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SUMMARY

Several emerging wireless communication systems require direct transmission

between mobile terminals to support efficient data transfer and user mobility. Such

mobile-to-mobile communication systems differ from the conventional cellular systems

where only the user unit is mobile. In addition, there might be a relay, also called

a repeater, between the original transmitter and the final receiver to improve the

network range and coverage. Potential applications for mobile-to-mobile systems

include Intelligent Highways for coordinated traffic control and ad-hoc networks meant

for military and disaster management. Relays may be deployed in cellular networks

and IEEE 802.16 mesh networks for wireless broadband access.

Extensive research in cellular radio channels has led to the successful deployment

of cellular networks. However, our knowledge of the radio channels encountered in

mobile-to-mobile and relay-based systems is still inadequate. This forms the primary

motivation behind our research in addressing wireless channel modeling, simulation,

and estimation issues for these systems.

Specifically, we investigate frequency-flat mobile-to-mobile channels and develop

simulation models by using the “sum-of-sinusoids” method, which is widely used for

cellular channels. In addition, we present the properties of “amplify and forward”

relay channels via theoretical analysis. This analysis, to the best of our knowledge, is

the first of its kind. Further, we address the unique challenges, which arise because of

the different underlying channel model, for channel estimation in amplify and forward

relay systems.

Our work would provide other researchers the necessary tools for the design and

testing of these emerging communication systems.

xiv



CHAPTER I

INTRODUCTION

1.1 Mobile-to-mobile Communication Systems

Cellular telephony has forever changed the way people communicate with one another,

being one of those exciting technologies that has directly and significantly influenced

our everyday life. Cellular networks enable people to stay connected with the world

from almost anywhere and everywhere, even while “on the move” [42, 73]. Having

seen the potential of cellular networks, consumers are demanding better quality of

service (QOS), new applications, and increased mobility support from these networks.

Fueled by this demand and supported strongly by the advances in semiconductor and

signal processing technologies, new communication architectures are being envisioned

to improve as well as complement current cellular networks to meet future commu-

nication needs. These architectures include ad-hoc and relay based cellular networks

of the future [48, 76]. The goals behind using these architectures are to provide in-

creased mobility to users while increasing network coverage, capacity, efficiency, and

revenue for the service provider.

A typical cellular network connects different mobile users to one another via a

fixed, i.e., stationary Base Station (BS) [42]. In this sense, all present day cellular

radio links are mobile at one end only - the user end, while the service provider end

is stationary. In contrast, ad-hoc networks are envisioned to eliminate the need for

central BSs by directly connecting mobile users to one another [3, 48]. Therefore,

they are also referred to as “mobile-to-mobile” or “doubly mobile” networks [82]. In

such networks, all the nodes are mobile and data is routed by relaying from one node

to another. Sometimes a mobile BS might be present as a central controller.
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Mobile-to-mobile communications find applications in commercial as well as mili-

tary arenas. The walkie-talkies or two way radios that have been in use for a long time

are a simple example of mobile-to-mobile communication systems. But, traditionally,

they employ analog modulation such as frequency modulation (FM). In contrast,

future systems will need digital modulation formats to meet high data rate, QOS,

and higher user mobility requirements. Therefore, the emphasis is toward research

and design of digital mobile-to-mobile communication systems. Several applications

such as Intelligent Highway Vehicular Systems (IHVS) for automated traffic control

on highways, broadband audio and multimedia content delivery to mobile users, and

emergency rescue operations [4, 24, 25, 30] are currently being explored. Efforts are

being made to standardize technologies for the IHVS through the IEEE Dedicated

Short Range Communication (DSRC) standard [1]. On the military front, ad-hoc net-

works offer the advantage of on-the-fly installation in battlefield environments without

the need of a burdensome and inflexible fixed BS infrastructure. Some of the benefits

of ad-hoc networks can be harvested by cellular networks by deploying intermediate

relays that connect the mobile station (MS) to the fixed BS. The relay can be fixed

or mobile. Such relay-based cellular networks promise increased reach and capacity

of the existing networks [48].

As we observe, mobile-to-mobile communication is likely to become more preva-

lent in future communication systems. Being a relatively new area of research, it

poses numerous interesting research problems. The first and perhaps the most im-

portant task to be carried out while designing a wireless communication system is

to understand the nature of the wireless channel involved in communicating between

two ends of the link. Only sound knowledge of the radio propagation channel can

enable efficient, in-time, and practical design and testing of communication systems.

Channel knowledge is required to understand various impairments such as attenu-

ation, multipath fading, and time variations in the channel, which are discussed in

2



detail in Chapter II. Using this knowledge, communication systems can be designed

to obtain optimal or near optimal performance. This philosophy has been the driving

force behind more than four decades of research on wireless channels for applications

like terrestrial and satellite broadcast and cellular networks.

Cellular (fixed BS to MS) channels have generated a considerable interest among

the researchers owing to the challenges posed by the user terminal’s mobility. Tra-

ditional research topics include: i) developing theoretical channel models , ii) con-

ducting real-world channel measurements and deriving channel models from these

measurements [12, 45], iii) developing simulation models for computer simulation of

communication systems [35], and iv) developing hardware based channel emulators

for real-time system testing. This research has led to standardized channel models

for cellular systems in the form of COST 207, COST 231, IMT-2000, and 3GPP

channel models [2, 6, 7]. The advent of multiple-input multiple-output (MIMO) an-

tenna systems has led to extension of these models to incorporate spatial dimension

into these models [22]. Numerous techniques available in the literature for simulating

cellular channels in software are complemented by commercial hardware based real

world channel emulators [5, 19, 36, 56, 57, 58, 59, 60, 61]. Such simulation capa-

bilities enable the design, testing, and optimization of systems without conducting

time consuming and expensive field trials before actual system deployment. Thus,

the research in cellular channels has a rich and fascinating history. Unfortunately,

the same is not true for mobile-to-mobile radio channels.

Though narrow bandwidth mobile-to-mobile fading channels were theoretically

studied by Akki and Haber in the ’80s [9, 10], no particular attention was paid to

them due to lack of compelling applications. However, the new interest in mobile-

to-mobile communications has led to some theoretical research on these channels as

described in [43, 80, 81]. Real world channel measurements have been provided in

[8, 31, 39, 46]. However, standardized narrowband or wideband mobile-to-mobile

3



channel models or methods to simulate them are yet to be developed. Therefore, our

research focuses on the study and simulation of narrowband mobile-to-mobile wireless

channels. We develop “sum-of-sinusoids” (SoS) models to simulate mobile-to-mobile

channels by using the SoS modeling framework widely used for cellular channels

[36, 56]. Statistical as well as deterministic simulation models are developed to provide

a performance vs. complexity trade-off to the system designer. The properties and

the performance of these models are rigorously verified by applying theoretical and

simulation tools. This work improves upon the work in [81] and serves as an extension

of the work presented by the author in [55].

1.2 Relay-based Communication Systems

In a relay-based communication system, transmission between the source and the

destination is achieved through an intermediate transceiver unit called a relay or a re-

peater. Often, large distances between the source and the destination preclude direct

communication between them due to high attenuation in the propagation medium.

In such scenarios, a repeater is placed between the source and the destination to

achieve end-to-end communication. Such use of relays is widely prevalent in fiber

optic networks [64]. Satellite transponders used for a wide range of commercial and

military applications are also examples of relay-based systems. But, implementation

complexity and other practical constraints have prevented the use of relays for mobile

communications until now. However, with advances in electronics and semiconduc-

tor technologies, their use for wireless, mobile communications seems feasible. As a

result, relay-based systems have become a hot research topic in the wireless research

community in recent years. They are proposed under different names such as “coop-

eration diversity” [41, 69, 70], “virtual antenna arrays” [20] or multihop networks [48].

Potential application areas of cooperation diversity are the next generation cellular

networks, mobile wireless ad-hoc networks, and mesh networks for wireless broadband

4



access. Besides increasing the network coverage, relays can provide additional diver-

sity to combat the effects of the wireless fading channel. Such diversity schemes are

discussed further in Chapter II. These interesting capabilities offered by relay-based

systems motivate us to study the propagation medium encountered in such systems.

While mobile-to-mobile radio channels have two mobile nodes involved, relay channels

with three nodes effectively have two links cascaded together: the link from the MS

to the relay and the link from the relay to the fixed BS [32, 48, 88]. Depending on

the mobility of the relay, the overall channel is either a cascade of mobile-to-mobile

and mobile-to-fixed links or mobile-to-fixed and fixed-to-fixed links, as illustrated in

Figure 1. It is logical to assume that the cascading of different links causes the relay

channel to have characteristics that are very different from the individual fixed-to-

mobile link or the mobile-to-mobile link. However, fading relay channels have not

been studied yet in detail. There is no known reference that describes the fading and

time-domain behavior of relay fading channels.

BS

Relay
MS

Destination
MS

h1

h2

Figure 1: Relay channel example.
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Therefore, we evaluate the properties of relay channels via theoretical analysis. We

concentrate on “amplify and forward” relay channels, where the relay simply amplifies

the signal received from the transmitter and forwards it to the final receiver.

1.3 Channel Estimation

As mentioned earlier, the propagation channel induces various impairments in the

transmitted signal. Such impairments include time varying attenuation and phase

changes that distort the transmitted data. Typically, a receiver mitigates these dis-

tortions for reliable demodulation of the transmitted data. This reception strategy

is called coherent demodulation [63]. It should be noted that data demodulation

is possible even without compensating the channel distortions by suitably adapting

the transmission modulation. But, the performance of this reception scheme, termed

non-coherent demodulation, is inferior compared to that of coherent demodulation in

terms of the bit error rate (BER) achieved for a given amount of transmit power [74].

Therefore, most modern communication systems prefer coherent reception.

Coherent reception requires the receiver to acquire channel knowledge to com-

pensate for the channel induced distortions. The process of acquiring the channel

knowledge is called channel estimation and is an integral part of most communication

receivers. Apart from the knowledge of channel statistics, the channel estimator also

requires knowledge of the instantaneous channel values to track the channel fading

and compensate it. Typically, known symbols called “pilot” symbols are multiplexed

along with the data to aid the receiver in channel estimation [17]. This estimation

scheme is called pilot symbol aided modulation (PSAM). Sophisticated signal pro-

cessing algorithms are then applied by the estimator to acquire the channel knowledge

and track it using pilot symbols.

The problem of channel estimation for cellular channels has been widely and

successfully addressed in the literature. Estimation schemes capable of tracking the
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fading channel in cellular systems are an integral part of standardized systems such

as GSM and cdma2000. A detailed description of various estimation schemes can be

found in the excellent survey paper [77] and the references therein. However, channel

estimation in relay-based systems is still an open problem. Whether the existing

estimation schemes can cope up with the different underlying channel model in relay-

based systems is not known yet. Mobile-to-mobile channels undergo faster fading

compared to cellular channels due to the increased mobility. Estimation schemes

that can track this fast fading are required for mobile-to-mobile systems. On the

other hand, for amplify and forward relay systems the cascading of two channels

poses unique questions such as i) how to estimate the overall channel?; and ii) can

existing estimation schemes be applied to estimate the cascaded channel without any

sacrifice in performance? These issues have not been explored so far. Therefore,

we address the problem of channel estimation for amplify and forward relay systems.

Different estimation strategies such as Linear Minimum Mean Square Error (LMMSE)

estimation and linear interpolation using pilot symbols are evaluated using the channel

models we develop in our work. These and other research contributions are briefly

summarized below.

1.4 Research Contributions

• Comprehensive analysis of statistical simulation models for cellular channels

[52].

• Development of novel simulation models for mobile-to-mobile channels by in-

troducing “double ring” scattering environment model [51, 53].

• Derivation of the properties of amplify and forward relay channels and their

simulation [54].

7



• Evaluation of LMMSE channel estimation for amplify and forward relay sys-

tems. We also present approximate theoretical analysis to evaluate the impact

of estimation errors on the BER [50].

1.5 Thesis Outline

The remainder of the thesis is divided into five additional chapters. In Chapter II,

we review the theory of cellular and mobile-to-mobile channels and describe common

radio channel impairments like multipath fading and path loss. We also describe

important channel simulation philosophies in Chapter II. Chapter III presents our

analytical results that compare different statistical simulation models used for cellu-

lar channels. These results provide guidelines to develop simulation models, which

are presented in Chapter IV, for mobile-to-mobile channels. In Chapter V, we turn

our attention to results describing the properties of amplify and forward relay chan-

nels. Chapter VI presents results pertaining to channel estimation for relay systems.

Finally, in Chapter VII, we conclude by summarizing our research contributions and

open areas of research in wireless channel modeling, simulation, and estimation.
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CHAPTER II

BACKGROUND

The importance of understanding the radio propagation channel for successful design

of communication systems can never be overstated. All wireless communication text-

books invariably begin with a brief discussion on the properties of the radio channel.

Earlier, the wireless medium was viewed as an obstacle or a limiting factor in de-

signing reliable communication links. However, decades of research and subsequent

insights have changed this paradigm. Modern day communication systems rather

tend to exploit the channel knowledge for increasing system reliability and capac-

ity by employing techniques such as diversity and MIMO [78]. Schemes such as

multi-user diversity are being employed in third generation (3G) cellular networks to

optimally serve different users depending on their channel conditions. Thus, a good

understanding of the wireless channel is the key for extending the limits of existing

communication systems. With this view in mind, we discuss important concepts like

path loss, shadow fading, multipath propagation, types of fading, and time-frequency

selectivity of mobile radio channels in this chapter. This discussion is followed by a

description of cellular, mobile-to-mobile, and amplify and forward relay channels that

form the basis of our research. It must be noted that with a slight abuse of notation,

we use the terms wireless channels and mobile channels interchangeably because all

wireless channels of interest in this work have some degree of mobility in them.

• Path loss

Path loss refers to the attenuation in the transmitted signal while propagating

from the transmitter (Tx) to the receiver (Rx). Path loss is caused by dissi-

pation of the radiated power as well as effects of the propagation channel such

as absorption due to moisture. Typical path loss models assume a distance

9



dependence attenuation, i.e., the received power is a function of the distance

between the Tx and the Rx. Significant variations in the path loss are observed

over distances of several hundred to thousand wavelengths.

The simplest path loss model corresponds to propagation in free space, i.e., line-

of-sight (LOS) link between the transmitter and receiver. Under this model, the

received signal power is given as

PR = PT GT GR
λ2

4πd2
, (1)

where PT is the transmitted power, GT and GR are the transmit and receive

antennas gains, respectively, λ is the transmitted carrier wavelength, and d is the

distance between the Tx and the Rx. Thus, the received power decreases with

a factor of distance-squared under free space propagation. We also observe the

path loss dependency on the transmitter wavelength. Shorter the wavelength

or equivalently higher the transmitter frequency, higher the path loss.

Though simple, the free space path loss model cannot capture all the prop-

agation scenarios encountered in the real world. Therefore, several different

models such as Okumura, Hata, Walfish-Ikegami, etc., [74] have been proposed

to model path loss in different propagation environments such as urban, rural,

and indoor areas. Experiments show that typical path loss exponents, i.e., the

power of the distance dependence in (1) is around 3-5, thus suggesting higher

attenuation than free space propagation conditions. In addition, these models

also capture the path loss dependence on factors such as the heights of antennas

and surrounding structures as well as seasonal variations. A detailed description

on different path loss models can be found in [27, 74].

• Shadow fading

The path loss model described above assumes the path loss to be constant at

a given distance. However, the presence of obstacles such as buildings and
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tress results in random variations of the received power at a given distance.

These variations also arise due to change in scattering and reflecting surfaces in

the propagation environment. This effect is termed shadow fading. The shadow

fading variations are observed over distances of tens to hundreds of wavelengths.

In the presence of shadow fading, the received signal power can be written as

PR = PT GT GRPLS, (2)

where PL and S correspond to the path loss and the shadow fading contribu-

tions, respectively.

Experimental results show that the shadow fading can be fairly accurately mod-

eled as a log-normal random variable. In other words, the shadow fading behaves

as a Normal (Gaussian) random variable when S is expressed in the dB domain.

Thus, the shadow fading distribution is given by

fS(s) =
10

sσs

√
2π ln 10

exp

[
−(10 log s− µPL)2

2σ2
s

]
, (3)

where µPL is the path loss expressed in dB and σs is the shadow fading standard

deviation. Typical σs values range from 5-10 dB. Thus, shadow fading (in

dB) behaves as a Gaussian random variable with mean and standard deviation

determined by the average path loss and σs, respectively.

Measurements show that the shadow fading exhibits spatial correlation, i.e.,

shadow fading is correlated over short distances. The spatial correlation is given

by the exponential correlation model proposed by Gudmundson [29] based upon

an approximate fitting of empirical data. According to this model, the spatial

correlation is quantified as

RS(∆x) = σ2
s exp (−|∆x|/dc), (4)

where ∆x is the spatial separation between points at which the correlation is

measured and dc is the spatial de-correlation distance. Typically, the shadow
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fading de-correlation distance dc ranges from 10-50 m. It must be noted that

though theoretical results preclude an exponential correlation model for shadow

fading, it is still widely used because it provides a reasonably good fit to exper-

imental data [44].

When the Rx is mobile, these spatial correlation translates into time correlation.

Therefore, the shadow fading behaves as a correlated, time-varying process. The

time auto-correlation can be obtained from (4) by substituting ∆x = vt, where

v is the Rx speed and t is the time variable.

The above discussion suggests that path loss and shadow fading variations be-

come significant when the receiver moves over distances greater than several

tens of the carrier wavelength. As a result, these effects are often called large

scale effects. Large scale effects play an important role in the system design at

the network level. For example, the cell coverage area, outage, and handoffs

are influenced by these effects. On the other hand, small scale fading caused

by multipath propagation, which is described below, determines the link level

performance in terms of the BER, average fade durations, etc.

• Multipath propagation and fading

Figure 2 depicts a typical transmission scenario encountered in mobile radio

channels. Either the Tx or the Rx or both may be in motion depending on the

application. Figure 2 depicts the Tx and the Rx surrounded by local scatterers,

a natural scenario for mobile-to-mobile channels owing to low elevation anten-

nas at both the Tx and the Rx. However, for cellular radio, where the BSs have

high elevation antennas, the BSs may be free from local scatterers. The pres-

ence of local scattering objects, either natural, such as foliage, mountains, or

man-made, such as buildings, obstructs a direct radio wave path between the Tx
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Tx

Rx

Figure 2: Example of scattering environment in mobile radio channels.

and the Rx giving rise to non line-of-sight propagation (NLOS). The transmit-

ted radio waves suffer reflection, diffraction, and/or scattering on falling upon

various obstacles. As a result, the received signal is a combination of several

different waves, also termed paths, arriving from different directions with ran-

dom delays due to different path lengths traveled by them. This propagation

mechanism is called multipath propagation, which is discussed below from a

physics viewpoint.

Let us consider the local area scattering conditions, i.e., assume the receiver to

be sufficiently far away from the scatterers so that only homogenous plane waves

constitute the received signal [22]. When an impulse is transmitted through

the channel, the received signal or, equivalently, the channel impulse response

consisting of several homogeneous plane waves can be represented as

h(−→r ) =
N∑

n=1

Vn exp
{
j

(
2π

λ
k̂n · −→r + φn

)}
, (5)

where −→r is the vector representing the receiver translation in the spatial di-

mension, Vn and φn are the amplitude and the phase, respectively, of the nth
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wave component while k̂n is the unit vector in the direction of the propagation

of the nth component. The phase φn captures the phases changes introduced by

interaction with the scatterers as well as those due to the distance traveled by

the wave from the Tx to the Rx. A reasonable assumption is that the phases

are uniformly distributed over [−π,π). Typically, for NLOS propagation the

amplitudes of the wave components are of the same order and have magnitude

very small compared to the total average power in the received signal. Such

wave components are called diffuse wave components. Because of their random

phases, these diffuse components combine vectorially giving rise to constructive

and destructive interference, thereby forming a resultant signal whose ampli-

tude varies in the spatial dimension. When the Rx is mobile, this amplitude

variations along the space translate into amplitude variations with time. This

phenomenon is called multipath fading. This spatial to time domain translation

is easily observed by substituting −→r = −→v t, where −→v is the Rx velocity vector.

We can re-write equation (5) in time domain as

h(t) =
N∑

n=1

Vn exp
{
j

(
2π

λ
k̂n · −→v t + φn

)}

=
N∑

n=1

Vn exp
{
j

(
2π

λ
v cos(αn)t + φn

)}
, (6)

where v is the speed of the Rx and αn is the angle between the direction of wave

propagation k̂n and the Rx velocity vector −→v . Note that fn = (2πv cos(αn))/λ

is the Doppler shift produced by the Rx moving at a speed v.

In the presence of such diffuse components, the fading is described by a Rayleigh

distribution. Figure 3 plots the received signal envelope under these Rayleigh

fading conditions. It is evident that the mobile Rx can experience fades as

deep as 20-30 dB below the mean power level within a fraction of a second (or

equivalently over a distance of one wavelength because of fading).

Diffuse wave components arise under NLOS propagation due to the presence
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Figure 3: Rayleigh faded signal envelope.

of several scatterers in the environment. However, when a LOS or a strong

reflected path, termed specular component, also arrives at the receiver, the

fading is more appropriately modeled by a Rician distribution [74]. A detailed

analysis on these multipath channels can be found in [36, 73]. The interested

reader is also referred to [22] for a detailed discussion on fading and the physics

behind it.

• Time and frequency selectivity

The above discussion implicitly assumed the Rx bandwidth to be small enough

so that multipath arriving at different delays cannot be resolved. However, if

the Rx bandwidth is sufficiently large, then multipath arriving with different

delays can be resolved at the receiver, the resolution being inversely proportional

to the Rx bandwidth. Under such circumstances, the impulse response in (6)

should be modified to to incorporate multipaths arriving at different resolvable

15



delays. This delay-resolved channel impulse response is given by

h(t, τ) =
L−1∑

l=0

gl(t)δ(τ − τl), (7)

where L is the total number of resolvable multipath components, gl(t) is the

time-varying complex envelope associated with the lth resolvable multipath ar-

riving with an average time delay τl. Note that each gl(t) is of the form (6) and

consists of all non-resolvable multipaths arriving within delay τl−1/(2B) to

τl+1/(2B), B being the receiver bandwidth. Thus, each gl(t) is either Rayleigh

or Rician faded. With this channel impulse response, if a signal s(t) is trans-

mitted, the received signal is given by

r(t) = s(t) ∗ h(t, τ) =
L−1∑

l=0

gl(t)s(t− τl), (8)

where ∗ is the linear convolution operator. Therefore, we can interpret h(t, τ)

as the channel impulse response at time t corresponding to an impulse applied

at time t − τ . Two important properties stand out from the above channel

impulse response - time selectivity and frequency selectivity.

Time selectivity refers to the change in the channel impulse response with time.

The motion of the Tx, the Rx or the scatterers results in change in the scattering

objects in the environment due to which the impulse response also changes. For

example, an impulse applied at time t1 − τ will experience a different channel

compared to an impulse applied at some other time t2 − τ , i.e., the impulse re-

sponse is time-variant or time selective. When viewed in the frequency domain,

time selectivity appears as Doppler shifts in the transmitted signal causing a

broadening of the transmitted signal spectrum. This effect is also called fre-

quency dispersion. Based on the rate with which the channel impulse response

changes relative to the signal transmission rate, channels may be classified as

fast fading or slow fading. Fast fading implies that the channel changes within
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the transmitted symbol duration, while slow fading implies that the channel is

approximately constant within a symbol duration. A good measure of channel

selectivity is given by the channel coherence time or, equivalently, the Doppler

spread, i.e., the time duration for which the channel can be considered to be

approximately time-invariant. The Doppler spread depends on the maximum

Doppler frequency shift fd arising from the mobility in the environment. The

higher the maximum Doppler shift, the higher the Doppler spread. Equivalently,

coherence time is inversely proportional to the Doppler spread.

The multipath delay spread due to multipaths arriving at different time delays

leads to frequency selectivity of channels. Frequency selectivity causes differ-

ent transmitted frequencies to undergo different amplitude and phases changes

and requires equalization at the receiver to remove these effects for data re-

covery. To make the notion of frequency selectivity explicit, we express the

time-varying impulse response h(t, τ) in the frequency domain by taking the

Fourier transform with respect to the variable τ to obtain the channel transfer

function

H(t, f) = Fτ [h(t, τ)]

=
L−1∑

l=0

gl(t) exp (−j2πfτl) . (9)

Thus, we observe that different frequencies (f ’s) will have different amplitude

and phase determined by the multipath time delays. This effect is termed fre-

quency selective fading. Based on their degree of frequency selectivity, channels

may be classified as frequency-flat or frequency selective channels. If all the

transmitted frequencies undergo approximately identical amplitude and phase

changes, the channel is termed frequency flat. However, if they experience dif-

ferent amplitude and phase changes, the channel is termed frequency selective.

Frequency selectivity is measured in terms of the coherence bandwidth, i.e, the
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bandwidth over which channel’s frequency response remains constant. Approx-

imately, the coherence bandwidth is inversely proportional to the multipath

delay spread. Thus, if the transmission bandwidth is less than the channel’s

coherence bandwidth, the channel appears as frequency flat.

Frequency selective channels have a minimum of two resolvable multipath com-

ponents, i.e. L ≥ 2 while for frequency non-selective channels L = 1. Applying

(8), we notice that for frequency non-selective channels the received signal is

simply the multiplication of the transmitted signal with the complex channel

envelope g0(t), i.e.,

r(t) = g0(t)s(t). (10)

The above description suggests that a frequency-flat form is the most basic

representation of mobile radio channels. By combining several frequency-flat

channels at different delays, a frequency non-selective channel can be character-

ized in the form of a tapped delay line model with the aid of power-delay profile

data [74]. Owing to this fundamental importance of frequency-flat channels,

we concentrate on modeling and simulating frequency-flat channels through-

out the thesis. Our frequency-flat models can then be extended to the case of

frequency-selective channels. Our assumption of frequency-flat channel nature

is valid if the transmission is narrowband compared to the channel’s coherence

bandwidth.

2.1 Cellular Channels

A cellular channel refers to the channel between a fixed BS to a MS (or vice versa) in

current cellular networks. A tremendous amount of research has been conducted on

cellular channels in the past four decades resulting in several modeling and simula-

tion approaches for cellular channels. The pioneering work done by Clarke provides

a theoretical reference model for narrowband cellular channels [19]. The model is
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mathematically convenient and has also been validated by extensive measurements

resulting in its incorporation into standard channel models [6]. We discuss the prop-

erties of this model below, assuming transmission from a BS to a MS.

Clarke’s model defines the complex channel gain under narrowband, frequency

flat fading, and NLOS propagation assumptions as [19]

g(t) =

√
2

N

N∑

n=1

exp{j[ωdt cos(αn) + φn]}, (11)

where N is the number of propagation paths and φn is the random phase of the nth

multipath component, uniformly distributed over [−π, π).1 The maximum angular

Doppler frequency, ωd, is determined by the carrier wavelength λ and the vehicle speed

v as ωd = 2πfd = (2πv)/λ, where fd is the maximum Doppler frequency in Hertz.

The angle of arrival αn depends on the scattering environment and the antenna ra-

diation pattern. An often used assumption for cellular channels is that the BS is free

of local scatterers because of its high elevation antennas, while the MS is uniformly

surrounded by scatterers in the horizontal plane. Then, assuming omni-directional

transmit and receive antennas and two-dimensional (2-D) isotropic scattering around

the MS, the angle of arrival αn∼U [−π, π) and is independent of the φn’s. For suf-

ficiently large N , the Central Limit Theorem [49] can be invoked to show that the

in-phase (I) component gi(t) = <{g(t)} and the quadrature (Q) phase component

gq(t) = ={g(t)} of the complex envelope are zero-mean Gaussian. The I and Q com-

ponents are also independent if the 2-D isotropic scattering assumption is satisfied.

Therefore, the envelope |g(t)| is Rayleigh distributed. As a result, the received power

level undergoes significant fluctuations with time, thus making reliable communica-

tion a challenging task. Nevertheless, sufficient knowledge of the fading properties

can be exploited to the system’s advantage [74]. We briefly discuss some properties

of the fading channel here.

1Henceforth, a uniform distribution over the interval [a,b) will be denoted as ∼U [a,b).
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Properties of cellular channels

Let the I and Q components be zero mean, independent Gaussian random variables

with unit variance. The probability density functions (pdf) of the channel envelope,

phase, and the squared envelope are given as follows:

• The pdf of the channel envelope αe = |g(t)|:

f(αe) = αe exp

{
−α2

e

2

}
αe ≥ 0, (12)

which corresponds to a Rayleigh distributed envelope.

• The pdf of the channel phase Φ = arg{g(t)}:

f(Φ) =
1

2π
− π ≤ Φ ≤ π, (13)

i.e., the phase of the complex channel g(t) is uniformly distributed of [-π,π).

• The pdf of the squared envelope β = α2
e

f(β) =
1

2
exp

{
−β

2

}
β ≥ 0. (14)

Thus, the channel power α2
e follows an exponential distribution.

Assuming the channel is wide-sense stationary (wss), the correlations in the time-

domain for the I and Q components as well as the channel complex envelope and

squared envelope are given by

Rgi/qgi/q
(τ) = E[gi/q(t + τ)gi/q(t)] = J0(ωdτ) (15)

Rgigq(τ) = Rgqgi
(τ) = 0 (16)

Rgg(τ) =
1

2
E[g(t + τ)g∗(t)] = J0(ωdτ) (17)

R|g|2|g|2(τ) = E[|g(t + τ)|2|g(t)|2]

= 4 + 4J2
0 (ωdτ), (18)
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where E[·] is the statistical expectation operator, ∗ is the complex conjugate operator,

and J0(·) is the zeroth order Bessel function of the first kind. The corresponding

Doppler spectrum is represented as

Sgg(f) =
1

πfd

1√
1− (f/fd)2

0 ≤ |f | ≤ fd (19)

= 0 otherwise.

The above equation defines the well-known U-shaped spectrum of cellular channels,

which is plotted in a later section.

Besides these properties, higher order statistics such as the level crossing rate

(LCR) and the average fade duration (AFD) are also important.

LCR: The LCR is defined as the rate at which the channel envelope αe = |g(t)|
crosses a specified level with a positive (or negative) slope. The LCR affects handoff

probability and outage statistics and therefore it is of interest in system design [74].

For cellular channels with 2-D isotropic scattering, the LCR of the envelope αe at

level R is given by

Lαe=R =
√

2πfdρ exp(−ρ2), (20)

ρ =
R√
E[α2

e]
. (21)

AFD: The AFD, which is the average time duration the envelope spends below a

specified threshold, is given by

Tαe=R =
1√

2πfdρ
(exp(ρ2)− 1). (22)

The knowledge of these statistical properties enables the system designer to make in-

formed decisions regarding the choice of modulation, interleaving, and coding scheme

to be used at the transmitting end and the type of channel estimator and decoder

to be used at the receiving end. This is achieved by simulating the entire system

along with the underlying channel model in software to assess system performance.

Therefore, channel simulation is an important component in the design cycle.
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The goal of any channel simulator is to reproduce the channel’s desired properties

in simulations to recreate real world propagation effects. Several simulation models

are available in the literature for cellular channels. A brief introduction to these mod-

els is provided in Section 2.4. However, literature survey shows that comprehensive

analysis comparing these models is not available. Issues such as relative performance,

complexity, and feasibility for practical applications of these models have not been

addressed thoroughly. Therefore, in Chapter III we address these important issues to

provide a better understanding of cellular channels’ simulation models. This analysis

also provides insights for developing simulation models for mobile-to-mobile channels.

2.2 Mobile-to-mobile Channels

Mobile-to-mobile wireless communication channels have characteristics that are widely

different from cellular channels. A detailed description of mobile-to-mobile channels

can be obtained from [43, 9, 10]. Here, we provide a brief comparison between the sta-

tistical properties of mobile-to-mobile channels and cellular channels to demonstrate

the need for developing new methods to simulate mobile-to-mobile channels.

Consider transmission from a mobile Tx to a mobile Rx. The propagation path

between the Tx and the Rx is obstructed by buildings, foliage, etc. resulting in

NLOS propagation conditions. The transmitted signal undergoes reflection, diffuse

scattering, and diffraction on encountering the obstacles. As a result, the received

signal is a sum of several different scattered or reflected paths. Each path has its

own amplitude, random phase, and a Doppler shift induced by the motion of the Tx

and the Rx. For narrowband transmission, the complex envelope resulting from the

addition of N multipaths is given by [10]

g(t) =

√
2

N

N∑

n=1

exp[j(2πf1 cos(αn)t + 2πf2 cos(βn)t + θn)], (23)

where θn ∼ U [-π,π) is the random phase and fn = f1 cos(αn) + f2 cos(βn) is the
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Tx
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Figure 4: A typical propagation path from the Tx to the Rx.

Doppler shift associated with the nth path. Here, αn and βn are the angle of de-

parture and the angle of arrival of the nth path measured with respect to the Tx

and the Rx velocity vectors −→v1 and −→v2 , respectively, as illustrated in Figure 4. Also,

f1 = (2πv1)/(λ) and f2 = (2πv2)/(λ) are the maximum Doppler frequencies due to

the motion of the Tx and the Rx, respectively, with λ being the carrier wavelength

and v1 and v2 being the Tx and the Rx speeds, respectively. When sufficiently large

multipaths combine, the channel behaves as a complex Gaussian random process.

Therefore, a mobile-to-mobile channel is Rayleigh faded similar to a cellular channel.

However, in contrast to cellular channels, both stations here carry low elevation an-

tennas. As a result, the Tx as well as the Rx are likely to be surrounded by scatterers.

Then, assuming omni-directional transmit and receive antennas and a 2-D isotropic

scattering environment in the horizontal plane of the antennas, αn and βn are uni-

formly distributed over [−π, π). Under these assumptions, the time auto-correlation

of the channel envelope is given by [10]

<gg(τ) = Jo(2πf1τ)Jo(2πf2τ)
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= Jo(2πf1τ)Jo(2πaf1τ), (24)

where a = (f2)/(f1) is the ratio of the two maximum Doppler frequencies with

0 ≤ a ≤ 1, assuming f2 ≤ f1.

Comparison of (17) with the above equation shows that the auto-correlation for

mobile-to-mobile channels is a product of two Bessel functions rather than a single

Bessel function that characterizes cellular channels. The auto-correlation of cellular

channels can be obtained from (24) by setting ‘a’ = 0. This shows that mobile-to-

mobile channels can be considered a set of generalized channels, with cellular channels

being a special case where the scattering and mobility are restricted to the MS end

alone. Taking the Fourier transform of the auto-correlation, we obtain the Doppler

spectrum S(f) at frequency f as

S(f) =
1

π2f1

√
a
K




1 + a

2
√

a

√√√√1−
(

f

(1 + a)f1

)2

 , (25)

where K[ · ] is the complete elliptic integral of the first kind.

Figure 5 shows Doppler spectra encountered in mobile-to-mobile channels, which

clearly differ from the U-shaped spectrum of cellular channels. The higher order

statistics such as level crossing rates and average fade durations are also different [9].

The LCR is given by

Lαe=R =
√

2π
√

1 + a2f1ρ exp(−ρ2), (26)

ρ =
R√

E[α2
e]

, (27)

while the AFD is given by

Tαe=R =
1√

2π
√

1 + a2f1ρ
(exp(ρ2)− 1). (28)

Comparing (22) and (28) by assuming fd = f1 and a = 1, we observe that the

average fade durations are smaller for mobile-to-mobile channels than those in cellular
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Figure 5: Doppler spectrum of mobile-to-mobile and cellular channels.

channels. This is also shown in Figure 6 , where we plot the average fade durations

normalized with respect to the Doppler shift f1 for cellular and mobile-to-mobile

channels. The reduction in fade durations for mobile-to-mobile channels is due to

the faster fading caused by the increased mobility. With faster fading, the channel

is less likely to remain in a fade for a longer duration, thereby resulting in smaller

average fade durations. The difference in the properties of mobile-to-mobile channels

compared to those of cellular channels makes it necessary to modify existing methods

or develop new methods to simulate mobile-to-mobile channels. Double mobility,

which is the distinguishing feature of such channels, should be taken into account

while simulating these channels. One such attempt was made by Wang and Cox

in [81]. Though the model in [81] attacks the problem of obtaining a simulation

model for mobile-to-mobile channels, it has certain drawbacks, which are discussed

in Chapter IV. The author of the thesis provided a statistical simulation model for
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Figure 6: Average fade durations of mobile-to-mobile channels and cellular channels.

mobile-to-mobile channels in [55]. The performance of this model was chiefly assessed

by simulations. A rigorous theoretical analysis was not provided. Here we extend our

earlier work in [55] by developing different simulation models and verifying their

performance through theoretical and simulation results.

2.3 Amplify and Forward Relay Channels

Having understood the various impairments suffered by a signal transmitted through

a wireless channel, let us now consider how relays can help in mitigating some of

these effects. The deep fades caused by Rayleigh fading in mobile applications reduce

the reliability of the transmission and limit the capacity of the channel. To increase

reliability under such fading conditions, diversity schemes are often employed. In

general, the goal of a diversity scheme is to provide multiple, preferably independent

replicas of the transmitted signal so that the receiver can mitigate fading by means
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of signal processing. For example, if two copies of the signal are received via inde-

pendently faded channels, the probability that both the channels are in deep fade is

less compared to the probability of a single channel being in a deep fade. As a result,

the receiver can demodulate the signal with greater reliability.

It is well-known that diversity can be achieved by employing multiple transmit

or receive antennas. Such schemes are called spatial diversity schemes. Further, if

multiple antennas are used at both the Tx and the Rx, the system capacity can be

increased as shown by the pioneering work of Telatar on MIMO antenna systems

[23, 75]. The motivation behind using the relay concept in mobile communications

stems from this promise of increased reliability and system capacity offered by MIMO

systems. Typically, MSs cannot be equipped with multiple antennas due to size

constraints. Hence, a new form of spatial diversity known as “cooperation diversity”

has been proposed in [41, 69, 70] to reap spatial diversity benefits in MSs. In a

cooperation diversity scheme, a MS “partners” with another MS to send (or receive)

its signal to (from) the BS or some other final destination. The partner station

serves as a relay and forwards the signal from the source to the destination. This

arrangement provides antenna diversity in a virtual fashion - virtual because the

multiple transmit or receive antennas are not geographically co-located. Therefore,

this scheme is also called “Virtual Antenna Arrays”. To understand this concept

better, we now illustrate how transmit diversity is achieved in traditional systems as

well as in relay based cooperation diversity systems.

2.3.1 Cooperation diversity example

• Traditional transmit diversity using Alamouti scheme:

The Alamouti space-time block code (STBC) scheme is widely used in current

systems to achieve transmit antenna diversity [11]. The STBC scheme employs

two co-located transmit antennas to send specially structured codewords to the
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Figure 7: Alamouti STBC scheme with two co-located transmit antennas.

Rx and provide a diversity order of two, i.e., provide two independent replicas

of the same signal. Figure 7 illustrates this concept. The transmitted codeword

is given by the following matrix:



s1 −s2
∗

s2 s1
∗


 (29)

According to this scheme, the first antenna transmits the symbols of the first

row of the code matrix successively over two time slots and the second antenna

transmits the second row of the code matrix over two time slots. The channels

H1 and H2 from the first and second transmit antenna to the receive antenna,

respectively, fade independently when the transmit antennas are spaced suf-

ficiently far apart. Thus, with STBC, same symbol is transmitted over two

different channels over two time slots. By using signal processing, the Rx com-

bines these replicas of a given symbol to achieve a diversity order of two.

• Cooperation transmit diversity using relays:

By using a relay, space-time coding similar to Alamouti scheme can be achieved

in a distributed fashion. Consider the transmission protocol discussed in [47],

where the Tx transmits to the relay in the first time block and the Tx and relay

both communicate with the Rx in the second time block. We assume both the
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Tx and the relay have single transmit antennas. To achieve spatial diversity,

the Tx transmits the first row of the above space-time code matrix to the relay

in the first time block. During the second time block, the Tx transmits the

second row of the code matrix to the Rx. Simultaneously, the relay forwards

the first row that is received from the Tx to the Rx. Thus, two replicas of

the same symbol are received at the Rx over two independent channels - the

direct Tx-Rx channel and the Tx-relay-Rx channel, thereby achieving a spatial

diversity order of two. Since space-time coding is achieved by using distributed

(not co-located) antennas, this scheme is also called distributed STBC.

The above example highlights the diversity benefits that can be reaped with relay

based cooperation diversity schemes. This has led to significant research on coopera-

tion diversity, its implementation, and performance issues, which is evident from the

work in [15, 47, 48, 69, 70].

2.3.2 Amplify and forward relay system model

Typically, the relays can be non-regenerative or regenerative. In a non-regenerative

system, the relay simply amplifies and forwards the received signal, while in a regen-

erative system the relay decodes, re-encodes, and forwards the received signal. The

amplify and forward (AF) mode puts less processing burden on the relay and there-

fore it is often preferable when complexity is an issue. The relay channel consisting of

the BS (or a source Tx), the mobile relay, and the MS (or a destination Rx) involves

a fixed-to-mobile channel and a mobile-to-mobile channel leading to temporal char-

acteristics that are quite different from the cellular channel. These AF relay channels

with their unique nature are not well understood today. It should be noted that for

decode and forward (DF) relays, channel modeling is not an issue since each individ-

ual link’s characteristics are known. Therefore, we focus on studying the properties

of AF relay fading channels in our work. We briefly provide the AF system model
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here, which is utilized in Chapter V and VI.

Consider the downlink relay channel from a BS to a destination MS via a mobile

relay, as shown in Figure 1. Assuming frequency non-selective fading, the signal

received by the relay at time t is

r1(t) = h1(t)s(t) + n1(t), (30)

where s(t) is the transmitted signal, h1(t) is the channel between the BS and the relay

modeled as a wss zero mean complex Gaussian (ZMCG) random process with power

σ2
1, and n1(t) is the zero mean complex additive white Gaussian noise (AWGN) with

power σ2
n. The relay amplifies r1(t) and retransmits it to the destination MS, which

receives

r2(t) = A(t)h2(t)r1(t) + n2(t)

= A(t)h2(t)h1(t)s(t) + A(t)h2(t)n1(t) + n2(t)

= h(t)s(t) + A(t)h2(t)n1(t) + n2(t). (31)

In the above equations, A(t) is the amplification factor controling the power transmit-

ted by the relay, h2(t) is the relay-MS channel modeled as a wss ZMCG process with

power σ2
2, h(t) = A(t)h1(t)h2(t) is the overall relay channel, and n2(t) is the receiver

AWGN with power σ2
n. Here, we assume that the relay and the destination receiver

chains have identical noise properties resulting in the same AWGN noise power.

Though both links h1(t) and h2(t) are individually Rayleigh faded, the overall

channel h(t) = A(t)h1(t)h2(t) is likely to have properties very different from the

individual channels. To the best of our knowledge, there is little work that addresses

AF relay channels. Therefore, we present the characteristics of these channels in

Chapter V.

30



2.4 Simulation Models for Fading Channels

The importance of simulating communication systems in software for system design

and verification is well recognized by designers of these systems. Simulation offers

cost effective and time saving alternative to real-time system testing in the field. The

prime requirement of the simulation set-up is to capture the fading effects created

by a radio channel. As a result, efforts have been made to develop efficient models

to simulate the actual radio propagation environment in software and test various

communications algorithms. Models such as Jakes’ SoS [36] model, filtered noise

models [84] and their refinements have been widely accepted for simulating cellular

channels [58, 85]. Our goal is to extend this work to the case of mobile-to-mobile

channels and relay channels. Before we discuss our contributions in this area, it

is necessary to understand different simulation philosophies commonly employed to

simulate fading channels. Therefore, we provide an overview of different simulation

techniques in this section. Specifically, we discuss the SoS models and different kinds

of filtered noise models along with their pros and cons.

2.4.1 Sum-of-sinusoids model

Our discussion on multipath propagation and the physics behind it showed that the

complex channel envelope can be represented as a sum of homogeneous wave com-

ponents, as shown in (5). Each homogenous component is represented by a complex

sinusoid with certain amplitude, frequency, and phase. The overall channel waveform

is the sum of several sinusoids. Therefore, this channel description is often called a

“sum-of-sinusoids” model. Being a natural representation of the channel waveform,

several SoS models have been presented in the past to simulate cellular channels.

Rather than simulating the channel by directly applying the Clarke’s reference model

of (11), specialized SoS models are proposed to efficiently simulate the channel by

using a finite number of sinusoids. The SoS modeling philosophy has been made
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popular by the pioneering work of Jakes [36], which is discussed below.

For convenience, we repeat the Clarke’s reference model. Clarke’s model defines

the complex channel gain under NLOS, frequency flat fading, and 2-D isotropic scat-

tering assumptions as [19]

g(t) =

√
2

N

N∑

n=1

exp{j[ωdt cos(αn) + φn]}, (32)

where N is the number of propagation paths, φn ∼ U [-π,π) and αn ∼ U [-π,π) are

the random phase and angle of arrival of the nth multipath component, and ωd is the

maximum angular Doppler frequency due to the receiver mobility. To simulate the

cellular channel, this SoS model can be directly applied by generating the random

variables involved in the model. However, as we show in Chapter III, this high degree

of randomness is not desirable for efficient simulation. Therefore, Jakes proposed the

following SoS model:

gI(t) =
√

2 cos(ωdt) + 2
M∑

n=1

cos
(

2πn

M

)
cos

(
ωd cos

[
2πn

4M + 2

]
t
)

(33)

gQ(t) = 2
M∑

n=1

sin
(

2πn

M

)
cos

(
ωd cos

[
2πn

4M + 2

]
t
)

(34)

A detailed discussion on the derivation of the model parameters can be found in [36,

74]. The intuition behind this model is the fact that under 2-D isotropic scattering, the

symmetry in the environment can be exploited to reduce the number of sinusoids. For

example, while the Clarke’s model distributes the angles of arrival over [-π,π) resulting

in negative as well as positive Doppler frequencies in the model, the Jakes’ model

simulates only the positive Doppler frequencies to reduce the number of sinusoids M .

The amplitudes of these sinusoids, i.e., cos(αn) and sin(αn) are chosen to produce

zero cross-correlation between the I and Q components, a constraint imposed by the

Clarke’s model to generate Rayleigh faded envelope.

The Jakes’ model has been the de-facto simulation model for a long time. How-

ever, recent studies have highlighted several drawbacks of this model [62, 85]. For
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example, since all the parameters in the model are fixed (deterministic), the channel

waveform simulated in each simulation run is identical. Therefore, statistical averag-

ing or Monte Carlo simulation results cannot be obtained while computing metrics

such as BER. Several authors have proposed “statistical” simulation models for cel-

lular channels to remove this drawback. In contrast to a “deterministic” model like

the Jakes’ model, which has fixed, non-random Doppler frequencies, the statistical

models use random Doppler frequencies for each simulation trial. Note that both

the deterministic as well as statistical models can have random phases. If a deter-

ministic model uses random phases, different channel waveforms are simulated for

different trials. However, properties like time-averaged correlations are identical for

all the trials. Therefore, with such deterministic models statistical averaging of these

properties is not possible. In contrast, the time-averaged correlations of statistical

models vary with simulation trials due to random Doppler frequencies [85]. These

properties converge to the properties of the reference model in the statistical sense,

i.e., over several simulation trials. Therefore, the parameters of the statistical models

are chosen carefully to reduce the number of trials required for convergence. These

and other issues such as complexity and performance of statistical models for cellular

channels are analyzed further in Chapter III.

2.4.2 Filtered noise models

Eventually, the goal of any simulation model is to reproduce the channel properties.

Therefore, in contrast to SoS models, filtered noise models are tailored to simulate

the channel properties by means of signal processing techniques without considering

the underlying propagation mechanism. Instead of adding multipaths to generate

fading, these models filter noise to generate the channel waveform. The underlying

principle is that on filtering Gaussian noise through appropriately designed filters,

the channel power spectral density (psd or the Doppler spectrum) can be simulated,
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thereby capturing the important first and second order channel statistics.

To understand the working of filtered noise models, we first mention an important

result from the linear time-invariant filtering theory. Given a filter with frequency

response H(f), if a signal x(n) with psd Pxx(f) is filtered through this filter, the

output y(n) has psd given by

Pyy(f) = Pxx(f)|H(f)|2. (35)

This suggests that to generate Gaussian I or Q phase components of the channel enve-

lope, each having a Doppler spectrum Pyy(f) = S(f), we can filter a white Gaussian

random process with psd No/2 through a filter H(f) whose frequency response is

chosen to be

H(f) =

√
2

No

S(f). (36)

Then, the output random process will also be Gaussian and with a psd S(f), thereby

reproducing the properties of the complex Gaussian channel. The next goal in the

simulation model is to implement the filter H(f). We describe two such implementa-

tion schemes below - the Inverse Fast Fourier Transform (IFFT) filter model and the

Auto-regressive (AR) filter model. The former is designed in the frequency domain

while the later is designed in the time domain to provide an approximation of the

Doppler spectrum that we desire.

2.4.2.1 IFFT filter model

Since it is easy to discuss the IFFT operation in discrete time, and our ultimate goal

is to simulate discrete time waveforms, we deal with discrete time-domain sequences

in this section. A block diagram of this method is shown in Figure 8.

To generate a discrete time sequence y[n] of N complex Gaussian variables with

a given Doppler spectrum, the Doppler spectrum is sampled at N equi-spaced fre-

quencies fk = (kfs)/(N), k = 0, 1, ...N − 1, where fs is the sampling frequency. This
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Figure 8: Block diagram for generating Rayleigh faded envelope using IFFT filtering

provides the filter coefficients Fc[fk] ≡ Fc[k] [84],

Fc[k] =
√

Fs[0] k = 0

=

√
Fs[k]

2
k = 1, 2, ...

(
N

2
− 1

)

=
√

Fs[k] k =
N

2

=

√
Fs[N − k]

2
k =

(
N

2
+ 1

)
, ...(N − 1). (37)

In the above equation, Fs[k] are obtained by sampling Doppler spectrum in (19) at

frequencies fk. In addition, two sequences A[k] and B[k], each having N i.i.d real

Gaussian random variables with zero mean and variance σ2 are generated. Then, the

desired signal y[n] is obtained as

y[n] = IFFT{A[k]Fc[k]− jB[k]Fc[k]}N−1
k=0 . (38)
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2.4.2.2 Auto-regressive filter model

The AR model imposes an all-pole structure on the filter H(f) and determines the

AR filter coefficients in the time-domain by using the knowledge of channel auto-

correlation function. However, it must be noted that the underlying principle of

filtering Gaussian noise to produce an output with the desired psd remains the same.

Let x(n) be a white, Gaussian random process filtered through a pth order (p

poles) AR filter H(z) = 1/Ap(z) = 1/(1 +
∑p

k=1 ap(k)z−1). Then, the output y(n) is

given by the difference equation

y(n) = −
p∑

k=1

ap(k)x(n− k) + x(n). (39)

If the auto-correlation, ryy(n), of y(n) is known for the delays ranging from n = 0

to n = p, the filter coefficients aps can be chosen to exactly reproduce these auto-

correlation values in the output signal y(n). The necessary filter coefficients obey the

well-known Yule-Walker equation [33]



ryy(0) ryy(1) . . . ryy(p− 1)

ryy(1) ryy(0) . . . ryy(p− 2)

...
...

...
. . .

ryy(p− 1) ryy(p− 2) · · · ryy(0)







ap(1)

ap(2)

ap(3)

ap(4)




= −




ryy(1)

ryy(2)

...

ryy(p)




, (40)

which can be written in the matrix form as

Ryyap = −r and

ap = −Ryy
−1 r. (41)

However, an exact solution to the Yule-Walker equation does not exist if the auto-

correlation matrix Ryy is non-singular and therefore non-invertible. This is especially

the case for Ryys encountered in mobile channel simulation [14]. In such cases, a

solution is obtained by using a technique called “diagonal loading” or “matrix stabi-

lization” [67], where we artificially introduce some noise variance into Ryy to make it
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stable, non-singular and thus invertible matrix. The aps are then obtained as

ap = −(Ryy + εI)−1 r, (42)

where I is a p x p identity matrix and ε 6= 0 is a suitable diagonal loading parameter

that renders (Rxx + εI) non-singular and invertible.

The above discussion shows that fading channels can be simulated by several dif-

ferent methods. Both SoS models and filtered noise models have found acceptance

in academia and industry. Several authors have pointed out the pros and cons of

these models. The filtered noise models can simulate any arbitrary Doppler spec-

trum provided the spectrum is known. But, the IFFT filter method suffers from the

drawback that large size IFFT capability and memory requirements are needed be-

cause the IFFT filter processes all the required N samples at a time. The AR model

can provide good accuracy if a high order filter is used. However, the spectrum is

not band-limited because, in practice, filters with sharp stop-bands are difficult to

implement. In general, SoS models produce channel waveforms that have high accu-

racy and perfectly-band limited spectrum. The complexity of SoS models is typically

reduced by cleverly choosing the model parameters and thereafter using a look-up

table technique for simulation. This technique stores the samples of a single period

of the sinusoids in a look-up table to avoid repetitive computations, thereby reducing

computation load. In addition, SoS models can be easily extended to develop spatial

channel models for directional or MIMO antenna systems because they explicitly in-

clude the spatial information like multipath angles of arrivals and departures. Owing

to these advantages, we develop different SoS models for mobile-to-mobile channels

in our work.
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CHAPTER III

ANALYSIS OF SIMULATION MODELS FOR

CELLULAR CHANNELS

3.1 Overview

The primary goal of this thesis is to develop theoretical and simulation models for

mobile-to-mobile and amplify and forward relay channels. However, it is also essential

that cellular channels and their simulation models be properly studied to gain insights

into the modeling problem. These insights can provide us guidelines to develop simu-

lation models for other channels. With this aim, we provide a comprehensive analysis

of different statistical simulation models commonly used for cellular channels.

The background section pointed out the rich body of existing literature devoted

to developing and evaluating simulation models for cellular channels. However, we

found a lack of coherent and comprehensive analysis that compares these different

models scattered all over the literature. Therefore, in this chapter, different statistical

models are compared in terms of their complexity and performance. These models are

based on the “sum-of-sinusoids” philosophy described earlier. Since these SoS models

converge statistically to the desired properties, they are also called Monte Carlo (MC)

models. Owing to their statistical nature, it is important to determine the number of

simulation trials needed to achieve a desired convergence level. This is directly related

to the variation in the time average properties of a single simulation trial from the

desired ensemble average properties. Hence, we use these variations as a performance

metric to compare properties such as the auto-correlation, the cross-correlation, and

the level crossing rate of different models. Further, we investigate the convergence

of these models in terms of their squared envelope correlation. Our analysis shows

that the squared envelope correlations derived in [83, 85, 86, 87] are incorrect. Hence,
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we present the correct expressions for the squared envelope correlation and compare

different methods on this basis. Moreover, one of the SoS models previously believed

to produce the desired channel properties turns out to be non-stationary [86]. It

exhibits problems in reproducing the Gaussian statistics in the complex envelope and

is non-stationary in terms of the squared envelope correlation. Based on our analysis,

we identify a particular model that gives desired performance. This model forms

the basis of a statistical simulation model for mobile-to-mobile channels, which is

presented in Chapter IV.

Before we describe the statistical models used in our analysis, we repeat the ref-

erence cellular channel model of Chapter II because it is often referred in the later

sections.

3.2 The Mathematical Reference Model

Under frequency-flat fading and 2-D isotropic scattering assumptions, the properties

of a Rayleigh faded cellular channel are summarized below [36, 74]:

For the complex envelope, g(t) = gi(t) + jgq(t), the in-phase (I) and quadrature

(Q) components have a zero-mean unit variance Gaussian distribution with auto-

correlation and cross-correlation properties

Rgi/qgi/q
(τ) = E[gi/q(t + τ)gi/q(t)] = J0(ωdτ) (43)

Rgigq(τ) = Rgqgi
(τ) = 0 (44)

Rgg(τ) =
1

2
E[g(t + τ)g∗(t)] = J0(ωdτ) (45)

R|g|2|g|2(τ) = E[|g|2(t + τ)|g|2(t)]

= 4 + 4J2
0 (ωdτ). (46)

Note that the properties of the reference model do not depend on the number

of multipaths, i.e., the number of sinusoids that constitute the model. However,

when finite number of sinusoids are used in a simulation model, the properties of the
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simulation model are likely to deviate from those of the reference model. Therefore,

the goal of any simulation model is to choose the sinusoid frequencies, amplitudes, and

phases as optimally as possible to simulate the reference channel properties accurately

and efficiently.

3.3 Statistical Simulation Models

3.3.1 Clarke’s model

An obvious simulation model is the Clarke’s reference model provided in Chapter II.

We use finite number of sinusoids (finite N) in (11) to simulate the channel. Based

on these assumptions, the statistical properties of Clarke’s model for a finite N are

given by (43), (44), and (45) [87], while the squared envelope correlation is given by

R|g|2|g|2(τ) = E[|g|2(t + τ)|g|2(t)] = 4 + 4
N − 1

N
J2

0 (ωdτ). (47)

Equation (47) can be derived in a manner similar to the expression derived in Ap-

pendix 3.2. Note that for the Clarke’s model with finite N , the auto- and cross-

correlation of the quadrature components match those of the reference model while

the squared envelope auto-correlation reaches the desired value 4 + 4J2
0 (ωdτ) asymp-

totically as N → ∞. Also, (47) gives the correct squared envelope auto-correlation

expression for finite N . (the expression in [87], Eqn. (2f) is incorrect).

The time average correlations R̂(·) (all time averaged quantities are distinguished

from the statistical averages with a ‘ˆ ’ here onwards) are random and depend on a

specific realization of the random parameters in a given simulation trial [87]. The

variances of these correlations, defined as Var[R(·)]=E[|R̂(·) − limN→∞ R(·)|2], have

been derived in [87] and are repeated here for convenience.

Var[Rgigi
(τ)] = Var[Rgqgq(τ)]

=
1 + J0(2ωdτ)− 2J2

0 (ωdτ)

2N
(48)

Var[Rgigq(τ)] = Var[Rgqgi
(τ)]
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=
1− J0(2ωdτ)

2N
(49)

Var[Rgg(τ)] =
1− J2

0 (ωdτ)

N
(50)

Using these variances, we later compare the performance of Clarke’s model for finite

N with several other models.

3.3.2 Modified Hoeher’s model - Model I

Consider the channel model [56]

g(t) = gi(t) + jgq(t) (51)

gi(t) =

√
2

N

Ni∑

n=1

cos(ωdtfi,n + φi,n) (52)

gq(t) =

√
2

N

Nq∑

m=1

cos(ωdtfq,m + φq,m) (53)

fi/q,n/m = sin
(

π

2
ui/q,n/m

)
, (54)

where the Doppler frequencies fi/q,n/m for the I and Q components are determined

by ui/q,n/m, where ui/q,n/m∼U [0,1) and are mutually independent for all n and m.

The random phases φi/q,n/m∼U [-π,π) are mutually independent, for all n and m,

and are also independent of ui/q,n/m’s. For convenience, the number of sinusoids in

the quadrature components are set equal, i.e., Ni=Nq=N . This model is derived

from the Hoeher’s model in [35] by considering only the positive Doppler frequencies

in the simulation. Therefore, we refer to it as the modified Hoeher’s model. The

performance of this model was compared with several deterministic simulation models

in [57]. Here, we compare it against statistical simulation models for finite N with

the aid of several statistical and time average correlations, along with the variances

of the latter. The statistical averages given by (43), (44), and (45) are valid for this

model, while the squared envelope correlation is (proof is analogous to the derivation
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given in Appendix 3.2)

R|g|2|g|2(τ) = 4 + 4
N − 1

N
J2

0 (ωdτ) +
1

N
J0(2ωdτ), (55)

which for finite N differs from the reference model. The time averaged correlations

can be derived as follows (proofs are simple and therefore omitted here):

R̂gigi
(τ) = lim

T→∞
1

2T

∫ T

−T
gi(t + τ)gi(t)dt

=
1

N

N∑

n=1

cos(ωdfi,nτ) (56)

R̂gqgq(τ) =
1

N

N∑

n=1

cos(ωdfq,nτ) (57)

R̂gigq(τ) = R̂gqgi
(τ) = 0 (58)

R̂gg(τ) =
1

2
lim

T→∞
1

2T

∫ T

−T
g(t + τ)g∗(t)dt

=
1

2N

N∑

n=1

[cos(ωdfi,nτ) + cos(ωdfq,nτ)] (59)

The variances of these time-averaged properties are quantified by the following theo-

rem.

Theorem 1 The variances of the auto-correlation and cross-correlation of the quadra-

ture components, and the variance of the auto-correlation of the complex envelope g(t),

as defined by Model I in (51), are

Var[Rgigi
(τ)] = Var[Rgqgq(τ)]

=
1 + J0(2ωdτ)− 2J2

0 (ωdτ)

2N
(60)

Var[Rgigq(τ)] = Var[Rgqgi
(τ)] = 0 (61)

VarRgg(τ) =
1 + J0(2ωdτ)− 2J2

0 (ωdτ)

4N
. (62)

Proof: Proof of (60) is provided in Appendix 3.1. (61) and (62) can be derived in

a similar manner.
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3.3.3 Zheng and Xiao’s models

Recently, Zheng and Xiao have proposed several new statistical models to simulate

Rayleigh fading channels [83, 85, 86, 87]. These models differ from one another in

terms of the model parameters and therefore they have different time-average prop-

erties. We provide a detailed analysis of the statistical and time-average properties

of these models in the present section. We distinguish the models by naming them

Model II, Model III, and Model IV, with Model I being the modified Hoeher’s model.

Model II

From [85],

g(t) = gi(t) + jgq(t) (63)

gi(t) =

√
2

N

N∑

n=1

cos[ωdt cos(αn) + φi,n] (64)

gq(t) =

√
2

N

N∑

n=1

cos[ωdt sin(αn) + φq,n] (65)

αn =
2πn− π + θ

4N
n = 1, 2..., N (66)

where θ ∼ U [−π, π), φi,n ∼ U [−π, π) and φq,n ∼ U [−π, π) for all n, and all values

are mutually independent.

Model III

From [83, 87],

gi(t) =

√
2

N

N∑

n=1

cos[ωdt cos(αn) + φn] (67)

gq(t) =

√
2

N

N∑

n=1

sin[ωdt cos(αn) + φn] (68)

αn =
2πn + θn

N
n = 1, 2..., N, (69)
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where θn ∼ U [−π, π) and φn ∼ U [−π, π) for all n, and all values are mutually

independent. For Model III, we also consider a slight modification1 to Zheng and

Xiao’s model by using

αn =
2πn− π + θn

2N
n = 1, 2..., N (70)

In Zheng and Xiao’s original model, the αns vary over the range [0,2π). It is intuitive

that if the range of the αn is reduced, the statistical properties of the resulting new

model will vary less from the desired properties. Hence, we consider the αns described

above which vary over a range [0,π). We call this model the modified Model III and

study its performance in the next section.

Model IV

From [86],

gi(t) =
2√
N

N∑

n=1

cos(ξn) cos[ωdt cos(αn) + φ] (71)

gq(t) =
2√
N

N∑

n=1

sin(ξn) cos[ωdt cos(αn) + φ] (72)

αn =
2πn− π + θ

4N
n = 1, 2..., N, (73)

where ξn ∼ U [−π, π), θ ∼ U [−π, π), and φ ∼ U [−π, π). These random variables

being mutually independent. For a sufficiently large number of sinusoids, N , all of

the above models produce Gaussian quadrature components and hence a Rayleigh

faded envelope [85, 87, 86]. However, a closer inspection of Model IV reveals that the

probability density function (pdf) of the quadrature components is non-stationary as

stated below:

Theorem 2 The pdfs of the quadrature components of the complex envelope g(t)

produced by Model IV are non-stationary, i.e., they are a function of time t and tend

1It has recently come to our notice that this model has been proposed earlier in a different form
(even before Zheng and Xiao’s independent and original models) in [34]. Therefore, we also refer
the interested reader to [34] for further details on the model and its performance.
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to the desired Gaussian distribution only for sufficiently large time t, even in the

asymptotic case when N →∞.

Proof: Consider the in-phase component gi(t) given in (71). Assume that θ and

φ are known. Then, for N sufficiently large, the application of the Central Limit

Theorem [49] to x=gi(t) (assume time t is fixed) shows that the distribution of x

conditioned on φ and θ is zero-mean Gaussian with variance σ2, i.e.,

fX(x|θ, φ) =
1√

2πσ2
exp (− x2

2σ2
) (74)

σ2 =
2

N

N∑

n=1

cos2[ωdt cos(αn) + φ] (75)

σ2 N→∞
= 1 + J0(2ωdt) cos(φ)−H0(2ωdt) sin(φ), (76)

where H0(·) is the zeroth order StruveH function [28]. Since σ2 is a function of φ

and/or θ, it is a random variable. Moreover, it depends on the time variable t which

suggests that the pdf fX(x) is non-Gaussian and time varying. Although a closed

form expression for fX(x) cannot be obtained, it can be evaluated numerically by

averaging the conditional pdf fX(x|θ, φ) over θ and φ, i.e.,

fX(x) =
∫

θ

∫

φ

1√
2πσ2

exp (− x2

2σ2
)fΘ,Φ(θ, φ)dθdφ

=
1

(2π)5/2

∫ π

−π

∫ π

−π

1√
σ2

exp (− x2

2σ2
)dθdφ, (77)

where we used the fact that θ and φ are mutually independent and uniformly dis-

tributed over [−π, π). Using this equation with N=50, we evaluate the pdf of x at

different time values (ts) and plot the results in Figure 9. To facilitate comparison,

the pdf of a standard Gaussian random variable N(0, 1) is also plotted in Figure 9.

The pdf is clearly time varying and approaches the desired pdf only for sufficiently

large t. Simulation results, though not presented in Figure 9 to retain clarity, also

confirm this fact. This proves the non-stationary nature of the pdf of the in-phase

component (and analogously of the quadrature component) of the complex envelope

g(t).
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Figure 9: Pdf of Model IV’s I-phase component.

Owing to the non-stationary, non-Gaussian, nature exhibited by Model IV, it is not a

good candidate for channel simulation purposes. Model IV is also non-stationary with

respect to the properties of the squared envelope as discussed below. The statistical

correlation functions of the quadrature components for Models II, III, and IV have

been computed by Zheng and Xiao and match the desired functions in (43), (44), and

(45). The time-average correlations are easy to derive and therefore are not provided

here. Besides, unlike the earlier methods, closed form expressions for the variances

of the time-average correlations do not exist for Zheng and Xiao’s models. These

variances are computed via simulations in Section 3.4. Here, we only present the

statistical squared envelope correlation expressions since they represent the corrected

versions of expressions given in [85] (eqn. 5f), [87](eqn. 8f) and [86] (eqn. 16f) for

Models II, III, and IV, respectively.
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Theorem 3 The auto-correlation functions of the squared envelope obtained with

Models II, III, and IV are given by (78), (79), and (80), respectively.

Model II :

R|g|2|g|2(τ) = 4 +
J0(2ωdτ)

N
+

4

N2

N∑

n=1

N∑

m(6=n)=1

E{cos[ωdτ cos(αn)] cos[ωdτ cos(αm)]} (78)

Model III :

R|g|2|g|2(τ) = 4 + 4J2
0 (ωdτ)−

4

N2

N∑

n=1

(
[E{cos[ωdτ cos(αn)]}]2 + [E{sin[ωdτ cos(αn)]}]2

)

(79)

Model IV :

R|g|2|g|2(τ) = 4 +
2J0(2ωdτ)

N
+

4

N2

N∑

n=1

N∑

m(6=n)=1

E{cos[ωdτ cos(αn)] cos[ωdτ cos(αm)]}+

2

N2

N∑

n=1

N∑

m(6=n)=1

E{cos[2ωd(t + τ) cos(αn)− 2ωdt cos(αm)]}+

2

N2

N∑

n=1

N∑

m(6=n)=1

E{cos[ωd(2t + τ) cos(αn)− ωd(2t + τ) cos(αm)]

(80)

Proof: A brief outline of the proofs of (79) and (80) are provided in Section 3.7 and

3.8, respectively. (78) can be obtained in a similar manner.

Note that there are no closed form expressions for the squared envelope correlation

because the last term in (78), (79), and (80) cannot be simplified further; they must

be evaluated numerically. It is important to note that for Model IV, the squared

envelope correlation is a function of both the time variable t and the delay variable τ ,
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Figure 10: Auto-correlation of Model IV’s squared envelope.

exposing the non-stationary nature of the squared envelope. This is further verified in

Figure 10, where the squared envelope correlation is plotted for different time values

(ts) by numerically evaluating (80), using N = 11. It is clear from Figure 10 that

the squared envelope correlation varies with time t. Owing to the non-stationarity

problems exhibited by Model IV, we exclude it from further analysis.

3.4 Analysis and Simulation Results

This section combines the analysis of earlier sections to compare different simulation

models. We begin by comparing their relative complexity in terms of the number of

computations required and the simulation time.
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3.4.1 Complexity analysis

Table 1 summarizes the number of operations needed to generate one sample of the

complex envelope g(t) for different models. Here, we count the frequently executed

operations only, neglecting operations that are performed only once during a simula-

tion trial such as the generation of random variables.2 The relative simulation times

needed to generate 105 samples of g(t) in Matlab on a Pentium III laptop are also

tabulated in Table 1. From Table 1, it is evident that Clarke’s model and Model III

require the least simulation time owing to their low complexity.

Table 1: Complexity of different models
Model Computations needed to Relative

generate 1 sample of g(t) simulation time
Clarke 2N cosine, N additions Tx

Model I 2N cosine, 2N additions 1.20Tx

Model II 2N cosine, 2N additions 1.20Tx

Model III 2N cosine, N additions Tx

3.4.2 Auto-correlation/cross-correlation analysis

We now investigate the performance of these models in terms of their auto- and cross-

correlation functions. All the results presented here are obtained using N=11 and

a normalized sampling period fdTs of 0.001 (fd is the maximum Doppler frequency

and Ts is the sampling period). The variances are computed by averaging over 104

simulation trials for each value of time delay τ . Figure 11 presents the variance in

the auto-correlation of the in-phase component gI(t). The quadrature component is

similar.

Figure 12 compares the variance in the cross-correlation between the quadrature

2The number of random variables required by all models is almost the same (2N), except Model
I which requires double the number of random variables (4N).
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Figure 11: Variance of the auto-correlation of the I component.
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Figure 12: Variance of the cross-correlation between the quadrature components.
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components while Figure 13 depicts the variance in the auto-correlation of the com-

plex envelope g(t). From Figure 11 and Figure 13 it is interesting to note that the

variances for Model II increase for longer time delays [τ ≥ N/(2fd)]. However, for

shorter time delays (and even longer time delays, see Figure 13), which are of more

interest for most communication systems [34], the variance of correlation functions of

Model II are lower than the variances for all (or most) other models. Hence, Model II

is the best among all models for a finite N . Moreover, Model II always produces un-

correlated in-phase and quadrature components, a property which is necessary to yield

a Rayleigh distributed envelope. Interestingly, Model II performs better than Model I

in spite of their same relative operational complexity. This can be attributed to the

proper selection of the simulation parameters in Model II given by (63). Model II

achieves superior performance by adding “just the right amount of randomness” in

the simulations. This can be observed by comparing (54) and (63), which determine
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Figure 13: Variance of the auto-correlation of the complex envelope.
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the Doppler frequencies used in Model I and Model II, respectively. In Model I,

all the Doppler frequencies are chosen randomly and independently of one another.

However, in Model II the frequencies are random, but inter-related because the same

random parameter θ in (63) defines all the Doppler frequencies. Due to this controlled

randomness in Model II, it shows smaller error variance. We can also see that the

modified Model III proposed here performs better than the original Model III because

we reduced the randomness in this modified Model III.

Further, the statistical squared envelope correlations exhibited by Zheng and

Xiao’s models are compared in Figure 14 based on the analytical expressions de-

rived earlier. Simulation curves are obtained by averaging the time-averaged squared

envelope correlation over 50 simulation trials. Here, we do not consider their vari-

ances since neither of them gives the exact desired correlation. Instead, we look for a

model which approximates the desired correlation as closely as possible in a statistical

sense. From Figure 14, we find that all the models give a fairly good approximation
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Figure 14: Squared envelope auto-correlation.
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of the desired correlation with Model I being the most accurate.

3.4.3 Level crossing rate analysis

Now, we evaluate the various models in terms of their higher order statistics. Specifi-

cally, we focus on the level crossing rate. Zheng and Xiao used simulations to evaluate

the level crossing rate, while in our work we use an analytical approach. An analytical

approach enables us to compare the different models easily and precisely.

Under the assumption that the Gaussian approximation of the channel holds even

with finite number of sinusoids, we determine the LCR by utilizing the analysis pro-

vided in [56]. Since the LCR for each simulation trial varies randomly, we quantify

the variance in the error between the LCR produced by a simulation trial and the

desired LCR. Before proceeding further, a note on the notation used. We need to

consider two cases separately as described below:

Case I: The quadrature components of g(t) are uncorrelated, i.e., the time average

correlation R̂gigq(τ)=0 for all τ , and β̂i 6= β̂q, where

β̂i = −
[
d2R̂gigi

(τ)

dτ 2

]

τ=0

, β̂q = −

d2R̂gqgq(τ)

dτ 2




τ=0

. (81)

Then, the LCR at signal envelope level R is [56]

L̂R =

√
β̂i

2π

(
2

π
E(k̂)

)
PR(r), (82)

k̂ =

√√√√ β̂i − β̂q

β̂i

β̂i ≥ β̂q, (83)

where E is the complete elliptic integral of the second kind and PR(r) represents the

cumulative distribution function of the envelope |g(t)|=R. The desired LCR value

at level R is obtained by substituting the statistical averaged quantities in the above

equation by using β̂i = β̂q = β. Then, the error in the simulated LCR is

eR =
LR − L̂R

LR

= 1−
√√√√ β̂i

β

(
2

π

)
E(k̂) . (84)
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This analysis is valid for Models I and II since they satisfy the assumptions made

earlier3.

Case II: The quadrature components of g(t) are correlated, i.e., the time average

correlation R̂gigq(τ) 6= 0 for all τ , and β̂i = β̂q = β̂. Then,

L̂R =

√
b0b2 − b2

1

2πb0

PR(R) (85)

eR = 1−
√√√√b0b2 − b2

1

b0β
, (86)

where b0, b1, and b2 are defined as [74]

bn = (j)n

[
dnR̂gg(τ)

dτ 2

]

τ=0

. (87)

Case II holds for the Clarke’s model and Model III since they generate correlated

quadrature components.

Using this analysis, we compute the errors in the LCRs of different models via

simulations by assuming N = 11 and a maximum Doppler frequency of 100 Hz. The

error variance calculated from these errors by averaging over 50000 simulations are

tabulated in in Table 2. We can conclude from this analysis that Model II is the best

Table 2: LCR analysis
Model Error mean Error variance
Clarke 5.4e-2 1.56e-2
Model I 4.2e-3 5.8e-3
Model II 2e-4 1e-8
Model III 2e-3 1.2e-3

even in terms of LCR, followed by Model III.

3.4.4 Comparison with other models

Finally, it is worth comparing the MC models discussed here with other popular mod-

els such as the Method of Exact Doppler Spread (MEDS) [56].As the name suggests

3This can be easily verified by computing time average auto-correlations for different models.
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this model reproduces the Doppler spread exactly in simulations. The MEDS model

for cellular channels is given by the following set of equations:

g(t) = gI(t) + jgQ(t) (88)

gI(t) =

√
2

N

N∑

n=1

cos

[
ωd cos

(
π(n− 1)

2N

)
+ φi,n

]
(89)

gQ(t) =

√
2

N + 1

N+1∑

n=1

cos

[
ωd cos

(
π(n− 1)

2(N + 1)

)
+ φq,n

]
(90)

Note that only the phases φi/q,n are random while the Doppler frequencies are non-

random. Due to random phases, the model produces different channel waveforms

for different simulation trials. But, it can be proved [56] that due to non-random

frequencies, properties like time average auto-correlation do not vary with simulation

trials. In this sense, the MEDS is a deterministic model, as discussed in Chapter II.

A single simulation trial is representative of the MEDS model properties. This along

with the fact that it reproduces desired properties with good accuracy [56] has led

to widespread acceptance of this model. In contrast to the MEDS, the MC models

discussed earlier are complex since they require several simulation trials for conver-

gence. However, to partly overcome the complexity problem, “multiple parameter

set Monte Carlo” (MPS-MC) simulation method has been introduced in [34]. The

MPS-MC method divides a simulation trial into several frames and generates random

Doppler frequencies and phases for each frame. With this method, the performance

of MC models is considerably improved and found to be even better than the MEDS

method. A detailed discussion on the MEDS and the MPS-MC methods can be

found in [56] and [34], respectively. For completeness, we provide a brief comparison

of the performance between the MEDS method and the MPS-MC method applied to

Model II. Note, that MPS-MC is not applied to MEDS since its properties do not

vary over simulation trials.

For MPS-MC 10 sinusoids are used for simulation of both the I and Q phase

components. 106 samples are generated by dividing them into 102 frames of length
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104 samples each to get time average auto-correlation results. The MEDS model given

in (89) and (90) is used with N = 10 and 11 sinusoids for the I and Q components,

respectively.

Figure 15 shows the auto-correlation of the complex envelope obtained with a sin-

gle simulation trial using the two methods for fdTs = 0.01. Clearly, MPS-MC Model

II provides a better fit over a wide range of time delays than the MEDS method.

Results over numerous simulation trials showed the same trend. It should also be

noted here that the auto-correlation with the MPS-MC model is zero if the time de-

lay exceeds the frame length. Hence, the frame length should be sufficiently long to

cover the time delays of interest to get meaningful results. Finally, in Figure 16, we
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Figure 15: Comparison between the auto-correlation function of the MPS-MC
Model II vs. the MEDS model.

compare the BER performance of non-coherent differential BPSK (D-BPSK) mod-

ulation. Non-coherent D-BPSK was chosen since its performance depends on the
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channel auto-correlation [63] and hence provides a better understanding as to which

model is better. BER results were obtained by averaging over 107 bits (samples) con-

sisting of 104 frames for the MPS-MC model for two different values of the normalized

maximum Doppler frequency fd. Figure 16 shows that the BER obtained using both

the MPS-MC Model II and the MEDS model matches the theoretical BER [63]. Fur-

ther, the undesirable variation of the BER over several simulation trials for the MC

method observed in [56] is eliminated by the MPS-MC method, which is evident from

the results of two simulation trials. Though 20 simulation trials were conducted to

confirm this, results of all 20 trials are not shown to preserve clarity.

Finally, it must be noted that the MC models discussed in earlier sections can

provide better performance compared to MEDS at the expense of somewhat increased

complexity. A detailed comparison between the MPS-MC method and the MEDS

method can be a topic of further study. Issues such as the effect of simulating different

frames independently on channel estimation, synchronization, and Viterbi decoding
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should be addressed in such a study.

3.5 Summary

In this chapter, we presented a rigorous analysis comparing various SoS statistical

models available in the literature for simulating Rayleigh faded cellular channels.

We addressed performance as well as complexity issues to identify an appropriate

model for simulation purposes. From our analysis, we conclude that Model II, though

slightly more complex than some of the other models, is the best for simulating cellular

channels. Depending on the complexity constraints and desired performance, we can

select other models by using the analysis presented here. In particular, the modified

Model III can provide a good trade-off between complexity and performance.

Appendix 3.1: Derivation of (60)

In this section, we provide the derivation of (60), which quantifies the variance of auto-

correlation of Modified Hoeher model’s I component gI(t).The variance is defined as

Var[Rgigi
(τ)] = E[{Rgigi

(τ)− R̂gigi
(τ)}2]. (91)

Using (56), we can re-write the above equation as

Var[Rgigi
(τ)] = Rgigi

(τ)2 − 2Rgigi
(τ)

1

N
E[

N∑

n=1

cos(ωdfi,nτ)] +

1

N2

N∑

n=1

N∑

m=1

E[cos(ωdfi,nτ) cos(ωdfi,mτ)]. (92)

Now, using the definition of fi,n provided in (54), we get

1

N
E[

N∑

n=1

cos(ωdfi,nτ)] =
1

N

N∑

n=1

E[cos(ωdfi,nτ)]

=
1

N

N∑

n=1

∫ 1

0
cos

(
ωdsin

(
π

2
ui,n

)
τ
)
dui,n

=
1

N

N∑

n=1

∫ π/2

0
cos(ωdsin(x)τ)dx
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=
1

N

N∑

n=1

J0(ωdτ)

= J0(ωdτ). (93)

Further,

N∑

n=1

N∑

m=1

E[cos(ωdfi,nτ) cos(ωdfi,mτ)] =
N∑

n=1

E[cos(ωdfi,nτ)2] +

N∑

n=1

N∑

m(6=n)=1

E[cos(ωdfi,nτ)]E[cos(ωdfi,mτ)]

=
N∑

n=1

1 + E[cos(2ωdfi,nτ)]

2
+

N(N − 1)J0(ωdτ)2

=
N + NJ0(ωdτ)

2
+ N(N − 1)J0(ωdτ)2. (94)

After substituting (93) and (94) into (92) and making some simplifications, we get

the desired expression in (60).

Appendix 3.2: Derivation of (79)

Here we derive the squared envelope correlation of Model III. Following this proof, the

squared envelope correlation of other models may be derived. We follow a procedure

similar to the one outlined in [86]. We have

R|g|2|g|2(τ) = E[|g(t + τ)|2|g(t)|2]

= E[g2
i (t + τ)g2

i (t)] + E[g2
q (t + τ)g2

q (t)] +

E[g2
i (t + τ)g2

q (t)] + E[g2
q (t + τ)g2

i (t)]. (95)

We compute E[g2
i (t + τ)g2

i (t)] in this equation as follows, with the remainder of the

proof following a similar pattern:

E[|gi(t + τ)|2|gi(t)|2] =
4

N2

N∑

n=1

N∑

m=1

N∑

k=1

N∑

l=1

E {cos[ωd(t + τ) cos(αn) + φn]×

cos[ωd(t + τ) cos(αm) + φm] cos[ωdt cos(αk) + φk]×

cos[ωdt cos(αl) + φl]} . (96)
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The mutual independence of the φi ensures that all terms in the above equation are

zero, except the four terms with: 1) n = m = k = l; 2) n = m, k = l, n 6= k; 3)

n = k, m = l, n 6= m; 4) n = l, m = k, n 6= m. We compute each of these terms

individually to derive the overall expression.4

Term 1: n = m = k = l

N∑

n=1

E{cos2[ωd(t + τ) cos(αn) + φn]× cos2[ωdt cos(αn) + φn]}

=
N∑

n=1

E{1

2
(1 + cos[2ωd(t + τ) cos(αn) + 2φn])× 1

2
(1 + cos[2ωdt cos(αn) + 2φn])}

=
1

4

N∑

n=1

(1 +
1

2
E{cos[2ωdτ cos(αn)]})

=
1

4
[N +

1

2
NJ0(2ωdτ)] (97)

resulting from the fact that [28]

N∑

n=1

E{cos[2ωdτ cos(αn)]} = NJ0(2ωdτ).

Term 2: n = m, k = l, n 6= k

N∑

n=1

(E{cos2[ωd(t + τ) cos(αn) + φn]} ×
N∑

k=1,k 6=n

E{cos2[ωdt cos(αk) + φk]})

=
N∑

n=1

1

2

N∑

k=1,k 6=n

1

2

=
N(N − 1)

4
(98)

Term 3: n = k, m = l, n 6= m

N∑

n=1

E{cos[ωd(t + τ) cos(αn) + φn] · cos[ωdt cos(αn) + φn]} ×
N∑

m=1,m6=n

E{cos[ωd(t + τ) cos(αm) + φm] · cos[ωdt cos(αm) + φm]}

=
N∑

n=1

1

2
E{cos[ωdτ cos(αn)]} ×

N∑

m=1,m6=n

1

2
E{cos[ωdτ cos(αm)]}

4We apply the constant 4/N2 factor at the end and, hence, omit it here.
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=
1

4

(
N∑

n=1

E{cos[ωdτ cos(αn)]}
)2

− 1

4

N∑

n=1

[E{cos[ωdτ cos(αn)]}]2

=
1

4
(N2J2

0 (ωdτ)−
N∑

n=1

[E{cos[ωdτ cos(αn)]}]2) (99)

Term 4 can be shown equal to Term 3. Then,

E[g2
i (t + τ)g2

i (t)] =
4

N2
(Term1 + Term2 + Term3 + Term4)

= 1 +
1

2N
J0(2ωdτ) +

2J2
0 (ωdτ)− 2

N2

N∑

n=1

[E{cos[ωd cos(αn)τ ]}]2 (100)

Similarly, we can show that

E[g2
q (t + τ)g2

q (t)] = E[g2
i (t + τ)g2

i (t)] (101)

E[g2
i (t + τ)g2

q (t)] = 1− 1

2N
J0(2ωdτ)− 2

N2

N∑

n=1

[E{sin[ωd cos(αn)τ ]}]2 (102)

E[g2
q (t + τ)g2

i (t)] = E[g2
i (t + τ)g2

q (t)]. (103)

Adding these terms together, gives (79) as

R|g|2|g|2(τ) = 4 + 4J2
0 (ωdτ)−

4

N2

N∑

n=1

(
[E{cos[ωdτ cos(αn)]}]2 + [E{sin[ωdτ cos(αn)]}]2

)
,

which cannot be simplified further due to the presence of the last term and has to be

evaluated numerically.

Appendix 3.3: Squared Envelope Correlation of

Model IV

Analogous to the derivation of the squared envelope correlation of Model III provided

in the earlier section, we derive the squared envelope correlation of Model IV. The

proof reveals the non-stationary nature of the simulation model by providing the

correct correlation expression in contrast to the expression derived in [86], thereby

making our analysis more concrete.
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Again, we consider the derivation of E[g2
i (t + τ)g2

i (t)] term only. Analogous to

Appendix 3.2, Term 1 can be shown to be:

Term 1: n = m = k = l

N∑

n=1

E{cos4(ξn) cos2[ωd(t + τ) cos(αn) + φ] cos2[ωdt cos(αn) + φ]}

=
3

32
[N +

1

2
NJ0(2ωdτ)]. (104)

Term 2: n = m, k = l, n 6= k

N∑

n=1

N∑

k=1,k 6=n

E{cos2(ξn) cos2(ξk) cos2[ωd(t + τ) cos(αn) + φ] cos2[ωdt cos(αk) + φ]}

=
1

16

N∑

n=1

N∑

k=1,k 6=n

E{1 + cos[2ωd(t + τ) cos(αn) + 2φ]× cos[2ωdt cos(αk) + 2φ]}

=
1

16
[N(N − 1) +

1

2

N∑

n=1

N∑

k(6=n)=1

E{cos[2ωd(t + τ) cos(αn)− 2ωdt cos(αk)]}] (105)

Unlike the derivation of Term 2 in [86], the expectation of the product of the two

cosine terms cannot be simplified into the product of the expectations of the individual

cosine terms due to the presence of the random phase φ in both these terms. This

leads to the correct expression given above in contrast to the expression provided in

[86]. Further, it is clear that this term depends not only on the time difference τ but

also the time variable t. Hence, the squared envelope correlation is non-stationary.

Following a similar methodology, we can derive other terms to obtain (80), the squared

envelope correlation for Model IV. The other terms in (80) that depend on t are also

non-zero, thereby contributing to the non-stationarity of the model.
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CHAPTER IV

NEW SIMULATION MODELS FOR

MOBILE-TO-MOBILE CHANNELS

4.1 Overview

The previous chapter provided analysis of several different statistical SoS models for

simulating cellular channels. In this chapter, we turn our attention to mobile-to-

mobile channels. We first evaluate the existing models for mobile-to-mobile channels

such as the Akki and Haber model and the Wang and Cox model. Our evaluation

brings forth several drawbacks of these models. This motivates us to develop new

SoS models for mobile-to-mobile channels. To this end, we introduce a “double ring”

scattering model to simulate the mobile-to-mobile local scattering environment. Com-

bining this model with our analysis on cellular channel models, we present models

for mobile-to-mobile channels. We adapt Zheng and Xiao’s Model II described in

the previous chapter for mobile-to-mobile channel simulation. Further, we propose

a reduced complexity alternative by modifying the Method of Exact Doppler Spread

(MEDS), which was discussed in Chapter III, originally proposed for cellular chan-

nels [56]. Since the MEDS model is deterministic, a single simulation trial represents

its properties. This avoids multiple simulation trials, thereby reducing complexity.

Theoretical and simulation results are employed to verify the usefulness of the our

models.

Before proceeding further, we briefly repeat the theoretical reference model for

mobile-to-mobile channels for convenience.
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4.2 The Mathematical Reference Model

Under frequency-flat fading and 2-D isotropic scattering assumptions around both

the Tx and the Rx, the properties of a Rayleigh faded mobile-to-mobile channel are

summarized below [10]:

For the complex envelope, g(t) = gi(t) + jgq(t), the in-phase, I, and quadrature,

Q, components have a zero-mean unit variance Gaussian distribution with auto-

correlation and cross-correlation properties

Rgigi
(τ) = E[gi(t + τ)gi(t)] = J0(2πf1τ)J0(2πf2τ) (106)

Rgqgq(τ) = E[gq(t + τ)gq(t)] = J0(2πf1τ)J0(2πf2τ) (107)

Rgigq(τ) = Rgqgi
(τ) = 0 (108)

Rgg(τ) =
1

2
E[g(t + τ)g∗(t)]

= J0(2πf1τ)J0(2πf2τ) = J0(2πf1τ)J0(2πaf1τ), (109)

where E[ · ] is the statistical expectation operator, ∗ denotes the complex conjugate

operator, J0(·) is the zeroth order Bessel function of the first kind, a = (f2)/(f1) is

the ratio of the two maximum Doppler frequencies (or vehicle speeds), and 0 ≤ a ≤ 1

assuming f2 ≤ f1.

4.3 Existing Simulation Models

4.3.1 Akki and Haber’s simulation model

An obvious simulation model is the one using (23), where we use finite number of

paths or sinusoids, N , and generate random angle of departures and arrivals and

random phases to simulate the channel. We refer to this model as Akki and Haber’s

simulation model because they originally proposed this reference model. Though the

statistical correlations of this model, given in (106)-(109), do not depend on N , the

time-average properties [denoted by R̂(·)] indeed depend on N . For example, the
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time-average auto-correlation of the complex envelope is

R̂gg(τ) =
1

2
lim

T→∞
1

2T

∫ T

−T
g(t + τ)g∗(t)dt

=
1

N

N∑

n=1

exp[j{2πf1 cos(αn)τ + 2πf2 cos(βn)τ}]. (110)

Further the time-average correlations are random due to the random angles of de-

parture and arrival and therefore vary over simulation trials. In such a scenario,

as pointed out in [87], the variance Var[R(·)]=E[|R̂(·) − limN→∞ R(·)|2] provides a

measure of the usefulness of the model in simulating the desired channel waveform

using a finite N . A lower variance means that a smaller number of simulation trials

are needed to achieve desired properties statistically and, hence, the corresponding

model is better. Therefore, we derive the variance of the auto-correlation and the

cross-correlation of the I and Q components of the complex envelope, which are

stated below:

Var[Rgigi
(τ)] = Var[Rgqgq(τ)]

=
1 + J0(4πf1τ)J0(4πaf1τ)− 2J2

0 (2πf1τ)J2
0 (2πaf1τ)

2N
(111)

Var[Rgigq(τ)] = Var[Rgqgi
(τ)] =

1− J0(4πf1τ)J0(4πaf1τ)

2N
(112)

Var[Rgg(τ)] =
1− J2

0 (2πf1τ)J2
0 (2πaf1τ)

N
(113)

The proofs of these equations follows the derivation provided in Appendix 3.1. We

later utilize these variances to compare the performance of the proposed models with

Akki and Haber’s simulation model.

4.3.2 Discrete Line Spectrum Method

Wang and Cox [82] presented a modification to the well-known Spectrum Sampling

method [65], where they approximate the continuous Doppler spectrum as a set of

discrete frequencies to generate the received multipath signal as

g(t) =
1

A

N∑

n=1

√
S(f̂n) exp

[
−j(2πf̂nt + θn)

]
. (114)
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The model parameters are defined as

S(f̂n) =
N∑

n=1

(∫ Fn+1

Fn

S(f)df

)
δ(f − f̂n) (115)

f̂n =

∫ Fn+1

Fn
fS(f)df

∫ Fn+1

Fn
S(f)df

. (116)

Here, Fn’s are equi-spaced frequencies, F1, F2..., FN+1, with F1 = −(f1 + f2) and

FN+1 = (f1 + f2), and A is a normalization factor to make the signal envelope have

unit power. Thus, f̂n and S(f̂n), referred to as the center of mass frequencies and the

corresponding masses, respectively, are obtained by numerical integration over the

Doppler spectrum given in (25).

Since Wang and Cox do not assess the model performance in terms of the auto-

correlation and other properties, we extend their analysis to verify their method. The

statistical and time-average properties of this model are given below.

• Statistical correlations:

Rgigi
(τ) = Rgqgq(τ) =

1

2A2

N∑

n=1

S(f̂n) cos(2πf̂nτ) (117)

Rgigq(τ) = Rgqgi
(τ) =

1

2A2

N∑

n=1

S(f̂n) sin(2πf̂nτ) = 0 (118)

Rgg(τ) =
1

2A2

N∑

n=1

S(f̂n) cos(2πf̂nτ), (119)

where the last equality in (118) is obtained using the fact that the Doppler spec-

trum is symmetrical about the zero frequency. This symmetry gives a negative

frequency component for every positive frequency in the set of f̂n’s in (116)

such that for even N : f̂n = −f̂(N+1)−n, S(f̂n) = S(f̂(N+1)−n), n = 1, 2, ..., N/2,

and for odd N : f̂n = −f̂(N+1)−n, S(f̂n) = S(f̂(N+1)−n), n = 1, 2, ..., (N − 1)/2,

f̂(N+1)/2 = 0. This set of f̂n’s results in zero cross-correlation in (118) because

sine is an odd function.

• Time-average correlations (for even N):

R̂gigi
(τ) =

1

2A2

N∑

n=1

S(f̂n)
[
cos(2πf̂nτ) + cos(2πf̂nτ + θn + θN+1−n)

]
(120)
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R̂gqgq(τ) =
1

2A2

N∑

n=1

S(f̂n)
[
cos(2πf̂nτ)− cos(2πf̂nτ + θn + θN+1−n)

]
(121)

R̂gigq(τ) = R̂gqgi
(τ)

=
1

2A2

N∑

n=1

S(f̂n) sin(2πf̂nτ + θn + θN+1−n) (122)

R̂gg(τ) =
1

2A2

N∑

n=1

S(f̂n) cos(2πf̂nτ). (123)

The above expressions are also valid for odd N provided proper subscripts on the

second θ dependent terms are used.

Some interesting inferences can be drawn from this analysis. First, (120), (121),

and (122) show that the time-average correlations for the I and Q components vary

with simulation trials since they are functions of random phases θn’s. It should be

noted that this drawback can be easily avoided by constraining the random phases so

that θn = - θN+1−n, n = 1,2,...,N/2, for an even N or θn = - θN+1−n, n = 1,2,...,(N −
1)/2, for an odd N . However, some other problems still exist, which are discussed

below.

Though the I and Q components are statistically uncorrelated as prescribed by the

reference model, they are correlated for a single simulation trial as evident in (122).

Figure 17 plots the time-averaged cross-correlation between the I and Q components

for two arbitrary simulation trials. We observe that cross-correlation is clearly not

zero.

Now, consider the auto-correlation of the complex envelope shown in Figure 18

obtained using N = 40, a = 1, f1 = 100 Hz, and a sampling time Ts = 10−6 second.

The simulated auto-correlation follows the desired auto-correlation closely but shows

some form of periodicity, the period being determined by the separation between

different f̂n. Though the separation between successive f̂n’s is not constant, numerical

investigations show the difference to be very close to a constant. This combined with

the loss of numerical precision in simulations causes the sinusoidal frequencies to

be harmonically related leading to periodicity in the auto-correlation function. For
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Figure 17: Cross-correlation between the quadrature components generated by the
discrete line spectrum method.

0   5 10 15 20 25 30 35 40 
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Time Delay (f
1
  τ )

A
ut

oc
or

re
la

tio
n

N = 40
Theoretical
N = 60

Figure 18: Auto-correlation of the complex envelope simulated by the discrete line
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example, the auto-correlation attains very high values for time delay τ approximately

equal to integral multiples of (N)/(2f1[1+a]). As a result, the stochastic process itself

shows periodicity. For longer waveform durations, such behavior is undesirable. To

remedy the situation the number of paths N may be increased. The auto-correlation

using N = 60 is also shown in Figure 18. Though the waveform period increases, the

model complexity has also increased due to increase in N . In general, if Ts denotes

the sampling period and Ns the number of samples to be simulated, the required

N = 2(1+a)(f1Ts)Ns. For example, with f1Ts = 0.001, a = 1, and Ns = 105, N = 400

sinusoids will be required, which is often not practical in terms of complexity.

The foregoing analysis clearly reveals the drawbacks of Wang and Cox’s model.

Moreover, the numerical integrations required to obtain the model parameters make

the implementation complex and not easily reconfigurable for different Doppler fre-

quencies or the Doppler frequency ratio a. Hence, we propose alternate simulation

models in the next section.

4.4 New Simulation Models

In this section, we present SoS statistical and deterministic models to simulate mobile-

to-mobile channels. First, we introduce a “double ring” scattering environment for

mobile-to-mobile channels. Using this “double ring” model, we provide our simulation

models and verify their properties. The statistical SoS model presented here extends

the model proposed by Zheng and Xiao [85] for cellular channels to the more general

case of mobile-to-mobile channels while the deterministic model extends the MEDS

model [56].

An important distinction between cellular channels and mobile-to-mobile channels

arises due to the difference in the Tx and the Rx antenna elevations for these channels.

In contrast to cellular channels, it is natural for both the Tx and the Rx antenna to

have low elevations in mobile-to-mobile channels. This results in local scattering
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Figure 19: Double ring model for mobile-to-mobile scattering environment.

around the Tx and the Rx which led to the 2-D isotropic scattering assumption in

Akki and Haber’s original model. To simulate such local scattering, we propose an

extension to the “single ring” model of cellular channels [42], which defines scatterers

as lying uniformly on a ring around the MS, to a “double ring” model. It should be

emphasized here that the “double ring” model has been proposed previously in various

forms, for example in [16] and the references therein, for the study and simulation of

spatial correlations and capacity in MIMO systems. But, to the best of our knowledge,

this is its first application where mobility has been incorporated at both ends of the

communication link to simulate a complete mobile-to-mobile channel. The “double

ring” model defines a ring of uniformly spaced scatterers around both the Tx and the

Rx, thus giving rise to isotropic local scattering, as illustrated in Figure 19. Assuming

omni-directional antennas at both ends, the waves from the Tx antenna arrive at each

of the scatterer located on the Tx end ring, for example paths T1 and T2. Considering

these scatterers as “virtual base-stations,” we model the communication link from

each of these scatterers to the Rx as a conventional cellular BS to MS link. Hence,

70



each “virtual base-station” transmits a signal that arrives at the Rx uniformly from

all directions in the horizontal plane due to isotropic scatterers located on the Rx end

ring. We can then model the received signal as

g(t) =

√
2

NM

N∑

n=1

M∑

m=1

exp [j{2πf1 cos(αn)t + 2πf2 cos(βm)t + θnm}] , (124)

where the index ‘n’ refers to the paths traveling from the Tx to the N scatterers

located on the Tx end ring, the index ‘m’ refers to the paths traveling from the M

scatterers on the Rx end ring to the Rx, and the phases φnm ∼ U [−π, π) are inde-

pendent for all n, m pairs. Note that the single summation in the Akki and Haber’s

model is now replaced by a double summation because of the double reflection incor-

porated by the “double ring” model. Nevertheless, the channel essentially remains

the same, since each path will undergo a Doppler shift due to the motion of the Tx

and the Rx.

The reasons behind employing this model are manifold. First and foremost, it is

a mathematically convenient model that enables simulation of the reference model.

Second, considering the lack of a detailed and standardized mobile-to-mobile channel

model, the model provides a generic scenario with isotropic scattering at both ends

of the communication link. Finally, Doppler spectrum measurements in urban and

highway environments [8] somewhat match those predicted by the isotropic scattering

assumption, thus providing an approximate heuristic verification of the model. A

rigorous verification should be explored in future research work.

Using this general model, we now proceed to describe our simulation models.

4.4.1 Statistical simulation model

Definition: The narrowband complex envelope of mobile-to-mobile channel can be

simulated as

g(t) = gi(t) + jgq(t) (125)
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gi(t) =

√
2

NM

N,M∑

n,m=1

cos{2πf1 cos(αn)t + 2πf2 cos(βm)t + φi
nm} (126)

gq(t) =

√
2

NM

N,M∑

n,m=1

cos{2πf1 sin(αn)t + 2πf2 cos(βm)t + φq
nm} (127)

αn =
2πn− π + θ

4N
n = 1, 2, ..., N (128)

βm = 2

(
2πm− π + ψ

4M

)
m = 1, 2, ...,M, (129)

where θ ∼ U [−π, π) and ψ ∼ U [−π, π) are mutually independent. Also, the random

phases φnm ∼ U [−π, π) are mutually independent for all n, m, and the I and Q com-

ponents. The motivation behind this model originates in Zheng and Xiao’s Model II

discussed in the earlier chapter in the context of cellular channels. We adapt the

parameters of this model appropriately for mobile-to-mobile channels.

It can be shown that the statistical properties of this model match those of the

reference model in (106)-(109). The proof of the derivation of the auto-correlation

of the I component is provided in Appendix 4.1. Other properties can be derived

analogously. The Central Limit Theorem ensures the Gaussian nature of the quadra-

ture components when sufficiently large number of sinusoids are added. Thus, the

properties of the proposed model statistically match those of the reference model. It

is worth noting that αns in (128) are identical to the ones used in Zheng and Xiao’s

Model II (eqn. 66). But, βms in (129) are adapted to provide desired statistical

correlations for mobile-to-mobile channels, which can be noticed from the derivation

in Appendix 4.1. Also, the angle of departures and arrivals in (125) can be chosen

in numerous ways to obtain the same statistical properties, as demonstrated in [85]

and [83] for the case of cellular channels. However, our analysis of cellular channels

revealed that the parameters of Model II are best suited for simulation. Therefore,

using this intuition, the above parameters were selected for mobile-to-mobile channels

to obtain the best performance.
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The time-average correlations can be derived as:

R̂gigi
(τ) =

1

NM

N,M∑

n,m=1

cos{2πf1 cos(αn)τ + 2πf2 cos(βm)τ} (130)

R̂gqgq(τ) =
1

NM

N,M∑

n,m=1

cos{2πf1 sin(αn)τ + 2πf2 cos(βm)τ} (131)

R̂gigq(τ) = R̂gqgi
(τ) = 0 (132)

R̂gg(τ) =
1

NM

N,M∑

n,m=1

[cos{2πf1 cos(αn)τ + 2πf2 cos(βm)τ}+ (133)

cos{2πf1 sin(αn)τ + 2πf2 cos(βm)τ}] .

Being a statistical model, its time-average correlations are random and depend on the

random Doppler frequencies. However, the model performs better than the Akki and

Haber’s simulation model in terms of the variance of these correlations, a fact verified

in the next section. Note that expressions for variances of the correlation functions

for the proposed statistical model are not provided because they cannot be obtained

in a closed form.

4.4.2 Deterministic simulation model

As noted earlier, the model described above may require several simulation trials

to achieve desired convergence in its properties. A low complexity alternative is

proposed in this section by adapting the MEDS discussed in Section 3.4.4 in the

context of cellular channels [56]. We call this model the modified MEDS model.

Definition: The modified MEDS generates the complex as

g(t) = gi(t) + jgq(t) (134)

gi(t) =

√
2

NiMi

Ni,Mi∑

n,m=1

cos{2πf i
1,nt + 2πf i

2,mt + φi
nm} (135)

gq(t) =

√
2

NqMq

Nq ,Mq∑

n,m=1

cos{2πf q
1,nt + 2πf q

2,mt + φq
nm} (136)

f
i/q
1,n = f1 cos

(
π(n− 1/2)

2Ni/q

)
n = 1, 2, ..., Ni/q (137)

f
i/q
2,m = f2 cos

(
π(m− 1/2)

Mi/q

)
m = 1, 2, ..., Mi/q, (138)
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where the phases φnm∼U [−π, π) and are independent for all n, m, and the I and Q

components.

A few remarks are made below in order to fully describe this model:

Remark 1 : The Doppler frequencies in (137) are essentially the same as the original

MEDS model. The Doppler frequencies in (138) are chosen to reproduce desired

properties for mobile-to-mobile channels.

Remark 2 : To make the time average correlations deterministic and independent of

the random phases φnm’s, not only all the frequencies, f i
1,n + f i

2,m in I and f q
1,k + f q

2,l

in Q components must be distinct, but they must also be distinct among themselves

for all pairs of (n,m) and (k, l)s. Though it is difficult to establish a general rule

to meet this criterion, we found from simulations that with Ni = Mi = NI and

Nq = Mq = NI +1, the Doppler frequencies are indeed distinct for practical ranges of

NI varying from 5 to 60 and for different Doppler frequency ratios, i.e., as. This rule

is similar to the one used in the original MEDS model. Under these assumptions, it

can be shown that the time average correlations, which are equal to the statistical

correlations, are

R̂gigi
(τ) =

1

N2
I

NI ,NI∑

n,m=1

cos{2πf i
1,nτ + 2πf i

2,mτ} (139)

R̂gqgq(τ) =
1

(NI + 1)2

(NI+1),(NI+1)∑

n,m=1

cos{2πf q
1,nτ + 2πf q

2,mτ} (140)

R̂gigq(τ) = R̂gqgi
(τ) = 0. (141)

Remark 3 : Since nothing concrete can be said about the distinctness of the Doppler

frequencies for arbitrary Ni/q and Mi/q’s, it is difficult to obtain the asymptotic prop-

erties, i.e., for Ni/q → ∞ and Mi/q → ∞, of the model. This may be of interest for

future research.

Remark 4 : Finally, it is worth noting that the modified MEDS model retains the

property of exactly reproducing the Doppler spread in the simulation model. A brief

outline of the proof for this property is provided in Appendix 4.2.
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4.5 Simulation Results

Having provided the simulation models, we now compare their performance in this

section. Unless stated otherwise, all the simulation results presented here are obtained

using a = 1, f1 = 100 Hz, N = M =NI = 8, and a sampling period Ts of 10−5 s.

Figure 20 shows the auto-correlation of the simulated complex envelope. The

figure also plots the time averaged auto-correlation for the statistical model averaged

over 5 and 10 trials. For the normalized time delay range 0 ≤ f1Ts ≤ 3, which

is typically of interest for most communication systems, the modified MEDS and

the statistical model provide a good approximation to the desired auto-correlation.

Also, periodicity encountered in Wang and Cox’s model is not observed here. It is

also evident that by averaging over more trials, the performance of statistical model

improves and is better compared to the modified MEDS model.
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Figure 20: Auto-correlation of the complex envelope.
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Figure 21: Variance of the auto-correlation and cross-correlations.

Figure 21 compares the variance in auto-correlation and cross-correlation of the

quadrature components for different models. The results for the statistical model

are obtained by averaging the squared error in correlations over 104 trials. For the

modified MEDS model, the equivalent quantity is the squared error |R̂(·) − R(·)|2

which is also plotted in Figure 21. The variances for Akki and Haber’s model are

obtained using (111) and (112). For a fair comparison, we use N = 64 sinusoids

in Akki and Haber’s model (which is equal to NxM = 64 sinusoids used for the

proposed models). From the Figure 21, we see that the variances of the proposed

models are considerably lower than those of Akki and Haber’s model for time delay

ranges of interest. Also, the modified MEDS model performs better compared to

the statistical model for a single simulation trial. Future work should investigate

performance improvements in the statistical model by employing techniques described

in [34] to make it more efficient.
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Finally, the performance in terms of level crossing rates is verified in Figure 22,

thereby further strengthening the validity of these models.

4.6 Summary

In this chapter, we presented new statistical and deterministic SoS models based upon

a “double ring” local scattering environment for simulating Rayleigh faded mobile-

to-mobile radio channels. The statistical model can be used for obtaining good per-

formance while the deterministic model can be used when simulation complexity is

to be minimized. The performance of the proposed models has been verified in terms

of the probability distribution function, the auto-correlation, the cross-correlation,

and the level crossing rate of the channel waveform through theoretical and simu-

lation results. Our analysis reveals that the proposed models perform better than

the existing models. Thus, our models can be useful in designing mobile-to-mobile

communication systems.

Appendix 4.1: Derivation of the auto-correlation

of the in-phase component of the statistical simu-

lation model

Consider the in-phase component of the received signal given in (126). The auto-

correlation function of gI(t) is

Rgigi
(τ) = E[gi(t + τ)gi(t)]

=
2

NM

N,M∑

n,m=1

N,M∑

p,k=1

E
[
cos{2πf1 cos(αn)(t + τ) + 2πf2 cos(βm)(t + τ) + φi

nm}

cos{2πf1 cos(αp)t + 2πf2 cos(βk)t + φi
pk}

]

=
1

NM

N,M∑

n,m=1

E [cos{2πf1 cos(αn)τ + 2πf2 cos(βm)τ}] , (142)

where we use, for simplification, the fact that φnm are independent for all (n, m)’s.

Since θ in the angle of departure α and ψ in the angle of arrival β [refer to (128, 129)]
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Figure 22: Normalized level crossing rate.

are independent, (142) can be further simplified, using [28, pp. 414 (13), pp. 415 (18),

(19)], as

Rgigi
(τ) =

1

NM
E

[
N∑

n=1

cos{2πf1 cos(αn)τ}
M∑

m=1

cos{2πf2 cos(βm)τ}

−
N∑

n=1

sin{2πf1 cos(αn)τ}
M∑

m=1

sin{2πf2 cos(βm)τ}
]

=
2

π

∫ π
2

0
cos{2πf1 cos(α)τ}dα

1

π

∫ π

0
cos{2πf2 cos(β)τ}dβ

− 2

π

∫ π
2

0
sin{2πf1 cos(α)τ}dα

1

π

∫ π

0
sin{2πf2 cos(β)τ}dβ

= Jo(2πf1τ)Jo(2πf2τ)− 0

= Jo(2πf1τ)Jo(2πf2τ), (143)

which is the desired expression.
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Appendix 4.2: Proof of the exactness of MEDS

model’s Doppler Spread

As discussed in Chapter II, the Doppler spread provides a measure of how fast the

channel varies in time. Therefore, the Doppler spread is a parameter of interest. Here,

we prove that the modified MEDS model exactly reproduces the channel Doppler

spread in simulations. The Doppler spread of a channel g(t) with auto-correlation

Rgg(τ) is defined as [56]

Bd =
1

2π

√√√√√



(
Ṙgg(τ)

Rgg(0)

)2

− R̈gg(τ)

Rgg(0)




τ=0

, (144)

where Ẋ represents the differentiation of X with respect to τ . It can be shown that

the first term in the above equation is zero. Therefore, the Doppler spread of the I

and Q components of the reference model can be written as

Bi
d,ref = Bq

d,ref =


 1

2π

√
−d2J0(2πf1τ)J0(2πf2τ)

dτ 2




τ=0

=

√
f 2

1 + f 2
2

2
. (145)

For the I component of the modified MEDS model, after differentiating the auto-

correlation in (139) twice w.r.t. τ and evaluating it at τ = 0, the Doppler spread

is

Bi
d,MEDS =

1

2π

√√√√√ 1

N2
I

NI ,NI∑

n,m=1

(2πf i
1,n + 2πf q

1,m)2 =
√

T1 + T2 + T3, (146)

with

T1 =
f 2

1

NI

NI∑

n=1

cos2

(
π(n− 1/2)

2NI

)
, T2 =

f 2
2

NI

NI∑

m=1

cos2

(
π(m− 1/2)

NI

)
, and

T3 =
f 2

1 f 2
2

N2
I




NI∑

n=1

cos

(
π(n− 1/2)

2NI

)





NI∑

m=1

cos

(
π(m− 1/2)

NI

)
 . (147)

By applying the identities

NI∑

n=1

cos2

(
π(n− 1/2)

NI

)
=

NI∑

n=1

cos2

(
π(n− 1/2)

2NI

)
=

NI

2
, (148)
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NI∑

n=1

cos

(
π(n− 1/2)

NI

)
= 0, (149)

to simplify T1, T2, and T3 terms, we get

Bi
d,MEDS =

√
f 2

1 + f 2
2

2
, (150)

which matches that of the reference model. Similarly, we can prove that the Doppler

spread of the Q-phase component is also equal to that of the reference model. Thus,

the modified MEDS model produces exact Doppler spread in the simulations of

mobile-of-mobile channels.
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CHAPTER V

PROPERTIES OF AMPLIFY AND FORWARD

RELAY CHANNELS

5.1 Overview

To make practical deployment of cooperation diversity schemes, it is necessary to

study the underlying channel model and system performance in the presence of chan-

nel impairments. With this goal in mind, we present statistical properties of amplify

and forward (AF) relay channels in this chapter.

We discussed in Chapter II that AF relays are preferred over decode and forward

(DF) relays because of their low complexity. At the same time, such AF relays change

the nature of the effective channel from the Tx to the Rx. Fading relay channels

are often modeled as a double Gaussian channel, i.e., a product of two complex

Gaussian channels [20]. Relay channels are statistically identical to the “pinhole”

channels encountered in certain MIMO channel environments [18, 26]. Therefore,

their first order properties like the envelope distribution are known. Several authors

have provided performance analysis of AF systems in terms of their BER and outage

probability under different assumptions on the amplifier gain [13, 15, 37, 32, 88].

However, these performance metrics do not completely reflect the dynamic, time

varying nature of a fading relay channel resulting from the mobility of the relay

as well as the MS. Since very little is known about their properties such as the

auto-correlation, level crossing rate, etc., we present an analysis of these statistical

properties of fading relay channels.

Our study of relay channels combines the earlier work on fixed-to-mobile and

mobile-to-mobile channels. Different types of relays - fixed gain relays and variable

gain relays are considered while obtaining the overall channel model. Often closed
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form expressions of the desired properties seem intractable. In such cases, integral

expressions are provided that can be evaluated numerically. Our results are verified

by using the simulation models developed in earlier chapters.

Notation. Throughout the chapter, following notations are applied. N (µ,σ2)

denotes normal distribution with mean µ and variance σ2. j =
√−1 is the imaginary

unit value. E[ · ] is the statistical expectation operation. |Z| and Z∗ are the absolute

value and the conjugate of the complex Z, respectively.

5.2 Relay Channel Model

Referring to the amplify and forward relay system model provided in Section 2.3.2,

we are interested in analyzing the properties of the overall relay channel h(t). We

showed that for the BS-relay-MS link, the overall channel is

h(t) = A(t)h1(t)h2(t). (151)

Here, A(t) is the gain of the AF relay, h1(t) is the BS-relay fading channel modeled as

a zero mean complex Gaussian (ZMCG) process with power σ2
1, and h2(t) is the relay-

MS fading channel modeled as a ZMCG process with power σ2
2. In the subsequent

discussion, we drop the time index t for convenience while remembering that all the

random processes involved are wide-sense stationary. Several different choices of the

amplification factor A have been proposed in the literature such as

A1 =

√
E2

E[|r1|2] =

√
E2

E1σ2
1 + σ2

n

and (152)

A2 =

√
E2

E2|h1|2 + σ2
n

(153)

in [47] and [40], respectively. Here, E2 denotes the average power transmitted by the

relay. The gain A1 in (152) requires the knowledge of the average power received by

the relay while the gain A2 in (153) requires the relay to have instantaneous channel

knowledge h1. The relays with gain A1, which is constant or fixed, are called fixed
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gain relays while relays using gain A2 are called variable gain relays because they

continuously adjust their gain depending on the instantaneous channel [32]. Since

fixed gain relays are simpler, our subsequent analysis largely assumes fixed gain relays.

5.3 Statistical Properties of the Fixed Gain Relay

Channel

Statistical properties such as the pdf of the real and the imaginary components, their

joint pdf, and the envelope pdf are known. Consider the the fixed gain relay channel

h = h1h2. Note that the gain A1 is omitted from the overall channel because being a

constant it can be absorbed into the variance of h2.

Let h1 = x1 + jy1 and h2 = x2 + jy2, where xi, yi, i =1,2 are i.i.d. random variables

with pdf N (0,σ2
i /2). Then, h = x + jy, where x = x1x2 - y1y2 and y = x1y2 + x2y1.

5.3.1 Distributions of the quadrature components and the channel enve-
lope

The following properties can be readily obtained from [38] and [71].

1. The real and imaginary parts of h are identically distributed Laplacian random

variables with pdfs

fX(x) =
1

2b
exp(−|x|/b), fY (y) =

1

2b
exp(−|y|/b), (154)

where b = (σ1σ2)/2.

2. The real and imaginary parts of h are uncorrelated and their joint pdf is

fX,Y (x, y) =
2

πσ2
1σ

2
2

K0

(
2

√
x2 + y2

σ2
1σ

2
2

)
, (155)

where K0(x) is the zeroth order modified Bessel function of the second kind.

3. The pdf of the envelope α = |h| is

fα(α) =
4α

σ2
1σ

2
2

K0

(
2

√
α2

σ2
1σ

2
2

)
. (156)
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We now go onto our novel work, including the time-correlation characteristics of relay

channels, which should also apply to key-hole channels.

5.3.2 Time-domain correlations

Most of our results continue under the assumption of omni-directional antennas op-

erating in a 2-D isotropic scattering environment, corresponding to NLOS conditions

at the relay and mobile station, an assumption justified by the low elevation of mo-

bile relay and destination terminals. The local area around the BS is assumed to be

scatterer free owing to its high elevation.

The auto-correlations of x(t), y(t), and h(t) are

Rxx(τ) = Ryy(τ) = E[x(t + τ)x(t)]

=
σ2

1σ
2
2

2
J0(2πf1τ)J0(2πf̂1τ)J0(2πf2τ), (157)

Rhh(τ) =
1

2
E[h(t + τ)h∗(t)] =

σ2
1σ

2
2

2
J0(2πf1τ)J0(2πf̂1τ)J0(2πf2τ) (158)

f1 =
v1

λ1

, f̂1 =
v1

λ2

, f2 =
v2

λ2

, (159)

where J0(x) is the zeroth order Bessel function of the first kind, f1 is the maximum

Doppler shift induced by the motion of the relay with speed v1 in the BS-relay link

having a carrier wavelength of λ1, f̂1 and f2 are the maximum Doppler shift induced by

the motion of the relay and the destination MS, respectively, in the relay-destination

MS link (carrier wavelength of λ2).

The auto-correlation can be derived as shown below:

Rhh(τ) =
1

2
E[h1(t + τ)h2(t + τ)h∗1(t)h

∗
2(t)]

=
1

2
E[h1(t + τ)h∗1(t)]E[h2(t + τ)h∗2(t)]

= 2Rh1h1(τ)Rh2h2(τ)

= 2

{
σ2

1

2
J0(2πf1τ)

} {
σ2

2

2
J0(2πf̂1τ)J0(2πf2τ)

}

=
σ2

1σ
2
2

2
J0(2πf1τ)J0(2πf̂1τ)J0(2πf2τ),
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where in the second line we use the independence of h1 and h2; in the fourth line we

substitute the auto-correlation value of h1 for fixed-to-mobile channels [36] and that

of h2 using Akki and Haber’s mobile-to-mobile channel model [10].

The carrier frequencies used in the BS-relay link and the relay-destination MS

link may be the same or be different. When TDMA based multi-access protocol is

used such that the BS-relay transmissions occur in one time slot and the relay-MS

transmissions occur in the next slot, same carrier frequency can be used in both the

time slots [47], i.e., f1 = f̂1. The assumption f1 = f̂1 yields the simplified auto-

correlation function

Rhh(τ) =
σ2

1σ
2
2

2
J0(2πf1τ)2J0(2πf2τ)

=
σ2

1σ
2
2

2
J0(2πf1τ)2J0(2πaf1τ), (160)

where a is the ratio of the Doppler two shifts (or MS and relay speeds), a = f2/f1.

While the auto-correlation for cellular channels consists of a single Bessel function

[(σ2
1/2)J0(2πf1τ)] [36], the auto-correlation of relay channels is a product of three

Bessel functions. Figure 23 compares the auto-correlation of the fixed gain relay

channel h with a cellular channel for the same f1. We find that the relay channel has

a more rapid envelope de-correlation that can work to our advantage.

Doppler Spectrum: Often wireless channels are characterized by their Doppler

spectrum, which is the Fourier Transform of the auto-correlation function. The U-

shaped spectrum of cellular channels is well-known. Since a closed form expression for

the Doppler spectrum seems intractable (except for the case a = 0), Figure 24 plots

several Doppler spectra obtained by numerical analysis. The Doppler spectra are a

function of the maximum Doppler frequency f1 and the Doppler ratio a. Therefore, for

fixed f1, different spectra are obtained by varying the Doppler ratio a. The maximum

Doppler frequency in relay channels is fmax = f1 + f̂1 + f2. Though the Doppler

spectra have singularities at some points, they are not revealed in the plots since
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numerical integration was used to obtain the plots. Further, it is evident from the

Figure 24 that the Doppler spectra are very different from the U-shaped spectrum of

cellular channels. Important thing to note here is that the Doppler spectra are more

concentrated near zero frequencies. This is due to the mobile-to-mobile link presence,

where more frequencies will be at or near zero value when the two stations move with

identical speeds.

Doppler spread: As we mentioned earlier in Chapter II, the Doppler spread is an

important parameter because it measures the rate of fading in a radio channel. Using

the definition of Doppler spread provided in (144) of Appendix 4.2 along with the

knowledge of channel auto-correlations discussed previously, we compare the Doppler

spread of different channels below

Cellular channel :Bd =

√
f 2

1

2
(161)

Mobile− to−Mobile channel :Bd =

√
f 2

1 + f 2
2

2
(162)

Relay channel :Bd =

√
f 2

1 +
f 2

2

2
. (163)

As expected, the relay fading channels have a higher Doppler spread when compared

to cellular channels and mobile-to-mobile channels. For example, with f1 = f2 the

Doppler spread for relay channels is approximately 70% and 25% higher than cellular

channels and mobile-to-mobile channels, respectively (assuming f1 is the same in all

cases).

Level crossing rate:

The LCR of the envelope α at level R for a relay fading channel h can be quantified

as

LR(α = R) =
4
√

πR√
2σ2

1σ
2
2

∫ ∞

0

1

y2
exp

(
−σ2

2R
2 + σ2

1y
4

σ2
1σ

2
2y

2

)√
σ2

1f
2
1 y4 + σ2

2(f
2
1 + f 2

2 )R2dy.

(164)
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Figure 25: Normalized level crossing rate of relay channels.

The proof of the above equation is given in Appendix 5.1. It should be noted that a

closed form expression of the LCR cannot be obtained. Approximations are possible

but not pursued. The form of the above integral is one that can be easily and quickly

computed using tools like Mathematica.

The LCRs of relay fading channels are plotted in Figure 25 for various speed ratios

a and assuming σ2
1 = σ2

2 = 1. As a increases, the LCR increases due to increased

mobility in the channel. Further, the LCRs of relay channels are higher than cellular

channels for a given envelope level R. The average fade durations (AFD) can be

calculated using this LCR expression and the cdf of the envelope.

5.3.3 Signal-to-Noise Ratio (SNR)

The SNR is a parameter of interest because it determines the end-to-end link perfor-

mance. From the AF relay system model provided in Section 2.3.2, the signal received

by the MS is given by

r = Ah1h2s + Ah2n1 + n2. (165)
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Note that we have dropped the time index from the above equation for convenience

as done earlier in the chapter. Here, n1 and n2 are the additive white Gaussian noise

of the relay and the MS, respectively, each having zero mean and variance σ2
n. Using

the above equation along with gain A = A1 for fixed gain relays, the instantaneous

SNR conditioned upon h1 and h2 is given by

γ =
A2|h1|2|h2|2E1

A2|h2|2σ2
n + σ2

n

,

=
γ1γ2

γ2 + C
, (166)

C = 1 + γ̄1, (167)

where γi = Ei|hi|2/σ2
n is the instantaneous SNR of the ith individual channel (or ith

hop) with an average SNR value γ̄i = Eiσ
2
i /σ

2
n. The authors in [32] presented the BER

and outage probability analysis based upon this SNR. We are interested in obtaining

statistics such as the frequency of outage (FoO) and the average outage duration

(AOD), which include the effect of time varying nature of the channel. A system

is said to be in outage if the instantaneous SNR γ falls below a specified threshold

γth. As the names suggest, FoO measures how frequently outages occur while AOD

measures the average duration of such outages. In other words, FoO and AOD are

the LCR and AFD of the SNR, respectively.

Before proceeding, it is interesting to note that for AF systems knowledge of the

LCR or the AFD of the channel h is not sufficient. For fixed BS channels, the SNR

with slow flat fading is γ = |h|2Es/σ
2
n. Hence, knowledge of the LCR and the AFD

of the channel envelope |h| is sufficient to calculate the FoO and AOD. However, for

relay channels the form of the SNR is quite different, requiring separate evaluation of

the LCR and AFD of the SNR to obtain the quantities of interest.

It is unknown if a closed form expression for the LCR of the SNR exists, but

it is very unlikely. However, the LCR can be represented by the following integral
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expression:

Lγ(γ) =
2
√

2πγ

γ̄1γ̄2

exp

(
− γ

γ̄1

)
I (168)

I =
∫ ∞

0

√
f 2

1 γ̄1y4(y2 + C) + C2(f 2
1 + f 2

2 )γ̄2γ

y2
exp

(
− γ̄1y

4 + Cγ̄2γ

γ̄1γ̄2

)
dy.

A brief outline for obtaining this integral is provided in Appendix 5.2. Using the

above LCR expression along with the outage probability expression provided in [32],

the average outage duration is obtained as

TAOD(γth) =
Pout(γth)

Lγ(γth)
(169)

We later use (168) and (169) to compare the FoO and AOD of systems using fixed

vs. variable gain relays.

5.3.4 Comparisons with the variable gain relay channel

Our analysis in the earlier subsections dealt with fixed gain relays. It is possible at

this point to consider the effect of variable gain relays on the channel- and system-

level performance. For a relay with variable gain A2 in (153), the overall relay channel

is given by

hv =

√
E2h1h2√

E1|h1|2 + σ2
n

, (170)

with squared envelope

αv
2 =

E2|h1|2|h2|2
E1|h1|2 + σ2

n

. (171)

Interestingly, the squared envelope has a form identical to the SNR of the channel

with fixed gain relays, as evident from (166). Therefore, by applying the properties

of SNR provided in [32] along with a simple transformation of variables, the envelope

pdf of the variable gain relay channel is

fαv(αv) =
4αvE1 exp

(
−E1α2

v

E2σ2
2

)

E2σ2
2

(√
σ2

nα
2
v

E2σ2
1σ

2
2

K1

[
2

√
σ2

nα
2
v

E2σ2
1σ

2
2

]
+

σ2
n

E1σ2
1

K0

[
2

√
σ2

nα2
v

E2σ2
1σ

2
2

])
,

(172)
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Figure 26: Comparison between the envelope pdf of fixed gain vs. variable gain
relay channels

where K1[·] is the first order modified Bessel function of the second kind. In the

above envelope pdf equation, the noise variance σ2
n term explicitly shows the noise

propagation from the relay. Figure 26 compares the pdfs of the envelopes of fixed

gain channel h = A1h1h2 and the variable gain channel hv.

For comparison purposes, we assume γ̄1 = γ̄2 = 20 dB with E1, E2, σ2
1, and σ2

2

normalized to unity. Observe that the envelope pdf for the fixed gain channel is more

concentrated at lower values of the envelope. This suggests harsher fading with fixed

gain relays as compared to the variable gain relays.

A closed form expression for the channel auto-correlation in this case is hard to

come by. However, consider the asymptotic, i.e., high SNR, behavior of the chan-

nel in (170) by neglecting the noise variance term in the denominator, yielding the
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approximation

hv(t) ≈
√

E2h1(t)h2(t)√
E1|h1(t)|2

=

√
E2α1(t) exp [jθ1(t)]h2(t)√

E1α1(t)
(173)

=

√
E2

E1

exp [jθ1(t)]h2(t), (174)

where θ1(t) is the time varying random phase of the channel h1. Then, the approxi-

mate channel auto-correlation is

Rhvhv(τ) ≈ E2

E1

E[exp {jθ1(t + τ)} exp {−jθ1(t)}]Rh2h2(τ). (175)

Using the properties of the random phase of the channel [36] and applying some

calculus, we simplify (175) to

Rhvhv(τ 6= 0) ≈ ζE2πJ0(2πf1τ)[1− J0(2πf1τ)2]

4E1
2F1

(
3

2
,
3

2
, 2, J0(2πf1τ)2

)
Rh2h2(τ)

=
ζE2σ

2
2

2E1

, τ = 0 (176)

ζ =

(
1− exp (σ2

n/σ2
1)E1(σ

2
n/σ

2
1)

σ2
n/σ

2
1

)
, (177)

where 2F1 (·, ·, ·; ·) is the hypergeometric function and E1(·) is the exponential integral

function [28]. The validity of the above asymptotic auto-correlation function is verified

in the next section. This approximation is useful for designing channel estimators for

variable gain relay systems in the next Chapter. Other statistical properties of the

SNR such as the LCR and the AFD are not discussed because good approximations

are difficult to find.

We compare the system-level performance of fixed vs. variable gain relays in

terms of their respective FoOs and AODs. Such results are useful when developing

QoS models for pedestrian environments. Others have made BER comparisons [32]

that are useful when developing QOS models for vehicular traffic channels. Our

results for the variable gain case are later obtained using the SNR expression [32, 88]

γv =
γ1γ2

γ1 + γ2 + 1
. (178)
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5.3.5 Uplink and Downlink asymmetries and similarties

Until now we have only considered the downlink channel from the BS to the relay to

the MS. Since the BS-relay (h1) and relay-MS (h2) links are not completely identical,

the uplink channel from the MS to the BS will be different in several ways. We briefly

point out these differences here.

For the fixed gain relays, the overall channel h = h1h2 is symmetric in h1 and h2.

Therefore, the channel properties in the uplink remain the same. However, the SNR

given in (166) is not symmetric w.r.t. these two individual channels. The γ2 term

in the denominator is now replaced by γ1. The BER in the uplink will remain same

assuming identical distributions for γ1 and γ2 terms. However, properties such as the

FoO and AODs will be different for the uplink because the dynamical properties of

the channels h1 and h2 are completely different.

Likewise, for variable gain relays, the overall channel hv in (170) is asymmetric

w.r.t h1 and h2. Therefore, the channel properties will be different for the uplink.

The channel auto-correlation for this case may be derived following the analysis given

earlier. It is interesting that the SNR for variable gain relays in (178) is symmetric

w.r.t. individual link SNRs γ1 and γ2. Therefore, the FoO and AODs will be identical

for the uplink and the downlink.

5.4 Results

We now verify our theoretical analysis by means of simulations. To simulate a relay

channel, we need to simulate the BS-relay channel h1 and the relay-MS channel h2.

We utilize Zheng and Xiao’s Model II discussed in Chapter III to simulate h1 because

h1 is similar to traditional fixed-to-mobile cellular channels. For channel h2, which is

a mobile-to-mobile channel, we employ the statistical model proposed in Chapter IV.

We simulate relay channels with fixed and variable gain relays to verify our theoretical

93



analysis assuming f1 = f2 = 100 Hz (i.e., a = 1), and a sampling time of 10−4 s. Unless

specified otherwise, all simulation results assume E1, E2, σ2
1, and σ2

2 normalized to

unity.

Figure 23 (p.86) compares the simulated auto-correlation (time averaged over

2×105 samples) with the theoretical one for the fixed gain relay channel. They are

approximately equal, thus validating our theoretical auto-correlation. The theoretical

LCR expression is verified by the simulation plots shown in Figure 25 (p.88).

Figure 27 validates the approximate auto-correlation for the variable gain case by

comparing the simulated auto-correlation with the approximation provided in (175).

Also, comparing the auto-correlation plots in Figure 23 and Figure 27 after proper

power normalization, we find that the correlations are almost identical for variable

and fixed gain relay cases.
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Figure 27: Auto-correlation of variable gain relay channels.
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Figure 28 and Figure 29 provide FoO vs. SNR and AOD vs. SNR per hop γ̄i

(γ̄1 = γ̄2) plots, respectively, for threshold SNR values of γth = 0 dB and 5 dB. We

observe that for moderate to high SNR per hop values, the variables gain systems

have infrequent and shorter outages compared to the fixed gain system. However,

at low SNR per hop values, the variable gain system has infrequent outages but

with longer durations compared to the fixed gain system suggesting that their outage

probability is relatively higher. This effect has also been observed in [32] in terms

of outage probability events in the two systems while using a different fixed gain

relay. A low SNR value γ̄1 implies frequently occuring smaller instantaneous |h1|2

values, thereby, limiting the gain of variable gain relays, which leads to longer outage

durations at low SNR. On the other hand, at higher SNR, the fading compensation

provided by the variable gain relays leads to better performance. We also show the

FoO and AOD plots for the uplink with fixed gain relays in Figure 28 and Figure 29,

respectively. As mentioned earlier, we observe some difference between the uplink

and downlink characteristics. Though not shown in these figures, we found that this

difference becomes more pronounced when the Doppler frequencies f1 and f2 differ

considerably, an effect caused by the higher asymmetry in the channels h1 and h2.

5.5 Summary

In this chapter, we presented a comprehensive analysis of the statistical properties of

amplify and forward relay channels. Several properties such as the auto-correlation,

level crossing rates, and average outage durations were studied and verified by means

of simulation models. These results will be useful for designing AF relay systems to

improve network coverage and reliability.

Finally, it should be noted that all our results have only considered the range

extended link from the BS to the MS via the relay. Both links assumed a NLOS

mobile radio channel. Other operating environments may include the direct (LoS
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or NLoS) link from BS to MS. Generally speaking, the presence of the direct-link

component provides additional diversity that should improve performance compared

to the performance of our range extended link.

Appendix 5.1: Proof of (164)

Here, we provide a brief outline for the derivation of the LCR expression given in

(164). The LCR of a stationary random process α(t) at a level R is given as [74]

LR(α = R) =
∫ ∞

0
α̇fα,α̇(R, α̇)dα̇. (179)

With α = |h| = |h1h2| = α1α2, from [56]

fα,α̇(α, α̇) =
∫ ∞

0

∫ ∞

−∞
1

y2
fα1,α̇1

(
α

y
,
α̇

y
− αẏ

y2

)
fα2,α̇2(y, ẏ)dẏdy

=
∫ ∞

0

1

y2
fα1

(
α

y

)
fα2(y)

(∫ ∞

−∞
fα̇1

(
α̇

y
− αẏ

y2

)
fα̇2(ẏ)dẏ

)
dy, (180)

where we used the fact that the envelope αi is independent of its time derivative α̇i

for i = 1,2 [74]. For Rayleigh faded envelopes α1 and α2, it is known that [10, 74]

fα̇1 =
1√
2πb1

2

exp

(
− α̇1

2

2b1
2

)
, fα̇2 =

1√
2πb2

2

exp

(
− α̇2

2

2b2
2

)
, (181)

where b1
2 and b2

2 are the second moments of the spectrum of the channels h1 and

h2, respectively. From the results in [10] and [36], for the assumed auto-correlation

functions of the channels h1 and h2, it can be verified that

b1
2 = π2σ2

1f
2
1 , b2

2 = π2σ2
2(f

2
1 + f 2

2 ). (182)

Then, after evaluating the inner integral in (180) and some algebraic manipulations,

fα,α̇(α, α̇) =
1√
2π

∫ ∞

0
fα1

(
α

y

)
fα2(y)

1√
b1
2y

4 + b2
2α

2
exp

(
− y2α̇2

2(b1
2y

4 + b2
2α

2)

)
dy.

(183)
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Substituting (183) in (179) and changing the order of integration,

LR(α = R) =
1√
2π

∫ ∞

0

fα1(α/y)fα2(y)√
b1
2y

4 + b2
2α

2

(∫ ∞

0
α̇ exp

(
− y2α̇2

2(b1
2y

4 + b2
2α

2)

)
dα̇

)
dy

=
1√
2π

∫ ∞

0
fα1(α/y)fα2(y)

√
b1
2y

4 + b2
2α

2

y2
dy (184)

Finally, after substituting all the relevant quantities in (184) and making some sim-

plifications, we obtain the required integral expression (164).

Appendix 5.2: Proof of (168)

Here, an outline for deriving the LCR of the SNR given in (168) is provided. Some

of the notations used in Appendix 5.1 are also used here. First, consider the random

variable

z =
√

γ =
α1√

1 + C/α2
2

=
α1

w
, (185)

where w =
√

1 + C/α2
2. Note that here E[α2

i ] = γ̄i since we are dealing with SNR.

To obtain LCR of z by generalizing (179), we require the joint pdf of z and its time

derivative ż. This joint pdf can be obtained as

fz,ż(z, ż) =
∫ ∞

0

∫ ∞

−∞
fz,ż(z, ż|α2, α̇2)fα2,α̇2(α2, α̇2)dα̇2dα2. (186)

Given α̇2 and α2, z and ż are two functions of two random variables α̇1 and α1.

Therefore, by using [49] and the fact that α̇1 and α1 are independent, we obtain

fz,ż(z, ż|α2, α̇2) = w2fα1(wz)fα̇1(wż + zẇ). (187)

Then, substituting (187) and (186) along with the appropriate pdfs of the envelopes

and their time derivatives into the LCR equation

Lz(z) =
∫ ∞

0
żfz, ˙zα(z, ż)dż, (188)

we get a triple integral. Evaluating this integral first w.r.t. α̇2, then w.r.t. ż, and

substituting z =
√

γ, we get the LCR expression given in (168).
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CHAPTER VI

CHANNEL ESTIMATION FOR AMPLIFY AND

FORWARD RELAY CHANNELS

6.1 Overview

In the previous chapter, we showed that two key factors distinguish an AF wireless link

from a conventional cellular link: 1) the non-Gaussian channel nature of the overall

channel resulting from a cascading of the BS-relay and the relay-MS links and 2) noise

propagation from the relay to the destination. Consequently, the performance of such

AF systems is quite different from conventional cellular links. Several authors have

analyzed the performance of AF systems in terms of their BER and outage probability,

under different assumptions on the amplifier gain [13, 15, 32, 88]. But all of these

results assume perfect channel knowledge at the destination and, in some cases, at

the relay as well. The authors in [79] briefly discuss the impact of pilot symbol aided

channel estimation for cooperation diversity systems. However, because the main

focus in [79] is on designing a maximum likelihood sequence estimator, issues such

as the channel model and estimator design criteria for different relay mobilities and

gains are not discussed in detail. Thus, to the best of our knowledge, the problem of

channel estimation for AF relay wireless links has not been satisfactorily addressed.

Therefore, we present our results on channel estimation for AF relay systems in this

chapter.

Periodic insertion of known symbols called “pilots” along with the transmitted

data is widely used for channel estimation [17, 77]. We use this idea to study channel

estimation in the AF relay systems. We investigate issues such as 1) the selection of

appropriate channel models based upon relay mobility and relay gain, 2) the impact

of the underlying channel on the pilot insertion strategy and estimator design, and
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3) approximation of the BER by taking into account channel estimation errors.

The AF relay channel from the BS to the MS via the relay is a cascade of two

links: the BS-relay link and the relay-MS link. Optimal channel estimation of each

individual channel is possible by applying the Minimum Mean Square Error (MMSE)

estimation theory [33, 68]. However, optimal estimation of the cascaded links in the

relay channel is non-trivial. Further, we know that depending upon the mobility of

the relay, the overall channel is either a cascade of fixed-to-fixed and fixed-to-mobile or

fixed-to-mobile and mobile-to-mobile links. Therefore, the estimator must be designed

appropriately to yield acceptable performance under these fast fading conditions. We

found that optimal channel estimation using MMSE is perhaps not possible due to

mathematical intractability of the derivation of the MMSE estimator. Therefore, we

resort to sub-optimal linear minimum mean square error (LMMSE) estimator design.

The LMMSE estimates the channel as a linear function of the received signal in

contrast to the MMSE, which can yield a non-linear function. Therefore, LMMSE

estimator is simple but sub-optimal. We exploit the knowledge of underlying channel

statistics to obtain satisfactory performance by using the LMMSE estimator. Our

work demonstrates the usefulness of the LMMSE and other sub-optimal estimators

for channel estimation in AF relay systems. A recursive estimation scheme using the

extended Kalman filter (EKF) was also studied. However, the EKF estimator does

not perform well compared to the LMMSE estimator. Therefore, results on the EKF

are relegated to Appendix 6.1. We begin our discussion by describing the AF system

model. A discrete time system model is presented here for the ease of analysis.

6.2 System Model

Consider the downlink relay channel from a fixed BS transmitter to a MS receiver

via a relay in a cellular network arrangement. We assume time division multiplex-

ing (TDM) multi-access so that the BS-relay and the relay-MS transmissions occur
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in different time slots on the same carrier frequency. To achieve this TDM opera-

tion, the relays store the received signal by using an analog or a digital delay circuit.

Delays in digital domain can be efficiently implemented by implementing bandpass

sampling using an analog-to-digital (ADC) converter and storing the digital samples.

The bandpass signal can be reconstructed using a digital-to-analog (DAC) converter.

Note that baseband processing including front end processing, demodulation, and

decoding are not required after the ADC in AF relays, which makes them potentially

less complex than DF relays. Alternatively, a frequency division multiplexing (FDM)

mode is also possible if the relays convert the received signal to a different carrier

frequency and forward it to the MS. However, to illustrate channel estimation con-

cepts for AF relay links, the mode of operation is not important. Therefore, in our

subsequent discussion we assume the TDM mode of operation.

We consider a discrete time description, where all the samples have been obtained

using a sampling period equal to the symbol duration Ts and assume that perfect time

synchronization has been achieved at the relay and the receiver. Assuming frequency

flat-fading, the signal received by the relay at discrete time k is

r1(k) = h1(k)s(k) + n1(k), (189)

where s(k) is the modulated, complex data symbol with energy E1, h1(k) is the BS-

relay channel, and n1(k) is the relay AWGN. The relay amplifies r1(k) and retransmits

it to the destination MS, which receives

r2(k) = A(k)h2(k)r1(k) + n2(k)

= A(k)h2(k)h1(k)s(k) + A(k)h2(k)n1(k) + n2(k)

= h(k)s(k) + A(k)h2(k)n1(k) + n2(k), (190)

where A(k) is the relay amplification factor, h2(k) is the relay-destination MS channel,

and n2(k) is the receiver AWGN. The assumptions on the channel and noise properties

are identical to those in the continuous time system model provided in Section 2.3.2.
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Following our discussion on the types of AF relays in Section 5.2, A(k) can be

either

A1(k) =

√
E2

E[|r1(k)|2] =

√
E2

E1σ2
1 + σ2

n

or (191)

A2(k) =

√
E2

E1|h1(k)|2 + σ2
n

. (192)

The gain in (191) is fixed, non-time varying while the gain in (192) is time varying

determined by the BS-relay channel h1(k). Such variable gain relays require channel

estimation at the relay also to determine their amplification factor. It must be pointed

out here that throughout the chapter the term “fixed relay” implies a relay which is

not moving and should not be confused with the type of the relay gain. The nature

of the relay gain - fixed or variable will be explicitly mentioned when necessary to

avoid ambiguity.

For coherent demodulation, the MS tries to estimate and track the overall fading

channel h(k). In addition, variable gain relays track h1(k) for appropriate power

scaling. Before discussing how the estimation is done, we briefly summarize the

assumptions made on the channel models. We assume omni-directional transmit

and receiver antennas at all the terminals and NLOS propagation with 2-D isotropic

scattering around the relay and the MS. The BS is considered free of local scatterers

owing to its high elevation antennas. NLOS propagation implies Rayleigh faded

channels h1(k) and h2(k) with their associated statistical properties such as the time

auto-correlation determined by the mobility of the relay and the MS as discussed in

Chapter V.

Case I: Fixed relays

When the relay is fixed, the Doppler shift induced in the BS-relay channel is caused

by the relative motion of the nearby scattering objects and is very small. The auto-

correlation of channels h1(k) and h2(k) are [36]

Rh1h1(k
′
) = E[h1(k + k

′
)h∗1(k)] = σ2

1J0(2πf1k
′
) (193)
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Rh2h2(k
′
) = E[h2(k + k

′
)h∗2(k)] = σ2

2J0(2πf2k
′
), (194)

where E is the statistical expectation, ∗ is the complex conjugate operator, J0(x) is the

zeroth order Bessel function of the first kind, and f1 and f2 are the maximum Doppler

frequencies associated with h1(k) and h2(k), respectively. Note that for the BS-relay

link, (193) though not completely accurate, can serve our purpose in demonstrating

channel estimation by choosing f1 much smaller than f2, e.g., f1 = f2/10. It should

be noted that this channel model was applied in [79] for AF systems in a different

setting. In our work, we also consider the case of mobile relays.

Case II: Mobile relays

The channel h1(k) is now a fixed-to-mobile channel, while h2(k) is a mobile-to-mobile

channel. Using the results in [36] and [10], we have

Rh1h1(k
′
) = σ2

1J0(2πf1k
′
) (195)

Rh2h2(k
′
) = σ2

2J0(2πf1k
′
)J0(2πf2k

′
), (196)

where f1 and f2 are the maximum Doppler frequencies due to the motion of the relay

and the MS, respectively.

6.3 Channel Estimator Design

In a cellular channel, pilot symbol based MMSE estimators are often used for optimal

channel estimation [77]. However, the MMSE estimator design for the AF relay chan-

nels is very complex and perhaps intractable. The reason is that neither the overall

channel h(k) nor the effective noise A(k)h2(k)n1(k) + n2(k) in (190) are Gaus-

sian, thereby making the MMSE estimator design difficult. Therefore, we consider

sub-optimal LMMSE estimation [68]. Our analysis shows that LMMSE estimators

provide satisfactory performance without high complexity.

As illustrated in Figure 30, we consider packetized transmissions where pilot sym-

bols are periodically inserted in each packet with an insertion period of Tp symbols.
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The data symbols between two periodic pilots form a sub-packet (SP). The channel

estimate at each symbol position in a SP is obtained using Np pilot symbols.

Pilot symbol Data symbol

Packet

Sub-packet
Tp

Figure 30: Pilot symbol aided channel estimation.

In our analysis, we assume Np = 4. Thus, each data symbol in a SP uses the

two closest pilot symbols from the past and the two closest pilot symbols from the

future to estimate the channel. Additional pilot symbols may be used to improve

estimation. However, to maintain low complexity, we choose Np = 4. Each symbol

position in a SP requires a different estimator. However, the same symbol positions

across all SPs in a packet will use identical estimators due to periodic pilot insertion.

Assuming that BPSK modulated unit energy symbols s(n) = ±1 (E1 = 1) are

transmitted as pilot and data symbols, the channel estimate (CE) at a pilot position

is obtained using (190) as p̂(n) = r2(n)/s(n). Let p̂ be the (Np×1) vector of pilot

symbol CEs used to estimate the channel at time k, h(k), at a data position in a SP.

Then the CE obtained by the LMMSE criterion is [68]

ĥ(k) = ap̂. (197)

The LMMSE estimator (1×Np) vector a is

a = rhp̂R
−1
p̂p̂ , (198)

where rhp̂ is the correlation vector between h(k) and p̂ and Rp̂p̂ is the auto-correlation

matrix of the vector p̂.
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Using the system model and channel properties described earlier, we provide the

equations necessary to obtain above matrices for fixed and variable gain relays below.

Let p(l) denote an element of the vector p̂ corresponding to the pilot CE obtained at

time l. Note that the relative time difference (delay) between h(k) and p(l) is k − l.

Case I: Fixed gain relays

E[h(k)p(l)∗] = E[A1h1(k)h2(k){A1h1(l)h2(l) + A1h2(l)n1(l)/s(l) + n2(l)/s(l)}∗]

= E[A1h1(k)h2(k){A1h1(l)h2(l)}∗]

= A2
1Rh1h1(k − l)Rh2h2(k − l) (199)

Let γ̄i = Eiσ
2
i /σ

2
n be the average signal-to-noise ratio (SNR) for the ith hop, with

i = 1 and i = 2 denoting the BS-relay hop and the relay-MS hop, respectively. Then,

(199) can be simplified further by using A1 from (191) to

E[h(k)p(l)∗] =
E2

σ2
n(1 + γ̄1)

Rh1h1(k − l)Rh2h2(k − l). (200)

Note that the time index has been dropped from the gain A1 in the above equations

because the gain is constant.

E[p̂(l1)p̂(l2)
∗] = E [{A1h1(l1)h2(l1) + A1h2(l1)n1(l1)/s(l1) + n2(l1)/s(l1)}×

{A1h1(l2)h2(l2) + A1h2(l2)n1(l2)/s(l2) + n2(l2)/s(l2)}∗]

= E[{A1h1(l1)h2(l1)}{A1h1(l2)h2(l2)}∗] +

E[n2(l1)/s(l1){n2(l2)/s(l2)}∗] +

E[{A1h2(l1)n1(l1)/s(l1)}{A1h2(l2)n1(l2)/s(l2)}∗]

= A2
1Rh1h1(l1 − l2)Rh2h2(l1 − l2) + A2

1σ
2
2σ

2
nδ(l1 − l2) + σ2

nδ(l1 − l2)

=
E2

σ2
n(1 + γ̄1)

Rh1h1(l1 − l2)Rh2h2(l1 − l2) +

γ̄2σ
2
n

1 + γ̄1

δ(l1 − l2) + σ2
nδ(l1 − l2) (201)

The receiver is assumed to possess the knowledge of channel correlations, average

SNRs on the two hops, and the noise variance, which is feasible because these are
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long-term properties that can be separately acquired. This issue is important and

should be addressed in future work in greater detail. However, in a later section,

we evaluate the estimator performance in the absence of precise knowledge of these

quantities at the MS. Case II: Variable gain relays

The design equations for fixed gain relay case are fairly simple. However, the same

is not the case for variable gain relays. We use certain approximations to obtain the

correlation functions and to design the estimator.

With variable gain systems, the relay needs to estimate the channel. The LMMSE

estimator given above can be modified to estimate the channel h1. This estimator is

also the MMSE estimator because h1 and the additive noise in the BS-relay link are

both Gaussian. Estimator design at the relay is simple and therefore not discussed in

detail. The equations used for the estimator at the receiving MS are obtained using

the analysis provided in Chapter V as:

E[h(k)p(l)∗] ≈ ζRh1h1(k − l)Rh2h2(k − l) (202)

ζ =
E2

E1

(
1− 1

γ̄1

exp(1/γ̄1)E
x
1(1/γ̄1)

)
(203)

E[p̂(l1)p̂(l2)
∗] ≈ ζRh1h1(l1 − l2)Rh2h2(l1 − l2) +

γ̄2σ
2
n

γ̄1

exp(1/γ̄1)E
x
1(1/γ̄1)δ(l1 − l2) + σ2

nδ(l1 − l2), (204)

where Ex
1(y) is the exponential integral function. Note that these correlations are

approximate.

6.3.1 Pilot insertion period

A small number of pilot symbols must be inserted in the data stream to minimize the

loss of power and data rate. However, a certain minimum pilot insertion period is

necessary to interpolate the pilot CEs at the data positions. It is well known that in a

mobile fading channel, according to the Nyquist sampling theorem, the pilot insertion
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Table 3: Pilot insertion period
System Fixed relays Mobile relays

1/Tp≥ 1/Tp≥
Fixed gain AF 2(f1 + f2) 2(2f1 + f2)

Variable gain AF 2(f1 + f2) 2(2f1 + f2)
DF 2f2 2(f1 + f2)

period Tp must satisfy [66]

Tp ≤ 1

2FmaxTs

, (205)

where Fmax is the maximum Doppler frequency in the channel. By extending our

analysis of the channel properties discussed earlier, the Tps required under different

system configurations - AF or DF, different relay - fixed gain or variable gain, and

channel conditions are provided in Table 3.

The insertion period is the same for fixed and variable gain relays, because under

both configurations the overall channel has the same maximum Doppler frequency.

Naturally, the mobile relay case requires smaller Tp due to faster fading.

We also include comparisons with a DF system in Table 3. In a DF system, the

pilot spacing is governed by the link having higher maximum Doppler frequency of

the two links h1(k) and h2(k). The relay-MS link’s Doppler is greater for both cases

- fixed and mobile relay. Therefore, with fixed relays, we get Fmax = f2 while for

mobile relays we have Fmax = f1 + f2. Clearly, the required number of pilots is less

in the DF system compared to the AF system, thereby achieving a higher data rate

in the DF system. However, the relay complexity is higher in the DF mode. These

trade-offs must be balanced while choosing between DF and AF systems.

Using these design guidelines, we provide a realistic performance evaluation for

different systems in Section 6.5 via simulations. However, it is also beneficial to have

a theoretical means to quantify the system performance taking into account channel

estimation errors. To this end, we provide an approximate BER analysis for fixed

gain systems in the next section. The performance of variable gain systems does not
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lend itself to simple approximations. Therefore, it is not presented.

6.4 Approximate BER Analysis with Channel Es-

timation Errors

Consider the case of fixed gain relays. Let the error in estimating the channel h(k) in

a SP be e(k) = h(k)− ĥ(k) with error variance σ2
e . The orthogonality principle used

in the LMMSE theory suggests [68]

σ2
e = σ2

h − aRp̂p̂a
H, (206)

where σ2
h is the variance of the overall channel h(k) and H is the Hermitian operator.

Then, (190) can be rewritten as

r2(k) = ĥ(k)s(k) + w(k) (207)

w(k) = e(k)s(k) + A1h2(k)n1(k) + n2(k), (208)

where w(k) can be treated as the total additive noise corrupting the received signal.

This noise is not Gaussian due to the presence of the h2(k)n1(k) term. Therefore, the

usual methods to assess BER performance cannot be applied. Exact BER evaluation

is difficult due to the non-Gaussian nature of the noise. However, an upper bound on

the BER can be obtained by treating w(k) as Gaussian. The instantaneous symbol

SNR conditioned upon ĥ(k) is

γ =
E1|ĥ(k)|2

σ2
w

(209)

σ2
w = E1σ

2
e + A2

1σ
2
2σ

2
n + σ2

n. (210)

Note that here and in the subsequent analysis, we drop the index k for the ease of

notation. It should be remembered that different data positions, i.e., different k, will

have different error variances and therefore different γ. The average BER can be

obtained by averaging over all the data positions in a SP.
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The BER can be evaluated by finding the moment generating function (MGF) of

the instantaneous value of γ and applying the analysis provided in [72]. For this, we

require the probability distribution function of |ĥ(k)|2. Noting the fact that ĥ(k) is

an estimate of h(k), we approximate the pdf of |ĥ(k)|2 as having the same form as the

pdf of |h(k)|2. By using the pdf of |h(k)| from (156) in Chapter V, we approximate

the MGF of γ as

Φγ(s) =
1

γ̄s
exp

(
1

γ̄s

)
Ex

1

(
1

γ̄s

)
(211)

γ̄ = E[γ] =
E2

1(σ
2
h − σ2

e)

σ2
w

. (212)

Finally, for the BPSK modulated transmission, we obtain the BER

PBPSK =
1

π

∫ π/2

0
Φγ

(
s

1

sin(θ)2

)
dθ. (213)

The above expression includes the effects of imperfect channel estimation and helps

to evaluate the BER without the need for simulations. We verify the accuracy of this

approximate BER analysis in the next section. The above MGF can also be utilized

to evaluate the BER for other modulation schemes using the analysis in [72].

6.5 Results

In this section, we verify the performance of the proposed LMMSE estimator.We con-

sider transmission of BPSK modulated symbols in the form of packets containing 500

symbols, counting both the data and pilots symbols.. The channels for different pack-

ets are generated independently. The Method of Exact Doppler Spread (MEDS) given

in [56] is used to simulate the fixed-to-fixed and fixed-to-mobile channels while the

modified MEDS model given in Chapter IV is used to simulate the mobile-to-mobile

channels. Unless otherwise stated, for fixed relays we use normalized Doppler frequen-

cies f1Ts = 0.001 and f2Ts = 0.01 while for mobile relays we use f1Ts = f2Ts = 0.01.

A pilot insertion period of Tp = 5 symbols corresponding to 20% overhead bandwidth
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Figure 31: LMMSE estimator performance: BER vs. SNR per hop for fixed relay
scenario.

is used in most simulations. The Tp = 5 value ensures adequate channel sampling

for the Doppler frequencies under consideration. For example, Tp = 5 implies three

times over-sampling for mobile relays. Note that the power loss resulting from pilots

is accounted for in all the BER vs. SNR curves. We also assume equal average SNR

on both the hops, i.e., γ̄1 = γ̄2.

Results for the DF system are also included for the complete coverage of the topic.

The corresponding LMMSE estimators, which for the DF system are the MMSE esti-

mators, used at the relay and the receiver can be designed by easily modifying (199)

and (201) by using A1 =
√

E2 and neglecting relay noise propagation at the receiver.

The effect of the individual channels h1(k) and h2(k) alone should be considered at

the relay and the receiver for the DF system, respectively.

Figure 31 and Figure 32 illustrate the performance of different systems assuming

a fixed relay and a mobile relay, respectively. Plots with perfect CE at the receiver

110



0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

SNR per hop (dB)

B
E

R

DF, Perfect CE
DF, LMMSE CE
AF Fixed gain, Perfect CE
AF Fixed gain, LMMSE CE
AF Variable gain, Perfect CE
AF Variable gain, LMMSE CE
AF Fixed gain, BER approximation

f
1
T

s
 = f

2
T

s
 = 0.01

Mobile relay case             

Figure 32: LMMSE estimator performance: BER vs. SNR per hop for mobile relay
scenario.

and the relay, wherever applicable, are also provided to serve as benchmarks. The DF

system and the AF system with a variable gain relay have comparable performance, in

agreement with results in [15], where perfect channel estimation was assumed. Fixed

gain relays show poor performance. However, it must be kept in mind that fixed gain

relays have the lowest complexity because they do not require channel estimation at

the relay.

The results with the LMMSE estimator are within 2.5-3 dB of the perfect channel

knowledge curves and therefore the estimator performance can be considered satis-

factory. The estimator performance degrades to a certain degree for the mobile relay

case as compared to the fixed relay due to faster fading conditions. This is more

noticeable at high SNR where the gap between the BER with perfect CE and the

BER with LMMSE CE is wider for the mobile relay case in Figure 32 than the fixed

relay case in Figure 31. Additional performance improvement in such cases may be
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achieved by increasing the number of pilots and developing better estimation schemes.

These figures also plot the approximate BER values calculated using our analysis for

fixed gain relays. The approximation is particularly good for low-to-moderate SNR.

Better approximations should be developed in future work for the high SNR regime.

Having demonstrated that the LMMSE estimator provides good performance, we

now study the influence of pilot spacing Tp and other estimation strategies. In most

of the results that follow, we restrict our attention to the AF system with fixed gain,

mobile relays. The trends are similar for variable gain relays and therefore are not

shown.

6.5.1 Influence of pilot spacing

Figure 33 plots the BER vs. SNR per hop for different values of the pilot insertion

period Tp: 5, 10, and 20 symbols corresponding to 20%, 10%, and 5% pilot overhead

bandwidth, respectively.

We observe that there is an additional loss of approximately 0.5 dB SNR loss

at moderate SNR values if Tp = 10 is used instead of Tp = 5. However, at low

SNRs, where the noise is the limiting factor, Tp = 10 and Tp =5 perform identically,

thereby, suggesting that at low SNRs bandwidth and power should not be expended

by inserting more pilots. Further, with Tp = 20, the Nyquist sampling condition

of (205), which entails a minimum Tp of approximately 16 symbols for the chosen

Doppler frequencies, is not satisfied. Therefore, Tp = 20 shows significantly worse

BER. To further demonstrate the effectiveness of the LMMSE estimator, Figure 33

also plots the BER performance achieved by using differentialdifferentially detected

BPSK (DPSK) which does not require channel estimation. We observe that if ade-

quate pilots are inserted, coherent demodulation of the BPSK symbols with the aid

of LMMSE estimator performs better than DPSK.
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Figure 33: Influence of pilot spacing on the estimator performance.

6.5.2 Influence of the number of pilots, Np, used in estimation

Though most of the results are obtained using Np = 4 pilots for estimating each

channel coefficient, it is also worthwhile to study the performance with different Np.

Fig. 34 compares the results for Np = 2 and Np = 6. For Np = 2, one pilot symbol

from the past and future are used while for Np = 6, three pilot symbols from the

past and future are used for estimation. Naturally, the use of Np = 2 gives a slightly

inferior performance with a loss of approximately 0.5-0.7 dB compared to the Np = 4

case. However, a comparison between Np = 4 and Np = 6 shows that the gain by

increasing the number of pilots beyond 4 is insignificant. With Np = 6, the extreme

past and future pilot symbols bear low correlation to the current channel values.

Therefore, our results suggest that Np = 4 is sufficient to achieve good performance

under the assumed mobility conditions.
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Figure 34: Influence of the number of pilots, Np, used in estimation

6.5.3 Influence of the Doppler frequencies on the estimator performance

Assuming fixed gain, mobile, relays with f1Ts = f2Ts, Fig. 35 plots the BER vs. SNR

for different values of the normalized Doppler frequency f1Ts. For very low Doppler

frequencies, we observe that the estimator performance is better, but still suffers a loss

of 2-2.5 dB compared to perfect channel estimation. This loss arises because of the

inherent limitation of the estimator due to AWGN noise, relay propagation noise and

the interpolation process itself. For very high Doppler frequencies, the performance

loss increases to approximately 4 dB because of increased mobility in the channel.

Finally, it is interesting to compare the DPSK BER curve (obtained using

f1Ts = f2Ts = 0.01) given in Fig. 33 with the high Doppler (f1Ts = f2Ts = 0.02 or

0.03) BER curves given in Fig. 35. We observe that DPSK is still worse at high SNRs.

This suggests the usefulness of the LMMSE estimator for coherent demodulation even

under relatively high Doppler frequency conditions.
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Figure 35: Influence of the Doppler frequencies on the estimator performance

6.5.4 Dependence on the knowledge of channel correlation functions

In all the simulation results discussed so far we assumed perfect knowledge of the

channel correlation functions at the destination and at the relay. It is also impor-

tant to evaluate the performance when perfect knowledge of parameters such as the

Doppler frequencies required to design the estimator are not available. Figure 36 plots

the BER for different Doppler frequency conditions when the estimator is designed

using a fixed set of Doppler values. The “true” values are the actual values used to

simulate the channels while the “simulation” values of f1Ts = f2Ts = 0.01 are the

assumed values used to design and simulate the estimator. We observe that when

the true Doppler values are smaller than the assumed values, the performance is not

significantly affected.

Thus, the estimator can be designed based upon the expected worst case mobility

and Doppler frequency conditions in the channel. This is consistent with the general
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Figure 36: Performance dependence on the knowledge of channel correlation func-
tions.

principle often employed for estimation in traditional cellular channels.

6.5.5 Comparison with alternative estimation schemes

Now, we turn our attention to alternative estimation strategies and compare their

performance with the LMMSE scheme. As noted earlier, the LMMSE scheme which

obtains the channel estimates at data positions by interpolating the pilot channel

estimates is not the optimal scheme for relay channels. Therefore, it is worthwhile

to consider other estimation schemes and compare their complexity and performance

with the LMMSE scheme. In particular, we consider two schemes, “no-interpolation”

and “linear” interpolation schemes, because of their simplicity.

1. No-interpolation scheme:

The pilot at the beginning of a SP is used to obtain the channel estimate at

that position and the same estimate is used at all the data positions in a SP.
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Thus, there is no interpolation involved in obtaining the channel estimates. The

underlying assumption in this scheme is that the channel does not change sig-

nificantly within a SP. This assumption will not be always true and therefore

we expect the performance of this scheme to be inferior to the LMMSE. How-

ever, the estimator complexity is considerably less than that of the LMMSE

estimator.

2. Linear interpolation scheme:

The pilot channel estimates at the start and the end of a SP are linearly inter-

polated to obtain the channel estimates at the data positions in the SP. The

complexity of this scheme is higher than that of the no interpolation scheme

but less than the LMMSE estimator.

Figure 37 compares the BER performance of these schemes with the LMMSE

scheme. We observe that the no-interpolation scheme cannot cope up with the fading

conditions in the overall channel. The linear interpolation scheme performs approx-

imately 0.5-1 dB worse than the LMMSE scheme. This suggests that if a low com-

plexity solution is required, the linear interpolation may be preferred at the expense

of a modest SNR loss.

6.5.6 Performance in the presence of diversity

Returning to our comparisons in Figure 31 and Figure 32, the DF system shows

slightly better performance compared to the AF system. However, as noted in [15],

AF systems performs better in the presence of diversity such as the presence of a

direct BS-MS link in addition to the relay link. Such a link is possible when the

MS also receives the BS transmission in the first time slot when the BS transmits

to the relay. Channel estimation issues for the direct link have been well studied

and therefore are not studied here. However, to complete our comparisons, the BER
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Figure 37: Comparisons with alternative estimation schemes.

results including the direct BS-MS link are shown in Figure 38. The direct link is

modeled as a conventional cellular link (similar to h1(k)) with normalized Doppler

frequency fmTs = 0.01. The average SNR on the direct link is assumed 6 dB less

than the average SNR on the hops of the indirect link. Estimation is performed using

a LMMSE estimator designed for this link. At the MS, maximal ratio combining

(MRC) is used to combine the signal received via the direct and indirect relay links.

We observe that the added diversity significantly improves the performance of

AF systems, in particular the fixed gain AF system. The improved performance

coupled with reduced complexity implementation make AF systems preferable over

DF systems when the direct link can be supported.
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Figure 38: Performance in the presence of diversity from the direct BS-MS link.

6.6 Summary

We provided a realistic evaluation of the performance of cooperation diversity systems

by considering the effect of channel estimation. Issues pertaining to channel models

and estimator design were addressed for a wide range of scenarios, including different

gain and mobility conditions of the relay. The proposed LMMSE estimator was found

to provide satisfactory performance. We also provided an approximate analysis for

evaluating the BER under imperfect channel estimation for fixed gain relays. This

avoids the needs for simulations and also helps to understand the influence of channel

estimation errors at different SNRs.

Future research should focus on developing optimal or improved sub-optimal es-

timation algorithms. Further, the BER analysis for fixed gain relays under imperfect

channel estimation should be extended to encompass the case of variable gain relays.
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Appendix 6.1: Channel estimation using the Ex-

tended Kalman Filter (EKF)

The LMMSE estimator described earlier performs block by block data processing, i.e.,

in order to utilize pilots from the past and future, the estimator collects a block of data

symbols and performs estimation on this block. Often, for real-time channel tracking,

a recursive estimation algorithm, where the estimation is done symbol by symbol, is

preferred to minimize the delays incurred in block processing. Kalman filter (KF) has

been extensively used for recursive channel estimation in cellular applications [21]. In

the presence of additive Gaussian noise, the KF is the optimal linear recursive filter

[33], thereby giving optimal channel estimates.

The KF filter imposes a state-space model over the channel to be estimated and

utilizes the received signal to track the state variable. For example, to track the

Rayleigh faded cellular channel h(k) described in Chapter II, the KF filter assumes

h(k) to evolve in time as a first-order Gauss-Markov process, i.e.,

h(k) = υh(k − 1) + w(k), (214)

where υ is determined by the auto-correlation function of h(k) and w(k) is zero mean,

white, complex Gaussian noise with variance
√

1− υ2. As a result, h(k) is zero mean,

complex Gaussian with unit variance. By applying the Clarke’s model for cellular

channels from Chapter II, we have υ = J0(2πfdTs), Ts being the sampling period.

Further, the KF filter assumes the measured data, say y(k), is a linear function of

x(k), i.e.,

y(k) = C(k)h(k) + v(k), (215)

where C(k) is independent of h(k) and v(k), independent of w(k), is the AWGN in

the received signal. The equation shows that the measured data is a linear function

of the state-space variable.

However, the KF cannot be directly applied for CE in AF relay channels. For
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the AF relay channels, the channel to be estimated, h(k) = A(k)h1(k)h2(k), is non-

Gaussian due to the product of h1(k) and h2(k). Therefore, a state-space model that

approximates h(k) as a Gauss-Markov process is not possible. Rather than tracking

h(k) directly, we can track h1(k) and h2(k) individually by defining a state-space

vector consisting of these two variables, i.e.,

x(k) =




x(1, k)

x(2, k)


 =




h1(k)

h2(k)


 =




υ1 0

0 υ2


 x(k − 1) +




w1(k)

w2(k)




= Bx(k − 1) + w(k). (216)

Here, B is the 2x2 matrix containing the coefficients υ1 and υ2, which are determined

by the auto-correlation of the BS-relay channel h1(k) and the relay-MS channel h2(k),

respectively, while w(k) is the noise vector in the state-space model. Having defined

the state-space vector, let us now consider the signal received in an AF relay system.

From (190), we can write the received signal as

y(k) = A(k)h1(k)h2(k) + h2(k)n1(k) + n2(k). (217)

Thus, we notice that the received signal is a non-linear function of the state variables

h1(k) and h2(k), thereby precluding the use of KF. Instead, the extended KF (EKF)

can be used to track the state vector in the presence of such non-linearities [33].

Therefore, we apply the EKF algorithm for tracking the individual channels h1(k) and

h2(k). An apparent problem here is the fact that the received signal y(k) is symmetric

in the state variables except for the term h2(k)n1(k) due to noise propagation from

the relay. Therefore, the individual estimates of h1(k) and h2(k) are not likely to be

accurate. However, tracking of the overall channel h(k) is still possible.

We discuss channel estimation with fixed gain relays, i.e., the gain A(n) is given

by (191). We again assume that pilot symbols are inserted every Tp symbols. When a

pilot is available, the EKF updates the state vector using the pilot signal observation

while for the non-pilot symbols, the EKF simply predicts the state vector using the

state-space model. Using the EKF theory, we summarize EKF equations here:
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Initialization: At time k = 0, we initialize the state vector and the error covariance

matrix P , i.e., the covariance of error between the true state vector and the

estimated state vector, as

x(k = 0) = [0 0]T (218)

P =




2σ2
1 0

0 2σ2
2


 . (219)

Here, T is the matrix transpose operator and σ2
i is the variance of the channel

hi.

Update: For k 6= 0, the EKF updates its estimate of the state vector in two phases:

• Measurement update, i.e., update using pilot symbol measurements: For

k such that mod(k, Tp) = 0, where mod is the modulo operator,

P = BPBH + Qw (220)

∇x = [Aυ2x(2, k − 1) Aυ1υ2x(1, k − 1)] (221)

G =
P∇H

x

(∇xP∇H
x + σ2

n + |Aυ2x(2, k − 1)|2σ2
n)

(222)

x(k) = Bx(k − 1) + G(y(k)− Aυ1υ2x(1, k − 1)x(2, k − 1)) (223)

P = (I2x2 −G∇x)P (224)

ĥ(k) = x(1, k − 1)x(2, k − 1), (225)

where Qw is the covariance matrix of the vector w, ∇x computes the

gradient of the state vector, G is the filter gain used for the update, and

ĥ(k) is the estimate of the channel at time k.

• Prediction, i.e., update in the absence of pilot measurements:

For k such that mod(k, Tp) 6= 0,

P = BPBH + Qw (226)

x(k) = Bx(k − 1) (227)

ĥ(k) = x(1, k − 1)x(2, k − 1). (228)
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Note that the EKF assumes knowledge of the parameters υi’s just as the LMMSE

estimator assumes the knowledge of channel correlations.

Now, we assess the performance of the above EKF algorithm for channel estima-

tion in fixed gain AF relay systems. A pilot symbol is inserted every fifth symbol,

i.e., Tp = 5. Analogous to assumptions in Section 6.5, we assume mobile relay with

f1Ts = f2Ts =0.01. Therefore, we get υ1 = J0(2πf1Ts) and υ2 = J0(2πf1Ts)J0(2πf2Ts).

We consider two different channel models: i) h1(k) and h2(k) are indeed first-order

Gauss-Markov processes and ii) h1(k) and h2(k) are actually based on the fixed-to-

mobile and mobile-to-mobile channel SoS models discussed earlier. However, the EKF

assumes them as Gauss-Markov processes with υis as the parameters. Figure (39)

plots the results of channel estimation along with a comparison with the LMMSE es-

timator performance. We observe that when the underlying channel model obeys the

Gauss-Markov assumption, the EKF provides good performance. However, for chan-

nels of our interest, where SoS models are more realistic, the EKF’s performance is

inferior to that of the LMMSE estimator. Therefore, the EKF is not a good candidate

for estimating AF relay channels.

The inferior performance of the EKF arises due to several factors. Firstly, though

a Gauss-Markov model is reasonable for individual channels h1(n) and h2(n) [21],

the model is not suitable for estimating h(n). The underlying channel is too fast to

give effective recursive estimates. Information from several pilot symbols must be

used to enable estimation under such fading conditions. Therefore, LMMSE with

block processing performs better. In addition, the presence of non-Gaussian noise

in the received signal leads to some loss of optimality in estimation using the EKF,

which potentially degrades the performance. The performance of the EKF may be

improved by imposing a higher order model on the channels h1 and h2 rather than

a first order model. However, with a higher order model, the estimator complexity

increases. Therefore, this issue is not considered in our work. A detailed analysis of
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Figure 39: Channel estimation using the Extended Kalman Filter.

these performance vs. complexity tradeoffs may be of interest in future work.
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CHAPTER VII

CONTRIBUTIONS AND FUTURE RESEARCH

DIRECTIONS

7.1 Contributions to wireless channel modeling

and simulation

Wireless channel modeling and simulation related issues are highly relevant for de-

signing wireless communication systems. The knowledge about different channel im-

pairments obtained from channel modeling is a must for developing algorithms for

reliable communication. Simulation models complement this by recreating channel

impairments in simulations and thus providing a platform for designing and test-

ing different algorithms. Motivated by these facts, here we summarize our research

contributions to wireless channel modeling and simulation for different applications.

• Cellular channels:

Several theoretical and SoS simulation models are available in the literature

for cellular channels - wireless propagation channels between a BS and a MS.

However, we found that a coherent and comprehensive analysis of these different

simulation models is not available. Therefore, we provided a rigorous analysis

to compare several statistical simulation models for cellular channels. Instead of

evaluating different models qualitatively, as often done in the existing literature,

quantitative metrics were used to compare different models.

Our analysis revealed the non-stationary nature of the existing Zheng and Xiao’s

model (Model IV), thereby justifying the need to resort to quantitative metrics.

We identified models that give desired accuracy in simulations by evaluating

their auto-correlation and LCR statistics. Our analysis suggests that “just the

right amount of randomness” must be added in the simulation models to provide
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good performance with minimal complexity. These insights formed the basis of

novel simulation models for mobile-to-mobile channels.

• Mobile-to-mobile channels:

Mobile-to-mobile channels with mobility at both the ends of a communication

link significantly differ from cellular channels in terms of their temporal prop-

erties. A literature survey suggested that theoretical and simulation models

for these channels are rare. Therefore, we presented an alternate mobile-to-

mobile channel representation by using “double ring” scattering environment

where scatterers are placed uniformly on two rings - one around the transmitter

and the other around the receiver. This alternate channel representation along

with the insights gained from our work on cellular channels enabled us to de-

velop new statistical as well as deterministic SoS simulation models for mobile-

to-mobile channels. The SoS model parameters such as random phases and

Doppler frequencies were carefully tailored to reproduce the channel statistics

in simulations. We demonstrated that our models provide superior performance

compared to the existing models, thereby justifying the usefulness of these new

models.

• Amplify and forward relay channels:

Future communication systems are likely to deploy relays to improve network

coverage and link reliability. For reasons of complexity, AF relays, which simply

receive, amplify, and forward a signal, are likely to find widespread acceptance in

contrast to DF relays. However, we found that radio channels in such AF relay

systems are unique and not well understood. An AF relay channel consists of

a cascade of transmitter-relay and relay-receiver fading channels making it dif-

ferent from cellular and mobile-to-mobile channels. Therefore, we characterized

the statistical properties of these channels.
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The cascading of two links results in the double Gaussian (product of two Gaus-

sians) nature of an AF relay channel. Therefore, the fading is different from

the traditional Rayleigh fading. We derived temporal properties like the auto-

correlation, the Doppler spread, and the LCR of AF relay channels. These

properties show that AF relay channels fade faster compared to cellular and

mobile-to-mobile channels. Transmission as well as reception techniques must

be designed by taking into account these unique properties of AF relays chan-

nels. In addition, we evaluated different kinds of AF relay systems, fixed and

variable gain relays, in terms of their outage frequency and outage durations.

We showed that variable gain relays tend to perform better because they provide

partial compensation of channel fading at the relay. The statistical properties

developed by us are useful for channel estimation in AF relay systems.

7.2 Contributions to wireless channel estimation

Coherent reception requires knowledge of the instantaneous channel to compensate

fading and perform demodulation. The channel knowledge is acquired by transmitting

known pilot symbols and estimating the channel. The problem of channel estimation

has been extensively studied for cellular channels. However, the unique nature of AF

relay channels makes estimation difficult in relay systems. Therefore, we investigated

channel estimation for AF relay channels.

We found that because of the non-Gaussian nature of AF relay channels as well

as noise propagation from the relay, design of optimal MMSE estimator is complex.

Therefore, we developed a simple but sub-optimal LMMSE scheme to estimate AF

relay channels. Design criteria like minimum pilot insertion period and estimator

coefficients were provided by applying the properties of AF relay channels for various

relay configurations such as stationary as well as mobile relays and fixed gain as

well as variable gain relays. We showed that the LMMSE estimator provides better
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performance compared to other estimation schemes like linear interpolation and the

EKF. We also evaluated the trade-offs in channel estimation for AF and DF systems.

We found that DF systems have less stringent requirements on channel estimation

because the channels in DF systems fade slowly compared to AF systems.

In addition, an approximate analysis was provided to compute the BER in the

presence of imperfect channel estimation. This analysis is useful to evaluate the

estimator performance without resorting to time-consuming simulations.

7.3 Future work on mobile-to-mobile channels

Due to a lack of channel measurement capabilities, our contributions have been lim-

ited to developing theoretical and simulation models of mobile-to-mobile channels.

However, it is important to verify the accuracy of these models in real-world prop-

agation conditions. Therefore, future research efforts may be devoted to collecting

channel data and developing models from these measurements. As noted in Chap-

ter II, some efforts in this direction are already underway. Further, there is a need to

extend the currently available narrowband, frequency-flat mobile-to-mobile channel

models to frequency-selective models for high bandwidth transmissions. In certain ap-

plications, MIMO antennas are likely to be deployed in mobile-to-mobile applications.

Therefore, it is also necessary to extend the current models to develop MIMO channel

models by accurately modeling spatial correlations between multiple antennas.

We have shown the usefulness of our simulation models for computer simulations.

The feasibility of porting these simulation models into hardware for real-time channel

simulation is also of interest. Hardware channel emulation can increase the useful-

ness of our simulation models by enabling network level simulations in real-time. In

addition, performance vs. complexity trade-offs between statistical and determinis-

tic simulation models should be studied from a network simulation perspective in

contrast to the link level analysis presented here.
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7.4 Future research on amplify and forward relay

channels

It is evident from the results in Chapter V that our study of AF relay channels is

still not complete. Often, we found that properties like the auto-correlation and LCR

cannot be quantified precisely due to a lack of closed form expressions. Therefore,

future research should consider obtaining these properties in closed forms to gain

better insights into their behavior. If such closed form properties are not achiev-

able, better and simpler approximations need to be developed. Also, issues like the

properties of variable gain relays and differences between uplink and downlink relay

channels should be studied in greater detail. In our analysis, we assumed Rayleigh

faded transmitter-relay and relay-receiver links due to NLOS propagation. This work

needs to be extended for scenarios where the links can be Rician due to the presence

of a LOS path.

The discussion in Chapter VI showed that channel estimation in AF relay chan-

nels is interesting and non-trivial. We presented different sub-optimal schemes for

channel estimation in AF relay channels. Therefore, the problem of optimal MMSE

channel estimation is still open for AF relay channels. Future research should be

targeted at developing this optimal scheme or alternate sub-optimal schemes with

better performance than the schemes discussed here.

The LMMSE estimator presented here assumed accurate knowledge of channel

statistics. We briefly studied the estimator performance when these knowledge is

not accurate. This issue needs to be addressed in greater detail in future to develop

robust estimation schemes.
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