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SUMMARY 

Smart grid technologies have been in rapid growth over the last decade. Large 

portion of these technologies are experienced amalgamation with the power distribution 

infrastructure. Fast integration of these technologies can have a great impact on the power 

distribution system. There exist opportunities for residential energy resources and smart 

loads via increased controllability to provide house level benefits. 

The impact of distributed energy resources (DERs), electric vehicles/plug-in 

hybrid electric vehicles (EVs/PHEVs), and smart appliances on the distribution grid has 

been studied from different aspects in the literature. The results of these studies suggest 

the following: 

a) the impact, generally, is beneficial in terms of environment, economy, and 

reliability; however, it can be more beneficial by implementing controls to 

maximize the beneficial impact and, 

b) in the absence of additional controls, a negative effect was identified 

regarding the service lifetime of power distribution system components, in 

particular distribution transformers. 

This research presents a new class of a smart house energy management system 

that can provide management and control of a residential house electric energy without 

inconvenience to the residents of the house and without overloading the distribution 

infrastructure. In this research, the management system manages one house; however, the 

management system can provide control services to more than one residential house. 
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Furthermore, the system can provide energy management services for a commercial 

building, if it is appropriately sized. 

The smart house energy management system that is presented in this dissertation 

deploys smart control strategies to maximize the beneficial effects that are associated 

with house energy resources and smart appliances. It can also lessen the unfavorable 

effect on the lifetime of distribution components. The management of the impact, 

whether favorable or not, requires properly designed control algorithms for the 

coordinated use of smart devices and intelligent control of charging cycles of EV/PHEV 

battery, house battery, and other resources in the house. 

The implementation of these controls requires an infrastructure that exploits 

advanced smart grid technologies. This infrastructure continuously monitors the house 

power system operation, determines the real-time model of the house, computes better 

operating strategies over a planning period of time, and enables control of house 

resources. In other words, the smart house energy management system manages the 

house energy resources, such as EV/PHEV and smart loads, in a way that the power 

infrastructure components are not overloaded beyond permissible limits, thus avoiding 

unnecessary loss of service lifetime.  

The smart house energy management system provides benefits for the good of 

utility and customer. In case of variable electricity rates, the management system can 

reduce the customer’s total energy cost. The benefits can be also extended to provide 

ancillary services to the utility such as control of peak load and reactive power support– 

assuming that this is worked out under a certain mutually beneficial arrangement between 

the utility and customer. 
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This research resulted in a novel smart house energy management system that can 

optimize and control the operation of a house. This is achieved without inconvenience to 

the customer and overloading the infrastructure. The work describes the following 

contributions: 1) the development of an advanced house infrastructure that can provide 

real-time management of the house, 2) the formulation of the house optimization model 

in a way that benefits both the utility and customer, without inconvenience to the 

customer and without overloading the distribution transformer, 3) the development of 

physically based and detailed electrothermal model of a center-tap distribution 

transformer, and 4) the development of physically based and detailed electrothermal 

models of various house energy resources and controllable/non-controllable appliances 

including batteries, dishwasher, refrigerator, and air conditioner.  
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1 INTRODUCTION 

This dissertation presents a new smart house energy management system that 

provides smart control functions to optimally schedule house DERs and smart appliances. 

This Chapter introduces current smart grid technologies and discusses penetration 

potential of these technologies at a residential house level. Also, this Chapter presents the 

research motivation, key contributions, and outlines the reminder of this dissertation. 

1.1 Smart Grid Technologies 

In recent decades, the modernization of the electrical grid has attracted the 

attention of world leaders, power and energy entities, and policy makers. Particularly, the 

act of 2007 has amplified the need to accelerate the ongoing effort by power utilities, 

system operators, and other stockholders to meet smart grid goals [1]. As a result, a 

growing number of new smart grid technologies, such as DERs, EVs/PHEVs, smart 

appliances, and advanced measurement and sensing meters have seen amalgamation with 

the existing power grid. Consequently, the market share of these advanced technologies 

has been dramatically increased. Statistics about the market share of these technologies 

are presented in the next section. 

1.2 Penetration Potential of House DERs and Appliances 

In terms of DER penetration, the New England Independent System Operator 

(NE-ISO) expected that DERs will provide approximately 2.855 GW by 2021; 800 MW 
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of the total estimate was forecasted to be supplied by solar photovoltaic (PV) [2]. In a 

house/building level [3], the U.S. Energy Information Administration (EIA) projected 

that house/building solar PV is expected to generate 25 GW in the year 2040 as 

illustrated in Figure 1. Other types of energy distributed generations installation 

projections, sorted by generation technology, are shown in Figure 1.  

 

Figure 1. Distributed generation projection [3]. 

One of the important cornerstones of the future power grid is the house [4]. Smart 

grid technologies related to a house have been in rapid development and the market share 

of these technologies is expected to further increase. In a worldwide scale, market 

analysts expected that the market value of smart appliances reach over 26.1 billion U.S. 

dollars in 2019 [5]. In an optimistic study [6], it was estimated that Demand Response 

(DR) enabled house appliances could generate as high as $59 billion in the U.S. by 2019. 

Furthermore, benefits related to DR could get up to $16 billion reducing the need for new 

generation power plants [6]. Deployment of smart grid technologies, such as smart 

G
W

Year
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appliances with smart control, can deliver full range of benefits, particularly benefits 

related to end user.  

Realizing the potential of DR, the Federal Energy Regulatory Commission 

(FERC) has provided an assessment of the U.S. national demand response potential [7]. 

One of the conclusions is that, by the time the report was written, the majority of demand 

response comes from large commercial and industrial customers, primarily through 

interruptible tariffs and capacity and demand bidding programs. However, the residential 

class was found to represents the most untapped potential for demand response. In 

particular, 10% was approximately the maximum potential of residential peak load 

reduction by the year 2019, if full customer participation is achieved as illustrated in 

Figure 2. This 10% is equivalent to 100 GW. As a result, residential demand was 

specifically stressed for more careful and thorough analysis [8]. In fact, it was asserted 

that achieving smart grid technical goals will not fully realized without capturing benefits 

associated with the house [4]. With current technology advancement in communication, 

information technology, automation, and computing power, demand response 

applications can be extended to engage individual customers. 

 

Figure 2. The U.S. potential demand response (2019) [7]. 
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Due to environmental and sustainable energy advantages of EVs/PHEVs 

compared with conventional transportation means that depend on fossil fuel, the 

penetration of EVs/PHEVs and other green technology based vehicles is anticipated will 

grow significantly in the worldwide market. In the U.S., the projected market portion of 

EVs/PHEVs was nearly 4.5% of the national fleet by 2030 as illustrated in Figure 3. 

Higher EVs/PHEVs penetration scenarios were also depicted in Figure 3 [9]. Although 

these projections might be quite high, these statistical projections were supported by 

other studies [10, 11]. These smart grid technologies are integrated with an already aging 

power distribution infrastructure. This aging power infrastructure is discussed next. 

 

Figure 3. Projected EVs/PHEVs by 2030 [9]. 

1.3 Aging Power Grid Infrastructure 

In most developed countries, large parts of existing electrical grid infrastructure can 

be dated back to the 1960s. A recent survey of over 400 U.S. electric utilities revealed 

that the top pressing issue facing utilities is old infrastructure [12]. One of the important 

components of any power distribution system is distribution transformers. Maintaining 

these transformers represent a significant cost of electric utility total annual investment. 
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According to FERC, distribution transformers can account for about 9-20% of total 

distribution capital spending in a year [13]. Despite the fact that larger transformer had 

become more efficient, smaller distribution transformers had in general declined [14].  

Large penetration potential of House DERs and appliance with aging distribution 

infrastructure pose significant challenges for power grid utilities. The question becomes 

how utilities can manage smooth integration of advanced smart grid technologies without 

adding more stress on existing electric power infrastructure. The answer of this question 

is framed in the following section. 

1.4 Research Motivation and Key Contributions 

The objective of the research is to develop a smart house energy management 

system that controls and optimizes the operation of a house. The integration of DERs, 

smart appliances, and EV are expected to have an impact on the distribution electric grid. 

In particular, the proliferation of EV is expected to tax existing infrastructure of the 

distribution system and its reliability in supplying customers. In contrast, present day end 

users have resources (DERs and smart appliances) that are expected to alleviate the 

burden on the infrastructure, if appropriately used. Therefore, the goal of this research is 

to develop a smart house energy management system that makes use of available 

resources at the house level and perform optimization functions that benefit both the 

utility and customer. The management system works without inconvenience to the 

customer and without overloading the distribution transformer, which elongate the 

lifetime cycle of the transformer. 
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To achieve this goal, a novel house infrastructure was designed. Major 

components of the infrastructure were developed. The mathematical formulation of the 

house optimization model was developed in way that provides benefits for the power 

utility provider and end customer, without incurring any inconvenience to the customer 

and without overloading/overheating the transformer. Also, house level DSE was 

mathematically formulated. To perform optimization and estimation, models of important 

appliances and DERs at the house including distribution transformer were needed. 

Accordingly, new electrothermal model of a center-tap transformer was developed. 

Furthermore, house energy resources and loads, whether controllable or not, 

electrothermal models were developed. 

1.5 Dissertation Outline 

In the following Chapters, the specifics of the smart house energy management 

system are provided. Specifically, the dissertation is divided as follows: Chapter 2 

introduces existing literature review and important background information related to the 

research topic. The advanced house infrastructure is described in Chapter 3. In Chapter 4, 

the house optimization model is presented. Then, the modeling methodology used to 

develop various devices is discussed in Chapter 5. Chapter 6 describes the house 

distributed state estimation. In Chapter 7, the solution methodology used to solve the 

problem is discussed. In Chapter 8, demonstrative examples of the house models 

including the distribution transformer are presented. Also, demonstrative case studies of 

the house energy management system are presented in Chapter 9. Finally, Chapter 10 

summarizes research conclusions, contributions, and directions for research future.  
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2 LITERATURE SURVEY AND BACKGROUND INFORMATION 

2.1 Introduction 

This chapter provides literature review and background information related to the 

research topic. Firstly, a literature review on the impact of integrating distributed 

generation resources and smart appliances on the power distribution grid is provided. 

Then, current residential demand response programs and their satisfactory level of 

customer comfort are discussed. After that, a background overview of existing research in 

house energy management system topic is provided. The last section provides a 

discussion about existing residential loads and transformer thermal models. 

2.2 Residential DERs and Smart Assets Impact on the Distribution System 

The deregulations of the electric power system and customers desire for a reliable, 

economic, and clean energy have increased the interests in DERs. Previous penetration 

potential and market share statistics that are presented in Chapter ‎1 are an indication that 

the proliferation and integration of distributed generation resources, smart appliances, and 

EVs/PHEVs will take place in a large part in the residential sector. This integration is 

expected to have an impact on the power distribution system.  

In the literature, the impact of DERs, smart appliances, and EVs/PHEVs was 

found that the impact is generally expected to be beneficial for the grid [9, 15-24]. Yet, 

electric utilities express also a growing concern about several issues including voltage 

stability, system protection, issues related to PV variability, and the possibility for 

overloading/overheating power distribution apparatus and their service lifetime [24-28]. 



8 

On the assets service lifetime in particular, the impact of integrating EVs/PHEVs 

on distribution system components, such as distribution transformers and local circuits, 

was discussed and analyzed in many research projects. To characterize the impact of EVs 

integration on the distribution grid, Uriate and Hebner performed a study on 735 homes 

with 100 EVs that were randomly placed [29]. They did a system simulation over 24 

hours and concluded that utilities should express worry regarding possible overloading 

conditions. This is, in particular, true with fast adaptation of EVs on a single distribution 

feeder. The study also expressed further concern regarding the state of health of the 

distribution transformer insulation, specifically during peak days of the year. Ureh, in 

[30], adopted more random loads from EVs/PHEVs without careful planning and found 

that this strategy may expose the already aging electrical infrastructure to become 

susceptible for overloading conditions. Ureh also found that the load resulting from an 

EV can be as large as four times that of a regular-sized house load. Figure 4 is an 

illustration of an actual load of a house with 3.7 kW EV charging between 1-6:30 am. 

 

Figure 4. An actual house profile with EV charging [30]. 
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Fast and uncoordinated charging of EVs posed a greater threat to the distribution 

transformer lifetime service as concluded in [31-33]. This is, particularly, true with high 

EV power consumption. To avoid that, Masoum et al. proposed a smart and coordinated 

EVs charging approach [34]. However, coordinated control approach might fail to work 

well with a large cluster of EVs/PHEVs. On another research, Shafiee et al. investigated 

the impact of EV on the distribution grid and verified that the peak load is also a big 

concern, especially in the winter season [35]. To avoid these adversary impact, Trovao in 

[36] showed that a comprehensive control strategy of EVs/PHEVs is necessary. Due to 

the uncertainty nature of EVs/PHEVs, Papadopoulos et al. used a probabilistic approach 

and found that the distribution transformer that was responsible of serving 96 customers, 

was in fact overloaded [37]. In an attempt to propose a solution, authors of [8, 38] 

suggested to install solar PV to counterpart the increment load. Solar power however is 

an intermittent resource. So, this might not be a solution. A small scale micro combined 

heat and power (micro-CHP) was also suggested to be installed in the house [39]. But, 

this solution requires infrastructure modification of the house.  

Due to the expected proliferation of controllable appliances in the house, DR is 

foreseen to offer a better solution and can potentially improve the reliability of the power 

system operation [40, 41]. A brief review regarding current DR practices and customers 

approval from these programs is discussed next.  

2.3 Current Status of Demand Response and Customer Satisfaction  

For decades, DR has been implemented in the form of direct-load control (DLC) of 

end user loads, which permits the power utility provider to interrupt electricity to large 

size commercial or industrial loads. Because of the large potential of DR, it was 
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recognized by FERC as one of top three important initiatives [42]. With current 

technology advancement in communication, automation, and computing power, DR 

applications can be extended to engage individual customers in a smart approach. 

However, the effect would be reduced without using proper residential load models and 

appropriate controls [43, 44]. This section focuses on DR programs that are related to 

residential customers. DR programs are employed by electric utility supplier to make use 

of the available energy in a more efficient way without the need for more infrastructure 

installation. An excellent classification of DR programs is shown in Figure 5.  

 

Figure 5. Classification of demand response programs [45]. 

DLC and load-interruptible programs occur where the electricity supplier, in usual 

cases, provides incentive to participated consumers in a form of bill credit or discount 

rate. An example of a conventional DLC is to cycle off the air conditioner of half of the 

consumers periodically for 15 minutes and then on for 15 minutes; or to cycle the water 

heater off for three hours and then on for three hours [46]. Heffner and Goldman 

performed a case study to analyze feedback impact on customers energy consumptions 
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[47]. This study involved residential customers’ participation. In the study, the utility 

provided the participants feedback about their energy consumption, which included the 

time-of-use information and some tips of how to shift electricity usage from peak time to 

off-peak period. The study concluded that over the three months test period, participants’ 

shifted their power demand from peak to off-peak period. 

With the advent of electricity markets, special DR programs were introduced, 

where participants are rewarded money based on the amount of curtailed load during 

critical times. When electricity tariff is dynamics, price based programs were also 

introduced; the main goal here is to flatten the demand curve by offering high price 

during peak time and lower price during off-peak time. Chassin and DeSteese performed 

a field case study to analyze the impact of communicating the variable price to the 

customer on the peak load. The study results were presented in [48, 49]. With a two-way 

communication system, DR performance using controllable devices was tested. The 

controllable devices were five water pumps, two diesel generators, micro turbine, and 

112 residential participants. Two capacity constraints for a virtual feeder connecting all 

participants were considered in the study. However, results for the 500 kW feeder 

constraint period are only presented. Each controllable device was managed by a price 

signal that was sent through the internet and updated every five minutes. In Figure 6, the 

results of the 500 kW constraint case are shown. It is shown that not only peak was 

shifted, but also it was reduced for the aggregated residential thermostatic loads.  
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Figure 6. Actual and baseline thermostatically controlled load [48]. 

Other classifications of DR programs were provided in [50, 51]. However, these 

programs require consumers’ participation. Further, these programs introduce full or little 

demand interruption in a time when it might be needed by the customer. The current DR 

programs, generally, underscore the comfort of end user. To consider end user comfort, 

several solutions were proposed. These solutions are discussed in the following section. 

2.4 Current House Energy Management Systems 

In the power utility control center, lays one of the most critical components that is 

the energy management system (EMS). It is used by system operators to monitor and 

control the power system. Critical applications are performed by EMS such as state 

estimation (SE) and optimal power flow (OPF). Basically, data coming from the field, 

though SCADA system, are used usually to perform SE. Results of the estimation are 

used to optimize the operation of the system (OPF) and other functions needed for the 

operation of the power system. The increase integration of renewable resources, storage 
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systems, EVs/PHEVs and smart appliances in the distribution system have urged toward 

EMS modernization. One of the proposed solutions is the distributed EMS. 

Extensive literature exists on the topic of optimal scheduling and control of a 

house appliances and energy resources (EVs/PHEVs, energy storage, PV rooftops and 

other possible resources). To alleviate the negative effects of integrating EV, two main 

approaches were identified in the literature; these are the use of battery energy storage 

systems (BESS) and load management. To evaluate the former approach, Mardira et al. 

investigated the impact of residential BESS on the aggregated power demand profile with 

the presence of many residential roof-tops solar PV [52]. They concluded that the average 

and peak aggregated power demand was reduced. The contribution of the battery storage 

systems on residential and commercial load was analyzed in [53]. It was found that the 

battery storage systems assisted in shifting and smoothing the peak demand.  

The second main approach to lessen the undesirable impact of EVs on the 

distribution power grid is to provide load management for house loads. One main method 

for managing house load is DLC approach [54-58]. Electric Power Research Institute 

(EPRI) has identified three classes of DLC schemes to assess the economic and technical 

performance; those are traditional DLC, enhanced DLC, and coordinated end-user 

switching [54]. Ruiz et al. adopted traditional DLC and created a framework to control 

domestic appliances including thermostatically controlled loads (TCLs) using linear 

programming (LP) [55]. In a similar approach, Sheble et al. designed a profit based DLC 

using LP [56]. Ning in [58] used DLC of heating, ventilating, and air-conditioning 

(HVAC) system to provide load balancing service. To reduce the load scheduling 

problem complexity, Abras et al. in [59] adopted a multi-agent paradigm to schedule 
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smart appliances. Multi-agent approach was found to, perfectly, be suited for spatially 

distributed loads. Similarly, Mohsenian et al. used the same approach to establish an 

interaction between end users themselves instead of user-utility relation using two-way 

communication infrastructure; they used game theory to solve the scheduling problem 

[60, 61]. Similarly, Suhara et al. [62] developed a control box to share energy between 

participants and make use of the available energy consumption to perform future load 

demand prediction.  

Computational intelligence methods were also used to schedule the house 

appliances. fuzzy logic, neural network and intelligent look-up tables were implemented 

to create a house energy management system, where fuzzy logic was assumed to produce 

inputs rules and neural network was assumed to direct these inputs to proper outputs [63, 

64]. To maximize benefits associated with house energy management system, a 

coordinated scheduling approach was proposed using particle swarm optimization (PSO) 

to schedule residents appliances [65]. Gudi et al. [66] used a binary particle swarm 

optimization (BPSO) to optimize the operation of household appliances. To know the 

current condition of the grid, Moholkar in [67] developed a fuzzy inference system; 

where rule based system was implemented to control residential smart appliances. 

Antunes el al. used genetic algorithm (GA) to select appropriate control actions [68]. 

Deterministic approaches were used too. In [69], Ikegami el al. developed optimal 

operation scheduling module for domestic appliances using mixed integer linear 

programming (MILP) algorithm. Using the same optimization algorithm, Esser et al. in 

[70] studied the impact of price signals on a household power demand. They modeled 

major residential appliances to minimize energy cost and maximize resident comfort by 
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rescheduling domestic appliances. Tischer and Verbic used dynamic programming (DP) 

instead to get more robust results [71]. Followed by Change el al. proposed a coordinated 

DP to achieve real-time power balancing [72]. Then they proposed a new methodology to 

decentralize the proposed coordination scheme [73]. Daniel el al. in [74] used Markov 

Chain to model electricity price and energy usage. They used online learning application 

to identify costumer behavior and then scheduled domestic appliances to minimize 

discomfort and overall cost. In [75], based on the projection of the electricity price, 

residential appliances were scheduled. On the other hand, an algorithm was proposed to 

schedule the operation of domestic appliances based on inputs from end-users (user 

preference) [76, 77]. Similarly, Bozchalui el al. [78] developed a system that optimizes 

the operation of residential assets with automated decision making in real-time based on 

the customer preference and with minimum discomfort level. In a similar way, Molderink 

el al. [79, 80] adopted three levels method with local prediction to manage domestic 

appliances with minimum level of customer discomfort. Smart HVAC controls with 

advanced functionalities incorporating minimum customer discomfort were introduced 

and presented in [81-83]. In case of stand-alone house, Yamauchi el al. designed a new 

energy management system that works well when the house is disconnected from the 

main power grid [84]. To perform load management, appliances models are required. 

Next, literature review about existing models is presented. 

2.5 Overview of Loads and Transformer Thermal Models 

This section provides discussion regarding existing distribution transformer and 

house appliances models. Any house energy management system requires accurate 

models of house appliances for better decision making. To determine whether or not a 
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distribution transformer is overheated or when the air conditioner should be turned on or 

off, the thermal behavior of the model (transformer, house, refrigerator …) should be 

considered. Although there are many research were done to model phenomenon 

associated with a house such as solar irradiance [85], house occupant’s behavior [86], and 

heat gains by occupants [87], few efforts were made to model heat relationships of 

domestic appliances.  

To bridge that gap, Park el al. developed a generic thermal model for electrical 

appliances suitable for house appliances [88]. Then, they proposed a methodology to 

estimate the model thermal parameters [89]. For TCLs, a general model of electric-

heating was presented by Bompard el al. in [90] to analyze the impact of resistive heating 

loads aggregation. In [91], Costanzo el al. used gray-box methodology to model 

refrigeration system that is suitable for residential application, which was then 

implemented to predict the system power consumption. Also, Costanzo el al. proposed a 

method to estimate the thermal parameter of a TCL using maximum likelihood estimation 

algorithm. In [82], Thomas el al. presented a simplified thermal model of HVAC that can 

be used to optimize air conditioner operation. Similarly, Tashtoush et al. developed a 

detailed thermal model to quantify energy losses in all different parts of HVAC [92]. To 

achieve that purpose, they developed a thermal model for each part of HVAC zones 

including heating coil, cooling, humidifier, fan, ductwork, and mixing box. Also, 

Shunsuke el al. developed a thermal model for heat pump and HVAC, which then were 

considered parts of a microgrid simulation [93]. Talyor el al. developed simplified 

thermal models for most of house appliances [94]. 
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Few work discussed the development of a thermal model of center-tap distributed 

transformer that is connected to residential house. In [24, 95], a thermal model of a 

center-tap transformer with nine hot spots was presented. Authors used the model to 

perform an assessment of the impact of EV/PHEVs on the distribution power grid 

infrastructure. Additionally, an estimation methodology was presented to compute the 

thermal circuit parameters. On a large scale transformers (power transformers), several 

thermal models were presented in the literature. For example, a simple model was 

developed by IEEE transformer committee [96]. Also, Susa el al. developed a thermal 

model for power transformer considering temperature spots for the core, winding, and oil 

tank [97-99]. In addition, Susa el al. presented an empirical data based methodology to 

estimate thermal model parameters. Similarly, Swift el al. presented an equivalent 

thermal model for power transformer to determine hot spot temperature [100, 101]. In 

[102], Qingquan el al. presented results of a comparison between the previous three 

models. The comparison was based on computer simulation. Another simplified thermal 

model was developed and suggested to be used to approximate temperature inside 

transformer [103]. Moreover, genetic algorithm (GA) was also implemented to obtain a 

good estimation of the thermal circuit parameters.  

2.6 Summary 

Literature review and background information related to the research topic were 

presented. The proliferation of EV is expected to tax existing distribution infrastructure 

and can potentially reduce the distribution transformer service lifetime. However, this 

unfavorable impact can be managed.  
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Two approaches were presented in the literature to lessen this unfavorable impact, 

1) the use of battery energy systems and 2) house loads management through DR 

solutions. It was found that battery storage systems, whether house battery bank or EV 

battery, can potentially alleviate the problem. It was also concluded that management and 

control of the house appliances can lessen the problem and further can provide other 

services to the utility. Combination of both approaches however in a comprehensive one 

is not implemented yet. 

Current house energy management systems ignore full costumer convenience. 

Furthermore, they did not consider the management of a house without overloading the 

infrastructure. Without careful monitoring of the distribution transformer loading 

condition, the service lifetime could be significantly impacted. Also, most of current 

house energy management systems used simplified models of house appliances. 

Furthermore, some of these energy management systems did not consider thermal model 

of house loads. Lack of effective and proper models may result into inaccurate outcomes. 

Therefore, a better solution is imperative to exist specially with current advanced 

technologies in the power system field. This research provides a new energy management 

system for a house without incurring any discomfort to the customer and without 

overloading the distribution transformer; thus elongates the service lifetime. To design an 

effective house energy management system, an advanced infrastructure is necessary. This 

infrastructure is discussed in the next Chapter.  
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3 PROPOSED ADVANCED HOUSE INFRASTRUCTURE 

3.1 Introduction 

This Chapter provides discussion regarding the advanced house infrastructure. 

The smart house energy management system uses a novel infrastructure that exploits 

state-of-the-art technologies such as distributed state estimation (DSE), smart appliances, 

advanced communications, electrothermal models of important components, and 

advanced optimization models. The main advantage of this energy management system is 

that it enables real-time management and control of the house that is monitored with all 

components that are connected to the house (i.e. distribution transformer and house 

appliances). The management system works without changing the life style of the 

customer. In particular, the physical system considered in this research consists of a 

distribution transformer, service drop, and one residential house. The house includes 

DERs and several controllable/non-controllable appliances. 

The key components of the advanced house infrastructure are: house DERs and 

appliances models, house DSE, and advanced optimization models. In this Chapter, the 

advanced house infrastructure is described. Further, discussion regarding the key 

components of the infrastructure and how this infrastructure works are provided. 

3.2 Advanced House Infrastructure Development 

This section introduces the infrastructure that is required for the proposed house 

management system. This new infrastructure was designed to optimize the power 

operation of the house according to selected objectives, provide assistance to the grid 

operations via ancillary services (if needed), ensure the customer convenience, and 
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elongate the service lifetime of distribution devices, in particular the distribution 

transformer, because it is the most volatile device in the system. The key points of the 

overall new approach are the following: 

a) coordinated integration and operation of house DERs, battery storage system, EV, 

and appliances without overloading/overheating the distribution transformer and  

b) no inconvenience to the customers, i.e. no life style changes of the customer.  

Next section provides description of the advanced house infrastructure. 

3.2.1 Description of the Advanced House Infrastructure 

The new approach assumes that the monitored house is equipped with some DERs 

such as roof-top solar PV, energy storage system, and controllable/non-controllable 

appliances. The advantages of implementing this new approach are many. The major one 

is that it enables for real-time management and control of all the different components 

that are connected to the house that the customer/utility owned. Therefore, the burden of 

integrating new loads, such as EV, is lessened and further increases more integration of 

renewable generation resources at the distribution system. Furthermore, it enables the 

implementation of different optimization functions for the operation of the house to 

extract the maximum benefits to both utility and customer. All these are without incurring 

any inconvenience to the end-user and without overloading/overheating the distribution 

transformer. An illustration of the house infrastructure components is shown in Figure 7.  

The advanced house infrastructure consists of the following major parts: a) 

physically based models of every component in the house system including the 

distribution transformer and house DERs and appliances, b) communication 
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infrastructure, c) house distributed state estimation, d) advanced optimization models, 

and e) house parameters (loads and weather conditions) forecasting. 

However, the following major parts of the advanced infrastructure are discussed 

in this dissertation:  

a) physically based models of the house devices,  

b) house distributed state estimation, and 

c) advanced optimization.  

Next, a discussion regarding how the advanced infrastructure works is provided. 

 

Figure 7. Illustration of the proposed house advanced infrastructure. 

3.2.2 How Does the House Infrastructure Works? 

The advanced house infrastructure works as follows: measurements, GPS 

synchronized or non-GPS synchronized, from various power components in the house 
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system are collected. Distribution transformer, house DERs, and house appliances 

measurements can be collected by IEDs, for example: a universal metering device [104], 

and then transmitted to the house DES by Home Area Network (HAN). These 

measurements are sent to the house DSE to perform estimation of the house states. The 

outcome of the state estimation is a reliable and validated real-time model of the entire 

house including the distribution transformer. This validated model of the house is then 

used by the smart house energy management system to perform optimization.  

An important function of the smart house energy management system is 

optimization. Results of the optimization model are basically in the form of scheduling 

control signals of the house DERs and smart appliances. These control signals could be, 

for example, EV and battery bank charging/discharging, open/close smart switches, smart 

dishwasher operation. Besides the real-time model of the house that is provided by the 

DSE, the optimization model requires data, such as solar irradiance and outside 

temperature, for the entire planning horizon, which are forecasted.  

3.3 Summary 

An advanced house infrastructure that can provide real-time energy management 

of house components including distribution transformer is discussed. A description of the 

infrastructure operation is provided. The following Chapters present discussion of major 

parts of the advanced infrastructure: (a) optimization, (b) house devices models, and (c) 

house DSE. 
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4 HOUSE ENERGY MANAGEMENT SYSTEM OPTIMIZATION 

4.1 Introduction 

This Chapter presents the house optimization model. The smart house energy 

management system provides benefits by solving a particular optimization problem for 

the good of utility and customer. For example, in case of variable electricity rates, it can 

optimize the cost of electricity by utilizing the capabilities of house resources. Also, the 

smart house energy management system can provide control of peak load if the utility 

requests – assuming that this service is provided for a fee or some economic arrangement. 

In case of need by the utility, the smart house energy management system can provide 

information of how much voltage control it can provide. The optimization results are in 

the form of control signals transmitted by the smart house energy management system to 

each controllable component in the house. In this research, it is assumed that the smart 

house energy management system provides controls to one house that is fed by one 

distribution transformer as illustrated in Figure 8. However, the management system with 

its optimization functionality can provide management for more than one house as this a 

quit usual configuration. In this Chapter, the mathematical formulation of the house 

optimization model with two different objectives is presented. These two objectives are: 

(a) minimization of the customer’s total energy cost and (b) peak load control.  

4.2 Mathematical Formulation of the House Optimization Problem  

The smart house energy management system provides benefits for both the utility 

and customer by solving a particular optimization problem. As mentioned earlier, there 
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are several functions the smart house energy management system can provide. In this 

dissertation, two different functions are implemented, which are discussed below. 

 

Figure 8. Illustration of one smart house connected to a center-tap transformer. 

4.2.1 Minimization of Customer’s Total Energy Cost 

One of the optimization objective functions that the smart house energy 

management system can provide is to minimize the total energy cost for the customer 

over a period of time in an environment where the electricity rate varies. This particular 

objective primarily benefits the customer in terms of reduced cost in the bill. It also 

benefits the utility in terms of making sure that the distribution transformer is not 

overloaded nor overheated beyond allowed limits. The price of electricity is assumed to 

vary on an hourly basis. Therefore, the goal here is to minimize the customer's total 

energy cost over a period of time subject to meeting the customer convenience and 

observing every component ratings and constraints. The mathematical formulation of the 

optimization model is given below. The objective function is formulated as follows 
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min
{𝒙𝑘,𝒖𝑘}

𝑘=1

𝑁   ∑ 𝐶𝑘 𝑅𝑒{𝑉̃𝑝𝑐𝑐
𝑘 (𝐼𝑝𝑐𝑐

𝑘 )
∗
}𝑁

𝑘=1 , (1) 

where 𝑉̃𝑝𝑐𝑐
𝑘  and 𝐼𝑝𝑐𝑐

𝑘  are the voltage and current states at the point of common coupling 

(PCC), C
k
 is the electricity variable price, and k is the time interval of planning horizon 

and equals 1,2,…,N.  

The model objective function is subject to 

𝑔(𝒙𝑘, 𝒖𝑘 , 𝑝̂𝑘) = 0 , ∀ 𝑘. (2) 

Constraint (2) represents the electrothermal house model at each time interval k, 

and vectors x
k
, u

k
, and 𝑝̂𝑘  represent state variables, control variables, and forecasted 

parameters of the house model, respectively. The electrothermal model of the house 

consists of all house DERs, house appliances, whether controllable or not, and the 

distribution transformer. The synthesis procedure of the electrothermal house model is 

explained later in this Chapter.  

To represent the operational voltage constraints at every node in the house and current 

capacity limit constraints for each device that is part of the house system at each time 

interval k in the planning horizon, the following two limits are considered 

𝑉𝑘 ≤ |𝑉̃𝑘| ≤ 𝑉𝑘 , ∀ 𝑘, (3) 

𝐼𝑘 ≤ |𝐼𝑘| ≤ 𝐼𝑘 , ∀ 𝑘, (4) 

where 𝑉̃𝑘  is the voltage state variable and 𝑉𝑘  & 𝑉𝑘  are minimum and maximum voltage 

magnitude limits at every node in the house system. 𝐼𝑘 is the current through variables 

and 𝐼𝑘 & 𝐼𝑘 are minimum and maximum current magnitude limits for every device in the 
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house model. It should be noted that 𝑉̃𝑘  & 𝐼𝑘  are states in the house electrothermal 

model. 

To maintain the refrigerator temperature inside the fresh food compartment within 

permissible bounds and also ensure that temperature is according to the customer setting 

at each time interval k of the future planning period, the next limit is enforced 

𝑇𝑟𝑒𝑓
𝑘 ≤ 𝑇𝑟𝑒𝑓

𝑘 ≤ 𝑇𝑟𝑒𝑓
𝑘 , ∀ 𝑘, (5) 

where 𝑇𝑟𝑒𝑓
𝑘 is the temperature state inside the refrigerator, which is part of the 

electrothermal model of the refrigerator, and 𝑇𝑟𝑒𝑓
𝑘  & 𝑇𝑟𝑒𝑓

𝑘  are the minimum and maximum 

temperature bounds for the temperature in the fresh food compartment.  

To ensure that the customer convenience is met by maintaining the temperature inside the 

house within the set bounds at each time interval k of the planning period, the following 

limits is considered 

𝑇ℎ𝑜𝑢𝑠𝑒
𝑘 ≤ 𝑇ℎ𝑜𝑢𝑠𝑒

𝑘 ≤ 𝑇ℎ𝑜𝑢𝑠𝑒
𝑘 , ∀ 𝑘, (6) 

where 𝑇ℎ𝑜𝑢𝑠𝑒
𝑘  is the monitored temperature state inside the house, which is part of the 

thermal model of the house, and 𝑇ℎ𝑜𝑢𝑠𝑒
𝑘  & 𝑇ℎ𝑜𝑢𝑠𝑒

𝑘  are the minimum and maximum 

temperature bounds of the temperature inside the house.  

Two control variables are considered for each one of the refrigerator and the air 

conditioner electrothermal models. The refrigerator basically is turned on/off to maintain 

the temperature inside it within permissible limits. Similarly, the air conditioner is turned 

on/off to maintain the monitored temperature inside the house within set limits. These 

control variables are given by 
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0 ≤ 𝑢𝑠
𝑘 ≤ 1, 𝑢𝑠

𝑘 ∈ {0,1}, ∀ 𝑘, 𝑠 = {𝑟𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟, 𝑎𝑖𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟}. (7) 

To ensure that the hot spot temperature inside the distribution transformer is not 

exceeding the maximum permissible temperature limit at every time interval k of the 

planning window horizon, the following inequality is considered 

𝑇ℎ𝑜𝑡𝑆𝑝𝑜𝑡
𝑘 ≤ 𝐻𝑆𝑇𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 , ∀ 𝑘, (8) 

where 𝑇ℎ𝑜𝑡𝑆𝑝𝑜𝑡
𝑘  is the hot spot temperature state, which is part of the electrothermal model 

of the distribution transformer that is also part of the entire electrothermal model of the 

house represented by (2). HSTpermissible is the maximum allowed limit of the hot spot 

temperature of the transformer.  

To model the maximum and minimum charging/discharging power of each one of the 

electrothermal models of the house battery bank and EV battery, the following limits are 

enforced 

𝑃𝑏𝑎𝑡𝑡
𝑘 ≤ 𝑃𝑏𝑎𝑡𝑡

𝑘 ≤ 𝑃𝑏𝑎𝑡𝑡
𝑘  , ∀ 𝑘  , (9) 

𝑃𝐸𝑉
𝑘 ≤ 𝑃𝐸𝑉

𝑘 ≤ 𝑃𝐸𝑉
𝑘  , ∀ 𝑘  , (10) 

where 𝑃𝑏𝑎𝑡𝑡
𝑘 & 𝑃𝐸𝑉

𝑘  are the charging/discharging power at every time interval k for the 

house battery bank and EV battery, respectively. Note that 𝑃𝑏𝑎𝑡𝑡
𝑘  is part of the house 

battery charger model and the minimum and maximum charging/discharging power are 

𝑃𝑏𝑎𝑡𝑡
𝑘  and 𝑃𝑏𝑎𝑡𝑡

𝑘 , respectively. Similarly, 𝑃𝐸𝑉
𝑘  is part of the EV charger model and the 

minimum and maximum charging/discharging power are 𝑃𝐸𝑉
𝑘  and 𝑃𝐸𝑉

𝑘 , respectively.  

To be able to control the dishwasher operation, which consists of several cycles, the set 

of constraints given by (11)-(17) are considered. In particular, the time limit of every 
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cycle i during the operation of the dishwasher is modeled by enforcing the following 

constraint 

𝑇𝑖 ≤ ∑ 𝑢𝑑𝑤,𝑖
𝑘 ≤ 𝑇𝑖

𝑁
𝑘=1   , ∀𝑖  , (11) 

where 𝑢𝑑𝑤,𝑖
𝑘 ∈ {0,1} is the dishwasher control variable for every cycle at every time 

interval k of the planning period. 𝑇𝑖 and 𝑇𝑖 are the minimum and maximum number time 

slots for every cycle. Note that 𝑢𝑑𝑤,𝑖
𝑘  is part of the electrothermal model of the house. 

To model the cycle operation, which is assumed to work without interruption, and 

enforce the sequential process of all dishwasher cycles, the following three inequalities 

(12)-(14) are introduced 

𝑢𝑑𝑤,𝑖
𝑘 + 𝑠𝑖

𝑘 ≤ 1, 𝑠𝑖
𝑘 ∈ {0,1},   ∀𝑖, 𝑘  , (12) 

𝑢𝑑𝑤,𝑖
𝑘−1 − 𝑢𝑑𝑤,𝑖

𝑘 − 𝑠𝑖
𝑘 ≤ 0, ∀𝑖, ∀𝑘 = 2,3. . , 𝑁 , (13) 

𝑠𝑖
𝑘−1 − 𝑠𝑖

𝑘 ≤ 0, ∀𝑖, ∀𝑘 = 2,3. . , 𝑁 , (14) 

where 𝑠𝑖
𝑘 ∈ {0,1} is an additional slack variable at every time interval k of the planning 

horizon. Note that 𝑠𝑖
𝑘  is part of the electrothermal model of the house. 

To guarantee that there is no delay between the cycles themselves during the dishwasher 

operation, the following equality constraint is considered 

𝑠𝑖−1
𝑘 − 𝑢𝑑𝑤,𝑖

𝑘 − 𝑠𝑖
𝑘 = 0, ∀𝑘, ∀𝑖 = 2,3, . . , 𝑛 , (15) 

To ensure that the dishwasher cycles work within the customer allowed time (customer 

setting), the following inequality is introduced 

𝑢𝑑𝑤,𝑖
𝑘 ≤ 𝑇𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖

𝑘 , ∀𝑖, 𝑘  , (16) 
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where 𝑇𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖
𝑘  characterizes the customer time preference interval at every time 

interval k of the planning period.  

To make sure that every cycle during the dishwasher operation meets the energy 

requirement, the following equality constraint is imposed 

∑ 𝑢𝑑𝑤,𝑖
𝑘 𝑃𝑑𝑤,𝑖

𝑘 = 𝐸𝑖
𝑁
𝑘=1 , ∀𝑖  , (17) 

where 𝑃𝑑𝑤,𝑖
𝑘  and 𝐸𝑖  are the power and energy profiles for every cycle at every time 

interval k of the future planning horizon. 

The house model states and controls initials are given by the following 

𝒙0 = 𝑥(𝑡0), 𝒖0 = 𝑢(𝑡0), 𝒙(𝛼) = 𝑝  , (18) 

where x0 and u0 are the vectors represent the house model states and control initial values, 

respectively. x(α) is the vector represents the house states values at α. This concludes the 

optimization model with the objective is to minimize the customer’s total energy cost. 

Next is the mathematical formulation of the optimization model of the house with peak 

load control. 

4.2.2 House Peak Load Control 

Another objective function that the smart house energy management system can 

provide is to control the house peak load over a planning period of time. This function 

becomes much more desirable in areas served by vertically regulated utilities. The goal 

here is to minimize the peak load of the house system over a day subject to meeting the 

customer convenience and observing every component ratings and constraints. The 

objective mathematical formulation of the problem is given by 

min
{𝒙𝑘,𝒖𝑘}

𝑘=1

𝑁   𝑋   , (19) 
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where 𝑋 is the peak load of the house and therefore 

𝑋 > 𝑅𝑒{𝑉̃𝑝𝑐𝑐
𝑘 (𝐼𝑝𝑐𝑐

𝑘 )
∗
} , ∀ 𝑘 , (20) 

where 𝑉̃𝑝𝑐𝑐
𝑘  and 𝐼𝑝𝑐𝑐

𝑘  are the voltage and current states at the point of common coupling 

(PCC) and k is the time interval of the planning horizon and equals 1,2,…,N. This 

objective function is subject to limits and constraints given by (2)-(18). One major 

equality constraint is the electrothermal model of the house, which is represented by (2). 

The construction method of that constraint is presented in the next section. 

4.2.3 Electrothermal Model of the House 

The equality constraint given by (2) represents the electrothermal model of the 

house including the distribution transformer. This constraint is derived as follows: every 

device model in the house including the distribution transformer, refrigerator, air 

conditioner, thermal model of the house, etc…, is described by a set of mathematical 

equations and then cast into one standard form represented by the following 

𝑰̃𝑘 = 𝑓(𝒙𝑘 , 𝒖𝑘 , 𝑝̂𝑘) , ∀ 𝑘, (21) 

where the vector 𝑰̃𝑘 is given by [𝑰̃𝑘; 𝟎]. The vector 𝑰̃𝒌 represents the through variables of 

a device at each time interval k of the planning period of time and vectors x
k
, u

k
, and 𝑝̂𝑘  

represent external and internal state variables, control variables, and forecasted 

parameters of that device, respectively. Then, the electrothermal house model is 

constructed by applying Kirchhoff’s current law (KCL) at each node of the house as 

follows 

𝑔(𝒙𝑘, 𝒖𝑘, 𝑝̂𝑘) = {
∑ 𝑰̃𝑘 = 0

𝐼∈𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

. (22) 
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4.3 Summary 

In this Chapter, the mathematical formulation of the house optimization model is 

presented. Although the smart house energy management system can provide several 

functions, only two different objectives are considered. Firstly, the formulation of the 

problem with the minimization of the customer’s total energy cost is presented. Then, the 

formulation of the problem with house peak load control is discussed. Part of both 

formulations is the equality constraint represented by (2). The methodology that was 

adopted to construct this equality is also presented. To be able to construct the 

electrothermal model of the house, a mathematical model for every device in the house 

including the distribution transformer was developed. Discussion regarding the 

development of the mathematical model for every component in the house including 

DERs, appliances, and distribution transformer before it becomes in a standard syntax 

given by (21) is presented in the next Chapter.  

  



32 

5 HOUSE SYSTEM COMPONENTS MODELING 

5.1 Introduction 

One of the keys to have a successful house energy management system is to have 

accurate models for the distribution transformer and various house components including 

DERs and domestic appliances. There are several approaches in the literature that can be 

used to designing systems and developing models. However, physically-based modeling 

with object orientation approach is one of the most desired approaches, because it is 

based on how the system lays out in the physical world. In this approach, the physical 

component is represented by a detailed, yet well understood, abstract mathematical 

model. This mathematical model is then used to simulate the physical component and 

further develop various applications. In this Chapter, the modeling technique that was 

used to model the distribution transformer and various components of the house is 

presented. Additionally, the Quadratic Integration method that was used to integrate the 

model is discussed. Finally, new electrothermal models for important components of the 

house including the distribution transformer and important appliances are also presented.  

5.2 Object Orientation Modeling Approach 

The object orientation approach is generally used to designing a device, 

application, or system by applying the object oriented paradigm and visual modeling 

throughout the development life cycles. The advantages of this approach are many; some 

are listed below: 
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 provides a unified syntax to all various house components, associates controls, 

and facilitates advanced applications such as state estimation, protection, and 

optimization, 

 simplifies communication between various parts of the device, application, 

system in an efficient and reliable manner without loss of any information, 

 facilitates and simplifies the integration of a new device, application, or system 

with already existing components (Plug and Play concept), and  

 this generalization enables standardization for utilizing and exchanging a device 

model among applications. Thus, advanced smart grid applications can be easily 

implemented.  

Next, discussion regarding the modeling procedure that was used in this research 

starting from extracting the mathematical model until casting the model in a standard 

syntax is presented. 

5.3 Description of Device Modeling 

5.3.1 Modeling Procedure 

Every device in the house including the distribution transformer goes through a 

number of steps before it is cast in one unified syntax (standard) form. The modeling 

procedure that was used to model various devices that are part of the smart house energy 

management system is illustrated in Figure 9. This procedure is explained as follows, 
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Figure 9. House DERs and appliances modeling procedure. 

1. Mathematical Model Extraction: 

An abstract mathematical model of any device that is part of the smart house 

energy management system is derived based how the physical device is in the physical 

world. This model is formulated as a set of linear and nonlinear differential algebraic 

equations (DAEs) and algebraic equations in terms of device state and control variables. 

Device states could be external or internal states. Examples of external states are voltages 

at the device terminals. Examples of internal states are state of charge of the house 

battery bank, actual rating of the air conditioner, and temperature inside the house. The 

differential equations part of the derived mathematical model is then cast in a simple 

compact form as follows 

𝐴1 [
𝑖(𝑡)
0

] + 𝐴2

𝑑

𝑑𝑡
[
𝑖(𝑡)
0

] =  𝐵1𝑥(𝑡) +  𝐵2

𝑑𝑥(𝑡)

𝑑𝑡
, (23) 

whereas the algebraic equations of the model are cast in the following form 

Mathematical Model Extraction

Separating Real and Imaginary 

Parts of the Model

Model Quadratization

Model Integration (Quadratic 

Integration)

Standard Form (SCAQCF)
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[𝑖
(𝑡)
0

] = 𝐵3𝑥(𝑡) + [

𝑥(𝑡)𝑇𝐹𝑒𝑞1𝑥(𝑡)

𝑥(𝑡)𝑇𝐹𝑒𝑞2𝑥(𝑡)

⋮

] + 𝐾𝑒𝑞 , (24) 

where 

[𝑖
(𝑡)
0

] =

[
 
 
 
 
 
𝑖1(𝑡)

𝑖2(𝑡)
⋮
0
0
⋮ ]

 
 
 
 
 

,   𝑥(𝑡) = [

𝑥1(𝑡)

𝑥2(𝑡)
⋮
⋮

], 

i(t): Vector defining the through variable of the model. 

x(t): Vector defining the external and internal state variables of the model. 

A1: Identity matrix of the differential equations defining the linear part of the through 

variables with appropriate dimension. 

A2: Matrix defining the coefficients of the differential equations part of the through 

variables with appropriate dimension. 

B1: Matrix defining the linear part of the differential equations with appropriate 

dimension. 

B2: Matrix defining the coefficients of the differential part with appropriate dimension. 

B3: Matrix defining the linear part of the algebraic equations with appropriate dimension. 

Feq: Matrix defining the quadratic part of the algebraic equations with appropriate 

dimension. 

Keq: Vector defining the constant part of the algebraic equations. 

2. Separation of Real and Imaginary Parts: 

In this step, the model is separated into real and imaginary parts. Basically, 

voltages and currents phasors are expressed with their Cartesian coordinates (𝑉̃ = 𝑉𝑟 +

𝑗𝑉𝑖 & 𝐼 = 𝐼𝑟 + 𝑗𝐼𝑖). These complex equations are separated into two real equations. 
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3. Model Quadratization: 

The mathematical model, described previously, is then quadratized. Simply, any 

nonlinear equation that is above degree two is reduced to degree not higher than two. In 

addition, nonlinear functions, for example exponential function or logarithmic function, 

need to be quadratized. This can be done by applying Maclaurin series expansion to the 

function and then reduce the higher order terms to two. The reduction from high order 

into not more than two can be achieved by introducing slack variables, as necessary. 

Several examples of function or system quadratization can be found in [105-107]. 

4. Quadratic Integration: 

The resulting quadratic differential and algebraic system are then integrated using 

state-of-the-art integration method, the Quadratic Integration method [108]. For a system 

of equations, whether linear or nonlinear, especially for stiff systems when power 

electronics with IGBTs switches or induction machines are part of the model, the 

quadratic integration method has exhibited superiority over other integration methods 

such as Trapezoidal method [107-109]. Some of the advantages of this integration 

method are: 

 absolutely stable numerical integration method, 

 free of numerical oscillation, 

 forth order method. Solution is achieved with high numerical accuracy and 

precision, and 

 fast convergence with low number of iteration. 

The quadratic method is formulated based on three point collocation method; and 

it is used to convert the system of equations into a set of algebraic linear or quadratic 
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equations. The concept of the quadratic integration method is illustrated in Figure 10. It is 

unlike the Trapezoidal integration method, where the system model states are assumed to 

vary linearly throughout the time step, the quadratic integration method is assumed that 

within every integration time step (h), the system states variables vary quadratically. In 

principle, within every integration time step of length h, which is defined by an interval 

[τ − h,τ], the two end points x[τ – h] and x[τ], and the midpoint xm , is defined by the 

following equation (xm = x[τ – h / 2]), can define a quadratic function in the interval 

[τ − h,τ]. This function is then integrated in the time interval [τ − h,τ] resulting in a set of 

algebraic equations for this integration step. The solution of the quadratic system of 

equations is obtained via Newton’s method. Note that the resulting algebraic equations 

are either linear or quadratic.  

To show the difference between the quadratic and trapezoidal integration 

methods, a case study of a series RLC circuit was modeled and simulated. Results of this 

case including the difference between these two integration methods are reported 

in ‎Appendix A.  
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Figure 10. Illustration of quadratic integration method 

5. State and Control Algebraic Quadratic Companion Form (SCAQCF) 

In the last step, the state and control variables are separated and then formed 

according to the State and Control Algebraic Quadratic Companion Form (SCAQCF) 

given by (25) in a matrix notation and (26) in a detailed notation. The main advantage of 

the SCAQCF model is that this formulation gives a generalized and an abstract model for 

any component of the house including the distribution transformer, which is independent 

of any device type. It is also suitable for implementation of object oriented algorithms for 

any application. More details concerning the extraction of the final model in SCAQCF 

format is provided in ‎Appendix A.  

 SCAQCF in a matrix format 

𝑖(𝑥, 𝑢) = 𝑌𝑒𝑞𝑥𝑥 + [𝑥𝑇𝐹𝑒𝑞𝑥𝑥] + 𝑌𝑒𝑞𝑢𝑢 + [𝑢𝑇𝐹𝑒𝑞𝑢𝑢] + [𝑥𝑇𝐹𝑒𝑞𝑥𝑢𝑢] − 𝐵𝑒𝑞, (25) 

 SCAQCF in detailed format 
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[

𝐼(𝑡)
0

𝐼(𝑡𝑚)
0

] =

𝑌𝑒𝑞_𝑥

[
 
 
 
𝑉̃(𝑡)

𝑌(𝑡)

𝑉̃(𝑡𝑚)

𝑌(𝑡𝑚)]
 
 
 

+

[
 
 
 
 
 
 
 
 
 

[𝑉̃𝑇(𝑡) 𝑌𝑇(𝑡) 𝑉̃𝑇(𝑡𝑚) 𝑌𝑇(𝑡𝑚)] 𝐹𝑒𝑞_𝑥_1

[
 
 
 
𝑉̃(𝑡)

𝑌(𝑡)

𝑉̃(𝑡𝑚)

𝑌(𝑡𝑚)]
 
 
 

⋮

[𝑉̃𝑇(𝑡) 𝑌𝑇(𝑡) 𝑉̃𝑇(𝑡𝑚) 𝑌𝑇(𝑡𝑚)] 𝐹𝑒𝑞_𝑥_𝑛

[
 
 
 
𝑉̃(𝑡)

𝑌(𝑡)

𝑉̃(𝑡𝑚)

𝑌(𝑡𝑚)]
 
 
 

]
 
 
 
 
 
 
 
 
 

+

𝑌𝑒𝑞_𝑢 [
𝑈̃(𝑡)

𝑈̃(𝑡𝑚)
] +

[
 
 
 
 
 [𝑈̃𝑇(𝑡) 𝑈̃𝑇(𝑡𝑚)] 𝐹𝑒𝑞_𝑢_1 [

𝑈̃(𝑡)

𝑈̃(𝑡𝑚)
]

⋮

[𝑈̃𝑇(𝑡) 𝑈̃𝑇(𝑡𝑚)] 𝐹𝑒𝑞_𝑢_𝑛 [
𝑈̃(𝑡)

𝑈̃(𝑡𝑚)
]
]
 
 
 
 
 

+

[
 
 
 
 
 [𝑉̃𝑇(𝑡) 𝑌𝑇(𝑡) 𝑉̃𝑇(𝑡𝑚) 𝑌𝑇(𝑡𝑚)] 𝐹𝑒𝑞_𝑥𝑢_1 [

𝑈̃(𝑡)

𝑈̃(𝑡𝑚)
]

⋮

[𝑉̃𝑇(𝑡) 𝑌𝑇(𝑡) 𝑉̃𝑇(𝑡𝑚) 𝑌𝑇(𝑡𝑚)] 𝐹𝑒𝑞_𝑥𝑢_𝑛 [
𝑈̃(𝑡)

𝑈̃(𝑡𝑚)
]
]
 
 
 
 
 

− 𝐵𝑒𝑞 . 

(26) 

where 

x: the external and internal states at time t and time tm. 

u: the control variables at time t and time tm. 

Yeqx: matrix defining the linear part of device state variables. 

Feqx: matrix defining the nonlinear part of device state variables. 

Yequ: matrix defining the linear part of device control variables. 

Fequ: matrix defining the nonlinear part of device control variables. 

Feqxu: matrix defining the nonlinear part of device state control variables. 

Beq: vector defining the constant part of device model. 
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tm: a middle point in the integration time step h. 

5.3.2 Thermal Modeling  

To determine whether or not, for example, the transformer is overheated or when 

the air conditioner should be turned on/off, the thermal behavior of the model 

(transformer, house, refrigerator and other devices) should be modeled. Using the 

analogy between thermal – electrical physical laws, the thermodynamics of any thermal 

device can be modeled by 

𝑇(𝑡) = 𝑄̇(𝑡)𝑅𝑡ℎ , (27) 

𝑄̇(𝑡) = 𝐶𝑡ℎ

𝑑𝑇(𝑡)

𝑑𝑡
, (28) 

𝑄̇(𝑡) = 𝐶𝑡ℎ

𝑑𝑇(𝑡)

𝑑𝑡
+ 𝐺𝑡ℎ∆𝑇(𝑡), (29) 

where T is spot temperature in [
o
C], 𝑄̇  is heat flow rate in [Btu/h], Cth is thermal 

capacitance in [Btu/
 o
C], and Gth is thermal conductance in [Btu/

o
C.h]. The computation 

of the thermal parameters in any thermal device is presented next. 

5.3.2.1 Thermal Parameters Computation 

In this section, the computation methodology that was used to estimate the 

thermal parameters, thermal conductance and capacitance, is discussed.  

1) Computation of Thermal Conductance (Gth) 

In principle, the heat at each temperature spot is experienced a thermal resistance 

as it propagates to other temperature spots. The reciprocal of that thermal resistance is the 

thermal conductance, which is defined as the quantity of heat transmitted between two 

temperature spots. Thermal conductance parameters are estimated considering rated 
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parameters of the device such as rated current and rated temperature. Basically, steady 

state equations of the device model are used to estimate the numerical values of the 

thermal conductance between temperature spots. The reason for this approach is the fact 

that for devices, such as transformers, the manufacturer provides the steady state 

operating temperatures under full loading conditions. This information is then used to 

estimate the thermal conductances. In some cases, the number of thermal conductances is 

larger than the number of the device model equations. In this case, each thermal 

conductance is represented by a percent of a collective main thermal conductance. Next, 

the thermal capacitance computation is discussed. 

2) Computation of Thermal Capacitance (Cth) 

The thermal capacitance or heat capacity is defined as the amount of the heat 

energy required to raise the temperature by one unit. It is a function of the volume, mass 

density, and specific heat of the matter as given by 

𝐶𝑡ℎ = 𝑉𝑜𝑙 𝜌 𝐶𝑝, (30) 

where  

Vol is the volume in [m
3
], 

ρ is the mass density [kg/m
3
], 

Cp is specific heat [Btu/kg.
o
C], 

Note that, the procedure of computing both thermal conductance and capacitance are 

performed automatically. 

5.3.3 Smart House Energy Management System Devices 

The following devices were considered part of the smart house energy management 

system: electrothermal model of the distribution transformer, electrothermal model of the 
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house, smart dishwasher, electrothermal model of a refrigerator, and electrothermal 

model of an air conditioner. Other house loads, such as lighting, cloth washer, and dryer, 

were modeled as a time variable load. Distributed energy resources, such as roof-top 

solar PV, residential battery bank, and EV that is modeled as lithium ion battery, were 

also considered. Averaged models of battery charger, DC-DC boost converter, DC-AC 

inverter, and all associated control circuits, such as thermostat control and maximum 

power point tracking control, were also considered. It should be noted that these devices 

can be connected together in different configuration as they exist in the physical house. 

This facilitates modeling different houses with different arrangements. In this research, 

the model domain is the quasi-dynamic domain. In this domain, the slow moving 

behaviors such as house temperature and battery state of charge are captured. On the 

other hand, electromagnetic transient phenomena are not of interest and thus not 

considered. Next, the models of the distribution transformer, house DERs, and house 

appliances are presented. 

5.4 Electrothermal Model of a Single Phase Distribution Transformer 

The distribution transformer is one of the most important devices in the 

electrothermal model of the house. And it is the most volatile equipment in the overall 

house system. Typical residential distribution transformer is a single phase, two winding 

transformer with secondary center-tapped; and usually is connected to one or several 

house(s) through a service drop. The service drop is, in most cases, overhead wires that 

are connected from power provider pole, where the transformer usually is, to a residential 

house. These distribution transformers are usually rated 7.2/(0.12-0.240) kV with power 
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ratings up to 50 kVA. Depending on the application, special configuration of the 

distribution transformer can exist. It is a usual practice to use a pole mounted transformer 

in case if the power is provided to a residential customer. Normal voltage rating of these 

types of transformers is 110-140 V phase to neutral and 210-240 V two phases. Figure 11 

shows the distribution transformer interface window in WinIGS program. In the 

following sections, the electrothermal model of the transformer is described. 

 

Figure 11. Electrothermal transformer model user interface in WinIGS program 

5.4.1 Electrical Model 

The electrical model is used to compute the center-tap transformer electrical 

currents for a specific electric load demand. In this research, a standard electrical model 

of a single phase distribution transformer with a center-tap at the secondary winding was 

considered. This model can adapt various voltages and power ratings. The electrical 

model circuit is illustrated in Figure 12. This center-tap distribution transformer was 

implemented to provide a low voltage to a residential house via a service drop.  
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Figure 12. Electrical circuit of the center-tap transformer. 

5.4.2 Thermal Model 

Transformer’s overall insulation life expectancy and overloading capabilities 

depend on several factors. However, it is determined primarily by the hot spot 

temperature in the transformer. It is, therefore, essential to predict thermal loading of the 

transformer during normal loadings and, in particular, during abnormal (overloading) 

conditions. Furthermore, the improved knowledge of transformer thermal characteristics 

can predict the expected service lifetime of distribution transformer insulation. This can 

indicate whether the transformer is properly sized for a particular application or not. 

Therefore, this improved realization can  

a) allow the enhancement of transformer operation, and 

b) provide better load management optimization decisions.  

In this section, the development of a new thermal model is discussed. 

Although there are thermal models of the transformer in the literature, it is 

concluded that a new model is needed as concluded in ‎2.5 and ‎2.6. Most of these existing 

models were mainly modeled and developed for power transformers applications and 

were lacking accuracy in terms of temperature spots number. In this research, a new and 

detailed thermal model of a single phase center-tap distribution transformer was 

developed. This model enables better monitoring of the gradient temperatures and thus 
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accurate estimation of the hot spot temperature and loss of insulation life. The process of 

developing the thermal model is explained below. 

5.4.2.1 Temperature Spots Definition 

The first step of developing a thermal model of a center-tap distribution 

transformer is to define and select a number of temperature spots and to determine their 

locations. For a better monitoring of rapid temperature change and to be able to locate the 

hot spot temperature inside a center-tap transformer with high accuracy, a total of 21 

temperature spots were selected. The location of each one of these temperature spots is 

illustrated in Figure 13. The reference temperature of the thermal model is the ambient 

temperature. External temperature spots of the transformer electrothermal model 

(transformer case temperature spots) were designed to have external connections to an 

ambient temperature spot that is connected to a reference temperature model. 
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Figure 13. Single phase center-tap transformer temperature spots locations. 
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Each temperature spot is briefly explained as the following: 

 Primary Winding Temperature Spots:  

The transformer primary winding was divided into three segments as illustrated in Figure 

14. Each one of these segments was assumed to have a temperature spot located in the 

middle of the segment. In total, there are three temperature spots as the following, 

𝑇ℎ1: High-side temperature spot for segment one in [
o
C]. 

𝑇ℎ2: High-side temperature spot for segment two in [
o
C]. 

𝑇ℎ3: High-side temperature spot for segment three in [
o
C]. 

 Secondary Winding Temperature Spots:  

The transformer secondary winding was segmented into two main parts as the following: 

1) Secondary winding part between phase L1 and NN. 

2) Secondary winding part between phase L2 and NN. 

Each one of these parts was divided into three segments as illustrated in Figure 14, where 

each segment was assumed to have a temperature spot located in the middle of the 

segment. In total, there are six temperature spots as the following, 

𝑇𝐿11: Low-side temperature spot for part one segment one in [
o
C]. 

𝑇𝐿12: Low-side temperature spot for part one segment two in [
o
C]. 

𝑇𝐿13: Low-side temperature spot for part one segment three in [
o
C]. 

𝑇𝐿21: Low-side temperature spot for part two segment one in [
o
C]. 

𝑇𝐿22: Low-side temperature spot for part two segment two in [
o
C]. 

𝑇𝐿23: Low-side temperature spot for part two segment three in [
o
C]. 

 Transformer Core Temperature Spots:  
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The core of the transformer was divided into four regions as illustrated in Figure 14, 

where each one was assumed to have a temperature spot located in the middle of the 

region. In total, there are four temperature spots as the following, 

𝑇𝐶𝑇: Core-Top temperature spot for region one in [
o
C]. 

𝑇𝐶𝐵: Core-Bottom temperature spot for region two in [
o
C].  

𝑇𝐶𝑅: Core-Right temperature spot for region three in [
o
C]. 

𝑇𝐶𝐿: Core-Left temperature spot for region four in [
o
C].  

 Transformer Oil Tank Temperature Spots: 

The transformer oil tank was divided into four sub-spaces, where each one was assumed 

to have a temperature spot. In total, there are four temperature spots as the following, 

𝑇𝑇𝑂𝑇: Top of the Oil temperature spot for region one in [
o
C]. 

𝑇𝐵𝑂𝑇: Bottom of the Oil temperature spot for region two in [
o
C]. 

𝑇𝑅𝑂𝑇: Right of the Oil temperature spot for region three in [
o
C]. 

𝑇𝐿𝑂𝑇: Left of the Oil temperature spot for region four in [
o
C].  

 Transformer Case Temperature Spots: 

The transformer case was divided into four segments, where each one was assumed to 

have a temperature spot. In total, there are four temperature spots as the following, 

𝑇𝐶𝑎𝑠𝑒𝑇: Case-Top temperature spot for region one in [
o
C]. 

𝑇𝐶𝑎𝑠𝑒𝐵: Case-Bottom temperature spot for region two in [
o
C].  

𝑇𝐶𝑎𝑠𝑒𝑅 : Case-Right temperature spot for region three in [
o
C]. 

𝑇𝐶𝑎𝑠𝑒𝐿: Case-Left temperature spot for region four in [
o
C].  
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Figure 14. Segments of transformer primary winding, secondary winding, and core. 

5.4.2.2 Thermal Parameters Selection 

The first thermal element is the thermal conductance (Gth). For every selected 

temperature spot in the transformer thermal model, it was assumed that there are 21 

thermal conductances connected to it. Additionally, it was also assumed that there is a 

thermal capacitance (Cth) for every selected temperature spot in the model. The thermal 

capacitance was assumed to be connected between the corresponding temperature spot 

and a specific temperature spot that is near to it. The connections of these thermal 

capacitances are provided in Table 1. The third thermal element is the heat source. There 

were 13 heat sources assumed in the model. Location of these heat sources are provided 

in Table 2.  

Table 1. Transformer thermal model thermal capacity. 

Thermal Capacitance (Cth) Spot 1 Spot 2 

Ch1 Th1 TCT 
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Ch2 Th2 TCL 

Ch3 Th3 TCB 

CL11 TL11 TCT 

CL12 TL12 TCR 

CL13 TL13 TCR 

CL21 TL21 TCR 

CL22 TL22 TCR 

CL23 TL23 TCB 

CCT TCT TTOT 

CCB TCB TBOT 

CCR TCR TROT 

CCL TCL TLOT 

CTOT TTOT TCase_T 

CBOT TBOT TCase_B 

CROT TROT TCase_R 

CLOT TLOT TCase_L 

CCaseT TCaseT TAMB 

CCaseB TCaseB TAMB 

CCaseR TCaseR TAMB 

CCaseL TCaseL TAMB 

Table 2. Transformer heat source. 

Heat Source (𝑸̇) Spot 

𝑄̇ℎ1 Th1 
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𝑄̇ℎ2 Th2 

𝑄̇ℎ3 Th3 

𝑄̇𝐿11 TL11 

𝑄̇𝐿12 TL12 

𝑄̇𝐿13 TL13 

𝑄̇𝐿21 TL21 

𝑄̇𝐿22 TL22 

𝑄̇𝐿23 TL23 

𝑄̇𝐶𝑇  TCT 

𝑄̇𝐶𝐵 TCB 

𝑄̇𝐶𝑅  TCR 

𝑄̇𝐶𝐿  TCL 

5.4.2.2.1 Computation of the Transformer Model Thermal Parameters  

1) Transformer Thermal Conductance (Gth) 

For estimating the transformer thermal conductances, manufacturer data of steady 

state temperatures at various points of the transformer under full loading conditions were 

utilized. Note that these temperatures can be also measured in the laboratory. 

Transformer model rated temperatures at every temperature spot are provided in Table 3. 

These rated temperatures are used with steady state equations of the transformer model to 

estimate the transformer thermal conductances. There is a very large number of thermal 

conductances in the transformer model. To estimate them all, each thermal conductance 

was represented by a percent of a main thermal conductance. This reduced the number of 
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thermal conductance into only 21, which can be estimated easily. Then, all other thermal 

conductances can be calculated using the assumed percentage provided in ‎Appendix B. 

Table 3. Center-tap transformer rated temperature at each temperature spot. 

Temperature Spot Rated Temp [
o
C] 

𝑇ℎ1 103 

𝑇ℎ2 95 

𝑇ℎ3 91 

𝑇𝐿11 105 

𝑇𝐿12 100 

𝑇𝐿13 95 

𝑇𝐿21 94 

𝑇𝐿22 93 

𝑇𝐿23 92 

𝑇𝐶𝑇 94 

𝑇𝐶𝐵 88 

𝑇𝐶𝑅 92 

𝑇𝐶𝐿 90 

𝑇𝑇𝑂𝑇 80 

𝑇𝐵𝑂𝑇 70 

𝑇𝑅𝑂𝑇 77 

𝑇𝐿𝑂𝑇 73 

𝑇𝑐𝑎𝑠𝑒𝑇 65 

𝑇𝑐𝑎𝑠𝑒𝐵 55 
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𝑇𝑐𝑎𝑠𝑒𝑅 62 

𝑇𝑐𝑎𝑠𝑒𝐿 59 

𝑇𝐴𝑀𝐵 40 

2) Transformer Thermal Capacitance (Cth) 

Each thermal capacitance in the transformer model was computed by (29). The 

volume of the space surrounding a temperature spot in the transformer, however, can be 

computed by 

𝑉𝑜𝑙 = 𝜋𝑟2ℎ, (31) 

where  

r is radius of the tank [in], and 

h is the height of the tank [in].  

In particular, the following assumptions were made when the volume of each part of the 

transformer was computed: 

 Inner radius of the transformer was assumed 96% of the outer radius. 

 A number of inches were subtracted of the transformer height due to bushing as 

necessary. Some manufacture provides exact height without bushing.  

 Each winding side volume was assumed to be 2% of the resulted transformer 

volume (core and windings volume). 

5.4.2.3 Transformer Loss of Insulation Life (LOIL) 

The degradation of the transformer insulation life attributes to three different 

factors: moisture, oxygen, and temperature [24, 96]. Each one of these factors contributes 

separately to the degree of the transformer insulation degradation; therefore, they must be 
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controlled independently. The contamination of the transformer oil resulted from either 

moisture or oxygen can be controlled by the transformer Oil-Preservation System [OPS].  

Thus, moisture and oxygen were excluded from the analysis provided in this 

research; and the transformer was assumed to be well dried and oxygen free. It was only 

assumed that the temperature factor was the only factor considered in the loss of 

insulation life (LOIL) of the transformer computation procedure.  

LOIL during time interval t can be explained by the equivalent total life hours 

consumed divided by the predefined normal insulation life, which is usually given in 

hours. Thus, LOIL can be computed using the following equation [96, 110] 

𝐿𝑂𝐼𝐿 = 𝑒𝑥𝑝 (− (𝐴 +
𝐵

𝑇𝐻𝑜𝑡𝑆𝑝𝑜𝑡
) ) ℎ, (32) 

where  

THotSpot: Hot spot temperature at time t in [
o
K], 

t: time period in [h], 

A & B: Empirical constants depending on the design of the transformer. Numerical values 

of A & B are summarized in Table 4.  

Table 4. Transformer empirical A & B values [111]. 

Constant 65 
o
C Insulation System 55 

o
C Insulation System 

A -11.269 -11.968 

B 6328.8 6328.8 
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5.4.3 Mathematical Model of the Distribution Center-Tap Transformer 

Using the selected thermal parameters, the thermal circuit of the distribution 

center-tap distribution was developed. The detailed electrothermal model of a center- tap 

distribution transformer is provided in ‎Appendix B. 

5.5 House DERs and Appliances Models 

Physically based models of major house DERs and appliances were developed. A 

description of each one of these models including DERs and appliance (controllable/non-

controllable) is briefly discussed. Note that the discussion in this section is focused on 

providing description regarding a residential smart house. However, the house model can 

be used to represent a commercial building, if properly sized. 

5.5.1 Thermal Model of the House 

A thermal model of a single story house with two bedrooms and two bathrooms 

was developed. The layout of the house is illustrated on Figure 15. The model provides 

an estimation of all selected temperature spots inside the house. These temperatures 

impact the operation of thermal loads that are connected to the house such as the 

refrigerator and air conditioner.  
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Figure 15. Thermal house model user interface in WinIGS program. 

5.5.1.1 Definition of the House Thermal Model Parameters  

An approximately 1200 ft
2
 single story house with two bedrooms and two 

bathrooms was considered. The house was simplified to have six main spaces as the 

following: two bedrooms, two bathrooms, kitchen, and living room. Extra spaces, such as 

closets and storages, were merged with their associated space. The thermal parameters of 

the house are defined as the following: 

1) Temperature Spots Selection 

To monitor gradient temperatures of the thermal model of the house, several 

temperature spots were selected. Precisely, 17 temperature spots were selected. Location 

of each one of these temperature spots is illustrated in Figure 16. Specifically, every 

space was assigned two temperature spots; a main temperature spot and an internal wall 

temperature spot. To capture the temperature outside the house walls, every cardinal 

direction including the top direction of the house was assigned a temperature spot. The 
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reference temperature of the thermal model is the ambient temperature. The external 

temperature spots of the thermal model of the house (external temperature spots) were 

designed to have connections to an ambient temperature spot that is connected to a 

reference temperature model. The definition of each of the spot temperature is given next.  

 Bedroom One Spots (Bed1):  

TBed1: Bedroom 1 temperature spot in [
o
C]. 

TBed1-I: Bedroom 1 internal wall temperature spot in [
o
C]. 

 Bedroom Two Spots (Bed2):  

TBed2: Bedroom 2 temperature spot in [
o
C]. 

TBed2-I: Bedroom 2 internal wall temperature spot in [
o
C]. 

 Bathroom One Spots (Bath1):  

TBath1: Bathroom 1 temperature spot in [
o
C]. 

TBath1-I: Bathroom 1 internal wall temperature spot in [
o
C]. 

 Bathroom Two Spots (Bath2):  

TBath2: Bathroom 2 temperature spot in [
o
C]. 

TBath2-I: Bathroom 2 internal wall temperature spot in [
o
C]. 

 Kitchen Spots (K):  

TK: Kitchen temperature spot in [
o
C]. 

TK-I: Kitchen internal wall temperature spot in [
o
C]. 

 Living Room Spots (L):  

TL: Living room temperature spot in [
o
C]. 

TL-I: Living room internal wall temperature spot in [
o
C]. 

 House External Spots (L):  
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TE: East temperature spot in [
o
C]. 

TN: North temperature spot in [
o
C]. 

TW: West temperature spot in [
o
C]. 

TS: South temperature spot in [
o
C]. 

TTop: Top of the house temperature spot in [
o
C]. 

1BedT

IBedT 1

IBathT 2 ET

IBedT 2

2BedT

2BathT

LT

KT

1BathT

NT

IBathT 1
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TopTAMBT

 

Figure 16. Thermal house model internal and external temperature spots locations. 

2) Thermal Conductance: 

For every temperature spot in the model, there is one or several thermal 

conductances were connected to it. In the thermal model, it was assumed that the main 

space spot has a thermal conductance connected to the internal wall temperature spot. 

The internal wall temperature spot was assumed to have thermal conductances with all its 

direct connected temperature spots such as external wall, top, and other spaces. Also, it 

was assumed that there was a thermal conductance between every internal temperature 
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spot and its direct neighboring temperature spots. To illustrate this, thermal RC circuit for 

bedroom2 is shown in Figure 17. The same was also applied for other spaces. 

TopT

IBedT 2

ET

ST
2BedT

IBathT 2

ILT 

AMBT

AMBT

 

Figure 17. House bedroom2 RC thermal circuit.  

Thermal conductance circuit parameters were computed considering the house 

rated temperatures as provided in Table 5. To estimate the model thermal conductances, 

steady state equations of the thermal model of the house with rated temperature were 

used. Because there is large number of thermal conductances in the model, each thermal 

conductance was represented by a percent of a main thermal conductance. As a result, the 

number of thermal conductances was reduced. Then, all other thermal conductances can 

be calculated using the assumed percentage provided in ‎Appendix C. 

Table 5. House thermal model rated temperature at each temperature spot. 

Temperature Spot Rated Temp [
o
C] 

Tbed1 15 

Tbed1-I 16 

Tbed2 15 
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Tbed2-I 16 

TBath1 17 

TBath1-I 18 

TBath2 17 

TBath2-I 18 

TK 16 

TK-I 18 

TL 15.5 

TL-I 16.5 

TE 48 

TN 48 

TW 48 

TS 48 

TTop 48 

𝑇𝐴𝑀𝐵 50 

3) Thermal Capacitance: 

Connections of each thermal capacitance are provided in Table 6. The thermal 

capacity for every space in the house is computed considering the sum of every element 

heat capacity inside that particular space. For example, bedroom1 thermal capacity is 

computed by 

𝐶𝐵𝑒𝑑1 = 𝐶𝑤𝑜𝑜𝑑𝑒𝑛𝐵𝑒𝑑 + 𝐶𝑑𝑟𝑒𝑠𝑠𝑒𝑟 + 𝐶𝐺𝑙𝑎𝑠𝑠 + ⋯ (33) 

Below is a summary of the assumed thermal capacitances: 

CBed1: The sum of the heat capacity of every element inside bedroom one in [Btu/
o
C]. 
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CBed1_I: The heat capacity of the wall for bedroom one in [Btu/
o
C]. 

CBed2: The sum of the heat capacity of every element inside bedroom two in [Btu/
o
C]. 

CBed2_I: The heat capacity of the wall for bedroom two in [Btu/
o
C]. 

CBath1: The sum of the heat capacity of every element inside bathroom one in [Btu/
o
C]. 

CBath1_I: The heat capacity of the wall for bathroom one in [Btu/
o
C]. 

CBath2: The sum of the heat capacity of every element inside bathroom two in [Btu/
o
C]. 

CBath2_I: The heat capacity of the wall for bathroom two in [Btu/
o
C]. 

CK: The sum of the heat capacity of every element inside the kitchen in [Btu/
o
C]. 

CK_I: The heat capacity of the wall for kitchen in [Btu/
o
C]. 

CL: The sum of the heat capacity of every element inside the living room in [Btu/
o
C]. 

CL_I: The heat capacity of the wall for living room in [Btu/
o
C]. 

CE: East side spot heat capacity in [Btu/
o
C]. 

CN: North side spot heat capacity in [Btu/
o
C]. 

CW: West side spot heat capacity in [Btu/
o
C]. 

CS: South side spot heat capacity in [Btu/
o
C]. 

CTop: Top side spot heat capacity in [Btu/
o
C]. 

Table 6. Thermal house model thermal capacitance connections. 

Thermal Capacitance (Cth) Spot 1 Spot 2  

CBed1 Tbed1 Tbed1-I 

CBed1-I Tbed1-I TE 

CBed2 Tbed2 Tbed2-I 

CBed2-I Tbed2-I TS 

CBath1 TBath1 TBath1-I 
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CBath1-I TBath1-I TN 

CBath2 TBath2 TBath2-I 

CBath2-I TBath2-I TE 

CK TK TK-I 

CK-I TK-I TTop 

CL TL TL-I 

CL-I TL-I TW 

CE TE TAMB 

CN TN TAMB 

CW TW TAMB 

CS TS TAMB 

CTop TTop TAMB 

5.5.1.2 Thermal House Mathematical Model 

The thermal circuit of the house was assumed to have 44 thermal conductances, 

17 heat capacities, and 6 heat sources. The first order differential equation given by (29) 

was used to derive the thermal model of the house. The model equations for the thermal 

house model are provided in a compact form in ‎Appendix C. The house thermal model 

provides interfacing capabilities with models that inject thermal loads such as air 

conditioner and refrigerator. The air conditioner model is discussed next. 

5.5.2 Electrothermal Air Conditioner Model 

An electrothermal model of an air conditioner house load was developed. The 

model was assumed to inject heat (cooling) to the house through six output ducts. The 
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model window in WinIGS program is shown in Figure 18. Typical air conditioner load 

voltage is line to line with voltage ranges between 210-240 V.  

 

Figure 18. Electrothermal air conditioner model user interface in WinIGS program 

Electrical and thermal circuits of the electrothermal air conditioner are illustrated 

by Figure 19. Output power, shown in the top part of Figure 19, is a function of actual air 

conditioner (BR) rating and coefficient of performance (COP). 
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Figure 19. Air conditioner electrical and thermal circuit model. 

As shown in Figure 19, the air conditioner model generates heat, denoted by 

𝑄̇ℎ𝑣𝑎𝑐 , and injects this heat to the house via six ducts. Each one of these ducts was 

designed to provide cooling according to specific amount of 𝑄̇ℎ𝑣𝑎𝑐  as follows: 

k1 = 22.5%, k2 = 22.5%, k3 = 7.5%, k4 = 7.5%, k5 = 15%, and k6 = 25%. 

The heat (cooling) generated by the air conditioner model is a function of nominal 

size of the air conditioner, ambient temperature, relative humidity, and COP. The model 
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was developed with a control signal terminal that sets to receive on/off control signal 

command (u2) from the thermostat control model to control the operation of the model. It 

should be noted that BR and COP were assumed to vary over time based on the ambient 

temperature. Typical BR and COP characteristics are illustrated in Figure 20. Basically, 

the air conditioner actual heat rating changes based on the ambient temperature. As the 

temperature drops, the actual heat rating increases. Similarly, the air conditioner COP 

improves when the temperature cools down as shown in bottom part of Figure 20. The 

mathematical model of the electrothermal air conditioner is provided in ‎Appendix D. 

 

Figure 20. Top: Air conditioner actual heat rating (BR), Bottom: Coefficient of performance (COP) 

5.5.3 Electrothermal Refrigerator Model 

The second appliance that injects heat to the house is the refrigerator. In this 

section, a physically based electrothermal model of a top-mounted refrigerator with two 

compartments, fresh food and freezer, is discussed. The model was connected to the 

kitchen main temperature spot, assuming that the refrigerator is in the kitchen inside the 

house. However, the refrigerator can be placed in a different location. Typical voltage 
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connection is line to neutral with voltage ranges approximately from 110 V to 140 V. The 

refrigerator model interface window in WinIGS program is illustrated in Figure 21. The 

mathematical equations of the model are provided in a compact form in ‎Appendix E. 

Details about the model are provided in the following sections. 

 

Figure 21. Electrothermal refrigerator model user interface in WinIGS program  

5.5.3.1 Refrigerator Electrical Model 

The electrical load is computed according to the refrigerator specified rated 

power, approximated efficiency, and coefficient of performance (COP). This information 

can be found on the manufacturer datasheet. The electrical circuit model of the 

refrigerator is illustrated in Figure 22. 
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Figure 22. Electrical circuit model of the refrigerator 

5.5.3.1 Refrigerator Thermal Model 

The electrothermal model of the refrigerator provides an estimation of all 

temperature spots in the refrigerator. The thermal parameters of the refrigerator are 

defined as the following: 

5.5.3.1.1 Refrigerator Thermal Parameters 

1) Temperature Spots: 

To monitor gradient temperatures of the refrigerator model, seven temperature 

spots were selected. Figure 23 shows the location of each one of these temperature spots. 

Specifically, the fresh food compartment of the refrigerator was assigned a spot; and the 

freezer compartment was also assigned a spot. Due to the temperature difference between 

the internal and external wall of each one of the compartments, two temperature spots 

were selected for each of the internal and external walls. These selected temperature spots 

are listed as the following, 

Tfr: Fresh food compartment main temperature spot in [
o
C]. 

Tfriw: Fresh food compartment internal wall temperature spot in [
o
C]. 
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Tfrew: Fresh food compartment external wall temperature spot in [
o
C]. 

Tfz: Freezer compartment temperature spot in [
o
C]. 

Tfziw: Freezer compartment internal wall temperature spot in [
o
C]. 

Tfzew: Freezer compartment external wall temperature spot in [
o
C]. 

Tk: Kitchen temperature spot in [
o
C]. 

2) Thermal Conductance: 

It was assumed that for every temperature spot in the refrigerator, there one or 

several thermal conductances were connected to it. Below is a summary of the assumed 

thermal conductances, 

Gfr: Thermal conductance between the fresh food compartment mass and the fresh food 

compartment internal wall in [Btu/
o
C h]. 

Gfz: Thermal conductance between the freezer compartment mass and the freezer 

compartment internal wall in [Btu/
o
C h]. 

Gfriw-fziw: Thermal conductance between the fresh food compartment internal wall and the 

freezer compartment internal wall mass in [Btu/
o
C h].  

Gfriw-frew: Thermal conductance of the fresh food compartment wall in [Btu/
o
C h]. 

Gfziw-fzew: Thermal conductance of the freezer compartment wall in [Btu/
o
C h]. 

Gfrew-fzew: Thermal conductance of the fresh food and freezer compartments external walls 

in [Btu/
o
C h]. 

Gfrew-K: Thermal conductance between the fresh food compartment external wall and the 

Kitchen air mass in [Btu/
o
C h]. 
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Gfzew-K: Thermal conductance between the freezer compartment external wall and the 

Kitchen air mass in [Btu/
o
C h]. 

3) Thermal Capacity: 

It was assumed that there is a thermal capacitance associates with each one of 

fresh food compartment and freezer compartment. The thermal capacitance is connected 

between the corresponding spot and a specific reference as provided in Table 7. Below is 

a summary of the assumed thermal capacitances, 

Cfr: The sum of the heat capacity of every element inside the fresh food compartment in 

[Btu/
o
C]. 

Cfriw: Heat capacity of internal door mass in the fresh food compartment in [Btu/
o
C]. 

Cfrew: Heat capacity of external door mass in the fresh food compartment in [Btu/
o
C]. 

Cfz: The sum of the heat capacity of every element inside the freezer compartment in 

[Btu/
o
C] 

Cfziw: Heat capacity of internal door mass in the freezer compartment in [Btu/
o
C]. 

Cfzew: Heat capacity of external door mass in the freezer compartment in [Btu/
o
C]. 

4) Heat Sources: 

There is one main heat source  𝑄̇𝑟provides cooling to both the fresh food and 

freezer compartments as shown in Figure 23. Injected heat to the fresh food compartment 

was assumed to be (k1 = 60%) of the total generated heat by the main heat source. Also, 

injected heat to the freezer compartment was assumed to the rest, (k2 = 40%), of the total 

generated heat by the main heat source of the refrigerator. 
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Figure 23. Refrigerator thermal circuit elements and temperature spots locations 

Table 7. Electrothermal refrigerator thermal capacitance connections 

Thermal Capacitance (Cth) Spot 1 Spot 2  

Cfr Tfr Tfriw 

Cfriw Tfriw Tfrew 

Cfrew Tfrew TK1r 

Cfz Tfz Tfziw 

Cfziw Tfziw Tfzew 

Cfzew Tfzew TK1r 

5.5.3.1.2 Computation of Thermal Quantities  
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Methods used to compute the refrigerator model thermal capacitance and thermal 

conductance are presented as follows: 

1. Thermal Capacitance (Cth) 

The compartment main thermal capacity was computed considering the sum of 

each element heat capacity inside that compartment (34), including cool air, various types 

of vegetables, fruits, meats, dairy products, candy, nuts, fluid… etc. In total, there are 94 

elements considered in each one of the refrigerator compartments.  

𝐶𝑓𝑟 = 𝐶𝑓𝑟0 + 𝐶𝑓𝑟1 + ⋯+ 𝐶𝑓𝑟𝑖  , (34) 

The heat capacity of every element inside the compartment, fresh food or freezer, 

is a function of element mass and specific heat (35). Data regarding every element mass 

and specific heat can be found in reference books such as [112, 113]. 

𝐶𝑡ℎ = 𝑚 𝐶𝑝, (35) 

where m is the mass of the element in [kg] and Cp is the element specific heat in 

[Btu/kg. 
o
C]. 

When all heat capacities are computed, their volumes can be then calculated by 

𝑉𝑜𝑙 = 𝑚/𝜌, (36) 

where Vol is the volume of the element in [m
3
] and ρ is the mass density of the element 

[kg/m
3
].  

Air Heat Capacity 

Air is assumed to fill the volume of the refrigerator less the sum of the elements 

volumes. To compute air heat capacity, the following equation is used 
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𝐶𝑡ℎ = 𝑉𝑜𝑙 𝜌 𝐶𝑝. (37) 

Door Opening and Mass Change 

There are two other factors that were assumed to impact the compartment thermal 

capacity, when the compartment’s door is opened and when the mass inside the 

compartment is experienced some changes. In case of door opening, the duration of time 

while the door is opened is assumed to be enough for the entire cold air to escape and get 

replaced with air that has the kitchen temperature. In addition, the volume that was 

occupied by cold air is the same as kitchen temperature air, unless if there is an internal 

mass change. To account for that, the temperature inside the compartment is reinitialized. 

For example, if the fresh food compartment door is opened, the new initialized 

temperature value is computed using the following equation 

𝑇𝑓𝑟
𝑛𝑒𝑤 − 𝑇𝑓𝑟𝑖𝑤 =

𝐶𝑓𝑟(𝑇𝑓𝑟 − 𝑇𝑓𝑟𝑖𝑤) + 𝐶𝑓𝑟−𝑑𝑜𝑜𝑟(𝑇𝐾 − 𝑇𝑓𝑟𝑖𝑤)

𝐶𝑓𝑟 + 𝐶𝑓𝑟−𝑑𝑜𝑜𝑟
, (38) 

where Cfr-door is the heat capacity of the air mass with kitchen temperature. 

In case of the compartment mass changes, thermal capacities for elements that 

experience mass change become different and should be recomputed. For example, if the 

water mass is increased by 5% in the fresh food compartment, the heat capacity of water 

has to change. The extra mass is assumed to have a kitchen temperature. As a result, the 

temperature at the main spot inside the compartment has to be reinitialized and the sum 

of the all elements heat capacities, Cfr, should be updated. The new initialized 

temperature value is computed as the following 
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𝑇𝑓𝑟
𝑛𝑒𝑤 − 𝑇𝑓𝑟𝑖𝑤 =

𝐶𝑓𝑟(𝑇𝑓𝑟 − 𝑇𝑓𝑟𝑖𝑤) + ∆𝐶𝑓𝑟1(𝑇𝐾 − 𝑇𝑓𝑟𝑖𝑤)

𝐶𝑓𝑟 + ∆𝐶𝑓𝑟1
, (39) 

where ∆Cfr1 is the thermal capacity due to the extra mass element change. 

Note that these changes are incorporated in the model in real-time. Although 

equations (34),(38), and (39) are expressed for fresh food compartment, these equations 

were also implemented for freezer compartment with related values.  

2. Thermal Conductance (Gth): 

Thermal conductance parameters were computed considering the refrigerator 

rated data including rated temperatures as provided in Table 8. Also, it was assumed that 

the thermal conductance between internal walls of the compartments is 0.02 of the freezer 

door thermal conductance. In addition, the thermal conductance between the 

compartments external walls was assumed to be 100 times the thermal conductance 

between kitchen air mass temperature and fresh food compartment external temperature. 

To compute these conductances, steady state equations of the model that is given by 

(E.1)-(E.11) were used. 

Table 8. Rated temperature at each temperature spot (
o
C). 

Temperature Spot Rated Temperature [
o
C] 

Tfr 2.0 

Tfriw 5.0 

Tfrew 28.0 

Tfz -5.0 

Tfziw 0.0 

Tfzew 28 
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TK1 33.0 

5.5.4 Dishwasher Model 

A dishwasher load is mathematically modeled as a constant active and reactive 

power. Based on the dishwasher efficiency and rated power, the output power is 

computed. Typical model connection is line to neutral. Also, typical voltage is 110-

140 V. Figure 24 shows the dishwasher model interface window in WinIGS program. 

There are two factors were assumed to impact dishwasher power consumption: load level 

inside the dishwasher and dishwasher power profile for every cycle. The model equations 

of the dishwasher are provided in a compact form in ‎Appendix F. 

5.5.4.1 Dishwasher Load Level 

Three different load levels were assumed to represent the dishwasher internal 

loading. These are high, medium, and light, which corresponds to 100%, 75%, and 50% 

of the dishwasher power profile. These three load levels are summarized in Table 9. It 

should be noted that when the load level is set for a particular operation, the load for that 

operation cycles are fixed and cannot be changed until the end of the operation.  
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Figure 24. Smart dishwasher model user interface in WinIGS program. 

Table 9. Dishwasher load levels. 

Load Load Level in % of the Dishwasher Power Profile 

High 100 

Medium 75 

Light 50 

5.5.4.2 Dishwasher Power Profile 

The dishwasher operation can be modeled assuming different power profiles [114, 

115]. Fixed power over the operation cycle profile is also widely used. To reflect more 

realistic energy consumption, a detailed power profile was considered. For every 

dishwasher operation, it was assumed that there are five different cycles as the following: 
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pre-wash, main wash, rinse, rinse and heat, and drying cycles. The duration of time for 

every cycle varies depending on the dishwasher. However, the overall duration of time 

for one dishwasher operation is usually ranged between 60 - 200 minutes. Brief technical 

explanation of each one of these stages is provided next: 

1. Pre-wash: 

In the pre-wash cycle, water is pumped and sprayed to loosen particles stuck on 

dishes, utensils, pans, and other stuff inside the dishwasher. Water sprayed is not 

heated up and usually regular in temperature. The water is then pumped out to 

prepare the dishwasher for the next cycle. 

2. Main wash: 

After the pre-wash cycle, fresh water is sprayed and mixed with the detergent. 

The water used in this cycle is heated up to become 125 - 140 
o
F (50 – 70 

o
C). 

When the cycle is over, the water is pumped out.  

3. Rinse: 

With a cold water, the inside dishwasher is sprayed to clean the residuals from the 

previous cycle. 

4. Rinse and heat: 

In this stage, water is sprayed again. Rinse aid soap could be mixed with sprayed 

water. Water temperature is increased up to about 140 
o
F (70 

o
C). By the end of 

the cycle, hot water is pumped out. 

5. Dry: 

After pumping all the water in the previous cycle, a heating element positioned on 

the bottom of the dishwasher is used to provide more heat and dry the left of 

water and kills bacteria. 



76 

The power profile and time duration for every cycle are presented in Figure 25. 

The y-axis is in percentage of the dishwasher rated power.  

 

Figure 25. Dishwasher power profile. 

5.5.5 Variable Load Model 

To account for other house appliances, such as washer, dryer, and water heater, a 

time varying load was developed. The variable load is modeled mathematically as a 

specified constant active and reactive power for every time period. The model can also 

adopt different voltage ratings. Figure 26 illustrates the variable load model window in 

the program in WinIGS program. The basic electrical circuit is illustrated in Figure 27. 

The mathematical model in a compact form is provided in ‎Appendix G. 
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Figure 26. Variable load model user interface in WinIGS program. 

1

~
I

1

~
V

2

~
I

2

~
V

)()( tjQtP LL 

1u

 

Figure 27. Electric circuit of the variable load model. 
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5.5.6 Roof-Top Solar Photovoltaic (PV) Model 

A physically based model of a PV array with solar cell (single diode) was 

developed. The solar cell model is based on [116]. The model is a dependent on the 

environment conditions, i.e. temperature and solar irradiance. Figure 28 shows the 

equivalent electrical circuit of a single diode solar cell. The mathematical model of the 

PV solar cell is provided in a compact form in ‎Appendix H. 

 

Figure 28. Equivalent electrical circuit of the solar cell. 

Data regarding solar array characteristics are usually provided by the solar 

manufacturer except series and parallel resistances. To compute them, an algorithm was 

used to find the optimized values of the both resistances that is based on [116]. 

5.5.7 Electrothermal Model of a Battery Energy Storage System (BESS) 

Battery based, energy storage system was modeled as part of the smart house 

energy management system. There are several types of battery technologies that could be 

used for energy storage. However, the mostly and widely used type for solar PV and 

house application is lead acid battery technology because it is economically attractive, 

easily maintained, and can last for a long time. Several dynamic models of a lead acid 

battery are already developed and exist in the literature. The mathematical model of lead 
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acid battery was extracted from [117-119]. Then, an electrothermal, third order, and 

physically based model was developed. The model accounts for the following: 

 The model is dynamic and built mainly for lead acid batteries. 

 Surrounding and internal battery temperature variation was considered. 

 Internal gassing current was modeled. 

 Battery self-discharging characteristic was neglected.  

The battery circuit model is shown in Figure 29. Figure 30 illustrates the battery 

of lead acid type model window in the program in WinIGS program. Two switches were 

considered to control the operation of the model. The first switch is to determine the 

status of the battery, standby or connected. And the second switch is used to govern the 

battery’s mode of operation, charging or discharging. The mathematical model in a 

compact form for every mode of operation is provided in ‎Appendix I. 

 

Figure 29. Circuit model of lead acid battery. 
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Figure 30. Lead acid battery model user interface window in the program. 

5.5.8 Electric Vehicle (EV) Model  

A physically based electrothermal model of EV battery was developed. In 

particular, the EV is modeled as lithium ion battery with appropriate size [120]. The 

model accounts for the following, 

 The model is in the quasi-dynamic domain and was developed to model mainly 

lithium ion batteries. 

 Surrounding and internal battery temperature variation was considered. 

 Battery self-discharging characteristic was neglected. 

The circuit model of the lithium ion battery is shown in Figure 31. The lithium ion 

battery model window in the program in WinIGS program is illustrated in Figure 32. 

There is one control switch added to the mode to identify the status of the battery, 

standby or connected. The mathematical model of the electrothermal lithium ion battery 

cast in a compact form is provided in ‎Appendix J. 
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Figure 31. Circuit model of lithium ion battery. 

 

Figure 32. Lithium ion battery model user interface in WinIGS program. 
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The house system was contracted by power electronics converters. Averaged 

domain was adopted when converters were modeled. Next, discussion regarding every 

converter model considered in this research is provided. 

5.5.9.1 Single Phase Averaged DC-DC Boost Converter Model 

Boost converters are used to regulate the input voltage, such as the house solar PV 
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regulated dc voltage by the duty ratio, D. Typical switching frequency used is 60 kHz. 

The circuit diagram of the dc-dc boost is shown in Figure 33. The model was developed 

in WinIGS program and the window of the model is illustrated in Figure 34. 
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Figure 33. Equivalent circuit model of a single phase dc-dc boost converter. 

 

Figure 34. Average model of dc-dc boost converter user interface in WinIGS program. 

The model was designed to work with three control schemes as the following: 

1) DC voltage control: This control maintains a constant dc output voltage. 

2) Real power control: This control maintains a constant real output power. 
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3) Maximum power point tracking (MPPT) control: This control was also 

developed to extract maximum power out of solar PV. This control basically regulates the 

converter duty cycle (D) to maintain a constant dc output voltage. There are several 

MPPT algorithms such as perturb and observe (P&O), incremental conductance (IC), 

fuzzy logic, current sweep [121]. However, perturb and observe (P&O) algorithm was 

implemented. A schematic diagram of (P&O) is illustrated in Figure 35. The algorithm 

exploits the relation between the output power and the voltage of PV to determine 

whether increasing or decreasing the duty cycle. The compact model that describes the 

averaged single phase dc-dc boost converter in the frequency domain and with every 

control scheme is given in ‎Appendix K. 
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Figure 35. Perturb and observe (P&O) algorithm. 

5.5.9.2 Single Phase Full Bridge DC-AC Inverter Model 

Inverters are used to convert input dc current or voltage to ac current or voltage 

waveform, which is controlled by the modulation index, M. The circuit diagram of a 
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single phase dc-ac inverter is shown in Figure 36. The model was developed in WinIGS 

program. The user interface window is shown in Figure 36. 
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Figure 36. Equivalent circuit model of the single phase full bridge DC-AC inverter. 

 

Figure 37. Average model of dc-ac inverter user interface in WinIGS program. 

The model is equipped with two controls as the following: 

1) VQ Control: This control maintains an input dc voltage equals to a dc reference 

voltage and constant reactive power equals to an imaginary power reference. 
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2) PQ Control: This control maintains a constant real and imaginary power equal to 

a specified real and imaginary power references.  

The mathematical model with every control is provided in ‎Appendix L. 

5.5.9.3 Battery Charger Model 

The battery charger was modeled as a single phase dc-dc buck-boost converter. 

These types of converters are used to step up or down the input dc voltage. Stepping up 

the input voltage can be achieved by using the boost converter. On the other hand, 

stepping down the input voltage can be done by using the buck converter. The output 

voltage is controlled by the duty ratio, D. The circuit diagram of the buck-boost converter 

is shown in Figure 38. The model was developed in WinIGS program and the window of 

the model is illustrated in Figure 39. One of the main functions of the battery charger is to 

monitor the state of charge (SOC) of the battery that it monitors and ensures that the 

charge inside the battery does not exceed the minimum and maximum charge limits, 

which are set by the user.  
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Figure 38. Equivalent circuit model of a single phase dc-dc buck-boost Converter. 
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Figure 39. Battery charger dc-dc buck-boost user interface in WinIGS program. 

The mathematical model of the buck-boost converter is provided in ‎Appendix M. 

The model is equipped with two different controls as the following: 

1) DC Voltage Control: This control maintains an input dc voltage equals to dc 

reference voltage. 

2) Real Power Control: This control maintains a constant real power equals to a 

specified real power reference.  

5.5.10 Miscellaneous Models 

Other devices that are not part of the previous sections, such as reference 

temperature and thermostat controller, are discussed in this section.  
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5.5.10.1 Ambient Temperature Model 

The electrothermal model of the house consists of several electrothermal devices 

such as the distribution transformer and air conditioner. These electrothermal devices 

need to be connected to a reference temperature, in most cases, it is the ambient 

temperature. The circuit model of the ambient temperature model is shown in Figure 40. 

The user interface window of this model in WinIGS program is illustrated in Figure 41.  
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Figure 40. Equivalent thermal circuit diagram of ambient temperature. 

 

Figure 41. Ambient temperature model user interface in WinIGS program. 



88 

 Most of electrothermal devices in the house are connected to several ambient 

temperature models. For example, external temperature spots of the distribution 

transformer (Case Spots) are connected ambient temperature model. Similarly, the 

external temperature spots of the thermal house model are connected to another ambient 

temperature model. Note that both ambient temperature models are not necessary having 

the same temperatures. For example, if the EV is inside a garage, where the temperature 

inside the garage is controlled, then the reference temperature of the EV is different than 

the reference temperature of the distribution transformer. The model equations in 

compact form are provided in ‎Appendix N.  

5.5.10.2 Thermostat Controller 

The thermostat controller monitors a temperature spot that is connected to it. It 

compares that temperature with the customer preference temperature setting. Based on 

the results, a control signal is sent to the air conditioner to turn it on or off. The model 

accepts several temperature settings at different times. The equivalent circuit diagram is 

illustrated in Figure 42. The user interface window in WinIGS program is shown in 

Figure 43. The model equations in the frequency domain are provided in ‎Appendix O. 
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Figure 42. Equivalent circuit diagram of the thermostat. 
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Figure 43. Thermostat user interface in WinIGS program. 

5.6 Summary 

To obtain accurate estimation of the house states, accurate models of house 

energy resources and appliances are important. The modeling methodology that was used 

to model distribution transformer and various house, energy resource, battery energy 

storages, and appliances is presented in this Chapter. A physically based and object 

oriented modeling approach was used to model various components of the electrothermal 

model of the house. A novel and detailed electrothermal model of a center-tap 

transformer was developed. The model is able to provide measurements for 21 

temperature spots. Also, other electrothermal models of important DERs and appliances 

were presented.  
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A thermal model of a single story house with six rooms was developed. This 

model has the capability to be interfaced with appliances that inject thermal loads such as 

air conditioner and refrigerator. An electrothermal model of an air conditioner is assumed 

to provide the house with cooling only is presented in this Chapter. The air conditioner 

cools the house through six ducts; each one was connected to a room in the house. A 

detailed electrothermal model of a top-mounted refrigerator with two compartments was 

developed. The model is connected to the main kitchen temperature spot, assuming that 

the refrigerator is in the kitchen. Furthermore, a dishwasher with five cycles was 

developed. The power consumption of the dishwasher was assumed to be impacted by the 

level of internal loading of the dishwasher and the cycle power profile. The rest of the 

house appliances were modeled as time variable active and reactive power. Two types of 

batteries, lead-acid and lithium-ion, electrothermal models were developed. An average 

model of a battery charger is also presented. Required power electronics converters and 

necessary controls, such as thermostat controller and MPPT, were also developed. In the 

next Chapter, the third major component of the advanced house infrastructure that is the 

house distributed state estimation is discussed. 
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6 HOUSE DISTRIBUTED STATE ESTIMATION 

6.1 Introduction 

The next major component of the advanced house infrastructure is house DSE. 

Firstly, a general description regarding the house DSE is discussed. Additionally, various 

house DSE functions are explained. Secondly, the house DSE mathematical formulation 

is presented. 

6.2  House DSE Description 

A house DSE is discussed in this section. The house DSE is performed at the 

house level by utilizing local real-time measurements and data that are obtained from the 

house. These data are obtained by local metering devices that monitor the house, which 

are then sent to DSE. The house DSE is set to receive various measurements and fit the 

received data into an accurate model.  

A general illustration of the house DSE is shown in Figure 44. House 

measurements are obtained by various metering devices at the house level. These 

measurements are compared with the house model values, which is obtained from the 

electrothermal model of the house. The outcome is the residual errors. To perform state 

estimation, a standard least squares algorithm is used. This algorithm is used to minimize 

the sum of the errors squared and provide the best estimate of the house external and 

internal states. If the results of the estimation process are not satisfactory, this might be 

an indication of the presence of bad data. Statistical hypothesis testing methods can be 

used, which are based on the chi-square test, to check the presence of bad data. If bad 
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data are present, they can be identified based on their normalized residual values; and can 

be removed from the measurement set. This process is repeated as necessary. Otherwise, 

the best estimates of the house external and internal states are calculated and can be used 

as an input for numerous applications. In this research, the outcome of house state 

estimation is utilized by the smart house energy management system to provide 

optimization.  

 

Figure 44. A general functional description of the house level DSE.  

The scheme explained before results in monitoring the house in real-time [122-

125]. The outcome of the house DSE are a collection of external and internal states of all 

components states that are connected to the house. External states include phasor 

voltages. On the other hand, internal states are algebraic or dynamic states which are exist 

inside the device. Examples of internal states are various temperature spots inside the 

house and EV battery SOC. Measurements will also include the control variables of 

controllable devices such as dishwasher operation time and converter controllers. The 

mathematical formulation of the DSE is discussed in the next section. 
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6.3 House DSE Formulation 

In this section, the formulation of the house DSE is provided. Mathematically, the 

house DSE consists of: Devices, State Set, Measurements Set, State Estimation 

Algorithm, Detection and Identification of Bad Data and Error Analysis. The process of 

the estimation is illustrated in Figure 45.  

Data Gathering from the House
(Device Model, Connectivity, Measurement)

House States x Identification

Build Measurement Model, h(x)

Perform State Estimation

Detection and Identification of Bad Data

Perform Optimization using Real Time Model 
of the House  

Figure 45. House state estimation procedure. 

1)  Double Phase Device Model 

Due to single phase loads, feeders, system imbalances, and asymmetries are 

common in the distribution circuits. To capture this, the house devices have to be modeled 

on a single phase using the physical model of each device. 

2) State Set 

The state set is defined as the set of the voltage phasors of every node of the house 

that describes the operating conditions. For every node i of the house, the following 

electrical states can be defined as 
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𝑉̃𝑖 = [𝑉̃𝑖,𝐿1 𝑉̃𝑖,𝐿2 𝑉̃𝑖,𝑁𝑁]
𝑇
. (40) 

3) Object Oriented Measurements 

The measurements, synchronized or non-synchronized, are expressed as a linear 

and nonlinear functions in terms of the states of order at most quadratic. The object 

oriented generic form of the measurement is as follows 

𝑧𝑘 = 𝑐𝑘 + ∑ 𝑎𝑘,𝑖  𝑥𝑖𝑖 + ∑ 𝑏𝑘,𝑖,𝑗  𝑥𝑖 𝑥𝑗𝑖,𝑗 + ƞ𝑘 , (41) 

where zk is the measured value, ck is the constant term, ak,i are the linear coefficients, bk,i 

are the nonlinear coefficients, and ηk is the error term.  

4) State Estimation Algorithm 

The state estimation algorithm is solved using least square approach, where the 

objective is to estimate the states x. Therefore, the problem is formulated as follows 

min 𝐽(𝑥) = ƞ𝑇𝑊ƞ, (42) 

where ƞ = 𝑧 − ℎ(𝑥), and W is a diagonal matrix whose non-zero entries are equal to the 

inverse of the variance of the measurement errors given by 

𝑊 = 𝑑𝑖𝑎𝑔 [
1

𝜎𝑣
2
]. (43) 

Then, the below iterative algorithm is used to obtain the best estimate of the house states 

𝑥̂𝑗+1 = 𝑥̂𝑗 + (𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊 (𝑧𝑎 − ℎ(𝑥̂𝑗)), (44) 

where 𝑥̂ refers to the best estimate of the state vector and H is the Jacobian matrix of the 

measurement equations. At each time step of the estimation, the contributions of each 

measurement to the information matrix H
T
WH and the vector H

T
W(h(x

v
)-z) must be 

computed.  
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5) State Estimation Accuracy Quantification 

Chi-square test is used to quantify the accuracy of the estimator and the estimation 

confidence. Given the number of measurements m and the number of states n, the degrees 

of freedom can be calculated as ν=m-n. Calculating the value ζ of the objective function, 

the estimation confidence level is given by the probability 

𝑃𝑟[𝜒2 ≥ 𝜁 ] =  1.0 −  𝑃𝑟[𝜒2  ≤ 𝜁 ] =  1.0 −  𝑃𝑟(𝜁 , 𝑣). (45) 

For an acceptable confidence level, the accuracy of the solution is computed via the 

covariance matrix as follows 

𝐶𝑥 = 𝐸[(𝑥̂ − 𝑥̅)(𝑥̂ − 𝑥̅)𝑇], (46) 

where 𝑥̅ denotes the true state value and 𝑥̂ the estimated value, and computed as 

𝐶𝑥 = (𝐻𝑇𝑊𝐻)−1. (47) 

Once the information matrix of the solution has been computed, the standard deviation of 

a component of the solution vector is given by 

𝜎𝑥𝑖
= √𝐶𝑥(𝑖, 𝑖), (48) 

where Cx(i,i) is the i
th
 diagonal entry of the Cx. 

The estimates of the measurements can also be computed as 

𝑏̂ =  ℎ(𝑥̂, 𝑦̂), (49) 

which covariance matrix is proved to be, 

𝐶𝑜𝑣(𝑏̂) = 𝐻(𝐻𝑇𝑊𝐻)−1𝐻𝑇 . (50) 

In the end, the house DSE provides real-time model of the house. The estimated 

states of the house model are used to do optimization.  



96 

6.4 Summary 

In this Chapter, the house DSE is discussed. A general description of the house 

state estimation is also provided. A house state estimation is set to perform estimation on 

data and measurements that are gathered by metering devices at the house. The estimator 

uses a least squares algorithm to perform house state estimation. Further, the 

mathematical model of the house DSE is formulated and presented. The formulation 

includes device modeling, state set, measurements object orientation, numerical solution, 

and bad data identification. The outcome of the estimation is a real-time model of the 

house that is set to be used by the smart house energy management system to perform 

optimization. 
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7 OPTIMIZATION PROBLEM SOLUTION METHOD 

7.1 Introduction 

Due to the quadratization process that was implemented when modeling 

distribution transformer, house DERs, and appliances, the electrothermal model of the 

house is a large set of quadratic equality and inequality constraints. Therefore, the house 

optimization model is a Mixed Integer Quadratically Constrained Programming (MIQCP) 

problem. In this Chapter, piecewise linear approximation technique is discussed. This 

technique was used to approximate the quadratic terms in the optimization model. To 

provide optimal control variables that yield optimal house states trajectory, model 

predictive control was utilized. This advanced control is explained in this Chapter. 

7.2 Piecewise Linear Formulations 

To solve the optimization problem, PLA techniques are used to linearize quadratic 

functions that exist in the optimization model [126, 127]. It should be noted that PLA 

applies on separable functions. Some examples of separable functions are 

𝑓1(𝑥) + 𝑓2(𝑦) + 𝑓3(𝑧) = 𝑥2 +
1

𝑦
− 2𝑧 + 𝑧2. (51) 

Also, the following examples are non-separable functions 

𝑓1(𝑥) + 𝑓2(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 2𝑦. (52) 

7.2.1  λ-Formulation 

There are several techniques of linear approximation; one of these techniques is λ-

formulation [126]. To illustrate this method, a simple example is considered. Consider a 
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simple function with only one quadratic term to be approximated. This function is given 

by  

𝑓(𝑥) = 𝑥2, (53) 

and x is a continuous variable bounded by 

0 ≤ 𝑥 ≤ 2.5 (54) 

The curve of the function given by (53) within the bound 0-2.5 is shown in black 

in Figure 46. This curve is divided into three pieces that are approximated with straight 

lines; each one of these pieces is bounded by two breakpoints. These lines are represented 

by linear equations. This approximation can be expressed mathematically in different 

forms; one of these forms is the λ-formulation, which is described below. 

 

Figure 46. Piecewise linear approximation of (53) using λ-formulation. 

 Let x1 = 0, x2 = 1, x3 = 2, and x4 = 2.5 denote four selected breakpoints along the 

x-axis in Figure 46. Let f(x1) = 0, f(x2) = 1, f(x3) = 4, and f(x4) = 6.25 denote to the 

corresponding function values that are shown in Figure 46. So, any point x between two 
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breakpoints is the weighted sum of these two breakpoints. Now, consider λ1, λ2, λ3, and λ4 

are nonnegative weights and their sum equals 1. Then, (53) can be approximated by  

𝑥 = 0 𝜆1 + 1 𝜆2 + 2 𝜆3 + 2.5 𝜆4 , (55) 

𝑦 = 0 𝜆1 + 1 𝜆2 + 4 𝜆3 + 6.25 𝜆4,  (56) 

𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 = 1,         𝜆𝑖 ≥ 0. (57) 

Also, it should be noted that at most two adjacent λi can be nonzero. This 

condition together with the last constraint form a special order set of type 2 (SOS2). 

Therefore, any quadratic term in the form of (53) in the house optimization model is 

replaced by a slack term, for example y. Also, three equality constraints represented by 

(55)-(57) are added to the house optimization model. 

7.2.2 Elimination of Bilinear Terms 

The electrothermal model of the house represented by (2) contains two types of 

quadratic terms, f1(x) = x
2
 and f2 (x,y) = xy. The former is a single variable squared term 

and it is a separable function can be approximated using λ-formulation. But, the latter is a 

bilinear term that is non-separable function. This section presents a method to 

approximate a function with a bilinear term. Consider two variables x and y; and the 

product of them is given by 

𝑓(𝑥, 𝑦) = 𝑥𝑦, (58) 

where x and y are continuous variables and bounded by 

𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑢𝑏, (59) 

𝑦𝑙𝑏 ≤ 𝑦 ≤ 𝑦𝑢𝑏 . (60) 

The non-separable function f(x,y) given by (58) can be converted into a separable form by 

introducing two new slack variables g1 and g2, which are defined as 
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𝑔1 =
1

2
(𝑥 + 𝑦), (61) 

𝑔2 =
1

2
(𝑥 − 𝑦). (62) 

Now, the bilinear term xy can be replaced by an equivalent separable function  

𝑓(𝑥, 𝑦) = 𝑔1
2 − 𝑔2

2, (63) 

which can be easily approximated using the method explained in the previous section. 

The additional two slack variables g1 and g2 are bounded by 

1

2
(𝑥𝑙𝑏 + 𝑦𝑙𝑏) ≤ 𝑔1 ≤

1

2
(𝑥𝑢𝑏 + 𝑦𝑢𝑏), (64) 

1

2
(𝑥𝑙𝑏 − 𝑦𝑢𝑏) ≤ 𝑔2 ≤

1

2
(𝑥𝑢𝑏 − 𝑦𝑙𝑏). (65) 

Therefore, for any bilinear term in the house optimization model, two slack 

variables represented by (61) and (62) are added to the model. Further, the bilinear term 

is replaced by (63); and each single quadratic variable can be approximated using λ–

formulation as explained before. In addition, the new slack variables are bounded by (64) 

and (65). Next, model predictive control is discussed.  

7.3 Model Predictive Control 

The optimization model of the house is formulated to provide optimal control 

over a future horizon (planning period). Model predictive control (MPC) is an advanced 

method to control the future behavior of a dynamical system to achieve specific objective 

and meeting the dynamical system constraints [128, 129]. The goal of implementing the 

MPC is to compute the future trajectory of the house control variables that optimize the 
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future states of the house. To illustrate the concept, major parts of MPC are explained 

below.  

1. The House Optimization Model 

It is the model that MPC uses to predict future evolution of the house states in 

order to optimize the control variables. The optimization model not only covers the 

current time, but also during the future course of the house states. The detailed 

formulation of the house optimization model is presented in ‎3.1. 

2. Moving Horizon Window 

It is from n to n + N, which is denoted by 2 in Figure 47 (a). Note that the length 

of this horizon window is kept during the entire process. When the horizon window 

moves to the next step, shown in Figure 47 (b), the moving horizon window becomes 

form n+1 to n+N+1. The length of the horizon window could be for example an hour, 

two hours, or even a day. 

3. Planning Horizon 

The planning horizon of MPC dictates how far we wish the future of the house 

states to be predicted. It is equal to the length of the moving horizon window, N; and it is 

represented by 3 in Figure 47 (a).  

4. Receding Horizon Control 

One of the outcomes of the optimization problem solution at every step is the 

control variables at the current and future time steps i.e. complete trajectory of the control 

variables. It is only the first control variable vector at the current time is implemented and 
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the moving horizon window is moved one step. This procedure is performed until the end 

of the planning period. 

To summarize, the general scheme of MPC works as the following: 1) Initial 

values are obtained from the state estimation, 2) Solve the optimization problem for the 

entire planning horizon, 3) Only implement the first controls at the current time step and 

ignore the future controls, 4) move the window horizon one step, and 5) Back to 2. 

 

Figure 47. Illustration of the model predictive control concepts. 

7.4 Summary 

In this Chapter, the methods that were used when developing the optimization 

problem are presented. The λ–formulation that was used to approximate a single 

quadratic variable is explained in this Chapter. Also, the elimination procedure of any 
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bilinear term that exists in the house optimization model is discussed in this Chapter. 

Moreover, model predictive control that was utilized to provide optimal control variables 

to yield optimal house states trajectory over a planning horizon window is explained in 

this Chapter. The overall optimization model has around 15552 variables before the 

relaxation. After the relaxation, the model has 55872 variables. It should be noted that the 

number of total variables is impacted by the total number of planning horizon. For 

example, the previous number of variables is with 10 minutes time step for one day. With 

5 minutes time step, the total number of variables will double. Average execution time 

for the problem with 10 minutes time step for a day was found to be around 5 minutes 

and 46 seconds on a laptop that has the following characteristics: Windows 7 with Intel 

i7, 2.8 GHz, and 4 GB installed memory. With more advanced computers, the execution 

time would be reduced. The following Chapters present demonstrative case studies about 

the house components models and the smart house energy management system. 
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8 DEMONSTRATIVE CASE STUDIES: HOUSE MODEL 

SIMULATION RESULTS 

8.1 Introduction 

This Chapter provides demonstrative examples for house system simulation 

results and examination of component performance such as distribution transformer, 

house DERs, and house appliances. Note that all the models for the house components 

are already presented in Chapter ‎5. The first section presents results for the electrothermal 

model of distribution transformer. This example provides characterization of the model 

response rise time. It presents also the computation results of the transformer loss of 

insulation life for two different loading conditions: normal and extreme. The second 

section presents results for several house simulations. In these simulations, the house 

consists of transformer, DERs, and appliances. These simulations are: 1) two simulations 

for the house operation under different loading and environmental conditions and 2) a 

simulation for the house operation with regular and improved house wall insulation.  

8.2 Transformer Model Case Study 

8.2.1 System Description 

A 13.8 kV system was developed to test the electrothermal center-tap distribution 

transformer model. The test system consists of mainly slack generator, power 

transformers, transmission line, distribution substation (13.8 kV), overhead distribution 

line, and the electrothermal distribution transformer as illustrated in Figure 48. The 
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secondary winding of the transformer is connected to a variable load. The transformer 

external case temperature spots are connected to an ambient temperature model, which is 

considered the reference temperature for the thermal model. Parameters related to the 

electrothermal distribution transformer are presented next. 

 

Figure 48. Transformer test system single line diagram. 

The electrical circuit parameters for a 10 kVA distribution transformer are 

provided in Table 10. Temperature data for the City of Atlanta for August 08, 2013 are 

illustrated in Figure 49. Peak temperature was about 31 
o
C and occurred at 2 to 5 pm.  

Table 10. Case study transformer electrical impedance parameters. 

Z1 [pu] 0.00428+j0.03422 

ZL1, ZL2 [pu] 0.00699+j 0.01399 

Ym [pu] 0.0068+j 0.09 

 

Figure 49. An example of ambient temperature condition. 
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The daily load profile is shown in Figure 50. During the 16
th
 hour of that day, the 

transformer experienced a peak load equals 1.2 pu.  

 

Figure 50. Hourly load with 1.2 pu peak load connected to 10 kVA transformer. 

To compute the transformer various thermal capacities, the volume of every 

transformer part, such as tank and case, was computed. The computation of the 

transformer model parameters is based on the transformer physical dimensions and 

volumetric quantity of oil data; such data can be found in the transformer manufacture 

data sheet. In this case study, physical data for a 10 and 25 kVA ABB transformers were 

used. These data are summarized in Table 11. 

Table 11. ABB transformer physical parameters (dimension and oil volume) [130]. 

 10 kVA 25 kVA 

Height h [in] 22.0 24.2 

Radius r [in] 8.27 9.0 

Oil Volume [U.S. Gal] 5.8 7.92 

Given the height and radius data, the transformer overall volume including the 

transformer case volume was computed. The case volume was computed using the 

transformer inner and outer radius. This case volume was subtracted from the transformer 

volume. Next, the oil volume was subtracted from the transformer volume resulting in an 
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approximation of the transformer less oil volume, representing the total volume for 

transformer core and windings. Then, each one of the transformer windings volume was 

assumed to be 2% of total core and winding volume. Table 12 summarizes the volume, 

mass density, specific heat, and heat capacity for each part of 10 kVA ABB transformer. 

Table 12. Volume, mass density, specific heat, and heat capacity for each part of 10 kVA ABB 

transformer. 

 Vol [m
3
]  (ρ)[kg/m

3
] Cp [J/kg.

o
C] Cth [Btu/

 o
C] 

Primary 

Winding 
0.00098865 (Copper) 8930 385 Ch = 3399.01 

Secondary 

Winding 
0.00098865 (Copper) 8930 385 CL = 3399.01 

Transformer 

Core 
0.047455628 (Iron) 7874 450 Ccore = 168150 

Transformer 

Oil Tank 
0.02195537 (Mineral Oil) 800 1860 Coil = 32669.6 

Transformer 

Case 
0.00607296 (Steel) 7874 450 Ccase = 21518.3 

Finally, the thermal capacities were divided by the total number of temperature 

spots assigned to each part of the transformer. The computation for 10 & 25 ABB kVA 

transformer thermal circuit values was performed and the results are shown in Table 13. 

Table 13. Thermal circuit parameters results for ABB transformers. 

Thermal Capacity [Btu/
 o
C] 10 kVA 25 kVA 

Ch1, Ch2, Ch3, 1133.019609 1453.1590 

CL11, CL12, CL13, CL21, CL22, CL23 566.5098 726.57953 

CCT, CCB, CCR, CCL 42037.382166 53915.221 
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CTOT, CBOT, CROT, CLOT 8167.400615 11011.90910 

CCaseT, CCaseB, CCaseR, CCaseL 5379.584307 7008.34387 

Gh1 0.9392 2.34804 

Gh2 4.9646 12.41160 

Gh3 9.2251 23.06277 

GL11 1.3173 3.29348 

GL12 5.1539 12.88472 

GL13 15.9001 39.75033 

GL21 6.6761 16.69016 

GL22 12.7690 31.92241 

GL23 13.8044 34.51093 

GCT 114.4823 286.20563 

GCB 342.9088 857.27202 

GCR 411.6648 1029.16195 

GCL 638.6320 1596.57994 

GTOT 93.6341 234.08525 

GBOT 557.5581 1393.89515 

GROT 235.7097 589.27419 

GLOT 608.0865 1520.21629 

GCaseT 179.2948 448.2369 

GCaseB 1091.0020 2727.505025 

GCaseR 264.8116 662.0288 

GCaseL 487.5559 1218.8897 
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Three cases were simulated to test the electrothermal transformer model: a) rise time of 

the transformer waveforms, b) normal loading, and c) extreme loading. 

8.2.2 Rise Time Characterization 

The objective of this case is to analyze the rise time of temperature waveforms for 

the transformer model. This case was simulated with one second time step. Results are 

reported for two different transformer ratings 10 and 25 kVA for three different 

manufacturers ABB, Power Partners, and Cooper Power Systems. For 10 and 25 kVA 

ABB transformers, temperature waveforms at Th2, TL12, TCB, TTOT, and TCaseR spots are 

shown in Figure 51 (a) & (b), respectively. The simulation was performed as follows: no 

load was considered in the beginning of the simulation. By the end of the first half hour, 

full load equals 100% of the transformer rating was connected to the transformer 

secondary side. The reference temperature during the simulation was fixed at 40 
o
C.  

 

Figure 51. 10 & 25 ABB kVA transformer temperatures waveforms. 
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Approximate rise times are reported in Table 14 for three different manufactures 

ABB, Power Partners, and Cooper Power Systems with 10 and 25 kVA ratings. Physical 

data used to estimate the rise time were taken from the manufacture data sheet [130, 131]. 

Table 14. Transformer temperature waveforms approximate rise time in [min]. 

Manufacture 10 kVA 25 kVA 

ABB 20.45 19.3 

Cooper Power Systems 21.55 20.4 

Power Partners Inc. 22.15 17.72 

The rise time of temperature signals depends on transformer manufacture 

specification and transformer rating. According to Table 14, the parameters indicate that 

the thermal time constants are in the order of 15 to 25 minutes. This means that there is 

plenty of time for the smart house energy management system to schedule the use of 

electricity and avoid overloading the transformer. 

8.2.3 Peak Loading 

The objective of this case is to compute LOIL for a transformer with normal peak 

load that is comparable to the transformer rating over a day. Temperature data presented 

in Figure 49 were used for the temperature reference model. Hourly load data that are 

shown in Figure 50 were connected to the secondary winding of 10 kVA transformer. 

LOIL and cumulative LOIL results are reported in Table 15. The hot spot temperature 

and location (spot name) are provided, too. The computations were based on aging rate 

constant equals 14580 and normal insulation life equals 150000. The expected 

transformer loss of insulation life during the 16
th
 hour (peak load) was 0.0016173 %. The 
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expected LOIL of the transformer under study during the entire day was found equals 

0.004 %. 

Table 15. Aging calculation for 10 kVA transformer and for 24 hours with peak loading.  

Time 
Load 

(pu) 

Amb. 

Temp. (
o
C) 

Hot Spot 

Temp (
o
C) 

Spot 

Name 
LOIL (%) 

Cumulative 

LOIL (%) 

0:00:00 0.599 20.611 42.785 L11 0.00000017 0.00000017 

1:00:00 0.577 20.000 40.576 L11 0.00000012 0.00000029 

2:00:00 0.555 20.000 39.038 L11 0.00000010 0.00000039 

3:00:00 0.544 19.389 37.680 L11 0.00000008 0.00000047 

4:00:00 0.544 19.389 37.678 L11 0.00000008 0.00000055 

5:00:00 0.566 18.889 38.684 L11 0.00000009 0.00000064 

6:00:00 0.655 18.889 45.397 L11 0.00000025 0.00000088 

7:00:00 0.844 19.389 63.448 L11 0.00000287 0.00000376 

8:00:00 0.955 20.611 77.083 L11 0.00001552 0.00001928 

9:00:00 1.021 23.278 87.868 L11 0.00005386 0.00007314 

10:00:00 1.054 26.111 94.967 L11 0.00011739 0.00019053 

11:00:00 1.077 28.889 100.798 L11 0.00021773 0.00040827 

12:00:00 1.088 30.000 103.394 L11 0.00028490 0.00069317 

13:00:00 1.099 30.611 105.504 L11 0.00035352 0.00104669 

14:00:00 1.099 31.722 106.616 L11 0.00039574 0.00144244 

15:00:00 1.11 31.722 108.128 L11 0.00046083 0.00190327 

16:00:00 1.2 31.722 121.067 L11 0.00161726 0.00352052 

17:00:00 1.077 31.111 103.043 L11 0.00027480 0.00379532 

18:00:00 0.977 30.000 89.145 L11 0.00006211 0.00385743 

19:00:00 0.91 27.778 79.057 L11 0.00001960 0.00387704 
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20:00:00 0.877 26.722 74.332 L11 0.00001116 0.00388820 

21:00:00 0.866 26.111 72.527 L11 0.00000897 0.00389717 

22:00:00 0.832 25.000 67.834 L11 0.00000502 0.00390218 

23:00:00 0.788 24.389 62.801 L11 0.00000264 0.00390483 

8.2.4 Extreme Loading 

In this case, the objective is to compute LOIL for a transformer with extreme peak 

load. During the 16
th

 hour of the daily load presented in the previous section, the 

transformer experienced a load equals 1.4 pu. LOIL and cumulative LOIL results are 

reported in Table 16. The hot spot temperature and location (spot name) are provided, 

too. The computations were based on aging rate constant equals 14580 and normal 

insulation life equals 150000. The expected transformer LOIL during the 16
th
 hour (peak 

load) was 0.02679 %. The expected LOIL of the transformer under study during the 

entire day was found equals 0.029 %. 

Table 16. Aging calculation for 10 kVA transformer and for 24 hours with extreme loading.  

Time 
Load 

(pu) 

Amb. 

Temp. (
o
C) 

Hot Spot 

Temp (
o
C) 

Spot 

Name 
LOIL (%) 

Cumulative 

LOIL (%) 

0:00:00 0.599 20.611 42.784 L11 0.000000169 0.000000169 

1:00:00 0.577 20.000 40.575 L11 0.000000122 0.000000291 

2:00:00 0.555 20.000 39.037 L11 0.000000097 0.000000388 

3:00:00 0.544 19.389 37.678 L11 0.000000079 0.000000467 

4:00:00 0.544 19.389 37.678 L11 0.000000079 0.000000546 

5:00:00 0.566 18.889 38.684 L11 0.000000092 0.000000638 

6:00:00 0.655 18.889 45.398 L11 0.000000247 0.000000885 

7:00:00 0.844 19.389 63.447 L11 0.000002873 0.000003757 
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8:00:00 0.955 20.611 77.083 L11 0.000015523 0.000019281 

9:00:00 1.021 23.278 87.868 L11 0.000053860 0.000073140 

10:00:00 1.054 26.111 94.967 L11 0.000117384 0.000190524 

11:00:00 1.077 28.889 100.797 L11 0.000217716 0.000408240 

12:00:00 1.088 30.000 103.394 L11 0.000284908 0.000693148 

13:00:00 1.099 30.611 105.503 L11 0.000353506 0.001046654 

14:00:00 1.099 31.722 106.615 L11 0.000395718 0.001442371 

15:00:00 1.11 31.722 108.127 L11 0.000460785 0.001903157 

16:00:00 1.4 31.722 153.443 L11 0.026797767 0.028700923 

17:00:00 1.077 31.111 103.078 L11 0.000275797 0.028976720 

18:00:00 0.977 30.000 89.147 L11 0.000062115 0.029038836 

19:00:00 0.91 27.778 79.057 L11 0.000019605 0.029058440 

20:00:00 0.877 26.722 74.331 L11 0.000011163 0.029069603 

21:00:00 0.866 26.111 72.527 L11 0.000008967 0.029078570 

22:00:00 0.832 25.000 67.834 L11 0.000005017 0.029083587 

23:00:00 0.788 24.389 62.801 L11 0.000002643 0.029086230 

Data that are provided in Table 15 and Table 16 indicate that the transformer 

LOIL can experience substantial increase whenever there is high load. Thus, with 

appropriate management and control of the house controllable components, the service 

lifetime of the transformer can be extended. Moreover, the outcome of the transformer 

LOIL computation can show if this specific transformer is appropriately sized for a 

particular application or not.  
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8.3 House Characteristics Case Studies 

In this section, two case studies are presented to show the operational 

characteristics of the house. The house consists of all models that are presented in 

Chapter ‎5. To show the response of the house during different loading and environmental 

conditions, two different days with different loading and ambient conditions were 

simulated. The second case shows the house operation results when the house wall 

insulation was improved. First, a description of the house test system is discussed. 

8.3.1 Description of the House Test System 

A test case system with house DERs, EV, and house appliances was developed. 

The system consists of a 13.8 kV slack generator, 13.8/115 kV delta-why power 

transformer, transmission line, 115/13.8 kV why-why power transformer, and a 

distribution network consists of two poles as shown in Figure 52. The electrothermal 

model of the house is connected to the system via pole 1. 

 

Figure 52. Power system at the system level in the house simulation. 

The house model, which represents the physical house under consideration, is 

shown in Figure 53. A single phase electrothermal transformer rated 10 kVA 7.2/0.24 kV 

is used to connect the house with the power grid. EV and house battery are located 

outside of the house; a reference temperature model is connected to each one of them.  
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Figure 53. House pole in the simulation. 

The details of the house are shown in Figure 54. The house has solar PV, battery 

bank (lead acid), EV battery (lithium ion), and appliances including air conditioner, 

refrigerator, dishwasher, dryer, washer, water heater, and other. The house, additionally, 

includes power electronics converters, associates controls, and the thermostat, which is 

connected to bedroom1temperature spot as shown in Figure 54. 

 

Figure 54. House with appliances in the simulation. 
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Actual environmental conditions and appliances loading data for a single story 

house were used. The house is located in in Glasgow, Kentucky US. These data include 

solar irradiance data, ambient temperature, relative humidity, and appliances loading 

condition. They are for July 1
st
 and 29

th
 of 2012 and presented from 6:00 am for 24 hours. 

Solar irradiance, ambient temperature, and relative humidity data for July 1
st
 and 

29
th
 are presented in Figure 55. The data are presented every 10 minutes. Solar irradiance 

data are presented in Figure 55 (a). In July 29
th

, the solar PV can supply power to the 

house that is greater than the solar PV power in July 1
st
. In Figure 55 (b), the ambient 

temperatures of the house for both days are shown. The peak temperature was about 

40 
o
C at 04:50 pm in July 1

st
. Similarly, the peak temperature was 31.6 

o
C in July 29

th
 at 

01:00 pm. Relative humidity data for both days are presented in Figure 55 (c). 

 

Figure 55. Data for July 1
st
 & 29

th
, a) solar irradiance and b) ambient temperature. 
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The house appliances including washer, dryer, water heater, and range were 

represented by an aggregated several time variable active and reactive power load model. 

The aggregated data for these appliances for July 1
st
 and 29

th
 are illustrated in Figure 56 

(a) and (b), respectively. 

 

Figure 56. House data for July 1
st
 & 29th, a) relative humidity and b) appliances load. 

Dishwasher electrical parameters are provided in Table 17. The smart dishwasher 

was set to operate one time at 5:00 pm with high internal loading in July 1
st
. Similarly, it 

was set to operate one time at 11:30 pm with high internal loading in July 29
th

. Both 

dishwasher operations time duration was assumed to equal 100 minutes.  

Table 17. Dishwasher input data. 

Pdwrated =1200 W Vrms = 130 V Efficiency = 0.85 

Pf = 0.9 Total Time Duration Per One Operation= 100 min Connection L1-NN 

Refrigerator model parameters are provided in Table 18. The refrigerator food and 

freezer compartments capacity are: 12.8 ft
3
 and 3.7 ft

3
. The temperature set for the 

refrigerator for both days, July 1
st
 and 29

th
, was 2.5 with 1 

o
C deadband. The refrigerator 



118 

was assumed to be half full during the entire July 1
st
 day. But, in July 29

th
, the 

refrigerator was assumed to experience several internal heat capacity changes due to 

opening the refrigerator door and internal load changes. In particular, there was a large 

heat capacity change at 06:00 pm. 

Table 18. Refrigerator input data. 

Prefrated =100 W Vrms = 130 V Efficiency = 0.85 

Pf = 0.95 COP = 3.5 L1-NN 

An air conditioner with six ducts was also considered. Model parameters are 

provided in Table 19. The air conditioner operation was controlled by a thermostat 

controller with temperature reference that are varies based on the resident desires. The 

thermostat controller, in this case, monitored the main bedroom1 temperature with a 

deadband equals 1 
o
C. Table 20 presents the thermostat settings for both July 1

st
 and 29

th
. 

Table 19. Air conditioner model parameters. 

Heat Rate =35 kBtu Vrms = 230 V Nominal COP = 2.5 

Pf = 0.85 Thermostat Controlled Connection L1-L2 

Table 20. Thermostat control settings in July 1
st
 and 29

th
. 

 Time 06:00:00 am 06:00:00 pm 08:00:00 pm 10:00:00 pm 

Temperature 

Setting (
o
C) 

July 1
st
  26 24 22 22 

July 29
th

  29 24 24 21 

House roof-top solar PV was sized as follows, 6 panels with 60 cells in each 

panel. Characteristics for every panel are provided in Table 21. Perturb and Observe 

MPPT algorithm was used.  
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Table 21. House roof-top data parameters. 

Rated Power =0.26 kW/panel Voc = 38.3 V Isc = 9.09 A 

Rs = 0.4 Ω Rp=850 Ω P&O MPPT Algorithm 

For both days July 1
st
 and 29

th
, EV battery was rated 24 kWh with 3.3 kW 

maximum charging/discharging. To avoid deep charging/discharging, the minimum and 

maximum SOC limits were 0.1 and 0.9. In addition, EV was assumed to be connected to 

the house at 6:00 pm. Residential battery bank was also included. The battery bank was 

rated 2.4 kWh with rated 0.3 kW charging/discharging. Minimum and maximum SOC 

were 0.1 and 0.9. Power electronics converters were used with typical parameters. 

Simulation case studies that are presented in this Chapter were performed with 10 

seconds time step. Next, simulation results for house normal operation are presented for 

July 1
st
 and 29

th
. 

8.3.2 House Simulation for Two different Days 

This section presents the simulation results of the house normal operation when it 

was simulated for two different days, July 1
st
 and 29

th
 of 2012. The total house load is 

depicted in Figure 57 (a). The peak loads were 12.4 kW and 9.82 kW for July 1
st
 and 29

th
, 

respectively. A higher load was observed during July 1
st
. This was due to several factors; 

one of these factors was frequent operation of the house air conditioner. This frequent 

operation of the air conditioner was due mainly to the high ambient temperature at that 

day as shown in Figure 55 (b). The transformer hot spot temperature waveforms for both 

days are shown in Figure 57 (b). The peak transformer hot spot temperatures were 127 
o
C 

and 80.2 
o
C for July 1

st
 and 29

th
, respectively. Due to large energy consumption and high 
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ambient temperature in July 1
st
, the distribution transformer hot spot temperature most of 

the day was higher than in July 29
th
.  

 

Figure 57. (a) House total load and (b) transformer hot spot temperature, for both July 1
st
 and 29

th
. 

The house dishwasher active and reactive power for July 1
st
 and 29

th
 are shown in 

Figure 58 (a) and (b), respectively. In both days, the dishwasher operated at the exact set 

time by the customer. 

 

Figure 58. House dishwasher active and reactive power for both July 1
st
 and 29

th
. 
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Bedroom1 temperature, thermostat setting, and the house air conditioner control 

waveforms for July 1
st
 and 29

th
 are shown in Figure 59. In July 1

st
, the temperature in 

bedroom1 was maintained within the set temperature as shown in Figure 59 (a). Similarly, 

in July 29
th

, bedroom1 temperature was maintained within the set temperature as shown in 

Figure 59 (b). The thermostat was connected to bedroom1. It monitored the temperature 

inside bedroom1 and sent on/off signal to the air conditioner. The air conditioner received 

a command signal from the thermostat to turn on/off. The control signals of the house air 

conditioner for July 1st and 29
th

 are shown in Figure 59 (c). 

 

Figure 59. (a) House bedroom1 temperature on July 1
st
, (b) on July 29

th
, and (c) house air conditioner 

control signal on July 1
st
 & 29

th
. 

The house refrigerator waveforms in July 1
st
 and 29

th
 are shown in Figure 60. In 

Figure 60 (a) and (b), the fresh food compartment main temperature is shown for July 1
st
 

and 29
th

, respectively. The temperature inside the fresh food compartment was monitored 
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by a thermostat that was set at 2.5 
o
C with 1 

o
C deadband. Due to internal heat capacity 

changes around 6:00 pm, the temperature inside the fresh food in July 29
th

 was 

reinitialized as shown in Figure 60 (b). As a result, the compartment heat capacity was 

recomputed. The heat rate responses of the refrigerator for July 1
st
 and 29

th
 are shown in 

Figure 60 (c).When the temperature exceeded the upper set limit, the refrigerator’s 

electric motor turned on to cool the refrigerator. 

 

Figure 60. (a) Refrigerator fresh food compartment main temperature on July 1
st
, (b) on July 29

th
, 

and (c) refrigerator heat rate on July 1
st
 & 29

th
.  

Similarly, Figure 61 shows the house refrigerator waveforms during two hours of 

the days, July 1
st
 and 29

th
. The waveforms are shown from 5:00 pm to 7:00 pm. The 

refrigerator main temperature at the main spot on July 1
st
 is shown in Figure 61 (a). In 

Figure 61 (b), the refrigerator temperature on July 29
th
 is shown. In Figure 61 (c), the heat 

rate waveforms for both days July 1
st
 and 29

th
 are shown. 
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Figure 61. (a) Refrigerator fresh food compartment main temperature on July 1
st
, (b) on July 29

th
, 

and (c) refrigerator heat rate on July 1
st
 & 29

th
.  

8.3.3 House Insulation Improvement 

This case presents the simulation results of the house for July 1
st
 only, but with 

two different house walls insulations. The house data for July 1
st
 provided in section ‎8.3.1 

regarding solar irradiance, ambient temperature, relative humidity, and appliances loads 

were considered in this case. In this case, the house walls insulation was changed by 

considering different thermal conductivities of the walls. Table 22 presents thermal 

conductance parameters for three different insulation cases, A (base), B, and C. 
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Table 22. A (base) case, B case, and C case thermal conductances of the house. 

Thermal Conductance (Gth) [Btu/
o
C.h] Case A (Base) Case B Case C 

Gbed1 7.8750 7.8750 4.5 

Gbed2 7.8750 7.8750 4.5 

Gbath1 2.6250 2.6250 1.5 

Gbath2 2.6250 2.6250 1.5 

GK 2.6250 2.6250 1.5 

GL 8.7500 8.7500 4.5 

Gbed1-I 0.6674 0.5595 0.198 

Gbed2-I 0.7159 0.5932 0.205 

Gbath1-I 0.5074 0.4013 0.126 

Gbath2-I 0.6031 0.4640 0.128 

GK-I 2.8292 2.2117 0.704 

GL-I 0.5394 0.4557 0.148 

Ghouse-E 14.1032 14.0661 8.027 

Ghouse-N 12.1745 12.3211 7.144 

Ghouse-W 3.8617 3.7578 2.269 

Ghouse-S 9.0683 9.0158 5.387 

Ghouse-Top 17.9142 17.6113 9.926 

Bedroom1 temperature and house air conditioner control signal are shown in 

Figure 62 with insulation A parameters. Also, bedroom1 temperature and house air 

conditioner control signal with insulation B and C parameters are shown in Figure 63 and 

Figure 64, respectively. The insulation parameters for C case are better than B; and the 

insulation parameters for B case are better than the base case. The temperature inside 
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bedroom1 was monitored by a thermostat based on one temperature profile setting. Based 

on Figure 62 and Figure 63, the air conditioner did not operate quite frequently the house 

insulation was improved. Similarly the air conditioner in case C did turn on fewer times 

than in case B as illustrated in Figure 63 and Figure 64. 

 

Figure 62. (a) House bedroom1 temperature and (b) house air conditioner control signal, with 

insulation A on July 1
st
. 

 

Figure 63. (a) House bedroom1 temperature and (b) house air conditioner control signal, with 

insulation B on July 1
st
. 
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Figure 64. (a) House bedroom1 temperature and (b) house air conditioner control signal, with 

insulation C on July 1
st
. 

8.4 Summary 

This Chapter presents several demonstrative simulation results for distribution 

transformer, house DERs and house appliances models. Transformer rise time 

temperature waveforms and transformer LOIL simulation results are presented. Also, 

simulation results for the house operation for different two days that are characterized by 

different environmental loading conditions are presented. In addition, in this Chapter, a 

simulation of the house operation with regular and improved house wall insulation was 

performed and the results were compared.  
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9 DEMONSTRATIVE CASE STUDIES: SMART HOUSE 

ENERGY MANAGEMENT SYSTEM 

9.1 Introduction 

The smart house energy management system is demonstrated through two 

examples. A description of the house test system is provided. All necessary data and 

related information that are required to perform the case studies are also presented. Then, 

a demonstrative case study of the system without the smart house energy management 

system is presented. After that, a demonstrative case study of the smart house energy 

management system with the objective to minimize the residential customer’s total 

energy cost over a day is presented. The last section presents another demonstrative 

example of the smart house when the objective of the optimization model is to provide 

peak load control of the customer over a day.  

9.2 Description of House Test System 

The house test system that is presented in section ‎8.3.1 is reused in this Chapter. 

Actual data for a single story house were utilized. Data reported in section ‎8.3.1 for July 

1
st
, which include solar irradiance data, ambient temperature, relative humidity, and 

appliances loading condition were considered. Provided data in section ‎8.3.1 regarding 

house components for July 1
st
 were also considered. These data are for dishwasher, 

refrigerator, air conditioner, thermostat setting, solar PV, EV, and house battery bank. 

The smart house energy management system was assumed to provide 

management and control for the. In this case study, three devices were assumed to be 
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controllable: 1) smart dishwasher, 2) electric vehicle battery, and 3) house battery bank. 

The control, however, must not violate any of the system constraints, customer 

convenience, or overloading the transformer beyond the allowed limit. It should be noted 

that the customer indicated that the dishwasher must be ready by 9:00 pm, house 

bedroom1 main temperature should be maintained according the temperature set provided 

in Table 20, and EV battery must be fully charged by 6:00 am. 

9.3 Simulation without the Smart House Energy Management System 

The distribution transformer active power without implementing any control 

strategy is presented in the top of Figure 65. The house load was peaked to 12.4 kW at 

09:37 pm, which was higher than the transformer rating. Two temperature peaks were 

observed as shown in the bottom of Figure 65. These are 113 
o
C at 6:11 pm and 127 

o
C at 

09:41 pm. These peaks exceeded the permissible temperature (105 
o
C). The increase in 

the temperature may increase the deterioration of the transformer insulation life. 

 

Figure 65. Top: Transformer active power, Bottom: Transformer hot spot temperature with no 

management system. 
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Figure 66 shows the dishwasher characteristics during the simulation including 

active and reactive power when the house is not controlled by the smart management 

system. The dishwasher started at the scheduled time, at 5:00 pm and ended after 100 

minutes as shown in Figure 66.  

 

Figure 66. Smart dishwasher active and reactive power characteristics with no management system. 

The second controllable device is EV. It was assumed that the EV battery has one 

fourth of its rated capacity when it was connected to the house. The EV was originally 

scheduled to start charging as soon as it is connected to the house power, i.e. at 06:00 pm. 

The energy storage and charging/discharging power of the EV battery are presented in 

Figure 67 (a) and (b). The EV battery started charging with maximum charging power 

(3.3 kW) at 6:00 pm. 
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Figure 67. EV battery characteristics with no management system. 

Similarly, the house battery was assumed to have 10% of its rated capacity at the 

starting of the simulation at 6:00 am. Normal charging/discharging scenario was used. 

The battery bank was charged to full capacity during the day; and provided the house 

with power during the night. The battery bank energy storage and charging/discharging 

power are shown in Figure 68 (a) and (b). 

 

Figure 68. House battery characteristics with no management system. 

9.4 House Operation with Minimization of Customer’s Total Energy Cost 

The section presents the simulation results of the system under study when the 

smart house energy management system is used. The objective of the house optimization 

model is to minimize the customer’s total energy cost over one day. The optimization 

was performed every ten minutes for 24 hours. GUROBI program, the academic version 

5.6.3 was used to solve the optimization problem [132]. The program implemented 

branch and bound algorithm and took about 4 minutes to solve the problems. The 
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distribution transformer active power is presented in the top of Figure 69. The peak 

transformer power was 9.69 kW, which is below the maximum allowed limit (10.0 kW) 

around 10:30 am. In the bottom of Figure 69 presents the transformer L11 hot spot 

temperature. The maximum temperature was 90.8 
o
C at 10:35 am, which is less than the 

temperature permissible limit. 

 

Figure 69. Top: Transformer active power, Bottom: Transformer hot spot temperature with cost 

minimization. 

Figure 70 shows the dishwasher active and reactive power. It is shown that 

dishwasher operation was shifted and rescheduled to start at 7:20 pm. Also, it is shown 

that the dishwasher worked without interruption. 

 

Figure 70. Smart dishwasher active and reactive power with cost minimization. 
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EV battery charging was originally scheduled to start as soon as it is connected to 

the house. However, with the smart house energy management system, EV 

charging/discharging time was intelligently rescheduled. The energy storage and 

rescheduled charging/discharging power of the EV battery are presented in Figure 71. By 

the deadline time, 6:00 am, the EV battery was charged up-to the maximum limit. 

Similarly, the management system used the house battery bank to reduce the cost over 

that day by rescheduling charging/discharging power as shown in Figure 72. It met the 

deadline with half the battery capacity was available to be used the next day.  

 

Figure 71. EV battery characteristics with cost minimization. 
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Figure 72. House battery characteristics with cost minimization. 

The thermostat controller monitored bedroom1 temperature during the day; and it 

provided a control signal to control the operation of the air conditioner. Bedroom1 

temperature and thermostat setting are shown in Figure 73 (a). Similarly, the refrigerator 

main compartment temperature and the refrigerator set temperature are shown in Figure 

73 (b).  

 

Figure 73. Temperature at different locations of the house with cost minimization. 
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The customer’s total energy cost, for that day with the cost considered, was 

reduced by around 15%. Moreover, the peak demand and transformer hot temperature 

were reduced by 21.8% and 28.5%, respectively. 

9.5 House Operation with Peak Load Control 

This section presents the optimization results of the system under study when the 

smart house energy management system is used to provide peak load control over the 

planning period, a day. The optimization was performed every ten minutes for 24 hours 

using GUROBI program, the academic version 5.6.3 [132]. The distribution transformer 

active power is presented in the upper part of Figure 74. The peak transformer power was 

to 9.9 kW below the maximum allowed limit (10.0 kW) around 08:05 pm. The bottom 

part of Figure 74 presents the transformer L11 hot spot temperature. The maximum 

temperature was 103 
o
C at 08:10 pm. 

 

Figure 74. Top: Transformer active power, Bottom: Transformer hot spot temperature with peak 

load control. 
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Figure 75 shows the active and reactive power of the dishwasher. It is shown that 

the dishwasher was shifted to start at 6:10 pm; and it worked without interruption. 

 

Figure 75. Smart dishwasher active and reactive power with peak load control. 

The EV battery charging was originally scheduled to start as soon as it is 

connected to the house power circuit. But, with the smart house energy management 

system, the EV charging/discharging capabilities were used to levelize the peak load over 

the day. The energy storage and charging/discharging power of the EV battery are 

presented in Figure 76. By the deadline time, 6:00 am, the car battery was charged up-to 

the maximum limit, 90% of the rated capacity as shown in Figure 76 (a).  

 

Figure 76. Electric vehicle characteristics with peak load control. 
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Similarly, the management system used the battery bank capability to levelize the 

house peak load by rescheduling charging/discharging power of the battery as shown in 

Figure 77. At the end of the day, the house battery had about 50% of its capacity. 

 

Figure 77. House battery characteristics with peak load control. 

During this case, bedroom1 temperature was maintained according to the 

customer setting temperature as shown in Figure 78 (a). Similarly, the refrigerator 

temperature was also maintained around the set temperature as shown in Figure 78 (b). 
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Figure 78. Temperature at different locations of the house with peak load control. 

Over the planning period, the management system provided a house peak load 

control. The peak load was reduced by around 20%. Also, the peak transformer hot 

temperature was reduced by 18.9%.  

9.6 Summary 

In this Chapter, two examples are presented to demonstrate the smart house 

energy management system. Required data and information related to the house are 

provided in the first section. Then, a demonstrative case study of the system is presented 

to show the operation of the house without the smart house energy management system. 

This is followed by two examples when the smart house energy management system is 

used. First, a demonstrative case study of the smart house energy management system is 

presented to minimize the residential customer’s total energy cost over the planning 

horizon. After that, a second demonstrative example of the smart house energy 
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management system is presented to provide peak load control of the customer over the 

planning horizon.  
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10 CONCLUSIONS, CONTRIBUTIONS, AND FUTURE 

RESEARCH DIRECTIONS 

10.1 Conclusions 

Large penetration of DERs and EVs/PHEVs on the power distribution grid is 

expected to take place in the near future. In addition, massive deployment of smart 

appliances is expected. Due to the expected penetration of EVs/PHEVs in particular, 

more stress is expected to occur on the power distribution system components. 

Nevertheless, the unfavorable impacts on the system can be averted with appropriate 

management and control of end user’s resources including battery energy storages and 

smart appliances. Furthermore, smart utilization of these resources can alleviate the 

power distribution stresses and increase the reliability of the delivery system. This can be 

achieved by providing further important ancillary services such as control of peak load or 

reactive power support.  

Toward that goal, a smart house energy management system was developed. The 

smart house energy management system can provide smart controls to the house 

controllable devices in order to mitigate unfavorable impacts resulting from integrating 

new loads, such as EV, and facilitate more integration of clean energy resources, such as 

solar PV, at a residential level. Furthermore, the smart house energy management system 

can maximize other benefits associated with house DERs and appliances for the good of 

utility and customer. All these functions are performed without inconvenience the 

customer and without overloading the distribution transformer, which elongates the 

service lifetime of the equipment.  
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The operation of the smart house energy management system requires an advanced 

house infrastructure. This advanced infrastructure continuously monitors the operation of 

the house and provides smart control functionality of the house controllable devices in 

such a way that the distribution transformer is not overloaded, thus avoiding unnecessary 

loss of service lifetime. At the same time, this advanced house infrastructure provides 

smart load management services to the utility. The major key components of the 

infrastructure are: physically based models of important components of the house, house 

DSE, and advanced house optimization model. Measurements gathered from various 

house energy resources and loads, distribution circuits, distribution transformer, switches, 

and other are collected by metering devices and sent to the house DSE to perform state 

estimation. The final result is a reliable real-time model of the house that is used by the 

smart house energy management system to perform optimization. Note that, the smart 

house energy management system can manage a commercial building as well, if the 

system components are appropriately sized.  

Key components of the infrastructure were developed. Advanced house 

optimization model was developed for two different objective functions: 1) minimization 

of customer’s total energy cost and 2) providing control of the house peak load. The 

optimization model includes the physical and operational system constraints, which 

ensure full customer convenience. The electrothermal model of the house, which is part 

of the optimization model, is constructed from house components such as center-tap 

distribution transformer, house air-conditioned spaces, house DERs, and house important 

appliances. These house important components were physically modeled with object 

oriented approach. This helped unifying the format of various house devices, 



141 

applications, and associated controls. Therefore, house system expansion with new loads 

can be handled easily. Quadratic integration method was implemented to convert models 

with differential equations into algebraic. All these models (in algebraic form) were then 

unified in a standard syntax, named SCAQCF format. House DSE was formulated to 

provide real-time model of the house before executing the optimization. The optimization 

model is MIQCP and solved after relaxation. λ-formulation technique was implemented 

to approximate all quadratic terms in the house optimization model. Also, MPC with 

receding horizon was implemented to optimally compute the house future control 

variables that optimize the house states trajectory. 

Demonstrative case studies are provided to show transformer model 

characteristics and house operation under different conditions. Several case studies were 

developed to simulate a center-tap transformer. One study was developed to characterize 

the transformer model temperature signals rise time. For different transformer ratings, 

temperature waveforms rise time was found between 15-20 minutes. This amount of time 

is plenty for the smart house energy management system to provide transformer load 

management. Another case study was developed to compute the transformer LOIL. When 

the transformer load was peaked to 1.2 pu, the LOIL at that hour was estimated to be 

0.004%. On the other hand, transformer LOIL was 0.029% when the peak load was 1.4 

pu. This concludes that when the transformer load increase, transformer insulation 

deteriorates faster. Therefore, with better transformer load management, transformer 

service lifetime can be extended. Several demonstrative examples are presented for the 

house components. To show the response of the house components models during 

different environmental and loading conditions, house components models were 
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simulated for two days, July 1
st
 and July 29

th
 2012. Another case study was developed to 

simulate the house operation when the house wall insulation was improved. When the 

house wall insulation was improved, the ambient temperature impact on the temperature 

inside the house was reduced. Therefore, the house air conditioner was found to work less 

frequently.  

Two demonstrative case studies are presented to show proof of concept of the 

smart house energy management system. In both cases, the house has all models that 

were developed in this research including center-tap transformer, dishwasher, air 

conditioner, refrigerator, battery storages, and other. In both cases, three devices were 

controllable. These were dishwasher, EV battery, and house battery. First, the house 

operation was presented without a smart house energy management system. In this case, 

the transformer peak load was 12.4 kW and the transformer hot spot peak temperature 

was 127 
o
C. Both the load and temperature are above transformer permissible limits. The 

smart house energy management system was demonstrated on a house with two different 

objective functions: 1) minimization of the customer’s total energy cost and 2) peak load 

control. The management system controls the house in a smart way that benefits both the 

utility and customer and works without inconvenience to the customer and without 

overloading/overheating the distribution transformer beyond permissible limits.  

For the first objective function, the smart house energy management system 

shifted the dishwasher starting time from 5:00 pm to 7:20 pm, worked for 100 minutes, 

and was already finished by the deadline at 9:00 pm. Further, the smart house energy 

management system controlled EV and house batteries charging/discharging intelligently 

to achieve the minimum energy cost. EV was also fully charged by the deadline time at 
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6:00 am, which was set by the customer. Moreover, the transformer new peak load was 

9.69 kW and the transformer new peak for the hot spot temperature was 90.8 
o
C.  

To provide services to the utility, with an agreement with the customer, a second 

objective function was considered, which is to control the house peak load. In this case, 

the smart house energy management system moved the starting time of the dishwasher 

from 5:00 pm to 6:10 pm, worked for 100 minutes, and was already finished by the 

deadline at 9:00 pm. In addition, the smart house energy management system intelligently 

rescheduled charging/discharging of both EV and house batteries to levelize the 

transformer load. EV was also fully charged by the deadline time at 6:00 am, which was 

set by the customer. In this case, the transformer new peak load was 9.9 kW and the 

transformer new peak for the hot spot temperature was 103 
o
C. 

10.2 Contributions 

This research provides the following contributions: 1) the development of an 

advanced house infrastructure that can provide real-time management and control of all 

components that are connected to a house, 2) the new formulation of the house energy 

management system optimization model in a way that benefits both the utility and 

customer, without inconvenience to the customer and without overloading or overheating 

the distribution transformer, 3) the development of physically based and detailed 

electrothermal model of a center-tap distribution transformer, and 4) the development of 

physically based and detailed electrothermal/electrical models of various house energy 

resources and controllable/non-controllable appliances including energy storage batteries, 

dishwasher, refrigerator, and air conditioner. 
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10.3 Future Research Directions 

In this research, a smart house energy management system that provides real-time 

management and control of a house without inconvenient to the customer was developed. 

Several research extensions in every part of the house energy management system can be 

considered. Additional considerations that are a direct follow up to this current work 

could be to demonstrate the house management system with different environmental and 

loading conditions. This work was not done in this current research.  

Several house appliances were modeled. However, some other important 

appliances were not modeled in detail such as washer, dryer, and water heater. Water 

heater usually consumes high energy. Therefore, developing an electrothermal model for 

it could improve the house system performance. Other appliances, such as washer, dryer, 

and range can be also modeled in detail, which were ignored in this current research.  

The smart house energy management system can perform several functions. 

However, in this current research only two objective functions were implemented. A 

possible extension is to implement other objective functions such as maximization of 

reactive power support and system loss minimization.  

The formulation of the house optimization model assumed that the only 

controllable components in the house are: dishwasher, EV battery, and house battery 

bank. Further, house appliances, such as air conditioner, washer, dryer, and water heater, 

can be considered controllable. Considering these appliances to be controllable by the 

smart house energy management system could lead to better optimization results, i.e. 

better saving and better load levelization. 
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The physical system under consideration in this research was one house that is fed 

by one distribution transformer. Another potential research direction is to let the smart 

house energy management system provides management and control for more than one 

house fed by one center-tap transformer. This extra consideration would give the 

management system extra controllable components that could lead to extra benefits.  

Finally, the application of using the real-time model of the house, which is the 

outcome of the house DSE, is not limited to only optimization. Other advanced 

applications can be also implemented such as setting-less protection of the entire house. 

further, the real time model of the house can be synthesized with other house models that 

have the same time tag by an upper level management system, for example a distribution 

energy management system, to perform higher level applications such as optimizing the 

operation of the entire distribution feeder. 
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Appendix A Object Oriented Modeling 

Appendix A.1 Mathematical Model in the Standard Form 

The quadratized model of a device can have any combination of a differential 

equation part, linear part, and quadratic part. The differential equations involved the 

model can be cast in the following equations format 

𝐴1 [𝑖
(𝑡)
0

] + 𝐴2

𝑑

𝑑𝑡
[𝑖
(𝑡)
0

] =  𝐵1𝑥(𝑡) + 𝐵2

𝑑𝑥(𝑡)

𝑑𝑡
, (A.1) 

whereas the algebraic equations are cast in the below form 

[𝑖
(𝑡)
0

] = 𝐵3𝑥(𝑡) + [

𝑥(𝑡)𝑇𝐹𝑒𝑞1𝑥(𝑡)

𝑥(𝑡)𝑇𝐹𝑒𝑞2𝑥(𝑡)

⋮

] + 𝐾𝑒𝑞 , (A.2) 

where 

[𝑖
(𝑡)
0

] =

[
 
 
 
 
 
𝑖1(𝑡)

𝑖2(𝑡)
⋮
0
0
⋮ ]

 
 
 
 
 

,   𝑥(𝑡) = [

𝑥1(𝑡)

𝑥2(𝑡) 
⋮

𝑥𝑛(𝑡)

] 

i(t): Vector defining the through variable of the model. 

x(t): Vector defining the external and internal states of the model.  

n: Number of internal and external state variables 

Differential equations: 

A1: Identity matrix defining the linear part of the through variables with appropriate 

dimension. 
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A2: Matrix defining the coefficients of the differential part of the through variables with 

appropriate dimension. 

B1: Matrix defining the linear part with appropriate dimension. 

B2: Matrix defining the coefficients of the differential part with appropriate dimension. 

Algebraic equations: 

B3: Matrix defining the linear part with appropriate dimension. 

Feq: Matrix defining the quadratic part with appropriate dimension. 

Keq: Vector defining the constant part. 

Appendix A.2 Quadratic Integration Method 

The differential equations of the quadratized model that is cast in the form of 

(A.1) have to be integrated yielding to algebraic equations. The method used to perform 

the numerical integration is called Quadratic Integration. Simply, this method performs 

the integration over three points x(t-h), x(tm), and x(t) that defines a quadratic function in 

the interval [t-h, t]. Thus, when the function is integrated over time interval [t-h, t], it 

yields 

𝐴1 [
ℎ

6
𝑖(𝑡 − ℎ) +

2ℎ

3
𝑖(𝑡𝑚) +

ℎ

6
𝑖(𝑡)] + 𝐴2[𝑖(𝑡) − 𝑖(𝑡 − ℎ)]

= 𝐵1 [
ℎ

6
𝑥(𝑡 − ℎ) +

2ℎ

3
𝑥(𝑡𝑚) +

ℎ

6
𝑥(𝑡)] + 𝐵2[𝑥(𝑡) − 𝑥(𝑡 − ℎ)] 

And when it is integrated over time interval [t-h, tm], it produces 
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𝐴1 [
5ℎ

24
𝑖(𝑡 − ℎ) +

ℎ

3
𝑖(𝑡𝑚) −

ℎ

24
𝑖(𝑡)] + 𝐴2[𝑖(𝑡𝑚) − 𝑖(𝑡 − ℎ)]

= 𝐵1 [
5ℎ

24
𝑥(𝑡 − ℎ) +

ℎ

3
𝑥(𝑡𝑚) −

ℎ

24
𝑥(𝑡)] + 𝐵2[𝑥(𝑡𝑚) − 𝑥(𝑡 − ℎ)] 

Thus, by expressing the above two equations in one compact form, it yields 

[
 
 
 
 
 
ℎ

6
𝐴1 + 𝐴2 0

2ℎ

3
𝐴1 0

0 0 0 0

−
ℎ

24
𝐴1 0

ℎ

3
𝐴1 + 𝐴2 0

0 0 0 0]
 
 
 
 
 

[

𝑖(𝑡)
0

𝑖(𝑡𝑚)
0

]

= [

ℎ

6
𝐵1 + 𝐵2

2ℎ

3
𝐵1

−
ℎ

24
𝐵1

ℎ

3
𝐵1 + 𝐵2

] [
𝑥(𝑡)
𝑥(𝑡𝑚)

] − [
𝐵2 −

ℎ

6
𝐵1

𝐵2 −
5ℎ

24
𝐵1

] [𝑥(𝑡 − ℎ)]

−

[
 
 
 
 
 
ℎ

6
𝐴1 − 𝐴2 0

0 0
5ℎ

24
𝐴1 − 𝐴2 0

0 0]
 
 
 
 
 

[𝑖
(𝑡 − ℎ)

0
], 

(A.3) 

By assigning the following: 

𝐷 =

[
 
 
 
 
 
ℎ

6
𝐴1 + 𝐴2 0

2ℎ

3
𝐴1 0

0 0 0 0

−
ℎ

24
𝐴1 0

ℎ

3
𝐴1 + 𝐴2 0

0 0 0 0]
 
 
 
 
 

 

Since A1 is the identity matrix, sized according to the number of through variables in 

(A.1), and A2 can be assumed to be zero, E is the pseudo-inverse of D, which is given by 
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𝐸 =

[
 
 
 
 
 
4

ℎ
𝐼 0 −

8

ℎ
𝐼 0

0 𝐼 0 0
1

2ℎ
𝐼 0

2

ℎ
𝐼 0

0 0 0 𝐼 ]
 
 
 
 
 

 

Let: 

𝐹1 = [

ℎ

6
𝐵1 + 𝐵2

2ℎ

3
𝐵1

−
ℎ

24
𝐵1

ℎ

3
𝐵1 + 𝐵2

] 

𝐹2 = [
𝐵2 −

ℎ

6
𝐵1

𝐵2 −
5ℎ

24
𝐵1

] 

𝐹3 =

[
 
 
 
 
 
ℎ

6
𝐼 0

0 0
5ℎ

24
𝐼 0

0 0]
 
 
 
 
 

 

Thus, the final form after the integration is performed can be written as the following 

[

𝑖(𝑡)
0

𝑖(𝑡𝑚)
0

] = 𝐸 𝐹1 [
𝑥(𝑡)
𝑥(𝑡𝑚)

] − 𝑏𝑒𝑞 , (A.4) 

where 

𝑏𝑒𝑞 = 𝐸 𝐹2[𝑥(𝑡 − ℎ)] + 𝐸 𝐹3 [𝑖
(𝑡 − ℎ)

0
] 

Appendix A.3 Final Form of AQCF and SCAQCF 

Both forms shown in (A.2) and (A.4) are expressed in one matrix form as the following 
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[

𝑖(𝑡)
0

𝑖(𝑡𝑚)
0

] = 𝑌𝑒𝑞 [
𝑥(𝑡)
𝑥(𝑡𝑚)

] +

[
 
 
 
 
 
 

𝑥(𝑡)𝑇𝐹𝑒𝑞1𝑥(𝑡)

𝑥(𝑡)𝑇𝐹𝑒𝑞2𝑥(𝑡)

⋮
𝑥(𝑡𝑚)𝑇𝐹𝑒𝑞1𝑥(𝑡𝑚)

𝑥(𝑡𝑚)𝑇𝐹𝑒𝑞2𝑥(𝑡𝑚)

⋮ ]
 
 
 
 
 
 

− 𝑏𝑒𝑞 , (A.5) 

𝑏𝑒𝑞 = [
𝑏1(𝑡 − ℎ)

𝑏2(𝑡 − ℎ)
] = 𝑁𝑒𝑞[𝑥(𝑡 − ℎ)] + 𝑀𝑒𝑞 [

𝑖(𝑡 − ℎ)
0

] + 𝐾𝑒𝑞 , (A.6) 

𝑌𝑒𝑞 = 𝐸 𝐹1 + [
𝐵3 0
0 𝐵3

], (A.7) 

𝑁𝑒𝑞 = 𝐸 𝐹2, (A.8) 

𝑀𝑒𝑞 = 𝐸 𝐹3, (A.9) 

where 

Yeq: Matrix defining the linear part of the model. 

Neq: Matrix defining the contribution from the previous time step states. 

Meq: Matrix defining the contribution of the previous time step through variables. 

Keq: Vector defining the constant part of the model. 

Appendix A.3.1 Matrices and Vectors Dimensions 

Assume that there are n state variables with n equations. Also, assume that there 

are m equations are differential equations for the through variables and (n-m) are 

algebraic equations. Therefore, the dimension of the matrices and vectors defining the 

AQCF is given by the below table: 

[
𝑖(𝑡)
0

] (n by 1) 𝑥(𝑡) (n by 1) 𝐷 (2n by 2n) 

[
𝑖(𝑡𝑚)

0
] (n by 1) 𝑥(𝑡𝑚) (n by 1) 𝑌𝑒𝑞 (2n by 2n) 
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[
𝑖(𝑡 − ℎ)

0
] (n by 1) 

𝑥(𝑡

− ℎ) 
(n by 1) 𝑁𝑒𝑞 (2n by n) 

𝐵1, 𝐵2, 𝐵3 (n by n) 𝐸 (2n by 2n) 𝑀𝑒𝑞 (2n by n) 

𝐴1 𝐼(𝑚 𝑏𝑦 𝑚) 𝐹1 (2n by 2n) 𝐾𝑒𝑞 (2n by 1) 

  𝐹2 (2n by n) 𝑏𝑒𝑞  (2n by 1) 

  𝐹3 (2n by n) 𝐹𝑒𝑞1, 𝐹𝑒𝑞2 (n by n) 

Appendix A.3.2 Network Synthesis 

At each node of the system, the connectivity constrains obtained from Kirchhoff’s 

current law is applied. The solution of the network is then achieved at time t and tm. To 

accomplish this, the set of internal device equations are appended yielding to the 

following expression 

∑𝐴𝑘𝑖𝑘(𝑡) = 0

𝑘

, (A.10) 

∑𝐴𝑘𝑖𝑘(𝑡𝑚) = 0

𝑘

, (A.11) 

where 

i
k
(t) is the device current injection from device k at time t. 

i
k
(tm) is the device current injection from device k at time tm. 

A
k
 is the incident matrix given by 

𝐴𝑖𝑗
𝑘 = {

1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑜𝑓 𝑑𝑒𝑣𝑖𝑐𝑒 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑤

 

Similarly, the terminal voltage for each device v
k
(t) is related to the constructed nodal 

voltage vector v(t). This can be mathematically expressed by 



152 

𝑣𝑘(𝑡) = 𝐴𝑘𝐼 𝑣(𝑡), (A.12) 

where 

I: a 2 by 2 identity matrix. 

The device currents in the system of equations expressed by the final AQCF in 

(A.5) are eliminated with the use of equation (A.10) and (A.11). The resulted set of 

equations is only in terms of the external and internal state variables. Thus, the set of 

equations can be expressed by the following format 

𝑔(𝑥(𝑡), 𝑥(𝑡𝑚)) = 𝑌𝑒𝑞 [
𝑥(𝑡)
𝑥(𝑡𝑚)

] +

[
 
 
 
 
 
 

𝑥(𝑡)𝑇𝐹𝑒𝑞1𝑥(𝑡)

𝑥(𝑡)𝑇𝐹𝑒𝑞2𝑥(𝑡)

⋮
𝑥(𝑡𝑚)𝑇𝐹𝑒𝑞1𝑥(𝑡𝑚)

𝑥(𝑡𝑚)𝑇𝐹𝑒𝑞2𝑥(𝑡𝑚)

⋮ ]
 
 
 
 
 
 

− 𝑏𝑒𝑞 = 0.0 (A.13) 

Appendix A.3.3 Network Solver  

The system of equations represented by (A.13) is solved using Newton’s method. This 

method is particularly chosen because it is ideally suited for the solution of quadratic 

equations. Specifically, the solution is given by the following expression 

[
𝑥𝑣+1(𝑡)

𝑥𝑣+1(𝑡𝑚)
] = [

𝑥𝑣(𝑡)

𝑥𝑣(𝑡𝑚)
] − 𝐽𝑔

−1

[
 
 
 
 
 
 

𝑌𝑒𝑞 [
𝑥𝑣(𝑡)

𝑥𝑣(𝑡𝑚)
] +

[
 
 
 
 
 
 

(𝑥𝑣(𝑡))𝑇𝐹𝑒𝑞1𝑥
𝑣(𝑡)

(𝑥𝑣(𝑡))𝑇𝐹𝑒𝑞2𝑥
𝑣(𝑡)

⋮
(𝑥𝑣(𝑡𝑚))𝑇𝐹𝑒𝑞1𝑥

𝑣(𝑡𝑚)

(𝑥𝑣(𝑡𝑚))𝑇𝐹𝑒𝑞1𝑥
𝑣(𝑡𝑚)

⋮ ]
 
 
 
 
 
 

− 𝑏𝑒𝑞

]
 
 
 
 
 
 

, (A.14) 

where v is the iteration step number, beq is the contribution from the previous time step 

given by (A.6) and Jg is the Jacobian matrix of equation (A.14). Particularly, the Jacobian 

matrix takes the following form 
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𝐽𝑔 = 𝑌𝑒𝑞 +

[
 
 
 
 
 
 
(𝑥𝑣(𝑡))𝑇(𝐹𝑒𝑞1 + 𝐹𝑒𝑞1

𝑇 )

(𝑥𝑣(𝑡))𝑇(𝐹𝑒𝑞2 + 𝐹𝑒𝑞2
𝑇 )

⋮
(𝑥𝑣(𝑡𝑚))𝑇(𝐹𝑒𝑞1 + 𝐹𝑒𝑞1

𝑇 )

(𝑥𝑣(𝑡𝑚))𝑇(𝐹𝑒𝑞2 + 𝐹𝑒𝑞2
𝑇 )

⋮ ]
 
 
 
 
 
 

. (A.15) 

Note that the SCAQCF form of the model can be easily deduced from the AQCF form. 

Appendix A.3.4 Quadratic and Trapezoidal Integration Case Study 

The RLC circuit that was used in the simulation is shown in Figure 79. Circuit 

parameters are tabulated in Table 23. The results of the simulation of the capacitor 

voltage and inductor current are shown in Figure 80 and Figure 81, respectively. The 

absolute error of the circuit inductor current for the trapezoidal and quadratic integration 

methods, compared to the analytical solution is shown in Figure 82. The vertical axis is 

logarithmic scale. In this particular case, the quadratic integration method is found to be 

almost three orders of magnitude more accurate than the trapezoidal method. 

Table 23. RLC circuit parameters. 

R = 1 Ω L = 10 mH C = 20 μF 

Simulation time = 0.1 sec Time step (h) = 1 μsec V=110√2sin (120𝜋𝑡) 

V

R

Vc

C

L

+ -

i

 

Figure 79. Series RLC circuit. 
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Time domain model of the circuit 

𝑑𝑣𝑐(𝑡)

𝑑𝑡
=  

1

𝐶
𝑖(𝑡), (A.16) 

𝑑𝑖(𝑡)

𝑑𝑡
= −

1

𝐿
𝑣𝑐(𝑡) −

𝑅

𝐿
𝑖(𝑡) +

1

𝐿
(10√3𝑠𝑖𝑛(120𝜋𝑡)).  (A.17) 

The time domain equations are formulated in the standard format and then quadratized as 

necessary as the following 

0.0 =  
𝑑𝑣𝑐(𝑡)

𝑑𝑡
−

1

𝐶
𝑖(𝑡), (A.18) 

0.0 =  
𝑑𝑖(𝑡)

𝑑𝑡
− 𝑥1(𝑡), (A.19) 

0.0 = 𝑥1(𝑡) +
1

𝐿
𝑣𝑐(𝑡) +

𝑅

𝐿
𝑖(𝑡) −

1

𝐿
(110√2𝑠𝑖𝑛(120𝜋𝑡)). (A.20) 

 

Figure 80. Capacitor voltage waveform. 
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Figure 81. Inductor current waveform. 

 

Figure 82. Absolute error of the inductor current between the analytic solution and trapezoidal and 

quadratic integration methods [108].  
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Appendix B Single Phase Center-Tap Transformer Model 

Appendix B.1 Mathematical Model 

The mathematical model of the distribution transformer is presented in this appendix. 

First, the electrical model is discussed, and then the thermal model is provided. It should 

be noted that the model of the transformer is in the quasi-dynamic domain. 

Appendix B.1.1 Electrical Model 

Model equations of a single phase center-tap distribution transformer are given by the 

following equations 

𝐼1 = 𝑌1𝑉̃1 − 𝑌1𝑉̃2 − 𝑌1𝐸̃ (B.1) 

𝐼2 = −𝐼1 (B.2) 

𝐼𝐿1 = 𝑌2𝑉̃𝐿1 − 𝑌2𝑉̃𝑁𝑁 −
𝑡

2
𝑌2𝐸̃ (B.3) 

𝐼𝑁𝑁 = −(𝐼𝐿1 + 𝐼𝐿2) (B.4) 

𝐼𝐿2 = −𝑌2𝑉̃𝑁𝑁 + 𝑌2𝑉̃𝐿2 +
𝑡

2
𝑌2𝐸̃ (B.5) 

0.0 = −𝑌1𝑉̃1 + 𝑌1𝑉̃2 −
𝑡

2
𝑌2𝑉̃𝐿1 +

𝑡

2
𝑌2𝑉̃𝐿2 + (𝑌𝑚 + 𝑌1 +

𝑡2

2
𝑌2)𝐸̃ (B.6) 

Appendix B.1.2 Thermal Model 

The model equations of the thermal model of a single phase center-tap transformer are 

given by the following set of equations 
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𝑞̇𝑐𝑎𝑠𝑒𝑇 = 𝐶𝑇𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝑇𝑂𝑇) + 𝐶𝐶𝑎𝑠𝑒𝑇

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝑎𝑚𝑏)

+ 𝐺ℎ1−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃ℎ1) + 𝐺ℎ2−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃ℎ3) + 𝐺𝐿11−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿12) + 𝐺𝐿13−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿21) + 𝐺𝐿22−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝑇)

+ 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝐵) + 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝑅)

+ 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝐿) + 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐵𝑂𝑇) + 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝑎𝑠𝑒𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐶𝑎𝑠𝑒𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐶𝑎𝑠𝑒𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿)

+ 𝐺𝐶𝑎𝑠𝑒𝑇−𝑎𝑚𝑏(𝜃𝐶𝑎𝑠𝑒𝑇 − 𝜃𝑎𝑚𝑏) 

(B.7) 

𝑞̇𝑐𝑎𝑠𝑒𝐵 = 𝐶𝑇𝑂𝐵

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐵𝑂𝑇) + 𝐶𝐶𝑎𝑠𝑒𝐵

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝑎𝑚𝑏)

+ 𝐺ℎ1−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃ℎ1) + 𝐺ℎ2−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃ℎ3) + 𝐺𝐿11−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿12) + 𝐺𝐿13−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿21) + 𝐺𝐿22−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝑇)

+ 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝐵) + 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝑅)

+ 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝐿) + 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐵𝑂𝑇) + 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝑎𝑠𝑒𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝑎𝑠𝑒𝐵−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐶𝑎𝑠𝑒𝐵−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝐶𝑎𝑠𝑒𝐿)

+ 𝐺𝐶𝑎𝑠𝑒𝐵−𝑎𝑚𝑏(𝜃𝐶𝑎𝑠𝑒𝐵 − 𝜃𝑎𝑚𝑏) 

(B.8) 
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𝑞̇𝑐𝑎𝑠𝑒𝑅 = 𝐶𝑅𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝑅𝑂𝑇) + 𝐶𝐶𝑎𝑠𝑒𝑅

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝑎𝑚𝑏)

+ 𝐺ℎ1−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃ℎ1) + 𝐺ℎ2−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃ℎ3) + 𝐺𝐿11−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿12) + 𝐺𝐿13−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿21) + 𝐺𝐿22−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝑇)

+ 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝐵) + 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝑅)

+ 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝐿) + 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐵𝑂𝑇) + 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝑎𝑠𝑒𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝑎𝑠𝑒𝐵−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐶𝑎𝑠𝑒𝑅−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝐶𝑎𝑠𝑒𝐿)

+ 𝐺𝐶𝑎𝑠𝑒𝑅−𝑎𝑚𝑏(𝜃𝐶𝑎𝑠𝑒𝑅 − 𝜃𝑎𝑚𝑏) 

(B.9) 

𝑞̇𝑐𝑎𝑠𝑒𝐿 = 𝐶𝐿𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿𝑂𝑇) + 𝐶𝐶𝑎𝑠𝑒𝐿

𝑑

𝑑𝑡
(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝑎𝑚𝑏)

+ 𝐺ℎ1−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃ℎ1) + 𝐺ℎ2−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃ℎ3) + 𝐺𝐿11−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿12) + 𝐺𝐿13−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿21) + 𝐺𝐿22−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝑇)

+ 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝐵) + 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝑅)

+ 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝐿) + 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐵𝑂𝑇) + 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝑎𝑠𝑒𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝑎𝑠𝑒𝐵−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐶𝑎𝑠𝑒𝑅−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐶𝑎𝑠𝑒𝐿−𝑎𝑚𝑏(𝜃𝐶𝑎𝑠𝑒𝐿 − 𝜃𝑎𝑚𝑏) 

(B.10) 



159 

𝑞̇𝑎𝑚𝑏  =  𝐶𝐶𝑎𝑠𝑒𝑇

𝑑

𝑑𝑡
(𝜃𝑎𝑚𝑏 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐶𝐶𝑎𝑠𝑒𝐵

𝑑

𝑑𝑡
(𝜃𝑎𝑚𝑏 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐶𝐶𝑎𝑠𝑒𝑅

𝑑

𝑑𝑡
(𝜃𝑎𝑚𝑏 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐶𝐶𝑎𝑠𝑒𝐿

𝑑

𝑑𝑡
(𝜃𝑎𝑚𝑏 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝑄̇ℎ1

+ 𝑄̇ℎ2 + 𝑄̇ℎ3 + 𝑄̇𝐿11 + 𝑄̇𝐿12 + 𝑄̇𝐿13 + 𝑄̇𝐿21 + 𝑄̇𝐿22 + 𝑄̇𝐿23 + 𝑄̇𝐶𝑇

+ 𝑄̇𝐶𝐵 + 𝑄̇𝐶𝑅 + 𝑄̇𝐶𝐿 + 𝐺𝐶𝑎𝑠𝑒𝑇−𝑎𝑚𝑏(𝜃𝑎𝑚𝑏  − 𝜃𝐶𝑎𝑠𝑒𝑇)  

+  𝐺𝐶𝑎𝑠𝑒𝐵−𝑎𝑚𝑏(𝜃𝑎𝑚𝑏  − 𝜃𝐶𝑎𝑠𝑒𝐵)  + 𝐺𝐶𝑎𝑠𝑒𝐵−𝑎𝑚𝑏(𝜃𝑎𝑚𝑏  − 𝜃𝐶𝑎𝑠𝑒𝑅)  

+  𝐺𝐶𝑎𝑠𝑒𝐿−𝑎𝑚𝑏(𝜃𝑎𝑚𝑏 − 𝜃𝐶𝑎𝑠𝑒𝐿)  

(B.11) 

𝑄̇ℎ1 = 𝐶ℎ1

𝑑

𝑑𝑡
(𝜃ℎ1 − 𝜃𝐶𝑇) + 𝐺ℎ1−ℎ2(𝜃ℎ1 − 𝜃ℎ2) + 𝐺ℎ1−ℎ3(𝜃ℎ1 − 𝜃ℎ3) + 𝐺ℎ1−𝐿11(𝜃ℎ1

− 𝜃𝐿11) + 𝐺ℎ1−𝐿12(𝜃ℎ1 − 𝜃𝐿12) + 𝐺ℎ1−𝐿13(𝜃ℎ1 − 𝜃𝐿13)

+ 𝐺ℎ1−𝐿21(𝜃ℎ1 − 𝜃𝐿21) + 𝐺ℎ1−𝐿22(𝜃ℎ1 − 𝜃𝐿22) + 𝐺ℎ1−𝐿23(𝜃ℎ1

− 𝜃𝐿23) + 𝐺ℎ1−𝐶𝑇(𝜃ℎ1 − 𝜃𝐶𝑇) + 𝐺ℎ1−𝐶𝐵(𝜃ℎ1 − 𝜃𝐶𝐵) + 𝐺ℎ1−𝐶𝑅(𝜃ℎ1

− 𝜃𝐶𝑅) + 𝐺ℎ1−𝐶𝐿(𝜃ℎ1 − 𝜃𝐶𝐿) + 𝐺ℎ1−𝑇𝑂𝑇(𝜃ℎ1 − 𝜃𝑇𝑂𝑇) + 𝐺ℎ1−𝐵𝑂𝑇(𝜃ℎ1

− 𝜃𝐵𝑂𝑇) + 𝐺ℎ1−𝑅𝑂𝑇(𝜃ℎ1 − 𝜃𝑅𝑂𝑇) + 𝐺ℎ1−𝐿𝑂𝑇(𝜃ℎ1 − 𝜃𝐿𝑂𝑇)

+ 𝐺ℎ1−𝐶𝑎𝑠𝑒𝑇(𝜃ℎ1 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺ℎ1−𝐶𝑎𝑠𝑒𝐵(𝜃ℎ1 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺ℎ1−𝐶𝑎𝑠𝑒𝑅(𝜃ℎ1 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺ℎ1−𝐶𝑎𝑠𝑒𝐿(𝜃ℎ1 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.12) 

𝑄̇ℎ2 = 𝐶ℎ2

𝑑

𝑑𝑡
(𝜃ℎ2 − 𝜃𝐶𝐿) + 𝐺ℎ1−ℎ2(𝜃ℎ2 − 𝜃ℎ1) + 𝐺ℎ2−ℎ3(𝜃ℎ2 − 𝜃ℎ3) + 𝐺ℎ2−𝐿11(𝜃ℎ2

− 𝜃𝐿11) + 𝐺ℎ2−𝐿12(𝜃ℎ2 − 𝜃𝐿12) + 𝐺ℎ2−𝐿13(𝜃ℎ2 − 𝜃𝐿13)

+ 𝐺ℎ2−𝐿21(𝜃ℎ2 − 𝜃𝐿21) + 𝐺ℎ2−𝐿22(𝜃ℎ2 − 𝜃𝐿22) + 𝐺ℎ2−𝐿23(𝜃ℎ2

− 𝜃𝐿23) + 𝐺ℎ2−𝐶𝑇(𝜃ℎ2 − 𝜃𝐶𝑇) + 𝐺ℎ2−𝐶𝐵(𝜃ℎ2 − 𝜃𝐶𝐵) + 𝐺ℎ2−𝐶𝑅(𝜃ℎ2

− 𝜃𝐶𝑅) + 𝐺ℎ2−𝐶𝐿(𝜃ℎ2 − 𝜃𝐶𝐿) + 𝐺ℎ2−𝑇𝑂𝑇(𝜃ℎ2 − 𝜃𝑇𝑂𝑇) + 𝐺ℎ2−𝐵𝑂𝑇(𝜃ℎ2

− 𝜃𝐵𝑂𝑇) + 𝐺ℎ2−𝑅𝑂𝑇(𝜃ℎ2 − 𝜃𝑅𝑂𝑇) + 𝐺ℎ2−𝐿𝑂𝑇(𝜃ℎ2 − 𝜃𝐿𝑂𝑇)

+ 𝐺ℎ2−𝐶𝑎𝑠𝑒𝑇(𝜃ℎ2 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺ℎ2−𝐶𝑎𝑠𝑒𝐵(𝜃ℎ2 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺ℎ2−𝐶𝑎𝑠𝑒𝑅(𝜃ℎ2 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺ℎ2−𝐶𝑎𝑠𝑒𝐿(𝜃ℎ2 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.13) 
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𝑄̇ℎ3 = 𝐶ℎ3

𝑑

𝑑𝑡
(𝜃ℎ3 − 𝜃𝐶𝐵) + 𝐺ℎ1−ℎ3(𝜃ℎ3 − 𝜃ℎ1) + 𝐺ℎ2−ℎ3(𝜃ℎ3 − 𝜃ℎ2) + 𝐺ℎ3−𝐿11(𝜃ℎ3

− 𝜃𝐿11) + 𝐺ℎ3−𝐿12(𝜃ℎ3 − 𝜃𝐿12) + 𝐺ℎ3−𝐿13(𝜃ℎ3 − 𝜃𝐿13)

+ 𝐺ℎ3−𝐿21(𝜃ℎ3 − 𝜃𝐿21) + 𝐺ℎ3−𝐿22(𝜃ℎ3 − 𝜃𝐿22) + 𝐺ℎ3−𝐿23(𝜃ℎ3

− 𝜃𝐿23) + 𝐺ℎ3−𝐶𝑇(𝜃ℎ3 − 𝜃𝐶𝑇) + 𝐺ℎ3−𝐶𝐵(𝜃ℎ3 − 𝜃𝐶𝐵) + 𝐺ℎ3−𝐶𝑅(𝜃ℎ3

− 𝜃𝐶𝑅) + 𝐺ℎ3−𝐶𝐿(𝜃ℎ3 − 𝜃𝐶𝐿) + 𝐺ℎ3−𝑇𝑂𝑇(𝜃ℎ3 − 𝜃𝑇𝑂𝑇) + 𝐺ℎ3−𝐵𝑂𝑇(𝜃ℎ3

− 𝜃𝐵𝑂𝑇) + 𝐺ℎ3−𝑅𝑂𝑇(𝜃ℎ3 − 𝜃𝑅𝑂𝑇) + 𝐺ℎ3−𝐿𝑂𝑇(𝜃ℎ3 − 𝜃𝐿𝑂𝑇)

+ 𝐺ℎ3−𝐶𝑎𝑠𝑒𝑇(𝜃ℎ3 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺ℎ3−𝐶𝑎𝑠𝑒𝐵(𝜃ℎ3 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺ℎ3−𝐶𝑎𝑠𝑒𝑅(𝜃ℎ3 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺ℎ3−𝐶𝑎𝑠𝑒𝐿(𝜃ℎ3 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.14) 

𝑄̇𝐿11 = 𝐶𝐿11

𝑑

𝑑𝑡
(𝜃𝐿11 − 𝜃𝐶𝑇) + 𝐺ℎ1−𝐿11(𝜃𝐿11 − 𝜃ℎ1) + 𝐺ℎ2−𝐿11(𝜃𝐿11 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐿11(𝜃𝐿11 − 𝜃ℎ3) + 𝐺𝐿11−𝐿12(𝜃𝐿11 − 𝜃𝐿12)

+ 𝐺𝐿11−𝐿13(𝜃𝐿11 − 𝜃𝐿13) + 𝐺𝐿11−𝐿21(𝜃𝐿11 − 𝜃𝐿21)

+ 𝐺𝐿11−𝐿22(𝜃𝐿11 − 𝜃𝐿22) + 𝐺𝐿11−𝐿23(𝜃𝐿11 − 𝜃𝐿23)

+ 𝐺𝐿11−𝐶𝑇(𝜃𝐿11 − 𝜃𝐶𝑇) + 𝐺𝐿11−𝐶𝐵(𝜃𝐿11 − 𝜃𝐶𝐵)

+ 𝐺𝐿11−𝐶𝑅(𝜃𝐿11 − 𝜃𝐶𝑅) + 𝐺𝐿11−𝐶𝐿(𝜃𝐿11 − 𝜃𝐶𝐿)

+ 𝐺𝐿11−𝑇𝑂𝑇(𝜃𝐿11 − 𝜃𝑇𝑂𝑇) + 𝐺𝐿11−𝐵𝑂𝑇(𝜃𝐿11 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝐿11−𝑅𝑂𝑇(𝜃𝐿11 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿11−𝐿𝑂𝑇(𝜃𝐿11 − 𝜃𝐿𝑂𝑇)

+ 𝐺𝐿11−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿11 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺𝐿11−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿11 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐿11−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿11 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐿11−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿11 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.15) 
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𝑄̇𝐿12 = 𝐶𝐿12

𝑑

𝑑𝑡
(𝜃𝐿12 − 𝜃𝐶𝑅) + 𝐺ℎ1−𝐿12(𝜃𝐿12 − 𝜃ℎ1) + 𝐺ℎ2−𝐿12(𝜃𝐿12 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐿12(𝜃𝐿12 − 𝜃ℎ3) + 𝐺𝐿11−𝐿12(𝜃𝐿12 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐿13(𝜃𝐿12 − 𝜃𝐿13) + 𝐺𝐿12−𝐿21(𝜃𝐿12 − 𝜃𝐿21)

+ 𝐺𝐿12−𝐿22(𝜃𝐿12 − 𝜃𝐿22) + 𝐺𝐿12−𝐿23(𝜃𝐿12 − 𝜃𝐿23)

+ 𝐺𝐿12−𝐶𝑇(𝜃𝐿12 − 𝜃𝐶𝑇) + 𝐺𝐿12−𝐶𝐵(𝜃𝐿12 − 𝜃𝐶𝐵)

+ 𝐺𝐿12−𝐶𝑅(𝜃𝐿12 − 𝜃𝐶𝑅) + 𝐺𝐿12−𝐶𝐿(𝜃𝐿12 − 𝜃𝐶𝐿)

+ 𝐺𝐿12−𝑇𝑂𝑇(𝜃𝐿12 − 𝜃𝑇𝑂𝑇) + 𝐺𝐿12−𝐵𝑂𝑇(𝜃𝐿12 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝐿12−𝑅𝑂𝑇(𝜃𝐿12 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿12−𝐿𝑂𝑇(𝜃𝐿12 − 𝜃𝐿𝑂𝑇)

+ 𝐺𝐿12−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿12 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺𝐿12−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿12 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐿12−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿12 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐿12−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿12 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.16) 

𝑄̇𝐿13 = 𝐶𝐿13

𝑑

𝑑𝑡
(𝜃𝐿13 − 𝜃𝐶𝑅) + 𝐺ℎ1−𝐿13(𝜃𝐿13 − 𝜃ℎ1) + 𝐺ℎ2−𝐿13(𝜃𝐿13 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐿13(𝜃𝐿13 − 𝜃ℎ3) + 𝐺𝐿11−𝐿13(𝜃𝐿13 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐿13(𝜃𝐿13 − 𝜃𝐿12) + 𝐺𝐿13−𝐿21(𝜃𝐿13 − 𝜃𝐿21)

+ 𝐺𝐿13−𝐿22(𝜃𝐿13 − 𝜃𝐿22) + 𝐺𝐿13−𝐿23(𝜃𝐿13 − 𝜃𝐿23)

+ 𝐺𝐿13−𝐶𝑇(𝜃𝐿13 − 𝜃𝐶𝑇) + 𝐺𝐿13−𝐶𝐵(𝜃𝐿13 − 𝜃𝐶𝐵)

+ 𝐺𝐿13−𝐶𝑅(𝜃𝐿13 − 𝜃𝐶𝑅) + 𝐺𝐿13−𝐶𝐿(𝜃𝐿13 − 𝜃𝐶𝐿)

+ 𝐺𝐿13−𝑇𝑂𝑇(𝜃𝐿13 − 𝜃𝑇𝑂𝑇) + 𝐺𝐿13−𝐵𝑂𝑇(𝜃𝐿13 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝐿13−𝑅𝑂𝑇(𝜃𝐿13 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿13−𝐿𝑂𝑇(𝜃𝐿13 − 𝜃𝐿𝑂𝑇)

+ 𝐺𝐿13−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿13 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺𝐿13−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿13 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐿13−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿13 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐿13−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿13 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.17) 



162 

𝑄̇𝐿21 = 𝐶𝐿21

𝑑

𝑑𝑡
(𝜃𝐿21 − 𝜃𝐶𝑅) + 𝐺ℎ1−𝐿21(𝜃𝐿21 − 𝜃ℎ1) + 𝐺ℎ2−𝐿21(𝜃𝐿21 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐿21(𝜃𝐿21 − 𝜃ℎ3) + 𝐺𝐿11−𝐿21(𝜃𝐿21 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐿21(𝜃𝐿21 − 𝜃𝐿12) + 𝐺𝐿13−𝐿21(𝜃𝐿21 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐿22(𝜃𝐿21 − 𝜃𝐿22) + 𝐺𝐿21−𝐿23(𝜃𝐿21 − 𝜃𝐿23)

+ 𝐺𝐿21−𝐶𝑇(𝜃𝐿21 − 𝜃𝐶𝑇) + 𝐺𝐿21−𝐶𝐵(𝜃𝐿21 − 𝜃𝐶𝐵)

+ 𝐺𝐿21−𝐶𝑅(𝜃𝐿21 − 𝜃𝐶𝑅) + 𝐺𝐿21−𝐶𝐿(𝜃𝐿21 − 𝜃𝐶𝐿)

+ 𝐺𝐿21−𝑇𝑂𝑇(𝜃𝐿21 − 𝜃𝑇𝑂𝑇) + 𝐺𝐿21−𝐵𝑂𝑇(𝜃𝐿21 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝐿21−𝑅𝑂𝑇(𝜃𝐿21 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿21−𝐿𝑂𝑇(𝜃𝐿21 − 𝜃𝐿𝑂𝑇)

+ 𝐺𝐿21−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿21 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺𝐿21−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿21 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐿21−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿21 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐿21−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿21 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.18) 

𝑄̇𝐿22 = 𝐶𝐿22

𝑑

𝑑𝑡
(𝜃𝐿22 − 𝜃𝐶𝑅) + 𝐺ℎ1−𝐿22(𝜃𝐿22 − 𝜃ℎ1) + 𝐺ℎ2−𝐿22(𝜃𝐿22 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐿22(𝜃𝐿22 − 𝜃ℎ3) + 𝐺𝐿11−𝐿22(𝜃𝐿22 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐿22(𝜃𝐿22 − 𝜃𝐿12) + 𝐺𝐿13−𝐿22(𝜃𝐿22 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐿22(𝜃𝐿22 − 𝜃𝐿21) + 𝐺𝐿22−𝐿23(𝜃𝐿22 − 𝜃𝐿23)

+ 𝐺𝐿22−𝐶𝑇(𝜃𝐿22 − 𝜃𝐶𝑇) + 𝐺𝐿22−𝐶𝐵(𝜃𝐿22 − 𝜃𝐶𝐵)

+ 𝐺𝐿22−𝐶𝑅(𝜃𝐿22 − 𝜃𝐶𝑅) + 𝐺𝐿22−𝐶𝐿(𝜃𝐿22 − 𝜃𝐶𝐿)

+ 𝐺𝐿22−𝑇𝑂𝑇(𝜃𝐿22 − 𝜃𝑇𝑂𝑇) + 𝐺𝐿22−𝐵𝑂𝑇(𝜃𝐿22 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝐿22−𝑅𝑂𝑇(𝜃𝐿22 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿22−𝐿𝑂𝑇(𝜃𝐿22 − 𝜃𝐿𝑂𝑇)

+ 𝐺𝐿22−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿22 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺𝐿22−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿22 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐿22−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿22 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐿22−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿22 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.19) 
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𝑄̇𝐿23 = 𝐶𝐿23

𝑑

𝑑𝑡
(𝜃𝐿23 − 𝜃𝐶𝐵) + 𝐺ℎ1−𝐿23(𝜃𝐿23 − 𝜃ℎ1) + 𝐺ℎ2−𝐿23(𝜃𝐿23 − 𝜃ℎ2)

+ 𝐺ℎ3−𝐿23(𝜃𝐿23 − 𝜃ℎ3) + 𝐺𝐿11−𝐿23(𝜃𝐿23 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐿23(𝜃𝐿23 − 𝜃𝐿12) + 𝐺𝐿13−𝐿23(𝜃𝐿23 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐿23(𝜃𝐿23 − 𝜃𝐿21) + 𝐺𝐿22−𝐿23(𝜃𝐿23 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝑇(𝜃𝐿23 − 𝜃𝐶𝑇) + 𝐺𝐿23−𝐶𝐵(𝜃𝐿23 − 𝜃𝐶𝐵)

+ 𝐺𝐿23−𝐶𝑅(𝜃𝐿23 − 𝜃𝐶𝑅) + 𝐺𝐿23−𝐶𝐿(𝜃𝐿23 − 𝜃𝐶𝐿)

+ 𝐺𝐿23−𝑇𝑂𝑇(𝜃𝐿23 − 𝜃𝑇𝑂𝑇) + 𝐺𝐿23−𝐵𝑂𝑇(𝜃𝐿23 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝐿23−𝑅𝑂𝑇(𝜃𝐿23 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿23−𝐿𝑂𝑇(𝜃𝐿23 − 𝜃𝐿𝑂𝑇)

+ 𝐺𝐿23−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿23 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺𝐿23−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿23 − 𝜃𝐶𝑎𝑠𝑒𝐵)

+ 𝐺𝐿23−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿23 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺𝐿23−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿23 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.20) 

𝑄̇𝐶𝑇 = 𝐶ℎ1

𝑑

𝑑𝑡
(𝜃𝐶𝑇 − 𝜃ℎ1) + 𝐶𝐿11

𝑑

𝑑𝑡
(𝜃𝐶𝑇 − 𝜃𝐿11) + 𝐶𝐶𝑇

𝑑

𝑑𝑡
(𝜃𝐶𝑇 − 𝜃𝑇𝑂𝑇)

+ 𝐺ℎ1−𝐶𝑇(𝜃𝐶𝑇 − 𝜃ℎ1) + 𝐺ℎ2−𝐶𝑇(𝜃𝐶𝑇 − 𝜃ℎ2) + 𝐺ℎ3−𝐶𝑇(𝜃𝐶𝑇 − 𝜃ℎ3)

+ 𝐺𝐿11−𝐶𝑇(𝜃𝐶𝑇 − 𝜃𝐿11) + 𝐺𝐿12−𝐶𝑇(𝜃𝐶𝑇 − 𝜃𝐿12)

+ 𝐺𝐿13−𝐶𝑇(𝜃𝐶𝑇 − 𝜃𝐿13) + 𝐺𝐿21−𝐶𝑇(𝜃𝐶𝑇 − 𝜃𝐿21)

+ 𝐺𝐿22−𝐶𝑇(𝜃𝐶𝑇 − 𝜃𝐿22) + 𝐺𝐿23−𝐶𝑇(𝜃𝐶𝑇 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝐵(𝜃𝐶𝑇 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑇−𝐶𝑅(𝜃𝐶𝑇 − 𝜃𝐶𝑅) + 𝐺𝐶𝑇−𝐶𝐿(𝜃𝐶𝑇 − 𝜃𝐶𝐿) + 𝐺𝐶𝑇−𝑇𝑂𝑇(𝜃𝐶𝑇 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐶𝑇−𝐵𝑂𝑇(𝜃𝐶𝑇 − 𝜃𝐵𝑂𝑇) + 𝐺𝐶𝑇−𝑅𝑂𝑇(𝜃𝐶𝑇 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐶𝑇−𝐿𝑂𝑇(𝜃𝐶𝑇 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐶𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.21) 
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𝑄̇𝐶𝐵 = 𝐶ℎ3

𝑑

𝑑𝑡
(𝜃𝐶𝐵 − 𝜃ℎ3) + 𝐶𝐿23

𝑑

𝑑𝑡
(𝜃𝐶𝐵 − 𝜃𝐿23) + 𝐶𝐶𝐵

𝑑

𝑑𝑡
(𝜃𝐶𝐵 − 𝜃𝐵𝑂𝑇)

+ 𝐺ℎ1−𝐶𝐵(𝜃𝐶𝐵 − 𝜃ℎ1) + 𝐺ℎ2−𝐶𝐵(𝜃𝐶𝐵 − 𝜃ℎ2) + 𝐺ℎ3−𝐶𝐵(𝜃𝐶𝐵 − 𝜃ℎ3)

+ 𝐺𝐿11−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐿11) + 𝐺𝐿12−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐿12)

+ 𝐺𝐿13−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐿13) + 𝐺𝐿21−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐿21)

+ 𝐺𝐿22−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐿22) + 𝐺𝐿23−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝐵(𝜃𝐶𝐵 − 𝜃𝐶𝑇)

+ 𝐺𝐶𝐵−𝐶𝑅(𝜃𝐶𝐵 − 𝜃𝐶𝑅) + 𝐺𝐶𝐵−𝐶𝐿(𝜃𝐶𝐵 − 𝜃𝐶𝐿) + 𝐺𝐶𝐵−𝑇𝑂𝑇(𝜃𝐶𝐵 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐶𝐵−𝐵𝑂𝑇(𝜃𝐶𝐵 − 𝜃𝐵𝑂𝑇) + 𝐺𝐶𝐵−𝑅𝑂𝑇(𝜃𝐶𝐵 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐶𝐵−𝐿𝑂𝑇(𝜃𝐶𝐵 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝐵 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝐵 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝐵 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐶𝐵−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝐵 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.22) 

𝑄̇𝐶𝑅 = 𝐶𝐿12

𝑑

𝑑𝑡
(𝜃𝐶𝑅 − 𝜃𝐿12) + 𝐶𝐿13

𝑑

𝑑𝑡
(𝜃𝐶𝑅 − 𝜃𝐿13) + 𝐶𝐿21

𝑑

𝑑𝑡
(𝜃𝐶𝑅 − 𝜃𝐿21)

+ 𝐶𝐿22

𝑑

𝑑𝑡
(𝜃𝐶𝑅 − 𝜃𝐿22) + 𝐶𝐶𝑅

𝑑

𝑑𝑡
(𝜃𝐶𝑅 − 𝜃𝑅𝑂𝑇) + 𝐺ℎ1−𝐶𝑅(𝜃𝐶𝑅 − 𝜃ℎ1)

+ 𝐺ℎ2−𝐶𝑅(𝜃𝐶𝑅 − 𝜃ℎ2) + 𝐺ℎ3−𝐶𝑅(𝜃𝐶𝑅 − 𝜃ℎ3) + 𝐺𝐿11−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐿12) + 𝐺𝐿13−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐿21) + 𝐺𝐿22−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐶𝑇) + 𝐺𝐶𝐵−𝐶𝑅(𝜃𝐶𝑅 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑅−𝐶𝐿(𝜃𝐶𝑅 − 𝜃𝐶𝐿) + 𝐺𝐶𝑅−𝑇𝑂𝑇(𝜃𝐶𝑅 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐶𝑅−𝐵𝑂𝑇(𝜃𝐶𝑅 − 𝜃𝐵𝑂𝑇) + 𝐺𝐶𝑅−𝑅𝑂𝑇(𝜃𝐶𝑅 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐶𝑅−𝐿𝑂𝑇(𝜃𝐶𝑅 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝑅 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝑅 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝑅 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐶𝑅−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝑅 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.23) 
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𝑄̇𝐶𝐿 = 𝐶ℎ2

𝑑

𝑑𝑡
(𝜃𝐶𝐿 − 𝜃ℎ2) + 𝐶𝐶𝐿

𝑑

𝑑𝑡
(𝜃𝐶𝐿 − 𝜃𝐿𝑂𝑇) + 𝐺ℎ1−𝐶𝐿(𝜃𝐶𝐿 − 𝜃ℎ1)

+ 𝐺ℎ2−𝐶𝐿(𝜃𝐶𝐿 − 𝜃ℎ2) + 𝐺ℎ3−𝐶𝐿(𝜃𝐶𝐿 − 𝜃ℎ3) + 𝐺𝐿11−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐿11)

+ 𝐺𝐿12−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐿12) + 𝐺𝐿13−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐿13)

+ 𝐺𝐿21−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐿21) + 𝐺𝐿22−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐿22)

+ 𝐺𝐿23−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐿23) + 𝐺𝐶𝑇−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐶𝑇) + 𝐺𝐶𝐵−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑅−𝐶𝐿(𝜃𝐶𝐿 − 𝜃𝐶𝑅) + 𝐺𝐶𝐿−𝑇𝑂𝑇(𝜃𝐶𝐿 − 𝜃𝑇𝑂𝑇)

+ 𝐺𝐶𝐿−𝐵𝑂𝑇(𝜃𝐶𝐿 − 𝜃𝐵𝑂𝑇) + 𝐺𝐶𝐿−𝑅𝑂𝑇(𝜃𝐶𝐿 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐶𝐿−𝐿𝑂𝑇(𝜃𝐶𝐿 − 𝜃𝐿𝑂𝑇) + 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝑇(𝜃𝐶𝐿 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝐵(𝜃𝐶𝐿 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝑅(𝜃𝐶𝐿 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐶𝐿−𝐶𝑎𝑠𝑒𝐿(𝜃𝐶𝐿 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.24) 

0.0 = 𝐶𝐶𝑇

𝑑

𝑑𝑡
(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑇) + 𝐶𝑇𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑇) + 𝐺ℎ1−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃ℎ1)

+ 𝐺ℎ2−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃ℎ2) + 𝐺ℎ3−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃ℎ3)

+ 𝐺𝐿11−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿11) + 𝐺𝐿12−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿12)

+ 𝐺𝐿13−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿13) + 𝐺𝐿21−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿21)

+ 𝐺𝐿22−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿22) + 𝐺𝐿23−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿23)

+ 𝐺𝐶𝑇−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑇) + 𝐺𝐶𝐵−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑅−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑅) + 𝐺𝐶𝐿−𝑇𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝐿)

+ 𝐺𝑇𝑂𝑇−𝐵𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐵𝑂𝑇) + 𝐺𝑇𝑂𝑇−𝑅𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝑇𝑂𝑇−𝐿𝑂𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐿𝑂𝑇) + 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝑇𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝑇𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.25) 
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0.0 = 𝐶𝐶𝐵

𝑑

𝑑𝑡
(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝐵) + 𝐶𝐵𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺ℎ1−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃ℎ1)

+ 𝐺ℎ2−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃ℎ2) + 𝐺ℎ3−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃ℎ3)

+ 𝐺𝐿11−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿11) + 𝐺𝐿12−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿12)

+ 𝐺𝐿13−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿13) + 𝐺𝐿21−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿21)

+ 𝐺𝐿22−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿22) + 𝐺𝐿23−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿23)

+ 𝐺𝐶𝑇−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑇) + 𝐺𝐶𝐵−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑅−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑅) + 𝐺𝐶𝐿−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝐿)

+ 𝐺𝑇𝑂𝑇−𝐵𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝑇𝑂𝑇) + 𝐺𝐵𝑂𝑇−𝑅𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝑅𝑂𝑇)

+ 𝐺𝐵𝑂𝑇−𝐿𝑂𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐿𝑂𝑇) + 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐵𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐵𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.26) 

0.0 = 𝐶𝐿21

𝑑

𝑑𝑡
(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑅) + 𝐶𝑅𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅) + 𝐺ℎ1−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃ℎ1)

+ 𝐺ℎ2−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃ℎ2) + 𝐺ℎ3−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃ℎ3)

+ 𝐺𝐿11−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿11) + 𝐺𝐿12−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿12)

+ 𝐺𝐿13−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿13) + 𝐺𝐿21−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿21)

+ 𝐺𝐿22−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿22) + 𝐺𝐿23−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿23)

+ 𝐺𝐶𝑇−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑇) + 𝐺𝐶𝐵−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑅−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑅) + 𝐺𝐶𝐿−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝐿)

+ 𝐺𝑇𝑂𝑇−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝑇𝑂𝑇) + 𝐺𝐵𝑂𝑇−𝑅𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝑅𝑂𝑇−𝐿𝑂𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐿𝑂𝑇) + 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝑅𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝑅𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.27) 
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0.0 = 𝐶𝐶𝐿

𝑑

𝑑𝑡
(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝐿) + 𝐶𝐿𝑂𝑇

𝑑

𝑑𝑡
(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿) + 𝐺ℎ1−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃ℎ1)

+ 𝐺ℎ2−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃ℎ2) + 𝐺ℎ3−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃ℎ3)

+ 𝐺𝐿11−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐿11) + 𝐺𝐿12−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐿12)

+ 𝐺𝐿13−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐿13) + 𝐺𝐿21−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐿21)

+ 𝐺𝐿22−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐿22) + 𝐺𝐿23−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐿23)

+ 𝐺𝐶𝑇−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑇) + 𝐺𝐶𝐵−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝐵)

+ 𝐺𝐶𝑅−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑅) + 𝐺𝐶𝐿−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝐿)

+ 𝐺𝑇𝑂𝑇−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝑇𝑂𝑇) + 𝐺𝐵𝑂𝑇−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐵𝑂𝑇)

+ 𝐺𝑅𝑂𝑇−𝐿𝑂𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝑅𝑂𝑇) + 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝑇(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑇)

+ 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝐵(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐵) + 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝑅(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝑅)

+ 𝐺𝐿𝑂𝑇−𝐶𝑎𝑠𝑒𝐿(𝜃𝐿𝑂𝑇 − 𝜃𝐶𝑎𝑠𝑒𝐿) 

(B.28) 

Equations (B.1)-(B.28) cast into a compact matrix form as follows 

[
𝐼
0
] = 𝑌𝑒𝑞 [

𝑉
𝑌
] + 𝐾𝑒𝑞  (B.29) 

, where 

𝐼 = [𝐼1 𝐼2 𝐼𝐿1 𝐼𝑁𝑁 𝐼𝐿2 𝑞̇𝑐𝑎𝑠𝑒𝑇 𝑞̇𝑐𝑎𝑠𝑒𝐵 𝑞̇𝑐𝑎𝑠𝑒𝑅 𝑞̇𝑐𝑎𝑠𝑒𝐿 𝑞̇𝑎𝑚𝑏]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑉̃𝐿1 𝑉̃𝑁𝑁 𝑉̃𝐿2 𝜃𝑐𝑎𝑠𝑒𝑇 𝜃𝑐𝑎𝑠𝑒𝐵 𝜃𝑐𝑎𝑠𝑒𝑅 𝜃𝑐𝑎𝑠𝑒𝐿 𝜃𝑎𝑚𝑏]
𝑇  

𝑌 = [𝐸̃ 𝜃ℎ1 𝜃ℎ2 𝜃ℎ3 𝜃𝐿11 𝜃𝐿12 𝜃𝐿13 𝜃𝐿21 𝜃𝐿22 𝜃𝐿23 𝜃𝐶𝑇 𝜃𝐶𝐵 𝜃𝐶𝑅  

𝜃𝐶𝐿 𝜃𝑇𝑂𝑇 𝜃𝐵𝑂𝑇 𝜃𝑅𝑂𝑇 𝜃𝐿𝑂𝑇]𝑇  

Yeq: Matrix defining the linear part of the model. 

Keq: Vector containing the constant part of the model. 

Note that there 28 states with 28 equations are identified. 

 



168 

Appendix B.2 Model Thermal Conductances 

To compute the thermal conductance, a percentage of each one is assumed based 

on the below tables Table 24-Table 44. 

Table 24. Transformer Th1 conductances. 

Th1 Conductances (%) of Gh1 

G_h1_h2 20 

G_h1_h3 9 

G_h1_L11 6 

G_h1_L12 5 

G_h1_L13 4 

G_h1_L21 3 

G_h1_L22 2 

G_h1_L23 1 

G_h1_CT 7 

G_h1_CB 5 

G_h1_CR 3 

G_h1_CL 10 

G_h1_TOT 3.5 

G_h1_BOT 2.5 

G_h1_ROT 1 

G_h1_LOT 8 

G_h1_CaseT 2.5 

G_h1_CaseB 1.5 
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G_h1_CaseR 1 

G_h1_CaseL 5 

Table 25. Transformer Th2 conductances. 

Th2 Conductances (%) of Gh2 

G_h2_h3 20 

G_h2_L11 3 

G_h2_L12 3.5 

G_h2_L13 3.5 

G_h2_L21 3 

G_h2_L22 3.5 

G_h2_L23 3.5 

G_h2_CT 5.5 

G_h2_CB 5.5 

G_h2_CR 2 

G_h2_CL 10 

G_h2_TOT 1 

G_h2_BOT 1 

G_h2_ROT 0.8 

G_h2_LOT 8 

G_h2_CaseT 0.5 

G_h2_CaseB 0.5 

G_h2_CaseR 0.2 

G_h2_CaseL 5 

Table 26. Transformer Th3 conductances. 
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Th3 Conductances (%) of Gh3 

G_h3_L11 1 

G_h3_L12 2 

G_h3_L13 3 

G_h3_L21 4 

G_h3_L22 5 

G_h3_L23 6 

G_h3_CT 5 

G_h3_CB 7 

G_h3_CR 3 

G_h3_CL 10 

G_h3_TOT 2.5 

G_h3_BOT 3.5 

G_h3_ROT 1 

G_h3_LOT 8 

G_h3_CaseT 1.5 

G_h3_CaseB 2.5 

G_h3_CaseR 1 

G_h3_CaseL 5 

Table 27. Transformer TL11 conductances. 

TL11 Conductances (%) of GL11 

G_L11_L12 15 

G_L11_L13 12 
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G_L11_L21 9 

G_L11_L22 6 

G_L11_L23 3 

G_L11_CT 6 

G_L11_CB 4 

G_L11_CR 7 

G_L11_CL 3 

G_L11_TOT 5 

G_L11_BOT 3 

G_L11_ROT 5.5 

G_L11_LOT 1 

G_L11_CaseT 3 

G_L11_CaseB 2 

G_L11_CaseR 5 

G_L11_CaseL 0.5 

Table 28. Transformer TL12 conductances.  

TL12 Conductances (%) of GL12 

G_L12_L13 15 

G_L12_L21 12 

G_L12_L22 9 

G_L12_L23 6 

G_L12_CT 4.5 

G_L12_CB 3.5 
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G_L12_CR 6 

G_L12_CL 2.5 

G_L12_TOT 3 

G_L12_BOT 2 

G_L12_ROT 3.5 

G_L12_LOT 1 

G_L12_CaseT 2 

G_L12_CaseB 1 

G_L12_CaseR 3 

G_L12_CaseL 0.5 

Table 29. Transformer TL13 conductances.  

TL13 Conductances (%) of GL13 

G_L13_L21 15 

G_L13_L22 12 

G_L13_L23 9 

G_L13_CT 3.5 

G_L13_CB 3 

G_L13_CR 4 

G_L13_CL 1 

G_L13_TOT 3 

G_L13_BOT 2.5 

G_L13_ROT 3.5 

G_L13_LOT 0.8 
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G_L13_CaseT 2 

G_L13_CaseB 1 

G_L13_CaseR 2 

G_L13_CaseL 0.2 

Table 30. Transformer TL21 conductances.  

TL21 Conductances (%) of GL21 

G_L21_L22 15 

G_L21_L23 12 

G_L21_CT 3 

G_L21_CB 3.5 

G_L21_CR 4 

G_L21_CL 1 

G_L21_TOT 2.5 

G_L21_BOT 3 

G_L21_ROT 3.5 

G_L21_LOT 0.8 

G_L21_CaseT 1 

G_L21_CaseB 2 

G_L21_CaseR 2.5 

G_L21_CaseL 0.2 

Table 31. Transformer TL22 conductances.  

TL22 Conductances (%) of GL22 

G_L22_L23 15 
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G_L22_CT 3.5 

G_L22_CB 4.5 

G_L22_CR 6 

G_L22_CL 2.5 

G_L22_TOT 2 

G_L22_BOT 3 

G_L22_ROT 3.5 

G_L22_LOT 1 

G_L22_CaseT 1 

G_L22_CaseB 2 

G_L22_CaseR 3 

G_L22_CaseL 0.5 

Table 32. Transformer TL23 conductances.  

TL23 Conductances (%) of GL23 

G_L23_CT 4 

G_L23_CB 6 

G_L23_CR 7 

G_L23_CL 3 

G_L23_TOT 3 

G_L23_BOT 5 

G_L23_ROT 5.5 

G_L23_LOT 1 

G_L23_CaseT 2 



175 

G_L23_CaseB 3 

G_L23_CaseR 4.8 

G_L23_CaseL 0.2 

Table 33. Transformer TCT conductances. 

TCT Conductances (%) of GCT 

G_CT_CB 7 

G_CT_CR 10 

G_CT_CL 10 

G_CT_TOT 8 

G_CT_BOT 2 

G_CT_ROT 5 

G_CT_LOT 5 

G_CT_CaseT 5 

G_CT_CaseB 1 

G_CT_CaseR 2.5 

G_CT_CaseL 2.5 

Table 34. Transformer TCB conductances.  

TCB Conductances (%) of GCB 

G_CB_CR 10 

G_CB_CL 10 

G_CB_TOT 2 

G_CB_BOT 8 

G_CB_ROT 5 



176 

G_CB_LOT 5 

G_CB_CaseT 1 

G_CB_CaseB 5 

G_CB_CaseR 2.5 

G_CB_CaseL 2.5 

Table 35. Transformer TCR conductances.  

TCR Conductances (%) of GCR 

G_CR_CL 7 

G_CR_TOT 4 

G_CR_BOT 4 

G_CR_ROT 12.9 

G_CR_LOT 1 

G_CR_CaseT 2 

G_CR_CaseB 2 

G_CR_CaseR 5 

G_CR_CaseL 0.1 

Table 36. Transformer TCL conductances.  

TCL Conductances (%) of GCL 

G_CL_TOT 4 

G_CL_BOT 4 

G_CL_ROT 2 

G_CL_LOT 12.9 

G_CL_CaseT 1.25 
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G_CL_CaseB 1.25 

G_CL_CaseR 0.1 

G_CL_CaseL 4.5 

Table 37. Transformer TTOT conductances.  

TTOT Conductances (%) of GTOT 

G_TOT_BOT 5 

G_TOT_ROT 10 

G_TOT_LOT 10 

G_TOT_CaseT 15 

G_TOT_CaseB 2 

G_TOT_CaseR 7.25 

G_TOT_CaseL 7.25 

Table 38. Transformer TBOT conductances.  

TBOT Conductances (%) of GBOT 

G_BOT_ROT 10 

G_BOT_LOT 10 

G_BOT_CaseT 2 

G_BOT_CaseB 15 

G_BOT_CaseR 7.25 

G_BOT_CaseL 7.25 

Table 39. Transformer TROT conductances.  

TROT Conductances (%) of GROT 

G_ROT_LOT 4 
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G_ROT_CaseT 6 

G_ROT_CaseB 6 

G_ROT_CaseR 10 

G_ROT_CaseL 1.3 

Table 40. Transformer TLOT conductances.  

TLOT Conductances (%) of GLOT 

G_LOT_CaseT 5.75 

G_LOT_CaseB 5.75 

G_LOT_CaseR 1 

G_LOT_CaseL 10 

Table 41. Transformer TCaseT conductances.  

TCaseT Conductances (%) of GCaseT 

G_CaseT_CaseB 3 

G_CaseT_CaseR 8 

G_CaseT_CaseL 8 

G_CaseT_amb 27.5 

Table 42. Transformer TCaseB conductances.  

TCaseB Conductances (%) of GCaseB 

G_CaseB_CaseR 8 

G_CaseB_CaseL 8 

G_CaseB_amb 27.5 

Table 43. Transformer TCaseR conductances.  

TCaseR Conductances (%) of GCaseR 
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G_CaseR_CaseL 4 

G_CaseR_amb 21.9 

Table 44. Transformer TCaseL conductances.  

TCaseL Conductances (%) of GCaseL 

G_CaseL_amb 27.5 
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Appendix C Thermal Model of a House 

The mathematical model of the single story house with two bedrooms and two bathrooms 

is given by the following equations 

𝑞̇𝐵𝑒𝑑1 = 𝐶𝐵𝑒𝑑1

𝑑

𝑑𝑡
(𝑇𝐵𝑒𝑑1 − 𝑇𝐵𝑒𝑑1−𝐼) + 𝐺𝐵𝑒𝑑1(𝑇𝐵𝑒𝑑1 − 𝑇𝐵𝑒𝑑1−𝐼) (C.1) 

𝑞̇𝐵𝑒𝑑2 = 𝐶𝐵𝑒𝑑2

𝑑

𝑑𝑡
(𝑇𝐵𝑒𝑑2 − 𝑇𝐵𝑒𝑑2−𝐼) + 𝐺𝐵𝑒𝑑2(𝑇𝐵𝑒𝑑2 − 𝑇𝐵𝑒𝑑2−𝐼) (C.2) 

𝑞̇𝐵𝑎𝑡ℎ1 = 𝐶𝐵𝑎𝑡ℎ1

𝑑

𝑑𝑡
(𝑇𝐵𝑎𝑡ℎ1 − 𝑇𝐵𝑎𝑡ℎ1−𝐼) + 𝐺𝐵𝑎𝑡ℎ1(𝑇𝐵𝑎𝑡ℎ1 − 𝑇𝐵𝑎𝑡ℎ1−𝐼) (C.3) 

𝑞̇𝐵𝑎𝑡ℎ2 = 𝐶𝐵𝑎𝑡ℎ2

𝑑

𝑑𝑡
(𝑇𝐵𝑎𝑡ℎ2 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) + 𝐺𝐵𝑎𝑡ℎ2(𝑇𝐵𝑎𝑡ℎ2 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) (C.4) 

𝑞̇𝐾 = 𝐶𝐾

𝑑

𝑑𝑡
(𝑇𝐾 − 𝑇𝐾−𝐼) + 𝐺𝐾(𝑇𝐾 − 𝑇𝐾−𝐼) (C.5) 

𝑞̇𝐿 = 𝐶𝐿

𝑑

𝑑𝑡
(𝑇𝐿 − 𝑇𝐿−𝐼) + 𝐺𝐿(𝑇𝐿 − 𝑇𝐿−𝐼) (C.6) 

𝑞̇𝐸 = 𝐶𝐵𝑒𝑑1𝐼

𝑑

𝑑𝑡
(𝑇𝐸 − 𝑇𝐵𝑒𝑑1−𝐼) + 𝐶𝐵𝑎𝑡ℎ2𝐼

𝑑

𝑑𝑡
(𝑇𝐸 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) + 𝐶𝐸

𝑑

𝑑𝑡
(𝑇𝐸

− 𝑇𝑎𝑚𝑏) + 𝐺𝐵𝑒𝑑1𝐼𝐸(𝑇𝐸 − 𝑇𝐵𝑒𝑑1−𝐼) + 𝐺𝐵𝑒𝑑2𝐼𝐸(𝑇𝐸 − 𝑇𝐵𝑒𝑑2−𝐼)

+ 𝐺𝐵𝑎𝑡ℎ2𝐼𝐸(𝑇𝐸 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) + 𝐺𝐸𝑁(𝑇𝐸 − 𝑇𝑁) + 𝐺𝐸𝑇𝑜𝑝(𝑇𝐸 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝐸𝑆(𝑇𝐸 − 𝑇𝑆) + 𝐺𝐸𝐴𝑚𝑏(𝑇𝐸 − 𝑇𝑎𝑚𝑏) 

(C.7) 

𝑞̇𝑁 = 𝐶𝐵𝑎𝑡ℎ1𝐼

𝑑

𝑑𝑡
(𝑇𝑁 − 𝑇𝐵𝑎𝑡ℎ1−𝐼) + 𝐶𝑁

𝑑

𝑑𝑡
(𝑇𝑁 − 𝑇𝑎𝑚𝑏)

+ 𝐺𝐵𝑒𝑑1𝐼𝑁(𝑇𝑁 − 𝑇𝐵𝑒𝑑1−𝐼) + 𝐺𝐵𝑎𝑡ℎ1𝐼𝑁(𝑇𝑁 − 𝑇𝐵𝑎𝑡ℎ1−𝐼)

+ 𝐺𝐿𝐼𝑁(𝑇𝑁 − 𝑇𝐿−𝐼) + 𝐺𝐸𝑁(𝑇𝑁 − 𝑇𝐸) + 𝐺𝑁𝑊(𝑇𝑁 − 𝑇𝑊)

+ 𝐺𝑁𝑇𝑜𝑝(𝑇𝑁 − 𝑇𝑇𝑜𝑝) + 𝐺𝑁𝐴𝑚𝑏(𝑇𝑁 − 𝑇𝑎𝑚𝑏) 

(C.8) 
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𝑞̇𝑊 = 𝐶𝐿𝐼

𝑑

𝑑𝑡
(𝑇𝑊 − 𝑇𝐿−𝐼) + 𝐶𝑊

𝑑

𝑑𝑡
(𝑇𝑊 − 𝑇𝑎𝑚𝑏) + 𝐺𝐿𝐼𝑊(𝑇𝑊 − 𝑇𝐿−𝐼)

+ 𝐺𝑊𝑆(𝑇𝑊 − 𝑇𝑆) + 𝐺𝑁𝑊(𝑇𝑊 − 𝑇𝑁) + 𝐺𝑊𝑇𝑜𝑝(𝑇𝑊 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝑊𝐴𝑚𝑏(𝑇𝑊 − 𝑇𝑎𝑚𝑏)  

(C.9) 

𝑞̇𝑆 = 𝐶𝐵𝑒𝑑2𝐼

𝑑

𝑑𝑡
(𝑇𝑆 − 𝑇𝐵𝑒𝑑2−𝐼) + 𝐶𝑆

𝑑

𝑑𝑡
(𝑇𝑆 − 𝑇𝑎𝑚𝑏) + 𝐺𝐵𝑒𝑑2𝐼𝑆(𝑇𝑆 − 𝑇𝐵𝑒𝑑2−𝐼)

+ 𝐺𝐿𝐼𝑆(𝑇𝑆 − 𝑇𝐿−𝐼) + 𝐺𝐸𝑆(𝑇𝑆 − 𝑇𝐸) + 𝐺𝑊𝑆(𝑇𝑆 − 𝑇𝑊)

+ 𝐺𝑆𝑇𝑂𝑃(𝑇𝑆 − 𝑇𝑇𝑜𝑝) + 𝐺𝑆𝐴𝑚𝑏(𝑇𝑆 − 𝑇𝑎𝑚𝑏) 

(C.10) 

𝑞̇𝑇𝑜𝑝 = 𝐶𝐾𝐼

𝑑

𝑑𝑡
(𝑇𝑇𝑜𝑝 − 𝑇𝐾−𝐼) + 𝐶𝑇𝑜𝑝

𝑑

𝑑𝑡
(𝑇𝑇𝑜𝑝 − 𝑇𝑎𝑚𝑏)

+ 𝐺𝐵𝑒𝑑1𝐼𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐵𝑒𝑑1−𝐼) + 𝐺𝐵𝑒𝑑2𝐼𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐵𝑒𝑑2−𝐼)

+ 𝐺𝐵𝑎𝑡ℎ1𝐼𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐵𝑎𝑡ℎ1−𝐼) + 𝐺𝐵𝑎𝑡ℎ2𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐵𝑎𝑡ℎ2−𝐼)

+ 𝐺𝐾𝐼𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐾−𝐼) + 𝐺𝐿𝐼𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐿−𝐼)

+ 𝐺𝐸𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝐸) + 𝐺𝑊𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝑊) + 𝐺𝑁𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝑁)

+ 𝐺𝑆𝑇𝑜𝑝(𝑇𝑇𝑜𝑝 − 𝑇𝑆) + 𝐺𝑇𝑜𝑝𝐴𝑚𝑏(𝑇𝑇𝑜𝑝 − 𝑇𝑎𝑚𝑏) 

(C.11) 

𝑞̇𝑎𝑚𝑏 = 𝐶𝐸

𝑑

𝑑𝑡
(𝑇𝑎𝑚𝑏 − 𝑇𝐸) + 𝐶𝑁

𝑑

𝑑𝑡
(𝑇𝑎𝑚𝑏 − 𝑇𝑁) + 𝐶𝑊

𝑑

𝑑𝑡
(𝑇𝑎𝑚𝑏 − 𝑇𝑊)

+ 𝐶𝑆

𝑑

𝑑𝑡
(𝑇𝑎𝑚𝑏 − 𝑇𝑆) + 𝐶𝑇𝑜𝑝

𝑑

𝑑𝑡
(𝑇𝑎𝑚𝑏 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝐸𝐴𝑚𝑏(𝑇𝑎𝑚𝑏 − 𝑇𝐸) + 𝐺𝑁𝐴𝑚𝑏(𝑇𝑎𝑚𝑏 − 𝑇𝑁)

+ 𝐺𝑆𝐴𝑚𝑏(𝑇𝑎𝑚𝑏 − 𝑇𝑆) + 𝐺𝑊𝐴𝑚𝑏(𝑇𝑎𝑚𝑏 − 𝑇𝑊)

+ 𝐺𝑇𝑜𝑝𝐴𝑚𝑏(𝑇𝑎𝑚𝑏 − 𝑇𝑇𝑜𝑝) 

(C.12) 
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0.0 = 𝐶𝐵𝑒𝑑1

𝑑

𝑑𝑡
(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐵𝑒𝑑1) + 𝐶𝐵𝑒𝑑1𝐼

𝑑

𝑑𝑡
(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐸)

+ 𝐺𝐵𝑒𝑑1(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐵𝑒𝑑1) + 𝐺𝐵𝑒𝑑1𝐼𝐸(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐸)

+ 𝐺𝐵𝑒𝑑1𝐼𝑁(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝑁) + 𝐺𝐵𝑒𝑑1𝐼𝑇𝑜𝑝(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝐵𝑒𝑑1𝐼𝐵𝑎𝑡ℎ1𝐼(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐵𝑎𝑡ℎ1−𝐼)

+ 𝐺𝐵𝑒𝑑1𝐼𝐵𝑎𝑡ℎ2𝐼(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) + 𝐺𝐵𝑒𝑑1𝐼𝐾𝐼(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐾−𝐼)

+ 𝐺𝐵𝑒𝑑1𝐼𝐿𝐼(𝑇𝐵𝑒𝑑1−𝐼 − 𝑇𝐿−𝐼) 

(C.13) 

0.0 = 𝐶𝐵𝑒𝑑2

𝑑

𝑑𝑡
(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝐵𝑒𝑑2) + 𝐶𝐵𝑒𝑑2𝐼

𝑑

𝑑𝑡
(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝑆)

+ 𝐺𝐵𝑒𝑑2(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝐵𝑒𝑑2) + 𝐺𝐵𝑒𝑑2𝐼𝐸(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝐸)

+ 𝐺𝐵𝑒𝑑2𝐼𝑆(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝑆) + 𝐺𝐵𝑒𝑑2𝐼𝑇𝑜𝑝(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝐵𝑒𝑑2𝐼𝐵𝑎𝑡ℎ2𝐼(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) + 𝐺𝐵𝑒𝑑2𝐼𝐿𝐼(𝑇𝐵𝑒𝑑2−𝐼 − 𝑇𝐿−𝐼) 

(C.14) 

0.0 = 𝐶𝐵𝑎𝑡ℎ1

𝑑

𝑑𝑡
(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝐵𝑎𝑡ℎ1) + 𝐶𝐵𝑎𝑡ℎ1𝐼

𝑑

𝑑𝑡
(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝑁)

+ 𝐺𝐵𝑎𝑡ℎ1(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝐵𝑎𝑡ℎ1) + 𝐺𝐵𝑎𝑡ℎ1𝐼𝑁(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝑁)

+ 𝐺𝐵𝑎𝑡ℎ1𝐼𝑇𝑜𝑝(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝐵𝑒𝑑1𝐼𝐵𝑎𝑡ℎ1𝐼(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝐵𝑒𝑑1−𝐼)

+ 𝐺𝐵𝑎𝑡ℎ1𝐼𝐾𝐼(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝐾−𝐼) + 𝐺𝐵𝑎𝑡ℎ1𝐼𝐿𝐼(𝑇𝐵𝑎𝑡ℎ1−𝐼 − 𝑇𝐿−𝐼) 

(C.15) 

0.0 = 𝐶𝐵𝑎𝑡ℎ2

𝑑

𝑑𝑡
(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐵𝑎𝑡ℎ2) + 𝐶𝐵𝑎𝑡ℎ2𝐼

𝑑

𝑑𝑡
(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐸)

+ 𝐺𝐵𝑎𝑡ℎ2(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐵𝑎𝑡ℎ2) + 𝐺𝐵𝑎𝑡ℎ2𝐼𝐸(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐸)

+ 𝐺𝐵𝑎𝑡ℎ2𝐼𝑇𝑜𝑝(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝑇𝑜𝑝)

+ 𝐺𝐵𝑒𝑑1𝐼𝐵𝑎𝑡ℎ2𝐼(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐵𝑒𝑑1−𝐼)

+ 𝐺𝐵𝑒𝑑2𝐼𝐵𝑎𝑡ℎ2𝐼(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐵𝑒𝑑2−𝐼)

+ 𝐺𝐵𝑎𝑡ℎ2𝐼𝐿𝐼(𝑇𝐵𝑎𝑡ℎ2−𝐼 − 𝑇𝐿−𝐼) 

(C.16) 
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0.0 = 𝐶𝐾

𝑑

𝑑𝑡
(𝑇𝐾−𝐼 − 𝑇𝐾) + 𝐶𝐾𝐼

𝑑

𝑑𝑡
(𝑇𝐾−𝐼 − 𝑇𝑇𝑜𝑝) + 𝐺𝐾(𝑇𝐾−𝐼 − 𝑇𝐾)

+ 𝐺𝐾𝐼𝑇𝑜𝑝(𝑇𝐾−𝐼 − 𝑇𝑇𝑜𝑝) + 𝐺𝐵𝑒𝑑1𝐼𝐾𝐼(𝑇𝐾−𝐼 − 𝑇𝐵𝑒𝑑1−𝐼)

+ 𝐺𝐵𝑎𝑡ℎ1𝐼𝐾𝐼(𝑇𝐾−𝐼 − 𝑇𝐵𝑎𝑡ℎ1−𝐼) + 𝐺𝐾𝐼𝐿𝐼(𝑇𝐾−𝐼 − 𝑇𝐿−𝐼) 

(C.17) 

0.0 = 𝐶𝐿

𝑑

𝑑𝑡
(𝑇𝐿−𝐼 − 𝑇𝐿) + 𝐶𝐿𝐼

𝑑

𝑑𝑡
(𝑇𝐿−𝐼 − 𝑇𝑊) + 𝐺𝐿(𝑇𝐿−𝐼 − 𝑇𝐿)

+ 𝐺𝐿𝐼𝑆(𝑇𝐿−𝐼 − 𝑇𝑆) + 𝐺𝐿𝐼𝑊(𝑇𝐿−𝐼 − 𝑇𝑊) + 𝐺𝐿𝐼𝑁(𝑇𝐿−𝐼 − 𝑇𝑁)

+ 𝐺𝐿𝐼𝑇𝑜𝑝(𝑇𝐿−𝐼 − 𝑇𝑇𝑜𝑝) + 𝐺𝐵𝑒𝑑1𝐼𝐿𝐼(𝑇𝐿−𝐼 − 𝑇𝐵𝑒𝑑1−𝐼)

+ 𝐺𝐵𝑒𝑑2𝐼𝐿𝐼(𝑇𝐿−𝐼 − 𝑇𝐵𝑒𝑑2−𝐼) + 𝐺𝐵𝑎𝑡ℎ1𝐼𝐿𝐼(𝑇𝐿−𝐼 − 𝑇𝐵𝑎𝑡ℎ1−𝐼)

+ 𝐺𝐵𝑎𝑡ℎ2𝐼𝐿𝐼(𝑇𝐿−𝐼 − 𝑇𝐵𝑎𝑡ℎ2−𝐼) + 𝐺𝐾𝐼𝐿𝐼(𝑇𝐿−𝐼 − 𝑇𝐾−𝐼) 

(C.18) 

Equations (C.1)-(C.18) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝑌𝑒𝑞 [

𝑉
𝑌
] + 𝐾𝑒𝑞  (C.19) 

, where 

𝐼 = [𝑞̇𝐵𝑒𝑑1 𝑞̇𝐵𝑒𝑑2 𝑞̇𝐵𝑎𝑡ℎ1 𝑞̇𝐵𝑎𝑡ℎ2 𝑞̇𝐾 𝑞̇𝐿 𝑞̇𝐸 𝑞̇𝑁 𝑞̇𝑊 𝑞̇𝑆 𝑞̇𝑇𝑜𝑝 𝑞̇𝑎𝑚𝑏]𝑇 

𝑉 = [𝑇𝐵𝑒𝑑1 𝑇𝐵𝑒𝑑2 𝑇𝐵𝑎𝑡ℎ1 𝑇𝐵𝑎𝑡ℎ2 𝑇𝐾 𝑇𝐿 𝑇𝐸 𝑇𝑁 𝑇𝑊 𝑇𝑆 𝑇𝑇𝑜𝑝 𝑇𝑎𝑚𝑏]𝑇 

𝑌 = [𝑇𝐵𝑒𝑑1−𝐼 𝑇𝐵𝑒𝑑2−𝐼 𝑇𝐵𝑎𝑡ℎ1−𝐼 𝑇𝐵𝑎𝑡ℎ2−𝐼 𝑇𝐾−𝐼 𝑇𝐿−𝐼]𝑇 

Yeq: Matrix defining the linear part. 

Keq: Vector containing the constant part of the model. 

Note that there 30 states with 30 equations are identified.  

To compute the thermal conductance, a percentage of each one is assumed based 

on the below tables Table 45-Table 55. 
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Table 45. House Tbed1I conductances. 

Tbed1I Conductances (%) of GbedI1 

G_Bed1IE 12.5 

G_Bed1IN 12.5 

G_Bed1ITop 7.5 

G_Bed1IBath1I 20 

G_Bed1IBath2I 20 

G_Bed1IKI 20 

G_Bed1ILI 20 

Table 46. House Tbed2I conductances. 

Tbed2 Conductances (%) of Gbed2I 

G_Bed2IE 12.5 

G_Bed2IS 12.5 

G_Bed2ITop 7.5 

G_Bed2IBath2I 20 

G_Bed2ILI 20 

Table 47. House Tbath1I conductances. 

Tbath1I Conductances (%) of Gbath1I 

G_bath1IN 12.5 

G_bath1ITop 7.5 

G_bath1IKI 20 

G_bath1ILI 20 
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Table 48. House Tbath2I conductances. 

Tbath2I Conductances (%) of Gbath2I 

G_bath2IE 12.5 

G_bath2ITop 7.5 

G_bath2ILI 20 

Table 49. House TKI conductances.  

TL12 Conductances (%) of GL12 

G_KITop 7.5 

G_KILI 20 

Table 50. House TLI conductances.  

TLI Conductances (%) of GLI 

G_LIS 12.5 

G_LIW 12.5 

G_LIN 12.5 

G_LITop 7.5 

Table 51. House TE conductances.  

TE Conductances (%) of GE 

G_EN 20 

G_ETop 20 

G_ES 20 

G_EAMB 27.5 
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Table 52. House TN conductances.  

TN Conductances (%) of GN 

G_NW 20 

G_NTop 20 

G_NAMB 27.5 

Table 53. House TW conductances.  

TW Conductances (%) of GW 

G_WS 20 

G_WTop 20 

G_WAMB 27.5 

Table 54. House TS conductances.  

TS Conductances (%) of GS 

G_STop 20 

G_SAMB 27.5 

Table 55. House TTop conductances.  

TTop Conductances (%) of GTop 

G_TopAmb 27.5 
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Appendix D Electrothermal Air-Conditioner Model 

The mathematical model of the electrothermal air conditioner is given by the following 

equations 

𝐼1 = (
𝑃𝐻𝑉𝐴𝐶 + 𝑗𝑄𝐻𝑉𝐴𝐶

𝑉̃1 − 𝑉̃2

)

∗

(1 − 𝑢1)𝑢2 (D.1) 

𝐼2 = −(
𝑃𝐻𝑉𝐴𝐶 + 𝑗𝑄𝐻𝑉𝐴𝐶

𝑉̃1 − 𝑉̃2

)

∗

(1 − 𝑢1)𝑢2 (D.2) 

0.0 = 0.0 𝑢2 (D.3) 

𝑞̇𝐵𝑒𝑑1 = 𝐺𝑆(𝑇̃𝐵𝑒𝑑1 − 𝑇̃𝐴𝑚𝑏) − 𝐾1𝑄̇ℎ𝑣𝑎𝑐  (D.4) 

𝑞̇𝐵𝑒𝑑2 = 𝐺𝑆(𝑇̃𝐵𝑒𝑑2 − 𝑇̃𝐴𝑚𝑏) − 𝐾2𝑄̇ℎ𝑣𝑎𝑐  (D.5) 

𝑞̇𝐵𝑎𝑡ℎ1 = 𝐺𝑆(𝑇̃𝐵𝑎𝑡ℎ1 − 𝑇̃𝐴𝑚𝑏) − 𝐾3𝑄̇ℎ𝑣𝑎𝑐  (D.6) 

𝑞̇𝐵𝑎𝑡ℎ2 = 𝐺𝑆(𝑇̃𝐵𝑎𝑡ℎ2 − 𝑇̃𝐴𝑚𝑏) − 𝐾4𝑄̇ℎ𝑣𝑎𝑐  (D.7) 

𝑞̇𝐾 = 𝐺𝑆(𝑇̃𝐾 − 𝑇̃𝐴𝑚𝑏) − 𝐾5𝑄̇ℎ𝑣𝑎𝑐  (D.8) 

𝑞̇𝐿 = 𝐺𝑆(𝑇̃𝐿 − 𝑇̃𝐴𝑚𝑏) − 𝐾6𝑄̇ℎ𝑣𝑎𝑐  (D.9) 

𝑞̇𝐴𝑚𝑏 = −𝐺𝑆(𝑇̃𝐵𝑒𝑑1 + 𝑇̃𝐵𝑒𝑑2 + 𝑇̃𝐵𝑎𝑡ℎ1 + 𝑇̃𝐵𝑎𝑡ℎ2 + 𝑇̃𝐾 + 𝑇̃𝐿 − 6 𝑇̃𝐴𝑚𝑏) + (𝐾1

+ 𝐾2 + 𝐾3 + 𝐾4 + 𝐾5 + 𝐾6)𝑄̇ℎ𝑣𝑎𝑐  
(D.10) 

𝑃𝐻𝑉𝐴𝐶  =  
𝑘𝑓𝑎𝑐𝑡𝑜𝑟   𝑄̇ℎ𝑣𝑎𝑐 𝑚

𝐶𝑂𝑃
(1 − 𝑢1)𝑢2 (D.11) 

𝑄𝐻𝑉𝐴𝐶  = 𝑡𝑎𝑛(𝑐𝑜𝑠−1(𝑝𝑓)) 𝑃𝐻𝑉𝐴𝐶  (D.12) 

𝑄̇ℎ𝑣𝑎𝑐  =  
𝐵𝑅

𝑚
(1 − 𝑢1) 𝑢2 (D.13) 

𝐵𝑅 =  𝐵𝑅0 (1.4892 − 0.0052 ((
9

5
𝑎𝑇̃𝐴𝑚𝑏) + 32)) (D.14) 

𝑚 = 1.1 +
𝑚𝑙

1 + 𝑒𝑥𝑝(4 − 0.1𝜌)
 (D.15) 
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𝐶𝑂𝑃 =
𝐶𝑂𝑃𝑛𝑜𝑚

−0.01364 + 0.01067 (((
9
5𝑎𝑇̃𝐴𝑚𝑏) + 32))

 
(D.16) 

Equations (D.1)-(D.16) cast into a compact matrix form as follows 

[
𝐼
0
] = 𝑌𝑒𝑞 [

𝑉
𝑌
] + [𝑉 𝑌]𝐹𝑒𝑞 [

𝑉
𝑌
] + 𝐾𝑒𝑞 (D.17) 

, where 

𝐼 = [𝐼1 𝐼2 0.0 𝑞̇𝐵𝑒𝑑1 𝑞̇𝐵𝑒𝑑2 𝑞̇𝐵𝑎𝑡ℎ1 𝑞̇𝐵𝑎𝑡ℎ2 𝑞̇𝐾 𝑞̇𝐿 𝑞̇𝐴𝑚𝑏]𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑢2 𝑇̃𝐵𝑒𝑑1 𝑇̃𝐵𝑒𝑑2 𝑇̃𝐵𝑎𝑡ℎ1 𝑇̃𝐵𝑎𝑡ℎ2 𝑇̃𝐾 𝑇̃𝐿 𝑇̃𝐴𝑚𝑏]
𝑇 

𝑌 = [𝑃𝐻𝑉𝐴𝐶 𝑄𝐻𝑉𝐴𝐶 𝑄̇ℎ𝑣𝑎𝑐 𝐵𝑅 𝑚 𝐶𝑂𝑃]𝑇 

Yeq: Matrix defining the linear part. 

Feq: Nonlinear and differential parts of the model. 

Keq: Vector containing the constant part of the model. 

PHVAC: Air conditioner active power consumption in [MW]. 

QHVAC: Air conditioner reactive power consumption in [MVAr]. 

Vrated: Rated voltage rms of air conditioner in [V]. 

Eff: The air conditioner electrical efficiency.   

pf:  Power factor of the device.  

Gs: Heat source internal thermal conductance, added for numerical stability purpose in 

[MBtu/k
o
C h].  

𝑄̇ℎ𝑣𝑎𝑐: Heat rate generated by the air conditioner in [MBtu/h]. 
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qbed1,…,qL: Heat rate through variables in [MBtu/h]. 

TBed1,…,TL: Temperature across states variables in [k 
o
C]. 

kfactor: a conversion factor (1 MW ~ 3.414 MBtu/h). 

BRo: Nominal Btu rating of the air conditioner system (at 35 
o
C) in [MBtu/h]. 

m: Fraction of the cooling load [unit-less]. 

COPo: Nominal cooling coefficient of performance (at 35 
o
C) [unit-less]. 

ρ: Outside relative humidity [%]. 

K1,…K6: Constant based on the house layout of ducts. 

a: scale factor equals 1000.  

u1: Air conditioner On/Off power service given by 

𝑢1 = {
0, 𝑃𝑜𝑤𝑒𝑟 𝑂𝑁
1, 𝑃𝑜𝑤𝑒𝑟 𝑂𝐹𝐹

 

u2: Air conditioner operation control signal 

𝑢2 = {
0, 𝐴/𝐶 𝑂𝐹𝐹
1, 𝐴/𝐶 𝑂𝑁
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Appendix E Electrothermal Refrigerator Model 

The mathematical model of the electrothermal refrigerator with six temperature spots is 

given by the following equations 

𝐼1 = (
𝑃𝑓 + 𝑗𝑄𝑓

𝑉̃1 − 𝑉̃2

)

∗

(1 − 𝑢1)𝑢2 (E.1) 

𝐼2 = −(
𝑃𝑓 + 𝑗𝑄𝑓

𝑉̃1 − 𝑉̃2

)

∗

(1 − 𝑢1)𝑢2 (E.2) 

𝑞̇1 = 𝐶𝑓𝑟𝑒𝑤

𝑑

𝑑𝑡
(𝑇𝐾1(𝑡) − 𝑇𝑓𝑟𝑒𝑤(𝑡)) + 𝐶𝑓𝑧𝑒𝑤

𝑑

𝑑𝑡
(𝑇𝐾1(𝑡) − 𝑇𝑓𝑧𝑒𝑤(𝑡))

+ 𝐺𝑓𝑟𝑒𝑤−𝑘 (𝑇𝐾1(𝑡) − 𝑇𝑓𝑟𝑒𝑤(𝑡)) + 𝐺𝑓𝑧𝑒𝑤−𝑘 (𝑇𝐾1(𝑡) − 𝑇𝑓𝑧𝑒𝑤(𝑡)) 
(E.3) 

𝑞̇2 = 𝐺𝑠 (𝑇𝐾2(𝑡) − 𝑇𝑓𝑟(𝑡)) + 𝐺𝑠 (𝑇𝐾2(𝑡) − 𝑇𝑓𝑧(𝑡)) + 𝑘1𝑄𝑟̇ + 𝑘2𝑄𝑟̇  (E.4) 

𝑃𝑓 (1 − 𝑢1)𝑢2 = 𝑘𝑓𝑎𝑐𝑡𝑜𝑟

−𝑄̇𝑟

𝐶𝑂𝑃
 (E.5) 

0.0 = 𝐶𝑓𝑟

𝑑

𝑑𝑡
(𝑇𝑓𝑟(𝑡) − 𝑇𝑓𝑟𝑖𝑤(𝑡)) + 𝐺𝑓𝑟(𝑇𝑓𝑟(𝑡) − 𝑇𝑓𝑟𝑖𝑤(𝑡))

+ 𝐺𝑠 (𝑇𝑓𝑟(𝑡) − 𝑇𝐾2(𝑡)) − 𝑘1 𝑄̇𝑟  
(E.6) 

0.0 = 𝐶𝑓𝑟

𝑑

𝑑𝑡
(𝑇𝑓𝑟𝑖𝑤(𝑡) − 𝑇𝑓𝑟(𝑡)) + 𝐶𝑓𝑟𝑖𝑤

𝑑

𝑑𝑡
(𝑇𝑓𝑟𝑖𝑤(𝑡) − 𝑇𝑓𝑟𝑒𝑤(𝑡))

+ 𝐺𝑓𝑟(𝑇𝑓𝑟𝑖𝑤(𝑡) − 𝑇𝑓𝑟(𝑡)) + 𝐺𝑓𝑟𝑖𝑤−𝑓𝑧𝑖𝑤 (𝑇𝑓𝑟𝑖𝑤(𝑡) − 𝑇𝑓𝑧𝑖𝑤(𝑡))

+ 𝐺𝑓𝑟𝑖𝑤−𝑓𝑟𝑒𝑤 (𝑇𝑓𝑟𝑖𝑤(𝑡) − 𝑇𝑓𝑟𝑒𝑤(𝑡)) 

(E.7) 
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0.0 = 𝐶𝑓𝑟𝑖𝑤

𝑑

𝑑𝑡
(𝑇𝑓𝑟𝑒𝑤(𝑡) − 𝑇𝑓𝑟𝑖𝑤(𝑡)) + 𝐶𝑓𝑟𝑒𝑤

𝑑

𝑑𝑡
(𝑇𝑓𝑟𝑒𝑤(𝑡) − 𝑇𝐾1(𝑡))

+ 𝐺𝑓𝑟𝑖𝑤−𝑓𝑟𝑒𝑤 (𝑇𝑓𝑟𝑒𝑤(𝑡) − 𝑇𝑓𝑟𝑖𝑤(𝑡))

+ 𝐺𝑓𝑟𝑒𝑤−𝑓𝑧𝑒𝑤 (𝑇𝑓𝑟𝑒𝑤(𝑡) − 𝑇𝑓𝑧𝑒𝑤(𝑡))

+ 𝐺𝑓𝑟𝑒𝑤−𝐾(𝑇𝑓𝑟𝑒𝑤(𝑡) − 𝑇𝐾1(𝑡)) 

(E.8) 

0.0 = 𝐶𝑓𝑧

𝑑

𝑑𝑡
(𝑇𝑓𝑧(𝑡) − 𝑇𝑓𝑧𝑖𝑤(𝑡)) + 𝐺𝑓𝑧(𝑇𝑓𝑧(𝑡) − 𝑇𝑓𝑧𝑖𝑤(𝑡))

+ 𝐺𝑠(𝑇𝑓𝑧(𝑡) − 𝑇𝐾2(𝑡)) − 𝑘2 𝑄̇𝑟  
(E.9) 

0.0 = 𝐶𝑓𝑧

𝑑

𝑑𝑡
(𝑇𝑓𝑧𝑖𝑤(𝑡) − 𝑇𝑓𝑧(𝑡)) + 𝐶𝑓𝑧𝑖𝑤

𝑑

𝑑𝑡
(𝑇𝑓𝑧𝑖𝑤(𝑡) − 𝑇𝑓𝑧𝑒𝑤(𝑡))

+ 𝐺𝑓𝑧(𝑇𝑓𝑧𝑖𝑤(𝑡) − 𝑇𝑓𝑧(𝑡)) + 𝐺𝑓𝑟𝑖𝑤−𝑓𝑧𝑖𝑤 (𝑇𝑓𝑧𝑖𝑤(𝑡) − 𝑇𝑓𝑟𝑖𝑤(𝑡))

+ 𝐺𝑓𝑧𝑖𝑤−𝑓𝑧𝑒𝑤 (𝑇𝑓𝑧𝑖𝑤(𝑡) − 𝑇𝑓𝑧𝑒𝑤(𝑡)) 

(E.10) 

0.0 = 𝐶𝑓𝑧𝑖𝑤

𝑑

𝑑𝑡
(𝑇𝑓𝑧𝑒𝑤(𝑡) − 𝑇𝑓𝑧𝑖𝑤(𝑡)) + 𝐶𝑓𝑧𝑒𝑤

𝑑

𝑑𝑡
(𝑇𝑓𝑧𝑒𝑤(𝑡) − 𝑇𝐾1(𝑡))

+ 𝐺𝑓𝑧𝑖𝑤−𝑓𝑧𝑒𝑤 (𝑇𝑓𝑧𝑒𝑤(𝑡) − 𝑇𝑓𝑧𝑖𝑤(𝑡))

+ 𝐺𝑓𝑟𝑒𝑤−𝑓𝑧𝑒𝑤 (𝑇𝑓𝑧𝑒𝑤(𝑡) − 𝑇𝑓𝑟𝑒𝑤(𝑡))

+ 𝐺𝑓𝑧𝑒𝑤−𝐾(𝑇𝑓𝑟𝑒𝑤(𝑡) − 𝑇𝐾1(𝑡)) 

(E.11) 

Equations (E.1)-(E.11) are cast into a compact matrix form as follows: 

[
𝐼
0
] = 𝑌𝑒𝑞 [

𝑉
𝑌
] + [𝑉 𝑌]𝐹𝑒𝑞 [

𝑉
𝑌
] + 𝐾𝑒𝑞 (E.12) 

, where 

𝐼 = [𝐼1 𝐼2 𝑞̇1 𝑞̇2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑇𝐾1(𝑡) 𝑇𝐾2(𝑡)]
𝑇 
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𝑌 = [𝑇𝑓𝑟(𝑡) 𝑇𝑓𝑟𝑖𝑤(𝑡) 𝑇𝑓𝑟𝑒𝑤(𝑡) 𝑇𝑓𝑧(𝑡) 𝑇𝑓𝑧𝑖𝑤(𝑡) 𝑇𝑓𝑧𝑒𝑤(𝑡) 𝑄̇𝑟]
𝑇
 

I: Through variables of the model. 

V: Across external states variables of the model. 

Y: Internal states variables of the model.  

Yeq: Matrix defining the linear part of the model. 

Feq: Nonlinear and differential parts of the model. 

Keq: Vector containing the constant part of the model. 

Pf: Maximum active power consumption of the refrigerator in [MW] computed as the 

following, 

𝑃𝑓 = 𝑃𝑟𝑎𝑡𝑒𝑑𝐸𝑓𝑓 

Qf: Maximum reactive power consumption of the refrigerator [MVAr] computed as the 

following, 

𝑄𝑓 = 𝑃𝑓 tan(cos−1(𝑝𝑓)) 

u1: Refrigerator On/Off status (main service of operation). 

𝑢1 = {
0, 𝑃𝑜𝑤𝑒𝑟 𝑂𝑁
1, 𝑃𝑜𝑤𝑒𝑟 𝑂𝐹𝐹

 

u2: Refrigerator temperature control. 

𝑢2 = {
0, 𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟 𝑂𝐹𝐹
1, 𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟 𝑂𝑁

 

kfactor: A conversion factor (1 MW ~ 3.414 MBtu/h) 
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Prated: Rated power of the refrigerator in [W]. 

Vrated: Rated voltage rms of the refrigerator in [V]. 

Eff: The refrigerator electrical efficiency. A value of 0.8 is typical for a refrigerator.   

pf:  Power factor of the device. A value of 0.9 is typical for a refrigerator. 

COP: Coefficient of performance. A value of 3.5 is typical for a refrigerator.  

k1 and k2: Constant depends on the refrigerator manufacture design. Typical values are 

0.6 and 0.4 respectively. 

𝑄̇𝑟: Heat flow rate of the refrigerator [MBtu/h]. 

𝑞̇1: Heat flow through variable 1 [MBtu/h]. 

𝑞̇2: Heat flow through variable 2 [MBtu/h]. 

Tfr: Fresh food compartment temperature spot in [k
o
C]. 

Tfz: Freezer compartment temperature spot in [k
o
C]. 

Tfriw: Internal wall of the fresh food compartment temperature spot in [k
o
C]. 

Tfrew: External wall of the fresh food compartment temperature spot in [k
o
C]. 

Tfziw: Internal wall of the freezer compartment temperature spot in [k
o
C]. 

Tfzew: External wall of the freezer compartment temperature spot in [k
o
C]. 

Tk1: Across external state variable kitchen terminal 1 temperature spot in [k
o
C]. 

Tk2: Across external state variable kitchen terminal 2 temperature spot in [k
o
C]. 

Gfr: Thermal conductance between the fresh food compartment mass and the fresh food 

compartment internal wall in [MBtu/k
o
C h]. 
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Gfz: Thermal conductance between the freezer compartment mass and the freezer 

compartment internal wall in [MBtu/k
o
C h]. 

Gfriw-fziw: Thermal conductance between the fresh food compartment internal wall and the 

freezer compartment internal wall mass in [MBtu/k
o
C h].  

Gfriw-frew: Thermal conductance of the fresh food compartment wall in [MBtu/k
o
C h]. 

Gfziw-fzew: Thermal conductance of the freezer compartment wall in [MBtu/k
o
C h]. 

Gfrew-fzew: Thermal conductance of the fresh food and freezer compartments external walls 

in [MBtu/k
o
C h]. 

Gfrew-K: Thermal conductance between the fresh food compartment external wall and the 

Kitchen air mass in [MBtu/k
o
C h]. 

Gfzew-K: Thermal conductance between the freezer compartment external wall and the 

Kitchen air mass in [MBtu/k
o
C h]. 

Gs: Thermal conductance of the heat source in [MBtu/k
o
C h].  

Cfr: The sum of the heat capacity of every element inside the fresh food compartment in 

[MBtu/k
o
C]. 

Cfriw: Heat capacity of internal door mass in the fresh food compartment in [MBtu/k
o
C]. 

Cfrew: Heat capacity of external door mass in the fresh food compartment in [MBtu/k
o
C]. 

Cfz: The sum of the heat capacity of every element inside the freezer compartment in 

[MBtu/k
o
C]. 

Cfziw: Heat capacity of internal door mass in the freezer compartment in [MBtu/k
o
C]. 

Cfzew: Heat capacity of external door mass in the freezer compartment in [MBtu/k
o
C]. 

Volfr: Fresh Food Compartment Capacity in [ft
3
]. 

Volfz: Freezer Compartment Capacity in [ft
3
]. 



195 

θset: Refrigerator desired internal temperature in [k
o
C]. Typical value is 1-5 

o
C.  

θdead-band: Temperature control dead-band in [k
o
C]. Typically, it is 1-2 

o
C. 

It should be noted that Cfr(t) is the sum of each element heat capacity, including cool air, 

inside the fresh food compartment at every time t. It is mathematically expressed as the 

following: 

𝐶𝑓𝑟(𝑡) = ∆𝐶𝑓𝑟0(𝑡) + ∆𝐶𝑓𝑟1(𝑡) + ∆𝐶𝑓𝑟2(𝑡) + ⋯+ ∆𝐶𝑓𝑟𝑖(𝑡) 

, where 

∆Cfr0(t): Thermal capacitance of element 0 in the fresh food compartment at time t 

[MBtu/k
o
C].  

∆Cfr1(t): Thermal capacitance of element 1 in the fresh food compartment at time t 

[MBtu/k
o
C].  

∆Cfr2(t): Thermal capacitance of element 2 in the fresh food compartment at time t 

[MBtu/k
o
C].  

∆Cfri(t): Thermal capacitance of element i in the fresh food compartment at time t 

[MBtu/k
o
C].  

i: The total number of elements inside the fresh food compartment. 

Also, Cfz(t) is the sum of each element heat capacity, including cold air, inside the freezer 

compartment at every time t. It is mathematically expressed as the following: 

𝐶𝑓𝑧(𝑡) = ∆𝐶𝑓𝑧0(𝑡) + ∆𝐶𝑓𝑧1(𝑡) + ∆𝐶𝑓𝑧2(𝑡) + ⋯+ ∆𝐶𝑓𝑧𝑗(𝑡) 

, where 
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∆Cfz0(t): Thermal capacitance of element 0 in the freezer compartment at time t 

[MBtu/k
o
C].  

∆Cfz1(t): Thermal capacitance of element 1 in the freezer compartment at time t 

[MBtu/k
o
C]. 

∆Cfz2(t): Thermal capacitance of element 2 in the freezer compartment at time t 

[MBtu/k
o
C].  

∆Cfzj(t): Thermal capacitance of element j in the freezer compartment at time t 

[MBtu/k
o
C].  

j: The total number of elements inside the fresh food compartment. 

Note that data regarding both refrigerator and freezer elements are specified in the csv 

file found in the device folder. This file contains the following information, 

 Time when the event takes place enter the form (hh:mm:ss) 

 Door openings for both fresh food and freezer compartments.  

 Mass in (kg) for every element inside both the fresh food and freezer 

compartments. 
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Appendix F Dishwasher Mathematical Model 

The mathematical model of the dishwasher is given by the following equations 

𝐼1 = (
𝑃𝑑𝑤 + 𝑗𝑄𝑑𝑤

𝑉̃1 − 𝑉̃2

)

∗

(1 − 𝑢1)𝑢2𝑢3𝑧𝑡 (F.1) 

𝐼2 = −(
𝑃𝑑𝑤 + 𝑗𝑄𝑑𝑤

𝑉̃1 − 𝑉̃2

)

∗

(1 − 𝑢1)𝑢2𝑢3𝑧𝑡  (F.2) 

, where: 

Pdw: Maximum active power consumption of the dishwasher in [W] computed as the 

following, 

𝑃𝑑𝑤 = 𝑃𝑟𝑎𝑡𝑒𝑑𝐸𝑓𝑓 

Qdw: Maximum reactive power consumption of the dishwasher [VAr] computed as the 

following, 

𝑄𝑑𝑤 = 𝑃𝑑𝑤 tan(cos−1(𝑝𝑓)) 

u1: Dishwasher On/Off status (main service of operation), 

𝑢1 = {
0 ,𝐷𝑖𝑠ℎ𝑤𝑎𝑠ℎ𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑂𝑛
1 , 𝐷𝑖𝑠ℎ𝑤𝑎𝑠ℎ𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑂𝑓𝑓

 

u2: Dishwasher load level variable. It is specified according to the chosen input load level 

as given in Table 9.  

u3: Power consumption at each stage of the cycle. During every cycle, u3 will change 

according to the stage. Every stage of the simulation is determined based on the progress 

of the simulation time inside the cycle. So, u3 can be evaluated as the following, 

𝑢3 = 0.25[𝑈(𝑡 − 𝑡0𝑖
) − 𝑈(𝑡 − 𝑡0𝑖

− 0.1𝑡𝑐)] 



198 

+[𝑈(𝑡 − 𝑡0𝑖
− 0.1𝑡𝑐) − 𝑈(𝑡 − 𝑡0𝑖

− 0.35𝑡𝑐)] 

+0.25[𝑈(𝑡 − 𝑡0𝑖
− 0.35𝑡𝑐) − 𝑈(𝑡 − 𝑡0𝑖

− 0.65𝑡𝑐)] 

+[𝑈(𝑡 − 𝑡0𝑖
− 0.65𝑡𝑐) − 𝑈(𝑡 − 𝑡0𝑖

− 0.9𝑡𝑐)] 

+0.25[𝑈(𝑡 − 𝑡0𝑖
− 0.9𝑡𝑐) − 𝑈(𝑡 − 𝑡0𝑖

− 𝑡𝑐)] 

zt: a unit step function defined by 

𝑧𝑡 = 𝑈(𝑡 − 𝑡0𝑖
) − 𝑈(𝑡 − 𝑡0𝑖

− 𝑡𝑐) 

Prated: Rated power of the dishwasher in [W]. 

Vrated: Rated voltage in root mean square value of the dishwasher in [V]. 

Eff: The dishwasher efficiency. A value of 0.8 is typical for a dishwasher.   

pf:  Power factor of the device. A value of 0.9 is typical for a dishwasher. 

tc: Duration time for one full cycle of the dishwasher in [min]. 

t0i: The time at i when the dishwasher is turned on in this form [hh:mm:ss]. For multiple 

operations, the duration time of full cycle should be taken into account. 

The model then is cast into a compact matrix form as follows 

[
𝐼
0
] = 𝑌𝑒𝑞𝑉 + 𝐾𝑒𝑞 (F.3) 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2]
𝑇 

I: Through variables of the model. 

V: Across external states variables of the model. 
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Yeq: Matrix defining the linear part of the model. 

Keq: Vector containing the constant part of the model.  
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Appendix G Variable Load Model 

The mathematical model of the variable load is given by the following equations  

𝐼1 = (
𝑃𝐿(𝑡) + 𝑗𝑄𝐿(𝑡)

𝑉̃1 − 𝑉̃2

)

∗

 (G.1) 

𝐼2 = −(
𝑃𝐿(𝑡) + 𝑗𝑄𝐿(𝑡)

𝑉̃1 − 𝑉̃2

)

∗

 (G.2) 

, where: 

PL(t): Load active power consumption at time t in [MW]. 

QL(t): Load reactive power consumption of the dishwasher [MVAr] computed as the 

following, 

The model then is cast into a compact matrix form as follows 

[
𝐼
0
] = 𝑌𝑒𝑞𝑉 + 𝐾𝑒𝑞  (G.3) 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2]
𝑇 

I: Through variables of the model. 

V: Across external states variables of the model. 

Yeq: Matrix defining the linear part of the model. 

Keq: Vector containing the constant part of the model. 
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Appendix H Solar Cell Mathematical Model 

The mathematical model used for the solar cell is represented by the following equations 

𝐼 = 𝐼𝑝𝑣 − 𝐼0 [𝑒𝑥𝑝 (
𝑉 + 𝐼𝑅𝑠

𝑉𝑡𝑎
) − 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑃
 (H.1) 

𝐼𝑝𝑣 = (𝐼𝑝𝑣𝑛
+ 𝐾𝐼  ∆𝑇)

𝑆

𝑆𝑛
 (H.2) 

𝐼0 = (𝐼𝑠𝑐𝑛
+ 𝐾𝐼  ∆𝑇)/ [𝑒𝑥𝑝 (

(𝑉𝑜𝑐𝑛
+ 𝐾𝑉 ∆𝑇)

𝑎𝑉𝑡
) − 1]  (H.3) 

𝐼𝑝𝑣𝑛
=  

𝑅𝑝 + 𝑅𝑠

𝑅𝑝
𝐼𝑠𝑐𝑛

 (H.4) 

𝑉𝑡 =  
𝑁𝑠𝑘𝑇

𝑞
 (H.5) 

∆𝑇 = 𝑇 − 𝑇𝑛 (H.6) 

, where 

I: the array output current [A] 

V: the array output voltage [V] 

Ipv: Light generated current [A] 

Ipv,n: Light generated current at the nominal condition [A] 

I0: the reverse saturation or the leakage current of the diode [A] 

Rs: the equivalent series resistance of the array [Ω] 

Rp: the equivalent parallel resistance of the array [Ω] 

Isc,n: Short circuit current provided by the data sheet [A] 

Voc,n: Open circuit voltage provided by the data sheet [V] 
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S: Current solar irradiance [W/m
2
] 

Sn: Nominal solar irradiance = 1000[W/m
2
] 

T: Weather temperature [K] 

Tn: Nominal temperature = 273.15 [K] 

Vt: the equivalent thermal voltage of the array [V] 

Ns: the number of cells in series provided by the data sheet 

a: Diode constant 1≤ a ≤ 1.5 

KI: Short circuit current temperature coefficient provided by the data sheet 

KV: Open circuit voltage temperature coefficient provided by the data sheet 

k: Boltzmann constant = 1.3806503 x 10
-23

 [J/K] 

q: the electron charge = 1.60217646 x 10
-19

 [C]  
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Appendix I Electrothermal Lead-Acid Battery 

The lead acid electrical circuit is shown in Figure 83.  

𝐶1 

𝑅1 

𝑉𝑏𝑎𝑡𝑡  

𝐼𝑚  

𝐼𝑝  

𝐼 

𝑅0 𝑅2 

𝑅𝑝  

𝐸𝑝  

𝐸𝑚  

+

-

+

-

+

-

Main Branch Parasitic Branch
 

Figure 83. Equivalent lead acid electric circuit model. 

Appendix I.1 Mathematical Model 

Main Branch 

The main branch voltage is a function of the state of charge and the electrolyte 

temperature and given by  

𝐸𝑚 = 𝐸𝑚0 − 𝐾𝐸(273 + 𝜃)(1 − 𝑆𝑂𝐶) (I.1) 

, where 

Em: Open circuit voltage in [V] 

Em0: Open circuit voltage when the battery is full of charge in [V] 

T: Electrolyte temperature in [
o
C] 

SOC: State of charge 

KE: Constant in [V/
o
C] 

The main branch resistance and capacitance are given by 
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𝑅1 = −𝑅10 𝑙𝑛 (𝐷𝑂𝐶) (I.2) 

𝐶1 = 𝜏1/𝑅1 (I.3) 

, where 

R1: the main branch resistance in [Ω] 

C1: the main branch capacitance in [F] 

R10: Constant in [Ω] 

DOC: Battery depth of charge 

τ1: the main branch time constant in [sec] 

The main branch second resistance is given by 

𝑅2 = 𝑅20 𝑒𝑥𝑝[𝐴21(1 − 𝑆𝑂𝐶)] /(1 + 𝑒𝑥𝑝 (𝐴22𝐼𝑚/𝐼∗) (I.4) 

, where 

R2: is the main branch second resistance in [Ω] 

R20: Constant in [Ω] 

A21: Constant 

A22: Constant 

Im: The main branch current in [A] 

I
*
: Battery nominal current in [A] 

The terminal resistance of the battery is given by 

𝑅0 = 𝑅00[1 + 𝐴0(1 − 𝑆𝑂𝐶)] (I.5) 

, where 
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R0: the resistance in [Ω] 

R00: Constant in [Ω] and equals to the value of R0 the battery is full of charge 

A0: Constant 

Parasitic Branch 

The behavior of the parasitic branch is strongly non-linear. However, the value of 

the current flowing in the branch, which is a function of the parasitic branch voltage, can 

be computed by the Tafel gassing – current relationship which is given by 

𝐼𝑝 = 𝑉𝑝𝐺𝑝 (I.6) 

, where Gp is  

𝐺𝑝 = 𝐺𝑝0 𝑒𝑥𝑝 [
𝑉𝑝
𝑉𝑝0

+ 𝐴𝑝 (1 −
𝑇

𝑇𝑓
)] (I.7) 

, and thus Rp is  

𝑅𝑝 = (𝑉𝑝 − 𝐸𝑝)/𝐼𝑝 (I.8) 

, where 

Ip: the current flowing in the parasitic branch in [A] 

Vp: The parasitic branch voltage in [V] 

Gp0: Constant in [S] 

Vp0: Constant in [V] 

Ap: Constant 

Tf: Electrolyte freezing temperature in [
o
C] 
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Charge and Battery Capacity 

The extracted charge at t is given by 

𝑄𝑒(𝑡) = 𝑄𝑖𝑛𝑖𝑡 + ∫−𝐼𝑚(𝜏)𝑑𝜏

𝑡

0

 (I.9) 

The averaged current can be computed by 

𝐼𝑎𝑣𝑒 = 𝐼𝑚/(𝜏1𝑠 + 1) (I.10) 

The capacity of the battery, which is a function of the battery current I and the electrolyte 

temperature, is given by the following 

𝐶(𝐼, 𝑇) =

𝐾𝑐𝐶0∗ (1 −
𝑇
𝑇𝑓

)
𝜉

1 + (𝐾𝑐 − 1) (
𝐼
𝐼∗)

𝛿
 (I.11) 

, where 

Qe: the extracted charge in [As] and Qinit is the initial extracted charge in [As] 

τ: The integration time variable 

t: the simulation time in [sec] 

Kc: a constant 

C0
*
: no load capacity at 0[

o
C] in [Ah] 

ξ and δ: constant 

The state of charge and the depth of charge are given by the following equations 

𝑆𝑂𝐶 = 1 − 𝑄𝑒/𝐶(0, 𝑇) (I.12) 

𝐷𝑂𝐶 = 1 − 𝑄𝑒/𝐶(𝐼𝑎𝑣𝑒 , 𝑇) (I.13) 
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Thermal Model 

𝑑𝑇

𝑑𝑡
= 1/𝐶𝑡ℎ [𝑃𝑠 −

𝑇 − 𝑇𝑎

𝑅𝑡ℎ
] (I.14) 

, where 

Cth: Thermal capacitance in [Wh/
o
C] 

Rth: Thermal resistance in [
o
C/W] 

Ps: The heat power loss in the parasitic branch in [W] 

Ta: Ambient temperature or the surrounding temperature in [
o
C] 

Appendix I.2 Charging Mode 

The mathematical model of the lead acid battery in the charging mode is given by the 

following compact equations 

𝐼1 = 𝐺0(𝑉1 − 𝑉𝑥) (I.15) 

𝐼2 = −𝐺0(𝑉1 − 𝑉𝑥) (I.16) 

0.0 = 𝐺𝑝[(𝑉𝑥 − 𝑉2) − 𝐸𝑝] + 𝐼𝑚 − 𝐺0(𝑉1 − 𝑉𝑥) (I.17) 

0.0 = 𝐼𝑚 − 𝐺1(𝑉𝑦 − 𝑉𝑧) − 𝐶1

𝑑

𝑑𝑡
(𝑉𝑦 − 𝑉𝑧) (I.18) 

0.0 = 𝐼𝑚 − 𝐺2(𝑉𝑥 − 𝑉𝑦) (I.19) 

0.0 = (𝑉𝑧 − 𝑉2) − 𝐸𝑚0 + 𝐾𝐸(273 + 𝑇)(1 − 𝑆𝑂𝐶) (I.20) 

0.0 = 𝐶1 − 𝜏1𝐺1 (I.21) 

0.0 = 𝑅0 − 𝑅00[1 + 𝐴0(1 − 𝑆𝑂𝐶)] (I.22) 

0.0 = 𝐼𝑚 +
𝑑𝑄𝑒(𝑡)

𝑑𝑡
 (I.23) 

0.0 = 𝑆𝑂𝐶 𝐶(0, 𝑇) − 𝐶(0, 𝑇) + 𝑄𝑒 (I.24) 
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0.0 = 𝐷𝑂𝐶 𝐶(𝐼𝑎𝑣𝑒 , 𝑇) − 𝐶(𝐼𝑎𝑣𝑒 , 𝑇) + 𝑄𝑒  (I.25) 

0.0 =
𝑑𝑇

𝑑𝑡
−

1

𝐶𝑡ℎ
[𝑃𝑠 −

𝑇 − 𝑇𝑎

𝑅𝑡ℎ
] (I.26) 

0.0 = 𝑅0𝐺0 − 1 (I.27) 

0.0 = 𝑅1𝐺1 − 1 (I.28) 

0.0 = 𝑅2𝐺2 − 1 (I.29) 

0.0 = 𝐶(0, 𝑇) − 𝐾𝑐𝐶0∗ (1 −
𝑇

𝑇𝑓
)

𝜉

 (I.30) 

0.0 = 𝐶(𝐼𝑎𝑣𝑔, 𝑇) −

𝐾𝑐𝐶0∗ (1 −
𝑇
𝑇𝑓

)
𝜉

1 + (𝐾𝑐 − 1) (
𝐼𝑎𝑣𝑔

𝐼∗ )
𝛿

 (I.31) 

0.0 = 𝐶(𝐼1, 𝑇) −

𝐾𝑐𝐶0∗ (1 −
𝑇
𝑇𝑓

)
𝜉

1 + (𝐾𝑐 − 1)(
𝐼1
𝐼∗)

𝛿
 (I.32) 

0.0 = 𝑅2 − 𝑅20 𝑒𝑥𝑝[𝐴21(1 − 𝑆𝑂𝐶)] / [1 + 𝑒𝑥𝑝 (
𝐴22𝐼𝑚

𝐼∗
)] (I.33) 

0.0 = 𝐺𝑝 − 𝐺𝑝0 𝑒𝑥𝑝 [(
𝑉𝑥 − 𝑉2

𝑉𝑝0
) + 𝐴𝑝 (1 −

𝑇

𝑇𝑓
)] (I.34) 

0.0 = 𝐼𝑎𝑣𝑔 − [
𝐼𝑚 𝑒𝑥𝑝 (−

𝑡
𝜏1

)

𝜏1
] (I.35) 

0.0 = 𝑅1 + 𝑅10 𝑙𝑛 (𝐷𝑂𝐶) (I.36) 

0.0 = 𝑃𝑠 − 𝐺𝑝[(𝑉𝑥 − 𝑉2) − 𝐸𝑝]2 (I.37) 

For simplicity, equations (I.15)-(I.37) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (I.38) 

, where 
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𝐼 = [𝐼1 𝐼2]𝑇 , 

𝑉 = [𝑉1 𝑉2]𝑇 

𝑌 = [𝑉𝑥 𝑉𝑦 𝑉𝑧 𝑅0 𝑅1 𝑅2 𝐺0 𝐺1 𝐺2 𝐺𝑝 𝐶1 𝑇 𝑆𝑂𝐶 𝐷𝑂𝐶 𝐼𝑚 𝑃𝑠 

𝑄𝑒 𝐼𝑎𝑣𝑔 𝐶(0, 𝑇) 𝐶(𝐼𝑎𝑣𝑔, 𝑇) 𝐶(𝐼1, 𝑇)]𝑇 

Appendix I.3 Discharging Mode 

The mathematical model of the lead acid battery in the discharging mode is given by the 

following compact equations 

𝐼1 = 𝐺0(𝑉1 − 𝑉𝑥) (I.39) 

𝐼2 = −𝐺0(𝑉1 − 𝑉𝑥) (I.40) 

0.0 = 𝐼𝑚 − 𝐺0(𝑉1 − 𝑉𝑥) (I.41) 

0.0 = 𝐼𝑚 − 𝐺1(𝑉𝑥 − 𝑉𝑧) − 𝐶1

𝑑

𝑑𝑡
(𝑉𝑥 − 𝑉𝑧) (I.42) 

0.0 = (𝑉𝑧 − 𝑉2) − 𝐸𝑚0 + 𝐾𝐸(273 + 𝜃)(1 − 𝑆𝑂𝐶) (I.43) 

0.0 = 𝐶1 − 𝜏1𝐺1 (I.44) 

0.0 = 𝑅0 − 𝑅00[1 + 𝐴0(1 − 𝑆𝑂𝐶)] (I.45) 

0.0 = 𝐼𝑚 +
𝑑 𝑄𝑒(𝑡)

𝑑𝑡
 (I.46) 

0.0 = 𝑆𝑂𝐶 𝐶(0, 𝜃) − 𝐶(0, 𝜃) + 𝑄𝑒  (I.47) 

0.0 = 𝐷𝑂𝐶 𝐶(𝐼𝑎𝑣𝑒 , 𝜃) − 𝐶(𝐼𝑎𝑣𝑒 , 𝜃) + 𝑄𝑒 (I.48) 

0.0 =
𝑑𝜃

𝑑𝑡
−

1

𝐶𝜃
[0 −

𝜃 − 𝜃𝑎

𝑅𝜃
] (I.49) 

0.0 = 𝑅0𝐺0 − 1 (I.50) 

0.0 = 𝑅1𝐺1 − 1 (I.51) 
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0.0 = 𝐶(0, 𝜃) − 𝐾𝑐𝐶0∗ (1 −
𝜃

𝜃𝑓
)

𝜉

 (I.52) 

0.0 = 𝐶(𝐼𝑎𝑣𝑔 , 𝜃) −

𝐾𝑐𝐶0∗ (1 −
𝜃
𝜃𝑓

)
𝜉

1 + (𝐾𝑐 − 1) (
𝐼𝑎𝑣𝑔

𝐼∗ )
𝛿

 (I.53) 

0.0 = 𝐶(𝐼1, 𝜃) −

𝐾𝑐𝐶0∗ (1 −
𝜃
𝜃𝑓

)
𝜉

1 + (𝐾𝑐 − 1) (
𝐼1
𝐼∗)

𝛿
 (I.54) 

0.0 = 𝐼𝑎𝑣𝑔 − [
𝐼𝑚 𝑒𝑥𝑝 (−

𝑡
𝜏1

)

𝜏1
] (I.55) 

0.0 = 𝑅1 + 𝑅10 𝑙𝑛 (𝐷𝑂𝐶) (I.56) 

For simplicity, equations (I.39)-(I.56) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (I.57) 

Where: 

𝐼 = [𝐼1 𝐼2]𝑇 , 

𝑉 = [𝑉1 𝑉2]𝑇 

𝑌 = [𝑉𝑥 𝑉𝑧 𝑅0 𝑅1 𝐺0 𝐺1 𝐶1 𝜃 𝑆𝑂𝐶 𝐷𝑂𝐶 𝐼𝑚 𝑄𝑒 𝐼𝑎𝑣𝑔 

𝐶(0, 𝜃) 𝐶(𝐼𝑎𝑣𝑔, 𝜃) 𝐶(𝐼1, 𝜃)]𝑇 

  



211 

Appendix J Electric Vehicle Model  

Appendix J.1 Lithium Ion Battery Mathematical Model 

+

-
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Figure 84. Equivalent electrical circuit of lithium ion battery. 

In this section, the battery model is reformulated according to the standard device format 

that is as the following 

𝐼1 = 𝑥̃1 (J.1) 

𝐼2 = −𝑥̃1 (J.2) 

, where x1 is given by 

0.0 = −𝑥̃1 + 𝐺2(𝑉̃1 − 𝑉̃𝑥) + 𝑗𝜔𝐶1(𝑉̃1 − 𝑉̃𝑥) (J.3) 

0.0 = 𝐸̃ − (𝑉̃1 − 𝑉̃2) + (𝑅1 + 𝑅2)𝑥̃1 (J.4) 

0.0 = −𝑉̃1 + 𝑉̃2 + 𝑐0 + 𝑐1𝑆𝑂𝐷(𝑡) + 𝑐2𝑆𝑂𝐷2(𝑡) + 𝑐3𝑆𝑂𝐷3(𝑡) + ∆𝐸(𝜃(𝑡)) (J.5) 

, and the coefficients are listed in Table 56 below 

Table 56. Terminal voltage polynomial coefficients. 

𝑐0 = 4.121 𝑐1 = −1.624 𝑐2 = 3.587 𝑐3 = −3.581 

 

0.0 =
𝑑

𝑑𝑡
𝑆𝑂𝐷(𝑡) −

1

𝑄𝑟
𝛼(𝐼1) 𝛽(𝜃(𝑡)) 𝑥̃1 (J.6) 
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0.0 = −𝑚 𝑐𝑝  
𝑑𝜃(𝑡)

𝑑𝑡
+ 𝑃𝑠(𝑡) − ℎ𝑐𝐴(𝜃(𝑡) − 𝜃𝑎) (J.7) 

, where 𝑃𝑠(𝑡) is the electric power loss and given by 

0.0 = 𝑃𝑠(𝑡) − 𝑥̃1
2𝑅1 − 𝐺2(𝑉̃1 − 𝑉̃𝑥)

2
 (J.8) 

The other three fitted to the 2
nd

 degree polynomials are  

𝛼(𝐼1) =  𝑎0 + 𝑎1𝑥̃1 + 𝑎2𝑥̃1
2 (J.9) 

𝛽(𝜃(𝑡)) =  𝑏0 + 𝑏1𝜃(𝑡) + 𝑏2𝜃
2(𝑡) (J.10) 

∆𝐸(𝜃(𝑡)) =  𝑑0 + 𝑑1𝜃(𝑡) + 𝑑2𝜃
2(𝑡) (J.11) 

where the values of the coefficients are given in the below table 

Table 57. Polynomails coefficients. 

𝑎2 = −0.006647 𝑎1 = 0.05215 𝑎0 = 0.9559 

𝑏2 = 2.139x10−6 𝑏1 = −0.001835 𝑏0 = 1.052 

𝑑2 = −4.935x10−5 𝑑1 = 0.01097 𝑑0 = −0.1793 

The compact form is 

𝐼1 = 𝑥̃1 (J.12) 

𝐼2 = −𝑥̃1 (J.13) 

0.0 = 𝐸̃ − (𝑉̃1 − 𝑉̃2) + (𝑅1 + 𝑅2)𝑥̃1 (J.14) 

0.0 = −𝑉̃1 + 𝑉̃2 + 𝑐0 + 𝑐1𝑆𝑂𝐷 + 𝑐2𝑆𝑂𝐷2 + 𝑐3𝑆𝑂𝐷3 + ∆𝐸(𝜃) (J.15) 

0.0 = −𝑥̃1 + 𝐺2(𝑉̃1 − 𝑉̃𝑥) + 𝑗𝜔𝐶1(𝑉̃1 − 𝑉̃𝑥) (J.16) 

0.0 = 𝑃𝑠 − 𝐼1
2𝑅1 − 𝐺2(𝑉̃1 − 𝑉̃𝑥)

2
 (J.17) 

0.0 = 𝑆𝑂𝐶 − 1 + 𝑆𝑂𝐷  (J.18) 

0.0 = −𝛼(𝑥̃1) + 𝑎0 + 𝑎1𝑥̃1 + 𝑎2𝑥̃1
2 (J.19) 
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0.0 = −𝛽(𝜃) + 𝑏0 + 𝑏1𝜃 + 𝑏2𝜃
2 (J.20) 

0.0 = −∆𝐸(𝜃) + 𝑑0 + 𝑑1𝜃 + 𝑑2𝜃
2 (J.21) 

For simplicity, equations (J.12)-(J.21) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (J.22) 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2]
𝑇 

𝑌 = [𝑉̃𝑥 𝐸̃ 𝑥̃1 𝑆𝑂𝐷 𝑃𝑠 𝛼(𝐼1) 𝛽(𝜃) ∆𝐸(𝜃)]𝑇 

A: Matrix defining the linear part. 

N: Nonlinear and differential parts of the model. 

C: Vector containing the constant part of the model. 
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Appendix K Averaged Model of DC-DC Boost Converter 

The averaged model of the dc-dc boost converter has three different control 

schemes, dc voltage control, real power control, and maximum power point tracking 

control. The compact model of each one of them is listed in separate section. First, the 

model of the averaged dc-dc boost converter with dc voltage control in compact form is 

presented. 

Appendix K.1 DC Voltage Control 

The mathematical model of the dc-dc boost converter with dc voltage control is given by 

the following equations  

𝐼1 = (𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (K.1) 

𝐼2 = −(𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (K.2) 

𝐼3 = 𝐺2(𝑉̃3 − 𝑉̃𝑦) (K.3) 

𝐼4 = −𝐺2(𝑉̃3 − 𝑉̃𝑦) (K.4) 

0.0 = (𝑉̃𝑥 − 𝑉̃2) − (1 − 𝐷)(𝑉̃𝑦 − 𝑉̃4) (K.5) 

0.0 = 𝐼1(1 − 𝐷) + 𝐼3 (K.6) 

Controller 1: Voltage control 

0.0 = −𝑉𝑑𝑐 𝑟𝑒𝑓 + 𝑉̃𝑦 − 𝑉̃4  (K.7) 

For simplicity, equations (K.1)-(K.7) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (K.8) 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 
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𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 

𝑌 = [𝑉̃𝑥 𝑉̃𝑦 𝐷]
𝑇
 

A: Matrix defining the linear part. 

N: Nonlinear and differential parts of the model. 

C: Vector containing the constant part of the model. 

Note that there 7 states with 7 equations are identified. 

Appendix K.2 Real Power Control 

The mathematical model of the dc-dc boost converter with real power control is given by 

the following equations  

𝐼1 = (𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (K.9) 

𝐼2 = −(𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (K.10) 

𝐼3 = 𝐺2(𝑉̃3 − 𝑉̃𝑦) (K.11) 

𝐼4 = −𝐺2(𝑉̃3 − 𝑉̃𝑦) (K.12) 

0.0 = (𝑉̃𝑥 − 𝑉̃2) − (1 − 𝐷)(𝑉̃𝑦 − 𝑉̃4) (K.13) 

0.0 = 𝐼1(1 − 𝐷) + 𝐼3 (K.14) 

Controller 2: Real power control 

0.0 = −𝑃𝑟𝑒𝑓 + 𝐼1(𝑉̃1 − 𝑉̃2) −
𝐼1
2

𝐺
, 

𝑂𝑅  0.0 = − 𝑃𝑟𝑒𝑓 + 𝐼1(𝑉̃𝑥 − 𝑉̃2) 

(K.15) 

For simplicity, equations (K.9)-(K.15) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (K.16) 



216 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 

𝑌 = [𝑉̃𝑥 𝑉̃𝑦 𝐷]
𝑇
 

A: Matrix defining the linear part. 

N: Nonlinear and differential parts of the model. 

C: Vector containing the constant part of the model. 

Note that there 7 states with 7 equations are identified. 

Appendix K.3 Maximum Power Point Tracking (MPPT) Control 

The mathematical model of the dc-dc boost converter with MPPT control is given by the 

following equations  

𝐼1 = (𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (K.17) 

𝐼2 = −(𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (K.18) 

𝐼3 = 𝐺2(𝑉̃3 − 𝑉̃𝑦) (K.19) 

𝐼4 = −𝐺2(𝑉̃3 − 𝑉̃𝑦) (K.20) 

0.0 = (𝑉̃𝑥 − 𝑉̃2) − (1 − 𝐷)(𝑉̃𝑦 − 𝑉̃4) (K.21) 

0.0 = 𝐼1(1 − 𝐷) + 𝐼3 (K.22) 

For simplicity, equations (K.17)-(K.22) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (K.23) 

, where 
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𝐼 = [𝐼1 𝐼2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 

𝑌 = [𝑉̃𝑥 𝑉̃𝑦]
𝑇
 

A: Matrix defining the linear part. 

N: Nonlinear and differential parts of the model. 

C: Vector containing the constant part of the model. 

Note that there 6 states with 6 equations are identified. 
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Appendix L Averaged Full Bridge Model of DC-AC Inverter 

The averaged model of a single phase full bridge dc-ac inverter with two different 

control schemes, voltage-reactive power (VQ) control and active-reactive power (PQ) 

control is developed. The compact model of each one of them is listed in separate section. 

First, the model of the averaged dc-ac inverter with VQ control in compact form is 

presented. 

Appendix L.1 VQ Control 

The mathematical model of the dc-ac inverter with VQ control is given by the following 

equations 

𝐼1 = 𝐺𝑑𝑐(𝑉̃1 − 𝑉̃𝑥) (L.1) 

𝐼2 = −𝐺𝑑𝑐(𝑉̃1 − 𝑉̃𝑥) (L.2) 

𝐼3 = (𝐺𝑑𝑐 − 𝑗𝐵𝑎𝑐)(𝑉̃3 − 𝑉̃𝑦) (L.3) 

𝐼4 = −(𝐺𝑑𝑐 − 𝑗𝐵𝑎𝑐)(𝑉̃3 − 𝑉̃𝑦) (L.4) 

0.0 = |𝑉̃𝑦| − |𝑉̃4| − √2 𝑚(𝑉̃𝑥 − 𝑉̃2) (L.5) 

0.0 = 𝐼1 + 𝑚𝐼3 

𝑂𝑅 0.0 = 𝐼1(𝑉̃𝑥 − 𝑉̃2) + 𝑅𝑒{𝐼3
∗(𝑉̃𝑦 − 𝑉̃4)} 

(L.6) 

0.0 = −𝑉𝑑𝑐 𝑟𝑒𝑓 + 𝑉̃𝑥 − 𝑉̃2  (L.7) 

0.0 = 𝑄𝑟𝑒𝑓 + 𝐼𝑚{𝐼3
∗(𝑉̃𝑦 − 𝑉̃4)} (L.8) 

For simplicity, equations (L.1)-(L.8) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝑌𝑒𝑞 [

𝑉
𝑌
] + [𝑉 𝑌]𝐹𝑒𝑞 [

𝑉
𝑌
] + 𝐾𝑒𝑞 (L.9) 

, where 
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𝐼 = [𝐼1 𝐼2 𝐼3 𝐼4]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 

𝑌 = [𝑉̃𝑥 𝑉̃𝑦 𝑚]
𝑇
 

Yeq: Matrix defining the linear part. 

Feq: Nonlinear and differential parts of the model. 

Keq: Vector containing the constant part of the model. 

Note that there 7 states with 7 equations are identified. 

Appendix L.2 PQ Control 

The mathematical model of the dc-ac inverter with PQ control is given by the following 

equations  

𝐼1 = 𝐺𝑑𝑐(𝑉̃1 − 𝑉̃𝑥) (L.10) 

𝐼2 = −𝐺𝑑𝑐(𝑉̃1 − 𝑉̃𝑥) (L.11) 

𝐼3 = (𝐺𝑑𝑐 − 𝑗𝐵𝑎𝑐)(𝑉̃3 − 𝑉̃𝑦) (L.12) 

𝐼4 = −(𝐺𝑑𝑐 − 𝑗𝐵𝑎𝑐)(𝑉̃3 − 𝑉̃𝑦) (L.13) 

0.0 = |𝑉̃𝑦| − |𝑉̃4| − √2 𝑚(𝑉̃𝑥 − 𝑉̃2) (L.14) 

0.0 = 𝐼1 + 𝑚𝐼3 

𝑂𝑅 0.0 = 𝐼1(𝑉̃𝑥 − 𝑉̃2) + 𝑅𝑒{𝐼3
∗(𝑉̃𝑦 − 𝑉̃4)} 

(L.15) 

0.0 = 𝑃𝑟𝑒𝑓 + 𝑅𝑒{𝐼3
∗(𝑉̃𝑦 − 𝑉̃4)} (L.16) 

0.0 = 𝑄𝑟𝑒𝑓 + 𝐼𝑚{𝐼3
∗(𝑉̃𝑦 − 𝑉̃4)} (L.17) 

For simplicity, equations (L.10)-(L.17) can be cast into a compact matrix form as follows 
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[
𝐼
0
] = 𝑌𝑒𝑞 [

𝑉
𝑌
] + [𝑉 𝑌]𝐹𝑒𝑞 [

𝑉
𝑌
] + 𝐾𝑒𝑞 (L.18) 

, where 

𝐼 = [𝐼1 𝐼2 𝐼3 𝐼4]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 

𝑌 = [𝑉̃𝑥 𝑉̃𝑦 𝑚]
𝑇
 

Yeq: Matrix defining the linear part. 

Feq: Nonlinear and differential parts of the model. 

Keq: Vector containing the constant part of the model. 

Note that there 7 states with 7 equations are identified. 
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Appendix M Averaged Model of DC-DC Buck-Boost Converter 

The averaged model of the dc-dc buck-boost converter has two different control 

schemes, dc voltage control and real power control. The compact model of each one of 

them is listed in separate section. First, the model of the averaged dc-dc boost converter 

with dc voltage control in compact form is presented. 

Appendix M.1 DC Voltage Control 

The mathematical model of the averaged dc-dc buck-boost converter is given in the 

following compact form 

𝐼1 = (𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (M.1) 

𝐼2 = −(𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (M.2) 

𝐼3 = 𝐺2(𝑉̃3 − 𝑉̃𝑦) (M.3) 

𝐼4 = −𝐺2(𝑉̃3 − 𝑉̃𝑦) (M.4) 

0.0 = (𝑉̃𝑥 − 𝑉̃2) −
1 − 𝐷

𝐷
(𝑉̃𝑦 − 𝑉̃4) (M.5) 

0.0 =
𝐼1(1 − 𝐷)

𝐷
+ 𝐼3 (M.6) 

0.0 = −𝑉𝑑𝑐 𝑟𝑒𝑓 + 𝑉̃𝑦 − 𝑉̃4  (M.7) 

For simplicity, equations (M.1)-(M.7) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (M.8) 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 

𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 
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𝑌 = [𝑉̃𝑥 𝑉̃𝑦 𝐷]
𝑇
 

A: Matrix defining the linear part. 

N: Nonlinear and differential parts of the model. 

C: Vector containing the constant part of the model. 

Appendix M.2 Real Power Control 

The mathematical model of the averaged dc-dc buck-boost converter is given in the 

following compact form 

𝐼1 = (𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (M.9) 

𝐼2 = −(𝐺1 − 𝑗𝐵)(𝑉̃1 − 𝑉̃𝑥) (M.10) 

𝐼3 = 𝐺2(𝑉̃3 − 𝑉̃𝑦) (M.11) 

𝐼4 = −𝐺2(𝑉̃3 − 𝑉̃𝑦) (M.12) 

0.0 = (𝑉̃𝑥 − 𝑉̃2) −
1 − 𝐷

𝐷
(𝑉̃𝑦 − 𝑉̃4) (M.13) 

0.0 =
𝐼1(1 − 𝐷)

𝐷
+ 𝐼3 (M.14) 

0.0 = −𝑃𝑟𝑒𝑓 + 𝐼1(𝑉̃1 − 𝑉̃2) −
𝐼1
2

𝐺
, 

𝑂𝑅  0.0 = − 𝑃𝑟𝑒𝑓 + 𝐼1(𝑉̃𝑥 − 𝑉̃2) 

(M.15) 

For simplicity, equations (M.9)-(M.15) can be cast into a compact matrix form as follows 

[
𝐼
0
] = 𝐴 [

𝑉
𝑌
] + 𝑁 + 𝐶 (M.16) 

, where 

𝐼 = [𝐼1 𝐼2]
𝑇 , 
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𝑉 = [𝑉̃1 𝑉̃2 𝑉̃3 𝑉̃4]
𝑇 

𝑌 = [𝑉̃𝑥 𝑉̃𝑦 𝐷]
𝑇
 

A: Matrix defining the linear part. 

N: Nonlinear and differential parts of the model. 

C: Vector containing the constant part of the model. 
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Appendix N Ambient Temperature Model 

This appendix presents the mathematical model equations in the frequency 

domain in a compact form for the ambient temperature. The ambient temperature is 

modeled as heat source behind a thermal resistance. 

The model equation is given by 

𝑞̇1 = 𝐺𝑡ℎ(𝑇̃1 − 𝑇𝑎𝑚𝑏) (N.1) 

, where 

𝑞̇1: heat flow rate in [MBTU/h] 

T1: Temperature in [k
o
C] 

Gth: Thermal conductance in [MBTU/h k
o
C] 

Tamb: Ambient temperature input by the user in [
o
C] and converted internally to [k

o
C] 

After separating the real and imaginary part 

𝑞̇1𝑟 = 𝐺𝑡ℎ(𝑇1𝑟 − 𝑇𝑎𝑚𝑏) (N.2) 

𝑞̇1𝑖 = 𝐺𝑡ℎ𝑇1𝑖 (N.3) 

Equations (N.2)-(N.3) cast into a compact matrix form as follows 

𝐼 = 𝑌𝑒𝑞𝑉 + 𝐾𝑒𝑞  (N.4) 

Where,  

𝐼 = [𝑞̇1𝑟 𝑞̇1𝑖]𝑇 , 

𝑉 = [𝑇1𝑟 𝑇1𝑖]𝑇 

𝑌𝑒𝑞 = [
𝐺𝑡ℎ 0
0 𝐺𝑡ℎ

], 
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𝐾𝑒𝑞 = [
−𝑇𝑎𝑚𝑏

0
] 
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Appendix O Thermostat Model 

This appendix presents the thermostat mathematical model equations in the 

frequency domain and in a compact form.  

The model equation is given by 

0.0 = 0.0𝑇̃1 (O.1) 

𝑞̇1 = 𝑇̃2 − 𝑢1 (O.2) 

where 

q1: heat flow rate in [MBTU/h] 

T1, T2: Temperature terminals in [k
o
C] 

u1: Air conditioner control signal 

After separating the real and imaginary part 

0.0 = 0.0𝑇1𝑟  (O.3) 

0.0 = 0.0𝑇1𝑖  (O.4) 

𝑞̇1𝑟 = 𝑇2𝑟 − 𝑢1 (O.5) 

𝑞̇1𝑖 = 𝑇2𝑖  (O.6) 

Equations (O.3)-(O.6) cast into a compact matrix form as follows 

𝐼 = 𝑌𝑒𝑞𝑉 + 𝐾𝑒𝑞 (O.7) 

where 

𝐼 = [0.0 0.0 𝑞̇1𝑟 𝑞̇1𝑖]𝑇 , 

𝑉 = [𝑇1𝑟 𝑇1𝑖 𝑇2𝑟 𝑇2𝑖]𝑇 
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𝑌𝑒𝑞 = [

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

], 

𝐾𝑒𝑞 = [

0
0

−𝑢1

0

] 

𝑢1 = {
0, 𝑇1𝑟 < 𝑇𝑠𝑒𝑡 + 𝑇𝑑

1, 𝑇1𝑟 ≥ 𝑇𝑠𝑒𝑡 + 𝑇𝑑
 

, and Tset is the setting temperature and Td is the thermostat deadband temperature.  
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