Optical Waveguides in

General Purpose Parallel Computers

A Thesis
Presented to
The Faculty of the Division of Graduate Studies

By

Martin H. Davis, Jr.

In Partial Fulfillment

of the Requirements for the Degree of
Doctor of Philosophy
in Computer Science

Georgia Institute of Technology
November 1992

Copyright (©) 1992 by Martin H. Davis, Jr.

Optical Waveguides in
General Purpose Parallel Computers

Approved:

Umakishore Ramachandran, Chairman

Mostafa H. Ammar

Richard M. Fujimoto

Carl M. Verber

Sudhakar Yalamanchili

Date Approved by Chairman

Acknowledgements

The work needed to earn a Ph.D. degree seems, at times, quite daunting to the one
who has undertaken this task. And, most certainly, the colleagues, friends, and
family of the one earning the degree must face the quite daunting task of working
with and living with that person! Therefore, the task of my having earned the
Ph.D. cannot be complete until I acknowledge the help, advice, encouragement,
and trust that those people have placed in me.

Most integral to the Ph.D. process is one’s advisor: thank you Kishore for
seeing me through the arduous task (and thanks to Vasanthi for calling Kishore
every time | met him in his office!). One’s reading committee ensures that the
reported work constitutes a worthwhile endeavor: thank you Dr. Ammar, Dr.
Fujimoto, Dr. Verber, and Dr. Yalamanchili for your time and comments. I also
thank Dr. Venkateswaran and Dr. Ahamad for their words of encouragement and
advice from time to time.

One’s peers are also necessary to the Ph.D. process; without their con-
stant wit, sarcasm, encouragement, and, most importantly, concomitant trials and
tribulations the process would be difficult. Ajay Mohindra always gave me much
feedback on every aspect of my work; he was also a good personal friend. Gautam
Shah helped in understanding certain details. Vibby Gottemukkala did ..., well,

he just usually goaded and provoked me constantly. Sreenivas Gukal was a quiet

111

office mate. Sathis Menon always had a good joke or story, and he was quite will-
ing to discuss the 1992 Presidential political campaign at any time! Dr. Margaret
Francel, during her summer sojurns, provided much needed relief from the heat
and school topics—her daily summaries of talk show topics and discussions gave
an unusual perspective to life!

Without one’s family’s constant, enduring, and patient love and support,
the Ph.D. process would be lonely and difficult. I cannot thank my parents, Martha
B. Davis and Martin H. Davis, Sr., enough for the love and support they have shown
me in so many ways. | hope that Martin 11 will some day realize that, although at
times his demands for my time seemed to make my life more difficult, those same
demands gave me perspective on what really is important in life. And to my wife
Carol: T do not think you knew what you were getting yourself in for, I know that
these past few years have not always been easy, I know some of your goals have
been delayed or irrevocably altered, but I appreciate, more than I can ever truly

express satisfactorily, your love, and I hope I can help you achieve your dreams.

v

Quotations

I list here several quotations which I have found useful while working on my dis-

sertation.

1.

Spock: I seem to have a body which stretches into infinity.
Scotty: Body? Why, you have none!
Spock: Then, what am I?
Bones: You are a disembodied brain.
Spock: Fascinating; it could explain much, Doctor.
A short time later. ..

Jim: Spock, you’re in a black box tied in with light rays
into a complex control panel.

Spock: Fascinating.

from Star Trek episode entitled “Spock’s Brain”

Once you've been there, it’s easy.

—Fred W. Lennon, IBM Manager

There are only three types of research curves: those that go up,
down, or flat.

—Sudha Yalamanchili, Georgia Tech EE professor

You think you have it made when you teach your child to wipe his
bottom, but, then, you have to teach him to become a civilized human being.

~Kenneth B. McKenzie 111, Presbyterian Minister

So what’s the big deal Dad? The light is just going round and
round and round. . .

~Martin H. Davis III

If you don’t understand something, explain it to someone else.
If you still don’t understand it, teach a class on it. And if you
still don’t understand it, write a book on it!

—-R. S. Jin, FIT Physics and Space Science professor

We are scientists!

—Kishore Ramachandran, Georgia Tech CoC professor

vi

Contents

Acknowledgements
Quotations

List of Tables

List of Figures
Summary

1 Introduction

2 Architectural Description
2.1 Distributed Shared Memory (DSM)
2.2 Beehive

2.3 OBee s

3 The Optical Broadcast Ring (OBR) Architecture
3.1 Description of an Optical Waveguide
3.2 Prior Optical Waveguide Architectures

3.2.1 System Backplane Architectures

3.2.2 LAN Architectures

vii

i

xi1

X1X

3.3 The Optical Broadcast Ring (OBR) 28

3.3.1 Wired-OROBR 30
3.3.2 Explicit Message OBR 36
3.3.3 Analysis of the OBR Architectures 42
Cache Coherency 49
4.1 Cache Coherency in Beehive 52
4.2 Cache Coherency in OBee 57
Synchronization 67
5.1 Locks. o 67
5.1.1 Locks in Beehiveo 69
5.1.2 LocksinOBee. 72
5.1.2.1 Purely Optical Scheme 72

5.1.2.2 Hybrid Electronic/optical Scheme 77

5.1.2.3 Discussion 90

5.2 Barriers 98
5.2.1 Purely Optical Scheme 99
5.2.2 Hybrid Electronic/optical Scheme 101
5.23 Discussion 104

53 F&OP . . . o 111
5.3.1 Purely Optical RE&OP Scheme . . . 0 0 00 00 o000 L. 113
5.3.2 Hybrid Electronic/optical Scheme 118
5.3.3 Discussion 120

viil

6 Evaluation

6.1 Cache Coherency
6.2 Locks.

6.3 Barriers

6.4 F&OP . . . o o

7 Conclusions and Future Work

7.1 Concluding Remarks oL

7.2 Further Questionso oL

Bibliography
Vita

X

125
126
136
149

161

187

10
11

12

List of Tables

The minimum and maximum access times for the OBR architectures
under idle load.o o 43
The minimum and maximum access times for the OBR architectures
under high load. oo 45
The minimum and maximum propagation times for the OBR archi-
tectures. L. A7
The Read and Write command primitives for cache coherency with
buffered consistency in Beehive.00 000 55
The Read and Write command primitives for cache coherency with
buffered consistency in OBee. 66
The lock and unlock command primitives in Beehive. 69
Comparison of hardware requirements among the Beehive and OBee
lock schemes.o 96
The number of messages for the various lock commands under the
Beehive and OBee lock implementations. 97
The Barrier command primitives available under OBee. 99
Comparison of hardware requirements for the OBee barrier schemes. 109
The number of messages for the various barrier operations under
the two OBee barrier schemes. 110

The semantics of the F&OP synchronization primitive in OBee. . . 112

13

14

16
17

18

19
20

21

22
23

24

25

26

The hardware requirements for the two OBee F&OP implementations. 122
The number of messages used by a node in the two F&OP schemes. 123

The minimum and maximum execution times for the WRITE-UPDATE

command under idle and high load conditions. 127
Some specific Idle Load WRITE-UPDATE execution times. 135
Some specific High Load WRITE-UPDATE execution times. 135

The minimum and maximum execution times for idle and busy locks

for the two OBee lock schemes. 137
Some specific Idle Lock execution times. 149
Some specific Busy Lock execution times. 149

The minimum and maximum execution times for last and simulta-

neous arrivals for the two OBee barrier schemes. 151
Some specific Barrier Last Arrival execution times. 160
Some specific Barrier Simultaneous Arrival execution times. 161

The minimum and maximum execution times for the single and

multiple command situations for the two OBee F&OP schemes. . . 162
Some specific Single Command F&OP execution times. 172
Some specific Multiple Command F&OP execution times. 172

xi

10

11

12

13
14

List of Figures

Block diagram of the Distributed Memory architecture. 6
Block diagram of the Shared Memory architecture. 7
Block diagram of the Distributed Shared Memory (DSM) architecture. 8
Block diagram of the Beehive node architecture. 10

The sequential consistency (SC) and buffered consistency (BC) mem-

ory model constraints. Arrows indicate dependencies. 12
Block diagram of the OBee node architecture. 16
The structure of an optical fiber. 18
The wired-0R OBR architecture topology. 31
The wired-0R OBR drop time geometry. 34

The control channel topology of the explicit message OBR architec-
ture. . .. e 36
The transmission channel topology of the explicit message OBR
architecture. Lo 38

A “train” of messages on the explicit message OBR architecture’s

transmission channel.o 0oL 40
The memory line’s directory entry in Beehive. 53
A cache line’s directory entry in Beehive. 53
A cache line’s directory entry in OBee. 58

xii

16

17

18

19

20

21

22

23

24

25

26

27

28

Lock request peer groups showing processors that have requested a

particular typeof lock. oL

The memory line’s directory entry (with cache based locks) in Beehive.

A cache line’s directory entry (with cache based locks) in Beehive. .
Two wired-0R OBRs are physically interconnected in a purely opti-
cal scheme to support W/E and R/S lock requests.
The algorithms the nodes and Pulse Generators follow for using
locks in the purely optical OBee implementation.
The data structure associated with each lock for the hybrid elec-
tronic/optical scheme under OBee.
The format of lock command messages transmitted over the Lock
Channel in the hybrid electronic/optical lock scheme in Obee.

The algorithm which nodes follow for processing Lock Requests from
other nodes under the hybrid electronic/optical scheme in OBee. . .
The algorithm which nodes follow for processing Lock Requests from
themselves under the hybrid electronic/optical scheme in OBee.
The algorithm which nodes follow for processing W/E UNLOCK
commands under the hybrid electronic/optical scheme in OBee.
The algorithm which nodes follow for processing R/S UNLOCK
commands under the hybrid electronic/optical scheme in OBee.
The organization of peer groups in the purely optical OBee lock
implementation. L
The transmission topology of the additional W/E WRITE-UPDATE

channel extension to the purely optical OBee lock scheme.

x1il

68

70

70

74

75

79

80

81

82

86

91

93

29

30

31

32

33

34

35

36

37

38
39

40

The format of lock command messages that integrate cache co-
herency as transmitted over the Lock Channel in the extension to
the OBee hybrid electronic/optical lock scheme. 9
The data structure which captures the state of a barrier in the hybrid
electronic/optical scheme under OBee. 102
The format of messages sent over the Barrier Channel in the hybrid
electronic/optical scheme under OBee. 103
The monitoring algorithm that each node follows in processing traf-
fic on the Barrier Channel. 0. 103
The algorithm a node follows to implement the BARRIER-WAIT com-
mand in the hybrid barrier scheme. 104
The monitoring algorithm that each node follows in processing traf-
fic on the Barrier Channel for fuzzy barrier semantics.. 109
The algorithm a node follows to implement the BARRIER-WAIT com-
mand for fuzzy barrier semantics in the hybrid barrier scheme. . . . 109
The structure of the F&OP Definition Table in the purely optical
RF&OP scheme. . . 0 o 0 0000000 115
The data structure associated with each target V in the hybrid
F&OP scheme.0 oo 118
The format of a message transmitted over the F&OP Channel. . . . 119
The monitoring algorithm each node follows in the hybrid F&OP
scheme. L L 119

The minimum and maximum F¢ times for idle load for small fixed

xX1v

41

42

43

44

45

46

47

48

49

20

The minimum and maximum F¢ times for idle load for large fixed

The minimum and maximum F¢ times for idle load for small fixed
T=050.00 . . L
The minimum and maximum F¢ times for idle load for large fixed
7=2500.0.

The minimum and maximum F¢ times for high load for small fixed

The minimum and maximum F¢ times for high load for small fixed
T=050.0.
The minimum and maximum K¢ times for high load for large fixed
T=>500.0.
The minimum and maximum F;, times for idle locks for small fixed
N = 50. The “po” and “hy” represent the purely optical and hybrid
schemes respectively. L L L
The minimum and maximum £, times for idle locks for large fixed
N = 500. The “po” and “hy” represent the purely optical and
hybrid schemes respectively.
The minimum and maximum F;, times for idle locks for small fixed
7 = 50.0. The “po” and “hy” represent the purely optical and

hybrid schemes respectively.

XV

131

131

133

133

142

142

143

52

23

o4

5]

57

28

The minimum and maximum £, times for idle locks for large fixed

7 = 500.0. The “po” and “hy” represent the purely optical and

hybrid schemes respectively. 0. 143

The minimum and maximum £y, times for busy locks for small fixed

N = 50. The “po” and “hy” represent the purely optical and hybrid

schemes respectively. L 144

The minimum and maximum £, times for busy locks for large fixed

N = 500. The “po” and “hy” represent the purely optical and

hybrid schemes respectively. 144

The minimum and maximum FEj, times for busy locks for small fixed

7 = 50.0. The “po” and “hy” represent the purely optical and

hybrid schemes respectively. 145

The minimum and maximum Fj, times for busy locks for large fixed

7 = 500.0. The “po” and “hy” represent the purely optical and

hybrid schemes respectively.00 145

The minimum and maximum Fg times for last arrival for small fixed

N = 50. The “po” and “hy” represent the purely optical and hybrid

schemes respectively.o oo 155

The minimum and maximum FEp times for last arrival for large

fixed N = 500. The “po” and “hy” represent the purely optical and

hybrid schemes respectively. 1

The minimum and maximum FEg times for last arrival for small

fixed 7 = 50.0. The “po” and “hy” represent the purely optical and

HY)

hybrid schemes respectively. 0. 156

XVi

60

61

62

63

64

65

66

The minimum and maximum FEp times for last arrival for large
fixed 7 = 500.0. The “po” and “hy” represent the purely optical
and hybrid schemes respectively.
The minimum and maximum Fg times for simultaneous arrival for
small fixed N = 50. The “po” and “hy” represent the purely optical
and hybrid schemes respectively.
The minimum and maximum Fg times for simultaneous arrival for
large fixed N = 500. The “po” and “hy” represent the purely optical
and hybrid schemes respectively.,
The minimum and maximum Fg times for simultaneous arrival for
small fixed 7 = 50.0. The “po” and “hy” represent the purely optical
and hybrid schemes respectively.,
The minimum and maximum Fg times for simultaneous arrival for
large fixed 7 = 500.0. The “po” and “hy” represent the purely
optical and hybrid schemes respectively.
The minimum and maximum FEp times for single command small
fixed N = 50. The “po” and “hy” represent the purely optical and
hybrid schemes respectively.
The minimum and maximum FEp times for single command large
fixed N = 500. The “po” and “hy” represent the purely optical and
hybrid schemes respectively.
The minimum and maximum FEp times for single command small
fixed 7 = 50.0. The “po” and “hy” represent the purely optical and

hybrid schemes respectively.

67

68

69

70

71

72

The minimum and maximum FEp times for single command large
fixed 7 = 500.0. The “po” and “hy” represent the purely optical
and hybrid schemes respectively.
The minimum and maximum FEp times for multiple command arrival
for small fixed N = 50. The “po” and “hy” represent the purely
optical and hybrid schemes respectively.
The minimum and maximum Ex times for multiple command arrival
for large fixed N = 500. The “po” and “hy” represent the purely
optical and hybrid schemes respectively.
The minimum and maximum FEx times for multiple command arrival
for small fixed 7 = 50.0. The “po” and “hy” represent the purely
optical and hybrid schemes respectively.
The minimum and maximum FEp times for multiple command arrival
for large fixed 7 = 500.0. The “po” and “hy” represent the purely
optical and hybrid schemes respectively.
The granularity ratio of computation to lock acquisition time as a

function of RISC CPU processor speed.

xViil

Summary

This thesis examines how optics can be used in general purpose parallel computing
systems. Two basic assumptions are made. First, optical waveguide communica-
tions technology will continue to mature and become more and more prevalent
in smaller and smaller scale environments. Second, electronic computational ca-
pabilities will continue to increase for at least the next decade. Thus, this re-
search explores ways in which optical waveguide communications can be combined
with traditional electronic computing elements to support general purpose paral-
lel computing. The specific question asked is, “How can the properties of optical
waveguides give rise to architectural features useful for general purpose parallel
computing?” The answers to this question are developed in the context of a dis-
tributed shared memory computing design called OBee. This work defines the
OBee design, a specific implementation, based on optical waveguides, of a previ-
ously developed, more abstract architecture named Beehive. The basic building
block of OBee’s physical optical architecture is an Optical Broadcast Ring (OBR).
The thesis defines how one or more waveguides (or wavelengths) are arranged
in varying topologies; it also defines several different access protocols. Together,
a particular combination of topology and access protocol define a given OBR'’s
properties. The OBee design employs a particular OBR to define a specific im-

plementation of Beehive’s reader initiated cache coherency protocol. The OBee

X1X

design uses two different OBRs to define two distinct implementations of Bee-
hive’s sole synchronization primitive, locks. As improvements to Beehive, OBee
adds two more synchronization primitives, barriers and Fetch-and-OP. The OBee
design uses two different OBRs to define two distinct implementations of barri-
ers; similarly, it uses two different OBRs to define two distinct implementations of
Fetch-and-OP. Analytical evaluations of the performance of the raw architectural
primitives are presented which show the primitives can be executed in reasonable
amounts of time. The thesis concludes that optical waveguides can provide more
than just high speed data transmission since the OBee design demonstrates that
command primitives can be directly built from OBRs’ properties. Several ques-
tions for future research pertinent specifically to OBee and generally to optics in

computing are enumerated.

XX

Chapter 1

Introduction

Over the years there has been much research into the role that optics can play
in computing [5, 7, 23]. For certain specialized analog computations (e.g., signal
processing or matrix-vector multiplication), optics is clearly well suited. However,
the role of optics in digital or general purpose computing has not been so clear.
Initial attempts have been made at constructing elementary computers from optical
computational elements [14, 35, 36, 44, 45, 66], but these efforts cannot compete
with the power of current electronic computing elements such as the DEC Alpha
chip [21].

In contrast to the primitive state of optical computational elements, the
state of optical communications is much more mature. The use of optical com-
munications has become quite commonplace and practical in large-scale transmis-
sions systems (e.g., long-haul and intracity voice and data transmission) [6, 47].
Researchers also believe that because of the physical properties of electrical buses
and interconnects [20, 24] that limit their bandwidth and interconnect distance,
optical interconnects will eventually be necessary for board to board, module to
module, chip to chip, and even intrachip communications in computer systems
[11].

There are several observations regarding communication and computation

which have led to this research:

o the present-day, commonplace large-scale communications systems rely upon

the well developed technology of optical waveguides;

o the bandwidth potentially available on a single waveguide, because of the

high frequency of light, is several tens of Thits/sec;

e as optical waveguide communications technology continues to mature, it is
being incorporated into small-scale transmission environments such as uni-

versity campuses and individual buildings;

o electronic computing elements such as CPUs are quite advanced and continue

to improve in their capabilities.

Therefore, because of these observations, this research has two motivating as-
sumptions. First, optical waveguide communications technology will irreversibly
continue to replace electrical communications in smaller-scale environments for
reasons such as the high bandwidth and favorable engineering properties (e.g., low
crosstalk and immunity to electromagnetic interference). Second, electronic com-
puting capabilities will continue to increase immensely. For example, Intel Corp.
has a “Project 2000” in which it expects to place 100 million transistors on a single
one square inch chip by the year 2000.

Previous researchers’ work, as will be elaborated upon in Chapter 3, for
the most part, has been concerned with how high speed data rates (greater than
Gbit/sec) can be engineered. However, such research has ignored other potentially

useful properties of optics. Therefore, the research in this thesis takes a different

direction. On the basis of the two motivating assumptions given above, this re-
search examines how properties of optical waveguides (other than just high speed
data rates) can be combined with the mature computational capability of electron-
ics in the design of a general purpose parallel computer architecture. Thus, this

researches question can be summed up as:

If optical waveguides are used in interconnecting electronic computa-
tional elements, how can the properties of the optical waveguides be
translated into architectural features for general purpose parallel com-

puters?
In order to answer this question, we have kept three goals in mind:
1. the purpose or application of the machine;
2. an appropriate logical architecture;
3. the manner in which the hardware can support the first two goals.

The answer to our first goal comes from our earlier stated interest in general
purpose parallel computing, i.e., in the scope of this research, we have not been
interested in designing a computer architecture for specific applications such as
image understanding, neural networks, weather and climate modeling, or quantum
chromodynamics calculations. Rather, our goal has been an architecture to support
computing for any application which can be parallelized.

The remainder of the thesis deals with the second and third design goals,
and is organized as follows. Chapter 2 briefly reviews various logical parallel archi-

tectures and describes the specific logical parallel architecture for which our optical

designs are aimed. The properties of the physical optical communications architec-
ture that we have developed are described in Chapter 3. In Chapters 4 and 5 we
show how our optical hardware provides support for cache coherency and various
synchronization primitives which are useful in parallel programming. Chapter 6
presents some evaluations of the proposed architectural features. Chapter 7 gives
the conclusions of this research and directions for future research.

By satisfying the second and third design goals, this research has generated
several answers to the earlier stated question of how to use optical waveguides in

constructing architectural features:

e the bandwidth of the optical waveguide is divided into multiple, logical chan-

nels;

e channels are pre-assigned their function in the architecture;

e low channel utilization is not frowned upon;

e the physical optical communications architecture can provide direct hardware

support for useful command primitives.

These answers should be viewed by the reader as the themes which tie together
the thesis. As the reader progresses through the thesis, he will find these themes

developed and explained.

Chapter 2

Architectural Description

As stated in Chapter 1, the computer architect must keep in mind an appropriate
logical architecture. In this chapter we describe a logical architecture called Dis-
tributed Shared Memory (DSM), a specific DSM architecture called Beehive, and

our proposed optical DSM architecture called OBee (for Optical Beehive).

2.1 Distributed Shared Memory (DSM)

Since, as explained in Chapter 1, our stated application is for general purpose
parallel computing, the most appropriate logical architecture is the Multiple In-
struction, Multiple Data (MIMD) organization. The two classical types of MIMD
architectures are distributed memory (message passing) and shared memory struc-
tures.

In the distributed memory architecture the nodes work relatively indepen-
dently (loosely coupled). Each node has its own memory which no other node can
access, as illustrated in Fig. 1. In order for a node to coordinate and communicate
its computation with other nodes, explicit messages are sent via an interconnection
network. Proponents of this architecture believe that it can accommodate a large

number of processors. This contention is based on the fact that in distributed

Local Local
Memory Memory

Processor Processor

Interconnection Network

Figure 1: Block diagram of the Distributed Memory architecture.

memory architectures, as processors are added, memory and the communications
capability of the interconnection network are increased proportionally. The In-
tel iPSC/2 and Intel Touchstone Delta machines are well known examples of the
distributed memory architecture.

In contrast, the nodes in a shared memory architecture work together much
more closely (tightly coupled). The processors all share a common, global memory
which is not associated with any particular one of the processor nodes, as illus-
trated in Fig. 2. Processor nodes may also have their own private, local memory
which other nodes cannot access. Coordination and communication among proces-
sors is easily accomplished by their sharing the appropriate data structures in the
global memory. Strictly speaking, in this definition, processor nodes all have uni-
form memory access, i.e., any processor’s access to any part of the global memory

is the same as any other’s access. The shared memory architecture is favored by

Processor ° ° ° ° Processor

Interconnection Network

Memory Memory
Module Module

Figure 2: Block diagram of the Shared Memory architecture.

those who maintain that it is much easier to program than a distributed memory
architecture. The shared memory architecture proponents base this contention on
the fact that the global memory makes the parallel machine look very similar to
a standard uniprocessor computing model: programmers do not worry about de-
composing the computation into parts which must send messages from one part to
another. A well known example of the shared memory architecture is the Sequent
Symmetry machine.

Thus, the criticism of distributed memory is that it is hard to program
efficiently, and the criticism of shared memory is that it does not support a large
number of processors well. Recent attempts to remove both of these criticisms
in one architecture have resulted in a parallel architecture known as Distributed
Shared Memory (DSM). In the DSM architecture the global memory is partitioned

among all the computing nodes, i.e., the global memory is physically distributed

Memory Memory
e o o o |Processor

Module Module

Processor

Interconnection Network

Figure 3: Block diagram of the Distributed Shared Memory (DSM) architecture.

among the nodes, as illustrated in Fig. 3. Each computing node has access to both
the part of global memory physically associated with it and to all the other parts
physically associated with the other nodes. The part of global memory physically
associated with a node is called that node’s Nearest Shared Memory (NeSM), and
the parts physically associated with the other nodes are called the Remote Shared
Memory (ReSM).

Even though the DSM architecture provides a logical global memory, a
node’s access to memory is non-uniform. This non-uniform memory access occurs
because a node has preferential (in a restricted sense) access to its NeSM. The
node’s access to its NeSM is preferential in the sense that its requests of that
memory module can be made via a dedicated connection, whereas other nodes’
requests to that memory module (which they see as ReSM) must be made via
an interconnection network. A node’s access to its NeSM is not preferential in
the sense of having higher priority than remote nodes, just preferential in terms

of physical access. A commercial example of the DSM architecture is the BBN

Butterfly. The Dash project at Stanford [57] is an academic DSM machine.

2.2 Beehive

In Section 2.1 only a very high logical level of abstraction for the DSM architec-
ture was described. The next level down of logical abstraction needs to define
some more specific characteristics. The Beehive definition (proposed by Lee and
Ramachandran [55]) specifies some of these details.

Beehive’s overall logical architecture follows the organization shown in Fig. 3
for a DSM architecture. The Beehive definition does not specify what the inter-
connection network should be—it may be any arbitrary network (e.g., a bus, a
multistage network, a hypercube, a mesh, etc.). There are some other details
which the Beehive definition does define. Some of these details are strictly hard-
ware (as illustrated in Fig. 4), and some are definitions of how the architecture
should behave.

The “CPU” block in Fig. 4 represents the computational capabilities of a
Beehive node, but the Beehive definition does not specity what kind of computa-
tional capabilities exist or how they are implemented.

From the discussion in Section 2.1 the reader should realize that a cost of
providing a global memory when the memory modules are physically distributed
among the nodes is the possible long latency of a ReSM access. The hardware
solution for alleviating this problem is to provide each node with a private cache
(as illustrated by the “Cache Controller” and “Cache” blocks in Fig. 4). The

cache stores local copies of accesses to both its NeSM and ReSM. Thus, the

NeSM Interconnection

> Network
A
A 4
Network Cache
Controller - > Controller - » CPU
A A
A 4
Write <
Buffer Cache

Figure 4: Block diagram of the Beehive node architecture.

CPU issues a normal memory reference and does not know where that reference
resides. The Cache Controller intercepts the memory reference; if the reference
can be satisfied in the Cache, it is returned immediately to the CPU. If the
memory reference cannot be satisfied by the Cache, the Cache Controller asks the
“Network Controller” to act upon the memory reference. The Network Controller’s
responsibility is to determine whether the memory reference can be satisfied by
the node’s NeSM or whether the request must be put on to the “Interconnection
Network” and sent to the appropriate ReSM.

Although the local Cache can reduce the long latency of ReSM accesses,
the cost for this solution is the introduction of the cache coherency (or memory
consistency) problem [75]. Since multiple copies of the same global memory loca-

tion may exist simultaneously in an arbitrary number of the local, private caches,

10

some mechanism must be used to enforce a consistent view of global memory for
the programmer. Without such a consistent view the programmer cannot write a
parallel program that will execute correctly (i.e., give the expected results).

From the programmer’s standpoint the simplest memory consistency model
is sequential consistency as proposed by Lamport [53]. Sequential consistency
states that the multiprocessor execution of a parallel program should have the same
effect as a sequential execution of any arbitrary, allowed interleaving of the memory
operations of all the parallel tasks of the program. An allowed interleaving is one
that preserves the program order of the memory operations of each independent
parallel task. As shown in Fig. 5, from the viewpoint of the task’s execution,
any memory operation (read/write) must become visible everywhere else in the
system before the next memory operation may be issued. Given the sequential
consistency model, the programmer can use ordinary read and write operations to
achieve synchronization among the parallel tasks. Thus, we say that sequential
consistency imposes a strong ordering upon all memory operations regardless of
their type.

Consider that memory operations may be divided into two types: shared
data accesses and synchronization accesses. This division may be used to define a
weak memory consistency model. In a weak memory model shared data accesses
are not necessarily consistent until a synchronization point is reached. Therefore,
multiple copies (located in different local caches) of shared data can be temporarily
inconsistent with each other. A synchronization point is used to bring the copies
back into a consistent state. We say that the synchronization points are strongly

ordered. The reason for using a weak memory model is to improve the performance

11

[R/W [OR/W
NP-Synch

Y N T S

- - . I R I I W I

Figure 5: The sequential consistency (SC) and buffered consistency (BC) memory
model constraints. Arrows indicate dependencies.

of the program since the physical architecture can implement features to take
advantage of the weak memory model.

Various weak memory models have been proposed: weak consistency [22],
release consistency [33], and buffered consistency (BC) [55]. Beehive first defined
the BC model. The BC model, as shown in Fig. 5, has considerably different
constraints on the dependencies of memory accesses as compared to sequential
consistency. First, memory operations are divided into two classes, reads/writes
and synchronization points. Reads/writes are themselves divided into private and
shared accesses. Private reads/writes are assumed to be to data owned and ac-
cessed by only one task. Shared reads/writes are assumed to be to data shared

by multiple tasks. Synchronization points are themselves divided into NP-Synch

12

and CP-Synch points. A NP-Synch (Non-consistency Preserving) point defines
when a Synchronization Epoch (SE) begins. The matching CP-Synch point defines
when the SE ends. The salient feature of a SE is that while inside a SE, only the
task executing the SE has a consistent view of the shared data; no guarantee is
made to other tasks about the state of the shared data. At the end of the SE the
CP-Synch point is executed. Execution of the CP-Synch point guarantees that all
other tasks now have a consistent view of the shared data contained within that
SE. When the CP-Synch point has completed execution, then (and only then) may
the task continue its execution.

The second constraint of the BC memory model is that no guarantee is made
about the consistency of reads/writes outside a SE. The programmer normally
would be accessing private data that do not require any consistency (since our
assumption is that private data are “owned” by only one task and can only be
accessed by that task) in such regions. However, the Beehive definition does not
disallow the programmer from accessing shared data outside a SE; the programmer
must keep in mind that a read to such shared data might not return the latest
(consistent) value and that a write might result in incorrect program operation.

The BC model’s third constraint is that when a CP-Synch point is reached,
only writes to shared data must be completed before the CP-Synch operation is
deemed completed. The CP-Synch point need not wait on reads to complete; the
programmer may improve program execution efficiency by “hoisting” some reads
into the SE before issuing the CP-Synch instruction. Keeping in mind the previous
discussion of correctness, the reader sees that such reads should be to private data

or to shared data for which a possible lack of consistency is not a problem.

13

The “Write Buffer” block in Fig. 4 is the additional hardware needed to
implement the BC memory model. Private reads/writes and shared reads are han-
dled by the Cache Controller as previously described. Shared writes, however, are
placed into the Write Buffer by the Cache Controller and are eventually propagated
by the Network Controller over the Interconnection Network. This propagation of
the shared writes eventually brings the caches into a consistent state; a more de-
tailed discussion of the particular cache coherency protocol is given in Chapter 4.
Because the shared writes are placed into the Write Buffer, as far as the CPU is
concerned, the shared writes have completed, and the CPU may continue its exe-
cution stream. When the CPU reaches a CP-Synch point in its execution stream
and issues the CP-Synch instruction, it stall until all the pending shared writes
in the Write Buffer have been propagated to all other nodes and until all other
appropriate copies of that data have been updated. Once these actions have taken
place, the CP-Synch point is deemed to be completed.

The reader can now see how the program’s performance is improved by
allowing the hardware to exploit the weak memory model. When a task issues
a shared write, the task no longer necessarily has to wait until the shared write
has been communicated everywhere. The latency of the shared write is being
overlapped with the task’s computation in the SE. In addition, if the structure of
the program permits, private reads which logically would occur after the CP-Synch
point of the current SE may be placed (“hoisted”) inside the SE. That is, shared
write latency can be overlapped with subsequent private reads. Therefore, in the
ideal SE, when the CP-Synch instruction is issued, the Write Buffer has already

been flushed (because the shared writes have been propagating to the other nodes

14

while the task performed other instructions), and the CP-Synch instruction can

complete without delay.

2.3 OBee

OBee (Optical Beehive) is our proposed hybrid electronic/optical DSM architec-
ture which builds upon the Beehive definition given in Section 2.2. The OBee
definition specifies some more details which Beehive leaves undefined.

The first additional detail that OBee specifies is that its interconnection
network is not the arbitrary interconnection network of Beehive. The intercon-
nection network consists of multiple Optical Broadcast Rings (OBRs) which are
based on optical waveguides; OBRs will be described in detail in Chapter 3. For
now, suffice it to say that by having a specific interconnection network, OBee can
effectively support additional features which Beehive cannot.

A second detail in OBee that differs from Beehive is the implementation of
the cache coherency protocol. Although the reader initiated protocol has the same
logical behavior in both Beehive and OBee, the implementation is different because
of the use of OBRs in OBee. The details of reader initiated cache coherency and
the OBee implementation are given in Chapter 4.

Finally, the third detail that differentiates OBee from Beehive is the addi-
tional hardware support for synchronization primitives. Beehive defines how locks
are implemented, but as illustrated in Fig. 6, the OBee architecture utilizes special-
ized hardware for the lock, barrier, and FEEOP synchronization constructs. This

specialized hardware is both electronic and optical, depending upon the particular

15

Optical Broadcast
NeSM - Rings (OBRs)
Network) Cache < > BI;;;S;
Controller < > Controller) F&OP
Hardware
Write <
Buffer Cache » CPU

Figure 6: Block diagram of the OBee node architecture.

implementation. In addition, OBee utilizes the properties of the OBRs to imple-
ment these three synchronization primitives. The details of these synchronization

primitives’ implementation are discussed in Chapter 5.

16

Chapter 3

The Optical Broadcast Ring (OBR)
Architecture

As described in Section 2.3, the OBee architecture uses a specific interconnection
network rather than the arbitrary interconnection network of Beehive. The OBee
interconnection network is based on an optical waveguide architecture that we call
a Optical Broadcast Ring (OBR). This chapter presents a very brief description of
optical waveguides (with references for more detail), reviews the pertinent previous
work in optical waveguide architectures, and then discusses our proposed OBR

architecture.

3.1 Description of an Optical Waveguide

Light can be transmitted in free space or via a dielectric waveguide [47, 65]. An
optical fiber is an example of a light conducting waveguide and is normally cylin-
drical in form (see Fig. 7). When the waveguide is constructed properly and the
light enters at an allowed angle, the waveguide confines the optical electromagnetic
energy within the core and guides the light in a direction parallel to its axis. Since
the index of refraction of the cladding is less than the index of refraction of the

core (Nejad < Neore), then one can understand the light’s being confined in the core

17

Core

Cladding

Figure 7: The structure of an optical fiber.

by applying Snell’s law of total internal reflection at the core and cladding inter-
face. However, to understand fully the details of how light propagates through
the waveguide, Maxwell’s equations, for the particular geometry of the waveguide,
must be solved. The interested reader should refer to texts such as by Keiser [47]
or Midwinter and Guo [65] for more information about the physical nature of op-
tical waveguides. For our purposes in the rest of this thesis, it is sufficient to know
that light of many different wavelengths (each wavelength being a logical channel

in our usage) can be propagated via optical waveguides.

18

3.2 Prior Optical Waveguide Architectures

A number of optical waveguide architectures have been previously proposed. Some
of these architectures are “paper designs;” others have progressed to the prototype
stage. We classify these architectures into two types: those designed as an optical
substitution of a computer’s “system backplane” and those designed for Local Area

Network (LAN) communications.

3.2.1 System Backplane Architectures

The Heidelberg Polyp [60, 61, 81, 82] is a tightly coupled multiprocessor shared
memory machine in which the original multiple global electrical buses are replaced
by optical buses. Each optical bus is implemented with a star topology. In the
optical bus the control signals (such as bus lock, address strobe, read /write, address
acknowledge, etc.) and the address and data lines that appear in parallel in the
electrical version are serialized and packetized for transmission on the optical fiber.
The recipient processes these signals and in a similar manner asserts/deasserts the
appropriate signals and lines in response. This design was used so that the optical
bus could be made plug compatible with the original electrical bus hardware. The
initial version has a transfer rate of 0.85 Mbyte/sec per bus.

A prototype optical bus was built with a “light guiding plate” [38] at Duis-
burg University. This implementation uses a “metal-clad glass plate” (or a plate
made of some other optically transparent material). The optical signals are prop-
agated through this plate and are received through small coupling windows at the

destinations. The prototype achieved a transfer rate of 72 Mbit/sec.

19

Two more recent optoelectronic parallel bus systems have been developed
and tested at Duisburg University [41, 42, 49]. One system is called the “Optical
Parallel Plate Stack” (OPPS). It consists of a set of circular optically transparent
plates which are covered with a cladding of lower refractive index than the plates.
The edges of the plates do not have the cladding material. The plates are placed in
a stack and optically isolated from each other. Boards which are to communicate
with each other via these plates are placed perpendicular to the edges of the plates;
thus, the optical bus signals are coupled in and out of the plates through the narrow
peripheral edges of the plates. The second system is called the “Optical Parallel
Strip Plate” (OPSP). It consists of a rectangular board on to which are placed
a number of optically transparent strips running the length of the board. These
strips are covered with with a cladding of refractive index less than that of the
strips. A number of strips, all running parallel to each other, are placed on to the
board and optically isolated from each other. Boards which are to communicate
with each other via the optical strips are connected perpendicular both to the
optical board’s surface and to the direction in which the strips run. The points
on the optical strips at which the communicating boards are coupled have the
cladding removed so that light may be transmitted and received into and from the
strips. The prototype experiments on these systems indicate that data rates in
the vicinity of 1 Gbit/sec are feasible for plates 100 mm in diameter (the OPPS
system) and strips of length 500 mm (the OPSP system).

The Delft Parallel Processor is an ambitious multiprocessor project that

aims ultimately to interconnect fully 1000 processors with each other [17, 18, 19,

20

26, 27, 28, 29, 30, 31]. The designers’ goal is for each processing element to trans-
port every 50 nsec (one clock cycle) one 64-bit piece of data to every other process-
ing element (including itself). That is, the input buffer of every processor contains
a copy of every 64-bit output buffer of every other processor. This interconnection
method is labeled the “newspaper” broadcast concept and is equivalent to a fully
interconnected network of processors. A naive implementation would consist of
64 x N? fibers (one fiber for every bit; N the number of processors). The designers
maintain that CAD/CAM techniques would allow this many fibers to be wired.
However, the designers have also been working on developing a free space “kalei-
doscope” optical multiplexer which takes the 64 fibers corresponding to the output
buffer of a node and creates an optical image that can be transmitted to all the
processors’ input buffers. An initial laboratory model of the kaleidoscope has been
built which fully interconnects 9 nodes. The laboratory model requires 576 input
fibers (9 nodes x 64-bit words) and 5184 output fibers (9 nodes each receiving 9
64-bit words).

The Melbourne University Optoelectronic Multicomputer Project has been
started by one of the researchers on the Delft project [72, 73, 74]. This project
aims to provide “virtual” full interconnection between processors by using a homo-
geneous topology of sub-networks. Each sub-network is a “fiber trunk,” a bundle
of fibers which provides full interconnectivity among all the nodes on that trunk.
Nodes in different sub-networks may communicate by having their messages re-
layed across the sub-networks.

Honeywell and Thinking Machines Corp. investigated the use of optical

fibers in the Connection Machine (CM-2) [46, 54]. A 64K processor Connection

21

Machine involves connecting 4K processing elements (each processing element con-
tains 16 processor cells) via a 12-dimensional hypercube network. In the physical
structure of the Connection Machine, the board level implements dimensions 0-4
via traces on the board, the cardcage implements dimensions 5-8 via a backplane
connecting the boards in the cardcage, and the cabinet implements dimensions
9-11 via ribbon cables connecting the cardcages. Dimensions 0-8 define a sub-
cube, which consists of 512 processing elements (which equals 8K processors) in
one cardcage. In this joint project, optical fibers were used to replace the ribbon
cables in dimensions 9-11, i.e., to connect the 8 subcubes that make up a 64K
Connection Machine. The initial optical implementation was reported to run at
400 Mbit/sec. The next step is for the optical link to run at over 1 Gbit/sec, but
those results have not been reported yet.

The Nectar system is a fiber optic “network backplane” to connect hetero-
geneous computers [4, 50, 51, 52, 64]. It is designed to exploit coarse level (task
level) parallelism by connecting different types of machines together. A design
goal was that a user process on one node be able to send a message to another
user process on another node in 100 usec (excluding the transmission delay on the
fibers). The current system uses fibers with a data rate of 100 Mbit/sec. Future
work includes upgrading the links to Gbit/sec transmission rates.

International Computers Limited (ICL) of the United Kingdom uses an
interconnection network called MACROLAN in their ICL Series 39 Level 30 main-
frame system [13, 79, 80]. The MACROLAN is a logical token-passing ring system
which connects processing nodes together. It is implemented with optical fibers

and a central “port switch” unit. Each node is connected via dual fibers (one for

22

transmitting, one for receiving) to the port switch, which is an active unit, rather
than to each other. The logical ring is implemented as follows. Suppose station 1
sends a “go ahead” (GA) message to the port switch. The port switch responds
by sending this GA message to the nezt station in sequence, station 2. If station 2
has nothing to transmit, it returns the GA message to the port switch, which then
sends the GA message to station 3, the next in the sequence. When a station
receives the GA message and has something to transmit, it returns the “start of
frame” (SOF) message to the port switch. The port switch now realizes that the
station has a message to transmit, and the port switch activates its broadcast
mode. The message from the transmitting station is broadcast to all the other
nodes. Upon finishing its message, the transmitting station sends the GA message
back to the port switch, and the port switch discontinues its broadcast mode and
resumes its polling operation. Thus, the GA message is the equivalent of a token
which the stations pass around the ring and hold on to as necessary. The initial
MACROLAN speed was 50 Mbit/sec. The name MACROLAN is significant be-
cause the designers consider the connection among the processor nodes to be a
Local Area Network. The designers wanted the flexibility of locating nodes some
distance away from each other but also wanted a better transmission speed than
LANSs of the time.

An optical implementation of a conventional byte-wide time division mul-
tiplexed bus is being developed [15, 67]. This project is part of the ESPRIT 11
OLIVES program. Parallel optical fibers contained in a ribbon assembly are used
to transmit the data bits in parallel. The fiber ribbons connect into multiple pas-

sive fiber star couplers such that the data transmitted on fiber #1 of a node is

23

broadcast to the receiving fiber #1 of every node. Therefore, parallel data words
which are transmitted from any one node are broadcast to all the other nodes.
This system acts as simple high speed optical bus since only one node can trans-
mit at a time. There are 12 fibers in each ribbon, one for the clock signal, one
for parity checking, and 10 for data. Simulation studies indicate that each rib-
bon would have a 32 Gbit/sec transmission rate (3.2 Gbit/sec per data line). A
demonstration prototype of this architecture is being constructed.

The SYMFONET physical architecture [15, 48, 88] can be used to imple-
ment a fully interconnected topology. FEach node is connected by a fiber to a
central passive star. Fach node transmits on a wavelength unique to itself; thus,
for N nodes in the system, there are N wavelengths used. Each node also has NV
receivers, each one tuned to a different one of the transmitting wavelengths. Since
each node broadcasts on a different wavelength and receives all wavelengths, each
node hears every nodes’ message (including its own). Furthermore, all the nodes
are synchronized so that all the messages are received simultaneously by all the
nodes; each set of N messages (one message broadcast by each node) forms one
frame. Messages within a frame may be arbitrarily ordered by, say, wavelength,
if this property is useful. Ref. [88] reported that an initial implementation would
be expected to have eight nodes each broadcasting at 1.2 Gbit/sec; a subsequent
implementation would be expected to have 32 nodes broadcasting at 2.4 Gbit/sec
each.

An architecture of optical buses called MONET (Multidimensional Opti-
cal Network) based upon “D-fiber” has been proposed [39, 58, 59]. The reported

D-fiber technology allows, through the combination of a “D” fiber geometry and

24

erbium doped distributed amplification, a large number of taps (Ref. [59] computes
170 based upon current technology). This physical architecture is then proposed
as a solution for the MONET system architecture. In the MONET system archi-
tecture, three multiplexing techniques are used. First, data can be transmitted
over different physical waveguides—space multiplexing. Second, on a given wave-
guide, different wavelengths can be used—wavelength multiplexing. And third, for
a given wavelength on a given waveguide, time multiplexing from different sources
can occur. Prototype hardware has been built which demonstrates the feasibility of
the D-fiber technology, but no actual MONET system architecture demonstration
has apparently been built yet.

A different technique to allow a large number of taps was reported by Pruc-
nal et al. [68]. The authors report that the tapping ratio in their optical taps can
be continuously varied and that the tapping ratio can be made extremely small,
which allows the tapping of an optical signal with high impedance. Therefore, the
combination of low loss and high impedance allow a large number of these taps
to be connected to a fiber waveguide. The researchers’ theoretical results show
that a very large number (several thousand) of taps could be supported on one
fiber; their initial engineering experiments demonstrate that approximately 50 taps
could be attached to the fiber, but the authors expect the engineering capabilities
to increase.

The Multiple Channel Architecture (MCA) was proposed by Wailes and
Meyer [86, 87]. In this proposed architecture, the high bandwidth of an optical
fiber is divided into multiple channels; each channel is called a virtual bus. The

researchers claim that current technology can support up to a 1000 channels on a

25

single fiber, each channel having a data rate of 100-200 Mbit/sec; they believe that
not-too-distant technology improvements would allow each channel to transmit at
1 Gbit/sec. In the MCA scheme, each virtual bus transmits its data serially using
the well known CSMA/CD arbitration protocol. The MCA scheme proposes that
channels be treated as just another resource in the parallel architecture; a parallel
program should be assigned a certain number of channels when it is executed just

as it is assigned processors, memory, and [/O units.

3.2.2 LAN Architectures

Because of the high bandwidth of optical fibers, much interest has been expressed
in adapting this technology to Local Area Networks (LANs). Various strategies
have evolved for accessing the bandwidth. Since the IEEE 802.3 standard protocol
(commonly known as Ethernet or CSMA/CD) has been popular, attempts have
been made to implement it in optical fibers; Fibernet [76] and ISOLAN [71] are
two examples. Maxemchuk [62] outlines several variations on “random access”
protocols for optical fibers. These variations are based upon ALOHA, CSMA, and
CSMA/CD.

Another strategy is represented by FDDI [69, 70], which is a token ring
protocol. The DQDB protocol [83] is a reservation access scheme employing two
unidirectional channels (data on one channel flows in the opposite direction from
the other channel).

A protocol strategy called attempt and defer is most closely related to our

work. These protocols (examples are U-Net [32], Expressnet [84], and D-Net [85])

26

make explicit use of the unidirectionality of the optical fiber. The unidirectional-
ity property comes naturally in optical fiber because the light (coming from the
transmitter) is easily coupled into the fiber in one direction.

The unidirectionality property is used by these protocols as follows. Sta-
tions monitor the activity on the waveguide (knowing that the signal comes from
only one direction). A station is allowed to attempt to access (i.e., transmit) the
waveguide when it detects no activity (no signal), also called the “end of carrier.”
However, an upstream station’s transmission can reach the station after it has be-
gun its transmission. The upstream station’s transmission will then collide with
the given station’s transmission. This collision is the given station’s signal to defer
(or cease) any further transmission. Since the collision between the two stations’
transmissions makes both transmissions unintelligible, then this technique neces-
sitates that each transmission have preamble bits (carrying no useful information)
which can be purposely garbled if need be. The station then resumes monitoring
the waveguide and waits for the next quiet time. These protocols can be termed
as having passive permission in accessing the waveguide: a station is not explicitly
told by an upstream station that it now has permission to access the waveguide.
Rather, the station keeps attempting to transmit (and defers as necessary) until
no upstream station’s transmission collides with its own transmission. These pro-
tocols are also known as tmplicit token passing protocols since, rather than passing
an explicit token signal from station to station, the stations use the “end of car-
rier” event as an implicit token. These protocols are also characterized as being
demand access because stations attempt to access the waveguide only when they

have something to transmit; the bandwidth of the channel is allocated to a station

27

only when it requires it.

Melhem, Chiarulli, and Levitan [12, 63] looked at various LAN protocols,
but they felt that none were entirely appropriate for a system backplane. Therefore,
they have developed a protocol (which they do not name, but which we designate
the MCL protocol after the authors’” names) which they feel is appropriate for a
system backplane. Although the researchers did not make the connection, the MCL
protocol is nearly identical in philosophy to the D-Net protocol (which is why we
discuss the MCL protocol in this section). The major difference is that whereas the
D-Net protocol uses what we have called the passive permission (attempt and defer)
access technique, the MCL protocol specifies that when a station has finished its
transmission, it will notify the downstream stations of that fact. A station knows
that it may access the waveguide without conflict when all upstream stations have
explicitly notified it that they are finished with their transmissions. We call this

technique an active permission access control method.

3.3 The Optical Broadcast Ring (OBR)

The major problem with the previously developed optical waveguide architectures
described in Section 3.2 is related to one of the themes of this thesis. Specifically,
all of the previous architectures are used as simple substitutions for the electrical
backplane. In all these architectures, the optical backplane is used just to trans-
mit the data faster. Even in the MCA scheme, in which the multiple channels are
to be allocated like any other system resource, the channels are just expected to

be high speed substitutions for electrical buses. One of the results of this thesis

28

is that we show that the physical optical architecture can be used not only as a
high speed transmission channel, but also that the optical architecture itself can
be used to implement useful parallel programming features. From our qualita-
tive study of system backplane and LAN architectures (as related in Section 3.2)
and our detailed simulation studies of TDMA, CSMA/CD (Ethernet), and CDMA
LAN protocols (previously reported in [16]), we concluded that existing optical
architectures were not appropriate to building useful general purpose parallel pro-
gramming architectural features. In this section we will describe our new physical
optical architecture; this description is fundamental to understanding how the par-
allel programming features described in Chapters 4 and 5 are implemented.

Several features of our Optical Broadcast Ring (OBR) architecture make it
different from previously proposed optical waveguide architectures in several ways.
First, the OBR architecture does form a logical ring. The ring property allows
signals and messages to be ordered by the placement of nodes on the waveguide.
Second, however, unlike a normal ring, the OBR architecture is not a point to
point topology. Each attached station taps the signal going by it and uses that
signal as it sees fit. A station does not “intercept” a signal on the OBR and decide
whether it should be rebroadcast to the next station. Third, the physical topology
(subsequently explained in detail) is such that every signal transmitted by a station
is automatically broadcast (if desired) to every station (including itself).

There are actually two OBR architectures. One OBR architecture imple-
ments an wired-0R transmission channel only; no explicit messages consisting of a

series of bits are transmitted. The second OBR architecture uses a control channel,

29

similar to the wired-OR OBR architecture, to arbitrate access to a high speed chan-
nel on which explicit messages are actually transmitted. Thus, in the first OBR
architecture, the wired-OR transmission channel forms one logical OBR channel
whereas the second OBR architecture uses two channels, a control channel and a

transmission channel, to form one logical OBR channel.

3.3.1 Wired-0R OBR

In the wired-0R OBR architecture no explicit bit messages are transmitted, i.e.,
no series of bits is sent over the waveguide. Instead, a message is represented by
the raising of the signal level. The transmitter is turned on and held on until
the “message” needs to be turned off, at which time the transmitter is turned off.
Therefore, the optical transmitters do not have to be modulated; they just have
to be able to inject some level of light into the waveguide. The optical receivers
need to be capable of detecting only the presence or absence of light; they do not
have to produce a modulated electrical signal to represent a stream of bits.

The first characteristic of this wired-OR OBR architecture is its topology,
shown in Fig. 8. Each node can have three taps into the channel. Depending upon
the architectural feature being implemented, not all three taps are necessary. The
“U” tap, which is optional (depending upon the architectural feature), is the sum
of the Upstream stations’ signals, i.e., the signal at the “U” tap is the wired-0R of
the Upstream stations’ signals. The “T” tap, which every node must have, is the
Transmit tap of the node via which its own signal is injected into the waveguide.

The reader should note that the optical signal is injected into the waveguide in

30

Node 1 e o o o Node N

IA ;I
I‘ rI

Figure 8: The wired-0R OBR architecture topology.

one direction only. In order to give this architecture a broadcast capability, the
waveguide loops back so that signals travel in the opposite direction from which
they originated. The “B” tap, which, like the “U” tap, is optional, is the wired-OR
of all of the nodes’ signals (including its own); thus, the “B” tap is the Broadcast
sum of all the nodes’ transmissions. The reader should realize that detecting the
precise level of the wired-0R optical signal is unimportant. The detector only needs
to determine if the input (“U” or “B”) tap’s optical signal is either zero (dark) or
at some level. The final component of the topology is the Pulse-Generator, which
is optional, depending upon the architectural feature being implemented. Its role
is to create a pulse of light periodically; more details are given below.

The wired-0R OBR architecture’s second characteristic is the access proto-
col. The access protocol determines how nodes competing to inject a signal into the

waveguide are allowed to access the waveguide. For the wired-OR OBR architecture

31

there are two access protocols; the choice between the two is dependent upon the
architectural feature being implemented (as explained in Chapters 4 and 5).

The first access protocol is very simple: whenever the nodes are permitted
to access the wired-OR OBR at all, no mediation among them is needed. A node
turns its signal on and off at will without regard to when any other node is turning
its signal on or off. From a physical viewpoint, this protocol works because the
OBR is acting like an OR gate. Since the level of the optical signal is unimportant,
multiple signals can arrive at an input tap simultaneously, i.e., signals do not
interfere with each other. From an architectural feature viewpoint, this protocol is
useful if the architectural feature does not need to know what upstream stations
are raising their signal or just needs to know when the “B” tap goes dark. The
Pulse-Generator is not needed for this protocol.

The second access protocol imposes an order on when nodes can raise and
lower their signal (via the “T” tap). Intuitively, the nodes act as follows. A node
is not allowed to raise its signal until it sees some signal level on its “U” input
tap. Once the node’s signal has been raised, the node cannot lower the signal
until it sees no signal level (darkness) on its “U” input tap. Thus, as long as some
upstream station is transmitting its signal, a node may turn on its signal (we say
that a node has jump-on permission, a property not present in the MCL protocol).
However, the earliest a node may turn off its signal is after all upstream nodes have
turned off their signals (turning off the signal is giving active permission to the

downstream node, a property not present in the D-Net protocol). The nodes’

32

behavior can be summed up by the following rules:

T WwHEN U (1)

T WwHEN U > drop time (2)

We use the following notation: {}T indicates turning on the “T” tap, {JT indicates
turning off the tap, U indicates the input signal at tap “U” is at some level, and U
indicates the input signal at tap “U” is zero (dark). The “drop time” specified in
Rule 2 comes about for the following reason. Suppose that a node did not initially
begin transmitting on “T” when it first saw “U” go high, but the node later needs
to begin transmitting. Rule 1 allows the node to transmit as long as “U” is high.
But, further suppose that just after the node saw that “U” was high and started
the physical process of turning on its transmitter, “U” went low. By the time
the node (call it ¢) gets its signal injected into the waveguide, a small amount of
darkness has already gone by ¢ and started toward 24 1. Therefore, node 2 4 1 will
see its “U” input tap go low (for a short period), then go back up to some level
(because it receives the raised signal from node ¢). The circuitry to implement
Rule 2 needs to ignore this drop time (via, e.g., an integrator).

The worst case length of the drop time can be determined by considering
that if the node used the “U” input signal to make its decision to turn on “T” just
as the tail end of the signal from node ¢z — 1 passes by “U”. then the tail of that
signal will have traveled some distance past “T” by the time node ¢ gets its signal
turned on through “T”. By using the optical geometry (shown in Fig. 9) and the

physical response time of the node, we can develop the following equation for the

33

“U?? ££T77

Figure 9: The wired-0R OBR drop time geometry.

drop time (in units of time):

u+t d

Cw Cuw

Td'rop S G +

The time G is the time for the electrical signal to be generated by the “U” detector
and propagate through the electrical circuitry plus the time to turn on the trans-
mitter at “T”. The distance u is the length of the tap “U” from the node to the
waveguide itself; the distance ¢ is the corresponding length of the tap “T”. The
distance d is the separation on the waveguide between the input tap “U” and the
output tap “T”. The parameter ¢, is the speed of light in the optical waveguide. If
we assume the parameters have values of G = 20 nsec, u =t = 0.01 m, d = 0.02 m,
and ¢, = 0.2 m/nsec (corresponding to an index of refraction in the waveguide of
1.5), then only the first term of the equation is significant, and T,,, < 20 nsec.
Lengthening the separation between the “U” and “T” taps (increasing the pa-

rameter d) to a large enough value would eliminate the the drop time, but there

34

are two problems with this solution. First, for G = 20 nsec, d would have to be
approximately 4 m, a length of waveguide which might not be easily engineered.
Second, and more importantly, signals would always be delayed at each node by
the 20 nsec just to account for and eliminate the worst case drop time; adding
such a delay at every node would add an unacceptable propagation delay penalty
for the entire system.

For simplicity in the notation, we assume for the rest of this thesis that the
drop time has been implicitly accounted for in the access protocol rules. Therefore,

Rule 2 becomes:
yT wueNn U (3)

The Pulse-Generator is needed in this access protocol in order to “restart”
the access cycle. The Pulse-Generator sends out a pulse of light when it sees its

input tap “I” go dark (for longer than the drop time) after having seen it go high:
P-G wHEN 1] (4)

We use the I| notation to mean the falling edge of the input since the Pulse
Generator should not send out a new pulse any time it sees a dark input. After
sending out a pulse, it will see its “I” tap go to some optical signal level for some
length of time. The length of time will depend upon the behavior of the nodes
accessing the OBR during this cycle. After seeing its “I” tap go to some level, it
cannot send out the next pulse until it sees the “I” tap go dark again (the falling
edge). In effect, the Pulse-Generator’s “I” tap acts as a Broadcast wired-0OR of the

pulse and the “T” taps of the nodes. The length of the pulse needs to be just long

35

Node 1 e o o o Node N

o WAL

Figure 10: The control channel topology of the explicit message OBR architecture.

enough to trigger the “U” tap’s detector; the detector’s output then drives the
circuitry which implements Rule 1. We call use of the Pulse Generator the OPAC

(Optical Pulse Access Control) protocol.

3.3.2 Explicit Message OBR

Two physical channels are used in the explicit message OBR architecture to form
one logical OBR channel. One of the physical channels is used as a control channel
to arbitrate access to the transmission channel. The control channel is very similar
to the previously described wired-0R OBR architecture; an optical signal is raised
or lowered on the channel. The transmission channel is a high speed channel on
which explicit messages (a message being defined as a set of bits) are sent.

The control channel’s topology is shown in Fig. 10. It is the same as the

36

wired-0R OBR topology except that there is no need for the nodes to receive the
broadcast sum of the control signals. The “P” input tap is the sum (wired-0R) of
the upstream nodes’ Priority request signals. The “R” output tap is used by the
node to inject its Request signal (in one direction) into the optical waveguide. As
in the wired-OR OBR architecture, the detectors need only detect the presence of
some level of optical signal or zero level (darkness), and the transmitters do not
have to be modulated. The Pulse-Generator is used, as before, to create pulses
of light periodically. It receives via its “I” input tap the broadcast sum of the
Request signals and its own pulse.

As with the wired-0R OBR architecture, there is an access protocol which
the nodes must follow in order to use the control channel. The nodes follow nearly
the same rules as the ones for the wired-OR OBR channel, but now the rules are
also linked with the actions the node takes on the transmission channel. The first
rule specifies the action the node takes on the control channel when a node wants

to request time to put a message on the transmission channel:

R WHEN P (5)

Thus, as long as any upstream station is continuing to request access to the trans-
mission channel by asserting its “R” signal, a given node will see some optical
signal level on its “P” tap and can then assert its own “R” signal (jump-on per-
mission again). Note that asserting the “R” signal is not the same as transmitting
a message on the transmission channel; asserting the “R” signal is requesting time
on the transmission channel.

In order to understand when time on the transmission channel is granted, we

37

Node 1 e o o o Node N

s /

%
\]
Y

Figure 11: The transmission channel topology of the explicit message OBR archi-
tecture.

must specify the topology of the transmission channel. This topology is illustrated
in Fig. 11. Each node has two taps. The output tap “T” is used to inject (in
one direction) the message into the optical waveguide. Since the input tap “B” is
on the loop-back portion of the waveguide, it is used by a node to receive every
message every node sends out (including its own messages). The transmitter and
detector at a node must be capable of transmitting and receiving (respectively) a
modulated light signal which represents a series of bits. The rule governing when
a node is granted its transmission time on the transmission channel is tied to the

“P” tap on the control channel (again, the drop time is implicitly accounted for):
T WHEN P (6)

This rule is also an expression of the active permission property described earlier.
The “drop time” condition comes about for the same reason as it did in the wired-

OR OBR architecture. Meanwhile, the “R” signal on the control channel should

38

stay asserted during the transmission:

R wuoie T (7)

Finally, when the node has finished its transmission, it should drop its “R”

output signal on the control waveguide:

UR aT T (8)

By dropping its “R” signal, the node gives permission (active permission in terms
of Section 3.2.2) to the next downstream node that has requested transmission
time to begin its transmission. Once the last requesting node in the access cycle
has lowered its “R” signal, the Pulse-Generator will see the falling edge at its “I”

input tap, which signals it to generate another pulse to begin the next cycle:

P-G WHEN [] (9)

which is identical to Rule 4 in the wired-O0R OBR architecture for generating pulses
as needed. And as in the wired-OR OBR architecture, the length of pulse needs
to be long enough to trigger the “U” tap’s detector, whose output then drives the
electronic circuitry. These rules define the OPAC protocol for the combination
control and transmission channels.

By following these rules of access to the waveguide, the nodes generate a
“train” of messages during each access cycle, as illustrated in Fig. 12. Note that
the ordering imposed upon the messages, as heard by each node at its “B” input
tap, is the physical order of the nodes on the waveguide. Note also that the optical

waveguide acts as a pipeline of messages; a node does not wait until its message

39

1’s msg o t’s msg o N’s msg

B B B/ F\

Node Node Node
1 o o ; o o N
T T T

> > ;_/
> > >

Figure 12: A “train” of messages on the explicit message OBR architecture’s
transmission channel.

has been received by every node. The reader will recall that a node waits to put its
message on the transmission channel until all upstream nodes have finished their
transmissions; in terms of message trains, this action is interpreted as meaning
that a node adds its message to the end of the train as the end of the train passes
by its “T” transmit tap.

Two questions arise as to the overhead (or throughput efficiency) of trains.
The first question regards the wasted space between messages of a train. If Rule 8 is
strictly followed, then the “R” signal is not dropped until the message transmission
at “T” has quit. When the dropped “R” propagates from node ¢ to the next
downstream station ¢ 4+ 1, there will be a finite delay before node ¢ + 1 can start

its transmission. This delay results from three components: (1) the detector’s

40

response time to seeing the “P” tap go dark; (2) the gate delay of the circuitry
implementing Rule 6, including the delay to see if the darkness lasts longer than
the drop time; and (3) the transmitter’s response time. Let us call the amount of
this delay A. Without any compensation the distance between adjacent messages
in a given train will be this A. However, we can compensate for this delay A by

adjusting Rule 8 to be:
JR at |[T-A (10)

so that the “R” signal is turned off by the amount A time before the message
transmission is turned off. Since the enumerated components of the delay A may
not be precise because of variations in the optical and electronic hardware, A must
be computed for the worst case. Nevertheless, the separation between messages in
a train can be made arbitrarily small by using Rule 10.

The second question regarding the overhead of trains concerns the separa-
tion between successive trains, i.e., the overhead between successive access cycles
to the OBR. Because Rule 9 specifies that the Pulse Generator must wait until
its “I” input tap goes dark (for longer than the drop time), it will take at least 7
time for the drop in the “R” signal at the last node to reach the “I” tap of the
Pulse Generator. If either the message length is variable or the number of nodes
attached to the OBR is unknown, no improvement can be made. However, if the
message length from a node is fixed and the number of nodes is known, then Rule 9

can be rewritten:
P-G wHEN (I]) .OR. (Timer expires) (11)
When the pulse is generated, the Timer is set to expire N x (L + ¢) time units

41

later, where N is the number of nodes, L is the (fixed) message length, and ¢ is
the (unavoidable) arbitrarily small separation between messages in a train. The
Timer, in effect, dictates the maximum length of the train and if maximum length
trains are being generated, causes a new pulse so that there will be minimal wasted
time between trains. Because of the geometry of the control channel, if the Timer
condition causes a new pulse to be generated, there will not be a subsequent false
drop in the signal level at “I” which would incorrectly cause a new pulse. When the
Timer is used as specified in Rule 11, we call this scheduled permission, a feature

not present in either the D-Net or MCL protocols.

3.3.3 Analysis of the OBR Architectures

There are two performance metrics of interest for the wired-OR OBR and explicit
message OBR architectures. They are the analytical worst and best case access
times and the propagation time over the OBR. Access time means the time from
when a node decides it wants to start a transmission to when it is actually allowed
access to the OBR. Propagation time is defined as the time it takes a message
to traverse the OBR to its destination once transmission has begun; it includes
both the bit transmission time (how long to put out the bits, e.g., 1 Gbit/sec)
and bit reception time (assumed to be the same as the transmission time) and the
time to travel the physical distance over the OBR. Thus, response time, in this
context, is not the same as either access time or propagation time or their sum.
Understanding this analysis is necessary to understanding the subsequent analysis

(presented in Chapter 6) of the architectural features built from the wired-0R OBR

42

Protocol Minimum Mazimum
electrical A+7+A A+7+A
wired-OR — no protocol A A

wired-0R — OPAC 2A 21 + A+ 2A
em-OBR (var) 2A 27 + A + 2A
em-OBR (fixed) 2A min(27, NT,,,) + A 4 2A

Table 1: The minimum and maximum access times for the OBR architectures
under idle load.

and explicit message OBR physical architectures.

Table 1 shows expressions for the minimum and maximum access times
under the OBR architectures (a normal electrical bus is also shown for comparison)
under idle load conditions. Several assumptions have been made in deriving these
expressions. First, as shown Figs. 8, 10, and 11, the propagation distance from
node 1 to node N is 7 and vice versa. Second, A represents the various component
and circuitry delay times of the optical protocols all lumped into one value (this is
the same A shown in Rule 10). Examples of such delays include logic gate delays
and detector and transmitter response times. For the purposes of this discussion,
we also represent the component and circuitry delay time of the electrical bus
by A. Third, idle load means that only one node is attempting access to the
OBR channel. Fourth, both explicit message OBR OPAC protocols are discussed,
namely, the variable length message version and the fixed length message version
(recall that the latter allows a timer to control partially when the Pulse Generator
generates a pulse).

We derive the expressions shown in Table 1 as follows. For an electrical

bus, the node takes logic time A to put its request out. It then takes propagation

43

time 7 for that request to go out. Another logic time A elapses before the node
realizes it controls the bus and can transmit its data. Since on an electrical bus the
propagation time 7 is position independent, the minimum and maximum access
times are the same. For the wired-OR OBR with no access protocol, by definition,
there is no need to arbitrate for access, so the only delay is always the logic time
A. For the wired-OR OBR using the OPAC protocol and the explicit message OBR
(which always uses the OPAC protocol), the different access times arise because of
where the pulse might be. In the best case (minimum time), the node decides to
access the OBR just before the pulse arrives; therefore, the only delay is the logic
time 2A it takes to recognize the pulse and turn on the signal or message. In the
worst case (maximum time), the pulse has gone by the node just after the node
decided to access the OBR; thus, for the wired-O0R OBR OPAC and the explicit
message OBR with variable message length, the node waits 27 + A (round trip
propagation time plus the logic time for the Pulse Generator) for the next pulse
to come around, and then it takes the logic time 2A for the node to recognize
the pulse and turn on the signal or message. The term of 27 is the separation
between message trains (or access cycles). For the explicit message OBR with
fixed length messages, since the timer for the Pulse Generator is in use, the node
waits min(27, N7,,,) + A (the minimum of the round trip propagation time or the
full message train length, depending upon the design parameters of the system,
plus the logic time for the Pulse Generator) for the next pulse to come around,
and then it takes the node time 2A to recognize the pulse and turn on the signal
or message.

In Table 2 we show the expressions for the minimum and maximum access

44

Protocol Minimum Mazimum
electrical A+7+A| NT,.+7+A)+ A
wired-OR — no protocol A A
wired-0R — OPAC 2A NT,, +27 + A +2A
em-OBR (variable msg length) 2A NT,, + 27 + A +2A
em-OBR (fixed msg length) 2A NT,, + A +2A

Table 2: The minimum and maximum access times for the OBR architectures

under high load.

times under the condition of high load. The same assumptions as for the idle load
are made with several additions. First, it is assumed that the average duration of
a node’s signal (under the wired-0R OBR with OPAC protocol) and the average
length of a message (under the explicit message OBR) is T,,,. Second, for clarity
in the discussion, the value T, includes the unavoidable small separation between
messages (or signals) as applicable; for the wired-OR OBR using OPAC, this sepa-
ration is the drop time; for the explicit message OBR (which always uses OPAC),
this separation is the small 6 value. Third, high load means that all the nodes are
contending for access to the OBR; if a large number of nodes are in the system,
then the other N — 1 nodes contending for access can be approximated by N for
clarity.

We now derive the expressions shown in Table 2. For the electrical bus, if
the node happens to be the next one in the arbitration order, its minimum access
time is the same as under the idle load condition: a logic time A to put out its
request, propagation time 7 for the request to go out, and another logic time A
for the node to realize it controls the bus and begin transmitting the message. For

the worst case, since the node will be the last one to gain access, there will be the

45

data transmission time plus arbitration grant and response time (7, and 7 + A
respectively) for each of the prior nodes; then, the node will have its own response
time A. For the wired-OR OBR with no access protocol, as under the idle load
condition, by definition, there is no need to arbitrate for access, so the only delay
time is always the logic time A. For the wired-0R OBR with OPAC and the explicit
message OBR (which always uses the OPAC protocol), the difference between the
minimum and the maximum access times depends upon where the pulse might be
when the node initiates access. In the best case (minimum time), the node decides
to access the OBR just before the pulse arrives; therefore, the access time is only
the logic time 2A it takes to recognize the pulse and begin transmitting the signal
or message. For the wired-OR OBR (with OPAC) and the explicit message OBR
(with variable message length), the worst case (maximum time) occurs when the
pulse has gone by the node just after when the node has decided to access the
OBR. There will be N messages of average length T;, transmitted before the pulse
comes back around; in addition, the nodes waits 27 + A (round trip propagation
plus logic time for the Pulse Generator) before the next pulse actually arrives at
the node; then, the node takes 2A to recognize the pulse and turn on its signal or
message. The 27 term is the separation between message trains (i.e., separation
between access cycles). As discussed previously, incorporating a Timer in the
Pulse Generator can eliminate this overhead; this improvement is reflected in the
maximum access time for the explicit message OBR with fixed message lengths: if
the pulse just misses the node, the node only has to wait until the other N nodes

have transmitted their messages of length 7).

46

Protocol | Mintmum | Mazimum
electrical T+ 71 T+ 71
wired-0R T T4+ 27
em-OBR T T4+ 27

Table 3: The minimum and maximum propagation times for the OBR architec-
tures.

Table 3 shows the minimum and maximum propagation times for the OBR
architectures under any load conditions. For this analysis, we assume that 7' is the
bit transmission time. For the electrical bus, this term is usually bit-parallel. In
the wired-0R architecture, this term represents turning on the signal at the source
and its reception at the destination (or, the turning off and subsequent detection
of the signal. For the explicit message OBR architecture, this term is the bit-serial
transmission of the message. As before, the propagation distance from node 1 to
node N is 7 and vice versa. The reason that the propagation times are the same
under any load conditions is that once a node has access to the medium, the prop-
agation time is dependent solely upon the bit transmission/reception rate and the
physical distance. The expressions in Table 3 are derived, then, by considering the
geometry of the network. For the electrical bus, after the signal is generated (time
T), it must propagate out to all the nodes (time 7). The minimum and maximum
time are the same since the electrical signal must “settle” on the wire, i.e., propa-
gate (at a minimum) the time 7 and be stable. In the wired-0OR architecture, the
minimum time occurs when node N receives its own transmission, i.e., there is es-
sentially no physical distance for the signal to traverse (see Fig. 8). The maximum

time occurs when the first node receives its own transmission. Since the geometry

47

of the explicit message OBR is the same as that of the wired-0R (see Fig. 11), the

expressions for the minimum and maximum propagation times are also the same.

48

Chapter 4

Cache Coherency

As mentioned in Section 2.2, there is a memory access cost associated with provid-
ing a global memory when the memory modules are physically distributed among
the nodes. This cost is the possibility of the long latency of a ReSM access. There
are three factors which contribute to the latency [78]. The first factor is that a
ReSM access must be made over the interconnection network. Use of the inter-
connection network always implies more latency since the interconnection network
connects nodes which are not physically adjacent. That is, there is some physical
distance over which data must travel when making ReSM accesses, much more
distance than when a node is accessing its NeSM to which it is directly connected.
The second factor is contention for the interconnection network. Since all nodes
making ReSM accesses use the common interconnection network, the nodes must
contend with each other for use of the interconnection network. In contrast, when
a node makes a NeSM access, our model has assumed the use of a dedicated con-
nection to its NeSM, so there is no contention latency for a NeSM access. The third
factor is memory contention. If several nodes simultaneously present requests to a
memory unit, the unit will not be able to satisfy those requests simultaneously, so

some of the requesting nodes must wait for other nodes’ requests to be satisfied.

49

Insofar as possible, a goal of the DSM architecture is to alleviate the differ-
ence between the NeSM and ReSM access latencies. The solution for doing this, as
described in Section 2.2, is to introduce a local, private cache at each node. When
a node makes a memory reference, the cache is first searched for the reference. If
the search is successful, then the reference is returned. If the reference is not in the
cache, then the cache asks the network controller (as shown in Fig. 4) to obtain
the reference for it, regardless of whether the reference will be in the NeSM or
in a ReSM. When the reference is returned, then the cache, as in a uniprocessor
system, keeps it for future use. By this means, the cost of memory accesses (both
NeSM and ReSM) is lessened if the locality of the reference is enough, and the
difference between NeSM and ReSM access latencies becomes smaller.

The trouble with introducing local, private caches at each node is the well
known cache coherence problem [78]. The problem is that since several nodes may
request the same memory reference, then multiple caches may each hold a copy of
the memory location; when one node needs to make a change to its copy of the
memory location, how are the copies existent in the other caches affected? Those
other copies cannot be ignored or else their respective nodes can access “stale”
data, a situation which can cause incorrect program results.

The previous standard hardware solutions fall into two categories: write-
invalidate and write-update [78]. Both of these solutions assume that some arbi-
trary number of copies of a memory location can exist in the local caches. The
idea behind the write-invalidate scheme is that when one node needs to change
a memory location (held in its cache), then the other copies are invalidated; the

node can then make changes without being concerned with maintaining the copies

50

since there are no other copies. When another node needs to reference its (now)
invalidated copy of the location, it will have to obtain the fresh value. In the
write-update scheme, when a node makes a change to its cached copy, then all the
other copies are updated to reflect the change. Other nodes now automatically
have the correct copy in their caches of the memory reference.

There are various ways to implement the write-invalidate and the write-
update coherence policies. Archibald and Baer [3] reviewed different snoopy im-
plementations of both policies. Snoopy implementations are thusly named because
they require that each cache listen hear and process appropriately all the coherence
commands issued by all the caches. Bus based parallel computers lend themselves
well to using snoopy implementations because of the broadcast nature of the bus,
but they cannot support a large number of processors because of the bandwidth
limitation of the bus. Agarwal et al. [1] and Chaiken et al. [9] reviewed various
directory based schemes. Directory based schemes rely upon maintaining, in some
manner, where the different copies of a given memory location reside. This direc-
tory information is then used to implement whichever coherence policy is desired.
Directory based implementations are suitable for systems with arbitrary intercon-
nection networks in which it is assumed that broadcast is either unavailable or
very expensive. The full-map scheme [8] is the original directory method, but the
size of the directory can present a problem. A full-map directory is unwieldy, in a
large system, because each directory entry of a memory line must be able to track
whether every node has a copy of that line. Since the Stanford DASH machine
[56] distributes its memory among the nodes, the directory itself is also distributed.

Since each node maintains which remote nodes have a copy of memory locations

51

in that node’s portion of the global memory, this scheme is also a full-map di-
rectory. Recent work for the MIT Alewife machine [10] has resulted in a limited
directory scheme in which the hardware can maintain a certain number of entries
(the assumption being that regardless of the number of nodes in the system, only
a limited number normally would have copies of the memory reference). If nec-
essary, however, their LimitLESS scheme can use software storage to emulate a
full-map directory. In both the full-map and limited schemes, the directory infor-
mation for a particular memory reference is centralized so that ascertaining where
invalidation or update messages need to be sent is easily done. In contrast, the
Scalable Coherent Interface protocol [40] uses a chain directory scheme which relies
upon a distributed chain, or linked list, of nodes possessing copies of the memory
reference; since the elements of the linked list are distributed among the nodes,
this property allows the size of the directory information to grow (and shrink) as
necessary. The drawback to this scheme is that coherence information must be
passed from element to element in the chain since the directory information is not

centralized.

4.1 Cache Coherency in Beehive

Common to all the previously described cache coherence schemes is their being
oriented from the writer’s point of view: the schemes all assume that if a copy of a
memory location exists, the writer must do something (invalidate or update) to it.
The opposite orientation is termed reader initiated cache coherence, as proposed

by Lee and Ramachandran [55]. In reader initiated cache coherence, the reader

52

‘head—of—list‘

Figure 13: The memory line’s directory entry in Beehive.

‘ update-bit ‘ dids ... dg ‘ prev ‘ next ‘

Figure 14: A cache line’s directory entry in Beehive.

of a memory reference has the responsibility for deciding whether to be informed
of changes to his cached copy of the memory reference. Contrast the reader’s
responsibility in the Beehive scheme to the writer’s responsibility in the previously
described schemes in which the writer assumes that all readers of a copy of the
memory reference want to know about changes.

The Beehive architecture’s reader initiated cache coherency is a version of
the chain directory scheme since Beehive’s interconnection network is arbitrary
and unspecified. The Beehive scheme works as follows. Each line of memory has
an associated directory entry (see Fig. 13), and each cache line (in every node’s
cache) also has an associated directory entry (see Fig. 14) (for simplicity in this
discussion, we have omitted the fields used for lock synchronization—these fields
will be shown in Chapter 5). Together, the memory and cache line directory
entries form a chain of which caches contain a copy of a memory location and
(to implement the reader initiated point of view) are interested in knowing about
changes to the memory location.

The memory line’s directory entry contains a pointer to the first cache which

contains a copy of that memory line. If no caches contain a copy, then that pointer

33

is NIL. When the first cache requests a copy, then the memory’s directory entry is
modified to point to that cache. The cache line’s directory entry (for that memory
line) is updated so that the prev and next pointers form the links in the chain. If
the cache is interested in knowing about future changes to the memory location,
then the update-bit is set. When the cache is no longer interested in future
updates, then the update-bit is cleared, and the cache line’s directory entry is
removed from the doubly linked list. The update-bit is also cleared and the cache
line’s directory entry removed from the chain when the cache line is replaced.

Beehive also addresses the issues of false sharing (different variables being
located in the same memory/cache line) and unrelated shared variables located
in the same memory/cache line) by incorporating the dirty bits did;...dy in the
cache line’s directory entry. When a cache makes changes to locations in a cache
line, the appropriate dirty bits are set so that when the line is written back to
memory, only the locations corresponding to the set dirty bits are actually written
back.

In order to understand how the Beehive programming model is imple-
mented, the cache coherency policy and buffered consistency commands must be
considered together. Table 4 gives these command primitives (and their seman-
tics). These primitives are what the software (generated by the compiler and/or
programmer) use to utilize the cache hardware and the write buffer (described in
Section 2.2).

The READ and WRITE commands are used to access private data. Since the
data is, by definition, non-shared, there is no need for maintaining coherence. In

other words, the cache acts on private data as a uniprocessor cache would.

o4

Read and Write primitives in Beehive.

Primitive Semantics
READ Read data without cache coherence.
WRITE Write data without cache coherence.

READ-UPDATE | Read data with cache coherence by requesting
future updates.

RESET-UPDATE | Cancel desire for future updates.

WRITE-UPDATE | Write data with cache coherence by propagating
data globally.

FLUSH-BUFFER | Stall until WRITE-UPDATEs in Write Buffer

have been propagated and completed.

Table 4: The Read and Write command primitives for cache coherency with
buffered consistency in Beehive.

The READ-UPDATE command is used to read shared data and ask for future
changes to the data (thereby maintaining coherence on the data). If the data is not
present in the cache, then the request for the data is sent to the memory module
containing that memory line. The appropriate pointers in the chain of caches
holding this memory line are updated, and the line is returned to the requesting
cache. The update-bit in the cache line’s directory entry is also set to indicate
that the requested should be kept up to date. When the READ-UPDATE command is
issued and the data is present in the cache, then the cache can immediately return
the value to the CPU as a local operation.

The RESET-UPDATE command allows the node to clear the update-bit in
that cache line’s directory entry. When that bit is cleared, this signifies that the
node is no longer interested in maintaining the coherence of that line. The cache
line’s directory entry is also removed from the doubly linked list. The update-bit

is also cleared when the cache line must be replaced, and the directory entry is

HY)

removed from the chain.

The WRITE-UPDATE command is used to update shared data and propagate
the change to interested nodes. The write is placed into the node’s Write Buffer
(as shown in Fig. 4). From the node’s viewpoint, the update has now occurred.
The Write Buffer, through the Network Controller, sends out the update to the
appropriate memory module when it can gain access to the network. The memory
module then uses the chain to send the updated value out to all caches which want
the updated value. Thus, the updates are sent in a point-to-point fashion as each
cache receives the updated value and passes it to the next one in the chain.

The reader will recall from the discussion in Section 2.2 that a task reaches
the end of its Synchronization Epoch (SE) when the CP-Synch (Consistency Pre-
serving) point is encountered. Although the task considers WRITE-UPDATEs to be
finished, while in its SE, after issuing the command, when the task reaches the
CP-Synch point, the task must issue the FLUSH-BUFFER command in order to obey
the buffered consistency model. The FLUSH-BUFFER command stalls the task un-
til all the WRITE-UPDATEs stored in the Write Buffer have been completed. A
WRITE-UPDATE is deemed completed when the updated value has propagated to
the memory module and all interested caches and when an acknowledgement say-
ing all the updates have occurred is received by the Write Buffer. Then, and only
then, can the Write Buffer remove that WRITE-UPDATE as being finished. The ac-
knowledgement is required in the Beehive architecture since the interconnection
network is arbitrary and unspecified. The Write Buffer must have an acknowledge-
ment that the propagation of the update is complete since it cannot rely upon any

property of the interconnection network to know this fact.

26

Although the task must stall (via the FLUSH-BUFFER command) when it
reaches the CP-Synch point, one should remember that the Write Buffer has not
been waiting to send out the WRITE-UPDATEs until the FLUSH-BUFFER command is
issued. Rather, the Write Buffer has been sending out the WRITE-UPDATESs as soon
after the task issued them and it can gain access to the interconnection network.
Therefore, the work to maintain the cache coherence can proceed in parallel with
the rest of the computation in the task’s SE. If there is enough work in the SE
that can be structured properly, then by the time the CP-Synch point is reached,
there will be no WRITE-UPDATEs left in the Write Buffer, and the FLUSH-BUFFER

command will not cause the task to stall.

4.2 Cache Coherency in OBee

Since the OBee architecture is a derivative of the Beehive architecture, OBee uses
the reader initiated cache coherency policy also. However, since OBee uses the
explicit message OBR interconnection network described in Chapter 3, the im-
plementation of the reader initiated cache coherence policy is simpler and can be
optimized.

Because the OBR (we implicitly are referring to the explicit message OBR
in the rest of this section) has the broadcast capability, a snoopy approach to
reader initiated cache coherency can be adopted. The snoopy approach means
that every node listens to the cache coherency commands, just as in the snoopy
implementations of the write-invalidate and the write-update protocols. Therefore,

there is no need for a memory line directory entry since its only purpose in Beehive

57

‘ update-bit ‘ dids ... dg ‘

Figure 15: A cache line’s directory entry in OBee.

(as shown in Fig. 13) is to record the start of the list of interested caches. Similarly,
a cache line directory entry is now simplified (as shown in Fig. 15) in OBee since
it does not need to store the link information. The cache line directory entry only
needs the update-bit and the dirty bits.

Thus, initially (some modifications will be described below) the command
primitives for OBee are the same ones listed for Beehive in Table 4 and work as
follows. The READ and WRITE commands are exactly as in Beehive for reading and
writing private, non-shared data. Since OBee has multiple OBRs available, one
explicit message OBR (or more) can be dedicated to this traffic. This pre-assigning
of an OBR to a particular kind of traffic is an example of one of the themes listed
in Chapter 1. The READ-UPDATE command is for reading shared data on which
coherence is to be maintained. If the data is not in the cache, then the cache
requests the value from the appropriate memory module through the Network
Controller and sets the update-bit. Again, one dedicated explicit message OBR
(or more) can be dedicated to this traffic. Unlike Beehive, there is no chain of
caches in which the requesting cache needs to be inserted. If the data is in the
cache, then it can immediately satisty the CPU’s request as a local operation. The
RESET-UPDATE command clears the update-bit so that the cache will remember
that it does not care about using future changes to the cache line; if the cache line

is replaced, then the update-bit is also cleared. As in Beehive, the WRITE-UPDATE

a8

command inserts the write into the Write Buffer and lets the write be sent out as
the network becomes available. In OBee, however, the updated value only needs
to be sent (explicitly) to the memory module containing that memory line. For
the time being, assume that only one dedicated explicit message OBR is used for
this traffic. Since the update is sent via the OBR and is therefore broadcast to
every node indiscriminately, each node’s cache listens to the WRITE-UPDATEs so
broadcast. Each cache determines for itself whether updates are of interest by the
following algorithm:

REPEAT FOREVER:
Snoop on OBR and grab WRITE-UPDATE;
if (WRITE-UPDATE is in cache) .AND. (update-bit is Set) then:
Update cache line;
endif.

Thus, as in a standard snooping protocol, it is each cache’s responsibility to
monitor the broadcast coherence information. The OBee cache coherency protocol
is not a write-invalidate or write-update scheme in which invalidates/updates are
blindly broadcast and applied. The reader initiated point of view comes into play
because each cache decides, based upon the update-bit status, whether to apply
the update to the cache line, i.e., the updates are not necessarily used by every
cache.

As in Beehive, the FLUSH-BUFFER command stalls the processor until the
Write Buffer has been emptied. This command can be optimized as described
below.

The OBee implementation of the reader initiated cache coherency can be

compared against the Beehive specification in several ways. First, consider the

99

number of messages generated by each method when a WRITE-UPDATE is sent out:

Beehive | OBee

K+1 1

K represents the number of caches that have their update-bit set for the particular
cache line. In Beehive, the first message is generated when the WRITE-UPDATE
is initially sent to the appropriate memory module. The memory module then
forwards the update to the first cache in the chain, which then forwards the update
to the next cache in the chain, etc. The K + 1 messages must occur serially since
the updates must propagate link by link through the chain. In contrast, OBee
only sends 1 message, which is explicitly sent to the appropriate memory module,
but since messages on the OBR are always broadcast, each cache listens to the
messages and uses them as appropriate.

A second comparison is that of the transaction time for the WRITE-UPDATE
command. The transaction time consists of three components: (1) network ac-
cess latency, (2) network transmission and propagation time, and (3) the cache
processing time. In Beehive, because of the arbitrary interconnection network, no
guarantees can be made about either the first or second component. The first and
second components, coupled with the fact that Beehive requires K + 1 messages
transmitted serially, implies that a WRITE-UPDATE in Beehive could take quite some
time to propagate to all the necessary nodes. For the OBee implementation, re-
member that the WRITE-UPDATE traffic occurs on one explicit message OBR. From
the analysis presented in Chapter 3 (refer to Tables 1, 2, and 3), there is an upper
bound on the first and second components. In Beehive, the third component of

the transaction time is just the time for the cache to perform the update. No

60

decision is made about whether the cache line needs updating—the update would
not have been sent to the cache had it not been part of the update chain. In
contrast, in OBee, the cache must determine if the updated line is stored in the
cache and whether the copy in the cache has requested updates. Therefore, the
third component will take longer in OBee than in Beehive.

The third comparison regards optimization of the FLUSH-BUFFER command
in OBee. This optimization can occur because of the use of the OBR intercon-
nection network. The key to this optimization is the fact that messages sent out
over the OBR in a particular order retain their transmitted order when received
by any node. To understand the optimization in OBee, we consider an exam-
ple in which the processor first places two entries W4 and Wpg (in that order) in
the Write Buffer via the WRITE-UPDATE command, continues its computation in
the Synchronization Epoch (SE), then finally issues the FLUSH-BUFFER command
because it has reached the CP-Synch point that marks the end of the SE. Con-
sider first what happens under Beehive. There are two possibilities as to how the
W4 and Wpg entries are transmitted. The first possibility (and most restrictive)
is that the Wg entry cannot be transmitted until the Wy entry has been trans-
mitted to the memory module, propagated down the list of caches, and the last
cache has sent an acknowledgement message to the Write Buffer. Upon receipt of
the acknowledgement message, the Write Buffer removes the Wy entry since the
WRITE-UPDATE transaction has completed. The second, and better, possibility is
to let the Write Buffer transmit the Wpg entry after transmitting the Wy entry.
Since the Beehive interconnection network is arbitrary, this action implies that the

Wg entry might complete before the W, entry (and therefore be removed from

61

the Write Buffer first), but this does not violate the BC memory model semantics.
To continue the example, assume that at least one of the entries is still in the
Write Buffer when the processor issues the FLUSH-BUFFER command. Why must
the Write Buffer wait until receiving the acknowledgement from the last cache
before it can remove the entry? By definition, when the task leaves the SE, it
must know that all WRITE-UPDATEs have been globally performed, i.e., the memory
module and all interested caches have updated their copies. If the processor were
to leave the SE by, for example, issuing an UNLOCK (which is a CP-Synch type
of command), then, because the Beehive interconnection network is arbitrary, it
is conceivable that the next processor to acquire the lock might not have received
the update on the entry in the Write Buffer before acquiring the lock. The task
newly acquiring the lock would mistakenly assume that the variable was up to date,
which assumption would probably lead to an incorrect program result. Therefore,
to prevent the BC memory model semantics from being violated, the last cache
in the chain must send an acknowledgement to the Write Buffer before it removes
the entry. In turn, the FLUSH-BUFFER command must stall the processor until all
the entries in the Write Buffer have been removed in order to guarantee that when
the CP-Synch command is issued, consistency of the updated variables has indeed
occurred. As a important reminder to the reader, from Fig. 5, the processor does
not have to stall while waiting for the CP-Synch command to complete (i.e., be
propagated to the other nodes).

Now consider how this example is handled under OBee. We still assume that
the WRITE-UPDATE traffic is occurring on one explicit message OBR. If we further

make the not unreasonable assumption that nodes process received messages in the

62

order they are received, then from the preceding discussion, we can see that the
acknowledgement to the Write Buffer is not necessary in OBee because messages
sent via an OBR are received in transmission order by the nodes. Thus, the
Wy entry in the Write Buffer will be received before the Wg entry (assuming
nodes process received messages in the order received), and, more importantly,
if the task issues the appropriate CP-Synch command over the same OBR, it is
guaranteed that the WRITE-UPDATEs will be performed by a receiving node before
it can process the CP-Synch command. Therefore, the scenario, outlined above,
of a node receiving an UNLOCK before receiving all the updates, cannot occur.
If the Write Buffer stores only WRITE-UPDATE commands, then the FLUSH-BUFFER
command, as in Beehive, translates to stalling the processor until the Write Buffer
has emptied. The time to empty the Write Buffer is much shorter since once the
entry is transmitted, it is immediately removed from the Write Buffer.

The issuance of the FLUSH-BUFFER and the CP-Synch commands can be fur-
ther optimized. If the appropriate CP-Synch command can be stored in the Write
Buffer with the normal WRITE-UPDATE entries, then there is no need any more for
the FLUSH-BUFFER command. Instead, when the task issues the CP-Synch com-
mand, it goes into the Write Buffer, and the task can proceed with its code. Since
the updates are ahead of the CP-Synch command in the Write Buffer, they will
be transmitted first and processed first by the receiving nodes, thereby preserving
the BC memory model semantics.

Another optimization can be made if some additional hardware resources

are used. So far in this discussion, we have assumed that all WRITE-UPDATE and

63

CP-Synch command traffic is transmitted on one explicit message OBR. Consid-
ering the previous example, two separate explicit message OBRs could be used
for this traffic. One of the OBRs would be the “background” channel: when the
Write Buffer contains just WRITE-UPDATE commands, it uses that channel. The
background OBR is termed thusly because tasks still have work to perform in
their SE, and it is not critical that the updates be performed immediately. When
a CP-Synch command is put into the Write Buffer, then the Write Buffer uses the
“priority” OBR. Even though the task, given the previous optimization, is not
stalled, there is a good probability that some other task waiting for the CP-Synch
command so that it can proceed into its next SE. In other words, the high priority
OBR only carries traffic from tasks ending their SE; therefore, access to and prop-
agation over that OBR is faster, which means that the task waiting for that SE to
end can resume its work sooner. We point out that using two OBRs, one of which
may have very little traffic, is an example of one of the themes in Chapter 1. The
use of two OBRs implies that some WRITE-UPDATES in a SE could go over the nor-
mal OBR and that some could go over the priority OBR when the SE was finished.
Some care has to be taken to ensure that the BC memory model semantics are
not violated, i.e., the CP-Synch command is not processed before all the updates
are. One way to process the updates and CP-Synch correctly is to label uniquely
the WRITE-UPDATES and the CP-Synch for a specific SE of a task. Such a labeling
could be implemented by letting each node have a simple hardware counter to
identify the SEs occurring on that node. As part of the initialization of each SE,
the node could issue a command to increment the counter and obtain the resulting

value. The CP-Synch command also needs to include how many WRITE-UPDATEs

64

are to be performed in that SE. Each receiving node performs the following two
algorithms, which requires additional electronic hardware. The first algorithm is
executed by the receiving hardware associated with the background OBR, and the

second algorithm is executed by the receiving hardware for the priority OBR:

Algorithm 1: (background OBR)
REPEAT FOREVER
Do in Parallel:
Receive transmission;
Process WRITE-UPDATE (count how many for each SE);
Enddo.

Algorithm 2: (priority OBR)
REPEAT FOREVER
Do in Parallel:
Receive transmission;
if (transmission is WRITE-UPDATE):
Process WRITE-UPDATE (increment counter for that SE);
else: // transmission is CP-Synch
Wait until the WRITE-UPDATE Counter reaches proper value;
Perform the CP-Synch command;
Enddo.

We could provide the compiler (or programmer) with an additional hard-
ware primitive which would put the WRITE-UPDATEs and corresponding CP-Synch
on the priority OBR immediately. If the WRITE-UPDATEs in a SE were always close
to the CP-Synch command with little or no other code able to be put between the
WRITE-UPDATES and the CP-Synch command, then this primitive would be useful.
With all these modifications, the command primitives for OBee are now as shown

in Table 5. The FLUSH-BUFFER command is no longer needed; its function is now

included in the (generic) CP-Synch command.

65

Primaitive Semantics

READ Read data without cache coherence.
WRITE Write data without cache coherence.
READ-UPDATE Read data with cache coherence by using
future updates.
RESET-UPDATE Cancel usage of future updates.
WRITE-UPDATE Write data with cache coherence by propagating

data globally.
WRITE-UPDATE-PRIORITY | Write data with cache coherence via
Priority OBR.

CP-Synch Put CP-Synch in Write Buffer; send over Priority
OBR; include number of WRITE-UPDATESs in
the SE.

Table 5: The Read and Write command primitives for cache coherency with
buffered consistency in OBee.

66

Chapter 5

Synchronization

This chapter describes the direct architectural support in OBee for three different
types of synchronization primitives: locks, barriers, and combining F&OPs. Bee-
hive defines one implementation of locks and no implementation for either barriers
or combining F&OPs. In contrast, OBee defines two different implementations,
based upon the OBR interconnection network itself, for all three synchronization

constructs.

5.1 Locks

Locks are a mechanism by which the programmer can access shared data in a
controlled and regulated fashion. There are two types of locks: read (or shared,
denoted as R/S) and write (or exclusive, denoted as W/FE). By definition, when a
programmer uses a R/S lock, he is guaranteed that the data’s value will not change
for the duration of the lock. Similarly, by definition, when he uses a W/E lock,
he is guaranteed that no one else can change the data’s value. Thus, when the
programmer abides by the convention of accessing shared data only via locks, he is
assured that his parallel program will maintain the shared data in a consistent and

correct manner. It is important to note that the hardware itself does not force the

67

E}L P6
P3 J b | po | Pps
P9

P7
W/E R/S W/E R/S
req. req. req. req.

Figure 16: Lock request peer groups showing processors that have requested a
particular type of lock.

programmer to follow this convention—the hardware only provides the primitives
with the proper semantics to implement the convention. If the convention is to
be followed, it must be at some other (higher) level, e.g., the programmer’s own
self-discipline or the language.

An important concept about locks is the peer group, as illustrated in Fig. 16.
W/E lock requests, by definition, form a peer group of size one. R/S lock requests
made without an intervening W/E lock request form one peer group. The reader
might ask why the R/S requests in the fourth peer group in Fig. 16 are not coalesced
into the second peer group. The answer is that in order to prevent starvation of
W/E lock requests, when a W/E lock request is made, it marks the end of a R/S
peer group. A R/S peer group may contain an arbitrary number of requests. From

a performance standpoint, if a R/S peer group is the currently serviced peer group

68

Primitive | Semantics

R/S-LOCK | Request Read/Shared lock (implicitly on one cache line).
W/E-LOCK | Request Write/Exclusive lock (implicitly on one cache line).
UNLOCK Release either type of lock.

Table 6: The lock and unlock command primitives in Beehive.

and no other peer groups are pending, then another R/S lock request can join the
current R/S peer group and be granted the R/S lock immediately.

The final comment to make about locks is that when a W/E lock is released,
then it must be ensured that the next holder of the lock (either R/S or W/E) must
have received the updated values of any shared data protected by the lock before

being granted the lock.

5.1.1 Locks in Beehive

The Beehive architecture defines locks in a form called cache-based locks [55]. The
hardware supports an implicit lock for each cache line. When a lock request is
issued and subsequently granted, the request and grant are actually implemented
for a specific cache line. The consequence is that the grant of the lock is combined
with the return of the data associated with the lock (assuming the data fits in one
cache line).

Table 6 lists the Beehive lock (and unlock) primitives and their semantics.
The R/S-LOCK and W/E-LOCK commands are requests for shared and exclusive locks
respectively. The UNLOCK command releases either lock. The Beehive definition

uses a distributed linked-list directory scheme (similar to its scheme for the reader

69

‘ usage-bit ‘ head-of-list or tail-of-queue ‘

Figure 17: The memory line’s directory entry (with cache based locks) in Beehive.

‘ update-bit ‘ dids ... d ‘ lock-status-bits ‘ prev ‘ next ‘

Figure 18: A cache line’s directory entry (with cache based locks) in Beehive.

initiated cache coherence) to store and grant the requests. The basic structures of
the memory line directory entry (shown in Fig. 13) and a cache line directory entry
(shown in Fig. 14) are augmented as shown in Figs. 17 and 18 to accommodate
maintaining the requests for a lock (remember that a lock is implicitly for an entire
cache line, not a specific memory location).

The lock commands in Beehive use these structures in the following manner.
The usage-bit in the memory line directory entry is used to track whether the
memory line is participating in the reader initiated coherence or a lock request.
The second field’s interpretation depends upon the value of the usage-bit. If the
line is participating in the reader initiated coherence, then the second field is used
as a head-of-1ist pointer as described in Section 4.1. If the line is participating
in a lock request, then the second field is used as a a tail-of-queue pointer. A
cache line directory entry has the added field of lock-status-bits, which field
stores two pieces of information: whether the cache line is locked and which type
of lock has been requested. When a cache requests of memory that it be granted a
lock on a line, the memory directory entry, since it points to the tail of the queue

of lock requests for that line, supplies the information needed to add the cache to

70

the request queue. The former tail of the queue is given a message to update its
next pointer in order to maintain the linked list of requests. When a cache releases
a R/S lock, since, by definition, no changes could have been made to the cache
line, the memory line does not need to be updated. The cache can immediately
pass the unlock message to the next cache in the chain and remove itself from
the request queue. When the cache releases a W/E lock, then, assuming changes
were made to the cache line, the cache updates the memory line (if no changes
were made, then the cache can proceed just as if it had a R/S lock). Because the
unlock and BC memory model are combined and because the unlock is a CP-Synch
point, the releasing cache must wait for an acknowledgement from memory that
it has received the update. The releasing cache does not need to have the update
propagate to other caches since they will, in turn, receive any changes with the lock
grant. After receiving the acknowledgement from memory, the cache transmits the
updated cache line to the next requester in the chain, which message serves as the
unlock message, and then removes itself from the chain.

The final detail concerning Beehive’s locks regards shared data that do not
fit into one cache line but which need to be protected by locks. In this case, the
implicit cache line lock is used to protect all the shared data. The implicit cache
line lock directly protects only the portion of the data which fits in the one cache
line; the rest of the data, spread out over other cache lines, is indirectly protected
as long as the one implicit cache line lock is held. Requests for R/S and W/E
locks are as before: make the request and be put into the request queue. When a
R/S lock is released, the cache’s actions are as described before: pass the lock to

the next requester in the queue. However, before a W/E lock can be released, the

71

FLUSH-BUFFER command must be issued so that all the WRITE-UPDATESs pertaining
to all the shared data spread over multiple cache lines are performed; after the
FLUSH-BUFFER completes, then the W/E lock itself may be passed to the next
requester in the chain.

Therefore, if the locked shared data fits in one cache line, the Beehive
locking mechanism allows the coherency of the shared data to be maintained at
the same time that the lock is passed from one holder to the next requester. If the
locked shared data spans several cache lines, then the cache coherency linked list
mechanism described in Section 4.1 must be used to keep the shared data coherent

before the lock is released and passed to the next requester.

5.1.2 Locks in OBee

There are two different methods in OBee for using the OBR interconnection net-
work to implement R/S and W/E locks. One method uses the wired-OR OBR,
and the other method uses the explicit message OBR. The former method we
designate as the purely optical scheme, and the latter method we call the hybrid
optical/electronic scheme. We give below the details of these two schemes and then

present some comparisons.

5.1.2.1 Purely Optical Scheme

The purely optical scheme is so named because it uses only the presence and
absence of optical signals to implement the lock semantics—there are no explicit

bit messages used to represent the locks. Thus, this scheme naturally employs the

72

wired-OR OBR architecture. Two wired-OR OBRs are assigned per logical lock.
One of the OBRs is used to maintain R/S lock requests; the other one is used
for W/E lock requests. As the reader will recall from Section 3.3.1, there are two
different access protocols available on the wired-OR OBR topology. The wired-0R
OBR for the R/S lock requests uses the first access method: when the medium is
accessible, no arbitration among the nodes is necessary. The wired-OR OBR for the
W/E lock requests uses the second method: the ordered access method in which
the arbitration among nodes for access to the medium depends upon their physical
ordering on the OBR.

With the appropriate combination of these two wired-0R OBRs, queues of
R/S and W/E lock requests can be built. Since the two OBRs must work in tandem
to implement the R/S and W/E lock semantics, the two OBRs must physically
interact; they provide signals to each other as shown in Fig. 19. Note that this
physical topology is modified in three ways from Fig. 8 in order to account for the
necessary physical interactions between the two OBRs. One modification is that
the R/S OBR receives its input “U” signal on one channel and puts its output “T”
signal on another. The second modification that the W/E OBR puts its output
“T” on two channels simultaneously. The third modification is that the W/E OBR
Pulse Generator receives two input signals “I” and “B” and that it transmits its
pulse simultaneously into two channels. Although this configuration seems quite
different from that in Fig. 8, the underlying purposes of the signals are the same.
The decisions which each node uses in determining when it makes a particular lock
request, receives the lock, and releases the lock are shown in Fig. 20; the rules each

of the two Pulse Generators follows are also given.

73

())
/< <

P-G
R/S
A I

P W/E

i OBR i

° ° ° N

-
\
lo—|

—

Y

Figure 19: Two wired-OR OBRs are physically interconnected in a purely optical
scheme to support W/E and R/S lock requests.

74

W/E Request: YW/E-T waHEN W/E-U

W/E Grant: Granted lock WHEN W/E-U
W/E Release: YW/E-T
R/S Request: R/S-T wHEN R/S-U
R/S Grant: Granted lock wHEN R/S-U
R/S Release: JR/S-T
P-Gy; rules: {%iniiteﬂiufszase: UT. } WHEN []

P-Gprys rules: generate Pulse WHEN 1]

Figure 20: The algorithms the nodes and Pulse Generators follow for using locks
in the purely optical OBee implementation.

To understand the entire sequence of actions on the two wired-0R OBRs,
consider an example cycle in which there are both W/E and R/S requests. We
initially assume that there are no requests for the lock, and we start with the W/E
Pulse Generator sending out its pulse on its output “P” and “T” taps. Because
the Pulse Generator is receiving nothing on its input “B” tap, it generates no extra
signal on the “T” tap. As the pulse travels down the “P” channel, nodes wanting
to make a W/E request are triggered to raise their output “T” signals when they
see their input “U” signal go high. Since only a short pulse was put on the “P”
channel, the first upstream node to request the W/E lock will immediately be
granted the lock. When a node holds the lock, it keeps the “T” output high; when
the node releases the lock, it lowers its “T” output, which then signals the next

downstream requester that it has been granted the lock. This sequence of signals

75

is the second ordered access method described in Section 3.3.1.

Meanwhile, the pulse (either with its original length or in lengthened form
because of raised “T” signals by W/E requesters) has traveled to the R/S Pulse
Generator. When the last downstream W/E requester has released the lock, the
R/S Pulse Generator will be triggered to send out a pulse. This pulse arrives at
the “U” input taps of the R/S OBR and causes any nodes wanting the R/S lock
to raise their “T” signals. As soon as this pulse has gone by a node, the node
immediately gains the lock and shares it with any other nodes that requested it
in this R/S OBR cycle. This pulse (the output of the R/S Pulse Generator) then
travels to the “I” input of the W/E Pulse Generator. Note that the “B” input of
the W/E Pulse Generator is the OR of the nodes requesting and holding the R/S
lock. By the rules of Fig. 20, the W/E Pulse Generator will first generate another
pulse on the “P” and “T” output channels; next, because the “B” input is high
(meaning that nodes hold the R/S lock), it will raise the “T” signal and keep it
high. The pulse allows nodes to make their W/E requests, but because they will
see their “U” input high, they cannot gain access to the lock. Each time the W/E
Pulse Generator sees its “I” input fall, it generates another pulse and checks to see
whether it can lower its “T” output. When it finally can lower its “T” output, this
action will cause the W/E lock to be granted to the first upstream W/E requester.

The just described example covered a cycle in which both W/E and R/S
requests are made. Other combinations of requests are possible. Suppose neither
type of request is made. The W/E Pulse Generator’s pulse travels through its
OBR without triggering any “T” signals and arrives at the R/S Pulse Generator.

The R/S Pulse Generator’s pulse then travels through its OBR and arrives at the

76

W/E Pulse Generator, without having triggered any “T” signals, to start the cycle
again. Suppose that only W/E requests are made. The W/E Pulse Generator’s
pulse travels through its OBR, triggering “I” signals; after the requesters are
serviced in physical order, the R/S Pulse Generator’s “I” input falls low. The R/S
Pulse Generator’s pulse will travel through its OBR without triggering any “T7
signals and then arrive at the W/E Pulse Generator to start the cycle again. A
similar behavior occurs if only R/S requests are made, but the rules and physical
topology of the OBRs allow additional R/S requests to be granted after the initial
batch of requests if no W/E requests are meanwhile pending. When the R/S Pulse
Generator’s pulse reaches the “I” input of the W/E Pulse Generator, it produces a
pulse as before and, because its “B” input is high, raises its “T” signal. Since W/E
“T” signals are triggered, then the R/S Pulse Generator, after receiving the pulse,
generates its next pulse. The R/S Pulse Generator’s pulse then allows additional
R/S requests, via the “U” input, to be granted. Meanwhile, because the W/E
Pulse Generator’s “T” signal is high, W/E requests may be made, but they will
not be granted until all the current R/S requests are satisfied. In order to prevent
a race condition, the W/E Pulse Generator is allowed to lower its “T” signal only
when it sees its “I” input fall (which corresponds to the tail end of a pulse) even

if the “B” input falls first.

5.1.2.2 Hybrid Electronic/optical Scheme

The hybrid electronic/optical scheme for locks uses explicit messages (for both lock
requests and releases) transmitted on one logical channel called the Lock Channel

to implement the lock semantics. The electronic part comes from using the explicit

7

messages to represent lock commands, and the optical part comes from using an
explicit message OBR for the Lock Channel.

For the present discussion, we assume that only one explicit message OBR
implements the Lock Channel, i.e., no matter how many different locks exist in the
program, all traffic for all locks is carried on the one explicit message OBR. The
explicit message OBR used for locks has exactly the same control and transmission
topologies shown in Figs. 10 and 11; it also uses the same access rules enumerated
in Section 3.3.2.

The essential idea behind the hybrid scheme is that each node continuously
monitors the Lock Channel for lock command traffic. When a node puts a lock
request message on the Lock Channel, from the previous traffic, it can determine
where in the request queue it should be placed (including in what peer group).
After making the lock request, the node, from subsequent traffic, can deduce when
it is granted the lock. When the node releases the lock, it puts a message to that
effect on the Lock Channel; that message is processed by all nodes to determine
which peer group will next be serviced. Note that this scheme makes use of the
inherent ordering of messages transmitted on the explicit message OBR (this fact
will become quite apparent as the details are developed below). To understand the
details of the hybrid scheme we first look at the information which must be stored
for each lock and the structure of lock commands as they are transmitted via the
Lock Channel; then we examine the monitoring algorithms.

Fig. 21 shows the data structure needed for each lock under the hybrid
scheme (for convenience in the following discussion, the various fields are grouped

into four parts). This data structure is replicated at every node and modified

78

‘ LOCK-ID ‘ my-type ‘ my-id ‘ my-status ‘

‘ prior-type ‘ prior-id ‘ prior-count ‘

‘ most-recent-type ‘ most-recent-id ‘ most-recent-count ‘

‘ next-recent-type ‘ next-recent-id ‘ next-recent-count ‘

Figure 21: The data structure associated with each lock for the hybrid elec-
tronic/optical scheme under OBee.

independently by every node. The first group contains the fields to identify the
lock and define the peer group into which the lock request is placed. The LOCK-ID
field stores a unique identifier for the lock and is the same across all nodes. The
my-type field stores what kind of lock request is made (R/S, W/E, or NONE).
The my-id keeps a unique identifier to track the peer group into which the lock
request 1s placed. The my-status field tracks whether the request is PENDING or
GRANTED. The second group of fields defines the peer group which will be serviced
immediately before the lock request’s own peer group. The prior-type field stores
what kind of request the prior peer group is: R/s, W/E, and NONE. The value of
NONE indicates that the prior peer group is finished or non-existent. The prior-id
field contains the unique identifier for the prior peer group. The prior-count
stores how many requests are in the prior peer group. The most-recent and
next-recent groups have the same fields as the prior group and serve a similar
purpose. The most-recent group defines the most recent peer group to appear
on the Lock Channel, and the next-recent group defines the peer group that
appeared before the most recent. The purpose of these groups is to allow each
node, as it observes the lock and unlock commands on the Lock Channel, to

know into what peer group its own request should go and when its request should

79

| SENDER | lock-id | command-type | lock-type | REQUEST-id |

Figure 22: The format of lock command messages transmitted over the Lock Chan-
nel in the hybrid electronic/optical lock scheme in Obee.

be granted. The fields in each group are modified according to the algorithms
presented in Figs. 23, 24, 25, and 26, which will be explained below.

The structure of the lock command messages transmitted over the Lock
Channel is shown in Fig. 22. The SENDER field is the ID of the node sending the
lock command message. The lock-id field identifies the lock to which the lock
command is applicable. The command-type field denotes whether the command is
a LOCK or UNLOCK. The lock-type field says whether the lock is a W/E or R/S.
The meaning of the REQUEST-1d field depends upon the command-type field. If the
lock command is of type LOCK, then the REQUEST-1id field is a unique identifier
formed by the node for that lock request; its formation and use are explained in
the following discussion on the lock command message monitoring algorithms. If
the lock command is of type UNLOCK, then the REQUEST-id field identifies the
peer group in which the unlock command belongs.

Before explaining specific parts of the monitoring algorithms, we note the
two underlying principles for each algorithm. First, each node monitors its “B”
(broadcast) input tap. Therefore, each node sees all the traffic both preceding
and succeeding its own lock commands. Second, as a reminder, each node sees
the same sequence of lock commands as every other node. Therefore, even though
each node is independently processing the Lock Channel traffic, there will be no

inconsistencies among the nodes in deciding what requests form which peer groups

80

if (COMMAND == REQUEST):
if (SENDER '= SELF): // Just update most-recent and
next-recent peer groups.

switch REQUEST_TYPE:

case W/E: // Automatically starts new Peer Group.
next-recent-type := most-recent-type;
next-recent-id := most-recent-id;
next-recent-count most-recent-count;

most-recent-type = \V/E;
most-recent-id := REQUEST-id;
most-recent-count =1;
break;

case R/S:

if (most-recent-type == (NONE .OR. W/E)):
// Starts a new Peer Group.
next-recent-type := most-recent-type;
next-recent-id := next-recent-id;
next-recent-count next-recent-count;

most-recent-type 1= R/S;
most-recent-id := REQUEST-1id;
most-recent-count 1;

else: // Since most-recent Peer Group is R/S, this request

joins it.
most-recent-count++;
endif.
break;
endswitch.
endif.
endif.

Figure 23: The algorithm which nodes follow for processing Lock Requests from
other nodes under the hybrid electronic/optical scheme in OBee.

81

if (COMMAND == REQUEST):
if (SENDER == SELF): // Must define my and prior
peer groups, as well as update most-recent
and next-recent peer groups.
switch REQUEST_TYPE:
case W/E: // Automatically starts new Peer Group.

// First create prior group from most-recent group:

prior-type := most-recent-type;

prior-id most-recent-id;

prior-count most-recent-count;

// Update next-recent and most-recent groups:
next-recent-type := most-recent-type;
next-recent-id := most-recent-id;
next-recent-count most-recent-count;

most-recent-type 1= W/E;

most-recent-id := REQUEST-1id;

most-recent-count =1;

// Create my group:

my-type := most-recent-type;

my-id := most-recent-id;

if (prior-type == NONE): my-status := GRANTED;

else: my-status := PENDING; endif.

break;

First part (of three) of Fig. 24.

Figure 24: The algorithm which nodes follow for processing Lock Requests from
themselves under the hybrid electronic/optical scheme in OBee.

82

case R/S:
if (most-recent-type == (NONE .OR. W/E):
// Form new Peer Group:
// First create prior group from most-recent:
prior-type := most-recent-type;
prior-id most-recent-id;
prior-count most-recent-count;

// Update next-recent and most-recent groups:
next-recent-type := most-recent-type;
next-recent-id := most-recent-id;
next-recent-count most-recent-count;

most-recent-type = R/S;

most-recent-id := REQUEST-1id;

most-recent-count =1;

// Create my group:

my-type := most-recent-type;

my-id := most-recent-id;

if (prior-type == NONE): my-status := GRANTED;

else: my-status := PENDING; endif.

Second part (of three) of Fig. 24.

83

else: // Since most recent Peer Group is R/S, this request

// joins it.

// First create my group:
prior-type := next-recent-type;
prior-id := next-recent-id;

prior-count next-recent-count;
// Update most recent group:
most-recent-count++;

// Create my group:
my-type := most-recent-type;
my-id most-recent-id;

if (prior-type == NONE): my-status := GRANTED;
else: my-status := PENDING; endif.

endif.
break;
endswitch.
endif.
endif.

Third part (of three) of Fig. 24.

84

if (COMMAND == W /E-UNLOCK) :
if (REQUEST-id == next-recent-id): next-recent-type :

NONE; endif.

if (REQUEST-id == most-recent-id): most-recent-type : NONE; endif.

if (REQUEST-id == prior-id):

prior-type := NONE;

if (my-type == (W/E .OR. R/S):
my-status := GRANTED,;
endif.

endif.

if (REQUEST-id == my-id): // Change my-type to indicate that node
// no longer holds this lock—there is no
// my-count field to update.
my-type : = NONE;
endif.

endif.

Figure 25: The algorithm which nodes follow for processing W/E UNLOCK com-

mands under the hybrid electronic/optical scheme in OBee.

85

if (COMMAND == R/S-UNLOCK):

if (REQUEST-id == next-recent-id):

next-recent-count--;

if (next-recent-count == 0): next-recent-type :

endif.

NONE; endif.

if (REQUEST-id == most-recent-id):

most-recent-count--;

if (most-recent-count == 0): most-recent-type :

endif.

if (REQUEST-id == prior-id):
prior-count--;

if (prior-count == 0):
prior-type := NONE;
if (my-type == (W/E .0OR.
endif.

endif.

NONE; endif.

R/S): my_status := GRANTED; endif.

if (REQUEST-id == my-id): // Change my-type to indicate that node
// no longer holds this lock—there is no

//
my-type : = NONE;
endif.

endif.

my-count field to update.

Figure 26: The algorithm which nodes follow for processing R/S UNLOCK com-
mands under the hybrid electronic/optical scheme in OBee.

86

and which peer groups are serviced when. As a final comment about the monitoring
algorithms, we point out that it is implicit in each algorithm’s specification that
the data structure to be modified is the one specified by the lock-id field in the
lock command message.

We now examine each of the monitoring algorithms. The monitoring al-
gorithm for a node to process lock requests from all nodes except itself is shown
in Fig. 23. The essential idea behind this algorithm is that when a node sees
either type of lock request from a node (except for itself), the node needs to up-
date the most-recent and next-recent peer group information. Specifically, if
the lock request is of type W/E, then a new peer group is automatically formed;
thus, the next-recent peer group becomes the former most-recent peer group,
and the most-recent peer group is this new W/E lock request. Note that the
most-recent-id field is set by reading the value of REQUEST-1d, a variable which
was sent with the lock request command on the Lock Channel. The REQUEST-id
is formed by the lock requester and consists of two fields, the requesting node’s
own identifier and a simple counter maintained by the node. Every time the node
makes a new lock request, it obtains the counter’s value and then increments the
counter for the next use. Since each node, via this algorithm, pulls the REQUEST-1d
out of the lock request message, then a given peer group will have the same identi-
fier across all nodes. If the lock request is of type R/S, there are two possibilities.
First, the most-recent peer group is either non-existent (meaning the lock is not
being held) or of type W/E; if this is the case, then the new R/S request must form
a new peer group. If the most-recent peer group is of type R/S, then the new

R/S request can join the existing most-recent peer group, which is represented

87

by updating the most-recent-count field. Note that if the R/S request joins the
most-recent peer group, the REQUEST-1id part of the R/S request’s message is
ignored. In the case of R/S peer groups of size more than one, the peer group’s
ID is only the first R/S request’s ID.

The monitoring algorithm shown in Fig. 24 is for nodes processing their
own lock request messages. A separate algorithm from the previous monitoring
algorithm is needed because a node, when processing its own request, must not only
update the next-recent and most-recent peer groups, but it must also record
the prior peer group information, record its request’s peer group information
(in the my fields), and determine whether it can immediately acquire the lock.
First consider if the lock request is of type W/E. As in the previous monitoring
algorithm, a W/E request automatically forms a new peer group. Before the
next-recent and most-recent peer group information fields are updated however,
what was the most-recent peer group becomes the prior peer group. Then, the
next-recent and most-recent peer group information fields are updated. Finally,
the my fields are formed; the node determines whether it immediately acquires the
lock by looking at the prior-typefield to see if the immediately prior lock does not
exist. Next, consider if the node is processing its own R/S lock request. This case
is broken into two subcases. The first subcase occurs when the most-recent-type
peer group is either non-existent or a W/E request, in which case the R/S request
forms a new peer group. The prior peer group information is formed from the
most-recent peer group information, the next-recent and most-recent peer
group information is updated, and then the node’s own request is stored in the

my peer group. The R/S request can immediately be granted to the node if the

88

prior-type field shows that the lock was not being held prior to this request. The
second subcase occurs when the most-recent peer group is also a R/S request, in
which case this R/S request joins the most-recent peer group. Note that, unlike
the previous parts of the algorithm, the prior peer group information is formed
from the next-recent peer group. Note also that the REQUEST-1d field of the lock
request message is ignored since the ID of the peer group comes from the first R/S
request in the peer group. Finally, the R/S request can immediately be granted
to the node if the prior-type field shows the lock was not being held previously.

In contrast, the monitoring algorithms for the both the W/E and R/S
unlock commands are fairly simple. The monitoring algorithm for the W/E unlock
command is shown in Fig. 25. If the REQUEST-1id field of the command message
matches either the next-recent or most-recent peer groups observed by the node,
then since a W/E peer group is size one, that peer group is finished and is changed
to type NONE. If the REQUEST-1id field of the command message matches the prior
peer group, that peer group is also finished and changed to type NONE; in addition,
if the node currently has a lock request as indicated by the my-type field, it acquires
its lock. If the REQUEST-1d field of the command message matches the node’s own
lock, then the my-type field is changed to NONE to indicate the node has finished
with its own request. The monitoring algorithm for the R/S unlock command,
shown in Fig. 26, is nearly identical to the W/E unlock monitoring algorithm
except that since R/S peer groups can be larger than size one, an additional test

must be made to determine if the particular peer group being examined is finished.

89

5.1.2.3 Discussion

We first point out how the purely optical and hybrid electronic/optical OBee lock
schemes employ the capabilities of the OBR. Both schemes rely upon the inherent
ordering capability of the access protocol. The queues of the lock requests come
directly about when the nodes access the OBR. Recall that in the purely optical
scheme, a node releases the lock to next downstream requester; thus, the passing
of the lock takes the minimum amount of time since the requests have been queued
in the order by which the nodes are physically attached to the OBR. The purely
optical method uses the broadcast sum capability of the wired-0R OBR to signify
when R/S requests may join the current R/S peer group. Besides using the inherent
ordering of requests, the hybrid scheme uses the broadcast capability of the explicit
message OBR so that nodes rely on counting the unlock messages to determine
lock acquisition rather than needing an explicit lock grant. An explicit grant
is undesirable for releasing R/S lock requests since, if the peer group is larger
than one, extra work must be performed to determine which requester in the R/S
peer group takes responsibility for releasing the lock to the next peer group. An
explicit grant is also undesirable when a W/E lock holder releases the lock to a R/S
peer group since the latter can be arbitrarily large, and it would be unnecessary
bookkeeping for the W/E lock holder to track the members of the R/S peer group.

We next compare the OBee lock implementations to the Beehive lock im-
plementation in several ways. The first comparison is between peer groups in OBee
and peer groups in Beehive. The peer groups in the purely optical OBee imple-

mentation are organized as shown in Fig. 27 as opposed to Beehive’s arbitrary peer

90

T Toam Rl
—>P|—>P4—>P7——> ———>P5—>PY——> —

W/E R/S W/E R/S

req req req req

Figure 27: The organization of peer groups in the purely optical OBee lock imple-
mentation.

groups of Fig. 16. For a given cycle on the two interconnected wired-OR OBRs,
W/E requests are batched in one group, and R/S requests are batched in another
group. The W/E requests (if any) are then serviced according to the physical order
by which the nodes are attached to the OBR (from node 1 to node N). Then, the
R/S requests are serviced together (note, though, that the R/S requesting nodes
are not notified of the R/S lock grant simultaneously; the notification proceeds
from node N to node 1). Any W/E or R/S request which misses a given OBR
cycle must wait for the next cycle. Therefore, the purely optical OBee implemen-
tation does not form and service lock requests in the strictly FIFO manner that
Beehive does. However, the purely optical OBee implementation does not starve
either type of lock requests; the two types of lock requests are just batched sepa-
rately and, in the case of W/E requests, are re-ordered. From the programming
standpoint, this difference in implementation does not affect program correctness
if the program was written using the BC memory model correctly. To complete

this peer group comparison, we make two final observations. One, the peer groups

91

in the hybrid electronic/optical OBee lock implementation are formed and serviced
identically to peer groups in Beehive. Two, for both the purely optical and hybrid
schemes, if the current lock request is of type R/S and if the most recently formed
peer group is of type R/S, then the current R/S lock request is allowed to join the
most recently formed peer group, just as in Beehive.

The second comparison between the OBee schemes and the Beehive imple-
mentation concerns the combining of the lock grant with the lock’s associated data.
As described thus far, the two OBee schemes do not associate any data (e.g., a cache
line) with the lock. Rather, use of the OBee locks forces the cache coherency to
be maintained explicitly since the lock acquisition is not integrated with the cache
coherency. We will discuss first how the purely optical OBee lock can be integrated
with the cache coherence maintenance, then discuss the issues related to the hybrid
scheme. Recall that the purely optical scheme relies upon “high” or “low” optical
signals, i.e., the signals themselves do not carry any information—their mean-
ing comes from the physical geometry of the wired-OR OBRs. Thus, the wired-OR
OBRs themselves cannot carry any additional information such as a WRITE-UPDATE
when a W/E lock is released. In order to send these WRITE-UPDATESs, an additional
data transmission channel is necessary (call it the W/E WRITE-UPDATE channel).
To maintain the BC memory model, the WRITE-UPDATE must be received and pro-
cessed by the next requester of the lock before the W/E lock release is recognized by
that requester. Thus, the wired-OR OBR representing the W/E lock requests and
the W/E WRITE-UPDATE channel must be coordinated via additional decision logic
so that when a node receives the W/E lock release on the wired-O0R OBR, it does

not consider itself to have acquired the lock until it has received and processed the

92

B B

Node 1 e o o o Node N

T 1/1 \T
- _/

%
\]
Y

Figure 28: The transmission topology of the additional W/E WRITE-UPDATE chan-
nel extension to the purely optical OBee lock scheme.

WRITE-UPDATE messages on the W/E WRITE-UPDATE channel. One implication of
this addition to the purely optical scheme is that if the W/E WRITE-UPDATE channel
uses a dedicated transmission channel (an example of the themes of pre-assigning
a channel’s function and not worrying about a low utilization of a channel), then
when nodes use this channel, they do not need to use any medium access protocol
to arbitrate for this channel since holding the W/E lock is, in effect, controlling
access to the W/E WRITE-UPDATE channel. Thus, the W/E WRITE-UPDATE channel
has the transmission topology shown in Fig. 28. A second implication of this addi-
tion is that data structures of arbitrary size may be associated with the lock since
messages on the W/E WRITE-UPDATE channel can contain an arbitrary number of
WRITE-UPDATE commands. A third implication is that when a node releases a W/E
lock and has transmitted the associated WRITE-UPDATESs, it does not have to wait

for an acknowledgement from the memory modules storing the permanent copies

93

SENDER | lock-id | command-type | lock-type | REQUEST-id | WRITE-UPDATESs |

Figure 29: The format of lock command messages that integrate cache coherency
as transmitted over the Lock Channel in the extension to the OBee hybrid elec-
tronic/optical lock scheme.

of the variables. Recall from Section 5.1.1 that in Beehive, the cache must get an
acknowledgement from memory because of the arbitrary delivery order character-
istic of the Beehive interconnection network. In this OBee implementation, when
Node ¢ sends a WRITE-UPDATE, then the memory module is guaranteed to receive
later any WRITE-UPDATEs which are sent later. Finally, we must consider that if
data are associated with the purely optical locks, then, for both R/S and W/E
requests, if the data is not present in the node’s cache, additional decision logic is
necessary between the wired-0R OBR and the cache so that the lock is not actually
granted until the data has been obtained.

The hybrid electronic/optical OBee lock scheme is easily extended to in-
corporate the cache coherence maintenance with the acquisition of locks. The
structure of lock commands transmitted over the Lock Channel can be modified as
shown in Fig. 29 to include the appropriate WRITE-UPDATE commands. Note that
the lock-id field now represents the appropriate cache line. Since the lock release
and the WRITE-UPDATEs are integrated into one message and sent over one logical
channel, then unlike the extension to the purely optical scheme described above,
no coordination between the lock release and the WRITE-UPDATEs is needed except

that a node must apply the WRITE-UPDATEs before recognizing the lock release.

94

As with the purely optical extension, since the lock command can contain an ar-
bitrary number of WRITE-UPDATESs, then a data structure of arbitrary size can be
associated with the lock. Also, as with the purely optical extension, the node does
not need to wait for an acknowledgement from memory regarding the propagation
of the WRITE-UPDATEs. The problem of the associated data not being present in
the cache when the lock request is made can be dealt with by having both R/S
and W/E unlock commands include the data in the transmitted message. An ad-
ditional slight problem is if a node makes a R/S request, and if the most recent
peer group is R/S and is currently being serviced, then if the requesting node does
not have the data in the cache, it would have to stall until it could obtain the data
and then reissue the R/S request.

The third comparison of the OBee scheme with the Beehive implementation
concerns the hardware requirements, which are summarized in Table 7. The Bee-
hive implementation requires one transmission network, overhead fields per cache
line (since a lock is implicitly associated with a cache line), and moderately com-
plex logic to maintain the queues of lock requests. The purely optical OBee scheme
requires two wired-OR OBRs per lock in the program (the number of required pairs
of OBRs can be reduced by reassigning pairs to different locks dynamically as
the program progresses rather than assigning statically one pair per lock). This
scheme also requires simple decision logic to interpret when optical signals are
present and absent to maintain the queues. The hybrid OBee scheme requires one
explicit message OBR to carry all the traffic for all the lock commands. FEach
lock requires storage for the various peer group fields used to maintain the queues.

Each node needs the logic necessary to interpret the explicit bit messages on the

95

Lock Scheme | Requirements

Beehive | 1 transmission network
overhead queue fields/cache line
moderately complex logic
OBee-purely optical | 2 wired-O0R OBRs/lock
simple decision logic
OBee-hybrid | 1 Lock Channel (explicit message OBR)
(peer group storage fields)/lock
message interpretation logic
OBee—purely optical | (2 wired-OR OBRs 4+ WRITE-UPDATE channel)/lock
with cache coherence | simple decision logic

OBee-hybrid | 1 Lock Channel (explicit message OBR)
with cache coherence | (peer group storage fields)/cache line
message interpretation

Table 7: Comparison of hardware requirements among the Beehive and OBee lock
schemes.

Lock Channel which represent the lock commands and then apply the monitor-
ing algorithms. When integrated cache coherence is added to the purely optical
OBee scheme, the additional W/E WRITE-UPDATE transmission channel per lock is
needed. Additional logic is also needed to coordinate the wired-OR OBRs and the
W/E WRITE-UPDATE channel. Since the WRITE-UPDATEs must be applied regardless
of whether the cache coherency is integrated with the locks, no additional logic
is needed in the integrated scheme. When integrated cache coherence is added to
the hybrid OBee lock scheme, the storage requirement for the various peer group
fields increases considerably since the requirement is per cache line rather than per
lock. The message interpretation logic is the same as without the cache coherency

integration since the logic to apply the WRITE-UPDATESs existed even without the

96

Lock Scheme | W/E-LOCK | W/E-UNLOCK | R/S-LOCK | R/S-UNLOCK
Beehive 1or2 24+ R 1or2 3U + R
OBee 1 1 1 U

Table 8: The number of messages for the various lock commands under the Beehive
and OBee lock implementations.

integration. Finally, we note that if the traffic on the hybrid Lock Channels war-
rants, several Lock Channels can be used to service lock commands. The use of
several Lock Channels implies a replication of the message interpretation hardware
and also implies, for correct semantics, that all the traffic for any given lock (or
cache line with lock) be carried on one Lock Channel only.

The final comparison between the Beehive and OBee lock schemes concerns
the number of messages that must be sent for each lock command; this comparison
is shown in Table 8. A message in the OBee purely optical scheme corresponds to
either the raising or lowering of the optical signal by a node. A message in Beehive
or the OBee hybrid scheme refers to the sending of an explicit group of bits. In
this comparison we make the assumption that when the lock is requested, the data
associated with it already exists in the cache so that the message counts reflect only
those pertaining to the locks themselves. In Beehive, either a W/E lock request or
R/S lock request takes one message if no other requests are outstanding or two if
there are some requests. The W/E unlock takes 24+ R messages; two messages result
from updating memory and receiving an acknowledgement; R messages result from
sending the unlock to the next peer group of size R. The R/S unlock (for a peer

group of size U) takes approximately 3U + R messages. Each node holding the

97

R/S lock usually takes 3 messages to remove itself from the peer group list (the
exact number depends upon just where in the list the node is). It takes R messages
to notify the members of the next peer group of size R that they have acquired
the lock. For the OBee implementations (both purely optical and hybrid), both
the W/E and R/S lock requests take only one message. The W/E unlock takes
one message, and the R/S unlock takes U messages, where U is the size of the
peer group releasing the lock. Note that the number of messages in the OBee

implementation is the minimum number necessary for each operation.

5.2 Barriers

The barrier is another useful synchronization construct for parallel programming
and was first proposed by Jordan [43]. A barrier is a rendezvous point for some set
of processes. The semantics of a barrier are that after initialization of the barrier,
the independent nodes participating in the barrier are free to reach the barrier at
their own pace. When a node has reached the barrier, it is said to be in the arrival
phase. After all the participating nodes have arrived at the barrier, then barrier
completion is said to have occurred. The last phase of the barrier operation is called
notification, in which all the participating nodes recognize barrier completion and
are permitted to proceed past the barrier.

Table 9 shows the three command primitives used to implement the barrier
semantics. The INIT-BARRIER command initializes the barrier before the partic-
ipating nodes are allowed to rendezvous at it. A node issues the REACH-BARRIER

command when it has arrived at the barrier. The BARRIER-WAIT command forces

98

Barrier Command | Semantics

INIT-BARRIER Initialize barrier with the participating nodes.
REACH-BARRIER Node has reached the barrier.

BARRIER-WAIT Node waits until barrier completion.

Table 9: The Barrier command primitives available under OBee.

a node to wait until it recognizes barrier completion.
In the subsequent sections we describe two OBee implementations of the
barrier construct, a purely optical and a hybrid electronic/optical scheme (recall

that Beehive does not provide direct hardware support for the barrier).

5.2.1 Purely Optical Scheme

In the purely optical barrier scheme, as with purely optical locks, only the presence
and absence of optical signals are used to implement the barrier semantics. The
key ideas behind this representation are that: (1) when the barrier is initialized,
the participating nodes raise a signal which is seen by all other nodes; (2) when a
node reaches the barrier, it drops its signal; and (3) when a node sees no signals
from any participating node, it recognizes barrier completion. Therefore, since
this is an OR representation of the barrier, the wired-OR OBR architecture can be
used to implement the barrier. One wired-O0R OBR is assigned per barrier. The
topology of the wired-OR OBR is exactly that of Fig. 8. Both access protocols
enumerated in Section 3.3.1 are used depending upon which barrier command is
being implemented.

The INIT-BARRIER command is implemented by using the second access

99

protocol of Section 3.3.1, i.e., the Pulse Generator sends out a pulse to trigger,
via the “U” input tap, the participating nodes to raise their “T” output taps. A
node knows whether to participate in the barrier from the application program
itself. For example, each node could have a bit register, which we designate a
participation barrier register (PBR), associated with every wired-OR OBR. This
register indicates whether the node participates in the associated barrier. We
assume that when the program begins and before any barriers are initialized with
the INIT-BARRIER command, each node’s PBRs are appropriately set. Thus, the

rule governing the raising of the “T” output is:

1T wHEN (PBR .AND. UT).

After raising its “T” signal, a node keeps that signal high until it is ready to

execute the REACH-BARRIER command:

T UNTIL (barrier is reached).

The REACH-BARRIER command is implemented by the first access protocol
described in Section 3.3.1, i.e., when a node reaches the barrier, it drops its “T”
signal regardless of which other nodes have or have not dropped their “T” signals.
Actually, the node cannot drop its “T” signal until it recognizes that the barrier
has been initialized, which fact is indicated by the node’s seeing a signal on its “B”
input tap. Thus, the rule governing the dropping of the “T” signal (to indicate

reaching the barrier) is:

JT AFTER ((reached barrier) .AND. B).

100

Since a node sees at its “B” input tap the wired-OR of all the participating
nodes’ raised “T” signals, as long as any signal is detected at the “B” tap, the
node knows that at least one node has not reached the barrier. Therefore, when
a node issues the BARRIER-WAIT command, it stalls until it sees no signal on the
“B” input tap:

Node stalls UNTIL B.

What happens when the last node to reach the barrier drops its “T7” sig-
nal? Up until this point, the Pulse Generator, via its “I” input tap, has seen a
continuously high signal, just as the individual nodes have seen such a high signal
on their “B” input taps. The Pulse Generator can take one of two actions. First,
it can ignore the dropping of its “I” signal and wait until the program issues an
INIT-BARRIER command. The second action is for the Pulse Generator to issue
another initializing pulse as soon as it sees the “I” signal drop. This action im-
mediately reinitializes the barrier for its next use. We will discuss in Section 5.2.3

when which action is appropriate.

5.2.2 Hybrid Electronic/optical Scheme

The hybrid electronic/optical barrier scheme, in a fashion similar to the hybrid
scheme for locks, uses explicit messages (for the appropriate barrier commands)
transmitted over one logical channel called the Barrier Channel. The idea behind
the hybrid scheme is that each node maintains a copy of a data structure which
represents the barrier and uses the Barrier Channel traffic to update the barrier’s

status. The broadcast capability is needed since each node must receive all the

101

‘ ID ‘ participation ‘ counter ‘

Figure 30: The data structure which captures the state of a barrier in the hybrid
electronic/optical scheme under OBee.

messages and independently track the barrier’s status. This scheme naturally maps
to one explicit message OBR over which all the traffic for all the barriers is carried.
The explicit message OBR for barriers uses the same control and transmission
topologies shown in Figs. 10 and 11 and uses the same access rules enumerated in
Section 3.3.2.

To understand how the hybrid scheme works we first specify the data struc-
ture associated with each barrier and the format of messages broadcast over the
Barrier Channel; then we examine the algorithms each node follows to implement
the barrier commands. Fig. 30 depicts the data structure which captures the state
of the barrier. Each node has a copy of this data structure, and each node modifies
its copy independently of other nodes’ actions. The barrier is uniquely identified
by the ID field. The participation field stores how many nodes are participating
in the barrier, and the counter field tracks how many nodes have reached the
barrier.

The format of a message sent over the Barrier Channel is shown in Fig. 31.
The ID field identifies which barrier is being addressed. The command field spec-
ifies what kind of barrier command should be performed. This field includes the
operator and associated operand(s) to be performed on the lock’s data structure
(the contents and usage of this field will become clear when the monitoring algo-

rithms are subsequently explained).

102

‘ID ‘connnand‘

Figure 31: The format of messages sent over the Barrier Channel in the hybrid
electronic/optical scheme under OBee.

switch command:
case INITIALIZE:
participation := N;
counter :=
break;

(@]

case REACH:
counter++;
break;

endcase;
endswitch.

Figure 32: The monitoring algorithm that each node follows in processing traffic
on the Barrier Channel.

The monitoring algorithm that each node uses in processing the Barrier
Channel traffic is shown in Fig. 32. When an INIT-BARRIER command message is
received, the node uses the message’s ID field to identify which data structure is
being addressed. The proper barrier’s participation field is set to the number of
nodes participating in the barrier and the counter field to 0. When a node pro-
cesses a REACH-BARRIER command (including its own), it increments the counter
field of the barrier specified by the message’s ID field.

After a node has issued the REACH-BARRIER command, it must perform
a BARRIER-WAIT command, the algorithm for which is shown in Fig. 33. This

algorithm is very simple: the node must stall until the number of nodes reaching

103

while (counter !'= participation): stall; endwhile;
counter := 0;

resumne prograin execution.

Figure 33: The algorithm a node follows to implement the BARRIER-WAIT command
in the hybrid barrier scheme.

the barrier equals the number participating in the barrier. The hardware for
processing Barrier Channel messages must be such that while the node waits for
the BARRIER-WAIT command to complete, it can process Barrier Channel messages;
otherwise it could not complete. After the barrier is reached by all participating
nodes, the node resets its copy of the counter to reinitialize the barrier for its
next use. Note that each node independently ascertains when barrier completion
has occurred since each node counts for itself how many nodes have reached the
barrier; therefore, there is no need for an explicit command to notify nodes of

barrier completion.

5.2.3 Discussion

We first make some comments about how the purely optical and hybrid elec-
tronic/optical implementations of barriers employ the properties of the OBR ar-
chitecture. The purely optical scheme uses the Pulse Generator (and its subsequent
ordering of accesses to the OBR) only to control when the barrier is initialized be-
fore use. More importantly, since nodes are allowed to turn off their signals with-

out regard to when other nodes do so, the hardware allows an arbitrary number of

104

nodes to issue the REACH-BARRIER simultaneously. Since the wired-0R OBR broad-
casts to every node the sum of the nodes’ signals, no one node takes responsibility
for asserting barrier completion. The hybrid scheme makes use of the broadcast
capability of the explicit message OBR so that nodes independently determine
barrier completion. The hybrid scheme also relies upon messages being received
in transmission order to prevent a race condition from one use of the barrier to
another (discussed in more detail below).

As mentioned earlier, there are two policies for initializing the purely optical
barrier (recall that the initialization is performed by having the Pulse Generator
send out a pulse). In the first policy, only when the INIT-BARRIER command is
explicitly issued does the barrier become initialized. The second policy says that
when the “I” input to the Pulse Generator drops, another pulse is sent out to ini-
tialize the barrier. If, at program initialization, the barrier hardware is statically
associated with program barriers, then the second initialization policy is permis-
sible and allows the barrier to be reused as soon as possible. The reader should
realize that an explicit INIT-BARRIER command is required before the first use of
the barrier; also, the participation barrier registers (PBRs) at each node need to

be set appropriately. The Pulse Generator, by following the rule:
send Pulse WHEN 1],

in effect recognizes barrier completion and initializes the barrier for its next use.
No node takes responsibility for preparing the barrier for its next use. If, however,
the hardware barriers are used to implement different program barriers, then a

barrier cannot be initialized for reuse except by the INIT-BARRIER command.

105

This dynamic assignment of the barrier hardware also requires resetting the PBRs
appropriately whenever the barrier hardware is reassigned to a different program
barrier. Therefore, this policy requires that some node take responsibility for
initializing the barrier hardware between each use.

The design of the barrier must ensure that no race conditions can result
when the same structure is going to be reused immediately: every participating
node must be able to recognize barrier completion before the hardware is initial-
ized for the next use. We first discuss the purely optical scheme in the context of
this design issue. If the policy of issuing the INIT-BARRIER command to initialize
the barrier hardware each time before use is followed, then to prevent this race
condition, the last node physically to recognize barrier completion must have the
responsibility of issuing the INIT-BARRIER command. Following the notation of
our previous figures (such as Fig. 8), this last node will be the lowest numbered
one participating in the barrier. If the Pulse Generator automatically initializes
the barrier hardware each time barrier completion occurs (by seeing its “I” input
drop), then since it recognizes barrier completion after all the nodes, the race con-
dition cannot occur. In the hybrid scheme (assuming that the data structures are
statically assigned to the program barriers), the race condition is avoided because
the explicit message OBR guarantees that messages transmitted later in time are
received later in time. Therefore, a node is guaranteed to compute and recognize
barrier completion before it resets the data structure for the next use and before it
can receive REACH-BARRIER messages from other nodes that are already using the

barrier again. If the barrier hardware data structures are dynamically assigned

106

to program barriers, then the last node physically to recognize barrier comple-
tion must take responsibility for issuing the INIT-BARRIER command to reset the
participation field when the barrier hardware is reassigned.

As described so far, the semantics of the barrier operations are that reaching
the barrier and waiting for barrier completion are inseparable, i.e., when a node
reaches the barrier, it can do nothing but wait for the other participating nodes
also to reach the barrier. These semantics are represented in our schemes by
issuing the REACH-BARRIER command immediately followed by the BARRIER-WAIT
command. A potentially useful extension to the normal barrier semantics is that
of the “fuzzy” barrier proposed by Gupta [37]. In the fuzzy barrier, after the node
has reached the barrier, the node potentially has code which it can execute before
waiting for barrier completion. Conceptually, the node issues the REACH-BARRIER
command, executes any code which does not depend upon barrier completion, and
then issues the BARRIER-WAIT command to wait for barrier completion.

Implementation of the fuzzy barrier semantics in both schemes requires
special care that the barrier hardware not be initialized for the next use before
all the nodes have a chance to recognize barrier completion. In the purely optical
scheme, if the Pulse Generator automatically resets the hardware (by generating
another pulse) upon barrier completion, a node might not issue the BARRIER-WAIT
command soon enough to see barrier completion for itself. If the INIT-BARRIER
command is to be issued every time the barrier hardware is reset, the question arises
under the fuzzy barrier semantics of which node recognizes barrier completion
last. This problem can be solved by having a completion-flag register (CFR)

associated with the wired-0R OBR. To implement the fuzzy barrier semantics, the

107

node issues the BARRIER-WAIT command immediately after the REACH-BARRIER
command, but then the node is allowed to execute any code not dependent upon
barrier completion. While the node executes that code, there is separate logic
monitoring the “B” input tap; when the “B” tap goes low, the logic sets the
CFR. After the node finishes executing the code not dependent upon barrier
completion, it stalls on the CFR until the CFR is set; the node then clears the
CFR and proceeds past the barrier. Since the CFR records for the node when
barrier completion occurs, the wired-0R OBR can be reset immediately for the
next barrier use by either initialization scheme, and other nodes can even reach
the barrier again before the node recognizes barrier completion. The hybrid scheme
can be extended in a similar manner by adding a completion-flagfield to the data
structure shown in Fig. 30. The monitoring algorithm shown in Fig. 32 is modified
as shown in Fig. 34 to have the completion-flag cleared when an INIT-BARRIER
command is received and to set the completion-flag and reset the counter to 0
when the number of nodes reaching the barrier equals the number of participants.
The BARRIER-WAIT command algorithm is modified as shown in Fig. 35 to stall on
the completion-flag and clear it after recognizing barrier completion.

The hardware requirements for the two OBee barrier schemes are shown
in Table 10. The purely optical scheme requires one wired-0R OBR per hardware
barrier; in addition, one participation barrier register (PBR) per node per barrier is
required (if the fuzzy barrier semantics are implemented, then one completion-flag
register per node per barrier is also required). Simple decision logic is also needed
to interpret when optical signals are present and absent and to implement the rules

presented in Section 5.2.1. The hybrid scheme requires one explicit message OBR

108

switch command:
case INITIALIZE:
participation := N;

counter := 0;
CLEAR completion-flag;
break;

case REACH:
counter++;
if (counter == participation):
SET completion-flag;
counter := 0;
endif;
break;

endcase;
endswitch.

Figure 34: The monitoring algorithm that each node follows in processing traffic
on the Barrier Channel for fuzzy barrier semantics.

while (completion-flag == CLEAR): stall; endwhile;

CLEAR completion-flag;

resume prograim execution.

Figure 35: The algorithm a node follows to implement the BARRIER-WAIT command
for fuzzy barrier semantics in the hybrid barrier scheme.

OBee Barrier Scheme | Hardware Requirements
purely optical | 1 wired-O0R OBR/barrier
1 PBR/node/barrier
simple decision logic
hybrid | 1 Barrier Channel (explicit message OBR)
1 data structure/node/barrier

message interpretation logic

Table 10: Comparison of hardware requirements for the OBee barrier schemes.

109

OBee Barrier Scheme | INIT-BARRIER | REACH-BARRIER | BARRIER-WAIT
purely optical N N 0
hybrid 1 N 0

Table 11: The number of messages for the various barrier operations under the
two OBee barrier schemes.

(the Barrier Channel) to carry all the traffic for all the barriers. Each barrier also
requires a data structure which is replicated at every node. We have not previously
specified the implementation of this data structure. The most straightforward
implementation is to have a Barrier Table, constructed of a fast associative memory,
located at each node. Each named entry in the Barrier Table corresponds to one
of the data structures shown in Fig. 30 (we assume the name is assigned by the
program itself and the operating system). The message interpretation logic applies
a barrier operation (as specified in the monitoring algorithms) as received over
the Barrier Channel to the appropriate Barrier Table entry. If the barrier traffic
warrants, the traffic could be split over several Barrier Channels, which would
require the appropriate duplication of the message interpretation logic. In order to
preserve most easily the barrier operations’ semantics when the traffic is so split,
we require that all the traffic pertaining to any given barrier be restricted to one
Barrier Channel.

The OBee barrier schemes may also be compared in terms of the number
of messages required for the various barrier operations, as shown in Table 11. A
message for the purely optical scheme is defined (as in the discussion for locks) to

be either the raising or lowering of the optical signal. In the purely optical scheme,

110

whenever the barrier hardware is initialized, each node must raise its “I” output
signal. Therefore, by definition, if N nodes participate in the barrier, N messages
are required; however, these messages will all be transmitted in one cycle of the
wired-0R OBR. The hybrid scheme requires only one message since the message is
broadcast to all the nodes. An additional difference between the two schemes oc-
curs when the barrier is initialized for each use. The purely optical scheme requires,
as previously discussed, that either an explicit INIT-BARRIER command be given
or that the Pulse Generator automatically start the initialization upon barrier
completion. Either way, N messages are required every time to reset the barrier
hardware before its next use. In contrast, in the hybrid scheme, each node stores in
the participation field the contents of the INIT-BARRIER command; thus, unless
the number of participating nodes changes, no messages are required to reset the
barrier before its next use. When a node reaches the barrier, both schemes require
that the node send a message (lowering a signal or a REACH-BARRIER message);
therefore, N messages (the minimum number) are required for the N participating
nodes to reach the barrier. Since each node, in either scheme, recognizes barrier
completion either from observing the state of the OBR or from monitoring the
OBR traffic, the BARRIER-WAIT command is strictly a local operation and requires

no messages on the OBR.

5.3 F&OP

The F&A (Fetch-and-Add) synchronization operation was introduced by Gottlieb

[34]. Various coordination algorithms for barriers, queues, and semaphores using

111

FEOP Primitive | Semantics
INIT-FOP | Initialize the appropriate F&OP hardware.
F&OP(V,e) | Atomically perform (V := V OP e) ; return old V.

Table 12: The semantics of the F&OP synchronization primitive in OBee.

F&A have been proposed [2]. The F&OP (Fetch-and-OP) primitive is a general-
ization of the F&A primitive. Table 12 shows the format and semantics for the
F&OP command. The operator represented by OP can be any associative, commu-
tative operator. When F&OP(V,e) is issued by a node, the command returns the
old value of V to the node and atomically replaces V with (V 0P e). The INIT-FOP
command is used to initialize the F&OP hardware; its exact specification depends
upon the implementation.

A fundamental property of the F&OP command is its potential combining
capability. This capability is expressed by saying that the F&OP must satisfy the
serialization principle: if V is a shared variable and many tasks issue F&OP(V,e)
simultaneously to the same V, then the effect of the many F&OP commands issued
in parallel is exactly what it would be if they had occurred in some (unspecified)
serial order. That is, the final value of V due to the parallel F&OP(V,e) commands
is the result of applying all the operators OP and operands e to the original V,
and each task receives an intermediate value of V depending upon where its own
particular F&OP(V,e) command happens to fall in the arbitrary serial order. The
designer of an algorithm using the F&OP semantics must realize he cannot design
the algorithm to rely upon any particular value of V that the F&OP operation

returns.

112

The key problem in implementing the F&OP command is providing hard-
ware which can support the combining capability. In the following sections we will
describe a restricted form of F&OP that can be implemented with the wired-0R
OBR and a general, unrestricted F&OP that can be implemented with the explicit

message OBR.

5.3.1 Purely Optical RF&OP Scheme

A restricted form of F&OP (denoted RF&OP) was proposed by Sohi et al. [77];
their description includes proposed electrical bus-based hardware support. The
RF&OP imposes the following constraint for implementing the potential F&OP
combining: in any given bus cycle all participating nodes must perform the same
OP with the same operand e on the same target V. Their scheme works as follows.
Suppose that M nodes issue the RF&OP(V,e) command during one bus cycle and
that every node knows which other nodes have issued this exact command. If the
nodes know their place in some pre-assigned ordering, then each of the M partici-
pating nodes can locally compute the correct number of RF&0OP(V,e) commands to
determine what value of V they obtain from the command (given either the orig-
inal or final value of V). Some mechanism is needed to ensure that participating
nodes have the original (or final) value of V; Sohi et al. suggest having memory
(where the target V resides) be responsible for supplying V (and updating it) to
the participating nodes.

Our purely optical RF&OP scheme is similar to the proposal of Sohi et

al. As with the purely optical locks and barriers schemes, this scheme relies only

113

upon the presence and absence of optical signals to convey the needed information
(actually, as will be explained below, the ability to detect discrete drops in the
signal levels is needed). The key ideas behind this scheme are: (1) during a well
defined access cycle, nodes wishing to participate in a RF&0OP(V,e) operation so
signal their desire; (2) as the access cycle progresses, nodes remove themselves
from participation in the RF&OP(V,e) operation; and (3) all nodes observe each
node removing itself from participation, thereby allowing each node to calculate
what its RF&0P(V,e) command returns to it as well as the final value of V for that
cycle. This scheme employs the wired-0R OBR architecture in which one wired-0R
OBR is assigned per V, OP, and e combination in the program. The topology of the
wired-OR OBR is exactly that of Fig. 8, and the access protocol is the second one
enumerated in Section 3.3.1 which prescribes an ordered access to the medium.
The access cycle to the wired-0R OBR begins by the Pulse Generator send-
ing out a pulse. A node is allowed to raise its “T” output signal whenever it sees

its “U” input signal high:

T WHENEVER U.

The raising of the “T” output signal signifies that the node wishes to perform the
F&OP(V,e) command that has been assigned to this wired-0R OBR hardware. The
nodes use the ordering that results from the access protocol of the wired-0R OBR
to determine their place in the serial ordering of the F&OP(V,e) commands issued
during the access cycle. Therefore, after raising its “T” output, each node, one by

one, drops its “T” output, which causes a discrete drop in the optical signal level

114

‘ V-current ‘ V-mine ‘ 0] ‘ e ‘

Figure 36: The structure of the F&OP Definition Table in the purely optical
RF&OP scheme.

that will be seen at each downstream node’s “U” tap and at all nodes’ “B” taps:

UT AFTER U.

In order for each node to know how many nodes upstream of it are issuing the
F&OP(V,e) command, the wired-0R OBR needs an additional capability: each
node’s input tap (the “U” and “B” taps) must be able to detect discrete drops in
the optical signal level. Thus, by counting the number of drops at the “U” tap, the
node determines how many upstream nodes have issued the F&OP(V,e) command.
When the node knows its place in the serial order, then, given the old value of V, it
can calculate the value of V it obtains by having issued the F&OP(V,e) command.

We now consider how the node obtains the old value of V so that it can
calculate the value of V it obtains from issuing F&OP(V,e). Associated with each
wired-0R OBR is a data structure called the FEOP Definition Table (FDT), whose
layout is shown in Fig. 36. The FDT is replicated at every node. The V-current
field stores the value of V when the current access cycle begins. The V-mine field
stores the value of V the node receives from having issued the F&OP (V,e) command.
The 0P field and e fields designate what operation and operand respectively are
associated with this F&OP wired-0R OBR hardware. For this implementation, the
INIT-FOP command takes the form INIT-FOP(V,0P,e) in order to initialize the

FDT (realize that the wired-OR OBR is not used to transmit the initialization of

115

the FDT). Thus, the INIT-FOP command supplies the FDT with the original value
of V.
To determine the value of V its F&OP(V,e) returns, each node uses the

following algorithm:

if (node is participating in access cycle):
C := number of drops at “U” tap;

V-mine := V-current;

for i =1 to (C - 1) do:
V-mine := (V-mine OP e);
enddo.

Note that the node applies (0P e) to the current value of V one less time
than the number of drops at the “U” tap. Lessening the drop count by one is
necessary because the first drop each node sees is due to the pulse from the Pulse
Generator going by. If this extra drop is not ignored, then the semantics of the
F&OP command are violated since the first node in the serial order should obtain
the current value of V back as its own value.

In order for the nodes to know the current value of V, each node, regardless of
whether it issues the F&OP(V,e) command during a given bus cycle, must monitor
its “B” input tap to calculate the new value of V after each bus cycle. Each node

uses the following algorithm for monitoring the “B” tap:

regardless of participation during access cycle:
C := number of drops at “B” tap;

for i =1 to (C - 1) do:

V-current := (V-current OP e);
enddo.

Note the count of drops is again reduced by one since the pulse from the

Pulse Generator is an extra pulse. The adjusted number of drops is the number

116

of nodes that issued the F&OP(V,e) during that access cycle. Since each node sees
the same number of drops at the “B” tap and follows the same algorithm, each
node keeps its copy of V-current up to date for the next access cycle.

Up until now, we have said that a node may lower its “T” signal any
time after its “U” input tap goes low. The node is actually constrained not to
lower its “T” signal any faster than the counting logic of downstream nodes can
detect the signal drops and count them. In addition, the logic that implements
the “B” tap counting should be constrained not to modify V-current until the
node (if applicable) has calculated its V-mine value. Finally, when can the Pulse
Generator send out another pulse to start the access cycle again? The Pulse
Generator cannot send out another pulse until it is assured that every node has
had a chance to update the V-current value. Since Node 1 will be the last one
to perform this calculation, then if the Pulse Generator is controlled by Node 1, it
will send out pulses at the correct time.

As a simple illustration of this scheme, assume that V-current is 23, OP is
addition, and e is 1. Assume that in a 10 node system, for the access cycle under
consideration, nodes 2, 5, and 7 issue the F&OP (V,+,1) command. A pulse from the
Pulse Generator starts the access cycle. The pulse allows Node 2 to raise its “T”
signal; when the pulse goes by, since no other upstream nodes requested access,
then Node 2 sees one drop at its “U” tap, which, by the “U” tap algorithm, means
that its V-mine takes the V-current value of 23. When the pulse gets to Node 5,
the node is triggered to raise its “T” signal; Node 5 will see two drops as its “U”
tap goes dark, which means it applies (+ 1) once to V-current to yield a value

of 24 for V-mine. Similarly, Node 7 will see three drops at its “U” input, which

117

V-current ‘ V-mine ‘

Figure 37: The data structure associated with each target V in the hybrid F&OP
scheme.

means it applies (+ 1) twice to V-current to yield 25 for its value of V-mine. All
ten nodes apply the “T” tap algorithm to keep their copies of V-current up to

date: (+ 1) is applied three times so that V-current acquires the value 26.

5.3.2 Hybrid Electronic/optical Scheme

The hybrid scheme removes the restrictions of the purely optical RF&OP scheme.
The hybrid scheme allows nodes to issue any arbitrary F&OP(V,e) command (mean-
ing that OP, V, and e are all arbitrary) at any time they are given access to the
OBR. This scheme uses explicit messages, which represent the arbitrary F&OP (V,e)
commands, transmitted over one logical channel called the FEOP Channel. The
idea behind this scheme is that each node maintains an appropriate data structure
to represent each target V and that by monitoring the traffic on the F&OP Chan-
nel, the node can determine the value of V it obtains from its F&OP command.
As with the hybrid lock and barrier schemes, the broadcast capability is needed so
that each node can independently modify the data structure as it listens to all the
traffic. This scheme naturally maps to one explicit message OBR for which the
control and transmission topologies are as shown in Figs. 10 and 11 and for which
the access rules are as enumerated in Section 3.3.2.

The data structure associated with each target V is shown in Fig. 37. Asin

118

| SENDER | V-target | OP | e |

Figure 38: The format of a message transmitted over the F&OP Channel.

if (SENDER == SELF):
V-mine := V-current;
notify CPU that the F&OP has completed by returning V-mine;
endif;

V-current := (V-current OP e).

Figure 39: The monitoring algorithm each node follows in the hybrid F&OP
scheme.

the purely optical scheme, the V-current field stores the value of V, and the V-mine
field stores the value of V the node obtains from having issued the F&OP(V,e)
command. However, unlike the purely optical scheme, the data structure does not
need to store the OP or e parameters because they are transmitted over the F&OP
Channel as part of the message that represents each F&OP(V,e) command. As
with the purely optical scheme, this data structure is replicated at each node.

In this implementation, the INIT-FOP command has the formm INIT-FOP (V)
so that the data structure is initialized with the proper value of V-current. When
a node issues a F&OP(V,e) command, a message of the form shown in Fig. 38
is transmitted over the F&OP Channel. The SENDER field identifies which node
transmitted the message. The V-target field represents which V is the object of
the operation, and the OP and e fields specify the rest of the F&OP operation.

As mentioned, each node monitors the traffic on the F&OP Channel. The

monitoring algorithm that each node follows is shown in Fig. 39. The algorithm

119

can be understood by considering that each node sees a stream of F&OP(V,e)
commands going by and that each node processes each command in the order
received (recall that because of the OBR’s topology, each node will see the same
message order as every other node). If a node sees that the F&OP command is
from itself, then it realizes that it needs to supply the value of V that its F&OP
should return. This value will be the current value of V before the F&OP command
is applied to the current V. Regardless of whether the command is from itself, the
node, to keep the value of V current, applies the F&OP operation specified in the

message to V-current.

5.3.3 Discussion

We first comment on how the two F&OP schemes make use of the characteristics of
the OBR architecture. The purely optical scheme uses the ordering and broadcast
features of the wired-OR OBR. The ordering feature allows a natural ordering of the
issued F&OP commands to be formed, which, in turn, allows each node to calculate
what it should receive from the F&OP command. The broadcast property allows
every node to monitor all the F&OP commands and thus independently keep track
of the current value of the F&OP target V. The hybrid scheme makes use of the
ordering and broadcast features of the explicit message OBR in a similar fashion.

We point out that unlike traditional F&OP combining hardware, in which
the combining takes place in the interconnection network, these two schemes are
completely distributed in their combining, i.e., the nodes are responsible for mon-

itoring the F&OP commands, performing the combining locally, determining the

120

proper return value of their F&OP, and maintaining the up to date value of V. Inso-
far as we have described these schemes, each node processes the F&OP commands
(be they represented by optical signal drops or explicit bit messages) serially. But,
in the case of the purely optical scheme, the processing hardware needed to imple-
ment the “U” or “B” tap algorithms could be easily extended in two ways. First,
after counting how many drops occur, the hardware could combine all the (OP e)
operations into one operation. For example, if OP is the addition operator, then a
combined multiplicative operation can be substituted. Second, the hardware used
for processing those algorithms could be made parallel, e.g., a pipelined processing
unit can be used to implement the needed number of (OP e) operations. These
two techniques could also be used in the hybrid scheme, although perhaps not
with as much success since the hybrid scheme allows the intermixing of F&OP
commands on the F&OP Channel. If, however, there was enough F&OP traffic
to warrant splitting the traffic over several F&OP Channels, then perhaps parallel
message processing hardware would be worthwhile.

Another optimization in the F&OP processing hardware can be made if
it was decided to support only a certain number of V, OP, and e combinations
(Freudenthal and Gottlieb [25] discussed implementations of various algorithms in
which OP is either the increment or decrement operator and e is always the constant
1). In the purely optical scheme, each wired-OR OBR and associated drop count
processing hardware could then be optimized to implement only the prescribed V,
0P, and e combination. Such an optimization would eliminate the need for the
OP and e fields in the FDT shown in Fig. 36. This optimization would also be

useful in the hybrid scheme if the F&OP traffic were split over several channels;

121

OBee FEOP scheme | Hardware Requirements

purely optical | 1 wired-O0R OBR/F&0P(V,e) combination
1 FDT/node/F&0P(V,e) combination
simple decision and update logic
hybrid | 1 F&OP Channel (explicit message OBR)
1 data structure/node/target V
message interpretation logic

Table 13: The hardware requirements for the two OBee F&OP implementations.

the message processing hardware associated with a given channel would need to be
capable of processing only those types of messages transmitted via that particular
channel.

The hardware requirements for the two F&OP schemes are summarized in
Table 13. Under the assumption of a static assignment of F&OP hardware to pro-
gram needs, the purely optical scheme requires one wired-0R OBR per F&0P(V,e)
combination. One FDT per node per F&OP(V,e) combination is required so that
the simple decision and update logic can perform the proper processing of the opti-
cal signals. If the designer wants to reduce the number of required wired-0R OBRs
and associated FDTs and processing hardware, then the operating system must be
able to make dynamic assignment of the F&OP hardware to the program needs.
The hybrid scheme requires one explicit message OBR to implement the F&OP
Channel. The message interpretation logic also needs one data structure per node
per target V. The message interpretation logic is fairly complex since, unless the
design is restricted a priori, the F&OP commands received on the F&OP Channel
can contain arbitrary OP and e parameters. As with the hybrid barrier design,

the required data structures are stored in a F&OP Table, which is implemented

122

OBee FEOP scheme | INIT-FOP | F&0OP(V,e)
purely optical 1 2
hybrid 1 1

Table 14: The number of messages used by a node in the two F&OP schemes.

with an associative memory. Each named entry in the F&OP Table corresponds to
one of the data structures shown in Fig. 37 (we assume that the name is assigned
by the program itself and the operating system). If the F&OP traffic warrants,
several F&OP Channels (each corresponding to one explicit message OBR) can
be used, which requires a duplication of the message interpretation logic. If the
traffic is so split over several channels, then, to preserve most easily the semantics
of the F&OP operations, we require that all the traffic for a particular target V be
carried on only one channel.

The number of messages required in the two F&OP schemes is shown in
Table 14. As has been defined before, a message in the purely optical scheme
corresponds to either the raising or lowering of the optical signal. Although the
INIT-FOP command is not issued over the wired-OR OBR in the purely optical
scheme, for completeness, we show that it requires one message (sent in some other
way) to initialize the FDT; the hybrid scheme also requires one message to initialize
the appropriate entry in the F&OP Table. In the purely optical scheme, strictly
speaking, a node sends two messages to complete its F&OP(V,e) operation. One
message 1s the raising of its “T” signal to signify participation in this F&0P(V,e)
operation, and the second message is the dropping of its “T” signal to inform

downstream nodes of its specific place in the command issuance order. In the

123

hybrid scheme, a node sends only the one explicit message indicating what specific

F&OP(V,e) operation it is issuing.

124

Chapter 6

Evaluation

In this chapter we present some analytical evaluations of the proposed architec-
tural features. These evaluations are built from the basic analysis of the OBR
architecture presented in Section 3.3.3. In this analysis we are interested in the
fundamental performance of the architectural features. That is, we are not con-
sidering in this analysis the performance of the program as a whole, just the raw,
basic performance characteristics of the architectural features.

We evaluate the architectural features in terms of the best and worst case
execution times. Execution time is defined to be the time from when a node wants
to issue a command to the time when it gets the command’s result back (this defi-
nition makes execution time the same as response time). Since the OBR’s topology
and access protocol are deterministic, these two metrics are also deterministic. In
each of the following sections we give the appropriate definitions and assumptions
pertinent to the derivation of the best and worst case execution time for each ar-
chitectural feature. After deriving the equations, we use four different types of
graphical plots of the equations to make some observations about their behavior.
The plots are constructed to give information about the equations’ dependencies
upon small and large system sizes and small and large distances for coupling the

nodes together. Specifically, one type of plot assumes a small fixed system size

125

(50 nodes) and shows the equations’ dependence upon the propagation distance.
The second type shows the equations’ dependence upon the propagation distance
for a large fixed system size (500 nodes). The third type of plot assumes a room
size environment for coupling the nodes together (fixed propagation distance of
10 m) while showing the equations’ dependence upon the system size. The fourth
type of plot shows the equations’ dependence upon the system size when a building

size environment (fixed propagation distance of 100 m) is assumed.

6.1 Cache Coherency

In considering the execution time for the reader initiated cache coherency protocol,
we focus on the WRITE-UPDATE command. For that command, we are interested
in knowing how long it takes for its effect to be seen by all the nodes. Recall that
the WRITE-UPDATE command is transmitted over an explicit message OBR (and we
assume fixed length messages are used on the OBR). The execution time E¢ for

the WRITE-UPDATE command from a given node is defined as:
EC = Tqueue + Trequest + Tdeliver-

The Tjyeue term represents how long the WRITE-UPDATE command stays in the
node’s Write Buffer before becoming the top entry in the Write Buffer; we exclude
this term from our analysis since it is dependent upon the program’s behavior.
The T} cquest term represents the time it takes, once the command is the top entry
in the Write Buffer, for the command to put its message on the explicit message

OBR. The Ty jiper term is the time it takes for the message to be delivered to all

126

H Load ‘ Minimum ‘ Mazimum H

idle 2A+ L)+ (r+ D) [min(27, NL) + A+ 2A + L]
+(27 4+ D)
high | (2A+ L) + min(27 + D, 7+ ND) (NL+A+2A+ L)
+ max(27 + D, 7 + ND)

Table 15: The minimum and maximum execution times for the WRITE-UPDATE
command under idle and high load conditions.

the nodes in the system.

There are two situations to be analyzed for the execution time for the
WRITE-UPDATE command, idle load and high load. Idle load means that only one
node is trying to put a message on the OBR. High load implies that all the nodes
are attempting to put messages on the OBR. Table 15 gives the formulas for the
minimum and maximum F¢ times for the idle and high load situations for the
WRITE-UPDATE command. The A term represents the component and circuitry
delay times of the optical protocols (as used in Section 3.3.3), e.g., the time to
recognize the drop in an optical input tap and turn on an optical transmitter. The
symbol 7 is the propagation time from the first node to the last node and vice
versa. The number N represents the number of nodes in the system. Since the
cache coherency is implemented only with the hybrid scheme, the value L is the
(average) length of a message, and the value D is the time it takes to decode a
message.

These formulas are derived as follows. Note that each formula contains two
terms (a parenthetical expression counts as one term) which correspond directly

with the T, cguest and Tyepiver terms being analyzed for the E¢ execution time. Also,

127

note that we must determine when the command message is heard by all nodes,
i.e., when does the physically first node on the OBR hear and decode the command
message?! We first consider the idle load situation in which the given node is the
only one accessing the OBR. In the minimum execution time case, the control pulse
arrives at the given node just as it wants to issue the WRITE-UPDATE command,
so the node takes 2A to recognize the pulse and begin its transmission, which
lasts time L. If the given node is the physically last node on the OBR, then the
message travels the propagation distance 7, and it takes time D to be decoded. In
the maximum execution time case, the control pulse passes by the given node just
after the node issues the command. Therefore, the node waits min(27, NL)+ A for
the pulse to be regenerated and come back again. Then, the node recognizes the
pulse and begins its transmission 2A time later. The transmission lasts L time. If
the given node is the physically first node on the OBR, then the command message
travels 27 to reach itself, and it takes time D to be decoded.

We next consider the high load situation in which all the nodes have mes-
sages to put on the OBR. In the minimum execution time case, the control pulse
arrives at the given node just as it issues the WRITE-UPDATE command, so it takes
2A for the node to recognize the pulse and begin its transmission, which lasts
for L time. Now, how long does it take for the node’s command message to be
seen by the physically first node? If the given node is the physically first node,
then the message travels 27 to reach itselt and is decoded in time D. If the given
node is the physically last node, then the message travels only 7, but since it is
the last message in the message train, it is not decoded until time ND. Thus,

the minimum delivery time is min(27 + D,7 + N D). In the maximum execution

128

time, the node issues the WRITE-UPDATE command just after the pulse passes by
it. The node then waits NL + A for the pulse to be regenerated and come back
to it. The node then recognizes the pulse and turns on its message in time 2A.
The message lasts for time L. For this situation, what is the worst time for the
command message to be seen by the physically first node? If the given node is the
physically first one, then the message travels 27 to reach itself and is decoded in
time D. If the given node is the physically last one, then the message only travels
7, but since it is the last message in the message train, it takes time N D before it
is decoded. Thus, the maximum delivery time is max(27 + D, 7 + ND).

We now present various plots of these equations in order to understand the
scale of the execution time of the WRITE-UPDATE command. We assume that the
average message length L is 75 nsec (16 bytes of cache line plus overhead bits for
a total of 150 bits at 2 Gbit/sec), the decoding time D is also 75 nsec, and A is
10 nsec. Figs. 40, 41, 42, and 43 show various plots for the idle load situation, and
Figs. 44, 45, 46, and 47 show various plots for the high load situation. Note that
the propagation distance 7 is presented in terms of time. Since light propagates at
approximately 5 nsec/m in a waveguide, a 500 nsec propagation time corresponds
to 100 m.

In Figs. 40 and 41 the number of nodes has been fixed and the propagation
distance allowed to vary under idle load. These plots show that since the minimum
E¢ time does not depend upon N, the plots for the minimum E¢ are the same in
the two figures. The plots for the maximum FE¢ are also identical since for these
two value of N, the min(27, NL) is 27. We note from these two figures that the

worst case F¢ time under the idle load is less than 2.5 usec even for 500 nodes

129

Idle Load: fixed small N = 50

3000 T T T T T T T T T
cmin(tau) S—
2500 cmax(tau) +—
2000
Exec
(naeg) 1300

1000

Figure 40: The minimum and maximum F¢ times for idle load for small fixed

N =50.

Idle Load: fixed large N = 500

3000 T T T T T T T T T
cmin(tau) S—
2500 cmax(tau) +—
2000
Exec .
(HSCC) 1000

1000

Figure 41: The minimum and maximum F¢ times for idle load for large fixed

N = 500.

130

Idle Load: fixed small 7 = 50.0 nsec

2500 T T T T T T T T T
cmin(N) ©—
2000 - cmax(N) +— _|
Exec 1900 = N
time
(nsec) 1400 |- 7
500'(:::::::::::::::::::::::'
3
0]]]]]]]]]

Figure 42: The minimum and maximum F¢ times for idle load for small fixed

7 = 50.0.

Idle Load: fixed large 7 = 500.0 nsec

2500 T T T T T T T T T
| |
T T
2000 _
cmin(N) ©—
Fxee 1500 cmax(N) —4— -
time 1
(nsec) 1000 = |
500 =
0 | | | | | | | | |

0 50 100 150 200 250 300 350 400 450 500
N

Figure 43: The minimum and maximum F¢ times for idle load for large fixed

7 = 500.0.

131

High Load: fixed small N = 50

10000 T T T T T T T T T
8000 F ¢\ oy 4
brec ST Emation) = |
(nsec) 4000 |- .
2000 —

0 | | | | | |

0 50 100 150 200 250 300 350 400 450 500

T (nsec)

Figure 44: The minimum and maximum FE¢ times for high load for small fixed

N = 50.

High Load: fixed large N = 500

80000 T T T T T T T T T
70000 —
60000 - cmin(tau) ©— A
'
50000 + —
Exec
time 40000 - —

(nsec)

30000 -
20000 - -
10000 -

0 paN| VAN L) AN AN | AN A VAN

0 50 100 150 200 250 300 350 400 450 500

T (nsec)

Figure 45: The minimum and maximum F¢ times for high load for large fixed

N = 500.

132

High Load: fixed small 7 = 50.0 nsec

80000 T T T T T T T T T
70000 —
60000 + —
50000 + —
Exec
time 40000 cmin(N) ©— -
(nsec) cmax(N) ——
30000 —
20000 + —

10000 -

0 50 100 150 200 250 300 350 400 450 500

N

Figure 46: The minimum and maximum FE¢ times for high load for small fixed

7 = 50.0.
High Load: fixed large 7 = 500.0 nsec

80000 T T T T T T T T T
70000
60000

50000
Exec
time 40000
(nsec)
30000
20000
10000

0 50 100 150 200 250 300 350 400 450 500

Figure 47: The minimum and maximum F¢ times for high load for large fixed

7 = 500.0.

133

100 m apart.

In Figs. 42 and 43 the propagation distance has been fixed and the number
of nodes allowed to vary under idle load. In both figures, the minimum F¢ is
constant (though not the same numeric value) since it does not depend upon N.
The maximum E¢ becomes constant in both figures (again, though, not the same
numeric value) after reaching a threshold point. The threshold point affects the
value of the min(27, NL) term; when N is small enough, the propagation distance
dictates when the Pulse Generator sends out a new pulse; when N is large enough,
the Pulse Generator sends out a new pulse based upon the maximum train length.
We note from Fig. 42 with small 7 that regardless of N, the maximum FE¢ is less
than 0.4 psec; from Fig. 43 with large 7, regardless of N, the maximum F¢ is less
than 2.5 usec.

In Figs. 44 and 45 the value of N has been fixed and the propagation
distance allowed to vary under high load. Because of the scales of the figures, it
is not readily apparent, but the minimum FE¢ is the same in both figures since for
these values of N, the min(27+ D, 7+ N D) term reduces to 274+ D. Also note that
the minimum FE¢ time only grows linearly with the propagation distance 7. The
maximum K¢ plots can be understood by looking at the formula qualitatively. The
first term says that the node has to wait one message train length (NL) before
it puts its message out; the second term says that since the given node for the
maximuim case is the physically last node, its message is at the end of the message
train in which it participates. Thus, the execution time is approximately the length
of two message trains (since L = D). In the small fixed value of N case (Fig. 44),

the propagation distance has some effect upon the plot of the equation, but in the

134

Execution Time (nsec)

N | 7 (nsec) | min max
50 50 | 220 380
50 500 | 670 2180
500 50 | 220 380
500 500 | 670 2180

Table 16: Some specific Idle .Load WRITE-UPDATE execution times.

Execution Time (nsec)

N | 7 (nsec) | min max
50 50 | 270 7655
50 500 | 1170 8105
500 50 | 270 75155
500 500 | 1170 75605

Table 17: Some specific High Load WRITE-UPDATE execution times.

large fixed value of N case (Fig. 45), the propagation distance’s effect disappears.
Note that even in the large fixed NV case, the worst case E¢ is less than 80 psec.

In Figs. 46 and 47 the propagation distance has been fixed and the value
of N allowed to vary under high load. Since the minimum FE¢ time is linearly
dependent upon 7, at these scales, the minimum F¢ times are nearly the same.
For the maximum F¢ times, the reasoning of the previous paragraph applies: the
execution time is approximately the length of two message trains. Again, note
that for these parameters, the worst case of F¢ is less than 80 usec.

As a summary, Tables 16 and 17 give some specific execution times for the
WRITE-UPDATE command under idle and high load conditions respectively for small

and large system sizes and for small and large system scales.

135

6.2 Locks

In considering the execution time for locks, we are interested in knowing how long
it takes for a node to be granted a lock. The execution time FEy, for locks is defined

for a given node as:
EL = Trequest + Tusage + Tgrant-

The T}equest term denotes how long it takes for the given node to get its request
placed into the queue of lock requests. The T)5,4 term represents how long other
nodes which have previously requested and been granted the lock hold the lock
before the given node is granted the lock. The T},,,; term is the time that the
immediate prior lock holder takes to release and grant the lock to the given node.
The first and third terms (7T equest and Tyrant) are dependent upon the hardware
supporting lock requests releases and grants. Since the T'5,4. term is dependent
upon the program’s execution characteristics and not the lock hardware, we exclude
its effect from this discussion by considering it to be a constant.

There are two situations for which to analyze the execution time for locks,
idle locks and busy locks. An idle lock is one not being held by any node by the time
the given node’s request is placed into the lock request queue, i.e., the 75,4 term
is 0. A busy lock is one previously requested and being held by some node by the
time the given node’s request is placed into the lock request queue, which implies
that T'ysqge can be non-zero. Table 18 shows the formulas for the minimum and
maximum Fj, times for the idle and busy situations for the different lock schemes.
The symbols in these formulas are the same as for the cache coherency analysis:

A is the component and circuitry delay time; 7 is the propagation distance from

136

H Scheme ‘ Minimum ‘ Mazimum H

purely optical A+0+A (21 4+2A+A)+ 0+ A
(idle)
purely optical A+0+A (27 4+ 2A 4+ A) + Tysage
(busy) +(r 4+ A)
hybrid (2A+L)4+0+D INL+A+2A+ L]
(idle) +0 + max(27 + D, ND)
hybrid (2A+L)+0 INL4+ A+ 2A + L] 4 Tysage
(busy) +min(27 + D, PD) +NL+A+2A+ L

+ max(27 + D, 7 + ND)]

Table 18: The minimum and maximum execution times for idle and busy locks for
the two OBee lock schemes.

the first node to the last node and vice versa; N is the number of nodes in the
system; and L and D are the average message length and message decoding time
respectively in the hybrid scheme. Additionally, the value P is the number of
nodes contending for a given lock in the hybrid scheme.

These formulas are derived as follows. Note that each formula has three
terms (a parenthetical expression counts as one term) that directly correspond to
the definition of K. We first consider the purely optical scheme under the idle
load condition. Recall that for idle load the 7’54 term is zero. For the minimum
execution time, the node issues the lock request just before the pulse triggers the
node. It takes one A for the node to recognize the pulse and make its request.
Since no other node holds the lock, it takes one more A for the node to be granted
the lock. In the maximum execution time case, the node issues the lock request
just after the pulse passes the node. The pulse must propagate for 27, and it takes

2A for the pulse to be regenerated (since there are two Pulse Generators). It then

137

takes one more A for the node to recognize the pulse and make its request. Again,
since no other node holds the lock, it takes one more A for the node to be granted
the lock.

Under the busy load condition, the purely optical scheme has the same
minimum execution time as under the idle load condition. This result happens in
the two following situations. One situation regards W/E requests: the node makes
its request just before the prior lock holder releases the lock; the request takes A
time. If the prior lock holder is the node physically preceding the given node and
it gives up the lock just as the given node finishes its request (the absolute best
case), then Tysq4e is zero, and the given node takes one A to be granted the lock.
This situation also assumes that the given node receives the lock release signal just
as it is finished making its request. The other situation regards R/S requests: the
given node makes its request just before the signal denoting giving permission to
its peer group reaches it. Again, it takes one A to make the request, and another
A to be granted the lock (and again, Tysq4e is zero). In the maximum execution
time case, the given node issues the lock request just after the control pulse passes
the node. It takes 27 4+ 2A for the next pulse to come to the node plus one more A
for the node to make its request. The node must wait some non-zero time 7’544
before the lock is released to it. Once the physically prior lock holder releases
the lock, it takes maximum time 7 for the signal to travel to the given node and
another A for the node to recognize the lock has been granted to it.

For the hybrid scheme analyses, we assume that fixed message lengths are
used so that the Pulse Generator puts out a pulse when either its input drops

low or when the maximum length of a message train has occurred (NL). We

138

first consider the idle load situation. In the minimum execution time case, the
only traffic on the Lock Channel is the given node’s lock request. If the given
node makes its request just as the control pulse comes to the node, it takes 2A
for the node to recognize the pulse and then begin the transmission. If the given
node is the last node (node N in our previous topology figures), then the only
propagation delay is the transmission length L since the last node immediately
hears its own transmission. Since this is the idle situation, the T',5,4. term is zero.
It takes time D for the node to decode its message and be granted the lock. In the
maximum execution time case, all N nodes are transmitting lock requests on the
Lock Channel even though the one given node is the only one requesting the given
lock. The control pulse arrives just after the node issues the lock request. It takes
NL + A for the pulse to come around and be regenerated and 2A for the node
to recognize the pulse and begin the transmission, which lasts time L. Again, the
Tusage term is zero. There are two worst case possibilities to consider for how long
it takes the node to receive its message and decode it. One possibility is that the
given node is the first node (node 1 in our previous figures). Its message travels
27 and takes time D to be decoded. The other possibility is that the given node
is the last node (node N in our previous figures), which implies there is essentially
no propagation delay for its message to reach itself. The node’s message is then
last in the message train, and it takes time N D before its own message is decoded.
Therefore, the worst case time for the given node to receive its message, decode it,
and be granted the lock is max(27 + D, ND).

For the busy lock situation under the hybrid scheme, the analysis is some-

what more complicated. In the minimum execution time case, the only traffic on

139

the Lock Channel is from the P given nodes contending for the given lock. The
control pulse arrives at the given node just as it issues the lock request, which
requires 2A to recognize the pulse and begin the transmission, which lasts for time
L. In the absolute best case no other nodes hold the lock by the time it pro-
cesses its own message, so Tysqge 15 zero. Now, how much time elapses before the
node gets processes its own message and is granted the lock? If the given node
is the physically first node, then the message must propagate distance 27 and be
decoded in time D. If the node is the last one, then its message is the last one
in the message train, so there are P messages to decode for a total time of PD.
Therefore, the minimum time to be granted the lock is min(2r + D, PD). In the
maximum execution time case, all N nodes put messages on the Lock Channel,
even ones not contending for the given lock. The control pulse arrives just after
the given node makes the lock request. It takes NL + A for the pulse to come
around and be regenerated plus 2A for the node to recognize the pulse and begin
its transmission, which lasts time L. Since this is the worst case, some other node
is holding the lock, and the 7,544, time is some non-zero time. When the last prior
lock holder is ready to release the lock, it could just miss the the control pulse and
therefore have to wait NL + A for the pulse to be regenerated and arrive again.
The releasing node then takes 2A to recognize the pulse and begin its transmission
which lasts for time L. The worst case total propagation and decoding time for the
releasing message is one of four possibilities. The first possibility is if the releasing
node and the given node are among the physically first nodes, then the message
is first in the message train, propagates distance 27, and is decoded in time D.

The second possibility is if the releasing node is among the physically last nodes

140

and the given node among the first nodes, then the message is last in the message
train; it propagates distance 7 and takes time N D to be decoded. The other two
possibilities (releasing node among the first and given node among last yielding
7+ D; releasing and given nodes among the last yielding N D) are better than the
other two and need not be considered. Therefore, the worst case total propagation
and decoding time for the releasing message to take effect is max(27+ D, 7+ ND).

We now discuss various plots of these equations in order to understand the
scale of the execution time of the lock operations. We assume that the average
message length L is 25 nsec (50 bit messages at 2 Gbit/sec), the decoding time
D is also 25 nsec, and A is 10 nsec. Figs. 48, 49, 50, and 51 show various plots
for the idle lock situation, and Figs. 52, 53, 54, and 55 show various plots for the
busy lock situation. As with the WRITE-UPDATE command execution time plots,
the propagation distance 7 is depicted in terms of time rather than distance.

In Figs. 48 and 49 the number of nodes has been fixed and the propagation
distance allowed to vary under the idle lock situation. Both the purely optical and
the hybrid schemes are shown in the figures. Since the purely optical and hybrid
schemes’ minimum Fj times do not depend upon either 7 or N, their plots are
constant (with the same numeric values) in both figures. In addition, the difference
between the purely optical and hybrid schemes’ minimum FEj, times is just the
message length and decoding times. The purely optical maximum £}, time is the
same in both figures since it depends only on 7 (this may be difficult to see because
of the different scales of the figures). Note that the purely optical maximum Ej,
grows linearly with 7. The hybrid maximum FEj, time is nearly constant (with

different numeric values) in the two plots. This can be understood by considering

141

Idle: fixed small N = 50

3000 T T T T T T T T T
2500
2000

Exec

time 1500

(nsec)

1000

500

Figure 48: The minimum and maximum Fj, times for idle locks for small fixed
N = 50. The “po” and “hy” represent the purely optical and hybrid schemes

respectively.
Idle: fixed large N = 500
30000 T T T T T T T T T
25000
B pomin(tau) <S— |
20000 pomax(tau) ——
Exec hymin(tau) 85—
time 15000 hymax(tau) ><— 7
(nsec)
10000 | m
5000 - m
(0 -3

0

Figure 49: The minimum and maximum £, times for idle locks for large fixed
N = 500. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

142

Idle: fixed small 7 = 50.0

30000 T T T T T T T T T
25000

20000

Exec

time 15000

(nsec)

10000

5000

N

Figure 50: The minimum and maximum Fj, times for idle locks for small fixed
7 = 50.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

Idle: fixed large 7 = 500.0

30000 T T T T T T T T T
25000
pomin(N) S—
20000 | pomax(N) —— —
Exec hymin(N) 88—
time 15000 | hymax(N) >¢— _
(nsec)
10000 —
5000 —
ey
0 50 100 150 200 250 300 350 400 450 500

Figure 51: The minimum and maximum £, times for idle locks for large fixed
7 = 500.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

143

Busy: fixed small N = 50

6000 T T T T T T T T T
5000 |- _
4000 M
Exec pomin(tau) <—
time 3000 | pomax(tau) —— _
(nsec) hymin(tau) B—
2000 b hymax(tau) ><— |
1000 + _
1
0 a NN ! PPN I

0 50 100 150 200 250 300 350 400 450 500

T (nsec)

Figure 52: The minimum and maximum FEf, times for busy locks for small fixed
N = 50. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

Busy: fixed large N = 500

40000 T T T T T T T T)
35000 -
30000 - pomin(tau) ©— .
pomax(tau) ——
25000 hymin(tau) 85— 7
Exec hymax(tau) ><—
time 20000 -
(nsec)
15000 | =
10000 |- -
5000 -
0 B A,

0 50 100 150 200 250 300 350 400 450 500

T (nsec)

Figure 53: The minimum and maximum £y, times for busy locks for large fixed
N = 500. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

144

Busy: fixed small 7 = 50.0

40000 T T T T T T T T T
35000
30000
25000
Exec
time 20000
(nsec)
15000
10000

5000

N

Figure 54: The minimum and maximum FEf, times for busy locks for small fixed
7 = 50.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

Busy: fixed large 7 = 500.0

40000 : : : :

35000
30000
25000
Exec
time 20000
(nsec)
15000
10000

5000

R N S TP NS CUP ST PP TN ST NPT NS T T NP P N ST
AL 74 S N, 4 4 A 24 4 A 724 4 4 A 4 A 24 A 724 N 24 N, 24 4 74 N4 A 24 24 g 74]

oS~ <
0 50 100 150 200 250 300 350 400 450 500

N

Figure 55: The minimum and maximum £y, times for busy locks for large fixed
7 = 500.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

145

the qualitative meaning of the formula. The first term in the formula says that the
given node has to wait one full message train before it puts its message out. The
second term says that since the given node is the physically last node, its message
is at the end of its message train. Thus, it takes approximately two message trains
(since we assume L = D) for the execution time of the lock operation. For large
enough N (as in both of these figures), the effect of N overshadows the effect of 7.
We finally note that for the small N = 50, the worst case FEp, is less than 3.0 psec
and that for the large N = 500, the worst case Ep, is less than 30 psec.

In Figs. 50 and 51 the propagation distance 7 has been fixed and the number
of nodes N allowed to vary under the idle lock situation. Both the purely optical
and hybrid schemes are shown in the figures. Again, since the purely optical and
hybrid schemes’ minimum £}, times do not depend upon either 7 or N, they are
constant (with the same numeric values) in both figures. In the small fixed 7 = 50.0
plot, since 7 is so small and because of the scale of the plot, the purely optical
maximum Ky, is nearly the same as the minimum FEp. In the large fixed 7 = 500.0
plot, the purely optical maximum Fj, stands out more clearly. More importantly,
note that with 7 being fixed, the purely optical maximum is constant since it does
not depend upon N. For the hybrid maximum £}, time, the strong dependence on
N clearly shows in the two plots. In the large fixed 7 = 500.0 plot (Fig. 51), one
can see a small knee in the maximum FEj, time curve where, for small NV, the value
of 7 does influence the shape; otherwise, for the two figures, the two maximum £},
time curves are identical. For the parameters considered here, the purely optical
maximum time for the lock operation is approximately 1 usec, and the hybrid

maximum time is less than 30 psec.

146

In Figs. 52 and 53 the number of nodes N has been fixed and the propa-
gation distance 7 allowed to vary under the busy lock situation. Both the purely
optical and hybrid schemes are plotted in the figures. Since the purely optical
minimum F7, is not dependent upon either 7 or V. it is a constant in both figures.
The hybrid minimum £y, is dependent upon either 7 or P (the number of nodes
contending for the given lock—assumed to be N/2 for these plots), depending
upon the particular values of the parameters. This behavior is clearly seen in the
small fixed N = 50 plot (Fig. 52) as the hybrid minimum Fj, curve grows linearly
with 7 and then flattens out to a constant value. In the large fixed N = 500 plot
(Fig. 53), since N is so large, this behavior is masked out. When considering the
maximum Fj, times, some value needs to be assumed for T';5,,¢; rather than assign
some arbitrary value to this term which is program dependent, we have assumed
it has a value of zero for this analysis. Therefore, the maximum FEj, curves in both
figures are the lower limit on the maximum £, time. The purely optical maximum
FE;, depends solely upon 7 in a linear fashion; this behavior is clearly illustrated
in the small fixed N = 50 plot (Fig. 52). Because of the scale of the large fixed
N =500 plot (Fig. 53, this behavior is not as clearly seen in that plot. The hybrid
maximum Fp, is nearly independent of 7 for both the small and large N values.
This can be seen by examining the qualitative meaning of the formula. If the given
node just misses a message train, it has to wait one message train before putting
out its message. The lock releaser could also just miss a message train, so it too
has to wait one message train before putting out its message. If the lock releaser

is the physically last node, then its message, being at the end of the message train,

147

will not be decoded until last. Therefore, since we assume L = D, it takes ap-
proximately three message trains before the lock is granted. Finally, note that the
lower limit on the execution time of the lock operations is less 5.0 psec for the
small fixed N = 50 case and less than 40.0 usec for the large fixed N = 500 case,
even for large values of 7.

In Figs. 54 and 55 the propagation distance 7 has been fixed and the number
of nodes N allowed to vary under the busy lock situation. Both the purely optical
and hybrid schemes are shown in the two figures. Again, since the purely optical
minimum £, time is independent of both 7 and V, it is a constant in both figures.
And again, the hybrid minimum £y, is dependent upon either 7 or P, depending
upon the particular values of the parameters. For the small fixed 7 = 50.0 (Fig. 54),
it is essentially constant over all values of N. For the large fixed 7 = 500.0 (Fig. 55),
a slight knee in the curve’s shape develops, but then the curve flattens out and
becomes constant. Since the purely optical maximum FEp, is not dependent upon
N, then it is constant (with different numeric values) in the two figures. And since
the hybrid maximum Fj, exhibits such a strong dependency upon N (as explained
in the previous paragraph), its plot is essentially the same in both figures even
though 7 is different in the two figures. Finally, consistent with the discussion
in the previous paragraph, the lower limit on the purely optical maximum £y, is
approximately 1.5 psec, and on the hybrid maximum is less than 40.0 psec for the
chosen values of the parameters.

As a summary, Tables 19 and 20 give some specific execution times for idle
and busy locks respectively for small and large system sizes, for small and large

system scales, and for the two optical implementations.

148

Execution Time (nsec)

N | 7 (nsec) | pomin | pomax | hymin | hymax
50 50 20 140 70 2555
50 500 20 1040 70 2555
500 50 20 140 70 | 25055
500 500 20 1040 70 | 25055

Table 19: Some specific Idle Lock execution times.

Execution Time (nsec)
N | 7 (nsec) | pomin | pomax | hymin | hymax
50 50 20 190 170 3910
50 500 20 1540 670 4360
500 50 20 190 170 | 37660
500 500 20 1540 1070 | 38110

Table 20: Some specific Busy Lock execution times.
6.3 Barriers

In considering the execution time for barriers, we are interested in knowing how
long it takes for some given node to recognize barrier completion if there is some
number of nodes which have not yet reached the barrier. The execution time Epg

for barriers (assuming fuzzy barrier semantics) is defined for a given node as:
EB = Tdepend + Tar'rive + Tindep + Trecognize-

The Tyepend term represents the execution time of code dependent upon leading
up to the barrier, i.e., the code that must be executed before the REACH-BARRIER

command is issued. Similarly, the 7},4., term represents the execution time of

149

code which can be executed after the barrier is reached but independent of bar-
rier completion, i.e., code between the REACH-BARRIER and BARRIER-WAIT com-
mands. Since these two terms are dependent upon the program’s structure, we
exclude these terms from our analysis. The T, ,;,. term is the time it takes for the
REACH-BARRIER command to be issued and be seen by the nodes. The T, ,;,. term
also includes the time it takes for the node to compute (as opposed to recognize)
barrier completion. The T} ognize term is the time it takes for a node to recognize
barrier completion; this term can be considered constant since it is implemented in
either the purely optical or hybrid scheme by checking the value of the completion
register or flag. Therefore, this analysis simplifies to considering just the T},
time.

We assume that of the N participating nodes in the barrier operation, some
number N — P have previously reached the barrier, leaving P nodes yet to arrive.
There are two situations for which to analyze the execution time of barriers, a last
arrival and simultaneous arrival. A last arrival means that P = 1: all but one of
the nodes have previously arrived at the barrier and are waiting for the last node
to arrive. A simultaneous arrival implies that some arbitrary number P will arrive
at the barrier simultaneously. Table 21 shows the formulas for the minimum and
maximum Fpg times for the last and simultaneous arrival scenarios for the different
barrier schemes. The symbols in these formulas are the same as for the lock
execution time formulas: A represents the component and circuitry delay times; 7
is the propagation time from the first node to last node and vice versa; N is the
number of nodes in the system; P is the number of nodes simultaneously arriving

at the barrier; and L and D are respectively the average length of a message and

150

H Scheme ‘ Minimum ‘ Mazimum H

purely optical A+ A A+21+ A

(last)

purely optical A+ A A+2r+ A
(simultaneous)

hybrid AN+ L+ D NL+A+2A+ L
(last) + max(27 + D, 7+ ND)
hybrid A+ L+ PD | NL+A+2A+L+27+ ND
(simultaneous)

Table 21: The minimum and maximum execution times for last and simultaneous
arrivals for the two OBee barrier schemes.

the decoding time for a message in the hybrid scheme.

These formulas are derived as follows. Since, from the previous discussion,
only the T,,,;,e component of the barrier execution time needs to be computed,
each formula corresponds to that term only. We first consider the purely optical
scheme with one, last arrival. Recall that a node can lower its signal on the
wired-OR OBR without regard to what any other node is doing. Therefore, in the
minimum execution time case, the node takes one A to lower its signal. If the node
is the last node, there is essentially no propagation time of the lowered signal to
itself. It takes one more A for the node to compute and record barrier completion.
In the maximum execution time case, the node also takes one A to lower its signal.
If the node is the first node, then it takes 27 for the lowered signal to propagate
back to itself. It then takes one more A for the node to compute and record barrier
completion.

We next consider the simultaneous arrival case in the purely optical scheme.

As before, a node can lower its signal at any time without regard to what any other

151

node is doing. In the minimum execution time case, the nodes lower their signals
in time A. The best case time occurs for the physically last node: its lowered
signal has essentially no distance to travel before reaching itself. The node then
takes one more A to compute and record barrier completion. In the maximum
execution time case, the nodes also take one A to lower their signals. The worst
case time occurs for the physically first node: its lowered signal travels 27 before
reaching itself. The node then takes one more A to compute and record barrier
completion.

We now discuss the hybrid scheme analyses, starting with the one, last
arrival case. In the minimum execution time case, the only traffic on the Barrier
Channel is the one given node arriving at the given barrier. The node reaches the
barrier just as the control protocol gives it access to the Barrier Channel; therefore,
the node takes 2A to recognize the pulse and begin transmission. The transmission
takes L time. If the given node is the last node, there is no additional propagation
delay since it immediately hears its own transmission. The node then takes the
decoding time D to compute and record barrier completion. In the maximum
execution time case, all N nodes are putting traffic on the Barrier Channel (even
though only the one given node is arriving at the given barrier). The node just
misses obtaining access to the Barrier Channel, so it must wait NL + A for the
pulse to be regenerated and come back around. The node then takes 2A to begin
its transmission which lasts L time. There are two possibilities to consider for how
long it takes the given node’s message to propagate and be decoded. If the given
node is the first node, then its message travels distance 27 to reach itself and takes

time D to be decoded. If the given node is the last node, the message travels

152

distance 7 to reach the first node (remember, this is the worst case) and there are
N total messages to be decoded, for a time of ND. Therefore, the worst case time
for barrier completion to be computed and recorded is max(27 + D, 7 + N D).

Finally, we have the simultaneous arrival case in the hybrid scheme. In
the minimum execution time case, the only traffic on the Barrier Channel is from
the P nodes simultaneously arriving at the given barrier. As the given nodes
issue the REACH-BARRIER command, the control pulse reaches the physically first
node. That node takes 2A to recognize the pulse and begin its transmission, which
lasts for time L. If the given nodes are among the last nodes on the OBR, then
there is essentially no propagation delay for them to hear their own messages.
Since P nodes are arriving simultaneously, there are P messages to be decoded in
time PD before barrier completion is computed and recorded. In the maximum
execution time case, all N nodes are transmitting messages (regardless of whether
the messages pertain to the given barrier). The control pulse just misses the given
node, so it must wait NL + A for the pulse to be regenerated and come back to
it. It then takes 2A to recognize the pulse and begin its transmission, which lasts
time L. If the given node is the physically first node, then its message travels 27
before reaching itself. Since all nodes are transmitting messages, it takes time N D
for the messages to be decoded and barrier completion computed and recorded for
the given node.

We next present various plots of these formulas in order to understand the
scale of the execution time of the barrier operation. As with the lock operation
plots, we assume the average message length L is 25 nsec, the average decoding

time D is 25 nsec, and A is 10 nsec. Figs. 56, 57, 58, and 59 depict the equations

153

for the last arrival case; Figs. 60, 61, 62, and 63 show the plots for the simultaneous
arrival case. As in the cache coherency and lock figures, the propagation distance
7 is expressed in terms of time.

In Figs. 56 and 57 the number of nodes N has been fixed and the propa-
gation distance 7 allowed to vary under the last arrival situation. Both the purely
optical and hybrid schemes are shown. Both the purely optical and hybrid mini-
mum Ep times are independent of 7 and N, so their plots are constants (with the
same numeric values) in both figures. The purely optical maximum Ep is linearly
dependent solely upon 7. This behavior is clearly shown in the small fixed N = 50
plot (Fig. 56). In the large fixed N = 500 plot (Fig. 57), the behavior is masked
because of the scale of the plot. The hybrid maximum Epg time is not strongly
dependent upon 7. This behavior can be understood by considering the qualita-
tive meaning of the equation. The given node must wait one message train before
putting its message on the OBR. If the given node is the physically last node,
then its message is the last in its message train. Thus, it takes approximately
two message trains for its message to take effect. We note that for the small fixed
N = 50, the worst case Fp is less than 3.5 usec; for the large fixed N = 500, the
worst case Ep is less than 30.0 usec.

In Figs. 58 and 59 the propagation distance 7 has been fixed and the number
of nodes N allowed to vary under the last arrival situation. Both the purely optical
and hybrid schemes are shown in the figures. Again, since both the purely optical
and hybrid minimum FEp times are independent of both 7 and N, their plots
are constant (with the same numeric value) in both figures. Since the purely

optical maximum Ep time is independent of N, its curve is constant (though with

154

Last arrival: fixed small N = 50

4000 T T T T T T T T T

3500 =

0 M

2500 . -
Exec pomin(tau) <—
time 2000 F poqu(tau) -+
(nsec) hymin(tau) H—

1500 hymax(tau) >¢— -

1000 L

500

Oz AN Al [A] w Al AU Al [A] A [A] [N [A] [A] w

0 50 100 150 200 250 300 350 400 450 500

T (nsec)

Figure 56: The minimum and maximum FEpg times for last arrival for small fixed
N = 50. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

Last arrival: fixed large N = 500

30000 T T T T T T T T T

25000

20000 pomin(tau) <—
Exec poqu(tau) -+
time 15000 hymin(tau) &— _|
(nsec) hymax(tau) ><—

10000 a

5000 a

0 50 100 150 200 250 300 350 400 450 500

Figure 57: The minimum and maximum FEpg times for last arrival for large fixed
N = 500. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

155

Last arrival: fixed small 7 = 50.0

30000 T T T T T T T T T
25000

20000

Exec

time 15000

(nsec)

10000

5000

N

Figure 58: The minimum and maximum FEpg times for last arrival for small fixed
7 = 50.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

Last arrival: fixed large 7 = 500.0

30000 T T T T T T T T T
25000 pomin(N) &—
pomax(N) 4—
L hymin(N) 8- _
20000 hymax(N) ><—
Exec
time 15000 |- -
(nsec)
10000 —
5000 =
| |
0

Figure 59: The minimum and maximum FEpg times for last arrival for large fixed
7 = 500.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

156

Simultaneous arrival: fixed small N = 50

4000 T T T T T T T T T

3500 -

3000

2500 pomin(tau) <— _|
Exec pomax(tau) ——
time 2000 F hymin(tau) 88— 4
(nsec) hymax(tau) -<—

1000 | M_
20 O e e e e e e B B e O e e O e B e B M i B W
R N [N [S Ry S— N [y N [y N gy Sy —| | —

500_ gy L1 L.y ey sy T
O< AN AN AN | AN <L AN

Figure 60: The minimum and maximum FEp times for simultaneous arrival for
small fixed N = 50. The “po” and “hy” represent the purely optical and hybrid
schemes respectively.

Simultaneous arrival: fixed large N = 500

30000 T T T T T T T T T
25000 =
B pomin(tau) S— |
20000 pomax(tau) ——
Exec hymin(tau) B
time 15000 hymax(tau) ><— -]
(nsec)
10000 | =
I e e o e e e e e e e o o o o o e e e e e e o e
5000 =
| |]]

NN NN
0o
50 1

Figure 61: The minimum and maximum FEp times for simultaneous arrival for
large fixed N = 500. The “po” and “hy” represent the purely optical and hybrid
schemes respectively.

157

Simultaneous arrival: fixed small 7 = 50.0

30000 T T T T T T T T T

25000

20000

Exec

time 15000

(nsec)

10000

5000

50 100 150 20 250 300 350 400 450 500

Figure 62: The minimum and maximum FEpg times for simultaneous arrival for
small fixed 7 = 50.0. The “po” and “hy” represent the purely optical and hybrid
schemes respectively.

Simultaneous arrival: fixed large 7 = 500.0

30000 T T T T T T T T T
25000
20000

Exec

time 15000

(nsec)

Figure 63: The minimum and maximum FEp times for simultaneous arrival for
large fixed 7 = 500.0. The “po” and “hy” represent the purely optical and hybrid
schemes respectively.

158

different numeric values) in both figures. The two figures show the strong linear
dependency that the hybrid maximum Fp time has on N. For the small fixed
7 = 50. (Fig. 58), the effect of the value of 7 is nearly negligible. For the large
fixed 7 = 500.0 (Fig. 59), there is a slight knee in the curve for small N where the
value of 7 has some influence. We note that for the chosen parameters, the worst
case purely optical Ep is approximately 1 usec and the worst case hybrid Ep is
less than 30.0 usec.

In Figs. 60 and 61 the propagation distance 7 has been fixed and the number
of nodes N allowed to vary under the simultaneous arrival situation. Both the
purely optical and hybrid schemes are shown. The purely optical minimum FEp time
is independent of both 7 and N, so its curves are constant (with the same numeric
value) and identical to the plots in the minimum FEp case in both figures. The
hybrid minimum Fg time depends solely upon the number of nodes P (assumed
to be N/2 in these figures) simultaneously arriving at the barrier. Therefore, its
curves are constant (with different numeric values) in both plots. The purely
optical maximum FEp is dependent only upon 7 (the equation has the same value
as for the minimum Fg); its linear growth in 7 is shown in both figures (though
masked in the large fixed N = 500 plot because of its scale). The hybrid maximum
Ep time has some dependency upon 7, but it is nearly constant because of its
stronger dependency upon N. As with the hybrid minimum FEpg time, it takes
approximately two message trains for the messages to take effect. For the chosen
parameters, the worst case Ep is less than 4.0 usec for the small fixed N = 50 case
and less than 30.0 psec for the large fixed N = 500 case.

Figs. 62 and 63 show the plots for the propagation distance 7 being fixed

159

Execution Time (nsec)

N | 7 (nsec) | pomin | pomax | hymin | hymax
50 50 20 120 70 2605
50 500 20 1020 70 3055
500 50 20 120 70 | 25105
500 500 20 1020 70 | 25555

Table 22: Some specific Barrier Last Arrival execution times.

and the number of nodes N being allowed to vary under the simultaneous arrival
situation. Both the purely optical and hybrid schemes are shown. Again, since
the purely optical minimum FEp time is independent of both 7 and N, its curves
are constant (with the same numeric value) in both figures. The hybrid minimum
Ep time’s linear dependency on P is clearly shown in both figures; the curves
are the same in both figures since it has no dependency on 7. Since the purely
optical maximum FEg depends upon only 7, then its curves are constant (with
different numeric values) in both figures. The strong linear dependency upon N
of the hybrid maximum FEp is illustrated in both figures. The slopes of the curves
in both figures are the same; the y-intercepts are slightly different because of the
different values of 7. For the chosen parameters, the worst case purely optical Eg
is approximately 1 psec, and the worst case hybrid Ep is less than 30.0 usec.

As a summary, Tables 22 and 23 give some specific execution times for the
last and simultaneous arrival cases respectively for small and large system sizes,

for small and large system scales, and for the two optical implementations.

160

Execution Time (nsec)

N | 7 (nsec) | pomin | pomax | hymin | hymax
50 50 20 120 670 2655
50 500 20 1020 670 3555
500 50 20 120 6295 | 25155
500 500 20 1020 6295 | 26055

Table 23: Some specific Barrier Simultaneous Arrival execution times.
6.4 F&OP

In considering the execution time for the F&OP command, we want to know how
long it takes for a node to receive its value of V after issuing the command. The

execution time Fp for the F&OP command is defined for a given node as:
EF = Trequest + Tcompute-

The T, equest term represents how long it takes for the node to place its F&OP
request on the OBR. Once the request has been made, the 7., 4 term denotes
how long it takes before the node computes the value of V it receives from its
F&OP command.

There are two situations for which to analyze the F&OP command, the
single and multiple command situations. In the single command situation, only one
node issues the F&OP command for a particular target V whereas in the multiple
command situation some number of nodes P are issuing the F&OP command for
the target V. Table 24 shows the formulas for the minimum and maximum Er times
for the single and multiple situations for the different F&OP schemes. As with the

lock and barrier analyses, the following symbols are used: A is the component and

161

H Scheme ‘ Minimum ‘ Mazimum H

purely optical A+ A 2r+A+A)+ A
(single)

purely optical A+ A (T+A+A)+(7+ PA)
(multiple)

hybrid (2A+ L)+ D [NL+A+2A + 1]
(single) + max(27 + D, ND)
hybrid (2A + L) 4+ min(27 + D, PD) INL+A+2A+ L]
(multiple) + max(27 + D, ND)

Table 24: The minimum and maximum execution times for the single and multiple
command situations for the two OBee F&OP schemes.

circuitry delay times; 7 represents the propagation delay time from the first node
to the last node and vice versa; N is the number of nodes in the system; P is the
number of nodes participating in the F&OP operation in the hybrid scheme; and
L and D are the average message length and decoding times respectively in the
hybrid scheme.

These formulas are derived as follows. Note that each formula has two terms
(a parenthetical expression counts as one term) that directly correspond with the
two terms in the definition of Er. We first consider the purely optical scheme under
the single command situation. In the minimum execution time case, the control
pulse arrives just as the given node issues the command, so it recognizes the pulse
and raises its signal in time A. Since the given node is the only one participating
in the F&OP command, it immediately sees the signal drop and computes its value
of V in one more A. In the maximum execution time case, the control pulse has
just passed by the given node as it issues the command; therefore, the node waits

27 + A for the pulse to be regenerated and come back to it and then takes one

162

more A to recognize the pulse and raise its signal. Again, since the given node is
the only one participating in the F&OP command, it immediately sees the signal
drop and computes its value of V in one more A.

Next we consider the multiple command situation under the purely optical
scheme. In the minimum execution time case, the given node is the physically first
node in the group of nodes issuing the F&OP commands. The control pulse for
the wired-OR OBR arrives just as the given node makes its request, so it takes one
A for the node to recognize the pulse and raise its signal. Since the given node is
the physically first node, it immediately sees the pulse drop and computes its V in
one more A. In the maximum execution time case, the given node is the physically
last node in the group of nodes issuing the F&OP commands. The node issues
the command just after the control pulse goes past it. Thus, the physically first
node in the group receives the new pulse after time 7 + A and takes one more A
to recognize the pulse and raise its signal. The pulse arrives at the given node
after time 7. Since the given node is the physically last in the group, it will have
P signal drops to process before obtaining its value of V, for a time PA.

We now consider the hybrid scheme analyses, starting with the single com-
mand situation. In the minimum execution time case, the only traffic on the F&OP
Channel is from the one given node issuing its F&OP command. The control pulse
arrives at the given node just as it issues the F&OP command, so the node takes
2A to recognize the pulse and begin its transmission, which lasts time L. If the
given node is the physically last node, then it immediately hears its own message; it
decodes its message in time D to obtain its value of V. In the maximum execution

time case, all N nodes are putting messages on the F&OP Channel, even though

163

there is only one given node issuing the given F&OP command. The given node
issues the F&OP command just after the control pulse passes by it; therefore, the
node waits N L+ A before the pulse is regenerated and comes back by it. The node
then takes 2A to recognize the pulse and begin its transmission, which lasts for
time L. How long does it take for the given node to gets its message and compute
its value of V? There are two possibilities. First, the given node is the physically
first node, so its message travels distance 27 and is decoded in time D. Second,
the given node is the physically last node, so its message propagates essentially
zero distance to reach itself, and there are N messages to decode, for a time of
ND. Therefore, the worst case for the given node takes max(27 + D, ND) time
for its message to reach itself and be decoded to yield its value of V.

Finally, we consider the multiple command situation under the hybrid
scheme. In the minimum execution time case, the traffic on the F&OP Chan-
nel consists solely of the messages from the P nodes participating in the F&OP
commands for the sole target V. The control pulse reaches the physically first node
in the group just as it issues the F&OP command, so it takes 2A to recognize the
pulse and begin its transmission which takes time L. How long does it take for the
given node to receive and process its own message? If the given node is the physi-
cally first on the OBR, then its message travels 27 to reach itself and is decoded in
time D. If the given node is physically last on the OBR, then there is no propaga-
tion distance to itself, and there are P messages to decode, for time PD. Therefore,
the minimum time for the node to compute its value of V is min(27 + D, PD). In
the maximum execution time case, all N nodes are transmitting messages on the

F&OP Channel, even nodes not participating in the given F&OP target V. The

164

control pulse just misses the given node, so it must wait NL + A for the pulse to
be regenerated and come back to it. It then takes time 2A to recognize the pulse
and begin its transmission, which lasts for time L. Now, how long does it take
for the given node to receive and process its own message? If the given node is
the physically first on the OBR, then its message travels 27 to reach itself and is
decoded in time D. If the given node is physically last on the OBR, then there
is no propagation distance to itself, and there are N messages to decode, for time
ND. Therefore, the maximum time for the given node to compute its value of V
is max(27 + D, ND).

We next discuss various plots of these equations in order to understand the
raw performance of the F&OP command. As in the previous analyses, we assume
that the average message length L is 25 nsec, the decoding time D is 25 nsec, and
A is 10 nsec. Figs. 64, 65, 66, and 67 depict the equations for the single command
situation, and Figs. 68, 69, 70, and 71 show the plots for the multiple command
situation. And, as before, the propagation distance 7 is expressed in terms of time.

In Figs. 64 and 65 the number of nodes N has been fixed and the propa-
gation distance 7 allowed to vary under the single command situation. Both the
purely optical and hybrid schemes are shown. Both the purely optical and hybrid
minimum K times are independent of both 7 and N; therefore, their curves are
constant (with the same numeric value) in both figures. The purely optical max-
imum Ep time is solely dependent in a linear fashion upon 7, so its curves have
the same slope in both figures (though the different scales distort the slope). The
hybrid maximum FEz time is nearly independent of 7. This behavior can be under-

stood by considering qualitatively what each term in the formula means. The first

165

Single command: fixed small N = 50

3000 T T T T T T T T T
2500
pomin(tau) <—

2000 pomax(tau) 4— -
Exec hymin(tau) B
time 1500 | hymax(tau) >— _|
(nsec)

1000

500

0=

Figure 64: The minimum and maximum Fr times for single command small fixed
N = 50. The “po” and “hy” represent the purely optical and hybrid schemes

respectively.
Single command: fixed large N = 500
30000 T T T T T T T T T
25000
20000 pomin(tau) —
Exec poqu(tau) -+
time 15000 hymin(tau) £— _|
(nsec) hymax(tau) ><—
10000 - i
5000 - i
OE [P0 U U R SN B | Il Il | | |]] |

Figure 65: The minimum and maximum FEf times for single command large fixed
N = 500. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

166

Single command: fixed small 7 = 50.0

30000 T T T T T T T T T
25000

20000

Exec

time 15000

(nsec)

10000

5000

N

Figure 66: The minimum and maximum F times for single command small fixed
7 = 50.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

Single command: fixed large 7 = 500.0

30000 T T T T T T T T T
25000 pomin(N) S—
pomax(N) —4—
| hymin(N) 8- |
20000 hymax(N) >—
Exec
time 15000 |- —
(nsec)
10000 —
5000 —
Sttt
0 50 100 150 200 250 300 350 400 450 500

Figure 67: The minimum and maximum FEf times for single command large fixed
7 = 500.0. The “po” and “hy” represent the purely optical and hybrid schemes
respectively.

167

Multiple command: fixed small N = 50

3000 T T T T T T T T T
2500
pomin(tau) <—
N pomax(tau) 4— |
2000 hymin(tau) S—
Exec hymax(tau) -<—
time 1500 |- -

(nsec)

Figure 68: The minimum and maximum Er times for multiple command arrival
for small fixed N = 50. The “po” and “hy” represent the purely optical and hybrid
schemes respectively.

Multiple command: fixed large N = 500

30000 T T T T T T T T T
25000
20000 pomin(tau) —
Exec poqu(tau) -+
time 15000 hymin(tau) &— _|
(nsec) hymax(tau) ><—
10000 i
5000 L
T T BB S e e e L ——
0 -a-a-e-a-5-8-8-g e o e e = W o
5

Figure 69: The minimum and maximum FEr times for multiple command arrival
for large fixed N = 500. The “po” and “hy” represent the purely optical and

hybrid schemes respectively.
168

Multiple command: fixed small 7 = 50.0

30000 T T T T T T T T T
25000

20000

Exec

time 15000

(nsec)

10000

5000

0 50 100 150 200 250 300 350 400 45 500

N

Figure 70: The minimum and maximum FEr times for multiple command arrival
for small fixed 7 = 50.0. The “po” and “hy” represent the purely optical and
hybrid schemes respectively.

Multiple command: fixed large 7 = 500.0

30000 T T T T T T T T T
25000 pomin(N) S—
pomax(N) —4—
| hymin(N) 8- |
20000 hymax(N) >—
Exec
time 15000 |- -
(nsec)
10000 —
5000 1
0 4
0 50 100 150 200 250 300 350 400 450 500
N

Figure 71: The minimum and maximum FEr times for multiple command arrival
for large fixed 7 = 500.0. The “po” and “hy” represent the purely optical and

hybrid schemes respectively.
169

term says that the given node waits one message train to put out its message. The
second term says that if the given node is the physically last node, then its message
is at the end of its message train. Thus, it takes approximately two message trains
for the message to take effect. For large enough N (as in these figures), 7 has
little influence upon the execution time. For the chosen parameters, the maximum
Er for the small fixed N = 50 case is less than 3.0 usec and for the large fixed
N =500 case less than 30.0 usec.

Figs. 66 and 67 show the single command equations for the number of nodes
N having been fixed and the propagation distance 7 having been allowed to vary.
Both the purely optical and hybrid schemes are shown. Again, since the purely
optical and hybrid minimum FEp times are independent of both 7 and N, their
curves are constant (with the same numeric value) in both figures. The purely
optical maximum Ep time is independent of N, so its curves are constant (with
different numeric values) in the two figures. The hybrid maximum FEp is strongly
dependent on N, as illustrated in the two plots. For large fixed 7 = 500.0 (Fig. 67),
the value of 7 does have some influence on the execution time as can be seen in
the small knee for small values of N in that figure. Once N is large enough, the
hybrid maximum FEp is essentially linearly dependent on V. For these parameters,
the worst case purely optical Er is approximately 1 psec and less than 30.0 psec
for the worst case hybrid Ep.

In Figs. 68 and 69 the number of nodes N has been fixed and the propaga-
tion distance 7 allowed to vary under the multiple command situation. Both the
purely optical and hybrid schemes are plotted. The purely optical minimum Ep is

independent of both 7 and N so its curve is constant (with the same numeric value)

170

in both figures. The hybrid minimum Ep time, for small fixed N = 50 (Fig. 68),
is initially linearly dependent upon the number of nodes P (assumed to be N/2)
simultaneously issuing the F&OP commands; once 7 is large enough, it dominates
this equation. This effect is not very prominent in the large fixed N = 500 plot
(Fig. 69). The purely optical maximum Ep time is linearly dependent upon both
7 and P. For the small fixed N = 50 plot (Fig. 68), the value of 7 has more
effect than NV, and vice versa for the large fixed N = 500 plot (Fig. 69). The two
figures illustrate how the maximum hybrid Er is nearly constant for a fixed N; the
qualitative explanation of the equation’s two terms, presented previously, explain
this behavior. For the chosen parameters, the worst case Ep is less than 3.0 usec
for the small fixed N = 50 case and less than 30.0 psec for the large fixed N = 500
case.

Figs. 70 and 71 show the simultaneous command equations wherein the
propagation distance 7 has been fixed and the number of nodes N has been been
allowed to vary. Both the purely optical and hybrid schemes are shown. Again,
the purely optical minimum Ep time is independent of both 7 and N, so its curves
are constant (with the same numeric value) in both figures. The hybrid minimum
Ep time is essentially constant, depending upon the particular values of 7 or P
chosen. For small fixed 7 = 50.0 (Fig. 70), it is constant for all but the smallest
values of N; for large fixed 7 = 500.0 (Fig. 71), it is linearly dependent upon P for
the initial values of P (as the knee in the curve shows) and then becomes constant
for large enough P. The purely optical maximum FEr depends upon both 7 and
P. The curves in the two figures have the same slope (since 7 has been fixed) with

different y-intercepts (because of the different values of 7). The hybrid maximum

171

Execution Time (nsec)
N | 7 (nsec) | pomin | pomax | hymin | hymax
50 50 20 130 70 2555
50 500 20 1030 70 2555
500 50 20 130 70 | 25055
500 500 20 1030 70 | 25055

Table 25: Some specific Single Command F&OP execution times.

Execution Time (nsec)
N | 7 (nsec) | pomin | pomax | hymin | hymax
50 50 20 370 170 2555
50 500 20 1270 670 2555
500 50 20 2620 170 | 25055
500 500 20 3520 1070 | 25055

Table 26: Some specific Multiple Command F&OP execution times.

Er time has a strong dependence upon N as illustrated in the two figures. For
the large fixed 7 = 500.0 (Fig. 71), the value of 7 has some influence for small N
(as seen by the knee in the curve), but this influence is quickly dwarfed by the
dependency on N. For large enough N, the curves are essentially the same in the
two figures.

As a summary, Tables 25 and 26 give some specific execution times for single
command and multiple command F&OP respectively for small and large system

sizes, for small and large system scales, and for the two optical implementations.

172

Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

This thesis has been predicated on the assumption that optical waveguide commu-
nications technology will become more and more prevalent in smaller and smaller
scale environments. Given this assumption, the research question has been whether
the properties of optical waveguides can provide more than just high speed data
transmission in general purpose parallel computing systems formed from electronic
computing elements interconnected with optical waveguides. The answer to this
question has provided several contributions.

First, we developed new combinations of optical waveguide topologies and
medium access protocols which form several variants of a physical optical com-
munications architecture we call the Optical Broadcast Ring (OBR). The OBR
architecture is structured such that optical signals and messages can be both inher-
ently ordered among the nodes and broadcast to all the nodes. OBRs with these
two properties form the building blocks for supporting certain general purpose

parallel computing needs.

173

Second, we showed how the OBR building blocks can provide direct hard-
ware support for a specific implementation derivative of an earlier proposed ab-
stract distributed shared memory multiprocessor design called Beehive. This spe-
cific implementation derivative of Beehive that we developed is called OBee (for
optical Beehive). We described how the OBee design uses OBRs to provide sim-
ple hardware support for Beehive’s reader initiated cache coherency protocol. We
showed how two different types of OBRs can be used to build two distinct imple-
mentations of Beehive’s only synchronization primitive, locks. We also presented
OBR based implementations of two more useful synchronization primitives (not
present in the Beehive design), barriers and F&OP. We described two distinct
implementations of barriers based upon two different OBRs and described two
distinct implementations of F&OP based upon two different OBRs.

Third, we presented an analytical evaluation of the raw performance char-
acteristics of each of the four command features (cache coherency, locks, barriers,
and F&OP). This evaluation was composed of the best and worst case execution
times of the relevant commands. After deriving the equations representing these
two performance metrics under varying conditions, we showed and discussed vari-
ous plots of the equations. These plots gave quantitative meaning to the equations
under small and large system sizes and small and large interconnection distances.
For a large system size of 500 nodes connected over the distance of a building
(100 m), the worst case execution times were on the order of several tens of usec.

Thus, we have answered our research question affirmatively: optical wave-

guides can be structured so that they provide, in addition to the standard high

174

speed data transmissions, direct support for useful general purpose parallel com-
puting features. In addition, our analytical evaluation showed that these features
will execute on large systems interconnected over building size distances in a rea-

sonable amount of time.

7.2 Further Questions

The questions that any research work answers are important; just as important
are the new (unanswered) questions that arise from the original question and its
subsequent answers. We briefly describe here several such issues.

One question is the OBR architecture. Is there another configuration (either
topology or medium access protocol) which provides better service? For example,
in the current configuration, when a signal (or message) travels from node N
back to the first node, could that signal be used productively to trigger access on a
parallel OBR on which the signals travel in the opposite direction from the original
OBR? Such an OBR architecture would imply that half the time the nodes are
physically ordered from 1 to N and half the time from N to 1.

A second question concerns the implicit assumption throughout this thesis
that one task is mapped to a node and runs to completion on that node. How do
the OBR architectures, associated data structures, and monitoring algorithms (as
applicable) need to be modified if multiple tasks are mapped to one node?

A third issue regards how the analytical evaluation of the command prim-
itives’ raw performance is translated into measuring the performance of “real”

parallel programs. The use of execution-driven system simulations would allow

175

one to examine the behavior of real programs. Real programs’ behavior need to be
evaluated to answer questions such as: How many OBRs are needed? Which type
of OBR architecture (wired-OR versus explicit message) is more appropriate for a
given command primitive? If multiple explicit message OBRs are allocated for a
given command primitive, how is the message traffic to be allocated effectively?
Does the physical architecture of the OBR encourage a particular mapping strategy
of tasks to nodes? As technologically dependent parameters change (e.g., optical
waveguide data transmission speeds, CPU computing performance, multiple CPUs
per chip, increasing on-chip cache sizes, increasing memory sizes, decreasing mem-
ory and cache speeds, etc.), how are the number, type, and allocation of OBRs
changed? Another facet of the technologically dependent parameters is the appro-
priate computation granularity of programs running on systems employing OBRs.
As an example, Fig. 72 shows the granularity ratio of computation to the lock
acquisition time versus RISC CPU processor speed. A ratio of 1.0 implies that
one instruction can be executed in one lock acquisition time. We assume that the
RISC CPU can execute one instruction per clock cycle and that, on average, the
lock acquisition time is 100 nsec. As a point of reference in the figure, the DEC
Alpha chip currently (in 1992) runs at 200 MHz, equivalent to a granularity ratio
of 20.0. This result implies that (depending on how “real” programs behave as
determined by the simulations mentioned above) systems using OBRs might be
able to use a small computation granularity even over large system sizes and/or
scales.

The fourth question asks what other architectural features would be use-

ful. For example, would data prefetching or code and data migration from one

176

Lock acquisition time = 100 nsec

100 T T T T T T T T T

80 -

60 |- -

Granularity
ratio

40 =

20 - -

0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

RISC CPU processor speed (MHz)

Figure 72: The granularity ratio of computation to lock acquisition time as a
function of RISC CPU processor speed.

node to another be worthwhile uses of the optical waveguide’s bandwidth? Can
other command primitives (whether computational or synchronization in nature)
be developed which use the OBR’s properties to good advantage?

The fifth question deals with the engineering issues of using our proposed
OBR architecture. How many wavelengths (one wavelength being equivalent to
one logical channel) can be made available for the wired-OR OBRs (which are
low bandwidth) and how many for the explicit message OBRs (which are high
bandwidth)? Should the transmitters and receivers be tunable or fixed wavelength
devices? How fast can the explicit message OBR data transmission channels be
reasonably made? Should multiplexing techniques be used to combine a number of

explicit message OBR data transmission channels into one physical channel? How

177

many taps (which limits the number of nodes that can be physically attached to
an OBR) can be placed on a single physical optical waveguide?

The final issue is much more broad. What other physical optical communi-
cation architectures (either in waveguides or in free space) are useful for supporting
programming needs? The OBR structure provides inherent ordering and broad-
cast. Are there other properties (in either the OBR structure or other optical
architectures) which would be useful? What other existing computing models are
well suited to being supported by optical communication architectures? Can a new
computing model be developed which fits naturally with optical communication
architectures? And finally, if the computational needs are implemented via optics,
can the optical computational implementation be effectively integrated with an

optical communications architecture?

178

[1]

[10]

Bibliography

Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An
evaluation of directory schemes for cache coherence. In Proceedings of the
15" Annual International Symposium on Computer Architecture, pages 280—

9, 1988.

George 5. Almasi and Allan Gottlieb. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Company, Inc., 1989.

J. Archibald and J. Baer. Cache coherence protocols: Evaluation using a
multiprocessor model. ACM Transactions on Computer Systems, 4(4):278—
98, November 1986.

Emmanuel A. Arnould, Francois J. Bitz, Eric C. Cooper, H. T. Kung,
Robert D. Sansom, and Peter A. Steenkiste. The design of Nectar: A network
backplane for heterogeneous multicomputers. In Proceedings of Third Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 205-16, April 1989.

Henri H. Arsenault and Yunlong Sheng. An Introduction to Optics in Com-
puters. SPIE Optical Engineering Press, 1992.

Donald G. Baker. Monomode Fiber-Optic Design with Local-Area and Long-
Haul Network Applications. Van Nostrand Reinhold Company, 1987.

W. Thomas Cathey, Kelvin Wagner, and William J. Miceli. Digital computing
with optics. Proceedings of the IEEE, 77(10):1558-72, October 1989.

L. M. Censier and P. Feautrier. A new solution to coherence problems in mul-
tiprocessors. [EEE Transactions on Computer, C-27(12):1112-8, December
1978.

David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal.

Directory-based cache coherence in large-scale multiprocessors. Computer,

23(6):49-58, June 1990.

David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directo-

ries: A scalable cache coherence scheme. In Fourth International Conference

179

[11]

on Architectural Support for Programming Languages and Operating Systems,
pages 224-34, April 1991.

Ray T. Chen, Huey Lu, Daniel Robinson, Michael Wang, Gajendra Savant,
and Tomasz Jannson. Guided-wave planar optical interconnects using highly
multiplexed polymer waveguide holograms. Journal of Lightwave Technology,

10(7):888-97, July 1992.
Donald M. Chiarulli, Steven P. Levitan, and Rami G. Melhem. Optical bus

control for distributed multiprocessors. Journal of Parallel and Distributed

Computing, 10:45-54, 1990.

Richard D. Cooke. MACROLAN—the design philosophy and trade-offs. In
SPIE Vol. 630 Fibre Optics 86, pages 65-70, 1986.

Nicholas C. Craft and Michael E. Prise. Processor does light logic. Laser
Focus World, pages 191-200, May 1990.

W. A. Crossland, P. A. Kirkby, J. W. Parker, and R. J. Westmore. Some
applications of optical networks in the architecture of electronic computers.
Optical Computing and Processing, 1(3):199-207, 1991.

Martin H. Davis, Jr. and Umakishore Ramachandran. Using an optical bus
in a distributed memory multicomputer. In The Sizth Distributed Memory
Computing Conference Proceedings, DMCC6, pages 524-31, April 1991.

L. Dekker and E. E. E. Frietman. Optical link and processor clustering in the
Delft parallel processor. In Proceedings of 1988 International Conference on
Supercomputing, pages 25-38, 1988.

L. Dekker and E. E. E. Frietman. Optical interconnects in high bandwidth
computing. In SPIFE Vol. 1505, Optics for Computers: Architectures and
Technologies, pages 148-157, March 1991.

L. Dekker, E. E. E. Frietman, W. Smit, and J. C. Zuidervaart. Optical link
in the Delft parallel processor—an example of MOMI-Connection in MIMD-
supercomputers. Future Generations Computer Systems, pages 189-203, 1988.

D. Del Corso, H. Kirrmann, and J. D. Nicoud. Microcomputer Buses and
Links. Academic Press, 1986.

Digital Equipment Corporation, Maynard, Massachusetts. DECChip 21064—
AA RISC Microprocessor Preliminary Data Sheet, April 1992.

180

[22]

23]

[24]

[25]

Michel Dubois, Christoph Scheurich, and Fayé Briggs. Memory access buffer-
ing in multiprocessors. In Proceedings of the 13" Annual International Sym-
posium on Computer Architecture, pages 434442, 1986.

Dror G. Feitelson. Optical Computing: A Survey for Computer Scientists.
The MIT Press, 1988.

Michael R. Feldman, Sadik C. Esener, Clark C. Guest, and Sing H. Lee.
Comparison between optical and electrical interconnects based on power and
speed considerations. Applied Optics, 27(9):1742-51, May 1988.

Eric Freudenthal and Allan Gottlieb. Process coordination with Fetch-and-
Increment. In Proceedings of the Fourth International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS-
IV), pages 260-8, April 1991.

E. E. E. Frietman, A. de Vette, L. Dekker, and L. Tassakos. Optical in-
terconnects in a multi-computer environment. In SPIE Vol. 1281, Optical
Interconnections and Networks, pages 3340, March 1990.

E. E. E. Frietman, L. Dekker, E. H. Nordholt, and D. Chr. van Maaren.
Optical interconnects facilitate the way to massive parallelism. In SPIE Vol.
991 Fiber Optic Datacom and Computer Networks, pages 15260, 1988.

E. E. E. Frietman, L. Dekker, W. van Nifterick, P. Demeester, P. van Daele,
and W. Smit. Current status and future research of the Delft ‘supercom-
puter’ project. In SPIE Vol. 1390, International Conference on Advances in
Interconnection and Packaging, pages 434-53, November 1990.

E. E. E. Frietman and A. B. Ruighaver. An electro-optic data communication
system for the Delft parallel processor. Computer Architecture News, pages
2-8, December 1987.

E. E. E. Frietman, W. van Nifterick, L. Dekker, and T. J. M. Jongeling. Paral-
lel optical interconnects: Implementation of optoelectronics in multiprocessor

architectures. Applied Optics, 29(8):1161-77, March 1990.

Edward E. E. Frietman and Wim van Nifterick. Optoelectronic ICs for high-
speed parallel processing. Lasers & Optronics, pages 69-71, August 1987.

Mario Gerla, Paulo Rodrigues, and C. W. Yeh. Token-based protocols for high-
speed optical-fiber networks. Journal of Lightwave Technology, LT-3(3):449-
66, June 1985.

181

33]

[40]

[41]

[42]

[43]

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory consistency and event ordering
in scalable shared-memory multiprocessors. In Proceedings of the 17" Annual
International Symposium on Computer Architecture, pages 15-26, 1990.

A. Gottlieb and C. Kruskal. Coordinating parallel processors: A partial uni-
fication. Computer Architecture News, pages 16-24, October 1981.

Peter S. Guilfoyle and Richard V. Stone. Digital optical computer II. In SPIE
Vol. 1563 Optical Enhancements to Computing Technology, pages 214-22, July
1991.

Peter S. Guilfoyle and W. Jackson Wiley. Combinatorial logic based digital
optical computing architectures. Applied Optics, 27(9):1661-73, May 1988.

Rajiv Gupta and Michael Epstein. High speed synchronization of processors
using fuzzy barriers. International Journal of Parallel Programming, 19(1):53—

73, 1990.

Klaus-Rudiger Hase. Computer-internal optical bus system with light-guiding-
plate. In Proceedings of 1985 Furopean Conference on Optical Communica-
tions, pages H97-600, 1985.

Peter Healey, Stephen Cassidy, and David W. Smith. Multi-dimensional opti-
cal interconnection networks. In SPIFE Vol. 1215, Digital Optical Computing
11, pages 191-7, January 1990.

David V. James, Anthony T. Laundrie, Tein Gjessing, and Gurindar S.
Sohi. Distributed directory scheme: Scalable Coherent Interface. Computer,
23(6):74-7, June 1990.

Jie Jiang and Udo Kraemer. Two new developments for optoelectronic bus
systems. In SPIE Vol. 1505, Optics for Computers: Architectures and Tech-
nologies, pages 166-74, 1991.

Jie Jiang and Peter Laws. Analysis and realization of the optical backplane
system using circular light-guiding plates. In SPIE Vol. 1773, Optical En-
hancements to Computing Technology 11, 1992. Paper 1773B-14.

Harry F. Jordan. A special purpose architecture for finite element analysis.
In Proceedings of the 1978 International Conference on Parallel Processing,
pages 263-6, August 1978.

182

[44]

[45]

[46]

Harry F. Jordan. Digital optical computers at Boulder. In SPIE Vol. 1505
Optics for Computers: Architectures and Technologies, pages 87-98, March
1991.

Harry F. Jordan and Vincent P. Heuring. Time multiplexed optical computers.
In Proceedings of Supercomputing ’91, pages 370-8, November 1991.

Brewster O. Kahle, Edward C. Parish, Thomas A. Lane, and Jerry A. Quam.
Optical interconnects for interprocessor communications in the Connection
Machine. In Proceedings of 1989 IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pages 5861, 1989.

Gerd Keiser. Optical Fiber Communications (Second Edition). McGraw-Hill
Book Company, 1991.

P. A. Kirkby. SYMFONET: Ultra-high-capacity distributed packet switching
network for telecoms and multiprocessor computer applications. FElectronics

Letters, 26(1):19-21, January 1990.

Udo Kraemer and Peter Laws. High-speed optical interconnect for backplane
applications. In SPIFE Vol. 1773, Optical Enhancements to Computing Tech-
nology 11, 1992. Paper 1773B-15.

H. T. Kung. Advances in multicomputers. Computing Systems in Engineering,

1(2-4):153-62, 1990.

H. T. Kung. High-speed networks for high-performance computing. In COM-
PCON Spring 1990, pages 68-72, 1990.

H. T. Kung, Robert Sansom, Steven Schlick, Peter Steenkiste, Matthieu
Arnould, Francois J. Bitz, Fred Christianson, Eric C. Cooper, Onat Men-
zilcioglu, Denise Ombres, and Brian Zill. Network-based multicomputers: An
emerging parallel architecture. In Proceedings of Supercomputer 91, pages

664-73, November 1991.

Leslie Lamport. How to make a multiprocessor computer that correctly ex-
ecutes multiprocess programs. [EEE Transactions on Computers, C-28(9),
September 1979.

Thomas A. Lane, Jerry A. Quam, Brewster O. Kahle, and Edward C. Parish.
Gigabit optical interconnects for the Connection Machine. In SPIE Vol. 1178
Optical Interconnects in the Computer Environment, pages 24-35, September
1989.

183

[55]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Joon Lee and Umakishore Ramachandran. Synchronization with multipro-
cessor caches. In The 17" Annual International Symposium on Computer

Architecture, pages 27-37, May 1990.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and
John Hennessy. The directory-based cache coherence protocol for the DASH
multiprocessor. In Proceedings of the 17" Annual International Symposium
on Computer Architecture, pages 148-59, 1990.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The
Stanford Dash multiprocessor. Computer, 25(3):63-78, March 1992.

F. MacKenzie, S. A. Cassidy, P. Healey, D. W. Smith, and D. L. Williams.
Waveguide interconnects for optical processing. Optical Computing and Pro-

cessing, 1(2):169-74, 1991.

F. MacKenzie, T. G. Hodgkinson, S. A. Cassidy, and P. Healey. Optical inter-
connect based on a fibre bus. Optical and Quantum Electronics, 24(4):5491—
504, April 1992.

Reinhard Maenner, Richard L. Shoemaker, and Peter H. Bartels. The Heidel-
berg Polyp system. [EEE Micro, pages 513, February 1987.

R. Manner and O. Stucky. The Polyp multiprocessor: Architecture and ap-
plications in nuclear physics. Computers in Physics, pages 267-74, May 1990.

Nicholas F. Maxemchuk. Twelve random access strategies for fiber optic net-

works. IEEE Transactions on Communications, 36(8):942-50, 8 1988.
R. G. Melhem, D. M. Chiarulli, and S. P. Levitan. Space multiplexing of

waveguides in optically interconnected multiprocessor systems. The Computer

Journal, 32(4):362-9, 1989.

Onat Menzilcioglu and Steven Schlick. Nectar CAB: a high-speed network
processor. In Proceedings of the 11%* International Conference on Distributed
Computing Systems, pages 508-15, May 1991.

J. E. Midwinter and Y. L. Guo. Optoelectronics and Lightwave Technology.
John Wiley & Sons, 1992.

Miles J. Murdocca, Alan Huang, Jurgen Jahns, and Norbert Streibl. Optical
design of programmable logic arrays. Applied Optics, 27(9):1651-60, May
1988.

184

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

James W. Parker. Optical interconnection for advanced processor systems: A
review of the ESPRIT IT OLIVES program. Journal of Lightwave Technology,
9(12):1764-73, December 1991.

Paul R. Prucnal, Edward E. Harstead, and Stuart D. Elby. Low-loss, high-
impedance integrated fiber-optic tap. Optical Engineering, pages 1136-42,
September 1990.

Floyd E. Ross. FDDI—a tutorial. IEEE Communications Magazine, 24(5):10—
7, May 1986.

Floyd E. Ross. An overview of FDDI: The fiber distributed data interface.
IEEE Journal on Selected Areas in Communications, 7(7):1043-51, September
1989.

D. A. A. Roworth and N. Howe. ISOLAN—a fibre optic network conforming
to IEEE 802.3 standards. In SPIE Vol. 630, Fibre Optics ‘86, pages 88-95,
1986.

A. B. Ruighaver. A modular network for dense optical interconnection of
processing elements. Computer Architecture News, pages 69-75, June 1990.

A. B. Ruighaver. The Melbourne University optoelectronic multicomputer
project. Supercomputer, 8(6):22-32, November 1991.

A. B. Ruighaver. From a very long instruction word architecture to a de-
coupled multicomputer architecture. In Proceedings of the 1992 International
Conference on Parallel Processing, pages 1-188-91, August 1992.

Christoph Scheurich and Michel Dubois. Correct memory operation of cache-
based multiprocessors. In Proceedings of the 14" Annual International Sym-
posium on Computer Architecture, pages 234-43, 1987.

Ronald V. Schmidt, Eric G. Rawson, Robert E. Norton, Jr., Stephen B. Jack-
son, and M. Douglas Bailey. Fibernet II: A fiber optic Ethernet. IEEE Journal
on Selected Areas in Communications, SAC-1(5):702-11, November 1983.

G. Sohi, J. Smith, and J. Goodman. Restricted Fetch&® operations for par-
allel processing. In Proceedings of 1989 International Conference on Super-
computing, Crete, Greece, pages 410-6, June 1989.

Per Stenstrom. A survey of cache coherence schemes for multiprocessors.

Computer, 23(6):12-24, June 1990.

185

[79]

[30]

[81]

[82]

[36]

[87]

R. W. Stevens. MACROLAN: a high-performance network. [ICL Technical
Journal, pages 289-96, May 1983.

R. W. Stevens. MACROLAN: a high-performance network. In SPIE Vol. 468
Fibre Optics 84, pages 8893, 1984.

O. Stucky, R. L. Shoemaker, R. Manner, and P. H. Bartels. Optical intercon-
nection for multiprocessor computer bus systems. Optical Engineering, pages

1185-92, November 1989.
Oliver Stucky, Reinhard Manner, Richard L. Shoemaker, and Peter H. Bartels.

Multiprocessor communication and control by synchronous and asynchronous
optical resource-sharing interconnection networks. In Proceedings of the Third
International Symposium on Computer and Information Sciences, pages 571—

8, October 1988.

Technical Committee on Computer Communications of the IEEE Computer
Society, USA, New York. [EFEE Standards for Local and Metropolitan Area
Networks: distributed queue dual bus (DQDB) subnetwork of a Metropolitan
Area Network (MAN), July 1991.

Fouad A. Tobagi, Flaminio Borgonovo, and Luigi Fratta. Expressnet: A
high-performance integrated-services Local Area Network. In Karl Kimmerle,
Fouad A. Tobagi, and John O. Limb, editors, Advances in Local Area Net-
works, chapter 11, pages 171-89. IEEE Press, 1987.

Chong-Wei Tseng and Bor-Uei Chen. D-Net, a new scheme for high data rate
optical local area networks. IEEFE Journal on Selected Areas in Communica-

tions, SAC-1(3):493-9, April 1983.

Tom S. Wailes and David G. Meyer. Multiple channel architecture. In 3"¢
Symposium on the Frontiers of Massively Parallel Computation, pages 315-23,
October 1990.

Tom S. Wailes and David G. Meyer. Multiple channel architecture: A new
optical interconnection strategy for massively parallel computers. Journal of

Lightwave Technology, 9(12):1702-16, December 1991.

R. J. Westmore. SYMFONET: Interconnect technology for multinode com-
puting. Electronics Letters, 27(9):697-8, April 1991.

186

Vita

Martin H. Davis, Jr. was born in Chattanooga, Tennessee. After attending The
McCallie School for Boys in Chattanooga, he attended the Florida Institute of
Technology in Melbourne. At F.I.T. he earned a B.S. in Physics and a B.S. in Space
Science. Mr. Davis next attended the University of Tennessee Space Institute in
Tullahoma. Because of his interest in Remote Sensing and computers, he earned
a M.S. in Engineering Science by writing a Master’s thesis entitled “A Geographic
Information System for the Big South Fork Area.” Finally, having decided that
he wanted to learn more about computers, Mr. Davis began attending the Georgia
Institute of Technology in Atlanta under the auspices of the School of Information
and Computer Science, later to become the College of Computing. One of Mr.
Davis’ strong beliefs is that as Computer Science evolves and matures, it will
become a highly interdisciplinary field. He particularly believes this will be true
of Optical Computing, i.e., Optical Computing will come into its own only when
physicists, electrical engineers, computer scientists, and others study in tandem
optical technology and devices, system architectures, and computing models to
determine the appropriate combination. Of course, some would say that Mr. Davis

is somewhat biased given his particular background.

187

