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CHAPTER 1 – INTRODUCTION 

______________________________________________________________________________ 

1.1 A Brief Introduction to Glioblastoma Multiforme  

 

Grade IV gliomas, more commonly known as glioblastoma (GBM) multiforme, are the 

most aggressive and lethal brain tumors. Compared to lower grade (grades I, II, and III) gliomas 

with an average relative 2-year survival rate of 80%, GBMs have significantly lower relative 2-

year survival of 30% with a median overall survival rate of 12-15 months (1, 2). The incidence 

of malignant gliomas is about 17,000 per year or 5 in 100,000. Overall, about 65% are grade IV 

GBMs which result in a mortality rate of over 10,000 deaths a year (3).  

These poor outcomes stem from the uncooperative, heterogeneous nature of GBMs where 

some GBMs develop and progress from lower-grade gliomas while other GBMs are primary 

tumors (4). Much like other solid tumors, GBM develops a very heterogeneous pattern of 

mutations (5). Only recently has there been studies showing the predictive and prognostic power 

of genetic characterization of GBM (6, 7) and expression data correlated with response to these 

treatments (5, 8, 9). Even so, the genetic and molecular heterogeneity of GBMs still poses a 

significant hurdle to developing novel therapies and clinical decision making (10).  

In general, surgery is the first treatment option for both high and low grade GBMs but the 

grade and severity of the tumor plays a significant role whether or not and how they should be 

treated. It is difficult to recommend a treatment option that balances quality of life and overall 

survival when low grade GBMs are asymptomatic and are found incidentally while high grade 

GBMs’ progression free overall survival depends significantly on the extent of the resection (11). 

Furthermore, radiation and chemo therapy are often prescribed after surgery whose 

recommendations are historically based on a few clinical parameters like age (11). While there 
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are ongoing efforts to better understand the underlying heterogeneous biology of GBM with 

advances in treatment methods, it still remains as one of the most perverse tumor types. 

 

1.2 Objectives 

 

In recent years, to circumvent the complexities of intra-tumoral and inter-patient tissue 

characterization of GBM through biopsies, that are traditionally difficult to get a detailed 

characterization of (12), various imaging modalities have been used to characterize the 

phenotypic expression of the genetic heterogeneities through the radiomic approach (13, 14).  

Correlations to clinical outcomes have been observed in the breast (15), brain (16), head and 

neck (17) by different modalities like X-ray computed tomography (CT), positron emission 

tomography (PET), and magnetic resonance imaging (MRI). 

The purpose of this thesis work is to improve the tissue characterization of these highly 

heterogeneous GBMs using delta-radiomic features of dynamic susceptibility contrast enhanced 

(DSC) magnetic resonance (MR) images, which are commonly used to derive blood perfusion of 

the targeted tumor, with a random forest machine learning approach. This method will be able to 

extract delta-radiomic features from DSC MRIs, select and apply the most salient features, and 

train a random forest to classify high or low grade GBMs with cross validation.  
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CHAPTER 2 – BACKGROUND 

______________________________________________________________________________ 

2.1 Principles of Dynamic Susceptibility Contrast Enhanced (DSC) Perfusion MRI 

 

2.1.1 MRI and Perfusion Imaging 

 

 Since its inception, MRI has been used to assess the various abnormalities in the human 

body. MRI is especially useful for those abnormalities in the brain and central nervous system 

(CNS) where most contrast agents can’t penetrate due to the blood-brain barrier. These 

abnormalities include primary tumors, secondary or distant metastases, infections, vascular and 

degenerative diseases of the brain and CNS. This is because of the paramagnetic properties MRI 

contrast agents, like gadolinium, that allow the user to emphasize the changes in T1 and T2 

relaxation rates in MRIs as well as the innocuous pharmokinetitc properties of contrast drugs 

(18). Many studies have shown that using high contrast media in perfusion MRI, with optimized 

protocols, can significantly improve the detection, characterization, and monitoring of 

abnormalities in the CNS (19-22). 

MRI is an exceptional candidate to fully characterize these highly heterogeneous 

glioblastomas. With its distinct advantages and the advances in visualization, resolution, and MR 

protocols (sequences) interrogating the morphologic and functional characteristics of these 

heterogeneous tumors has become increasingly wide spread. Although MRI can provide very 

detailed structural images, it is difficult to fully characterize the phenotypic features of tumors 

without functional information provided by MR perfusion imaging. Perfusion is defined as the 

steady-state delivery of blood to a tissue i.e. capillary blood flow. Since as early as the 1980s, 

several combinations of contrast agents and MR protocols have been used to non-invasively 
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measure perfusion using MRI with a key focus in the brain (23). In addition, other physiologic 

parameters can be derived from perfusion MR e.g. blood volume, blood velocity, and blood 

oxygenation to enhance our understanding of tumor dynamics. In order to add functional, 

phenotypic information, our proposed classification method was tested on dynamic susceptibility 

contrast-enhanced perfusion MRI. 

 

2.1.2 Dynamic Susceptibility Contrast Enhanced (DSC) or Bolus Tracking MRI 

 

 The theory of DSC MRI is to extrapolate and derive the dynamics of blood flow using 

MR volumes over time. This is achieved through tracer kinetic analysis via contrast agent 

concentrations’ relationship to the given MR pulse sequence. Bolus tracking using DSC imaging 

is the tracking of the kinetics of the bolus, e.g. the paramagnetic gadolinium-based chelate 

(contrast agent), using either T2 or T2* weighted MR sequences (24). As described by Villringer 

et. al (23) in 1988, the first-pass extraction of contrast agent is zero when the blood-brain barrier 

is healthy and intact and the intra vascular compartmentalization of the contrast agent creates 

strong, microscopic magnetic susceptibility gradients. These gradients cause a change in the 

dephasing of spins as the spins diffuse more quickly among these gradients resulting in signal 

loss in the mentioned T2 or T2* weighted images. For traditional T2 weighted, or spin echo 

(SE), MR sequences, the signal loss is minimized due to the refocusing of the dephasing spins 

whereas T2* weighted, or gradient echo (GE), MR sequences will generally experience a greater 

signal loss due to the presence of the microscopic field perturbers in the blood vessels.  

A detailed analysis of the changes in transverse relaxation rate as a function of vessel size 

through SE or GE in DSC MRI by Weisskoff, Boxerman, Fisel, and others (25-27) is shown in 

Figure 1. Their results show that GE sequences are sensitive at all blood vessel sizes and SE are 
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mainly sensitive to blood vessel sizes comparable to capillaries which means that SE sequences 

require about double the dose of contrast than GE but for the benefit of preferential sensitivity in 

detecting changes in small vessel density. Studies have correlated micro vascular cerebral blood 

volume (CBV) seen by SE is about 45% of the total as observed by PET and GE MRI sequences 

and found an approximate linear relationship between DSC tissue contrast agent concentration 

and the change in T2 relaxation rate: ∆𝑅2(𝑡) ∝ 𝐶𝑡(𝑡) where 𝐶𝑡(𝑡) is the contrast concentration in 

the tissue at time 𝑡. (28, 29). Using this relationship, various assumptions, and equations, which 

are outside the scope of this paper, one can derive CBV measurements, cerebral blood flow 

(CBF), flow heterogeneity, and other metabolic signatures (24) to characterize the tumor. 

 

 

 
Figure 1. Transverse Relaxation Rates. The change in transverse relaxation rates for SE and GE 
sequences at different contrast concentration (24). 
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2.2 Mechanics of Machine Learning in Radiation Oncology 

 

 In radiation oncology, the idea of modeling and predicting radiation therapy response has 

been observed as early as 1944 in the isoeffect curves of Strandquist to the contemporary 

Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) toxicity tables (30). 

Recently, interest in medical modeling for prognostic and therapeutic predictions has increased 

proportionally due to the increased availability of electronic patient data, images, and reports. 

The sheer volume of data being collected now has encouraged the use of data mining and 

machine learning methods to uncover previously hidden patterns and make accurate predictions. 

Although machine learning is actively used in various applications, such as speech recognition, 

email filtering (spam or junk email), and targeted advertising (commonly used by Google and 

Facebook), clinical adaptation has been slow due to the high barrier of understanding the 

complex models and inherent concerns and considerations about the machine learning method. 

 The first consideration that needs to be addressed is the type of input data or predictive 

features. There are many types of features available such as patient age and total dose delivered 

to the tissue for treatment and are divided mainly into two types: dosimetric and non-dosimetric 

predictors. Non-dosimetric predictors are the clinical parameters such as age, sex, 

histopathology, and genomic indicators. Dosimetric predictors are the variable data that can 

directly relate to the amount or delivery of radiation such as dose volume histograms (DVH) and 

threshold volumes or doses for specific tissue or area observed in QUANTEC tables. 

Conventionally, dosimetric parameters have been used to predict normal tissue complication 

probability (NTCP), like radiation pneumonitis, and tumor control probability (31-33). All of 

these features are sources for potentially useful information and QUANTEC has accordingly 
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suggested that to provide a comprehensive model, both dosimetric and non-dosimetric predictors 

should be used (34).  

 The second consideration is the selection of features. Although more and more 

information is available, this does not mean that all of the information collected is useful towards 

an application. With the large amount of data available, it becomes more and more difficult to 

select the most salient and informative features. This can be done through some statistical feature 

reduction method, such as the estimation of feature redundancy (35), an iterative wrapping 

approach (36), or a feature regularization method such as the least absolute shrinkage and 

selection operator (LASSO) (37). Feature reduction methods allow the researcher to select and 

focus on the most important features as well as reduce the computational load of the machine 

learning process. 

 The last consideration is the generalizability of the predictions. One of the most common 

difficulties to a predictive model is overfitting, i.e. the model becomes too specific to the training 

or input data and can not be generalized to the population in focus. Overfitting can be reduced by 

increasing the sample size. However, it is difficult to get a sample that is both large and specific 

enough for the general patient population logistically and statistically. Solving the overfitting 

bias is especially difficult problem for the validation of the latest techniques, modalities, 

treatments, and trials that have very small patient populations. A solution to the problem of 

overfitting, in the case of machine learning is cross-validation. Cross-validation is a method of 

measuring or seeing how generalizable the sample data is to general data. This is achieved by 

separating the data available into training and testing sets where the machine learning model is 

trained with the training, “internal”, data and then validated with the testing, “external”, data. 

This can be achieved in a few different ways but the two most common cross-validation methods 

are the k-fold cross validation and the hold-out methods.  
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 Taking these considerations in mind, machine learning methods such as logistic 

regression, support vector machine (SVM), artificial neural networks, and random forests can be 

applied. In general, logistic regression is a method that maps a linear combination of predictors 

to a probability on a sigmoidal logistic function and is used mostly for clinical questions with 

simple binary answers with few independent predictors (38). SVM are used for binary 

classification as well but for more complex, non-linearly separable, data (39). SVM transforms 

and manipulates the data in such a way that so that the data can be separated linearly, a simple 

case would be to square the distance between data points. Artificial Neural Networks are more 

complex and weights connections and relationships between features in multiple layers to 

perform predictions much like the human brain (40). Lastly, the random forest is a set, or 

ensemble of decision trees where each tree is built to split observations with similar response 

variables as seen in Figure 2 (41). All of these machine learning methods, and more, are being 

used in some capacity in radiation oncology for tumor localization, image processing, normal 

tissue toxicity, and survival analysis. 

 

 

 
Figure 2. Random Forest Splitting. Two simple random forest decision trees where there isn’t an 
interaction between smoking and alcohol on the left and there is on the right (41). 
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2.3 Introduction to Radiomics 

 

 Radiomics is a nascent field in quantitative imaging that uses advanced algorithms and 

considerable computing power to describe tumor phenotypes, monitor treatment response, and 

assess normal tissue toxicity quantifiably. Remarkable interest has been drawn to the field due to 

its noninvasive nature and potential for accurately diagnosing and predicting patient prognosis. It 

involves the high-throughput extraction of advanced quantitative features invisible to the naked 

eye to objectively and quantitatively describe tumor phenotypes in medical imaging. These 

radiomics features are ‘mined’ from medical images using advanced algorithms that examine 

multiple dimensions of the image such as physical (shape and size), textural (the spatial 

arrangement of voxels), histogram-based, and filtered-based features. 

 While current treatment decisions are based on a wide variety of traditional diagnostic 

tests, in recent years, radiomics has gained ground as a method in which one can  predict and 

associate clinical outcomes of patients with cancers like glioblastoma multiforme (GBM) (16), 

breast cancer (15), renal cell cancer (42), and head and neck cancer (17). Any medical image can 

be used to derive radiological features and associate them with clinical value like disease 

diagnosis, progression, and overall survival. Simply put, radiomics is an advanced computational 

identification, diagnosis, and/or prediction of patient response through medical image features. 

As such, it has three key components that make up the workflow of radiomics: 1) image, 2) 

analysis, and 3) validation.  

The first component of the workflow is the image. This involves the acquisition of the 

CT, MR, or PET image and segmentation of the region of interest (ROI). Then radiomic features 

can be extracted from the segmented ROI through various algorithms that interpret the image 

data. These feature extraction methods can be grouped as volume based features (like size, 
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shape, and sphericity), statistics based features (from the histogram-based first order to matrix-

based higher order texture analysis, as observed in studies performed on MRI (43) and 

ultrasound (44)), model based features, and fractal dimensions. Volume based features have been 

correlated with patient outcome (45) but in recent years, texture analyses has been rising in 

popularity as they have been shown to predict chemotherapy response in non-small cell lung 

cancer (NSCLC) (46), differentiate prostate cancer by Gleason score (47), and show prognostic 

power in GBM (48). These features and combinations of them can be applied to even more 

detailed clinical applications such as assessing tumor heterogeneity in glioblastomas (13) and 

tumor phenotype information (14, 49). The last part of the workflow is the modeling and 

validation of extracted features. These features have to be able to predict patient outcomes like 

NTCP and tumor control probability (31-33) consistently for it to have clinical value. This 

requires the use of some statistical or machine learning method to test and validate the predictive 

power of these features. 
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CHAPTER 3 – DESIGN OF OUR CLASSIFICATION METHOD 

______________________________________________________________________________ 

3.1 Patient Data 

 

 For our classification method, we obtained our patient data from the Department of 

Radiology and Imaging Sciences and Winship Cancer Institute at Emory University. The use of 

the data was approved by the Emory institutional review board (IRB) with written informed 

consent obtained from the study subjects. Clinical MRI data from twenty-five patients who had 

biopsy or tumor resection after MRI exams were selected for retrospective analysis. Histo-

pathological analysis of these patients revealed that there were 13 high grade and 12 low grade 

GBMs. 

 

3.2 MRI protocols 

 

All patients underwent MRI exams on a 3T MRI scanner (Magnetom TrioTim; Siemens, 

Germany) with a routine brain tumor protocol which included the following MR sequences: T1-

weighted axial, sagittal, coronal, T2 weighted (axial) fluid attenuated inversion recovery 

(FLAIR), diffusion weighted imaging (DWI) and DSC MRI. Axial T2 FLAIR images, which 

were used for segmentation, were obtained using the following parameters: repetition time 

(TR)/echo time (TE) = 6000/93 ms, flip angle = 130°, inversion time = 2030 ms, slice thickness 

= 3 mm, field of view (FOV) = 128 × 128 mm2, and 25 axial slices (thickness = 1.875 mm). 

DSC MRI data were acquired using single-shot echo planar sequence with repetition time 

(TR) = 45 ms, echo time (TE) = 2000 ms, measurement = 50-70, FOV: 22cm, matrix, 128 × 128. 

A bolus of 0.05–0.15mmol/kg gadolinium (Gd) contrast agent was injected at a rate of 3 mL/s at 
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20 s after starting the dynamic data acquisition. Total scanning time for DSC MRI scan was 

around 2 min. 

 

3.3 Software  

 

 In our method, several software were used to convert, extract, and analyze the patient 

images. The two software we used the most was Matlab and IBEX (Imaging Biomarker 

Explorer). Matlab (matrix laboratory) is a proprietary programming language developed by 

MathWorks and is used worldwide for many applications from plotting data, manipulating 

matrices, creating graphical user interfaces, and more. IBEX is an open infrastructure software 

developed at the University of Texas MD Anderson Cancer Center to quickly support the 

extraction of features in the radiomic workflow. Other software we used were ImageJ, to convert 

image file formats and image registration, and DicomBrowser, for DICOM (Digital Imaging and 

Communications in Medicine) metadata, or tag, information processing. 

 

3.4 Image Preparation 

 

 Before extracting any features, we outlined a general plan of how we should proceed. Our 

plan was to use the image with the most contrast between the tumor and the normal tissue and 

the highest resolution, T2 FLAIR, to contour the tumor. Then we would use these “true” 

contours to extract radiomic features from the DSC perfusion images. However, many of the T2 

FLAIR and DSC perfusion images we obtained from radiology were unfortunately not registered 

to each other. In order to use contours derived from T2 FLAIR images, we registered all DSC 
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perfusion volumes to the T2 FLAIR images using ImageJ and the Align3 TP plugin. A sample 

registration is shown in Figure 3.  

 

 

 
Figure 3. Image Registration. Images shown are the pre (left) and post (right) registration 
images. 
 

 

Additionally, the initial batch of images provided to us by radiology was in NIFTI 

(Neuroimaging Informatics Technology Initiative) format, a format initiated by the National 

Institute of Mental Health and the National Institute of Neurological Disorders and Stroke. This 

format is used often in fMRI to make the dissemination of neurological images, informatics 

tools, and research easier than the previously used Analyze 7.5 format. However, our feature 

extraction tool, IBEX, was designed to be a more general and centralized radiomic software that 

uses the two common medical image formats, DICOM and Pinnacle. In order to load these DSC 
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perfusion images into IBEX, we used ImageJ and the TudorDICOM tools plugin to convert the 

registered nifti images to individual DICOM image slices. Unfortunately, the conversion process 

automatically deletes DICOM tags, especially those required for IBEX import like acquisition 

number, slice number, slice positioning, and etc. This required the use of DicomBrowser and an 

in-house Matlab code to put back correctly the required DICOM tags to the newly registered 

DSC images. 

 

3.5 Image Contour 

 

 Once all images were registered and able to be loaded into IBEX, we contoured the tumor 

in it using T2 FLAIR images. For each contour, the window levels were set to have the best 

visual contrast between the normal brain tissue and tumor and were contoured in IBEX slice by 

slice. In order to derive delta-radiomic features, we exported the contours into Matlab and 

flipped the contours across the midline of the brain to obtain normal tissue contours. Once 

flipped, these contours were translated to best match the anatomical features of the opposing 

hemisphere’s tumor and trimmed down if any part of the contour was outside of the brain, 

crossed the midline, or dug into the tumor. After both contours were drawn and shaped to 

satisfaction, it was applied to all 50-70 DSC perfusion volumes for feature extraction. An 

example of the tumor contour, normal tissue contour, and contour trimming is seen in Figures 4 

and 5. 
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Figure 4. Tumor and Normal Tissue Contours. A side by side view of both the tumor contour 
(left) and the transformed normal tissue contour (right). 
 

 

 
Figure 5. Normal Tissue Contour Fit. A side by side view of two image slices where the normal 
tissue contour (red) was trimmed to fit the patient anatomy resulting in a smaller contour than the 
tumor (green). 
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3.6 Feature Extraction 

 

 Due to the nascent nature of radiomic analysis of DSC perfusion images, we elected to 

extract as many features as possible in IBEX. This included using the feature categories provided 

in IBEX such as, Shape, Intensity Histogram, Gray Level Cooccurence Matrix, and etc. Some 

feature categories were excluded due to the inability to extract some of the features with some 

DSC perfusion images on select patients. This was to ensure that the same features were 

extracted for all patient DSC volumes, both tumor and normal tissue, to apply our classification 

method to. As a result, nine feature categories and their corresponding features, as listed in Table 

1, were selected and extracted for a total of 1689 features. 
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Table 1. List of Feature Categories and Names 

 

 

 

 Once all features were extracted, various feature transformation methods were applied to 

calculate delta-radiomic features and normalize the data. To extract delta-radiomic features, three 

methods were used: subtraction (absolute difference) to the baseline, feature change over time, 

absolute difference and normalization (relative difference) to normal tissue features. As delta-

radiomics is a very new concept, we decided to use these subtraction and normalization derived 

Feature Category
Compactness1 SurfaceArea MeanBreadth
Compactness2 SurfaceAreaDensity Orientation
Max3DDiameter Mass Roundness
SphericalDisproportion Convex NumberOfObjects
Sphericity ConvexHullVolume NumberOfVoxel
Volume ConvexHullVolume3D VoxelSize
Energy InterQuartileRange MeanAbsoluteDeviation
RootMeanSquare GlobalEntropy MedianAbsoluteDeviation
Variance GlobalUniformity LocalEntropy/Range/StdMax
Kurtosis GlobalMax LocalEntropy/Range/StdMin
Skewness GlobalMin LocalEntropy/Range/StdMean
Range GlobalMean LocalEntropy/Range/StdMedian
Percentile GlobalMedian LocalEntropy/Range/StdStd
Quantile GlobalStd
Kurtosis InterQuartileRange Dissimilarity 
Skewness AutoCorrelation Entropy
Range ClusterProminence Homogeneity2
Percentile ClusterShade InformationMeasureCorr1
PercentileArea CluseterTendency 
Quantile DifferenceEntropy
InterQuartileRange MedianAbsoluteDeviation Quantile
Kurtosis Percentile Range
MeanAbsoluteDeviation PercentileArea Skewness
InformationMeasureCorr2 SumAverage Correlation
InverseDiffMomentNorm SumEntropy Energy 
InverseDiffNorm SumVariance Homogeneity
InverseVariance Variance
MaxProbability Contrast
Busyness Complexity TextureStrength
Coarseness Contrast 
GrayLevelNonuniformity LongRunLowGrayLevelEmpha ShortRunEmphasis
HighGrayLevelRunEmpha LowGrayLevelRunEmpha ShortRunHighGrayLevelEmpha
LongRunEmphasis RunLengthNonuniformity ShortRunLowGrayLevelEmpha
LongRunHighGrayLevelEmpha RunPercentage

*25 ≡ Feature calculated from all 2D slices  **3 ≡ Feature calculated from the 3D image matrix

Feature Names

IntensityDirect

IntensityHistogram

GrayLevelCooccurenceMatrix25* 
GrayLevelCooccurenceMatrix3** 

NeighborIntensityDifference25* 
NeighborIntensityDifference3**

GrayLevelRunLengthMatrix25*

GradientOrientHistogram

Shape
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delta-radiomic features to observe which features optimized our classification method. 

Additional normalization methods were applied again, to: (a) observe if normalization of features 

improved our classification method and (b) reduce inter-patient feature variances. A list of the 

final feature transformation methods used and corresponding descriptions of what they are and 

how they were derived are shown in Table 2. 

 

 

Table 2. List of Final Feature Transformation Methods 

  
 

 

3.7 Feature Selection 

 

 A feature selection method was applied once all features were extracted. Feature 

selection is a commonly applied step among radiomic studies to reduce computation burden and 

extract the most salient and informative features. The first part of our feature selection was to 

extract features that showed a significant difference between high and low grade gliomas. We 

used a combination of LASSO (least absolute shrinkage and selection operator) and two sample 

T-test to achieve this. LASSO is a commonly used statistical regression analysis that is used to 

increase the prediction accuracy of statistical models and selects unique and significant 

Method Name: Method Description:
Method 1 Raw tumor features
Method 2 Delta radiomic features via subtraction of baseline features
Method 3 Delta radiomic features via subtracting normal tissue from tumor features
Method 4 Delta radiomic features via dividing tumor features by normal tissue features
Method 5 Method 3 normalized by subtracting the baseline
Method 6 Method 3 normalized by dividing with the baseline
Method 7 Method 4 normalized by dividing with the baseline
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predictors, in our case features. A two sample T-test is a statistical test used to determine if two 

population means are equal.  

In our method, we used the Two Sample T-test (2Samp) to select features that are 

significantly different at the 0.05 significance level using HG patients and LG patients as the two 

samples and then used the first pass of LASSO to additionally select and regularize features. 

After both feature selections are finished, only those features that are selected to be significant by 

both tests, L2S, were chosen to be used in our method. Table 3 shows the results of our initial 

predictions using just the three significant-feature selection methods. We can see that although 

there isn’t a clear and significant difference between the three feature selection methods, in four 

out of the seven methods, the combination of LASSO and Two Sample T-test had the highest 

average accuracies before removing any redundant features or optimizations to the random forest 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Table 3. Table of Initial Prediction Accuracies per Method per Feature Selection Method 

 
*L2S = LASSO + 2Sample T-Test 
 

 

 Once the most significant features have been selected, redundant features were removed. 

This was achieved using a correlation-matrix-based selection with variable correlation limits. 

The correlation-matrix-based selection removes redundant features using a correlation matrix, 

where any feature correlation matrix-column’s column-wise average absolute correlations above 

a set limit is removed. During this elimination process, any columns with non-finite numbers e.g. 

infinite and NaN values, were removed automatically. This process removes the significant but 

redundant features leaving us with non-redundant and significant features. A visual 

representation of removing redundant features at various correlation limits are shown in Figure 6. 

Method: Feature selection: HG Accuracy: LG Accuracy: AVG Accuracy:
LASSO 0.588180485 0.463721318 0.525950901
2Samp 0.611237262 0.442014356 0.526625809
L2S 0.64024795 0.411843434 0.526045692
LASSO 0.64016413 0.395136249 0.51765019
2Samp 0.634646299 0.405232623 0.519939461
L2S 0.645606326 0.422515749 0.534061037
LASSO 0.730536244 0.527881171 0.629208707
2Samp 0.709297821 0.520521244 0.614909532
L2S 0.74628706 0.518226683 0.632256872
LASSO 0.814984581 0.479001233 0.646992907
2Samp 0.802242374 0.53103346 0.666637917
L2S 0.804618342 0.474291773 0.639455057
LASSO 0.863513936 0.571756815 0.717635376
2Samp 0.847720376 0.513321342 0.680520859
L2S 0.853592728 0.57425941 0.713926069
LASSO 0.871931855 0.506695656 0.689313756
2Samp 0.875245396 0.488748332 0.681996864
L2S 0.879281474 0.519995879 0.699638677
LASSO 0.875763259 0.497065025 0.686414142
2Samp 0.878690205 0.490281614 0.68448591
L2S 0.886931796 0.520348719 0.703640257

Method 6

Method 7

Method 1

Method 2

Method 3

Method 4

Method 5
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Figure 6. Heatmaps of the Feature Correlations at various correlation limits. From a) to d): 10%, 
30%, 50%, and 100% correlation limits. 
 

 

 Finally, an additional positive-feature selection was performed after initial performance 

evaluations. These positive-features were defined as those features that were added with each 

increasing correlation limit that positively affected the outcome of overall prediction accuracy. 

This positive-feature selection was applied with the expectation: 1) that it would improve 

prediction accuracies by removing features that reduced the accuracy of our method; 2) reduce 

the computational load by significantly reducing the number of features used to train and test the 

model; 3) extract and observe radiomic and delta-radiomic signatures, combinations of features, 

and feature groups that are the most informative in classifying GBMs. 
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3.8 Random Forest and Performance Evaluation 

 

 After feature selection, a random forest machine learning method was used to classify 

patients into high or low grade gliomas. Specifically, we chose to use the Matlab function, 

fitensemble(), with a semi-optimized template tree. At each correlation limit, the corresponding 

features and labels (of high or low grade patients) for each method are supplied to the random 

forest to train and test it, resulting in various performance metrics such as prediction accuracy 

(predicted label), prediction confidence (score), and receiver operating characteristic (ROC) 

curves. 

 To evaluate the performance of our classification method to the larger population and 

reduce the overfitting bias, we chose to use a leave-one-out cross validation on the random 

forest. This involved our method to be trained and tested over multiple iterations, each with a 

new and distinct test patient. After the leave-one-out cross validation testing, we evaluated the 

performance of our machine-learning based classification method by calculating the accuracy of 

our predictions, average confidence of the prediction, and calculating the area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve while stratifying these values by true 

high or low grade patients.  

Additionally, improve our classification method further, we used a best-majority voting 

method, using the top four performing methods for each patient to classify the patient as HG or 

LG, and calculated these performance parameters again to reduce any strong biases from poor 

performers (50). 

 

 

 



23 
 

3.9 Flowchart of our proposed method 

 

 The following figure is the flowchart summary of our proposed classification method: 

 

 

 
Figure 7. Flowchart of our proposed classification method 
 

 

 In summary, our method involves first acquiring the images and then registering the DSC 

images to the T2 FLAIR image. Next, contours of the tumor and normal tissue are derived from 

T2 FLAIR and are used to extract radiomic features. Afterwards, various feature transformation 

methods are derived such as raw tumor features and absolute difference and relative difference 

delta-radiomic features. Once all feature transformation methods are derived, feature selection is 

applied to each method to extract the non-redundant and informative features. These features are 



24 
 

partitioned and used to train and test a random forest with a leave-one-out cross validation. 

Finally, performance metrics are derived to: (a) evaluate the classification method and (b) to 

extract positive features that will be applied again to the random forest to evaluate for any 

improvements. The ultimate goal of our proposed classification method is to apply it in the 

clinical setting to accurately classify glioblastoma grades and assist the physician in their 

diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

CHAPTER 4 – RESULTS 

______________________________________________________________________________ 

Table 4. Table of Best Results for each Feature Transformation Method 

 

 

  

Table 5. Table of Results for each Method using Positive Features 

 

 

 Finally, with the use of our best-majority voting method, the best resulting accuracies 

were 0.9016±0.1911, 0.9498±0.0913, and 0.8494±0.2548 for all, HG, and LG patients 

respectively with an AUC of 0.9380. 

 

4.1 Result Description 

 Table 4 and 5 shows the results of our proposed classification method. Both tables show 

the average classification accuracy, HG accuracy, LG accuracy, the area under the curve (AUC) 

of the receiver operating characteristic (ROC) curve and the confidence of the predictions. Next 

to each method, the number of features used for classification for each method is listed.  

 

 

Method 1 (71) Method 2 (24) Method 3 (522) Method 4 (87) Method 5 (679) Method 6 (159) Method 7 (526)
Average Accuracy 0.758133333 0.784231122 0.74407619 0.81 0.821176164 0.775928494 0.74123211
HG Accuracy 0.774615385 0.815669434 0.697582418 0.82974359 0.949458725 0.860501607 0.784385247
LG Accuracy 0.740277778 0.750172951 0.794444444 0.788611111 0.68220339 0.684307621 0.694482878
AUC 0.821896449 0.313580922 0.737472724 0.834576473 0.79671371 0.675886834 0.765721286
Confidence 0.658903571 0.66867749 0.621714965 0.681012237 0.658371101 0.653995065 0.593938476

L1O Best

Method 1 (277) Method 2 (331) Method 3 (326) Method 4 (96) Method 5 (384) Method 6 (275) Method 7 (256)
Average Accuracy 0.688 0.59307095 0.718209524 0.788761905 0.720008422 0.759872869 0.712632608
HG Accuracy 0.747435897 0.68419772 0.706813187 0.792747253 0.838347356 0.835399292 0.770841118
LG Accuracy 0.623611111 0.494350282 0.730555556 0.784444444 0.59180791 0.678052577 0.649573389
AUC 0.810037691 0.64107123 0.762604642 0.822122595 0.725481289 0.811005414 0.802247043
Confidence 0.679771511 0.576209987 0.631756438 0.676562977 0.602979133 0.624922407 0.597808952

L1O Positive-Features only
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CHAPTER 5 – DISCUSSION 

______________________________________________________________________________ 

5.1 Comparison of Results 

 

5.1.1 Results across correlation limits 

 

 In comparing the various methods of feature manipulation and correlation limits, we can 

observe a few trends appearing. For example, the first two feature transformation methods, 1 and 

2, show that peak performances occur at lower correlation limits 28.75% and 13.75% 

respectively while other features show peak performances at higher correlation limits as shown 

in Figure 8. Additionally, we can see that the delta-radiomic features derived from the difference 

between tumor and normal tissue, normalized or not, performed better than those that were not.  
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Figure 8. Performance Graph. Graphs of feature transformation method’s accuracy across 
correlation limits 
 

 

 Looking at the peak accuracies for all feature transformation methods, we derived an 

accuracy heatmap by stratifying the accuracies by patients as shown in Figure 9. One patient, LG 

patient 1 (LG_1), was consistently performing terribly for all methods at an average accuracy 

across all methods of 0.068. This leads to two likely conclusions: that either this specific patient 

was not classified correctly or that our classification method suffers with this specific type of LG 

patient. While our method takes the glioma classifications provided to us as the ground truth, 

some cases are more difficult to classify than others without extensive genetic testing as GBMs 

are very heterogeneous. Genetic characterization of GBMs has largely been categorized into four 
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subtypes: classic, mesenchymal, neural, and proneural (8) which may make both the histo-

pathologic and radiomic classification difficult. Additionally, when inquired about the correct 

classification of a few poor performing patients earlier in the study, we received a response 

saying that two patients were misclassified and was actually high grade patients. This justifies 

and strengthens the credibility of our classification method suggesting that it can highlight 

suspicious and, in some cases, misclassified patients. 

 

 

 
Figure 9. Best Accuracy Heatmap. An accuracy heatmap for each method’s best performance 
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 Another observation is that normalized and non-normalized delta-radiomic features’ HG 

and LG accuracies are different. For LG patients, the difference between accuracies of delta-

radiomic features (method 3 and 4), versus normalized-delta-radiomic features (method 5, 6, and 

7), were significantly different 0.7915±0.0029 and 0.6870±0.0054 respectively. While it wasn’t 

as significant, HG patients’ accuracies between the two groups were different as well with 

0.7637±0.0661 and 0.8648±0.0675 for delta-radiomic and normalized-delta-radiomic features 

respectively. These results suggest that normalizing delta-radiomic features increase the accuracy 

of HG patient classifications at the cost of significantly reducing the accuracy of LG patients’. 

 

Looking at Figure 10 and at the AUC values in our results, we can see that the 

performance of the normalized raw features was very poor at an AUC of 31.36%, worse than 

pure random, 50% with more false positives than true positives. However, other methods, 

including raw features, had good performances with an average AUC of 0.7720±0.0540 meaning 

that the diagnostic ability of our binary classification method is quite good. 
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Figure 10. Best ROC Curves. Reciever operating characteristic curves for each method’s best 
performing correlation 
 

 

5.1.2 Results of using Positive Features 

 

 Figure 11 and 12 shows the heatmap and ROC curves respectively for each method using 

the positive features. As seen on the results, tables 4 and 5, there isn’t a significant difference 

between the peak performing correlations for each feature transformation method and positive 
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features with a change in average accuracy, HG accuracy, LG accuracy, and AUC of -

0.0649±0.0591, -0.0480±0.0485, -0.0832±0.0802, and 0.0612±0.1234 respectively. However, 

looking at the ROC curves, we can observe that using positive features significantly increased 

the ROC of Method 2 from 0.3136 to 0.6411. An explanation of the reduction of average 

accuracy in the positive features is the way positive features were calculated. Positive features 

were calculated to be any added features that increased the overall accuracy of the classification 

over a wide correlation limit range. However, the peak performances of many methods were less 

than the full range of correlation limits tested, resulting in redundant or slightly confounding 

features being added into the positive feature set as seen in table 4 and 5, reducing the 

performance slightly. 
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Figure 11. Positive Feature Accuracy Heatmap. A heatmap for each method using its positive 
features 
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Figure 12. Positive Feature ROC curves. Reciever operating characteristic curves for each 
method using its positive features 
 

 

5.2 Comparison of Feature Transformation Methods 

 

 Out of the seven feature transformation methods, the method with the best overall 

accuracy was method 5 (82.12%), a normalized delta-radiomic feature method. However, 
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considering the discrepancies between HG and LG accuracies, we consider method 4 (81%), a 

relative delta-radiomic feature method, to be better overall for its relatively high accuracy in both 

HG and LG patient classification. However, using the best-majority voting method, our proposed 

method can take advantage of the differences in the seven methods as discussed before to 

achieve better performances across the board.  

When comparing methods and the number of features used for each method, we observed 

that normalizing features to itself, especially by division (method 2, 4, and 6), significantly 

reduced the number of features used for our classification method than their non-normalized 

counterparts. This is observed in method 1 and 2 (71 vs 24 features), method 3 and 4 (522 vs 87), 

and method 5 and 6 (679 vs 159). For each pair of methods compared, overall performance 

parameters did not change significantly but reduced the number of features as well as 

computational load.  

 

5.3 Best feature groups for classification 

 

 A list of the most commonly used feature groups in all methods are listed in Table 6. 

From table 6, we can see that of the 69 features used in at least 4 feature transformation methods, 

56 are Gray-Level-Cooccurance-Matrix (GLCM), textural, features (30 derived from 2D slices 

and 26 from a 3D image matrix). Overwhelmingly, over 80% of the strong and common features 

used in our methods are textural features as described by Haralick, Shanmugam (51) in 1973 and 

later confirmed for the use in radiomic applications by Ravanelli, Farina (52) in 2010 for non-

small cell lung cancer (NSCLC) and Aerts, Velazquez (14) in 2014 for a more general 

application. These commonly used features may be the radiomic signature, or finger print, for 
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GBM classification in DSC and could allow future studies to test with and against these features 

to develop a robust classification or predictive model. 

 

Table 6. List of Commonly used Features and Feature Groups 

 

Methods Used in: Feature Groups: Feature:
6 Methods GLCM (2D) InverseVariance (2)

GLCM (3D) InverseVariance (1)
5 Methods GLCM (2D) InformationMeasureCorr2 (2)

InverseVariance (6)
MaxProbability (2)

GLCM (3D) Correlation (1)
InverseVariance (3)

Intensity Direct 60Percentile (1)
Intensity Histogram 5PercentileArea (1)

4 Methods GLCM (2D) Contrast (2)
Correlation (7)
InformationMeasureCorr1 (2)
InformationMeasureCorr2 (1)
InverseDiffMomentNorm (1)
InverseVariance (1)
MaxProbability (4)

GLCM (3D) ClusterProminence (2)
Contrast (2)
Correlation (6)
Homogeneity2 (2)
InverseVariance (4)
MaxProbability (4)
SumEntropy (1)

GLRLM (2D) HighGrayLevelRunEmpha (1)
Intensity Direct GlobalMax (1)

LocalStdMedian (1)
 5Percentile (1)
Range (1)

Intensity Histogram 5Percentile (1)
60Percentile (1)
Range (1)

Neighbor Intensity 
Difference (2D) TextureStrength (1)
Neighbor Intensity 
Difference (3D) Contrast (1)

*GLCM = GrayLevelCooccurenceMatrix                                                                    
**GLRLM = GrayLevelRunLengthMatrix
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CHAPTER 6 – CONCLUSION 

______________________________________________________________________________ 

 In conclusion, our proposed method performed well, with an average of 90% accuracy in 

classifying both high and low grade GBMs based on the DSC MRI data. This study shows that 

delta-radiomic features of DSC MRI, specifically GLCM and other textural features, are highly 

correlated with GBM disease grades that may further elucidate the underlying tumor biology and 

response to therapy. It suggests that radiomic analysis and machine learning perform well 

together and can be generalized to a broader set of diseases and imaging modalities. Our method 

derived several delta-radiomic features using the difference between the normal and disease 

tissue as well as the change in features from the baseline. Our method will be tested further as 

more patients are introduced and clinical outcome information becomes available. With future 

advances in imaging, machine learning, and radiomic analysis, a more robust, accurate and 

validated classification or predictive model will be widely available to assist future oncologists 

deliver better and more personalized treatments. 
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