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Abstract
Operators make hundreds of changes to a network’s router
and switch configurations every day—a painstaking, error-
prone process. If the network configuration could instead
encode different forwarding behavior for different network
states a priori, a network controller could automatically
alter forwarding behavior when conditions change. To en-
able this capability, we introduce state-based network poli-
cies, which describe how a network’s forwarding behavior
should change in response to arbitrary network events. A
state-based network policy comprises many tasks, each of
which encodes the forwarding behavior for a single net-
work management operation (e.g., intrusion detection) or
part of the network (e.g., a sub-organization), and how
that behavior should change when network conditions
change. Composing these policies produces a network-
wide control program that adapts to different operating
conditions. We implement state-based network policies
in a system called PyResonance and demonstrate with
real-world examples and use cases that PyResonance is
expressive enough to specify a wide range of network poli-
cies and simple enough for many operators to use. Our
evaluation based on event traces from the Georgia Tech
campus network shows that PyResonance can achieve good
performance in operational settings.

1 Introduction
Network management is complex and error-prone; this
complexity and brittleness has several causes. First, much
of today’s network management process remains low-level
and manual: operators must update router and switch con-
figuration to alter the network’s forwarding behavior (e.g.,
quarantining, garden-walling, or rate limiting a host), be-
cause, aside from routing around failures, network forward-
ing behavior does not automatically change in response to
most events. Operators must continually modify low-level
network configuration in response to events ranging from
traffic surges to intrusions, making hundreds of changes
to the switch and router configurations in a network every
day [19]. Additionally, network management is often fed-
erated, even in a single domain. Network configuration
involves composing many independent tasks and integrat-
ing configurations written by multiple sub-organizations
(e.g., a security and traffic engineering team working on a

backbone network, or individual departments working in
an enterprise). Although some existing tools help network
operators “automate” these low-level processes [4, 24],
these tools are generally wrappers around command-line
interfaces that still leave most of the low-level work in the
hands of the network operator.

Until recently, it was difficult to change this state of af-
fairs because network configuration was so tightly coupled
with the devices themselves. Software Defined Networking
(SDN) offers the opportunity to write network-wide con-
trol programs that are simpler and easier to manage than
existing network configuration. Yet, while SDN makes
it possible to write control programs, it does not specify
how network control should be designed to simplify net-
work management. In their design of 4D, Greenberg et
al. state [16]: “The decision plane must react in real time
to network events...Identifying the right abstractions to
support rapid reactions to unplanned events...is an impor-
tant and challenging research problem.” Unfortunately,
the events that current SDN controllers can respond to are
generally limited to packet arrival events and topological
changes; these controllers cannot easily incorporate many
of the network events that make network management so
difficult (e.g., security events, traffic shifts).

Network control should instead allow an operator to
encode a priori how forwarding behavior should change
when the state of the network changes, for arbitrary events.
Enabling this level of automation would eradicate many
manual aspects of network configuration. Of course, to
avoid making problems worse, operators need a natural
way to express how the network’s forwarding behavior
should change when different types of events occur. To
facilitate this capability, we introduce state-based network
policies, which describe how a network’s forwarding be-
havior should change in response to arbitrary network
events. Such a policy specifies one or more tasks, each
of which corresponds to a specific network management
operation (e.g., intrusion detection) and specifies which
network control program should execute when a state tran-
sition takes place. An operator can define tasks that encode
different network states, the specific control program that
should run to execute that task when the network is in
a certain state, and how different network events should
cause transitions between states. For example, a task could
specify that a host should be quarantined when an intru-
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sion detection system determines that it is compromised,
or that it should be rate-limited if it the network monitoring
system determines that it exceeds a certain usage quota.

A network-wide policy that incorporates a broad range
of events involves many independent operations (e.g., traf-
fic engineering, security, resource management) and even
more possible states. Requiring a single network opera-
tor to specify the network’s forwarding behavior for every
combination of states is intractable. Additionally, network
configuration is federated, meaning that different operators
and groups may write different parts of the configuration,
so there needs to be an easy way to compose independent
tasks (and corresponding programs) into more complex
ones. To solve this problem, we use existing SDN com-
position operators [20] to decompose a large monolithic
state-based policy into smaller and simpler state-based
tasks; this process improves readability, makes it easier to
analyze a configuration for correctness, and enables reuse.
It reduces the state complexity of specifying a state-based
network policy from exponential in the number of tasks to
linear. The composition operators also enable federated
configuration, the composition of distinct control programs
from different sub-organizations.

We implement state-based network policies in a sys-
tem called PyResonance. We implemented PyResonance
in Pyretic, a Python-embedded domain specific language
(DSL) for specifying and composing different network
programs. Pyretic [20] provides compositional constructs
for building modular control programs that can be com-
bined to produce more complex ones. PyResonance uses
Pyretic’s composition operators to allow operators to spec-
ify state-based network policies by composing one or more
tasks, each of which has a finite state machine and a cor-
responding network program that determines forwarding
behavior for that state. PyResonance allows operators to
specify tasks, event streams for each task, and how each
task should modify its corresponding network control pro-
gram when different events occur. It then uses Pyretic
to compose the resulting programs from each task into a
single network-wide control program.

We evaluate the expressiveness, complexity, and perfor-
mance of PyResonance. To demonstrate expressiveness,
we show how PyResonance can enable easy implementa-
tion of many network tasks. To demonstrate how PyReso-
nance reduces complexity, we implemented several state-
based tasks in PyResonance that incorporate authentica-
tion, intrusion, and resource usage events; each required no
more than about 60 lines of Python. We also describe some
experiences of programmers who have used PyResonance
to date; for example, in a recent Coursera SDN course [8],
more than 95% of about 800 people who attempted to im-
plement a load balancer in PyResonance [9] successfully
completed the assignment. Our evaluation of PyReso-
nance’s performance based on authentication events from
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Figure 1: PyResonance architecture.

the Georgia Tech network (which sees about 1.7 million
authentication events per day) shows that PyResonance
can perform well in operational environments.

This paper offers four contributions. First, we develop
a new primitive—a state-based network task (§3)—that
allows operators to implement policies that specify how
network behavior should change in response to a wide
variety of events. Second, we demonstrate that the com-
position operators provided in Pyretic can help operators
compose these tasks to implement complex state-based
network policies with a linear number of states and with
fewer lines of code than in existing control languages (§4).
Third, we implement support for a much broader range
of network events than today’s network SDN control pro-
grams (§5). Fourth, we have implemented PyResonance,
a framework for implementing state-based network poli-
cies, in Pyretic (§6), and evaluated the expressiveness and
complexity of PyResonance, as well as its performance
overhead of event processing in realistic network settings
(§7). Some operators (e.g., Peter Phaal, the creator of
sFlow [22], as well as others in the SDN Coursera course)
have already used PyResonance to simplify existing net-
work management tasks [14]. We have released the PyRes-
onance source code and tutorials for writing control appli-
cations on GitHub [26] to allow others to do the same.

2 Overview
We describe the PyResonance architecture, introduce termi-
nology used, describe PyResonance’s basic features, and
provide background on Pyretic.

2.1 Architecture and Terminology
Figure 1 shows the PyResonance architecture. Either an op-
erator or the third party can write a PyResonance controller,
which is invoked at the command line as a Pyretic program.
A controller may itself have multiple PyResonance tasks,
each of which implements a different state-based network
policy (e.g., authentication, intrusion detection). Every
task has exactly one finite state machine. Each state in a
task’s FSM may correspond to a different program; PyRes-
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onance expresses these programs in the Pyretic language.
The simplest programs are “drop” and “passthrough”. A
program can also be a composition of simpler programs
(within a single task), or a composition of PyResonance
tasks. Each PyResonance task outputs a program, and
the PyResonance runtime composes them using Pyretic’s
composition operators and pass it to the Pyretic runtime.
This final program dictates how traffic should be forwarded
in the underlying network. An event is anything that can
cause any task in the controller to change control programs.
When an event arrives at a PyResonance controller, the cor-
responding task updates its view of the network state and
the program that corresponds to that state. Eventually the
controller dynamically re-evaluates the overall program.
As with any “vanilla” OpenFlow controller, events may
be standard OpenFlow events (e.g., packet arrivals). A
significant contribution of PyResonance, however, is that
it allows tasks to apply different programs in response to a
wider range of events.

Each task may process events from any network device
that knows how to send an event message that PyResonance
understands. Event stream drivers translate events from
network devices into events that PyResonance tasks can
process. Our release of PyResonance provides a driver that
directly incorporates sFlow [22] event streams; we have
also implemented a JSON event stream driver that allows
an application to incorporate any appropriately formatted
JSON event. A PyResonance controller can incorporate
event streams from any network device either with a cus-
tom driver (e.g., the sFlow driver) or through the more
generic JSON event driver.

2.2 Features
We briefly describe the features of PyResonance. We will
discuss these features in more detail in subsequent sections.

Incorporating generic event streams. In today’s net-
works, operators must often manually change configu-
rations in response to many network events, which may
arrive from heterogeneous sources (e.g., security alerts,
system errors, network failures). PyResonance automates
this process; it allows a network operator to specify state-
based network tasks, whereby changes in network state
may cause one or more controller tasks to execute different
programs. PyResonance tasks can update their view of
the network state based on either generic JSON-formatted
event messages or custom drivers that process specific
types of events (e.g., from sFlow).

Simplifying state-based control programs. Any task
might switch the program that it is executing based on
events from load balance, authentication, or intrusion de-
tection, as well as other types of events, such as the time of
day. Network operators typically must configure the net-
work to address each of these tasks; the configuration can
then interact in non-deterministic and unexpected ways.

PyResonance’s support for state-based network tasks alone
is not sufficient, since expressing all network states re-
sulting from combinations of tasks quickly results in a
combinatorial explosion of states (e.g., “if the network link
is overloaded, and host authentication succeeds, and it is
the peak time of day, and ...”). PyResonance cleanly de-
composes policy specifications to avoid state explosion.
PyResonance allows an operator to specify independent
tasks for various subtasks and compose them to produce a
single control program.

Supporting federated configurations. Most networks do
not have a single operations team, but are in fact man-
aged by groups of operators with different concerns (e.g.,
the security group and the traffic engineering group might
each configure aspects of the network). When different
sub-organizations configure different parts of the network,
PyResonance must compose these programs. The biggest
challenge for such networks is to enable each group to in-
dependently express policy while avoiding possible policy
conflicts and overlaps. The ability to compose programs
is again not enough; how to compose programs in a way
that prevents conflicts is an important unanswered question.
PyResonance offers various solutions to this problem.

2.3 Pyretic
Pyretic [20] is a Python-embedded domain-specific pro-
gramming language for SDN. Pyretic encodes network
data-plane behavior in terms of functions (which we call
programs1) that map an incoming packet to an outgoing
set of packets. Basic programs provided by Pyretic in-
clude: drop which takes a packet and returns the empty
set; fwd(p) which takes a packet and returns the set
containing just that packet, but now located at outport p;
match(f=v) which takes a packet and returns the set
containing just that packet if its header field f matches
value v or the empty set otherwise. More complex pro-
grams such as flood might produce sets containing multi-
ple packets. And it turns out this function-based abstraction
of program allows Pyretic to define combinators on pro-
grams, such as parallel and sequential composition, that
enable such complex programs to be quickly constructed
from the basic programs described above.

Parallel composition takes multiple programs and pro-
duces a new program whose output is the combined output
of the original ones—the output of running each of the
programs simultaneously. Likewise, sequential composi-
tion takes multiple programs and produces a new program
whose output is that of running each program on the output
of the previous program.

Pyretic’s runtime system efficiently compiles programs

1In the original Pyretic paper, these functions are called “policies”
instead of “programs”. We use the term “program” to distinguish Pyretic’s
functions from higher-level network policies, which are often encoded as
written documents that express operator intent (e.g., [7]).
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Figure 2: FSMs for three different PyResonance tasks. Each
state has a corresponding Pyretic program.

to OpenFlow-based switches and provides support for in-
crementally updating these programs. PyResonance uses
these facilities, providing infrastructure built on top of
Pyretic for encoding FSM-based tasks and associating dif-
ferent tasks with external event sources. As events arrive
at FSM-based tasks, these tasks will update their states,
thereby triggering the Pyretic runtime to re-compile the
updated program to network switches.

3 State-Based Network Tasks
To allow a controller to switch programs that it applies to
traffic flows in response to changing network conditions,
we introduce the notion of state-based network tasks. A
task is a portion of a network-wide policy that is responsi-
ble for performing only one specific task. In this section,
we describe how an operator defines these tasks; the sub-
sequent section describes how tasks can be composed to
implement more complex network behavior.

Controller applications and tasks. A PyResonance
controller application comprises one or more tasks, which
are composed using Pyretic composition operators. Each
task represents some set of programs that might together
achieve a particular network management task, such as
load balancing, intrusion detection, or authentication. A
task is thus: (1) a collection of (Pyretic) programs; (2) a
finite state machine (FSM) that specifies which program
should be executed for a particular state. As shown in Fig-
ure 2, each state has a (simple) associated Pyretic program;
in practice, these Pyretic programs might be compositions
of simpler Pyretic programs themselves. An operator thus
must define a Pyretic program that corresponds to each
state. Representing network tasks with FSMs and corre-
sponding programs helps us address one of the fundamen-
tal challenges of network management (i.e., continually
changing network conditions).

States and Pyretic programs. When a packet enters the
network, PyResonance determines the state corresponding
to that portion of flow space (e.g., to the host that sent it).
In this paper, packet is assumed to be represented by a 12-

1 class IDSTask(BaseTask):
2 ...
3 def i n f e c t e d(self):
4 return drop
5
6 def clean(self):
7 return passthrough
8
9 def ac t ion(self):

10 clean_flows=self.fsm.g e t a c t i o n(’clean ’)
11 p1 = i f (clean_flows,
12 self.clean(),
13 self. i n f e c t e d())
14 return p1

Figure 3: PyResonance code for implementing an IDS task in
PyResonance. Lines 3–4 define the infected state and the corre-
sponding Pyretic program (drop); lines 6–7 define a program
for the clean state. Lines 9–13 define the main Pyretic program
the IDS task ultimately returns.

tuple flow, as defined in the OpenFlow specification, which
provides more fine-grained control than conventional meth-
ods. For example, with VLANs, each VLAN is a separate
policy group, but VLANs are assigned based on Ethernet
MAC addresses. Thus, all traffic from a single host ma-
chine, whether HTTP or SSH, will be subject to the same
network policy. Each task always maps a flow to exactly
one state. A flow, can, of course, be represented in terms of
multiple states, since each task (e.g., authentication, IDS)
has its own state machine, and a controller application that
processes a traffic flow may be composed of many tasks.

Events and transitions. Events that arrive at the PyRes-
onance controller are dispatched to the appropriate task
based on the type of event. The appropriate task then pro-
cesses the event and executes a state transition and updates
the corresponding program running for that task at the
controller. One significant contribution of PyResonance
is to provide support for processing a much broader set of
events than today’s OpenFlow controllers. Some examples
of richer events include security events (e.g., infections)
and data usage events (e.g., exceeding usage quotas). Sec-
tion 5 describes event processing in detail.

Implementing state-based network tasks. Figure 3
shows a code sample from a simple state-based IDS task.
Every application must implement the action() func-
tion which is called by PyResonance underlying runtime
system when composing the applications together. The pro-
grammer needs to provide such a Pyretic program for each
state. Packets belonging to flows in the “clean” state are
allowed; those in the “infected” state are blocked. PyRes-
onance provides a built-in function for getting a state’s
flow space (line 10), and matching it with incoming flows
against a state (lines 11–13). Based on the outcome of this
match, the task applies the appropriate Pyretic program.
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4 Composing State-Based Tasks
PyResonance makes it possible to express network policies
in terms of states and events, but expressing a network
policy in terms of all of the possible network states quickly
leads to a combinatorial explosion of network states. Thus,
PyResonance needs a way to decompose a complex rep-
resentation of network policy into a simpler set of states
and transitions. Pyretic provides composition operators
that allow an operator to compose simpler network control
programs to create more complex ones. Although Pyretic’s
composition operators were designed to allow the expres-
sion of policies in parallel or sequence, they can also allow
a policy to be written in terms of simpler tasks, where
each task has simpler state machines and corresponding
programs. This decomposition makes it possible to express
a network-wide policy by composing smaller programs
which are easier to write and check for correctness. In
this section, we explain how Pyretic’s composition opera-
tors simplify state-based network policy and describe how
some of these compositions can be implemented through
topological associations.

4.1 Decomposition: State-Based Tasks
Network policies express how the forwarding should take
place under many different conditions and for a large num-

ber of tasks, from traffic engineering to security. If a net-
work operator had to precisely encode the network’s de-
sired behavior according for every possible network state,
the policy would quickly become cumbersome to write and
to validate.

Consider a simple control application that puts the host
into a walled-garden until it has authenticated, rate limits
a host if it has exceeded a usage cap, and quarantines the
host if an infection has been detected. Each of these tasks
has two possible states: authenticated or not, capped or not,
and quarantined or not; depending on various events (e.g.,
a message from an authentication module, intrusion detec-
tion system, etc.), a host may transition between any one
of these two states for each of these tasks, thus resulting
in a total of 23 = 8 possible states (and eight correspond-
ing programs for each of these states). In contrast, with
PyResonance, an operator could express:

auth >> IDS >> cap

indicating that, first, the task should check whether the host
is authenticated and apply the program corresponding to
the appropriate state. The result of that program should be
sequentially composed with the result of the intrusion de-
tection task, and so forth. If any component of the network
state changes, the program associated with the correspond-
ing task also changes. The same network control program
can be expressed in 2 ·3 = 6 programs and states. Figure 4
illustrates this comparison.

Thus, Pyretic’s composition operators enable an opera-
tor to independently express the states and programs asso-
ciated with different tasks. The resulting decomposition
makes it easier to both express and verify the resulting
network control programs, since an operator can indepen-
dently express the tasks associated with each aspect of
the network. In general, without composition, a network
operator must define programs for ΠN

i=1ai possible states,
where ai represents the number of possible states for task i,
where N is the total number of tasks. Pyretic’s composition
thus reduces state complexity for parallel task composition
from exponential to linear. This savings is significant, even
for applications with relatively few tasks and states. If
a control program has 10 tasks, each with two possible
states, a monolithic state-based control program would re-
quire nearly 1,000 states, as opposed to just 20 states with
PyResonance. (If the order in which tasks are sequentially
composed doesn’t matter, the state explosion becomes even
worse, requiring N! ·ΠN

i=1ai programs.)
As shown in Figure 5, parallel composition also reduces

state complexity. For example, a program might specify
that either a network flow should be authenticated by a
web authentication module or by an 802.1X authentica-
tion module. If either of these tasks places the host in
an authenticated state, the host should be allowed to send
traffic, and the resulting program should be composed with
subsequent tasks (e.g., the IDS task and the data cap task,
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as above). Without Pyretic’s composition operators, the
network state machine would need a second set of states to
express an equivalent network control application. Specifi-
cally, if the global network state were represented as a bit,
the network state machine would need to express the state
tuple (802.1X state, web state, ...), where 00* (neither
module authenticated the host) could represent one state
and 01*, 10*, and 11* (either module authenticated the
host) could represent the other state. The total number
of states required without decomposition would thus be
2n, where n is the number of authentication tasks. The
number of states explodes further if any module composed
in parallel could assume more than two possible states.
As before, a network operator must define programs for
ΠN

i=1ai possible states, where ai represents the number of
possible states for task i, where N is the total number of
tasks.

Implementing state-based policy composition. It is
possible to combine and compose multiple PyResonance
tasks using Pyretic’s composition operators. Below is the
configuration for PyResonance to compose authentication,
DoS, and monitor tasks with sequential and parallel com-
position.

MODULES = {
pyretic.pyresonance.tasks.auth,
pyretic.pyresonance.tasks.ids,
pyretic.pyresonance.tasks.monitor,

}

COMPOSITION = {
auth >> (ids + monitor)

}

The results from whatever program the application task
is running will be applied to the parallel combination of
programs that the DoS and monitor tasks are running. With
parallel composition, packets that are blocked by the DoS
task will still pass through the monitor task.

4.2 Federated Configuration
Most network configurations are maintained by multiple
sub-organizations within an organization. For example,
in a backbone network, the traffic engineering team may
manage traffic load balance, and the security team might
manage access control and response to various security
events. Similarly, in a campus or enterprise network, differ-
ent departments might independently configure parts of the
network. For example, the computer science department
might manage and configure the switches for its part of the
network independently of the switches and routers in the
network core.

Today’s networks have no formal notion of “composi-
tion”, although it effectively happens in an ad hoc manner,
since multiple network operators are effectively config-
uring different parts of the same configuration files (e.g.,
access control and load balance) or different switches and
network devices in the same network. The ad hoc nature
of this composition can make it difficult to reason about
the behavior and correctness of the configuration. Pyretic’s
composition operators allow each sub-organization to write
independent PyResonance tasks; the resulting network-
wide policy is a composition of tasks from different sub-
organizations.

In a distributed network, certain aspects of composition
can be implemented by exploiting the network topology
and higher-level topological associations. For example, a
network might indicate that outgoing traffic from a depart-
ment should first be subject to authentication (e.g., only
permit the traffic flow if the host is authenticated) followed
by load balance (e.g., balance flows evenly across the links
in the topology). Such a PyResonance program naturally
decomposes across switches in the topology, since the au-
thentication task can be applied as traffic leaves an edge
network in the department and the load balance task can
be applied as traffic traverses switches in the network core.
The PyResonance configuration maintains an association
between network devices and topological components (e.g.,
specifying which switches and devices are associated with
a particular sub-organization or portion of the network),
thus making it easier to decompose network-wide policy
across the devices in the network.

Implementing federated configuration. Suppose that
Department 1 and Department 2 want their own monitor-
ing and firewall modules applied to switches within their
sub-domains. In the core network, which connects Depart-
ment 1 and Department 2, an IDS module is deployed to
enforce a uniform security policy to communication be-
tween subnetworks and the Internet. Figure 6 shows the
list of switches under Department 1 and Department 2. As
traffic moves from Department 1 to Department 2 via the
core network, the programs corresponding to each task are
applied to the network traffic in sequence.
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To implement federated configuration, PyResonance
extends the Pyretic match predicate, which matches
all switches corresponding to particular department
and compose policies for all the departments in
parallel. The policies for the individual depart-
ments and network might be defined as follows:

DP1 = match(switch={D1}) >> (Firewall_1 +
Monitor_1)

Core = match(switch={Core}) >> LB
DP2 = match(switch={D2}) >> (Firewall_2 +

Monitor_2)

P = DP1 + Core + DP2

where P is the overall policy that says “match on the
switches in department D1 and apply the firewall and
monitoring policies in parallel”, and so forth. (Separately,
D1, Core, and D2 are defined as the set of switches cor-
responding to each department.) The resulting Pyretic
program actually corresponds to the topological decom-
position in Figure 6. In the (equivalent) policy shown in
the figure, however, the parallel composition across de-
partments becomes a sequential composition, because the
program itself becomes physically distributed, so there is
no longer a need to apply Pyretic’s abstraction of match-
ing on located packets. Of course, programs can apply to
finer-grained subsets of traffic flows (as in Pyretic).

Support for hierarchy. Thus far, we have discussed
only scenarios where a sub-organization defines tasks and
programs for a single department only. Yet, in an actual
enterprise network, a higher-level organization might
define a network policy that it wants to apply to the entire
campus (e.g., the IT department might want to rate-limit
all Bittorrent traffic). Let us call that global rate-limiting
policy R. In this case, the IT department could express:

P_R = (match(switch={D1}) >> R) +
(match(switch={D2}) >> R)

where P is the overall policy that says “match on
the switches in department D1 and apply policy R”
and “match on the switches in department D2 and
apply policy R”. The overall policy would then be:

P = P_R >> (dp1 + core + dp2)

5 Network Events
We describe event drivers, describe an example of a native
event driver and a JSON-based event driver, and explain
how PyResonance can incorporate event sources.

5.1 Event Drivers
To process the different types of events that devices in a
network might generate, PyResonance provides a driver
interface for each event type. PyResonance tasks register
with one or more event drivers and update their states (and
corresponding programs) in response to incoming events
that may be processed by those drivers.

1 keys = ’ipsource’
2 value = ’frames’
3 rate = 1000 # packets per second
4 metric = ’ddos’
5 flows = {’keys’:keys,’value’:value}
6 threshold = {’metric’:metric,’value’:rate}
7
8 message_type = ’state’
9 message_value = ’denied’

10 message = {’event_type’:metric, ’message_type’:
message_type, ’message_value’:

message_value}

Figure 7: PyResonance code for defining and implementing
sFlow rule for DoS detection task. Line 1–4 define the sFlow
parameters. Line 5–6 specify the formatting. Line 8–10 specify
the format and the action to perform based on the sFlow event.

A PyResonance task can register for events by importing
the relevant drivers. PyResonance provides two implemen-
tations: (1) a native sFlow driver; and (2) a generic driver
for processing JSON events. Each driver takes a handler
function as input. Usually, it is the “message handler” func-
tion of a PyResonance task that is responsible for doing
the state transitions whenever a new event is received. To
incorporate events generated by a certain network device,
an operator can either write a custom native driver (as we
did for sFlow) or use the generic JSON driver and adapt the
network device to sent appropriately formatted messages.
Native drivers may be more useful when more accurate
event handling and reaction time is desired. Yet, building
native drivers is more involved and may be unnecessary,
so we have provided the JSON driver to save programmers
this trouble in some cases.

5.2 Example Drivers
We describe the implementation of an example native
driver for sFlow, as well as a generic JSON driver.

5.2.1 Native Driver: sFlow

sFlow [22] is a widely used sampling technology used to
monitor network traffic for collecting, sorting, and analyz-
ing traffic data. It is low cost, scalable, and provides the
ability to monitor thousands of network interfaces from a
single vantage point (i.e., controller). Providing a native
driver for sFlow in PyResonance enables application devel-
opers to write policies based on different network events
(e.g., data rate, packet loss and link events).

Figure 7 shows the sFlow rule (line 1–6) and the corre-
sponding state transition (line 8–10), which the program-
mer might specify when writing a DoS application. The
sFlow rule specifies that an event should be generated
whenever a flow belonging to a particular ipsource
exceeds the threshold limit of 1,000 packets per second.
Based on that event, the DoS detection task will update and
switch to executing a program that denies traffic belonging
to one or more set of source IP addresses for which the
threshold value has been exceeded.

7



1 "event":
2 {
3 "event_type": # Type of event source
4 # (e.g., authentication, IDS

)
5 "sender":
6 {
7 "id":, # Unique ID number
8 "description":, # Optional description
9 ...

10 }
11 "message":
12 {
13 "type" :, # query, data, state, module
14 "flow":, # 12-tuple flow specification
15 "value" : # Message value
16 },
17 ...
18 }

Figure 8: JSON event. Each event has an event type. The sender
encapsulates the message, which contains the message type (e.g.,
querying, providing data value or state value, module on/off
function, etc.), flow specification, and message.

A native sFlow driver makes it easier to write control
programs based on a richer set of traffic monitoring events.
An operator could also write native drivers for other proto-
cols (e.g., Netflow, IPFIX).

5.2.2 Generic Driver: JSON

Figure 8 shows a JSON event message that PyResonance’s
generic event driver can understand and parse. We include
a Python-based script named json sender.py that can
generate and send JSON-formatted event messages. We
use this script to demonstrate examples throughout this
section. There are two ways to send JSON events:

Sending the next state value. In this mode, the event
message includes the next-state value for a given flow.
This event will cause the state of the flow to change to a
particular next-state value, causing PyResonance to update
and apply a new program to the flow that corresponds to
the new state. In this case, it is the event source’s respon-
sibility to determine the next state for a given flow, and
the PyResonance controller merely extracts this state value
and updates the mapping between the flow and state value,
which in turn will influence the state policy applied to that
specific flow. Note that it is necessary to explicitly specify
the flow. A flow can be specified using as many as 12 fields
in the OpenFlow specification (where unspecified fields
are interpreted as wildcards). Below is an example of this
mode using our Python-based event sending script.

$ python json_sender.py --flow=’{scrip=10.0.0.1}’
-e auth -s authenicated

Sending the general data value. In this mode, the event
message contains an arbitrary value that may represent an
event. This case is likely more realistic for network de-
vices, which would not necessarily know the FSM structure
corresponding to a task. In this case, the event source is

not responsible for determining the next state value for the
given flow. Instead, the PyResonance controller receives
and parses a generic data value, and determines what to
do with the given information. The following shows an ex-
ample of this mode using our Python-based event sending
script.

$ python json_sender.py --flow=’{scrip=10.0.0.1}’
-e auth -i ./data_info

The above script opens and reads a given file, data info,
and sends its content to the controller, which is also JSON-
formatted. This facility provides flexibility for specifying
arbitrary events. In the next section, we explain how PyRes-
onance incorporates these arbitrary events.

5.3 Incorporating Arbitrary Event Sources
The JSON event driver understands and parses JSON-
formatted event messages, which makes it easy to build a
variety of custom event sources. Operators can add small
scripts to existing middleboxes or network devices (e.g.,
intrusion detection boxes, monitoring systems, or authen-
tication portals) that send JSON messages, which in turn
induce a task to change its state and corresponding pro-
gram (e.g., block malicious traffic, allow authenticated
host’s traffic). It is also possible to implement custom
small-scale scripts that generate events periodically. For
example, time-of-day.py in our public repository is
a small Python code that generates JSON events at 7 am
(morning) and 7 pm (night) everyday, and when weekend
starts (Friday 11:55 pm) and ends (Sunday 11:55 pm).

PyResonance’s JSON driver makes it easy to build
higher-level abstractions to incorporate PyResonance
into Web development frameworks like Google App En-
gine [15] or Django [10]. For example, management sys-
tems could provide intuitive interfaces (e.g., a Web GUI)
that generate and send event streams based on user’s click
in a Web browser.

6 PyResonance Programming
We describe the process of writing, running, and debugging
a PyResonance controller.

6.1 Writing a PyResonance Controller
The PyResonance GitHub wiki contains a detailed, step-
by-step tutorial on how to write a PyResonance task and
run the PyResonance controller [25]. We provide a brief
summary of the process.

1. Express state-based network policy in terms of tasks.
First, an operator must express dynamic network poli-
cies in terms of one or more tasks, where each task
has one FSM.

2. Implement and return a Pyretic program for each state
in every task’s FSM. In each task’s FSM, every state
must return a Pyretic program (e.g., drop, passthrough,
some composition of simpler Pyretic programs, etc.).
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3. Define a unique event type and handler. Define a
unique event type for each task, and implement an
event handler for each task that can process events.

4. Implement the action() method. The action()
method applies the correct program on incoming
flows based on the current state.

5. Specify how tasks (and, hence, corresponding pro-
grams) should be composed. Apply Pyretic’s compo-
sition operators to compose one or more tasks into a
more complex network program that represents the
overall network-wide policy.

6. Store each task’s file, and write a configuration file.
Write a configuration file that lists the task names.
Optionally, specify the composition of tasks.

7. Run PyResonance. Invoke Pyretic with the PyRes-
onance control program as an argument, along with
PyResonance’s specific arguments.

6.2 Debugging Control Programs
PyResonance also has debugging features.

Querying state information for flows. PyResonance
provides a separate handler that answers queries about
the state information in all FSMs loaded in a control ap-
plication for a particular flow. The programmer can use
the JSON proxy driver along with the json sender.py to
send such queries. For example, running the command
below will return the set of states PyResonance currently
has for each application’s FSM for a flow from 10.0.0.1
with source port 80.

$ python json_sender.py --flow=’{scrip=10.0.0.1,
srcport=80}’ -q all

This information is useful when operators need to know
the current states that tasks associate with a particular flow,
which can help determine the resulting programs that each
task is currently running (and, hence, the behavior of the
overall control program).

Enabling and disabling tasks. It is possible to dynam-
ically turn on or off task by sending event. Disabling a
task results in the module reverting to a passthrough
program in the case of sequential composition or a drop
program if the tasks composed in parallel with other tasks.
This feature can be useful when an operator wants to man-
ually disable a task (e.g., for maintenance or debugging).

7 Evaluation
Evaluating PyResonance is a challenge in and of itself, as
its most significant benefits are simpler network manage-
ment. To guide our evaluation of PyResonance, we again
draw from the 4D work [16]: “The proposed configura-
tion language should be evaluated along two dimensions:
complexity and expressiveness. It should have a lower com-
plexity than that of configuring individual routers today.
In addition, it should be able to express the network-level

objectives that arise in existing networks.” Accordingly,
we evaluate PyResonance in terms of both expressiveness
(Section 7.1) and complexity (Section 7.2) using a com-
bination of qualitative and quantitative metrics. We also
evaluate the effect of event processing on the PyResonance
controller performance (Section 7.3).

7.1 Expressiveness
We present several realistic network policies implemented
with PyResonance. The source code for these examples is
available on GitHub [26].

Authentication system. An authentication system is es-
sential in many networks. The system we implemented
checks the state of the host corresponding to the flow for
an incoming packet. If the host is not in an authenticated
state, it redirects the traffic to the authentication portal so
that the user can authenticate using username and password
combination. Upon authentication, the portal generates an
event to PyResonance to change the state of user’s device
to authenticated state, so that host’s traffic is allowed to
traverse the network and access the Internet. We compose
the resulting task with an intrusion detection task, so that
authenticated hosts are only allowed network access if they
are determined to be clean; if an IDS event indicates that a
host is infected, its network access is blocked.

DoS detection with automatic quarantine. The DoS
task allows traffic to pass through by default, but blocks
traffic that is generated from a host that is suspected to
be a DoS origin. To detect DoS activity, we simply use
the sFlow package, which is included in OpenVSwitch,
to monitor and detect abnormal traffic increases from a
host. The sFlow server daemon detects such abnormal
behavior and raises an event, which is sent to the DoS
task in PyResonance via the native sFlow driver. The DoS
task in turn updates its state to run a Pyretic program that
quarantines the host. If the host is considered to be clean
again, either a manual update (via JSON) or an update via
the sFlow driver can shift the host back to a normal state.

Bandwidth limit based on data usage. We implement
the data usage limit task shown in Figure 2. sFlow tracks
data usage; when the host downloads data over 1 GB within
a day, PyResonance shifts the host’s traffic to use a link that
adds additional delay, which rate-limits the traffic. If the
data usage goes over 2 GB within a day, the module starts
to block traffic from that host. This application module is
inspired by a real network policy concerning data usage
at Carnegie Mellon University [7]; many enterprise and
campus networks have similar policies.

Inbound server load balancing. The server load bal-
ancing task splits traffic that is destined to a public IP and
redirects to two different servers. For example, if traffic is
destined to a certain IP (10.0.0.100), the policy rewrites the
destination IP and Ethernet address so that it is redirected
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#Lines File Task
36 auth.py Checks if a flow is in authenticated

state, passthrough action if authenti-
cated else redirection to authentication
server

22 ids.py Checks if a flow is in quarantine/clean
state, passthrough action if clean else
drop

60 ratelimit.py Monitors data usage for a user and ap-
plies the data cap actions if required

53 server lb.py Splits traffic between set of servers to
balance the server load

Table 1: The lines of code for different PyResonance tasks.

to either 10.0.0.3 or 10.0.0.4 based on the state associated
with the incoming flow. In addition to the task itself, we
implemented an automated event source that raises and
sends JSON events to the PyResonance controller based on
the time-of-day value to allow for different load-balancing
behavior during peak hours.

7.2 Complexity
Complexity is subjective; we approximate reductions in
complexity with both reduction in lines of code and quali-
tative programmer experiences.

Reduction in lines of code (LoC). PyResonance use of
Pyretic’s APIs and libraries reduces the lines of code (LoC)
required to write a controller application. PyResonance’s
own APIs and generic design further reduce the lines of
code. PyResonance, which includes its runtime, baseFSM,
eventProcessor and all the drivers has 314 lines of Pyretic
and Python code. Table 1 shows the LoC for various PyRes-
onance tasks.

Qualitative programmer experiences. We introduced
PyResonance to students through an assignment in a Cours-
era SDN course [8] after first teaching them Pox and
Pyretic. Students had to complete an assignment using
each of the three frameworks (e.g., Pox, Pyretic, and PyRes-
onance) [9]. Overall, 80% of the students who completed
the Pyretic assignment also completed the PyResonance
assignment, suggesting that writing a PyResonance pro-
gram given that the programmer already has knowledge of
Pyretic is relatively straightforward. In fact, since students
who successfully completed the Pyretic assignment and
all previous assignments with high scores did not have to
complete the PyResonance assignment, the success rate
is likely even higher than 80%. Another useful statistic is
the completion rate, among students who attempted the as-
signment: 96.5% students who attempted the PyResonance
assignment successfully completed it, which is comparable
to the completion rate for the Pyretic assignment (97.4%).

Inspired by PyResonance’s capabilities from taking the
course, Peter Phaal, the creator of sFlow, implemented

a DDoS application using PyResonance and noted that
it made his original script simpler because it no longer
needs logic to convert measurements into OpenFlow flow
table modifications. His script now simply needs to send
appropriate high-level event message to the PyResonance
controller [14].

7.3 Performance
We evaluate PyResonance performance in terms of the ef-
fect of events on forwarding rate and processing time at the
controller. To evaluate packet-in processing performance
with respect to Pyretic, we used Cbench [3], an OpenFlow
controller benchmarking tool. Packet-in processing per-
formance is directly tied to data-plane forwarding perfor-
mance, as every first packet has to come to the controller
in OpenFlow. PyResonance introduces negligible over-
head on packet-in processing performance in addition to
Pyretic when it is not processing dynamic events. We do
not include the details of this experiment due to space con-
straints; instead, we focus on how event processing at the
controller affects forwarding performance.

Effect of events on forwarding performance. Figure 9
demonstrates how processing dynamic events affects data-
plane forwarding performance. We measure the change in
round trip time (RTT) as a result of event arrivals at differ-
ent rates. We emulate a testbed with two switches and two
hosts, where each switch has a single host attached. Each
host sends 10 ICMP ping requests per second to the other
host. We then send an event to the PyResonance controller
every 10 seconds. Figure 9a shows RTT impulses when-
ever PyResonance receives an event; these spikes occur as
the PyResonance controller processes events and expunges
the relevant flow table entries to ensure that incoming traf-
fic is subject to the program corresponding to the new state.
This increase in RTT results from flow setup time (which
is a function of the underlying Pyretic runtime). However,
flows whose forwarding behavior is not changed by the
incoming event (i.e., those flows that are still subject to
the same PyResonance program) do not experience any in-
crease in latency, because the flow table entries can remain
cached. Figure 9b shows the RTT value for such flows
with events incoming every 10 seconds; the 90th percentile
RTT does remain roughly the same, even when an event
arrives. The base RTT value slightly increases with more
switches attached to the PyResonance controller.

Events arriving at PyResonance controller increase the
latency of flows whose forwarding behavior must be up-
dated. This increase only applies to the first packet of the
flow. Therefore, the forwarding performance depends on
the ratio of traffic amount to number of events. We now
study the effects of event arrival rates on forwarding perfor-
mance. Naturally, if the amount of data traffic traversing
the data plane is significant and the number of events hap-
pening is negligible, the forwarding performance would not
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Figure 9: Effect of program updates in response to events on
network latency.
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Figure 10: Packet vs. event ratio and median RTT.

suffer. To explore forwarding performance overhead for
a range of event arrival rates, we vary the packet-to-event
ratio, where packet-to-event ratio is the ratio of number of
pings per minute to the number of events per minute. For
example, if there are 60 pings per minute and 60 events per
minute, the packet-to-event ratio is 1. Below one packet-
to-event ratio means there are more events happening than
the actual data traffic, while over one packet-to-event ratio
means there are more ICMP traffic then number of events
per fixed interval. As Figure 10 shows, the median RTT
decreases as the event arrival rate decreases.

Event processing time. Next, we measure how much
time a PyResonance controller spends processing incoming
events. Event processing time is measured by subtracting
the timestamp value when an event was received from the
timestamp value when PyResonance actually sends a pol-
icy update to the runtime. We repeated the measurement
10 times to account for any abnormalities from a single ex-
periment run, with varying number of PyResonance tasks
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Figure 11: Event processing time vs. event rate.

loaded and sequentially composed in PyResonance. Fig-
ure 11 shows the average processing time with varying
number of events per minute. The event processing time
increases to 2.8 milliseconds at around 2,000 events per
minute and gradually increases until around 7,000 events
per minute. Still, the actual processing time remains small.
The black vertical line shows how many wireless authenti-
cation events occur in the Georgia Tech campus network,
which is one of the most frequent network events that oc-
cur in a large campus network. The network experiences
about 1.7 million authentication events in its wireless net-
work in a typical day, or an average of 2,360 events per
minute, if we assume most authentication events happen
in 12 hours per day (e.g., 8 a.m.–8 p.m.). Figure 11 shows
that PyResonance can handle this event arrival rate.

8 Related Work
Network management. PyResonance simplifies the ex-
pression of network policies. Previous works have pro-
posed various management methods to achieve a simi-
lar goal; most previous systems focus on building an ab-
straction layer on top of vendor-specific low-level com-
mands; most of these approaches pre-date software defined
networking. Ballani et al. built CONMan, which uses
higher-level modular building blocks to achieve same func-
tions [1]. PACMAN [6] and COOLAID [5] both imple-
ment a higher-level construct than device-specified con-
figuration languages to automate certain networking tasks.
Puppet [24] and Chef [4] can help automate network de-
vice configuration tasks; certain vendors even have device-
specific plugins to help automate router configuration. Still,
these tools typically operate on low-level, device-specific
commands, involve disjoint configuration of individual
network devices, and provide no correctness guarantees.

SDN, OpenFlow, and controller platforms. Software
defined networking (SDN) has roots in RCP [11], 4D [16],
and Ethane [2]. The 4D architecture describes the moti-
vation for separating the control and data planes. Ethane
introduced a method for managing a network with a soft-
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ware program that populates flow-table entries in network
switches. Controllers such as NOX [17], POX [23], Flood-
light [12], and OpenDaylight [21] make it possible to write
controller applications but do not specify how to design
and build them.

Languages for SDN. Recent work has developed lan-
guages for software defined networks. FML [18] allows
network operators to write and maintain policies efficiently
in a declarative manner. Nettle [27,28] is a domain specific
language implemented in Haskell that is used to configure
BGP policies with more comprehensive abstraction cal-
culation constructs. Procera [29] is a more recent work
that attempts to express reactive policies with functional
reactive programming. Frenetic [13] is a family of domain
specific languages (DSLs) for specifying and composing
different network policies. Languages in this family, such
as Pyretic [20] a Python-embedded language with sup-
port for constructing policies that can be automatically re-
evaluated on change, share a common set of fundamental
constructs such as basic policies and combinators, as well
as a shared toolbox of techniques for efficiently compiling
these to OpenFlow switches.

Procera and Pyretic provide some support for encoding
programs that change in response to events, yet neither pro-
vides PyResonance’s functionality. Procera re-evaluates
programs when input values change, but it does not pro-
vide mechanisms for incorporating states or events. Pyretic
provides syntactic constructs for designating dynamic pro-
grams and runtime support for updating them, but lacks a
framework for structuring how these policies should evolve.
PyResonance fills this gap by providing a principled frame-
work on top of Pyretic for encoding dynamics.

9 Future Work
PyResonance opens up several avenues for enhancements
and follow-on work, both to the network management
domain and to the underlying Pyretic language.

New Pyretic operators: Subsumption and Distribution.
Pyretic is a new, evolving language, and PyResonance is
perhaps the first complete system that has been imple-
mented in Pyretic. Our use of Pyretic to implement com-
mon network management tasks has highlighted a few
missing features in the language. We have felt the lack
of a subsumption operation, which would allow one pro-
gram to subsume another “base” program under certain
circumstances. Such an operation could allow network
operators to specify some base level of operations (e.g.,
routing), which might then be enhanced or subsumed with
additional operations (e.g., access control, load balance).
PyResonance’s application to federated configuration also
presents the need for logic that supports placing rules for
a particular program on the appropriate network switches,
depending on the network topology and the flow of traffic.

In Section 4.2, we illustrated that by distributing sequential
composition in a natural way across switches, the compo-
sition operation effectively happens “for free” as traffic
traverses the network. This phenomenon may be general-
izable, and we are investigating algorithms for optimizing
rule placement across topologies for future work.

Coupling tasks and finite state machines. Currently,
PyResonance achieves FSM decomposition by exploiting
either the independence of tasks (e.g., security tasks being
written independently of resource management tasks) or
the common dependence on input. In the future, PyRes-
onance could support state-based tasks whereby the state
(and corresponding program) of one task depends on the
states of others (effectively allowing direct communica-
tion between tasks). For example, a planned maintenance
task might enter a state that “drains” a portion of the net-
work; the resulting “maintenance” state might be coupled
to multiple other tasks, such as load balancing, which could
automatically determine that certain subsets of application
traffic should be prioritized during such a state. Similar
functions can be achieved by sending the same event to
different tasks, but coupling tasks may ultimately simplify
certain operations. PyResonance already has most of the
plumbing to make this type of coupling possible.

Automated verification. Composition allows a network
operator to express a complex network-wide policy in
terms of simpler tasks. In addition to making it possible
to specify tasks and programs that are easier to manually
inspect, PyResonance could ultimately make automated
verification more feasible, since finite state machines have
structure that can be applied to verification methods, such
as a statement written in temporal logic.

10 Conclusion
We have introduced state-based network policies, which
help a network operator describe how a network’s forward-
ing behavior should change in response to arbitrary net-
work events. Such a policy is implemented in a control pro-
gram that comprises one or more state-based network tasks,
each of which encodes the forwarding behavior for a sin-
gle network management task (e.g., intrusion detection) or
part of the network (e.g., a sub-organization). Composing
these tasks (and their corresponding programs) produces
a network-wide control program that adapts to different
operating conditions. We used Pyretic to implement state-
based network policies in a system called PyResonance,
and we showed that PyResonance is expressive enough to
specify a wide range of network policies, simple enough
for many operators to use, and efficient enough to process
events in real-time for operational networks. Some net-
work operators have already used PyResonance to simplify
common network management tasks, and we have released
the code to encourage others to do the same.
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