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SUMMARY 
 

Problem: The complexity in multiscale systems design is significantly greater than in 

conventional systems because in addition to interactions between components, couplings 

between physical phenomena and scales are also important. This complexity amplifies 

two design challenges: a) complexity of coupled simulation models prohibits design 

space exploration, and b) unavailability of complete simulation models that capture all 

the interactions. Hence, the challenge in design of multiscale systems lies in managing 

this complexity and utilizing the available simulation models and information in an 

efficient manner to support effective decision-making. 

Approach: In order to address this challenge, our primary hypothesis is that the 

information and computational resources can be utilized in an efficient manner by 

designing design-processes (meta-design) along with the products. The primary 

hypothesis is embodied in this dissertation as a framework for integrated design of 

products and design processes. The framework consists of three components – 1) a 

Robust Multiscale Design Exploration Method (RMS-DEM), 2) information-economics 

based metrics and methods for simplification of complex design processes and 

refinement of simulation models, and 3) an information modeling strategy for 

implementation of the theoretical framework into a computational environment. 

The first research question is related to the configuration of design processes for 

effective design decision making. The hypotheses used to answer this research question 

are: a) design processes can be refined systematically along with the products, and b) 

design processes can also be designed as modular systems composed of repeating 
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building blocks. The second research question is related to systematic simplification of 

design processes and the extent of refinement of simulation models. The hypothesis used 

to answer this research question is that information economics based metrics can be used 

to quantify the impact of design process related decisions. The third research question is 

related to the modeling of design information to support design of design processes. The 

hypothesis used to answer this question is that separation of product, decision problem, 

and design process related information enables design of design processes in 

computational frameworks.  

Validation: The framework is validated using the validation-square approach that 

consists of theoretical and empirical validation. Empirical validation of the framework is 

carried out using various examples including: pressure vessel design, datacenter cooling 

system design, linear cellular alloy design, and multifunctional energetic structural 

materials design.  

Contributions: The contributions from this dissertation are categorized in three 

research domains: a) multiscale design methodology, b) materials design, and c) 

computer-based support for collaborative, simulation-based multiscale design. In the 

domain of design methodology, new methods and metrics are developed for integrating 

the design of products and design processes. The methods and metrics are applied in the 

field of materials design to develop design-processes and specifications for 

Multifunctional Energetic Structural Materials. In the domain of computer-based support 

for design, an information modeling strategy is developed to provide computational 

support for meta-design. Although the framework is developed in the context of 

multiscale systems it is equally applicable to design of any other complex system. 
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Chapter 1 Integrated Design of Products and Design 
Processes for Multiscale Systems 

 

The principal goal in this dissertation is to establish a framework for integrated 

design of multiscale products and design processes, to facilitate effective and 

efficient utilization of information and computational resources in preliminary 

design of multiscale systems with potential applications to other complex systems.  

The motivation for this research is the need for systematic simulation-based design 

methods suitable for designing systems by appropriate consideration of phenomena at 

various scales. As pointed out in Section 1.1, multiscale modeling is an evolving 

multidisciplinary field that integrates constructs from mathematics, computational 

science, and specific engineering domains (such as material science, bio science, 

environmental science, etc.). The primary research objective in multiscale modeling is to 

employ simulation models at different scales (length, time, energy, etc.) to gain a 

complete understanding of phenomena that could not be modeled otherwise. In this 

dissertation, the multiscale modeling efforts are taken a step further into multiscale 

design, where these models are utilized for the design of complex engineered systems and 

the associated decision making. A characteristic of simulation-based design of multiscale 

systems is that there are a number of simulation models that generate different fidelities 

of information about various aspects of the system. The complexity in design of 

multiscale systems arises from the coupling of phenomena at different scales leading to 

the overall behavior of the system. Ideally, from an accuracy perspective, a system 

representation that incorporates all the interactions between all scales would be 

preferable. However, there are two barriers in using completely coupled system models at 
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all the scales – a) these coupled models are computationally very expensive and hence, 

unfit for designing reasonably sized engineering systems, and b) such completely coupled 

models that capture all the interactions between systems are generally not available. 

Nevertheless, from a decision making perspective, it is not a very big barrier because 

most of the couplings have only a small effect on the design decisions and only a few 

couplings are important to generate models that are good enough for decision making. 

This is especially true in the preliminary design stages. Hence, the challenge in 

simulation-based multiscale, multifunctional design is to systematically account for 

interactions that support effective decision making. The primary hypothesis to address 

this challenge is that “simulation-based design of multiscale, multifunctional systems can 

be carried out by decision-based integrated design of products along with their design 

processes”. 

Designing simulation-based design processes from a decision-based perspective 

involves answering questions such as: 

a) What is the sequence in which product decisions should be made?  

b) Which models should be used for making decisions?  

c) Which interactions are important for making decisions and which interactions can 

be ignored?  

d) What level of accuracy in models is appropriate for decision making?  

e) How can existing knowledge be reused in new design scenarios?  

The starting assumption in this dissertation is that by answering these questions and 

appropriately configuring the design processes (along with design of products), we can 

also improve the efficiency and effectiveness with which these products are designed. In 
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order to answer the questions related to designing design processes, a multiscale design 

framework is developed in this dissertation. The framework consists of three 

components: a) a Robust Multiscale Design Exploration Method (RMS-DEM) that 

consists of three steps – meta-design, design process execution, and refinement, b) 

metrics and methods for simplification of complex design process and simulation model 

refinement using information economics and robustness, and c) an information modeling 

strategy for simulation-based design information to support design process exploration 

and information reuse. Although the framework developed in this dissertation is 

important for multiscale systems, we believe that it is applicable to any complex system 

design. 

The scope of applicability of constructs developed in this dissertation is simulation-

based preliminary design. In the preliminary design stage, detailed simulation codes are 

available to predict computationally the behavior of systems. It is recognized that these 

simulation codes may have uncertainty associated with them and can be refined further. 

Preliminary design is carried out between the conceptual design phase, that is common to 

most design methods such as (Pahl and Beitz 1996), where the concept is not known and 

detailed simulation models are unavailable and the detailed design phase where the 

finalized design process is executed to generate manufacturable product description.  

The multiscale design motivations are discussed in Section 1.1. The challenges with 

multiscale systems are separated into multiscale modeling challenges and multiscale 

design challenges. These challenges are abstracted into a comprehensive set of 

requirements for a multiscale design framework and a primary research question is 

framed. From these requirements, a subset of requirements that will be addressed in this 
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dissertation is selected in Section 1.1.5. Three sub-research questions are formulated from 

the requirements in the Section 1.1.5. A high level overview of the strategy and 

hypotheses for answering each of the three research questions is presented in Section 1.2. 

Finally, a strategy for verification and validation is presented along with the outline of the 

dissertation in Section 1.3. 

1.1 Multi-scale Systems – An Emerging Challenge for 
Engineering Systems Design 

 
The excitement in the simulation-based design community over the past 2-3 years, as 

evident from the recent NSF workshop on Simulation-based Engineering Science (SBES) 

(SBES Workshop Report 2004), is attributed to the availability of independently 

developed simulation models at multiple scales of length and time. SBES represents an 

interface between diverse disciplines. SBES represents an interface between diverse 

disciplines, and has the following features – a) focus on using computer-based 

simulations for predicting system behavior, b) utilization of multiscale, multi-physics 

models, c) an engineering systems approach where multiple aspects of the problem are 

considered together, d) utilization of experience in engineering and applied mathematics, 

and e) a design/problem solving approach.  

Following the NSF workshop on SBES, US Department of Energy sponsored three 

workshops on multiscale mathematics (Dolbow, Khaleel et al. 2004) to identify research 

and funding opportunities in multiscale modeling. During these workshops, a number of 

issues related to multiscale modeling were identified. From a multiscale modeling 

standpoint, the primary challenge is to integrate information generated by different 

simulation models in a consistent manner so that the overall system behavior can be 
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predicted from the individual constituent models. During the two workshops, various 

application domains that would benefit from multiscale modeling were identified. These 

include environmental sciences, geosciences, climate, material science, combustion, 

biosciences, power grids and information networks, development of biomimetic sensors 

and devices, homeland security, etc. Since it is possible to predict the behavior of systems 

at multiple scales, the natural next step is to use these models for designing systems at 

multiple scales. In contrast to multiscale modeling, the primary challenge faced by the 

simulation-based multiscale design community is to effectively and efficiently utilize 

information generated by wide range of models that predict system behavior at different 

scales. For example, as shown in Figure 1-1, the product is designed at the overall system 

level and individual components, through nanoscale interactions and atomic level 

chemistry. The objective is to achieve desired performance at the system level (e.g., an 

aircraft). Overall system performance is a function of its component behavior, which 

depends on the material properties. Material properties in turn depend on micro-scale 

interfaces between its constituents particles. Properties at micro-level particle interfaces 

depend on nanoscale interactions between molecules, which further depend on inter-

atomic interactions. This shows a clear dependency of overall higher scale performance 

on the lower scale phenomena. Hence, all these dependencies have to be considered 

while designing products at multiple scales. This results in a greater coupling in the 

design, thereby increasing problem complexity. Although complexity of design is a 

challenge in multiscale design, the advantage of designing products at multiple scales is 

increased design freedom (i.e., a greater flexibility in configuring the system to achieve 

desired behavior), which enables designers to achieve performance that was not possible 
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before. In order to illustrate this, we present a classic example of multiscale systems – the 

environment where we live. 

Advantage of designing products at multiple scales: Increased design freedom (i.e., a 

greater flexibility in configuring the system to achieve desired behavior), which enables 

designers to achieve performance that was not possible before 

 

 

 
Figure 1-1 – Multiscale product design (SBES Workshop Report 2004)  

 

1.1.1 Example of Multiscale System – The Environment 
One of the highly complex multiscale problems is modeling the environment for 

weather prediction and to predict the human impact on climatic changes. The need for 

modeling climate arose from the realization that human activities can fundamentally 

impact earth’s climate, which ultimately affects economies and natural ecosystems. 

Hence, it has been realized that major policy decisions should be made by considering the 

impact on environment. The complexity of modeling the environment stems from the 

presence of phenomena at length scales ranging from the order of distance between 
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molecules (angstroms) to the diameter of the earth (several thousand kilometers). In 

addition to the range of spatial scales, the phenomena span a wide range of temporal 

scales – from fast chemical reactions to the life of earth. The processes in the earth 

system and their interactions are shown in Figure 1-2, which is commonly called the 

Bretherton diagram. In this figure, the manner in which human actions affect the climate 

changes is depicted.  

 

Figure 1-2 – Earth system processes (Bretherton diagram)1  
The multiscale climate model can be used to study environmental phenomena such as 

sea level rise, global temperature increase, local weather prediction, ozone depletion and 

oxidant formation in polluted urban areas, global warming prediction, global elastic 

response, and seismic wave propagation. Using the model, the effect of various stimuli 

such as CO2 emission and utilization, particulate emissions, on the environment can be 

understood. Models of the environment at different scales have been developed 

independently and are effective at predicting the behavior at corresponding scales. For 

                                                 
1 Image taken from http://www.iitap.iastate.edu/gccourse/system/images/images.html 
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example, as shown in Figure 1-3, there are at least three scales of models currently 

available: 1) climate level simulation, 2) mesoscale (regional models), and 3) microscale 

models. These models are briefly described next.  

 

http://www.gfdl.noaa.gov/~rjw/

Global Circulation Model

http://www.gfdl.noaa.gov/~rjw/

Global Circulation Model

http://www.gfdl.noaa.gov/~rjw/

Global Circulation Model

http://weather1.herald.com/US/Region/US
/2xJetStream.html

Regional Model

http://weather1.herald.com/US/Region/US
/2xJetStream.html

Regional Model

http://www.aquaworldnet.com/awma
g/setupeng.htm

Microscale model

http://www.aquaworldnet.com/awma
g/setupeng.htm

Microscale model
Length Scale

Time Scale

~10000 Kms~1000 Kms~100 Kms~1 Km~1 m

~decades

~years

~months

~days

~hours

 

Figure 1-3 – Multiple spatial and temporal scales in the climate prediction model 
 

1. Climate Level Simulation (Global Circulation Model): The components 

considered at the climate level simulation include a) the atmosphere, b) the 

oceans, c) the terrestrial and marine biosphere, d) the cryosphere (sea ice, 

seasonal snow cover, mountain glaciers and continental scale ice sheets) and e) 

the land surface (Houghton, Filho et al. 1997) (see Figure 1-4). These 

components interact through exchange of energy, water, cycling of gases (such 

as carbon dioxide, methane, etc), nutrients etc., and these interactions 
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determines the earth’s climate. Different models developed for climate 

prediction model different number of these components and their interactions. 

Increasing the number of components considered increases the complexity of 

climate models. If a model contains enough components to effectively predict 

the impact on climate, it is called a climate model. These models are also 

referred to as General Circulation Models or Global Climate Models (GCMs). 

GCMs are based on the assumption that there is a balance between pressure 

gradient force and gravity. Due to this assumption, it is difficult to model 

phenomena with rapid changes such as concentrated downpour, downburst etc. 

The resolution of models at this level is of the order of 300-500 kms and the 

models are run for longer periods of time (greater than 30 years).  

 

Figure 1-4 – Components of the climate system2  
At this level, various phenomena such as cloud formation and cloud 

interactions with atmospheric radiation, aerosol dynamics and light scattering, 

ocean plumes and boundary layer, turbulent eddies, terrestrial biosphere 

growth, decay and species interactions, etc. cannot be modeled because these 

phenomena occur at scales smaller than the model resolution. Since all these 
                                                 
2  Image taken from http://www.metoffice.com/research/hadleycentre/models/climate_system.html 



   

 10

phenomena also have a significant impact on the overall climate, they are 

modeled at smaller scale models such as mesoscale models.  

2. Mesoscale (Regional) Models: Regional climate models (Meso Inc. 2005) are 

used to model phenomena and components at length scales (around 50kms) 

smaller than the Global Climate Models (GCMs) (MetOffice 2005). This is 

due to that fact that due to the larger resolution of GCMs, they are incapable of 

modeling local climate changes that are influenced by local features such as 

rivers, mountains, vegetation, etc. At this scale, the hydrostatic approximation 

is not valid. The models at this scale are based on solving three dimensional 

Navier Strokes equation without hydrostatic assumption. 

3. Micro Level Model: Both the climate level and regional models do not capture the 

interactions between different plants, soil, chemicals in the environment, living 

organisms (human beings, insects, pathogens, microbes, etc.) (Takle and Kao 

1998). The plants interact with soil by extracting moisture, absorbing nutrients 

and carbon dioxide, thereby affecting the physical phenomena at higher scale 

models. Hence, modeling the interactions between plants and their 

environment is important for understanding the behavior at higher scales. 

Similarly, at this level, the human influences such as cropping strategies, 

management practices, use of fertilizers, ultimately contribute to the overall 

regional and global behavior. 

Although these three models at different scales are developed for simulating the 

behavior at corresponding scales, it is important to integrate these models in a physically 

meaningful manner in order to obtain a holistic understanding of the environment. 
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Currently, there are two commonly adopted techniques for linking these multiscale 

models – a) parameterization and b) concurrent coupling.  

a) Parameterization is a technique through which the information from lower level 

models is captured into a set of parameters and their values. The parameters can be 

empirical or semi-empirical and can be used to approximate average behavior of physics 

at a lower scale. For example, at the climate level simulation, where the typical horizontal 

resolution is hundreds of kilometers, lower scale activities such as localized storms, 

clouds and land surface variations are modeled as average parameter values. All models 

contain parameterization at certain level. No model is capable of simulating a 

phenomenon completely using first principles. The advantage of parameterization is its 

resulting simplicity in accounting for the phenomena at lower scales; the disadvantage 

being its low accuracy. A parameter passed from one level to another can either be 

viewed as a) a property of one level to be used on another level, or b) a constraint arising 

from one level, imposed on the other level. 

b) Coupling refers to the technique of using the model at one scale “on-the-fly” while 

performing calculations using model at another scale. Many climate modeling efforts are 

focused on increasing the resolution by reducing the minimum feature size modeled in 

the multiscale model. This requires dynamic utilization of many levels of lower scale 

models in the overall simulation. This requirement directly translates to the need for high 

performance computing tools. Hence, the ability to couple models at multiple scales is 

mainly dependent on the power of computational tools available. The advances in climate 

modeling are greatly dependent on the development in computational power, which is 

clear from the development of the world’s No. 1 super computer (ranked in 2004) – the 
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Earth Simulator. Using the Earth Simulator, the resolution of climate level simulations 

has improved from the common 500 kilometers down to 25 kilometers, thereby 

generating more accurate descriptions of the underlying physics. Coupled links between 

multiscale models render the overall model more accurate, but at the cost of increased 

complexity and computational cost.  

It is important to realize that even with the most sophisticated super computers 

available today; there is a limit on the complexity of problems that can be solved. Hence, 

there is a need for appropriate combination of parameterization and coupling while 

linking multiscale models, such that there is a balance between accuracy and 

computational cost. The basic question that environment modelers need to answer is – 

“How much detail is required in modeling the climate?” Currently, this question is 

answered by modelers based on their experience and insight into the problem. Hence, 

climate modeling is as much an art as a science (Houghton, Filho et al. 1997). This 

challenge is common across all multiscale systems. Before going into the details of each 

of these challenges we would like to ask ourselves the following question - “How are 

multiscale systems different from conventional complex systems?” This is a valid 

question because any conventional complex system such as an automobile, an airplane, a 

satellite, etc. spans multiple length scales – complete systems are at the order to few 

meters and the smallest components such as electronic sensors at the order of few 

millimeters (or even microns). The key difference between emerging multiscale systems 

and the conventional systems is the focus of the following Section 1.1.1. 
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1.1.1 Conventional Complex Systems vs. Multiscale Systems 
It is not an exaggeration to say that most of the engineering design problems are 

multiscale in nature (Weinan and Engquist 2003). For example, the design of a car 

involves design of systems such as engine, transmission, cooling, body, etc. and their 

integration. Each of these systems consists of sub-systems and components that interact 

with each other. These complex hierarchical systems are defined by Koch through a 

hierarchical structure of system, subsystem, and component level information, for which 

compatible solutions are sought concurrently (Koch 1997). The difference however, is 

that in multiscale systems, the coupling is between physical phenomena at different 

scales for the same component, whereas, in hierarchical systems considered so far (such 

as the one considered by Koch in (Koch 1997)), the coupling is primarily between 

subsystems (physical components). The complexity in such conventional multiscale 

systems is due to coupling between components at the same level (scale). This is referred 

to as horizontal coupling (see Figure 1-5). However, the scales are not tightly coupled 

with each other, thereby allowing for independent design of components that can be used 

in the system level design. The complexity in multiscale design arises when a) these 

scales are tightly linked with each other, i.e., vertical coupling (see Figure 1-5); b) each 

scale is described by a different set of physical principles. Hence, in conventional 

hierarchical systems, the coupling is simpler to consider as compared to multiscale 

systems. In hierarchical systems, the challenges include integration of multiple 

disciplines, and require resolution of multiple conflicting objectives. The main reason for 

considering coupling between physics is to gain an understanding of the system 

efficiently and making right decisions in an efficient manner. The main reason for 

considering coupling between subsystems in a concurrent fashion is to make right 



   

 14

decisions. The coupling is handled in hierarchical systems by introducing intermediate 

responses, linking variables, and compatibility constraints. 

Complex multiscale systems of the future should be designed by considering both 

horizontal and vertical coupling. Although independent analyses can be carried out 

individually at each scale, new physical insight is developed by coupling these scales. 

Specific methods are developed for solving domain specific multiscale design problems 

but a domain independent structured methodology for multiscale systems design is not 

available. Current methods in simulation-based design do not encompass the full set of 

performance criteria to produce better designs considering variables from all scales such 

as material microstructure through overall system (SBES Workshop Report). In order to 

address this challenge, there is a need for domain independent methodology for designing 

multiscale systems.  
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Figure 1-5 - Horizontal and vertical couplings in multiscale systems 

All complex systems are characterized by three types of couplings: a) between 

components of the system, b) between physical phenomena, and c) between different 

scales (see Figure 1-6). The strengths of each of these couplings are different in different 

systems. Some of the couplings are weak and may be ignored during modeling and 
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design, while others are strong and must be considered. Science abounds with examples 

of multiscale systems in which the scales are only weakly coupled. Were this not so, we 

would have made little progress in the theoretical sciences (Rudd and Broughton 2000). 

In the conventional systems, the strength of coupling between system components is high 

and the strength of couplings between physical phenomena and across different scales is 

weak. In the multiscale systems such as the environment, all the three types of couplings 

are strong and must be explicitly modeled and accounted for decision making. 
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Figure 1-6 – Complex systems with multiple components, scales and physical 
phenomena interacting with each other 

Multiscale System: A system where couplings between a) system components,  b) 

physical phenomena, and c) scales are strong and must be explicitly modeled and 

accounted for decision making 

Multiscale Model: A system level model that is developed by integration of information 

from models available at multiple scales to gain a holistic understanding of the system 

Multiscale Design: Engineering field which involves accounting for all aspects of 

systems from lower scale materials to larger scale systems throughout the product 

lifecycle in order to make risk-informed design decisions at all scales 
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In this dissertation, a clear distinction is made between multiscale modeling and 

design. Multiscale modeling deals with efficient integration of information from models 

available at multiple scales to gain a holistic understanding of the system, whereas 

multiscale design deals with efficient utilization of information to satisfy design 

objectives. The challenges in modeling multiscale systems and existing frameworks for 

modeling multiscale systems are discussed in Sections 1.1.2 and 1.1.3 respectively. 

Section 1.1.4 is focused on the challenges associated with design of multiscale systems. 

 

1.1.2 Challenges in Modeling Multiscale Systems 
 

A multiscale model is defined as a model that takes advantage of information from 

various scales present in the system in order to gain a better understanding of the system 

while reducing the computational cost. In Section 1.1.1, we discussed an example of 

multiscale system - the environment is presented. Other domains that constitute 

multiscale systems include material science, combustion, telecommunication networks, 

biology, etc. Successful development in these areas must overcome the challenges 

described in Table 1-1 and discussed in detail in this section. Although these challenges 

are common to all multiscale systems, we describe these with examples environment 

modeling example. 

1. As discussed in the previous section, one of the primary challenges in multiscale 

systems is to balance the need for accuracy and computational cost. Generally, the 

use of smaller scale model for predicting the performance of complete system 

provides a more accurate representation of the system. However, running these 
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smaller scale models at a large enough domain to capture larger effects is 

computational prohibitive.  

Table 1-1 – Challenges associated with multiscale systems 

Challenges in Multiscale Systems 

1. Balancing the behavior prediction accuracy with computational cost 

2. Modeling appropriate number of components in the system in order to faithfully 

simulate component interactions 

3. Modeling relevant physical phenomena relevant to the system 

4. Modeling interactions between scales and interfacing them such that they are 

physically compatible 

5. Appropriate selection of models and model parameters at each scale (which 

models are appropriate at which scale) 

6. Bridging the gap between different types of information (such as stochastic to 

deterministic, discrete to continuous, etc.) 

7. Managing large quantities of information (statistical datasets) at different levels of 

abstraction 

8. Managing complex, multidisciplinary models 

9. Quantifying and handling uncertainty 

10. Managing uncertainty propagation 

11. Targeted refinement of models 

12. Adaptive selection of details and resolution 

 

Ideally, system modelers would like to model the behavior of a complete system 

using first principles. For example, in a theoretical sense, just by using the 
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behavior at atomistic level, emergent properties of the whole system can be 

determined. The overall properties of a material can be predicted using the 

interaction of individual atoms. However, using the current computational 

capabilities, it is not physically possible to predict the behavior of the system 

using just the lowest scale models. Miller (Miller 2003) argues that the current 

massively parallel computers can handle only 0.01% of a typical aluminum grain. 

He also estimates that the total number of atoms simulated worldwide in the past 

30 years is on the order of 1012 – which is only about 10% of the atoms in a single 

grain of aluminum. “Multiscale modeling is a new paradigm, where a variety of 

mathematical models at different levels of details can be considered and the right 

combination of models is selected during the process of computation according to 

the accuracy needs”  (Weinan and Engquist 2003). This is the first challenge in 

modeling multiscale systems - balancing the behavior prediction accuracy with 

computational cost (see Table 1-1). 

2. Multiscale systems often consist of multiple components. For example, in the 

climate level simulation, the components include oceans, atmosphere, sea ice, 

mountain glaciers, terrestrial and marine biosphere, etc. All these components 

interact with each other. Different climate models consider different number and 

type of components. By reducing the number of components and interactions 

modeled in the system, both the number of required calculations and the model 

fidelity reduces. Hence, modelers at each scale must consider the appropriate 

components in the system in order to faithfully simulate component interactions 

(see Table 1-1).  
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3. Modeling required physical phenomena relevant to the system: Most current 

multiscale systems are also multi-physics in nature. For example, the climate 

prediction model consists of the exchange of energy between various components, 

the cycling of gases, cloud formation, species interaction, etc. These physical 

phenomena are governed by different physical laws and mathematical equations. 

These phenomena may either be dependent on or coupled with each other. The 

impact of considering different phenomena is different on the accuracy of the 

overall system behavior prediction. Hence, in order to gain a reasonable 

understanding of the system, it is important to model appropriate phenomena that 

are related to each other. 

4. Modeling interactions between scales and interfacing them in a physically 

compatible manner: In multiscale systems, phenomena at different length and 

time scales are generally modeled with different sets of physical laws, 

mathematical equations, and parameters by different domain experts. The 

assumptions at different levels are also different. Each of these models provides 

different kinds of insight into the system behavior and hence, must be integrated 

in a manner such that the overall model provides consistent behavior of the 

system. Integration of models at different scales requires consistent mathematical 

and physical description of coupling between scales. The challenge is that various 

scales depend on each other, which makes it important to determine how the 

different scales are linked with each other. Hence, as Rudd and Broughton (Rudd 

and Broughton 2000) point out, “any successful multiscale model must faithfully 

reproduce the intertwined nature of length scales”. The ability to simulate 



   

 20

complete systems requires faithfully modeling how the system is connected and 

controlled at all the levels (Dolbow, Khaleel et al. 2004). 

In summary, multiscale systems represent a special type of complex systems, 

characterized by multiple components, multiple physics, and multiple scales (see 

Figure 1-6). Appropriate modeling of all these there aspects and their interactions 

(between components, physics, and scales) is the key to multiscale modeling. The 

properties of such complex systems cannot be predicted merely through 

determination of individual sub-system properties. It is important to model the 

interactions between physical phenomena at various scales. 

5. Appropriate selection of models and model parameters at each scale (which 

models are appropriate at which scale): Simulation models can be developed at 

different fidelity levels by changing the scope and the assumptions underlying the 

model. For example, a system may be modeled in one-dimension, two-

dimensions, or three dimensions. Depending on the system under consideration, 

different models may be appropriate for predicting its behavior. It is important to 

select the right set of models and assumptions. It can be argued that this is a rather 

general requirement for any kind of simulation model development. However, the 

requirement is important for multiscale systems because it has to be considered at 

multiple scales with information from one model feeding into another. The 

appropriateness of models also depends on the compatibility between assumptions 

made in different models. Hence, a related requirement for multiscale modeling is 

resolution of model mismatch to ensure compatibility between models. 
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Appropriate selection of models has great impact on the accuracy and the time 

required for executing the models. 

6. Bridging the gap between different types of information (such as stochastic to 

deterministic, discrete to continuous, etc.): Significant amount of information 

generated in multiscale models from different sources is generally available in 

different forms such as graphs, images, text, numerical and experimental data, etc. 

Mathematical (and software) bridges across levels of lengths and type such as 

stochastic to deterministic, discrete to continuous (Weinan and Engquist 2003; 

Dolbow, Khaleel et al. 2004) are required to integrate information from different 

scales. 

7. Managing large quantities of information (statistical datasets) at different levels 

of abstraction: “At each finer scale, a more detailed theory has to be used, giving 

rise to more detailed information about the system” (Weinan and Engquist 2003). 

In addition to mathematical challenges in coupling information at different scales, 

the integration also needs to be carried out at a software infrastructure level. 

Issues such as synchronization of information generated by models at different 

scales, long run times, load balancing, capturing information at various levels of 

abstraction in a consistent database, integration of distributed computational 

models and hardware resources are pervasive in multiscale modeling. This has led 

to a new field of multiscale information science (Dolbow, Khaleel et al. 2004). 

8. Managing complex, multidisciplinary models: In addition to managing the data, 

management of simulation codes is also important. A repository of simulation 

models from which the designers or analysts can extract the models appropriate 
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for their needs. The simulation model repository should be developed considering 

the issues such as capturing assumptions, range of validity, and model’s context 

are important while developing simulation-based design framework for multiscale 

systems.  

9. Quantifying and handling uncertainty: Any simulation model is associated with 

some amount of uncertainty. Uncertainty in simulation models is categorized as 

aleatory and epistemic uncertainty. Aleatory uncertainty refers to the uncertainty 

due to the inherent randomness in the physical processes, whereas epistemic 

uncertainty refers to the uncertainty due to lack of knowledge about the system, 

which can be due to lack of information about model parameters and 

approximations in the model. In order to make appropriate use of information 

generated by simulation models, uncertainty quantification plays an important 

role. Capturing the information about range of validity of models is also 

important. Uncertainty is especially important in multiscale models due to the 

interactions between phenomena at different scales and quantification of this 

uncertainty in the models is difficult. For example, according to the IPCC third 

assessment report (Watson, Albritton et al. 2001), the temperature projections 

using the SRES emissions scenarios in a range of climate models result in an 

increase in globally averaged surface temperature of 1.4 to 5.8°C over the period 

1990 to 2100. This temperature range is large considering the impact of a few 

degrees increase in the global temperature.  

10. Managing uncertainty propagation: In addition to quantifying the uncertainty in 

multiscale simulation models, uncertainty propagates from one model to another 
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along with the information flow between models. The uncertainty may either get 

amplified or may remain under bounds. If the uncertainty gets amplified while 

passing information from one model to another, the overall system level 

simulation model may not be acceptable although the uncertainty bounds of 

individual models are acceptable.  

11. Targeted refinement of models: The accuracy of the overall multiscale simulation 

model is dependent on the accuracy of constituting models at individual scales 

and the manner in which uncertainty is amplified due to information flow from 

one model to another. Hence, in order to improve the accuracy of the overall 

model, it is important to identify the model that has the maximum impact on the 

overall uncertainty and then refine that model in a targeted fashion (i.e., the most 

critical link in the model chain and improve that link). 

12. Adaptive selection of details and resolution: Although uncertainty is an important 

aspect of multiscale modeling and it should be controlled, many multiscale 

models can be simplified significantly reducing the model execution time without 

reducing the accuracy. The objective of multiscale modeling is to exploit such 

scenarios and to select appropriate levels of detail in the models. 

As a summary, the objective of multiscale modeling is to take advantage of multiple 

scales in order to gain a holistic understanding of the system. The key in multiscale 

modeling is interactions between models at different scales. As suggested by Rudd and 

co-authors, “no one of those models alone would suffice to describe the entire multiscale 

system, but it may be possible to combine the models of different scales, effectively 

concentrating the computational power where it is needed the most”(Rudd and Broughton 



   

 24

2000). Hence, during multiscale modeling, there is a tradeoff between the computational 

resources and overall model fidelity due to integration of knowledge from multiple 

scales. As discussed in this section, some of the key challenges faced in SBES include 

lack of methods for bridging various time and length scales, management of models and 

uncertainty associated with them, management of huge amount and variety of 

information, and methods for efficient decision making based on the available models. 

Although efforts have been made to address some of these challenges for individual 

application domains, a domain independent framework for addressing these challenges 

associated with multiscale problems is not currently available in the literature. Some of 

the approaches currently used for multiscale modeling are discussed in the following 

Section 1.1.3. 

1.1.3 Multiscale Modeling Approaches 
It is evident from Section 1.1.2 that the main challenge in multiscale modeling is to 

reduce the complexity and recognize the simplicity of multiscale problems in order to 

generate a system description that is accurate enough for the problem at hand. In the past, 

there have been a number of efforts in modeling the scales individually, but multiscale 

modelers have shown that by appropriate combination of models at different scales, it is 

possible to gain a holistic understanding of the system. Multiscale modeling employs 

models at different physical scales, to build a comprehensive description of systems that 

could not be modeled otherwise (Rudd and Broughton 2000). Weinan and co-authors 

(Weinan, Engquist et al. 2003) at Princeton University categorize multiscale modeling 

methods into classical and modern techniques. Classical techniques refine the macroscale 

model using microscale models. In other words, classical techniques are essentially 
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microscale solvers applied to the macroscale domain of interest. Examples of classical 

multiscale techniques include multigrid method, domain decomposition, wavelet-based 

methods, adaptive mesh refinement, fast multipole method, and conjugate gradient 

method. However, the modern multiscale methods utilize the microscale models only in 

the domain where it is required. For example, during the analysis of fracture, molecular 

level microscale model is important only at regions close to crack-tip. The regions far 

away from the crack tip can be modeled using macroscale (continuum) models. This 

results in a more efficient multiscale model, which is a combination of the microscale and 

macroscale model. Examples of modern multiscale models include Car-Parrinello 

method, Quasi-continuum method, Heterogeneous Multiscale Method (HMM), Gap-

Tooth scheme, Coarse-Grained Monte Carlo Models, and Adaptive Model Refinement. 

Although these techniques for multiscale modeling have proven successful in 

providing a greater understanding of multiscale problems by increasing their accuracy, 

these techniques are developed for, and employed in very specific applications. This is 

mainly because these multiscale models are based on specific insights into the coupling 

between different scales. This coupling is not only problem dependent but also dependent 

on the models used to describe the physics at these scales. Specific methods for coupling 

atomistic and continuum models are characterized by Miller (Miller). Miller argues that 

the main challenge in coupling the atomistic and continuum models is to model the 

transition region between the two domains. The multiscale methods are different 

depending on the way in which they model this transition region. These models include 

the FEAt (Finite Element and Atomistic) method, the QC (quasicontinuum) method, CLS 

(coupling of length scales) method, CGMD (Coarse-Grained Molecular Dynamics) 
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method, and CADD (Coupled Atomistic and Discrete Dislocation) method. Rudd and 

Broughton (Rudd and Broughton 2000) provide an overview of coupled multiscale 

methods for generating accurate description of materials spanning electronic to 

macroscopic length scales. The authors review methods developed for seamless coupling 

between finite element models, molecular dynamics models, and semi-empirical tight 

binding, where models at different scales are run concurrently. The second approach – 

CGMD, which is a generalization of finite elements that pass smoothly from higher 

scales to molecular dynamics, as the mesh size is reduced to atomic spacing. All these 

methods developed in the multiscale materials research community are focused on using 

different models for different material regions and developing a hybrid coupled model. 

Once the issues of interfacing between the different regions are resolved, the overall 

hybrid multiscale model is computationally efficient because it uses the right tool for the 

right part of the system (Rudd and Broughton 2000). 

Since all the methods discussed in this section are developed for specific applications, 

it is clear that a common (domain independent) mathematical framework for multiscale 

modeling is required to bridge the gap between heterogeneous models and information 

generated by them (Weinan, Engquist et al. 2003). Heterogeneous Multiscale Modeling 

(HMM) framework is an example of effort in that direction. The HMM framework 

consists of two main components – the first being overall macroscopic scheme and the 

second is to estimate the missing macroscopic data needed for the implementation of 

macroscopic scheme by solving the microscopic model locally. 

Since multiscale modeling makes is possible to efficiently predict the behavior of 

systems at multiple scales; these multiscale models can be used for designing systems at 
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multiple scales. For example, as shown in Figure 1-1, the product is designed at the 

overall system level and individual components, through nanoscale interactions and 

atomic level chemistry. The advantages of designing products at multiple scales include 

increased design freedom, which enables designers to achieve performance that was not 

possible before. In contrast to multiscale modeling, the primary challenge faced by the 

simulation-based design community is to effectively and efficiently utilize information 

generated by wide range of models that predict system behavior at different scales for 

efficient decision making. We address this challenge in Section 1.1.4. 

1.1.4 Multiscale Design – The Need for Efficient Decision Making 
Multiscale design refers to the engineering field which necessitates accounting for all 

aspects of systems from lower scale materials to larger scale systems throughout the 

product lifecycle in order to make risk informed design decisions at all scales. The 

primary design challenge due to multiscale nature of the problem is interactions between 

scales, which necessitates designers to appropriately account for coupling between scales 

that affect the ultimate behavior of the complete system. In this section, we discuss the 

challenges associated with designing multiscale systems.  

The objective in designing is to utilize information generated by multiscale models in 

a goal-oriented manner to satisfy the requirements. Current methods in simulation-based 

design do not encompass the full set of performance criteria to produce better designs 

considering variables from all scales – material microstructure through overall system 

(SBES Workshop Report). Design of multiscale systems is characterized by the 

challenges of multiscale modeling and additional challenges associated with design 

exploration at different scales. The manner in which design activities are carried out, 
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reflect a problem solving emphasis rather than information gathering emphasis. The 

overall objective in designing is to enable the design and manufacturing of increasingly 

complex products at lower cost and in less time. In order to perform multiscale design, 

the ability to develop multiscale models is a pre-requisite. Multiscale design poses 

additional challenges due to the need for design synthesis and associated decision-

making. In contrast to multiscale modeling, where the tradeoff is between simulation time 

and accuracy, the tradeoff in multiscale design is between the satisfaction of design 

objectives and the computational time and cost for design. From the design problem 

solving perspective, the challenges in multiscale design are highlighted in Table 1-2 and 

discussed next. 

Table 1-2 – Design specific challenges in multiscale systems 

1. Increased number of design variables and coupling 

2. Configuration of complex design processes 

3. Decision-making under uncertainty 

4. Evolving simulation models and requirements 

5. Design exploration techniques 

6. Distributed decision makers 

 

1. Increased number of design variables and coupling: Couplings between multiscale 

models induce complexity in the associated design processes, which is further 

increased if the design is multi-functional. Multiscale, multi-functional design 

processes involve different domain experts with distributed simulation models. All 

these factors further complicate the design processes. In order to reduce the 

complexity of design processes, it is important that only the couplings that are 
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most important for decision making be considered in the design process. Hence, 

designers are faced with decisions related to the product but also the decisions 

related to design processes. These decisions constitute the meta-design and are 

called meta-level decisions 3 . The meta-level decisions are concerned with the 

tradeoff between the complexity of design processes, and the satisfaction of design 

objectives.  

2. Comfiguration of complex design processes: It is clear that the processes used to 

design the multiscale systems have a major impact on the computational costs and 

design efficiency. Appropriately designed design processes can lead to better 

design solutions faster. Hence in multiscale design, there is a need for careful 

consideration of the design process. The design of design processes involves 

decisions at three levels – a) architecture level, where the precedence relationships 

between decisions and tasks are determined, b) individual decision level, where the 

simulation models used to generate information for making design decisions are 

selected, and c) at the individual model level, where the parameters, 

approximations, etc. associated with the simulation model are decided upon.  

3. Decision-making under uncertainty: Uncertainty in design of multiscale systems 

arises from three sources – a) inherent randomness in the system, b) lack of 

knowledge about the system, and c) the error introduced in the models due to 

simplification of simulation models and design processes. Effective management 

of uncertainty involves making decisions robust to uncertainty in the simulation 

models and mitigating uncertainty through model refinement. Proper accounting of 

uncertainty is especially important in multiscale design because of the propagation 
                                                 
3 Designing design processes will be used synonymously with meta-design throughout this dissertation 
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of uncertainty across different models and scales. Design methods for robust 

decision making under model uncertainty and propagated uncertainty are required. 

4. Evolving simulation models and requirements: Further challenges inherent in 

multiscale design of systems include: a) improved fidelity of simulation models 

with time because of the evolving system knowledge, and b) the design 

requirements evolve with time. The objective, hence, is to utilize the models 

available at various fidelity levels and develop a preliminary design, which can be 

refined when additional knowledge about the models or the requirements is 

available. “The hierarchical nature of multiscale models offers the promise of 

obtaining computational improvement, especially in early stages of the 

optimization (design) process, by considering only as much model resolution as 

necessary to obtain sufficient progress at a given iteration” (SBES Workshop 

Report). Hence, it is important to focus the refinement effort on aspects that have 

the most impact on the final satisfaction of design requirements. Hence, design 

methods for multiscale systems should be open to refinement of simulation 

models. 

5. Design exploration techniques: Multiscale problems are generally characterized by 

an increase in number of parameters that can be modified to achieve design goals. 

This increases the efforts for design exploration using conventional techniques. 

This calls for the development of faster and more efficient design exploration 

techniques. These include design of computer experiments, approximation 

techniques, etc. Further, multiscale design problems are characterized by long 

simulation runtime and large degrees of freedom. Using such models in the design 
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exploration loops is computationally prohibitive. Hence, efficient design of 

experiments and meta-modeling techniques are required to create simplified 

mathematical relationships between the design variables and responses that can be 

used for design space exploration. 

6. Distributed decision makers: Geographical distribution of designers adds to the 

complexity of design processes by increasing the bandwidth of information 

transfer and associated design time. The distribution of design expertise and 

functional knowledge dictates the way in which design problem must be 

partitioned. In such cases, the design processes are defined not only based on the 

physics based coupling between parameters but also on designers’ expertise and 

how effectively they can exchange information. This necessitates development of 

design methods that account for such organizational and geographical 

considerations. 

All these design related challenges can be summed up into the following requirement 

– “domain independent framework for simulation-based design of complex, 

multiscale, multifunctional systems”, which is identified as the primary requirement to 

be addressed in this dissertation. Due to the potential breadth of multiscale modeling and 

design, it is important to narrow the scope of challenges to be addressed in the 

dissertation. We believe that one of the main aspects of such a framework is 

consideration of decisions related to both products and design processes. Hence, in this 

dissertation, we focus only on the design of design processes (meta-design) for the 

simulation-based design of complex multiscale, multifunctional systems. In the following 
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Section 1.1.5, we define our perspective and boundaries within which the requirement is 

addressed in this dissertation. 

1.1.5 Multiscale Design Focus in this Dissertation – Designing 
Design Processes 

The primary requirement of domain independent framework for simulation-based 

design of multiscale systems gives rise to the following primary research question for this 

dissertation: 

Primary Research Question – How should simulation-based design of complex 

multiscale, multifunctional systems be carried out? 

This is a very broad question, and can be answered in many different ways. The 

question that comes up is – What is unique about the way this question is answered in 

this dissertation? In this dissertation, we adopt a unique perspective for answering this 

broad question. The primary hypothesis used in this dissertation to answer this question is 

that “simulation-based design of multiscale, multifunctional systems can be carried out 

by decision-based integrated design of products along with their design processes”. 

Notice that the existing Integrated Product and Process Design (IPPD) efforts are also 

focused on the integrated design of products and processes, but the processes in the 

context of IPPD are manufacturing processes rather than design processes. The key 

aspects of this hypothesis include: a) integrated design of products and design processes, 

and b) decision-based design.  

The first key aspect of the primary hypotheses is “integrated design of products and 

design processes”, which represents a shift from the traditional view of design where the 

design processes are first formulated based on the functional decomposition and previous 

experience and the focus is mainly on designing the products. In contrast to that, we 
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advocate systematic design of design processes (meta-design) in conjunction with the 

products because we believe that for complex design scenarios, design processes have 

major impact on the final outcome and the efficiency with designers arrive at the design 

solution. Although elements of designing design processes can be found in different 

efforts, a general framework for performing integrated design of products and design 

processes is lacking in the design literature. The dictionary definitions of a framework 

are: “a fundamental structure that supports something”, “a set of assumptions, concepts, 

values, and practices”, “a basic conceptional structure (as of ideas)”. In this dissertation, 

our goal is to develop a fundamental conceptual structure that supports designers in 

performing integrated design of products and design processes. This fundamental 

structure consists of a set of theoretical constructs, methods, approaches, metrics, and 

tools. Domain and application independence is one of the key characteristics of this 

framework. The objective is to develop this framework based on well established design 

methods. The objective is not to develop a fixed set of steps that will solve the problems 

in a particular domain, but a general enough approach that can be extended and 

particularized for domain specific problems. The general approach adopted in this 

dissertation for integrated design of products and design processes is the assumption that 

both multiscale systems and design processes are special types of hierarchical systems. 

Hence, designers can apply concepts from product-design to the design of both a) 

multiscale systems and b) design processes. It is important to note that although these 

concepts are developed and applied in this dissertation for multiscale systems, they are 

valid for any other system. 
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The second key phrase in the primary hypothesis is “decision-based design”, which is 

used as a basis for the development of the design method, and the metrics for making 

meta-level decisions, and modeling design processes. The main aspect of decision-based 

design is that the key role of a designer in a design process is to make decisions. Hence, 

decisions represent the most important activity in a design process. All other activities are 

only for generating or transforming information to support designers’ decision making. 

Developing and executing simulation models represent two such information generating 

activities. Decision-based design is chosen as the underlying construct because of its 

domain independence and the ability to integrate different perspectives into a common 

thread. From this perspective, the design of design processes can be viewed as a network 

of decisions about the design processes. Since these decisions are not about the product 

itself, but they have an impact on the final product, they are referred to as meta-level 

decisions in this dissertation. The meta-level decisions involve tradeoffs between the cost 

of making decisions, satisfaction of design requirements, and the quality of design 

decisions. This is analogous to the tradeoff between accuracy and computation cost in 

multiscale modeling as discussed in Section 1.1.2.  

Further, the framework developed in this dissertation is also geared towards efficient 

and effective utilization of information in the design process. The word ‘efficiency’ in the 

context of decision-based design refers to the speed with which information for decision 

making is generated and provided to decision makers and the word ‘effectiveness’ refers 

to the quality and relevance of this information for supporting decisions about the 

product. Having discussed the primary research question and the primary hypothesis, we 
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now discuss the requirements for embodying the primary hypothesis for design of 

multiscale systems in Section 1.1.6. 

1.1.6 Requirements List for a Framework for Integrated Design of 
Products and Design Processes 

The requirements for a framework for integrated design of products and design 

processes are listed in Table 1-3 and discussed next.  

Table 1-3 – Requirements list for the framework for integrated design of multiscale 
products and design processes 

Requirements list for integrated design of product and design processes 

1. A method for integrated design of products and design processes 

2. Support for decentralized, multifunctional design 

3. Metrics to quantify the performance of different design process alternatives 

4. Support simplification of complex design processes without affecting the 

performance of the product 

5. Support evolving simulation models 

6. Support design process exploration, and reusability of existing design process, 

product and decision related information and knowledge 

 

Meta-design involves making various decisions about the design processes such as 

configuration of tasks for enhancing concurrency, selecting the manner in which 

individual design tasks should be carried out, and process parameters associated with 

each design task. Current popular design methods such as Pahl and Beitz (Pahl and Beitz 

1996) or the Systems Engineering Vee (Buede 2000) do not provide systematic means for 

making these meta-level decisions. Hence, the first requirement for a multiscale design 
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framework is to develop a method for integrated design of products and design 

processes. Decentralization of domain experts and decision makers is an important 

charateristic of multiscale, multifunctional design problems. Such decentralization 

imposes additional requirements for collaborative decision-making with limited 

bandwidths for information exchange. Hence, the second requirement for the framework 

is to support decentralized, multifunctional design. 

As discussed in the Section 1.1.4, multiscale design scenarios are characterized with 

important meta-level decisions that can possibly simplify the complex design processes 

and associated computational costs. Hence, from a simulation-based multiscale design 

standpoint, there is a need for adaptive decision making about the design process that 

includes considerations such as: 

a) the appropriate scales that should be considered,  

b) the level of detail in models considered at each scale,  

c) interactions that need to be modeled between models,  

d) degree of parallelization, 

e) interactions between decisions that should be modeled, and a finer level,  

f) what level of idealizations (such as numerical discretizations) is appropriate, etc. 

Different decisions result in the selection of different design process alternatives. In order 

to make design process related decisions (or to select appropriate design process 

alternative), there is a need for metrics to quantify the performance of different design 

process alternatives. This is the third requirement for the framework for integrated design 

of products and design processes. 
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One of the important types of decisions about design processes is related to 

determining the appropriate level of detail to be considered in the design process such 

that the design objectives are satisfied with as little simulation effort as possible. In other 

words, the design framework should support simplification of complex design processes 

while satisfying the desired performance requirements. This is the forth requirement for 

the design framework. The fifth requirement for the design framework is related to the 

fact that simulation models are not static – they evolve with time because of the increase 

in knowledge about the system behavior along the design process, and rapidly increasing 

ability to model complex phenomena. The design framework should be capable of 

supporting evolving simulation models. In design, it is also important to determine the 

right level of refinement of simulation models, beyond which, gathering additional 

information is not advantageous from the decision making perspective.  

In addition to the development of design methods incorporating meta-design and 

design, there is a need to implement these methods in a computational framework to 

support meta-design. All the current design frameworks are focused on the design phase 

only. Currently available design frameworks do not address the configuration of design 

processes. Hence, the design framework should also include computational tools to 

support design process exploration, which is the sixth requirement for the design 

framework. The computational tools should also support reusability of information and 

knowledge gained in previous design scenarios to new design problems. The reusability 

should not be limited only to product related information. It should extend to the 

information about products and design decisions. This is the sixth requirement for design 

framework for a framework supporting integrated design of products and design 
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processes. The requirements for the framework for integrated design of products and 

design processes are summarized in Table 1-3. 

These six requirements are categorized into three general research areas: a) methods 

for integrated design of products and design processes, b) metrics for analyzing design 

processes, and c) modeling design processes to support meta-design. In order to address 

the requirements discussed in this section, a design framework is proposed in this 

dissertation. This design framework is composed of three building blocks as shown in 

Figure 1-7 including a) a robust multiscale design exploration method, b) value of 

information based metrics for meta-level decisions, and c) an information modeling 

strategy. 
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Figure 1-7 – A summary of research questions, design foundations, research 

contributions, and validation examples used to validate the contributions in this 
dissertation 

The design framework is based on existing design foundations such as decision-based 

design, Decision Support Problem (DSP) Technique, systems engineering, robust design, 
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and information economics. The details of these foundations are discussed in Chapter 2. 

The three research areas are associated with three research questions that are discussed in 

detail in the following Section 1.2. The hypotheses for answering these research 

questions are introduced and an overview of the research contributions is also provided in 

the following section. 

1.2 Answering the Primary Research Question – Identifying 
Research Questions and Corresponding Hypotheses 

Each of the three research areas identified in the previous section is discussed in 

detail in Sections 1.2.1, 1.2.2, and 1.2.3. From these research areas, three research 

questions and associated hypotheses are discussed. A mapping of the five requirements 

for the framework to the three research questions is provided in Table 1-4. The 

hypotheses used to answer the three research questions and associated contributions from 

the dissertation are highlighted in Table 1-5 and discussed in the following. 

Table 1-4  - Mapping the framework requirements with research questions 
Requirements for a framework for integrated 

design of products and design processes 
Research Questions for this dissertation 

1. A method for integrated design of products and 
design processes 

2. Support for decentralized, multifunctional design 

RQ 1. How can simulation-based multiscale design 
processes be designed in association with products? 

 

3. Metrics to quantify the performance of different 
design process alternatives 
4. Support simplification of complex design 
processes without affecting the performance of the 
product 

5. Support evolving simulation models 

RQ 2. How should multiscale design processes be 
systematically simplified and models refined in a 
targeted manner to support quick design decision 
making without compromising their quality? 

 

6. Support design process exploration, and 
reusability of existing design process, product and 
decision related information and knowledge 

RQ 3. How should simulation-based design 
processes be modeled in a systematic manner and 
represented in a computer interpretable format to 
support design process exploration? 
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Table 1-5 – Mapping the requirements, research questions, and hypotheses 
Requirement Domain independent framework for simulation-based design of complex, 

multiscale, multifunctional systems 
Research Question How should simulation-based design of complex multiscale, multifunctional 

systems be carried out? 
Pr

im
ar

y 

Research 
Hypothesis 

Simulation-based design of multiscale, multifunctional systems can be carried 
out by decision-based integrated design of products and design processes. 

 Requirements Research 
Questions 

Hypotheses Contributions 

I 

1. A method for 
integrated design of 
products and design 
processes 
 
2. Support for 
decentralized, 
multifunctional 
design 

Q1. How can 
simulation-based 
multiscale design 
processes be 
designed in 
association with 
products? 

H1.1. Systematic, step-
wise refinement of 
design processes and the 
associated products 
increases the efficiency 
and effectiveness of 
design decision-making 

 
H1.2. Design processes 
can be designed as 
hierarchical systems 
composed of repeating 
building blocks defined 
in terms of interaction 
patterns  

Robust Multiscale Design 
Exploration Method (RMS-
DEM) 
 
1. A method for multiscale 
design of products and 
associated design processes 
 
2. Application of the design 
method for design of materials  
 
3. Explicit accounting of 
metadesign decisions in the 
context of designers’ 
preferences 

II
 

3. Metrics to 
quantify the 
performance of 
different design 
process alternatives 
 
4. Support 
simplification of 
complex design 
processes without 
affecting the 
performance of the 
product 
 
5. Support evolving 
simulation models 

Q2. How should 
multiscale design 
processes be 
systematically 
simplified and 
models refined in 
a targeted manner 
to support faster 
design decision 
making without 
compromising 
their quality? 

H2.1. Design processes 
can be simplified and 
models refined by 
making tradeoffs 
between value of 
information obtained via 
simulations and need to 
achieve robust, 
satisficing solutions 
 
H2.2. Design processes 
can be simplified using 
decoupling of scales, 
decisions and 
functionalities 
 

Methods and metrics for 
design process simplification 
and model refinement 
 
1. Scale, Decision, and 
Functional decoupling 
 
2. Methods for decomposing 
weak (robustness based) and 
strong (interval based) 
coupling  
 
3. Value of information metric 
rooted in utility theory (value 
theory) 

II
I 

 
6. Support design 
process exploration, 
and reusability of 
existing design 
process, product and 
decision related 
information and 
knowledge 

Q3. How should 
simulation-based 
design processes 
be modeled in a 
systematic 
manner and 
represented in a 
computer 
interpretable 
format to support 
design process 
exploration? 

H3.1. Separation of 
product, process, and 
problem information 
enhances reusability of 
design process 
information across 
different products, 
thereby supporting meta-
design 

3-P information modeling 
approach 
 
1. An approach for modeling 
design information to support 
meta-design 
 
2. Reusable process patterns 
useful for hierarchical 
modeling of processes 
 
3. Preliminary information 
models for Problem, Process, 
and Product 
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1.2.1 Research Area 1: Method for Integrated Design of Products and 
Design Processes 

As discussed in Section 1.1.6, the first requirement is a method for the integrated 

design of products and design processes. Design of products has been the primary focus 

in engineering design research. Design methods such as Pahl and Beitz (Pahl and Beitz 

1996) are based on functional decomposition and hence, the associated design processes 

are primarily dictated by product’s functions. Design of design processes is not explicitly 

addressed in these traditional design methods. Some aspects of designing design 

processes are addressed in two research efforts – a) Decision Support Problem (DSP) 

Technique (Muster and Mistree 1988), and b) Design Structure Matrix (DSM) (Steward 

1981; Eppinger 1991; Eppinger, Whitney et al. 1994; Eppinger and Salminen 2001; 

Browning and Eppinger 2002). Bras, in his dissertation developed a mechanism for 

designing design processes in the form of design of support problems (Bras 1992). The 

research is carried out as an extension of Decision Support Problem (DSP) Technique, 

according to which, design processes can be represented as a network of decisions that 

are associated with support problems. DSP Technique is an embodiment of decision-

based design. Designing design processes in the context of DSP Technique refers to the 

design of support problems. The details of DSP Technique are discussed in Section 2.2. 

Bras developed mathematical models for variant, adaptive, and original design of support 

problems based on the compromise Decision Support Problem (cDSP) (Bras 1992). 

These mathematical constructs formalize the decisions made by designers during the 

meta-design phase. Although DSP Technique is one of the first efforts towards 

formalizing individual design process related decisions, the literature on DSP Technique 

lacks a method for systematically designing both products and design processes. Design 
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Structure Matrix is a construct developed (Warfield 1973; Steward 1981; Eppinger, 

Whitney et al. 1990) to make decisions about general processes including design 

processes. The focus of research in DSM is on modeling processes as networks of tasks 

and representing them in a matrix form. Using the matrix manipulations, the processes 

can be analyzed and designed to maximize concurrency between tasks, minimize 

coupling, reduce the overall time required for execution of the process, etc. The primary 

limitations of DSM for integrated design of products and design processes include a) 

inability to capture complex non-linear relationships between tasks and parameters, b) 

inability to model and analyze the impact of coupling strengths, c) inability to capture the 

impact of uncertainty in design processes, and d) inability to capture designers’ 

preferences. The details of these limitations and the literature on DSM for designing 

design processes are discussed in Section 3.3.2. Further, similar to the limitation of DSP 

Technique, literature in DSM does not provide a method for integrated design of products 

and design processes. The DSM construct supports designers in making individual meta-

design decisions only. Considering the limitations of existing literature related to 

designing design processes, we formulate the first research question as follows: 

Research Question 1: How can simulation-based multiscale design processes be 

designed in association with products? 

 

The obvious strategy for answering this research question is to identify the similarity 

between design processes and products, and to apply the product design methods for 

designing design processes. Consider an extremely simplified design method shown in 

Figure 1-8 that starts with identifying the product requirements and generating the design 
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in three steps – a) generating alternatives that can satisfy the product requirements, b) 

evaluating the alternatives, and c) selecting the best alternative. If this simple method is 

applied to designing design processes, then the designers start with a set of process 

requirements, generate design process alternatives, and evaluate the process alternatives. 

The evaluation of design process alternatives is carried out based on metrics such as cost 

of executing the process, time for execution, and the final design outcome measured in 

terms of product performance. Based on the comparison of design process alternatives in 

terms of these metrics, the best design process alternative is selected. The selected design 

process is then executed to design the product.  
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Figure 1-8 – Designing design processes in a manner similar to designing products 

Although this method looks simple for designing design processes, there is one major 

barrier that prevents the usability of this method for designing design processes. The 

barrier is that the design process alternatives cannot be evaluated until they are executed. 
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Hence, in order to evaluate the design process alternatives, all design process options 

must be executed and the outcome of each process compared. If all the design process 

options need to be executed before one can be selected, the purpose of designing design 

processes itself defeated. The method for designing design processes should be such that 

it does not require execution of all possible options. Another barrier for designing design 

processes is that the design processes generally cannot be designed entirely before they 

are executed in the design phase. This is because the design of design processes generates 

information about the layout of tasks and decisions that is used in the design phase for 

making decisions about the products. These product-related decisions then generate 

information about the design processes, which can then be used for determining further 

details of design processes. The process of designing design processes and products must 

be carried out in a cyclic fashion until all the details of both are finalized.  

In order to address these challenges, the proposed strategy in this dissertation is to 

start with preliminary design processes and then refine them systematically in association 

with the refinement of products. The strategy is shown in Figure 1-9, where the designers 

start with requirements for design processes and generate process alternatives. These 

design process alternatives are arranged in the increasing order of fidelity. It is assumed 

that the design processes with higher fidelity are more complex and take more cost and 

time for execution. Instead of executing all the design process alternatives and then 

comparing them, the designers start with a simple process alternative and execute it. The 

outcome of that process alternative is used to determine how much benefit can possibly 

be achieved using a more complex design process. If the potential benefit is significant as 



   

 45

compared to the additional cost, the designers use a design process of higher fidelity and 

execute it. If the potential benefit is insignificant, then the design solution is accepted. 
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Figure 1-9 – Systematic refinement of design processes 

This strategy is embodied in the first hypothesis (H1.1) for answering Research 

Question 1 - preliminary design processes should be developed first, that then be 

systematically refined in a stepwise fashion. In association with the design processes, the 

products are also refined from preliminary design to the detailed design. The word 

‘systematic’ in the hypothesis refers to the fact that design processes are designed based 

on rigorous consideration of impact of design processes on the product related decisions. 

The word ‘stepwise’ refers to the fact that the process is carried out in a cyclic fashion 

with alternating decisions about products and processes. During the process of refinement 

of products and design processes, the design space is systematically reduced and the 

knowledge about the system progressively increases, which in turn increases the 

effectiveness of decision making. Since we are using simpler design processes in the 



   

 46

earlier stages when the design space is large, (instead of using the most complicated 

design process for making decisions) the efficiency of decision making is also better. 

The second hypothesis (H1.2) is based on exploiting the similarity between products 

and design processes for performing design of design processes. The starting premise is 

that if processes are considered as systems, their design should be similar to design of 

products. The design of design processes is similar to design of products if the processes 

are also viewed as systems. This notion of processes as systems is emphasized by Bras in 

his dissertation (Bras 1992) as follows “with respect to designing a system, the definitions 

of system are applicable to both the object being designed and the design process itself. 

While designing a particular design process, this design process becomes the product of 

the high level design process”. Hence, the basic activities in design of products – 

analysis, synthesis, and evaluation should also be applicable to design of design 

processes. Analysis, in the context of product design refers to coming up with the 

behavior of the product, given the product’s structure. Analogously, in the context of 

process design, analysis refers to determining how a given process architecture performs. 

The performance of processes can be measured in terms of simple metrics such as 

(computational) cost of execution, time required, its effectiveness, etc. Synthesis, in the 

context of product design, refers to generating the structure of design, given the behavior 

specifications. As relevant to process design, synthesis refers to generating process 

alternatives for performing product design. Similarly, evaluation refers to comparing the 

achieved behavior (of products and processes) against the desired behavior. Analysis of 

design processes is the focus of Research Area 2, and is discussed in Section 1.2.2. In this 

section, the focus is on synthesis. 
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Taking the analogy of products and design processes a step further, the concepts from 

modular product design are applied to design processes. The second hypothesis in 

support of answering the first question is that design processes can be designed as 

hierarchical systems composed of repeating (reusable) building blocks. The 

‘repeatability’ refers to the assumption that any design process (any domain, and at any 

level of abstraction) can be defined in terms of a few building blocks that repeat 

themselves in any design process. Although these building blocks can be defined in many 

different ways, the focus in this dissertation is on building blocks defined in terms of 

different kinds of interactions between process elements. Interactions are used as the 

basis for defining process building blocks because we believe that by systematically 

considering the interactions, complex design processes can be simplified and design 

efficiency can be increased substantially. In other words, the repeatble interaction 

patterns are used to generate different design process alternatives. 

 The second hypothesis (H1.2) is inspired from the following question – “If products 

can be designed as modular systems, why can’t we design the design processes in a 

similar way?” From a modular systems perspective, synthesis refers to the putting 

together components of a subsystem in order to fulfill the desired function. From meta-

design standpoint, synthesis refers to putting together sub-processes together to develop a 

complete design process that satisfies the desired purpose (i.e., the design of artifact). 

This hypothesis is also related to the efficient decision making because the design effort 

can be reduced reduced if the process is synthesized by reusing process elements that are 

captured in other design scenarios.  
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The two hypotheses for answering the first research questions are summarized as 

follows: 

H1.1. Systematic, stepwise refinement of design processes and the associated 

products increases the efficiency and effectiveness of design decision making 

H1.2. Design processes can be designed as hierarchical systems composed of 

repeating building blocks defined in terms of interaction patterns 

1.2.2 Research Area 2: Metrics for Analyzing Design Processes 
From the perspective of the analysis-synthesis-evaluation paradigm applied to the 

design of design processes, one of the key requirements is to analyze the performance of 

different design processes such that better design processes can be differentiated from 

poor design processes. Note that the betterness of a design process refers to the 

effectiveness and efficiency of design processes. Hence, there is a need to develop 

quantitative metrics for analyzing design processes. These metrics help in evaluating 

different design process alternatives, thereby enabling design processes related decision-

making. These metrics also help in assessing the performance of design processes with 

regard to design process related objectives. 

Design processes can be analyzed and designed using various considerations 

depending on the designers’ needs such as cost, and execution time, performance, etc. 

Although these are the preferable metrics for analyzing design processes because they 

directly relate to designers’ preferences, the problem with these direct metrics is that the 

design process needs to be executed to evaluate them. Other indirect metrics for 

analyzing the performance of deign processes include concurrency, complexity, 

uncertainty, stability, convergence, robustness, modularity, and reconfigurability. These 
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metrics are related to the direct metrics such as cost and time. For example, concurrency 

in design processes is directly proportional to the number of tasks that can be performed 

in parallel, and inversely proportional to the tasks that can be carried out in series. If the 

concurrency metric for a design process is increased, the time required for execution of 

the overall process is reduced. Hence, the objective in a design process can be to 

maximize the number of tasks that can be performed in parallel. Various (manufacturing) 

process design efforts (Kusiak, Larson et al. 1994) are based on concurrency as the 

metric. Complexity of design processes is proportional to the number and strength of 

interactions and dependencies between tasks. Greater complexity of design processes 

results in greater execution time due to greater coupling between tasks. Robustness of 

design processes refers to the ability to use the same design processes even when the 

design requirements change. If the design processes need to be reconfigured entirely 

differently on a small change in requirements, the process is not robust. Metrics for 

robustness of products exist (Taguchi 1986) but the metrics for robustness of design 

processes are not available in the literature. A modular process consists of subprocesses 

that can be reused over and over again. Modular design processes are preferred over non-

modular processes because modularity reduces the effort involved in design them. 

Performance of design processes can also be measured in terms of the manner in which 

processes reduce the design freedom with design decisions. Design processes that help 

designers in keeping available design options open as long as possible are considered 

better than the design processes that result in faster reduction in design options. This is 

because if the options are open for a longer time, the adaptability to changes in 

environment is high.  
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Although these are different metrics for measuring the performance (behavior) of 

design processes, in this dissertation, the focus is only on metrics based on information 

economics for analyzing design processes. This is because our focus is on the analysis of 

design processes from the perspective of value of information generated by simulation 

models for decision-making in the design of multiscale systems. Due to the potentially 

broad scope of the research area of analyzing design processes, the scope of the second 

research question is limited to analyzing different process options that are simplifications 

or refinements of each other. Specifically, we compare the performance of different 

design processes where the main difference between the processes is: a) consideration of 

information flows between tasks, and b) different fidelities of simulation models used for 

decision making.  

Ability to compare different process options based on these two aspects, using 

metrics, allows designers to determine the appropriate level of simplification of design 

processes (in terms of couplings to be considered) and the appropriate level of simulation 

models for decision making. Note that by considering all the couplings between design 

activities, and by choosing the most accurate (which is generally the most complicated) 

simulation model, the effectiveness of decision making is the maximum but the 

efficiency is low. By selecting simpler design process options and simulation models, the 

effectiveness of decision-making reduces. Hence there is a design process (meta-design) 

level tradeoff between the complexity of design processes and the quality of decisions 

made. In order to support designers to make design process decisions in a systematic 

manner under this tradeoff, the second research question is framed as follows: 
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Research Question 2: How should multiscale design processes be systematically 

simplified and models refined in a targeted manner to support faster design decision 

making without compromising the decision quality? 

 

The answer to this research question consists of two parts – development of metrics 

for value of information and using the metric for simplification of design processes and 

refinement of simulation models. The premise behind using this metric is that 

simplification of design processes ‘hides’ information from the designer that may be 

useful for increasing the quality of designer’s decision making capability. If the impact of 

this ‘hidden’ information on designer’s decision is not significant, then the simplification 

of design processes is appropriate, otherwise not.  Similarly, the refinement of simulation 

model adds information about the system that may be useful for designer’s decision 

making. If the impact of this additional information has a significant impact on designer’s 

decision making capability, then the model should be refined, otherwise not. This notion 

of addition/hiding of information and the quantification of ‘significant impact’ is 

embodied in the metric for value of information. 

The simplification of design processes as addressed in this dissertation builds on the 

first research question (RQ1) and the hypothesis H1.2, according to which, design 

processes can be modeled using reusable building blocks defined in terms of interaction 

patterns. Hence, the use of metric in this dissertation is limited to the simplification of 

interaction patterns. The refinement of simulation models is also limited to parametric 

refinement. Hence, the hypotheses used to support the answer to this research question 

are formulated as follows:  
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H2.1. Design processes can be simplified and models refined by making tradeoffs 

between value of information obtained via simulations and need to achieve robust, 

satisficing solutions 

H2.2. Design processes can be simplified using decoupling of scales, decisions and 

functionalities 

 

1.2.3 Research Area 3: Modeling Design Processes to Support Meta-
Design 

The third research question is related to providing computer support for performing 

integrated design of products and design processes. In spite of the fundamental 

importance of meta-design in expending resources, it is not effectively supported by 

current Computer Aided Engineering (CAE) and Product Lifecycle Management (PLM) 

frameworks. The question, naturally arising from this observation is: “How should CAE 

and PLM frameworks be developed/modified to support meta-design?” Although this 

query can be posed for most design frameworks, we primarily focus on simulation-based 

design frameworks such as FIPER (Engenious Inc. 2004), ModelCenter (Phoenix 

Integration Inc. 2004), iSIGHT (Engineous Inc. 2004), etc. Such CAE and PLM 

frameworks adopt a tool-centric view of design processes, according to which, a design 

process is a network comprised of software tools, employed for processing information. 

The adoption of a tool centric perspective in developing design frameworks, thus 

invariably focuses the underlying effort on achieving interoperability between 1) different 

tools that perform similar function (such as different CAD applications), 2) tools 

providing different functionality (structural analysis, crash, vibration, etc.), and 3) 

applications pertaining to different domains. Various standards such as STEP, XML, and 
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UML are being developed to achieve interoperability between such tools. Recently, Peak 

and co-authors (Peak, Lubell et al. 2004) proposed a model-centric perspective to support 

the further development of these frameworks.  Specifically, a product information model 

comprises a central core, modified and populated using all relevant tools. Such a model-

centric view constitutes a significant improvement over the tool-centric view, commonly 

espoused, because information is no longer tied solely to the particular tools used for its 

creation or modification. A model-centric perspective is important for realizing the 

seamless integration of information models associated with different aspects of product 

design, and useful for guiding the development of CAE and PLM frameworks to support 

fine grained interoperability, as well as, the development of a collective product model. 

However, the assertion in this dissertation is that neither the tool-centric nor model-

centric perspectives (alone or in concert) are adequate for effectively supporting meta-

design. These two perspectives to modeling design information do not capture the fact 

that both design processes and products are designed in an integrated fashion. Hence, the 

research question for this dissertation is: 

Research Question 3: How should simulation-based design processes be modeled in a 

systematic manner and represented in a computer interpretable format to support meta-

design? 

The first fundamental obstacle that prevents the design of design processes in current 

frameworks is the integrated manner in which information about the products and design 

processes is captured. The processes are actually defined ‘in terms of the product 

information’. Hence, for a given design scenario, it is difficult to explore different design 

processes. The hypothesis in this research is that designers can overcome this obstacle by 
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separating the process specific information from product specific information in a 

modular fashion that allows rapid utilization of different design processes for a product 

design scenario. 

Another fundamental obstacle in furnishing the capability for meta-design is the 

inability of current tools to capture the problem solving aspect of design. In fact, such 

tools are primarily used to capture procedural aspects.  Put another way, current tools do 

not capture a) what the design problem is, b) how the designer partitions the problem, 

and c) how different problems are related. Instead, current tools only capture the specific 

series of steps a designer adopts when solving the problem at hand in a quasi 

documentary fashion. Design problem changes thus cannot be translated to the procedural 

information captured within the individual tools.  The word “problem” has been used in 

many different ways in the engineering design community. In this dissertation, we define 

a problem as “either an obstacle to be overcome or a question to be answered”. This 

definition is taken from Ref. (Muster and Mistree 1988). This definition is different from 

the text book type problem solving, where the problem is completely defined and can be 

solved using a predefined set of steps resulting in a unique solution (see ref. (Hazelrigg 

1998)). In real design scenarios, designers are faced with problems where complete 

information for solving the problem is not available and the closed form solution is not 

available. Without capturing the problem solving aspect of design in the CAE and PLM 

frameworks, it is difficult to support meta-design.  

Combining the two aspects of simulation-based design frameworks discussed in this 

section – separation of product and process specific information, and explicit capturing of 
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problem related information, the hypothesis for answering the third research question is 

summarized as follows:  

H3.1. Separation of product, process, and problem related information enhances 

reusability of design process information across different products, thereby supporting 

meta-design 

A summary of the primary requirement, primary research question the three research 

questions and associated hypotheses for this dissertation is provided in Table 1-5. The 

relationship between the motivation, research questions, and hypotheses is shown in 

Figure 1-10. 

1.2.4 Research Contributions 
The requirements for a framework for integrated design of products and design 

processes are presented in Table 1-3. In order to address those six requirements, six 

components of the framework are developed in this dissertation. An overview of these six 

components of the framework and the associated research contributions are illustrated in 

Figure 1-11. In this figure, the motivation of this dissertation – design of multiscale 

systems is shown along with two design examples: energetic-structural materials, and 

datacenter cooling system.  The method for integrated design of products and design 

processes is presented in Chapter 3. The value of information metric is discussed in 

Chapter 4. The use of value of information metrics for refinement of simulation models is 

validated in Chapter 4 and Chapter 9. The use of value of information for simplification 

of design processes is validated in Chapter 5 and Chapter 9. The information modeling 

strategy is discussed and demonstrated in Chapter 7 and Chapter 8. This figure is used as 
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a running icon throughout the dissertation to highlight the hypotheses and validation 

addressed in the corresponding chapters.  
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Figure 1-10 – An overview of the research questions and hypothesis 
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Figure 1-11 – Overview of research contributions presented in various chapters in 
the dissertation 

The research contributions associated with each research question are summarized in 

Table 1-5 and are categorized into three headings – 1) robust multiscale design 

exploration method, 2) methods and metrics for design process simplification and model 

refinement, and 3) 3-P information modeling approach. The details of these three 

categories of research contributions are discussed next. 

 
1. Robust Multiscale Design Exploration Method (RMS-DEM): As an answer to the 

first research question, a two phase, six-step method for designing products and 

design processes in an integrated fashion is developed. The method is discussed in 

detail in Chapter 3. The method is based on the principles for systems approach 
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for meta-design, robust design, and stepwise refinement of products and design 

processes.  

2. Design Process Refinement and Model Refinement: One of the primary 

contributions from the answer to the second research question is the development 

of a Value of Information based metrics that can be used for making meta-design 

decisions. The metric is used in methods for design process simplification and 

simulation model refinement. Steps for scale decoupling and decision decoupling 

are developed and validated. The details are discussed in Chapter 4 and Chapter 5. 

A method for designing multifunctional systems when the functional aspects of 

the problem are controlled by decentralized teams is developed in Chapter 6. This 

method is based on propagating sets of design space. 

3. 3-P information Modeling Approach: The third set of research contributions is an 

approach for modeling design information to support meta-design. The approach 

is based on modularity of design information and separation of product, problem 

and process related information. Information models for product, problem, and 

process information are developed. A strategy for implementation of these 

concepts on existing design frameworks via separation of declarative and 

procedural information is presented and validated. The details of the approach are 

discussed in Chapter 7 and Chapter 8. 

It is emphasized again that the focus of this dissertation is not on developing domain 

specific multiscale models, where mathematical modeling of physical phenomena is 

important. The focus here is on design aspects. It is assumed that simulation models for 

modeling different physical phenomena at different scales are available. We do not 
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address how different physical phenomena are linked at different scales, but the impact of 

those links on design decisions. 

1.3 Validation Strategy for this Dissertation  
Since the focus in this dissertation is on the development of design methods, 

validation entirely based on logical induction/deduction is not possible. This is because 

development of design methodology is based on a combination of subjective statements 

and mathematical modeling. Pederson and co-authors (Pedersen, Emblemsvag et al. 

2000) developed a systematic framework for validation of design methods, called the 

validation square, which was later refined by Seepersad and co-authors (Seepersad, 

Pedersen et al. 2005). The validation square is based on the relativistic validation, which 

is a semi-formal and conversational process involving a gradual process of building 

confidence in the usefulness of new knowledge with respect to a purpose. The method 

consists of four phases and six steps. The four phases include theoretical structural 

validity (TSV), empirical structural validity (ESV), empirical performance validity 

(EPV), and theoretical performance validity (TPV).  

The phases and steps in the validation square are shown in Figure 1-12. Structural 

validation is a quantitative process consisting of three steps: (1) accepting the individual 

constructs constituting the method, (2) accepting the internal consistency of the way the 

constructs are put together in the method, and (3) accepting the appropriateness of 

example problems used to verify the performance of the method. Steps 1 and 2 constitute 

the theoretical structural validity and are carried out by critical evaluation of literature 

for individual constructs’ validity, and a flow chart based approach for establishing the 

internal consistency of the overall method. Step 3 constitutes the empirical structural 
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validity and is facilitated by documentation of different viewpoints illustrating that the 

example problems are suitable and adequate for quantitative validation. 
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respect to a PURPOSE

USEFULNESS
Method Efficient and/or 

Effective in achieving the 
articulated purpose (s).

Efficiency:
Quantitative Evaluation of 

METHOD

Effectiveness:
Qualitative Evaluation of 

METHOD

Appropriateness of 
Example problems 

used to verify 
METHOD usefulness

Correctness of 
METHOD constructs, 
both Separately and 

Integrated

Performance of Design 
Solutions and Method 

Beyond Example 
Problems

Performance of Design 
Solutions and Method 

with Respect to 
Example Problems

(1) And (2)
THEORETICAL 
STRUCTURAL 

VALIDITY

(6)
THEORETICAL

PERFORMANCE
VALIDITY

(4) and (5)
EMPIRICAL

PERFORMANCE
VALIDITY

(3)
EMPIRICAL

STRUCTURAL
VALIDITY

“a leap of faith”

I I
Input:

Information
Resources

Output:
Design

Solution

 

Figure 1-12 - Validation square (Seepersad, Pedersen et al. 2005) 
Performance validation is a quantitative process consisting of the following three 

steps: (4) accepting that the outcome of the method is useful with respect to the initial 

purpose for some chosen example problems, (5) accepting that the achieved usefulness is 

linked to applying the method, and (6) accepting that the usefulness of the method is 

beyond the example problems. Steps 4 and 5 correspond to the empirical performance 

validation and are carried out by applying the methods to chosen examples and 

comparing the results with and without the use of the developed method. A quantitative 

evaluation is possible in this phase. Finally, Step 6 corresponds to theoretical 



   

 61

performance validation, where arguments are presented to facilitate the leap of faith from 

few chosen examples to a broad set of scenarios. The purpose of the first five steps is to 

present enough evidence to facilitate this leap of faith.  

In this dissertation, we use the validation square method for verification and 

validation of the design framework. Appropriate examples are used throughout this 

dissertation to demonstrate and validate the six components of framework for integrated 

design of products and design processes illustrated in Figure 1-11. An overview of the 

examples chosen to validate the components of the framework is provided in Table 1-6. 

Relevant portions of this table are referred to at the starting of each chapter to highlight 

the component of design framework developed or validated in that chapter.  

Table 1-6 – Components of the framework developed to address the requirements 
and examples used to validate the framework components 
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LCA Design Example 
(Ch 6)

 
Purpose: To validate the 
interval-based focalization 
method 
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Framework 
Requirements 

Components of the 
Framework Developed to 
Address the Requirements 

 
Validation Examples 

3) Metrics to 
quantify the 
performance of 
different design 
process alternatives 

Metric for Performance of 
Design Processes (Ch 4)
Value

Metric for Performance of 
Design Processes (Ch 4)
ValueValue
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R
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R
L
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Pressure Vessel Design 
Example (Ch 4)

 
Purpose: To validate the value-
of-information based metrics 

4) Support 
simplification of 
complex design 
processes without 
affecting the 
performance of the 
product 

Simplification of Design 
Processes (Ch 5, 9)

X1
Y1

X2

Y2

X1 Y1
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X2 Y2
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Y1

X2

Y2

X1
Y1

X2

Y2

X1 Y1
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P6P4 P5

Simplification of Design 
Processes (Ch 5, 9)
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Validation
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~0.6 m~0.6 m

~10’s meters~10’s meters

35mm35mm

Datacenter Design 
Example (Ch 5)

 
Purpose: To validate the use of 
value-of-information based 
metrics for design process 
simplification 

5) Support 
evolving simulation 
models 

Refinement of Simulation 
Models (Ch 4, 9)

Refinement of Simulation 
Models (Ch 4, 9)

Refinement of Simulation 
Models (Ch 4, 9)
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Particle Shock Simulation 
Model Example (Ch 9)

 
Purpose: To validate the use of 
value-of-information based 
metrics for simulation model 
refinement 

6) Support 
design process 
exploration, and 
reusability of 
existing design 
process, product and 
decision related 
information and 
knowledge 

Information Modeling for 
Meta-Design (Ch 7, 8)

Product State 1 Product State 2

Design
Transformation

Declarative Information

Procedural Information

Design Process

Information Modeling for 
Meta-Design (Ch 7, 8)

Product State 1 Product State 2

Design
Transformation

Declarative Information

Procedural Information

Design Process

 

Pressure Vessel, Spring 
Examples (Ch 8)

 
Purpose: To demonstrate the 
approach for supporting meta-
design in computational 
frameworks 
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The framework requirements, components developed to address that requirement, and 

the validation examples and their appropriateness are discussed in the following 

1. A multiscale materials-product design example is used to validate the first 

component of the design framework – method for integrated design of products 

and design processes. This design example is chosen because it represents a 

general multiscale system where physical phenomena can be analyzed at multiple 

scales and both scales and physics are coupled with each other.  

2. The second requirement of the framework is to support decentralized 

multifunctional design, for which, an interval-based method is proposed in 

Chapter 6. The method is validated using a Linear Cellular Alloy (LCA) design 

example. The example is chosen because of its multifunctional nature and is 

characterized by requirements from thermal and structural domains. The problem 

is also of reasonable complexity. 

3. The third requirement is development of a metric for quantifying the performance 

of different design processes. The requirement is addressed in Chapter 4 via a new 

metric based on information economics. The metric is validated using a simple 

pressure vessel design example with a single variable. The example is chosen due 

to its simplicity in demonstrating the capabilities of the metric. 

4. The forth requirement for the design framework is support for simplification of 

design processes, which is addressed in Chapter 5 via development of new 

methods for scale and decision decoupling. These methods are validated using a 

multiscale datacenter design scenario. The problem is chosen because of the 
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availability of models and design variables at different scales that permit scale and 

decision decoupling. 

5. The fifth requirement is related to the support for evolving simulation models, 

which is addressed in Chapter 4 and validated in Chapter 9 using a particle shock 

simulation model. The particle shoch model is used for validating the refinement 

approach because of presence of multiple dimensions of refinement. 

6. The sixth requirement for the design framework is computational support for 

meta-design, which is illustrated in Chapter 7, and validated using pressure vessel 

and spring design examples in Chapter 8.  

A visual overview to aspects of validation square addressed in different chapters is 

provided in Figure 1-13.  

Empirical Performance Validity
Usefulness of the method in examples
• Chapter 4 - Value of Information using 

Spring example

• Chapter 5 - Design Process 
Simplification using Datacenter example

• Chapter 6 - Functional Decoupling using 
LCA design

• Chapter 9 - Integrated Design of 
Products and Design Processes using 
MESM Design

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method
• Chapter 4 - Spring Example

• Chapter 5 - Datacenter Example

• Chapter 6 - Multifunctional LCA design

• Chapter 9 - Multifunctional Energetic and 
Structural Materials - MESM Design

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• Chapter 10 - Arguing the validity of 

framework developed in this dissertation 
beyond the examples used

Theoretical Structural Validity
Validity of the constructs of the method
• Chapter 2 - Theoretical Foundations

• Chapter 3  - Applicability of constructs 
used in RMS-DEM method

• Chapter 4  - Literature review on Value of 
Information

• Chapter 6 - Literature review on 
decentralized multifunctional design

• Chapters 7, 8 - Literature review on 
information modeling in design

 
Figure 1-13 – An overview of validation strategy using the Validation Square 

(Pedersen, Emblemsvag et al. 2000) 
The details of validation performed in each chapter are provided at the end of various 

chapters where examples are discussed (see Figure 4-30, Figure 5-34, Figure 6-15, and 
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Figure 9-48). Each of the hypotheses used to support the research questions is validated 

in Section 10.2. The overall validation squae for this dissertation is divided into five sub-

squares for the five hypotheses. These validation sub-squares are labeled VSQ 1.1, VSQ 

1.2, VSQ 2.1, VSQ 2.2, and VSQ 3.1; and are presented in Figure 10-2, Figure 10-3, 

Figure 10-4, Figure 10-5, and Figure 10-6. The relationship of overall validation strategy 

for the dissertation and the validation sub-squares is shown in Figure 1-10. Sectionwise 

details of the validation strategy for this dissertation are provided in Table 1-7.   

An overview of the dissertation is provided in Figure 1-14 and discussed next. 

In Chapter 1, the context and scope of this research are presented. The challenges 

associated with modeling and designing multiscale systems are presented. These 

challenges provide the motivation and frame of reference for designing design processes 

in conjunction with the products. The research questions and associated hypotheses are 

discussed. The expected contributions are summarized, and a validation strategy for the 

dissertation is established. 

In Chapter 2, the theoretical foundations for designing simulation-based design 

processes are discussed. These foundations include existing design constructs such as 

decision-based design, meta-design and Decision Support Problem Technique, robust 

design, utility theory, compromise Decision Support Problem, information economics, 

interval arithmetic, and information modeling. Relevant literature for each of these areas 

is referenced, discussed, and critically evaluated to show the appropriateness of use of 

these constructs for the design framework developed in the dissertation. The literature 

review in Chapter 2 is used to identify availability, strengths, and limitations of these 
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constructs in the context of integrated design of products and design processes, and 

becomes an essential component of theoretical structural validation. 
 

Table 1-7 – Validation strategy for this dissertation 
Theoretical Structural Validation 

• Critical review of the literature foundational to complex multiscale systems 
design and designing design processes. Topics include multiscale modeling, 
DSP Technique, multidisciplinary analysis and optimization 

• Discussion of advantages and limitations of available approaches and 
identifying research opportunities 

Sections 2.2, 2.3, 
2.4, 2.5 
 
 

• Critical review of literature related to Design Structure Method (DSM) for 
designing design processes 

Sections 3.3.1, 
3.3.2 

• Critical review of literature on value of information metric Section 4.2 

• Literature review on decentralized multifunctional design Sections 6.2, 6.3 
• Critical review of literature on modeling design processes Section 2.6 

 
 

• Presentation of the design method for integrated design of products and design 
processes. Presentation of consistency and the appropriateness of constructs in 
the design method 

Section 3.5 

Empirical Structural Validation 

• Discuss the appropriateness of structure design problem to demonstrate the use 
of design method 

Section 3.4 

• Discuss the appropriateness of pressure vessel design problem to show the use 
of value of information metric 

Section 4.5 

• Discuss the appropriateness of multiscale datacenter cooling system design 
example for design process simplification through decoupling 

Section 5.5 

• Discuss the appropriateness of Linear Cellular Alloy design example for 
decentralized multifunctional design 

Section 6.5 

 
 
 

• Discuss the appropriateness of multiscale materials design example for 
validating the design method 

Section 9.7 

Empirical Performance Validation 

Use the examples to demonstrate the utility of design framework by answering the 
following questions: 

• Does the method for integrated design of products and design processes 
improve efficiency and effectiveness of utilization of information? 

• Is it useful to define design processes in terms of reusable interaction patterns? 
• Is the value of information metric suitable for making meta-level decisions 

such as determining the right level of a) simplification of design processes, and 
b) refinement of simulation models? 

• Is value of information guided decoupling of scales and decisions helpful in 
increasing the efficiency of decision making without affecting the designers’ 
decision making capability 

• Is the method proposed for decentralized decision making more effective than 
traditional methods? 

• Is the information modeling strategy involving separation of product, process 
and problem related information useful for information reuse? 

Sections 3.5, 9.7 
 
Section 3.5.2 
 
Section 4.5.3 
 
Section 9.7 
 
Section 5.5 
 
Section 6.5 
 
 
Section 8.4 

Demonstrate that the observed usefulness is linked to the constructs developed in this 
dissertation. 

Chapters 4, 5, 6, 9 

 
 
 

Verify the claims using numerical results obtained from the example scenarios Chapters 4, 5, 6, 9 

Theoretical Performance Validation 

 
 

Build confidence in the generality and usefulness of the approach beyond the specific 
example problems. Argue that the approach is useful for the example problems and that 
the example problems are representative of general problems 

Section 10.2.4 
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In Chapter 3, the details of the steps in the proposed design method are discussed. 

The key elements of the design method are discussed from the perspective of embodying 

Hypotheses H1.1 and H1.2. Steps in the design method are illustrated using a structural 

design problem. Verification of internal consistency of the method is emphasized in this 

chapter for theoretical structural validation. Advantages and limitations of the method are 

discussed in the context of simulation-based design of products and design processes. 

In Chapter 4, an information economics based metric for determining the value of 

information is developed for quantifying the impact of design process and comparing 

different process options. This metric is used in two steps in the design method. 

Theoretical structural validation of the metric developed in that chapter is performed by a 

critical evaluation of literature and identifying the need for a new metric. Empirical 

structural and empirical performance validity of the metric is carried out in that chapter 

by showing the appropriateness of pressure vessel design example and showing that the 

quantitative results from the example demonstrate the usefulness of the metric. 

In Chapter 5, a method for using value of information metric in design process 

simplification is developed and validated. The method embodies hypotheses H2.1 and 

H2.2. The focus of simplification in the dissertation is limited model and decision 

decoupling. The method is validated using a datacenter cooling system design example. 

Empirical structural is performed by showing that a datacenter cooling system represents 

a multiscale system with different models for predicting the behavior at different scales. 

Empirical performance validity of the method for simplification is carried out by showing 

that the results from the datacenter design example are inline with the claims in the 

design method.  
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In Chapter 6, functional decoupling of multifunctional design problems is addressed. 

A method for decoupling weakly coupled systems using value of information is 

discussed. In addition to that, a method for design of multifunctional systems in a 

decentralized environment is also presented. The method is based on passing ranged sets 

of specifications between designers in-charge of different functional requirements in a 

cyclic manner. The method is validated using a Linear Cellular Alloy design scenario. 

Both empirical structural and empirical performance validation are performed in that 

chapter.  

In Chapter 7, an information modeling strategy for modeling design processes to 

support the integrated design of products and design processes is presented. The strategy 

is based on separating product, problem, and process related information. The strategy is 

an embodiment of hypothesis H3.1. The validation focus in that chapter is on theoretical 

structural validation. Existing literature on design process modeling is critically evaluated 

and the requirements for a new design information modeling strategy are presented.  

In Chapter 8, an implementation of the information modeling strategy presented in 

Chapter 7 is provided. The chapter serves to validate the constructs for modeling design 

information developed in the dissertation. Empirical structural and empirical performance 

validations are performed using two examples problems – design of pressure vessel and 

design of spring. 

In Chapter 9, the design methods developed in the dissertation are applied to a 

multiscale, multifunctional materials design problem. The problem is to design a material 

with multifunctional energetic and structural properties that can be used in a projectile to 

replace a portion of the structural material. The problem is modeled as an integrated 
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design of materials, products, and design processes. In addition to the validation of design 

methods, the chapter is also crucial from the standpoint of materials design domain. In 

this chapter, we discuss the validation of the proposed design methods and value of 

information metrics. 

Chapter 4: Propose answer to RQ 2 - Simplification
and Refinement - develop value of Information based
metric

Chapter 5: Verify Hypotheses H2.1, H2.2 using
datacenter example

Chapter 6: Develop method for decentralized
multifunctional design. Validate the method using
Linear Cellular Alloy Design

Chapters 7, 8: Propose answer to RQ 3 - Modeling
and Representation of Design Processes. Verify
Hypotheses H3

Chapter 3:  Propose RMS-DEM to answer RQ 1
Embody H1.1, H1.2 in the design method
Illustrate the design method using structure design
example

Chapter 1

Integrated Design of
Products and Design

Processes for Multiscale
Systems

Chapter 2

Design Foundations

Chapter 3

A Method for the Integrated
Design of Products and

Design Processes

Chapter 9

Designing Multiscale
Multifunctional Materials

Relevance to Research
Questions and Hypotheses

Chapter 1: Frame of Reference and Motivation
Introduce RQs, Hypotheses

Chapter 2: Discuss available design
constructs to be used in the dissertation
Identify existing work, specific gaps to be filled.
Theoretical Structural Validation
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Chapter 4

Value of Information - A
Metric for Making Decisions

about Design Processes

Chapter 5

Design Process
Simplification Using Value

of Information Metric

Chapter 6

Functional Decoupling in
Collaborative

Multifunctional Design

Chapter 7

Modeling Design Processes
- A Systems Approach

Chapter 8

Implementation of
Proposed Design

Information Modeling
Approach

Chapter 9: Validate the design methods developed
in the dissertation using multiscale materials design
problem

Chapter 10

Closure

Em
pi

ric
al

Va
lid

ar
io

n

Chapter 10: Summarize and critically evaluate
answers to research questions and the research
contributions. Interpret results in the context of
motivation from Chapter 1.

 

Figure 1-14  - Dissertation overview and roadmap 
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In Chapter 10, the dissertation is summarized and the intellectual contributions are 

critically reviewed. The advantages and limitations of the methods, metrics, and 

information modeling strategy are discussed. For theoretical structural validation, it is 

argued that these constructs are valid beyond the example problems selected for empirical 

validation. Finally, avenues for future research and broader applications of the 

fundamental ideas in this dissertation are discussed. 
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Chapter 2 Foundations for the Framework for 
Integrated Design of Products and Design Processes 

 

In this Chapter, we present the foundational concepts used in the dissertation for the 

framework for integrated design of products and design processes. We start with 

providing a relationship between the designing design process effort in this dissertation 

and other research efforts in the design community. This relationship is shown in Section 

2.1. In the remaining part of the chapter, we present constructs from existing research 

efforts in design that are foundational to the framework for integrated design of products 

and design processes. These include a) decision-based design and a specific instantiation 

- Decision Support Problem Technique, b) robust design, c) utility theory, d) information 

economics, and e) design information modeling. An overview of the aspects of these 

constructs discussed in this chapter and their role throughout the dissertation is presented 

in Table 2-1. A brief discussion of the table follows. 

a)  Decision-based design is the perspective from which the design methods and metrics 

are developed. Decision Support Problem (DSP) Technique is an instantiation of 

decision-based design. Constructs such as Compromise DSP, Selection DSP 

developed as a part of the DSP Technique literature are used in the design method 

developed in this dissertation. Decision-based design and DSP Technique are 

discussed along with its relevance in the dissertation in Section 2.2. Decision based 

design is used in this dissertation as a philosophy on which the design of products and 

design processes is based, which is discussed in Section 3.2. The DSP Technique is 
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used for developing the strategy for design information modeling via a decision 

problem based approach, which is discussed in Section 7.2. 

Table 2-1 – Role of constructs discussed in Chapter 2 throughout the dissertation 

Section # Construct Purpose of Discussion in 
Chapter 2 

Use in the Dissertation 

Section 2.1 Designing Design 
Processes in 

Conjunction with 
Products 

- Overview of existing design 
methodologies (Section 2.1.1) 

 
- Review of literature on design 

methods 
 
- Review of literature on 

designing design processes 
(Sections 2.1.2 and 2.1.3) 

- Theoretical Structural 
Validation for design method 
presented in Section 3.5 

Section 2.2 Decision-Based 
Design and DSP 

Technique 

- Overview of decision-based 
design and specific 
instantiation (DSP Technique) 

 
- Overview of decision-based 

modeling of design processes 

- Philosophy for design and meta-
design (Section 3.2) 

 
- Strategy for modeling design 
processes via separation of 
decision problem, product, and 
process information (Section 
7.2) 

Section 2.3 Robust Design - Overview of robust design 
 
- Literature review on 

utilization of robust design for 
decision making under 
uncertainty 

- Decision making in the presence 
of uncertainty (Section 3.5.4) 

 
- Decision making in the presence 
of process simplification 
(Section 5.2.2) 

Section 2.4 Utility Theory - Overview of utility theory and 
means for modeling 
designers’ preferences 

- Modeling designers’ preferences 
(Sections 4.4, 5.3.2, 5.4.2, and 
9.3) 

 
- Development of Value-Of-
Information metric (Section 4.3) 

Section 2.5 Information 
Economics 

- Overview of information 
economics 

 
- Literature review of available 

metrics for value of 
information 

- Development of Value-Of-
Information metric (Section 4.3) 

Section 2.6 Design Information 
Modeling 

- Overview of available 
information modeling 
strategies 

 
- Literature review on design 

information modeling 
 
- Identification of research gaps 

to support meta-design 

- Establishment of 3-P 
information modeling strategy 
(Section 7.3) 

 
- Development of information 
models for Products, Processes, 
and Decision Problems (Sections 
8.1, 8.2, and 8.3) 
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b)  Robust design refers to the class of design methods developed to design systems that 

are insensitive to variations in the environment, while achieving the desired 

specifications as closely as possible. Robust design concepts are used in this 

dissertation for making decisions in the presence of uncertainty (see Sections 3.5.4 

and 5.2.2). Details of robust design and its role in this dissertation are discussed in 

Section 2.3.  

c)  Utility theory is used to model rational decision making in a mathematically rigorous 

form. In this dissertation, utility functions are used to model designers’ preferences 

for making decisions related to products and design processes (see Sections 4.4, 

5.3.2, 5.4.2, and 9.3). Utility theory is also used for developing the value of 

information metric in Section 4.3. The details of utility theory and its use in the 

dissertation are discussed in Section 2.4.  

d)  Information economics refers to the field where impact of additional information on 

the quality of decisions is studied. A component of the research in information 

economics involves development of metrics that quantify this impact. The concepts 

from information economics are used in this dissertation to make design-process 

related decisions based on the value of information metric (see Section 4.3). An 

overview of foundational work in the field of information economics which is 

relevant to this dissertation is provided in Section 2.5. 

e)  Finally, in Section 2.6, an overview of the literature on design information modeling 

is presented. The focus is on providing an overview of available information 

modeling strategies, a literature review on design information modeling, specifically 
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on models for representation of product and process specific information. Based on 

this literature review, the research gaps for support meta-design are identified. The 

concepts from design information modeling (Section 2.6) are used to establish 3-P 

information modeling strategy in Section 7.3 and develop information models for 

Products, Decision Problems, and Processes in Sections 8.1, 8.2, and 8.3 respectively. 

2.1 Frame of Reference – Designing Design Processes in 
Conjunction with Products 

2.1.1 Designing – A Goal Oriented Activity 
While natural sciences are concerned with how things are, an engineer, and more 

generally a designer is concerned with how things ought to be in order to attain goals 

and to function (Simon 1996). As pointed out by Braha and Maimon (Braha and Maimon 

1997), the distinction between engineering science and natural science is that the aims 

and methodology of engineering science differ, i.e., natural sciences are concerned with 

analysis and engineering with synthesis; natural science is theory oriented while 

engineering is result oriented. This distinction between design activities and natural 

science is embodied by many researchers in their definitions of ‘design’. Suh defines 

design as interplay between what we want to achieve and how we want to achieve it (Suh 

1990). Mistree and coauthors view design as the conversion of information that 

characterizes the needs and requirements for a product into knowledge about the product 

(Mistree, Smith et al. 1990). The metagoal of design is to transform requirements – 

generally termed functions, which embody the expectations of the purposes of the 

resulting artifact, into design descriptions (Gero 1990). The National Science Foundation 

defines design as the process by which products, processes and systems are created to 

perform desired functions through specification.  



   

 75

Models for Design 

In order to support the development of design, the research in engineering design is 

categorized into design philosophies, models, and methods. Design theory is a collection 

of principles that are useful for explaining a design process and provide a foundation for 

basic understanding required to propose useful methodologies. Design theory explains 

what design is, whereas design methodology is a collection of procedures, tools and 

techniques for designers to use when designing. Design methodology is prescriptive, 

while design theory is descriptive (Finger and Dixon 1989; Finger and Dixon 1989; 

Evbuomwan, Sivaloganathan et al. 1996). Design methods have been developed from 

different viewpoints that emphasize different facets of the overall design process. Some 

of these views as summarized by Evbuomwan and coauthors include a) design as a top-

down and bottom-up process, b) design as an incremental (evolutionary) activity, c) 

design as an knowledge-based exploratory activity, d) design as an investigative 

(research) process, e) design as a creative (art) process, f) design as a rational process, g) 

design as a decision-making process, h) design as an iterative process, and i) design as an 

interactive process. Although design methods are generally developed with a few of these 

viewpoints in mind, an ideal design method should support all of these. 

Pahl and Beitz (Pahl and Beitz 1996) identify four key phases that are common to any 

prescriptive model for design. These phases include planning and clarification of task, 

conceptual design, embodiment design, and detail design. Planning and clarification of 

task involves identifying the requirements that the outcome of design should fulfill. 

These requirements are then converted into a statement of the problem to be solved. 

Conceptual design involves generation of principles used to satisfy the problem 
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statement. Embodiment design involves refinement of the solution for the purpose of 

eliminating those that are least satisfactory until the final solution remains. During the 

detail design, all the details of the final design are specified and manufacturing drawings 

and documentation are produced. 

In contrast to the descriptive models of design, prescriptive models exemplify how 

design should be done and not necessarily how it is done. Most of the prescriptive 

methods of design are based on the assumption that any design activity consists of three 

core activities – analysis, synthesis, and evaluation. Analysis is defined as the resolution 

of anything complex into its elements and the study of these elements and of their 

relationships. Synthesis is putting together of parts or elements to produce new effects 

and to demonstrate that these parts create an order (Pahl and Beitz 1996). A general 

model of design can be visualized as a feedback loop of synthesis, analysis and 

evaluation. It is important to note that although the focus in natural sciences and design is 

on analysis and synthesis respectively; both analysis and synthesis form the key 

components of any design activity. These general ideas for analysis, synthesis, and 

evaluation are described by Gero (Gero 1990) as a series of transformations of 

information starting with the requirements and ending with a description of the design 

that satisfies the requirements. According to Gero, the key aspects of product information 

include function (F), structure (S), expected behavior (Be), achieved behavior (Bs), and 

product description (D) (see Figure 2-1). Function (F) is the relation between the goal of 

a human designer and the behavior of the system. Structure (S) represents the artifact’s 

elements and its relationships. The structure is also called the form of the artifact. The 

achieved behavior (Bs) of the structure is directly derivable from its structure using the 
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laws of physics. The expected behavior (Be) represents the physical properties that the 

artifact should have in order to satisfy the functional requirements (F). The product 

structure can be converted in a manufacturable product description (D). In terms of these 

definitions, analysis is the transformation of product structure to achieved behavior and 

synthesis is the transformation from expected behavior to structure. Evaluation refers to 

comparison of the expected behavior with achieved behavior. This is an iterative process. 

The ASE view of design is foundational to many design efforts such as Shimomura 

(Shimomura, Yoshioka et al. 1998) and Maher (Maher 1990). 

Function (F)

Expected 
Behavior (Be)

Achieved 
Behavior (Bs)

Structure (S) Product 
Description (D)

analysis

Evaluation

Specification
and

Formulation
Synthesis

 

Figure 2-1 – Model of design as a process (Gero 1990) 

Design of Systems 

The general idea of Analysis, Synthesis, and Evaluation is extended to the domain of 

systems engineering where the focus is not only on the design of simple products for a 

given set of requirements, but on complex systems throughout their lifecycle. A system is 

defined as a group of associated entities which is characterized by a mental construct; one 

of the associated entities is the boundary (Muster and Mistree 1988). A system is also 

defined as a set of components (subsystems, segments) acting together to achieve a set of 

common objectives via the achievement of a set of tasks. Systems theory as an inter-

disciplinary science uses special methods, procedures, and aids for the analysis, planning, 

selection and optimization of complex systems (Pahl and Beitz 1996). The systems 

approach to design reflects the general appreciation that complex systems are best tackled 
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in fixed steps, each involving analysis, synthesis, and evaluation (Pahl and Beitz 1996). 

Hence, these steps are carried out during all the phases of the lifecycle including 

planning, preliminary study, system development, system production, system installation, 

system operation, and replacement. In a systems theory process model, the steps of 

analysis, synthesis, and evaluation repeat themselves in so called lifecycle phases of the 

system in which the chronological progression of a system goes from abstract to concrete. 

A design process defines what the system must do, how well the system must do it, 

and how the system should be tested to verify and validate the system’s performance 

(Buede 2000). A commonly adopted process for systems design is based on the Systems 

Engineering Vee (Buede 2000), which is based on successive decomposition of systems 

into subsystems followed by recomposition. During the decomposition process, the 

originating requirements are analyzed and defined in engineering terms and then 

partitioned into a set of specifications for several segments, elements and components 

(Buede 2000). The focus of decomposition process is the movement from need to system 

level requirements to specifications for each subsystem to the specification of each 

component. The focus of recomposition is the integration of individual components to 

subsystems and subsystems into larger systems. The integration involves testing of the 

newly assembled system and determining whether the assembled system satisfies the 

system requirements. Verification and validation of the system are also carried out during 

the integration phase.  

Simulation-Based Design 

With the development of computers, the design activities are increasingly carried out 

by using their computational capabilities. Over the last few decades, the role of 
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simulation in engineering design has evolved from failure analysis and design 

verification to parametric design optimization. Until recently, the simulation models were 

used only in the detailed design phases, where most of the design information is 

available. Further, the simulation models were developed for analyzing the behavior of 

individual components in an independent fashion. With the increase in computational 

capabilities and the development of methodology for composing component simulation 

models together to develop overall system simulations, it is now progressively possible to 

evaluate the emergent behavior of complete systems. These capabilities have elevated the 

role of simulation in design from mere component failure analysis and parametric 

optimization to systems design and given rise to the field of simulation-based design. The 

general design methods for design using simulations remains the same – the key activities 

being analysis, synthesis, and evaluation. The only difference in simulation-based design 

and conventional design is that computer simulations are used to support the three 

activities – analysis, synthesis, and evaluation.  

2.1.2 Designing Design Processes 
Design processes represent the tasks carried out from requirements to the final design, 

their ordering, and the information flow between them. The design processes are 

currently structured based on the design method used. The mapping of product’s 

functional characteristics to concepts, and concepts to physical parts primarily dictates 

the architecture of design processes. In systems design, the product’s functional 

decomposition determines the analysis and synthesis tasks performed. The hierarchy of 

functions determines the sequence in which the tasks need to be carried out. Generally, 

the dependencies between product’s functions dictate the dependencies between 
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information flows between tasks in the design process. For complex systems, the 

requirements of the entire system cannot be transformed into a single stage to detailed 

specifications. The transformations are carried out in several successive stages. Given the 

requirements for a complex system, the analyses are performed to transform these 

requirements into system specifications. These specifications flow down to the next level 

as subsystem requirements; the subsystems must be designed to achieve these system 

level specifications. The subsystem level specifications then become requirements for 

lower level subsystems until the lowest level details are decided on (Koch 1997). Such a 

partitioning of requirements into subsystem requirements and the associated requirements 

flow down defines the design processes for such complex systems. As mentioned by 

Koch (Koch 1997), unlike the pre-existing hierarchies in organizations, the hierarchies in 

products are created through a process of formal decomposition or informal partitioning. 

Hence, the design processes in hierarchical systems are dependent on the kind of 

partitioning chosen for products.  

Simon (Simon 1996) pointed out that the design process strategies can affect not only 

the efficiency with which the resources are used for designing, but also the nature of final 

design as well. He further asserted that both the shape of the design (artifact) and the 

shape and organization of the design process are essential components of the theory of 

design (Simon). Mistree and co-authors describe the role of designing design processes as 

follows: “Compared to the traditional engineering design in which synthesis of the 

product plays the central role, the synthesis of the process (which includes design, 

manufacture, and support aspects) is the dominant feature in concurrent engineering. 

With the synthesis of the process at this higher level, the synthesis of product follows 



   

 81

naturally” (Mistree, Smith et al. 1990). In spite of the importance of design processes, the 

design of design processes is still carried out in an adhoc manner.  

2.1.3 Current Trends in Improving the Design Process – Increasing 
Concurrency and Simultaneous Consideration of Different 
Aspects 

Recently, efforts towards improving the design processes are focused on a) 

performing activities in a concurrent fashion so that maximum possible amount of 

information is available for designing, and b) including complete lifecycle considerations 

upfront during the design phase. Researchers have shown benefits of including lifecycle 

considerations in terms of reduction in costly design iterations. Approaches to design 

incorporating lifecycle considerations include concurrent engineering (Pennell and 

Slusarczuk 1989; Kusiak and Park 1990; Bowen and Bahler 1992; Bras 1992; Mistree, 

Smith et al. 1993; Bahler, Dupont et al. 1994; Prasad 1996; Cantamessa and Villa 2000), 

simultaneous engineering, United Life Cycle Engineering, producibility engineering, 

Integrated Product and Process Design (IPPD), and Product Lifecycle Management.  

Concurrent Engineering: Concurrent engineering is a systematic approach to the 

integrated, concurrent design of products and their related processes, including 

manufacturing and support. The approach is intended to cause the developers, from the 

outset, to consider all elements of the product lifecycle from conception through disposal, 

including quality, cost, schedule, and user requirements (Winner, Pennell et al. 1988). 

According to Beude (Buede 2000), the term concurrent engineering simply means that 

the systems engineering process should be done with all the phases of the lifecycle in 

mind. Simultaneous engineering, ULCE, and producibility engineering are efforts similar 

to the concurrent engineering. 
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Integrated Product and Process Design: One of the specific embodiments of the 

ideas from concurrent engineering is Integrated Product and Process Design (IPPD). 

IPPD indicates, in the broadest sense, the overlapping, interacting, and iterative nature of 

all of the aspects of the product realization process. The method is a continuous process 

whereby a product's cost, performance and features, value, and time-to-market lead to a 

company's increased profitability and market share (Magrab 1997). In the IPPD effort, 

the focus is mainly in integrating product design with the manufacturing process. The 

strategy adopted for IPPD is to include manufacturing knowledge as much as possible in 

the design decision making.  

Product Lifecycle Management: Recently, the ideas from concurrent engineering and 

IPPD are extended to a broader umbrella of Product Lifecycle Management, which is 

defined by IBM as “…a strategic approach to creating and managing a company's 

product-related intellectual capital, from its initial conception to retirement” (IBM 2004). 

Accordingly, “PLM improves a company's product development processes and its ability 

to use product-related information to make better business decisions and deliver greater 

value to customers”. JD Edwards (Edwards 2002) defines PLM as “management of a 

series of business processes, enabled by collaborative applications that manage a 

portfolio of products … to maximize market share and profitability”. CIMData defines 

PLM as “a strategic business approach that applies a consistent set of business solutions 

in support of the collaborative creation, management, dissemination, and use of product 

definition information across the extended enterprise from concept to end of life – 

integrating people, processes, business systems, and information”. Generally, PLM is 
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taken to be a strategic business approach for the effective management and use of 

corporate intellectual capital (Fenves, Sriram et al. 2003). 

Product Lifecycle Management (PLM) involves activities from the initial conception 

to retirement of the product and is aimed at improving the product development process. 

The goal in PLM is to integrate all the product realization activities including market 

planning, concept development, design, production, sales, marketing, etc. Considering the 

field’s extensive scope there are numerous interpretations, each highlighting different 

facets of import.  Examples include a) interoperability issues and standardization in 

CAD/CAM/CAE, b) overarching management considerations c) collaboration d) 

information management and sharing, and e) integration. 

One of the key components of PLM with regard to this aspect is the integration of the 

process with the design of the product. Although design processes play a crucial role in 

PLM, integrating the design of “design processes” with the product has received little 

attention. Systematic methods for designing design processes have not been formalized.  

Additionally, while it is true that the potential of leveraging components of existing 

products towards developing new products has been exploited, the possibility of 

leveraging sub-processes in new product realization scenarios is substantial. 

2.1.4 Designing Processes in this Dissertation 
Although these efforts are focused on improving the design processes for efficient and 

effective design by taking concurrency into account, we believe that a focused effort at 

designing the design processes in association with the products is required. This is 

especially true in the complex systems where the design processes cannot be developed 

just based on functional decomposition. One such special class of complex systems that 
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can benefit from designing design processes is ‘Multiscale Systems’. For multiscale 

systems such as materials, it is not possible to decompose the requirements in terms of 

functions that have concepts associated with them. Hence, development of design 

processes based on functional decomposition is not an option. There is a need for 

designing a design process that is suitable for the design requirements at hand. Further, 

different design processes are suitable for designing the same multiscale system as the 

requirements change. The challenges associated with designing multiscale systems 

necessitate development of new design methods that are based on the consideration of 

both design process and the product. This need for developing a new design method for 

considering design of product and design process is addressed in this dissertation.  

2.2 Decision-Based Design and the DSP Technique 
“To be successful, the engineering design of systems must embrace the notion that 

many decisions are made during the development process. This is not a controversial 

position to take. However, adopting the notion that these decisions should be made via a 

rational explicit process is not consistent with much of the current practice in the 

engineering of systems.” (Buede 2000). It is this formalization of rational decision 

making process that the decision-based design is focused on. 

According to many researchers such as Hazelrigg (Hazelrigg 1998), Muster and 

Mistree (Muster and Mistree 1988), and Thurston (Thurston 1999) the fundamental 

premise of decision-based design is that engineering design is primarily a decision-

making process. Decision-based design (DBD) emphasizes a perspective from which 

design methods can be developed (Mistree, Smith et al. 1990). From a decision-based 

design perspective, the principal role of a designer is to make decisions. In decision-
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based design, decisions serve as markers to identify the progression of a design from 

initiation to completion. The paradigm of decision-based design is based on decisions 

made by designers as opposed to design that is assisted by the use of computers as well as 

optimization methods, or methods that evolve from specific analysis tools such as finite 

element analysis. Decisions help bridge the gap between idea and reality, and are a unit 

of communications that are characterized by information from many sources and 

disciplines and may have both discipline-dependent and discipline independent features. 

In DBD, the making of decisions causes the transformation of information into 

knowledge. Accordingly, a design process from the DBD perspective is conversion of 

information that characterizes the needs and requirements for a product into knowledge 

about the product (Mistree, Smith et al. 1990; Bras and Mistree 1991). The role of 

decisions in design processes is also pointed out by Gero (Gero 1990) in his statement – 

“a prevalent and pervasive view of designing is that it can be modeled using variables 

and decisions made about what values should be taken by these variables.” 

The implementation of DBD can take many forms. One of the implementation 

approaches is the Decision Support Problem Technique. The Decision Support Problem 

Technique (Muster and Mistree 1988) provides support and rationale for using human 

judgment in design synthesis. According to this technique, designers are and will be 

continued in two primary activities – processing symbols and making decisions, 

independent of the approaches or methods used to plan, establish goals and model 

systems. Hence, the assertion is that the process of design, in its most basic sense is a 

network of decisions. As the engineering problems increase in complexity and the 

interaction of systems with their environments become more and more unpredictable, the 
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engineers need an approach to negotiating solutions to their problems that permits 

designers to accept a satisfying solution instead of vying for optimal solutions. The DSP 

Technique helps in partitioning the problems in simple terms so that it is possible to find 

solutions for it, while being close to the actual system.  

DSP Technique for increasing efficiency and effectiveness  
According to Mistree and coauthors (Mistree, Smith et al. 1990), the efficiency and 

effectiveness of designers are increased by increasing the speed with which the design 

iterations are completed and by reducing the number of iterations. The increase in 

efficiency via increase in the speed of iteration has been the focus of design automation. 

To achieve the reduction in the number of iterations, there is a need for a model of the 

process and information for determining how the process can be improved. Designers 

can use the DSP Technique to increase the efficiency and effectiveness of design process 

by reducing the number of iterations and increasing the speed of iterations. The speed of 

design iterations can be increased if the parts of the design process can be modeled on a 

computer, and reducing corrective design can reduce the number of iterations. Hence, the 

necessary ingredient in increasing efficiency and effectiveness of human designers is 

modeling of design process in a manner that they can be analyzed, manipulated and 

implemented. By focusing on decisions, the DSP Technique provides a means for 

modeling design processes in a manner that can be analyzed and reconfigured. 

Meta-design and design phases in the DSP Technique   
Decisions are based on the human preferences and involve allocation of resources. 

Decisions made during a design process are of two types: decisions about the product and 

decisions about the process through which the product is designed. Some examples of 

decisions about the product include selection among alternative concepts, determining 
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values for design variables, etc. Examples of process decisions include the sequence in 

which design decisions will be made, the manner in which different activities will be 

performed, the way tasks will be executed, etc. Similar to the decisions about product, 

decisions made about design processes also play a significant role in the way design is 

carried out. Hence, the ability to structure design processes in the most effective manner 

it important.  

The DSP Technique consists of two phases – meta-design phase and design phase. 

The meta-design phase consists of planning and structuring of support problems and the 

design phase consists of solving the support problems and post solution analysis (see 

Figure 2-5). Meta-Design is a meta-level process of designing systems that includes 

partitioning the system for function, partitioning the design processes into a set of 

decisions and planning the sequence in which these decisions will be made. In this phase, 

product specific decisions themselves are not made or even pursued, but rather, the 

design process to be implemented in design phase is itself designed. The designer 

specifies a process in terms of certain base entities (e.g., phases, events, decisions, tasks, 

etc.). All information is considered as relationships between inputs and outputs. These 

entities are used to build directed networks modeling design processes that can be 

manipulated. In the actual design phase, the solution to the design process is sought and 

validated. An important aspect in implementing the DSP Technique is to create software 

tools and systems to help designers to concurrently create models of design processes and 

DSPs and foe group of designers for various fields of engineering to work at the same 

design project at the same time. 
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Modeling design processes using DSP Technique palette  
The definition of design used by the authors in (Muster and Mistree 1988) is:   

“Designing is a process of converting information that characterizes the needs and 

requirements for a product into knowledge about the product.”  

In the context of this definition, the conversion of information into knowledge 

invariably takes place throughout the design timeline. Throughout the timeline, the types 

of decisions being made are the same in all stages and the quantity of hard information 

increases as the knowledge about the product increases. The assertion in the DSP 

Technique is that any process in design can be defined in terms of phases and events.  

In the DSP Technique, the entities for designing a design process are contained in the 

DSPT Palette. These entities can be used to model design process hierarchically and in a 

domain independent fashion. The DSPT Palette contains three different classes of entities 

– potential support problem entities, base entities and transmission entities. The potential 

support problem entities are phases, events, tasks, decisions and systems (see Figure 2-2). 

Icon “P” denotes a phase. The phases are used to represent elements of partitioned 

process. For example, conceptual design, embodiment design etc. are phases in the Pahl 

and Beitz design method. Events are denoted be “E”. Events occur within a phase. 

Examples of events are – “evaluate for economic criteria”, “check for system feasibility” 

etc. Phases and events are accomplished by tasks and decisions. Tasks and decisions 

require direct involvement of human designers.  A task is any activity to be 

accomplished. In DSP Technique, decisions are broadly categorized into selection 

decisions and compromise decisions. Selection decisions involve making a choice 

between a number of available options and compromise involves selecting the best 
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possible values of design variables such that the system is feasible. A system can be 

either abstract or concrete and can be modeled by a grouping of associated subsystems. 

Base entities are the most elementary entities for modeling design processes and can 

be implemented on a computer. The base entities are shown in Figure 2-2. The base 

entities are used to describe constraints and bounds on the design space, relationship 

between design variables etc.  

Transmission entities in the DSPT palette are used to define the connections between 

various other entities used to model the design process. The transmission entities are 

based on the Miller’s Living Systems Theory. The transmission entities include three 

types of basic transmissions – mass, energy and information and combinations of these 

three basic types. The transmission entities in DSPT palette are shown in Figure 2-2. 
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Figure 2-2 - Decision support problem technique palette entities 
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Figure 2-3 Timeline for designing a frigate (Mistree, Smith et al. 1990) 

A portion of the timeline of design of a frigate is shown in Figure 2-3. The design 

phases, events and the information generated is shown in the figure. The qualitative ratio 

of hard to soft information increases from left to right. To model this design process 

using the DSP Technique, icons from the DSPT palette are used. The design for concept 

phase in the process modeled in DSP Technique is shown in Figure 2-4. A detailed 

description of this design process is provided in (Mistree, Smith et al. 1990).  
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Figure 2-4 A model for conceptual design event (Mistree, Smith et al. 1990) 

 
Using decision support problems for engineering design   

The phases (shown in Figure 2-5) involved in using DSPs for designing are:  

1. Planning – In this phase, the DSPs are identified and summarized in words and 

figures. This is an unstructured process. 
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Figure 2-5 Phases in the DSP Technique 
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2. Structuring – In this phase, the qualitative statements from planning phase are 

transformed into decision support problems that can be stated in mathematical terms 

3. Solution – In this phase, the designer determines the numerical solution of DSPs. 

4. Post Solution Analysis – This is a partially structured process of reviewing the 

design for testing its validity and sensitivity. 

Modeling support problems  
In order to model the potential support problem entities in a form that can be 

understood by a computer, the potential support problem entities are associated with 

corresponding support problems. Within each support problem, the information is 

organized using keywords and descriptors. The keywords and descriptors act as the 

medium of communication between a specific designer’s view of the world and the 

domain independent view of the design process. The keywords act on problem 

descriptors. The descriptors represent domain dependent knowledge and information. The 

support problems for Compromise and Selection Decision Support Problems are provided 

in Table 2-2. Each decision support problem has a corresponding mathematical form that 

contains numerical information about the decision and enables solving the DSP on a 

computer. The compromise and selection DSP form the core of DSP Technique and are 

discussed next. 

Table 2-2 – Keywords and descriptors for Compromise Decision Support Problem 

Keywords Descriptors 
Given Symbolic and mathematical base entities and Support Problems necessary 

for evaluating the goals, constraints and bounds and the deviation function 
Find  System variables (symbolic and mathematical) 
Satisfy Goals, constraints and bounds, i.e., symbolic and mathematical 

relationships 
Minimize A Deviation function  
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Table 2-3 – Keywords and descriptors for Selection Decision Support Problem 

Keywords Descriptors 
Given Alternatives 
Identify  Attributes and relative importance of attributes 
Rate Alternatives with respect to attributes 
Rank Order of preference 
 
Decision making in design 

According to Kamal (Kamal 1990), all decisions identified in the DSP Technique are 

categorized as selection, compromise or a combination of these. He classifies selection 

and compromise as primary decisions and others as derived decisions.  

In the DSP Technique, the selection decision is the process of making a choice 

between a number of possibilities taking into account a number of measures of merits or 

attributes. The emphasis in selection is on the acceptance of certain alternatives through 

the rejection of others. The goal of selection in design is to reduce alternatives to a 

realistic and manageable number based on different measures of merit, called attributes, 

which represent the functional requirements. The attributes may not all be of equal 

importance with respect to the decision. Some of the attributes may be quantized using 

hard information and others may be quantified using soft information.  

The compromise decision requires that the ‘right’ values (or combination) of design 

variables be determined, such that, the system is feasible with respect to constraints and 

the performance is maximized. The emphasis on compromise is on modification and 

change by making appropriate tradeoffs. The goal of compromise in design is that of 

modification through iteration based on criteria relevant to the feasibility and 

performance of the system. The emphasis on iteration in compromise which implies that 



   

 94

the designer is pursuing a forward progressing process, requiring generation, evaluation 

and alteration of different designs.  

As mentioned previously, all decisions encountered in design can be categorized as 

either selection among a set of feasible alternatives or the improvement of a given 

alternative through compromise. Different combinations of these decisions can also occur 

in design. Decisions can be interdependent or dependent. Inter dependent decisions 

involve a bi-directional flow of information and dependent decisions involve a 

unidirectional flow of information. The flow of information inter dependent decisions is 

illustrated in Figure 2-6. Since the interdependent (or coupled) decisions involve a bi-

directional information flow, both the decision support problems must be solved 

simultaneously. The dependent decisions arise from cases when in a design timeline, the 

upstream decisions affect downstream decisions. These dependent decisions must be 

solved simultaneously. 

 

Selection

Compromise

Selection

Selection

Compromise

Compromise
 

Figure 2-6 Types of interdependent decisions in design 

In the DSP Technique, the selection and compromise DSPs are employed to address 

independent decisions while the coupled DSPs are used to model hierarchies of decisions 

(Baskaran 1990). The relationship between decisions throughout a design timeline can be 

modeled in two ways – hierarchically and heterarchically (Mistree, Smith et al. 1990). In 

the heterarchical relationship between decisions, the decisions are unordered and it is 

difficult to define precedence of decisions. In the hierarchical decisions, the information 



   

 95

flow is clear and the sequence of decisions is well defined. These decision hierarchies can 

be implemented using coupled decisions.   

Heterarchical 
Representations

Hierarchical 
Representations  

Figure 2-7 Heterarchical and hierarchical representations (Mistree, Smith et al. 
1990) 

Interdependent or coupled decisions occur in a lot of collaborative and concurrent 

design scenarios. One of the most common scenarios is the coupling between decisions 

made by designers and manufacturers. The decisions made by designers affect the 

decisions made by manufacturers and the decisions made by manufacturers affect 

decisions made by designers. Coupled decision support problems are applied in various 

problems like design of composite material structures (Karandikar and Mistree 1993) and 

components, ship design (Baskaran, Bannerot et al. 1989) etc. Sambu, in his MS thesis 

(Sambu 2001) has shown a strategy for design for manufacturing based on the coupled 

compromise DSPs. 

 

 



   

 96

Use of DSP Technique in this dissertation 

A decision-centric approach is adopted in this dissertation because from a decision-

centric perspective, meta-design is a meta-level process of designing systems that 

includes partitioning the system based on function, partitioning the design process into 

decisions, and planning the sequence in which these decisions are most appropriately 

made (Mistree, Smith et al. 1990). Specific advantages of adopting a decision-centric 

perspective include the ease with which other views of design processes can be generated 

(e.g., model-centric and tool-centric views). Furthermore, domain independent 

representation of design processes becomes feasible. Hazelrigg describes decision-based 

design as omni-disciplinary, “the seed that glues together the heretofore disparate 

engineering disciplines as well as economics, marketing, business, operations research, 

probability theory, optimization and others” (Hazelrigg 1998). Herrmann and Schmidt 

(Herrmann and Schmidt 2002) describe a complete product development organization as 

a network of decision-makers who use and create information to develop a product. Due 

to these reasons, a decision centric approach is chosen for design of products and design 

processes. The utilization of decision-based design in this dissertation is summarized in 

Table 2-1. 

In this dissertation, decision-based design is used as a philosophical foundation for 

the framework for integrated design of products and design processes. Hence, the focus 

of designing design processes and products is mainly on decisions. The first research 

question in the dissertation – “How can simulation-based multiscale design processes be 

designed in association with products?” is answered from a decision-based perspective. 

It is assumed that the decisions are the most important components of design processes. 
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The design of design processes, hence, is equivalent to the configuration of design 

decisions – related to both products and design processes. We understand that in 

addition to decisions, there are other activities in a design processes. However, we 

believe that the decisions represent the most important aspect of design processes and the 

payoff maximum by considering the decisions. We are not concerned with the lowest 

level tasks in a design process such as “develop a CAD model”, “write a computer 

program”, “document results”, etc. 

The DSP Technique is an instantiation of the decision-based design, which includes 

constructs such as compromise DSP, selection DSP for making design decisions in a 

mathematically rigorous form. This is particularly true in the preliminary design phase, 

which is the focus of this dissertation, where computer-based simulation models are 

available. DSP Technique is the only instantiation that is based on designing both 

products and design processes. The meta-design phase of DSP Technique is a 

foundation for the design method developed in Chapter 3. Further, the DSP Technique 

is based on the idea of making decisions that are satisficing as opposed to optimizing in 

nature. The word ‘satisfice’ was first coined by Simon. It refers to the search for good 

enough solutions rather than the absolute optimum solutions. The word satisficing should 

not be viewed as search for inferior solutions because in the words of Simon, “no one in 

his (/her) right mind will satisfice if he (/she) can equally well optimize; no one will settle 

for good or better if he (/she) can have the best. But that is not the way the problem 

usually poses itself in actual design situations.” It is the growing complexity of systems 

that forces designers to search for satisficing solutions. For example, it is not possible to 

develop perfect models of all physical phenomena considering all the interactions with 
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the environment. Because of this approximate knowledge about system’s behavior, 

optimum decision cannot be made. In addition to the lack of perfect knowledge, the 

environment keeps changing, that renders an “optimal” solution from one scenario “non-

optimal” as soon as the environmental conditions change. This is also true in the design 

of design processes. Due to couplings between different decisions, optimal configuration 

of design process may not be practical (even if the designer is able to find it).  

 

2.3 Robust Design 
Robust design is a design strategy for improving the quality of products and processes 

by reducing their sensitivity to variations, thereby reducing the effects of variability 

without removing its sources (Taguchi 1986). Robust design evolved from the research of 

Genichi Taguchi, who believed that the quality of product should be controlled in the 

design stage itself, rather than during manufacturing. The fundamental principle behind 

Taguchi’s robust design approach is that any deviation from the target is a loss to the 

company and represents bad quality of the product. This is in contrast to the generally 

adopted tolerance based approach where anything that lies between tolerance ranges is 

acceptable and of equally good quality. Taguchi introduced a Quality Loss Function in 

which the quality loss, L, is proportional to the square of the deviation of performance, y, 

from the target value, T.  

2( )L k y T= −  

The objective in Tagichi’s robust design is the minimization of this quality loss 

function over all of the products. This is achieved in the parameter design stage, which 

occurs before the tolerance design stage. During the parameter design stage, the products 
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are ‘designed for’ robustness by appropriate selection of values for design variables that 

are least sensitive to variations. 

During the parametric design, design parameters are categorized into control factors 

and noise factors. Control factors are the parameters that designers can control whereas 

noise factors cannot be controlled easily. Different combinations of values for control 

variables represent design alternatives. The variations in noise variables result in 

variation in the performance of design alternative. The best design alternative is the one 

whose performance is close to the desired performance and the variation in performance 

is as low as possible. Taguchi used a signal-to-noise ratio to quantify the quality of a 

design alternative. The design alternative with maximum signal to noise ratio is selected. 

Taguchi’s robust design focuses only on performance variation due to noise variables. 

For the case where control factors are also subject to changes, Chen and coauthors (Chen, 

Allen et al. 1996) developed a robust design approach that accounts for the objective of 

minimization of variation in response due to variation in both control factors and noise 

factors. The authors classified robustness into two types – Type I and Type II as shown in 

Figure 2-8.  

The key difference between the Type I and Type II robustness is: 

Type I Robust Design: Identify control factor (design variable) values that satisfy a set 

of performance requirement targets despite variation in noise factors.   

Type II Robust Design: Identify control factor (design variable) values that satisfy a 

set of performance requirement targets despite variation in control and noise factors. 
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Figure 2-8 – Robust design for variations in noise and control factors (Chen, Allen 
et al. 1996) 

A method combining Types I and II robust design in the early stages of product 

development, namely, the Robust Concept Exploration Method (RCEM) (Chen 1995; 

Chen, Allen et al. 1996; Chen, Allen et al. 1996; Chen, Allen et al. 1997; Chen and Lewis 

1999) has been developed. RCEM is a domain-independent approach for generating 

robust, multidisciplinary design solutions.  Robust solutions to multi-functional design 

problems are preference-weighted trade-offs between expected performance and 

sensitivity of performance due to deviations in design or uncontrollable variables.  These 

solutions may not be absolute optima within the design space. By strategically employing 

experiment-based metamodels, some of the computational difficulties of performing 
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probability-based robust design are alleviated. In the RCEM method, Chen and coauthors 

employ the compromise DSP construct as a multi-objective decision model for 

determining the values of design variables that satisfy a set of constraints and balance a 

set of conflicting goals, including bringing the mean on target and minimizing variation 

associated with each performance parameter. RCEM is employed successfully for a 

simple structural problem and design of a solar powered irrigation system (Chen 1995), a 

High Speed Civil Transport (Chen, Allen et al. 1996), a General Aviation Aircraft 

(Simpson, Chen et al. 1996) , product platforms (Simpson, Maier et al. 2001), and other 

applications (e.g., (Chen, Garimella et al. 2001)). 

The idea of robust design is extended to Types III and IV by Choi and coauthors 

(Choi, Austin et al. 2004). Type III robust design considers sensitivity to uncertainty in 

the simulation models used to predict the response variables for given design variable 

values. This type of uncertainty is also called model parameter/structure uncertainty 

because it exists in the parameters or structure of constraints, meta-models, engineering 

equations, and associated simulation or analysis models. Choi and coauthors (Choi, 

Austin et al. 2004) present an approach for Type III robust design by incorporating Error 

Margin Indices within the basic RCEM. The RCEM-EMI approach incorporates three 

types of uncertainty – Type I, II, and III. In addition to Type III robust design, Choi and 

co-authors presented a Type IV robust design approach, which is focused on the 

uncertainty associated with a design process. Design process uncertainty emanates from 

the propagation and potential amplification of uncertainty due to combined effect of 

analysis tasks performed in series or parallel. The sources of design process uncertainty 

are particularly common and important for multidisciplinary analysis and design, that are 
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characterized by a plethora of shared or coupled variables and analysis performed on 

multiple length and time scales. 

Use of Robust Design in this Dissertation 

Robust design is used in this dissertation for making product related decisions. As 

discussed in the previous section, the decisions are formulated as compromise and 

selection Decision Support Problems. The design problems discussed in this dissertation 

are associated with different types of uncertainty that the system should be robust to. 

These include uncertainty inherent in the environment, uncertainty due to assumptions in 

the simulation models, uncertainty due to simplification of design processes (caused by 

ignoring dependencies in the design process), uncertainty propagated from one 

simulation model to another, etc. Some of these aspects of uncertainty in multiscale 

design are discussed in Section 1.1.4. The robust formulation of compromise DSP in 

association with the Robust Concept Exploration method is used in this dissertation to 

make decisions that are robust to these uncertainties. The design method developed in 

Chapter 3 consists of robust design techniques discussed in this section as one of its steps. 

The details of this step are discussed in Section 3.5.4. 

2.4 Utility Theory 
Utility theory is used to facilitate decision making in product realization based on 

mathematically complete principles which define ‘rational behavior’ for the decision 

makers, and to derive from them the general characteristics of that behavior (Von 

Neumann and Morgenstern 1947). A decision involves the evaluation of a set of 

alternatives and selection of the most preferred alternative. ‘Utility’ represents the 

decision maker’s preference to the outcome, characterized with a set of attributes. In this 
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context, an attribute is equivalent to the response variable that measures the performance 

of the product. Utility values for attributes generally lie between 0 and 1; a value of 0 

denoting an unacceptable outcome and a value of 1 denoting the most preferred outcome. 

“If an appropriate utility is assigned to each possible outcome and the expected utility of 

the outcome for each alternative is calculated, then the best course of action is to select 

the alternative whose outcome has the largest expected utility” (Keeney and Raiffa 1976).  

In the terminology of utility theory, a decision is a problem that involves choosing 

among a set of alternatives X1, X2, …, Xn. The consequences of selecting a particular 

alternative are described in terms of a common set of attributes A1, A2, … , Am. The 

specific values assumed by these attributes for a particular design alternative Xi are 

indicated as A1(Xi), A2(Xi), … , Am(Xi). The utilities of the alternatives for a particular 

attribute Ai are indicated as 1( ( ))iu A X , 2( ( ))iu A X , …, ( ( ))i mu A X , and the utilities of the 

alternatives considered with all attributes are indicated as 1( )u X , 2( )u X ,…, ( )mu X .  

If the values of the attributes for different alternatives are known deterministically, 

then the alternative with maximum utility can be chosen. However, in general design 

scenarios, the values of the attributes A1(Xi), A2(Xi), … , Am(Xi), for an alternative Xi may 

not be known with certainty, but probabilities can be assigned to the various possible 

values of each attribute for each alternative. For example, consider a single attribute 

design scenario, where the designer is concerned only with attribute A1. If the possible 

values of an attribute are continuous, the consequences of selecting alternative Xi may be 

characterized by a distribution on the attribute A1 with an associated probability 

distribution fp(A1(Xi)) where 

1 1 1( ( )) 0   and ( ( )) 1i ip pf A X f A X dA≥ =∫  
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If alternative Xi leads to a discrete set of j possible outcomes, a probability pk can be 

assigned to each possible outcome where 

0   and 1k k
k

p p≥ =∑  

Given this decision model, a decision maker must select the most preferred 

alternative when the consequences of each alternative are characterized by probability 

distributions rather than deterministic values for a set of attributes. 

Therefore, given an alternative Xi, if its attribute A1 has a certain value, we state that 

the engineering team’s utility for the outcome A1 is 1[ ( ( ))]iE u A X . If the attribute has 

uncertainty, the expected utility for the outcome of A1 is calculated using its utility 

function and probability density function fp(A1(Xi). The expected utility may be calculated 

as follows: 

1 1 1 1[ ( ( ))] ( ( )) ( ( ))i i ipE u A X u A X f A X dA= ∫  

If alternative Xi leads to a discrete set of j possible outcomes, expected utility is  

1 1
1

[ ( ( ))] ( ( ) )
b

i ik k k
k

E u A X p u A X
=

= ∑  

The basic properties of utilities that are taken as assumptions in the utility theory are: 

1)   implies that ( ) ( )i j i jX X u X u X>  

2) ( (1 ) ) ( ) (1 ) ( )i j i ju X X u X u Xα α α α+ − = + −  

where  denotes “is preferred to”, Xi and Xj are possible alternatives, and α is the 

numerical probability that Xi is preferred, (1 - α) is the probability that Xj is preferred.  

The maximization of expected utility can be used as a selection criterion only if the 

utility functions are developed in this manner. If these two properties hold for a utility 
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function, then the utility function is determined to be a linear transformation. The first 

property implies that the decision maker has a complete set of preferences. That is, given 

a set of alternatives X1, X2, … , Xn, and their attributes A1(Xi), A2(Xi), … , Am(Xi), the 

engineering team is able to decide a sequence such that 1( )u X > 2( )u X > ( )nu X  based on 

the attributes. The second basic property implies that if activities can be combined with 

probabilities, then the same must be true with the utilities attached to them. For example, 

a 50%-50% combination of outcomes Xi and Xj would be the prospect of seeing Xi occur 

with a probability of 50% and Xj occur with a probability of 50%. Thus the principle 

indicates that a designer can state whether it prefers the event Xi to the 50%-50% 

combination of Xj and Xk, Xi  0.5Xj+0.5Xk, or vice versa. By answering a set of similar 

questions, called lotteries, the utility or difference of utilities can be measured.  

The question that comes up before using the utility functions for decision making is –

Does a utility function that satisfies the properties discussed above exist? Von Neumann 

and Morgenstern postulated three axioms for utility functions. “Provided that these three 

axioms are satisfied, there exists a utility function with the above properties and with the 

desirable property of assigning numerical utilities to all possible outcomes such that the 

best course of action for the individual is the one with the highest expected utility” 

(Seepersad 2001). These axioms proposed by von Neumann and Morgenstern are shown 

in Table 2-4. 

In the figure, α, β, and γ are probabilities. X’s are potential outcomes of a decision.  

denotes ‘is preferred to’ and ~ denotes indifference. Axiom 1 is a statement of 

completeness of preferences and a statement of the transitivity of the preferences. Axiom 

2:a states that if Xj is preferable to Xi then even a chance of obtaining Xj is preferable to 
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Xi. Axiom 2:b is the dual of Axiom 2:a. Axioms 2:c and 2:d are continuity axioms. No 

matter how desirable an outcome may be, one can make its influence as weak as needed 

by giving it a sufficient small chance of occurrence. Axiom 3:a states that it is irrelevant 

in which order the outcomes in a combination are named. Axiom 3:b states that it is 

irrelevant whether the outcomes are combined in two successive steps with probabilities 

α, (1-α) and then β, (1-β) or in one operation with probabilities γ, (1-γ), where γ=αβ. 

These axioms are sufficient to guarantee the existence of a utility function with the 

desirable property of assigning numerical values to all possible outcomes such that the 

most preferred course of action is the one with the highest expected utility. 

Table 2-4 - von Neumann and Morgenstern Axioms of Utility (Von Neumann and 
Morgenstern 1947) 

The system X of entities, X1, X2, X3, … , Xn with α and β on the open interval (0,1).   
Axiom 1 X Xi j  is a complete ordering of X.  This means write X Xj i≺  when 

X Xi j . 
(1:a) Then for any two Xi, Xj one and only one of the three following relations 

holds: Xi∼Xj, X Xi j , X Xi j≺ . 
(1:b) If X Xi j  and X Xj k  then X Xi k . 
Axiom 2 
(2:a) i jX X≺  implies that (1 )i i jX X Xα α+ −≺ . 
(2:b) X Xi j  implies that (1 )i i jX X Xα α+ − . 
(2:c) i j kX X X≺ ≺  implies the existence of an α with (1 )i k jX X Xα α+ − ≺ . 
(2:d) i j kX X X  implies the existence of an α with (1 )i k jX X Xα α+ − . 
Axiom 3 
(3:a) (1 )i kX Xα α+ − ∼ (1 ) k iX Xα α− + . 
(3:b) ( (1 ) (1 )i k kX X Xα β β α+ − + − ∼ (1 )i kX Xγ γ+ −  where γ αβ= . 

 

The process of assessment of utility functions for each attribute consists of three 

steps: a) identification of designer’s preferences, b) assessment of designer’s preferences 

for levels of attributes, and c) fitting a utility function curve with respect to the levels of 
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attributes. The first step involves determining the general characteristics of the designer’s 

preferences. The preferences can be monotonically increasing (larger the better), 

monotonically decreasing (smaller the better), or non-monotonic as shown in the Figure 

2-9. The monotonically increasing utility function can have a convex or concave utility 

function, depending on the designer’s risk taking nature. Convex utility function implies 

risk aversion while concave utility function implies risk proneness. Same is the case with 

monotonically decreasing utility function. In a deterministic context, a convex utility 

function implies that a decision maker has decreasing marginal utility for an attribute at 

the direction of preference; and in a probabilistic context, a convex utility function 

implies that a designer is risk averse. The utility functions are determined based on the 

preference equivalence of two options – the certainty option, where the attribute values 

achieved for different alternatives are known for certain; and an uncertainty option, 

where the designers have 50% probability of achieving the lower bound of attribute 

values and 50% probability of achieving the upper bound. The expected utilities of these 

two options are the same.  In fact, most of the decisions in engineering design are risk 

averse. 

(a) Monotonic Inceasing
Attribute

Utility

(b) Monotonic Decreasing
Attribute

Utility

(c) Non-monotonic
Attribute

Utility

 

Figure 2-9 - Monotonic and non-monotonic preferences 
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The discussion so far in this section is focused on single attribute. Design decisions 

are generally characterized with multiple attributes. The question “how can multi-

attribute utility functions be constructed?” is answered by Keeney and Raiffa (Keeney 

and Raiffa 1976) by developing a method that consists of two stages – a) assessment of 

utility function for each attribute and b) combination of individual utility functions into a 

multi-attribute utility function that can be used to evaluate outcomes of alternatives in 

terms of all the attributes that characterize them. The details of determining multi-

attribute utility functions are not discussed in this dissertation. Interested readers should 

refer Keeney and Raiffa (Keeney and Raiffa 1976). Utility functions are used in this 

dissertation for modeling designers’ preferences because utility theory is a domain 

independent approach used to facilitate design decision making by evaluating preferences 

under conditions of risk and uncertainty.  

Use of Utility Theory in this Dissertation 

In this dissertation, utility functions are used for modeling designers’ preferences. 

These utility functions are used in the compromise and selection DSP constructs for 

modeling design decisions. The standard compromise DSP is augmented as utility-based 

compromise DSP is developed by Seepersad (Seepersad 2001). This utility-based 

compromise DSP is used to model design decisions. The details of steps followed for 

determining the utility functions are not discussed in detail in this dissertation. Whenever 

the utility functions are used in this dissertation, it is assumed that a systematic method 

(that is consistent with the axioms discussed in this section) is followed for determining 

the utility functions. The focus in the dissertation is on utilizing the utility functions for 

making decisions and not on eliciting the utility functions, which is a separate research 
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field in itself. Utility functions are also used in this dissertation for making design process 

related decisions. The process related decisions are made based on the quality of product 

related decisions. The quality of product decisions is in turn measured as the overall 

system performance, which is quantified in terms of the overall utility function. Since the 

second research question in this dissertation (RQ2) is related to developing metrics for 

quantifying the performance of different design process options, the utility functions form 

an important component of the hypotheses used to answer RQ-2. 

2.5 Information Economics 
Information economics is a term for the study of effect of information on decisions. It 

was first introduced by Howard (Howard 1966). In information economics, the decisions 

are formulated as follows – the designer wants to select from a specific action a from a set 

of possible actions { }a in the presence of uncertain variable x  (Lawrence 1999). The 

objective is to select an appropriate value of the action 0a a=  such that some form of 

payoff is maximized. The payoff function ( , )x aπ depends on the combination of a , the 

action that decision maker chooses and x , the ultimate realization of the uncertain 

variable. The key challenge in decision making is due to the fact that designer has to 

make decisions before the realization of state x . The designer does not have complete 

information about the realization of state x . However, some information is available 

about the probability with which the variable x attains different values.  The designer has 

two options – a) he/she can either make a decision-based on the available knowledge 

about the probability distribution of x , or b) he/she can gather additional information that 

changes the decision maker’s probability distribution over the possible values that x can 

take. This additional information is received from an ‘information source’. If the decision 
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maker selects the first option and goes ahead with the first option and makes a decision 

using the available information about x, then he/she can select the value of action a  that 

maximizes the expected value of the payoff. If the decision maker selects the second 

option, then he/she must determine whether the cost of gathering additional information 

is greater than the benefit achieved by gathering additional information. Hence, there is a 

tradeoff between cost of information and the benefit achieved by it. This tradeoff is 

quantified by various “value of information” metrics. Most of the “value of information” 

metrics model the information about benefit achived by additional information only. It 

does not account for the cost of gathering that information. 

Two types of definitions for value of information are particularly important in the 

information economics literature. These include “ex-post value of information”, and “ex-

ante value of information” (Lawrence 1999). Ex-post value of information is evaluated 

by measuring the difference in payoff before and after the realization of states of 

variable x  (but after the decision has been made in both cases). Ex-ante value of 

information refers to the difference in the expected payoff before and after gathering 

additional information.  

Mathematically, the ex-post and ex-ante value of information are represented as 

follows:  

1. Ex-post value: 0( , ) ( , ) ( , )yv x y x a x aπ π= − ,  

Where, 0a and ya  represent the actions taken by decision maker in the absence 

and presence of information y . ( , )x aπ represents the payoff achieved by selecting 

an action a , when the state realized by the environment is x . 
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2. Ex-ante value: | 0( , ) ( , ) ( , )x y y xv x y E x a E x aπ π= − , where ( )xE f x  is the expected 

value of ( )f x and | ( )x yE f x  is the expected value of ( )f x  given y . It is 

important to realize that the key difference between ex-post and ex-ante value is 

that in ex-post value, the realization of state x is known. However, the realization 

of state x  is not known in ex-ante value and the expected value of payoff is taken 

over the uncertain range of state x . 

Use of Information Economics in this Dissertation 

In this dissertation, information economics is used for developing metrics for 

comparing different design processes based on the overall payoff values that can possibly 

be achieved by using these processes. Information economics is used for supporting the 

hypotheses used to answer the second research question RQ2 in this dissertation. This 

research question is – “How should multiscale design processes be systematically 

simplified and models refined in a targeted manner to support quick design decision 

making without compromising their quality”. Information economics based metric - 

Value of Information is used to determine whether a particular level of simplification of 

design processes is appropriate and whether a particular level of simulation model 

refinement is right for design decisions at hand. The relation between design process 

simplification and added information is that when some flow of information is included 

in a design process, it is equivalent to addition of information for decision making. 

Similarly, the refinement of a simulation model is equivalent to addition of information 

for decision making. If the value of this additional information is low, it means that 

improvement in decision making capability by inclusion of that information is low. 
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Hence, the simpler design process (or simulation model) is good enough for the decisions 

to be made. 

A review of literature on value of information is carried out to determine whether 

existing metrics for value of information are appropriate for making design process 

related decisions. The review of literature is presented in Section 4.2. Based on this 

review, a set of requirements for value of information for design processes is developed.   

2.6 Design Information Modeling 
 

Two key components of design information that have received substantial attention in 

the design literature include: design processes and product (artifact) modeling. There 

have been a number of efforts in terms of modeling, representation, archival, exchange, 

and standardization of information related to engineering products and processes. In this 

section, we provide an overview of these efforts and identify the need for developing a 

new information model suitable for addressing the third research question in this 

dissertation. Section 2.6.1 is dedicated to design processes, whereas in Section 2.6.2, we 

discuss product modeling related research. 

2.6.1 Existing Models for Design Processes  
Why do we need to model processes? Modeling processes is an essential step towards 

building quantifiable models of the product development process. Process models help in 

documenting the understanding of current (“as is”) processes and exploring possible (to 

be) changes (Lyons, Duffey et al. 1995). They are widely used currently for identifying 

bottlenecks, activity sequencing and precedence relationships, cost estimation, risk 

assessment for schedule and cost, archiving the process etc. Currently, the role of design 

process models is mainly to construct managerially useful decision aids (Smith and 
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Morrow 1999). Smith and co-authors (Smith and Morrow 1999) categorize the process 

models into five categories: sequencing and scheduling models, decomposition models, 

stochastic lead-time models, design review models and parallelism models. Process 

models are also used for modeling time in the process and minimizing lead-time, and 

enhancing concurrency between tasks. Process models provide a ‘holistic’ view of the 

activities and their relationships. They are widely used for visualizing the flow of 

information, interactions between activities, resource utilization, etc. In other words, 

modeling of processes is an essential step towards understanding, analysis and 

reconfiguration of the processes. Process modeling in general depends on a variety of 

factors such as: the kind of analysis that the process is subjected to; the knowledge that 

needs to be archived; the control parameters that control the output of the process and so 

on. Some of these efforts towards modeling processes and the perspective from which 

modeling is done are discussed next. 

Previous efforts towards modeling processes: Processes can be modeled at various 

levels of details depending on their intended use. Most of the traditional process 

modeling methods like PERT, Gantt Charts, IDEF 0, etc. capture information at the 

activity level. These tools are useful for making organizational decisions on the processes 

like the time utilization, resource allocation, task precedence, material flow etc. An 

example of the use of these tools is manufacturing processes modeling to study the time 

scheduling, material processing, assembly/disassembly and packaging. In a collaborative 

design scenario, models of processes are needed for understanding and coordinating the 

collaborative work, defining conflict management (Park and Cutkosky 1999). 
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Activity-net based models are the earliest and widely used techniques for modeling 

processes. These activity net-based models are used in two representations: activity-on-

node (AoN) and activity-on-arc (AoA). AoN representation is more applicable when the 

precedence of activities is known where AoA is used when it is important to graphically 

identify the events in the process. An overview of activity network models is provided in 

(Elmaghraby 1995). These models are used for analyzing and comparing the complexity 

of processes, performing risk-based analysis based on the expected time required for 

different tasks, obtaining critical path etc.  

Process specification language (PSL) is an effort at the National Institute of Standards 

and Technology (Schlenoff, Knutilla et al. 1996) for representation of discrete processes, 

i.e., processes described as individually distinct events like production scheduling, 

process planning, workflow, business process re-engineering, project management etc.    

These process-modeling methods are generic and can be applied to a variety of 

scenarios. However, there is a tradeoff between the broadness of applicability of models 

and the granularity of information that can be represented and the variety of analyses that 

can be performed on the models. For example, PERT, Gantt Charts, IDEF0, activity-net 

based models etc. are very general in terms of applicability but can be used to represent 

information only at an activity and time level. The kind of information being processed is 

not captured in these models. Hence, it is not sufficient model design processes and to 

perform the kind of analysis that we want in terms of these models. Since our focus in 

this research is on design processes, we will look at some of the modeling challenges 

specific to design processes. 
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What are the challenges in modeling design processes? Design processes for 

mechanical systems are complex because of the inherent complexity of the product itself. 

Interactions and iterations between various activities add to the complexity of product 

realization processes. Whitney has pointed out in (Whitney 1996) that the complexity of 

mechanical designs is because of multifunctional nature of the parts to obtain efficient 

designs. The design processes involve many organizational units and engineering 

disciplines. The level of human intervention in design process is also a barrier for process 

modeling. Modeling design processes is also complex because they cannot be completely 

described beforehand. Downstream activities are highly dependent on the information 

generated by upstream activities. There is also a high level of uncertainty in these 

processes. In order to model the design processes, various methods are developed in the 

literature. These methods can be categorized by the way design is viewed as a process. 

Some of these views of design processes are design processes as activities, as a decision-

based activity, as an evolution of function, as a set of transformations, as a search 

process, etc. The representation of the design processes is dependent on the view of 

design process chosen. A summary of approaches to design process modeling is 

presented in Table 2-5 and discussed next. 

Representation of Design Processes using Different Views 

There has been a variety of efforts towards modeling design processes from different 

perspectives. For example, modeling processes from an activity based view (Elmaghraby 

1995), functional evolution view (Shimomura, Yoshioka et al. 1998), (Umeda, Takeda et 

al. 1990), product state evolution view (Hsu, Tai et al. 2000), refinement of product 
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information (Ullman 1992), knowledge manipulation view (Maher 1990), and decision-

based view (Mistree, Smith et al. 1990), etc. These efforts are discussed next. 

Table 2-5 Comparison of efforts towards design process modeling 
Process 

Modeling 
Effort 

View of Design Modeling, analysis 
objective 

Basic units of a 
process 

Comments 

IDEF0 (1993) Activity based Organizational decisions Activities, information Provides graphical 
view of the process 

DSM 
(Eppinger, 
Whitney et al. 
1994) 

Activity/Task 
based 

Organizational 
decisions, risk, 
complexity, probability 
of rework, iterations, etc. 

Tasks Represents products, 
processes, identifies 
interactions, iterations 

Shimomura 
(Shimomura, 
Yoshioka et al. 
1998) 

Functional 
Evolution 

Capture design process, 
designers’ intentions, 
trace design processes  

Functional realization, 
functional operation, 
functional evaluation 

Integrated product 
and process modeling 

Ullman 
(Ullman 1992)  

Evolution of 
product states 

Process representation Abstraction, refinement, 
decomposition, patching 
combination, 
combination  

 

Maimon 
(Maimon and 
Braha 1996) 

Knowledge 
Manipulation 
through ASE 

Development of a 
mathematical theory for 
design 

Artifact space, specs, 
Analysis, synthesis, 
evaluation 

Mathematical 
representation of 
transformations 

Maher (Maher 
1990) 

Knowledge 
manipulation 

Development of 
knowledge based 
systems 

Decomposition, case 
based reasoning, 
transformation 

Use of artificial 
intelligence in design 

Gorti(Gorti, 
Gupta et al. 
1998) 

Knowledge 
manipulation 

Development of 
engineering knowledge 
base 

Goal, plan, specification, 
decision and context 

Means for 
representing processes 
on a computer; 
integrated product and 
process representation 

DSP Technique 
(Muster and 
Mistree 1988) 

Decision-based 
Design 

Modeling, analyzing, 
debugging, finding 
inconsistencies in a 
design process 

Phases, events, 
decisions, tasks, 
information 

Formalized templates 
for decisions, Lacks 
integration with 
product information 

 

1. Activity based view of design: The design processes when viewed as a set of 

activities, can be subjected to organizational or scheduling analysis as discussed for 

the manufacturing processes. Graph based and matrix based methods can be used to 

represent these processes. The graph-based techniques use activity-net based 

models. The design structure matrix (DSM) (Eppinger, Whitney et al. 1994) is a 

popular means for representing both products and processes. Through DSM, we can 

represent hierarchical structures of both products and processes. The main 
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advantage of using DSM is the ability to identify interactions and iterations in a 

design process. Browning and Eppinger in (Browning and Eppinger 2002) use 

DSM to model processes as a set of activities and process architectures as processes 

along with their pattern of interaction. DSM is used for a variety of analyses like 

cost, schedule, risk tradeoffs, probability of rework, level of interactions, 

complexity, iterations and for process improvement. 

2. Design process viewed as functional evolution: Shimomura and co-authors 

(Shimomura, Yoshioka et al. 1998) view design as a process of functional 

evolution. Design is represented as a process in which a representation of a design 

object, which includes function, is gradually refined. The representation of design 

object is based on function-behavior-structure (FBS) model. Each functional 

evolution involves functional realization (i.e., converting a function into structure), 

functional evaluation (i.e., confirming functional description with behavior) and 

functional operation (i.e., adding functional elements and functional relations to 

functional description). The authors present functional content as a measure of 

functional satisfaction. One of the advantages of this technique is the ability to 

model the product (as FBS) and process (as functional evolution) in an integrated 

fashion. This model can be used to trace the design process and capture designer’s 

intention. 

3.  Design as evolution of product states: A view similar to the functional evolution is 

the evolution of states of product (Hsu, Tai et al. 2000). The design process is 

viewed as a problem solving technique by dynamically moving around product state 

space. A state represents the information about the product at a given point in the 
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design process. Tomiyama, Yoshikawa and co-workers (Tomiyama and Yoshikawa 

1986; Takeda, Veerkamp et al. 1990) view design as a mapping of a point in the 

function space onto a point in the attribute space. Ullman (Ullman 1992) has also 

viewed design as a design’s initial state and its refinement to the final state. 

According to Ullman, the essential components to characterize the design processes 

are: the plan, the processing action, the effect and a failure action. The effects of a 

design process on the artifact are abstraction, refinement, decomposition, 

combination, combination and patching.  

4. Maimon and Braha (Maimon and Braha 1996) present the use of analysis-synthesis-

evaluation (ASE) paradigm for representing design processes in terms of 

knowledge manipulation. The authors represent the design processes as tuples 

containing artifact space, specifications and transformation operators: analysis, 

synthesis and evaluation (ASE). Zeng and Gu (Zeng and Gu 1999) also use model 

similar to ASE for developing a mathematical model of the design process. The 

authors develop a basic mathematical representation scheme to define objects 

involved in the entire design process and investigate design processes with the 

mathematical representation of design processes. The elements of the design 

process proposed by the authors include synthesis and evaluation processes, design 

problem redefinition process, and design decomposition process. 

5. Design as knowledge manipulation: Another effort focused towards formalizing the 

representation of design knowledge within the design processes is by Maher (Maher 

1990). Maher presented three models for knowledge representation: decomposition, 

case based reasoning and transformation. The focus of the work was on design 
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synthesis for developing knowledge-based systems. Decomposition involves 

dividing large complex systems into smaller, less complex subsystems. Case based 

reasoning involves generation of design solution from a previous design problem. 

In transformation, the design knowledge is expressed as a set of general 

transformational rules that can be used in a variety of scenarios. 

6. Decision-based view of design: Decision-based design is another view of design 

that has been used for modeling design processes. Mistree and co-authors (Mistree, 

Bras et al. 1996) view design as a process of converting information into knowledge 

about the product and decisions are the key markers in the progress of design. 

Design process can be modeled as a set of decisions. The framework for designing 

developed with this mindset is the Decision Support Problem (DSP) Technique 

(Muster and Mistree 1988; Mistree, Smith et al. 1990; Mistree, Smith et al. 1991; 

Bras 1992; Mistree, Smith et al. 1993; Mistree, Bras et al. 1996). The DSP 

Technique palette contains entities for modeling design processes. It allows us to 

arrange and rearrange essential procedures or activities (Mistree, Smith et al. 1990). 

The entities in the palette are used to build hierarchies and model design processes 

independent of the design domain (Mistree, Bras et al. 1996). These entities are 

knowledge and information, tasks, decisions, events and phases. These entities 

transform information from one state to another as discussed in Section 1. In the 

DSP Technique, key decision types in engineering are identified: selection, 

compromise decisions and coupled decisions. These decisions serve as the 

backbone for modeling design processes. In order to generate information required 

for executing decisions, supporting tasks are performed.  
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7. Object-oriented representation of design processes: Gorti and co-authors (Gorti, 

Gupta et al. 1998) have developed object-oriented models for design processes and 

products. The key elements of a design process modeled by the authors in the 

design process are goal, plan, specification, decision and context. The design 

artifact includes function, behavior, structure, and causal knowledge relating objects 

to physical phenomena. Primary objective of the authors is to develop 

comprehensive engineering knowledge bases and the effort was not focused 

towards analysis of the process. 

Summary of design process representation using different views: These efforts 

towards modeling design processes are summarized in Table 2-5. It is important to note 

here that there is no single design process model that encompasses all the aspects of 

design. Some of the methods are focused on capturing processes to make organizational 

decisions, some towards understanding and capturing designers’ intentions, while others 

are focused towards artificial intelligence. Modeling is essentially representing a view of 

the real world. Hence, it is important to understand which view of the world is important 

in a given scenario. The view that we are interested in is: “the manner in which product 

information evolves”. Most views that researchers have taken towards modeling design 

processes are managerial in nature. Our focus is on providing design support at a designer 

level and not so much at a managerial level. 

Mathematical models for design processes 

In addition to the representation of design processes from different perspectives, a 

few efforts have also been made towards representing design processes as mathematical 

equations. These efforts are important from the perspective of designing design processes 
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because they formalize the design processes in a form suitable for mathematical analysis. 

In order to design the design processes, this is a fundamental prerequisite - to model 

design processes in a manner that they can be analyzed with respect to the impact of 

individual transformations on the product information, thereby providing a mathematical 

understanding of design evolution. Such an analysis of design processes is possible only 

if we can represent these processes in a mathematical form. Due to their importance in 

this context, they deserve a review in this section. 

Braha and Reich  argue that the two main reasons of casting design in mathematical 

terms are – a) mathematical models of design improve the understanding of limits of 

formalizing design and the limit of automating it, and b) studying the mathematical 

model of design could produce practical guidelines or ideas for implementing design 

support procedures or systems (Braha and Reich 2003). In this dissertation, we approach 

mathematical modeling of design processes from a standpoint of developing 

understanding and building strategies for designing design processes.  

Key efforts towards mathematical representation of design processes in terms of 

design equations include design equations developed separately by Suh (Suh 1990) and 

Bras (Bras). These efforts to mathematical modeling of design processes as equations are 

discussed next. 

1. Suh (Suh 1990) presented a design equation {FR} = [A]{DP}, which represents a 

mapping between functional domain and physical domain. Functional domain refers 

to what we want and the physical domain refers to the means for satisfying what we 

want. Functional Requirements (FR) in the design equation refers to the minimum 

set of independent requirements that completely characterize the functional needs of 
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the product design in the functional domain. Design Parameters (DP) are the key 

variables that characterize the physical entity created by the design process to fulfill 

the FRs. The matrix [A] in the design equation is called the design matrix. A 

similar vector equation can be written for manufacturing processes that maps 

physical domain to process domain.  

The structure of the design equation provides insight into the quality of design – 

i.e., whether the design is coupled, decoupled, or uncoupled. In an uncoupled 

design, the design matrix [A] is diagonal and each functional requirement is 

satisfied independently by design parameters. When the matrix is triangular, the 

design is decoupled, whereas any other form of matrix refers to a coupled design. 

The linear design equation is valid for only a given level of abstraction. Design can 

be represented at various levels of abstraction using the idea of zigzagging. 

Zigzagging refers to successive application of a) mapping of functional 

requirements to design parameters and b) decomposition of functional requirements 

to concrete subsets that can be mapped to design parameters at a lower level of 

abstraction (greater detail). 

Suh’s design equation is an embodiment of the two design axioms – independence 

axiom and information axiom, and forms a basis for axiomatic design. Hence, it 

serves as a guideline for what a good design is. Using the design equation, it is 

possible explain and quantify concepts such as coupling in design. Further, Suh’s 

design matrix shows what the characteristics of design should be in order to 

facilitate concurrent design (the overall product of design matrix should be 

decoupled – diagonal or triangular).  
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The design equation proposed by Nam Suh’s serves as a guide to the designer in 

differentiating good and bad designs. However, it is unable to capture - 

a) Complex relationships between entities of product information. This is because 

there is no information model associated with the design equation to represent FRs 

and DPs. Hence, relationships between parameters, functional requirements etc, are 

not captured. 

b) Activities (transformations) in design process other than mapping. The only 

transformation of information captured by the design equation is mapping from one 

domain to another. None of the other activities carried out in designs such as 

decomposition, abstraction, evaluation, etc are modeled as transformations in the 

design equation.  

c) The mathematical design equation proposed by Suh is not directly amenable to 

computational implementation of a design process. 

Suh’s design equation is primarily used for making decisions about the product 

(which design is better), not about the process. Suh’s design equation serves as a 

guideline for what a good design is but it does not provide any guidelines for 

designing design processes (especially since is only tied to one level of abstraction). 

The aspects related to meta-design such as - when to decompose, how to 

decompose, which design process path to select, etc. are not answered. Further, the 

design equation cannot be used to understand how the product information evolves 

along the design process. Reusability of design process related information is not 

addressed in Suh’s design equation.  
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2. Bras and Mistree (Bras) developed a generalization of Suh’s design equation. In 

their design equation, a single transformation in design process is represented as an 

algebraic design equation, namely K=T(I), where I is a vector with n components 

representing information and K is a vector with m components representing the 

knowledge. T is a vector function transforming the vector I into K. Suh’s design 

equation is a special case of the design equation developed by Bras and Mistree 

because Suh’s design equation captures only a linear transformation from one space 

to another, whereas, the design equation by Bras and Mistree captures non-linear 

transformations also.  

The meta-design equation is represented as [T]K I∆ = ∆ , where ,I K∆ ∆  represent 

difference in information and knowledge respectively. The DSP Technique allows 

formulation of the transformation function T() in terms of Decision Support 

Problems solvable on a computer. The focus while developing the design equation 

is on meta-design (designing design processes). The coupling between meta-design 

and design is shown as the following equation –  

( ( ))T
( )

i
ij

j

I
I

∂
=

∂
Τ  

This equation represents the need for integrated design of products and design 

processes. The meta-design and design equation represent only single 

transformations of information into knowledge. In order to capture the process 

consisting of multiple transformations of information into knowledge, the notion of 

a sequence is introduced. The design process equation is represented as –  

{Kk} = {Tk({Ik})} 

where {Ik}, and {Kk} are sequences of k vectors. 
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Note that since the process is represented as a sequence (read as set) of 

transformations, the connectivity of information flowing through the design process 

is not preserved. Again, the manner in which product evolves is not clear. Also, the 

relationships between elements of product information are not maintained. 

One of the advantages of design and meta-design equations is that they capture 

design history. As pointed out by Bras, the fundamental question to be answered in 

design of design processes is – “What is the best formulation of the design 

equation?” Bras used compromise DSP to design the design equation. “The 

compromise DSP for designing the design equation represents the highest level of 

decision making within the DSP Technique”. As in the case of Suh’s design 

equation, the compromise DSP can be applied recursively. The notion of hierarchy 

is inbuilt in design. The contents of the formulation of DSPs may change but not 

their structure. The transformation is a relationship that can occur in different 

forms, such as, computer program, knowledge base, rule network, etc. Hence, it is 

more suitable for computer implementation. Note – there is a difference between 

matrix [T] and function T(). DSP Technique uses function, whereas Suh uses 

matrix. At the meta-design level, however, matrix notation is used because we are 

considering a linear approximation. The design equation is left only at this level of 

detail. 

3. In Formal Design Theory (FDT) (Braha and Maimon 1998), the design processes 

are represented as a finite automaton 0, , , , , ,A SDP L Q P T T S F≡ , where L  denotes 

the design description, Q  is a set of finite process states, P  is a set of production 

rules, AT  is the analysis transformation, ST  is the synthesis transformation, 0S  is 
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the initial process state, and F  is a set of terminal process state. The design process 

involves a series of transformations that transform one process state to another. A 

process state is described by ,S M θ≡ , where, M  denotes the artifact description, 

and θ  denotes specifications. The series of transformations ends with a terminal 

process state. A transformation, which is described by two adjacent process states, 

is activated by a set of knowledge tokens in the form of rules included in the 

designer’s knowledge body. Later, in (Braha and Reich 2003), Braha and Reich 

represented the design processes as topological transformations in the design space. 

One of the important advantages of Braha’s model (Braha and Reich 2003) is that it 

explains abstraction and refinement as mathematical (topological to be specific) 

operations. None of the other models are capable of doing that. 

4. Zeng and Gu (Zeng and Gu 1999) presented a mathematical model of the design 

process. The authors develop a basic mathematical representation scheme to define 

objects involving the entire design process and investigate design processes via 

their mathematical representation. The design governing equation proposed by the 

authors is -  

( *( ( )))s pS K K Sλ=  

where, S is the product description, Ks is the synthesis knowledge, λ is the design 

specification predicate which denotes whether the structural and performance 

constraints are satisfied or not, and pK denotes the property (behavioral) knowledge 

that can be derived from product simulation. This is a recursive design equation 

because the product description (S) is defined in terms of itself. The design process 

is essentially the process used to solve this recursive equation. The mathematical 
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model for design process is illustrated in a graphical form in Figure 2-10. The 

authors propose a six step prescriptive method to solve this design equation by 

assuming that there are some primitive products that are known to the designers and 

the knowledge about their behavior exists. The steps in solving the recursive design 

equation include the following: synthesis and evaluation, design problem 

redefinition, and design decomposition. Each of these activities is defined in terms 

of set theory. The complete design process is defined in terms of a set-theory based 

mathematical language. The authors also proposed an accompanying mathematical 

model for the representing the product information. 

S
[P]
Rd

[S]
P

λ

pKsK

λ

Rd : Design requirements
S    : Product descriptions
[S] : Constraints on product descriptions
P    : Product performances
[P] : Constraints on product performances
Ks : Synthesis knowledge
Kp : Property knowledge

: Relation between S and [S], P and [P]λ  

Figure 2-10  - Design process model proposed by (Zeng and Gu 1999) 

 

Comparison of existing process modeling efforts  

From the review of literature on mathematical modeling of design processes, we 

observe that the two categories of design process modeling efforts (mathematically 

rigorous models and computer-based models) are being pursued rather independently. 

We envision that by integration of these two streams of modeling efforts, more effective 

design support tools can be developed. A comparison of four modeling efforts which are 

most applicable to the focus of this chapter is presented in Table 2-6. Activity based 

models are selected to represent a variety of modeling efforts such as DSM, PERT and 
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Gantt charts, etc. The three efforts - Zeng and Gu (Zeng and Gu 1999), Suh (Suh 1990), 

and DSP Technique (Bras) are selected because of their emphasis on mathematical 

modeling of design processes.  

Table 2-6 – A comparison of the key modeling efforts in design 
Requirements for Design Information 

Modeling Approach 
Activity 
Based 

Models 

Zeng and Gu 
(Zeng and 
Gu 1999) 

Suh 
(Suh 1990) 

DSP Technique 
(Bras) 

A) Support for designing design processes  
1. Existence of mathematical models for design  

processes and products   
(not for 

products) (not for products) 

2. 
Ability to model linkages between 
mathematical model and computational 
model to support execution 

    

3. 
 

Support for design decision making (the  
information model should capture designers’  
preferences, goals, etc.)  

    

4. Ability to define design problems      

5. Ability to identify better designs and suitable  
courses of actions     

B) Modeling process information  
6. Capability to define processes at all these 

levels of abstraction     

7. 
Support for Composability of sub-processes 
into overall processes 

(not at a 
computational 

level) 

(not at a 
computational 

level) 

(not at a 
computational 

level) 

(not at a 
computational 

level) 

8. 

Separation of problem formulation from 
process information and tool specific 
execution details    

(allows separation 
of problem and 
process, but not 

tool specific 
information) 

C) Modeling product information  
9. Capability to understand the evolution of 

product information along the design process     

10. Ability to generate meta-information about the  
design space      

11. Ability to represent uncertain information     
D) Reuse of information  

12. Support reusability of processes at 
computational level     

13. Modular use of processes for different 
products     

14. 
Modular use of processes for different design  
problems    

(not at 
computational 

level) 

 

As can be seen in Table 2-6, DSP Technique is the approach that is most suitable for 

addressing requirements presented in the previous section. This is due to a greater 

emphasis on a) meta-design, b) mathematical modeling of processes using design 

equation, and c) integration of mathematical models with computational models. Other 
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efforts focus mainly on mathematical modeling, but not on computational execution of 

processes. Hence, DSP Technique is used as a basis for development of the proposed 3-P 

approach. The details of the DSP Technique and the associated constructs useful for 

meta-design are discussed in Section 7.2.1. 

2.6.2 Existing Product Modeling Methods 
In addition to the design process modeling efforts, a number of efforts are also 

focused on modeling product information. The product models are relevant in the context 

of meta-design because the activities in a design process transform the product 

information from one state to another. Hence, the product information becomes an 

operand in the design equation. This section is devoted to the discussion of significant 

efforts towards developing product models. From this literature review, we identify the 

requirements for the product models to support meta-design. Similar to the process 

models, the models for product information can also be categorized into computer-based 

representations and mathematical models. Examples of mathematical product models 

include the models discussed in references (Braha and Maimon 1998) and (Zeng and Gu 

1999; Zeng and Gu 1999). There is a slew of computer-based representation of product 

information ranging from CAD formats to object oriented models. Some examples of 

computer-based representation of product models are presented in references (Gorti, 

Gupta et al. 1998), (Eastman, Bond et al. 1991), (Nell 2003; Peak, Lubell et al. 2004), 

and (Fenves 2001). Some of these modeling efforts are discussed next to provide a flavor 

of the available literature. 

Braha and Maimon (Braha and Maimon 1998), in their Formal Design Theory, 

develop an artifact representation consisting of a multiplicity of modules and 
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relationships among them. A design at any particular level of abstraction is a description 

of organized collection of constraints that are to appear in the physically implemented 

design. The artifact space is described as an algebraic structure of modules that are 

characterized as either basic or complex modules. An artifact space is a tuple <M0, C0, 

M*>, where M0 represent a set of basic modules, M* represent a set of complex modules 

that are developed by combinations of basic modules. The relationships between modules 

are represented as constraints C0. The complex modules can be used to represent 

hierarchy in product models. Braha and Maimon’s model is similar to the entity 

relationship models. The entities and modules are physical objects.  

The ‘Integrated Product and Process model’ developed by Zeng and Gu (Zeng and 

Gu 1999; Zeng and Gu 1999) consists of a mathematical description of the product. The 

product description consists of a set of basic elements and combination rules. These basic 

elements are the primitive components whose performance can be obtained independent 

of the other components. Examples of such basic elements in a mechanical design 

scenario include gears, shafts, bearings, etc. The assumption used for modeling product 

information is that any product can be broken down into sub-assembly components and 

their relationships. The basic elements are described in terms of a set of structural 

properties and associated values. An example description of a spring is {<d0, 25.0>, <d, 

2.0>, <d1, 21.0>, <L0, 234>, <Na, 11>, <Ni, 11>, <p, 20.0>}, where d0 is the outside 

diameter, d is the wire diameter, d1 is the inside diameter, L0 is the free length, Na is the 

number of active coils, Ni is the number of inactive coils, p is the pitch, and m is the 

material. The connectors are represented in a manner similar to the product 

representation. Using this description for basic elements, complex products are defined as 
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a set of components related to each other through component connectors. This introduces 

a hierarchy in the product description. 

Gorti and co-authors (Gorti, Gupta et al. 1998) developed an object-oriented 

representation for product and design processes. The objective in the representation is to 

develop a representation for engineering knowledge-bases in a layered fashion. The 

knowledge base is developed such that it supports stepwise refinement. The key aspects 

of the artifact represented in the product model include function, form, and behavior. The 

information model supports representation of constraints in the artifact information. The 

representation allows for comparison of similar objects in a meaningful way. 

Fenves (Fenves 2001) developed a basic information model for representing product 

information that is based on the function-structure-behavior view of design. The model is 

very general and serves as a foundation for development of domain specific information 

models. Eastman and co-authors (Eastman, Bond et al. 1991) developed a formal 

approach to product model information where the objective is to develop engineering 

databases schemas. The formal product modeling approach supports multiple levels of 

abstraction of information, provides support for form and physical properties, 

representation of semantics, provides capability to represent dependencies (database 

integrity) and constraints. The data-models are defined bottom-up from sets and predicate 

logic. The formal language used in the information modeling approach is based on first 

order predicate calculus. Other efforts such as Standard for Exchange of Product 

Information (STEP) are focused on improving data exchange mechanisms for 

engineering and design (Nell 2003; Peak, Lubell et al. 2004). 
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Based on the models described in this section, it is apparent that there are at least two 

common strategies adopted in each of these models. The first strategy is the adoption of 

function-behavior-structure model and the second strategy is the use of entity-relationship 

models for information representation.  

Use of Information Modeling in this Dissertation 

The role of information modeling in this design is highlighted in Table 2-1. 

Information modeling constructs are used in this dissertation to provide computational 

support for meta-design. In this dissertation, we use and develop the existing information 

modeling constructs for enabling the current simulation-based design frameworks to 

support meta-design. The constructs for product and process modeling are used for 

answering the third research question in the dissertation that is related to supporting 

meta-design in a computational environment. 

2.7 Role of Chapter 2 in the Dissertation 
The objective in this chapter is to introduce the fundamental constructs based on 

which the framework for integrated design of products and design processes is 

developed. Five fundamental constructs discussed in this dissertation include a) decision-

based design and DSP Technique, b) robust design, c) utility theory, and d) information 

economics, and e) information modeling in design. These fundamental concepts are used 

throughout the dissertation, with references to appropriate sections in this chapter. The 

utilization of these constructs in the development of different components of the 

framework is highlighted in Figure 2-11. 
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Figure 2-11 – Utilization of constructs presented in this chapter for a framework for 
integrated design of products and design processes 

 

 

 
 



   

 134

 

Chapter 3 A Method for Integrated Design of Multi-
scale Products and Associated Design Processes  

 

3.1 Context – Answering Research Question 1 - Designing 
Design Processes 

In this chapter, we present the first component of the framework: a design method for 

integrated design of products and design processes (see Table 3-1). The method is called 

a Robust Multiscale Design Exploration Method (RMS-DEM). The discussion in this 

chapter is focused on answering the first research question in this dissertation – “How can 

simulation-based multiscale design processes be designed in association with products?” 

This research question is supported by two hypotheses – “systematic, stepwise refinement 

of design processes and associated products increases the efficiency and effectiveness of 

design decision making (H1.1)”, and “design processes can be designed as hierarchical 

systems composed of repeating building blocks defined in terms of interaction patterns 

(H1.2)”. These two hypotheses are embodied in the design method presented in this 

chapter. The method is validated in Chapter 9 using an integrated materials and product 

design. The requirements, component of the framework and the validation example 

related to this chapter are shown in Table 3-1. 

Table 3-1 – Requirement of the framework addressed in Chapter 3 
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The design method consists of two phases – meta-design and design. In the meta-

design phase, the design process is designed and in the design phase, the process is 

executed to design the product. The two phases are carried out in a cyclic fashion with 

successive refinement of the design processes along with the refinement of the associated 

product (see H1.1). The second hypothesis (H1.2) is embodied via identification of 

reusable building blocks of design processes. These building blocks are defined in terms 

of interaction patterns between simulation models and between decisions. The research 

questions and hypotheses addressed in this chapter are highlighted in Figure 3-1. A 

Multifunctional Energetic Structural Material design example is used for validating the 

method presented in this chapter. The validation example is discussed in Chapter 9.  
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Figure 3-1 –Hypotheses addressed in Chapter 3  
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A pictorial overview of this chapter is presented in Figure 3-2. In Section 3.2, a brief 

overview of the strategy adopted in the design method is presented. The strategy consists 

of four foundational elements that form the basis for integrated design of products and 

design processes. For designing the design processes, it is important to be able to model 

them in a manner that supports their analysis and reconfiguration. Hence, before 

discussing the method for integrated design of products and design processes, it is 

important to discuss models used for representing design processes. The aspects of 

modeling design processes are discussed in Section 3.3. Existing literature on modeling 

and design of design processes is discussed along with the identification of needs that 

should be addressed in the design method. After discussing the gaps and requirements, a 

simple motivational example of design of structures is presented in Section 3.4. The 

structure design problem is used as a running example to demonstrate different aspects of 

the method, where it is discussed in Section 3.5. The method consists of six steps, each of 

which is discussed in Sections 3.5.1 through 3.5.5.  

 

Section 3.1: Context
• Addressing Requirement 1
• Answering RQ 1,
• Embodiment of H1.1, H1.2

Section 3.2: Strategy
• Designing Design Processes
• Systems-Based Approach for 

Meta-Design
• Reliance on Robust Design
• Value of Information

Section 3.3: Modeling
• Graph based Approaches
• Design Structure Matrix
• Requirements for Modeling 

Processes

Section 3.4: Example
• Structure Design Example
• Design Example Modeled as a 

Design Process

Section 3.5: Method
• Decision Network
• Reusable Process Patterns
• Design Process Simplification
• Process Execution and Verification
• Targeted Model Refinement

Section 3.6: Closure
• Relationship with the Rest of 

the Dissertation

Illustrative 
Example

General Strategy 
for the Method

 

Figure 3-2 – Pictorial overview of Chapter 3 
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3.2 Strategy for Integrated Design of Products and Design 
Processes 

In this section, we present our strategy for integrated design of products and design 

processes, which is based on the four foundational elements: 1) designing design 

processes in association with products, 2) applying systems-based approach for meta-

design, 3) reliance on robust solutions, and 4) systematic refinement of design. These 

elements of the strategy are discussed next. 

1. Designing design processes: The design processes for complex systems are often 

structured in an ad-hoc fashion based on the previous design experience. However, 

due to the complexity of multiscale systems, it is imperative that the design processes 

themselves be designed systematically based on the design problem at hand. This is 

because inefficient design processes can lead to longer design time, thereby leading to 

higher costs. This was also pointed out by Herbert Simon as “design process 

strategies can affect not only the efficiency with which resources for designing are 

used, but also the nature of final design as well” (Simon 1996). The design of design 

processes thus constitutes a necessary step for efficient utilization of information 

available from simulation models at multiple scales. Hence, the proposed design 

method consists of two phases – a) meta-design and b) design. During the meta-

design phase, the design processes are designed and during the design phase, these 

design processes are executed (Bras and Mistree 1991). This two-phase design 

method is shown in Figure 3-8. The method consists of six steps. These steps are 

discussed in Sections 3.5.1 through 3.5.5.  

2. Systems-based approach for meta-design: Our approach for designing design 

processes involves thinking about processes as systems that can be partitioned into 
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sub-systems with clearly defined interfaces. From a hierarchical systems standpoint, 

design processes can be progressively broken down into sub-processes that can be 

further represented in terms of basic design process building blocks, namely the 

information transformations. Specifically, we identify standardized design process 

patterns with well defined inputs and outputs that facilitate hierarchical modeling of 

design processes. These process patterns are captured as reusable templates used to 

model any multiscale design process. The design processes, modeled in such a 

manner, provide the ability to reconfigure them. Specific design process patterns 

identified in the case of multi-functional design processes are discussed in detail in 

Section 3.5.2. 

3. Reliance on robust design: Simulation models at multiple scales are characterized by 

uncertainty that should be taken into account during design decision making. Hence, 

the design methodology proposed for multiscale design is based on robust ranges of 

solutions instead of optimum point solutions. Consideration of robust ranges of 

solution is also important when the requirements change along the design process.  

4. Value of information metric for systematic refinement and simplification of design: In 

order to increase the efficiency of design processes, it is important that analysis model 

development and design exploration be carried out in a parallel fashion, instead of 

developing all simulation models to completion and then executing starting the design 

process in a sequential fashion. The objective here is to maximize design process 

efficiency by narrowing down the design space in the preliminary design phase by 

using approximate models and then performing finer design exploration using exact 

models. This is very important when the simulation models evolve with time. 
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Using these four guiding principles, we develop a method for the integrated design of 

products and design processes. Meta-design is one of the most important aspects of the 

method. Section 3.3 is dedicated to understanding the fundamental aspects of modeling 

and designing design processes. The remaining part of this chapter is focused on the 

method itself and a structural design example to demonstrate the utilization of the 

method.  

3.3 Modeling and Designing Design Processes 
In Section 3.3, we discuss a) current methods used to model design processes that 

support making meta-level decisions (Section 3.3.1), b) existing literature on designing 

design processes (Section 3.3.2), which is primarily available in the context of concurrent 

engineering, and c) our view of design processes – networks of information 

transformations (Section 3.3.3). These design process modeling and meta-design 

approaches are augmented and leveraged in the method developed in this Chapter in 

Sections 3.5.1 and 3.5.2. 

3.3.1 Modeling Design Processes – Network and Matrix-Based 
Approaches 

One of the simplest approaches used to represent design processes is the directed 

graph approach. These graphs are constructed with activities represented as nodes that 

are interconnected by arcs that represent information flows between activities. The arcs 

are directional relationships showing the source and sink of information flows (see Figure 

3-3(a)). Directed graphs serve as a good visualization tool for understanding the 

interdependencies between design tasks. They are used for simple design processes where 

there are only a few activities. They are not useful for representing complex processes 

because the directed graphs get cluttered easily with increase in number of nodes. 



   

 140

Another limitation of the directed graphs is their inability to express temporal 

precedence. 
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Figure 3-3 – Directed graph, PERT chart and Design Structure Matrix for modeling 
design processes (Gebala and Eppinger 1991) 

 
A modification of the directed graph approach is a PERT (Program Evaluation and 

Review Technique) chart, where the nodes of a directed graph are arranged along a 

timeline (see Figure 3-3(b)). In PERT charts, the tasks are placed along the arcs and 

nodes represent project milestones. The arc-lengths are proportional to the time required 

for execution of the design tasks. These PERT charts are generally used in scenarios 

where there are multiple ways of performing a design task, and the objective is to 

determine the path that requires minimum amount of time (i.e., critical path). PERT 

charts are popular in manufacturing processes. The main limitation of PERT charts is 

their inability to represent design iterations that are represented as loops in the directed 

graphs. 
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In addition to the graph based approaches for representing design processes, matrix-

based approaches are widely employed for modeling design processes. The matrix 

representation of processes is termed as the Design Structure Matrix (DSM) and was 

introduced by Steward (Steward 1981). A design activity composed on n tasks is 

represented as an n x n matrix where each row and column corresponds to a task. The 

elements of the matrix are used to indicate the presence and/or characteristics of the 

information flow between two tasks. Any directed graph can be converted into a DSM 

based representation. The simplest form of a DSM is a binary matrix that consists of 1’s 

to represent information flow between tasks and 0’s to represent that there is no 

information flow between tasks (see Figure 3-3(c)). It is easier to represent complex 

processes with greater number of tasks using the DSM. The DSM is amenable to analysis 

such as task sequencing and supports improvement in task sequence for increasing their 

concurrent execution. DSM allows representation of loops (iterations) in design 

processes. It is also possible to perform complex analysis on the processes by replacing 

the binary values in the DSM matrix to metrics that convey more information about the 

tasks and associated information flows. The DSM has also been used in the literature for 

modeling hierarchical tasks and information flows. In that case, each element in the DSM 

matrix corresponds to a sub-process that is associated with an independent DSM. Due to 

the capabilities to model processes in a systematic format amenable to analysis, the DSM 

approach has been employed to model design processes and is augmented to make them 

suitable for meta-level decisions. We discuss the existing literature on analysis and 

design of design processes using DSM in Section 3.3.2. 
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3.3.2 Design Structure Matrix for Designing Design Processes 
The Design Structure Matrix (DSM) is used as an aid for meta-design. The objective 

is to find a sequence of tasks that converts the DSM into a lower triangular matrix, 

because that implies that one task can be executed after another, which in turn means that 

all the information required for a task is available before its execution. In complex design 

problem, the DSM can rarely be converted into a lower triangular form due to the 

coupling between tasks. Hence, the DSM is converted into a block triangular form where 

the number of coupled elements is as low as possible.  

The DSM is mainly used for performing two types of operations on the design 

processes – a) partitioning, and b) tearing. Partitioning refers to re-sequencing the design 

tasks to maximize the availability of information required at each stage of the design 

process (Kron 1963; Gebala and Eppinger 1991). The key objective in partitioning (as 

used in the DSM literature) is to identify the best sequence in which design tasks should 

be executed such that the amount of information available for executing a design task and 

the concurrency between tasks are maximized. Partitioning also results in the 

identification of tasks that need to be executed in a coupled fashion. The partitioned 

design matrix is then simplified to executable form through tearing. Tearing refers to re-

sequencing coupled tasks to find an initial ordering to start iteration. Tearing involves 

removal of dependence between coupled tasks and/or assumption of some piece of 

information required to initialize iteration. Various algorithms are developed to facilitate 

partitioning and tearing Design Structure Matrices.  

Both partitioning and tearing are the key operations performed on DSM to modify the 

design processes. It is important to note that “the tool (DSM) does not actually show how 

to alter a design process; it merely provides a framework for analyzing alternatives” 
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(Eppinger 1991). The design processes can be altered in a number of ways depending on 

the objectives for meta-design such as maximum concurrency, minimum iteration, 

minimum feedback of information, minimum coupling between tasks, etc. As discussed 

before, the binary DSM represents only strict precedence relations. However, all the 

couplings between tasks are not of same strength. Some task dependencies are stronger 

whereas others may be weaker. The DSM is extended by including measures of degree of 

dependence, task durations, and execution time for different tasks. Other metrics that are 

considered for partitioning and tearing in DSM include task communication time, 

functional coupling, physical adjacency, electrical or vibration characteristics, parameter 

sensitivity, historical variance of task results, certainty of planning estimates, or volume 

of information transfer (Eppinger, Whitney et al. 1994). Multiple metrics can also be 

combined together to obtain design processes that satisfy multiple meta-design 

objectives. In the DSM, the strength of dependence is measured in terms of an 

importance ratio, which is determined by interviewing engineers. Statistical metrics are 

also developed to understand the iteration in design processes when the probability of 

additional iteration is known for a given sequence of interdependent tasks. Markov chain 

analysis is then used to determine the total iteration time. Another extension of the DSM 

involves quantifying the portion of information produced during the first iteration to be 

used during the second iteration. This metric allows analyzing the rework in a design 

process consisting of coupled system of tasks. Summarizing the use of DSM in designing 

design processes, the DSM serves as a basic framework that can be used with various 

metrics to configure design processes. 
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The DSM can be used to model relationships between tasks and between parameters. 

In the task level DSM, the tasks are represented in rows and columns and the elements of 

matrix represent information dependencies between these tasks. In the parameter level 

DSM, the dependencies on parameter values are modeled. This kind of formulation of 

DSM is useful in determining precedence relationships on the decisions about design 

parameters. Hybrid models that combine both task and parameter level DSMs are also 

developed. In this dissertation, we leverage the parameter level DSM to model 

simulation-based design processes. 

The Design Structure Matrix has been used in determining the best sequence of tasks, 

but due to the inherent structure of the matrix, the DSM is limited in its application for 

designing design processes. These limitations are discussed next. 

1. The DSM assumes a linear relationship between tasks and parameters. In 

simulation-based parametric design, this implies that the relationship between 

parameters is constant, independent on the values of the parameters. However, 

due to the non-linearity in an actual system, the strength of relationships between 

parameters is generally a very strong function of the values of design parameters. 

The strength of relationship has an impact on the strength of coupling between 

design parameters. The design parameters may be coupled in one region of the 

design space and decoupled at other regions. Such a behavior is not captured 

using the matrix representation, which is good for linear transformations only.  

2. Assuming that the system is linear and it can be modeled using a DSM. In such a 

simple case, numerical values can be used to represent coupling between 

tasks/parameters in the DSM. The DSM matrix can then be used to determine 
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strengths of coupling between sets of design parameters and the best sequence in 

which the parameter values can be determined. The DSM can also be used to 

determine the most important couplings, but the implications of a particular 

coupling on the designer’s overall decision making power are not considered in 

the DSM literature. Since our focus is to design products and design processes 

from a decision making perspective, it is essential to quantify the impact of 

coupling on decision making. The current form of DSM does not address the 

strength of coupling between decisions.  

3. The strength of coupling between parameters/tasks in DSM literature (Pimmler 

and Eppinger 1994) is measured in terms of qualitative terms such as required, 

desired, indifferent, undesired, and detrimental. Required information flow is 

necessary for functionality, desired information flow is beneficial, but not 

absolutely necessary for functionality, indifferent information exchange does not 

affect functionality, undesired and detrimental information exchange causes 

negative effects. Numerical values ranging between +2 and -2 are assigned to 

these qualitative terms. Such quantification is based on experience and human 

judgment and is sufficient (and possibly the best we can do) for measuring the 

coupling between tasks that involve human beings. However, in the simulation-

based design, where relationships between parameters are well defined and 

strictly based on physics, a better estimate of the strength of coupling between 

parameters is conceivable. These couplings between parameters are generally 

complex and hence, can’t be represented simply as numbers in the DSM. 
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4. The structure of DSM does not allow capturing the impact of uncertainty (and its 

propagation) due to a) simplification of design processes and b) approximate 

simulation models on the design decisions.  

5. Designers’ Preferences are not included in designing of design processes using 

DSM. This is a gap in the existing literature and is not a limitation of the DSM 

matrix. The set of design parameters can be extended to include additional 

parameters such as utility values that represent the designers’ preferences. 

Eppinger (Eppinger 1991) pointed out that while making meta-level decisions 

about the design processes, the designers have to account for the tradeoff between 

the accuracy in design by considering coupling between design tasks/parameters 

and the level to which design processes can be simplified. This tradeoff has not 

been quantified in designing design processes using DSM. The knowledge about 

this tradeoff can be utilized for meta-level decision making by capturing 

designer’s preference for the performance of design processes. 

As a summary, one of the main set of limitations in designing design processes using 

DSM approach is due to its linearity. Another set of limitations arise from the rather 

simplistic set of metrics used for measuring coupling between the parameters. DSM is 

useful in determining the sequence of tasks but for simulation-based parametric design, it 

is possible to gather more information and design the design processes in a more efficient 

manner. Hence, DSM is used as a backbone for configuring design processes. In the next 

section, we discuss the details of simulation-based design processes, which is a focus of 

this dissertation and provide a high level view of how it is used in the method discussed 

in Section 3.5. 
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3.3.3 Simulation-based Design Processes – Networks of Information 
Transformations 

The objective in this dissertation is to design simulation-based design processes, 

where networks of computer-based simulation codes are available to generate design 

information which is used for design decision making. The capabilities of parametric 

DSM are utilized in this dissertation to configure the sequence of decisions and model 

execution. The parametric DSM is also used to identify coupling between different 

decisions and models that increase the complexity of design processes. The analysis of 

coupling strength is however not performed in the manner proposed by Pimmler and 

Eppinger (Pimmler and Eppinger 1994). We use value of information based metrics to 

determine the impact of coupling on overall design. Before discussing how the DSM is 

used for initial configuration of design processes, we discuss the scope and view of 

design processes adopted in this dissertation. 

The scope of design processes considered in this dissertation is simulation-based 

parametric design. Hence, the information being transformed consists of a set of 

parameters. The parameters are either associated with a set of values or a single point 

value. Design information has traditionally been categorized into three categories – form, 

function, and behavior. Form is described by a set of parameters that can be controlled by 

the designer. Form parameters have a direct impact on system’s behavior. The behavior 

of a system can be determined directly from the system’s form and the interaction with 

the environment. Since we are dealing with simulation-based parametric design, we 

assume that the conceptual design has already been performed and the concepts for 

satisfying functional requirements have already been selected. Our focus is on early 

embodiment design phase, and hence, function is not dealt with in this dissertation. The 
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most important transformations in design processes, as highlighted by Gero (Gero 1990) 

include a) transformation of form into behavior and b) transformation of behavior into 

form. The former transformation is also called analysis, and is carried out using 

behavioral (simulation) models which are entirely based on the underlying physical 

phenomena. The latter transformation is referred to as synthesis, which is the inverse of 

analysis transformation. The objective during synthesis is to determine appropriate values 

of form parameters that satisfy given behavioral specifications. The form and behavior 

parameters, along with analysis and synthesis transformations can be modeled using the 

DSM matrix as shown in Figure 3-4. Although there are other transformations in design, 

we limit our discussion in this chapter to these two transformations only. The details of 

information transformations in design are discussed in Chapter 7. With this background 

of DSM for modeling design processes, we move on to a discussion of a sample design 

example to be used in the remaining part of the chapter. 

Analysis

Synthesis

Analysis

SynthesisForm

Behavior

Form Behavior

 

Figure 3-4 – Representation of form, behavior and associated transformations in 
parametric DSM 

 

3.4 A Simple Motivational Design Example – Design of 
Structures 

The components of the method for integrated design of products and design processes 

presented in this chapter are illustrated using a simple design problem – designing a 
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structure from a given starting topology and knowledge about applied forces such that the 

overall weight of the structure is as low as possible. The problem is chosen because of its 

simplicity and the ability to directly map the structure to a corresponding decision 

network. The details of the problem are discussed in Section 3.4.1 and the relevance of 

this problem to the method discussed in this Chapter is discussed in Section 3.4.2 . 

3.4.1 Structure Design Problem 
The problem is adapted from Chapter 15 of the book by Vanderbei (Vanderbei 1996). 

In this problem, the objective is to design a structure with pre-specified loading 

conditions such that resulting structure has the minimum possible weight. The structure is 

defined by a number of nodes, which are connected by a set of members. For example, 

consider the structure shown in Figure 3-5. The structure has a network topology with 

Nodes N1, N2, N3, N4, and N5. The elements connecting the nodes are E12, E13, E14, 

E23, E24, E34, E35, and E45. The elements are straight lines connecting the nodes. Edge 

Eij connects nodes Ni and Nj, and is therefore represented as Eij = {Ni, Nj}. Eij and Eji 

denote the same element. The topology of the structure can be represented in the form of 

a matrix S , where a) 1ijS =  if there is an element between node Ni and node Nj, b) 

0ijS =  if there is no element connecting nodes Ni and Nj. For the structure shown in 

Figure 3-5, the corresponding matrix is: 

0 1 1 1 0
1 0 1 1 0
1 1 0 1 1
1 1 1 0 1
0 0 1 1 0

S

 
 
 
 =
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It is assumed that the forces are applied only on the nodes. In the problem, the starting 

configuration of the structure is known. All the elements are connected with pin joints. 

The constrains to be satisfied for the design problem result directly from the force 

balance conditions on the nodes and the moment balance conditions for the structure. The 

topology design problem is summarized as –  

Given: 
 Location of nodes, 
 External Forces applied on the nodes, 
 The elements connecting  
Find: 
 The thickness of each element 
Satisfy: 
 The force balance at the nodes 
 Moment balance for the structure 
Minimize: 
 Overall weight of the structure 

N1 N2

N3 N4

N5

E12

E13

E14
E23

E24

E34

E35 E45

 
Figure 3-5 – Example topology of a structure 

The force exerted by a member Eij on the end nodes (Ni, Nj) is represented by ijx . If 

ijx  is positive, it represents tension in the member, whereas if it is negative, it represents 

compression. Unit vector along an element Eij, from node Ni to node Nj is denoted by 

iju . The net external force applied at a node Ni is denoted by ib . Using the force balance 

conditions at a node Ni is expressed as the following linear constraint: 

: 1ij

ij ij i
j S

u x b
=

= −∑  
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For a structure with n nodes, there are n constraints for force balance in each 

orthogonal direction. Hence, for a two dimensional truss, the number of constraints is 

twice the number of nodes. These n constraints can be written in matrix form as: 

Ax b= −  

The matrix A consists of the unit vectors describing the elements of the structure, and 

is also called the incidence matrix. The objective is to minimize the weight of the 

structure, which is the sum of weight of individual elements. Considering uniform 

material properties for all elements, the weight of each element is proportional to the 

product of their length and the cross-sectional area. If we assume that the stress in each of 

the links is same, the cross-sectional area of each element is proportional to the force 

acting on the link. Hence, the weight for each link is proportional to the product of its 

length and the force acting on it. The problem can be formulated as the following 

traditional optimization problem: 

Minimize 
1ij

ij ij
S
i j

Obj l x
=

>

= ∑  

Subject to 
: 1

1..
ij

ij ij i
j S

u x b i n
=

= − =∑  

A two dimensional structure is a truss if there are exactly (2 3)n −  members. There is 

exactly one solution if a structure is a truss. However, if the structure has redundant 

members, then there may be more than one structure that satisfies the force constraints. 

The configuration with lowest weight will be the selected by solving the optimization 

problem. Please note that only structures with more number of elements than that 

required for a truss are interesting from the optimization perspective. There are five nodes 

in the structure presented in Figure 3-5. The number of elements corresponding to a truss 
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with five elements is (2*5-3)=7. Since there are eight members in the structure in Figure 

3-5, this is a redundant structure and there are multiple options that satisfy the force 

constraints. These options result in structures with different weights.  

Note that the constraints in the optimization problem are all linear in the force acting 

on the members. However, the objective function is non linear due to the presence of 

absolute values of forces. Hence, a non-linear optimization program can be used to 

minimize the overall weight of the structure. The problem can also be converted to a 

linear optimization problem by replacing the variable ijx with difference between two 

non-negative variables as follows: 

, , 0ij ij ij ij ijx x x x x+ − + −= − ≥  

ijx+ is the tension part of the force in the member, and ijx− is the compression part. The 

absolute value of the force ijx is therefore equivalent to the sum of the tension part and 

compression part. The linear optimization problem is formulated as: 

Minimize 
1

( )
ij

ij ij ij
S
i j

Obj l x x+ −

=
>

= +∑  

Subject to : 1

( ) 1..

, 0
ij

ij ij ij i
j S

ij ij

u x x b i n

x x

+ −

=

+ −

− = − =

≥

∑
 

A program for solving general structure optimization problems is written in Matlab. 

The linear optimization routine ‘linprog’ is used to optimize the objective. The program 

is used to determine the dimensions of starting structure shown in Figure 3-5 with loads 

applied to all five nodes as shown in Figure 3-6(a). The resulting structure obtained by 

solving the linear optimization problem is shown in Figure 3-6(b). The dotted lines are 
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used to show where a starting element was present in the starting structure but were 

removed as a result of weight minimization. The line widths in Figure 3-6(b) are 

proportional to the forces acting on corresponding members (and hence, their cross-

sectional area). 

External Force

a) Starting Structure with Applied Loading b) Resulting Structure with Minimum Weight

 

Figure 3-6 – Design of structure with five nodes and specified loading 

3.4.2 Structure Design Problem Modeled as a Design Process 
Although the structural design problem is interesting in its own right, the solution of 

the problem itself is not directly relevant to the core contribution in this dissertation. 

What is more interesting, is the relationship of this problem to design processes. The 

structure design problem involves deciding on the cross-section area of each element. 

There are eight decisions in the topology shown in Figure 3-5. Given the external load 

applied on a node, decisions related to each element connected to that node depend on 

each other (i.e., decisions are coupled). If we denote the decision related to element E12 

as ‘d1’, decision related to element E13 as ‘d2’, and so on (see Figure 3-7(a)), we can 

illustrate the dependencies between decisions in the form of a network as shown in Figure 
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3-7(b). Therefore, a structure design problem can be viewed as a network of decisions 

that are related to each other. 

Structure

1 2

3 4

5

d1

d2

d3
d4

d5

d6

d7 d8

1 2

3 4

5

d1

d2

d3
d4

d5

d6

d7 d8

di = Decision about the thickness 
of i’th element

d1

d3 d4

d2 d5

d6

d7
d8

di Decision

Information Flow

(a) Decisions associated with 
each element

(b) Network of Decisions 
corresponding to the structure

 
Figure 3-7 – Mapping the topology of the structure to a decision network 

The network in Figure 3-7(b) is non-directional, which implies that there is no 

decision-making sequence of imposed on the network. Hence, a coupled decision-making 

is suggested from the network. From the perspective of designing corresponding elements 

of the structure, coupled decision making refers to the fact that the complete structure 

needs to be designed together. There is no subset of the structure that can be designed 

independent of the other part of the structure. If there is a directionality imposed on the 

network, it means that some of the decisions can be made in an independent manner and 

the result of these decisions can be used for making remaining decisions. All the 

decisions are linked with each other, implying that the decisions cannot be carried out in 

parallel either. From a meta-design (designing design process) perspective, the objective 



   

 155

is to understand the topology of this network and the manner in which decisions are 

linked with each other, the strength of linkages between decisions (i.e., the information 

flows) etc. The network representation does not show the strength of linkage between 

decisions. The strength of relation between decisions for the structure design problem is 

directly a function of the topology and geometry – the angles between elements and the 

lengths of elements, which is captured in the incidence matrix A described in Section 

3.4.1. The incidence matrix consists of one column for each element, which is equivalent 

to saying one column for each decision. There is one row for each node for each 

dimension. Hence, the total number of rows is equal to the product of nodes and 

dimensions. The numerical value of a number in the incidence matrix represents the 

component of unit vector in the direction of an element at a given node. The incidence 

matrix corresponding to structure from Figure 3-5 is shown in Table 3-2. Note that there 

are two rows for each node because this is a two-dimensional problem. The network 

representation of decisions can be directly generated from the incidence matrix.  

Table 3-2  - Incidence matrix for stucture shown in Figure 3-5 
d1 d2 d3 d4 d5 d6 d7 d8

1 0 0.70711 0 0 0 0 0
0 1 0.70711 0 0 0 0 0

-1 0 0 -0.70711 0 0 0 0
0 0 0 0.70711 1 0 0 0
0 0 0 0.70711 0 1 0.70711 0
0 -1 0 -0.70711 0 0 0.70711 0
0 0 -0.70711 0 0 -1 0 -0.70711
0 0 -0.70711 0 -1 0 0 0.70711
0 0 0 0 0 0 -0.70711 0.70711
0 0 0 0 0 0 -0.70711 -0.70711Node 5

Node 1

Node 2

Node 3

Node 4

 

Having discussed the relationship between the structural design problem and the 

decision networks, we now discuss the key characteristics of the problem and its 

utilization in this chapter to explain the method for integrated design of products and 
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design processes. The first reason for selecting this problem is that the problem is that 

there is a one-to-one correspondence between the topology of the structure and the 

coupling between decisions. It is easy to visualize the relationships between decisions 

directly from the structure. The second advantage of selecting this problem is that it can 

be formulated as a linear problem and hence, can be represented in a matrix form. The 

synthesis transformation – evaluation of form parameters (i.e., the cross-sectional area of 

elements) from the behavior (i.e., the tension and compression forces in the link) – is a 

linear relationship and can be easily represented in the DSM. It is also relatively easy in 

this problem to show the effect of decoupling different decisions and parameters. The 

strength of couplings between decisions can also be evaluated directly from the elements 

of incidence matrix.  

In spite of the fact that the problem is simple it also includes the elements necessary 

to show the different aspects of the method. The problem is a realistic simulation-based 

design problem that encompasses all the three design transformations – analysis, 

synthesis, and preference evaluation. The problem can be formulated as a hierarchical 

multiscale design problem. As a summary, the problem is rich enough to demonstrate 

the different aspects of the method and is simple enough to do that easily. 

3.5 Method for Integrated Design of Multi-scale Products and 
Associated Design Processes 

 
The design method proposed for multiscale design consists of six steps, as shown in 

Figure 3-8, and is based on the four elements discussed in Section 3.1. The method is 

called Robust Multiscale Design Exploration Method (RMS-DEM). The first three steps 

in this method constitute meta-design phase where the design process is designed. During 
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these three steps, the first two elements -designing design processes and systems based 

approach for design processes are embodied. Steps 4, 5 involve execution of design 

processes (design phase). These steps embody the robust design principles. Step 6 relates 

to the refinement of simulation models and the design solution. Steps 3 and 6 of the 

method involve use of value of information based metric. In this section, only an 

overview of these two steps is provided. The details of evaluation of value of information 

and its use for design process simplification and refinement are described in Chapter 4 

and Chapter 5. The key steps in the method are illustrated using the structure design 

problem from Section 3.4. In the following sections 3.5.1 through 3.5.5, the details of the 

steps in the method are provided. 

Design Requirements

Design Solution

Design ProcessDesign Process

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

Meta Design Phase

6. Refine Models and 
Design Solution

6. Refine Models and 
Design Solution

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

Design Phase

Decision Network

Design Processes

Design Outcome

 

Figure 3-8 – Method for integrated design of products and design processes  

 

3.5.1 Develop a Decision-Network Based on Available Simulation 
Models and Requirements Hierarchy 

The first step can further be divided into the following sub-steps (see Figure 3-9):  
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Step 1.1. Identify the requirements/ objectives hierarchy,  

Step 1.2. Assign preferences for behavior specifications 

Step 1.3. Populate the available analysis models into a DSM 

Step 1.4. Identify the simulation models and form attributes required to satisfy the 

behavior specifications 

Step 1.5. Rearrange the rows and columns of DSM matrix to lower triangular matrix 

and identify the network of decisions (coupled and sequential) 

Step 1.6. Identify analysis models that support decisions in the decision network 

Design Requirements

Design Solution

Design ProcessDesign Process

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

Meta Design Phase

6. Refine Models and 
Design Solution

6. Refine Models and 
Design Solution

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

Design Phase

Decision Network

Design Processes

Design Outcome

1.1. Identify the requirements/ 
objectives hierarchy

1.2 Assign preferences for 
behavior specifications

1.3. Populate the available 
analysis models into a DSM

1.4. Identify the simulation 
models and form attributes 

required to satisfy the behavior 
specifications

1.5. Rearrange the rows and 
columns of DSM matrix 

1.6. Identify analysis models that 
support decisions in the decision 

network
 

Figure 3-9 – Step 1 in the design method 
 

Step 1.1: Identify the requirements/ objectives hierarchy: A design process starts with 

clarification of task, which results in a specification of requirements for the overall 

system. These requirements are broken down hierarchically into requirements for 



   

 159

individual subsystems. Requirements for individual sub-systems are then partitioned in 

terms of multiple functions, associated performance characteristics, and properties. For 

example, during the design of automobiles, the performance requirements are defined in 

terms of the engine power, structural requirements, fuel consumption, etc. This 

hierarchical structure of requirements, performance and properties is termed as the 

requirements hierarchy. It is desired that the leaves of the requirements hierarchy be as 

detailed as possible. For simulation-based parametric design discussed in this 

dissertation, we assume that requirements can be hierarchally described to the level of 

parameters that describe the system behavior. The objective of design is to select 

appropriate values for the form variables that satisfy the target values for parameters 

describing system behavior. 

Step 1.2: Assign preferences for behavior specifications: After the requirements are 

specified in terms of the behavior parameters (attributes), the next step is to quantify the 

individual preferences for each of the behavior parameters. These individual behavior 

specifications map different levels of achievement of an attribute to a real number. The 

preferences can be specified in a variety of ways such as specifying target values, value 

functions, etc. In this research, the preferences are quantified as utility functions. The 

details of utility functions and their formulation are discussed in Section 2.4.  The 

individual preferences for behavior parameters are combined together using system level 

preferences that determine how much the achievement of one behavioral parameter is 

valued over the other. These system level preferences are useful in evaluating different 

design options with the tradeoffs between different conflicting conditions. Formalization 

of system level preferences is important for multi-functional design.  
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Step 1.3: Populate the available analysis models into a DSM: The target values of 

properties are achieved by appropriate values of design variables that define the form of 

the system. Having modeled the behavior attributes and the preferences, the objective is 

to determine the design variables (associated with the form) that can be used to satisfy the 

requirements and the sequence in which they must be evaluated. This is carried in the 

steps 1.3, 1.4 and 1.5 using the DSM matrix (Kusiak, Wang et al. 1995). The DSM 

captures the relationship between the requirements hierarchy and the form parameters.  

It is assumed that during the start of design process, a number of simulation models 

are available at different scales of length and time. The input/output information for these 

models is used to determine the flow of information between these models. These models 

are then organized hierarchically based on their length scales to form a simulation model 

hierarchy. After the two hierarchies for decisions and simulation models are developed, 

the next step is to map the two hierarchies in order to determine which simulation models 

can be used to support different decisions. Some of the decisions can be made in parallel, 

while others need to be made in a sequential fashion. The objective of this step in the 

method is to organize the simulation models by imposing precedence relationships, the 

result being a sequence (network) in which the models need to be executed in order to 

satisfy the design requirements.  

Assuming that the designers have at their disposal a list of analysis models with some 

parameters as inputs and outputs, a parametric DSM is formulated. The rows and 

columns of the DSM correspond to the parameters that are inputs/outputs in the analysis 

models. An element D(i, j) of the DSM matrix is populated with the corresponding 

analysis model if there is an analysis model that has jth parameter as input and the ith 
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element as an input. This is illustrated using an example in Figure 3-10. In this figure, 

two analysis models – A1 and A2 are shown along with five parameters a, b, c, d, and e. 

The input and output parameters for both the analysis models are shown in the figure. 

Corresponding to these inputs and outputs, a parametric DSM matrix is also shown, 

which is used in Steps 1.4, 1.5 and 1.6. The matrix is useful in determining the coupled 

parameters. For example in Figure 3-10, the analysis models A1 and A2 are coupled 

because there is an element above the diagonal in the matrix. The DSM matrix can be 

partitioned into analysis and synthesis blocks by identifying the parameters as form 

parameters and behavior parameters. The variables that are neither form variables nor 

behavior variables are intermediate variables. In the example, if a and b are form 

variables, d and e are behavior variables, c is an intermediate variable. Submatrices that 

are associated with analysis and synthesis can be identified from the complete DSM 

matrix by identifying the design variables and response variables. The DSM matrix is 

organized as shown in Figure 3-4. 

A1

A2

a
b

d
e

c

b

d

A1

A2

a
b

d
e

c

b

d

A2A2

A2A2

A1A1A1

A2A2

A2A2

A1A1A1

a

b

c

d

e

a b c d e

 
Figure 3-10 – Example showing use of parametric DSM for modeling network of 

analysis models 

Step 1.4: Identify the simulation models and form attributes required to satisfy the 

behavior specifications: Using the behavior parameters identified from requirements in 

Step 1.1, the DSM matrix is traced to identify the minimum set of design variables that 

can be used to satisfy the design requirements. The parameters that affect a given 
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behavior parameter can be identified by traversing the rows corresponding to the 

behavior specification and determining the columns (and corresponding design variables) 

that have a non-empty element in the DSM. The analysis model marked in that element 

of the DSM matrix is required for predicting the behavior. For example, in the DSM, the 

non-empty elements corresponding to row e are b and c. Hence, in order to evaluate the 

behavior parameter e, the required inputs are b and c. Similarly, the parameters and 

models required to evaluate these parameters can be determined by traversing the rows 

corresponding to b and c. After all the required form and intermediate parameters are 

determined, the remaining parameters can be eliminated from the DSM matrix.  

Step 1.5: Rearrange the rows and columns of DSM matrix to lower triangular matrix 

and identify the network of decisions (coupled and sequential): In this step, the DSM that 

consists of the minimum required parameters is rearranged to maximize the amount of 

information available before executing a simulation model. This is important to maximize 

the concurrency in executing simulation models and choosing the right sequence for 

execution of analysis models. Algorithms for performing this step are available in the 

DSM literature. This step is also important because it helps in identifying the couplings 

between simulation models that need to considered, and the sequence of those couplings. 

In general, the impact of a coupling that exists earlier in the analysis chain is greater than 

a coupling later in the analysis chain. Using this re-organized DSM matrix, the network 

(sequence if the design variables are not coupled) in which the values of design variables 

need to be selected is determined. This network is referred to as the decision network.  

Step 1.6: Identify analysis models that support decisions in the decision network: The 

decisions in the decision network can then be assigned to analysis models that generate 
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information for decision making. This step is performed by identifying the analysis 

models from the elements in the DSM matrix. This concludes the first step in the design 

method. The outcome of the Step 1 in the design method is formulation of decision 

networks with corresponding simulation (analysis) models required to generate 

information for executing those decisions. The second step in the design method is to 

identify repeating patterns of decisions and models and assignment of design processes to 

those patterns. The second step in the method is discussed in detail in Section 3.5.2. 

3.5.2 Model Design Processes Using Reusable Process Patterns 
The second step in the design method involves developing the network of decisions 

further into a design process at the level of detail consisting of tasks and information 

flows. This step is carried out by recognizing that the design process can be broken down 

into standardized building blocks. The building blocks are considered to be standard 

because not do only they occur in any design process, but also they can be used to model 

any design process. The building blocks used for modeling design processes are 

identified by observing regularities in design processes. According to Nikos A. 

Salingaros (Salingaros 2000), “the ability to observe patterns gives us the human 

advantage of both adapting to, and changing our environment”. Patterns represent 

regularities that recur in a particular design domain, and have been successfully used in 

architecture and design of software programs. According to Alexander and co-authors 

(Alexander, Ishikawa et al. 1977), a pattern describes a problem that occurs over and over 

again in our environment, and then describes the core of solution to a problem, in such a 

way that the solution can be used a million times. Patterns can be defined in many 

different ways – in software design, Gamma and co-authors (Gamma, Helm et al. 2000) 
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describe patterns in terms of the behavior of objects, structure of interactions between 

objects, and the manner in which they are created. Alexander describes patterns for 

architectural design in terms of neighborhood boundary, main gateways, arcades, etc. 

It is important to note that there is no unique way of describing the patterns. Patterns 

are generally identified by recognizing certain characteristics of the system that are 

important in a given context. Since the context in this dissertation is simulation-based 

multiscale design, we have identified patterns based on interactions between simulation 

models at multiple scales and between decisions. Interaction between decisions and 

models is taken as a basis for defining patterns in design processes because a) 

interactions primarily define the flow of information between tasks, and b) the types of 

interaction dictate the kind of design process to be used for design. The patterns based on 

interactions between decisions and models are also useful in simplifying the design 

processes in the third step of the design method. The simplification of design processes 

using the interaction patterns is discussed in Section 3.5.3. 

The interaction patterns used as patterns in the design method are shown in Figure 

3-11 and organized in a 3x3 matrix form. The three columns of the matrix represent three 

different types of interactions – i) independent, ii) dependent, and iii) coupled. In the 

independent scenario, both the microscale and macroscale simulation models can be 

executed in a parallel fashion. The dependent scenario represents one way (sequential) 

flow of information, where the information generated by microscale model is fed into the 

macroscale model. In the coupled scenario, both these models need to be executed 

together with a two-way flow of information between them. Such a classification is also 

common the DSM literature (Eppinger 1991), where the flow of information between 
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tasks is defined as independent tasks, dependent tasks, and interdependent tasks 

respectively. 

The classification in three rows of the matrix is based on design variables and 

responses associated with different models and multi-functionality. In the first row, the 

macroscale model has design variables and response variables associated to it, whereas in 

the second row, both the microscale model and macroscale models are associated with 

design and response variables. The third row represents a multifunctional design scenario 

where at each level, there are different models that predict the system behavior for 

different functional characteristics (such as thermal, impact, vibration, etc.). 

Multi-functional

Design Freedom at 
both Micro and 

Macro-scale

Information Passing 
from Micro-scale to 

Macro-scale

Independent
Dependent 

(one-way flow of information)
Coupled 

(Two-way flow of information)

P1 P2 P3

P6

P9P8P7

P4 P5
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X2 Y2
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Design Variable/Response  

Figure 3-11 – Interaction patterns in multiscale design 
Interaction patterns P1, P2, and P3 shown in Figure 3-11 are represented in a matrix 

form as shown in Figure 3-12. The variables labeled xi represent design variables and the 

variables labeled yi represent response variables. The boxes labeled Ai are the analysis 

models that transform the design variables into response variables. Similarly, the matrix 

representations corresponding to patterns P4, P5, and P6 are shown in Figure 3-13.  
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Figure 3-12 – Patterns P1, P2, and P3 in represented in the matrix form 
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Figure 3-13 – Patterns P4, P5, and P6 represented in matrix format 

The boxes labeled Di are decisions where design variables are evaluated based on the 

desired response values. Notice that in both the figures, the analysis and synthesis 

components of the DSM matrix are labeled with corresponding analysis models and 

decisions. The two shaded regions in the DSM matrix correspond to the information flow 
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between analysis models and decisions. The bottom-right shaded sub-matrix corresponds 

to information flow between analysis models and the top-left sub-matrix corresponds to 

the information flow between decisions. If the shaded sub-matrices are empty, there is no 

information flow (e.g., in patterns P1, P4). If the sub-matrix is lower-triangular, the 

information flow is sequential (e.g., in patterns P2, P5), whereas if the matrix is not lower 

triangular, the flow is coupled (e.g., in patterns P3, P6). 

Although the DSM matrix corresponding to the interaction patterns are shown with 

single inputs xi and single outputs yi from the models and decisions, the same matrix 

representation can be applied for models where there are multiple inputs and outputs. In 

that case, the Xi and Yi represent an array of inputs and outputs respectively. The same 

set of interaction patterns can be extended to represent complex decision and model 

networks if each model/decision in the interaction patterns represents a network of other 

models/decisions viewed as a black box. The black box can then be represented as 

interactions between other lower level black boxes. It can be shown that any DSM matrix 

can be represented hierarchically in terms of these patterns P1 through P9. Hence, these 

nine patterns are termed as the basic design process patterns. Examples of decision 

networks with multiple decisions and simulation models represented in terms of the basic 

patterns are provided in Chapter 9. The applicability of these basic patterns to any 

network of decisions/models is very important because it allows us to consider only these 

patterns for analysis of design processes and extend the results to other composite 

patterns that can be developed by combining the basic patterns. 

Using the network of models and decisions developed as a result of Step 1, the second 

step in the design method shown in Figure 3-8 is identification of interaction patterns 
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from the decision network and associated design processes. This is carried out in the 

following sub-steps: 

Step 2.1. Model the network of decisions and associated simulation models using 

basic interaction patterns, 

Step 2.2. Associate individual interaction patterns with design sub-processes,  

Step 2.3. Compose design sub-processes to develop overall design process 
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Figure 3-14 – Step 2 in the design method 

Step 2.1: Model the network of decisions and associated simulation models using 

basic interaction patterns: The decision network, which is an outcome of the Step 1 is 

successively partitioned into two sets of models/decisions and the interaction between the 

two sets is identified. The two subsets can be identified by first considering an 

independent interaction pattern, then a sequential pattern, and finally a coupled 

interaction pattern. The DSM matrix can be converted into an independent pattern if it 

can be converted into a block diagonal form. The matrix can be converted into a 

sequential pattern if it can be converted into a diagonal form with block diagonals. 

Finally, if the matrix cannot be converted into block diagonal or lower triangular with 
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block diagonals, a coupled interaction pattern is used. Based on this interaction, 

interaction patterns (P1 through P9) are assigned to the two sets. Then, each subset in the 

interaction pattern identified and the associated sub-matrix is considered for mapping to 

interaction patterns. This process is carried out until the subsets cannot be divided further. 

The interaction patters at various levels in the hierarchy are then assigned to design 

processes assigned to individual design processes in Step 2.2 and the design processes are 

composed together in Step 2.3. 

Step 2.2: Associate individual interaction patterns with design sub-processes: As 

mentioned before, the interaction patterns are provided labels from P1 through P9. The 

primary advantage of this classification is that each type of interaction pattern is 

associated with a design process that represents the design exploration and decision 

making loop to be used in the overall system design process. Some examples of specific 

design processes associated with these interaction patterns are presented in Section 3.5.4. 

These interaction patterns embody the systems view of design processes because design 

processes can be modeled at various levels of abstraction by using the same set of 

patterns. In other words, the system level design processes can be composed using 

predefined design processes associated with each of these standardized interface patterns. 

Further, these interaction patterns are domain independent and hence, can be applied to 

any kind of a multiscale design problem.  

Step 2.3: Compose design sub-processes to develop overall design process: After the 

design processes are assigned to individual interaction patterns, the design processes are 

combined together and the information flow for the complete design process is 

determined. The composition of design processes and assignment of design processes to 
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interaction patterns is simple from the point of view of determining the flow of 

information between tasks, but it imposes a number of requirements for the 

computational frameworks on which the design method is implemented. The details of 

requirements for the implementation of this method on a computational framework are 

discussed in Chapter 7 and a proposed implementation is discussed in Chapter 8. 

3.5.3 Design Process Simplification 
Multiscale, multifunctional design processes are generally complex because of the 

inherent coupling between various scales. An independent type of design process takes 

less time to execute when compared to a decoupled (dependent) design process, which in 

turn takes less time than its coupled counterpart. By de-coupling a coupled system, 

designers can reduce the complexity of design processes but increase the uncertainty in 

the design. Hence, the designers are faced with the meta-level decision involving tradeoff 

between simplification of design process and effectiveness of the final design. 

Appropriate simplification of the design process by reducing coupling is very important 

for design exploration. In the context of interaction patters discussed in Section 3.5.2, the 

complexity increases from left-to-right and from top-to-bottom in the matrix of 

interaction patterns, as shown in Figure 3-15. Interaction Pattern P9 results in the most 

complex design process whereas the processes associated with Pattern P1 are the 

simplest. While going from the left-to-right column, the complexity increases because of 

increased coupling. The complexity in second row is higher than the first row because 

design exploration needs to be carried out at both scales. The increase in complexity from 

second to third row is because of the additional coupling between functions at a given 

scale in a multifunctional scenario. Hence, the objective during process simplification is 
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to systematically go from Pattern P9 to Pattern P1 as shown by the circular arrows. This 

objective gives rise to the need for defining a metric that guides designers to determine 

the right level of simplification of interaction patterns. Note that in this dissertation, the 

scope of simplification of design processes is limited to simplification of interaction 

patters.  
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Figure 3-15 – Complexity in the simulation model interaction patterns 

Related work on measuring the complexity of processes (Braha and Maimon 1998; 

Buede 2000) is focused mainly on the quantifying the interactions between different 

systems. Some of the metrics capture only the number of interacting tasks, whereas other 

metrics capture the strength of these interactions. In other words, existing measures of 

quantify the coupling between system’s inherent behavior only. However, the 

simplification of design processes is dependent on three factors – a) the coupling inherent 

in the system behavior, b) the designers’ preferences, and c) the stage in the design 

process. Coupling in system’s behavior is captured in the simulation models and the 
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relationship between design variables and responses. Designer’s preferences may either 

amplify or diminish the effect of coupling in the system. Similarly, the stage in the design 

process may dictate whether some coupling between design variables and responses is 

important. For example, a simple design process may be good enough in the preliminary 

design phases where the objective is to reduce the number of options to a few promising 

options. However, in the detailed design phase, it may not be appropriate to simplify the 

design process. This also indicates the appropriateness of simplification is dependent on 

the design timeline. Designers’ preferences and stage in the design process are not 

considered in the design literature to determine whether a coupling between design 

variables and response is important or not. 

In this dissertation, we overcome this limitation by developing a metric that considers 

both system coupling and designer’s preferences for determining whether a design 

process simplification is appropriate. A decision making perspective is adopted for 

making the meta-level decision under consideration. The guiding principle used for 

determining whether process simplification is appropriate is the answer to the following 

question – “What is the impact of process simplification on the design decisions?” If the 

impact on the decision is small and process simplification reduces the design exploration 

cost drastically, then the designer should go ahead and simplify the design process, 

otherwise not. In order to quantify the impact on decision, metrics based on value of 

information are currently being developed. Value of information refers to the benefit of 

additional information due to preserved couplings per unit cost of computation and 

extended design time. Expected value of information, as defined by Howard (Howard 

1966), and later applied to catalog selection problems in engineering design by Bradley 
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and Agogino (Bradley and Agogino 1994), is given by the difference between the 

expected value of the option selected with the benefit of information less than without. 

Comparing two patterns (see Figure 3-11) such as P2 (sequential interaction) and P3 

(coupled interaction), by including the coupling in P3, we are adding information about 

the system that is not accounted for in P2. If the expected value of this added information 

is greater than certain threshold value, pattern P3 should be used instead of P2. Similar 

notion is used for scale decoupling, decision decoupling, and functional decoupling. The 

details of the Value of Information metric for quantifying the impact of a simplification 

on the designer’s decision making capability is discussed in Chapter 4 and its utilization 

for design process simplification for scale and decision decoupling is discussed in 

Chapter 5. 
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Figure 3-16 – Step 3 in the design method 
Using the value of information, design process simplification in the design method is 

carried out through following three sub-steps – 

Step 3.1. Perform scale decoupling of information flow between models,  

Step 3.2. Perform decision decoupling,  
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Step 3.3. Perform functional decoupling 

The details of these sub-steps are discussed next. 

Step 3.1: Perform scale decoupling of information flow between models: Scale 

decoupling refers to simplification of pattern P3 to P2, and pattern P2 to P1. In scale 

decoupling, a single design decision needs to be made. Two simulation models are 

available at designer’s disposal for making the decision. Although the simulation models 

are coupled with each other, the designers may choose to simplify the decision-making 

by decoupling these models. This simplification would result in some error in the 

predicted system behavior. If the upper bound on the error of system’s behavior 

prediction is known, the value of information for the decision can be evaluated. Based on 

the value of information, the designer can make the meta-level decision – “should the 

interaction pattern P3 be simplified to P2 or P1?” The details of scale decoupling are 

discussed in Section 5.3.1, and validated using a data center cooling system design in 

Section 5.3.2. 

Step 3.2: Perform decision decoupling: Decision decoupling means simplification of 

pattern P6 to P5, and pattern P5 to P4. In this case, the designers are required to make 

two decisions about the form variables. The decisions are coupled with each other 

(pattern P6). The meta-level decision that the designer need to make is: “should the 

decisions be made in a coupled fashion or can the interaction between them be simplified 

to sequential or independent interactions?” In order to make this meta-level decision, the 

designer evaluates the increase in the value of information with coupling as compared to 

without. The information required to perform the value of information based calculation 

is the lower and upper bounds on design variables. The details of decision decoupling are 
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discussed in Section 5.4.1, and validated using the datacenter cooling example in Section 

5.4.2. 

Step 3.3: Perform functional decoupling: Functional decoupling is a term for 

converting a multi-functional problem into a mono-functional problem (if the problem 

permits). Functional decoupling can be achieved by simplifying pattern P9 to P6, pattern 

P8 to P5, and pattern P7 to P4. Functional decoupling can be performed using the value 

of information metric in a manner similar to model and decision decoupling. Hence, 

decision decoupling has not been discussed in detail in this dissertation. The scenario that 

is more common and is important for multifunctional design is the one where the 

functional requirements are coupled with other. Chapter 6 is dedicated to design when the 

functional characteristics of the systems are coupled. In that chapter, a set-based 

focalization method is presented, where the design space is divided between different 

designers and portions of design space are systematically eliminated until the designers 

converge to a single point. The method is illustrated using a simple set of quadratic 

responses and validated using a Linear Cellular Alloy design problem. 

Decision Decoupling in Structure Design Example 

The simplification of design processes is illustrated using a structure design problem. 

The starting structure and the applied forces are shown in Figure 3-17. The decision 

network and the incidence matrix for the structure are shown in Figure 3-18 and Table 

3-3 respectively. Solution of the decisions in a coupled fashion results in the overall 

objective function value equal to 32.515. 
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Figure 3-17 – Example truss problem to illustrate design process simplification 
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Figure 3-18  - Network of decisions for sample problem shown in Figure 3-17 

Table 3-3  - Incidence matrix for the sample structure shown in Figure 3-17 

Nodes 1 2 3 4 5 6 7 8
0 0.89443 0.94868 0 0 0 0 0
1 0.44721 0.31623 0 0 0 0 0
0 0 0 1 0.98639 0 0 0

-1 0 0 0 -0.1644 0 0 0
0 -0.89443 0 -1 0 0 0.86602 0
0 -0.44721 0 0 0 -1 -0.50001 0
0 0 -0.94868 0 -0.98639 0 0 0.86602
0 0 -0.31623 0 0.1644 1 0 0.50001
0 0 0 0 0 0 -0.86602 -0.86602
0 0 0 0 0 0 0.50001 -0.50001

4

5

Elements

1

2

3

 

The problem can ideally be solved in a coupled fashion where the decisions about 

each of the elements can be made in a linked fashion. This refers to the coupled decision 
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pattern P6. The interaction pattern can however be simplified by identifying that the 

objective function (minimization of volume/weight) is a sum of cross-sectional areas of 

each element, weighted by their lengths. The cross-sectional areas are directly 

proportional to the forces in the elements and the lengths are prespecified constants. Due 

to this linearity in the objective function, if a subset of decision variables can be 

determined independent of other design variables, then the corresponding contribution to 

the objective function can also be minimized independently. In other words, if the forces 

on a subset of elements are independent of other elements, then the weight of that subset 

of elements can also be minimized independently. The dependence between subsets of 

elements can be identified in the incidence matrix. Each row in the incidence matrix 

corresponds to the force balance at one node (in one direction) in the structure and each 

column corresponds to the elements. Two non-zero elements in a row in the incidence 

matrix represent coupling between the elements corresponding to those columns. The 

rows corresponding to node 5 in the incidence matrix shown in Table 3-3 has all zero 

elements except elements 7 and 8. Hence, decisions about elements 7 and 8 can be taken 

independent of the other elements. After the decisions about 7 and 8 are made, the 

decisions about remaining links can be made in a coupled fashion. This sequence of 

subsets of decisions is shown in the incidence matrix in Table 3-4. The corresponding 

structure and network are shown in Figure 3-19. The decision making pattern in this case 

is pattern P5. Solution of the decisions in a sequential fashion results in the overall 

objective function value of 32.515, which is same as the coupled case. 
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Table 3-4  - Decomposition of sample structure design problem into sequential 
decisions 

Nodes 1 2 3 4 5 6 7 8
0 0.89443 0.94868 0 0 0 0 0
1 0.44721 0.31623 0 0 0 0 0
0 0 0 1 0.98639 0 0 0

-1 0 0 0 -0.1644 0 0 0
0 -0.89443 0 -1 0 0 0.86602 0
0 -0.44721 0 0 0 -1 -0.50001 0
0 0 -0.94868 0 -0.98639 0 0 0.86602
0 0 -0.31623 0 0.1644 1 0 0.50001
0 0 0 0 0 0 -0.86602 -0.86602
0 0 0 0 0 0 0.50001 -0.50001
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2

3

4

5  

Pattern P5Pattern P5  

d1

d2

d7

d4

d5

d3

d6

 

Figure 3-19 – Structure and network representation of sequential decisions in 
structure design problem 

Further simplification of the structure is not possible because all other decisions are 

coupled. This is generally the case in multifunctional design scenarios. The decisions 

cannot be directly decoupled. However, as designers, we are not interested in finding just 

the optimum solutions. We are interested in satisficing solutions that are not optimum but 
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are close to the optimum. If the design process can be simplified significantly without 

having a major impact on the final design, the simplification of processes is preferred. 

For example, in the case of the structure design problem under consideration, if we 

eliminate element 6 from the starting structure, then the remaining elements (1, 2, 3, 4, 

and 5) can be divided into two subsets - a) elements 2, 4 and b) elements 3, 5 whose 

decisions can be made in a parallel fashion. The removal of element 6 from the incidence 

matrix is represented by a X in the sixth column in Table 3-5.  

Table 3-5  - Sequential and independent decision making by ignoring element 6 in 
the starting structure 

Nodes 1 2 4 3 5 6 7 8
0 0.89443 0 0.94868 0 0 0
1 0.44721 0 0.31623 0 0 0
0 0 1 0 0.98639 0 0

-1 0 0 0 -0.1644 0 0
0 -0.89443 -1 0 0 0.86602 0
0 -0.44721 0 0 0 -0.50001 0
0 0 0 -0.94868 -0.98639 0 0.86602
0 0 0 -0.31623 0.1644 0 0.50001
0 0 0 0 0 -0.86602 -0.86602
0 0 0 0 0 0.50001 -0.50001

Elements

1

x
2

3

4

5  

The arrows represent the sequence in which decisions are made. The structure and the 

associated network are shown in Figure 3-20. The decisions in this scenario correspond to 

interaction pattern P4 as shown in the figure. The solution of decisions in an independent 

fashion after removal of element 6 from the structure results in an overall objective 

function value equal to 33.182, which is higher than the coupled and sequential scenarios. 

The overall objective function (weight) is compared for the three scenarios (i.e., three 

decision patterns) in Table 3-6. The value is higher in the case of coupled decision 

because of the assumption that link 6 does not exist. This assumption simplifies the 

design process at the expense of the quality of decision. If the increase in the objective 
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function value (33.182-32.515=0.667) is not significant from the design requirements 

standpoint, then the simplification of design process is appropriate.  

Pattern P4Pattern P4  

d1

d2

d7

d4

d5

d3
d6

 

Figure 3-20  - Decomposition of decisions into sequential and independent decisions 
In the previous paragraph, the impact of removing one of the elements on both the 

design process and the decision are discussed. It is observed that by removing the 

element and decoupling the design process, the process is simplified with only a minor 

impact on the final decision. For designing design processes, we are interested in 

identifying and taking advantage of such scenarios to simplify design processes. 

Although the design processes can be simplified in a variety of ways, our focus in this 

dissertation is on simplification of interaction patterns between models, decision, and 
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functionalities. The question then is - which decisions should be decoupled so that that 

impact on design processes is large but the impact on final decisions is small? In the 

context of the structure design example, which elements should be removed from the 

starting structure? The obvious answer to this question is that the couplings should be 

removed if the tradeoff between simplification of design process and the reduction in 

quality of the final design is favorable. 

Table 3-6  - Comparison of overall objective function value for coupled, sequential, 
and independent decision scenario 

Coupled

Sequential

Sequential + Independent

Pattern Weight

32.515

32.515

33.182
 

The impact of removing an element from the initial structure changes the forces on 

the other elements. Hence, the weight of the final structure is also different. This weight 

of the final structure is always greater than or equal to the structure designed without 

removing an element. One way to determine the impact of removing an element on the 

change in weight is to solve the two decision problems with and without the element (that 

is to be removed) and then subtract the two weights. In a general design scenario, this is 

equivalent to executing the complex and simplified design processes and then comparing 

the results. Although this would provide an accurate estimate of the impact on decision 

making, it defeats the purpose of designing design processes. Determining whether a 

simplification is appropriate should not require designers to execute the complex design 

process because in that case, there is no need for simplification. We already have an 

accurate design solution. This is one of the key challenges in designing design processes. 
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We want to make decisions about the design processes without executing the design 

processes themselves. In order to address this challenge, designers should not try to come 

up with exact estimate of the impact on their decisions. Rather, they should use some 

indicators or metrics that are related to the impact of simplification on decisions and can 

separate appropriate simplifications from inappropriate simplifications. For example, 

since the structure design problem is formulated as a linear programming problem, the 

feasible design space is bounded by a convex region and the optimum lies at the 

intersection of the constraints. With this knowledge, the maximum possible value of any 

design variable (forces in the elements) can be calculated fairly easily. This maximum 

possible value of force in an element multiplied by the length of the element is equal to 

the upper bound on the impact on objective function value. Hence, without calculating 

the forces in the individual elements, the upper bound can be calculated. If the upper-

bound of impact on the objective function is less than some prespecified value, then the 

designers can simplify the associated design process without reducing the quality of the 

decisions. In this dissertation, we use a similar metric for determining the impact of a 

simplification on the designers’ decisions. This metric is discussed in Chapter 4. Based 

on this metric, methods are developed for systematic simplification of processes in 

Chapter 5. 

The outcome of design process simplification (Step 3 in Figure 3-8) is a design 

process that is executed to result in the values of design parameters for satisfying design 

requirements. This finishes the meta-design phase. 



   

 183

3.5.4 Design Process Execution and Design Verification 
The design process developed in the meta-design phase is then formulated in such a 

manner that it can be executed. In this step of the design method, elements of the DSP 

Technique discussed in Section 2.2 are leveraged. The step involves formulation of 

design decisions as support problems and their execution. The step consists of the 

following substeps: 

Step 4.1: Formulate the decisions as decision support problems 

Step 4.2: Assign design processes for execution of support problems 

Step 4.3: Execute design processes to determine the values of design variables 
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Figure 3-21 – Step 4 in the design method 
Step 4.1: Formulate the decisions as decision support problems: The first step is to 

formulate the decisions using the decision problem constructs developed as a part of the 

DSP Technique. These constructs refer to the compromise and selection DSPs discussed 

in Section 2.2. The basic decision constructs are developed in (Bascaran, Bannerot et al. 

1989; Reddy and Mistree 1992; Mistree, Hughes et al. 1993; Mistree, Lewis et al. 1994). 
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These basic constructs are extended for robust design (Chen 1995; Chen, Allen et al. 

1996; Chen, Allen et al. 1997; Chen and Lewis 1999), fuzzy DSP (Allen 1996), interval 

based DSP (Reddy and Mistree 1992), utility based compromise and selection DSPs 

(Seepersad 2001), coupled DSPs, hierarchical DSPs (Koch 1997) etc. These extensions of 

decision support problems are used in different design scenarios where either different 

types of information are available, or different design considerations are important. For 

example, robust design is the case where the basic structure of the decision support 

problem remains the same but the manner in which the goals are formulated is different. 

In robust design, each goal in the compromise decision support problem is actually 

associated with two goals – achievement of target values and minimization of deviation 

from the target. These two goals can either be treated separately as two goals as carried 

out in (Chen, Allen et al. 1996) or can be combined together using a single design 

capability index (Simpson, Rosen et al. 1998). Similarly, in the case of utility based 

compromise decision, the manner in which the designers’ preferences are formulated is 

different from the basic compromise DSP. Instead of the simple target values to goals, the 

preferences are mathematically formulated as utility functions (see Section 2.4). 

In the case of patterns P1, P2, and P3 discussed in Section 3.5.2, there is a single 

decision supported by models at different scales. Hence, only a single 

compromise/selection DSP is required to model the decisions in these patterns. In the 

case of patterns P4, P5, and P6, there are two decisions (corresponding to the different 

scales) that may be coupled, independent, or may involve a sequential flow of 

information. In the case of patterns P7, P8, and P9, there are multiple decisions associated 

with each scale. Hence, at each scale, there are multiple decisions that may be coupled, 
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independent, or sequential in nature. Each of these decisions is formulated using the 

selection or compromise DSPs. Although many different extensions of decisions can be 

used for formulating decisions in the different patterns, in this dissertation we focus our 

efforts on robust design based compromise decisions only. There are several categories of 

robust design, associated with different types of uncertainty (Type I through Type IV):  

1. Type I robust design, originally proposed by Taguchi, centers on achieving 

insensitivity in performance with regard to noise factors—parameters that designers 

cannot control in a system.  Relevant examples of noise factors are variation of 

ambient temperature, morphology changes, etc.   

2. Type II robust design, proposed by Chen and coauthors (Chen, Allen et al. 1996), 

relates to insensitivity of a design to variability or uncertainty associated with design 

variables—parameters that a designer can control in a system.  

3. Type III robust design (Choi, Austin et al. 2004; Choi 2005) considers sensitivity to 

uncertainty embedded within a model (i.e., model parameter/structure uncertainty).  

Model parameter/structure uncertainty is typically different from the uncertainty 

associated with noise and control factors, because it could exist in the parameters or 

structure of constraints, meta-models, engineering equations, and associated 

simulation or analysis models.  

4. Type IV robust design (Choi, Austin et al. 2004; Choi 2005) is focused on uncertainty 

associated with design processes. Design process uncertainty emanates from the 

propagation and potential amplification of uncertainty due to the combined effect of 

analysis tasks performed in series or in parallel.   



   

 186

It is important to note that in all these four types of robust design, the main difference 

is in the design goals. Hence, the basic compromise DSP construct is adapted by 

changing the goals considered for design. In all the design problems used in this 

dissertation, we use robust compromise DSP for modeling product decisions. One of the 

primary reasons for adopting robust design approach is that the method is based on the 

idea of systematic refinement of both design process and the product. In other words, the 

designers start with a simple design process based on a number of assumptions and come 

up with a preliminary design. This preliminary design is then subsequently refined until 

the design requirements are met. Since the decisions are made in the presence of 

uncertainty due to simplified design processes and simple simulation models, the design 

decisions should be robust to uncertainties. After the decisions are formulated, the next 

step (Step 4.2) is to develop a design sub-process for executing that decision.  

Step 4.2: Assign design processes for execution of decision support problems (DSPs): 

The decisions in the interaction patterns modeled in Step 4.1 are associated with design 

processes that represent solution schemes for corresponding decision problems. These 

design processes may either be composed of other decisions or may consist of elementary 

tasks that do not require design decisions. For single decisions in patterns P1, P2, and P3, 

the decisions can be executed by different types of algorithms such as exhaustive search, 

gradient based methods, genetic algorithms, etc. Each of these is associated with an 

elementary process that is followed and is embedded in the algorithm for executing the 

decision. Design decisions in simulation-based design are generally made using 

computer-based simulation models. A common augmentation of this process involves 

replacing the complex simulation models with simpler response surfaces to avoid large 
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execution time. This adds a series of steps such as design of experiments, execution of 

complex model at various points in the design space, fitting a response surface, etc. to the 

process. These are simple elementary processes for making decisions.  

These processes become more complicated when multiple decisions are considered 

simultaneously. For example, in the case of sequential decisions in pattern P5, the process 

is a composition of two processes for execution of decisions in a serial manner. Similarly, 

in the case of pattern P6, two decisions are coupled with each other. These coupled 

decisions can be executed in following different ways – a) merging the two decisions into 

a single decision and solving the combined decision, b) passing ranges of solution from 

one decision to another, c) generating response surfaces of decisions that would be made 

by one designer as a function of decisions made by other decision (this response surface 

is also called rational reaction set) and then finding the intersection of these response 

surfaces, and d) making decisions iteratively until the final solution converges to a single 

point. Different processes have different characteristics and advantages, and therefore are 

suitable for different kinds of design scenarios. For example, the iterative process (option 

- d) may or may not converge to a point. The combination of multiple decisions into a 

single decision (option - a) results in the best design point, but is computationally 

expensive. The third option (option - c) is computationally less expensive but my result in 

an inferior solution. Hence, in this step of the design method, the designer assigns an 

appropriate process to the decisions formulated in Step 4.1. The design processes 

determined in this step (4.2) are then executed in Step 4.3. 

Step 4.3: Execute design processes to determine the values of design variables: After 

the design processes are assigned to different decisions, the design processes are executed 



   

 188

to determine the values of design variables. In order to perform the steps of design 

method in a computer interpretable manner, a design information modeling approach (3-P 

approach) is presented in this dissertation. The details of 3-P modeling approach are not 

presented in this chapter to maintain the logical flow. The approach is discussed in detail 

in Chapter 7 and the implementation details are discussed in Chapter 8. The approach is 

decision-problem based, and the main feature is the separation of declaration of decision 

problem related information (Step 4.1) and the information about processes to execute 

those decision problems. This supports reusability of design processes for different 

decision problems. In this chapter, we terminate the discussion of information modeling 

approach at this point and refer the readers to later chapters where it is discussed in detail. 

The outcome of this step is a design for the product. This design consists of values for 

all design variables along with the performance achieved with the product. Due to the 

uncertainties inherent in the design process, the final design also has some uncertainty 

associated with it. If the design satisfies the requirements for expected behavior, then the 

designers can end the design process at this stage. However, if the requirements are not 

met and the uncertainty bounds are large (indicating that there is a possibility of refining 

the solution), then the design can be refined further through refinement of the simulation 

models. This is carried out in the sixth step in the design method, which is discussed in 

Section 3.5.5. 

3.5.5 Targeted Model Refinement 
All simulation models have some level of uncertainty associated with them because 

of the approximations and assumptions chosen during model development. However, this 

uncertainty may or may not affect the design decision. For example, in Figure 3-22, we 
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present three illustrations in the impact of uncertainty on design decision. In the first case 

(Uncertain Constraint) the simulation model predicts the value of constraint; and due to 

the uncertainty inherent in the model, the constraint is represented as at range. The design 

space under consideration is shown as a rectangular area. Even with uncertainty, the 

constraint lies completely outside the design space. Hence, refinement of the model for 

reducing uncertainty would not affect the design decision. Similarly, the second case 

(Uncertain Objective - I) represents a scenario where the objective is to optimize an 

output of the simulation model. In this case also, the design decision (the value of design 

variable chosen to maximize the objective) is not affected. However, in the third case 

(Uncertain Objective - II), the uncertainty in the objective function results in different 

design solutions, making it important to refine the model further. The key notion here is 

to perform targeted refinement of simulation model, thereby efficiently utilizing the 

model development efforts.  
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Figure 3-22 - Need for targeted model refinement 
Although the simulation models can be refined in a variety of ways such as 

consideration of additional physical phenomena, modeling some phenomena with greater 

accuracy, inclusion of interactions between different phenomena, refinement of mesh, 

making convergence criteria more stringent, use of better microscale model, and so on. 

All these factors have an effect on the accuracy of simulation models. It is obvious that 
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the accuracy of simulation models is important for better design decisions. However, it is 

not the only factor to consider in decision making. The impact of inaccuracy in 

simulation models is not directly proportional to the impact on decisions. This is because 

of the impact of designers’ preferences that act on the outputs of these simulation models. 

In other words, although there is inaccuracy in the prediction of a response, the designer’s 

overall preference may not be sensitive to that response. The inaccuracy in simulation 

models may either get amplified or diminished by the designers’ preferences. If the 

inaccuracy is amplified, then a small amount of inaccuracy has major impact on the 

overall result of the decision, and hence, the simulation model must be refined. In the 

case where inaccuracy is diminished, the inaccuracy in simulation models does not have 

strong impact on the overall result. Hence, the simulation model need not be refined.  

There is an extremely broad spectrum of opportunities to develop methods for 

systematic refinement of models. In order to limit the scope of refinement methods in this 

dissertation, we focus on a small subset of model refinement. We assume that a 

simulation model has some parameters, whose values are uncertain. Information about 

upper and lower bounds on these parameters is available. Due to the uncertainty, these 

parameters can take any value between the lower and upper bound. Hence, in the context 

of this dissertation, we are only focusing on refinement of simulation models that 

corresponds to reduction in the range of possible values that these input parameters can 

take. Under this assumption that defines the scope of refinement discussed in this 

dissertation, we develop information economics based metrics (value of information) that 

quantify the impact of refinement of simulation models on the decision making. An 

overview of information economics is presented in Section 2.5. The value of information 
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metric developed in this dissertation is discussed in detail in Chapter 4. It is important to 

note that refinement of simulation models is also a part of the design of design processes. 

3.6 Role of Chapter 3 in This Dissertation 
In this chapter, a method for the integrated design of products and design processes 

(RMS-DEM) is presented. The method is presented as an answer to the first research 

question posed in this dissertation. The method forms a basis for all the following 

chapters in the dissertation.  
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Figure 3-23  -  Relationship of Chapter 3 with other chapters in the dissertation 
The relationship of this chapter with the rest of the dissertation is presented in Figure 

3-23. The details of Steps 3 and 6 in the method are discussed in Chapter 4 and Chapter 

5, where the second research question is addressed. The method imposes certain 
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requirements on the computational framework on which the design method can be 

implemented. These requirements are discussed in detail in Chapter 7 and an 

implementation strategy is presented in Chapter 8. The method is validated using a 

multiscale material design scenario in Chapter 9.  
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Chapter 4 Value of Information – A Metric for Making 
Decisions about Design Processes 

 
In this chapter, we address the third requirement for the framework for integrated 

design of products and design processes: “a metric for evaluating the performance of 

different design process alternatives”. The six requirements for the framework are listed 

in Table 1-3. The components of the framework developed in this dissertation to address 

these requirements are highlighted in Table 1-6. A portion of Table 1-6 that is relevant to 

this chapter is reproduced on this page as Table 4-1. The component of the framework 

developed in this dissertation is a value of information based metric for assessing the 

performance of design processes. A pressure vessel example is used in this chapter to 

validate the metric. The metric is used for answering the second research question (RQ2) 

posed in this dissertation. The relationship of the value of information metric with RQ2 

and the supporting hypotheses is presented in Section 4.1. Overviews of the role of value 

of information in designing design processes and the contents of this chapter are also 

provided in Section 4.1. 

Table 4-1 – The requirement and component of the framework for integrated design 
of products and design processes addressed in Chapter 4 

Framework 
Requirements 

Components of the 
Framework Developed to 
Address the Requirements 
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4.1 Frame of Reference – Answering the Research Question 2 
(Value of Information for Designing Design Processes) 

Value of information refers to the impact of additional information on designers’ 

decision making capability. Different design process options can be compared based on 

the quality of product decisions that designers can make in terms. This difference in 

quality of decisions made by different process options is quantified by the value of 

information metric. As discussed in Section 1.2.2, value of information is only one of the 

metrics based on which design processes can be analyzed. Other metrics include 

execution time, cost, complexity, modularity, robustness, etc. Since the focus of this 

dissertation is to design processes from a decision centric perspective, we believe that 

value of information is one of the most important metrics for comparing different process 

options. Other metrics can be developed and included in the design method described in 

Section 3.5.  

In this chapter, the goal is to develop and validate a value of information metric for 

making design process decisions. This metric is fundamental to answering the second 

research question which is: “How should multiscale design processes be systematically 

simplified and models refined in a targeted manner to support quick design decision 

making without compromising the decision quality?” The first hypothesis (H2.1) to 

support the answer to this question is that “design processes can be simplified and models 

refined by making tradeoffs between the value of information obtained via simulations 

and need to achieve robust, satisficing solutions”. Simplification of design processes 

eliminates some information that could be used for decision making. Similarly, 

refinement of simulation models adds information that improves the designers’ decision 

making capability. The metric developed in this chapter are useful for quantifying this 
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improvement in decision making capability. The impact of refinement of simulation 

models is discussed in this chapter. The value of information metrics developed in this 

chapter are used in Steps 3 and 6 of the design method proposed in Chapter 3 (see Figure 

4-1). The research questions and hypotheses addressed in this chapter are highlighted in 

Figure 4-2. The validation example used in this chapter is that of a pressure vessel design 

problem. The concepts presented in this chapter form a basis for the simplification of 

design processes presented in Chapter 5.  
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Figure 4-1 – Role of value of information metric in the design method 
Metrics for value of information is used in previous research efforts in information 

economics. A review of the existing literature in quantifying value of information is 

presented in Section 4.2. A critical evaluation of this literature is centered on designers’ 

requirements for making meta-level decisions. From the literature review, it is observed 

that the existing metrics for value of information do not account for all the aspects of 

decisions made in meta-design. Existing metrics are only based on the additional 

information that changes knowledge about the probability of occurence of random events. 
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Further, existing metrics compare scenarios with and without additional information only 

based on the expected payoff of the outcome. These limitations are discussed in detail in 

Section 4.2 along with the requirements for value of information metric to be used in 

meta-design.  
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Figure 4-2 – Research hypotheses addressed in Chapter 4 

A new metric for value of information is presented in Section 4.3. The metric is 

consists of three components – ex-post range, opportunity ratio, and achievement ratio. 

Each of these three components of the metric quantifies different aspects of the impact of 

additional information. The details of these components are discussed with the 

implications on design process related decisions. The metrics are applied to a problem of 

designing pressure vessels in the presence of imprecision about material properties in 
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Section 4.4. The advantages and limitations of using the value of information developed 

in this dissertation are discussed in Section 4.5.  

4.2 Value of Information for Decision Making – A Literature 
Review 

At any stage in the decision making process, designers possess some amount of 

information that can be used for selecting the best course of action. Designers have an 

option of either i) making a decision using the available information, or ii) gathering 

more information and then making a decision using the updated information. In this 

context of decision making, value of this added information refers to the improvement in 

designers’ decision making capability. The value of information metric is used by 

decision makers to make the meta-level decision involving tradeoff between gathering 

more information to reduce uncertainty and reducing the associated cost. The idea of 

using value of information for determining whether to consider additional information for 

decision making is not new. It was first introduced by Howard (Howard 1966). The 

expected value of information as defined by Howard is “the difference between the 

expected value of the objective for the option selected with the benefit of the information 

less than without”. Mathematically, the expected value of information is given by: 

{ } { }( ) ( )max [ ( , ) | ] max [ ( , )]i i

p pi i
EVI E E u p x E u p xϕ γ

ϕ = −  
 

where, EVIϕ is the expected value of information, ϕ is the available information, 

[ ( ) | ]
x
E f x ϕ  is the expected value of the function ( )f x . 

Bradley and Agogino  use this value of information metric for catalog selection 

problem, where a designer is faced with the task of choosing components from a catalog 

in order to satisfy some functional requirements (Bradley and Agogino 1994). During the 
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conceptual design phase, selection decisions are characterized by significant uncertainty 

due to limited understanding of requirements and constraints, inability to specify part 

dimensions, uncertainty in the environmental conditions, etc. However, before making 

the decision about the right component, a designer need to make another higher level 

decision – whether to go ahead and make the decision using available information or to 

spend resources and gather more information before making the selection decision. This 

is a meta-level decision, for which Bradley and Agogino (Bradley and Agogino 1994) 

utilize the value of information metric to quantify the expected benefit from additional 

information.  

Poh and Horvitz  use the value of information metric for refining decisions (Poh and 

Horvitz 1993). The authors present three dimensions in which the decision models can be 

refined – quantitative, conceptual, and structural. Quantitative refinement of a decision 

model can be carried out by reducing the uncertainty in the decisions problem or by 

refining the preference models. Conceptual refinement is carried out by refining the 

definition of alternatives and design variables, whereas structural refinement requires 

addition of dependencies in the simulation model. Poh and Horvitz use the value of 

information metric to determine which dimension is critical for refinement of the decision 

problem.  

Lawrence  provides a comprehensive overview of metrics for value of information 

(Lawrence 1999). He argues that the value of information for decision making can be 

measured at different stages in the decision-making process. Accordingly, the value of 

information metrics are named differently based on the stage at which it is evaluated. 

Four different options available for measuring value of information are: 
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a) prior to consideration of incorporation of information,  

b) Ex-ante value: after considering a message source but prior to receiving a message,  

c) Conditional value: after receiving additional information and making the decision, 

but before realization of the environmental state, or  

d) Ex-post value: after addition of information and making a decision-based on 

acquired information.  

Determination of value of information at different stages in the decision-making 

process results in different kinds of insight for meta-level decisions. The appropriateness 

of a stage for measuing value of information depends on the problem at hand and the 

available information. Consider an example of a designer who has a simulation model for 

predicting the system behavior and is interested in making a decision using the model. 

Before making the decision, he/she has an option of increasing the fidelity of the model 

by considering additional physical phenomena in the model. For example, a structural 

analyst may improve the fidelity of static model by adding dynamic behavior, creep, etc. 

Description of a physical phenomenon is equivalent to an information source that 

generates information about the system behavior. The output of the simulation i.e., 

system behavior is equivalent to the added information generated by the information 

source. Now, the decision maker can evaluate the expected value of information before 

even considering the incorporation of additional any physical phenomena. The second 

option (ex-ante value) is to decide which physical phenomena to model a specific 

physical phenomenon (i.e., information source) and evaluating the value of information 

before executing the simulation code. The third option (conditional value) is to evaluate 

the value after executing the simulation code and making decisions about the system but 
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before manufacturing and testing system. In this scenario, there is uncertainty in the 

actual system behavior that would be achieved due to factors such as manufacturing 

variability and changes in environmental conditions. The fourth option (ex-post value) is 

to evaluate the value of this additional information after making decisions and also 

manufacturing and testing the system. In this scenario, the designers know exactly how 

the system behaves. 

Mathematically, the ex-post and ex-ante value of information are represented as 

follows:  

1. Ex-post value: 0( , ) ( , ) ( , )yv x y x a x aπ π= − ,  

Where, 0a and ya  represent the actions taken by decision maker in the absence 

and presence of information y . ( , )x aπ represents the payoff achieved by selecting 

an action a , when the state realized by the environment is x . 

2. Ex-ante value: | 0( , ) ( , ) ( , )x y y xv x y E x a E x aπ π= − , where ( )xE f x  is the expected 

value of ( )f x and | ( )x yE f x  is the expected value of ( )f x  given .y  It is 

important to realize that the key difference between ex-post and ex-ante value is 

that in ex-post value, the realization of state x is known. However, the realization 

of state x  is not known in ex-ante value and the expected value of payoff is taken 

over the uncertain range of state x .  

Ideally, the designers are interested in the ex-post value of information because it 

truly reflects the value of information for a decision-based on the actual behavior of the 

system. There system behavior is known deterministically. However, it is not possible to 

calculate the ex-post value of decision before making the decision itself. Due to the ex-

ante nature of decision making, the decisions about the information have to be made 
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before the state actually occurs. Hence, the ex-ante value of information is generally used 

by designers. It captures the value of information by considering uncertainties in the 

system. 

In order to model uncertainty for evaluating value of information, it is assumed that 

the probability distributions are available. However, if these probability distributions are 

not available, they are generally generated through an educated guess that is based on the 

designers’ prior knowledge. In order to address the problem of lack of knowledge about 

the probability distributions, Aughenbaugh and co-authors (Aughenbaugh, Ling et al. 

2005) present an approach of measuring the value of information based on probability 

bounds. They assume that although the exact probability distributions are unavailable, the 

lower and upper bounds on these probability distributions are available in terms of p-

boxes. Using this p-box approach, they evaluate the value of added information that 

reduces the size of the interval for probability distribution (i.e., tightens the bounds on the 

p-box). 

 

Critical Review and Requirements for the Value of Information Metric  

In most of the efforts, the value of information is based on the variability in the 

decision problem. This uncertainty is modeled using probability distributions. However, 

except for Aughenbaugh and co-authors (Aughenbaugh, Ling et al. 2005), imprecision in 

the decision models which cannot be modeled in terms of probability distribution 

functions is generally not modeled. Imprecision relates to epistemic uncertainty (i.e., the 

lack of knowledge), whereas variability refers to aleatory uncertainty (i.e., inherent 

randomness in the system). The key difference between imprecision and uncertainty from 
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a value of information standpoint is that imprecision can be reduced by incorporation of 

more information but uncertainty cannot be reduced via incorporation of information. For 

example, consider a scenario where a designer has an option of making a decision using 

one of the two available simulation models. One of the simulation models has a higher 

fidelity representation of physics than the other. The meta-level decision that the designer 

has to make is – “Which simulation model should he/she use for making the decision?” 

This scenario is extremely common in multi-scale design problems. Consideration of 

imprecision in the value of information in addition to uncertainty is important from a 

meta-design standpoint and is used for developing methods for systematic simplification 

in the next chapter. It forms a basis for determining the extent of refinement of simulation 

models in later chapters. Hence, the first requirement for value of information metric is 

quantification of imprecision in addition to statistical variability.  

Further, in most of the efforts at utilizing the value of information, only the increase 

in expected value of payoff due to added information is considered for making meta-level 

decisions. The variation in utility due to uncertainty is not considered. For example, 

consider the scenario shown in Figure 4-3. In this figure, a designer needs to select 

between two alternatives A and B. Parts (a) and (b) of the figure represent the 

distributions of payoff values for the two alternatives before and after the addition of 

information respectively. The variation in utility shows the impact of uncertainty and 

imprecision on achievable payoff values. As shown in the figure, the expected value of 

payoff achieved by each alternative is the same before and after addition of the 

information. However, after addition of information, the range of utility values that can 

be achieved by each alternative has reduced, which implies that the decision maker has a 
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greater confidence that Alternative A performs better than Alternative B. Hence, 

designer’s decision making capability is increased by the addition of information. If the 

decision about addition of information is made only based on the increase in expected 

value of utility, then it does not reflect the increased decision making capability of the 

designer. An increase in confidence of a decision maker increases the decision making 

capability. Hence, the reduction in the deviation in expected value should also be 

considered in value of information metric. This is the second requirement for the value of 

information metric developed in this dissertation. 
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Figure 4-3 – Importance of including deviation of expected utility in calculating 
value of information 

The third requirement for the value of information metric is to quantify the 

opportunity for improving the design solution by adding more information. That is, the 

value of information metric should quantify the upper bound on benefit that can be 

achieved by obtaining perfect information. The opportunity for improving the design 

solution is quantified in the literature using Expected Value of Perfect Information 

(EVPI), which is calculated as the expected value of information based on the setting 
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exact values of uncertain parameters. In there are n uncertain parameters, the expected 

value of perfect information corresponding to each parameter is evaluated for individual 

parameters by setting their exact values. The greater the expected value of perfect 

information, greater is the opportunity of improving the design solution through 

information gathering. The limitation of this expected value of perfect information, 

however is that the exact values of parameters is generally not available before gathering 

the information. Hence, the requirement is that the metric should provide an indication of 

the opportunity without requiring the perfect information. 

The requirements for quantifying the value of information in improving decision 

making capability are summarized in Table. In Section 4.3, we present a value of 

information metric that satisfies these requirements. 

Table 4-2 – Requirements for the value of information metric 

1. Quantification of imprecision as well as statistical variability in available 

information 

2. Consideration of the deviation in payoff function in addition to the expected value 

3. Quantification of opportunity for improving the design solution by adding more 

information 

 

4.3 Proposed Metric for Value of Information for Decision 
Making 

 
Since our focus in this dissertation is on simulation-based design, a simulation model 

is the source of information in the context of this dissertation. Simulation models are used 

to predict the behavior of systems, which in turn are used for decision making. 
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Simulation models inherently contain some inaccuracy due to the assumptions in the 

model. Addition of more information for decision making is equivalent to refining the 

simulation models so that they are closer to the exact behavior of the system. By 

developing the value of information metric, we are interested in providing support to the 

designers by quantifying the need to refine simulation models in a systematic manner. 
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Figure 4-4 Conceptual description of value of information in simplified models 
Consider a scenario shown in Figure 4-4, where the horizontal axis is the value of 

design variable and the vertical axis is the corresponding payoff that is achieved by 

selecting the design variable. The design variable can be some physical dimensions that 

the designer has control over, whereas the payoff represents profit, which depends on 

system behavior such as performance, strength, and cost. The designer’s objective is to 

maximize the payoff by appropriate selection of the design variable value. The solid line 

represents the actual system behavior and the dashed line represents the system behavior 

predicted by the simulation model. The difference in actual and predicted behavior is due 

to the imprecision in the model. In Figure 4-4, it is assumed that the decision is 
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characterized by no statistical variability, but only imprecision due to the inaccuracy in 

the simulation model. 

If a designer makes a decision only using the simulation model, the decision point is 

X2, because it maximizes the payoff based on the predicted behavior. However a 

designer would have selected decision point - X1 if the actual (real) behavior of the 

system were known (by using a perfect model). Hence, the value of using the perfect 

model over simpler model is the difference in payoff actually achieved by using the exact 

model and the payoff achieved by making decisions using simpler model. It is important 

to note that the value of information is evaluated using the difference in payoff using the 

actual system behavior. This value of information is in close agreement with the ex-post 

value used in the literature. 

In order to illustrate the point, three hypothetical scenarios with different predicted 

behavior resulting from different simulation models are shown in Figure 4-5, Figure 4-6, 

and Figure 4-7. In Scenario 1, the decision of design variable made by using the simpler 

model and the exact model is the same which implies that the difference between payoff 

achieved using the simple model and exact model is zero. Hence, the value of using the 

exact model over simpler model is zero. In Scenarios 2 and 3, the value of design variable 

as selected by the simpler model is different from the decision using exact models. 

Hence, the value in both scenarios is non-zero. However, the magnitude of value is 

different in both Scenarios. When compared with Scenario 2, the value is greater in 

Scenario 3.  
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Figure 4-5 – Illustration of value of information – scenario 1 (decision made using 

predicted system behavior is the same as decision made using actual system 
behavior, value = 0) 
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Figure 4-6 - Illustration of value of information - scenario 2 (decision made using 

predicted system behavior is close to the decision made using actual system 
behavior) 
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Figure 4-7 - Illustration of value of information - scenario 3 (decision made using 

predicted system behavior is far from the decision made using actual system 
behavior) 
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Another important point that the value of information metric highlights is that the 

value does not depend only on the accuracy of the model. It also depends on the complete 

decision formulation that includes constraints, preferences, region in the design space that 

is under consideration, etc. This point will be illustrated further in Section 4.4 using a 

design example. The same concept extends to higher dimension problems where there are 

many design variables and the payoff is determined by multiple conflicting criteria. In the 

case of multiple design variables, the curve corresponds to a multidimensional surface. In 

the case of multiple design criteria that affect the payoff, the criteria are combined 

together into an overall payoff function based on designers’ preferences.  

Payoff Functions using Utility Theory 

In the discussion so far in this chapter, we have based the discussion of evaluating 

value of information on difference in payoff functions. The question that arises is how to 

evaluate this payoff function. In the field of economics, the payoff is determined in terms 

of the overall monetary profit. However, in engineering design, designers are generally 

faced with multiple criteria that affect the decision about design variables. It may not be 

possible to express all criteria in terms of monetary benefits. Hence, these multiple 

criteria are converted into value functions that represent a decision maker’s preference for 

different levels of criteria on which the decision is based. These value functions associate 

a real number ( )v x to each value of the criteria x  (Keeney and Raiffa 1976). Two 

different values of the criterion x  have equal value v  if they are equally preferable. 

Since the value function is used to quantify designer’s payoff, a decision problem entails 

maximization of the value function. Although there are many different ways in which 

value functions are determined, a special type of value function called utility function is 
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commonly used in engineering design decisions because of its capability to handle a) 

uncertainty in a mathematically consistent manner and b) multiple decision criteria. 

Utility functions and the axioms on which they are based are proposed by Neumann and 

Morgenstern (Von Neumann and Morgenstern 1947). The details of utility functions are 

discussed in details elsewhere in Keeney and Raiffa (Keeney and Raiffa 1976), Hazelrigg 

(Hazelrigg 1998). In this dissertation, we assume that the payoff values for multiple 

decision criteria in the presence of uncertainty are quantified in terms of utility functions 

and the decision is made by maximizing the expected value of utility. 

As mentioned in the previous discussion, Figure 4-4 represents a scenario 

characterized by imprecision only. If there is uncertainty associated with the problem in 

addition to the imprecision, then corresponding to each design variable value, there is a 

probability distribution of payoffs that can be achieved. The decision in such a case will 

be based on maximization of the expected value of payoff. This is illustrated in Figure 

4-8 where both the actual system behavior and the predicted behavior are associated with 

uncertainties represented by probability distribution functions. The solid and dashed lines 

for system behavior in Figure 4-8 correspond to the expected values of payoff. The key 

difference in decision making scenarios with and without uncertainty is that instead of the 

deterministic value of payoff, a probability function of payoff is known. Hence, instead 

of maximizing a discrete value, the expected value of payoff is maximized. While 

keeping this key difference into consideration, we go ahead and develop the value of 

information metric for a case with only imprecision and we later extend that to scenarios 

where uncertainty is present. 
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Figure 4-8 Decisions characterized with imprecision and variability 

Given that the utility functions will be used for measuring the payoff, the value of 

information is defined as the increase in the achievement of overall utility value when an 

exact model is used as compared to simplified model. However, in most design cases, the 

difficulty is that the exact system behavior as shown conceptually in Figure 4-4 is seldom 

available. If the exact system behavior is available, there is no need to use the simulation 

model to predict the behavior. (Note that in some cases, even if the exact system behavior 

is available, it may not be used for decision making because of the associated costs.) In 

many design cases, although the real system behavior is not available, it may be possible 

to determine the upper and lower bound on the behavior predicted by simulation model. 

The designers may be able to generate information about lower and upper bounds 

through physical experiments, or though analysts’ insight into the system’s behavior. 

These bounds on the imprecision of the model result in bounds on the overall utility 

function, as shown in Figure 4-9. The availability of bounds on imprecision of simulation 
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models is an assumption, based on which the value of information metric is developed in 

this dissertation. 
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Figure 4-9 – Bounds on imprecision of utility function due to imprecision in 
simulation model 

With the available information about lower and upper bounds on payoff function 

value, the decision maker can select a decision rule based on which he/she selects 

numerical values for the design variables. The decision rule can be a) maximize the lower 

bound on achievable payoff (i.e, the worst case scenario), b) maximize the upper bound 

on achievable payoff (i.e., best possible scenario), or c) maximize the average value of 

payoff. In Figure 4-10, the decision maker’s decision rule is to maximize the average 

payoff, based on which the numerical value of design variable shown in the figure. For 

the selected value of design variable, there is a range of achievable payoffs as a result of 

imprecision in the simulation model. The lower bound of achievable payoff is denoted by 

‘l’, the upper bound by ‘u’, and the average value by ‘m’. The maximum payoff that can 

possibly be achieved by any value of the design space is denoted by ‘p’, and is evaluated 
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by maximizing the upper imprecision bound on payoff. Since the exact value of the 

payoff is not known at different values of design variables, it is not possible to calculate 

the exact value-of-information as illustrated in Figure 4-4. However, since the lower and 

upper bounds on payoff are known throughout the design space, we can determine the 

maximum possible value-of-information. This upper bound on the value-of-

information (maximum possible ex-post value) is given by the difference (p-l), where 

‘p’ is the maximum payoff that can be achieved by any point in the design space and ‘l’ is 

the lowest possible payoff value achieved by the selected point in the design space (after 

making the decision without added information). This upper bound is also referred to as 

the ex-post value range.  
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Figure 4-10 - Decision made using bounds on payoff 

The decision on whether or not more information should be gathered is made based 

on the upper bound on value of information. It is also important to assess the impact of 
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additional information. By addition of more information for decision through refining the 

simulation model, the range of achievable utilities as represented by imprecision bounds 

becomes smaller. Due to the reduction of bounds, the designers obtain better confidence 

of the utility that can be achieved. In some cases, the decision point may shift, possibly 

resulting in a better decision. These two effects of addition of information are captured in 

the following two ratios –  

1. Opportunity Ratio (R1), which indicates how good the current design point is, 

when compared to the best possible utility value. It is evaluated using the 

following relation: 

1 u mR
p m

 −
=  − 

, 

where, ‘u’ is the upper bound of payoff achieved, at the chosen design point, ‘m’ 

is the average payoff achieved at the chosen design point, ‘p’is the maximum 

possible payoff throughout the design space. If ,then 1 1p m R= = . 

2. Achievement Ratio (R2), which indicates how good the current design point is, as 

compared to what the designer wants. In order to evaluate this ratio, a designer 

pre-defines a reference (cutoff) value for overall utility, on the achievement of 

which the designer is reasonably satisfied. This reference value of utility is 

denoted by ‘r’. The achievement ratio is given mathematically as: 

2 u rR
u l
− =  − 

 

where, ‘u’ is the upper bound of payoff achieved, at the chosen design point, ‘l’is 

the lower possible payoff at the selected design point. If ,then 2 1u l R= = . 
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The opportunity and achievement ratios lie between 0 and 1. Low values of R1 

indicate that there is a hope of getting a better solution by addition of information due to 

the possibility that design solution may move to better regions in the design space. 

However, high values of R1 indicate that there is low hope of improvement of design 

solution by moving into better points in the design space. Similarly, lower values of the 

achievement ratio (R2) indicate that the current decision point does not meet the 

satisfaction level of the designer in terms of reference value for overall utility. Higher 

values of R2 indicate achievement of designer’s expectations. This is shown graphically 

in Figure 4-11, where the two ratios are plotted on horizontal and vertical axes. The graph 

is divided into four regions – A, B, C, and D. Region A represents the case where both 

R1 and R2 are low. Hence in this region, the designer has not achieved what he/she wants 

but there is an opportunity (hope) of achieving better solution. Hence, there is a need to 

gather more information. The value of information is high in this region. In region B, 

designer’s wishes are not fulfilled and there is little opportunity of improving the 

solution. Hence, the value of information is low in region B. In region C, designer has 

achieved what he/she wanted as specified in the reference value but there is also hope of 

improvement of design solution. The value of information is high (but is lower that value 

of information in A). Similarly, in region D, the achieved utility is close to the reference 

value and there is little hope of achieving a better solution. Hence, the value of 

information is low. In other words, the two ratios combined together with the ex-post 

range serve as metrics for value of information. 
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Figure 4-11 – Segmentation of opportunity and achievement ratios to denote 

opportunity and achievement 

Each of these three metrics for value of information highlights different aspects of 

improvement in decision making capability by addition of more information. Ex-post 

range indicates the maximum possible increase in utility value if the information is added 

to the decision. Opportunity Ratio indicates the possibility of achieving a better solution 

in other regions of the design space. This improvement in solution is possible only if 

information is added. Achievement ratio indicates how well the currently selected design 

point satisfies designer’s objectives. The implications of different values of each of these 

metrics and possible actions by designers are listed in Table 4-3. When making a meta-

level decision to gather more information, the designers should consider all three metrics 

and use their judgment considering the decision problem at hand.  

Note that although the metrics are developed for information generated by simulation 

models, it is applicable to other kinds of information such as that generated by physical 

models as long as the following assumption is valid - the predicted value and associated 

error in terms of lower and upper bounds are available. In the next section, we apply the 
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value of information metrics proposed in terms of upper-bound on ex-post value, 

opportunity ratio and achievement ratio to a pressure vessel design problem and show the 

benefits from using these metrics. 

Table 4-3 - Implications of combinations of different levels of value metrics and the 
corresponding actions suggested for designers 

Ex-Post 
Value 

Achievement 
Ratio 

Opportunity 
Ratio 

Implications Designer’s Action 

High High High Little hope + wish 
achieved + low 
confidence 

Adding more information will  improve 
the confidence but is not necessary 

High High Low Hope + wish 
achieved + low 
confidence 

Addition of information may improve 
both solution and confidence but is not 
required 

High Low High Little hope + wish 
not achieved + 
low confidence 

Adding more information may result in 
better solution 

High Low Low Hope + wish not 
achieved + low 
confidence 

Addition of more information may take 
the solution to other point and also 
increase confidence 

Low High High Little hope + wish 
achieved + high 
confidence 

No need to improve the model 

Low High Low Hope + wish 
achieved + high 
confidence 

Addition of more information may 
result in a better solution 

Low Low High Little hope + wish 
not achieved + 
high confidence 

Addition of more information will not 
help 

Low Low Low Hope + wish not 
achieved + high 
confidence 

Addition of more information may 
result in new points. Designer should 
add more information because the 
current solution is not good 

 

4.4 Example – Pressure Vessel Design 
In this section, we discuss an example design problem where the objective is to 

design a pressure vessel with low weight and high volume. The pressure vessel should be 

able to sustain a pre-specified pressure. The density and yield strength of the material are 

determined using some (unspecified) material simulation model. The accuracy of the 

material simulation model can be improved by addition of more details about the 
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microstructure properties. However, this addition of information requires costly 

experiments and it is desired to keep the simulation model as simple as possible. Due to 

the simplicity of the material model, the material properties are inaccurate. An accuracy 

bound on the values predicted by the simulation model is available. In other words, 

although the predicted value has some errors, it is known with confidence that the values 

will lie between associated lower and upper bounds. It is important to note here that the 

imprecision in the model is not due to randomness but is a result of lack of knowledge 

about the system. As the accuracy of the material simulation model is increased, the 

bounds on predicted values decrease and the predicted value of properties change.  
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Figure 4-12 – Thin walled pressure vessel (Lewis and Mistree 1997) 
Using the material information model, a designer intends to determine the following 

dimensions of the pressure vessel - radius, length and the thickness (see Figure 4-12). In 

this problem, the values of length and radius are fixed in order to make it a one 

dimensional problem that can be easily visualized using 2-dimensional plots. Hence, the 

design variable is the radius of pressure vessel. Due to the manufacturing constraints, 

there are limitations on maximum and minimum values of these dimensions. There are 

additional constraints on the design problem such as – a) the pressure should not fail 
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under the given pressure, b) the pressure vessel is thin walled, thereby imposing 

geometric limitations. This problem is adapted from (Marston 2000). The compromise 

DSP formulation of the problem is provided in Table 4-4. The decision problem is 

graphically shown in Figure 4-13 as a utility maximization problem with inputs of 

preferences, constraints, goals and associated targets, and the design variable. The 

material properties are shown with block arrows depicting the imprecision due to 

simplified material models. Due to this imprecision in material properties, the overall 

utility is imprecise, and hence represented by a block arrow. 

Material Properties 
(Density, Strength)

Utility

Preferences
Constraints

Goals, Targets
Design Variable (R)  

Figure 4-13 – Spring design problem with imprecise material properties leading to 
imprecise utility 

A designer’s preferences are modeled using risk averse utility functions. The 

mathematical relationships for utility functions are shown in the mathematical 

formulation of cDSP in Table 4-4. These utility functions for weight and volume goals 

are graphically shown in Figure 4-14 and Figure 4-15 respectively.  

Since the decision about the radius of pressure vessel is made under imprecision 

about material properties, the decision is formulated not only to maximize the mean 

achievement value of the utility, but also to minimize the range of possible utility values 

achievable using the selected decision point. Hence, in addition to the utility functions for 

volume and weight, two utility functions for average utility value and the difference 

between maximum and minimum possible utility values for the chosen point are 
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formulated. The overall objective function is formulated as a weighted sum of these two 

utility functions. The decision criterion used in this formulation is to select the point in 

design space that maximizes this objective function. The objective function can also be 

formulated in other forms such as the minimum possible utility, weighted sum of 

minimum and maximum possible values. Maximizing the minimum possible utility 

selects the point in design space where the worst case performance is the best, and leads 

to a conservative design. We believe that the selection of the decision criterion (i.e., the 

objective function) is dependent on the problem at hand and should be chosen by the 

designer. Although the results will be different for different decision criteria, the general 

principles and the discussion that follows remain valid and are independent of the 

decision criterion chosen. 
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Figure 4-14 – Utility for weight 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

0

0.2

0.4

0.6

0.8

1

Volume

U
til

ity
 fo

r V
ol

um
e

Figure 4-15 – Utility for volume 
 

The decision formulation discussed so far in this section is the design level decision 

about the product. However, there is also a meta-design level decision that needs to be 

made in this problem – determination of the maximum level of imprecision in the 

material model which is appropriate for making decisions about the pressure vessel. 
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Beyond that maximum level of imprecision, the cost of reducing imprecision overtakes 

its potential value. We address the problem in two parts – one where only the density is 

imprecise and the other where the material’s strength is imprecise. These two parts are 

discussed in Sections 4.4.1 and 4.4.2 respectively. This meta-level decision is made using 

the value of information metric defined in Section 4.3. 

Table 4-4  - Utility-based Compromise DSP of pressure vessel design decision 

Utility-based Compromise DSP of pressure vessel design decision 
Given 
Strength (St), Pressure (P), Density( ρ ) 

Length (L) 
Thickness (T) 

 Imprecision in the material model  
 
Some helpful relations: 

Volume, V = 3 24
3

R R Lπ  +  
 

Weight, W = 3 2 3 24 4( ) ( ) ( )
3 3

R T R T L R R Lπρ  + + + − +  
 

Utility functions (preferences) for Volume and Weight Goals 
2

target
target target

target
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 ≥



 

2

target
target target

target

1 0.6 0.4 0

1 0
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 − − < <          = =
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Utility-based Compromise DSP of pressure vessel design decision 
2

RangeMax
RangeMax RangeMax

RangeMax

1 0.6 0.4 0

1 0
0

Range
Range

RangeVol Range

Range

V V V V
V V

U V
V V

    
 − − < <          = =
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RangeMax RangeMax
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Find 
System variables: 

Radius (R) 
Values of Deviation Variables: 

Vol

Wgt

RangeVol

RangeWgt

d
d

d

d

−

−

+

+

 

Satisfy 
System constraints: 

0t
PRS
T

 − ≥ 
 

 

5 0R T− ≥  
(40 ) 0R T− − ≥  
(150 2 2 ) 0L R T− − − ≥  

System Goals (Normalized): 
1Vol Vol VolU d d− ++ − =  

1Wgt Wgt WgtU d d− ++ − =  

1RangeVol RangeVol RangeVolU d d− ++ − =  

1RangeWgt RangeWgt RangeWgtU d d− ++ − =  
Bounds on System Variables: 

0.1 36R≤ ≤  
0.1 140L≤ ≤  
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Utility-based Compromise DSP of pressure vessel design decision 
0.5 6T≤ ≤  

Non negative values of deviation functions 
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1Wgt Vol RangeWgt RangeVolk k k k+ + + =  
Minimize 
Deviation Function: Wgt Wgt Vol Vol RangeWgt RangeWgt RangeVol RangeVolZ k d k d k d k d− − − −= + + +  

 

4.4.1 Pressure Vessel Design under Imprecise Density 
In this section, we consider the scenario where the density of the material used to 

manufacture the pressure vessel is imprecise, but strength of the material is known with 

certainty. The range of possible density values is known. With addition of more 

resources, the range of possible values can be reduced. For example, in the simplest 

material model, the range of predicted density values is between [0.003, 0.563] where the 

first number represents the lower bound and the second number represents the upper 

bound. On addition of more information in the material model, the range reduces to 

[0.010, 0.550]. The ranges of densities for different scenarios are plotted in Figure 4-16. 

The results of decision making using imprecise information are shown in Table 4-5. The 

table illustrates 10 levels of the material model, each row representing one imprecision 

level in the material model, associated with a range of achievable density values. These 

10 corresponding scenarios of ranges of density, leading to different design decisions are 
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labeled from 1 through 10 (in column ‘S. No.’); 1 corresponding to the most imprecise 

density information and 10 representing the least imprecise (in this example, the 10th 

level corresponds to a precise density value of 0.283).  

Table 4-5  - Results from adding more information about material density 
Decision

S.No. Lower Bound Upper Bound R Expected Utility Ex-Post Range R1 R2
1 0.003 0.563 2.6 0.490 0.528 0.037 0.000
2 0.010 0.550 2.6 0.490 0.522 0.037 0.000
3 0.050 0.530 2.6 0.490 0.493 0.034 0.000
4 0.133 0.433 15.6 0.663 0.349 0.427 0.927
5 0.183 0.403 17.6 0.696 0.259 0.596 0.965
6 0.203 0.380 19.1 0.724 0.205 0.799 1.000
7 0.273 0.303 20.1 0.744 0.034 1.000 1.000
8 0.280 0.284 20.1 0.750 0.004 1.000 1.000
9 0.282 0.284 20.1 0.749 0.002 1.000 1.000
10 0.283 0.283 20.1 0.749 0.000 1.000 1.000

Value Metric (R1)Utility at Decision PointDensity
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Figure 4-16 – Upper and lower bounds of density for different scenarios 

This imprecision density information is used in the compromise DSP shown in Table 

4-4 to select a value of radius that maximizes the objective function value given by a 

weighted sum of the average overall utility and the range of achievable utility values at 

the decision point. At each point the lower and upper bounds on utility, as well as the 

opportunity ratio (R1) and achievement ratio (R2) are shown in the table. Value of 

Information metrics including ex-post range, Ratios R1 and R2 are plotted in Figure 4-17 
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and Figure 4-18 for each of the imprecision scenarios. The achievement ratio is 

calculated for the cutoff utility value of 0.70. 
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Figure 4-17 – Reduction in Ex-Post Value Range with addition of more information 

about density 

As shown in the Figure 4-17, the ex-post value range reduces with addition of more 

information. After a certain stage, (point 7 in the figure), the ex-post range becomes 

almost zero. Hence, there is no benefit from addition of more information in the decision 

under consideration. It is also apparent from Figure 4-18, scenarios 1, 2, and 3 have 

values for ratios R1 and R2 close to 0. Hence, there is hope for getting a better solution 

(due to low R1) and the designer’s wish is not achieved (due to low R2). Hence, there is a 

need for gathering more information about the density in order to achieve design 

objectives. A plot between design variable and utility values for scenario 1 is shown in 

Figure 4-19. In the figure, lower bound, upper bound, average value, and the objective 

function are plotted for various values of pressure vessel radius. The objective is labeled 

as robust objective because it is a combination of the average utility and the range of 
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utilities. The maximum point in the objective function is highlighted with a square. It is 

shown that the maximum value of the objective function is for radius, R = 2.60. 
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Figure 4-18 – Impact of addition of information on Opportunity Ratio and 

Achievement Ratio – imprecise density scenario 
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Figure 4-19 – Uncertain density - Scenario 1 

The 4th and 5th scenarios in the imprecise material density information, as represented 

in Figure 4-18 lie in the region where the designer’s wishes are better achieved but there 
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is still hope of improving the design solution. The opportunity ratio value is 0.427 and the 

achievement ratio value is 0.926. The utility curves associated with scenario 4 are shown 

in Figure 4-20. The value of radius decided in this scenario is 15.6. In scenario 7, both the 

opportunity ratio and achievement ratio are equal to 1. This point reflects that there is 

little hope of achieving a better solution and the designer has achieved his/her desired 

solution. Hence, there is no need to gather more information to reduce the imprecision 

range of density value. The range of density corresponding to this scenario is [0.273 

0.303]. The utility functions corresponding to this scenario are shown in Figure 4-21. 

Any reduction in this density range will result in the same values of achievement and 

opportunity ratio, which is apparent from the Scenarios 8 through 10 in Table 4-5. The 

utility functions corresponding to Scenario 9 are shown in Figure 4-22. 
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Figure 4-20 - Uncertain density - Scenario 4 

Using this example, we show the application of value metrics – the achievement and 

opportunity ratios in making meta-level decisions such as decision about the need for 
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addition of more information before making design decisions. In the following section, 

we present the scenario where density is known with certainty but the strength is 

imprecise. 
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Figure 4-21 - Uncertain density - Scenario 7 
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Figure 4-22 - Uncertain density - Scenario 9 
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4.4.2 Pressure Vessel Design under Imprecise Strength 
 

Nine different scenarios for different levels of imprecision in strength are considered 

in this section. The ranges of strength values for different scenarios are shown in Figure 

4-23. Decisions about the numerical values of radius are shown for each scenario in 

Table 4-6. The ex-post values for each level are plotted in Figure 4-24. Corresponding 

values of opportunity and achievement ratios are shown in Figure 4-25.  

Table 4-6  - Results from adding more information about material density 
Decision

S.No. Lower Bound Upper Bound R Expected Utility Ex-Post Range R1 R2
1 50000 650000 6.1 0.505 0.245 0.000 0.000
2 100000 600000 12.6 0.602 0.147 0.000 0.000
3 120000 600000 15.1 0.655 0.094 0.000 0.000
4 140000 560000 17.6 0.708 0.042 0.000 1.000
5 160000 540000 20.1 0.749 0.000 1.000 1.000
6 200000 500000 20.1 0.749 0.000 1.000 1.000
7 250000 450000 20.1 0.749 0.000 1.000 1.000
8 300000 400000 20.1 0.749 0.000 1.000 1.000
9 350000 350000 20.1 0.749 0.000 1.000 1.000

Value Metric (R1)Strength
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Figure 4-23 – Upper and lower bounds of strength for different scenarios 
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In the first scenario, the imprecision interval for strength is [50000 650000]. This 

scenario corresponds to the utility functions plotted in Figure 4-26. The value of both R1 

and R2 is 0.0, which shows that there is a need for gathering more information and 

reducing the range of imprecision interval of strength. Same is the scenario with 

scenarios 2 and 3. In scenario 4, the opportunity ratio is 0.0, which represents that there is 

a possibility for improving the design solution. The achievement ratio is 1.0, implying 

that designer’s objective is met. In Scenario 5, both the ratios equal 1.0, which is an 

indication that the designer’s objective is met and there is no possibility of improvement 

in the design solution. Hence, the designer may stop reducing the imprecision interval 

because after this stage, any reduction in the range for strength does not improve 

designer’s decision making capability. This is evident from the fact that decision made in 

scenarios 6 through 9 is the same (Radius = 20.1). The utility function values for 

Scenarios 3, 5, and 7 are shown for illustration purposes in Figure 4-27, Figure 4-28, and 

Figure 4-29 respectively. 
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Figure 4-24 - Reduction in Ex-Post Value Range with addition of more information 

about density 



   

 230

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

R1

R
2

1,2,3 

4 5,6,7,8,9 

 
Figure 4-25 - Impact of addition of information on Opportunity Ratio and 

Achievement Ratio – imprecise strength scenario 
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Figure 4-26 – Uncertain strength - Scenario 1 
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Figure 4-27 - Uncertain strength - Scenario 3 
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Figure 4-28 - Uncertain strength - Scenario 5 
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Figure 4-29 - Uncertain strength - Scenario 7 

 
 
 

4.5 On Verification and Validation 
In this chapter, three aspects of the validation square are addressed - theoretical 

structural validation, empirical structural validation, and empirical performance 

validation. The details of the validation square as addressed in this chapter are discussed 

in Sections 4.5.1, 4.5.2, and 4.5.3. An overview of the validation performed in this 

dissertation is presented in Figure 1-13. Specific details related to the validation of value 

of information are presented in Figure 4-30. 
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The Validation Square
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Usefulness of the method in examples
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Figure 4-30 – Summary of validation of value of information metric addressed in 
Chapter 4 

4.5.1 Theoretical Structural Validation 
Theoretical structural validation refers to accepting the validity of individual 

constructs used in the method and accepting the internal consistency of the way the 

constructs are put together. The internal consistency of the individual constructs can be 

checked by a critical review of the literature. In this chapter, one construct is used – value 

of information for decision making. In the Section 4.1, we have argued why value of 

information is appropriate as a metric for making meta-level decisions. Different design 

decisions such as determining the right level of refinement of simulation models and the 

right level of simplification of design processes can be considered as meta-design 
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decisions, where the designers need to determine whether additional information is 

necessary or not. Based on the existing literature, it is shown that value of information 

has been previously used for making similar decisions on addition of information for 

decision making. However, from the critical review of the literature, it is identified that 

the current metrics for value of information are unsuitable for decisions related to 

simulation-based design processes. This is primarily due to the assumption that additional 

information that can be gathered in a decision making process provides better knowledge 

about the probability of events. Hence, only statistical uncertainty is captured in the 

existing metrics. Other limitations are due to the consideration of expected value of 

payoff from the decision making process. The deviation from the expected value is not 

considered in the decision making process. From the limitations of existing metrics, three 

requirements for a metric suitable for meta-design decisions are listed in Section 4.2. 

These requirements are then embodied in a new value of information metric that consists 

of three components, each indicating a different aspect of the impact of added 

information. Due to this logical procedure of literature review, gap analysis, and 

development of new metric based on the requirements, the theoretical structural validity 

of the individual constructs is accepted. The second step in the theoretical structural 

validity – accepting internal consistency of the way constructs are put together is not 

required in this chapter because only one construct is used. 

4.5.2 Empirical Structural Validation 
The empirical structural validation involves accepting the appropriateness of the 

example problems used to verify the performance of the method. In this chapter the 

performance of the value of information metric is measured by using a pressure vessel 
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design problem. A designer employs models for determining the weight and volume of 

the pressure vessel, which are then used for making decisions about the dimensions of the 

pressure vessel. These models utilize information about the material properties (that can 

either come from experimental data or from a material behavior simulation model). 

Hence, the important characteristic of the problem is imprecision in some of the 

parameters that are generated by another simulation model. This is a typical scenario in a 

simulation-based multiscale design problem. Imprecision in the simulation models is one 

of the key requirements for a new value of information metric. The step-wise reduction of 

imprecision in the input parameters, shown in the example in Section 4.4, represents the 

refinement of simulation models that generate information about these parameters and is 

also common in multiscale design. Further the problem is simple enough due to a) the 

simple simulation models for evaluating the pressure vessel’s weight and volume, and b) 

a single design variable, which enables the visualization of results (overall utility and its 

lower and upper bounds) on a two dimensional plot. Hence, the problem is appropriate 

for demonstrating the usefulness of value of information metric in making design process 

related decisions. Note that in this chapter, we are only testing the performance of the 

metric in the presence of imprecision that is modeled with lower and upper bounds on 

parameter values that can be mapped to lower and upper bounds on overall payoff. The 

pressure vessel design example does not include consideration for both imprecision 

(range based uncertainty) and variability (statistical uncertainty). The consideration of 

both variability and imprecision is validated through the materials design example in 

Chapter 9. 
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4.5.3 Empirical Performance Validation 
Empirical performance validation consists of two steps – accepting the usefulness of 

the outcome with respect to the initial purpose and accepting that the achieved usefulness 

is related to applying the method. In this chapter, we show that the application of value of 

information metrics helps designers in making meta-level decisions such as determining 

the right level of refinement of simulation models. The specific example considered here 

contains imprecision in two parameters – strength and density. The results presented in 

Sections 4.4.1 and 4.4.2 show that the upper bound on ex-post utility decreases with the 

addition of more information (i.e., reduction of range on imprecise parameters). With the 

reduction in the range of density, the range on the utility also reduces in size. This results 

in reduction of the upper bound on ex-post utility. With the reduction in the range for 

strength, a similar trend is observed in the upper bound on ex-post utility. However, the 

key difference between the trends observed for density and strength is that by reduction 

in the range for density, the value of ex-post range continuously reduces and drops to 

zero only when the imprecision in density is completely eliminated. Whereas, on 

reducing the range for strength, the upper bound on ex-post value drops to zero even 

when there is imprecision in strength. This is intuitive because the strength is associated 

with a constraint in the designer’s decision. If all the values of strength in the imprecision 

range are such that they satisfy the strength constraint, the exact numerical value of 

strength does not affect the decision. Hence, the value of additional information (via 

reducing the range of strength) is zero. This can also be interpreted as follows – if the 

worst case scenario of strength value satisfies the strength constraint, then the value of 

information is zero. Hence, the results by using the value of information are acceptable 

and inline with the designers’ expectations. Based on this argument, we assert that the 
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empirical performance validity is achieved. Since the empirical performance validity is 

based mainly on the scope of the method and the type of problem considered, it is 

important to consider scenarios where the metric would not work. Hence, the next section 

(4.5.4) is devoted to analyzing the limitations of the metric and possible avenues for 

future work. 

4.5.4 Limitations of Value of Information Metric and Opportunity for 
Future Work 

The value of information metric presented in this chapter (Section 4.3) is based on the 

assumption that information about the lower and upper bounds on the imprecise variables 

is available. Hence, different levels of refinement of the simulation models and different 

design processes need to be characterized with the information about possible lower and 

upper bounds of outputs. The limitations of the metric are discussed in the following: 

1. The metric is developed by only considering the information about the 

improvement in payoff resulting from the decision. It does not include the cost of 

gathering the additional information (the cost of reducing the range of imprecise 

variables in the case of simulation model refinement). It is assumed that for a 

given step in the series of refinement steps, the designer evaluates the estimated 

cost of gathering information and the value of this added information. Using these 

two indicators, the designer makes the decision on whether additional information 

is worth gaining. Another option of including the cost information is to include it 

directly in the payoff calculation. 

2.  Since the metric is based on the availability of lower and upper bounds, it cannot 

be used if this information is not available. For example, if there are different 

fidelities of simulation models available but there is no information about the 
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bounds within which the actual behavior lies, then the metric cannot be used. The 

metrics need to be modified in the future to include this information. 

3. The metric can only be used to determine whether a given level of refinement of 

simulation model is appropriate for making a particular decision or not. It does 

not help designers in determine the level (extent) of refinement of simulation 

model.  

4. A simulation model may have different modes of refinement. The value of 

information metric, as shown in his chapter, does not advise the designers how to 

refine the simulation models – which mode of refinement should be used in a 

given scenario. 

5. The value of information metric provides a conservative estimate of the possible 

improvement in the payoff because the metric is based on the upper bound of 

difference between payoff obtained and payoff that could be obtained by 

gathering more information.  

6. The value of information metric is useful for comparing simulation models and 

design processes that are improvements or simplifications of each other in the 

context of a given decision. In other words, the metric can only be used for 

sequentially improving the simulation models. The designers need to employ the 

models and processes to make decisions. It cannot be used for directly selecting 

from a list of available models, without employing any of the models. 

4.6 Role of Chapter 4 in This Dissertation 
The relationship of the value of information metric developed in this chapter with the 

other chapters is shown in Figure 4-31. 
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Figure 4-31 – Relationship of Chapter 4 with other chapters in the dissertation 
The focus of this chapter is on developing the value of information metric. This 

metric is an embodiment of the Hypothesis H2.1. The metric is used in this chapter for 

determining the right level of refinement of simulation model. The metric is based on 

imprecision and variability. The metric is used in the Steps 3 and 6 of the design method 

presented in the previous chapter (see Chapter 3). The metric developed in this chapter is 

an essential component for answering the Research Question 2. It is used in the following 

chapter (Chapter 5) for determining the appropriate level of simplification of design 

process.  
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Chapter 5 Design Process Simplification Using 
Value of Information Metric 

 
In this chapter, we address the fourth requirement of the design framework, which 

involves the provision of support for simplification of complex design processes without 

affecting the product performance. The requirement, component of the framework, and 

corresponding validation example are listed in Table 5-1. This table is a subset of the list 

presented in Table 1-6. The framework component developed in this chapter to address 

the fourth requirement comprises of two methods for simplification of design processes 

via scale decoupling and decision decoupling respectively. These methods are used to 

answer the second research question through the embodiment of hypothesis H2.2: design 

processes can be simplified using decoupling of scales, decisions and functionalities. The 

details of the research question and the role of this chapter in the overall framework 

development and validation are discussed in Section 5.1.  

Table 5-1 - The requirement and component of the framework for integrated design 
of products and design processes addressed in Chapter 5 
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Requirements 
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Address the Requirements 
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5.1 Frame of Reference – Answering the Research Question 2 
(Simplification of Design Processes) 

Everything should be made as simple as possible, but not simpler. This is a famous 

quote by Albert E. Einstein. The quote is particularly important in the context of design, 

where the objective is to make satisficing decisions. While complex design processes that 

consider all interactions lead to better designs, simpler design processes, where some 

interactions are ignored, are faster. The right level of simplification of design processes is 

the one that reduces the design effort significantly without a major negative impact on the 

quality of decisions. Hence, designers are faced with the following question – “what is 

the right level of simplification of design processes?” In Chapter 4, a metric for making 

such meta-level decisions is presented. It can be used to quantify the impact of addition 

or removal information on designers’ decisions. It is applied to selecting the right level of 

refinement of simulation models. In this chapter, we utilize the value of information 

metric developed in Chapter 4 for making design process simplification decisions. 

Although design processes can be simplified in variety of ways, such as minimizing 

iterations, minimizing the information flow between teams, etc., the scope of this chapter 

is limited to simplifying the basic design process building bocks defined in terms of the 

nine interaction patterns. As discussed in Chapter 3, complete design processes can be 

modeled using hierarchical combinations of design process building blocks. Hence, if the 

interaction patterns can be simplified using the value of information metric, complete 

design processes can also be simplified successively using the same metric and by 

following the same series of steps. The focus in this chapter is on answering the second 

research question for the dissertation – “How should multiscale design processes be 

systematically simplified and models refined in a targeted manner to support quick design 
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decision making without compromising their quality? The simplification of design 

processes’ aspect of this research question is addressed in this chapter. The hypothesis 

used to answer this research question is that design processes can be simplified using 

decoupling of scales, decisions, and functionalities. The first two aspects of this 

hypothesis – scale and decision decoupling are used in this chapter to perform design 

process simplification.  
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Figure 5-1 – Hypothesis addressed and validation example used in Chapter 5 

The basic concepts used for developing the method for simplification are discussed in 

Section 5.2. The focus in Section 5.3 is on scale decoupling. The method for scale 

decoupling is presented in Section 5.3.1 and an example for validating the method is 

presented in Section 5.3.2. The focus of Section 5.4 is on decision decoupling. The 
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method for decision decoupling is presented in Section 5.4.1 and an example problem to 

validate the method is presented in Section 5.4.2. The example problem used in this 

chapter is the design of a datacenter cooling system, which is introduced in Section 5.3.2. 

Finally, verification and validation is discussed in Section 5.5. The research hypotheses 

addressed in this chapter are highlighted in Figure 5-1. The validation example used in 

this chapter is that of a datacenter cooling system design. 

5.2 Elements of the Proposed Simplification Strategy for 
Simulation-based Multiscale Design Processes 

The approach for simplification of design processes presented in this chapter is based 

on the following four constructs: a) interval arithmetic to model imprecision, b) 

robustness to make decisions in the presence of variability and imprecision, c) value of 

information based metric to determine the impact of design process simplification on 

designers’ decision making capabilities, and d) representation of design processes using 

commonly occurring design process patterns modeled in terms of the interactions 

between process elements. The use of each of these four fundamentals is discussed in the 

following sections. 

5.2.1 Intervals for Simplification 
The strategy for simplification adopted in this chapter is to ignore interactions 

between design process elements that do not have a significant effect on design decisions. 

For example, consider a system whose characteristic is given by the following 

mathematical relationship:  

( )Y F X=  
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where, X is a vector of input variables 1 2{ , ,..., }nx x x and Y is a set of outputs 

1 2{ , ,... }my y y . The system is shown in Figure 5-2. Although the overall system response 

(Y’s) are dependent on all the system inputs, the system can equally well be represented 

as two sub-systems corresponding to the response subsets AY  and BY  that depend on AX  

and BX  respectively. However, due to the interactions between these two subsystems, 

individual responses AY  and BY  cannot be entirely reproduced by AX  and BX , causing 

an error in each of the subsystem responses (see Figure 5-2). If this error has a negligible 

or no impact on the designer’s decision making capability, the system can be simplified 

into two subsystems that are independent of each other. 
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Figure 5-2 - Partitioning as a type of simplification 

In order to capture the effect of simplification of interactions between different 

subsystems, we replace the information flow that is ignored in a subsystem with an 

interval representing the possible values that can be assumed by the information link. For 

example, in the partitioned Subsystem 1 shown in Figure 5-3, AY  is the response and 

AX is the input. BX is the result of interaction with subsystem 2, which is replaced with 

an interval ,min ,max[ , ]B BX X . This range of information accounts for the imprecision 
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introduced in the system due to simplification of interactions between subsystems, and 

results in a range of values for the outputs AY , denoted by ,min ,max[ , ]A AY Y . The width of the 

output interval ,min ,max[ , ]A AY Y  increases with increase in the width of input interval 

,min ,max[ , ]B BX X , whereas the range reduces with the reduction of imprecision caused by 

simplification.  

Sub-Problem 1

Sub-Problem 2

XA

XB

[XB,min ,XB,max]

[XA,min ,XA,max]

[YA,min ,YA,max]

[YB,min ,YB,max]  
Figure 5-3 – System partitioning using intervals 

In this dissertation, we use the intervals to model the imprecision introduced in a 

system due to simplification. Using intervals, we can evaluate the range of output values 

if the range of input values is given. These output values from the system analysis 

correspond to system performance. The system performance is subsequently related to 

designers’ preferences through utility functions. Due to the ranges in input variables 

(resulting from simplification) there is a range of achievable system performance, which 

in turn results in a range of utility values. A designer makes decisions about the values of 

design variables using information about achievable range of utility values.  

5.2.2 Robustness for Making Decisions under Simplification Induced 
Imprecision  

The idea of robustness is used to make decisions under uncertainty. Uncertainty is 

important in this discussion on simplification and results from two sources – a) 

imprecision introduced due to simplification and b) system uncertainty due to noise 
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factors. The general robust design approach is illustrated in Figure 5-4, where the 

objective is to decide on the values of design variables (also called control factors) that 

satisfy the desired values of response variables, while also minimizing the impact of 

changes in noise factors on the responses. This is achieved through different goal 

formulations in the design decisions. The approach adopted in this dissertation is to 

model two goals associated with each response – a) achievement of the desired target 

value for each response, and b) minimization of deviation of response due to changes in 

the noise factor. Designers assign preferences to both these goals in the form of utility 

functions and the overall utility function is evaluated for different points in the design 

space. The point in the design space that maximizes this overall utility function is 

selected by the designer. 

Overall 
System

Control
Factor

Noise
Factor

ResponseOverall 
System

Control
Factor

Noise
Factor

Response

Robust Design Approach
 

Figure 5-4  - General robust design approach 

The concept of robustness has been used in design literature in various different 

uncertainty scenarios such as uncertainty in noise variables, design variables, uncertainty 

in simulation models, and uncertainty in a chain of models. The existing literature on 

these types of robust design is discussed in Section 2.3.  The distinguishing feature of 

robustness considered in this chapter is that we use the concept of robustness to design 

systems that are also insensitive to simplification assumptions in the design processes. 
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5.2.3 Value of Information 
Different levels of simplification result in different design decisions. The selection of 

a right level of simplification in the design process depends on the effect on designers’ 

decision making capability. Increasing the level of simplification of a design process 

increases imprecision, thereby reducing the designer’s capability to make good decisions. 

This effect of simplification of a design process on a designer’s decision making 

capability is quantified by the value of information metric proposed in Chapter 4. The 

metric developed in Chapter 4 is based on determining the difference between the overall 

system performances based on the decisions made with and without imprecision due to 

simplification. It quantifies the effect of both the extent to which designer’s objectives are 

satisfied and the possibility of improving the design solution by relaxing simplifications. 

The metric requires the knowledge of ranges of achievable overall utility values for 

different points in the design space. This information is available because the ranges of 

values assumed by interactions is ignored during the simplification process are known. 

The value of information at a particular simplification level of the design process 

determines whether there is a need to relax some simplification assumptions or not. If at a 

given simplification level, the value of information shows that the designers’ objectives 

are met and the potential benefits by adding more details to the system is not likely to 

improve the design decision, the simplified design process can be used for designing. 

5.2.4 Interaction Patterns for Modeling Design Processes 
At any level of abstraction, design processes can be broken down into patterns that 

repeat themselves. Using the idea of patterns, any complex network can be broken down 

into a common set of patterns at any level of abstraction. The idea of patterns in design 

processes is discussed earlier in Chapter 3. Since the hypothesis is that the same patterns 



   

 248

occur at different levels of details of the design processes, it is required to understand the 

simplification of interaction patterns only. We are only considering the interaction 

patterns that consist of two components interacting with each other. The same principles 

extend to process elements where more than two components interact. The interactions 

patterns considered in this research are shown in Figure 5-5. These interaction patterns 

are described in terms of a matrix with three rows and three columns and are first 

introduced in Section 3.5.2 and illustrated in Figure 3-11. The rows of the matrix are: a) 

information flow between simulation models, b) information flow between decisions, and 

c) multifunctional design. The columns of the matrix describe the level of interaction 

between the components and are described as a) independent interactions, b) dependent 

interactions, and c) coupled interactions. The interaction patterns are marked with labels 

– P1 through P9. Based on these nine interaction patters, three types of simplification are 

considered in this research. These include scale decoupling, decision decoupling, and 

functional decoupling.  

Scale decoupling refers to simplification of interactions from pattern P3 to pattern P2 

and from pattern P2 to Pattern P1. It refers to the simplification of information flow 

between two simulation models used for making a single decision. In the scale 

simplification (decoupling) scenario, there is a single set of design variables and a single 

set of objectives. The information needed to make that decision is generated from two 

separate simulation codes (generally at different scales) that may need to be executed in a 

coupled fashion. The task in scale simplification is to determine whether the coupled 

nature of simulation models (pattern P3) is important for making the decision or it can be 
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simplified into a sequential information flow (pattern P2) or into an independent 

execution (pattern P1). Scale decoupling is addressed in detail in Section 5.3.  
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Figure 5-5 – Types of simplification considered in this dissertation – scale 

decoupling, decision decoupling, and functional decoupling 

 
Decision decoupling refers to simplification of interaction patterns from pattern P6 to 

pattern P5 and pattern P5 to pattern P4. It refers to the simplification of information flow 

between decisions from a coupled decision making to an independent decision making. A 

decision decoupling scenario is characterized by multiple decisions – each associated 

with a set of design variables that need to be decided upon. Each of the set of design 

variables affects a common set of objectives. The task in decision decoupling is to 

determine an appropriate interaction level between the decisions such that the design 

objectives are satisfied with the minimum complexity in the design process. Decision 

decoupling is discussed in greater detail in Section 5.4.  
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Functional decoupling refers to the simplification from pattern P9 to pattern P6, 

pattern P8 to P5, and pattern P7 to P4. This is important in the case of multifunctional 

design where the product is designed to satisfy more than one functional requirement that 

drive the design into different directions. Such design scenarios are characterized by 

multiple sets of design variables (possibly overlapping), whose values can be selected for 

satisfying multiple objectives. The task of functional decoupling is to determine which 

functional requirements can be satisfied independently and which of those should be 

designed for in a concurrent fashion. Functional decoupling also depends on how the 

design variables are partitioned for satisfying different functional requirements. Hence, 

the task in functional decoupling is also to determine the appropriate design space 

partitioning, the details of which are discussed in Chapter 6. A summary of the 

characteristics of three types of simplification discussed in the following sections is 

provided in Table 5-2. 

Table 5-2  - Characteristics of three types of simplifications considered in this 
chapter 

Section 5.3 Scale Decoupling: Single set of design variables, single set of 
objectives 

Section 5.4 Decision Decoupling: Multiple sets (corresponding to different 
scales) of design variables, single set of objectives 

Chapter 6 Functional Decoupling: Multiple sets of design variables, multiple 
set of objectives (corresponding to multifunctional design) 

 
The general steps in decision and scale decoupling are listed in Figure 5-6 and are 

discussed next. Using the four constructs described in this discussion, the general steps 

for scale, decision and functional decoupling include:  

1. Identify the interaction pattern (P1 – P9) and the type of decoupling to be 

considered 
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2. Select a simplest interaction pattern corresponding to the decoupling to be 

considered (P1 in the case of scale decoupling, P4 in the case of decision 

decoupling, etc.) 

Decision Formulation
(Compromise DSP)

- Variables and Ranges
- Constraints

- Goals, Preferences

Characterization of 
Interaction Patterns
-P1, P2, P3: Bounds on Error

- P4, P5, P6: Bounds on Design Variables

Decision Making Using 
Simple Patterns
- P1 for scale decoupling

- P4 for decision decoupling

Value of Information
Estimation

- Upper bound on ex-post utility

Select Next
Interaction Pattern

- P1 P2, P2 P3
- P4 P5, P5 P6

Decision:
Interaction Pattern, 
Design Variables  

Figure 5-6 – General Steps for Decision and Scale Decoupling 
3. Make a decision about design variables using the simplest model and determine 

the range of overall utilities.  

4. Using the range of utility values, determine the value of information as discussed 

in Chapter 4. If value of information indicates that using the current interaction 

pattern, designer’s design objectives are not satisfied and there is a need to 

increase interaction details, then go to the next interaction pattern and follow steps 

2-4. 

These four steps are used for determining the right level of simplification of 

interaction patterns. These steps are discussed in detail in Sections 5.3 and 5.4 for scale 

decoupling and decision decoupling respectively. 
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5.3 Scale Decoupling 

5.3.1 Method for Scale Decoupling 
In this section, we discuss the scenario where a designer wants to make a decision 

using simulation models at multiple scales. Although the simulation models are coupled 

with each other, the coupling may not be important from the point of view of decisions 

under consideration. By considering a completely coupled simulation model, the fidelity 

of simulation is high but the associated time for executing the model is also high. 

Decoupling of the simulation models at different scales reduces both the accuracy and the 

time required to execute the simulation models. Hence, the designer is faced with the 

following meta-level decision involving tradeoff between the costs of employing accurate 

simulation vs. accuracy for decision making – what level of coupling between simulation 

models needs to be considered.  

Since we are considering the case involving only two models, the meta-level decision 

refers to selection of pattern P1, P2 or P3 that provides enough accuracy for decision 

making, while minimizing the computational costs. The decision scenario is shown in 

Figure 5-7, where a decision is modeled in terms of compromise DSP (cDSP) keywords 

and one of the three different types of model interaction patterns P1, P2, or P3 can be 

used to make  the decision. In order to help designers make this meta-level decision, we 

employ the four general steps listed in Section 5.2.  

Specifically, the details of steps followed for scale decoupling are: 

Step 1: Decision formulation: The first step in the scale decoupling process is to 

formulate a decision that needs to be made using the simulation models. We use 

the compromise DSP construct to model design decisions. Compromise DSP 

construct captures information about design variables, responses, simulation 
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models used for evaluating responses from design variables, designers’ 

preferences, constraints, and goals. Since there is one decision associated with the 

determination of values for the design variables and another decision 

corresponding to the meta-level decision (selection of the appropriate interaction 

pattern), the designers need to formulate preferences for both decisions.  

cDSP
Given
Find
Satisfy
Minimize

ValidationValidation

Pattern P1 Pattern P2 Pattern P3  
Figure 5-7 - Use of patterns P1, P2, or P3 for making a decision 

 We model the preferences for achievement of different goals as utility functions. 

Hence, the decision formulation step involves formulation of utility functions for 

achievement of performance targets and their deviations from the target. These 

individual utility functions are combined together to result in an overall utility. 

The overall utility value indicates the level of fulfillment of designers’ objectives. 

For the meta-level decision, the designers need to determine a cutoff value of the 

overall utility that if achieved by a simpler interaction pattern would satisfy the 

designer. This cutoff value of overall utility is used to evaluate the value of 

information metrics corresponding to different interaction patterns. 
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Step 2: Characterization of interaction patterns: The second step is to characterize the 

error in predictions from simplified interaction patterns. For example, assuming 

that pattern P3 is the most accurate model, there is an error introduced due to 

decoupling of interaction to patterns P2 and P1. Knowledge of this error is used to 

determine the impact on decision making.  The error is quantified as ranges 

(lower and upper bounds) of values where the response values would lie. The 

error is generally a function of design variable values. This error is determined 

either from designers’ knowledge, other accurate models, experimental data, or by 

comparing the predictions with a more accurate model. In this section, we 

evaluate the error by comparing the model predictions with pattern P3 and then fit 

a response surface on lower and upper bounds of error as a function of design 

variables. Since the error due to simplification is the driver for determining the 

value of information corresponding to interaction patterns, the quality of this error 

prediction determines the quality of decision making. The estimation of error for 

each pattern may seem to be an overhead for design but unless the error is 

quantified, it is not possible to make meta-level decisions in a systematic manner. 

Further, it is important to note that if this characterization of error is performed 

once, it can be reused over and over again for designing similar products (re-

design) with different specifications that require with making similar decisions 

numerous times with varying preferences. This reusability is shown in the 

datacenter example (see Section 5.3.2) for designing datacenters with different 

preference scenarios. It is shown that different interaction patterns are suitable for 
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different preferences and the knowledge about error due to simplification of 

interactions is reused in different decisions. 

Step 3: Decision-making using simplified patterns: After the decision is formulated and 

the information about error introduced by simplification is known, the designers 

can select the simplest possible interaction pattern (e.g., pattern P1) and make a 

decision about design variables. Due to the range of achievable response values, 

each point in the design space represents a range of overall utility values. Using 

the range of utility values, a decision is made by selecting the design variable 

values that maximize the expected value. As discussed before, the robust-decision 

is formulated by modeling preferences for both mean and variance in the form of 

utility functions. After making a decision using the simplified pattern, value of 

information metric is evaluated and the need for considering a more detailed 

interaction pattern is identified. 

Step 4: Value of Information estimation: The range of achievable overall utility values is 

used to evaluate the achievement and opportunity ratios defined in Chapter 4. 

These ratios define the value of information generated by a model interaction 

pattern. Achievement ratio indicates whether designer’s objective is fulfilled 

(based on the cutoff value of overall utility). Opportunity ratio indicates whether 

there is a hope of achieving higher utility values by changing the design decision. 

If achievement and opportunity ratios are both high (close to 1), then there is no 

need to increase the complexity of design process – the current interaction pattern 

is good enough for making the design decision. If both achievement and 

opportunity ratios are low (close to 0), then the designer should consider 
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upgrading to an interaction pattern that better represents the physical phenomena 

and increases the accuracy of response prediction. In that case, the steps 3 and 4 

are repeated with the next level of interaction pattern. 

The method presented in this section is based on the assumption that information 

about error due to decoupling is available as bounds on the response. If the error bounds 

are unavailable, the value of information metric cannot be applied in the manner shown 

because the metric proposed in this thesis is based on ranges of utility values obtained for 

different points in the design space. If the decoupling induced imprecision is captured in 

other mathematical forms such as probability distribution functions, a different value of 

information metric is required. This defines the scope of application of the proposed 

method. Further, in this chapter, we do not consider system uncertainty due to noise 

variables (in addition to the imprecision due to decoupling). Uncertainty due to noise 

factors can be included in the method in a manner similar to that shown in 9.6, where 

appropriate level of model refinement is determined in the presence of both uncertainty 

and imprecision. This extension is left as an opportunity for future work.  

5.3.2 Scale Decoupling Example from Datacenter Design 
In order to illustrate and validate the steps of scale decoupling listed in Section 5.3.1, 

we present an example of datacenter cooling system design. Datacenters are 

computational facilities that consist of huge numbers of data processing units (computers) 

for high end computing requirements. These facilities range from several square feet to 

around 5000 square meters. Generally, the computers are stacked vertically in cabinets 

that are organized horizontally in rows and columns. An example of datacenters is shown 

in Figure 5-8. Due to the dense packing of these computers in datacenters and their high 
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performance, heat dissipation is a major concern for design of datacenter facilities. 

Energy costs for cooling the datacenters represent around 40% of their total operation 

costs. Datacenter designers are concerned with decisions such as number of computers in 

a cabinet, distance between cabinets, temperature and velocity of cool air to be supplied 

in a datacenter, etc. The objective is to maximize space utilization, and minimization of 

costs. Effective design of datacenters is important because of the short lifecycle of the 

computing equipment. It is estimated that the computing infrastructure changes in about 

three years on an average. 

The thermal behavior of datacenters is dependent on a number of scales that are 

interlinked with each other (see Figure 5-8). At the room level (~10’s of meters), the 

thermal characteristics of a datacenter depend on the dimensions of the overall facility, 

arrangement of cabinets in the facility, and the thermal characteristics of individual 

cabinets. At the individual cabinet level (~1-2 meters), the thermal behavior depends on 

the number and arrangement of computers in a cabinet, the distance between different 

computers, the capacity of fans used for drawing air from the cabinets, and the 

characteristics of each computer. The thermal behavior of each computer (~0.6 meter) is 

a function of the arrangement of processors and other heat emitting components and the 

heat generated by each component. The thermal characteristics of the components such as 

a processor (~35mm) are determined by the component’s architecture. Hence, the overall 

design of the datacenter should be carried out by considering the phenomena at all these 

scales. In other words, a completely coupled simulation that models phenomena at all 

these scales would have been the “best” model. However, the disadvantage of such a 

model is that it would take an extremely long time (at the order of years) to simulate a 
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coupled system. From a meta-design perspective, the designers’ needs to decide the 

appropriate level of complexity of the model that would be good enough for making 

decisions about the datacenter layout. Not all couplings are important for making design 

decisions. In order to solve this problem of determining the appropriate couplings 

between scales that should be considered, we employ the scale decoupling method 

presented in Section 5.3.1. The first of the four steps detailed in that section is to 

formulate the decision. 

~0.6 m~0.6 m

~10’s meters~10’s meters

35mm35mm

 
Figure 5-8 – Multiple scales in the datacenter cooling system design 
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Step 1: Decision Formulation 

Consider a design scenario where a designer is interested in designing the air 

conditioning system for a datacenter. The decision is formulated as a compromise 

decision support problem. The detailed decision formulation is shown in Table 5-3. The 

temperature and velocity of air entering the cabinets are chosen as design variables. The 

objectives include effective cooling of the surface of computers (i.e., minimization of 

temperature on the surface) and minimization of cooling cost. The preferences for both 

these objectives defined as utility values and are shown in Figure 5-9. These preferences 

correspond to risk-averse nature of designers. These utility functions for goals of average 

temperature and cost are combined together by a taking a weighted average of individual 

utility values. The assumption that allows for such a combination is that the utility values 

for individual goals are independent of each other. This condition is also known as 

preference independence of the goals. 

280 290 300 310 320 330 340 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Max Temperature

U
til

ity

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cost

U
til

ity

Preference for CostPreference for Tavg

 
Figure 5-9 - Preferences for average temperature and cost indicator 
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Table 5-3 – Decision formulation for datacenter design 

Decision formulation for datacenter design 
Given 
 Simulation models at both levels 
 Preferences and targets on average temperature achieved (T) and Cost Indicator 
 (C) as shown in Figure 5-9 

 

2

min min
min max

max min max min

Cost max

min

min max

C-C C-C - 0.8 - 0.2  + 1 C <C<C
C -C C -C

U  = 0 C C
1 C C
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 ≥
 ≤
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min min
min max

max min max min

Temp max
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1 T T

T =283K, T =344K

    
    
    
 ≥
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 Preferences related to imprecision in temperature prediction 
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Error min Error min
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 Values of design variables  ,in inT V  
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Decision formulation for datacenter design 
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Minimize 
 Deviation from target 
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In addition to the mathematical models of preferences, it is assumed that models for 

thermal behavior are also available. Although computational fluid dynamics models for 

predicting the thermal and flow behavior of air in a datacenter can be developed for at all 

the four scales, we consider models at only two scales – cabinet level and computer level. 

This method and the results can be easily extended to problems involving more than two 

scales based on the discussion in Chapter 3. In that chapter, we show how any process 

network involving more than two components can be successively viewed and analyzed 

as systems with two-components interacting with each other. 

A schematic for the cabinet level model is shown in Figure 5-10. In the figure, a cross 

section with two cabinets (one on left and another on right) is shown.  The cabinets are 

separated by a distance D, which varies between 0.5 and 2 meters. The width of a cabinet 

is 1 meter and consists of a number of shelves on top of each other. The computers are 

oriented horizontally and placed on the shelves. The distance between different shelves 

on a stack is denoted by H. The number of shelves in a cabinet is denoted by N and can 

be varied. The cooling air enters from the bottom of the floor through perforated tiles. 
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The velocity and temperature of air entering the room through the floor are denoted as 

Vin and Tin respectively. It is assumed that the top surface of each shelf generates a fixed 

and uniform heat flux. It is important to note that this is a 2-dimensional model. 

H = [1 4 ] U
D = [0.5  2] m

Tin =[50-60] F 
Vin = [0 2]m/sec

N = 
#computers 
in a cabinet

1m

Heat profile

 
Figure 5-10  - Ilustration of datacenter design variables and parameters – Cabinet 

Level Analysis 

 
A schematic for the computer level model is shown in Figure 5-11. In the figure, a 

volume of air between two adjacent shelves on the cabinet is modeled. The length, width, 

and height of the volume are represented as L, W, and H respectively. Four computers 

approximated by rectangular prisms are placed on the lower shelves. The dimensions of 

each computer are denoted as l, w, and h. The horizontal distance in x and y directions of 

computers from the centerline are d1 and d2 respectively. It is assumed that the heat is 

generated on the top surface of each computer. This assumption is better than the cabinet 

level model, where the heat generation is assumed to be from the complete shelf surface. 

The air enters from the left hand side of the air volume and exits from the right. The other 

two vertical surfaces are assumed to have symmetry condition and the top surface of the 

volume has a no-slip boundary condition. The air outlet side has a velocity boundary 

condition because we can control the velocity of air outlet by controlling the fan speed. 
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Strictly speaking, both these models are coupled with each other because the cabinet level 

model provides the boundary conditions (inlet air velocity, temperature, etc.) for 

computer level model, which is important for the accurate prediction of conditions inside 

the computer level model. The computer level model, in turn, provides a better 3-D 

description of the heat generation and the pressure drop across a shelf in the cabinet. 

However, from the meta-level perspective, our objective is to determine which level of 

coupling is important to consider for the decision.  

Q_chip
Vin_comp
Tin_comp

Vout_comp

H

W

L

l
wh

d1

d2

 
Figure 5-11 - Ilustration of datacenter design variables and parameters – computer 

level analysis 

 
Step 2: Implementation and Characterization of Interaction Patterns 

The next step is to characterize the error in interaction patterns between the two 

different scales of models. The independent interaction pattern (pattern P1) is shown in 

Figure 5-12, where the cabinet level model and computer level model are shown. Since 

this is the simplest interaction pattern P1, there is no information flow between the two 

models. The cabinet level model has input parameters of distance between cabinets (D), 

vertical distance between two shelves (H), thickness of each computer (T), inlet 

temperature (Tin), inlet air velocity (Vin), heat flux generated by the computers (Q), and 
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outlet velocity (Vout). The outputs of the cabinet level simulation are maximum 

temperature on the surface of computers, and the average temperature on the computer 

surface.  

Computer Level ModelComputer Level Model

Cabinet Level ModelCabinet Level Model

D, H, T, Tin, 
Vin, Q, Vout,
Mesh Size, 
MaxIterations

Tavg

Tmax

D, H, T, Tin, 
Vin, Q, Vout,
Mesh Size, 
MaxIterations

Tavg

Tmax

Comp Dimensions (L, W, H)
Chip Locations (d1, d2)

Vout
Q_chip

Vin_comp
Tin_comp

Chip Dimensions (l,w,h)

Tavg

Tmax

Comp Dimensions (L, W, H)
Chip Locations (d1, d2)

Vout
Q_chip

Vin_comp
Tin_comp

Chip Dimensions (l,w,h)

Tavg

Tmax

Pattern P1

 
Figure 5-12 – Datacenter analysis representing pattern P1 

The computer level simulation has following inputs - computer dimensions (l, w, h), 

location of computers on the shelf (d1, d2), outlet velocity, heat flux generated by each 

computer (Q_chip), inlet velocity for each computer (Vin_comp), inlet air temperature 

for each computer (Tin_comp), and the dimensions of space available on each shelf (L, 

W, H). Outputs of computer level simulation include the average temperature on the 

surface of each computer (Tavg), and the corresponding maximum temperature (Tmax). 

The readers may note that the outputs from both these simulation models are the same. 

Both these models are created in FLUENT software. Since there is no interaction 

between the two simulation models, the inlet temperature and velocity in the computer 

level model is assumed to be the same as conditions at the air inlet into the room. This 
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assumption is necessary for independent pattern because the information is not available 

for each individual shelf. It is assumed that the boundary conditions at all the shelves are 

the same. 

In the dependent interaction pattern (pattern P2) shown in Figure 5-13, there is one 

way flow of information between the models. In this case, we model the flow of 

information from the cabinet level model to the computer level model. The information 

about the properties (air velocity profile and temperature) at the inlet of each shelf is used 

as boundary conditions for the computer level model. The outputs from the computer 

level model are then used for decision making. In the completely coupled pattern (pattern 

P3 shown in Figure 5-14), the information flows in both directions – from the cabinet 

level model to computer level model and vice versa. The information about boundary 

conditions is passed from cabinet level model to computer level model and the 

information about actual temperature profile for each computer is passed from the 

computer level model to cabinet level model. One option for developing the completely 

coupled model is to model the information flow between the two models and then 

iterating until the output values of temperature converges to a single value. Another 

option for modeling the coupled phenomenon is to develop a complete CFD model for 

the cabinet and the computers by including all the details in the same model. Such a 

model for the datacenter is shown in Figure 5-15. In this chapter, we use this complete 

model as the coupled model. 
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Figure 5-13 – Datacenter analysis representing pattern P2 
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Figure 5-14 - Datacenter analysis representing pattern P3 
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Figure 5-15 – Coupled model representing pattern P3 

 
The mathematical expressions for the response surfaces of average and maximum 

temperature predicted by simulation models using model interaction patterns P1, P2, and 

P3 are shown in Table 5-4, Table 5-5, and Table 5-6 respectively.  

Table 5-4 – Temperature response surface for pattern P1 and associated error 
functions 

P1 2
avg in Vin in in inT  = 299.986 + 10.936 T  - 3.679  + 0.484 V  + 3.731 T *V  
P1 2 2
max in in in in in inT = 311.760 + 7.271T - 6.176V + 1.189T  - 1.926V + 7.176T V  

avg

max

P1 2 2
T in in in in in in

P1 2 2
T in in in in in in

Error  =17.8637-8.9684T + 1.9198V - 0.0409T - 0.1279V -2.8316T V

Error  =19.7872 - 5.9433T + 1.0654V - 0.3336T + 5.0499V - 6.7084T V
 

 

Table 5-5  - Temperature response surface for pattern P2 and associated error 
functions 

avg

P2 2 2
avg in in in in in in

P2 2 2
max in in in in in in

P2 2
T in in in

T = 320.042 + 3.571T - 6.075V + 0.012T  - 5.663V + 6.362T V

T = 330.710 + 2.558T  - 5.358V  + 1.031T  - 3.997V  + 4.185T V

Error =-2.192 - 1.602T  + 4.315V  - 0.053T  

max

2
in in in

P2 2 2
T in in in in in in

+ 6.02V  - 5.46238T V

Error =0.837 - 1.230T  + 0.247V  - 0.175T  + 7.12V  - 3.7181T V
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Table 5-6 - Temperature response surface for pattern P3 
P3 2 2
avg in in in in in in

P3 2 2
max in in in in in

T  = 317.850 + 1.968T - 1.760V  - 0.041T  + 0.356V + 0.899T *V

T  = 331.547 + 1.328Tin - 5.110V  + 0.856T + 3.124 * V  + 0.467 * T V
 

Note that Tin and Vin are normalized between -1 and 1 corresponding to the range of 

[273 300]K for Tin and [1 2.5]m/sec for Vin. In addition to the predicted value, the 

absolute value of error in predicted value is also listed in the tables. The error associated 

with pattern P3 is zero because it is assumed to be the perfect model. The temperature 

predictions for average temperature as a function of inlet temperature and velocity for the 

three patterns is plotted in Figure 5-16. 
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Figure 5-16 – Average temperature predicted using patterns P1 (independent), P2 
(sequential), and P3 (coupled) as a function of design variables – inlet temperature 

and velocity 
 
Results and Validation 
 

The results from decision making using the different interaction patterns – P1, P2, 

and P3 are shown in Table 5-7. In this table, the outcomes of decisions are shown in 

terms of design variable values (inlet air temperature – Tin, inlet air velocity - Vin), 

corresponding response values (average maximum temperature achieved – Tavg, and cost 
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indicator), and the overall utility values corresponding to the response values. Associated 

with each decision, the value of information is evaluated using the ex-post range, the 

opportunity ratio (R1) and the achievement ratio (R2) (for value of information metrics, 

refer Section 4.3). Different decision scenarios are considered. The design scenarios 

differ in the weights assigned to temperature and cost goals.  

Table 5-7 – Results from decision making using patterns P1, P2, and P3 for different 
preference scenarios 

Pattern Tin Vin Tavg Cost Indicator Ex-Post Range R1 R2
P1 273 2.5 282.12 92.5 0.8845 0.30063 1 0.99789
P2 273 2.5 298.38 92.5 0.80686 0.1993 1 0.99692
P3 273 2.5 313.54 92.5 0.69938 0 1 0
P1 273 2.1 285.7 77.7 0.81371 0.28046 0.98112 0.81615
P2 273 2.5 298.38 92.5 0.73935 0.17937 1 0.68013
P3 275 2 315.34 70 0.64937 0 1 0
P1 273 1.3 293.67 48.1 0.78844 0.2487 0.99889 0.79325
P2 286 2.5 307.94 60 0.69576 0.11372 0.87316 0.44203
P3 297 2.05 318.99 26.65 0.66173 0 1 0
P1 273 1 296.94 37 0.78937 0.21451 1 0.86326
P2 300 1 317.67 10 0.71034 0.043896 1 0.72965
P3 300 1.8 319.72 18 0.6954 0 1 0
P1 282 1 301.75 28 0.79736 0.16667 0.94876 1
P2 300 1 317.67 10 0.74818 0.037626 1 1
P3 300 1.5 320.1 15 0.73171 0 1 1
P1 292 1 307.08 18 0.81732 0.11515 0.90602 1
P2 300 1 317.67 10 0.78602 0.031355 1 1
P3 300 1.15 320.69 11.5 0.77037 0 1 1
P1 300 1 311.35 10 0.84625 0.072604 0.86754 1
P2 300 1 317.67 10 0.82386 0.025084 1 1
P3 300 1 320.99 10 0.81115 0 1 1
P1 300 1 311.35 10 0.87849 0.050725 1 1
P2 300 1 317.67 10 0.86169 0.018813 1 1
P3 300 1 320.99 10 0.85217 0 1 1
P1 300 1 311.35 10 0.91073 0.033817 1 1
P2 300 1 317.67 10 0.89953 0.012542 1 1
P3 300 1 320.99 10 0.89318 0 1 1
P1 300 1 311.35 10 0.94297 0.016908 1 1
P2 300 1 317.67 10 0.93737 0.0062709 1 1
P3 300 1 320.99 10 0.93419 0 1 1
P1 300 1 311.35 10 0.97521 0 1 1
P2 300 1 317.67 10 0.97521 0 1 1
P3 300 1 320.99 10 0.97521 0 1 1

Value MetricsDecision Variables

w_cost=0.2

w_cost=0.3

w_cost=0.0

Response Variables Overall Utility

w_cost=0.1

w_cost=0.8

w_cost=0.9

w_cost=1.0

w_cost=0.4

w_cost=0.5

w_cost=0.6

w_cost=0.7

 
 

Consider a single decision scenario where the weight for cost goal is 0.2 (which 

implies that the weight for temperature goal is 0.8). Following the method proposed in 

Section 5.3.1, we first select the simplest interaction pattern – P1 and make a decision 

about design variable values. The selected values of inlet air temperature (Tin) and inlet 

air velocity (Vin) are 273 K and 1.3m/sec respectively. The overall utility predicted by 
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the pattern P1 is 0.78844. For this value of the decision point, the ex-post range is equal 

to 0.2487. Ex-post range represents the upper bound on value of information that can be 

achieved by making the interaction pattern more accurate. The opportunity ratio is equal 

to 0.9988. Since the value is close to 1, it indicates that there is low hope of improving 

the design solution by selecting another point in the design space. The achievement ratio 

is equal to 0.79325, which indicates the level of achievement of designer’s cutoff value 

for overall utility. 

Since the ex-post range is high, based on implications of these metrics listed in Table 

4-3, the confidence in this solution is low. Hence, the designer should add more 

information and refine the interaction pattern from P1 P2. Using the interaction pattern 

P2, the design variable values are 286 K, and 2.5 m/sec. The overall utility value 

predicted is 0.6957 and the ex-post range is 0.1137. If the interaction pattern is refined 

further (P2 P3) to include complete coupling, the decision is as shown in Table 5-7. The 

ex-post range is 0.0, which is obvious because the completely coupled interaction pattern 

is considered the most accurate model and error is calculated based on this pattern.  

It is observed from the results in Table 5-7, for preferences corresponding to weight 

of cost between 0.0 and 0.2, the ex-post range values for both patterns P1 and P2 are 

greater than 0.1. Hence, the value of adding more information is high in those scenarios. 

Therefore, pattern P3 is required to make decisions in those preference scenarios. In 

scenarios where the weight for cost is between 0.3 and 0.6, the ex-post range for pattern 

P1 is greater than 0.1 but the ex-post range for pattern P2 is less than 0.1. Hence, value of 

added information from P1 P2 is high but from P2 P3 is low. Therefore in those 

scenarios, the designers may use pattern P2 for decision making. In the remaining 
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preference scenarios where the weight for cost goal is greater than 0.6, the ex-post value 

for adding information by moving from P1 P2 is less than 0.1. Hence, pattern P1 is 

good enough for decision making. The conclusion based on the results in Table 5-7 is that 

if the weight for cost is between 0.0 and 0.2, pattern P3 is suitable for decision making. 

Pattern P2 is suitable if the weight for cost is between 0.3 and 0.6, and pattern P1 and 

suitable if the weight for cost is above 1.0 (given all the other factors in the decision 

including constraints, preferences for individual goals, bounds on design variables, etc. 

remain the same). This trend is intuitive because when the weight for cost is low, 

accurate temperature prediction becomes important. Hence, the designers need to use 

more accurate interaction patterns. This also indicates that there is a significant 

dependency of preference on the selection of appropriate model interaction pattern. 

Hence, if the models are characterized in terms of error once, then this information can be 

used again and again for different decision making scenarios.  

It is important to note that this meta-level decision about the appropriateness of a 

model interaction pattern is solely based on the value of information metric. It is based on 

selecting the simplest model first and then making a decision whether there is a need to 

refine it further. Hence, this method supports meta-design without executing all the 

available design process options. In order to gain a deeper understanding of the decision 

making behavior, the design variables, responses and individual utility functions for 

temperature and cost goals are plotted in Figure 5-17. Decisions made by using different 

interaction patterns are shown for different weights for the goals.  
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Figure 5-17 – Results from scale decoupling 

It is important to note that when the weight for cost goal is low (between 0.0 and 0.2), 

the values of design variables (Tin, Vin) predicted by any of the three interaction patterns 

is the same. Hence, no matter which interaction pattern is chosen for making the decision, 

the actual performance of the system would be the best possible. In other words, even if 

the decision is made by pattern P1, the system will behave in a way as if the decision is 

made by pattern P3. Hence the actual value of information as shown in Figure 4-4 is 

zero. However, the fact is that designer does not know how the system behaves as 

predicted from the most accurate model. All he/she is aware of is the information 
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generated by the interaction pattern (and the associated error bounds if the models are 

characterized for error). This means that the uncertainty is high. This uncertainty is 

captured by the ex-post value of information metric. The designers can use this upper 

bound on value of information for making meta-level decisions. A similar trend is 

apparent for decision scenarios where the weight of cost greater than 0.6. The design 

variable values selected by patterns P1, P2, and P3 are the same, implying zero value of 

information. This is reflected in the low values of ex-post utility values for these decision 

scenarios. The design variable values selected by different interaction patterns are 

different for the decision scenarios where weight for cost lies between 0.2 and 0.6.  

Two different phenomena result in prediction of the same values of design variables 

at the two extremes of weight for cost goal. At the lower values of weight for cost goal, 

the temperature goal dominates the decision. Although error is introduced due to 

simplification of interaction pattern the trend remains the same – average maximum 

temperature is lowered by lowering the inlet temperature and increasing the inlet 

velocity. Hence, the chosen decision point is the lower bound of inlet air temperature and 

upper bound of inlet air velocity. In other words, although the error is high, the trend in 

each interaction pattern is the same, resulting in the same decision. When the weight for 

cost goal is high, the error due to simplification of interaction pattern is low because the 

cost model in all the three interaction patterns is the same. Hence, the decision made by 

different interaction patterns is the same. This also indicates the importance of the value 

of information metric. The example shows that development of perfect model is not 

required for decision making. Error is not the only criterion for selecting model for 

making a decision. 
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Figure 5-18 – Overall expected utility with increasing weight to cost objective 

The opportunity ratio (R1) indicates whether there is a possibility of existence of 

points in the design space with better overall utility. It may increase or decrease with use 

of better interaction patterns. It helps designers in determining regions where designers 

should invest their efforts and get more information about the design space. If the 

opportunity ratio is low, only then the designers should refine simulation models. If the 

opportunity ratio is close to 1, then the improvement of simulation models is not 

important. The opportunity ratio in this case is close to 1 in most of the preference 

scenarios. The opportunity ratio is equal to 1 for all the preference cases using pattern P3, 

indicating that no improvement is achievable. The achievement and opportunity ratios for 

different weights for the cost objective are shown in Figure 5-20 and Figure 5-21 

respectively. Note that the ex-post value for pattern P3 is always 1, which is expected 

because the error in the models is calculated based on this pattern. The ex-post value for 
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sequential pattern P2 is slightly higher than the pattern P3 and that of pattern P1 is higher 

than P2, indicating that improvement in decision while going from pattern P1  P3 is 

more than the improvement in decision while going from P2  P3. 
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Figure 5-19 – Opportunity Ratio with increasing weight to cost objective 
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Figure 5-20 – Achievement Ratio with increasing weight to cost objective 
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Figure 5-21 – Ex- Post Range with increasing weight to cost objective 

  
 

5.4 Decision Decoupling 

5.4.1 Method for Decision Decoupling 
In this section, we discuss a scenario where a designer (or multiple designers) is 

interested in making multiple decisions about the product. Each of these decisions 

involves selecting the values of design variables while satisfying the design objectives in 

the best possible manner. These decisions may be coupled with each other due to the 

coupling between the physical behavior of the system, or due to the dependencies 

between preferences in two decisions, or due to common set of constraints. This coupling 

requires multiple decisions to be considered simultaneously and increases the complexity 

in design process. Although the decisions are coupled with each other, the effect of this 

coupling may be low on the designers’ decision making capability. The question that 

arises is – What level of coupling between decisions should be preserved between 

multiple decisions in order to simplify the design process without affecting on design 
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decision? It is this question that we address in this section. The question is answered in 

the context of interaction patterns discussed in Section 5.2.4. The three interaction 

patterns considered in this section are independent decisions (pattern P4), sequential 

decisions (pattern P5), and coupled decisions (pattern P6). It is important to note that in 

this section, we only consider the scenario with interactions between two decisions. If 

there are more than two decisions in the design process, the process can be hierarchically 

viewed as two decisions, where each decision further consists of multiple decisions. This 

generalization of the proposed approach using interaction patterns is discussed in Chapter 

3. The decision interaction patterns are shown in Figure 5-22. The three patterns show 

different types of interactions between two decisions. It is emphasized here that there are 

two different types of decisions to be made – product decisions (determining the value of 

design variables that define the product form), and meta-level decision (determining 

which interaction pattern to choose between the product decisions). Although selecting an 

appropriate model interaction pattern for making a product decision is also a part of the 

overall problem, for this section, we assume that the decision about the model interaction 

pattern has already been made using the method discussed in Section 5.3.1. At the end of 

Section 5.4, however, we discuss how both these meta-level decisions can be made 

together. 

Pattern P4 Pattern P5 Pattern P6

X1 Y1

X2 Y2

X1 Y1

X2 Y2

X1 Y1

X2 Y2

X1 Y1

X2 Y2

X1
Y1

X2

Y2

X1
Y1

X2

Y2

 

Figure 5-22 – Interaction patterns between decisions 
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The decision decoupling method is based on the general steps outlined in Section 5.2. 

Specifically, the details of the steps followed for decision decoupling are discussed next. 

The steps in the method are in general similar to the steps followed in scale decoupling 

but there are some differences in terms of the manner in which decisions are 

characterized. 

Step 1: Formulation of decisions: The first step in decision decoupling is to formulate the 

decisions to be made, and the identification of the information flow between them. 

In this research, the decisions are formulated using the compromise DSP construct. 

Formulation of the decisions involves identifying the design variables, responses, 

constraints, simulation-models to be used for predicting the responses, goals, and 

mathematical formulation of preferences. After the decisions are formulated, the 

next step is to characterize the interaction patterns in terms of the effect of 

simplification on the overall utilities of decisions. 

Step 2: Characterization of interaction patterns: Since the output of each decision is a 

selected set of values for the design variables considered in that decision, the 

information flow between decisions consists of values of design variables. Removal 

of a link between two decisions is equivalent to making the values of design 

variable flowing from one decision to another imprecise. For example, the output of 

Decision A is a design variable value y that is uses as input to Decision B as shown 

in Figure 5-23(a). If this information link between decision A and decision B is 

removed (shown in Figure 5-23(b)), then the value of variable y becomes imprecise 

for decision B. This imprecision is represented as a range of values that the variable 

y can possibly take. This general idea is used to model the imprecision due to 
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simplification of interactions between decisions. The characterization of 

imprecision in decision decoupling is simpler than scale decoupling because only 

the information about bounds on the design variables is required to model 

imprecision in different interaction patterns. 

Decision A Decision BX
Y

Z

Decision A Decision BX
Y

Z

a) Actual Information Flow Between Decisions

b) Information Flow Between Decisions Replaced 
with a Set of Values for Y: [Ymin, Ymax]

[Ymin, Ymax]

 

Figure 5-23 - Simplification of Interaction represented as a set of values 
Step 3: Decision making using simplified patterns: Similar to the scale decoupling, we 

start with the simplest decision interaction pattern and make decisions such that the 

expected utility in the presence of imprecision in design variables due to 

simplification is maximized. The decision can also be made by either a) 

maximizing the average value of the utility obtained in the worst case scenario and 

that obtained by best case scenario or b) a combination of the average and the 

variation in utility. The consideration of both mean and variation of performance 

due to variation in design variable values is similar to the Type II Robust design 

discussed in Section 2.3.  

Step 4: Value of information estimation: After making the product decisions using 

simplified interaction patterns, the value of information metrics – ex-post range, 
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opportunity ratio, and achievement ratio are evaluated. These metrics for value of 

information are then used to make the meta-level decision on whether the simple 

interaction pattern is good enough for making product decisions or not. For 

example, if the ex-post value is high, it means that the upper bound on value of 

information is high. Hence, there is a high chance that the additional information 

will have a great impact on the decision making capability. If the designer’s meta-

design decision is to add more information via consideration of interactions 

between decisions, then the designers select another pattern (P4 P5, P5 P6) and 

continue the repeat steps 3 and 4. 

 

The application of this method is based on the assumption that the range of design 

variables is known. This information about design variables is used to replace an 

information flow between decisions with a set of values that the design variables can 

take. The decisions are made considering this imprecision in design variables. This 

implies that if there is no information available about the range of a design variable, then 

the method cannot be applied. It is also reiterated that in this section, we consider only 

the imprecision because of not considering the information flows between decisions. The 

uncertainty inherent to the models is not addressed in this section. This method for 

decision decoupling is applied to the datacenter design scenario in the following Section 

5.4.2. 
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5.4.2 Decision Decoupling Example for Datacenter Design 
In this section, we consider two decisions associated with the design of datacenter 

cooling system – a) decision of inlet air velocity and temperature (cabinet level decision), 

and b) decision of outlet velocity from each computer (computer level decision). All 

these three design variables can be controlled independently. Air inlet temperature and 

velocity can be controlled by changing the cooling setting in the room air conditioner. 

The outlet velocity is controlled by the type and rpm of fans installed on each computer.  

The two decisions under consideration are related to design of two separate 

subsystems – air conditioning and fans on the computer respectively. Both these 

decisions are dependent on each other because the selection of fan for each computer 

depends on the air flow conditions around the computers, thereby requiring prior 

knowledge of the temperature and velocity with which air is sent into the cabinets. The 

decision about conditions of air inlet depends on the velocity of air exiting the computers 

and the back pressure created.  

The coupling between decisions is caused due to the coupling between physics that 

govern the subsystem performance of both the air conditioning system and the air flow 

over the computers. These decisions are also linked because the designers’ preferences 

are defined in terms of average maximum temperature, which is affected by performance 

of both subsystems. Hence, ideally, the decisions should be represented using the coupled 

interaction pattern. In this section, we utilize the method for decision decoupling for 

identifying whether the decisions should be treated in a coupled fashion (pattern P6) or 

can be simplified into independent or sequential decisions (patterns P4 and P5 

respectively). 
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Table 5-8 – Decision of inlet air velocity and temperature (given that the range of 
outlet velocity is known) 

Decision of inlet air velocity and temperature 
Given 
 Simulation models at both levels 
 Range of outlet air velocities (Vout) 
 Preferences and targets on average temperature achieved (T) and Cost Indicator 
 (C) as shown in Figure 5-9 
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 Preferences related to imprecision in temperature prediction 
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 The overall utility function, which is an average value over all values achieved 
 by varying Vout 
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Decision of inlet air velocity and temperature 
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The two decisions formulated using the compromise DSP construct are shown in 

Table 5-8 and Table 5-9. The interaction patterns - P4, P5, and P6 between these two 

decisions with corresponding inputs and outputs are shown in Figure 5-24, Figure 5-25 

and Figure 5-26 respectively. In the independent interaction pattern P4, the inputs for 

cabinet level decision are preferences, goals, and a range of values for outlet velocity. 

Using this range of outlet velocities, the ranges of air inlet temperatures and velocity are 

determined. The inputs for computer level decision include preferences, goals, and a set 

of values for inlet temperature and velocity. Note that this range of air inlet conditions is 

based on the lower and upper bounds on these design variables and this range is 

independent of the cabinet level decision. Using this range for input air conditions, a 

range of output velocities is decided upon. 
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Table 5-9 – Decision of outlet air velocity (given that ranges of other two design 
variables are known) 

Decision of outlet air velocity 
Given 
 Simulation models at both levels 
 Ranges of inlet air velocity (Vin) and temperature (Tin) 
 Preferences and targets on average temperature achieved (T) and Cost Indicator 
 (C) as shown in Figure 5-9 
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Decision of outlet air velocity 
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Figure 5-24  - Decision interaction pattern P4 

In the sequential interaction pattern (shown in Figure 5-25), it is assumed that the 

cabinet level decision is made before the computer level decision. In this interaction 

pattern, the cabinet level decision remains the same as in independent interaction pattern. 

The only difference here is that instead of taking the complete range of values (lower and 

upper bounds defined by the design space definition), the output of cabinet level decision 

(ranges for inlet temperature and velocity) is used as an input to the computer level 

decision. The information about design variables flows between both decisions in the 
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coupled interaction pattern (see Figure 5-26). The output range of design variables from 

one decision is an input range for another decision. These coupled decisions can be 

executed in a number of ways – by combining the decisions into a single decision and 

executing it as a single decision, by making the two decisions in a sequential manner and 

iterating the sequence until the range of values converge to a point, or by using game 

theory based protocols for making coupled decisions. In this section, we use the method 

where decisions are combined and solved as a single decision.  

Decision of Tin, Vin
Given: …
Find: Tin, Vin
Satisfy: …
Minimize: …

Decision of Vout
Given: …
Find: Vout
Satisfy: …
Minimize: …

[Tin, Vin]

[Vout]

[Vout]

Cost, Temperature 
Preferences

Cost, Temperature 
Preferences

 
Figure 5-25 - Decision interaction pattern P5 
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Figure 5-26 - Decision interaction pattern P6 
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In this section, we assume that the decision about which model interaction pattern to 

use has already been made. Under this assumption, the task is to determine the suitable 

decision interaction pattern for a given model interaction pattern. The results from 

decision decoupling are presented in the following. Note that the decisions can be made 

by using different kinds of model interaction patterns (P1, P2, or P3). Hence, in addition 

to the consideration of coupling between decisions, we also need to consider the coupling 

between models that are used to for making individual decisions. In order to decouple 

these two aspects – decoupling of models and decoupling of decisions, the strategy 

adopted in this section is to perform decision decoupling for each model interaction 

pattern separately. The results for decision decoupling using model interaction pattern P1 

are shown in Table 5-10, Figure 5-27, and Figure 5-29. The results using sequential 

model interaction pattern P2 are shown in Table 5-11, Figure 5-28, and Figure 5-30. 

Finally, the results using coupled model interaction pattern P3 are shown in Table 5-12, 

Figure 5-31 and Figure 5-32. In the tables Table 5-10, Table 5-11, and Table 5-12, final 

values of decision variables, the corresponding values of response variables, overall 

utility and the value of information metrics are shown. These decision values are shown 

for different values of preferences for cost and temperature goals. Different rows in the 

table are marked with ‘w_cost’ values that represent the weight given to the cost goal. 

The sum of weights for cost and temperature goals is equal to 1. Hence the preference for 

cost goal increases from the top to bottom of the table. This is to study the impact of 

changing preferences on the appropriateness of different decision interaction patterns. 

Figure 5-27, Figure 5-28, and Figure 5-31 are plots of the upper bound of ex-post value 

of information as the weight for cost goal is increased. Figure 5-29, Figure 5-30, and 
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Figure 5-32 are plots of design variables, response, and the overall utility as a function of 

the weight for the cost goal.  

Results using Model Interaction Pattern P1 

From the results using model interaction pattern P1, it is observed from the results 

that the ex-post value of information decreases monotonically from pattern P4 to P5 to 

P6. The ex-post value for pattern P4 is significantly higher as compared to patterns P5 

and P6 which implies that the independent decision pattern is not appropriate for 

decisions under consideration. The ex-post values for decision interaction patterns P5 

(sequential) and P6 (coupled) are close to each other and approach zero. Hence, the 

possibility of improvement in designer’s decision from pattern P5 to pattern P6 is little.  

Table 5-10  - Comparing the decision interaction patterns using P1 model 
interaction pattern  

Pattern Tin Vin Vout Tavg Cost Indicator Ex-Post Range R1 R2
P4 273 2.5 -0.76 319.68036 92.5 0.87533 0.306263 0.999631 0.97702
P5 273 2.5 -0.79 313.07376 92.5 0.999227 0 1 1
P6 273 2.5 -0.8 313.109124 92.5 0.999227 0 1 1
P4 273 1.26 -0.76 319.68036 46.62 0.864008 0.223218 0.959686 1
P5 273 1.26 -0.55 315.62072 46.62 0.945251 0.019385 0.974106 1
P6 273 1.2 -0.56 317.896169 44.4 0.944381 0 1 1
P4 273 1 -0.76 319.68036 37 0.852685 0.180673 0.932368 1
P5 273 1 -0.49 319.588827 37 0.930086 0 1 1
P6 273 1 -0.52 319.457496 37 0.930063 0 1 1
P4 273 1 -0.76 319.68036 37 0.841363 0.177553 0.939048 1
P5 273 1 -0.49 319.588827 37 0.916511 0 1 1
P6 273 1 -0.52 319.457496 37 0.916491 0 1 1
P4 273 1 -0.76 319.68036 37 0.830041 0.250719 0.946141 0.806386
P5 273 1 -0.49 319.588827 37 0.902936 0 1 1
P6 273 1 -0.52 319.457496 37 0.902919 0 1 1
P4 276.5 1 -0.76 319.68036 33.5 0.818719 0.32603 0.958947 0.583572
P5 276.5 1 -0.51 320.518041 33.5 0.893895 0.011789 0.999086 1
P6 277.5 1 -0.52 320.525415 32.5 0.891487 0 1 1
P4 283.5 1 -0.76 319.68036 26.5 0.807396 0.410111 0.978324 0.458144
P5 283.5 1 -0.57 321.576811 26.5 0.892249 0.013926 0.997804 1
P6 284 1 -0.6 321.288043 26 0.888841 0 1 1
P4 291 1 -0.76 319.68036 19 0.796074 0.505205 0.99325 0.389512
P5 291 1 -0.63 322.611963 19 0.900312 0.016201 0.997543 1
P6 291.5 1 -0.64 322.402523 18.5 0.897192 0 1 1
P4 299.5 1 -0.76 319.68036 10.5 0.784752 0.613603 0.99926 0.356571
P5 299.5 1 -0.7 323.189 10.5 0.922025 0.009083 0.997554 1
P6 300 1 -0.72 323.036843 10 0.918857 0 1 1
P4 300 1 -0.76 319.68036 10 0.77343 0.728519 0.999714 0.339043
P5 300 1 -0.71 323.077034 10 0.947032 0 1 1
P6 300 1 -0.72 323.036843 10 0.947032 0 1 1
P4 300 1 -1 319.601 10 0.762107 0.843434 1 0.326293
P5 300 1 -1 320.749 10 0.975207 0 1 1
P6 300 1 -1 320.749 10 0.975207 0 1 1

Overall Utility

w_cost=0.1

w_cost=0.2

w_cost=0.3

w_cost=0.0

Response Variables
Using Model Interaction Pattern P1

w_cost=0.8
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w_cost=0.6

w_cost=0.7

Value MetricsDecision Variables
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Another observation from the results presented in Figure 5-29 is that the independent 

pattern P4 provides a decision about Vin, Tin that is close to its coupled counterpart. This 

implies that the decisions that are made robust to the value of Vout are close to those 

where the value of Vout is known precisely. This is an important indicator that the 

decision of Vout can be decoupled from the decision about Vin and Tin. However, the 

decision of Vout made independently by consideration of robustness to values of Tin and 

Vin is significantly different from the decision that would have been made in a coupled 

fashion. This implies that the decision of Vout is hightly dependent on the values of Tin 

and Vin. This dependence suggests that decisions about Tin and Vin can be made 

independently but the decision about Vout should be made with the knowledge of Tin 

and Vin, which imposes a sequential precedence relationship between the two decisions. 

Hence, the sequential decision pattern P5 should be good enough in this scenario. The 

appropriateness of sequential decision pattern is also apparent from the closeness of 

results from sequential and coupled decision patterns. As discussed, the trend is also 

observed in the values of ex-post values. In the case where a sequential model interaction 

pattern is chosen, high ex-post values indicate that independent decision pattern P4 is not 

appropriate. Pattern P5 is appropriate when the weight for cost goal is either greater than 

0.8 or less than 0.1. Pattern P6 is appropriate when the weight for cost goal is between 

0.1 and 0.8. This is mainly because at lower cost values (0.1 to 0.4), the decision made 

using patterns P4 and P5 deviate from that using P6 whereas at higher values (0.4 to 0.8), 

the decisions of design variable Tin made using P4 and P5 deviate from P6. In the case 

where model interaction pattern P3 is chosen (see Figure 5-31), the decision pattern P5 is 
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good enough only when the weight for cost goal is greater than 0.4. For values less than 

0.4, coupled pattern P6 should be used. 

Using Model Interaction Pattern P1
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Figure 5-27 – Variation of Ex-post range for decision patterns P4, P5, and P6 with 

weight for cost goal – using P2 model interaction pattern 

Using Model Interaction Pattern P2
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Figure 5-28 - Variation of Ex-post range for decision patterns P4, P5, and P6 with 

weight for cost goal – using P2 model interaction pattern 
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Figure 5-29 – Graphical representation of decisions made from various decision 

interaction patterns - using P1 model interaction pattern 
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Table 5-11 - Comparing the decision interaction patterns using P2 model interaction 
pattern 

Pattern Tin Vin Vout Tavg Cost Indicator Ex-Post Range R1 R2
P4 273 2.5 -0.52 320.976573 92.5 0.708613 0.408532 0.983544 0.56984
P5 273 2.5 -0.37 312.23824 92.5 0.934394 0 1 1
P6 273 2.5 -0.4 312.201025 92.5 0.934353 0 1 1
P4 273 2.5 -0.52 320.976573 92.5 0.713963 0.283335 0.976144 0.538546
P5 273 2.5 -0.34 312.32116 92.5 0.845404 0.017582 0.984318 1
P6 273 2.5 -0.4 312.201025 92.5 0.854095 0 1 1
P4 273 1.88 -0.52 320.976573 69.56 0.719312 0.203107 0.741025 0.52362
P5 273 1.88 -0.31 315.821676 69.56 0.759332 0.167115 0.994262 0.855759
P6 273 1.08 -0.12 323.249166 39.96 0.8186 0 1 1
P4 273 1.22 -0.52 320.976573 45.14 0.724662 0.16528 0.587093 0.632298
P5 273 1.22 -0.42 318.846062 45.14 0.760176 0.226895 0.997633 0.79136
P6 273 1 -0.12 323.957 37 0.818799 0 1 1
P4 273 1 -0.52 320.976573 37 0.730011 0.208067 0.621364 0.490062
P5 273 1 -0.49 320.559025 37 0.761576 0.234103 0.988887 0.807158
P6 273 1 -0.12 323.957 37 0.819183 0 1 1
P4 277 1 -0.52 320.976573 3 0.73536 0.288342 0.670112 0.35227
P5 277 1 -0.52 320.976573 33 0.780192 0.204266 0.983544 0.944747
P6 273 1 -0.12 323.957 37 0.819567 0 1 1
P4 287 1 -0.52 320.976573 23 0.74071 0.368976 0.861966 0.305382
P5 287 1 -0.53 320.89827 23 0.828773 0.15542 0.988046 1
P6 275 1 -0.12 324.695085 35 0.820302 0 1 1
P4 296.5 1 -0.52 320.976573 13.5 0.746059 0.470313 0.999135 0.301287
P5 296.5 1 -0.49 324.74393 13.5 0.856464 0.056106 0.931888 1
P6 297 1 -0.56 324.480025 13 0.841745 0 1 1
P4 300 1 -0.52 320.976573 10 0.751409 0.594599 0.99395 0.31213
P5 300 1 -0.56 324.978345 10 0.890977 0.010359 0.959354 1
P6 300 1 -0.64 324.008711 10 0.886141 0 1 1
P4 300 1 -0.52 320.976573 10 0.756758 0.719017 0.997656 0.320441
P5 300 1 -0.62 324.160781 10 0.93068 0 1 1
P6 300 1 -0.64 324.008711 10 0.930674 0 1 1
P4 300 1 -1 319.601 10 0.762107 0.843434 1 0.326293
P5 300 1 -1 320.749 10 0.975207 0 1 1
P6 300 1 -1 320.749 10 0.975207 0 1 1
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Figure 5-30 - Graphical representation of decisions made from various decision 

interaction patterns - using P2 model interaction pattern 
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Table 5-12 - Comparing the decision interaction patterns using P3 model interaction 
pattern 

Pattern Tin Vin Vout Tavg Cost Indicator Ex-Post Range R1 R2
P4 273 2.5 -0.87 319.492936 92.5 0.625028 0.168936 0.74235 0.00000
P5 273 2.5 -0.49 312.096693 92.5 0.722582 0 1 1
P6 273 2.5 -0.48 312.099802 92.5 0.722533 0 1 1
P4 273 2.14 -0.87 319.492936 79.18 0.638735 0.072171 0.64459 0
P5 273 2.14 -0.58 312.347679 79.18 0.66284 0.047235 0.938985 0
P6 273 2.08 -0.6 313.472933 76.96 0.667957 0 1 0
P4 273 1.46 -0.87 319.492936 54.02 0.652443 0.081538 0.832276 0
P5 273 1.46 -0.89 319.277883 54.02 0.632563 0.087295 0.803119 0
P6 298.5 1.78 -1 319.183598 20.47 0.66585 0 1 0
P4 299 2.32 -0.87 319.492936 25.52 0.666151 0.173006 0.863377 0
P5 299 2.32 -0.85 319.496178 25.52 0.710013 0.114122 0.765029 0.609542
P6 300 1.66 -1 319.467227 16.6 0.700751 0 1 1
P4 300 2.18 -0.87 319.492936 21.8 0.679859 0.26556 0.906774 0.120782
P5 300 2.18 -1 319.601 21.8 0.726425 0.004704 1 1
P6 300 1.48 -1 319.695765 14.8 0.736737 0 1 1
P4 300 1.94 -0.87 319.492936 19.4 0.693567 0.359429 0.929247 0.193209
P5 300 1.94 -1 319.601 19.4 0.764667 0.007368 1 1
P6 300 1.28 -1 320.056163 12.8 0.774038 0 1 1
P4 300 1.64 -0.87 319.492936 16.4 0.707275 0.455059 0.944815 0.238773
P5 300 1.64 -1 319.34834 16.4 0.806033 0.010384 1 1
P6 300 1.04 -1 320.636575 10.4 0.813101 0 1 1
P4 300 1.28 -0.87 319.492936 12.8 0.720983 0.55213 0.963308 0.271786
P5 300 1.28 -1 319.340291 12.8 0.851277 0.008117 1 1
P6 300 1 -1 320.749 10 0.853605 0 1 1
P4 300 1 -0.87 319.492936 10 0.734691 0.649231 0.979654 0.295508
P5 300 1 -1 320.098367 10 0.895458 0.002521 1 1
P6 300 1 -1 320.749 10 0.894139 0 1 1
P4 300 1 -0.87 319.492936 10 0.748399 0.746333 0.991292 0.312941
P5 300 1 -1 320.749 10 0.934673 0 1 1
P6 300 1 -1 320.749 10 0.934673 0 1 1
P4 300 1 -1 319.601 10 0.762107 0.843434 1 0.326293
P5 300 1 -1 320.749 10 0.975207 0 1 1
P6 300 1 -1 320.749 10 0.975207 0 1 1
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Figure 5-31 - Variation of Ex-post range for decision patterns P4, P5, and P6 with 

weight for cost goal – using P3 model interaction pattern 
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Figure 5-32 – Graphical representation of decisions made from various decision 

interaction patterns - using P3 model interaction pattern  

 
As a summary, the differences in preference have a great impact on the decision 

interaction patterns. This is same as the observation in scale decoupling case. The point 

that accuracy is not the only criterion is emphasized again here. There is a difference 

between the information required for model decoupling and the information required for 

scale decoupling. In scale decoupling, the information about lower and upper bound of 

the outputs of models is required, whereas, in decision decoupling, the information about 

range of values that the design variable can take is required. It is also important to note 

that the difference between the decisions using three different types of model interaction 
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patterns is due to different levels of imprecision in the simulation models. In the case of 

decision decoupling discussed in this section, we have not used the information about 

model characterization for making decisions. The decisions are made only based on the 

consideration of robustness to values of design variables from other decision. This is 

done primarily to separate the effect of coupling between decisions and the coupling 

between simulation models. Hence, a detailed comparison of decision decoupling results 

using different model interaction patterns is not carried out. In order to compare the 

results of decision decoupling across different model interactions, the information about 

error in simulation models should also be carried out. The effect of decoupling simulation 

models may or may not be amplified when the decisions are decoupled. Hence, the 

decision of model decoupling is also dependent on decision decoupling. In other words, 

there are two design process level (metalevel) decisions that should be made 

simultaneously – decision about the appropriate model interaction pattern and decision 

about the appropriate decision interaction pattern. The two decisions are shown in Figure 

5-33. In the figure, the dependencies between the meta-level decisions and the product 

level decisions are shown. This indicates the need for integrated design of products and 

design processes. In the figure, two meta-level decisions are also shown. These two 

metalevel decisions are ideally coupled with each other and can be viewed as interaction 

pattern P6. However, depending on the strength of this coupling, the decisions can be 

simplified into sequential or independent decision patterns – P4 and P5 respectively. 

Hence, the same idea of decision decoupling can also be applied to design process related 

decisions. This issue of simplification of meta-level decisions is not discussed in this 

dissertation and is left at this point as an opportunity for future work. 
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Figure 5-33 – Integrated design and meta-design as supported by the proposed 
design framework 

 

Implications on Modeling Design Information 

The simplification of interaction patterns discussed in this chapter show that different 

decision patterns are suitable for different decision making scenarios. Even in the case of 

single product design, changing the designers’ preferences results in different interaction 

patterns. As discussed in Chapter 3, different design processes can be used for different 

kinds of interaction patterns. For example, an independent decision pattern can be 

executed by different kinds of algorithms such as exhaustive search, gradient based 

search, approximation based methods, etc. The coupled decisions can be solved by 

combination of decisions into a single decision, sequential iterative method, set based 

focalization method (discussed in Chapter 6), or by intersection of rational reaction sets. 

This means that the suitable design processes for a design scenario changes drastically by 

merely changing some preferences in the design decision. This imposes a strong 

requirement for the computational framework to be used for simulation-based design. 
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The computational framework should support designers to rapidly change and use design 

processes for a design problem, which requires separation of declarative decision specific 

information from the process used to execute the decision. The second requirement that 

arises from the discussion in this section is that of composability of design processes 

from different decisions. This is because the design processes associated with two 

decisions may either be used separately (if they are used in interaction pattern P4) or used 

in a coupled fashion (if they are used in interaction pattern P6). During the design process 

exploration, the designers may shift from one type of process to another. Hence, the 

design processes associated with individual decisions should be composable. These two 

requirements are discussed in detail in Chapter 7 . A design information modeling 

strategy to address these requirements is presented in Chapter 8. 

5.5 On Verification and Validation 
The methods for simplification of design processes are geared towards addressing the 

second research question (RQ2) in this dissertation – “How should multiscale design 

processes be systematically simplified and models refined in a targeted manner to 

support quick design decision making without compromising the decision quality?” The 

aspect of model refinement is addressed in Chapter 4. The answer to this research 

question is supported by two hypotheses: (H2.1) design processes can be simplified and 

models refined by making tradeoffs between value of information obtained via 

simulations and need to achieve robust, satisficing solutions, and (H2.2) design processes 

can be simplified using decoupling of scales, decisions and functionalities. In this 

chapter, hypothesis H2.1 is embodied in the methods for simplification (see Sections 

5.3.1 and 5.4.1), where we show how the value of information can be used to make 
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design process decision relating to appropriate level of simplification of design processes. 

A part of hypothesis H2.2 is embodied in this chapter by developing methods for 

decoupling of scales and decisions. Functional decoupling is discussed in the next 

chapter. The validation section in this chapter is focused on the methods for 

simplification of design processes through scale and decision decoupling. Since the 

methods are based on the value of information metric that is discussed in detail in 

Chapter 4, theoretical structural validation is already performed. Two aspects of the 

validation square are addressed Empirical Structural Validation and Empirical 

Performance Validation in this Section. An overview of the validation performed of scale 

and decision decoupling methods discussed in this chapter is provided in Figure 5-34. 

The figure provides Chapter 5 specific details to the overall validation strategy for the 

dissertation, which is presented in Figure 1-12. This validation square corresponds to one 

of the validation subsquares presented in Figure 1-10. 

Empirical structural validation involves accepting the appropriateness of the example 

problems used to verify the performance of the method. The example problem used in 

this chapter is a multiscale datacenter cooling system design problem. The example is 

appropriate for validating the methods for scale decoupling because it can be formulated 

as a single decision with multiple simulation models feeding information for decision 

making (patterns P1, P2, and P3). Further, the lower and upper bounds of possible values 

taken by the response values can also be calculated from the knowledge about ‘actual’ 

behavior of the system. Ideally, the actual behavior of the system should be determined 

from the experiments. However, for the purpose of validating the method, we treat the 

completely coupled model as the exact model. From this information, the bounds on 
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values from independent and sequential patterns are evaluated. This is important for 

validating scale decoupling method. The problem is suitable for validating the method for 

decision decoupling because it can be formulated as a multiple decisions that are coupled 

with each other. Hence, it can be modeled as interaction patterns P4, P5 and P6. The 

information required for decision decoupling includes bounds on design variables, which 

is available. The problem is also suitable because it is demonstrates the aspects of 

integrated design of products and design processes. 

Empirical Performance Validity
Usefulness of the method in examples
• Chapter 5 - Design Process 

Simplification using Datacenter example 
(Section 5.5)

Using the examples, it is shown that 
the methods are useful for scale 
and decision decoupling

The results show that the 
decoupling is significantly 
dependent on the designers’ 
preferences

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method 
• Chapter 5 - Datacenter (Section 5.5)

Problem can be formulated as 
different interaction patterns: single 
decisions with coupled models 
(patterns P1, P2, P3), and multiple 
coupled decisions (P4, P5, and P6)

Lower and upper bounds can be 
calculated from the knowledge 
about ‘actual’ system behavior 

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• Chapter 10 - Arguing the validity of 

framework developed in this dissertation 
beyond the examples used

Theoretical Structural Validity
Validity of the constructs of the method
• Chapter 5  - Discussion of available 

constructs (Section 5.2)

Intervals for Simulation

Robust Decision Making

Value of Information

Interaction Patterns in Simulation-
Based Design

 

Figure 5-34 – Validation of methods for scale and decision decoupling addressed in 
Chapter 5 

Empirical performance validation consists of accepting the usefulness of the outcome 

with respect to the initial purpose and accepting that the achieved usefulness is related to 
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applying the method. In this chapter, it is shown that the methods can be used for scale 

and decision decoupling. The results from scale decoupling indicate that although the 

models are inherently coupled, they can be modeled with sequential information flow, 

which results in savings of computational time. The results from decision decoupling 

indicate that although the decisions are coupled with each other, in some preference 

scenarios, they can be modeled as sequential decisions. In other scenarios, they should be 

modeled in a coupled fashion. This process level decision is made by using methods 

presented in this chapter. 

5.6 Role of Chapter 5 in this Dissertation 
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Figure 5-35 - Relationship of Chapter 5 with other chapters in the dissertation 

In this chapter, details of one of the steps in the design method discussed in Chapter 3 

are discussed. This step is related to systematic simplification of design processes. The 

value of information metric developed in the previous chapter (Chapter 4) is used to 
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make design process simplification related decisions. The relationship of this chapter 

with Chapter 3 and Chapter 4 is shown in Figure 5-35. 

Specifically, in this chapter, the simplification of design processes is carried out for 

two types of interaction patterns – model interactions and decision interactions. The 

simplification associated with these two types of patterns is referred to scale decoupling 

and decision decoupling respectively. The following chapter (Chapter 6) deals with the 

third type of interaction patterns that is defined in terms of functional coupling. 

Functional coupling is an important aspect of multifunctional design where different 

distributed designers are in charge of satisfying different functional requirements. In 

contrast to this chapter, where the focus is on methods that support decoupling of design 

processes, the primary focus in the next chapter (Chapter 6) is on decision making in the 

presence of functional coupling. Only a short subsection is devoted to decoupling 

functionally coupled decisions. 
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Chapter 6 Functional Decoupling in Collaborative 
Multifunctional Design using Set-Based Methods 

In this chapter, we address the second requirement for the framework for integrated 

design of products and design processes – “Support for decentralized, multifunctional 

design”. The highlights of this chapter are presented in Table 6-1, which is a subset of the 

framework components presented in Table 1-6. The aspects of the design framework 

discussed in the Chapters 1 through 5 do not involve explicit consideration of distributed 

nature of multiple designers. The distribution of experts and computational requirements 

requires that the communication of information between designers be consise and 

systematic. Excessive iterations between designers should be avoided. These challenges 

associated with the collaborative multifunctional design scenarios is addressed in this 

chapter through an interval-based (or set-based) method. The method is validated using a 

multifunctional Linear Cellular Alloy (LCA) design problem. 

Table 6-1 – Highlights of the framework requirements, components of the 
framework, and the validation example presented in Chapter 6 

Framework 
Requirements 

Components of the 
Framework Developed to 
Address the Requirements 

 
Validation Examples 
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for decentralized, 
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Purpose: To validate the interval-
based focalization method 

Specifically, the focus is on multifunctional design, where different designers are 

responsible for achieving different functional requirements. Hence, the emphasis is on 
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interaction patterns P7 through P9 discussed in Section 3.5.2. This is in contrast to the 

previous chapters where a single designer wants to achieve monofunctional requirements 

(patterns P4 through P6). In Chapter 5, the discussion is primarily centered on decoupling 

decisions and scales. However, in this chapter, we only provide a brief discussion of 

functional decoupling, which can be carried out if the coupling between different 

functional behaviors is weak. This is because the method for functional decoupling is 

similar to that for scale and decision decoupling. A more common and interesting 

scenario is where functional decoupling cannot be performed. Most of this chapter is 

devoted to such scenarios with strong functional coupling. Another distinction between 

the methods presented in this chapter and those presented in Chapter 5 is that the methods 

presented here are developed for multiple designers collaborating together to design the 

product for different functional aspects. 

The weak coupling case is presented in Section 6.1. An overview of the strongly 

coupled scenario and a review of relevant literature are provided in Section 6.2. The 

limitations of existing approaches for decentralized multifunctional design methods are 

presented. These limitations provide motivation for developing a method for design in 

such scenarios. In Section 6.3, we present two theoretical constructs used in this chapter – 

game theory protocols for collaborative design, and box consistency. In Section 6.4, a 

new interval-based focalization method is presented for decentralized multifunctional 

design. This method addresses the limitations of existing methods identified in Section 

6.2. The method is illustrated using two example problems – simple quadratic responses 

(in Sections 6.4.1) and Linear Cellular Alloy design (in Section 6.4.3). The effect of 

initial conditions and convergence criterion is provided in Sections 6.4.2 and 6.4.4 
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respectively. Finally, a discussion of verification and validation of the method developed 

in this chapter is presented in 6.5. The aspects of research addressed in this chapter are 

highlighted in Figure 6-1. The validation example presented in this chapter is that of a 

design of a multifunctional Linear Cellular Alloy. 
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Figure 6-1 – Research aspects highlighted in Chapter 6 

6.1 Eliminating Weak Functional Couplings 
In the case of functional coupling, the design problem is characterized by a common 

set of design variables shared between different designers. The same set of design 

variables has an impact on multiple functional characteristics. For example, consider a 

materials design problem for energetic-structural materials where the material should 

have sufficient strength to bear loads and should also be able to release energy under 
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predefined conditions. In this problem both the functional characteristics – strength and 

energy release are dependent on a common set of design variables such as the constituent 

volume fractions, size of constituent particles, and their distribution in space. Since the 

same sets of design variables control different functional behavior, the system (material, 

in this case) is functionally coupled, and cannot be designed separately for individual 

functional requirements. Generally, in multiscale multifunctional problems, the coupling 

is between decisions in not only because of shared design variables, but also due to the 

interaction between physical phenomena (e.g., structural and energy release).  

The coupling between decisions is categorized into two types based on its strength – 

weak or strong coupling. As the name implies, weak coupling does not have a major 

impact on the designers’ decision, whereas strong couplings have a large impact. Note 

that analogous to the value of information, the couplings are defined in terms of impact 

on decisions rather than the error in behavior prediction. Hence, if the decisions are 

weakly coupled, they can be considered individually. Again the metric that can be used to 

determine whether decisions are strongly or weakly coupled is value of information 

discussed in Chapter 4. Note that the decisions made after decoupling functionalities 

should be based on the ideas of robust design. The approach for decoupling decisions 

related to different functionalities (patterns P7 through P9) is same as the approach for 

decoupling decisions at different scales. Due to this similarity, we do not consider weak 

coupling in detail in this chapter. The focus is mainly on strong coupling between 

decisions and is discussed in the remaining part of this chapter. 
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6.2 Separating Strongly Coupled Factors (Simplification 
through Functional Decoupling) – Interval Based 
Focalization Approach 

Multi-functional design problems are characterized by strong coupling between 

design variables that are controlled by stakeholders from different disciplines. This 

coupling necessitates efficient modeling of interactions between multiple designers who 

want to achieve conflicting objectives but share control over design variables. Various 

game-theoretic protocols such as cooperative, non-cooperative, and leader/follower have 

been used to model interactions between designers. Non-cooperative game theory 

protocols are of particular interest for modeling cooperation in multi-functional design 

problems. These are focused upon in this chapter because they more closely reflect the 

level of information exchange possible in a distributed environment. Two strategies for 

solving such non-cooperative game theory problems are – a) passing Rational Reaction 

Sets (RRS) among designers and combining these to find points of intersection and b) 

exchanging single points in the design space in an iterative fashion until the solution 

converges to a single point. While the first strategy is computationally expensive because 

it requires each designer to consider all possible outcomes of decisions made by other 

designers, the second strategy may result in divergence of the solution.  

In order to overcome these problems, we present an interval-based focalization 

method for executing decentralized decision-making problems that are common to multi-

functional design scenarios. The method involves propagating ranges of design 

variables and systematically eliminating infeasible portions of the shared design space. 

This stands in marked contrast to the successive consideration of single points, as 

emphasized in current multifunctional design methods. The key advantages of the 

proposed method are a) targeted reduction of design freedom and b) non divergence of 



   

 308

solutions. The method is illustrated using two sample scenarios – solution of a decision 

problem with quadratic objectives and design of multi-functional Linear Cellular Alloys 

(LCAs). Implications include use of the method to guide design space partitioning and 

control assignment. Notice that set-based design is an old concept. It has been 

conceptually employed in the context of engineering design by various researchers such 

as Ward, Liker, and Sobek (Ward, Liker et al. 1995; Liker, Sobek et al. 1996; Sobek and 

Ward 1996). In this chapter, we present one specific embodiment of the set-based design 

for multifunctional applications. 

Imagine a complex design scenario such as the design of a multi-functional, multi-

scale product/material system with numerous, conflicting requirements. One of the 

characteristics of such a multi-functional design problem is that experts from different 

domains must work together both in a serial and parallel fashion in order to achieve their 

individual as well as overarching system level goals. For example, the product may be 

required to simultaneously meet structural and thermal requirements, while satisfying 

geometric constraints. It is in this regard that experts from relevant domains (i.e., 

structural, thermal, manufacturing, etc.) are called upon; they are required to contribute 

their respective expertise and collaborate in order to accomplish their individual and 

common goals. In multi-functional design scenarios such as this, effectiveness of 

collaboration between designers is the key to success. The problem of choosing a method 

for effective collaboration is essentially that of finding the most appropriate way of 

utilizing knowledge initially dispersed among domain experts, subject to organizational 

barriers and process dynamics. 
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Depending on the nature of the underlying design process, there are two collaboration 

strategies that are commonly employed for effectively synthesizing contributions of 

interacting designers. The first strategy is based on centralized decision-making and 

requires a single transfer of knowledge from various domain experts to a central decision-

maker.  It is based on gathering and consolidating information and facilitates the 

attainment of Pareto-optimal solutions via simultaneous consideration of system level 

tradeoffs. However, even slight changes in any of the design goals or requirements 

pertaining to the integrated domains or the design environment may render the gathered 

knowledge incomplete; optimal solutions may no longer be obtainable.  Specifically, the 

centralized decision-maker may not have the required expertise to adjust domain models 

in order to accommodate the required changes, rendering iteration with other stakeholders 

unavoidable.  Hayek (Hayek 1945), on the other hand, advocates decentralized decision-

making, pointing out that it is important to delegate responsibility to persons “on the 

spot” who have intimate knowledge of their respective domains and are (consequently) 

capable of making any required inferences. Lee and Whang (Lee and Whang 1999) 

present decentralized decision-making methods in the context of supply chains, whereas 

Chanron and co-authors (Chanron, Singh et al. 2004) offer a decentralized decision-

making strategy for the solution of engineering design problems.  

Decentralized decisions can be classified as being either coupled or decoupled in 

nature.  Decoupled decisions are characterized by independence in formulation and 

solution, thereby allowing a unidirectional (sequential) flow of information and greatly 

facilitating the underlying design processes. Coupled decisions, on the other hand, are 

more complex and require a two-way flow of information between decision-makers as 
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well as active involvement of domain experts throughout the decision-making process. 

Coupled decisions are especially significant in multi-functional design problems, where 

different designers and domain experts control a common set of design variables and 

share responsibility for achieving different objectives. Considering the prevalence of 

coupled decisions in engineering design in general and within multi-functional design in 

particular, we present an interval-based technique for their resolution in this chapter. 

Before proceeding, however, we underscore some of the nuances inherent in the solution 

of coupled problems as well as current means of resolution at the hand of a simple 

problem, requiring the interaction of two designers. 

Consider the scenario shown in Figure 6-2, where Designers A and B are responsible 

for achieving their respective design objectives. These objectives are defined in terms of 

the maximization, minimization, or matching of response variables - Y. In the given 

scenario Designer A controls a set of design variables XA while Designer B controls a set 

of design variables XB. Since the two decisions are coupled, Designer A cannot make a 

decision about XA unless the values of XB are fixed.  Similarly, Designer B cannot make 

a determination with regard to XB unless the values of XA are known. One of the 

strategies commonly implemented for solving such a coupled, decentralized problem is 

point-based iteration.  In point-based iteration interacting designers consider a single 

point within a given design space at a time and iteratively adjust this point until they 

converge on a solution that satisfies their respective design objectives (which are 

functions of response variables). Procedurally, one of the designers (say Designer A in 

the scenario depicted in Figure 6-2) starts by assuming values of design variables 

controlled by the other designer (XB) and determines values for his/her design variables 
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(XA) so that his/her objectives (YA) are satisfied. Using these values of design variables 

(XA), Designer B can then determine suitable values for his/her design variables (XB) 

considering his/her own objectives (YB). This process continues until converging to a 

single point in the design space (XA, XB). 

Designer
AXA

XB

YA
Designer

AXA

XB

YA
Designer

BXB

XA

YB
Designer

BXB

XA

YB

Designer
Design Variables 
Controlled by this 

Designer

Design Variables Controlled 
by Other Designers

Response Variables 
(objectives) for this 

Designer

 
Figure 6-2 – A two-designer scenario for decomposing strongly coupled system 
 

Design Freedom is defined as the extent to which a system can be adjusted while still 

meeting the design requirements posed for it (Simpson, Rosen et al. 1998). 

Disadvantages of a point-based iterative method relate to the manner in which a) design 

freedom is reduced and b) convergence is achieved. The first disadvantage is that design 

freedom is reduced from the initial ranges of design variables to point values in a single 

step. This severely limits designers in accommodating any changes in requirements.  A 

more gradual and systematic reduction of the design space and the associated design 

freedom, on the other hand, reduces premature (unnecessary) elimination of potential 

solutions. This is illustrated in Figure 6-3. In this figure, a comparison of point-based (see 

Figure 6-3a) and interval-based methods (see Figure 6-3b) is presented in terms of a) 

design space, made up of the design variables under the designers’ control ( ,A BX X ), b) 

response space, which constitutes the response variables ( ,A BY Y ) and c) the associated 
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design freedom. The numbers on the figure represent successive exchanges among 

interacting designers and the associated effects on the design space, the response space 

and the associated design freedom. The arrows in the point-based approach denote the 

progression of the design process by moving from point to point in the design space.  The 

rectangles in the design and response spaces of the interval-based approach, on the other 

hand, refer to regions under consideration at given points in time.  

In order to more effectively manage design freedom throughout the design process, a 

number of set-based design techniques have been proposed for application in design 

(Ward, Liker et al. 1995; Liker, Sobek et al. 1996; Sobek and Ward 1996). The primary 

purpose for using such set-based design methods is (1) the communication of sets of 

possibilities and (2) the subsequent narrowing of these sets, balancing the need to gain 

more knowledge and progressively reduce uncertainty (Sobek and Ward 1996). These 

sets of possibilities are represented by a series of rectangles, the areas of which decrease 

with successive iterations, in Figure 6-3.  As shown, the reduction in design freedom for 

point based methods occurs in a single step, whereas that associated with interval-based 

methods is more gradual. An additional advantage, particular to set-based methods is the 

ability to make simultaneous progress on interdependent design problems and increase 

their concurrency, without reformulation as a single design problem.  In this chapter, we 

build on the concept of set-based design through the implementation of interval 

arithmetic. Instead of communicating information about a single point in the design space 

at a time, we advocate the transfer of feasible ranges of values for given design variables. 

The key advantage of such an interaction mechanism is that design freedom remains open 

for a longer period of time, thereby accommodating changes in the requirements during 
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the execution of the design process and maintaining the autonomy of experts over their 

respective domains. Interval arithmetic has been used for modeling selection decisions in 

(Reddy and Mistree 1992). 

The second limitation of point-based methods is that the resulting solutions may be 

unstable.  Additionally, results may never converge to the problem’s Nash equilibrium. 

Chanron and co-authors (Chanron and Lewis 2003; Chanron and Lewis 2004; Chanron, 

Singh et al. 2004) investigate the underlying dynamics of decentralized processes and 

corresponding convergence and stability criteria using numerical series and linear 

algebra. Their investigation, however, is based on the assumption that the system has 

previously been decomposed. Chanron and co-authors do not investigate the effect of 

decomposition strategies on convergence. In this chapter, we illustrate the effect of 

different decomposition strategies on problem convergence characteristics and offer 

mathematical criteria for system decomposition. 

a) Point-Based Approach

b) Interval-Based Approach
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Figure 6-3 - Comparison of point-based and interval based methods for decision 

making 
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In summary, we present a design method that aids system level designers in executing 

design processes multi-functional product/material systems, where designers in charge of 

different functional requirements share a common set of design variables. Using this 

method, design freedom is reduced only when eliminating infeasible range of a design 

space, thereby accommodating unforeseen changes in design objectives over time. The 

key advantages of this method are that a) the resulting, decomposed system never 

diverges and b) design freedom is reduced systematically (though not prematurely) 

throughout the design process. With this in mind, we provide an overview of non-

cooperative game theoretic protocols for modeling interactions between designers in 

Section 6.3. We also present the principle of Box Consistency – a mathematical tool 

emanating from Interval Arithmetic – which serves as a foundation for the proposed 

interval-based focalization method. We proceed to outline our method for multi-

functional design in Section 6.4 and illustrate this method at the hand of a non-linear, 

multifunctional design example in Section 6.4.3. The convergence characteristics of this 

method are described in Section 6.4.4.  Finally, we provide a discussion with regard to 

current limitations of the proposed method and future opportunities for extension in 

Section 6.5.  

6.3 Theoretical Constructs Used in this Chapter 
There are a number of different mechanisms commonly employed for decentralized 

decision-making in multi-functional design problems. These include applications of 

multi-disciplinary optimization approaches (see e.g., (Balling and Sobieski 1996)), 

negotiations (see, e.g., (Kusiak, Wang et al. 1996; Scott and Antonsson 1996; Scott 

1999)), and finally game theoretic principles (see e.g., (Rao 1987; Lewis and Mistree 
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1997; Marston and Mistree 2000; Xiao, Zeng et al. 2002)). Since game theory has been 

formalized for both centralized and de-centralized decision-making, we build on the 

underlying protocols to develop the interval-based focalization method proposed in this 

chapter. An overview of game-theory as applied within the field of engineering design is 

provided in Section 6.3.1, with an emphasis on the non-cooperative formulation that 

appropriately represents coupled, decentralized decision-making. In order to develop the 

solution mechanism for this problem formulation, we rely on Box Consistency, a 

mathematical construct developed within the area of interval arithmetic. A detailed 

discussion of Box Consistency follows in Section 6.3.2. 

6.3.1 Game Theory Protocols for Collaborative Design 
Game theory has been employed as a means of conflict resolution in engineering 

design, with instantiations varying depending on the nature of the underlying problem 

addressed. Myerson (Myerson 1991), for example, presents game theory as a method for 

resolving conflict between multiple decision-makers controlling subsets of design 

variables and striving to minimize individual cost functions. Rao and Freiheit (Rao and 

Freihet 1991) present a modified game theory method to solve multi-objective problems, 

that is subsequently extended by Rao (Rao 1987) for structural optimization  and by 

Badhrinath and Rao (Badhrinath and Rao 1996) for the integrated design of control 

structure.  Hacker and Lewis (Hacker and Lewis 1998) develop a robust design method to 

reduce elements of uncertainty in a non-cooperative system that result from prediction of 

disciplinary subsystem behavior. This uncertainty is due predominantly to a lack of 

global control. Unknown and uncontrollable design decisions (made within competing 

subsystems) are thus modeled as internal noise variables via the application of Robust 



   

 316

Design in conjunction with game theoretic protocols.  The goal is to reduce the effect of 

interacting decision-makers on one another.  Subsequently, Kalsi, Hacker, and Lewis 

(Kalsi, Hacker et al. 1999) proceed to build upon this framework by solving disciplinary 

sub-problems independently from the rest of the system through the incorporation of 

ranges.  Changes in control variables are also considered explicitly, thereby including 

Type II Robust Design principles. Hernández implements game theoretic principles to 

establish a mathematically supported cooperative framework that enhances the practical, 

effective, and efficient integration of the enterprise design process (Hernández 1998).  

Specifically, Hernández provides a method, appropriate for the formulation and solution 

of design problems in a manner consistent with this framework, where enterprise 

decisions are coordinated through a design formulation based on the game theoretical 

formulation of the enterprise design process.  In later work Hernández (Hernández, 

Seepersad et al. 2002; Hernández, Seepersad et al. 2002) formalizes the interactions of 

two collaborating stakeholders  in engineering design processes. Marston (Marston, Allen 

et al. 2000; Marston and Mistree 2000) develops a multi-designer model of engineering 

design that accounts for uncertainty, cooperation, non-cooperation, and coalitions, using 

the mathematics of decision and game theory.  In doing so he introduces the notion of 

Game-Based Design as “…the set of mathematically complete principles of rational 

behavior for designers in any design scenario” in Ref. (Marston 2000).  

Lewis and Mistree (Lewis and Mistree 1997) abstract the mathematical foundations 

of game theory to model complex design processes. They model the strategic 

relationships among designers sharing a common design space using game theoretic 

principles and identify Pareto Cooperation, Stackelberg Leader/Follower, and Nash 
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Non-Cooperation as the three game theoretic protocols most representative of the 

interactions required for decentralized design.  Pareto Cooperation is employed to 

represent centralized decision making, where all required information is available to 

every collaborating designer.  A Pareto optimal solution is achieved when no single 

designer can improve his or her performance without negatively affecting that of another.  

Stackelberg Leader/Follower protocols are implemented to model sequential decision 

making processes where the “leader” makes his or her decision, based on the assumption 

that the “follower” will behave rationally. The follower then makes his or her decision 

within the constraints emanating form the leader’s choice. 

Nash Non-Cooperation refers to decentralized decision processes where designers 

have to make decisions in isolation due to organizational barriers, time schedules, and 

geographical constraints. It is focused on formulation of strategies that “rational” 

individuals follow when their actions and objectives are affected by others, its 

mathematical models are suitable for formulating decisions in collaborative design 

(Hernández, Seepersad et al. 2002). The Nash Non-Cooperative protocol is particularly 

important in multi-functional design scenarios because of the non-required collocation of 

design experts and extensive coupling within the design space.  

In Nash Non-Cooperative protocols, decision-makers formulate Rational Reaction 

Sets (RRS) or Best Reply Correspondences (BRC).  A RRS is a mapping (either a 

mathematical or a fitted function) that relates the values of design variables under a 

designer’s control to values of design variables controlled by other stakeholders. For 

example, in a two designer scenario where the first designer controls design variable 

set AX and the second designer controls variable set BX , the RRSs of the first designer is 
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given by 1( ) ( )A RRS BX f X=  and the RRS of second designer is given by 2( ) ( )B RRS AX f X= . In 

order to calculate the RRS explicitly, a designer assumes the set of values for design 

variables not within their control and chooses values of his/her own design variables in 

order to maximize his/her own payoff. Since the evaluation of RRS is a computationally 

expensive process, the function is evaluated at discrete points and a response surface 

model (or similar approximation technique) is employed to derive an explicit functional 

form of the RRSs. This process is prone to approximation errors that can be attributed to 

poor fidelity and low-order functional fit.  

The Nash Non-Cooperative solution to the coupled, decentralized decision-making 

problem is the point of intersection of the RRSs pertaining to the different designers. The 

resulting  Nash equilibrium to the design problem has the characteristic that no designer 

can improve unilaterally his/her objective function(Thompson 1953). The Nash 

equilibrium thus ensures that each decision-maker’s strategy constitutes an optimal 

response to other decision-makers’ strategies. The approach commonly adopted for 

solving Nash Non-Cooperative decision-making problems is explicitly calculating the 

various RRSs and then finding their intersection. This method represents the use of game 

theory as a solution algorithm, rather than a communications protocol. Hence, this 

solution method does not reflect the actual manner in which decisions are made by 

designers in a decentralized design process. Another solution technique for solving Nash 

Non-Cooperative design problems involves making decisions in an iterative fashion 

where one designer starts with assumed values for other designers’ design variables and 

makes a decision about his/her own design variables. Other designers use these values in 

an iterative fashion and determine the values for their design variables under their 
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control. The process continues until the solution converges to the Nash Equilibrium. 

Although this solution approach more closely resembles interactions associated with 

decentralized decision-making, convergence and stability are not guaranteed. In order to 

overcome these respective shortcomings, we offer an alternative game theoretic 

mechanism for non-cooperative conflict resolution in Section 6.4.  

6.3.2 Box Consistency 
Box Consistency is a concept stemming from interval arithmetic that is focused on 

checking the consistency of each equation in a system in order to eliminate sub-boxes of 

a given box that cannot contain the solution to the system (Hansen and Walster 2004).  

We implement this construct to successively eliminate those areas of a given design 

space that do not contain the Nash Equilibrium of the system.  Box Consistency 

constitutes a systematic means of reducing a shared design space that lends itself to turn-

based decision making.  Since Box Consistency also allows us to embody the propagation 

of ranged sets of specifications among interacting stakeholders, it is quite suitable as a 

solution algorithm for coupled, decentralized multifunctional decision-making.  

Mathematically, Box Consistency can be defined as illustrated at the hand of the 

following example. 

Consider an equation of the form ( , ) 0f x y =  such that x X∈  and y Y∈ , where X  and 

Y  are intervals. The values of x  and y  are consistent relative to the function f , if for all 

values of x  in X , there exists a y  in interval Y , and for all values of  y  in Y , there 

exists x  in interval X , such that the equation ( , ) 0f x y =  is satisfied (see Reference 

(Hansen and Walster 2004) for a more detailed explanation). This statement can be 

mathematically represented (where symbols retain their mathematical meaning) as: 
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,x X y Y∀ ∈ ∃ ∈  and ,y Y x X∀ ∈ ∃ ∈  

The notion of consistency when extended to higher dimensional spaces translates to 

Box Consistency. This consistency principle is illustrating in Figure 6-4 using two 

straight lines, 1( , ) 0f x y =  and 2 ( , ) 0f x y = . The values of x X∈ are consistent with values of 

y Y∈  with respect to function 1f  in the figure. Similarly, values of x X∈  are consistent 

with values of 'y Y∈ .  

f1(x,y)=0

f2(x,y)=0

x

y

X

Y

Y’

 
Figure 6-4 - Illustration of consistency 

It is important to note that if a box represented by the intervals X and Y is the solution 

to the set of equations 1( , ) 0f x y =  and 2 ( , ) 0f x y = , then the values x X∈  and y Y∈  must be 

box-consistent with respect to both functions 1f  and 2f . For the set of linear equations 

shown in Figure 6-4, the interval that is box consistent with respect to both functions is 

thus a single point, specifically the intersection of the two lines making up the system. 

The same idea is applicable not just for linear functions but for any type of nonlinear 

function. In order to find the box that is consistent with both 1f  and 2f , a sufficiently large 

box is chosen and its size is reduced systematically by considering one function at a time 

until Box Consistency is achieved for all of the functions considered. Assuming that for a 
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subset sX  within the interval X, there are no corresponding values in the interval Y that 

satisfy the consistency condition, the subset sX  can be excluded because it does not 

contain the solution. This strategy of systematic reduction of box size is embodied in the 

interval-based focalization method for decentralized decision-making presented in this 

chapter and forms the basis for the associated systematic reduction of design freedom. In 

the next section, we proceed to outline the proposed method and illustrate its application 

for simple cases. 

6.4 An Interval-Based Focalization Method for Decentralized 
Multifunctional Design 

Consider a design problem which is characterized by a set of responses that are 

associated with different domains. These responses are functions of a common set of 

design variables, control over which is shared among interacting designers.  Hence, 

coupling is induced, satisfaction of designer objectives is interlinked, and a means of 

conflict resolution is required. In such scenarios, required interactions among designers 

are often modeled using principles taken from non-cooperative game theory. Two such 

approaches, adopted for executing coupled decisions within the literature, center on the 

explicit calculation of RRS intersections and iterative turn-based resolution as explored 

by Chanron and co-authors (Chanron and Lewis 2003; Chanron and Lewis 2004; 

Chanron, Singh et al. 2004).  

Both approaches are based on the assumption that different designers control subsets 

of a common set of design variables and are responsible for satisfying different (and often 

conflicting) objectives. The first approach involves finding the Nash equilibrium by 

solving the resulting system of RRS equations explicitly relying on either analytical or 
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numerical techniques. A primary disadvantage of this approach is the computational 

intensity of RRS evaluation.  The second approach centers on iteratively searching the 

design space for a mutually acceptable solution.  Disadvantages of this approach are that 

iterations may not converge to the equilibrium point and resulting solutions are very 

sensitive to the initial values chosen for design variables. 

In light of these considerations, we propose an alternative interval-based focalization 

method where designer communications are based on ranges of design variables rather 

than point values. The designers start with a design space, defined by ranges for each 

design variable as specified by the domain experts, assigned control over them.  The 

interacting decision-makers subsequently proceed to take turns in making decisions about 

their respective decision variables and progressively reduce the intervals in a systematic 

fashion until either a sufficient degree of convergence is achieved or all design objectives 

can be satisfied successfully.  This method differs from sequential methods in so far that 

entire ranges of values (rather than point values) are considered in any given cycle, 

offering a distinct advantage with regard to changes in objectives and design 

considerations. 

To illustrate this point, assume that N designers are involved in a multifunctional 

design problem, sharing a common design space defined by a set of design variables vij 

(where i ranges from 1 to N, j ranges from 1 to m, and m is the number of design 

variables controlled by a single designer). This scenario is illustrated at the hand of 

Figure 6-5. The circle at the center represents the number of design variables. These 

design variables are partitioned into mutually exclusive sets Vi. For example, Designer 1 

has control over sets of design variables V1 = {v11, v12, …, v1m}. The arrows in the figure 
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represent the passing of intervals of design variables throughout the design process. As 

shown in the figure, designers make decisions about their design variables in a cyclic 

fashion. A designer is in the active state if it is his/her turn to make a decision. All other 

designers are in the inactive state. At a given point in time, only one designer is in the 

active state, while all remaining designers passively observe. A full cycle of the proposed 

interval-based focalization method is completed once all of the interacting designers have 

made a decision, successively reducing the available design freedom. The steps of the 

proposed method are listed in Figure 6-6.  

 

Designer 1

Designer 2

Designer 3

Designer N

V1 = {v11, 
…, v1j}

V2 = {v21, …, v2k}

V3 = {v31, …, v1l}

VN = {vN1, …, vNm}

…
Set of Design Variables

 
Figure 6-5 - Illustration of interval-based strategy for non-cooperative game theory 
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Define design
space

Assign control of design
variables to designers

Active designer reduces the range
of design variable under his/her 

control, based on his/her objective

Active designer formulates 
his/her design problem

Pass on current intervals
of design variables 

to next active designer

Solution

Check if the interval of 
design variables has
converged to a point

Design
requirements

Identify next active designer

 
Figure 6-6 – Steps of the proposed interval-based focalization method for decision-

making in multifunctional design scenarios 
In the proposed method, we represent designer considerations in terms of compromise 

Decision Support Problems (DSP), the word formulation for which is provided in Table 

6-2. During his/her turn, the active designer is presented with a range of values for the 

design variables controlled by other (inactive) designers. This range represents a set of 

values within which inactive designers have the freedom (and responsibility) to select any 

value they choose. This freedom is represented by a double-line arrow in Figure 6-5. 

Given this range, the active designer determines the largest possible range for his/her 

design variables that will satisfy his/her response, regardless of what values other 

designers determine for the decision variables under their control. In other words, the 

active designer identifies the range of his/her design variables that will ensure Box 

Consistency with respect to his/her RRS. This is achieved by Newton’s Interval Method 

of Elimination of Intervals that do not satisfy Box Consistency, documented in Ref. 
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(Hernández, Seepersad et al. 2002). This method requires the identification of lower and 

upper bounds on unwanted intervals. 

Table 6-2 – The compromise DSP word formulation of the decision made by each 
designer in the interval-based method 

Given 

Design Problem 

Ranges of values for design variables controlled by other designers 

Designer’s own objective function  

Find  

Range of values for design variables controlled by active designer 

Satisfy 

Active designer’s design constraints 

Lower and upper bounds on design variables 

Target values for goals 

Minimize 

Deviation of active designer’s goals from targets 

The ranges of values of design variables from the active designer are passed on in 

sequence to inactive designer who then becomes active during his/her turn. The process is 

repeated in a cyclical fashion until a sufficient degree of convergence is achieved or all 

design objectives can be successfully satisfied. Often this degree of convergence is 

embodied in a single point. 

Having described the method, we proceed to illustrate it at the hand of two 

multifunctional design problems – (1) a scenario with two designers where each designer 

aims to optimize their responses (see Section 6.4.1) and (2) a scenario where each 
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designer aims to achieve target values for their responses (see Section 6.4.3). A 

discussion of effects of initial conditions is presented in Section 6.4.2. 

 

6.4.1 Illustrative Example with Linear Rational Reaction Sets (RRS) 
In Figure 6-2, we present a scenario where two designers (A and B) are responsible 

for optimizing responses AY  and BY  respectively. Designer A is assigned design 

variable AX , whereas designer B controls BX . In the first cycle, designer A is provided 

with the range of values for BX  within which, the Designer B has the freedom to select 

any value. Based on this range of BX , Designer A determines a range of values for AX  

such that for any value of BX  within the specified range, a value for AX  can be chosen 

that will satisfy his/her response ( AY ). Given this range of AX , Designer B makes a 

decision about the range of BX  that will satisfy his/her response ( BY ). Given this range, 

Designer A revisits his/her decision and the process continues until the values of design 

variables converge to a point in the design space. 

In order to illustrate this method, we focus on a problem with two variables 

,A BX X and two responses ,A BY Y . The allowable ranges for design variables are [0,10]=AX  

and [0,10]=BX . The responses are related to the design variables as follows:  

2 2

2 2

5 1
30 5

2 10
1

5 50 5
16

(Designer A)

(DesignerB)

A A A B A B B

B B A B B A A

Y X X X X X X

Y X X X X X X

= + − + −

= − − + − +

 

The surface plots for these functions are shown in Figure 6-7. Designer A is 

responsible for minimizing his/her objective given by the response AY , whereas Designer 
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B is charged with maximizing BY . Given that the control is as described, the designers’ 

best response is given by the following equations, that also represent the designers’ 

respective RRSs:  

30

5
50

10

(Designer A'sRRS)

(Designer B'sRRS)

B
A

A
B

X
X

X
X

−
=

−
=
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Figure 6-7 - Surface plot for YA and YB 
 

These RRSs are shown graphically in Figure 6-8. Although this set of linear equations 

is quite simple, it is nonetheless useful for demonstrating the proposed method. The lines 

are plotted separately to emphasize that each of the two designers is only aware of his/her 

responses. The problem is thus representative of a distributed design scenario, where 

different domain experts are accountable for different (and often conflicting) objectives. 
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The arrows near the axes indicate designer control with respect to the variable plotted on 

that axis. 

The starting ranges for the two design variables are [0,10]=AX  and [0,10]=BX . 

Considering the range of [0,10]=BX , Designer A determines the range of AX  that 

minimizes his/her objective AY . This range is evaluated to be [4, 6]=AX  using Newton’s 

interval method of elimination of intervals that do not satisfy Box Consistency (Hansen 

and Walster 2004). It is also clear from Figure 6-8a that all values of 4<AX  and 6>AX  

can be excluded from the initial range of AX , because these values do not lead to Box 

Consistency with respect to 30

5
B

A
X

X
−

= . Using the range determined by Designer A, 

Designer B is able to eliminate those values of BX  from his/her starting range that do not 

result in Box Consistency with respect to 50

10
A

B
X

X
−

= . The resulting range for BX  is 

[4.4, 4.6]=BX . This concludes the first cycle in the interval-based design process. The 

design spaces resulting from subsequent reductions in the ranges considered by Designers 

A and B are shown in Figure 6-9a and 7b respectively. 

The sequential range reduction cycles continue until the ranges of AX  and BX  

converge to a point. The ranges of design variables after successive cycles are provided 

in Table 6-3. The solution converges to 5.103=AX  and 4.489=BX , a result one might 

expect based upon the intersection of the designers’ respective RRSs. 
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Figure 6-8 - BRCs for Designers A and B 

 

Table 6-3 - Reduction of design range along set-based cycles  

Cycle # Range for AX  Range for BX  

0 [0, 10] [0, 10] 
1 [4, 6] [4.4, 4.6] 
2 [5.08, 5.12] [4.488, 4.492] 
3 [5.101, 5.102] [4.489, 4.490] 

6.4.2 The Effect of Initial Conditions 
A prerequisite initial condition for application of this method is that the starting 

ranges for variables controlled by both designs are such that it is possible for the active 

designer to find a value for his/her design variables (satisfying his/her objectives) for all 

values of design variables controlled by inactive designers. For example in the two-

designer scenario, for any value in the range of BX , Designer A should be able to select a 

value of AX  that satisfies AY . Similarly, for any value in the range of AX , Designer B 

should be able to select a value of BX  that satisfies BY . 

Two important characteristics of this method are –  
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1 The design space considered in cycle (i+1) is always smaller than or equal to the 

design space in cycle (i). 

2 If the initial condition is satisfied, all future cycles will also satisfy this condition. 

The key advantages of this method are a) if the initial condition (mentioned above) is 

met, the process will never diverge and b) there is a gradual reduction of the design space 

along the process. This means that there is a range of responses that can be satisfied after 

any given cycle. Hence, if there are changes in design objectives, these can be 

accommodated without re-executing the design process in its entirety. 

 
a) Designer A’s Reduced Range   

( [4, 6]=AX ) 
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b) Designer B’s Reduced Range 
( [4.4, 4.6]=BX ) 
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Figure 6-9 - Design space after cycle 1 

6.4.3 Illustrative Example for Objective Target Matching – Linear 
Cellular Alloy Design 

In this section, we focus on an example centered on multi-functional design of Linear 

Cellular Alloys (LCA) (Cochran, Lee et al. 2000; Hayes, Wang et al. 2001) in order to 

demonstrate the applicability of the proposed interval-based focalization method for 

complex non-linear problems, where designers aim to achieve target values of their 
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respective objectives. This stands in marked contrast to the example presented in Section 

6.4.1, where each designer was interested in maximizing/minimizing their objectives.  

Linear Cellular Alloys are honeycomb materials (see Figure 6-10) that are processed 

via extrusion of ceramic slurry through a multistage die.  The slurry is composed of a 

binder mixed with metal oxide powders. The structure resulting from the extrusion is first 

dried and reduced into the metallic phase in a hydrogen rich environment. It is then 

sintered to produce nearly fully dense metal composites. A wide range of cell sizes and 

shapes including functionally graded structures can be achieved using this manufacturing 

process. The resulting materials are especially suitable for multi-functional applications 

that require both strength and heat transfer capabilities (Seepersad, Dempsey et al. 2002).  

Applications of these materials include heat sinks for microprocessors and combustor 

liners for aircraft engines. One of the main advantages of these LCAs is that desired 

structural and thermal properties can be obtained by designing the cell shape, cell 

arrangement, and cell wall thicknesses, as well as, dimensioning the overall LCA 

structure. 
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Figure 6-10 - Linear Cellular Alloy with rectangular cells 

Consider a scenario where a multi-functional LCA is to be designed with the 

following behavioral attributes –  
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• Overall heat transfer rate (
.

Q ) = -5.6183 W 
• Compliance (C ) = 4.4773 kJ 
The design problem involves evaluation of design variables values. In this case, the 

following two geometric parameters of the LCA can be varied – overall height of LCA 

( H ), and wall thickness ( t ). All other parameters in the LCA geometry are fixed. 

Designer A controls overall height ( H ) and is responsible for achieving the targeted total 

heat transfer rate (
.

Q ). Designer B is responsible for Compliance and controls the wall 

thickness of the rectangular LCA. The design variables, responses, and their associated 

control are shown in Figure 6-11. 
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Figure 6-11 - Control of design variables in LCA design scenario 

 
The results obtained by applying the proposed interval-based focalization method (see 

Figure 6-6) are presented in Table 6-4. In this table, the ranges of design variables 

(overall height and wall thickness) after each successive cycle are presented. The gradual 

reduction of the design space along the design process is plotted in Figure 6-12. This 

example shows that the proposed method can be applied to non-linear problems as well. 

It is important to note that after each cycle, the achievable target values for compliance 

and overall heat transfer are also ranges. This example demonstrates that the proposed 

interval-based focalization method can also be applied successfully to non-linear 

problems. 
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Table 6-4 - Ranges of design variables at different cycles 
Cycle # Range for 

( )thickness t  
(mm) 

Range for 
( )Height H  

(mm) 

Range of Achievable 
Heat Transfer Rates 

(W) 

Range of Achievable 
Compliance 

(kJ) 
0 [0.0045, 0.0065] [10, 30] [-6.713,  -4.699] [3.87, 5.62] 

1 [0.005452, 0.006298] [15.33, 21.64] [-6.028, -5.236] [4.18, 4.85] 
2 [0.005789, 0.006091] [17.47, 19.72] [-5.760, -5.479] [4.37, 4.60] 
3 [0.005905, 0.006012] [18.28, 19.09] [-5.668, -5.568] [4.43, 4.52] 
4 [0.005945, 0.005983] [18.581, 18.87] [-5.635, -5.600] [4.46, 4.49] 
5 [0.005959, 0.005973] [18.68, 18.79] [-5.624, -5.612] [4.47, 4.48] 
6 [0.005964, 0.005969] [18.72, 18.76] [-5.620, -5.616] [4.47, 4.47] 
7 [0.005966, 0.005968] [18.74, 18.75] [-5.619, -5.617] [4.47, 4.47] 
8 [0.005967, 0.005967] [18.74, 18.75] [-5.618, -5.618] [4.47, 4.47] 
9 [0.005967, 0.005967] [18.74, 18.74] [-5.618, -5.618] [4.47, 4.47] 
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Figure 6-12 - Convergence of decisions to Nash Equilibrium  

6.4.4 A Convergence Criterion for the Interval-Based Focalization 
Method 

An important criterion for successful application of a turn-based method is its 

convergence characteristic. It is on this aspect that we focus in this section. For more 

general design scenarios where the RRSs are not necessarily linear, a similar 

convergence criterion applies. If the RRSs for Designers A and B take the functional 

forms Af  and Bf , respectively, they can be represented mathematically as:  
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( )

( )
A A B

B B A

X f X

X f X

=

=
 

In this case, the criteria governing convergence are the following - successive 

intervals of each design variable must be proper subsets of intervals determined during 

previous cycles. This is mathematically represented as: 

1

1 1

[ ] ([ ] ) [ ]

[ ] ([ ] ) [ ]
A i A B i A i

B i B A i B i

X f X X

X f X X
+

+ +

= ⊂

= ⊂
 

 

The following discussion draws on the example presented in Section 6.4, where 

Designers A and B control AX  and BX , respectively. In order to illustrate the impact of 

design variable control on process convergence we assume that the control of design 

variables is reversed (i.e., the Designer A now controls variable BX  and Designer B has 

control over AX ). The objectives and starting ranges for variables remain the same, 

however. Changing the control over design variables results in a different set of RRSs. 

These RRSs are mathematically given by the following expressions: 

 

25 5 (Designer A'sRRS)B AX X= −  

8 40 (Designer B'sRRS)A BX X= − +  

 

The RRSs for this case are shown in Figure 6-13. The arrows represent control over 

design variables. 
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Designer A’s RRS ( 25 5B AX X= − ) 
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Designer B’s RRS ( 8 40A BX X= − + ) 
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Figure 6-13 - BRCs for Designers A and B when A controls XB and B controls XA 

In the first cycle, Designer A determines the range of BX  corresponding to the 

starting range of [0,10]=AX  (controlled by Designer B) such that his/her objectives are 

satisfied. Given this range for AX , the required range for BX  is [0,10]=BX  as shown in 

Figure 6-14. Using this range for BX , Designer B determines the required range for AX  

(the variable under his/her control) to be [0,10]=AX . Continuing this process does not 

result in convergent behavior, underscoring the fact that the assignment of control over 

design variables to different designers indeed has an effect on the convergence of the 

underlying process. However, in contrast with the point-based methods discussed in 

Section 6.2, the designers are able to identify in a single cycle whether the solution is 

going to converge. In a point-based method, divergence would not have been obvious and 

continued iteration would have been required. The benefit of developing convergence 

criteria for interval based methods is that the criteria serve as a guide for appropriate 

partitioning of the design variable set into subsets assigned to designers. 
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Based on this simple example, it becomes apparent that there is a need to develop a 

criterion for convergence of the interval-based focalization method. The method will 

converge if the range of design variables at cycle (i+1) is a subset of the range of design 

variables at cycle i. In other words, when the design space is effectively reduced after 

each cycle. The notation used for representing ranges of design variable X  after cycle i 

in this section is - [ ]iX , where min max[ ] [ , ]X X X= . 

Based on the RRSs for the scenario presented in Section 6.4, the convergence criteria 

is that the range of variables AX  and BX  during cycle (i+1) should be less than the 

corresponding ranges during cycle i. This is represented mathematically as follows –  

1

1
1

30 [ ]
[ ] [ ]

5
50 [ ]

[ ] [ ]
10

B i
A i A i

A i
B i B i

X
X X

X
X X

+

+

+

−
= ⊂

−
= ⊂
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Designer B’s range after Cycle 1 
( [0,10]=AX ) 
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Figure 6-14 - Designers' ranges after Cycle 1 
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Using the values of AY  and BY , these convergence criteria can be evaluated to 

,min ,max4.489B BX X< <  and ,min ,max5.103A AX X< < . This effectively means that the starting 

ranges of AX  and BX  do not affect convergence of the solution. This is in contrast to the 

point-based iterative method of Ref. (Chanron and Lewis 2003), where the choice of 

starting points directly affects convergence. 

In the scenario where design variable control is reversed, the convergence criteria are: 

1

1 1

[ ] 8[ ] 40 [ ]

[ ] 25 5[ ] [ ]
A i B i A i

B i A i B i

X X X

X X X
+

+ +

= − + ⊂

= − ⊂
 

Evaluating these expressions shows that ,min ,max4.4872B BX X> >  and 

,min ,max4.1026A AX X> > . Obviously, this is not possible, since the minima in each range 

exceed the maxima. Based on the convergence criterion, it is clear that this design 

process will not and, in fact, cannot converge. This underscores that different partitioning 

schemes may not only lead to different answers but may also change the convergence 

characteristics underlying a design problem. We thus assert that the proposed 

convergence criterion can be used as a basis for the assignment of design variable 

control to different designers. This is the next issue we plan to explore in future in 

developing the proposed interval-based focalization method further. 

6.5 On Verification and Validation 
An overview of the validation of interval-based focalization method for 

multifunctional design presented in this chapter is provided in Figure 6-15. This 

validation square provides the validation details specific to multifunctional design aspects 

of overall dissertation level validation square presented in Figure 1-13. In this chapter, 

three quadrants of verification and validation are addressed – theoretical structural 
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validation, empirical structural validation, and empirical performance validation. These 

quadrants of validation square are discussed in Sections 6.5.1, 6.5.2, and 6.5.3 

respectively. 

Empirical Performance Validity
Usefulness of the method in examples
• Chapter 6 - Functional Decoupling using 

LCA design

Application of the method to two 
problems with different 
characteristics and complexity 
resulted in convergence to Nash 
equilibrium

The set-based focalization method 
demonstrated to be better in linear 
RSS case due to non-divergence

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method
• Chapter 6 - Multifunctional LCA design

Simple example for illustration 
purposes – quadratic response 
surfaces, resulting in linear RRSs, 
direct calculation of convergence 
rate

LCA design problem for validation –
response not available in explicit 
form, non-linear RRSs

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• Chapter 10 - Arguing the validity of 

framework developed in this dissertation 
beyond the examples used

Theoretical Structural Validity
Validity of the constructs of the method
• Chapter 6 - Literature review on 

decentralized multifunctional design

Review of existing literature on a)
Game-based protocols and b)
Interval based constructs (box 
consistency)

Relevance of these two constructs 
in multifunctional design problems

 

Figure 6-15 - Validation of the method for decentralized, multifunctional design 
presented in Chapter 6 

6.5.1 Theoretical Structural Validation 
Theoretical structural validation refers to accepting the individual constructs 

constituting the method and accepting the internal consistency of the way the constructs 

are put together. Theoretical structural validation is carried out in this chapter using a 

systematic procedure consisting of a) identifying the method’s scope of application, b) 

reviewing the relevant literature and identifying the strengths and limitations of 
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constructs available in the literature, and c) identifying the gaps in existing literature and 

determining which constructs can be leveraged in the design method.  

The theoretical constructs used in this chapter include game theory based protocols 

and interval based constructs such as box consistency. Game theory based protocols are 

used previously in the design literature. A review of existing literature on game theory for 

decentralized design is provided in Section 6.2. Based on this literature review, it was 

identified that the current methods have limitations related to convergence, and the 

manner in which design freedom is reduced. In order to address these limitations, 

integration of set-based design and game theory based protocols is proposed because that 

would help help designers in communicating sets of possible solutions, thereby keeping 

design freedom for a longer period of time. The advantages of both these constructs have 

been shown independently in the design literature, which gives us confidence in the 

applicability of individual constructs. Although the integration of these two constructs is 

not performed in the existing literature, their internal structure is not incompatible. The 

integration of both these constructs in a manner that combines advantages of both is 

performed in this chapter.  

6.5.2 Empirical Structural Validation 
Empirical structural validation refers to accepting the appropriateness of example 

problems used to verify the performance of the method. In this chapter, we use two 

example scenarios for validation of the interval-based focalization method. These two 

examples are different in complexity and in the manner in which response is evaluated 

based on the design variable values. In the first example, the response is given as simple 

quadratic equation in terms of the design variables. This example is chosen because it 
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results in a linear set of rational reaction sets, which is easy to evaluate and has a constant 

rate of convergence. Further it allows easier explicit calculation of convergence criterion 

and allows the study of initial condition.  

The second example (LCA design) is more complex. In this case, the response is not 

provided explicitly as polynomial equations. The response is evaluated using MATLAB 

based thermal and structural behavioral models. The rational reaction sets in this case are 

non linear. The example is used to check if the method illustrated using linear rational 

reaction sets also works for non-linear cases. Hence, we believe that these two examples 

are appropriate for demonstrating the validity of the interval based focalization method 

developed in this chapter. 

6.5.3 Empirical Performance Validation 
Empirical performance validation refers to accepting that the outcome of the method 

is useful with respect to the initial purpose for some chosen example problems and 

accepting that the achieved usefulness is linked to applying the method. It is shown in 

Sections 6.4.1 and 6.4.3 that the method applied to both examples results in convergence 

of the solution to Nash equilibrium. This demonstrates that the method produces valid 

results. A case where the method does not converge is shown in Section 6.4.4. However, 

in this case, the range of values for the design variables does not reduce after the first 

cycle. Hence, in a single iteration, the designers can understand that a particular 

assignment of design variables does not converge, without explicitly evaluating the 

convergence criterion (which may be difficult in cases where rational reaction sets are not 

known in explicit form). If the same example is used with the point based iterative 

method, the solution would diverge and there won’t be any way of assessing whether the 
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solution is converging converge or not (of course, without calculating the convergence 

criterion explicitly). This advantage is primarily due to the application of set based 

focalization method presented in this chapter. Hence, we can say that empirical 

performance validity is achieved. 

6.5.4 Critical Review and Limitations of the Proposed Method 
In this chapter, an interval-based focalization method is presented for facilitating 

interactions, modeled using non-cooperative game theoretic protocols, as commonly 

employed for conflict resolution in decentralized, multifunctional design scenarios, 

involving shared control over design variables. This method is based on the Box 

Consistency principle, developed in the area of interval arithmetic. Key advantages of 

adopting the proposed method include non-divergence of solutions to coupled design 

problems, insensitivity of convergence characteristics to starting ranges, and gradual 

reduction of design freedom, prolonging adaptability to design changes. The proposed 

method is illustrated at the hand of two examples. Specifically, we solve a non-

cooperative game, centered on the intersection of linear RRSs, in the first example (a set 

of quadratic equations) and underscore the influence of control assignment on 

convergence. Application of the method to cases where RRSs are non-linear is 

demonstrated in the second example (LCA design). 

Further development of this method is centered on investigating cases where – a) 

designers have additional, local design variables that are not shared, but depend on the 

values of shared parameters, b) design variables are defined on discontinuous or piece-

wise defined intervals, and c) multiple non-cooperative solutions (Nash equilibrium) 

exist.  In the case of multiple Nash equilibria, convergence to a point solution may be 
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impeded. This means that the size of the box may remain constant from one cycle to the 

next. Consider the case of two designers with RRSs intersecting more than once, as 

shown in Figure 6-16(a). After several reductions of the design space using the proposed 

interval-based focalization method, the region containing possible solutions is reduced to 

rectangle ABCD. Clearly, subsequent cycles will not reduce the design space further. A 

possible solution to this problem is to partition the design space into subsets (e.g., 

rectangles AEFD and EBCF in Figure 6-16 (b)) to which the focalization method is then 

applied in parallel. The result of one post partition cycle is shown in Figure 6-16 (c). 
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Figure 6-16 - Handling multiple Nash equilibria 
 

6.6 Role of Chapter 6 in This Dissertation 
The interval based focalization method presented in this chapter is developed for 

decentralized, multifunctional design scenarios. This method does not address meta-

design, but is an important design process for decisions related to different functional 
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requirements that are a) strongly coupled with each other, and b) controlled by distributed 

designers. Hence, this method can be used in Step 4 of the design method presented in 

Chapter 3. The relationship of this chapter with Chapter 3 is shown in Figure 6-17. The 

focus in the first six chapters of the dissertation is on methods and metrics for integrated 

design of products and design processes (RQ 1 and RQ2). We now shift our attention (in 

Chapter 7 and Chapter 8) to the third research area that relates to modeling and 

representation of design information that supports integrated design of products and 

design processes.  
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Figure 6-17 – Relationship of Chapter 6 with other chapters in the dissertation 
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Chapter 7 Modeling Design Processes – A Systems 
Approach 

 

In this chapter, we address the third research question - “How should simulation-

based design processes be modeled in a systematic manner and represented in a 

computer interpretable format to support meta-design”. This research question is a result 

of the sixth requirement presented in Table 1-5. The requirement, associated component 

of the framework addressed in Chapter 7 and Chapter 8, and the validation examples are 

presented in Table 7-1.  

Table 7-1 – Requirements, framework component, and validation example 
presented in Chapters 7 and 8 

Framework 
Requirements 

Components of the 
Framework Developed to 
Address the Requirements 

 
Validation Examples 

6) Support 
design process 
exploration, and 
reusability of 
existing design 
process, product 
and decision 
related 
information and 
knowledge 

Information Modeling for 
Meta-Design (Ch 7, 8)

Product State 1 Product State 2

Design
Transformation

Declarative Information

Procedural Information

Design Process

Information Modeling for 
Meta-Design (Ch 7, 8)

Product State 1 Product State 2

Design
Transformation

Declarative Information

Procedural Information

Design Process

Pressure Vessel, Spring 
Examples (Ch 8)

 
Purpose: To demonstrate the 
approach for supporting meta-
design in computational 
frameworks 

 

As a background on design information modeling, a review of existing literature on 

modeling design information is presented in Section 2.6. An overview of the issues 

related to answering this question in the context of simulation-based design frameworks 

is provided in Section 7.1. Abstracting from the literature review, a set of requirements to 
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be satisfied using the proposed model is listed in Section 7.1.1. The key requirement is to 

model design information in a manner supporting design process exploration. The 

proposed strategy for addressing this requirement is presented in Section 7.2. The 

strategy is based on the hypothesis that – “Separation of product, process, and problem 

related information enhances reusability of design process information across different 

products, thereby supporting meta-design”. The aspects of research addressed in this 

chapter are highlighted in Figure 7-1. The hypothesis addressed in this chapter and the 

relationship of this chapter with other chapters is shown in Section 7.2. The 

implementation of this strategy in the form of an information model is presented in 

Chapter 8.  
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Figure 7-1 –Hypotheses addressed in Chapter 7 
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7.1 Context: Answering the Research Question 3 – Modeling 
and Representation of Design Processes 

In simulation-based design, the design process represents the manner in which 

information, generated by simulation models, is utilized for satisfying design objectives 

through analysis, synthesis, and evaluation. These processes are inherently complex 

because of the interdependencies among simulation models at various scales. Given this 

inherent complexity of design processes, it is imperative that the design processes 

themselves be designed appropriately and systematically. Inefficient design processes can 

lead to longer design timelines, thereby contributing to higher costs (Bras and Mistree 

1991). The methodical design of design processes is also referred to as meta-design. The 

role of meta-design in product design is well acknowledged throughout the dissertation. 

According to Simon, “… design process strategies can affect not only the efficiency with 

which resources for designing are used, but also the nature of final design as well” 

(Simon 1996). Bras and Mistree (Bras and Mistree 1991) point out that “a necessary 

ingredient in increasing the efficiency and effectiveness of human designers is the 

modeling of design processes in a manner that can be analyzed, manipulated and 

implemented”. The systematic design of design processes is thus crucial for the timely 

deployment of products. Panchal and co-authors (Panchal, Fernández et al.) highlight that 

design processes are a company’s primary intellectual capital and should be designed, 

managed, and reused strategically.  

In spite of the fundamental importance of meta-design in expending resources, it is 

not effectively supported by current Computer Aided Engineering (CAE) and Product 

Lifecycle Management (PLM) frameworks. The question, naturally arising from this 
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observation is: “How should CAE and PLM frameworks be developed/modified to 

support meta-design?” Although this query can be posed for most design frameworks, 

we primarily focus on simulation-based design frameworks such as FIPER, ModelCenter 

and iSIGHT. Such CAE and PLM frameworks adopt a tool-centric view of design 

processes, according to which a design process is a network comprised of software tools 

employed for processing information. The adoption of a tool centric perspective in 

developing design frameworks, thus invariably focuses the underlying effort on achieving 

interoperability between 1) different tools that perform similar function (such as different 

CAD applications), 2) tools providing different functionality (structural analysis, crash, 

vibration, etc.), and 3) applications pertaining to different domains. Various standards 

such as STEP, XML, and UML are being developed to achieve interoperability between 

such tools. Recently, Peak and co-authors (Peak, Lubell et al. 2004) proposed a model-

centric perspective to support the further development of these frameworks.  Specifically, 

a product information model comprises a central core, modified and populated using all 

relevant tools. Such a model-centric view constitutes a significant improvement over the 

tool-centric view, commonly espoused, because information is no longer tied solely to the 

particular tools used for its creation or modification. We acknowledge that a model-

centric perspective is important for realizing the seamless integration of information 

models, associated with different aspects of product design, and useful for guiding the 

development of CAE and PLM frameworks to support fine grained interoperability, as 

well as, the development of a collective product model. However, we assert that neither 

the tool-centric nor model-centric perspectives (alone or in concert) are adequate for 

effectively supporting meta-design. 
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A fundamental obstacle in furnishing the capability for meta-design is the inability of 

current tools to capture the problem solving aspect of design. In fact, such tools are 

primarily used to capture procedural aspects.  Put another way, current tools do not 

capture a) what the design problem is, b) how the designer partitions the problem, and c) 

how different problems are related. Instead, current tools only capture the specific series 

of steps a designer adopts when solving the problem at hand in a quasi documentary 

fashion. Design problem changes can thus not be translated to the procedural information 

captured within the individual tools.  

The word “problem” has been used in many different ways in the engineering design 

community. In this dissertation, we define a problem as “either an obstacle to be 

overcome or a question to be answered”. This definition is taken from (Muster and 

Mistree 1988). This definition is different from the text book type problem solving, 

where the problem is completely defined and can be solved using a predefined set of 

steps resulting in a unique solution (see (Hazelrigg 1998)). In real design scenarios, 

designers are faced with problems where complete information for solving the problem is 

not available and the closed form solution is not available. Without capturing the problem 

solving aspect of design in the CAE and PLM frameworks, it is difficult to support meta-

design. 

We believe that the solution to this problem lies in adopting a decision-centric, 

problem-solving approach to design. According to many researchers such as Hazelrigg 

(Hazelrigg 1998), Muster and Mistree (Muster and Mistree 1988), and Thurston 

(Thurston 1999) the fundamental premise of decision-based design is that engineering 

design is primarily a decision-making process. A decision-centric approach is adopted in 
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this dissertation because from a decision-centric perspective, meta-design is a meta-level 

process of designing systems that includes partitioning the system based on function, 

partitioning the design process into decisions, and planning the sequence in which these 

decisions are most appropriately made (Mistree, Smith et al. 1990).  

Specific advantages of adopting a decision-centric perspective include the ease with 

which both model-centric and tool-centric views are generated.  Furthermore, domain 

independent representation of design processes becomes feasible. Hazelrigg describes 

decision-based design as omni-disciplinary, “the seed that glues together the heretofore 

disparate engineering disciplines as well as economics, marketing, business, operations 

research, probability theory, optimization and others” (Hazelrigg 1998). Herrmann and 

Schmidt (Herrmann and Schmidt 2002) describe a complete product development 

organization as a network of decision-makers who use and create information to develop 

a product. Although principles of decision-based design have been accepted in theoretical 

aspects of design research, they have not been implemented in design frameworks. 

Current tools do not capture information related to designers’ decisions; decision related 

information is captured in the form of meta-data (if at all). 

To address the shortcomings, elicited throughout this section, and support meta-

design in design frameworks, we propose a decision-centric 3-P approach in this 

dissertation.  The three main elements are a) decision-based design (discussed in Section 

7.2.1), b) modular systems view of design processes (discussed in Section 7.2.2), and c) 

separation of declarative and procedural information (discussed in Section 7.2.3). The 

utilization of these three elements in the proposed approach is presented in Section 7.3. 

An information model supporting the 3-P approach is presented in Chapter 8. It is an 
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object-oriented information model that captures three key components of design 

information, including a) design problem, b) design process, and c) product information. 

The information models for design problem, product, and processes are discussed in 

Sections 8.1, 8.2, and 8.3 respectively.  

7.1.1 Requirements for Modeling Design Information to Support 
Design Process Exploration 

Most of the modeling efforts for design process models are focused on either 

understanding or capturing the design process for later use. Our focus in this research is 

computer-supported design of design processes. In order to achieve this goal, the design 

processes should be modeled in a manner that supports both analysis and synthesis of 

processes. Current design process representations do not lend themselves to the analysis 

of impact of process on the product. All these existing design process models are useful 

for investigating “how and when” a task needs to be performed and provides little insight 

into “what” a designer does in an activity (i.e., what is the impact of an activity on the 

product), which is the focus of this research. The key benefit of modeling a design 

process is the ability to understand the impact of the process on the product and to 

configure the process to achieve desired goals. Hence, there is a need to model the design 

process and the product in a manner that they can be linked together.  

Before providing details about the existing efforts in design information modeling, we 

first discuss the requirements from the point of view of designing design processes. The 

summary of these requirements is listed in Table 7-2. The requirements are divided into 

the following categories – A) Support for designing design processes, B) Modeling 

process information, C) Modeling product information, and D) Reuse of information. In 

this section, we discuss requirements associated with these categories in detail. It is 
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recognized that there are a lot of other requirements for modeling design information. 

However, only the requirements that we feel are critical from the perspective of designing 

design processes are included here. 

Table 7-2 – Requirements list for modeling design information 

Requirements for design information modeling 
 

A) Support for designing design processes 
1. Existence of mathematical models for design processes and products 
2. Ability to model linkages between mathematical model and computational model 

to support execution 
3. Support for design decision making (the information model should capture 

designers’ preferences, goals, etc.) 
4. Ability to define design problems (that capture the knowledge associated with a 

particular design transformation)  
5. Ability to identify better designs and suitable courses of actions 

 
B) Modeling process information 

6. Capability to define processes at all these levels of abstraction 
7. Support for Composability of sub-processes into overall processes 
8. Separation of problem formulation from process information and tool specific 

execution details 
 

C) Modeling product information 
9. Capability to understand the evolution of product information along the design 

process 
10. Ability to generate meta-information about the design space (such as the size of 

design space, coupling between parameters, independence, etc.) 
11. Ability to representation uncertain information 

 
D) Reuse of information 

12. Support reusability of processes at computational level 
13. Modular use of processes for different products 
14. Modular use of processes for different design problems 
 

A) Support for designing design processes 

There is a clear dichotomy of focus in the research for supporting engineering design. 

On one hand, the focus is on developing mathematically rigorous models for gaining an 

understanding of the process of design in general. Examples of such efforts include 
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(Chandrasekaran 1990; Coyne 1990; Gero 1990; Maher 1990; Suh 1990; Takeda, 

Veerkamp et al. 1990; Simon 1996). On the other hand, design research is focused on 

developing computer-based methods and tools for providing computer-based support for 

design. This trend is also evident in modeling design processes. Some of the efforts are 

focused on developing mathematical models for design processes whereas other efforts 

are focused on developing information models for design processes that facilitate 

capturing associated information in a consistent manner in engineering databases. The 

first requirement in Table 7-2 is the existence of mathematical models for both products 

and design processes. These mathematical models should be compatible with each other. 

The primary advantage of studying mathematical models of the design processes is to 

quantify the appropriateness of one design process over the other in a given design 

scenario, whereas, the advantage of developing information models is to store and reuse 

information for efficient and fast design. In spite of the complementary nature of both 

these activities, there has been little work on bridging these two diverse ends of the 

spectrum. To corroborate this, Zeng and Gu (Zeng and Gu) pointed out that science-

based design is still in prehistoric stage due to a lack of a good combination of precise 

representational languages and laws governing design processes. This brings into light 

the requirement for bridging these two efforts – ability to model linkages between 

mathematical model and computational model to support execution (see Table 7-2).  

Since design is a decision making activity (Mistree, Smith et al.), the mathematical 

models and the information models should support for design decision making. Hence, 

they should support capturing information such as designers’ preferences, goals, etc. 

Current product and process models do not capture this information. This brings into light 
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the need for capturing design problems. Existing design process models are useful for 

investigating “how and when” a task needs to be performed and provides little insight 

into “what” a designer does in an activity (i.e., what is the impact of an activity on the 

product), which is important for designing design processes. Design problems captures to 

the “what” of activities in a design process. Since information about the design problem 

is not currently captured explicitly, it is not possible to capture the rationale behind 

selecting a design process for solving a design problem. This hinders reusability of 

previously utilized design processes and prevents design of design processes at a 

computational level. This requirement is listed in Table 7-2 as the ability to define design 

problems.  

Our focus in this dissertation is on designing both the products and design processes 

in an integrated fashion. As shown in the previous chapters, the designers make decisions 

both about products and design processes. Hence, the modeling approach should support 

decision making related to products and design processes, which translates to the 

requirement - ability to identify better designs (i.e., decisions about the product) and 

suitable courses of actions (i.e., decisions about the design processes). 

B) Modeling process information 

Design processes can be defined at various levels of abstraction – with the business 

level inter-organizational processes at the higher level and simulation execution towards 

the lower level of abstraction. Depending on the level of abstraction of design processes, 

the scope also changes as shown in Figure 7-2. The design process models should have 

the capability to define processes at all these levels of abstraction.  
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Figure 7-2 - Modeling processes at various levels of abstraction 

The approach for designing design processes proposed in this dissertation is to model 

design processes as modular subsystems that can be composed to develop higher level 

design processes. This should be supported by the information model. The sub-processes 

should be modular in nature such that it is possible to compose design sub-processes into 

overall design processes at an executable level.  

As discussed before, the information model should also capture the problem related 

information. Since associated with each design problem, there can be many design 

processes; to separation of problem formulation from process information is necessary. 

In addition to this, separation of process information with information specific with 

execution on different tools is also important. This is required to enable utilization of a 

variety of processes for a problem and also the utilization of various tools for execution 

of a process. 

C) Modeling product information 

A design process can be viewed as a network of transformation of information from 

one state to another. A prerequisite for designing the design process is to understand how 

product information changes throughout the design process and the impact of each 
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process step on the product information. This is captured as the following requirement in 

Table 7-2 - capability to understand the evolution of product information along the 

design process. This is possible only if the product information either captures or is able 

to generate information about the design space such as its size, topology, coupling 

between the parameters, etc. This is also a part of the knowledge about the design that 

increases along the design timeline. Hence, the requirement on the product information is 

- ability to generate meta-information about the design space. Further, there is a lot of 

uncertainty in the design information that must be captured in the product model. This 

includes uncertainty in the design requirements, the environment, decisions made by 

other designers, etc. As the design progresses, uncertainty in the product information 

reduces. Hence, the product model should have the ability to representation uncertain 

information. 

D) Reuse of information 

In order to perform design process exploration, one of the fundamental issues that 

need to be addressed is - capturing design related information from past design scenarios 

and reusing it. This reuse can be done at various levels such as symbolic level, 

description level, computational level, etc. Since our focus is on simulation-based design, 

we are interested in reusability at a computational level, and hence listed as the following 

requirement - support reusability of processes at computational level. The current 

practice in simulation-based design frameworks is to capture information about products 

and processes in a lumped fashion (i.e., the processes are captured in terms of the product 

information and the tools used), which restricts the utilization of processes for designing 

different products. There is very tight coupling between product and process information. 
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The requirement for the modeling approach is modular use of processes for different 

products. There is a similar requirement for modular information use - modular use of 

processes for different design problems. This requires the information model to facilitate 

utilization of the same design processes for different kinds of design problems.  

Further, formal means for capturing design process networks in a computer 

interpretable manner are lacking. The reusability of design processes is currently limited 

to a human reading the process description. For designing design processes, the process 

models should be represented on a computer so that it is possible to reuse sub-processes 

in new design scenarios thereby facilitating the synthesis of processes. Our vision is to 

take this further and develop analyzable and executable design equation for specific 

design scenarios such as multi-disciplinary analysis and design. 

7.1.2 Approach Proposed in this Dissertation – 3-P Information Model 
In order to address design information modeling challenges stated in the previous 

section, we propose a strategy in this dissertation that consists of three main elements – a) 

modular systems view of design processes (discussed in Section 7.2.2), b) decision-based 

design (discussed in Section 7.2.1), c) separation of declarative and procedural 

information (discussed in Section 7.2.3). The strategy proposed in this dissertation is 

called as the 3-P information modeling strategy (discussed in Section 7.3), which is 

embodied as an object-oriented information model that captures design related 

information (discussed in Chapter 8). The three key components of the 3-P model include 

information models for a) design problem, b) design process, and c) product information. 

The information model for design problem is discussed in Section 8.2, information model 

for product is discussed in Section 8.1, and for the process is discussed in Section 8.3. 
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The design problem definition consists of the design variables, responses, constraints, 

goals, preferences, etc. In order to solve the design problem, a design process is laid out, 

which consists of a network of transformations on product information. These 

transformations have product information at State A as input and product information at 

State B as output. 

In the 3-P information model, the information is captured as entity objects and 

relationship objects. For example, in the models for design processes, the entities refer to 

information transformations and relationships refer to the information flows between 

these transformations, whereas while modeling product information, the entities refer to 

components and the relationships refer to interfaces between components. The design 

problem information model is based on the compromise DSP construct developed as a 

part of the Decision Support Problem (DSP) Technique (Muster and Mistree 1988). The 

processes are modeled as hierarchical systems in three levels – individual 

transformations, model interactions, and process compositions. Seven transformations 

and nine model interactions are identified specifically for simulation-based multiscale, 

multifunctional design. Each of these model interactions are associated with design 

processes and serve as standard reusable patterns for design processes. The information 

model is instantiated as Java objects and integrated into FIPER. The reusability and 

reconfigurability aspects of the information model are shown via modeling design 

problem, processes and product information for datacenter cooling system. 

The 3-P information modeling strategy proposed in this chapter enables designers to 

capture design process information in a manner that allows quick process reconfiguration, 

thereby supporting design process exploration. The modular separation of information 
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associated with problem, product, and processes enables exploring different design sub-

processes for solving a given design problem. A prototype implementation of 3-P 

information model is carried out in ModelCenter, which is a distributed computing 

environment. 

7.2 Proposed Strategy for Modeling Design Information 
The strategy proposed in this dissertation for modeling design information is a 

synthesis of four key components – a) decision-based view of design processes and a 

specific instantiation – Decision Support Problem (DSP) Technique, b) modular systems 

based approach for design processes, c) mechanism for separation of declarative and 

procedural information, and d) an information model (3-P) for capturing design related 

information. Decision-based design is a conceptual model for design activities, which is 

based on the notion that the principal role of an engineer, in the design of an artifact is to 

make decisions (Mistree, Muster et al. 1989; Mistree, Smith et al. 1990). Decision-based 

design is chosen as a basis in this dissertation because of its domain independence 

(decisions are common across different engineering domains), phase independence 

(during any phase of the design process, the structure of decisions remain the same), and 

can be used for modeling any process in the value chain (not just design chains). A 

specific instantiation of decision-based design – the DSP Technique is chosen in this 

research as a basis for modeling design information, the details of which are discussed in 

Section 7.2.1. In order to support design of design processes, we view processes 

themselves as systems that consist of sub-systems interacting with each other through 

well defined interfaces. The interfaces for process entities are essentially the information 

flows into and out of the processes. Modular systems-based approach for design 
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processes is employed in order to support reusability and composability of processes. 

This aspect of the proposed strategy is discussed in Section 7.2.2.  

An important requisite for designing an appropriate design process for a given design 

problem is the ability to use different design processes for the same problem without the 

need to reformulate the design problem. As discussed in Section 7.1, the current methods 

and software tools capture the design problem and process related information in an 

integrated fashion, which increases rework and limits reusability. Hence, in this research, 

we separate the declarative information from the procedural information. The details of 

this modularity of information capture are discussed in Section 7.2.3. The embodiment of 

these ideas in the form of an information model is summarized in Section 7.3 and 

described in detail in Sections 8.2 through 8.3.  

7.2.1 Decision-based Design and a Specific Instantiation: DSP 
Technique 

The design model presented in this dissertation is an extension of the constructs 

developed within the DSP Technique proposed by Mistree and co-authors(Kamal, 

Karandikar et al. 1987; Mistree, Muster et al. 1989; Mistree, Smith et al. 1990; Bras 

1991), rooted in the work of Simon.(Simon 1996)  The DSP Technique consists of three 

principal components: a design philosophy rooted in systems thinking, an approach to 

identifying and solving Decision Support Problems (DSPs), and software. ‘Systems 

thinking’ encourages designers to view products and processes as systems interacting 

with the environment. In the DSP Technique, support for human judgment in designing is 

offered through the formulation and solution of DSPs, which provide a means for 

modeling decisions encountered in design. The DSP Technique allows designers to 
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model design processes at various levels of abstraction (Kamal, Karandikar et al. 1987). 

The level of required software support is different at different levels of abstraction. 

DSP Technique is a specific implementation of the decision-based design philosophy. 

In the DSP Technique, designing is defined as a process of converting information that 

characterizes the needs and requirements for a product into knowledge about the product. 

The DSP Technique consists of two phases, namely, meta-design and design (Muster and 

Mistree 1988). In the meta-design phase, the DSP Technique is concerned with finding 

an initial decision-based representation of processes (i.e., the information and knowledge 

of the design process). In the design phase, the DSP Technique is concerned with 

formulating and solving the Decision Support Problems (DSPs) in order to obtain 

implementable solutions (i.e., information and knowledge about the product). These two 

phases are completed in following six steps: a) identification of problem, b) partitioning 

and planning, c) structuring of DSPs, d) mathematical formulation of DSPs, e) solution of 

DSPs, and f) post solution analysis. The first two steps constitute the meta-design phase 

whereas the subsequent four steps constitute the design phase. These steps are shown in 

the Table 7-3.  

Table 7-3 – Two phases and six steps of DSP Technique (Bras 1992) 

Phase 1: Meta-Design Phase II: Design 

Step 3 and 4: Structure Support 
Problems 

Step 1: Identify Problem 

Step 5: Solve Support Problems 

Step 2: Partition and Plan Step 6: Post solution analysis 
 

A palette of entities is proposed in the DSP Technique, to model design information. 

These entities are domain independent and can be used to model hierarchies of design 
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processes. The DSPT palette (shown in Figure 2-2) consists of three types of entities – 

potential support problem entities, base entities, and transmission entities. Potential 

support problem entities include phases, events, tasks, decisions and systems. These 

entities have Support Problems associated with them. Base entities are the most 

elementary entities that are easily implementable on a computer. Transmission entities 

are used to model connections between other entities. These entities capture inputs and 

outputs of other entities.  

In the DSP Technique, support for humans is provided through Support Problems 

(SPs), especially DSPs. Phases, events, tasks, decisions and systems have associated SPs. 

Each SP captures information related to that entity in a structured format. The SPs are 

described in terms of key words and descriptors. The key words and descriptors are 

domain independent. An example of domain independent description of compromise 

Decision Support Problem (cDSP) is shown in Table 7-4. Similar other SPs are modeled 

for Selection decisions, tasks, events, phases, and systems. SPs are instantiated by 

populating domain dependent information for each keyword. The keywords and 

descriptors formalize the information that is required to completely model each SP. Since 

these keywords and descriptors are domain independent, they represent a common 

structure (conceptual schema) for SPs from any domain. This is one of the most 

important characteristics of the DSP Technique that enables reuse of design information 

across domains.  

SPs can be modeled at various levels of abstraction – in terms of keywords and 

descriptors at the highest level of abstraction and in terms of base entities at the lowest 

level of abstraction. Hence SPs serve as medium between the human designers and 
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computer implementation of design processes. The motivation in DSP Technique is to 

model SPs using the base entities on a computer. If a support problem contains all the 

information in terms of computational base entities, it is referred to as a template that can 

be executed on a computer.  

Table 7-4 - Keywords and descriptors for compromise DSP 

Keywords Descriptors 

Given  Symbolic and mathematical base entities and support problems necessary for  

   evaluating the goals, constraints, bounds and deviation variables 

Find  System variables 

Satisfy  Goals, constraints, and bounds 

Minimize A deviation function 

 

DSP Technique for modeling design information: From the perspective of computer 

supported modeling of design processes, the DSP Technique provides a framework for 

modeling, representation, manipulation and reuse of design processes on a computer. The 

notion of SPs, and its various levels of abstraction provides a mechanism to provide 

support for human decision making in a computational fashion. DSP Technique is also 

the only method that offers computational model of design processes in terms of design 

decisions. A designer working with the DSP Technique has the freedom to use sub-

models of a design process created and stored by others and to create models of the 

intended plan of action using the aforementioned entities (Bras and Mistree 1991). DSP 

Technique has an underlying mathematical equation that can be used to mathematically 

model the design processes as a network of transformations. 
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What is missing from DSP Technique Palette? The drawback of the DSP Technique 

palette is that in its current form, it lacks an information model for representing product 

information. The DSP Technique palette is useful for capturing processes in terms of 

transformations but cannot be used in the current form to capture states of product 

information and their evolution. Further, only decisions are formalized so far in DSP 

Technique. Other transformations on product information along the design process are 

not formalized. For example, it is not possible to computationally represent abstraction, 

concretization, etc. using the DSP Technique palette. Hence, it is difficult to study the 

effect of transformations on product information. The DSP Technique palette needs to be 

extended to include product information and a close integration of product and process 

information needs to be established. This can be accomplished by infusing generic 

product information transformations in the DSP Technique palette.  

Although the DSP Technique palette supports reuse of design processes, the reuse is 

mainly limited to pictorial and descriptive reuse. Reuse at a computational level is 

limited. The DSP Technique palette needs to be extended to incorporate modular and 

reusable entities that represent evolution of product through a series of transformations. 

Since each design process is unique, we believe that instead of modeling each design 

process individually, it is important to identify the basic types of activities performed 

during design. We are not so much interested in modeling each and every activity in the 

design process (the way current process modeling tools work for making organizational 

decisions). However, we are interested in modeling the transformations of product 

information from one state to another starting from requirements leading to the final 

design. 
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Augmentation of DSP Technique Palette in this dissertation: In order to address 

these limitations of the DSP Technique palette, we propose an augmented model for 

information capture, which is based on the philosophy of decision-based design. In this 

dissertation, we have modified the definition of design processes to a network of 

transformations that convert product information from one state to another. This 

definition of design processes is adapted from the work of Mistree and co-authors 

(Kamal, Karandikar et al. 1987; Mistree, Muster et al. 1989) where they define designing 

as a process of converting information that characterizes the needs and requirements for a 

product into knowledge about the product. This modification is proposed to eliminate the 

confusion in design community related to the difference in meaning of words information 

and knowledge.  

From the requirements to the final product, design processes are carried out through a 

number of phases. For example, the phases associated with Pahl and Beitz (Pahl and 

Beitz 1996) design process are - planning and clarification of task, conceptual design, 

embodiment design and detailed design. Each phase is associated with stages of product 

information and converts information from one stage to another. Within each phase, there 

is a network of transformations that operate on product information. These 

transformations can be carried out in a sequential (as shown in Figure 7-3) or parallel 

fashion (not shown). The transformations operate on product related information and 

convert this information from one state to another. The state of information refers to the 

amount and form of that information that is available for design decision-making. For 

example, analysis is a transformation that maps the product form to behavior, whereas, 

synthesis is a mapping from expected behavior to the product form. It is important to note 
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that these transformations remain same during different phases of the product realization 

process, as shown in Figure 7-3. 
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State 2

T1 Information
State 3

Phase 2Information 
Stage B

Information 
Stage C

T2 T3Information
State 4

Information
State 5

T1 Information
State 6

DesigningRequirements Product 
Specifications

 
Figure 7-3 - Sequential design process as a series of transformations 

 

In this chapter, we build the information model starting with this view of design. Each 

of the transformations transforms the product information from one state to another. As in 

the DSP Technique, each transformation is associated with a Support Problem, termed as 

Transformation Support Problem (TSP). Decision Support Problems (compromise and 

selection) are special types of transformation support problems. Other TSPs are identified 

and formulated in Section 8.2. Analogous to the DSP Technique, the design method 

consists of two phases – metadesign and design. Meta-design phase is concerned with 

formulation of TSPs, whereas the design phase is concerned with solution of the TSPs. 

The solution of TSPs takes place through a network of tasks – the design process. The 

tasks can either be simple tasks that can be executed directly (such as execution of a finite 

element code) or can be transformations (that require formulation as TSPs). The 

transformations are further associated with a design process, representing the hierarchical 

nature of design. It is an assertion that transformations in a design process are same at 

different levels in the hierarchy. 

The core element of the proposed model of designing, as described above, is shown in 

Figure 7-4. As shown in the figure, there is a separation of information related to 
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formulation of TSPs (declarative information) and the information related to their 

solution (procedural information). The details of this separation of declarative and 

procedural information are discussed in Section 7.2.3. In order to model the design 

information, the three key elements – Transformation Support Problems (TSPs), product 

states, and design processes should be modeled. An information model for these key 

elements is presented in Section 7.3. The core element of designing shown in Figure 7-4 

is an important building block that can be used over and over again for modeling design 

processes at any level of abstraction and for any domain. This embodies the concept of 

modular systems view of design processes. This aspect of modular systems approach is 

discussed next in Section 7.2.2. 

Product State 1 Product State 2

Design
Transformation

Declarative Information

Procedural Information

Design Process
 

Figure 7-4  - Proposed model for designing – transformation of information from 
one state to another 

7.2.2 Modular Systems Approach for Design Processes 
One of the main challenges in modeling any design effort, regardless of scale or 

scope, is standardizing the manner in which information and associated dependencies are 

represented. The need for reusability of information translates this requirement into 

representing information in a domain neutral form that supports designers in providing 

and structuring required information content in a computationally archivable and reusable 
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manner. This calls for a domain independent means of capturing design information. In 

order to facilitate designer interactions required for effective collaboration from a 

decision-based perspective, expression of design decision related information in a 

standardized format is also required.  It is for this reason that we advocate a modular 

template-based approach to modeling design information. A template is commonly 

defined as (1) a pattern, used as a guide in making something accurately, (2) a document 

or file having a preset format, used as a starting point for a particular application so that 

the format does not have to be recreated each time it is used.4 Clearly, the word template 

is appropriate in our context because it implies reusability, achievability, and 

support/guidance. 

In order to effectively support engineering design processes, this notion translates to 

the development of reusable computational templates for design. These computational 

templates should serve as building blocks – completely modular components that are 

standardized with respect to structure and interface architecture.  Such building blocks 

must also facilitate analysis, and execution. Currently, there is a lack of formal, 

executable, computational models for representing and reusing existing knowledge about 

design processes. The only knowledge that is readily available is confined either to 

designers’ expertise or to descriptive/pictorial forms of documentation. This is a result of 

the predominantly narrative or symbolic nature of current models.  

Our design process modeling strategy is based on the assumption that processes 

themselves are hierarchical systems that can be progressively broken down into sub-

processes that in turn can be represented in terms of basic design process building blocks, 

namely the information transformations, discussed in the previous section. Specifically, 
                                                 
4Compiled from www.dictionary.com 
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we focus on developing modular, reusable models of information transformations with 

clearly defined inputs and outputs that facilitate hierarchical modeling of design 

processes.  Due to their consistent structure, design processes modeled in this fashion 

provide the ability to easily archive and reuse design process knowledge at all levels of 

the model hierarchy.  

The fundamental concept of constructing process templates from networks of design 

process building blocks is illustrated in Figure 7-5. The design process in this figure 

involves three information transformations, namely, T1, T2, and T3. Each of these 

templates is at a different level of completion. T1 is a complete template, implying that 

all the information required for its execution is available. T3 on the other hand has yet to 

be instantiated relevant to the problem at hand and consequently, does not differ from 

generic information 
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Figure 7-5 - Modeling design process using process templates 
In order to facilitate reuse of design process models, the building blocks of design 

processes must be generic (domain independence) and modular. We aim to facilitate 

design process reuse with respect to (1) hierarchical composition and (2) cross-domain 

application, respectively. The underlying relationship between these two dimensions is 
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illustrated in Figure 7-6. Domain independence of decision templates is derived from the 

underlying DSP Technique constructs, as described in the previous section. The DSP 

Technique palette contains various entities such as phases, events, decisions, tasks, and 

systems (Mistree, Smith et al. 1990) for modeling design processes. Since there is a 

support problem associated with each DSP Technique palette entity, the use and reuse of 

design process models and design sub-process models, created and stored by others, is 

thus facilitated.  Due to the domain independence of the underlying constructs and the 

integrated systems perspective, the DSP Technique offers a solid foundation for 

developing computational models of reusable design processes, as envisioned in this 

dissertation. Their hierarchical composability emanates from the novel application of 

modularity principles to design process building blocks. 
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Figure 7-6 - Reusability of design processes with regard to hierarchical composition 
and cross-domain application  

 

It is the nature of the information content, captured within these templates, that serves 

as the only differentiator among instantiated constructs; the underlying structure remains 
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the same regardless of context or application. Having outlined the modular systems-based 

perspective espoused in this research, we proceed to discuss the idea of separation of 

declarative and procedural information in Section 7.2.3. The templates are defined based 

on separation of the declarative and procedural aspects of design information, resulting in 

generic information transformation constructs that are instantiated as software templates. 

7.2.3 Separating Declarative and Procedural Information 
The current state of information models and design support tools force designers to 

think in terms of the procedure for solving a particular problem rather than 

conceptualizing and declaring the problem itself that they want to solve. We believe that 

the separation of this declarative and procedural information is extremely important for 

development of effective design support systems. Referring back to Figure 7-4, the 

extension of DSP Technique used in this dissertation categorizes design information into 

two types – declarative and procedural information. The information associated with 

design transformation and the product states is declarative information because it refers to 

what is done by the designer through that transformation. The manner in which this 

information transformation is carried out is procedural information because it refers to 

how that transformation is carried out through a network of tasks. Declarative 

information captures all the pieces of information / knowledge and relationships between 

them that represent the transformation to be carried out. After the designers have declared 

their design problem, it can be executed using many different processes. Configuration of 

the right process for that problem is the challenge in designing design processes.  

The idea of separation of declarative and procedural information is analogous to 

understanding the behavior of system that is represented by a set of linear equations. The 
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first step for understanding the system behavior is formulating (declaring) all the 

equations that correspond to the information/knowledge available to designers. After the 

equations are formulated, the next step is to select a process to be used for solving those 

equations simultaneously. Various algorithms (that correspond to the processes for 

solving the equations) such as Cramer’s rule, Gaussian elimination, LU decomposition, 

Jacobi method, etc. are available for solving set of linear equations. Appropriate selection 

of algorithms (process) depends on the characteristics of linear equations such as 

diagonal dominance, sparcity of the matrix, etc. The selection of right process is 

analogous to designing the design process for executing a design transformation. 

One of the advantages of separating declarative and procedural information is that 

this scheme forces designers to focus on design problem formulation first rather than its 

solution. This is important because without appropriately formulating the design problem, 

the designers are likely to ignore important considerations for designing. The second 

advantage is that it enhances reusability of the design processes for solving different 

kinds of design problems. The third advantage is that it supports design of design 

processes in a systematic manner.  

7.3 3-P Information Modeling Strategy for Problem, Product and 
Process Information 

The 3-Ps refer to the key elements of design information – Problem, Product, and 

Process. The 3-P information model is developed to support development of tools that 

support designers in designing both products and associated design processes. This is 

allowed through the modular plug-and-play of different processes to different problem 

formulations. The 3-P information model is an instantiation of the concepts presented in 

Sections 7.2.1 through 7.2.3. Extension of the DSP Technique is used to define the design 
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transformations that map the product information from one state to another. The 

information about transformations and product information is declarative information, 

whereas the information about processes is procedural information. This achieves 

separation of declarative and procedural information. The 3-Ps – a) problems associated 

with transformations, b) product information, and c) design processes are captured as 

generic templates. These generic templates can be instantiated by populating information 

specific to the problem, product, or the process (see Figure 7-7). Due to the inherent 

independence with which each of these three elements is described, instantiated templates 

provide the required modularity in the information architecture. Modularity in this 

information representation allows configuring different problems with different processes 

and applying these for variety of product design scenarios.  
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Figure 7-7 – Different instantiations of a common abstract information models 
The notion of combining different products, problems, and processes together is 

illustrated in Figure 7-8. In this figure, five different problem formulations, including 

Archimedean formulation, utility based formulation, robust design formulation etc., are 
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shown for the decision support problems. Three different product instantiations – 

pressure vessel, datacenter, and multiscale materials are shown. Four different types of 

processes are listed for executing the decision support problem. The 3-P information 

allows different combinations (as shown by connecting lines in the figure) of 

instantiations of 3-Ps. This implies that instantiated templates for Archimedean 

formulation of decision support problem can be instantiated for pressure vessel design 

using the process corresponding to Robust Concept Exploration Method (RCEM). 

Similarly, the problem formulation using Design Capability Indices (DCIs) can be 

instantiated for pressure vessel design using the process corresponding to interaction 

patterns. 

Problem Product Process

Pressure Vessel

Datacenter

Multiscale Materials

cDSP – Archimedean 
Formulation

cDSP – Preemptive/Utility 
Based Formulation

One Decision vs. Multiple
Decisions for Sub-Systems

Set Based Design Process

RCEM-Using DOE and 
Surrogate Models

Direct Code Execution

cDSP – Archimedean 
Formulation, DCIs, Type-I, 

II, III, IV Robust Design

Traditional Optimization

Using Patterns P1 or
P2 or P3 for interaction 

between models

 
Figure 7-8 - Different combinations of problems, products, and processes 

How is the 3-P information model embodied? The 3-P information model is 

implemented using object oriented constructs because they support hierarchical 

relationship between entities and the support reuse. The information model is instantiated 

as abstract Java classes. In order to support different levels of abstraction of information, 

these generic templates are described at different hierarchical levels. For example, the 

most abstract compromise decision support problem is defined with basic components – 
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design space, response space, preferences, etc. The preferences can be further defined as 

simple Archimedean preferences, preemptive preferences or rather more complex utility 

based preferences. These preference structures dictate different levels of hierarchical 

templates for the compromise decision support problem.  

The abstract Java classes are referred to as the generic templates that can be 

instantiated for specific scenarios and combined together to generate an executable 

description of the design process that is particularized to design a specific product by 

solving a specific problem. The instantiation of generic templates into specific templates 

is carried out by extending the abstract Java classes. Specific schemas for the 3-Ps are 

presented in Sections 8.2.2, 8.1.2, and 8.3. The details of instantiation of generic 

templates are also discussed in these sections using simple examples from pressure vessel 

and spring design. In addition to the independent use of this information model, the 

augmentation of currently available commercial tools such as iSIGHT (2004), FIPER 

(Engenious Inc. 2004) and Model Center (Phoenix Integration Inc. 2004) is also 

discussed. 

Advantages of 3-P information modeling Strategy  

The 3-P modeling approach, proposed in this dissertation, enables designers to 

capture design process information in a manner that allows quick process reconfiguration, 

thereby supporting design process exploration. The modular separation of information 

associated with problem, product, and processes enables exploring different design sub-

processes for solving a given design problem. The key advantages of the 3-P approach 

arise from the three basic ideas used for its development (extension of DSP Technique, 
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modular template based approach, and separation of declarative and procedural 

information). These advantages include the following: 

1. Information can be modeled at different levels of abstraction due to the 

utilization of object oriented constructs 

2. Information related to Problems, Products and Processes is separated and 

captured via modular templates 

3. Different combinations of Problem, Product, and Process declarations can be 

combined together to generate specific computationally executable processes 

4. Process knowledge can be captured and reused across problems and products 

5. The information model allows composability of instantiated sub-processes 

into higher level processes. 

 

In addition to the independent use of the proposed approach, it can serve as an 

augmentation of currently available commercial tools such as iSIGHT (2004), FIPER 

(Engenious Inc. 2004) and Model Center (Phoenix Integration Inc. 2004). 

 

Steps in Utilization of 3-P Information Model 

Five steps in utilization of 3-P information models are shown in Figure 7-9. In each of 

the steps, an element of information is created, transferred, or updated. In the first step, 

the designers select blank (un-instantiated) templates for product, process and the 

problem. The dotted line between the problem and the process templates represents that 

the abstract Java classes for process are defined to exchange information with the abstract 

Java classes that define the problem. In the second step, designers instantiate the product 
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information – i.e., provide ranges for design variables, and values for parameters, etc. 

This is represented by one filled oval in the product information. The information 

available at this step is labeled State A. The designers are then able to instantiate the 

problem definition in Step 3. Instantiation of the problem template requires designers to 

utilize information about attributes and relationships defined in the product information. 

This information flow is shown as solid line from instantiated product template in Step 3. 

In addition to the product specific information, there is also additional problem related 

information such as constraints, targets for goals, and designers’ preferences for goals. 

After the problem is defined, this information can automatically be transferred to the un-

instantiated process template to generate an executable process description. The 

generation of executable process description is shown in Step 4. The execution of this 

instantiated process description results in additional information about the product, which 

is used to update the product information from State A to State B as shown in Step 6.  

The steps shown in Figure 7-9 are for execution of a single design transformation 

using the 3-P information modeling strategy. A general design process consists of a 

network design transformations (refer Figure 7-3), that transform the product information 

from one state to another. For example, in a scenario with two sequential transformations, 

there are three states of product information (see Figure 7-10). Each of the 

transformations is associated with support problem templates that can further be 

associated with different process templates. The process templates can be instantiated to 

generate executable processes. 
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Figure 7-9 - Five steps in utilization of 3-P information model for a single design 
transformation 
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Figure 7-10 - Utilization of 3-P information model for multiple transformations 
 

7.4 Role of Chapter 7 in the Dissertation 
In this chapter, we present a strategy for modeling information in a manner that 

supports designing design processes. The strategy is based on the hypothesis that 
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separation of product, process, and problem related information in a modular fashion 

supports utilizing same design processes for different design problems and different 

products. The details of implementation of this information modeling strategy are 

presented in the following chapter (Chapter 8). 
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Chapter 8 Implementation of the Proposed Design 
Information Modeling Approach 

The focus in this chapter is on providing the preliminary implementation details and 

validation of the information modeling strategy presented in Chapter 7. The 

implementation of the 3-P information modeling strategy involves developing separate 

information models for products, problems, and processes. The information model for 

products is discussed in Section 8.1. Information model for problems is discussed in 8.2 

and the information model for processes is discussed in Section 8.3. Each of these 

sections is structured such that the general concepts to be included in the information 

model are discussed, following a schema consisting of the concepts and relationships 

between them. The general strategy of 3-P approach is validated via implementation in 

ModelCenter, which is a commercially available simulation-based design framework. 

The implementation is tested for design of two different products (design of a pressure 

vessel and design of a spring) using same design process and problem structure that is 

stored as templates. It is important to note that the implementation in ModelCenter is not 

a complete implementation of the information models presented in Sections 8.1 through 

8.3, but it provides simple validation of the general concepts underlying the 3-P 

approach. The hypothesis and validation examples discussed in this chapter are 

highlighted in Figure 8-1.  The validation is performed using pressure vessel and spring 

design examples. 
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Figure 8-1 – Hypothesis addressed in Chapter 8 

8.1 MODELING PRODUCT INFORMATION – OPERANDS IN 
DESIGN EQUATION 

One of the three components of the 3-P information model is the product information. 

The key requirements for the product model of 3-P information model as pointed out in 

Section 7.1.1 include – a) mathematical form associated with the information model, b) 

representation of all alternatives under consideration during a given point in the design 

process, c) ability to capture relationships between sub-components, d) ability to capture 

evolution of product information, e) ability to capture information at various levels of 

abstraction, f) ability to capture different types of design process scenarios, g) ability to 

support human decision making, and h) ability to support simulation-based 
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multifunctional design. The product model presented in this section addresses these 

requirements. 

Any mathematical equation is defined in terms of operators and operands. In order to 

model the design equation in mathematical terms, we need to define both the operands 

and the operators that occur in design. As discussed previously, the design 

transformations (that serve as operators) in design equation act on the product 

information. Hence, the operands are necessarily defined in terms of the product 

information. In this section, we present our information model for representing product 

information that is based on set-theoretic principles, and acts as the operands in the 

design equation. The product model presented in this section forms a basis for modeling 

transformations in design processes.  

8.1.1 Proposed Mathematical Product Model – Operands in the 
Design Equation 

Before presenting the information model, we provide definitions of the keywords 

used. 

Definitions 

1. An entity is an abstraction of a physical object, concept or phenomenon. An entity can 

be a collection of other entities. For example, the entities associated with datacenter 

are room, computer, processor, rack, etc. that can be represented with their 

dimensions and locations. A complete datacenter is also an entity that can be 

represented with an array of racks with their relative positions. 

2. Attributes are entities that describe a particular aspect of another entity. 
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3. A parameter is a special type of attribute that takes as value a Real number. For 

example, length, width, height, air velocity, air density, heat transfer rate, etc. take 

Real values and hence, are parameters. 

4. A relationship is an association between entities or attributes. 

5. The form of an entity is defined as a collection of attributes that can be controlled 

directly by the designer. For example, overall dimensions are the form parameters of 

the LCA entity. Dimensions of individual voids are form parameters of void entity. 

6. The behavior of an entity is defined as a collection of attributes that describe the 

product’s functionality. The behavior of a product can be derived from the product’s 

form and its interactions with the environment. The behavior can be modified by 

changing the form attributes. For example, stiffness and overall heat transfer are 

parameters related to behavior or LCAs. 

7. The state of product information represents the combination of form space and the 

behavior space at a given point in time. 

Having defined the key terms used in the product model described in this section, we 

now move on to the product model. 

 

Product Model 

The product model adopted in this section is based on object oriented information 

modeling concepts. In our work, product model Π  is represented as a set of entities( )iε , 

relationships between these entities ,( )i jρ , and relationships with external entities ( )kρ . 

,{ , , }, , 1.. , 1..i i j k i j n k mε ρ ρΠ = = =  
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This model is illustrated in Figure 8-2 where three entities 1 2 3{ , , }ε ε ε  representing the 

product Π  are shown. These entities are related to each other through 

relationships 1,2 2,3 1,3{ , , }ρ ρ ρ . The relationships of this product Π  are represented 

as 1 2{ , }ρ ρ . 

 

Entity - ε1 Entity - ε2

Entity - ε3

Product Model - Π

Relation ρ1,2

Relation ρ2,3
Relation ρ1,3

Relation ρ1

Relation ρ2

 
Figure 8-2 - Product model as a set of entities and relationships 

 

 

Hierarchy in Entities 

Each entity ( )iε  can further be represented in terms of other sub-entities ( )ijε  that 

describe different aspects (or attributes) of the entity being represented. This enables 

representation of information in a hierarchical form. This hierarchical form of entities is 

shown in Figure 8-3. The entity 1( )ε  is represented in terms of sub-entities 1,1 1,2 1,3{ , , }ε ε ε . 

Similarly, entities 2( )ε  and 3( )ε  are represented by corresponding sub-entities. It is 

important to note that the sub-entities may or may not be subcomponents of the product. 

The sub-entities may represent information about different aspects of the product. 
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Entity - ε1 Entity - ε2

Entity - ε3

Product Model - Π

Relation ρ1,2

Relation ρ2,3
Relation ρ1,3

Relation ρ1

Relation ρ2ε11

ε12
ε13

ε31 ε32

ε33 ε34

ε21 ε22

 
Figure 8-3 - Hierarchy of entities in product model 

Entity Set 

The entities ( )iε  can assume a set of values ( )k
iε  that represent different embodiments 

of the entities. A set of values associated with an entity is termed as an entity set. 

2{ , ,.., ,.. }, 1..k m k tι ι ι ι ιε ε ε ε ε1= =  

These entities and associated sets of values are represented in the form of a space 

where each entity represents an axis (dimension) in the space and the set of values 

represent the values on that axis. The set of possible values can be discrete or continuous. 

The product space is illustrated in Figure 8-4 for three entities and associated alternative 

values. A point in the product space represents an instantiation of a product. Different 

points in the space refer to different products. 

The simplest entities are the ones that cannot be broken down further in terms of sub-

entities. These entities are called parameters. The parameters take values on the Real 

line. Hence, the Real line is the entity set for parameters. The product space is 

mathematically represented as a cross product of entity sets. In other words, a 

representation of product form consists of an n-tuple of entity sets.  
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ε1

ε2

ε3

1
1ε

2
1ε 3

1ε
1
2ε

2
2ε

1
3ε

2
3ε

3
3ε

 
Figure 8-4 - The product space represented by entities and their alternative 

embodiments 

 
Relationships in product model 

In addition to the entities and associated attributes, relationships ,( )i jρ  between 

entities and constraints form an important component of the product model. Constraints 

are special types of relationships in the product model. These relationships and 

constraints represent surfaces or sub-spaces in the product space. The relationships in the 

context of product model presented in this dissertation are mathematical in nature. 

Relationships are surfaces if the mathematical form is represented as an equality relation, 

whereas the relationships are sub-spaces if they are represented by inequality 

relationships. For example, in the datacenter product model, lower bounds on the size of 

the overall dimensions (Length > Lengthlower bound, Width > Widthlower bound) are sub-

spaces in the form space. Similarly, the maximum allowable temperature on the surface 

of processors and the bound on average temperature divide the design space into feasible 

and infeasible design spaces. The relationship between air flow rate, velocity and cross-

sectional area is equality and hence, represents a surface in the product space. 
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Behavioral models relate entities in the form space with entities in the behavior space. 

Constraints separate the overall product space into feasible space and infeasible space. 

Feasible product space refers to the collection of points where constraints are satisfied 

and the infeasible space refers to the points where constraints are not satisfied. 

Form and Behavior Spaces 

The product space is divided into two sub-spaces – form space and behavior space. 

The form (entities that the designers can control) of the product represents a multi-

dimensional space, called the form space, where each dimension represents an entity set. 

The form space of design is defined by the various dimensions, number of computers in a 

rack, flow rate of cold air, and the temperature of cold air into the room. The datacenter 

behavior relevant to the design scenario described in previous chapters consists of two 

parameters: average temperature on the computers, and maximum temperature on the 

processors. These two parameters represent the behavior space of the datacenters. Points 

in form space are related to corresponding points in the behavior space through physical 

laws. For example, the steady state temperature at the top of each processor can be 

directly evaluated from the form parameters. In a design process, the design requirements 

determine the desired product behavior and the designers’ objective in the design process 

is to search for a point in the form space that corresponds to a required point in the 

behavior space. 

8.1.2 Schema for the Proposed Product Model 
In order to model the product information in a computer-interpretable manner, an 

object oriented schema is presented in Figure 8-5. The key part of this information model 

is an entity. A product is composed of many such entities. Each entity, in turn, is 
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composed of various sub-entities and is defined by a number of attributes. Each attribute 

can be either of type form or behavior. Form attributes combine together to represent the 

form of an entity, whereas behavioral entities taken together represent the behavior of 

that entity.  

Product

Entity

-vAttributes : Vector
-vEntities : Vector
-vRelationships : Vector

Relationship

-Parser : Parser
-sMathematicalExpression : String
-sValueToBeEvaluated : String
-vVariables : Vector
-vVariableValues : Vector

ExternalRelationships

FormAttribute BehaviorAttribute

EntityInherentRelationships

  

  

Attribute

    

Behavior Form

  

BehavioralModel

  

 

Figure 8-5 - Schema for capturing product information 

Relations can be of two types – entity inherent relationships and external 

relationships. Entity inherent relationships are the relationships between the sub-entities 

of the entity under consideration. External relationships are the relationships of an entity 

with other entities. The behavioral model is a special type of entity inherent relationship.  

It is reiterated and emphasized here that entities are abstractions of reality. Entities do 

not necessarily represent components of a product. These can be abstract concepts such 

as elements in Finite Element Model, boundary conditions, etc. Hence, the product 

hierarchy does not necessarily correspond to the part/subpart (assembly) hierarchy. The 
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hierarchy represents a design perspective that the designer is interested in. This is 

different from most of the commonly used product models. The abstract nature of entities 

allows us to view attributes as special types of entities. Since the product information is 

defined by the designers based on their perspectives of design, different designers may 

model the same product in an entirely different manner.  

8.1.3 Examples of Product Specific Information 
The first example is from the design of datacenter cooling system. This example is 

discussed in details from the standpoint of integrated design of products and design 

processes in Section 5.3.2. Datacenters are huge computing facilities that house arrays of 

computers stacked in vertical racks. These racks are arranged inside the facility in a 

manner that allows easy access to all these computers and also facilitates effective 

removal of heat from these computers. During the design of a datacenter cooling system, 

the components of the system considered include the location and arrangement of racks 

in the room, arrangement of computers in each rack, and the temperature and velocity of 

air coming out of the air cooling system. The product model shown in Figure 8-6 has a 

hierarchy of entities, with the top most entity for datacenter. The datacenter entity is 

composed of entities for cabinets (racks) and airflow. Each cabinet consists of multiple 

computers, each of which is further composed of multiple processors. The airflow 

consists of two entities – air inflow and air outflow. The attributes associated with each 

entity are shown at the bottom of each entity. For example, the entity computer is 

associated with attributes including number of processors, height, average temperature, 

fan curve, etc. The relationships are shown using bi-directional dotted arrows and are 

labeled from 1 through 4. The relationships include the distance between cabinets, the 
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temperature profile as a function of air inlet conditions, etc. Although it is not marked in 

the figure, some of the entities such as various dimensions, number of processors, 

computers etc. are form attributes and the others such as maximum and average 

temperatures, velocity vectors, etc. are behavior attributes. Although this is not a 

complete information model for the complete datacenter, it serves as a simple example 

for concepts discussed in Section 8.1.1. 

 

Datacenter (Room)

Attributes:
Distance between two cabinets
Number of cabinets

Cabinet

Computer

Attributes:
Distance between slots for computers
Number of Computers

Processor

Attributes:
# Processors
Average Temperature
Height of computers
Fan Curve

Attributes:
Dimensions
Rate of Heat Transfer
Maximum Temperature

Air Flow
Air Inflow

Attributes:
Temperature Distribution
Velocity Vectors

Attributes:
Temperature
Velocity

Air Outflow

Attributes:
Boundary Conditions

Entities

Relationships

Entities

Relationships

Relationships
1. Distance between the 

cabinets
2. Distance between 

processors
3. The conditions at the air 

outlet are dependent on 
the heat generated by 
processors

4. The temperature and 
velocity at air inlet 
determine the average 
temperature on the 
computers

1

2

3

4

 

Figure 8-6 - Product information for datacenter example 

The second example is from the integrated design of products (such as a projectile for 

defense application) and materials. The entities in materials design information include 

the product, the material mixture microstructure, and the mixture constituents. The 

interface between materials is important in this design example and hence is modeled as a 

separate entity. The attributes for mixture include the volume fraction of different 
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constituents, particle spatial distribution, etc. These attributes are related to the form of 

the material and can be varied by the designer to achieve desired behavior. The behavior 

related attributes include equation of state, stresses, temperature and pressure distribution. 

It is important to note that some of the relationships are simple mathematical 

relationships between parameters, whereas other relationships require execution of 

complex analysis codes such as finite element analysis. The details of the product 

information are not discussed here because it is not the focus here.  

Product (Projectile)

Attributes:
Product Dimensions
Velocity of Impact
Heat generation, Failure profile

Mixture
Constituents

Attributes:
Mixture Equation of State (EOS)
Volume fraction of mixtures
Particles’ spatial distribution
Stresses, Temperature, Pressure Distribution

Entities

Relationships

Entities

Relationships

Relationships
1. The properties of the first 

constituents determine 
the reaction initiation 
behavior at the interface

2. The mixture properties 
determine the overall 
product behavior such 
as heat generation on 
impact, failure profile etc.

1

Constituent 1

Constituent 2

Interface

Attributes:
Constituent EOS
Particle Size Distribution

Attributes:
Constituent EOS
Particle Size Distribution

Attributes:
Reaction initiation properties 1

2

 

Figure 8-7 - Product information for materials design example 

8.2 Modeling Design Problems – Transformations in Design 
 

The second important component of the 3-P information model is information related 

to Design Problems. In this section, our focus is on extending the DSP Technique palette 
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by modeling the fundamental information transformations encountered in engineering 

design. These transformations include decisions, abstraction, composition, 

decomposition, interfacing, mapping, and synthesis.  Each of these transformations is 

associated with a support problem. In this section, we present the support problems 

associated with these transformations and structured according to the overarching 

systems model envisioned in the DSP Technique (discussed in Section 7.2.1). These 

support problems serve as generic templates for capturing problem related information in 

a declarative manner. Our approach is decision-centric, i.e., design tasks generate 

information that is ultimately useful for design decision making. Modeling a design 

process using such a decision centric approach involves developing networks of 

transformations. Modeling the design problems in a declarative fashion is an important 

part of mathematically modeling the design equation. We describe these transformations 

and associated support problems in detail in Section 8.2.1.  

8.2.1 Proposed Transformations in Design  
The key transformations associated with a design process include: Mapping, 

Decomposition, Composition, Abstraction, Refinement, Evaluation, and Decisions. In 

this section, we discuss the details of these transformations. 

1. Mapping: Mapping is a transformation that involves establishing relationships 

between different entities of a product model. For example, in the Pahl and Beitz 

design process, the mapping of requirements to appropriate function structure, and 

the mapping of functions to working principles are two types of mappings in 

design processes. 
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In a simulation-based design process, the mappings are created between different 

sets of parameters that represent the entities. The most common type of mapping 

encountered in design is analysis. Analysis is a mapping of parameters from the 

form space to parameters in the behavior space. Analysis is carried out using 

physics-based behavior models. Another type of mapping that is very important 

from the decision-based design standpoint is mapping from the behavior space to 

the preference space. The preference space represents designers’ preferences for 

required behavior and can be defined using various mathematical techniques such 

as deviation from the goals, utilities for behaviors, etc. This mapping is referred to 

as preference evaluation. Synthesis is a mapping from the parameters in 

preference space to parameters in the form space. These three mappings in design 

processes are shown in Figure 8-8. 

Form Space Behavior Space Preference Space

Analysis Preference Evaluation

Synthesis  
Figure 8-8 - Mappings in design processes 

 
2. Decomposition: Decomposition is a transformation of product information that 

involves dividing the entity set into groups of entities that are designed 

independently. Partitioning of a design space segments the design space into sub-

spaces. It also reduces the complexity of design problem. Ideally speaking, there 
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may be relationships between entities from different groups. However, if the 

interactions are very small, then these interactions can be neglected. For example, 

a product model Π   shown in Figure 8-9 consists of four entities 1 2 3 4{ , , , }ε ε ε ε . 

The strength of interactions represented by solid lines is much greater than the 

interactions represented by dashed lines. Hence, this product model can be 

partitioned into two groups of entities 1 2{ , }ε ε  and 3 4{ , }ε ε . These entities can then 

be designed separately. Partitioning can also be carried out at the parameter level 

where a group of parameters are separated into separate groups that are 

considered separately. Decomposition is a special case of partitioning where there 

are no interactions between the entities from different groups. 

 

Entity - ε1 Entity - ε2

Entity - ε3

Product Model - Π

Relation ρ1,2

Relation ρ2,4Relation ρ1,3

Relation ρ3,4

Entity - ε4

Partition 1

Partition 2

 
Figure 8-9 - Decomposition of entities in a product model 

 
3. Composition refers to the synthesis of independently designed components of a 

system into a consistent whole. The primary challenge during composition is to 

consider coupling of phenomena due to interactions between components. From a 

decision standpoint, it is important to ensure that the decisions made by different 
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designers about different sub-systems of a previously partitioned system are 

consistent with each other. Composition is carried out during the system level 

synthesis after the sub-system level synthesis has been performed. 

4. Abstraction refers to removal of detail from the product information, which is not 

important from the perspective of the design problem currently being solved. For 

example, during the structural analysis of a part, small features that do not 

contribute much to the overall strength are often ignored. This process simplifies 

the design process drastically. Abstraction is important for reducing the design 

space so that design space exploration is possible in the available time. For 

example, in a multi-scale design problem, the micro-scale and atomistic models 

contain many degrees of freedom that may not be required for the decision under 

consideration. Designers need to reduce the degrees of freedom in order to 

achieve the design objectives. At nanoscale analysis, the degree of freedom is 

determined by the arrangement of all the atoms. However, we don’t need that 

much freedom for the design. There is a need to maintain the minimum set of 

design variables open in order to achieve a design objective. Abstraction is also 

important when there is a need to identify commonality between multiple 

systems. Further, in this dissertation, abstraction is used to simplify design 

patterns by ignoring couplings between microscale and macroscale simulation 

models.  

5. Refinement refers to adding details to the product space.  This can be carried out 

either by adding attributes to an entity that describe more details about the product 

under consideration, or by adding entities that are components of the higher level 
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entity. Refinement can be used to make the analysis process more accurate by 

adding important details that were not previously considered. This is shown in the 

previous chapters where design patterns are systematically made accurate by 

adding information about relationship between models – from independent 

Pattern P1 to sequential Pattern P2 and then to coupled Pattern P3. Refinement 

can also be carried out for individual simulation models by adding more details 

about the system. The information associated with refinement can be captured in a 

declarative form in refinement support problem template. The execution of this 

support problem it is carried out through a process used for refinement.  

6. Evaluation refers to the process of determining how well a specific instantiation 

of an entity in the entity set complies with given criteria. The evaluation 

transformation is present in any design method. For example, in the Pahl and 

Beitz design method (Pahl and Beitz 1996) evaluation transformation is used to 

select one alternative from a set of alternatives that embody a function. Evaluation 

is based on determining the value of a metric quantifying the distance between a) 

desired point and b) the point corresponding to an alternative in the preference 

space. Sometimes, the distance is directly measured in the behavior space. But 

there, the implicit assumption is that the mapping between behavior space and 

preference space is linear. The distance between two achievable behavior points 

can be used as a selection criterion in concept selection methods. However, this 

distance needs to be evaluated on the preference spaces (and not on the behavior 

space). Many different selection methods are based on different methods, metrics 
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used for evaluation. In the compromise DSP, the metric for evaluation is based on 

the deviation of achieved values for goals from the target values. 

7. Decisions refer to the reduction of entities in the entity sets based on some 

evaluation criteria. Evaluation and decision transformations generally go hand in 

hand. Designers can make rational decisions only based on the availability of 

consistent metrics. From a decision-based design perspective, decisions are the 

most important information transformations. However, it is discussed at the end 

because this transformation has been well formalized in the literature on decision-

based design. In the DSP Technique, two decisions – selection and compromise 

have been identified as the only two basic decisions in design. All decisions can 

be expressed as combinations of these basic decisions. Due to their importance in 

decision-based design, we present an information model to capture the decision 

related information in a computationally interpretable manner, in Section 8.2.2. 

8.2.2 Schema for Modeling Decision Problems 
In this section, we present the schema for Decision Support Problems. The topmost 

entity is a DecisionProblem. This decision problem contains all the declarative 

information related to a decision support problem. The decision problem consists of four 

important elements – design space, response space, problem constraints, and preferences. 

Design space is defined by all the design variables that can be controlled by designers. 

Design variables can be either real or discrete. Real design variables have a continuous 

range values they can assume. Response space is defined by all the parameters that 

constitute the behavior space. Parameters in the response space have targets associated 

with them. These targets are derived from the customer requirements through the 
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mapping transformation. Both the design variables and response variables are special 

types of attributes, described in the schema for product model in Section 8.1.2. 

Analogous to the design variables, response variables can also be discrete or real. It is 

important to note that the relationship between design variables and response variables is 

not defined in the problem description, but is defined in the product specific information 

model. This separation of information is important for reusability.  

The third element of the design problem is problem constraint, first two being design 

space and response space. A constraint part of problem definition captures only the 

constraints that are due to way in which problem is defined. Product specific constraints 

are not defined in this section. They are captured using the relationship part of the 

product model. Constraints can be of two types – equality and in-equality. The fourth 

component of the design problem representation is preference. The preference part of the 

information model captures how much a designer values different outcomes in a manner 

that can be mathematically evaluated. These preferences can be captured in different 

mathematical forms – Archimedean, pre-emptive (Struble, Bascaran et al. 1989; Mistree, 

Hughes et al. 1993), or using utility functions (Seepersad 2001). In the Archimedean 

formulation, different goals are assigned weights and the overall objective function value 

is evaluated by taking the weighted sum of individual goals. In the pre-emptive 

formulation, different levels of objective functions are defined. After the higher levels are 

satisfied, designers can proceed to satisfy the next level of objective function. Using the 

utility-based preference representation, the preference values can be defined to vary with 

the value of each goal. Since multiple goals can be defined, the information model 

supports multi-objective decision making.  
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DesignSpace

-vDesignVariables : Vector

DesignVariable

-bVariableIsReal : boolean
-dCurrentValue : double
-dLowerBound : double
-dUpperBound : double
-sVarName : String

Constraint

-Parser : Parser
-sLHS : String
-sName : String
-RelationType : String
-sRHS : String
-vVariables : Vector
-vVariableValues : Vector

Goal

-dCurrentValue : double
-dDeviation_OverAchievement : double
-dDeviation_UnderAchievement : double
-dTargetValue : double
-goalName : String
-iMonotonicity : int

Preference

InEqualityConstraint EqualityConstraint

    

DecisionProblem

ResponseSpace

-vResponseVariables : Vector

DiscreteDesignVariable

-SetOfValues[] : Real

RealDesignVariable

-LowerBound : Real
-UpperBound : Real

    

ProblemConstraints

-vConstraints : Vector

ArchimedeanPreference

-vGoals : Vector
-weight_OverAchievement : double
-weight_UnderAchievement : double

PreemptivePreference

UtilityBasedPreference
  

    

ResponseVariable

-dCurrentValue : double
-sVarName : String

DiscreteResponseVariable

-SetOfValues[] : Real

RealResponseVariable

-Value : Real

    

Attribute

    

 

Figure 8-10 - Schema for capturing decision problem related information 
 
 
 

8.2.3 Examples of Decision Support Problems 
 

An example of a simple compromise DSP template is shown in Table 8-1. The key 

elements of the information captured in cDSP include design variables and their ranges, 

constraints, goals, relationship between attributes, and preferences. This is an un-

instantiated template because there is no product specific data in the template. The cDSP 

can be instantiated by getting information from the product model and by specifying 

problem related goals, constraints, and preferences.  
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Table 8-1 - Generic decision formulation using cDSP 

Given 
Relationships between attributes (simulation codes) 
Design variables, ranges 
Targets for goals 

Find 
Design variables 
Deviation variables 

Satisfy 
Constraints 
Goals 

Minimize 
Deviation function (which is a function of satisfaction of goals, and their targets) 

 

Table 8-2 - Decision formulation for robust design 

Given 
Relationships between attributes (simulation codes) 
Design variables, ranges 
Target values and variance for goals 
Preferences for goals and their variance 

Find 
Design variables 
Deviation variables 

Satisfy 
Constraints 
Goals -  
a. Achieving mean to target 
b. Minimization of variance 

Minimize 
Deviation function (which is a function of satisfaction of a) mean value of goals, and 
their targets, and b) variance and their targets) 
 

An adapted form of this compromise DSP for robust design is shown in Table 8-2. 

The difference between the two compromise DSP templates is the manner in which the 

goals are formulated. In the robust design case, each goal is associated with two sub-

goals – a) achievement of target performance and b) minimization of variance in the 

achieved value due to variance in the noise variables (Chen, Allen et al. 1996; Chen, 

Allen et al. 1997). The compromise DSP for robust design is an extension of the 
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information generic decision formulation presented in Table 8-1, and can be extended 

using the inheritance concept from object-oriented programming. An object-oriented 

information model for modeling decisions is discussed next. 

 

8.3 PROCESS MODEL – ACTIVITIES SUPPORTING 
TRANSFORMATIONS 

Design processes are defined at two levels – at the transformation level and at the 

activity level where activities that support execution of transformations are modeled. In 

this section, we only deal with activity level. The processes are modeled in this 

dissertation as a network of activities with information flowing from one activity to 

another. These activities are computational tasks in the context of simulation-based 

design. Each activity has a set of inputs and outputs. The manner in which outputs of one 

activity are modified to serve as inputs to another activity is referred to as an interface 

between the two activities. Interfaces are used to perform functions such as formatting or 

parsing of data. The process model also captures the information about the sequence in 

which activities are executed.  

Two examples of processes for executing a decision problem are shown in Figure 

8-11 and Figure 8-12 respectively. In the first example, an exhaustive search is used for 

finding the best point in the design space given various constraints and goals. The process 

involves four activities that include selection of a point from the design space, evaluation 

of relationships, evaluation of objective function, and updating the objective function. 

The execution of tasks involves utilization of information from problem definition. This 

process is used in the second example as a sub-process (see activity 4 in Figure 8-12). 

Other three tasks are used in this process include design of experiments to select points in 
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the design space, execution of simulation code at those points, and response surface 

modeling. These activities are added to reduce the computational cost involved in 

executing the simulation codes. This example shows the need for reusability of design 

processes in higher level processes through composability. 

1. Select a point from 
the design space

2. Evaluate 
objective function

4. Update objective 
function value

Check if there are more 
points in the design space

3. Evaluate 
relationships from 
the problem, check 

for constraints

Selected point in 
the design space

Design 
Space

Relationships from 
problem definition

1. Select a point from 
the design space

2. Evaluate 
objective function

4. Update objective 
function value

Check if there are more 
points in the design space

3. Evaluate 
relationships from 
the problem, check 

for constraints

Selected point in 
the design space

Design 
Space

Relationships from 
problem definition

 

Figure 8-11  - Exhaustive search process for decision execution 
The information model used for capturing process information is shown in Figure 

8-13. The highest level element in the information model is a Process. The process is 

composed of two types of elements – basic and composite process elements. The basic 

process element can be directly executed on the computer whereas composite process 

element is a composition of other process elements. A composite process element has a 

process graph associated with it, which captures the information about its execution 

sequence. Two process elements with information flow between them are associated with 

an interface. The interface defines the outputs of one process element and the inputs of 

other process element, and also defines how they are mapped to each other in the 

MappingMechanism object. 
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4. Exhaustive Search 
Process Selected point in 

the design space

Design 
Space

Relationships from 
problem definition

1. Design of 
Experiments

2. Simulation 
Model Execution

3. Response 
Surface Modeling

4. Exhaustive Search 
Process Selected point in 

the design space

Design 
Space

Relationships from 
problem definition

1. Design of 
Experiments

2. Simulation 
Model Execution

3. Response 
Surface Modeling

 

Figure 8-12 - Meta-modeling based process for decision execution 

 

Process

Interface BasicProcessElement

-Inputs : Class
-Outputs : Class

CompositeProcessElement

    

ProcessGraph

Inputs Outputs

Attribute

    

MappingMechanism

Input-OutputMappingExecutionSequence

 
Figure 8-13 - Schema for capturing process information 

We recognize that the information models presented in this chapter to support the 3-P 

approach are relatively simple and defined at a high level of abstraction. However, this is 

not a limitation of the overall approach presented. Comprehensive information models 

such as the core product model can be used to enrich the semantics of the information 

models presented. 
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8.4 Implementation of the Proposed Modeling Approach in 
ModelCenter 

The 3-P information strategy is based on the separation of information related to 

products, processes, and design problems. Such a separation of information allows 

utilization of different design processes for solving a design problem, which facilitates 

meta-design. The 3-P strategy also supports utilization of the same design process for 

designing different products. As mentioned previously, the current simulation-based 

design frameworks capture product, process and problem related information in a 

strongly coupled manner and hence, restrict meta-design. In order to validate the 3-P 

information modeling strategy in the context of currently available simulation-based 

design frameworks, we consider only one aspect of the 3-P approach – reusability of 

same design process for different product to be designed. The use of different processes 

for the same product is not considered in this dissertation and is a potential for future 

work. Similarly, the combination of different types of design problems for same product 

is not considered. 

In order to illustrate the use of same design process for different products, we 

consider a simple example, involving the design of two commonly employed mechanical 

components, namely, a pressure vessel and a spring, pictured in Figure 8-14. While both 

of these products can be described in terms of the geometric constraints, describing their 

form, and mechanical relations describing their function, they are nevertheless 

fundamentally different – with regard to the design parameters describing form, function, 

and behavior.  Hence, computational design processes are problem specific and cannot be 

directly leveraged from one problem to another. 
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Figure 8-14 - Helical spring and pressure vessel 

The information modeling approach presented in this section centers on the concept 

of modular separation of product and process specific information.  In order to facilitate 

reusability of design processes across design problems, relevant information used to 

characterize them is segmented into three layers, as shown in Figure 8-15.  Each of these 

layers (i.e., the product information layer, the declarative process layer, and the 

execution layer) is discussed in detail in this section. 

XML Template
(Problem Definition)

XML Template
(Analysis)

Product Information Level
(Declarative Product Level)XML Template

(Problem Definition)
XML Template

(Analysis)

Product Information Level
(Declarative Product Level)

Model Center
Problem Definition

(Java Beans)
Analysis

(Java Beans)

Process Level
(Declarative Process Level)

Pressure Vessel Analysis
(Visual basic)

W = f (L, R, T, density) 
V = g (L, R, T)

Spring Analysis
(Visual Basic)

V = f (d, D, N, …)
K = g (d, D, N, …)

Pressure Vessel Problem
Design Variables: R, L, T

Spring Problem
Design Variables: d, N 

Execution Level
(Procedural Level)  

Figure 8-15 - Architecture of process modeling framework 

 
Product Information Level (Declarative Product Level) 

In the layer corresponding to the product information level, only information, specific 

to the product being designed, is captured.  Since this information is treated in a 

standardized manner, it can be used by different design processes. For example, the 
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information associated with the design of either the spring or the pressure vessel can be 

categorized as being comprised of design variables, responses, parameters, constraints, 

goals, preferences, objectives, or analyses.  This is illustrated in their respective 

compromise DSP formulations given in Table 8-3.  

Table 8-3 - Compromise DSP formulations for pressure vessel and spring design 
Pressure Vessel Design Spring Design 

Given 
Strength (St), Pressure (P), Density( ρ ) 
 
Some helpful relations: 

Volume, V = 3 24
3

R R Lπ  +  
 

Weight, W = 3 2 3 24 4( ) ( ) ( )
3 3

R T R T L R R Lπρ  + + + − +  
 

Find 
System variables: 

Radius (R) 
Length (L) 
Thickness (T) 

Values of Deviation Variables: 
d1- (for weight goal) 
d2- (for volume goal) 

Satisfy 
System constraints: 

0t
PRS
T

 − ≥ 
 

 

5 0R T− ≥  
(40 ) 0R T− − ≥  
(150 2 2 ) 0L R T− − − ≥  

System Goals (Normalized): 

arg

1 achieved
Volume

t et

Vd
V

− = −
 

arg1 t et
Weight

achieved

W
d

W
− = −

 
Bounds on System Variables: 

0.1 36R≤ ≤  
0.1 140L≤ ≤  
0.5 6T≤ ≤  

Minimize 
Deviation Function: 1 1 2 2Z w d w d− −= +  
  

Given
Assumptions: 
Some helpful relations: 

Deflection of spring: δ =
8 3

4

FD N
d G

 

Solid height of spring: H=Nd, H<0.5 in 

Stiffness of spring: k d G
D N

=
4

38
 

Volume of spring: V Dd N= +0 25 22 2. ( )π   
 
Find 
System variables: 

Wire diameter (d),  
Number of coils (N) 

Values of Deviation Variables: d+, d- for goals 
 
Satisfy 
System constraints: 

6
46.957 10 1.1Nx

d
− ≥

 
0.5Nd ≤  

System Goals (Normalized): 
4

1 153345.5 1d d d
N

− ++ − =
 

2 22
10.0191 1

( 2)
d d

d N
− +− + =

+  
Bounds on System Variables: 

3.5N ≥  
0.059 0.09d≤ ≤  

 
Minimize 
Deviation Function: 1 1 2 2Z w d w d− += +   

We note that the two problems are quite different and exhibit dissimilar variables and 

relationships among them. The goals and constraints are also different. However, 

although the product specific information used in each formulation is different, the 

inherent structure according to which this information is used remains the same. Hence, it 

is possible to standardize the structure of information so that the creation of generic 

process elements becomes possible. The product information corresponding to these 
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generic process elements for both the pressure vessel design and the spring design 

example are provided in Figure 8-16.  

GoalsGoals
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Figure 8-16 - Product information level (declarative product level) for pressure 
vessel and spring design 

The process modeling technique proposed in this dissertation is analogous to 

architecture of a printed wiring board with a number of electronic components, such as 

those shown in Figure 8-17. The wiring corresponds to the flow of information in a 

process and the declarative process specific information is thus “hardwired”. The chips 

plugged into the board define the manner in which the information is actually processed.  

Consequently, these chips correspond to the declarative (product specific) information, 

discussed in this section. A prime benefit is that the resulting reusability extends to both 

the chips and the board independently. Since procedural elements of information 
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transformations are captured in a template form that is independent of the declarative 

aspects (i.e., the specific information considered), all aspects of information 

transformations from the components to the underlying interactions (represented by the 

“chips” and “wiring” in Figure 8-17, respectively) become modular.  Both re-usability 

and reconfigure-ability are thus achieved. 

Generic cDSP TemplateGeneric cDSP TemplateGeneric cDSP Template

Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

Instantiated cDSP Template
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Goals

Preferences

Variables

Parameters

Constraints

Response

Objective

Analysis

Driver

GoalsGoals

PreferencesPreferences

VariablesVariables

ParametersParameters

ConstraintsConstraints

ResponseResponse

ObjectiveObjective

AnalysisAnalysis

DriverDriver
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Figure 8-17 - Archival, documentation, and re-use of design process building blocks 

 
Currently, we standardize the structure of product information according to a set of 

XML schemas. XML offers a convenient and standardized means of capturing 

information at the product information level and ensures that problem specific 

declarative information can be reused in different processes. For the simple example 

problem of designing both a pressure vessel and a helical spring through the use of a 

common template, the product information is stored in four XML templates: the problem 

definition template, the constraints template, the goals and preferences template, and the 

analysis code template. These templates, discussed next, correspond to the declarative 

product information “hidden” (or embedded) within the compromise DSP formulation 

shown in Table 8-3. Note that the information captured in these schemas is not a direct 

implementation of the 3-P information models presented in Figure 8-5, Figure 8-10, and 
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Figure 8-13. These simple schemas are used just for illustration of the concept of 

separation of declarative and procedural information. 

 

Variables and Parameters Definition Template 
The template for defining design variables and parameters includes the following 

information about design variables: a) Design Variable Name b) Type c) Unit d) Value e) 

Lower Bound and Upper Bound. For the purposes of this section, all parameters are 

defined with equal lower and upper bounds. The XML schema representation associated 

with the problem definition template is shown in Figure 8-18. 

 

Figure 8-18 – XML schema representation for variable definition 
 
Constraints Definition Template 

The constraints definition template includes information about various constraints on 

the system. The constraints are associated with a name and a string representing required 

mathematical operations. The XML schema representation associated with the constraints 

definition template is provided in Figure 8-19. 

 

Figure 8-19 – XML schema representation for constraints 
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Goals and Preferences Definition Template 

In this template, information about design goals and designer preferences regarding 

the satisfaction of these goals is captured. The goals are formulated with target values for 

system responses. Preferences are associated with the various goals included in the 

compromise DSP formulation. Here, these preferences are modeled as weights on the 

deviation variables. The entities associated with such goals are: a) Name b) Weight c) 

Target and d) Monotonicity, where Monotonicity captures information regarding whether 

the goal is to be maximized, minimized, or matched as closely as possible. The XML 

schema associated with the goals and preference definition templates is shown in Figure 

8-20.  

 

Figure 8-20 – XML schema representation for goals and preferences 

Analysis Code Template 
The analysis code is used to evaluate the system response to changes in design 

variables. The information associated with the analysis code template includes a) Inputs, 

which consist of Name, Type, Unit, and Value, b) Outputs, which consist of: Name, 

Type, Unit, and Value and c) Execution. The “Execute” field captures the software 

application that needs to be invoked in order to obtain the desired system response. The 

XML schema associated with the analysis code template is also shown in Figure 8-21. 
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Figure 8-21 – XML schema representation for analysis model 

Process Level (Declarative Process Level) 
In the layer, corresponding to the Process Level, (1) required information 

transformations are identified and (2) required information flows are specified in 

accordance. In order to ensure complete modularity of information transformation 

templates, information flows are separated from information content.  Effectively a clear 

distinction is made between declarative and procedural information content. In other 

words, we capture only the mechanics of information transfer at this level, while problem 

specific information is defined separately at the declarative level. This results in a process 

map that remains the same irrespective of the application in which the process is used.  

Information content is thus effectively batched, according to the structure of the 

overarching template. 

A simple example of a generic process map for the design of either a spring or a 

pressure vessel using the compromise DSP construct is given in Figure 8-22. The 

elements of this generic process include problem definition, analysis, constraint 

evaluation, goal evaluation, and an optimization routine. Each of these entities interacts 

with the product information layer through the product information templates. The 
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information flows between these entities are generic and independent of the product 

being designed. For example, the flow of information between the analysis module and 

constraints evaluation include the problem name, an array of input names (i.e., design 

variables) and an array of input values. The actual input names and values are dependent 

on the problem and are extracted from the variables and parameters definition template. 

 
Figure 8-22 - Process map for design of spring / pressure vessel 

 
 The implementation of the declarative process level relies on the use of 

ModelCenter® (Phoenix Integration Inc. 2004), developed by Phoenix Integration Inc. 

ModelCenter® allows for modeling design processes in terms of various simulation 

codes and the required information flows connecting them. Associated with each entity in 

this process are a set of JavaBeans that parse required information from appropriate XML 

files at the product information level and subsequently make this information available 

for processing in ModelCenter®. These Process elements are mapped to each other for a 

specific problem, in a manner that reflects the underlying (batched) information flows 

required by the generic templates. This mapping remains the same irrespective of the 

design problem in which the process is used. For example, the information flows and 
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mappings relevant for the solution of a compromise DSP, will remain the same, whether 

the product being designed is a pressure vessel or a spring. 

Execution Level (Procedural Level) 
The details of code execution are captured in the Execution Level layer. This level is 

specific to the design problem for which the process is used. Execution level codes 

interface only with the declarative problem formulation level. Thus, there is no direct link 

between the process specification level and the execution level. This architecture 

preserves the modularity of the design processes being modeled.  For the design of the 

pressure vessel and the spring, the execution level codes (i.e., the analysis codes 

simulating the behavior of both the spring and the pressure vessel) have been written in 

Visual Basic, although any other model wrapped as a ModelCenter® component could 

also be used in the current instantiation of this modeling effort.  

The results obtained for the pressure vessel and spring design using the generic 

process, pictured in Figure 8-22, are summarized in Table 8-4 and Table 8-5, 

respectively.  These results have been verified and validated with exhaustive searches, 

based on more traditional problem formulations. 

  

Table 8-4 - Results for pressure vessel problem 

Design Variable Value 
Radius (R) 10 mm 
Length (L) 80 mm 
Thickness (T) 3.5 mm 
Objective function (Z) 0.497 

 

Table 8-5 - Results for spring design problem 

Design Variable Value 
Coil Diameter (d) 0.059 in 
Number of Coils (N) 3.5 
Objective function (Z) 0.655 
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8.5 Role of Chapter 8 in This Dissertation 
In this chapter, we present details for the implementation of the 3-P strategy. These 

include information modeling approaches and supporting schemas for products, 

problems, and processes. A part of the proposed strategy is validated via instantiation in 

an existing simulation-based design framework - ModelCenter. In the following chapter 

(Chapter 9), the methods and metrics developed throughout the dissertation are validated 

through a multiscale, multifunctional materials and product design example. 
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Chapter 9 Designing the Design Processes for Multi-
scale, Multi-functional Materials Design 

 

9.1 Context – Validation of the proposed design framework 
The objective in this chapter is to validate two components of the design framework – 

a) method for integrated design of products and design processes (developed in Chapter 

3), and b) value of information based metrics for model refinement and design process 

simplification (developed in Chapter 4 and Chapter 5), using a comprehensive design 

example. The objective of validation of the framework components is accomplished by 

selecting a design problem that involves design of multifunctional materials, products and 

design processes. It is a reasonably complex problem involving design at multiple scales 

and functionalities. Results from the example presented in this chapter are used for 

answering research questions RQ1 and RQ2 in the dissertation. These two components of 

the framework validated in this chapter and the associated framework requirements are 

highlighted in Table 9-1. This table is a subset of Table 1-6 presented in Chapter 1 to map 

the requirements, framework components, and validation examples. 

In this chapter, we start with an introduction of a general multiscale materials design 

problem in Section 9.2. The section contains a requirements statement for a 

multifunctional material for energetic and structural applications. In order to design the 

material, a number of analysis models are required at various scales. These different 

scales of simulation models are discussed in the section. Following the discussion of the 

general materials design problem, a specific design subproblem is formulated in Section 

9.3, and is addressed throughout this chapter. The problem consists of design of materials 
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in conjunction with the products and the underlying design processes. Specific details of 

three simulation models used to design materials and products are provided in Section 

9.4. The details of information flows between these models are also discussed. 

Table 9-1 – Framework requirements and associated components validated in 
Chapter 9 

Framework 
Requirements 

Components of the 
Framework Developed to 
Address the Requirements 

 
Validation Examples 

1) A method 
for integrated 
design of 
products and 
design processes 

Integrated Design of Products, 
Design Processes (Ch 3)
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Design Solution

Design ProcessDesign Process

Meta Design Phase

6. Refine Models and 
Design Solution

6. Refine Models and 
Design Solution

Design Phase

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

Decision Network

Design Processes

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

Decision Network

Design Processes

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

Design Outcome

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

Design Outcome

Integrated Design of Products, 
Design Processes (Ch 3)

Design Requirements

Design Solution

Design ProcessDesign Process

Meta Design Phase

6. Refine Models and 
Design Solution
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Design Solution

Design Phase

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

Decision Network

Design Processes

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

2. Model Design Processes Using 
Reusable Patterns

3. Simplify the process patterns 
based on Value of Information

1. Organize Simulation Model Hierarchy 
Based on Requirements Hierarchy

Decision Network

Design Processes

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

Design Outcome

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

4. Execute the design sub-process, 
determine values of design variables

5. Compare achieved design behavior 
with desired objectives

Design Outcome

 
Energetic/Structural Materials

Metal nose
Monofunctional 
energetic materials

Materials-Product design 
example (Ch 9)

 
Purpose: To validate the method 
for integrated design of products 
and design processes 

5) Support 
for evolving 
simulation 
models 

Refinement of Simulation 
Models (Ch 4, 9)

Refinement of Simulation 
Models (Ch 4, 9)

Refinement of Simulation 
Models (Ch 4, 9)

 

Symmetry

Symmetry

Fi
xe

d

U
SymmetrySymmetrySymmetry

SymmetrySymmetrySymmetry

Fi
xe

d
Fi

xe
d

Fi
xe

d

U

Particle Shock Simulation 
Model Example (Ch 9)

Purpose: To validate the use of 
value-of-information based 
metrics for simulation model 
refinement 

 

The application of design method proposed in Chapter 3 to solve the design problem 

is presented in Section 9.5. All the steps of the design method except model refinement 

are discussed in Section 9.5. In order to manage the complexity of the problem, model 

refinement is taken up separately in Section 9.6, where a specific simulation model is 

refined for a design problem. In that section, the integrated nature of simulation model 
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refinement and material decisions is explored. Verification and validation of the method 

are addressed in Section 9.7. Finally, the role of this chapter in the dissertation is 

discussed in Section 9.8. The hypotheses addressed in this chapter are highlighted in 

Figure 9-1. In this chapter, we address the validation of hypotheses H1.1, H1.2, H2.1, and 

H2.2. 
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Figure 9-1 – Hpotheses addressed in Chapter 9 

9.2 Illustration of the Material design scenario 
In materials design, multi-time-scale and multi-length-scale analyses and simulations 

are performed to tailor a material for specific needs (see Figure 9-2).  One such class of 

tailored materials is Multi-functional Energetic Structural Materials (MESMs).  MESMs, 

which may be composed of Reactive Powder Metal Mixtures (RPMMs), are unique in 
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that the components serve the dual purpose of providing both energetic fuel and structural 

integrity to a reactive system.  We are working on an AFOSR sponsored MURI on design 

of MESMs for a multifunctional application, where the design problem statement is as 

follows - 

“Design multi-functional materials spanning micro and nano-scale structural 

architectures that can provide dual functions of strength and energy release. These 

materials can be used to design structures that support and house low load-bearing 

mono-functional energetic materials and can withstand loads that result from high 

striking velocity impact of selected solids. During the impact event, the structure should 

not fail as result of the impact loads or initiate chemical reactions while striking the solid 

of interest.  The solid of interest can fail or yield due to the impact or penetration 

mechanics. The structure that is made of multi-functional materials of interest must 

predictably function after the impact event.” 

Both the energetic and structural properties are highly dependent upon particle 

properties such as size, distribution, and volume fractions of the particles, as well as, the 

composition of filler materials.  In this example, numerical values of these properties are 

to be determined in order to achieve the desired performance of the resulting material. 

These numerical values are based on the material behavior predicted using simulation 

models at various scales. Some of the important simulation models available in the 

literature at different scales include: 

1. Quantum mechanics models: Quantum scale models are used to determine equation 

of state properties of the individual materials and likelihood of reaction initiation 

between reactive components.  These ab-initio models only require environmental 
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properties such as pressure and temperature as inputs as the atomic properties are 

fundamentally derived.  The equation of state results, particularly in the Hugoniot 

form, are used in the mesoscale discrete particle models to determine constitutive 

behavior of the individual components.  Evaluation of the transition states and 

energies relative to the interaction of reactive components can be processed to 

determine the likelihood of a reaction to initiation.  These probabilities can be used in 

the mesoscale discrete particle models. Quantum scale models are also used to 

determine the parameters in potentials used in molecular dynamics models. 
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Figure 9-2 – Modeling at multiple length and time scales for materials design 
 

2. Molecular dynamics models: Molecular dynamics (MD) models can also be used to 

investigate equation of state properties and probability of reaction initiation, but at 

larger scales.  While quantum scale models are limited to tens or hundreds of atoms, 

MD models can investigate the interactions of 100’s of thousands to millions of 

atoms.  The MD models can then be used more effectively to study shock waves 

through the atoms, size scale effects at reactive component interfaces, and nanoscale 

domains of the constituents.  The MD models can also be compared and verified with 
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quantum scale models.  The results of the MD models would be used in the meso-

scale discrete particle models. 

3. Meso-scale models: In the meso-scale model, the constituents are modeled as discrete 

particles in the nanometer to micron scale.  With a given shock input, the model 

estimates reaction initiation and structural information within a volume element 

measuring in the tens to hundreds of microns in length. The randomly generated 

morphology is created based on statistical information such as volume fractions, size 

distributions, and nearest neighbor distributions. The structural information in the 

form of Hugoniot data is used in continuum models for systems model analysis.  The 

reaction initiation aspects of the model can be used to determine the likelihood of 

reaction propagation and the pressure, temperature effects of the reaction. 

4. Continuum PDE models: Achieving accurate continuum model for new materials is 

an important task for accurate performance estimation in a system scale model.  

Structural and reaction information generated from mesoscale model are interfaced 

with the continuum model.  Experimental data are often required for validating 

analysis models at this scale.  Constitutive models and reduced order models are 

implemented at this scale.  The reduced order model in this MESMs analysis, is a 

non-equilibrium mixture model which predicts structural and reaction relations based 

on the ‘rule of mixtures’. 

These simulation models are common to most multiscale materials design problem. 

These simulation models are associated with complex information flows. Such an 

information flow between models at various scales is shown in Figure 9-3.  With this 

general multiscale materials design problem in mind, we proceed to present the specific 
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design problem considered in this dissertation for the validation of method for integrated 

design of products, and design processes. 
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Figure 9-3 – Information flow between simulation models at various scales (figure 
courtesy David L. McDowell) 

 

9.3 Problem: Integrated Design of Products, Materials, and 
Design Processes 

In the previous section, a general materials design problem is presented. In this 

section, we present a specific design problem used in this chapter for the validation of 

constructs developed in the dissertation. The design problem involves designing a 

projectile and its material to satisfy multifunctional design objectives. The conceptual 

design of the projectile is fixed for the purpose of this chapter as shown in Figure 9-4, an 

outer shell of steel with an inner energetic structural material filling. It is assumed that the 

energetic structural material consists of a mixture of aluminum and iron oxide particles in 
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epoxy binder. The objectives in the design problem are to satisfy the strength and energy 

release goals.  

Energetic/Structural 
Materials

Steel Nose
Metal Casing

Concrete Wall

Projectile

Initial Velocity ~1000m/sec

 

Figure 9-4 – Conceptual layout of the projectile impacting a concrete wall  
In order to satisfy the objectives, the designers can make decisions about the 

following design variables with ranges as shown in Table 9-2. 

Table 9-2 - Design variables and ranges for integrated materials-product design 
problem 

Radius of aluminum particles: [0.0005 0.0015]mm 
Radius of iron oxide particles: [0.0002 0.0010]mm 
Radius of voids: [0.0002 0.0010]mm 
Volume fraction of voids: [0.02 0.10] 
Radius of the filling material in the projectile: [5 23]mm 

All the other variables associated with the product and the materials are fixed. The 

preference for the objectives is expressed in terms of utility functions. The designers’ 

preferences are associated with two functional characteristics – a) the strength of the 

projectile, and b) the reaction initiation and propagation properties. An indicator of 

strength is used in this dissertation to simplify the design problem. This indicator is the 

deformation achieved at a particular time by the projectile in a Taylor impact test (details 

are provided in Section 9.4.3). Similarly, an indicator for reaction properties of the 

material is used as a functional response. This indicator is the amount of reaction 

products (iron, in this material system) accumulated at a specified time after the shock 
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starts. Utility functions are specified for both the responses and are shown in Figure 9-5. 

These utility functions are ideally generated based on the designers’ preferences. In this 

specific problem, the utility functions are generated based on some assumed performance 

targets. The actual details of utility values would affect the final solution but not the 

application of design method.  
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Figure 9-5  - Utility functions for deformation, accumulated reaction products and 
their variation 

As is shown, the designer has a target matching preferences for both the responses 

(deformation and accumulated reaction products). In addition to the preferences for target 

achievement of the two response values, designers also have preferences for the deviation 

in these target values. These preferences for deviation in performance are important in the 

design problem due to the need for making decisions that are robust to variation in 
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performance of the material. The variation in performance can be due to various factors 

such as inherent randomness in material properties, imprecision in simulation models, 

and the imprecision introduced due to simplification in design processes. The preferences 

for deviations are specified as monotonically decreasing utility functions as shown in 

Figure 9-5.  

The compromise DSP representation of the overall (combined) decision about 

product and material is presented in Table 9-3. Note that the problem addresses a subset 

of the requirements statement presented in Section 9.2.  

Table 9-3 – Decisions about product and material  

Decisions about product and material 
 
Given 
 Simulation models at three levels 
 Preferences for deformation, accumulated iron, variation in deformation, and 
 variation in accumulated iron 
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Decisions about product and material 
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Find 
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 - Material level variables 
 Size of Aluminum Particles = [0.0005 0.0015]mm 
 Size of Fe2O3 particles = [0.0002 0.0010]mm 
 Size of Voids = [0.0002 0.0010]mm 
 Volume Fraction of Voids = [0.02 0.10] 
 - Product level variable 
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Decisions about product and material 
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Since the design problem involves deciding on both the material design variables and 

the product design variables, the problem involves the integrated design of products and 

materials. The decisions about products and materials are coupled with each other 

because both decisions impact the deformation and reaction behaviors of the complete 

product-material system. Further, both material and product decisions require multiple 

simulation models that exchange information between each other. The simulation models 

are also coupled with each other. These couplings between decisions and the simulation 

models increase the complexity of the complete design problem. However, as 

emphasized throughout the dissertation, not all couplings are important from a decision 
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making standpoint. Some couplings have a significant effect on the designers’ decisions 

whereas others have only a small effect. Hence, this problem presents a need for 

determining which couplings can be eliminated from the design processes such that the 

information is generated and utilized in an efficient manner, thereby supporting effective 

decision-making. The problem is in line with the primary research question in this 

dissertation discussed in Section 1.1.5. The efficiency and effectiveness of utilization of 

information is one of the main aspects of designing design processes. Hence, in addition 

the problem of integrated decisions about products and materials shown in Table 9-3, the 

designers should also make decisions about the design processes in an integrated manner. 

We limit our discussion on designing design processes to determining which couplings 

(between decisions and simulation models) are important from a decision making 

standpoint. The integrated nature of these three types of decisions is shown in Figure 9-6. 

Having discussed the design problem, we now proceed to discuss the details of 

simulation models used for solving the design problem. 
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Figure 9-6 –Integrated design of products, materials and design processes 
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9.4 Material and System Level Simulation Models Used in the 
Dissertation 

In Section 9.2, general types of models for simulating the behavior of material are 

discussed. However, in order to solve the design problem presented in Section 9.3, we 

rely on three models – particle-level shock simulation (micro-level), non-equilibrium 

mixture theory model (continuum level), and projectile level model (system level) The 

three simulation models at different scales are shown in Figure 9-7. The details of these 

three models are discussed in Sections 9.4.1, 9.4.2, and 9.4.3 respectively. flow of 

information between these three models is discussed in 9.4.4. 
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Figure 9-7 – Three simulation models used in the materials design problem 

9.4.1 Particle Level Shock Simulation Model 
The particle level shock simulation model is a microscale finite element simulation 

that provides spatial resolution of the coupled thermal, mechanical, and chemical 

responses at the particle level during shock compaction. The model is developed by 

Austin in his MS thesis (Austin 2005). The details of the model are adapted from his MS 
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thesis. This model is used to incorporate the effect of changing size of constituent 

particles (aluminum and iron-oxide), different arrangements of the particles in space, 

subjected to different loading conditions the overall properties of the material at 

macroscale. The model is used to predict the average temperature at hot spots, equation 

of state properties of the material, the size of hot spots, and the number of reaction sites. 

The inputs and outputs of the model are shown in Figure 9-8. Some details of the model 

are discussed next. 
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Figure 9-8 - Inputs and outputs for particle level shock simulation model 

The first step in the shock simulation is the generation of synthetic microstructures, 

based on experimental data. Information obtained from microscopy of RPMMs is used to 

generate size distribution of the particles and voids, which is a lognormal distribution. 

Experimental data is also used to generate nearest-neighborhood distribution of particles. 

This information about size and particle distributions is used to randomly generate 

discrete sets of micron-scale particles (aluminum particles, iron oxide agglomerates, and 

voids). The particle size is controlled based on the mean and variance values of particle 

sizes observed from the microscopic images and the generation of number of particles is 

controlled by the prescribed volume fractions of the statistical volume element (SVE) 

under consideration. The distribution of particles in the SVE is controlled by the nearest 

neighborhood distributions. Since the 3-D structure is modeled as a 2-D structure with 



   

 429

circular particles, small amount of overlap is permitted. The remaining part of the SVE is 

filled with epoxy.  

 Symmetry 

Symmetry 

Fixed

 

Figure 9-9 - Boundary conditions of the discrete particle shock simulation (Austin 
2005) 

After the particle structure is generated, the next step is to perform numerical 

simulation using finite element techniques. In this model, shock waves are propagated 

through the reactive particle systems to understand the thermo-mechanical conditions that 

lead to reaction initiation. The simulation is performed using an Eulerian hydrocode 

Raven (Benson 1995). The boundary conditions on the SVE are shown in Figure 9-9. The 

shock propagation phenomenon is idealized as a 1-D shock wave. A compressive shock 

wave is propagated through the mixture by applying a Lagrangian velocity boundary 

condition to the left surface of the SVE. The velocity of particle is represented as Up. 

Symmetry planes serve as Lagrangian boundary conditions for the top and bottom surface 

of the model. A fixed Lagrangian boundary condition is imposed on the right hand side 

surface. The simulation is carried out until the shock wave propagates 95% of the SVE to 

avoid wave reflections.  

The material properties are modeled in terms of the hydrostatic and deviatoric 

components of stress-strain response. Mie-Gruneisen Equation of State (EOS) (Kinslow 
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1970; Asay and Shahinpoor 1993) is used to model the hydrostatic response of aluminum 

and epoxy phases; and Murnagham EOS (Murnaghan 1937) is used to model the 

hydrostatic model for the iron oxide phase. A physically based constitutive model 

proposed by Klepaczko (Klepaczko, Sasaki et al. 1993) is used to model the deviatoric 

stress-strain response of the aluminum phase. The Hansen-Boyce model (Hasan and 

Boyce 1995) is used as the strength model for the epoxy phase. The details of the 

material models are not included in this dissertation because the focus here is not on 

modeling, but on use of this model for design. For details of the model, refer (Austin 

2005).  

The performance of the reactive particle systems is evaluated based on a) the number 

of sites where reaction initiates during shock propagation, b) the average temperature at 

the hot spots, and c) the hydrostatic behavior of the overall mixture. The reaction 

initiation is possible where the reactants are in intimate contact. The initiation of reaction 

is characterized by unbounded growth of hot spots that develop at reactant interfaces due 

to the heat liberated by exothermic chemical reactions. The reaction initiation predicted 

using the shock simulation model is at the microscale level, which is different from 

reaction propagation, which is at a macroscopic level. Reaction propagation is not 

predicted using the particle shock simulation model. The prediction of reaction initiation 

conditions is based on the Merzhanov criterion (Merzhanov 1966), according to which, 

the thermal explosion of hot spots occur when the heat generated by chemical reaction is 

greater than the heat conduction to the surroundings. The factors affecting the reaction 

initiation criterion include the temperature at the hot spots, the temperature of the hot spot 

surroundings, and the size of the hot spots. The maximum number of reaction initiation 
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sites is calculated along different time steps representing the shock propagation. One of 

the outputs of the particle shock simulation is the temperature at various points in the 

domain and the size of hot spots. The temperature at various hot spots along with the area 

of hot spots is used to calculate the area weighted average of the hot spot temperature as 

follows:  
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where, n is the number of hot spots, T is temperature of a hot spot, and A is size of a hot 

spot. It is assumed that the main criterion for determining chemical reaction initiation is 

temperature. Note that this is an approximation of the reaction initiation criterion. This 

weighted average of temperature is calculated at the time step when the first reaction 

starts anywhere in the domain. In Figure 9-10, hot spots where reaction is initiated are 

illustrated in a temperature distribution profile at the time when the first reaction starts. 

For example, the temperature profile shown in Figure 9-10 is captured at 0.66 nano-

seconds when the first reaction initiation hot spots (i.e., three spots) appear.  The critical 

temperature at which chemical reaction will be initiated is the average of the hot spot 

temperatures with weighting by the spot sizes; this weighted average temperature is the 

input parameter in the NTMM as the reaction initiation condition. The average hot spot 

temperature is used in the non-equilibrium thermodynamic mixture model discussed in 

Section 9.4.2. 
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Figure 9-10 - Local hot spots at a first reaction initiation in the reactive particle 
mixture 

The particle shock simulation model is also used to determine the effect of changing 

material properties and morphology on the hydrostatic behavior of the overall material in 

terms of the Gruneisen Equation of State (EOS). An equation of state describes the 

relationship between the pressure, mass density, and internal energy of a material, e.g., P 

= P(ρ, e) (Austin 2005). Since the operating conditions of the material lie in high 

pressure range, simple linear elastic relations are unsuitable. In such conditions, 

Gruneisen EOS is widely used. Due to the complexity, the details of Gruneisen EOS are 

not presented here. Interested readers are pointed to Chapter 5 in (Austin 2005). The only 

point of relevance in the discussion of this chapter is that the parameters for Gruneisen 

EOS can be calculated by performing a linear regression on shock wave speed-particle 

speed data. The slope (S) and intercept (C) of this regression line are used in the 

Gruneisen EOS model for the material. These two parameters are useful in the material 

model in projectile level simulation. As a summary, the inputs and outputs of the 

simulation code for the sake of design are shown in Figure 9-8. The simulation code is 

executed at various points in the design space using a design of experiment. The variation 

in response due to changing material morphology is captured by generating different 

particle distributions and executing the model multiple times at a given point in the 
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design space (which is specified by the values of design variables). The response surfaces 

for Gruneien EOS for the mixture and the average hot-spot temperature are provided in 

the Table 9-4. 

Table 9-4 – Response surface equations for Gruneisen EOS parameters, and the 
average hot spot temperatures 
S = 1.45000 + Ra_Al * (-0.07417) + Ra_Fe2 * (-0.02417) + Ra_Void * (-0.11583) + Vf_void * 

0.16250 + Ra_Al*Ra_Al * (-0.03208) + Ra_Fe2*Ra_Fe2 * (-0.10708) + Ra_Void*Ra_Void * 
0.05792 + Vf_void*Vf_void * 0.06792 + Ra_Al*Ra_Fe2 * 0.00750 + Ra_Al*Ra_Void * (-
0.17250) + Ra_Al*Vf_void * (-0.01750) + Ra_Fe2*Ra_Void * (-0.25750) + Ra_Fe2*Vf_void * 
0.07750 + Ra_Void*Vf_void * (-0.11250) 

 
C = 2.59000 + Ra_Al*0.19667 + Ra_Fe2 * 0.09333 + Ra_Void * 0.17500 + Vf_void * (-0.26667) + 

Ra_Al*Ra_Al * 0.00583 + Ra_Fe2*Ra_Fe2 * 0.00083 + Ra_Void*Ra_Void * (-0.09917) +  
Vf_void*Vf_void * (-0.06917) + Ra_Al*Ra_Fe2 * 0.00500 + Ra_Al*Ra_Void * 0.16000 + 
Ra_Al*Vf_void * 0.02500 + Ra_Fe2*Ra_Void * 0.25500 + Ra_Fe2*Vf_void * -0.08000 + 
Ra_Void*Vf_void * 0.15500 

 
Where, 
S is the slope in the Gruneisen EOS 
C is the intercept in Gruneisen EOS 
   
Ra_Al is the radius of aluminum particles normalized to (-1 and 1) between 0.0005 and 

0.0015mm 
Ra_Fe2 is the radius of iron oxide particles normalized to (-1 and 1) between 0.0002 and 

0.0010mm 
Ra_Void is the radius of voids normalized to (-1 and 1) between 0.0002 and 0.0010mm 
Vf_void the volume fraction of voids and ranges between 0.02 and 0.10 
 
 
y = (0.057632) + (1.0566) * Ra_Al + (-41.796) * Ra_Fe2 + (-0.28438) * Vf_void+ (-33.785) * 
Ra_Void + (986.21) * Ra_Al * Ra_Al + (29929) * Ra_Fe2*Ra_Fe2 + (1.9563) * Vf_void*Vf_void + 
(13711) * Ra_Void*Ra_Void + (2270) * Ra_Al*Ra_Fe2 + (-74.761) * Ra_Al*Vf_void + (1351.5) * 
Ra_Al*Ra_Void + (-55.384) * Ra_Fe2*Vf_void  + (10091) * Ra_Fe2*Ra_Void + (195.5) * 
Vf_void*Ra_Void 
 
HotSoptTemp_avg = 1000* (y^(-1/3) - 2) 
 
Where, 
HotSoptTemp_avg is the average hot sopt temperature generated after the shock passes through 

the material 
 
Ra_Al is the radius of aluminum particles normalized to (-1 and 1) between 0.0005 and 

0.0015mm 
Ra_Fe2 is the radius of iron oxide particles normalized to (-1 and 1) between 0.0002 and 

0.0010mm 
Ra_Void is the radius of voids normalized to (-1 and 1) between 0.0002 and 0.0010mm 
Vf_void the volume fraction of voids and ranges between 0.02 and 0.10 
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9.4.2 Non-equilibrium Thermodynamics Mixture Model 
In the non-equilibrium thermodynamics mixture model, shock-induced chemical 

reactions in aluminum and iron-oxide mixtures are modeled in the framework of non-

equilibrium thermodynamics and continuum mechanics, in which both thermo-chemical 

and mechano-chemical processes are accommodated (Lu, Narayanan et al. 2003). The 

discussion in this section is adapted from (Choi 2005). The constitutive model and the 

conservation equation are formulated by introducing a combination of internal state 

variables and extended irreversible state variables. The internal state variables are mass 

fractions of reactants and products, and void contents. The extended irreversible state 

variables include chemical reaction rate, heat flux, and pore collapse flux. The 

irreversibility of these processes are implied in the nonnegative entropy production rate 

(i.e., the second law of thermodynamics) and their contribution to the dissipation. 

Relaxation times during to the duration of the chemical initiation and sustained reactions 

are in the range of 100-200 nano-seconds. A uniformly blended mixture theory is used to 

describe the porous mixture. The chemical reaction of the constituents is described as –  

2 3 2 32 2Al Fe O Fe Al O+ → +  

Conservation equations, constitutive models, and chemical reaction equations are 

described in detail in (Lu, Narayanan et al. 2003). The simulation model is implemented 

in MATLAB®.  The example is shown in Figure 9-11.  
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Figure 9-11  One dimensional shock simulation of Non-equilibrium 
Thermodynamics Mixture 

Top, bottom, and right boundary condition is fixed and initial loading (σyy) is applied on 

the left boundary.  In Table 9-5, the input and output parameters of the non-equilibrium 

thermodynamic mixture model are listed and those variables implemented in the 

MATLAB® code are listed. 

 

Table 9-5  Input and output parameters in NTMM analysis 

Input Parameters Output Parameters 

 Volume fraction of Al: v_al0  
 Volume fraction of Fe2O3: v_fe2o30 
 Volume fraction of Fe: v_fe0 
 Volume fraction of Al2O3: v_al2o30 
 Porosity: alpha0 
 Applied loading: σyy  
 Initial Temperature:  theta0 
 Reaction initiation criterion: thetac 

 

 Mass fraction of Al: c_al 
 Mass fraction of Fe2O3: c_fe2o3 
 Mass fraction of Fe: c_fe 
 Mass fraction of Al2O3: c_al2o3 
 Pressure: P 
 Temperature: theta 
 Porosity: alpha 
 Density:  rho 
 Stress:  sigmax, sigmay 
 Velocity :vy 
 Heat flux :q 

 
The results of a NTMM execution are illustrated in Figure 9-12.  The initial conditions 

are as follows.  

 Loading pressure (σyy) = 15 (GPa) 

 Initial porosity (alpha0) = 1.5 
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 Initial volume fraction of Al (v_al0) = 0.2545 

 Initial volume fraction Fe2O3 (v_fe2o30) = 0.7455 

 Initial volume fraction of Al2O3 (v_al2o30) = 0  

 Initial volume fraction of Fe (v_fe0) = 0  

 Initial temperature (theta0) = 300 (K) 

 Reaction initiation criteria (thetac) = 700 (K) 

The results shown in Figure 9-12 are the distributions of pressure, temperature, and mass 

fraction of Fe at the time frame of 300 nano-seconds after the initial loading.  
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Figure 9-12  An example of NTMM execution 
 

The output that we need to focus on in this analysis is the amount of chemical reaction 

in the material system. In order to assess the amount of chemical reaction, the mass 

fraction of Fe is the parameter to be captured since it is the product of the chemical 

reaction. In this study, we calculate the sum of the predicted mass fraction of Fe at all 

nodes in the finite difference meshes in the non-equilibrium thermodynamic mixture 

model at 300 nano-seconds after the initial loading. This parameter is called as the 

accumulated mass fraction of Fe (acFe) in this dissertation.   
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In summary, the simulation model is a non-equilibrium thermodynamic model 

incorporating shock-induced chemical reactions. In this model, void collapse flux, 

chemical reaction flux, heat flux and associated relaxation times in the constitutive 

models are included, which explains the delayed initiation and sustained chemical 

reaction. However, reaction initiation conditions in the model are assumed and these 

reaction initiation criteria need to be obtained from the lower scale model, microscale 

discrete particle mixture model, to predict more accurate simulation results. The inputs 

and outputs for the simulation model are shown in Figure 9-13. The discussion of flow of 

information between the models is presented in Section 9.4.4. Note that the details of the 

simulation models are beyond the scope of this dissertation. The non-equilibrium 

simulation code is executed for different values of the volume fraction of constituents and 

average temperature of hot spots. A response surface of accumulated iron as a function of 

the inputs for the models is provided in the Table 9-6. 

Mixture
Theory
ModelVF of Constituents

Individual Constituent Properties
Impact Velocity

Domain Size

% Reaction Products

Average Temperature at 
Hot Spots (Rxn Initiation 

Temperature)

 
Figure 9-13 - Inputs and outputs for mixture theory model 

 

Table 9-6 – Response surface of accumulated iron as a function of mixture theory 
model inputs 
accFe = 1.731 - 266.985 * Vf_void + .066639 * T_ignit - 237.500 * Vf_void * Vf_void - 46.522e-6 * 

T_ignit * T_ignit + 0.283833 * T_ignit * Vf_void; 
 
Where, 
accFe is the content of accumulated iron 
 
T is the temperature (in deg K) at which the reaction initiates 
Vf_void the volume fraction of voids and ranges between 0.02 and 0.10 



   

 438

 

9.4.3 Projectile Level Simulation 
The first two models presented in Sections 9.4.1 and 9.4.2 are material level models 

that predict the performance of material. The models facilitate understanding the effect of 

changing composition and morphology of material on the overall material properties. In 

contrast to these material level models, the projectile level model is a system level model 

that allows designers to vary the system level parameters such as system dimensions, 

projectile velocity, projectile nose shape, penetration angle, etc. The objective of the 

projectile level model is to simulate the effect of these system parameters on the overall 

system performance. The overall performance constitutes the reaction initiation, 

propagation and the strength of the system. The reaction initiation behavior of the 

material is modeled in the particle shock simulation model (see section 9.4.1) and the 

reaction propagation behavior is discussed in the non-equilibrium mixture theory model 

(see section 9.4.2). In addition to the reaction behavior, another important requirement for 

the projectile is the ability to withstand loads that result from high striking velocity 

impact of selected solids (see the requirements statement in Section 9.2). The ability to 

withstand loads is a function of the strength of the overall system, which is dependent on 

the dimensions of the projectile, the amount of MESMs used, the angle of attack, the 

impact velocity, and the material properties (Ballew 2004). The loads generated during 

the impact are also dependent on the target material. Hence, different projectiles should 

ideally be designed for different targets. Since the projectile level simulation model for 

the MURI project is under development during the time this dissertation is written, a 

simplified model, for the purpose of this dissertation, is developed in LS-Dyna® to 
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incorporate the effect of system level parameters on the strength of the overall system. 

The simplified model developed for this dissertation is discussed in this section. 

The simplified model developed for this dissertation is used to simulate a Taylor 

Impact test (Taylor 1946; Taylor 1948). In the Taylor Impact test, a cylindrical projectile 

is provided an initial velocity and impacted against a rigid wall. Due to the impact, the 

impacting end deforms into a ‘mushroom’ shape. The amount of deformation and the size 

of the ‘mushroom’ are dependent on the material properties, the initial velocity and the 

projectile dimensions. Hence, the test results serve as an indicator of the strength of the 

projectile. In the simulation model developed for this dissertation, the cylindrical 

projectile consists of an outer hollow steel shell filled with the MESM material which is 

designed. The outer diameter of the steel cylinder is fixed to 50mm. The length of the 

projectile is fixed at 100mm. The inner diameter of the steel shell is a design variable and 

is assumed to vary between [10 46]mm. The impact velocity is fixed to 1000m/sec. A 

section of the projectile is shown in Figure 9-14. This projectile is impacted against a 

rigid wall. The impact is simulated using an explicit Finite Element code in LS-Dyna. 

The deformation of the projectile is measured after a predefined fixed time (t = 5 µsec in 

this case). A sample final shape of the projectile is shown in Figure 9-15. The maximum 

radius of the deformed shape is measured. This maximum radius of the deformed shape is 

an indicator of the strength of the projectile. The inputs and outputs for the model are 

shown in Figure 9-16.  
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Diameter of MESM material filling 
= [10 46] mm

Diameter of the Projectile  = 50mm

Length of the Projectile 
= 100 mm

Initial Velocity = 1 km/sec

 
Figure 9-14  - Section of the projectile used for Taylor Impact test in LS-Dyna 

 
Radius of the deformed shape

 
Figure 9-15 – A sample shape of the projectile after the impact 
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Projectile 
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(EOS, Deviatoric)

Mesh Size

Deformation

Projectile Dimensions

Impact Velocity

 
Figure 9-16 - Inputs and outputs for projectile level model 

 

The projectile level model is developed based on the elastic-plastic behavior of iron. 

The behavior of the MESM material is modeled as a combination of the hydrostatic and 

deviatoric behavior. The hydrostatic behavior is modeled using a Gruneisen Equation of 

State (see the description of Gruneisen EOS in Section 9.4.1). The devatoric behavior of 

the material is modeled using the experimental data reported by Patel (Patel 2004). For 

the Taylor Impact model developed in this dissertation, the deviatoric behavior of the 

model is assumed to be constant for different values of material parameters such as size 

of constituent particles, volume fraction of voids, etc. The variation in material properties 

is incorporated in the model by considering the changes in material’s hydrostatic 

behavior – i.e., the changes in parameters of the Equation of State. Note that the 

projectile level model used in this dissertation is extremely simplified. The model does 

not account for effects such as shape of the nose, penetration of the target, erosion, 

friction, heat generation due to reaction, etc. The shape of the projectile is also simplified. 

However, all these simplifications do not affect the manner in which the method is used. 

The model can be replaced with a comprehensive model without changing the steps 

followed in the method. The simulation model is executed for various combinations of 

the projectile dimensions and Gruneisen EOS parameters for the material to develop a 
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response surface for the deformation as a function of the inputs. The response surface 

parameters are listed in the Table 9-7.  

Table 9-7 – Response surface equations for deformation as a function of projectile 
level simulation inputs 
MaxDeformation = 8.26162 + InnerRadius *(0.30134) + Slope *(0.05052) + Intercept *(0.08575) + 

InnerRadius*InnerRadius *(-0.34089) + Slope*Slope *(0.00479) + Intercept*Intercept *(-
0.00162) + InnerRadius*Slope*(0.09282) + InnerRadius*Intercept*(0.13622) + 
Slope*Intercept*(0.00696); 

   
Where, 
MaxDeformation is the maximum deformation measured as a result of the impact 
 
InnerRadius is the radius of the MESM filling in the outer steel shell. This variable is normalized to 

(-1 and 1) between 5mm and 23 mm 
Slope is the slope in Gruneisen EOS and is normalized to (-1 and 1) between 1 and 2 
Intercept is the intercept in Gruneisen EOS and is normalized to (-1 and 1) between 2 and 3  

 

9.4.4 Linkage Between the Three Material Simulation Models 
The three simulation models to be used in this dissertation are discussed in Sections 

9.4.1, 9.4.2, and 9.4.3. In this section, we discuss the information flow between the three 

models. The information flow between the models is shown in Figure 9-17. The first 

model discussed is a particle shock simulation model. The inputs of the simulation model 

include volume fraction of various constituents (Aluminum, Iron Oxide, Epoxy, and 

Voids) and the size distribution of these particles. The outputs of this model include the 

number of reaction sites, the average size of hotspots, average temperature at reaction 

initiation, and the parameters for Gruneisen EOS.  

The average temperature of reaction initiation is used as a reaction initiation criterion 

for the non-equilibrium mixture theory model. The average hot spot temperature, in 

association with the volume fraction of constituents is used to predict the amount of 

accumulated reaction products, which is an indicator of the extent of reaction 

propagation. The average hot spot temperature is used to account for the changing 
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material parameters and their morphology in the reaction propagation behavior. The 

Gruneisen EOS, which is an output from the particle shock simulation, is used as an input 

for the projectile level simulation for accounting for the changing material properties in 

the system level simulation. The output of the projectile level simulation is the 

deformation achieved in the Taylor Impact test. Hence, the three models combined 

together can be used to predict the strength properties (through deformation from the 

projectile level model) and the reaction properties (through the accumulated reaction 

products from the mixture theory model). 
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Figure 9-17  - Flow of information between simulation models 

 

9.5 Designing the Material Using Proposed Design Method 
In this section, we apply the design method presented in Section 3.5 to the materials 

design problem. The steps of the design method are presented again for readers’ 
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convenience in Figure 9-18. Step 1 of the design process relates to mapping the 

requirements with simulation models is discussed in detail in 9.5.1. Step 2 in the design 

method relates to modeling the design processes using interaction patterns, and is 

discussed in Section 9.5.2. Step 3 relates to simplification of design processes and is 

discussed in Section 9.5.3. Design process execution and verification is discussed in 

Section 9.5.4. Simulation model refinement is discussed briefly in Section 9.5.5 and in 

detail in the following Section 9.6. 
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Figure 9-18 – Design method used for integrated design of products, materials, and 

design processes 

9.5.1 Development of Decision Network Based on Available Models 
In general, the first step of the method consists of developing a requirements 

hierarchy and a decision network. The decision network is then mapped to the network of 

available simulation codes to determine which simulation models are to be used for 

various decisions. The requirements hierarchy for the multifunctional energetic structural 
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materials is presented in Figure 9-19. The overall requirements are partitioned into 

individual functional requirements - strength and reaction initiation properties. These 

functional requirements are then expressed as performance metrics such as withstanding 

impact load, energy release, and reaction time. The performance is then expressed in 

terms of target values for properties such as strain rate, fracture toughness, yield strength, 

equation of state, temperature-pressure relations for reaction initiation, size of hot spot, 

etc. This hierarchical structure of requirements, performance and properties is termed as 

the requirements hierarchy (Step 1.1). The target values of properties are achieved by 

appropriate values of design variables that define the structure of the material. These 

design variables include volume fractions of constituents, particle size, material topology, 

overall dimensions of the system, etc. In Step 1.2, a relationship between the 

requirements hierarchy and the structure is developed (see Figure 9-19). 
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Figure 9-19 - Requirements hierarchy and relationship with structure for materials 

design problem 
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Step 1.3 involves laying out the decision network and identifying the information 

required for each decision. An example decision network for the material design problem 

is shown in Figure 9-20. The first decision in the decision network shown in the figure is 

selection of material constituents. Using the information about selected constituents, the 

properties of individual material constituents can be evaluated. This information can then 

be used to decide on the relative volume fractions of each material constituent and their 

spatial distribution. The material mixture can then be simulated to obtain the resulting 

structural and energetic properties of the mixture. The mixture properties can be used to 

decide on the dimensions of the overall system such as a projectile and finally, the 

designers can decide on other system level design variables such impact velocity, angle 

of attack, etc. Although this is a starting decision network, it can be refined later in the 

design process. This decision network consists of five decisions. The first three decisions 

are associated with the material and the last two are associated with the projectile. For the 

specific problem discussed in Section 9.3, we assume that the material constituents are 

fixed (we only consider an aluminum, iron-oxide mixture). The impact velocity is fixed 

to 1000m/sec and the angle of attack is fixed to 90 degrees (i.e., the projectile impacts 

perpendicular to the target). The parameters for material distribution such as nearest 

neighborhood distribution are also fixed. Hence, in this specific problem, we have two 

decisions – material decision (volume fractions and size of constituents), and the 

projectile decision (projectile dimensions). The problem is simplified for the purpose of 

this dissertation because the required aspects of the validation of the method, such as 

decision and scale decoupling, can be shown with these two decisions.  
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Figure 9-20 – A possible sequence of decisions for materials design 

It is assumed that during the start of design process, a number of simulation models 

are available at different scales of length and time. Some of the examples of models 

available for designing materials are discussed in Section 9.2. The input/output 

information for these models is used to determine the flow of information between these 

models. These models are then organized hierarchically based on their length scales to 

form a simulation model hierarchy. For example, in the materials design example, the 

simulation models are organized into three groups related to – Hugoniot data generation 

and validation, reaction initiation prediction, and projective level / Reactive Powder 

Metal Mixture (RPMM) couplings (see Figure 9-21b). The Hugoniot data is generated 

from a) first principles simulation of lattices and b) shock simulation of discrete reactive 

powder metal mixtures. The Hugoniot data is validated against high strain rate 

experiments. The reaction initiation criteria are evaluated from ab-initio calculations and 

are used in interface modeling at MD level and shock simulations of discrete reactive 

metal powder mixture. The material properties information is then fed into projectile 

level simulation using response surface modeling techniques. 
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Figure 9-21 – Mapping the requirements hierarchy with simulation model hierarchy 

9.5.2 Model Design Processes Using Reusable Patterns 
Nine interaction patterns for modeling simulation based design processes are shown 

in Section 3.5.2. For illustration purposes, examples of these interaction patterns from the 

materials design domain are presented next. After providing the examples from the 

general materials design scenario, we present the interaction patterns in terms of the three 

specific simulation models presented in Section 9.4. 

Example of Pattern P1 - Multiscale Models for Validation: Pattern P1 represents the 

scenario where models at different scales generate similar information. For example, 

based on the material morphology, an FEM based simulation model (Choi, Austin et al. 

2004) is developed for modeling a shock at the mesoscale level in order to simulate the 

material’s Hugoniot data.  At a lower scale, a Molecular Dynamics (MD) model is 

developed to simulate the Hugoniot data based on material morphology at nanoscale 

level. The results from both these models are compared against each other either for 

validation purposes or for model calibration (see Figure 9-22) if it is known that one of 

the models is already valid. This pattern generally occurs in multiscale design where the 
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lower scale model is of high fidelity and hence more accurate, but it is computationally 

expensive for modeling a larger domain. The higher scale model is computationally 

efficient, but its parameters need to be calibrated using the lower scale model. 

Example of Pattern P5 - Dependent (sequential) responses between multiscale 

models: In Figure 9-23, we present an example of Pattern P5, where both models are 

associated with design variables and responses and the flow of information is sequential. 

The lower level model in this case is particle shock simulation which has volume 

fractions as inputs and maximum pressure and temperature in the material as outputs. The 

result of this analysis is Hugoniot data of the overall mixture that is used in developing 

the constitutive model for the mixture. This information about constitutive model is fed 

into a system (projectile) level simulation, where design variables are the overall 

dimensions of the projectile and the response is material behavior on impact. 

Shock
Simulation

MD Level

Hugoniot 
Data

Validation
and

Model Calibration

Material 
Morphology

Material 
Morphology

Hugoniot 
Data  

Figure 9-22 – Example of Pattern P1 
 

The standard patterns discussed in this section are used to identify the interaction 

patterns in the network of models which resulted from mapping the requirements 

hierarchy and model hierarchy (Step 1 described in the method discussed in Chapter 3). 

After the design process is developed, the third step in the method is to simplify this 

process. 



   

 450

Projectile Level
Simulation

Particle
Shock

Simulation

Overall
Dimensions (XA)

Response to Impact
Strain Rate, etc. (YA)

Volume Fractions, 
Particle Size (XB)

Max Pressure, 
Temp, etc. (YB)

Hugoniot Data -> Constitutive 
Model Parameters for Mixture (p)

 
Figure 9-23 – Example of Pattern P5 

 
Simulation model interaction patterns in the design problem under consideration 

The examples of interaction patterns discussed so far are patterns with two models in 

a general multiscale materials design scenario. The problem discussed in this chapter 

involves three models that exchange information with each other. The flow of 

information between the simulation models is discussed in Section 9.4.4 and is 

highlighted in Figure 9-24.  
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Figure 9-24 – Flow of information between material models 
Based on this information flow, the interactions between the particle shock simulation 

and the projectile level simulation is sequential, i.e., Pattern P2. Similarly, the interaction 
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between the particle level shock simulation and the non equilibrium mixture theory 

model is also sequential, i.e., Pattern P2. The patterns are highlighted in Figure 9-25.  
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Figure 9-25 – Sequential information flow between the simulation models 

represented as interaction pattern P2 

 
 

A sequential interaction patterns can be simplified into an independent interaction 

pattern if instead of utilizing the output of the first model into the second model, the input 

of the second model is set to a constant value. The constant value may be the average 

value of the output from the first model. For example, in the case of interaction between 

the particle shock simulation (first model) and the projectile level model (second model), 

the output from the first model is a set of parameters for the equation of state of the 

material. By varying the inputs of the particle shock simulation, the values of the 

parameters change. These parameters are fed into the projectile level model to model the 

effect of varying material properties. If the interaction pattern between the two models is 

changed to an independent interaction pattern, an average set of values for the equation of 

state parameters are set as the inputs to projectile level simulation. Hence, the output of 

the projectile level simulation (deformation) is only a function of the projectile level 

parameters. Physically, this means that the changes in material properties are ignored 
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during the calculation of deformation. The scenario where the interaction between 

particle shock simulation and the projectile level simulation is simplified from pattern P2 

to Pattern P1 is shown in Figure 9-26. In the figure, the sequential interaction between 

particle shock simulation and the non-equilibrium mixture theory model is preserved. 

Following the same logic, four different combinations of interaction patterns between 

models can be generated. The scenario where both the interaction patterns are simplified 

from pattern P2 to pattern P1 is shown in Figure 9-27.  
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Figure 9-26 – Simplification of interaction between the particle level shock 
simulation and the projectile level simulation from pattern P2 to P1 
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Figure 9-27 – Simplification of both sequential interaction patterns (P2) into 

independent interaction pattern (P1) 
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Decision interaction patterns for the design problem under consideration 

Analogous to the interaction patterns between simulation models, the decisions about 

product and material are also associated with interaction patterns (P4 for independent, P5 

for sequential and P6 for coupled). Ideally, the decisions about the material and the 

projectile should be made in a coupled fashion because the design variables associated 

with both products and materials affect the overall system performance. Various 

processes (discussed in Section 3.5.4) can be used to make decisions in a coupled 

fashion. One such process is to make decisions individually and iterate until the solution 

converges to a single design point. The coupled nature of design decisions and the 

solution using an iterative process is shown in Figure 9-28. The coupled decisions 

correspond to interaction pattern P6. 

Iteration

Product Level Decision
Diameter
Length

Impact Velocity

Material Level Decision
Volume Fractions

Particle Sizes

[Material decision variables]

Projectile Dimensions

Material  
Figure 9-28  - Coupled material and product decision making (Pattern P6) 

 

The decision patterns can also be simplified into a sequential interaction pattern 

where the decision about projectile (product) level parameters are decided upon first by 

assuming a set of values for material level design variables. The projectile level 
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parameters are then utilized for making decisions about the material. This interaction 

pattern assumes that the effect of material parameters on the projectile parameters is 

insignificant but the effect of projectile level on the material level parameters is 

significant. This sequential decision making corresponds to the interaction pattern P5 and 

is shown in Figure 9-29. The sequence of decisions can also be reversed by making the 

material level decision first and then using the information about material level 

parameters to decide upon the product level parameters. This sequential flow of 

information also corresponds to pattern P5. Finally, the two decisions can also be made in 

an independent fashion as shown in Figure 9-30. Hence, there are four different 

configurations in which the decisions about product and material can be made (coupled, 

sequential with material decision first, sequential with product decision first, and 

independent decision). 

Product Level Decision
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Length

Impact Velocity

Material Level Decision
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[Material decision variables]

Projectile Dimensions

Material  
Figure 9-29 – Sequential decision making (Pattern P5) 
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Product Level Decision
Projectile
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Material Level Decision
Volume Fractions
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[Material decision variables] [Projectile Dimensions]

Projectile Dimensions Material  
Figure 9-30 – Independent decision making - Pattern P4 

 
DSM representation of interaction patterns between simulation models and 

decisions for the design problem under consideration: The information flow between 

the simulation-models and decisions in this problem are relatively simple and it is 

convenient to represent the information flows as networks. Complex problems involving 

more simulation models and decisions can be conveniently modeled using DSM matrix 

representation presented in Section 3.3.2. Using the DSM representation, the interaction 

patterns between models and decisions can be identified when the infomation flow is 

more complex (see discussion in Section 3.5.2). However, just for illustration purposes, 

the interaction patterns between the models can be represented using the DSM matrix 

form as shown in Figure 9-31. The variables labeled as xi are used to represent sets of 

design variables. For example, x1 corresponds to all the design variables associated with 

size and volume fractions of constituents. Similarly, the variables yi correspond to the 

response variables. The analysis models are represented as Ai and the decisions are 

represented as Di. Note that the decisions are coupled with each other because the shaded 

sub-matrix corresponding to the decisions is not lower-triangular. The analyses are 

sequential in nature as is evident from the lower triangular nature of shaded matrix 

corresponding to analyses.  
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x1 = Size and volume fraction of constituents
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Figure 9-31 – Two decisions and three simulation models in materials design 
problem represented in a DSM matrix form 

 

9.5.3 Design Process Simplification 
Note that in Section 9.5.2, four interaction patterns for simulation models are shown 

along with four separate interaction patterns for the simulation models. These interaction 

patterns for simulation models and decisions can be combined together because the 

simulation models are used to make decisions (see Figure 9-32). At the design process 

level, the designers need to make two decisions – a) which interaction pattern should be 

used for decisions? and b) which interaction pattern should be used for the simulation 

models? These two process level decisions are also coupled with each other. The choice 

of simulation model interactions determines which decision interaction pattern is 

appropriate and vice versa. Since there are four different types of model interaction 

patterns and four different types of decision interaction patterns, we have a total of 16 

alternatives for the decision related to simplification of design process. These 16 design 

process related alternatives are labeled A through G in a matrix form in Figure 9-33. Each 

row in the matrix corresponds to a specific model interaction pattern and each column 
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corresponds to a specific decision interaction pattern. Each cell in the matrix corresponds 

to a unique combination of model and simulation interaction patterns. The 

correspondence of each cell in the matrix with interaction patterns is shown in Table 9-8. 

Product Level Decision
Diameter
Length

Material Level Decision
Volume Fractions

Particle SizesMaterial properties

Projectile 
Dimensions

Particle Shock 
Simulation 

Model

Projectile 
Level 

Simulation

Mixture 
Theory 
Model

Reaction 
Propagation 
Properties

Structural 
Properties

Simulation Models  
Figure 9-32  - Relationship between the model and decision interaction patterns 
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Figure 9-33 – Alternatives (A through P) for design process simplifications 
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Table 9-8  - Interaction patterns between decisions and simulation models along 
with associated labels 

Pattern_deformation Pattern_accFe
A P4 P2 P2
B P5 (Material First) P2 P2
C P5 (Product First) P2 P2
D P6 P2 P2
E P4 P2 P1
F P5 (Material First) P2 P1
G P5 (Product First) P2 P1
H P6 P2 P1
I P4 P1 P2
J P5 (Material First) P1 P2
K P5 (Product First) P1 P2
L P6 P1 P2
M P4 P1 P1
N P5 (Material First) P1 P1
O P5 (Product First) P1 P1
P P6 P1 P1

Scenario
Interaction Patterns

Decision
Decision Interaction

Simulation Model

 

9.5.4 Design Process Execution 
The results from execution of design processes using the different combinations of 

model and decision interaction patterns are shown in Table 9-9, Figure 9-34, Figure 9-35, 

and are discussed in this section. In Table 9-9, the outcomes of decisions corresponding 

to each combination (A through P) are shown in individual rows. The columns in the 

table list the corresponding overall utility values at the decision point (defined in Table 

9-3 and graphically illustrated in Figure 9-5), the values of design variables at the design 

point, and the corresponding response values. The design variables include four material 

level variables – a) size of aluminum particles (SizeAl), b) size of iron oxide particles 

(SizeFe2O3), c) size of voids (SizeVoids), d) volume fraction of voids (VF voids), and 

the product (projectile) level design variable – radius of filling of the MESM material. 

The response values are average deformation in the projectile at the predefined time 

(Deformation_avg) and the average mass fraction of accumulated reaction product 

(AccFe_avg). The table is used to compare the decisions made using each combination of 

interaction patterns labeled A through P.  
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Table 9-9 – Utilities, responses, and design variable values for various interaction 
pattern scenarios 

Overall Product
Util_Overall Deformation_avg AccFe_avg SizeAl SizeFe2O3 SizeVoids VFVoids RadFilling

A 0.926 8.195559 12.027799 0.0005 0.0006 0.0007 0.05 23
B 0.926 8.195559 12.027799 0.0005 0.0006 0.0007 0.05 23
C 0.941 8.087618 13.406639 0.0015 0.0007 0.0002 0.1 23
D 0.996 7.989223 12.033785 0.0006 0.0006 0.0006 0.05 9
E 0.723 8.077529 12.03358 0.0005 0.0002 0.001 0.04 23
F 0.723 8.077529 12.03358 0.0005 0.0002 0.001 0.04 23
G 0.723 8.077529 12.03358 0.0005 0.0002 0.001 0.04 23
H 0.748 7.99652 12.03358 0.0011 0.001 0.001 0.04 9
I 0.662 8.223549 12.027799 0.0005 0.0006 0.0007 0.05 23
J 0.662 8.223549 12.027799 0.0005 0.0006 0.0007 0.05 23
K 0.662 8.223549 12.027799 0.0005 0.0006 0.0007 0.05 23
L 0.967 7.990475 12.027799 0.0005 0.0006 0.0007 0.05 9
M 0.412 8.223549 12.03358 0.0005 0.0002 0.0002 0.04 23
N 0.412 8.223549 12.03358 0.0005 0.0002 0.0002 0.04 23
O 0.412 8.223549 12.03358 0.0005 0.0002 0.0002 0.04 23
P 0.717 7.990475 12.03358 0.0005 0.0002 0.0002 0.04 9

Design Variables
MaterialScenario

Utilities Responses

 
 

In Figure 9-34, the upper bounds of ex-post value (discussed in Section 4.3) for each 

combination is presented in the same matrix format introduced in Figure 9-33.  
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Figure 9-34 – Maximum Ex-Post values (value of additional information) achieved 

for the different combinations of interaction patterns 
Recall that this metric quantifies the impact of additional information on a designer’s 

decision making capability and is measured as the difference between maximum payoff 

that can be achieved using the information and the minimum payoff achieved at the 

decision point without the information. This metric is used as a basis for making design 
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process related decision – which combination of interaction pattern is suitable for making 

decisions about the product and the material? The values of overall utility achieved at 

the decision point are shown in the same matrix form in Figure 9-35. 

First, we observe the trend in the maximum ex-post values for making process 

decisions by focusing on the Figure 9-34. We remind that the higher values of ex-post 

value indicate that there is a large possibility of improvement in the decision through 

addition of more information, whereas the values close to zero indicate that there is very 

little benefit that can be achieved in the quality of decision by adding more information. 

In the context of this section, addition of information is equivalent to moving from 

decoupled patterns to coupled patterns. For interaction between models, this refers to 

going from pattern P1  P2  P3, whereas for interaction between decisions, this refers 

to going from pattern P4  P5  P6. Based on the ex-post values for each combination 

of interaction pattern, we observe that: 

1. As the designers increase the level of coupling between decisions (from P4 

through P6), the maximum ex-post value decreases, which indicates that the 

possibility of achieving a benefit by increasing the level of coupling between 

decisions reduces as we move from independent to sequential, and sequential 

to coupled decisions. This reduction is due to the reduced uncertainty while 

decision making, and arises from lack of knowledge about other designers’ 

decisions. The ex-post value for the combination ‘D’ is zero because there is 

no uncertainty due to simplification in decision interactions or due to 

simplification of model interactions. The contribution of uncertainty in the 

overall utility value due to inherent system variability is also zero in this case 
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(which is just a characteristic of the system and may not be true in all cases). 

The ex-post value for the combination ‘M’ is the maximum (=0.9992) because 

it results from both decision decoupling and model decoupling. Note that in 

combination ‘M’, the simplest patterns are used for models and decisions. The 

trend indicates that more complex interaction patterns result in decisions that 

are less uncertain, which is inline with the expected trend. The same trend is 

observed as the designers improve the interaction patterns between models 

(from P1  P2). 

2. Although the general trend is according to the expectation, more insight into 

the problem behavior is obtained by looking at the relative values of the 

maximum ex-post utilities. The independent decision interaction pattern P4 

has the highest value of ex-post and the reduction in value from P4 P5 is 

significantly higher compared to the reduction from P5 P6 in the case where 

model pattern P2 is used for deformation calculations. For example, if we fix 

the model interaction pattern to P2 for deformation and P2 for accumulated 

iron, a) the reduction in ex-post value from P4  P5 is 0.6724 (0.7428-0.0704 

= 0.5496) and b) the reduction in ex-post value from P5  P6 is 0.0704 

(0.0704-0.0000 = 0.0704), for the case where material decision is made first. 

Same is the case when pattern P2 is used for deformation and pattern P1 is 

used for calculating accumulated iron. From a design process decision making 

standpoint, this implies that if pattern P2 is used for deformation calculations, 

the benefit of moving from an independent interaction pattern P4 to sequential 

model interaction pattern P5 is much more compared to moving from P5 to a 



   

 462

coupled interaction pattern P6. This difference in the reduction reduces as we 

simplify the model interaction patterns.  

3. If the decision about design process is based only on the value of information, 

the sequential decision interaction pattern P5 where product decision is made 

first is only marginally preferred over the material first decision.  

4. Consider the scenarios where decisions are made in a sequential manner 

(combinations B, C, F, G, J, K, N, and O). In these combinations, the effect of 

interaction pattern for deformation calculation has a significant impact on the 

ex-post value. This is indicated by the high values of the metric when pattern 

P1 is used for deformation (0.3342, 0.3303, 0.9992, and 0.9981) as against the 

low values when pattern P2 is used (0.0704, 0.0516, 0.2757, and 0.2647). 

Hence, from a process decision making standpoint, if the decisions are made 

in a sequential manner, the deformation should be calculated using a 

sequential pattern for deformation. 

5. If maximum ex-post value is the only criterion for metalevel decision making, 

then the designers would choose combinations B,C,D, and L. All these 

patterns result in an ex-post value of information that is less than 0.100. In 

other words, the maximum possibility of improvement in the payoff by 

addition of information is less than 0.100. These seven combinations are 

highlighted in Figure 9-34.  

It is important to note that ex-post value is an important metric to consider while 

making design process decisions; it is not the only metric. While making design process 

related decisions, designers should also consider other factors such as design freedom, 
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robustness of process, complexity of the process, cost of executing the process, etc. Due 

to the scope of this dissertation, these factors are not included. These factors are 

discussed in the future work section in Chapter 10. One such factor is the payoff achieved 

at the decision point. The effect of payoff achieved at the design point is mentioned in 

Section 4.3 in the context of opportunity and achievement ratios. To keep this discussion 

of the results simple, we look at the achieved utility values only. Conclusions similar to 

the following discussion can also be derived from achievement and opportunity ratios. 

The achieved utility values for different combinations of model and decision interaction 

patterns are shown in Figure 9-35 and discussed in the following. 
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Figure 9-35 – Overall utility values achieved for the different combinations of 

interaction patterns 

The overall utility at a decision point reflects how good a design is, and is a direct 

reflection of the quality of design outcome (that in turn depend on the design process 

followed). Based on the achieved utility values shown in Figure 9-35, we observe that:  

1. The utility values increase as the interaction patterns are improved from 

independent to sequential to coupled. This indicates that by introducing 
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complete information flows between decisions and models, the quality of the 

final design is better. For example, in the case of a fixed model interaction 

pattern (P2 for deformation and P2 for accumulated iron), the utility of pattern 

P6 (0.996) in combination D is better than the utility (0.941) for sequential 

interaction pattern P5 with product decision made before material decision 

(combination C), which is in turn higher than the utility achieved using 

independent interaction pattern P4 (combination A). Similar trend is observed 

by fixing the decision interaction pattern and varying the model interaction 

pattern. This is again an intuitive result – better design processes should result 

in better designs. 

2. The maximum utility is equal to 0.996 and is achieved when the decisions are 

modeled using coupled interaction patterns (P6). The minimum utility of 

0.412 is achieved when both decisions and simulation models are modeled 

using independent interaction pattern (P4 and P1 respectively). 

3. The decisions made using sequential decision pattern where the material 

decision is made before product decision (second column in the matrix) 

results in the same overall utility as the case where decisions are made 

independently (first column in the matrix). Such a trend is attributed to the 

fact that there are four design variables related to the material and only one 

design variable corresponding to the product. If the material decision is made 

first, then most of the design freedom is locked. In this specific case, the effect 

of material design variables on overall utility is significantly greater than the 

effect of product design variables. Hence, there is not a significant difference 
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between making the product decision independently or with knowledge about 

material parameters. It is important to note that this trend is valid only in the 

context of design problem and preferences formulated in Section 9.3. By 

changing the preferences, design variables, or their ranges may change this 

observed trend. 

4. Based on the first three points, we conclude that the selection of decision 

interaction pattern is highly dependent on the model interaction pattern used. 

This is mainly because the type of model interaction pattern used determines 

the information about interdependencies captured between parameters. It is 

the interdependencies between parameters that make the decisions coupled, 

sequential or dependent.  

5. If a sequential pattern is used for calculating deformation, decoupling 

decisions has little impact on the quality of final outcome as compared to the 

decoupling of simulation models. This is apparent from the fact that the utility 

values in a given row are close to each other, but they vary significantly in a 

given column. This implies if a sequential pattern is used for calculating 

deformation, the simplest pattern can be used for decisions.  

6. Based on the values of overall utility obtained in all the combinations, the 

combinations A, B, C, D, and L result in an overall utility of 0.900 or above. 

Hence, these combinations are considered good alternatives for the design 

process decision. The combinations E, F, G, H, I, J, K, and P result in final 

designs with overall utility values better than 0.65 and the combinations M, N, 

and O result in an overall utility value of around 0.41.  
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As a summary, both ex-post value and the overall utility indicate the appropriateness 

of interaction patterns. Hence, both these metrics should be considered for making design 

process decisions. Based on the minimization of ex-post value, the best process options 

(i.e., the combinations of interaction patterns for decisions and models) include B, C, D,  

and L. Based on the maximization of overall utility, the best process options include A, 

B, C, D, and L. The common set of process options using both criteria are – B, C, D, and 

L. The meanings of these process options are -  

B:  Sequential decision with material decision made before the product level decision; 

sequential interaction patterns for both deformation and accumulated iron 

C = Sequential decision with product decision made before the material level 

decision; sequential interaction patterns for both deformation and accumulated iron 

D = Coupled material and product decisions; sequential interaction patterns for both 

deformation and accumulated iron 

L = Coupled material and product decisions; sequential interaction pattern for 

accumulated iron and an independent interaction pattern for deformation. 

Note that these process level decisions are also dependent on the time taken to 

execute the design process. Time for execution of design process has not been included in 

this study. The results of this section can be extended by include time considerations by 

including utility functions for time during the calculation of overall utility value.  

Limitations of the proposed approach 

Further, the reader is cautioned that in this section, the results are presented as if the 

information about all the interaction patterns is available all at once; and the decision is 

made about the interaction patterns with the knowledge relating to the outcome from all 
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process options. This approach is adopted in this section to illustrate the tradeoffs 

between simplification and the quality of decisions made. However, in a real design 

scenario, the designer starts with a simple interaction pattern, calculate the overall utility 

and the maximum ex-post value for that decision. Based on these two values, and the 

resources available to improve the design process, he/she may decide to use that design 

process option or to use the current process option. The approach presented in this 

dissertation helps designers to make conscious decisions about improvement of design 

process. Note that when the designer is utilizing a particular process option and he/she is 

not aware of the performance of other options, the metrics guide the designer whether 

improvement in the process is necessary or not. They do not provide any guidance in 

terms of how much improvement/refinement is necessary. For example, based on the 

available information about the simplest interaction pattern combination (M), the 

designers cannot determine whether he/she should choose the combination N, O, J, I, or 

E. It is only after he/she executes the processes using other combinations that he/she can 

determine the right level of refinement. This is a limitation of the proposed approach.  

9.5.5 Model Refinement 
The design process decisions discussed so far in Section 9.5 are related to considering 

the coupling between the design decisions and the simulation models. The meta-level 

decisions about the level of refinement of each simulation model are not considered. 

Examples of such refinement decisions include identification of physical phenomena to 

be considered in a simulation model, level of discretizations in finite element models, 

invocation of different assumptions in the models, level of detail of boundary conditions 

to be applied, geometric and parametric idealizations, etc. All these decisions are 
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generally based on the analyst’s experience, available computational resources, or the 

mathematical formalization available. The metric commonly used for evaluating the 

appropriateness of a simulation model is error in the model’s output.  

In this dissertation, we advocate the use of value of information metric to quantify the 

effect of refinement of simulation models on design decisions. This is based on the 

observation in pressure vessel design example (Section 4.4) and datacenter design 

example (Chapter 5) that the error is not the only criterion for determining the level of 

refinement of models. The main criterion is the effect on the quality of decisions, which 

is measured in terms of the overall payoff. The refinement of simulation models is 

considered separately to reduce the complexity of design problem under consideration. A 

separate section is devoted to validate the use of value of information metric for 

determining the level of refinement of simulation models. In Section 9.6, the design 

decisions are considered along with the refinement decisions. A design sub-problem from 

the materials design domain is formulated and executed. The main difference between 

refinement problems presented in the context of pressure vessel design example in 

Section 4.4 and that presented in Section 9.6 is that in the pressure vessel design problem, 

the refinement is considered only in one dimension (i.e., only one parameter is refined at 

a time), whereas in the materials design problem, two dimensions of refinement are 

considered simultaneously. Further, the pressure vessel design consists only of in the 

input variables, whereas the uncertainty in materials design case is due to both 

imprecision and variability.  
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9.6 Integrated Model and Design Refinement using Value of 
Information 

The objective in this section is to investigate and validate the use of value of 

information metric for determining the appropriate level of refinement of the simulation 

models. The general idea of refinement using value of information is discussed in 

Chapter 4 and demonstrated using a simple pressure vessel design problem where the 

material properties are predicted with imprecision bounds using a simulation model. The 

range of imprecision in material properties predicted by the simulation model can be 

reduced by refining the simulation model. Hence, the level of refinement of material 

simulation model in that case is equivalent to determining the largest range that results in 

good enough decisions.  

In this section, we use the same approach to determine the right level of refinement of 

particle shock simulation model. Although there are various avenues for refinement of 

shock simulation model, we focus only on refinement via increasing the size of statistical 

volume element (SVE) and increasing the number of elements in the mesh. Referring 

back to Section 9.4.1, where the shock simulation model is introduced, the SVE 

represents a small section of the material through which a shock is propagated. The 

material morphology in the SVE is randomly generated based on the statistical properties 

of the distribution of both size of particles, and the distance between them. Since the 

particles are randomly distributed, the material morphology is different every time a new 

set of particles is generated, even for the same set of parameters. Hence, the outputs of 

the simulation models are also randomly distributed. The size of the SVE chosen is one of 

the main factors determining the variability of response. Smaller SVEs have more 

variability as compared to the larger SVEs. As the size of the SVEs increases, the 
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variability reduces because of the ‘averaging effect’. After the material morphology is 

generated, the simulation is deterministic i.e., the same morphology with the same 

boundary conditions will result in the same values for the output parameters. However, 

since the particle shock simulation is an FEM based simulation model, there is 

imprecision associated with the outputs due to discretizations. The parameter that can be 

used to control uncertainty due to discretization is the number of elements in the 2-D 

mesh. The two parameters – size of SVE and the number of elements are model 

refinement parameters used in this section. The objective is to determine the appropriate 

values of these parameters in association with the material design parameters. The 

problem setup for refinement of shock simulation model is discussed in Section 9.6.1. 

The response surfaces and the associated error calculations are disused in Section 9.6.2. 

Finally, the results of refinement are presented in Section 9.6.3. 

9.6.1 Problem Setup – Refinement of Shock Simulation Model  
The problem in this section is to determine the values of two material parameters – 

size (radius) of aluminum particles and the volume fraction of voids. The range of radius 

of aluminum particles considered is [0.0005 0.0015]mm and the range of volume fraction 

of voids is [0.02 0.10]. All other parameters related to the material properties are assumed 

constant. In addition to determining the material parameters, the objective is also to 

determine the appropriate values for two model parameters – size of SVE and number of 

elements in the mesh. The size of SVE is a function of the length of the SVE, which lies 

within [0.014 0.028]mm. The width is taken as half of the length in order to maintain the 

same aspect ratio for all cases. The number of elements in the mesh vary from [200 400]. 

Note that the decisions about the material parameters and the simulation model 
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parameters depend on each other. Depending on the preferences for material properties, 

the appropriate level of uncertainty in simulation models may change. Similarly, 

depending on the level of model refinement chosen, the decision about material 

properties may change. The two decisions and their dependency are shown in Figure 

9-36. As the simulation model is refined by a) increasing the size of SVE, and b) 

increasing the number of elements in the mesh, the complexity of the model and 

associated runtime also increases significantly. In order to make efficient decisions, an 

appropriate set of values for the model related parameters is desired. In this section, we 

discuss how to quantify this tradeoff and make decisions. 

Determine the Values of  Simulation 
Model Related Parameters

- Size of SVE
- Number of Elements (Mesh Size)

Determine the Values of Material 
Related Parameters

- Size of Aluminum Particles
- Volume Fraction of Voids

 

Figure 9-36 – Determination of simulation model and material parameters in an 
integrated fashion 

The objective is to satisfy goals for the shock wave velocity with low variance. Shock 

speed is chosen as an objective because the material properties depend directly on the 

shock speed. As discussed previously in this chapter, the material properties can be 

modeled using the Mie-Gruneisen Equation of State (EOS) which is determined by fitting 

a straight line on the Particle speed – Shock speed data. Hence, the material properties are 

dependent on the shock speed achieved for a given particle speed. In the problem under 

consideration, the particle speed is fixed to 1000m/sec and the shock speed is calculated 

using the particle shock simulation model. Since we are dealing with the case where 

simulation model is approximate and the outputs consist of uncertainty, the objective is 
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formulated with consideration of robustness. The shock speed goal is divided into two 

sub-goals – bringing the mean to target, and minimization of variation around the mean. 

This variation is a combination of the effects of both variation in the response due to 

changing morphology and the imprecision due to discretizations. The preferences for 

mean and variance are modeled as individual utility functions that are combined together 

as linear weighted functions.  
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Figure 9-37  - Nine options for refinement explored for the shock simulation model 

 
The size of SVE (also referred to as window size) and the number of elements in the 

mesh can be varied continuously between the lower and upper bounds, which provides an 

infinite set of options of simulation model refinements. However, exploring all those 

options is not effective from a decision making perspective. In order to reduce the 

computational load, we just explore nine different simulation model refinement options. 

These options are generated by taking all combinations of three levels each of size of 

SVE (with lengths 0.014, 0.021, and 0.028mm) and the number of elements in the mesh 

(200, 300, and 400 along the x-axis with half that number in the y-direction). The nine 

options are labeled from A through I. The approach is to select the simplest model 
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(window size = 0.014, and number of elements = 200) and sequentially make it more 

detailed.   

9.6.2 Simulation Runs and Response Surface Model Development 
The particle shock simulation is a computationally expensive model, whose 

complexity increases with the increase in mesh density and window size. Performing 

design exploration using the simulation model directly is difficult. Hence, instead of the 

simulation models, we rely on using response surfaces. The first response surface is of 

the shock wave speed as a function of the design variables (size of aluminum particles 

and volume fraction of voids) and the window size. In this first response surface, the 

mesh size is assumed constant.  

Table 9-10  - Design of experiments table for radius of aluminum particles, volume 
fraction of voids, and the window size 

Run No. Radius of 
Aluminum Particles 

(mm) 

Volume Fraction of 
Voids 

Length of SVE 
(window size) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

0.0005 
0.0015 
0.0005 
0.0015 
0.0005 
0.0015 
0.0005 
0.0015 
0.0010 
0.0005 
0.0015 
0.0010 
0.0010 
0.0010 
0.0010 

0.02 
0.02 
0.10 
0.10 
0.02 
0.02 
0.10 
0.10 
0.06 
0.06 
0.06 
0.02 
0.10 
0.06 
0.06 

0.014 
0.014 
0.014 
0.014 
0.028 
0.028 
0.028 
0.028 
0.021 
0.021 
0.021 
0.021 
0.021 
0.014 
0.028 

The reason for keeping the mesh size constant is to decouple the effect of variability 

due to changing morphology and the error due to mesh size. Central Composite design of 

experiments is used for performing experiments and generating the data for response 
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surface. The design of experiments table is shown in Table 9-10. In order to quantify the 

effect of variability, the simulation is carried out 20 times with changing material 

morphology.   

A response surface is fit based on the data generated at these 15 points with 20 

replicates. The response surface plots for the shock wave speed as a function of size of 

aluminum, volume fraction of voids and window size are shown in Figure 9-38. The 

corresponding residual plots are shown in Figure 9-39.  
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Figure 9-38 - Response Surface – Us as a function of SizeAl, VFVoids, WindowSizeX 
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Figure 9-39  - Residual plot for shock wave velocity (Us) 

 

In addition to the mean values of the response variable (shock wave speed), a 

response surface is fit for the variance in output at each point in the design space. For 

each data point in Table 9-10, the variance is calculated and a response surface is fit 

between the variance of shock wave speed and the three variables. The third response 

surface is for capturing the effect of changing mesh size on the output of simulation 

model. The data generated for changing mesh size is based on the same material 

morphology. In this case, the window size is fixed to 0.028mm. Since the simulation 

model is deterministic after the initial material morphology is generated, the simulation 

model is run only once for a combination of size of aluminum particles, volume fraction 

of voids, and the mesh size.  
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Three different response surfaces are fit between the response (shock wave speed) 

and design variables (size of aluminum and volume fraction of voids) for three mesh 

sizes of 400, 300, and 200 respectively. Recall that the numbers 200-400 represent the 

number of elements along the x-direction. The number of elements along the y-direction 

is half of the number of elements in x-direction. Hence, if the mesh size is 400, then the 

total number of elements in the 2-D SVE is 400*(400/2) = 80000. It is assumed that the 

simulation with a mesh size of 400 is the most accurate and the error at a smaller mesh 

size is calculated by taking the absolute value of difference between the two values 

obtained by corresponding response surfaces. The response surfaces for mesh sizes of 

400, 300, and 200 are plotted in Figure 9-40, Figure 9-41, and Figure 9-42 respectively.  
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Figure 9-40  - Response surface for shock wave speed at a mesh size of 400 
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Figure 9-41  - Response surface for shock wave speed at a mesh size of 300 

 

0.09

Us

3.9

0.06

4.0

4.1

4.2

VFVoids
0.0005 0.030.0010

0.0015
SizeA l

Surface Plot of Us vs VFVoids, SizeAl
Number of Elements = 200

 
Figure 9-42  - Response surface for shock wave speed at a mesh size of 200 

The total variation in the shock wave speed is a combination of the variation due to 

changing morphology and the error due to consideration of a coarse mesh. The 

calculation of variation of response due to changing material morphology is shown earlier 

in this section. The calculation of error due to a coarse mesh is based on the assumption 
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that the mesh size of 400 is the most accurate based on the available data. This 

assumption is just to characterize the error in the simulation model. If true experimental 

data were available, that would be used for characterization of the error in the model. 

Using the information at a mesh size of 400, the error at mesh size of 300 and 200 is 

calculated as the absolute value of the difference in shock wave speed. The total 

deviation in response is equal to the sum of variation and the imprecision. The mean 

value is based on the average shock wave speed calculated using the finest mesh (mesh 

size of 400). The mean, lower and upper bound of the shock wave speed as a function of 

design variables (size of aluminum and volume fraction of voids) is plotted for different 

values of mesh size and areas of SVE in Figure 9-43. This completes the characterization 

of the simulation models. The next step is to model the preferences in terms of utility 

functions. 

As mentioned previously in this section, the problem is formulated with two goals – 

achievement of target of shock wave speed and minimization of its variance due to 

imprecision and uncertainty. The preferences are modeled as risk-averse utility functions. 

The plot of utility as a function of mean and variance of shock speed is shown in Figure 

9-44. It is important to note that changing the utility function will have effect on the 

specific decisions (values of design variables and level of refinement chosen) made using 

the method followed. However, it does not affect the steps followed in the method. Even 

by changing the shape of the preferences, the conclusions about the applicability of the 

method and the metrics derived from the method remain the same. 
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Figure 9-43  - Surface plots of shock speed as a function of design variables for 

different refinement scenarios 
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Figure 9-44  - Utility functions for shock wave speed and the variation in shock wave 
speed  
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9.6.3 Results from Refinement of Shock Simulation Model Using 
Value of Information 

The decisions made using the different levels of refinement of the simulation model 

are presented in Table 9-11. The results are shown for three different cases with different 

weights assigned to the utility for mean shock wave speed and the deviation in shock 

wave speed during the calculation of overall utility. These three cases refer to different 

preference conditions. In Case 1, the weight for both mean and deviation is equal to 0.5. 

In case 2, the weight for mean is 1.0 and the weight for preference is 0.0. Finally in Case 

3, the weight for mean is 0.0 and the weight for deviation is 1.0. The results in Table 9-11 

contain columns for the number of elements in the mesh and the window size that 

determine the level of refinement of the shock simulation model. The third column is for 

the area of each cell in the finite element model and the fourth column is for maximum 

overall utility achieved at the decision point. The following two columns are for design 

variables – mean size of aluminum and volume fraction of voids. The corresponding 

values of response variables - mean shock wave speed and the variation in shock wave 

speed is presented in the next two columns. Finally, the last column indicates the ex-post 

range of utility, which is the difference between the maximum overall utility that can be 

achieved at any point in the design space and the minimum utility achieved at the 

decision point. This ex-post range is used as a metric for value of information that can be 

achieved by refining the simulation model further. If the ex-post value is low enough, the 

model does not need to be refined. If the ex-post value is high, there is scope for 

improving the decision via refinement of the simulation model.  
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Table 9-11  - Comparison of decisions made using different levels of refinement of 
simulation model using the upper bound on ex-post value 
  Num 

Elements 
 Window 

Size 
 Area of 

Cell (e-9) 
 Max Overall 

Utility 
 Mean Al 

Size  VF Void Shock 
Speed 

 Variation 
Shock Speed 

 Ex-Post 
MaxUtility 

 Minimum Utility 
At Decision Point 

 Ex-Post Range 
(Value of 

Information) 

200 0.014 4.9 0.847 0.0011 0.02 4.222 0.081 1.000 0.733 0.267
200 0.021 11.0 0.830 0.0014 0.02 4.207 0.096 0.922 0.706 0.216
200 0.028 19.6 0.799 0.0014 0.02 4.182 0.122 0.884 0.658 0.226
300 0.014 2.2 0.845 0.0012 0.02 4.240 0.094 1.000 0.737 0.263
300 0.021 4.9 0.811 0.0014 0.02 4.207 0.120 0.912 0.684 0.228
300 0.028 8.7 0.772 0.0015 0.02 4.195 0.161 0.947 0.633 0.314
400 0.014 1.2 0.851 0.001 0.02 4.204 0.065 0.973 0.731 0.242
400 0.021 2.8 0.845 0.0011 0.02 4.160 0.047 0.892 0.708 0.184
400 0.028 4.9 0.823 0.0012 0.02 4.154 0.075 0.874 0.677 0.197

200 0.014 4.9 0.857 0.0015 0.02 4.291 0.275 1.000 0.616 0.384
200 0.021 11.0 0.802 0.0015 0.02 4.222 0.157 0.922 0.663 0.259
200 0.028 19.6 0.780 0.0015 0.02 4.195 0.131 0.884 0.662 0.221
300 0.014 2.2 0.857 0.0015 0.02 4.291 0.220 1.000 0.669 0.331
300 0.021 4.9 0.802 0.0015 0.02 4.222 0.128 0.912 0.690 0.222
300 0.028 8.7 0.780 0.0015 0.02 4.195 0.161 0.947 0.633 0.314
400 0.014 1.2 0.857 0.0015 0.02 4.291 0.165 0.973 0.720 0.253
400 0.021 2.8 0.802 0.0015 0.02 4.222 0.116 0.892 0.702 0.190
400 0.028 4.9 0.780 0.0015 0.02 4.195 0.119 0.874 0.674 0.200

200 0.014 4.9 0.908 0.0007 0.02 4.148 0.070 1.000 0.675 0.325
200 0.021 11.0 0.870 0.0014 0.02 4.207 0.096 0.922 0.706 0.216
200 0.028 19.6 0.837 0.0014 0.036 4.140 0.118 0.884 0.622 0.261
300 0.014 2.2 0.873 0.0012 0.02 4.240 0.094 1.000 0.737 0.263
300 0.021 4.9 0.836 0.0013 0.02 4.192 0.118 0.912 0.671 0.240
300 0.028 8.7 0.774 0.0014 0.02 4.182 0.156 0.947 0.626 0.322
400 0.014 1.2 0.925 0.0008 0.02 4.167 0.058 0.973 0.704 0.269
400 0.021 2.8 0.949 0.0009 0.02 4.127 0.040 0.892 0.684 0.208
400 0.028 4.9 0.909 0.001 0.02 4.126 0.069 0.874 0.655 0.219

CASE 1: Weight for mean = 0.5, weight for deviation = 0.5

CASE 2: Weight for mean = 1.0, weight for deviation = 0.0

CASE 3: Weight for mean = 0.0, weight for deviation = 1.0

 
 

The ex-post range for Case 1 is presented in a matrix form in Figure 9-45, where the 

rows correspond to fixed values of number of elements and the columns correspond to 

fixed values of the window size. The values in the cells for Ex-Post range or Value of 

Information (VOI) are presented in each of the cells in the matrix. There are two 

dimensions along which refinement can take place. The simulation model can be refined 

by either increasing the window size, or by increasing the number of elements. As the 

simulation model is refined, the value for VOI metric reduces because it means that the 

possible improvement in the solution by refining the model also reduces. This is observed 

in Figure 9-45 while going from A B (increasing the window size) or from A D 

(increasing the number of elements). The ex-post value reduces from 0.267 to 0.216 by 

refinining the model from A B and the value reduces from 0.267 to 0.263 by refining 

the model from A D. This is an expected result.  
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Figure 9-45  - Refinement Case 1: Weight for mean shock wave speed = 0.5, weight 

for variation in shock wave speed = 0.5 

 
When the window size is increased from 0.021 to 0.028 from B C, while keeping 

the same number of elements (=200), the ex-post value actually increases from 0.216 to 

0.226. This is opposite to the expected trend. The reason for that is that the two ways of 

refinement of the simulation model, increasing the window size and increasing the 

number of elements, are not independent of each other. By increasing the area of the SVE 

and keeping the same number of elements, the area of each cell actually increases. The 

area of each cell in B is equal to 11.05x10-9 mm2, whereas the area of each cell in C is 

equal to 19.6 x10-9 mm2. Hence, although the variability reduces due to increase in the 

area of the SVE, the imprecision increases due to increase in the area of cell. Similar 

trend is observed while going from E F. A comparison of the VOI metric for all the 

refinement levels A through I indicate that if the refinement decision is only based on the 

lowest ex-post value, then the model H with window size 0.021 and number of elements 

equal to 400 is the best because it gives the minimum ex-post value (=0.184). This model 

corresponds to a low area of cell (2.7505x10-9 mm2) and a large number of elements 
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(400). It is important to note however, that as the number of elements or the window size 

is increased the computational cost also increases. The cost of computation is not 

considered in the determination of best model. The cost can be considered during the 

calculation of overall utility function.  
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Figure 9-46 - Refinement Case 2: Weight for mean shock wave speed = 1.0, weight 

for variation in shock wave speed = 0.0 
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Figure 9-47  - Refinement Case 3: Weight for mean shock wave speed = 0.0, weight 

for variation in shock wave speed = 1.0 
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Similar results are shown for other preference cases in Figure 9-46 and Figure 9-47. It 

is observed that in all the cases, the model with the lowest ex-post value is model H. This 

is just a characteristic of this problem. The minimum could lie with different models in 

which case different models would be appropriate for different preference conditions as 

shown in the pressure vessel design in Section 4.4. The value of VOI is different in 

different cases. In this section, we provide the results for all the refinement cases right 

away. However, the designers would actually select the simplest model first and then 

refine it sequentially until a good enough model which satisfies a cutoff value of the 

value of information is realized. For example, if a cutoff value of 0.200 is specified prior 

to refinement of simulation models, the designer would select model I in Cases 1 and 2. 

None of the models A through I would be suitable in Case 3 because there is no model 

that satisfies the cutoff for ex-post value. The designer would have to refine the model 

further. 

 

9.7 Verification and Validation 
In this chapter, two aspects of the validation of the framework are addressed – 

Empirical Structural Validation and Empirical Performance Validation which are 

discussed in Sections 9.7.1 and 9.7.2 respectively. A visual overview of the aspects of 

validation square addressed in this chapter is provided in Figure 9-48. The validation 

square provides Chapter 9 specific details to the overall validation square presented in 

Figure 1-13. 
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Figure 9-48 – Aspects of validation of the design framework addressed in Chapter 9 

9.7.1 Empirical Structural Validation 
Empirical structural validation involves accepting the appropriateness of the example 

problems used to verify the performance of the method. The example discussed in this 

chapter is a multiscale, multifunctional design problem similar to the one discussed in the 

motivation Section 1.1. The problem involves multiple simulation models and decisions 

at different scales that are coupled with each other. The information about information 

flow between simulation models is available. Further, the problem consists of decisions 

related to three aspects: design of material, product, and the design process. All the three 

decisions depend on each other and ultimately affect the final product performance. We 

believe that this is a reasonably complex multiscale design scenario. Further, simulation 

models are available at different scales for the materials design scenario. The design 

process can be represented in terms of decisions that can be mathematically formulated 
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and are supported using available simulation models. Information about error 

characterization for simulation models is available from the response surfaces. Hence, the 

materials design problem contains all the required ingredients for validating the design 

methods for simplification of design processes presented in the Sections 5.3.1 and 5.4.1. 

The particle shock simulation model is associated with uncertainty both due to 

statistical variability and imprecision. The computational time for execution of the model 

depends significantly on the size of SVE and mesh size chosen. This motivates the need 

for selecting the appropriate level of refinement of the model such that there is a balance 

between impact on decision and the cost of executing the model. Hence, the shock-

simulation model is appropriate for the validation of value of information metric for 

model refinement presented in Section 4.3.  

9.7.2 Empirical Performance Validation 
Empirical performance validation consists of accepting the usefulness of the outcome 

with respect to the initial purpose and accepting that the achieved usefulness is related to 

applying the method. The empirical performance validation in this chapter is carried out 

in two phases – the validation of design process simplification in Section 9.5 and 

simulation model refinement in Section 9.6. In Section 9.5, the interaction patterns 

proposed in Section 3.5.2 are used to model the flow of information between design 

decisions and simulation models. The interaction patterns are used to simplify the design 

processes by simplifying the interactions between models and decisions. It is shown that 

by using the simplification methods presented in Sections 5.3.1 and 5.4.1, the 

combinations of simple interaction patterns – B, C, and L are identified. These 

combinations result in similar design decision as the most complex interaction pattern - 
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D. Hence, the efficiency of design decision making can be increased without affecting the 

quality of decisions. The value of information metric is also shown to be effective for 

making such process level decisions. The application of the value of information metrics 

for refinement of simulation models is shown in Section 9.6. It is shown that the metric is 

valuable for determining the right level of detail in simulation model for design decision 

making. It is also shown that the metric captures the effect of both uncertainty in the 

simulation models and the designers’ preferences. Based on the results, it is argued that 

the metric is appropriate for determining the level of simplification in multiscale models. 

 

9.8 Role of Chapter 9 in this Dissertation 
In this chapter, we present a materials design example for the validation of design 

methods and metrics presented in Chapter 3, Chapter 4, and Chapter 5. The relationship 

of the validation example presented in this chapter with other chapters is presented in 

Figure 9-49. The design problem is modeled as integrated design of materials, products, 

and design processes. The results from the design problem in this chapter indicate the 

usefulness of proposed methods and metrics in the context of a multiscale design 

problem. The following chapter is the closure of this dissertation, where a summary of 

the research presented in the first nine chapters is presented along with the validation, 

contributions and avenues for future work. 
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Figure 9-49 – Relationship of Chapter 9 with other chapters in the dissertation  
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Chapter 10 Closure 
 

10.1 A Summary of the Dissertation 
In this dissertation, a framework for the integrated design of products and design 

processes is established. The framework is established as an embodiment of the primary 

hypothesis in this dissertation: “Simulation-based design of multiscale multifunctional 

systems can be carried out by decision-based integrated design of products and design 

processes”. The hypothesis is used to answer the primary research question for the 

dissertation: “How should simulation-based design of complex multiscale, 

multifunctional systems be carried out?”  

The framework established in  this dissertation consists of three main components: a) 

a Robust Multiscale Design Exploration Method (RMS-DEM) that consists of three 

phases – meta-design, design process execution, and refinement, b) metrics and methods 

for simplification of complex design process and simulation model refinement using 

information economics and robustness, and c) an information modeling strategy for 

simulation-based design information to support design process exploration and 

information reuse. Designing design processes is equivalent to making decisions such as: 

a) Which physical phenomena should be modeled?,  

b) Which couplings are critical from a design standpoint?, c) how much refinement in 

models is necessary?,  

d) Do we need additional experimental data?, and  

e) What should the sequence of decisions and simulation tasks be?  
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These design process decisions affect both the design outcome and the efficiency with 

which the outcome is achieved. Hence, designing design processes is essentially making 

these meta-level decisions while accounting for the tradeoff between performance of the 

final product, confidence in design decisions, and resources utilized in design decision-

making. The primary research question is partitioned into the following three research 

questions –  

Q1) How can simulation-based multiscale design processes be designed in 

association with products?  

Q2) How should multiscale design processes be systematically simplified and models 

refined in a targeted manner to support faster design decision making without 

compromising their quality?  

Q3) How should simulation-based design processes be modeled in a systematic 

manner and represented in a computer interpretable format to support design process 

exploration?  

The context for answering these research questions in the dissertation is design of 

multiscale systems that are dominated by horizontal couplings (i.e., coupling between 

physical phenomena at a single scale) and vertical couplings (i.e., coupling across 

different scales). Due to these couplings, the design processes cannot be derived directly 

from their functional decomposition, as required by conventional design methods. Hence, 

the coupling and interactions aspect of designing design processes is explored throughout 

this dissertation.  

In this dissertation, we address the design of design processes from a systems-based 

perspective. Similar to the manner in which products are designed as systems with 
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subsystems and interfaces, we view design processes as modular systems composed of 

reusable building blocks. These building blocks are described using the types of 

interaction and information flow between simulation models and decisions. In general, 

the interactions between two simulation models or decisions can be independent, 

sequential, or coupled. Coupled interaction patterns are most complex and the 

independent interaction patterns are simplest. The interaction patterns are suitable for 

modeling simulation-based design processes applicable to multiscale design. These 

building blocks are used to answer the first research question related to design process 

configuration. After modeling the design processes using the interaction patterns, they 

can be simplified by ignoring the information flows that do not have a significant on the 

design. This requires a metric to determine the impact of simplifying an interaction 

pattern. The metric developed and used in this dissertation is based on value of 

information. This metric is used to answer the second research question that is related to 

systematic simplification and targeted refinement of simulation models. The first two 

research questions tie to the theoretical aspects of the framework and the third research 

question is related to the implementation of these theoretical concepts in the form of a 

computational framework that supports both design of products and associated design 

processes. The approach (3-P) used for answering the third research question is a 

synthesis of three key components: a) a decision-based view of design processes and the 

adaptation of a specific instantiation, namely the Decision Support Problem (DSP) 

Technique, b) a modular systems based approach for design processes, and c) a 

mechanism for separation of declarative and procedural information. 
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The framework is demonstrated and validated using various example problems: 

structure design, pressure vessel design, datacenter design, multifunctional LCA design, 

and multifunctional energetic structural material design. The structure design example is 

used to explain the steps of the design method in Chapter 3. The pressure vessel design 

problem is used to validate the value of information metric in Section 4.4. The datacenter 

design problem is used to validate the methods for scale and decision decoupling in 

Sections 5.3.2 and 5.4.2 respectively. The LCA design example is used to validate the 

interval-based focalization method for multifunctional design in Section 6.4.3. The 

pressure vessel design example is again used in Section 8.4 to validate the 

implementation of information modeling strategy. Finally, the multifunctional energetic 

structural materials design example is used as a comprehensive example throughout 

Chapter 9 to validate the methods and metrics proposed in the dissertation. The details of 

validation and answers to the research questions are provided in Section 10.2.  

As a summary, the primary contribution from this dissertation is systems-based 

approach for integrated, systems-based design of products and design processes, 

Specifically, the contributions include a) a design method based on systematic 

simplification and refinement, b) methods for design process simplification, c) a set-

based method for multifunctional decentralized design, d) a set of metrics for design 

processes based on information economics, e) an information modeling strategy to 

provide computational support for design of products and design processes. The details of 

the contributions from this dissertation are discussed in Section 10.3.  
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10.2 Answering the Research Questions and Validating the 
Hypotheses 

The framework for integrated design of products and design processes is established 

in this dissertation to answer the primary research question – How should simulation-

based design of complex multiscale, multifunctional systems be carried out? The 

hypothesis used to answer this question is that simulation-based design of multiscale, 

multifunctional systems can be carried out by decision-based integrated design of 

products along with their design processes. The framework developed in this dissertation 

embodies this primary hypothesis and consists of three components. These three 

components embody the hypotheses associated with three sub-research questions. These 

hypotheses are proposed in Chapter 1 and are addressed throughout the dissertation. In 

this section, we revisit those hypotheses and corresponding questions.  

For the readers’ convenience, a summary of research questions, hypotheses, 

validation square and contributions are highlighted in Figure 10-1. In this figure, the 

validation square is divided into five validation sub-squares, each subsquare 

corresponding to one of the hypothesis H1.1, H1.2, H2.1, H2.2, or H3.1. The validation 

subsquares are labeled according to the hypothesis to be validated. For example, the 

validation square corresponding to hypothesis H1.1 is labeled VSQ1.1. Each of these 

subsquares is discussed in this section to establish the validity of the overall framework 

presented in this dissertation. Summaries of arguments made throughout the dissertation 

regarding theoretical and empirical validation for each of the hypotheses are provided in 

Sections 10.2.1, 10.2.2, and 10.2.3. In Section 10.2.4, attention is devoted to theoretical 

performance validation, which involves building confidence in the framework presented 

for scenarios beyond the specific examples chosen for validation. 
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Figure 10-1 – Summary of the dissertation 

10.2.1 Research Question 1 – Configuration of Design 
Processes for Effective Decision Making  

Hypothesis H1.1: First research question in this dissertation is related to the efficient 

configuration of design processes to make efficient design decisions. Two hypotheses are 
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used to answer this research question. The first hypothesis (H1.1) is that systematic 

stepwise refinement of design processes and associated products increases the efficiency 

and effectiveness of design decision making. This hypothesis is embodied in the robust 

multiscale design exploration method consisting of two phases – meta-design and design. 

In the meta-design phase, the design process to be executed is first configured and in the 

design phase, the design process is executed. A refinement loop around the two phases is 

used to systematically increase the fidelity of design process elements and the 

interactions between them, thereby refining the design solution. The strategy advocated 

in this method is to: a) use the simplest design processes and to use the robust design 

methods to make decisions in the presence of uncertainty as a result of simplification of 

design process, and then b) systematically refine both the simulation models and design 

processes to refine the design solutions.  

The validation square VSQ 1.1 for validating Hypothesis H1.1 is shown in Figure 

10-2. VSQ 1.1 is a validation sub-square for the overall dissertation level validation 

square (see Figure 10-1). Aspects of this figure are addressed in various sections 

throughout the dissertation. These sections are referenced in the figure. The theoretical 

structural validation of Hypothesis 1.1 is carried out by performing a literature review of 

existing literature focused on improvement or the design of design processes. Examples 

of literature focused in improvement of design processes include concurrent engineering 

and Product Lifecycle Management (PLM). Examples of literature focused on designing 

the design processes include decision-based design (specifically the DSP Technique) and 

the Design Structure Matrix (DSM). Based on the literature, it is concluded that it is not 

possible to generate all possible design process alternatives and execute them to evaluate 
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and compare the performance of all processes before selecting the most appropriate 

design process. This is because execution of all design process alternatives is 

computationally expensive and inappropriate if the objective is to reduce the complexity 

of processes. Instead of executing all process alternatives, a more effective strategy is to 

start with the simplest design process options and progressively make it more complex 

based on the design needs. Hence, based on the literature, the hypothesis H1.1 is 

appropriate, establishing the theoretical structural validation. 

Empirical Performance Validity
Usefulness of the method in examples
• Datacenter Design Example (Section 5.5)

Stepwise refinement of interaction 
patterns allows designers to perform 
integrated design of products and design 
processes

• Materials Design example (Section 9.7.2)

Stepwise refinement shown useful for 
both configuration of design processes 
and the appropriate level of simulation 
models 

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method
• Datacenter Design Example (Section 5.5)

Problem representative of a general 
multi-scale system where simulation 
models and decisions are made at 
different levels

• Materials Design example (Section 9.7.1)

Problem representative of a complex 
integrated  material-product design

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• The two problems used for validation are 

of representative complexity and are 
characterized by simulation-based 
design processes with coupling between 
models and decisions

Theoretical Structural Validity
Validity of the constructs of the method
• Literature review of current approaches 

for designing design processes

Current trends in improving design 
processes such as concurrent 
engineering, Product Lifecycle 
Management (Section 2.1.3)

Decision-based design literature 
(Section 2.2)

DSM literature (Section 3.3.2)

Validation Square VSQ 1.1

 

Figure 10-2 - Validation square VSQ1.1 for Hypothesis H1.1 (refer Figure 10-1) 

Hypothesis H1.1 is empirically validated through application of the stepwise 

refinement of design processes to datacenter and materials design example. Both these 

problems are appropriate because they are multiscale in nature and represent different 
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levels of complexity. The empirical structural validation of datacenter example is 

established in Section 5.5, and the empirical structural validation of the materials design 

example is established in Section 9.7.1. In the datacenter example, different types of 

interactions between simulation models and decisions are considered. These 

combinations represent the design process options at different levels of refinement. These 

combinations are used for designing the datacenter cooling system under different 

preference conditions. Similarly we explore different levels of refinement of models and 

decisions in the materials design problem.  

Based on the results from these examples, we observe that the design processes that 

model all the interaction flows may result in similar decisions as some of the simpler 

design processes. In other words, simple design processes may result in satisficing 

decisions. Since a stepwise refinement of the design processes is carried out, the 

designers don’t need to execute the design process considering all interactions. The 

designers can get the same quality of decisions efficiently by starting with the simple 

design processes and gradually refining it. This implies that stepwise refinement of 

design processes is appropriate, thereby providing empirical performance validation of 

Hypothesis H1.1. Additional insight is gained from the datacenter example, where we 

observe that designers’ decisions have a great impact on the appropriateness of design 

processes for a decision making scenario. Hence, error is not the only criterion for 

selecting design process options or for selecting appropriate simulation models. 

Advantages and Limitations: The advantage of using stepwise refinement of design 

processes is that designers don’t need to use the most complex design process for 

decision making. However, we may argue that more than one refinement steps may be 
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required for determining the right level of design process. Multiple executions of design 

processes at increasing levels of refinement may result in total added computational costs 

that are greater than single execution of the most complex design process. This is a 

limitation of the proposed approach. Currently, the extent of refinement (in each 

refinement cycle) is based on the designers’ experience and insight into the problem. If 

the refinement after each cycle is very small, then the overall computational costs (added 

over all the cycles) would be high, whereas if the extent of refinement after each cycle is 

high, the computational cost for a single process execution would be high. Hence, there is 

a tradeoff between the overall computational effort throughout the design and the 

computational effort in a single design process execution at the meta-design level. This 

tradeoff is not explicitly captured in the current framework. This limitation is addressed in 

a future work Section 10.4.2. It is assumed that the designers make that judgment based 

on the expected benefit from refinement.  

Hypothesis 1.2: The second hypothesis used to answer the first research question 

(H1.2) is that design processes can be designed as hierarchical systems composed of 

repeated building blocks defined in terms of the interaction patterns. This hypothesis 

essentially consists of two parts - the first part is that design processes can be viewed as 

hierarchical systems composed of modular building blocks and the second part is that the 

building blocks can be described in terms of the types of interactions between the process 

blocks. This hypothesis is embodied in Step 2 of the robust multiscale design exploration 

presented in Section 3.5. This hypothesis is also used in the decision and scale decoupling 

methods presented in Sections 5.3.1 and 5.4.1. In this dissertation, nine types of 

interaction patterns are identified and represented in a matrix form. The columns in the 
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matrix correspond to independent, dependent, and coupled information flows. The rows 

of the matrix correspond to model interactions, decision interactions, and combined 

model-decision interactions.  

The Hypothesis H1.2 is validated using the validation square construct described in 

Section 1.3. The validation square (VSQ 1.2) for this hypothesis is shown in Figure 10-3. 

VSQ 1.2 is a validation sub-square for the overall dissertation level validation square (see 

Figure 10-1). Theoretical structural validation for this hypothesis is carried out by 

performing a literature review on Design Structrue Matrix (DSM) and patterns. Based on 

the literature review on DSM in Section 3.3.2, it is concluded that the design processes 

can be modeled hierarchically in a matix format. Using the matrix representation, the 

design processes can be configured based on the information flows between different 

tasks. Based on the review of literature on interaction patterns, it is concluded that the 

patterns are not yet applied to engineering design processes. By applying the concepts of 

DSM-based matrix information flow representation and patterns to design processes, the 

design processes can be modeled hierarchically in terms of building blocks and 

represented in a matrix form allowing reconfiguration. DSM is a construct for 

representing and manipulating design processes, and patterns are ways to forumulate the 

repeating building blocks. Both these constructs are compatible with each other because 

the DSM captures the inteaactions between different tasks and the patterns are defined in 

terms of the different types of interactions between decisions and simulation models. This 

ensures theoretical structural validation of the hypothesis H1.2. 
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Validation Square VSQ 1.2

Empirical Performance Validity
Usefulness of the method in examples
• Datacenter Design Example (Section 5.5)

Simulation-based design processes are 
shown to be easily modeled using the 
datacenter design example

• Materials Design example (Section 9.7.2)

The hierarchical nature of design 
processes shown to be modeled using 
combinations of simple interaction 
patterns

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method
• Datacenter Design Example (Section 5.5)

Problem consists of two decisions and 
two simulation models, and hence map 
directly to the binary interaction patterns 
developed in the dissertation

• Materials Design example (Section 9.7.1)

Problem consists of more than two 
models and decisions that can be 
represented using interaction patterns

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• The two problems used for validation are 

of representative complexity and are 
characterized by simulation-based 
design processes with coupling between 
models and decisions

Theoretical Structural Validity
Validity of the constructs of the method
• Literature review of current approaches 

for designing design processes

DSM literature (Section 3.3.2)

Patterns literature (Section 3.5.2)

 

Figure 10-3 - Validation square VSQ 1.2 for validation of hypothesis H1.2 (refer 
Figure 10-1) 

Hypothesis H1.2 is empirically validated in the dissertation using various examples. 

The interaction patterns are shown to be useful in hierarchically modeling complex 

design processes. Tools such as the Design Structure Matrix (DSM) are used for 

converting the graph-based representation of design processes into matrix-based 

representations that can be used with existing algorithms for identifying the interaction 

patterns between different tasks. The empirical structrural validation is discussed in 

Sections 5.5 and 9.7.1. The datacenter example and materials design example are chosen 

because of their different characteristics. The datacenter design example doesn’t require 

hierarchical combination of interaction patterns whereas the materials design example 
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requires hierarchical combination of interaction patterns. The datacenter design example 

consists of two simulation models and decisions at different scales. Hence, the binary 

interaction patterns can be directly applied for modeling datacenter design processes. The 

multiscale materials design problem consists of three simulation models, therefore 

requiring a combination of interaction patterns to model the design processes.  

The empirical performance validation of Hypothesis H1.2 is shown by 

demonstrating that the matrix-based approach and the interaction patterns can be used for 

modeling hierarchical design processes. The interaction patterns are shown for modeling 

processes in datacenter example with two decisions and two simulation models 

supporting those decisions. The patterns are also shown for two decisions supported by 

three simulation models in the material-product design example (see Chapter 9). The 

patterns are applied to more complex design scenarios involving more than three 

decisions for the structure design example to show that they can be applied to other 

design processes. The convenience in applying the nine interaction patterns is a result of 

their simplicity.  

Advantages and Limitations 

Note that in the materials design example, a hierarchy of design process decisions - 

that deal with interaction patterns between simulation models and the interaction patterns 

between decisions - are considered. The total number of combinations of interaction 

patterns for the material-product design scenario is 16. Hence, there are is a variety of 

design process options from which the designers can select the most appropriate one. One 

of the limitations of the interaction patterns is that as more and more decisions and 

models are added, the total possible combinations may increase significantly. In other 
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words, although the interaction patterns with interactions between two entities 

(models/decisions) can be used to model complex scenarios, complex patterns with more 

than two entities are convenient to model design processes that are more complex. These 

complex patterns can be developed from combinations of the nine interaction patterns 

presented in the dissertation.  

The key advantage of interaction patterns is that they can be used to view design 

processes as modular systems that can be composed hierarchically in a manner similar to 

the assembly of subsystems to form larger systems. These interaction patterns can be 

used to model any simulation-based design processes that can be expressed in terms of 

decisions and simulation models. The scope of applicability of these constructs is 

simulation-based design where physics-based simulation models are available and the 

decisions can be formulated in mathematical form. Although the general concept of using 

patterns for design process building blocks remains valid for any phase in the design 

process, the methods and constructs such as interaction patterns are most applicable for 

simulation-based design. If other phases of design process are to be considered, the kinds 

of interaction patterns may change. Other types of interaction patterns are discussed in 

the future work Section 10.4.1. 

10.2.2 Research Question 2 – Simplification of Design 
Processes and Refinement of Simulation Models 

Hypothesis H2.1: The second research question is related to the metrics for 

simplification of design processes and the refinement of simulation models to support 

faster and good quality decision making. The research question is answered using two 

hypotheses H2.1 and H2.2. The hypotheses are embodied in the two steps of the design 

method – Step 3: simplify the process patterns using value of information, and Step 6: 
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refine models and design solution. Step 3 is further divided into specific substeps for 

scale-decoupling and decision-decoupling (discussed in Chapter 5) that are embodiments 

of H2.2. The systematic refinement and simplification is based on the value of 

information metric developed in Chapter 4 as an embodiment of the hypothesis H2.1. 

According to hypothesis (H2.1), design processes can be simplified and models refined 

by making tradeoffs among value-of-information obtained via simulations and need to 

achieve robust, satisficing solutions. Value of information refers to the improvement in 

the quality of designer’s decision after addition of information via refinement of 

simulation model or design process. The validation strategy for Hypothesis H2.1 (VSQ 

2.1) is presented in Figure 10-4. VSQ 2.1 is a validation sub-square for the overall 

dissertation level validation square (see Figure 10-1) 

Theoretical structural validation of hypothesis H2.1 is performed by evaluating the 

existing literature on metrics for value of information in Section 4.2. Based on the 

literature review, three requirements for the value of information metric are determined. 

These include quantification of imprecision, consideration of deviation of payoff function 

in addition to the expected value, and quantification of opportunity for improving the 

design solution through addition of more information. In order to address these three 

requirements, three different components of the value of information metric are proposed 

in this dissertation – maximum ex-post value, achievement ratio, and opportunity ratio. 

The implications of different combinations of these three components of the metric are 

discussed in Table 4-3. 
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Validation Square VSQ 2.1

Empirical Performance Validity
Usefulness of the method in examples
• Spring Design Example (Section 4.5.2)

Metric’s appropriateness for meta-level 
decisions

• Datacenter Design Example (Section 5.5)

Metric’s appropriateness for design 
process simplification

• Materials Design Example (Section 9.6)

Metric’s appropriateness for simulation 
model refinement

Empirical Structural Validity
Appropriateness of the examples
• Pressure Vessel Example (Section 4.5.2)

Simple problem for demonstrating the 
application of value of information metric

• Datacenter Design Example (Section 5.5)

Validation of metric for design process 
simplification

• Materials Design Example (Section 9.6)

Validation of metric for simulation model 
refinement

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• Problems used for validation are of 

representative complexity and are 
characterized by simulation-based 
design processes with coupling between 
models and decisions

Theoretical Structural Validity
Validity of the constructs of the method
• Literature review of Value-of-Information 

metrics (Sections 4.2, 4.5.1)

Value of information can be used for 
meta-level decisions

Current value of information metrics are 
unsuitable for simulation-based design 
processes

Requirements list for new value-of-
information based metric

 

Figure 10-4 – Validation Square VSQ 2.1 for Hypothesis H2.1 (refer Figure 10-1) 
Empirical structural validation of these metrics is performed using various examples 

including the design of pressure vessel, datacenter design, and materials design. In the 

pressure vessel example, the value of refinement of simulation models for strength and 

density is calculated to guide the designers’ efforts. The example is appropriate for 

demonstrating the applicability of value-of-information metric in meta-design decisions. 

The example is chosen because of its simplicity. The decision in pressure vessel design 

problem is based on a single design variable and hence, can be visualized using 2-D 

plots. In the datacenter example, the metric is used to determine the type of interaction 

between models and decisions. In the materials design example, the metric is used to 

determine the appropriate level of refinement of shock simulation model. The datacenter 
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design and multiscale materials design examples are appropriate for validation of 

hypothesis H2.1 because of their hierarchical nature, which is the motivation of 

developing the overall framewo. Using these examples, the appropriateness of metrics for 

making process-level decisions is shown. 

Empirical Performance Validation of the value-of-information based metric is 

performed by using the metric in the three example scenarios. In the pressure vessel 

design scenario, the metric is found to be useful in reducing the ranges of variables such 

as material density and strength, to a limit beyond which the impact on design decisions 

is negligible. It is shown that the reduction in range of density provides a consistent 

reduction in the value of additional information. This provides the designers with an 

estimate of reduction in range required. The value of information also indicates that 

beyond a certain reduction in range of strength, the strength does not affect the design 

decisions. This is a helpful insight for designers and demonstrates that the value of 

information can be used for making efficient design decisions.  

The metric is used in the datacenter design problem to determine the appropriate 

levels of simplification of design process interaction patterns. It is shown that by using 

the metric, the designers can simplify the design processes significantly without affecting 

the design decisions. In the materials design scenario, the metric is used to determine the 

appropriate level of refinement of shock simulation model beyond which the impact on 

design decisions is negligible. Using the metric, we are able to determine the right level 

of refinement. In addition to that, using the metric, it is possible to identify that the two 

dimensions of refinement of the simulation model are not independent. Hence, the value 

of information is a useful guide for meta-level decisions. 
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Advantages and Limitations 

The main advantage of this metric is that it quantifies the impact of process level 

decisions on product level decisions. Further, the metric is simple to evaluate and 

requires information only about the lower and upper bounds of payoff functions. There 

are a number of ways in which the metric can be improved. As mentioned in the previous 

section, one of the main limitations of the metric is that it does not quantify how much 

refinement is necessary for simulation models and design processes. The possible 

improvements on this metric are discussed in detail in Section 4.5.4. Note that the value 

of information is just one type of metric that can be used to evaluate the effect of design 

process decisions. Other types of metrics can be used for quantifying this effect. Such 

metrics are discussed in a future work section 10.4.3. 

Hypothesis H2.2: The second hypothesis used to answer the second research question 

is that design processes can be simplified using decoupling of scales, decisions and 

functionalities. The hypothesis is embodied in the form of methods for scale and decision 

decoupling presented in Sections 5.3.1 and 5.4.1. The method is based on the nine 

interaction patterns from Hypothesis H1.2, the value of information metric developed 

based on hypothesis H2.1 and the general idea of starting with a simple interaction 

pattern and refining it if there is a possibility of improving the decision making 

capability. The validation square used to validate the hypothesis H2.2 (VSQ 2.2) is 

shown in Figure 10-5. VSQ 2.2 is a validation sub-square for the overall dissertation level 

validation square (see Figure 10-1). This figure is a modified version of the Figure 5-34.  
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Validation Square VSQ 2.2

Empirical Performance Validity
Usefulness of the method in examples
• Design Process Simplification using 

Datacenter example (Section 5.5)

Using the examples, it is shown that 
the methods are useful for scale and 
decision decoupling

The results show that the decoupling is 
significantly dependent on the 
designers’ preferences

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method 
• Datacenter Design Example (Section 5.5)

Problem can be formulated as different 
interaction patterns: single decisions 
with coupled models (patterns P1, P2, 
P3), and multiple coupled decisions 
(P4, P5, and P6)

Lower and upper bounds can be 
calculated from the knowledge about 
‘actual’ system behavior 

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• Chapter 10 - Arguing the validity of 

framework developed in this dissertation 
beyond the examples used

Theoretical Structural Validity
Validity of the constructs of the method
• Discussion of available constructs 

(Section 5.2)

Intervals for Simulation

Robust Decision Making

Value of Information

Interaction Patterns in Simulation-
Based Design

 

Figure 10-5 – Validation square VSQ 2.2 for hypothesis H2.2 (refer Figure 10-1) 
The theoretical structural validation is performed by reviewing the existing 

constructs used for scale and decision decoupling. The constructs include use of intervals, 

robust decision making, value of information and the interaction patterns for modeling 

design processes. Details of the theoretical structural validation are presented in Section 

5.5. The methods for scale and function decoupling are empirically validated using the 

datacenter design example where the information flow between two simulation models 

and decisions at the cabinet level and the computer level are modeled using the 

interaction patterns. These interaction patterns are simplified using the corresponding 

decoupling methods. It is observed that for different types of designers’ preferences, 

different interaction patterns are suitable. The methods are also applied to the multiscale 
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materials design problem involving three simulation models at different scales and two 

decisions related to the product and the material. The method for functional decoupling is 

similar to the methods for scale and decision decoupling and hence, is not considered in 

detail in this dissertation.  

An interesting case, where functional decoupling cannot be performed due to strong 

coupling between the different functional behaviors, is investigated in this dissertation. In 

such a strongly coupling scenario, an interval-based focalization method is presented for 

decision making in a decentralized design scenario.  The main advantages of this method 

include gradual reduction of design space, non divergence, reduced complexity of design 

process and reduced information transfers compared to its coupled counterparts. 

10.2.3 Research Question 3 – Modeling and Representation of 
Design Information 

Hypothesis H3.1: The third research question in the dissertation is related to the 

modeling and representation of design information in a computer interpretable format to 

support meta-design. The hypothesis (H3.1) used to answer this research question is that 

meta-design can be supported by separating product, problem, and process specific 

information. The validation strategy for this hypothesis (VSQ 3. 1) is outlined in Figure 

10-6. VSQ 3.1 is a validation sub-square for the overall dissertation level validation 

square (see Figure 10-1). 

Theoretical structural validation is performed through a literature review of design 

process information modeling efforts and the implementation of existing computational 

frameworks for simulation-based design such as FIPER, ModelCenter, and iSIGHT. The 

literature review is presented in Sections 2.6 and 7.1. Based on the literature review, it is 

observed that one of the main reasons that make the simulation frameworks incapable of 
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supporting meta-design is that the information about design products, processes, and 

design problems is captured in a highly integrated fashion. Due to this coupled nature of 

information capture, the designers cannot utilize different design processes for solving a 

design problem. Utilization of different processes requires designers to completely 

redefine the design process. In other words, product independent representation of design 

processes is not supported in the current simulation-based design frameworks.  

Validation Square VSQ 3.1

Empirical Performance Validity
Usefulness of the method in examples
• Pressure Vessel and Spring Design 

Example (Section 8.4)

Implementation of the two design 
problems using 3-P information 
modeling approach on ModelCenter
framework

Empirical Structural Validity
Appropriateness of the examples 

chosen to verify the method
• Pressure Vessel and Spring Design 

Example (Section 8.4)

Simple problems with similar problem 
structure but different product 
information.

The problems can be executed using 
the same design processes

Theoretical Performance Validity
Usefulness of the method beyond 

examples
• The two problems used for validation are 

of representative complexity and are 
characterized by simulation-based 
design processes with coupling between 
models and decisions

Theoretical Structural Validity
Validity of the constructs of the method
• Literature review of current approaches 

for designing design processes

Review of literature of existing design 
information modeling approaches 
(Section 2.6)

 

Figure 10-6 – Validation Square VSQ 3.1 for Hypothesis H3.1 (refer Figure 10-1) 

This shortcoming is addressed in this dissertation by modularly capturing information 

about products, design problems, and design processes. Hypothesis H3.1 is embodied in 

the 3-P information modeling approach in this dissertation. Generic information schemas 

for product, problem (decisions problem only), and design processes. These information 
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models are preliminary in nature and can be extended in the future by including more 

concepts and their relationships. The avenues for future research in this area are discussed 

in Section 10.4.6. One aspect of the approach his implemented and validated in a 

commercially available framework – ModelCenter. The implementation details are 

presented in Section 8.4. The validation involves demonstrating that a generic process 

representation (i.e., process template) can be used for designing multiple products. The 

implementation is validated for design of a spring and a pressure vessel. In that example, 

a single process template is developed in ModelCenter and utilized for design of these 

different products. Similar process templates can be developed for other design processes 

and used for designing a product. From the design examples, it is deduced that the 

hypothesis of separation of information is hepful for performing design process 

exploration. 

10.2.4 Theoretical Performance Validation of Hypotheses H1.1, 
H1.2, H2.1, H2.2, H3.1 

As discussed in Section 1.3, theoretical performance validation involves establishing 

that the proposed methods are useful beyond the example problems. This involves 

determining the characteristics of the example problems that make them representative of 

general class of problems. Based on the utility of the method for these example problems, 

its usefulness for general class of problems is inferred. The general characteristics of 

problems for the validity of constructs developed in this dissertation are: 

1. The decisions can be formulated mathematically and the simulation models are 

available for design decision-making. This is generally true in the preliminary 

design phase where the concept has already been selected and mathematical 

models are available for predicting the system behavior. 
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2. Designers can express their preference in terms of utility functions. If the 

designers cannot express their preferences in mathematical terms, the metrics 

based on value of information cannot be applied. 

3. Since the design methods developed in this dissertation are based on interactions 

between models and decisions, the methods are particularly applicable when the 

coupling between decisions and models is the main source of complexity in 

design. The methods developed in this dissertation are useful if there is a 

possibility of achieving time and cost savings via simplification of couplings 

between decisions and models. It is an assumption in this dissertation that this is 

generally true. 

4. The simplification methods require information about the error in terms of lower 

and upper bounds. If this information is unavailable, the ex-post value of 

information cannot be calculated. Hence, this particular metric is not applicable if 

a number of simulation models for modeling a phenomenon are available but the 

information about their error is unavailable. 

5. The methods developed for multifunctional design are valid for the cases where 

the design space is shared between different designers having conflicting 

objectives arising from the different functional requirements. 

The example problems selected in this dissertation satisfy the characteristics 

described above. The framework developed in this dissertation is shown to be useful for 

the example problems chosen for validation. Hence, we take the leap of faith and argue 

that the framework is valid for other problems that satisfy these characteristics. Having 

discussed the validation of the hypotheses on which the answers to the research questions 
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are based, the next step is to discuss the achievements and contributions from the 

research presented in this dissertation.  

10.3 Achievements and Contributions 
The achievements and contributions presented in this dissertation are divided into 

three categories – a) contributions to the field of design methodology, b) contributions to 

the field of multiscale materials and product design, and c) computer-based support for 

design. The contributions in the field of design methodology are related to the research 

questions 1 and 2 and associated hypotheses introduced in Chapter 1. These two research 

questions are related to the development of methods and metrics that support the 

integrated design of products and design processes. These methods and metrics are 

validated through application to various design problems. As a result of the application of 

these constructs, several achievements are realized in the design of specific problems. 

The most important problem specific achievement in the dissertation is in the domain on 

multiscale materials design. Finally, the third contribution is related to the Research 

Question 3 and associated hypothesis. These three categories of contributions are 

highlighted in Sections 10.3.1, 10.3.2, and 10.3.3 respectively. 

 

10.3.1 Contributions to the Field of Design Methodology 
The primary research contribution corresponds to the principal goal, primary research 

question, and primary research hypothesis – a framework for integrated design of 

multiscale products and design processes, to facilitate the effective utilization of 

information and computational resources in preliminary design of multiscale 

systems with potential applications to other complex systems. The primary 
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contribution is explained in greater detail by expanding it into several secondary research 

contributions in the field of design methodology. A summary of the contributions from 

this dissertation in the field of design methodology are categorized into strategies, 

methods, and metrics. The contributions are listed in Table 10-1.  

Table 10-1 – Summary of contributions from the dissertation 

Contribution 
Design Methodology 

Design method is created for simulation-based, integrated design of products and design 
processes (Section 3.5) 
Explicit accounting of metadesign decisions, meta-design in the context of designers’ 
preferences (Section 4.3) 
Extension of robust design applications to collaborative decision making (Section 5.2.2) 
New value-of-information based metrics (Section 4.3) 
Methods for using value of information based metrics for making design process related 
decisions (Sections 5.3.1, and 5.4.1) 
A set-based focalization method for multifunctional design (Section 6.4) 

Multiscale Materials and Product Design 
Systematic method for design of multiscale materials with consideration of products and 
design processes (Section 3.5) 
Formalization of a design process for the multiscale materials (Section 9.5) 
Simulation models at different scales integrated together; connections exercised for a 
preliminary design of the materials and products (Section 9.4) 
Development of projectile level simulation model (Section 9.4.3) 
Strategy for designing materials-products-design processes (Section 9.5) 
Particle level shock simulation model subjected to a detailed refinement study (Section 
9.6) 
Basic structure for the design of multifunctional energetic structural materials (Section 
9.5) 

Computer-Based Support for Design 
3-P information modeling strategy (Section 7.3) 
Separation of declarative information and procedural information applied to design 
processes (Section 7.2.3) 
Augmentation of currently available commercial tools (Section 8.4) 

A comprehensive design method is created for simulation-based, integrated design 

of products and design processes. The method is based on four foundational elements – 

designing design processes in association with products, applying systems-based 

approach to meta-design, reliance on robust solutions as opposed to optimum solutions, 
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and the systematic refinement of design. The primary strength of this method is the 

systematic consideration of design-process related decisions during the design of 

products. Such meta-level decisions are made by assessing the performance of processes 

in terms of metrics. Meta-design is carried out based on the assumption that design 

processes themselves are hierarchical systems that can be modeled in terms of 

standardized process patterns. One such class of process patterns used in this dissertation 

is based on interaction types. Standardized building blocks of a design process are 

identified in terms of interaction patterns between process components. Various 

interaction patterns between simulation models and decisions are identified and used to 

model design processes for different design problems. These interaction patterns facilitate 

modeling design processes, evaluation of the impact of couplings between different 

components of design processes and allow process related decisions such model 

decoupling, decision decoupling, etc.  

The important differentiating features and advantages of this method is that it enables 

designers to a) explicitly account for metadesign decisions during a design process, and 

b) allow meta-design in the context of designers’ preferences. Hence, the design 

processes are designed specifically for the product design under consideration. The 

method allows designers to consider multiple objectives in meta-design. This is an 

enhancement over existing design methods that either do not consider the design of 

design processes at all or only consider the configuration of processes only based on 

streamlining information flow.  

The method implements and extends the application of robust design. In the 

proposed method, design decisions are made by considering not only the average system 
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performance, but also the variation in performance due to various sources of uncertainty. 

These sources of uncertainty include variability in the external noise variables, variability 

in the design variables, variability in the simulation models or due to propagation of 

uncertainty along the design chains. Robust design for handling this type of uncertainty 

exists in the literature and is incorporated in the design method developed in this 

dissertation. These types of robust design are labeled as Type I-IV robust design. In 

addition to these four types of robust design, an additional type of robustness is addressed 

in this dissertation – robustness to decisions made by other designers’ decisions. By 

making decisions robust against the uncertainty in other designers’ decisions, the 

concept of robustness is extended in this dissertation to collaborative decision making. 

This type of robustness is useful when coupled decisions are decoupled during 

simplification of design processes. This reduces the complexity of design processes and 

increases the efficiency with which resources are used.  

As discussed earlier in this section, the performance of design processes is measured 

in terms of metrics. One such metric investigated in detail in this dissertation is the value 

of information that is used to quantify the impact of additional information on designers’ 

decision making capability. New value-of-information based metrics are developed for 

making meta-level decisions. These metrics quantify the maximum possible improvement 

in final design decision in terms of overall payoff. Utility theory is recommended as a 

means for measuring designers’ overall payoff. The metrics also quantify the level of 

achievement of the design goals in the presence of uncertainty. These metrics allow 

comparison of available process options when modeled as subsequent information 

addition scenarios. Different process options are evaluated against each other by 
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modeling the simplest design process as the available information and all other process 

options as ‘additions of information’ available for decision making. The effect of this 

additional information on decisions is calculated and used as a criterion to decide whether 

a process option is appropriate or not.  

The process decisions considered in detail in this dissertation include a) decoupling of 

interaction patterns (both simulation models and decisions) and b) refinement of 

simulation models. In order to support these design process related decisions, methods 

for using value of information based metrics for making are developed in this 

dissertation. These methods are used to simplify design processes to a level that reduces 

the complexity of design processes without affecting the quality of decisions. The key 

strategy in these methods is to perform a tradeoff analysis between the possibility of 

improving the design solution and the increase in cost of improving the design process. 

The application of these methods require characterization of the information generated by 

simulation models in terms of lower and upper bounds within which the response lies. 

The methods for decoupling of interaction patterns and refinement of simulation models 

are used as subprocesses in the overall method for integrated design of multiscale 

products and design processes. 

The decision decoupling methods are also applicable to functional decoupling in a 

multi-functional scenario. However, in the cases where the system is strongly coupled 

and the decisions cannot be decoupled without affecting the final design, the methods for 

designing design processes developed in this dissertation are not valuable. Such strongly 

coupled cases are addressed in this dissertation via development of a set-based 

focalization method for multifunctional design. The method is based on systematic 
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reduction of the design space sequentially by different functional experts until the design 

converges to a single point. The method is developed to overcome limitations of existing 

point-based iterative methods and other game-theoretic methods for multifunctional 

design. The advantages of this method include independence of convergence 

characteristics from initial design, and non-divergence. Further, since the method 

involves a gradual reduction of design freedom, it supports limited changes in the design 

requirements along the design process. The method builds on the concepts of interval 

arithmetic and box-consistency. 

10.3.2 Contributions to the Field of Multiscale Materials and 
Product Design  

As a result of applying the design methods to materials design problem, contributions 

are made to the field of materials design and to the general multiscale design problem for 

energetic structural application. The contribution specific to the field materials design is a 

systematic method for design of multiscale materials with consideration of design 

processes. In this dissertation, the design of multifunctional materials is also carried out 

in association with the product (the projectile). This concurrent design of products, 

materials, and design processes is a contribution to the field of materials design. The 

design is carried out by considering robustness to uncertainty from various sources 

including error in simulation models, variability in simulation models, and uncertainty in 

decisions made by designers from other functional domains.  

Apart from these general contributions in the field of materials design, various 

contributions specific to the multiscale, multifunctional materials design problem have 

resulted from this dissertation. The research presented in this dissertation is instrumental 

in the formalization of a design process for the multiscale materials. The information 
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flows between various simulation models are identified. Three different simulation 

models at different scales are integrated together to make decisions about the material 

and system level design variables. Two models – a particle level shock simulation model 

and the non-equilibrium mixture theory model are developed by other researchers. The 

third model – projectile level simulation is developed as a part of this dissertation. This 

simulation model can be refined and used in future design explorations.  

Connections between various models are developed at the software and conceptual 

level (design process level) in association with Ryan Austin (Austin 2005), Haejin Choi 

(Choi 2005) and Jim Shepherd. In this dissertation, these connections are exercised for a 

preliminary design of the materials and products by considering a subset of design 

variables. The results of the preliminary design of materials and products are presented in 

this dissertation. This information will be used in the future to perform a detailed design 

of the material-product systems. The knowledge about the strategy for designing 

materials-products-design processes is useful for any multiscale design problem. Finally, 

the particle level shock simulation model is subjected to a detailed refinement study in 

the context of a design sub-problem. The strategy adopted for refinement of this 

simulation model can be applied to other simulation models at different scales. This is 

useful in the materials design project because there are various models at different stages 

of development. The refinement of these models requires either development of models 

at smaller scales or generation of experimental data. Amount of effort for refinement can 

either be reduced or targeted if the approach is applied to determine the critical models 

that should be refined and no-so-critical models that do not need to be refined. This is 

true in any multiscale design scenario, and hence is also a contribution to the general 
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multiscale design domain. As a summary, the research presented in this dissertation 

provides basic structure for the design of multifunctional energetic structural materials 

and can be extended to satisfy the complete requirements list for the design.  

In addition to the materials design validation example, various other examples are 

used throughout the dissertation to either demonstrate or validate the use of methods 

developed. These examples include multiscale datacenter cooling system design, pressure 

vessel design, linear cellular alloy design and structure design. The results from 

application of design methods to these examples can be utilized in the future design of 

corresponding products. For example, in the datacenter example, the consideration of 

products and design processes simultaneously for decision making is an achievement for 

this dissertation. It is shown that for different designer preferences, the required levels of 

complexity of design processes are different. Hence, it is shown that it is not required to 

consider the most detailed simulation models. The modeling and computational effort at 

the smallest scales can be reduced in a variety of design scenarios. We believe that this is 

an important result for the domain of datacenter design.  

10.3.3 Contributions to the Field of Computer-based Support for 
Design 

In order to support meta-design in the computational frameworks, we present a 3-P 

information modeling strategy in this dissertation. It involves separating the information 

about the product, design process, and the design problem. The general mindset for 

developing the information modeling strategy is that design is a network of 

transformations that transform the product information from one state to another. Various 

kinds of transformations are identified in this dissertation that include decisions, 

abstraction, decomposition, etc. Each of these transformations is associated with a design 
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problem. The general idea of problems is adopted from the Decision Support Problem 

Technique literature. The transformations are associated with processes for execution. 

Only one design transformation is discussed in detail in this dissertation – the decisions. 

Preliminary information models are developed for products, decision problems, and 

processes. By separating the information about problems and processes, we essentially 

separate the declarative information from the procedural information. The 3-P 

modeling approach, proposed in this dissertation, enables designers to capture design 

process information in a manner that allows quick process reconfiguration, thereby 

supporting design process exploration. The modular separation of information associated 

with problem, product, and processes enables exploring different design sub-processes 

for solving a given design problem. The key advantages of the 3-P approach arise from 

the three basic ideas used for its development (extension of DSP Technique, modular 

template based approach, and separation of declarative and procedural information). 

These advantages include the following: a) information related to Problems, Products and 

Processes is separated and captured via modular templates, b) different combinations of 

Problem, Product, and Process declarations can be combined together to generate specific 

computationally executable processes, c) process knowledge can be captured and reused 

across problems and products, and d) the information model allows composability of 

instantiated sub-processes into higher level processes. 

In addition to the independent use of the proposed approach, it can serve as an 

augmentation of currently available commercial tools such as iSIGHT (2004), FIPER 

(Engenious Inc. 2004) and Model Center (Phoenix Integration Inc. 2004). We emphasize 

here that only one aspect of the 3-P modeling strategy is validated in this dissertation 
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through implementation in ModelCenter. The aspect involves showing the usefulness of 

separation of declarative (problem specific information) and procedural (process specific 

information). By separating the problem and process related information, it is shown that 

the same processes modeled in ModelCenter can be used for many different design 

problems. Other aspects of the approach such as implementation of the product 

information models and need to be validated and are discussed in the future work section 

10.4.6. 

10.4 Limitations and Opportunities for Future Work 
Although a diverse set of topics ranging from design methods to information 

modeling strategies (all topics emerging from a common thread of integrated design of 

products and design processes) are addressed in this dissertation, we believe that this 

dissertation is only a small step towards the fulfillment of the vision.  

Table 10-2 – Opportunities for future work and expected time frame 

Section No. Opportunities for Future Work Expected Time Frame 
10.4.1 Extending the Design Process Building Blocks 2-5 Years 
10.4.2 Enhancements to the Value-of-Information Metrics 0-2 Years 
10.4.3 Designing Open Design Processes 2-5 Years 
10.4.4 Extending the Method for Interval-based Focalization 0-2 Years 
10.4.5 Simulating Design Processes 5+ Years 
10.4.6 Implementation of 3-P Approach in a Software 

Framework 
0-2 Years 

10.4.7 Synthesis of Design Processes from Existing Elements 2-5 Years 
10.4.8 Extending the Same Process Design Methods to Other 

Types of Processes 
2-5 Years 

10.4.9 Different Types of Characterization of Models 0-2 Years 
10.4.10 Designing Families of Design Processes 2-5 Years 
10.4.11 Organizational Impact of Designing Design Processes 2-5 Years 
There are many limitations to the breadth and extent of the present body of work. 

These limitations offer a host of opportunities for future work. Some of the possible 

directions for future work are outlined in Table 10-2 and discussed throughout this 

section. In the table, time-frame for each research activity is also listed. 



   

 522

10.4.1 Extending the Design Process Building Blocks 
The general concept followed in this research is that design processes can be viewed 

as modular, hierarchical systems. The characteristic of any system is that it has 

subsystems and interfaces between these subsystems. In this dissertation, we have 

defined the reusable design process building blocks in terms of different types of 

processes elements (simulation models and decisions) and different types of interfaces 

(i.e., information flows that can be independent, sequential, and coupled). The building 

blocks of the design process are called interaction patterns. Interaction patterns are 

chosen as building blocks in this dissertation because of their importance in the 

multiscale design. Interaction patterns are only one way in which these building blocks 

can be defined. The questions that arise are – a) apart from models and decisions, what 

are the other types of process blocks (activities) that can be used to model design 

processes?, and b) are there other types of interfaces between these? The answers to these 

questions result in other types of building blocks that can be used for designing 

processes. 

Notice that in this dissertation, our focus is mainly on simulation-based design 

processes. If the scope is extended to general design processes, the building blocks may 

include abstraction, problem decomposition, synthesis, ideation, etc. These general 

information transformations of design processes are briefly discussed in Section 8.2. All 

these transformations have a potential to become design process building blocks. If the 

scope is further extended to general processes, many more process building blocks can 

be identified. The building blocks are also dependent on the types of processes modeled. 

For example, the same idea can be applied to manufacturing processes where specific 

manufacturing activities can serve as building blocks. In the domain of supply chains, the 
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building blocks can be defined in terms of activities such as order management, inventory 

management, marketing information management, sales and support, etc. The efforts to 

define and standardize building blocks for supply chain processes are already underway 

as a part of the Rosetta Net standards called Partner Interface Processes®. 

In addition to different building blocks in different domains and types of processes, 

the interaction patterns can also be defined at different levels of abstraction. In this 

dissertation, we define general the building blocks using simulation models and decisions 

in general. These building blocks can be made more specific by assigning specific 

simulation models and specific decisions. For example, for the materials design domain, 

the building blocks can be defined as interaction between micro-scale and the nano-scale 

models. At this level of abstraction of interaction patterns, it is possible to assign specific 

parameters as information flows between models at different scales. Hence, we believe 

that there is a need for modeling interaction patterns at different levels of abstraction. By 

defining the interaction patterns at different levels, designers can benefit by reusing 

domain specific information available in the design process building blocks. Further, new 

process building blocks can be obtained by composing existing building blocks into 

more complex building blocks. These composite building blocks can be used to design 

processes in a hierarchical fashion. 

10.4.2 Enhancements to the Value-of-Information Metrics  
The value of information metrics used in this dissertation can be improved further to 

be used in more complex design scenarios. The metrics used in this dissertation are based 

on the lower and upper bounds on values that can possibly be achieved. Hence, the 

resultant metric is very conservative. Further, in the cases where there are multiple 
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sources of imprecision in the simulation models, the metric provides information about 

the overall improvement only. It does not support quantification of the influence of 

individual dimensions of refinement. Hence, based on the metric, the designers cannot 

directly determine how the model should be refined. It only provides information about 

whether the model needs to be refined or not. The cost of improving a simulation model 

and the time savings through simplification are not included in the value of information 

metric in this dissertation. The current value of information metric only includes the 

information about benefit achieved in terms of the overall utility. However, this does not 

require a change in the way this metric is applied. The only change that is required is to 

include cost and utility functions in the calculation of the overall utility. 

The reliance on lower and upper bounds for the use of metric currently restricts its 

use for cases where information about these bounds is unavailable. Hence, some 

scenarios where this information is unavailable are not handled using the metric. For 

example, consider a scenario we have multiple simulation models that embody different 

mathematical models for the same physical phenomena, predicting the same response 

value. All the models have some level of imprecision but the most accurate model is 

unknown. Hence, for each model, the information about the upper and lower bounds of 

error is not available. In this case, the current value of information needs to be extended. 

One possibility of improvement of the metric (reducing the conservative nature) is by 

taking into account the possibility of achieving different values between the lower and 

upper bound. Designers’ insight in this regard can be quantified using distributions of 

belief over the model’s output (belief functions). We believe that this idea can be 

implemented using Dempster-Shafer’s theory. 
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10.4.3 Designing Open Design Processes 
In this dissertation, the design of design processes is based only on a single metric – 

value of information. However, there can be various other ways in which the 

effectiveness of design processes can be measured. One such class of metrics can be 

derived from the design of open engineering systems. Open engineering systems are 

systems of industrial products, services and/processes that are readily adaptable to 

changes in their environment which enable producers to remain competitive in a global 

marketplace through continuous improvement and indefinite growth of an existing 

technology base (Simpson 1998). Note that both products and the design processes can be 

designed as open systems. The idea of open engineering systems is applied to design of 

products but its application for design of processes is not available in the literature. The 

key to designing open engineering systems is adaptability to changes in the environment. 

The environment for a product is a set of conditions in which it is being used. Hence, a 

product is open if it is adaptable to changes in the conditions in which it is used. The 

environment for a design process includes the product which is being designed, the 

considerations used to design a product (like robustness, reliability, etc). This implies that 

if a similar product is being designed or the same product is being designed with added 

considerations, the process should not change. Hence, a process is open if it can be used 

to design similar products and same products with different design considerations.  

Various techniques like robustness, modularity, maintaining design freedom, 

adaptability, etc. are proposed for achieving openness in a system (Simpson 1998). 

Hence, openness of systems can be measured by developing quantitative metrics for 

these. The quantitative measures related to openness of a product are: design freedom, 

robustness, complexity, modularity (which is closely linked to complexity) and coupling. 
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Some of the metrics for measuring these quantities available in the literature are 

discussed next. 

1. Design Freedom: Design is the process of a series of modifications (expansions and 

reductions) in the design space to achieve a goal. The design space determines the 

freedom a designer has to modify the product. In other words, design freedom 

determines how open the product is to changes in the environment, specifications etc. 

Design freedom is defined as the extent to which a system can be adjusted while still 

meeting its design requirements (Simpson, Rosen et al. 1998). Simpson and co 

authors (Simpson, Rosen et al. 1998) define the design freedom as the overlap 

between the performance of feasible designs and the range of initial targets. 

Wood in (Wood 2000) defines design freedom as a measure of the size of the design 

space implied by the design specification. Wood argues that design freedom is a very 

valuable asset in design and should be managed efficiently. In another paper (Wood 

2001), Wood has shown how different design methodologies are inherently linked to 

design freedom and that there is a need for systematically accounting for design 

freedom in the design process. 

Efficiency and effectiveness of a design process can be improved by delaying design 

commitment (Ward, Liker et al. 1995). This means that it is desirable to configure a 

design process such that the design freedom is maintained further along in the design 

process while still increasing knowledge. These ideas are embodied in the set based 

design philosophy where a set of specifications, design parameters and design 

variables are considered and narrowed down systematically (Ward, Liker et al. 1995; 

Liker, Sobek et al. 1996).  
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The importance of design freedom in designing open engineering systems is clear. It 

is also clear that the design process has a great impact on design freedom. In this 

research, we will investigate existing metrics for measuring design freedom and apply 

them to the various design transformations described in Section 1. The capabilities of 

these metrics for quantifying design freedom along a design process will be 

investigated and new techniques will be developed if the existing ones are not 

suitable for analyzing design processes. 

2. Robustness: The Second Toyota Paradox (Ward, Liker et al. 1995) shows that passing 

ranged sets of specifications in a design process is more robust than passing point 

specifications. The process is relatively insensitive to uncertainties and requirement 

changes along time, which means that the process is robust. Taking a closer look at 

the two scenarios, we can see that the difference between these two kinds of design 

processes is the manner in which design freedom is managed along the process. A 

process in which the design freedom reduces abruptly is less robust as compared to 

the process where a range of design is passed. Hence, robustness of a design process 

is linked to the design freedom. Currently, there are no metrics for measuring such 

robustness of design processes. We need design freedom-based metrics for measuring 

the robustness of design processes.  

3. Complexity, modularity and coupling: Complexity of a system is directly linked with 

the number of interconnected and interwoven parts (Rechtin and Maier 1997), (Simon 

1996). Similarly, a process complexity can be defined as the amount of interactions 

between various activities. In a design process, the interactions between activities are 

through the design space. The more the design space is shared between activities, the 
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more is the complexity. So, it is our feeling that complexity of a design process is 

also linked with the design freedom and the manner in which design freedom is 

shared between designers. 

Complexity is also related to modularity. Various researchers have developed 

modularity metrics for products. Newcomb and co-authors (Newcomb, Bras et al. 

1996) have developed measures for modularity of products from various viewpoints 

(like assembly, service, recycling, etc.) and combined them together into an overall 

modularity metric. As mentioned, complexity is also related to the coupling between 

components. Understanding coupling is crucial for developing architectures robust to 

future changes in customer requirements (Martin and Ishii 2000). Martin (Martin and 

Ishii 1997; Martin and Ishii 2000) developed metrics for measuring coupling between 

components of a product. Other research efforts towards developing metrics for 

complexity include (Elmaghraby 1995) and Maimon and Braha (Braha and Maimon 

1998). In this research, we will use existing metrics for measuring complexity and 

develop new metrics if needed. 

From the review of literature on quantitative measures of openness, we find that 

previous research efforts are mainly focused on quantifying the openness of products but 

openness of design processes has not been addressed in literature. This leads to the 

following research question: “How can the openness of the products and associated 

design processes be quantified?” We believe that since both products and processes can 

be viewed as systems, existing metrics can be used directly or modified appropriately to 

measure openness of design processes.  
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10.4.4 Extending the Method for Interval-based Focalization 
The set based-focalization method for multifunctional design developed in this 

dissertation provides various opportunities for further work. The method presented in this 

dissertation is only limited to cases where designers have single Nash equilibrium. 

Hence, one of the possibilities is to explore cases with multiple Nash equilibria. A 

strategy for implementing cases with multiple Nash equilibria is discussed in Section 

6.5.4. The strategy involves splitting the design space into subspaces when the box-

consistency does not allow elimination of parts of the design space. The idea of splitting 

the design space can also be applied to general scenarios involving single Nash 

equilibrium. Design space splitting would allow concurrent exploration of design space 

as opposed to the sequential and cyclic exploration of design space as presented in the 

dissertation. In other words, the elimination step in the method presented here should be 

augmented with elimination and splitting of parts of design space.  

An evaluation of the convergence of the focalization method as opposed to the point 

based methods is presented in the dissertation. The evaluation primarily indicates whether 

the solution will converge or not. A detailed study of the rate of convergence would be 

helpful to determine how much time would be required for the focalization method to 

converge. The convergence study at each cycle would provide insight into the rate of 

convergence at each cycle. This is important because for non linear problems, the rate of 

convergence can be different at different points in the design space. This would provide 

insight into the need for dynamic shift of control as the problem characteristics change 

by reducing the design space. This is in contrast to the static control assignment 

considered in this dissertation. In the current method, the design space is reduced only by 

using the box consistency principle. Hence, only those parts of the design space are 
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eliminated that do not satisfy a designer’s requirement. This approach is suitable for 

scenarios where this elimination reduces the design space significantly. However, in 

cases where only a small portion of the design space is reduced, other metrics for 

elimination may be required. For example, the elimination criterion may be set to 

removing the portions of the design space that satisfy a designer’s threshold criterion. 

The threshold criterion may be updated (made more stringent) after each cycle. 

In Section 6.5.4, we mention that the method is helpful in scenarios where the 

requirements change with time. This is because at a given time along the design process, 

the method allows keeping the design freedom open (as against the point-based method 

where only a single point in the design space is considered). A detailed investigation on 

changing requirements and its impact on the method is required. Since the method is 

based on interval arithmetic, which is inherently computationally expensive, it is 

important to consider the efficiency related issues in the method. Further, scenarios with 

more than two designers and designers with shared variables are interesting extensions to 

the proposed method. 

10.4.5 Simulating Design Processes 
In this dissertation, the design of design processes is carried out based on the indirect 

metrics such as value of information. This metric is used to make the tradeoff between 

the cost of adding more information and the possibility of achieving benefits in terms of 

the better decisions. The design of design process would be more efficient if instead of 

using the indirect metrics, the design processes can be directly simulated for some direct 

metrics such as cost and time. This approach of simulating design processes would be 

similar to simulating the behavior of products using physics-based models. Models for 
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design processes similar to the physics based models for products are unavailable. The 

idea of simulating design processes is similar to the simulation of discrete event 

processes. In discrete event processes, the information about occurrence of events is 

available in statistical form. Using this statistical information and applying methods such 

as Markov chains, the processes can be analyzed to determine the probability distribution 

of final events. Such a method for simulating design processes is non-existent in the 

literature. An example application of simulation of design processes is in distributed 

multifunctional design processes. In such decentralized design scenarios, the design 

processes can be simulated for determining whether the process will converge or not. The 

convergence of decentralized design processes can be studied using control theory. We 

acknowledge that the simulation of design processes is a complex task and requires the 

development of mathematics to represent design process related information and its 

transformation. The research on design equation is a step towards that direction. 

10.4.6 Implementation of 3-P Approach in a Software Framework 
The implementation of the 3-P approach in this dissertation is limited to the reuse of 

processes for different products. The reuse of product and problem related information 

for different processes is not shown. Further, only a single decision is considered for 

demonstrating the application of processes for different products. The future work 

involves showing the processes involving multiple decentralized decisions in a design 

process, interacting through protocols such as game theory.  

Our vision is to develop a software framework that embodies the components of the 

framework for integrated design of products and design processes including the methods, 

metrics, and information modeling approaches. The framework should be able to 
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automatically configure the design processes based on the design problem specified. The 

framework should be open so that new metrics and methods can be implemented in the 

framework. Further, the framework should be based on the distributed collaborative 

design processes where design process activities are carried out by distributed agents. 

Constructs for configuring design processes in a distributed environment would support 

configuration of information flow between agents, determine their precedence and select 

appropriate agents from the available list of agents. 

10.4.7 Synthesis of Design Processes from Existing Elements 
Similar to designing products, the design of design processes involves three phases – 

analysis, synthesis, and evaluation. This paradigm for design processes is shown in 

Figure 1-8. The synthesis of design processes is used in this dissertation synonymously 

with generation of alternatives. The alternatives generated in this dissertation are only 

based on design process building blocks. It is assumed that the designers know what the 

flow of information is, and can easily generate the process alternatives. This is generally 

true when designers have some experience with the problem under consideration.  

If there is a completely new design scenario, such information about the alternatives 

may not be available. In such scenarios, the primary task is to generate the process 

alternatives. We believe that this is one of the most important future challenges in the 

design of design processes and needs to be investigated further. The task of designing 

design processes in general is broader than just selecting the design process alternatives 

from the available options. 
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10.4.8 Extending the Same Process Design Methods to Other 
Types of Processes 

The focus in this dissertation is entirely on designing products and design processes. 

However, in a product lifecycle, there are various kinds of processes such as the supply 

chain processes, manufacturing processes, procurement processes, maintenance, 

customer relationship processes, etc. All these processes can be designed in a manner 

similar to the design processes. Significant literature is already available in the field of 

modeling manufacturing processes as discrete event systems and optimizing them using 

statistical information. Efforts for modeling supply chain processes are underway by the 

RosettaNet community5. In these efforts, the objective is to develop a) modular building 

blocks for supply chain processes in a manner similar to interaction patterns defined in 

this dissertation, and b) metrics for evaluation of collaboration between supply chain 

partners. Future research opportunities lie in developing systematic frameworks for 

designing other types of processes and in integrating the design frameworks developed 

separately into a consistent “product lifecycle design” framework. 

10.4.9 Different Types of Characterization of Models 
In its current form, the simulation models are characterized using the lower and upper 

bounds of information. This information is used to determine the upper bound on value of 

information. However, in many cases, the information about lower and upper bounds are 

not available. In various circumstances, the designers have access to different kinds of 

models that embody different assumptions but the error bounds on those models are 

unavailable. In such cases, the value of information metric developed in this dissertation 

cannot be used directly. In other cases, higher fidelity of information about the output of 
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simulation models may be available. For example, if the probability at which the output 

assumes certain numerical values is available, then a probabilistic estimate of 

improvement in decision with the improvement in the model can be calculated, which is a 

better estimate of the value of information.  

Further investigation also needs to be carried out for different types of refinement of 

simulation models. Each model can be refined in various directions: by considering 

additional physical phenomena, adding more parameters, coupling physical phenomena, 

developing better models of physical phenomena, etc. The characterization of models 

should be such that the designers should be able to isolate the effect of different types of 

refinement. This is important in order to make decisions such as “along which dimension 

should the simulation model be refined?” Currently, the combined effect of refinement is 

calculated. If different types of characterization of information are available, better 

metrics for design processes are possible. 

10.4.10 Designing Families of Design Processes 
The objectives for designing design processes considered in this dissertation are to 

design customized design processes for specific design problems. It is shown that the 

design of design processes depends significantly on the preferences of designers for 

different objectives. Hence, by changing some design requirements, the design process 

may change significantly. This process alternative would be the best alternative for an 

organization designing a single product. However, this may not be the most effective way 

of designing for an organization designing more than one product with different sets of 

requirements. In such a case, the designers either need to design a single design process 

that would satisfy on an average, the requirements for all products, or, the designers can 
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design a family of design processes that can be customized easily based on the 

requirements. The idea of product families has been recently exploited in design research 

but the design of design process families has not been exploited and is an exciting 

research opportunity. 

10.4.11 Organizational Impact of Designing Design Processes 
The design of design processes is significantly interlinked with the design of 

organizational structure. This is because the flow of information between different 

experts in the organization is restricted by the organizational boundaries. The design of 

design processes is considered in this dissertation entirely independently of the 

organizational structure. It is assumed that all the interactions impose equal amount of 

complexity in the design processes and hence, are treated equally. However, depending 

on the manner in which organizational interaction is set up, some interactions may 

introduce more complexity in the design processes than others. Hence, ideally the design 

of design processes and the organizations should be carried out in a parallel fashion. This 

may not be possible in all cases. In some cases, the design of design processes dictates 

the organizational structure. In such cases, the architecture of design processes serves as a 

guide based on which, the design processes must be structured. In other scenarios, the 

organizational structure dictates the design of design processes. In those cases, the 

organizational structure imposes additional constraints on the design of design processes. 

10.5 A Vision for Research in Engineering Design 
Over the past few decades, research in engineering design has progressed from 

consideration of single objectives to the facilitation of tradeoffs among multiple 

conflicting measures of merit. In the realm of engineering design, efforts currently center 
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on product perfection. What is the next frontier?  There are several possibilities, ranging 

from the global (and concurrent) design of multi-functional, multi-scale systems, whose 

performance is governed by phenomena spanning the various domains of their 

constitution, to series of dependent and interdependent events determining the 

performance of the products in which they culminate. While there are countless 

possibilities of concentrating research efforts, each worthy in their own right, we focus on 

the optimization of Product Development Processes (PDPs).  Process improvement has 

thus far been limited to domain specific applications (e.g., manufacturing, logistics, 

supply chains, etc.).  A central aim in engineering optimization is that of improving 

resource utilization in the achievement of specific objectives.  We assert that the majority 

of resources are committed during a product’s design.  With this in mind, we believe that 

the next logical phase in the evolution of engineering design should be focused on the 

consideration of design processes in addition to products. 

10.5.1 Design Processes as an Enterprise’s Primary Intellectual 
Capital 

A fundamental prerequisite for the sustained improvement of the resulting product-

process systems is the ability to leverage the intellectual capital constituting the required 

level of system understanding. During the last decade, a strategic business approach for 

the effective management and use of corporate intellectual capital has emerged. This 

approach has come to be known as Product Lifecycle Management (PLM) and promises 

to further a holistic consideration of product design, emphasizing integration, 

interoperability, and sustainability throughout a product’s lifecycle in order for an 

engineering enterprise to remain agile with respect to the constantly evolving demands of 

a global market. Intellectual capital thus far has been comprised mainly of product 
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related knowledge and exploited mostly via the reusability and scalability of existing 

products through product platform and product family design. However, we strongly 

believe that focusing solely on product knowledge is not sufficient and limits agility to 

variant design (and adaptive design, to a limited extent). In order to effectively support 

the generation of entire portfolios of products (via derivative and original design), we 

believe that the design process should also be considered to constitute a crucial 

component of an engineering enterprise’s intellectual capital. Hence, we propose a 

paradigm shift that is centered on leveraging design process knowledge derived from 

previously designed products for entirely new products, thereby greatly reducing the 

computational burden associated with design. 

The sustained improvement of Product Development Processes (PDPs) has long been 

the focus of manufacturing and more recently that of design as well.  This is due in part 

to the key realization that a PDP constitutes not only a central component of the 

engineering effort but also a core business process (Berden, Brombacher et al. 2000).  

Increases in problem complexity result in higher demands with regard to costs and time 

associated with executing the simulation models required for evaluating system 

performance. As pointed out by Wheelwright and Clark (Wheelwright and Clark 1992), it 

is those firms that are able to develop and bring to market their products the fastest that 

are able to create a significant competitive advantage for themselves. Efforts aimed at 

reducing product development times, however, are faced with several challenges, 

identified by Lu (Lu 2002) as pertaining to (1) increases in product complexity, (2) 

increases in time-to-market (TTM) pressure, (3) globalization and segmentation, and (4) 

increasing customer demands.  While a number of recent research activities focus on 
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addressing the needs, underlying these challenges, a majority are aimed at meeting the 

intensive information requirements posed.  One of the most notable recent efforts along 

these lines is that of PLM, which is taken to be a strategic business approach for the 

effective management and use of corporate intellectual capital (Edwards 2002; Fenves, 

Sriram et al. 2003; IBM 2004).  

10.5.2 From Product LifeCycle to Process Lifecycle 
In Figure 10-7, three key components of an enterprise’s intellectual capital are 

presented including process information (top-left corner), product information (top-right 

corner) and the supporting PLM infrastructure (bottom) that consists of various software 

tools. Arrows between tools are used to represent flow of information among them. 

Dashed and solid lines are used to illustrate the fact that some of the links are more 

developed than others. As indicated in Figure 10-7, most of the elements of an 

engineering enterprise’s intellectual capital relate to the acquisition of information 

pertaining to either product or process and the tools for transformation of this 

information. The infrastructure of PLM, as defined currently, centers on the integration of 

various software and associated hardware tools, ranging from CAD and analysis 

packages to PDM systems, etc., used for capturing and processing product information. 

To some extent, these tools are also employed for capturing information relating to the 

underlying design processes.  

PLM efforts thus far have been focused on integration and interoperability.  

Although some of the relationships depicted by dashed and solid lines in Figure 10-7 

have been implemented successfully, it is our belief that the effective management of a 

product’s lifecycle (required for effective design process optimization) extends beyond 
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ensuring the seamless flow of information between tools and requires a systems-based 

perspective of the entire engineering enterprise.  Consequently we assert the importance 

of designing the design process alongside the product in PLM.   

PLM Infrastructure

CAD

Requirements
Management

Process 
Planning

Analysis

Market
Analysis

Grid
Computing

Distributed Design 
Framework

PDM 
System

CRM

Knowledge Based 
Engineering

…

Environmental 
Impact Assessment

Process Information Product Information

Entities,
Relationships

Activities,
Sequence

PLM Infrastructure  

Figure 10-7 – Integrating sources of intellectual capital in an engineering enterprise 
(product information, process information, and PLM tools) 

 

Although design processes play a crucial role in PLM, integrating the design of 

“design processes” with the product has received little attention. Additionally, while it is 

true that the potential of leveraging components of existing products towards developing 

new products has been exploited, the possibility of leveraging PLM sub-processes in new 

product realization scenarios is substantial. Thus, as an engineering enterprise becomes 

increasingly concerned with meeting the dynamic requirements of a global marketplace, 

closer attention must be paid to the mechanisms underlying product development. 

Perhaps the most crucial of these mechanisms is the design process. In terms of the 

engineering enterprise, this translates to the need for a systematic means of development 
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for original, adaptive, variant, and derivative products. Although much attention has been 

paid to addressing this issue from a product-centric perspective by exploiting the 

reusability and scalability of products through product platform and product family 

design, not much attention has been paid to an engineering enterprise’s primary resource 

commitment – the design process and its design. In this dissertation we make an effort 

towards filling this research gap. 

Many emerging approaches to PLM are concerned solely with lifecycle 

considerations as they relate to a single product. Considering that most engineering 

enterprises strive to maximize product portfolio diversity, a perspective of PLM focusing 

on the accommodation of the diverse and constantly changing needs of a global consumer 

base may be appropriate. Taking a step back, the question becomes: “How can a 

company ensure the effective use of resources across the entirety of its product portfolio, 

especially as markets evolve with time?” To be successful in such continuously changing 

marketplaces, it is essential to address not only current customer requirements, but also 

accommodate impending changes. With this in mind, it is emphasized that design 

processes should be viewed as constituting the strategy for developing a product, given 

a set of requirements. Satisfying changing customer requirements is thus subject to one’s 

ability to adapt the underlying design processes.  This is true whether referring to a single 

original design or an adaptive, a variant, or a derivative design resulting there from, as 

supported by the assertion of Herbert Simon that “… design process strategies can affect 

not only the efficiency with which resources for designing are used, but also the nature of 

final design as well” (Simon 1996). The design of design processes thus constitutes a 
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fundamental prerequisite for the strategic deployment of products and the effective 

consideration of their respective lifecycle considerations.  

10.5.3 Closing Thoughts 
The future basis for competition is likely to rest on an enterprise’s ability to anticipate 

and quickly respond to market shifts and changes.  This requires the effective leveraging 

of resources for optimum utilization of available assets both in terms of product 

information and the design processes. Considering that the bulk of the effort involved in 

product development lies in perfecting the underlying processes, they should be 

considered to be an enterprise’s primary resource. Consequently, more attention must be 

paid to the manner in which these processes are designed and optimized. 

Our premise, in this dissertation, is that design processes are an integral part of its 

intellectual capital. Accordingly, we establish the design of design processes (together 

with product design) as a critical factor in addressing lifecycle considerations of an 

evolving product portfolio. Five key requirements for enabling the design of design 

processes include identification of design process goals, process related decisions, 

information transformations, and computational models thereof, design process 

configuration, quantification of design process impact, and the integration of product and 

process-centric perspectives. Each of these is a potential avenue for concentrating the 

future efforts of the engineering optimization research community. Hence, attaining and 

retaining a competitive edge is likely to be a function of a company’s agility in adapting 

existing design processes to the realization of adaptive, variant, derivative, and even 

original products. We note that the vision articulated in this section for the engineering 

design community is not meant to replace current efforts in the PLM arena.  Instead, the 
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aim is to augment these efforts via the inclusion of design process related intellectual 

capital and emphasis on process improvement, thereby enhancing the overall agility of 

the engineering enterprise. 

We assert that managing the lifecycle of a design process will have much greater 

leverage than merely considering the design of products in isolation. Hence, we believe 

that the vision and direction provided in this section are fundamental to the success of 

next generation agility in global enterprises. Considering the current scope PLM, this 

direction is extremely important.  We thus envision extending the focus of PLM to 

include the lifecycle considerations of the design process, moving towards Design 

Process Lifecycle Management (DPLM). Considering the comprehensive nature of 

design processes, the underlying research problem is to manage and reuse process 

knowledge as a prime component of the intellectual capital. We must thus ask ourselves:  

 To what extent can families of processes be modeled, captured, and reused?  

 How can top-down design of engineering design processes be reconciled with bottom-

up design of process components? 

 How can all processes factoring into the value chain be designed systematically (e.g., 

engineering design processes, supply chain processes, etc.)?  

 How can product information be reconciled with processes at various levels of 

abstraction in an entire global enterprise? 

In closing, we leave you with the following thought -  

 “Vision without action is merely a dream. 
Action without vision just passes the time. 
Vision with action can change the world.”   

 -- Joel A. Barker.  
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