

positions are expected to be labeled from 13C glutamate, the probability the 131 keto 

position is labeled in the +1 isotopomer was derived by dividing by eight (5%, column 

13).   

 To calculate the amount of simultaneous labeling at two chl positions, generating 

the +2 isotopomer, the 873.5 [M+H+2] peak amplitude was employed.  The +1 

isotopomer makes a significant contribution to the +2 isotopomer peak amplitude, which 

was factored out using the relative, natural abundance peak intensities (Table 4,  column 

2).  Note that the observed, natural abundance and the predicted isotope distributions are 

similar (Table 4, compare column 2 and Table legend).   This subtraction shows that 13C 

glutamate labeling generated the +2 chl isotopomer in 27 + 7% of the sample (Table 4, 

column 6).  Because eight positions are expected to be labeled, the probability that the 

keto position is labeled in the +2 isotopomer is calculated by division by 2/8 (Table 4, 
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column 13).  These calculations were repeated for all observed ion signals between 

873.5-877.5 m/z, and the probabilities were summed to estimate the total amount of 13C 

label at the keto position. 

4.3.6 GC/MS analysis of 13C isotope incorporation into PSI amino acids.  To 

determine the amount of 13C incorporation into amino acids, PSI samples were acid 

hydrolyzed, derivatized, and subjected to GC/MS as previously described (Kitson et al. 

1996; Sachs et al. 2003).  The derivatized amino acids were identified by retention time, 

and the characteristic ions for each amino acid were monitored (Table 4) (Kitson et al. 

1996).  The extent of isotope incorporation was determined by comparison to natural 

abundance PSI samples.  The analysis was performed in duplicate, and the error in the 

measurement was estimated from the range. 

4.4 Results 

 To label the oxygen of the 131 chl keto group, Synechocystis sp. PCC 6803 

cyanobacterial cultures were grown in the presence of 18O2. The formation of the chl a 

isocyclic ring is an aerobic process, in which the 131 oxo group (Figure 1) is derived from 

molecular oxygen using an oxygenase (Wong et al. 1985; Walker et al. 1989; Schneegurt 

et al. 1992; Bollivar et al. 1995, 1996).  The amount of 18O labeling was measured by 

mass spectrometry and found to be 15 + 6% (Figure 2A and Materials and Methods).  

The keto position of chl (Figure 1) is the only group that is labeled by this protocol 

(Wong et al. 1985; Walker et al. 1989; Schneegurt et al. 1992; Bollivar et al. 1995). 

 Reaction-induced FT-IR spectra were acquired from control and 18O-labeled PSI 

samples (Figure 3).  The difference spectra, constructed by subtraction of data recorded 
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under illumination and in the dark, are attributable to P700
+FB

--minus-P700FB (Breton et al. 

1999; Bender et al. 2008).  Figure 3A shows the difference spectrum from 16O-chl PSI 

and Figure 3B shows the difference spectrum from 18O-chl PSI. The isotope-edited 

spectrum presented in Figure 3C exhibits keto stretching contributions from P700 

(negative) and P700
+ (positive) (Nabedryk et al. 1990; Breton et al. 1999; Breton 2001; 

Hastings et al. 2001).  Spectral changes associated with the labeling of the chl keto 

oxygen can be identified by an interactive subtraction of control and 18O-labeled data.  

This interactive subtraction minimizes any small contributions from the chl ester 

1754(+)/1749(-) cm-1 bands (Kim et al. 2000).  Small differences in amplitude in this 

region can arise from minor alterations in the amount of stable charge separation (Figure 

3).  The resulting isotope-edited spectrum (Figure 3C) will have contributions only from 

vibrational bands perturbed by P700 oxidation and by the incorporation of the 18O isotope 

at the keto position.  In the isotope-edited spectrum, natural abundance P700 bands are 

negative, and natural abundance P700
+ bands are positive.  The isotope-shifted 

components for each vibrational band have the opposite sign.  Observed spectral features 

in Figure 3C are significant compared to the noise, which is estimated from a control-

minus-control spectrum (Figure 3D).  

 To interpret the 18O isotope-edited spectrum, incorporation of 13C at the 131 

carbon (Figure 1) is advantageous, because 131/13C labeling will also shift spectral bands 

assignable to the keto stretching vibration.  In cyanobacterial chl biosynthesis, 

aminolevulinic acid, the first universal tetrapyrrole precursor, is formed from glutamate, 

which is activated by ligation to a tRNA molecule (Beale et al. 1975; Porra et al. 1983; 

Huang et al. 1986; Schön et al. 1986; Rieble et al. 1988).  In our experiments, carbon 
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labeling at the chl 131 position was accomplished by growth of a glutamate-tolerant strain 

of Synechocystis sp. PCC 6803 in the presence of 1 mM glutamate, which was 13C 

labeled at the third carbon (Table 1).  Uptake of this isotope is expected to label the 131 

carbon of chl (Figure 1) and seven other chl carbons (Figure 1) (Beale 1999).   The 

vibrational bands, which are altered by labeling at the non-keto positions, are expected to 

be distinct in frequency from the keto vibrational bands (Boldt et al. 1987).  Further, only 

a keto vibrational band will be shifted by both 18O and 131/13C labeling, and CO 

vibrational bands will be in common between the two types of isotope-edited spectra.  

Gas chromatography-mass spectral analysis on hydrolyzed PSI demonstrated that there 

was little scrambling of the 13C glutamate label into other amino acids (Table 2 (Sachs et 

al. 2003)).  Mass spectrometry (Figure 2B and Table 1) revealed that singly, doubly, and 

triply 13C-labeled chl isotopomers were generated in significant yield (78%).  For 

example, the yield of the +1, +2, and +3 13C isotopomers was determined to be 43 + 8%, 

27 + 7%, and 8 + 5%.  Only 2 + 4% of the +4 isotopomer was detected (Table 2).  Using 

these measured values, the total probability of labeling at the keto carbon position can be 

estimated as 16% (Table 1 and Materials and Methods).  NMR spectroscopy on purified, 

extracted 13C-labeled chlorophyll in organic solvents (Patzlaff et al. 1996) confirmed the 

incorporation of label into the keto position (data not shown).   

Reaction induced FT-IR spectra were acquired from these 13C labeled PSI samples 

(Figure 4).  Figure 4A is the difference spectrum acquired from 12C-chl PSI and Figure 

4B is the difference spectrum acquired from 13C-chl PSI.  Figure 4.4C is the 13C isotope-

edited spectrum, which exhibits significant features relative to the noise (Figure 4D) and 

was produced from an interactive subtraction.   In Figure 4C, related natural abundance 
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and isotopomer keto bands, which are expected to be of opposite sign, are labeled with 

the same color code.  Figure 5 compares the 18O isotope-edited spectrum (Figure 5A, 

solid line) and the 13C isotope-edited spectrum (Figure 5B solid line).  Bands assigned to 

natural abundance PB and PB
+ are filled with vertical lines, and bands assigned to natural 

abundance PA and PA
+ are filled with horizontal lines (Figure 5).   The assignment of 

bands in the 18O and 13C isotope-edited spectra is summarized in Table 3.   

 Bands at (+) 1718 and (-) 1698 cm-1 are observed in Figure 5A and 5B, consistent 

with an assignment to a chl keto vibrational band, which is upshifted by light-induced 

electron transfer.  Based on the signs, the positive 1718 cm-1 band would be assignable to 

P700
+; the negative 1698 cm-1 band would be assignable to P700.  For these bands, an 

isolated, CO harmonic oscillator approximation predicts frequency downshifts of ~40 

cm1־ either with 13C or 18O labeling.   The isotope-shifted components for the (+) 1718 

cm-1 band are observed at (-) 1681 cm-1 in the 18O labeled samples (Figure 5A, red labels) 

and (-) 1679 cm-1 in the 13C labeled samples (Figure 5B, red labels), respectively.  The 

isotope-shifted components for the (-) 1698 cm-1 band are observed at (+) 1666 cm-1 in 

the 18O labeled (Figure 5A, blue labels) and (+) 1663 cm-1 in the 13C labeled samples 

(Figure 5B, blue labels), respectively.  Therefore, the derived 13C and 18O isotope shifts 

for the 1718 and 1698 cm-1 bands are 37-39 cm-1 and 32-35 cm-1 (Figure 5) respectively, 

in reasonable agreement with the harmonic oscillator predictions for an isolated CO 

vibrational mode.   In previous studies, spectral features at (+) 1717 and (-) 1698 cm-1 

were assigned to the non-hydrogen bonded, keto band of PB
+ and PB, respectively (Breton 

et al. 1999; Hastings et al. 2001), and our isotope-based assignments are consistent with 

that previous work. 
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 Bands at (+) 1653 and (-) 1638 cm-1 are observed in Figure 5A and Figure 5B, 

consistent with an assignment to a chl keto vibrational band, which is perturbed by light-

induced electron transfer.  Based on the signs, the positive 1653 cm-1 band would be 

assignable to P700
+; the negative 1638 cm-1 band would be assignable to P700.  For these 

bands, the harmonic oscillator approximation predicts frequency downshifts of ~40 cm-1. 

The isotope-shifted components for the (+) 1653 cm-1 band are observed at (-) 1608 cm-1 

(Figures 5A and 5B, black labels).  The isotope-shifted components for the (-) 1638 cm-1 

band are observed at (+) 1602 (Figure 5A, orange labels) and (+) 1593 (Figure 5B, 

orange labels) cm-1. Therefore, the derived 13C and 18O isotope shifts for the (+) 1653 and 

(-) 1638 cm-1 bands are 45 cm-1 and 36-45 cm-1, respectively, in reasonable agreement 

with the harmonic oscillator predictions.   In previous studies, spectral features at (+) 

1653/4 and (-) 1638 cm-1 were assigned to hydrogen bonded, keto bands of PA
+ and PA, 

respectively (Breton et al. 1999; Hastings et al. 2001), and our isotope labeling work is 

consistent with those assignments. 

 Based on model compounds (Nabedryk et al. 1990), PA, PA
+, PB, PB

+ would be 

expected to give rise to one chl keto vibrational band each.  Four keto bands with distinct 

frequencies are assigned in Table 3, based on the arguments described above.  However, 

in each of the isotope-edited spectra presented in Figures 5A and 5B, there is still an 

unassigned positive band at 1687 cm-1 and an unassigned negative band at 1644/3 cm-1 

(green labels).  If the 1687 cm-1 band arises from a chl keto vibration, a harmonic 

oscillator treatment predicts a frequency of 1645 and 1648 cm-1 for the 18O and 13C 

isotopically labeled vibrational band, respectively.  This comparison supports the 

interpretation that the positive 1687 cm-1 band is a keto vibrational band of P700
+ and that 
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the 1644/3 cm-1 band is its isotope-shifted component.  Therefore, we assign the 1687 

cm1־ spectral feature to a second keto vibrational band of PB
+ or PA

+.   Based on previous 

site-directed mutagenesis work, we favor the assignment of this band to PA
+ (see 

discussion below).  The observation of two bands for PA
+, one at 1687 cm-1 and one at 

1653 cm-1, and one band for PA, at 1638 cm-1, suggests that light-induced electron 

transfer leads to a structural change in the PSI reaction center.  This structural change 

results in at least two distinct protein environments for the PA half of the P700 dimer.   

 

4.5 Discussion 

 In this paper, we employ methods to incorporate 13C and 18O isotopic labels 

specifically into the chl 131 keto group.  Cyanobacterial cultures were used, and 13C 

glutamate and 18O2 were the source of the two labels.  The amount of labeling at the keto 

position was found to be 15-16%, which is sufficient for detection using FT-IR 

spectroscopy. Figure 6 shows a comparison of the 1730-1590 cm-1 region in light-

induced FT-IR spectra, associated with the oxidation of P700. Amplitude changes are 

observed when the difference spectra of natural abundance and isotope labeled PSI are 

overlaid.  In addition, chl labeling occurred with minimal scrambling into amino acid 

biosynthetic pathways.    

 Figure 7A shows the amino acids within 4 Å of the 131 keto group of PA and PB 

(Jordan et al. 2001).  Ring V of PA is not planar with the rest of molecule, and the 131 

keto group of PA is predicted to participate in a hydrogen bond with a conserved 

threonine residue, Thr 743 (S. elongatus numbering).  There are no analogous hydrogen 

bonds predicted on the PB half of the P700 dimer (Figure 7A).  Therefore, the keto 
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vibrational bands of PA/PA
+ should be distinguishable from PB/PB

+ bands.  Previous 

assignments of the 131 keto stretching vibrations of PB, PA, PB
+, and PA

+ have been based 

on mutagenesis studies, global 2H incorporation, global 15N incorporation, and 

comparison to model compounds (Nabedryk et al. 1990; Breton et al. 1999; Hastings et 

al. 2001).  These approaches have led to some discrepancies in the interpretation of the 

PSI difference spectrum.  Specific isotopic labeling, as performed here, has clarified the 

assignments.  Four of our isotope-based PB, PB
+, PA, and PA

+ assignments are consistent 

with previous work (Table 3).  However, we have identified an additional positive band 

at 1687 cm-1, which is a chl keto vibration, based on its 13C and 18O isotope-induced 

downshifts.   The sign of this band indicates that it arises from PB
+ or PA

+.  This positive 

band has been observed previously in wild type PSI (Nabedryk et al. 1990; Breton et al. 

1999) and either was unassigned or was assigned to a PA
+ keto vibration, which was 

rationalized to downshift from 1695 cm-1 with oxidation (Hastings et al. 2001).  

However, model compound studies predict an oxidation-induced upshift (Nabedryk et al. 

1990; Breton et al. 1999). 

  We favor the assignment of the 1687 cm-1 spectral band to the chl keto vibrational 

band of PA
+, which upshifts from 1638 cm-1 with light-induced oxidation.   This 

interpretation is consistent with previous site-directed mutagenesis studies.  In this work, 

mutations at the conserved threonine were used to disrupt the hydrogen-bonding network 

of PA, and an increase in the amplitude of a positive 1687 cm-1 band was observed (Witt 

et al. 2002; Li et al. 2004; Pantelidou et al. 2004). This increase in amplitude was 

attributed to an increased population of a more weakly hydrogen-bonded PA
+ in the 

mutant (Witt et al. 2002).  However, there was no significant change in amplitude of the 
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1687 cm-1 band when mutations were used to introduce hydrogen bonds to PB (Breton et 

al. 2005).  

 Based on these previous investigations, we suggest that the 1687 cm-1 band arises 

from a state in which the PA
+ hydrogen bond to Thr has been weakened by a light-

induced protein structural change.  In this interpretation, there are two populations of PA
+, 

which are generated under illumination, a strongly hydrogen-bonded version, which 

contributes to the 1653 cm-1 band, and a less strongly hydrogen-bonded version, which 

contributes to the difference spectrum at 1687 cm-1.  Observation of only one PA chl keto 

band, at 1638 cm-1, demonstrates that the conformational change is light-induced.  Thus, 

our work suggests a light-induced protein relaxation event, which weakens the hydrogen 

bond between PA and Thr, most likely by a change in distance or angle between the 131 

keto group of PA and the Thr side chain.  To explain the observation of the 1653 cm-1 

band, this change in hydrogen bonding must occur in only a subset of PSI reaction 

centers. 

 In our experiments, PSI vibrational spectra were recorded under continuous, low 

intensity, red-filtered, illumination.  The data acquisition time was 4 minutes.  In PSI, 

forward electron transfer from the primary donor to the terminal electron acceptor, FB, 

occurs with a time constant of ~500 nanoseconds, and P700
+FB

- recombination events 

occur on the tens of milliseconds time scale (Brettel et al. 2001).  Therefore, our 

experiment is expected to generate a photosteady state.  In this photosteady state, protein 

relaxation events, which are coupled to the initial charge separation, will have the 

opportunity to accumulate under illumination and to influence the spectrum of P700
+.  
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 In our previous chl ester labeling experiments, P700
+/P700 (Kim et al. 2000) was 

demonstrated to have more than four ester frequencies.  Multiple, distributed ester 

frequencies are likely to be caused by the protein structural changes under discussion 

here.  It was suggested that these multiple ester frequencies could reflect a distribution in 

keto-enol tautomerization.  Such a structural change is expected to be coupled with 

alterations in hydrogen bonding, which will also alter the double bond character in the 

isocyclic ring of PA (Kim et al. 2000).   Comparison to this previous work suggests that 

both keto and ester vibrational bands can be used as reporters for light-induced protein 

relaxation events in PSI. 

 In PSI, two rates are observed for oxidation of A1
- by FX, which have been 

attributed to oxidation of the A1A
- and A1B

- species (Joliot et al. 1999; Guergova-Kuras et 

al. 2001).  The rates of the two processes are ~20 and 200 nanoseconds, although the 

relative amplitudes of the two kinetic phases differ in different organisms (Brettel et al. 

2001; Xu et al. 2003a; Xu et al. 2003b) and references therein}.  In the bacterial reaction 

center, however, electron transfer to the intermediate acceptor, bacteriopheophytin, is 

unidirectional in wild type preparations (Heller et al. 1995; Kirmaier et al. 1999).  Our 

observation of a PA side structural change raises the question whether this protein 

relaxation event alters the rates and amplitudes of the A and B side electron transfer.   

From mutation studies, it was concluded that the midpoint potential of P700 decreases by 

30-60 mV when a non-hydrogen bonding substitution is made at the conserved Thr 

residue (Witt et al. 2002; Li et al. 2004).   While it was concluded that the disruption of 

the hydrogen bond to PA does not alter the rates or relative amplitudes of A1B
- and A1A

- 

oxidation by FX (Li et al. 2004), Thr mutations induced a shift of spin density from PB 
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toward PA (Witt et al. 2002).  This result suggests that changes in the strength of the PA
+ 

hydrogen bond can alter electronic coupling in the P700 dimer, and thus influence electron 

transfer rate from soluble electron carriers to P700
+.    

 Changes in PA
+ hydrogen bond strength may also influence 

cytochrome/plastocyanin oxidation through structural changes in the protein backbone.  

Figure 7B shows the luminal PsaA and PsaB helices in close proximity to P700.  This 

region of PSI has been demonstrated to be important in the facilitation of electron transfer 

from plastocyanin and cytochrome c to P700
+ (Sun et al. 1999; Brettel et al. 2001; 

Sommer et al. 2002; Sommer et al. 2004).   As suggested in Figure 7, changes in the 

angle or distance of the Thr-PA
+ hydrogen bond are likely to influence the orientation and 

conformation of these luminal PsaA and PsaB helices.  In  

the cyanobacterium, Synechocystis, such a change in orientation may alter the rate or 

mechanism of cytochrome c oxidation in vivo (Durán et al. 2004).   For example, it has 

been proposed that a rate-limiting conformation change may occur to regulate oxidation 

(Bottin et al. 1985; Sigfridsson et al. 1997).  A redox-linked conformational change may 

also regulate the binding affinity of the oxidized and reduced forms of the soluble 

electron carriers (Drepper et al. 1996).   

 In photosynthetic reaction centers, the protein environment is an inhomogeneous 

matrix, which relaxes after charge separation on many time scales. A complete 

understanding of photosynthetic electron transfer necessitates a description of these 

coupled protein conformational changes.  Our work provides a new, detailed description 

of a protein relaxation event, which is coupled to light-induced electron transfer in PSI. 
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We propose that this light-induced change in PA
+ hydrogen bonding regulates PSI 

electron transfer reactions. 
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*Values reported as percentages (%); †Predicted isotope distribution from the Isotopident tool 
(http://education.expasy.org/student_projects/isotopident/). 871.6 m/z, 100%; 872.6 m/z, 64.4%; 
873.6 m/z, 21.4%; 874.6% m/z, 4.9%; 875.6 m/z, 0.9%; 87.6 m/z, 0.1%; ‡Based on measured 
isotope distribution in column 2; §Based on the statistical probability of labeling at 8 possible 
carbon positions; ¶ND, not detected, <1%. 

Table 1.           Amount of 13C chl labeling from 13C-labeled glutamate 
1 

m/z 
2 

Isotope 
distribution  
for natural 
abundance 

chl*
†

 

3 
Isotope 

distribution  
for 13C-

labeled chl 

4 
13C-labeled 
chl minus 

natural 
abundance chl 

(column 3-
minus-2) 

5 
Predicted 

 +113C 
isotopomer 

distribution
‡

 

6 
Measured 

 +2-13C 
isotopomer 
contribution 
(column 4-
minus-5) 

7 
Predicted 

+213C 
isotopomer 

distribution
‡

 

871.6 
(molecular ion) 100 100 0 0 0 0 

872.6   
(+1-13C 

isotopomer) 
63.7 ± 7.7 106.3 ± 2.1 42.6 ± 8.0 42.6 ± 8.0 0 0 

873.6   
(+2-13C 

isotopomer) 
23.6 ± 0.7 77.3 ± 3.5 53.7 ± 3.5 27.1 ± 6.1 26.6 ± 7.0 26.6 ± 7.0 

874.6   
(+3-13C 

isotopomer) 
5.7 ± 0.4 40.6 ± 1.0 34.9 ± 1.1 10.0 ± 1.9 24.9 ± 2.2 16.9 ± 4.9 

875.6  
 (+4-13C 

isotopomer) 
2.9 ± 0.5 18.5 ± 1.0  15.6 ± 1.1  2.4 ± 0.5 13.2 ± 1.2 6.3 ± 1.7 

876.6   
(+5-13C 

isotopomer) 
1.1 ± 0.8 6.6 ± 0.3 5.5 ± 0.9 1.2 ± 0.2 4.3 ± 0.9 1.5 ± 0.4 

877.6 
 (+6-13C 

isotopomer) 
1.1 ± 0.5 2.2 ± 0.4 1.1 ± 0.6 0.5 ± 0.4 ± 0 .7 ± 0.2 

1 
m/z 

8 
Measured 

+3-13C 
isotopomer 
contribution 
(column 6-
minus-7) 

9 
Predicted 
  +3-13C-

isotopomer 
contribution

‡
 

10 
Measured 

+4-13C 
isotopomoer 
contribution 
(column 8-
minus-9) 

11 
Predicted 
 +4-13C-

isotopomer 
contribution

‡
 

12 
Total 

13C-labeling 
for each 

isotopomer 

13 
Probability of 

13C 
incorporation 
into the keto 

position§ 

871.6 
(molecular ion) 0 0 0 0 0 0 

872.6   
(+1-13C 

isotopomer) 
0 0 0 0 42.6 ± 8.0 5.3  

873.6   
(+2-13C 

isotopomer) 
0 0 0 0 26.6 ± 7.0 6.6  

874.6   
(+3-13C 

isotopomer) 
8.0 ± 5.4 8.0 ± 5.4 0 0 8.0  ± 5.4 3.0 

875.6  
 (+4-13C 

isotopomer) 
6.9 ± 2.1 5.1 ± 3.5 1.8  ± 4.3 1.8 ± 4.3 1.8 ± 4.3 0.9 

876.6   
(+5-13C 

isotopomer) 
2.8 ± 1.0 1.9 ± 1.3 0.9  ± 1.6 1.2 ± 2.3 ND¶ 0 

877.6 
 (+6-13C 

isotopomer) 
0 
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*Values reported as percentages (%); †Glutamic acid and deamidated glutamine; ‡Aspartic acid 
and deamidated asparagine; §ND, not detected, < 1%. 

Table 2.            Isotopic labeling of PSI amino acids as determined with GC/MS 

Amino Acid [13C] Glu* 

Glutamic Acid† 16.0 ± 0.1 

Proline 14.0 ± 0.5 

Serine ND§ 

Aspartic Acid‡ ND 

Alanine ND 

Glycine ND 

Valine ND 

Leucine ND 

Isoleucine ND 

Threonine ND 

Phenylalanine ND 

Lysine ND 
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Table 3.  Chlorophyll keto assignments for PA and PB in Photosystem I,  

based on 13C and 18O keto labeling 
 

Natural 
Abundance* 

18O keto 
Labeled* 

13C keto 
Labeled* 

Assignment 

1718 1681 1679 PB
+ 

1698 1666 1663 PB 

1687 1643 1644 PA
+ 

1653 1608 1608 PA
+ 

1638 1602 1593 PA 

*Frequencies in wavenumbers (cm-1) 
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Figure 1.  (A) Structure of chlorophyll a displaying the 8 carbons (red) that will be 

isotopically labeled from glutamic-13C-3 acid.  The keto group of chl is boxed.  The keto 

oxygen (blue) will be isotopically labeled from 18O2.  
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Figure 2.   MALDI mass spectrometry showing incorporation of 18O and 13C into 

cyanobacterial chl.   In (A), the cyanobacteria were cultured in the presence of 16O2 

(white) or 18O2 (black).  In (B), the cyanobacteria were cultured in the presence of natural 

abundance glutamic acid (white) or L-glutamic-3-13C-acid (black). The normalized 871.5 

m/z peak corresponds to the [M+H] ion of pheophytin, which was generated by acid 

treatment of the chl sample immediately before the measurement.  See Supplemental 

Materials and Methods for additional information. 
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Figure 3.  Light-induced FT-IR difference spectra, associated with the oxidation of P700 

in PSI.  In (A), the samples were derived from cyanobacteria cultured in the presence of 

16
O2.  In (B), the samples were derived from cyanobacteria cultured in the presence of 

18
O2.  In (C, solid line), the isotope-edited spectrum, 16O-minus-18O, was generated by 

interactive subtraction of (B) minus (A) and multiplication by a factor of 8.  A subtraction 

factor of 0.9663 was used to minimize ester contributions to the isotope-edited spectrum.  

In (C, dotted line), the isotope-edited spectrum was generated by a direct one-to-one 

subtraction and multiplication by a factor of 8.  (D) shows a control double difference 

spectrum, in which no vibrational bands are expected.  This control was generated by 

taking one-half of the data set in (A), subtracting it from the other half of the data set in  
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Figure. 3 continued 

(A), and dividing by the square root of two.  (D) was also multiplied by a factor of 8 for 

comparison to (C).  (E) is a dark-minus-dark control spectrum.  69 spectra were averaged 

in A-C and E.  Each tick mark on the y axis represents 5x10-3 absorbance units.   The 

color-coding scheme for band labels is described in the paper. See Material and Materials 

for additional information. 
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Figure 4.  Light-induced FT-IR spectra, associated with the oxidation of P700 in PSI.  In 

(A), the samples were derived from cyanobacteria cultured in the presence of natural 

abundance glutamate.  In (B), the samples were derived from cyanobacteria cultured in 

the presence of L-glutamic-3-13C-acid.  In (C, solid line), the isotope-edited spectrum, 

12C-minus-13C, was generated by interactive subtraction of (B) minus (A) and 

multiplication by a factor of 5.  A subtraction factor of 0.9584 was used to minimize ester 

contributions to the isotope-edited spectrum. In (C, dotted line), the isotope-edited 

spectrum was generated by a direct one-to-one subtraction and multiplication by a factor 

of 5.  (D) shows a control double difference spectrum, in which no vibrational bands are  
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Figure 4. continued 

expected.  This control was generated by taking one-half of the data set in (A), 

subtracting it from the other half of the data set in (A), and dividing by the square root of 

two.  (D) was also multiplied by a factor of 5 for comparison to (C).  (E) is a dark-minus-

dark control spectrum.  64 spectra were averaged in A-C and E.  Each tick mark on the y 

axis represents 5x10
-3 absorbance units. The color-coding scheme for band labels is 

described in the paper.  Material and Material and Methods for additional information. 
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Figure 5.   Isotope-edited FT-IR spectra showing the effects of 18O and 13C chl labeling 

on P700
+/P700 keto vibrational bands.  (A) is the 16O-minus-18O spectrum, and (B) is the 

12C-minus-13C spectrum.  In (A) and (B), control difference spectra, in which no 

vibrational bands are expected, are also presented as the dotted lines. Natural abundance 

bands assigned to PB and PB
+ are shaded with vertical lines. Natural abundance bands 

assigned to PA and PA
+ are shaded with horizontal lines.  The natural abundance band 

(filled) and its corresponding isotope-shifted component (unfilled) are labeled with the  

same color label.  In (A), 69 spectra were averaged and in (B), 64 spectra were averaged.   
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Figure 5. continued 

In (A) and (B), the sample size was 64 μg chl.  Each tick mark represents 5x10-4 AU. See 

Materials and Methods for additional information.  
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Figure 6. Comparison of the 1730-1590 cm-1 region in light-induced FT-IR spectra, 

associated with the oxidation of P700.  (A) is an overlay of Figure 3A (natural abundance, 

blue) and Fig. 3B (18O-labeled, black).  (B) is an overlay of Fig ure4A (natural 

abundance, blue) and Fig. 4B (13C-labeled, black).  Each tick mark on the y axis 

represents 2x10-3 absorbance units.  See Material and Material and Methods for 

additional information. 
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Figure 7.   (A) The protein environment of PA and PB in P700.  The hydrogen bonding 

network of PA with Thr 743, H2O and Tyr 603 is represented by dashes. (B) The luminal 

helices of PsaB and PsaA near P700. The figure is reproduced from the 2.5 Å resolution 

crystal structure of PSI from S. elongatus (PDB file accession number 1JB0 (Jordan et al. 

2001)) using Swiss-Pdb viewer (v3.7; www.expasy.ch/spdbc) with numbering according 

to S. elongatus, and rendered using POV-Ray (v3.5; www.povray.org). 
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CHAPTER 5 

PROBING ELECTRON TRANSFER IN PSI 

 

 

 

5.1 Abstract 

 In oxygenic photosynthesis, photosystem I (PSI) catalyzes the light-driven 

oxidation of plastocyanin or cytochrome c and the reduction of ferredoxin.  Studies have 

underscored the importance of protein interactions in efficient electron transfer from 

plastocyanin to PSI; however specific characterization of these interactions has not been 

forthcoming.  In this work we have used deuterium exchange methods and isotope 

labeling of tryptophan to investigate light-induced protein dynamics associated with 

stable charge separation in PSI.  Reaction-induced FT-IR spectroscopy and isotope-edited 

spectra reveal protein relaxation events that may be linked to structural conformational 

changes. The deuterium exchange isotope-edited spectra reveal light-induced 

perturbations to amide I (C=O) of the protein backbone, and perturbations of aspartate 

and glutamate residues. Isotope-based assignments for tryptophan may provide new 

information concerning this amino acid’s involvement with electron transfer reactions in 

PSI.  The protein dynamics described in this work may be associated with the oxidation 

of soluble electron carriers or other electron transfer reactions in PSI.  These studies 

provide unique information concerning electron transfer in oxygenic photosynthesis. 
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5.2 Introduction 

 Photosystem I is a protein complex responsible for the light-induced oxidation of 

plastocyanin and the reduction of ferredoxin (Golbeck 1994).  It is one of two protein 

complexes involved in light-induced charge separation across the thylakoid membrane in 

plants, green algae, and cyanobacteria. Three polypeptides are responsible for binding the 

electron cofactors in PSI.  Subunits PsaA and PsaB form a heterodimeric core and are 

responsible for binding chl, phylloquinone and an iron-sulfur cluster.  The PsaC subunit 

of PSI, an extrinsic subunit located on the stromal side of the thylakoid membrane, is 

responsible for binding two iron-sulfur clusters (Jordan et al. 2001). 

 The primary donor in PSI is believed to be a chlorophyll monomer, which reduces 

A0, a second chlorophyll monomer. (Holzwarth et al. 2006) The electron from A0
- is 

transferred to A1, a phylloquinone, and then to the iron-sulfur cluster FX.  These electron 

cofactors are bound by the PsaA and PsaB subunits.  FA, a second iron-sulfur cluster 

oxidizes FX and is itself oxidized by the terminal electron acceptor FB.  FA and FB are 

bound to the PsaC subunit. (Jordan et al. 2001) The primary donor is reduced by P700, a 

chlorophyll heterodimer comprised of chl a and chl a’.  P700 is the terminal electron donor 

of PSI and is reduced by plastocyanin or cytochrome c, depending on copper availability 

(Wood 1978; Merchant et al. 1986; Ho et al. 1988). 

 Plastocyanin, a 10kDa soluble copper protein, is responsible for the reduction of 

the photoxidized dimer, P700, in PSI and is reduced by the cytochrome b6f complex.  The 

crystal structures of oxidized and reduced forms of plastocyanin reveal two conserved 

regions that are believed to be involved in recognition and binding to PSI.  In 
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cyanobacteria, a single oriented collisional mechanism has been reported for the 

reduction of PSI by plastocyanin.  This process involves electrostatic interactions without 

formation of a kinetically detectable electron-transfer complex (Hervas et al. 1994; 

Hervas et al. 1995; Hervas et al. 1996).  In iron-deficient conditions, cytochrome c will 

act as the reducing agent for PSI (Wood 1978).  Studies have shown that cytochrome c 

and PSI may form a transient complex before electron transfer and do not follow the 

same kinetics as plastocyanin (Hervas et al. 1995).  In these studies, second order kinetics 

were observed for reduction of P700
+ by cytochrome c compared to pseudo-first order 

kinetics for plastocyanin reduction of P700
+. 

 The docking site for the soluble electron carriers are made up of two helices from 

the PsaA and PsaB subunits, designated in the crystal structure of S. elongates as 

transmembrane helices I and J (Fromme et al. 2001; Jordan et al. 2001). Sequence 

alignments of PsaB subunits from various organisms have shown several amino acids 

residues in the loop region of helix J to be conserved.  Mutation studies have suggested a 

role in the extra-membrane loop in the interaction with soluble electron donor proteins 

(Sun et al. 1999a; Sun et al. 1999b). Furthermore mutation studies of conserved 

tryptophan residues located in the luminal loop regions of PsaA and PsaB have shown 

these residues to be important in efficient reduction of P700
+ from plastocyanin or 

cytochrome c (Sun et al. 1999b; Sommer et al. 2002; Sommer et al. 2004).  In contrast to 

cyanobacteria, eukaryotic organisms require the subunit PsaF for efficient electron 

transfer from plastocyanin to P700
+.  In eukaryotes, it is believed that this subunit is 

responsible for coordinating and binding plastocyanin (Bottin et al. 1985; Haehnel et al. 

1994). 
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 Vibrational spectroscopy has underscored the importance of protein dynamics 

associated with light-induced electron transfer in PSI (Kim et al. 2000; Kim et al. 2001; 

Bender et al. 2008a).  These experiments have demonstrated specific protein relaxation 

events near P700 that may be linked to interactions with soluble electron carriers.  

Furthermore, isotope labeling of tyrosine residues in PSI also showed perturbations 

associated with CH-π interactions.  These perturbations may be associated with protein 

dynamics around P700 (Sacksteder et al. 2005).  To investigate protein dynamics that may 

be associated with electron transfer in PSI, deuterium was used as a molecular probe of 

the system.   

 In this chapter, difference FT-IR spectroscopy was performed on 2H2O buffer 

exchanged PSI samples. PSI samples containing all the polypeptides or PSI samples 

missing the PsaC, PsaD, and PsaE subunits were compared.   Isotope-edited spectra 

reveal protein perturbations consistent with light-induced structural changes of the PsaA 

and/or PsaB subunits.  These findings identify specific conformation changes that may be 

important in interactions with soluble electron carriers and in efficient reduction of P700
+.  

To further characterize the structural dynamics during electron transfer in PSI, tryptophan 

residues were isotopically labeled.  The results reported here may be consistent with 

perturbations of tryptophan residues, which may be associated with structural dynamics 

controlling the oxidation of plastocyanin/cytochrome c6. 

5.3 Materials and Methods 

 5.3.1 PSI purification for 1H2O and 2H2O buffer exchanged samples  Wild-type 

Synechocystis PCC 6803 liquid cultures (15L) were grown and supplemented with 5mM 
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glucose. Trimeric PSI samples were purified as previously described (Noren et al. 1991; 

Kim et al. 2001).  Briefly, thylakoid membranes were solubilized with 1% dodecyl-ß-D-

maltiside, centrifuged for one hour at 100,000 x g, and loaded onto a Q-sepharose 

column.  A linear gradient was applied, and PSI trimer fractions with an absorbance ≥679 

absorbance units (AU) were pooled and were exchanged into 1H2O or 2H2O buffers 

containing 5 mM HEPES-NaOH pH 7.5, 0.04% dodecyl-ß-D-maltiside (LM) by dialysis.  

The p2H of the 2H20 buffer is reported as the uncorrected meter reading (Kim et al. 2001), 

because the small solvent isotope effects on weak acid pKa values are essentially 

cancelled by the 2H2O change in response of the pH electrode (Schowen et al. 1982). 

Three rounds of dialysis were performed over three days. The total volume of buffer 

exchange was 1.5 L, which correspond to 500 ml exchanged three times.  Trimeric PSI 

was concentrated using an Amicon (Bedford, MA) Ultra 100,000 MWCO centrifugal 

filter device to a final concentration of 2 mg chl/ml. 

 5.3.2 PsaC, PsaD and PsaE removal.  The stromal subunits PsaC, PsaD, and 

PsaE along with the terminal electron acceptors FA and FB were removed as previously 

described (Parrett, K. G. et al. 1989; Parrett, K. G.; et al. 1990).  Briefly PSI samples 

were incubated in 6.8 M Urea, 10 mM Tris and 5 mM glycine-pH 10 for 70 minutes.  

Afterwards, an equal volume of tris buffer was added to stop the reaction.  Samples were 

dialyzed into 1H2O or 2H2O buffers as described above.  Afterwards, samples were 

concentrated to 2 mg/ml. 

 5.3.3 Growth conditions and PSI purification for 2H5-tryptophan.  Feedback 

inhibition of the chorismate biosynthetic pathway was performed by adding 0.25 mM 

tyrosine, 0.25 mM tryptophan (control) or 2H5-tryptophan (98% purity, Isotec, 
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Maimisburg, OH), and 0.50 mM phenylalanine to the BG-11 media (Srinivasan et al. 

1959; Smith 1962; Barry et al. 1987; Poulson et al. 1991).  Synechocystis cells were 

grown in 1L BG-11 buffered with 1mM TES NaOH- pH 8.0.  Cultures were grown for 11 

days and harvested with an OD reading of 1.3-1.5.  PSI was purified as previously 

described.(Bender et al. 2008a) 

 5.3.4 FTIR Spectroscopy.  FT-IR spectra were collected at -10 °C as described 

previously (Sacksteder et al. 2005; Bender et al. 2008b).  Samples contained 3 mM 

potassium ferricyanide and 3 mM potassium ferrocyanide and were concentrated at room 

temperature under a steady flow of nitrogen gas.  Concentration times were 20-30 

minutes.  Spectral conditions were as follows: resolution, 4 cm-1; zero filling, 1; data 

acquisition time, 4.0 min.  Difference spectra (light-minus-dark) were generated by 

taking the ratio of single beam spectra collected before and during illumination and 

converting to absorbance.  FT-IR spectra were obtained in the dark or under continuous 

illumination with red- and heat-filtered light, as previously described (Kim et al. 2001; 

Sacksteder et al. 2005; Bender et al. 2008b).  A 60 min dark relaxation time was used 

between successive illuminations.  Sixty difference spectra were averaged for 1H2O and 

2H2O PSI intact samples; forty-five difference spectra averaged for 1H2O and 2H2O PsaC, 

PsaD and PsaE removed PSI samples. Fifty difference spectra were averaged for 1H5-trp 

PSI samples, and forty-nine difference spectra were averaged for 2H5-trp PSI samples.  

Spectra were normalized for small differences in sample concentration and path length. 

The amplitude of the amide I band in the infrared absorption spectra was used for 

normalization of the 1H2O and 2H2O buffer exchanged PSI samples.  The amide II band 

in the infrared absorption spectra was used for normalization of the 1H5-trp and 2H5-trp 
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PSI samples. The infrared absorption spectra were created by normalizing dark scans to 

backgrounds not containing protein.  

 Isotope-edited spectra were generated by subtracting the isotope difference 

spectra from the control difference spectra.  A direct 1 to 1 subtraction was used for all 

isotope-edited spectra reported here.  Control double difference spectra were created by 

subtracting ½ of the control data from the second half of the control data set and 

multiplying by the square root of 2.  Dark spectra were obtained by subtracting 

subsequent dark spectra from one another. 

5.4 Results 

 PSI samples were dialyzed for three days into 2H2O containing 5mM HEPES pH 

7.5 buffer.  In contrast to our earlier solvent exchange protocol, which gave 20% labeling 

(Kim et al. 2001), here a dialysis method was used to increase the amount of solvent 

isotope exchange (Rath et al. 1998; Kim et al. 2001; Jenson et al. 2007).  The amount of 

exchange was measured to be 42 + 5% for samples containing all extrinsic subunits, and 

55± 16% for the PsaC, PsaD and PsaE removed samples.  The exchange was assessed by 

FT-IR spectroscopy (Rath et al. 1998; Kim et al. 2001).    

 In Figure 1, difference FT-IR spectra, associated with P700
+FB

--minus-P700FB, in 

1H2O-exchanged samples (Figure 1A) and 2H2O-exchanged samples (Figure 1B) are 

presented.   Figure 1C is the 2H2O isotope-edited spectrum generated by subtracting the 

difference spectrum in Figure 1B from the difference spectrum in Figure 1A.  The 

isotope-edited spectrum in Figure 1C will contain frequencies associated with electron 

transfer reactions and isotope-exchange.  For a frequency to be observed in the isotope-
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edited spectrum, the frequency must be sensitive to both of these conditions.  Bands 

corresponding to the protein in the dark will appear negative, with the isotope shifted 

bands appearing positive.  Those frequencies corresponding to the protein under 

illumination will appear as positive bands, with isotope shifts appearing as negative 

bands. Differences arise in the amplitudes of bands in the isotope-edited spectra 

presented here, compared to previous 2H2O exchange experiments (Kim et al. 2001).    

This may be due to differences in the hydration of the samples and differences in the 

amount of exchange.    

 To better assess the protein dynamics observed for the 2H2O isotope-edited 

spectrum in Figure 1C, the stromal subunits PsaC, PsaD and PsaE were removed.  Figure 

2 shows the resulting gel from PSI samples that were subjected to urea treatment (lane 1) 

and from intact PSI samples (lane 2). Three bands are missing in lane 1 compared to lane 

2, these bands have previously been assigned to the subunits PsaC, PsaD, and PsaE 

(Kruip et al. 1997).  Removal of the PsaC subunit will also result in the loss of the two 

terminal electron acceptors, FA and FB.  The resulting PSI samples will contain FX as the 

terminal electron acceptor, and the photoaccumulated species will be P700
+ and FX

-.  The 

samples were 2H2O buffer-exchanged as outlined in the Materials and Methods section. 

The exchange was measured by FT-IR spectroscopy and was found to be 55 ± 16% (Rath 

et al. 1998; Kim et al. 2001).    

 In Figure 3, the light-minus dark FT-IR spectra, associated with P700
+FX

--minus-

P700FX are presented. The spectrum in Figure 3A corresponds to 1H2O-exchanged PSI, 

and the spectrum in Figure 3B is from 2H2O-exchanged PSI.  The 2H2O-exchanged 

isotope-edited spectrum is shown in Figure 3C.  The 2H2O-exchanged isotope-edited 
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spectrum was generated by subtracting the spectrum in Figure 3B from the spectrum in 

Figure 3A.  The spectrum in Figure 3C shows significant spectral features compared to 

the noise, as assessed by a dark-minus-dark (Figure 3E), or a control double difference 

spectrum (Figure 3D) in which no vibrational bands are expected.  Similar spectral 

features are observed in the stromal subunit removed isotope-edited spectrum (Figure 3C) 

and the intact isotope-edited spectrum (Figure 1C). 

 A comparison of the isotope-edited spectra of the intact samples (Figure 4A) and 

samples with the stromal subunits removed (Figure 4B) is shown in Figure 4.  Figure 4A 

contains the isotope-edited spectrum of PSI samples containing all stromal subunits and 

FB as the terminal electron acceptors.  Frequencies above 1700 cm-1 are most likely due 

to COOH stretching vibrations of aspartic acid or glutamic acid (Chirgadze et al. 1975; 

Barth 2000; Wolpert et al. 2006).  Evidence for these assignments comes from the 

derivative shaped band observed at (+) 1275 and (-) 1267 cm-1 in the 2H2O isotope-edited 

spectrum in Figure 4A.  This frequency can be associated with COH bending of aspartic 

acid and glutamic acid  This stretching mode is expected to shift to lower frequencies in 

2H2O buffer, and can be assigned to the derivate-shaped band at (-) 1048 and (+) 1038 

cm-1.   

 Isotope-shifted bands corresponding to amide I C=O stretching are observed in 

(+) 1663 and (-) 1658 cm-1 in Figure 4A.  Other frequencies observed in the 1700-1600 

cm-1 region of the spectrum may be associated with glutamine or asparagine and basic 

amino acids such as lysine and arginine.  Frequencies in Figure 4A observed at (+) 1696 

cm-1, (-) 1670 cm-1, (+) 1678 cm-1, and (+) 1641 cm-1 may be assigned to these amino 

acids.  The complex spectral banding pattern in this region may be the result of multiple 
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amino acid side chain contributions.  Therefore, it is not possible to assign frequencies to 

specific amino acids in this region of the isotope-edited spectrum.  

 Unique bands observed in the isotope edited spectra of Figure 4A are derivative 

shaped bands at (-) 1541 cm-1 and (+) 1550 cm-1; (+)1588 cm-1 and  (-)1597 cm-1. These 

bands are of interest, because few amino acid side chain groups contribute to this region 

of the spectrum and are expected to be sensitive to deuterium exchange.  The lower 

frequency pair, (-) 1541 cm-1 and (+) 1550 cm-1, may be from deprotonated aspartate or 

glutamate in the dark state of PSI.  Model compound studies have shown an increase in 

frequency in 2H2O of the asymmetric COO- stretching of both amino acids (Chirgadze et 

al. 1975; Tamm et al. 1997; Barth 2000; Wolpert et al. 2006).  These bands shift to higher 

frequencies ((+) 1588 cm-1 and (-) 1597 cm-1) under illumination.  This shift to higher 

frequency suggests a conformational change associated with charge separation. The 

symmetric stretching of the COO- group of aspartate and glutamate is also sensitive to 

deuterium exchange.  However model compounds report a frequency shift of 2-3 cm-1; 

this small isotope-shift may be below the spectral resolution of the spectrum presented 

here.   

 Figure 4B contains the isotope-edited spectrum associated with PSI samples with 

the stromal subunits removed and containing FX as the terminal electron acceptor. The 

terminal electron acceptor has changed from FB in Figure 4A to FX in Figure 4B.     

Frequencies observed in both isotope-edited spectra in Figure 4 are most likely due to the 

donor side of PSI, which has not changed in Figure 4B compared to Figure 4A.  

Therefore, similar bands observed in both isotope-edited spectra in Figure 4 can be 

assigned to perturbations of the PsaA and PsaB subunits.  Frequencies at (+) 1725 cm-1, 



143

 

and (+) 1726 cm-1 are observed in the isotope-edited spectra depicted in Figure 4A and 

Figure 4B respectively.  These bands are most likely due to the COOH antisymmetric 

stretching of aspartic acid and/or glutamic acid residues located in the PsaA and/or PsaB 

subunits. From model compounds, these frequencies are expected to shift to lower 

frequency in both isotope-edited spectra.  The isotope-shifted bands may contribute to the 

complex spectral features observed from 1720-1680 cm-1.    

 Similar frequencies are also observed in the 1700-1600 cm-1 region of both 

isotope-edited spectra in Figure 4.  Frequencies at (+) 1696/4 cm-1, (-) 1670 cm-1, (+) 

1678 cm-1, and (+) 1641 cm-1 may be assigned to the side chains of glutamine, 

asparagine, arginine and/or lysine located in the PsaA and/or PsaB subunits.  Isotope 

shifted bands corresponding to amide I C=O stretching, are observed at (+) 1663 and (-) 

1658 cm-1 in both isotope-edited spectra.  These results suggests protein relaxation of the 

PsaA and/or PsaB subunits associated with electron transfer.  Frequencies at (-) 1541 and 

(+) 1550/1 cm-1 observed in both isotope-edited spectra are assigned to aspartate and 

glutamate COO- antisymmetric stretching.  These bands are believed to shift to (+) 1588 

and (-) 1597 cm-1 during light-induced electron transfer in PSI.  

 To further probe specific protein relaxation during stable charge separation 

tryptophan was used as a molecular probe of the system.  The tryptophan dimer located 

on the luminal side of PSI has been reported to be essential for efficient electron transfer 

from plastocyanin to P700 (Sun et al. 1999b; Sommer et al. 2002; Sommer et al. 2004). 

Light induced difference spectra were generated from samples containing 2H5-trp labeled 

PSI to investigate tryptophan perturbations during electron transfer.  Figure 5 shows the 

difference spectra from PSI samples containing 1H5-Trp (Figure 5A) or PSI samples 
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containing 2H5-Trp (Figure 5B).  An isotope-edited spectrum was created by subtracting 

the spectrum in Figure 5B from the spectrum in Figure 5A.  The resulting isotope-edited 

spectrum is depicted in Figure 5C.  Only vibrational frequencies that are perturbed during 

electron transfer and sensitive to 2H5-Trp incorporation are expected to contribute to the 

spectrum in Figure 5C.  Vibrational frequencies observed in Figure 5C are above the 

noise as shown in Figure 5D and 5E.  To assign the isotope shifted bands of tryptophan in 

PSI, absorbance spectra of 1H5-Trp and 2H5-Trp were collected (data not shown).  

 Vibrational bands associated with isotope incorporation and perturbations of 

tryptophan are expected between 1660-1200 cm-1 based on model compounds and UVRR 

studies (Maruyama et al. 1995; Hu et al. 1997; Barth 2000; Wolpert et al. 2006).  A 

derivative shaped band at (-) 1659/ (+) 1654 cm-1 can be assigned to amide I stretching or 

to scrambling of the label into other amino acids.  From the model UVRR compound 

studies, vibrational modes associated with the indole ring are expected to contribute to 

the spectrum from ~1560-1200 cm-1 (Hu et al. 1997).   Figure 5C contains multiple 

vibrational frequencies in this region; however model compound studies suggest larger 

spectral features in the 1480-1300 cm-1 region of the spectrum in association with 

tryptophan vibrations.  The spectral features observed in the 2H5-Trp isotope-edited 

spectrum may be from isotope scrambling or assigned to vibrational frequencies of the 

tryptophan dimer.  The π-stacking interaction of the conserved tryptophan dimer located 

near P700 may affect the vibrational spectrum; π-π interactions may shift vibrations to 

unique frequencies.  To resolve these discrepancies, hydrolyzed PSI samples were 

subjected GC/MS analysis to quantify the amount of isotope enrichment into amino acids 

other than tryptophan.  From this analysis, less the 1% label scrambling was found in the 
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thirteen amino acids monitered using this procedure (data not shown).  UVRR 

absorbance spectra from 1H5-Trp PSI and 2H5-Trp PSI samples showed multiple 

tryptophan vibrational frequencies shifted in the labeled PSI samples (data not shown).  

These results indicate that the vibrational frequencies observed in Figure 5C are from 

tryptophan.   

5.5 Discussion 

 Previous studies have illustrated the importance of protein relaxation due to 

electron transfer in photosynthesis (Kim et al 2000; Kim et al/ 2001; Sacksteder et al. 

2005; Bender et al. 2008a; Bender et al. 2008b).  In the bacterial reaction center, it has 

been demonstrated that protein relaxation events occur on the same time scale as electron 

transfer (Wang et al. 2007).  In PSI, studies have demonstrated heterogeneity of the 

vibrational frequencies of the terminal electron donor P700.  These studies have suggested 

light-induced structural changes during charge separation (Kim et al. 2000; Kim et al. 

2001; Bender et al. 2008a).   Furthermore, hydration studies on PSI have shown a 

profound effect of hydration levels on the rate of P700
+ reduction and its interaction with 

the protein environment (Sacksteder et al. 2005).   These protein dynamics may influence 

the oxidation of soluble electron carriers. 

 To probe the protein dynamics that may be associated with these interactions, we 

have employed a dialysis method for deuterium solvent exchange (Jenson et al. 2007).  A 

three-day dialysis, which included exchange of the buffer solution daily, was employed 

(see Materials and Methods).  The hydration levels of the FTIR samples were kept 

constant, with a ratio of the OH stretching at 3300 cm-1 to amide 1 between 1.1-1.5.   
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 The isotope-edited spectra presented here are of intact PSI (Figure 4A), and PSI 

samples with the stromal subunits removed (Figure 4B).  All the samples have undergone 

the three-day dialysis into either 1H2O HEPES pH 7.5 buffer and 0.04% dodecyl-ß-D-

maltiside or 2H2O HEPES pH 7.5 buffer and 0.04% dodecyl-ß-D-maltiside.  In Figure 

4A, the photoaccumulated species are P700
+ and FB

-.  Vibrational frequencies are expected 

from amino acids perturbed by these photoaccumulated species and sensitive to 

deuterium exchange.  The photoaccumulated species associated with Figure 4B is P700
+ 

and FX
-.  Amino acids perturbed by these photoaccumulated species and are sensitive to 

deuterium exchange are expected to contribute to the spectrum in Figure 4B.  Similar 

bands observed in the 1800-1200 cm-1 region of both spectra are expected to be from 

puerturbations associated with the oxidation of P700
+. These perturbations may be 

associated with the PsaA/PsaB heterodimer that binds P700, A0, A1 and FX.  Bands 

assignable to aspartate and glutamate anitsymmetric COO- stretching are observed in 

both spectra.  The carboxylate vibrational bands shift to higher frequencies during charge 

separation, indicating structural changes around these residues. Bands assignable to 

amide I C=O stretching vibrations are also observed in both spectra.  The amide I 

stretching may be associated with a light-induced structural change.  These structural 

changes are most likely associated with the PsaA and/or PsaB subunits since they are 

observed in both spectra. 

 Previous mutation studies of in the H loop of PsaB have suggested basic amino 

acid residues located in this region are important for electrostatic interactions with 

plastocyanin (Navarro et al. 2000; Durán et al. 2006).  Furthermore, mutations to 

conserved residues including tryptophan 622 (Synechocystis numbering) in the luminal J 
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loop of the PsaB subunit, demonstrated the role of the loop in the interaction with soluble 

electron carriers.  This study underlined the importance of the luminal J loop, which 

includes tryptophan and aspartic acid residues, in the interaction of PSI with plastocyanin 

and cytochrome c6 (Sun et al. 1999b).  The perturbations observed in the tryptophan 

isotope-edited spectrum (Figure 5C) may be from a protein conformational change in this 

conserved luminal loop region.  

  Figure 6A shows the tryptophan residues located in the PsaA, PsaB, PsaC, PsaD, 

and PsaE subunits.  Three tryptophan residues are found in PsaD and PsaE and may also 

be perturbed during charge separation in PSI.  Figure 6B shows the protein structure of 

the PsaA and PsaB subunits with the acidic amino acids highlighted (Jordan et al. 2001).  

The two large loops of PsaA and PsaB are believed to be important with the interaction of 

the soluble electron donor plastocyanin (Sun et al. 1999a; Sun et al. 1999b; Fromme et al. 

2003).  Both loops contain glutamate and aspartate, and may be perturbed during P700 

oxidation.    

 Two conserved tryptophan residues (Trp 655 and Trp 631) on the luminal side of 

PSI have been shown to be important in electron transfer from plastocyanin to P700
+ 

(Sommer et al. 2004).  These tryptophan residues are within π-stacking distance, and may 

contribute to the 2H5-Trp isotope-edited spectrum in Figure 5C.  Near these conserved 

tryptophan molecules are two aspartate residues (Asp 652 and Asp 628).  Figure 7 shows 

these residues as well as P700.  The deuterium studies presented here indicate acidic 

amino acids perturbed during electron transfer in PSI. Furthermore these studies indicate 

a protein conformational change in PsaA and/or PsaB which may be a result of the 

luminal loop regions.  Both of the aspartate residues shown in Figure 7 may be perturbed 
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during P700
+ formation, and may be important in electron transfer from plastocyanin to 

P700
+.  Further studies are needed to indicate the precise role these aspartate residues and 

tryptophan residues may play in light-induced electron transfer in PSI. 
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Figure 1.  Light-induced FT-IR difference spectra of intact PSI. (A) The P700
+FB

--minus-

P700FB spectrum from PSI dialyzed with 1H2O HEPES-NaOH pH 7.5 buffer. (B) P700
+FB

--

minus-P700FB spectrum from PSI dialyzed with 2H2O HEPES-NaOH pH 7.5 buffer.  The 

spectrum in (A) is overlaid as a dotted line.  (C) The isotope-edited spectrum generated 

by a direct one to one subtraction of the spectrum in (B) from the spectrum in (A).  (D) 

Control double difference spectrum generated by subtracting ½ the data set in (A) from 

the second half of the data set.  (E) Dark minus dark spectrum of PSI dialyzed with 1H2O 

HEPES-NaOH pH 7.5 buffer.  Spectra in (A) (B) and (E) are an average of 64 spectra. 

Each mark on the y-axis represents 2x10-3 Absorbance units (AU).   See Materials and 

Methods for additional information. 
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Figure 2. SDS-Urea page gel of PSI samples. Lane 1 is of PSI samples that have been 

treated with 6.8M urea to remove the PsaC, PsaD, and PsaE subunits.  Lane 2 contains 

PSI samples containing all extrinsic subunits (PsaC, PsaD, and PsaE) as shown by the 

arrows.   
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Figure 3. Light-induced FT-IR difference spectra of PSI samples treated with 6.8M urea 

to remove the PsaC, PsaD and PsaE subunits. (A) The P700
+FX

--minus-P700FX spectrum of 

dialyzed with 1H2O HEPES-NaOH pH 7.5 buffer.  (B) The P700
+FX

--minus-P700FX 

spectrum of dialyzed with 2H2O HEPES-NaOH pH 7.5 buffer. The spectrum in (A) is 

overlaid as a dotted line.  (C) The isotope-edited spectrum generated by a direct one to 

one subtraction of the spectrum in (B) from the spectrum in (A).  (D) Control double 

difference spectrum generated by subtracting ½ the data set in (A) from the second half 

of the data set.  (E) The Dark minus dark spectrum of PSI dialyzed with 1H2O HEPES-

NaOH pH 7.5 buffer.  Spectra in (A) (B) and (E) are an average of 50 spectra. Each mark 

on the y-axis represents 2x10-3 (AU).  See Materials and Methods for more information. 
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Figure 4.  The isotope-edited spectra of deuterium exchanged PSI.  (A) P700
+FB

--minus-

P700FB isotope edited spectrum.  (B) P700
+FX

--minus-P700FX isotope edited spectrum.  The 

dotted spectra overlayed in (A) and (B) are the control double difference spectra in which 

no vibrational bands are expected.  Each mark on the y-axis represents 2x10-4 (AU).  See 

Materials and Methods for additional information. 

 



157

 

Figure 5.  Light-induced FT-IR difference spectra of intact PSI. (A) The P700
+FB

--minus-

P700FB spectrum of PSI isolated from Synechocystis cultures grown with 0.25 mM 1H5-

tryptophan.  (B) The P700
+FB

--minus-P700FB spectrum from PSI isolated from 

Synechocystis cultures grown with 0.25 mM 2H5-tryptophan. (C) The isotope-edited 

spectrum generated by a direct one to one subtraction of the spectrum in (B) from the 

spectrum in (A).  (D) Control double difference spectrum generated by subtracting ½ the 

data set in (A) from the second half of the data set.  (E) The dark minus dark spectrum of 

PSI isolated from Synechocystis cultures grown with 0.25 mM 1H5-tryptophan..  Spectra 

in (A) (B) and (E) are an average of 50 spectra.  Each mark on the y-axis represents 2x10-

3 (AU).  See Materials and Methods for more information. 
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Figure 6.  The 2.5 Ǻ resolution crystal structure of PSI depicting the tryptophan residues 

in the PsaA, PsaB, and PsaC subunits of PSI (A) and acidic amino acids found in the 

PsaA and PsaB subunits of PSI (B).  The figure is reproduced from the 2.5 Å resolution 

crystal structure of PSI from S. elongatus (PDB file accession number 1JB0 (Jordan et al. 
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2001)) using Swiss-Pdb viewer (v3.7; www.expasy.ch/spdbc), and rendered using POV-

Ray (v3.5; www.povray.org). 
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Figure 7.  The protein environment around P700.  The two conserved tryptophan residues 

and aspartate residues located in the luminal loop region that may be perturbed during 

electron transfer in PSI are shown.  The luminal loop regions of PsaA and PsaB are also 

shown as ribbons.  The figure is reproduced from the 2.5 Å resolution crystal structure of 

PSI from S. elongatus (PDB file accession number 1JB0 (Jordan et al. 2001)) using 

Swiss-Pdb  
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Figure 7 continued 

viewer (v3.7; www.expasy.ch/spdbc), and rendered using POV-Ray (v3.5; 

www.povray.org). 
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CHAPTER 6 

CONCLUSION 

  

 

 Photosystem I (PSI) is a protein complex involved in light-induced electron 

transfer across the thylakoid membrane.  Electron transfer in PSI involves a series of 

oxidation reduction reactions of cofactors bound to the subunits PsaA, PsaB and PsaC 

(Jordan et al. 2001)   Protein dynamics have shown to play a major role in photosynthetic 

electron transfer reactions (Warshel et al. 1989; Gehlen et al. 1994; Halverson et al. 2003; 

Parson et al. 2004; Barry et al. 2006; De Riso et al. 2006; Wang et al. 2007).  The studies 

presented here have underscored the role of protein dynamics and cofactor interactions in 

the control of electron transfer in PSI.  The protein relaxations observed in these studies 

have the potential to control the bidirectionality inherent to PSI, and may control the 

interactions with soluble electron donors and acceptors. 

 Characterization of the secondary electron acceptor A1 has shown the influence of 

noncovalent interactions on the vibrational spectrum.   Hydrogen-bonding, π-stacking and 

electrostatic interactions observed in previous studies have the potential to modulate the 

redox properties of the secondary electron acceptor (Pushkar, Y. et al. 2004; Pushkar, Y. 

N. et al. 2005; Feldman et al. 2007; Bender et al. 2008). The work presented here has 

shown the effect of these interactions on the vibrational spectrum of A1 in comparison to 

DFT calculations of the quinone molecule. 
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 Novel experiments incorporating various isotopes into the keto group of chl have 

given greater insight into the oxidation of P700
+.  These studies suggested a light-induced 

conformational change in PSI, which may regulate the oxidation of soluble electron 

donors or other electron transfer reactions.  Deuterium exchange studies revealed a light-

induced conformational change in PSI, which may be related to the previous protein 

relaxations identified by isotope labeling of P700.  Furthermore, these studies have 

characterized aspartate or glutamate perturbations associated with the PsaA subunit 

and/or the PsaB subunit.  These novel perturbations indicate structural changes associated 

with the loop regions of these two subunits.  To further investigate protein dynamics 

associated with stable charge separation, tryptophan residues were isotopically labeled in 

PSI. 

 The isotope-edited spectrum of 2H5-Trp PSI reveal vibrational frequencies that 

can be associated with amide I perturbations as well as the indole ring of tryptophan.  

These results indicate unique vibrational frequencies of tryptophan that may be indicative 

of the conserved tryptophan dimer found on the luminal side of PSI (Sun et al. 1999; 

Jordan et al. 2001; Fromme et al. 2003; Sommer et al. 2004).  These results combined 

with the deuterium-exchange results emphasize the importance of protein relaxation 

events that accompany electron transfer reaction in PSI. 

 The studies presented here underscore the importance of protein dynamics and 

cofactors interactions in oxygenic photosynthesis.  The results signify specific protein 

relaxation events that accompany stable charge separation in PSI.  Further studies are 

needed to specify the role of these protein dynamics; however, the studies presented here 
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are indicative of protein conformational changes that may control the oxidation of soluble 

electron carriers or other electron transfer reactions in PSI. 
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