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SUMMARY 

The atmospheric CO2 concentration has increased throughout the past century and 

has been linked to global climate change. As a temporary solution it has been proposed to 

capture CO2 from either the flue gas point source or from the atmosphere and sequester it 

underground. Supported amine sorbents are promising candidate materials for capturing 

CO2 due to their low heat capacities, large CO2 adsorption capacities, and high CO2 

selectivities at operating conditions. However, the rational design of these types of sorbents 

remains challenging because it is not well understood how CO2 interacts with the sorbent 

on the molecular level. The work in this thesis focuses on the characterization of 

interactions between solid supported amine materials and CO2.  

In the first study, CO2-amine interactions of tertiary aminosilane-grafted silica 

sorbents were elucidated using NMR and in situ FTIR spectroscopy (Chapter 2). It was 

determined that aklylammonium bicarbonates formed on supported tertiary amine sorbents 

under the presence of CO2 and H2O. While alkylammonium bicarbonate formation is 

known to occur in aqueous amine solutions in the presence of CO2, there has been 

conflicting evidence for its formation on solid supported analogues. This study 

demonstrated that ammonium bicarbonates can exist on solid supported amines. However, 

the tertiary amine sorbents were found to be poor CO2 sorbents under dilute CO2 

concentrations with and without the presence of H2O.  

Next, a series of sterically hindered aminosilane grafted silica sorbents were 

evaluated for CO2 adsorption (Chapter 3). Sterically hindered amines, amines with an α-

carbon that is secondary or tertiary, have been well studied in solution and are utilized 



 xvi 

because of their higher amine efficiencies (mol CO2 adsorbed/mol N) when compared to 

their unhindered counterparts. In contrast to solution studies, there has been limited 

research conducted on solid supported sterically hindered amines. Supported sterically 

hindered amines were found to have similar CO2 capacities when compared to unhindered 

analogs upon exposure to 10% CO2/He under humid conditions. It was determined using 

in situ FTIR spectroscopy that sterically hindered amines formed more ammonium 

bicarbonates than unhindered amines in the presence of humid CO2 and that the CO2-

derived species found on the hindered amine sorbents were weakly bound, indicating that 

hindered amine sorbents may require less energy to regenerate.  

In chapter 4, a sterically hindered aminopolymer, poly(2,2-dimethylenimine) 

(PDMEI) was synthesized and incorporated into the pores of mesoporous silica, SBA-15. 

The CO2 adsorption performance of the hindered polymer/silica composite was compared 

to unhindered aminopolymer/silica composites under dry and humid conditions using in 

situ FTIR spectroscopy and fixed bed breakthrough analysis. The hindered polymer 

sorbents had poor amine efficiencies when compared to unhindered polymer sorbents 

under both dry and humid conditions. The addition of poly(ethylene glycol) (PEG) helped 

alleviate some of the limitations associated with the hindered aminopolymer/silica 

composites, improving the CO2 adsorption performance at the conditions studied. The 

experiments suggest that these hindered polymer sorbents were less effective at CO2 

capture than their unhindered polymer counterparts due to poor molecular mobility and 

hydrophobicity of the polymer chains. 
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The results from this dissertation indicate that supported amine materials can adsorb 

CO2 as ammonium bicarbonates in the presence of water and dilute concentrations of CO2. 

Ammonium bicarbonate formation, however, appears to be less favorable on solid 

supported amines than in amine solutions under the conditions employed. In addition, this 

work also suggests that amine type is only one of many factors that must be considered 

when designing aminopolymer-based materials as practical CO2 adsorbents. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

There is a heavy reliance on energy supplied by fossil fuels in the world today, and 

future forecasts do not indicate that fossil fuel usage will diminish.1 Furthermore, the fossil 

fuels used release large amounts of CO2 into the atmosphere, which has been linked with 

global climate change over the past century. As a result, there has been a significant 

research focus on developing technologies to reduce such emissions.
2–7  

Post-combustion capture and sequestration has been proposed to reduce CO2 

emissions.8,9 In this approach, CO2 is removed from the flue gas of power plants (3-15 

vol% CO2)  and is sequestered underground. However, it should be noted that large point 

sources of CO2 such as power plants only partially account for all annual CO2 emissions. 

10 Furthermore, dispersed sources such as automobiles and planes account for 

approximately one-third of annual CO2 emissions. Removal of CO2 from the atmosphere 

(400 ppm CO2), also known as direct air capture (DAC), has been proposed as a way to 

account for CO2 emissions regardless of source.3 Unlike post-combustion capture, DAC is 

considered a negative emission technology as it can theoretically achieve a net reduction 

of CO2 in the atmosphere. Furthermore, it has been suggested that negative emission 

technologies will be necessary to mitigate the effects of climate change.11  

The most common technology proposed for post-combustion CO2 capture is 

absorption by aqueous amine solutions.7 Many amine types have been studied for 

absorption and include unhindered amines, sterically-hindered amines, and cyclic amines 
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(Figure 1.1).12–17 While aqueous amine based absorption is technically feasible, it comes 

at a high processing cost. In particular, the temperature swing-based regeneration step, in 

which the CO2 is stripped from the amine solution, is energy intensive and costly.7 

Researchers have been exploring the use of solid adsorbents as a potential replacement for 

aqueous amine solutions.2,18–21 Solid sorbents offer the potential advantage of reduced 

regeneration energy due to their lower heat capacities when compared to aqueous amine 

absorbents.18 Many adsorbents have been evaluated for CO2 capture including zeolites,22,23 

metal-organic frameworks,24–28 and activated carbons.22,23,29 

 

Figure 1.1. Typical amines used in aqueous media for CO2 absorption.13,17,30,31 

1.2 Solid Supported Amines for CO2 Capture 

Solid supported amines are one class of materials that is promising for post-

combustion capture and DAC.18,21,32,33 These materials are solid analogues of the well-

established aqueous amine absorption technology, and some of the chemistry that makes 

aqueous amines effective for CO2 capture is also found on solid supported analogues. For 

these materials, amines are typically incorporated into the pores of a metal-oxide support 

and act as active sites for chemisorption of CO2. Chemisorbants, such as supported amines, 

have an advantage over physisorbants, such as zeolites and activated carbons, due to their 
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high CO2 selectivity over other major components found in flue gas and air such as N2 and 

O2.18 It should be noted that while a wide array of amine types has been studied in solution, 

studies on supported amines primarily focus on unhindered amine moieties. 

1.2.1 Classes of Solid Supported Amines 

Solid supported amines have been divided into four different classes (Figure 1.2).18,32 

Class 1 materials consist of aminopolymers or amine-containing small molecules that are 

physically impregnated into porous supports.33–39 This class of materials is attractive for 

practical use because of their ease of preparation and large amounts of amines that can be 

incorporated into the support. However, it should be noted that if the amine-containing 

organics used are highly volatile, they can leach out of the support under humid conditions 

and/or during the regeneration step due to the physically bound nature of the amine-

containing organics in this class of materials.40,41 A particularly attractive aminopolymer 

used for this class of materials is low molecular weight branched poly(ethylenimine) (PEI), 

due to its large density of amines, good cyclic stability when used in a temperature (TSA) 

and/or vacuum swing adsorption (VSA) process, and commercial availability.4,42  
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Figure 1.2. Classes of supported amine materials. 

Class 3 materials consist of aminopolymers that are covalently tethered onto the 

support and are constructed by in situ polymerization inside the porous support.43–48 While 

this class of materials have increased thermal stability due to the covalent bond between 

the support and the polymer, they are more difficult to make on a lab scale.   Due to the 

high amine loadings that can be achieved, class 1 and 3 materials typically adsorb large 

quantities of CO2; however, these materials can also suffer diffusional limitations due to 

pore blockage by the polymer, often resulting in slow adsorption/desorption kinetics.33,46  

Class 2 materials consist of aminosilanes that are covalently bound to the surface of 

the porous support.49–52 These materials have high thermal stability due to covalent 

tethering of the aminosilane onto the support, but generally low amine content is achieved. 

Class 2 materials have also been primarily used for fundamental studies on the role of 
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amine type (primary/secondary/tertiary) on CO2 adsorption performance and oxidative 

stability.49,53   

Class 4 materials are a hybrid of both class 1 and 2 materials.54,55 Moreover, they 

contain both grafted molecular aminosilanes and physically impregnated aminopolymers. 

Class 4 materials have been reported to have better stability when compared to class 1 

materials due to the hydrogen bonding interactions between the amines on the 

aminopolymer and the amines that are covalently bound to the surface but could still suffer 

diffusional limitations due to pore blockage.54  

1.2.2 Amine-CO2 Species Formed on Supported Amine Materials  

Alkylammonium carbamates and alkylammonium bicarbonates are amine-CO2 

species that have been proposed for supported amines by extrapolation from the literature 

on aqueous amine solutions (Figure 1.3).56,57 The alkylammonium carbamate species can 

form only on primary and secondary amines under dry and humid conditions and requires 

two amines to capture one molecule of CO2 (i.e. 0.5 mol CO2/mol N).57  

Tertiary amines can capture CO2 as alkylammonium bicarbonate in the presence of 

water.56 The formation of such species would result in a maximum amine efficiency of 1 

mol CO2/mol N. In solution, the alkylammonium bicarbonate species is less thermally 

stable and has slower kinetics of formation when compared to the alkylammonium 

carbamate species.13,58 It should be noted that, theoretically, primary and secondary amines 

can also form bicarbonate species in the presence of water. In fact, in aqueous solution, 

primary and secondary amines form both carbamates and bicarbonates. However, 

carbamates are the dominant species formed in primary and secondary amine solutions, as 
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carbamates are the kinetically and thermodynamically favored product.31 Alkylammonium 

carbonates (0.5 mol CO2/mol N) are another amine-CO2 species that has been reported to 

form in aqueous media.21,31 However, in solution, carbonates are typically a short-lived 

intermediate that evolve into the bicarbonate species.31 

 

Figure 1.3. Amine-CO2 species formed on solid supported amines. 

Recently, NMR and in situ FTIR spectroscopy have been used to further distinguish 

the CO2 adsorption products on supported amines.59–67 Chang et al. initially proposed, 

using in situ FTIR spectroscopy that (bi)carbonates formed on a primary aminosilane 

functionalized sorbent under the presence of dry CO2.66 However, the band assignments in 

this initial study were not supported by subsequent work.58,59,61,63,64,68–72 Furthermore, the 

initial study was conducted under dry conditions and did not consider that alkylammonium 

(bi)carbonate species cannot readily form without water. Subsequent FTIR and NMR 

spectroscopy studies suggested that the amine-CO2 species formed on primary and 
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secondary amines are mostly associated with the alkylammonium carbamate 

species.58,59,61,63,64,68–72  

Additional amine-CO2 species are also observed on supported amines that are 

generally not found in aqueous media such as surface bound carbamate and carbamic acid 

(Figure 1.3).59–61,68,71,72 Danon et al. conducted an in situ FTIR spectroscopy study on a 

primary aminosilane grafted silica sorbent.62 They exposed the material to CO2 and 

subsequently treated the material with heat and vacuum. It was observed that FTIR peaks 

associated with chemisorbed CO2 (1715 and 1510 cm-1) remained after vacuum and heat 

treatment, indicating the species associated with these peaks were strongly bound.  

Furthermore, the bands at 1715 and 1510 cm-1 were attributed to carbonyl stretching mode 

and a C-N stretching mode respectively of a surface bound carbamate species. Bacsik et 

al. also studied amine-CO2 species on primary aminosilane grafted silica using in situ FTIR 

spectroscopy and demonstrated that there were two distinct peaks that were associated with 

a carbonyl stretching mode between 1680 and 1715 cm-1 after exposing the material to 

CO2.59 During dynamic vacuum treatment, the peak at 1680 cm-1
 disappeared immediately, 

while the peak at 1715 cm-1 remained stable. Due to its instability under the presence of 

dynamic vacuum, the peak at 1680 cm-1
 was attributed to the carbonyl stretching mode of 

a carbamic acid. Further evidence of the formation of carbamic acid species on supported 

amine sorbents in the presence of CO2 was provided by subsequent NMR spectroscopy 

studies.68,70–72  

The assignment of alkylammonium bicarbonate is not without controversy.58,59,73–75 

Some studies suggested that bicarbonates do not form on primary or secondary amine 

containing sorbents under humid and dry conditions.59,64,74,76 Furthermore, in these studies, 
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alkylammonium carbamates and carbamic acids appeared to be major amine-CO2 species 

formed. Didas et al., however, claimed that ammonium bicarbonates formed on a primary 

aminosilane grafted silica sorbent in the presence of humid CO2.58 In that study, ammonium 

bicarbonate formation was observed on a low amine loading sample in the presence of 

humid CO2 when the contributions of fast forming carbamate and carbamic acid species 

were subtracted from the CO2 adsorption FTIR spectrum. After spectral subtraction, a band 

at 1350 cm-1 was observed and was assigned to a vibrational mode of the alkylammonium 

bicarbonate species.  

1.2.3 Effects of Humidity 

There have been conflicting reports on the effects of humidity on CO2 adsorption on 

supported amine materials; both enhancements and reductions of CO2 capacity have been 

reported for supported amines under humid conditions.40,58,77–82  

Goeppert et al. observed that humidity reduced the CO2 capacity from 1.71 to 1.41 

mmol CO2/g on fumed silica impregnated with 50 wt% PEI when comparing dry to humid 

conditions (relative humidity of 67%) using 420 ppm CO2 at 25 °C.78 The authors claimed 

that the decrease in CO2 capacity for the higher loading sample when comparing dry to 

humid conditions was due to water blocking CO2 from accessing difficult to reach amines. 

In the same study, the authors observed that humidity had an enhancing effect on CO2 

adsorption on fumed silica impregnated with 33 wt% PEI. The CO2 capacity of the material 

increased from 1.18 to 1.77 mmol CO2/g when comparing dry to humid conditions. 

Furthermore, this indicated that the effect of water can be dependent on amine loading and 

amine dispersion in porous supports. 
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 In another report, the enhancement effect of humidity on CO2 adsorption on primary 

aminosilane grafted silica was observed to be a function of amine loading.58 Furthermore, 

the enhancement effects of humidity on CO2 adsorption was the least pronounced for the 

high amine loading material (4.33 mmol N/g). As stated in the previous section, only the 

low amine loading material (1.65 mmol N/g) partially adsorbed CO2 as ammonium 

bicarbonates under humid conditions. A change of amine-CO2 species from ammonium 

carbamates to ammonium bicarbonates can increase the CO2 adsorption capacity, as the 

later species only requires one amine to adsorb one CO2 molecule while the former species 

requires two amines to adsorb one CO2 molecule. 

It has also been posited that water can increase CO2 uptake through reducing kinetic 

restrictions. Furthermore, adsorbed water can act as a diffusive intermediate to transport 

CO2, liberate amines hydrogen bonded to surface hydroxyls, and can increase the chain 

mobility of amine containing molecules.59,64,83–85 In addition, it should be noted that water 

can increase the thermodynamic stability of amine-CO2 species through hydrogen bonding 

interactions, allowing for larger CO2 capacities.85,86 

While co-adsorption of water can enhance CO2 capacity of supported amine 

materials, it can also increase the energy required to regenerate sorbents as some of the 

energy will go to heating of adsorbed water.87 Therefore, it is also necessary to limit the 

amount of water adsorbed on supported amine materials for a practical separations process. 

1.2.4 Degradation of Supported Amines 

The sorbent lifetime is a critical parameter as it can affect the operating costs of the 

separations process.32 Furthermore, the sorbent used for CO2 capture must retain its CO2 
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adsorption performance over many temperature and/or vacuum swing adsorption cycles. 

Supported amine materials are known to degrade by CO2-induced urea formation, 

oxidation, and loss of amines through evaporation and/or leaching.40,41,53,88–91  It should be 

noted that all degradation pathways are accelerated by increasing temperature. 

 

Figure 1.4. CO2-induced and oxidative degradation species. 

Supported primary amines have been found to deactivate by reacting with CO2 to 

form irreversible urea linkages at temperatures (110-140 °C) that may be used for 

temperature swing regeneration under dry conditions (Figure 1.4).90,92 However, this 

deactivation product does not form as readily in humidified gas streams.93 It should be 

noted that CO2-induced degradation by urea formation is typically not observed for 

secondary and tertiary amines.  

Supported amines are known to deactivate in the presence of oxygen, a major 

component in both air (21%) and flue gas (3-10%), by formation of imines and amides 

(Figure 1.4).53,88,89,91,94 It is believed that the first step of the degradation mechanism occurs 

through the abstraction of a hydrogen radical of the carbon adjacent to the amine group.53 

This mechanism can be accelerated in the presence of transition metal ions and/or elevated 

temperatures.53 A study on how amine type affected oxidative stability was conducted 

using a series of aminosilane grafted silica materials.53 It was determined from this study 
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that sorbents that contained solely secondary amines are prone to oxidative degradation 

through imine and amide formation and sorbents that contained solely primary or tertiary 

amines are relatively resistant to oxidation. Furthermore, imines and amides can decrease 

the basicity of the amine sorbent and hinder its ability to capture CO2. In the same study it 

was also found that a primary amine that was separated from a secondary amine by an ethyl 

group was susceptible to oxidative degradation, indicating an intramolecular degradation 

mechanism.  

Branched PEI, a commonly used aminopolymer for adsorption, has been found to 

oxidatively degrade.88,95 Commercial branched PEI (Mw~800 g/mol) typically consists of 

44% primary, 33% secondary, and 23% tertiary amines.96 From the studies on isolated 

aminosilane grafted sorbents, it can be extrapolated that oxidative degradation can occur 

on secondary and primary amines of PEI. Degradation of primary amines in PEI is possible 

because they are attached to secondary amines by an ethyl group. Consistent with studies 

on grafted molecular amines, aminopolymers that only contain only primary amines, have 

been found to be more resistant to oxidative degradation.95,97 

Recent studies have focused on finding aminopolymers that are more oxidatively 

resistant than branched PEI.36–38,98,99 On the basis that primary and tertiary amines are 

oxidatively stable as isolated aminosilane grafted sorbents, Pang et al. synthesized 

dendrimers consisting of a combination of primary and tertiary amines.37 However, the 

dendrimers were found to degrade in the presence of oxygen at high temperatures (110 °C). 

The authors posited that degradation occurred because the dendrimers rearranged to form 

secondary amine containing cyclic structures at the high temperatures used for the 

oxidation studies. It was also observed that aminopolymers and small molecules that 
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contained secondary amine spaced with propyl linkers were less likely to oxidatively 

degrade when compared to aminopolymers and small molecules that contained secondary 

amine that were spaced with ethyl linkers. Other strategies to increase the oxidative 

stability of aminopolymers include incorporating additives such as poly(ethylene glycol) 

(PEG).100 Furthermore, the hydrogen bonding between the hydroxyl groups of PEG and 

amines can increase resistance to oxidative degradation. 

1.3 Outlook and Scope  

Supported amine sorbents are promising candidate materials for capturing CO2 due 

to their low heat capacities, large CO2 adsorption capacities, and high CO2 selectivities at 

operating conditions.18 However, the rational design of this type of sorbent remains 

challenging because it is not well understood how CO2 and H2O interacts with the sorbent 

on the molecular level. The amine types most commonly used on solid supports consist of 

unhindered primary, secondary and tertiary amines. A much larger variety has been studied 

in aqueous amine literature including cyclic amines and sterically hindered amines.13,16 

To this end, this dissertation reports on the effects of water on the CO2 adsorption 

performance of solid supported amines. Specifically, spectroscopic evidence of the CO2 

species formed on various amine types under dry and humid conditions is provided. This 

dissertation also reports on the CO2 adsorption performance of an amine type that is widely 

studied in solution literature but is often ignored on solid support — sterically hindered 

amines.  
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CHAPTER 2. EFFECT OF HUMIDITY ON THE CO2 

ADSORPTION OF TERTIARY AMINE GRAFTED SBA-15 

Parts of this chapter are adapted from ‘Lee, J. J.; Chen, C.-H.; Hayes, S. E.; Sievers, C.; 

Jones, C. W. Effect of Humidity on the CO2 Adsorption of Tertiary Amine grafted SBA-

15 J. Phys. Chem. C 2018, 121, 23480-23487 with permission of The American Chemical 

Society. 

2.1 Background  

Bicarbonate formation is known to occur in aqueous amine solutions in the presence 

of CO2, but there has been conflicting evidence regarding the formation of such species on 

solid supported analogues during CO2 capture. Ammonium bicarbonate formation could 

be beneficial for solid supported amines because of its lower heat of adsorption compared 

to the ammonium carbamate species.1,2 Moreover, a low heat of adsorption could help 

reduce energy costs associated with the desorption process. In addition, the ammonium 

carbamate species that dominate adsorption on sorbents containing primary and/or 

secondary amines have been shown to slow down diffusion of CO2 by crosslinking 

aminopolymer chains.3 The formation of ammonium bicarbonate species would not lead 

to crosslinking because only one nitrogen site is needed to capture a molecule of CO2. 

Few reports have provided experimental evidence for bicarbonate formation over 

solid amine sorbents.  Didas et al. observed a band assigned to a vibrational mode of 

bicarbonate using in situ FTIR spectroscopy on supported primary amines under humid 

CO2 capture conditions, but only in (apparently) small amounts.4 Furthermore, bicarbonate 
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formation was observed only when the bands associated with fast forming species were 

subtracted from the FTIR spectrum. Foo et al. recently claimed that bicarbonates can form 

on tertiary amine [N,N-dimethyl-3-aminopropyltrimethoxysilane (DMAPS)] grafted SBA-

15 under nominally dry conditions.5 Residual physisorbed water after pretreatment at 110 

°C for 3 h under helium flow was thought to allow for the formation of bicarbonate species 

in the presence of otherwise dry CO2. However, the reported CO2 capacity of <0.01 mmol 

CO2/g shows that the bicarbonate species only formed in very small quantities in nominally 

dry conditions.   

The bicarbonate species has been postulated by 13C solid-state NMR studies in 

several solid amine sorbents, but the assignments are complicated because the bicarbonate 

species isotropic chemical shift is in the same region where 13C signals of carbamate and 

carbamic acid are found (165-160 ppm). Hahn et al. observed a 13C CPMAS solid-state 

NMR resonance at 162.4 ppm and assigned the peak to bicarbonate for a 

tetraethylenepentamine/silica composite that was doused with water and exposed to 

13CO2.6  Moore et al. showed that multiple chemical entities associated with amine-CO2 

species formed when hyperbranched aminosilica was exposed to 13CO2; furthermore, 

evidence for bicarbonate was supported by the lack of splitting of the low-field 13C NMR 

from 14N dipolar coupling and by bimodal T2 relaxation times.7  Recently, Chen et al. 

studied the amine-CO2 species formed on primary amine grafted silica materials. 

Furthermore, they revealed through 13C{15N} and 15N{13C} rotational echo double-

resonance (REDOR) NMR that a fraction of the 13C intensity at the resonance frequency 

corresponding to both bicarbonate and carbamate chemical shifts (~165 ppm) was absent 

under REDOR dephasing, while the 15N{13C} REDOR behaved as expected for a 15N-13C 
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spin pair.8 This result implied that some of the 13C intensity was missing because it was not 

in dipolar contact with nitrogen — a result consistent with bicarbonate formation.  

In this chapter, to provide clearer evidence for bicarbonate formation on amine 

sorbents, CO2 capture on tertiary amine [N,N-dimethyl-3-aminopropyltrimethoxysilane 

(DMAPS)] supported SBA-15 sorbents were studied under dry and humid conditions 

(Figure 2.1). Tertiary amine grafted sorbents are rarely studied in this application, but they 

were chosen here because it is known that tertiary amines do not form alkylammonium 

carbamates, so such adsorbed species can be removed from consideration when making 

assignments of adsorbed CO2. To observe effects of amine loading under both dry and 

humid CO2 conditions, samples with a high loading (HLDMAPS-SBA) and a medium 

loading (DMAPS-SBA) of supported tertiary amine were synthesized. Differences in 

amine loading can affect the hydrophilicity of the sorbent and could also lead to different 

CO2 species adsorbed.9 Dry and humid CO2 uptakes and amine efficiencies of the 

supported tertiary amines were measured using fixed bed breakthrough experiments. NMR 

and in situ FTIR spectroscopy studies were used to identify chemisorbed species under dry 

and humid conditions. 

 

Figure 2.1. DMAPS and its hypothesized adsorbed bicarbonate species using humid CO2. 
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2.2 Experiments 

2.2.1 Materials   

Dimethylaminopropyltrimethoxysilane (DMAPS) and hydrochloric acid (36 wt%) 

were purchased from Alfa Aesar. Toluene (99.5%), pluronic-123 (P123), and 

tetraethylorthosilicate (TEOS, 98%) were obtained from Sigma-Aldrich. Hexanes (98.5%) 

was obtained from BDH. Ethanol (100%) was obtained from Koptec.  

Pluronic P-123 (24.0 g) was dissolved in distilled water (636 mL) and concentrated 

HCl (120 mL) in a 2 L Erlenmeyer flask.  The mixture was stirred for 3 h at room 

temperature. Tetraethyl orthosilicate (46.24 g) was added dropwise to the mixture. The 

mixture was then stirred continuously for 20 h at 40 °C. The stir bar was removed, and the 

mixture temperature was maintained at 100 °C for 24 h. The mixture was then quenched 

and filtered with copious amounts of distilled water. The resulting white powder was then 

dried in an oven overnight at 75 °C. Afterwards, the sample was put into a calcination oven. 

To calcine the white powder, it was heated to 200 °C at 1.2 °C min−1, held at that 

temperature for 2 h, heated to 550 °C at 1.2 °C min−1, held at that temperature for 6 h, and 

finally cooled to room temperature. 

To graft DMAPS on to SBA-15, SBA-15 was dried on a Schlenk line at 110 °C under 

a pressure of <20 mTorr overnight. Afterwards, SBA-15 was added to a flask with toluene. 

DMAPS was then added to the mixture and was stirred at 85 °C for 24 h. The following 

product was washed using copious amounts of toluene, hexane, and ethanol. Next, the 

sample was dried on a Schlenk line at 110 °C and under a pressure of <20mTorr overnight. 
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2.2.2 Materials Characterization  

Nitrogen physisorption was performed using a Micromeritics Tristar II 3020 

instrument at -196 °C. Samples were activated under vacuum at 110 °C for 12 h. Surface 

areas were calculated by the Brunauer–Emmett–Teller (BET) method (P/Po range used to 

calculate BET surface areas was 0 − 0.3), and the pore volumes were calculated based on 

the total amount of N2 adsorbed at P/Po=0.95.10 Amine loadings were based on 

measurements on a Netzch STA409PG TGA. The organic content was estimated from 

mass loss between 120 and 900 °C under nitrogen diluted air flow. 

2.2.3 CO2 and H2O Adsorption Measurements  

Dry CO2 uptake measurements were performed by thermogravimetric analysis 

(TGA) with a TA Instruments Q500 analyzer. Each sample was pretreated at 110 °C for 3 

h under He flow and then cooled to 30 °C. The gas flow was then switched to 1% CO2/He 

for 12 h. The CO2 capacities of the samples were calculated by the weight change between 

the activated sample and the sample after exposure to 1% CO2/He for 12 h. 

Humid and dry CO2 capacities were obtained by fixed bed breakthrough 

experiments. A 6.35 mm x 3.86 mm (outer diameter x inner diameter) stainless steel tube 

was used as the fixed bed and glass wool was used to support the sample. A schematic of 

the apparatus is seen in Appendix A (Figure A.1). The outlet gas was analyzed using a Li-

COR Li-840A CO2/H2O IR gas analyzer. All runs were conducted at 1 atm and used a CO2 

concentration of 1% CO2/He. A typical run used 300-500 mg of pelletized sample at a size 

of 53-150 μm. Flow rates of all gases were held constant at 50 mL/min. For both dry and 

humid experiments, samples were pretreated by flowing He at 110 °C until the outlet flow 
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of CO2 and H2O was less than 3*10-4 mL/min and 5*10-3 mL/min respectively. Afterwards 

the temperature of the bed was reduced to 30 °C for uptake measurements. For dry 

experiments, 1% CO2/He was then introduced to the bed. For humid experiments, a humid 

He stream (PH2O = 21 mbar) was first introduced into the bed until the outlet stream 

concentration matched the inlet stream concentration of H2O. Humidity was generated by 

flowing gases through a sparger containing deionized H2O at 18 °C. Once the bed was 

saturated with H2O, a humid CO2 stream was introduced to the bed. The adsorption 

experiments ended once the outlet stream concentration of CO2 matched the inlet stream 

concentration of CO2. For both dry and humid experiments, the CO2 was desorbed from 

the bed by flowing dry helium through the bed at a temperature of 110 °C. Desorption 

experiments ended once the outlet flow of CO2 and H2O was less than 3*10-4 mL/min and 

5*10-3 mL/min respectively.  

The CO2 adsorption capacities of the sorbents were calculated by evaluating the area 

confined between the CO2 breakthrough curve for a bed containing the sorbent and the CO2 

breakthrough curve for a bed containing glass wool. The CO2 desorption capacities were 

calculated by evaluating the area under the CO2 desorption curve. Dead-time was also 

accounted for in desorption measurements.  

A Hiden IGASorp was used to measure water vapor isotherms. The sorbents were 

pretreated at 110 °C for 3 h under nitrogen flow and cooled to 30 °C. Varying partial 

pressures of water vapor were then introduced in nitrogen flow. H2O capacities of the 

samples were calculated by the weight change between the activated sample and the sample 

after exposure to varying partial pressures of water vapor. 
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2.2.4 In Situ FTIR spectroscopy  

A Harrick High Temperature Transmission Cell with CaF2 windows was used for in 

situ IR spectroscopy experiments. Each sample was pressed into a self-supported wafer 

and loaded into the IR cell. The spectrometer used was a Thermo Nicolet iS10 with a 

mercury cadmium telluride (MCT) detector. Flow rates of all gases were held constant at 

100 mL/min. The sample was activated at 110 °C for 3 h under helium flow. Afterwards, 

the sample was cooled to 30 °C, and a background spectrum was collected. For dry 

experiments, a 1% CO2/He mixture was then introduced into the cell for 30 min. For humid 

experiments, after activation, humid helium was introduced into the cell for 1 h, and a 

background spectrum was collected. Next, humid CO2 was introduced into the cell for 30 

min. To eliminate water vapor peaks for humid CO2 adsorption experiments, a background 

containing water vapor and helium was subtracted from the results. After each experiment, 

the wafer was cut with a circular stamp (6.35 mm in diameter) and was weighed to 

determine its density. All spectra were normalized by the density of the wafer. Each 

spectrum was collected with 64 scans at a resolution of 4 cm-1.  

2.2.5 Solid State NMR Spectroscopy  

The samples were activated at 105 °C under vacuum at 40 mTorr for 12 h, then 

cooled down to room temperature.  For dry experiments, the sample was transferred to a 

glove bag under continuous nitrogen flow and packed in a zirconia rotor for solid-state 

NMR. The rotor was placed in a glass tube that was subsequently connected to a gas 

manifold. The manifold was then evacuated to 40 mTorr and subsequently loaded with 1 

atm of 13CO2 (Sigma-Aldrich, 99%) for 20 h. For wet experiments, 80 mg deionized water 
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was added to hydrate 80 mg of sample—enough to cause the solid to clump but less than 

the amount needed to create a slurry. The damp solid was then packed in a zirconia rotor. 

The loading of 13CO2 followed, using the same procedure that was used for the dry 

experiment. 

13C{1H} static Hahn spin-echo experiments with 1H decoupling were performed 

using a 6.93 T magnet with a 5 mm HXY Chemagnetics MAS NMR probe at a 13C 

resonance frequency of 74.18 MHz, and 1H frequency of 294.97 MHz. The following 

parameters were used for the spin-echo pulse sequence:  π/2 pulse length for 13C of 5.5 µs, 

τ echo delay time (between first and second pulses) of 200 µs, 1H decoupling strength of 

50 kHz, TPPM phase cycling during signal acquisition, number of scans 2828, and a 

recycle delay of 10 s. 

2.3 Results and Discussion 

2.3.1 Materials Characterization 

Nitrogen adsorption-desorption isotherms for the sorbents are displayed in Figure 

2.2. Mesoporosity in all materials was confirmed by the presence of a hysteresis loop in 

each of the adsorption-desorption isotherms. BET surface areas, pore volumes, and amine 

loadings determined by TGA are shown in Table 2.1. The surface areas and pore volumes 

of the sorbents decreased with increasing amine loading, as expected. 
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Figure 2.2. Nitrogen physisorption isotherms for SBA-15, DMAPS-SBA, and 

HLDMAPS-SBA. 

 

Table 2.1. Textural and physical properties of sorbents. 

Materials 

BET Surface 

Area 

(m²/gSiO2) 

Volume of Pore 

(cm³/gSiO2) 

 

Estimated 

Amine Loading 

(mmolN/g) 

SBA-15 961 1.19 - 

DMAPS-SBA 386 0.55 1.9 

HLDMAPS-SBA 289 0.45 2.5 

 

FTIR spectra of the sorbents following activation at 110 °C under He flow for 3 h 

are shown in Figure 2.3. All spectra were recorded at a cell temperature of 30 °C. A peak 

at 3741 cm-1 was observed in the IR spectrum of SBA-15 and is attributed to the OH 
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stretching vibration of free silanol groups.11,12 Peaks at 1977 cm-1 and 1875 cm-1 are 

overtones of Si-O vibrational modes and were seen in all spectra.11 A water deformation 

peak at 1648 cm-1 was present in all spectra even after activation, indicating that a residual 

amount of water remained on all sorbents.13 In addition, a broad peak between 3700-2500 

cm-1 indicated hydrogen bonding of silanol groups and water molecules on all sorbents.13 

The peak of free silanol stretching modes was absent in the spectra of DMAPS-SBA and 

HLDMAPS-SBA, indicating that the silanols had reacted with the aminosilanes or were 

engaged in hydrogen bonds. Peaks associated with CH3 and CH2 stretching modes were 

seen in the spectra of tertiary amine sorbents in the 3000-2800 cm-1 region.5,11,14 A 

moderately sharp peak containing contributions from asymmetric CH3 deformations and 

CH2 deformations was observed at 1467 cm-1. Symmetric CH3 deformations gave rise to 

peaks at 1443 cm-1 and 1411 cm-1
,  while peaks at 1378 cm-1, 1345 cm-1, and 1321 cm-1  are 

attributed to CH2 wagging vibrations.5,14,15 
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Figure 2.3. FTIR spectra of activated sorbents: (1) SBA-15 (2) HLDMAPS-SBA (3) 

DMAPS-SBA from (a) 4000-1800 wavenumbers and (b) 1800-1300 wavenumbers. 

2.3.2 CO2 and H2O Adsorption  

The CO2 capacities of the sorbents were measured using a 1% CO2/He gas mixture 

under dry and humid conditions at 30 °C. Each humid run was conducted at 49% relative 

humidity (RH) or PH2O = 21 mbar. Dry CO2 capacities were measured using both thermal 

gravimetric analysis and fixed bed breakthrough measurements. Both methods resulted in 

the same CO2 capacity for each adsorbent. For all fixed bed measurements, both the 

adsorption and desorption CO2 capacities were measured. There was no discrepancy of 

CO2 adsorption and desorption under dry conditions. However, the CO2 adsorption 

capacities were consistently higher than the CO2 desorption capacities for each adsorbent 
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under humid conditions for all sorbents studied. To determine if the discrepancy between 

adsorption and desorption was an artifact, each humid fixed bed run was conducted two 

times in series using the same sample (Table A.1). It is expected that the CO2 adsorption 

capacity would decrease after each adsorption/desorption cycle if CO2 was not fully 

desorbing off the sorbents. However, from these cycling experiments, it was observed that 

the adsorption and desorption capacity remained the same for each cycle on all sorbents.  

The discrepancy between adsorption and desorption capacity was thus not likely due to 

incomplete CO2 desorption and is likely an instrumental error.  

For both humid and dry conditions, the tertiary amine grafted sorbents exhibited poor 

CO2 capacities compared to primary and secondary amine grafted sorbents (Table 2.2).5 

However, all sorbents showed an increase in CO2 capacity in the presence of humidity 

when compared to their dry CO2 capacities. DMAPS-SBA was observed to have the 

highest CO2 capacity under humid conditions. The increase in CO2 capacity in the presence 

of humidity for the tertiary amine sorbents is likely due to formation of ammonium 

bicarbonates, which will be explored further below.   

Table 2.2. Dry and humid CO2 capacities. 

Adsorbent 

Amine 

Loading 

[mmolN/g] 

Dry CO2 

Uptake 

[mmolCO2/g] 

Dry 

Amine 

Efficiency 

[%] 

 

Humid CO2 

Uptake 

(Adsorption) 

[mmolN/g] 

Humid CO2 

Uptake 

(Desorption) 

[mmolN/g] 

Humid 

Amine 

Efficiency 

(Desorption) 

[%] 

DMAPS-

SBA 
1.9 0.01 0.5 0.10 0.04 2 

HLDMAPS-

SBA 
2.5 0.01 0.4 0.06 0.02 1 
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For ammonium bicarbonates to form on amine sorbents, both H2O and CO2 must be 

present. However, the amount of water adsorbed on each of the sorbents is expected to vary 

based on their hydrophilicity at fixed relative humidities and temperatures. The varying 

amounts of water adsorbed on the surface could affect the concentration of ammonium 

bicarbonates that are formed. To this end, a water adsorption isotherm was measured at 30 

°C for all sorbents (Figure 2.4). The bare silica support had the highest uptake of water. 

Water adsorption decreased with the addition of tertiary amines onto the sorbent.9 The low 

CO2 capacities for DMAPS-SBA and HLDMAPS-SBA under humid conditions could be 

due, in part, to their low water capacities. If the amount of adsorbed water is too low, it is 

possible that ammonium bicarbonate formation may not occur to a measurable extent. Even 

though HLDMAPS-SBA has more tertiary amine sites for bicarbonates to form, 

HLDMAPS-SBA has a lower CO2 capacity under humid conditions than DMAPS-SBA. 

This may be due to HLDMAPS-SBA having a lower affinity for water than DMAPS-SBA 

(Table 2.3). 
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Figure 2.4 Water adsorption isotherm of the sorbents. 

Table 2.3. Water adsorbed at PH2O = 21 mbar and 30 °C. 

 SBA-15 DMAPS-SBA HLDMAPS-SBA 

Water Adsorbed 

(mmol/g) 
11.4 3.9 1.5 

 

2.3.3 FTIR spectra of Adsorbed H2O  

The effects of water on the sorbents were probed using in situ FTIR spectroscopy. 

After activation for 3 h at 110 °C, a humid He stream (PH2O = 21 mbar) at 30 °C was 
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introduced into the IR cell. Peaks in the 1800-1300 cm-1 region arose in the presence of 

humid He for all sorbents (Figure 2.5). The water adsorption spectra for all sorbents 

showed a peak at 1648 cm-1 attributed to the OH deformation vibrations of physisorbed 

H2O.13 A broad peak between 3500-3000 cm-1 associated with the OH stretching vibrations 

of H2O and hydrogen bonded silanols also appeared (Figure A.4, Figure A.5, and Figure 

A.6). Additionally, the spectra of DMAPS-SBA and HLDMAPS-SBA showed a sharp 

peak at 1488 cm-1 and multiple peaks centered around 1388 cm-1. The peak at 1488 cm-1 

may be due to a NH deformation of a protonated tertiary amine, or it could originate from 

a blueshift of the CH3 deformation in the presence of water. Peaks associated with NH 

stretching vibrations of a protonated tertiary amine were observed between 2500-2000 cm-

1 (Figure A.4 and Figure A.5).14 Multiple peaks centered around 1388 cm-1 are postulated 

to be due to perturbations of multiple CH3 and CH2 deformation and wagging modes in the 

presence of water. A decrease of the intensities of the methyl and methylene stretching 

bands of the supported tertiary amines between 3000-2800 cm-1 was also observed in the 

presence of water (Figure A.4, Figure A.5). Water is known to induce shifts in peak 

intensity and position of methyl and methylene vibrational modes in polymers and alkyl 

ammonium cations.16–20  Foo et al. conducted an in situ IR study on a tertiary amine sorbent 

under nominally dry CO2 flow and found similar peaks to those shown in Figure 2.5.5 Based 

on the experiments shown here, it is likely that the peaks in the region of 1800-1300 cm-1 

that are seen in that study are a combination of (i) changes of CH2 and CH3 deformation 

modes by water, (ii) a NH deformation mode of a protonated amine, and/or (iii) modes of 

bicarbonates.   
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Figure 2.5. FTIR spectra of (a) DMAPS-SBA and (b) HLDMAPS-SBA after 2 h of 

humid He exposure with the activated sample as the background. 

2.3.4 FTIR spectra of Adsorbed CO2  

To probe the structure of chemisorbed CO2 species on the tertiary amine sorbents, in 

situ FTIR spectroscopy was conducted under humid and dry CO2 flow. Peaks were 

observed in the 1800-1300 cm-1 region under dry conditions for the tertiary amine sorbents 

(Figure A.10 and Figure A.11). Using a mass spectrometer, it was revealed that the amount 

of water in the CO2-in-helium gas cylinder was approximately 30 ppm. The peaks observed 

in the 1800-1300 cm-1 region for the tertiary amine sorbents under dry conditions could be 

a result of adsorbed water and/or bicarbonate formation. Owing to the residual water found 

in the CO2 cylinder and the tertiary amine sorbents, after activation, ammonium 

bicarbonate formation on the tertiary amine sorbents cannot be ruled out for the nominally 

dry CO2 runs.5  
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After humid CO2 was introduced into the IR cell, additional peaks arose for the two 

tertiary amine sorbents in the 1800-1300 cm-1 region (Figure 2.6). A broad peak between 

2500-2000 cm-1 was also observed and is associated with the NH stretch of a tertiary 

ammonium ion (Figure A.7 and Figure A.8).14,21 The peak at 1616 cm-1 is attributed to the 

asymmetric COO– stretch of a bicarbonate ion, and the peak at 1358 cm-1 is attributed to 

the symmetric COO– stretch of a bicarbonate ion.22–24 It should be noted that the peaks 

were more intense in the 1800-1300 cm-1 region for the DMAPS-SBA spectrum when 

compared to the HLDMAPS-SBA spectrum.  Furthermore, this observation indicates that 

more bicarbonates formed on the sample with the lower amine loading, likely due to 

HLDMAPS-SBA having less affinity for water. These spectra confirm the existence of 

ammonium bicarbonate species on solid supported tertiary amines. However, the low IR 

peak intensities of bicarbonates combined with the low CO2 capacity for both HLDMAPS-

SBA and DMAPS-SBA suggest that bicarbonate formation is not highly favored for 

tertiary amine containing sorbents even in the presence of humid CO2. 

 

Figure 2.6. FTIR spectra of (a) DMAPS-SBA and (b) HLDMAPS-SBA after humid 1% 

CO2 exposure with the sample presaturated with water as the background. 
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2.3.5 Solid-state NMR Spectroscopy  

 

Figure 2.7.  13C{1H} static spin-echo NMR spectrum of 13CO2 exposed DMAPS-SBA, 

doused with water prior to CO2 exposure. 

Solid-state NMR can be used as a complimentary tool to determine the products of 

CO2 chemisorption by DMAPS-SBA and SBA-15. As expected, there was no evidence of 

chemisorbed species in either dry or humid conditions on bare SBA-15. No evidence of 

chemisorbed or physisorbed CO2 was also observed on DMAPS-SBA under dry 

conditions. Figure 2.7 shows the 13C{1H} static NMR spectrum that was acquired using 

the Hahn spin-echo pulse sequence on a sample of DMAPS-SBA that was doused with 

water and then loaded with 13CO2.  A 13C resonance at 162.2 ppm was found only for 13CO2 

exposed DMAPS-SBA that was doused with water. It should be noted that many attempts 

were made to find amine-CO2 species on DMAPS-SBA using H2O-saturated 13CO2 gas, 

and “lightly-hydrated” DMAPS-SBA samples. Ultimately, CO2 adsorption was only 

detectable by CPMAS NMR on DMAPS-SBA samples that were near-saturated with 

water. This resonance is assigned to bicarbonate; mechanistically, the only chemisorbed 

product expected for tertiary amine sorbents is bicarbonate.6 This resonance is shifted 
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slightly to lower frequency when compared to the resonance that has been previously 

observed for bicarbonate formation on 13CO2-reacted primary amine grafted silica; 

however, this is unsurprising because the resonance for bicarbonate is highly dependent 

upon pH, ranging from 160 to 170 ppm.25  The peak width (full-width half-maximum) of 

the resonance is 3 ppm (225 Hz), which is narrower than typically found in static solid-

state NMR experiments, even with 1H decoupling.5,7,8 The unusually narrow lineshape 

suggests that the species experiences some form of motional averaging. These results 

confirm that formation of bicarbonate needs the presence of water, and when water is not 

in abundance, DMAPS-SBA shows little or no evidence for chemisorption of CO2.  

2.3.6 Conclusions 

This fundamental study explored the behavior of solid supported tertiary amine 

sorbents under dry and humid CO2 capture conditions. Bicarbonate formation on tertiary 

amine sorbents in the presence of humid CO2 was confirmed using in situ FTIR and 13C 

NMR spectroscopy. The tertiary amine sorbents showed a dramatic increase in CO2 

capacity when water was present in the gas mixture, as water is necessary for bicarbonate 

formation. However, the CO2 capacity of these sorbents were poor, even in the presence of 

humidity. This result implies that bicarbonate formation over tertiary amine sorbents are 

less practically useful for CO2 capture than carbamate formation over primary and 

secondary amine sorbents. Using in situ IR spectroscopy and under humid CO2 flow, it was 

seen that the peaks associated with bicarbonates were more intense for the medium loading 

tertiary amine sample when compared to that of the high loading tertiary amine sample, 

indicating that more bicarbonates formed on the medium amine loading sample. This is 

proposed to be due to the more optimal balance of water and CO2 loading on the surface 
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of the medium loading sorbents, with the high loading amine sorbent having more 

unfavorable hydrophobicity. These new insights show that bicarbonate formation may not 

be favored for tertiary amines at flue gas capture or direct air capture conditions.  

It should also be noted that water affects the spectroscopic region where chemisorbed 

CO2 appears, 1800-1300 cm-1, for supported amine sorbents. These peaks are sometimes 

falsely associated with vibrations of amine-CO2 species. Peaks associated with water and 

perturbations of aminosilane modes due to water were even observed under purportedly 

dry conditions due to residual water found both in the gas cylinder and on the sorbent after 

activation. Careful consideration and appropriate control/background spectra must be 

obtained when conducting IR studies in the presence of water, and it should be recognized 

that even under ostensibly “dry conditions”, water often remains on the surface of amine 

sorbents. 
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CHAPTER 3. SILICA SUPPORTED STERICALLY HINDERED 

AMINES FOR CO2 CAPTURE 

Parts of this chapter are adapted from ‘Lee, J. J.; Yoo, C.-J.; Chen, C.-H.; Hayes, S. E.; 

Sievers, C.; Jones, C. W. Silica Supported Sterically Hindered Amines for CO2 Capture. 

Langmuir 2018, 34, 12279–12292’ with permission of The American Chemical Society. 

3.1 Background 

Sterically hindered primary and secondary amines in aqueous solutions, hereafter 

referred to simply as “hindered amines”, have been used for CO2 absorption due to their 

high selectivity towards bicarbonate formation.1–4 A hindered amine is defined as a primary 

or secondary amine with a secondary or tertiary α-carbon. The higher selectivity of 

bicarbonate formation of hindered amines is attributed in part due to poor carbamate 

stability, which originates from unfavorable steric interactions between the COO‒ group 

and the methyl and methylene substituents on the α-carbon.1,5,6 Due to the increase in 

bicarbonate formation with such structures, hindered amines have increased amine 

efficiency when compared to unhindered primary and secondary amines.1 Moderately 

hindered amines (hindered secondary amines that have no more than one secondary α-

carbon or hindered primary amines) are of specific interest due to bicarbonate formation at 

practical time scales. Moderately hindered amine solutions have slower CO2 absorption 

rates than unhindered primary and secondary amine solutions but have faster CO2 

absorption rates compared to tertiary amines.1,7 Severely hindered amine solutions 
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(hindered secondary amines that have a tertiary α-carbon) do not form carbamates and have 

poor absorption kinetics, as observed for tertiary amines.1,7  

 

 

Figure 3.1. Proposed mechanisms of bicarbonate formation: carbamate hydrolysis8 and 

base catalyzed hydrolysis.9 R denotes a hydrogen atom or  an alkyl group.  

The causes of the differences between the kinetics of bicarbonate formation on 

various amines remain unclear. One hypothesis is that moderately hindered amines allow 

for faster formation of bicarbonates than tertiary and severely hindered amines due to a 

different mechanism of formation.1,7 Furthermore, the fast formation of the bicarbonate 

species on moderately hindered amines is attributed to carbamate hydrolysis, whereas slow 

formation of bicarbonates on tertiary and severely hindered amines are attributed to base 

catalyzed hydrolysis (Figure 3.1). In the carbamate hydrolysis pathway, carbamates are 

initially formed, but due to their low stability on hindered amines, they are further 

hydrolyzed into bicarbonates. However, recent computational studies suggest that 

carbamate hydrolysis on unhindered and hindered amines are equally unlikely at relevant 

timescales due to the high activation barrier of the pathway and that it is more likely that 

all amines form bicarbonates through base catalyzed hydrolysis of CO2.10–14 Stowe and 

Hwang, using ab initio molecular dynamic simulations combined with metadynamics, 

suggested that differences in kinetics of bicarbonate formation between different amine 
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solutions, given the same base catalyzed hydrolysis mechanism, can be influenced by 

entropic factors.15  Furthermore, the authors suggested that the faster kinetics of a hindered 

primary amine (2-amino-2-methyl-1-propanol) when compared to a tertiary amine 

(diethylethanolamine) could be attributed to the primary hindered amine’s comparatively 

smaller entropic penalty associated with the rearrangement of water molecules near the 

amine to stabilize transition states of reaction intermediates. 

While hindered amines have been widely studied in aqueous solution, as noted 

above, very little research has been conducted on solid supported analogues. Lee et al. 

studied the CO2 adsorption performance on low molecular weight hindered alkanolamines 

impregnated on activated carbon.16 However, likely due to amine leaching concerns, they 

did not study the effects of humidity on hindered amine sorbents. Zhao and Ho 

demonstrated that hindered amine membranes displayed enhanced CO2/N selectivity and 

CO2 permeability when compared to their unhindered counterparts at 110 °C and a feed 

pressure of 2 atm.17,18 The Yogo research group recently studied supported 

tetraethylenepentamine (TEPA) with hindered functional groups on the terminal amines 

for CO2 capture and observed improved regeneration compared to unfunctionalized 

TEPA.19–21 

It has been previously suggested that unhindered amine adsorbents are poor at 

forming bicarbonates.22,23 Due to the reduced ability of the carbon atom in CO2 to form 

covalent bonds with the amine, supported hindered amines may help promote formation of 

ionically bonded bicarbonates, thus increasing theoretical amine efficiency, reducing 

diffusional limitations, and reducing energy requirements for regeneration. This study aims 

to better understand the effects of steric hindrance on the adsorption performance of 
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supported amines under dry and humid conditions. To this end, a moderately hindered 

primary amine, (3-amino-3-methylbutyl)triethoxysilane (AMBS); a moderately hindered 

secondary amine, (N-cyclohexylaminopropyl)trimethoxysilane (CHAPS); and a severely 

hindered secondary amine, (tert-butylaminopropyl)trimethoxysilane (TBAPS) were 

grafted onto a prototypical mesoporous silica SBA-15 support at similar loadings (Figure 

3.2), and the CO2 capacities under dry and humid conditions were evaluated for these 

materials. Mesoporous SBA-15 was chosen as a support due to its high surface area and 

uniform pores, as well as extensive literature of comparable sorbents with different amine 

structures. In situ IR spectroscopy was also utilized to identify chemisorbed CO2 species 

formed under both dry and humid conditions. Supported amines with varying levels of 

steric hindrance were studied here to observe how different bulky α-carbon substituents 

affected the formation of adsorbed CO2 species. It should be noted that bicarbonate 

formation in amine solutions is a strong function of CO2 concentration. It is less likely for 

bicarbonates to form in amine solutions at low CO2 concentrations (<1% CO2).2 Therefore, 

concentrations of CO2 found in flue gas (10% CO2) were used in this study.  

Also, an important requirement associated with a viable CO2 capture technology is 

finding a sorbent with a sufficiently long cyclic lifetime. Specifically, dilute CO2 sources 

such as air and flue gas contain O2 at concentrations of 21% and 3-10%, respectively, 

making it critical for the sorbent employed to be oxidatively stable under such 

conditions.24–29 In addition, the sorbent must be able to withstand elevated temperatures 

used in the regeneration step of the temperature swing adsorption processes. To this end, 

the oxidative and thermal stabilities of each sorbent were also studied to help assess the 

potential lifetime of the sorbents. 
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Figure 3.2. Hindered aminosilanes, (3-amino-3-methylbutyl)triethoxysilane (AMBS); 

(tert-butylaminopropyl)trimethoxysilane (TBAPS); and (N-

cyclohexylaminopropyl)trimethoxysilane (CHAPS), grafted onto SBA-15. 

3.2 Experiments 

3.2.1 Materials  

Hydrochloric acid (36 wt%) was purchased from Alfa Aesar. Toluene (99.5%), 

Pluronic P-123, tetraethylorthosilicate (TEOS, 98%), 13CO2 (99%), and all materials used 

for the synthesis of (3-amino-3-methylbutyl)triethoxysilane and (E)-2-methyl-4-

(triethoxysilyl)but-3-en-2-amine were obtained from Sigma-Aldrich. Hexanes (98.5%) 

was obtained from BDH. Ethanol (100%) was obtained from Koptec. The following gases 

were purchased from Airgas: ultra-high purity N2 , ultra-zero air, ultra-high purity He, and 

10% CO2/He were purchased from Airgas. (N-cyclohexylaminopropyl)trimethoxysilane 

and (tert-butyl)aminopropyltrimethoxysilane were purchased from Gelest. 

3.2.2 Materials Synthesis 

  SBA-15 synthesis is based on a previous procedure.30 Pluronic P-123 (24.0 g) was 

dissolved in concentrated hydrochloric acid (120 mL) and distilled water (636 mL) in a 2 

L Erlenmeyer flask. The solution was stirred for 3 h at room temperature. Tetraethyl 
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orthosilicate (46.24 g) was added dropwise to the solution. The mixture was then stirred 

continuously for 20 h at 40 °C. The stir bar was removed, and the mixture temperature was 

maintained at 100 °C for 24 h. The mixture was then quenched and filtered with copious 

amounts of distilled water. The resulting white powder was then dried overnight in an oven 

at 75 oC. The white powder was calcined using the following procedure: ramp to 200 °C at 

1.2 °C min−1, hold at 200 °C for 2 h, ramp to 550 °C at 1.2 °C min−1, hold at 550 °C for 6 

h, and cool to room temperature. 

The synthesis of (E)-2-methyl-4-(triethoxysilyl)but-3-en-2-amine and (3-amino-3-

methylbutyl)triethoxysilane are based on a previous procedure.31,32 A 100 mL flame-dried 

three-neck round-bottom flask equipped with a condenser was charged with 2 wt% 

Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (Pt-DVDS)  in xylenes 

(3.43 mL, 0.3 mmol Pt, 1 mol% catalyst) and 0.6 mL (0.5 M) of triisobutyl base solution 

(0.103 g of 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane in 0.6 mL 

of diethyl ether). The mixture was stirred at 60 °C for 10 min and then diluted with 

inhibitor-free anhydrous tetrahydrofuran (20 mL) at room temperature. The mixture 

temperature was cooled down to about -10 °C in an ice and brine bath. Triethoxysilane 

(5.54 mL, 30 mmol) was then added dropwise into the mixture, followed by stirring for 5 

min. Next, 2-methyl-3-butyn-2-amine (2.5 mL, 23.75 mmol) was added dropwise into the 

mixture at -10 °C. The mixture was then stirred at room temperature overnight. Crude (E)-

2-methyl-4-(triethoxysilyl)but-3-en-2-amine was concentrated by a rotary evaporator and 

was purified by distillation under reduced pressure (200 mtorr) at about 60 °C. 1H NMR 

(400 MHz, CDCl3): δ (ppm) 6.52 (d, J = 5.6 Hz, 1H) 6.47 (d, 1H), 3.82 (q, 6H), 1.23 (t, 
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9H), 1.19 (s, 6H). 13C NMR (100 MHz, CDCl3): δ (ppm) 162.21, 112.44, 58.41, 52.29, 

29.73, 18.15.   

Next, a 50 mL flame-dried round-bottom flask was charged with (E)-2-methyl-4-

(triethoxysilyl)but-3-en-2-amine (2.5 g, 10 mmol), anhydrous ethanol (10 mL) and 5 wt% 

Pd/C (30 mg). The flask was purged under He for 15 min, followed by bubbling with 

hydrogen for additional 20 min. The flask was then pressurized with hydrogen using a two 

layered balloon and stirred at room temperature for 18 h. The mixture was filtered and 

washed with anhydrous ethanol several times. Crude (3-amino-3-

methylbutyl)triethoxysilane was concentrated by a rotary evaporator, and subsequently 

purified by distillation under reduced pressure (200 mTorr) at about 60 oC. 1H NMR (400 

MHz, CDCl3): δ (ppm) 3.84 (q, 6H) 1.45 (m, 2H), 1.25 (t, 9H), 1.08 (s, 6H), 0.64 (m, 2H). 

13C NMR (100 MHz, CDCl3): δ (ppm) 58.40, 49.89, 37.66, 29.57, 18.31, 4.75.  

Aminosilane grafted silica was prepared by first drying SBA-15 in a round bottom 

flask overnight on a Schlenk line at 100 oC and under vacuum (<20 mTorr). After drying, 

toluene was added to the round bottom flask, and the flask was capped with a rubber 

septum. The flask was purged with Ar for 30 min while the solution was stirred at 85 °C. 

Afterwards, silane was added to the solution and was stirred at 85 °C for 24 h. The 

following product was washed using copious amounts of toluene, hexane, and ethanol. 

Next, the sample was dried overnight on a Schlenk line at 110 oC and under vacuum (<20 

mTorr). 
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3.2.3 Materials Characterization  

Nitrogen physisorption was performed on a Micromeritics Tristar II instrument at       

-196 °C. All samples were degassed at 110 °C for 12 h before the measurement. The 

resulting isotherms were used to obtain surface area and pore volume. The Brunauer–

Emmett–Teller (BET) method was used to calculate surface area (P/Pₒ range used to 

calculate BET surface areas was 0 − 0.3), pore size distributions were calculated from N2 

physisorption isotherms using the BdB-FHH method, and the pore volumes were 

determined by the total amount of nitrogen adsorbed at P/Pₒ=0.95.33 Elemental analysis 

(Atlantic Microlabs, Norcross, GA) was used to determine amine loadings of the sorbents.  

3.2.4 CO2 and H2O Adsorption Measurements  

A Hiden IGASorp was used to measure water vapor isotherms. The sorbents were 

pretreated at 110 °C for 3 h under nitrogen flow and cooled to 30 °C. Varying partial 

pressures of water vapor were then introduced in nitrogen flow, followed by equilibration. 

H2O capacities of the samples were calculated by the weight change between the activated 

sample and the sample after exposure to varying partial pressures of water vapor. 

A TA Instruments Q500 thermogravimetric analyzer (TGA) was used to measure dry 

CO2 capacity. About 10-15 mg of sample was used for each run. Each sample was activated 

in He flow at 110 °C for 3 h. The sample was then cooled to 30 °C, and the gas was switched 

to 10% CO2 in He for 3 h. Measurement of CO2 capacity was based on the weight change 

between the activated sample and the sample after exposure to 10% CO2 in He for 3 h. 
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Humid and dry CO2 capacities were obtained by using a 6 mm x 4 mm (outer 

diameter x inner diameter) fritted glass fixed bed. A schematic of the apparatus can be seen 

in Appendix A.23 The accuracy of the apparatus was verified by comparing dry CO2 

capacities calculated between the TGA and fixed bed of the hindered amine sorbents at 30 

°C in 10% CO2/He flow. The outlet gas was analyzed using an Omnistar GSD 320 mass 

spectrometer. All adsorption studies used a 10% CO2/He mixture at 1 bar, and all flow rates 

used were held constant at 50 mL/min. A typical run used 100-200 mg of pelletized sample 

at a size of 53-150 μm. For both dry and humid experiments, samples were pretreated by 

flowing He at 110 °C for 3 h. Afterwards, the temperature of the bed was reduced to 30 °C. 

For dry experiments, 10% CO2/He was then introduced to the bed. For humid experiments, 

a humid He stream (PH2O = 21 mbar at 30 °C) was first introduced into the bed until the 

outlet stream concentration matched the inlet stream concentration of H2O. Humidity was 

generated by flowing gases through a sparger containing DI H2O at a controlled 

temperature of 18 °C. Once the bed was saturated with H2O, a humid CO2 stream was 

introduced to the bed. Desorption started once the outlet stream concentration of CO2 

reached 98% of the inlet stream concentration of CO2. For both dry and humid experiments, 

the CO2 was desorbed from the bed by flowing dry helium through the bed at a temperature 

of 110 °C. Desorption ended after approximately 2 h. The psuedo-equilibrium CO2 

capacities measured were obtained from the breakthrough curves generated from 

adsorption. The dead-time of the fixed bed system was accounted for in all capacity 

measurements and was calculated based on the breakthrough curve of 10% CO2/He 

through a bed filled with glass wool. 
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CO2 adsorption isotherms and heats of adsorption for aminosilane grafted SBA-15 

materials were measured by a combined calorimeter-volumetric adsorption apparatus, 

which consists of a gas dosing manifold and a Tian-Calvet Calorimeter (Sensys Evo DSC, 

Setaram).34 Approximately 50 mg of pelletized sample (150-250 µm) was inserted in one 

side of a sample glass cell that has two prongs. Another side of the cell was left empty as 

a reference. This cell is connected to the dosing manifold and encased in an aluminum 

block that contains highly sensitive thermophiles. The samples were pretreated at 120 °C 

for 3 h under vacuum (<15 Pa) and then cooled down to 30 °C. Two pressure transducers 

were connected to the reservoir and sample cell areas, which were maintained at 30 °C 

with heating tape. The amount of adsorbed CO2 after dosing was calculated by mole 

balance using initial and final pressure values from the sample cell and reservoir sides. 

Heats of CO2 adsorption were simultaneously recorded, while the dosed CO2 was adsorbed 

by the adsorbents. When the rate of pressure change became lower than 0.01 Pa/min, the 

system was considered to have reached a pseudo-equilibrium state. 

3.2.5 In Situ FTIR Spectroscopy  

The spectrometer used for all IR experiments was a Thermo Nicolet iS10 with a 

mercury cadmium telluride (MCT) detector. A Harrick High Temperature Transmission 

Cell equipped with CaF2 windows was used for in situ IR spectroscopy experiments. Self-

supporting wafers were used for all in situ IR spectroscopy experiments. The wafers were 

made using a Carver Press and a pellet die set. Powders were pressed into wafers at ~2000 

psig for 30 to 60 s. Gas flow rates were held constant at 50 mL/min at a pressure of 1 bar. 

Typically, each sample was activated at 110 °C for 3 h under helium flow and was cooled 

to 30 °C subsequently. For dry CO2 adsorption experiments, a 10% CO2/He mixture was 
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then introduced into the cell for 65 min, and spectra were recorded throughout this period 

using the activated sample as the background spectrum. For humid experiments, after 

activation, humid helium was introduced into the cell for 2 h, and a background spectrum 

was collected subsequently. Next, humid CO2 was introduced into the cell for 65 min and 

spectra were recorded throughout this period using the presaturated sample as the 

background spectrum. CO2 adsorption spectra from 0-5 min were collected with 1 scan at 

a resolution of 4 cm-1 every 5 sec, and spectra from 5-65 min were collected with 64 scans 

at a resolution of 4 cm-1 every 2 min. To eliminate water vapor peaks for humid CO2 

adsorption experiments, a background spectrum containing water vapor and helium was 

subtracted from the results. After each experiment, the wafer was cut with a circular stamp 

(6.35 mm in diameter) and was weighed to determine its mass. CO2 adsorption spectra 

were normalized by the mass of the wafer (mg).  

3.2.6 Solid State NMR Spectroscopy  

Each sample was activated under vacuum (40 mTorr) at 105 oC for 4 h. The sample 

was then cooled to room temperature and was transferred to a continuous-flow nitrogen 

bag to be packed into a zirconia NMR rotor. The rotor (packed with the sample) was then 

placed into a glass vessel, connected to a gas manifold system, and loaded with 13CO2 for 

20 h. 13C{1H} cross-polarization magic-angle spinning (CPMAS) experiments were 

performed with a 4 mm HXY MAS Chemagnetics probe at Larmor frequencies, 1H at 

294.97 MHz, and 13C at 74.17 MHz. The initial 𝜋/2 excitation pulse width was in the range 

of 4 - 4.25 μs, the contact time was 2 ms, and a recycle delay of 4s was used. The MAS 

spinning frequency was controlled at 5 kHz.  
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3.2.7 Degradation Studies  

The same TGA used to measure dry CO2 capacities was used for degradation 

experiments. Approximately 20-30 mg of sample was used on each run. The sample was 

first activated at 110 °C in He flow for 3 h. Afterwards, the temperature was increased to 

135 °C, and the gas was switched to either ultra-zero grade air (21% O2 in N2) for oxidative 

degradation experiments or ultra-high purity grade N2 for thermal degradation experiments. 

The samples were exposed to degradative conditions for 24 h. Afterwards, approximately 

10-15 mg of the sample was taken out for elemental analysis and ex-situ transmission IR 

spectroscopy experiments. CO2 adsorption experiments were then conducted on the same 

TGA for samples exposed to degradative conditions using the procedure listed above. The 

same IR spectrometer used for in situ IR spectroscopy experiments was used for the 

degradation studies. Wafers consisting of a mixture of 100 mg of KBr to 1 mg of sample 

were used. The wafers were activated in a vacuum oven at 100 °C for 3 h before spectra 

were recorded. Each spectrum was collected with 64 scans at a resolution of 4 cm-1 and 

was normalized by the Si-O vibrational mode at 1977 cm-1. 

3.3 Results and Discussion 

3.3.1 Material Characterization 

All materials were characterized by nitrogen physisorption and elemental analysis 

(Table 3.1). All functionalized materials have similar amine content ranging from 1.86 to 

1.94 mmol N/g. Pore volumes and BET surface areas were reduced, as expected, upon 

functionalization. The presence of a hysteresis loop in the N2 adsorption/desorption 

isotherms of all materials confirmed mesoporosity (Figure B.1).  
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Table 3.1. Physical and textural properties of materials. 

 

Material 

BET Surface 

Area (m²/gSiO2) 

Pore Volume 

(cm³/gSiO2) 

 

Amine Loading 

(mmolN/g) 

SBA15 961 1.19 − 

SBA_AMBS 415 0.61 1.94 

SBA_TBAPS 385 0.57 1.89 

SBA_CHAPS 372 0.54 1.86 

 

 

Figure 3.3. FTIR spectra of activated sorbents: (a) SBA-15, (b) SBA_AMBS, (c) 

SBA_TBAPS, (d) SBA_CHAPS. All IR spectra were taken under He flow at 30 °C. 
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The functionalization of the silica support was further confirmed using IR 

spectroscopy. FTIR spectra of the sorbents following activation at 110°C under He flow 

for 3 h are displayed in Figure 3.3. For the bare support SBA-15, the peak at 3741 cm-1 is 

attributed to  the stretching vibration of free silanols.23,35 The free silanol stretching mode 

was not observed in the activated spectra of the amine sorbents, indicating that 

aminosilanes reacted with the free silanol groups. It is also possible that some unreacted 

free silanol groups were engaged in hydrogen bonding interactions with the amines after 

grafting. The stretching vibration of such silanol groups would be observed as a redshifted 

and significantly broadened peak. The peaks at 1977 and 1866 cm-1 are assigned to Si-O 

vibrational modes for all sorbents.23,35,36 A large broad peak between 3750 and 2500 cm-1, 

indicated that all sorbents contained hydrogen bonding OH groups, which may include 

water. The peak at 1634 cm-1 is assigned to the bending mode of physisorbed water on all 

sorbents. Physisorbed water remained on the surface even after activation due to the 

hygroscopic nature of the silica support. For SBA_AMBS, peaks located at 3356 and 3283 

cm-1 are assigned to NH2 asymmetric and symmetric stretching modes and the peak found 

at 1597 cm-1 is associated with the NH2 deformation mode.37,38 The peak at 3285 cm-1 in 

the spectra for SBA_CHAPS and SBA_TBAPS is assigned to a NH stretching mode. For 

the functionalized sorbents, peaks between 3000 and 2750 cm-1 are attributed to stretching 

modes of CH2/CH3 groups.37,38 Peaks between 1400 and 1300 cm-1 are attributed to 

wagging modes of CH2 for all functionalized sorbents.37,38 For SBA_AMBS and 

SBA_TBAPS, the CH2 wagging modes overlapped with symmetric deformations of the 

branched CH3 groups.37 Peaks at 1500 and 1400 cm-1 are assigned to symmetric CH2 and 

asymmetric CH3 deformations for all functionalized sorbents.37 For SBA_CHAPS, the 
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sharp peak at 1453 cm-1 is attributed to the methylene deformation of the cyclohexyl 

functional group.37 The region below 1300 cm-1 was not evaluated due to strong Si-O 

vibrational modes. 

3.3.2 CO2 and H2O Adsorption 

Fixed bed measurements and thermogravimetric analysis were conducted on the 

hindered amine sorbents in 10% CO2/He flow to determine their CO2 capacities under dry 

and humid conditions (Figure 3.4). Under dry conditions, the SBA_AMBS sorbent had the 

highest CO2 capacity, followed by SBA_CHAPS and SBA_TBAPS. All hindered amine 

sorbents exhibited increases in CO2 capacity when comparing humid to dry conditions. 

Under humid conditions, SBA_TBAPS had the highest CO2 capacity, followed by 

SBA_AMBS and SBA_CHAPS. To help compare the increases in CO2 capacity when 

comparing humid to dry conditions, the efficiency enhancement was calculated (Table 3.2). 

The efficiency enhancement is defined as the amine efficiency of a sorbent at humid 

conditions divided by the amine efficiency under nominally dry conditions. The 

SBA_TBAPS sorbent had the largest efficiency enhancement out of all the hindered amine 

sorbents, indicating the largest increase in CO2 capacity when comparing humid to dry 

conditions. The SBA_AMBS and SBA_CHAPS sorbents both adsorbed more than three 

times the amount of CO2 under humid conditions compared to dry conditions. While 

increases in CO2 capacity were seen in all sorbents with the addition of water, the maximum 

theoretical amine efficiency associated with ammonium bicarbonates of 1 CO2/N was not 

observed under the conditions employed for any of the sorbents.  
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Figure 3.4. CO2 adsorption capacities under dry and humid conditions (PH2O = 21 mbar) 

under 10% CO2 in He flow at 30 °C. Dry capacities were determined by 

thermogravimetric analysis, and humid capacities were determined using a fixed bed. The 

reported error in the humid runs is the standard deviation calculated from three 

consecutive runs. 

Table 3.2. CO2 capacities, H2O capacities, amine efficiencies (A.E.) and efficiency 

enhancement (E.E.) under 10% CO2 in He flow at 30 °C. Dry CO2 capacities were 

determined by thermogravimetric analysis, and humid CO2 capacities (PH2O = 21 mbar) 

were determined using a fixed bed. 

Material 

 

Dry CO2 

Capacity 

(mmol/g)  

Humid   

CO2 

Capacity 

(mmol/g) 

Dry 

A.E. 

(CO2/N)  

 

Humid 

A.E. 

(CO2/N) 

E.E. 

(Humid 

A.E./Dry 

A.E.) 

 

H2O 

Capacity 

(mmol/g) 

SBA_AMBS 0.12 0.40 0.06 0.21 3.5 2.6 

SBA_TBAPS 0.05 0.57 0.03 0.31 10.3 2.4 

SBA_CHAPS 0.10 0.34 0.05 0.18 3.6 1.7 
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Single component water adsorption isotherms were measured for all the sorbents at 

the temperature used for the humid, fixed bed experiments (Table 3.2, Figure B.4).  As 

expected, the hindered amine sorbents were less hydrophilic than the bare silica support. 

At the relative humidity used for the fixed bed experiments (49% RH or PH2O = 21 mbar), 

it was observed that SBA_CHAPS adsorbed the lowest amount of water. The effects of 

water on the CO2 adsorption capacity are further explored in the discussion section below. 

Previous studies on unhindered amine sorbents indicate that increases of CO2 

capacity in the presence of water are not necessarily due to formation of ammonium 

bicarbonates.9,11 Moreover, it has been proposed that more ammonium carbamates can 

form when comparing humid and dry conditions due to water acting as a diffusive 

intermediate, increased chain mobility, and/or liberation of amines interacting with surface 

silanols when water is present on the sorbent.22,39–43 Spectroscopic studies are needed to 

further verify if there is any change in the nature of the species adsorbed under humid 

conditions. 

3.3.3 FTIR Spectra of Adsorbed CO2 on the Hindered Amine Sorbents 

In situ IR spectroscopy was used to probe the nature of the adsorbed species formed 

in the presence of both humid and dry CO2. Multiple overlapping peaks formed between 

1750 and 1275 cm-1 in the presence of dry and humid CO2 for each sorbent, indicating that 

chemisorbed species formed on the sorbents in both runs (Figure 3.5). The humid CO2 

adsorption spectrum for all sorbents appeared to have larger peak intensity when compared 

to their respective dry CO2 adsorption spectrum, indicating that more of the same species 

and/or new species formed in the presence of humidity. Peak shifts observed when 
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comparing the 12CO2 to 13CO2 adsorption spectra were used to assist in peak assignments 

for all sorbents under both dry and humid conditions.  

 

Figure 3.5. FTIR spectra for 10% CO2 adsorption on (a) SBA_AMBS, (b) SBA_CHAPS, 

and (c) SBA_TBAPS under dry and humid conditions (PH2O = 21 mbar) at 30 °C after 65 

min.  
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For the SBA_AMBS sorbent under dry conditions, peaks observed for 12CO2-derived 

species and the shifts for the 13CO2-derived analogs resembled what was seen in a previous 

spectroscopic study on an unhindered primary amine grafted sorbent (Figure 3.6a).35 

Furthermore, several peaks in the 13CO2 adsorption spectrum shifted to a lower 

wavenumber when compared to the 12CO2 adsorption spectrum, indicating that they could 

be traced to the carbon atom from CO2. Peaks at 1552 and 1439 cm-1
 redshifted to 1539 

and 1430 cm-1, respectively, and are assigned to the asymmetric and symmetric stretch of 

the carboxylate anion of ammonium carbamate.22,35,44  The peak at 1342 cm-1 redshifted to 

1329 cm-1 and is attributed to the skeletal vibration of carbamate.22 The shoulder at 1680 

cm-1 redshifted and merged with the peak at 1632 cm-1 and is attributed to the carbonyl 

stretch of carbamic acid. The peak at 1632 cm-1 does not appear to shift and is attributed to 

a deformation mode of NH3
+.22,37,45 The shoulder at 1495 cm-1 appeared to redshift to form 

a peak at 1477 cm-1
. Previous reports have attributed peaks around 1477 cm-1 to both the 

NH stretch of the carbamate anion and a deformation mode of NH3
+.22,35 Consistent with a 

previous computational study, the shoulder at 1495 cm-1 may be associated with a C-N 

stretch of a carbamic acid or carbamate.46,47 No shifts were seen for the peaks at 1398 and 

1380 cm-1. These peaks are likely due to perturbations of CH2 or CH3 modes in the carbon 

backbone of the grafted aminosilane.   

Peak shifts were also observed when comparing the 12CO2 to 13CO2 adsorption 

spectra for SBA_AMBS under humid conditions (Figure 3.6b). The broad peak at 1614 

cm-1 seen after 12CO2 adsorption merged with the peak at 1565 cm-1. This peak shift did 

not occur in the dry adsorption spectrum and can be attributed to a new adsorbed species. 

In addition, this peak shift revealed an underlying peak at 1632 cm-1 attributed to the 
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deformation mode of an alkylammonium ion. Similar peak shifts to what was observed in 

the dry adsorption spectra were seen at 1342, 1439, 1495, 1680 to 1329, 1430, 1477, and 

1626 cm-1, indicating that carbamates and carbamic acids were still present under humid 

conditions. The peaks around 1342 cm-1 in the presence of 12CO2 increased in intensity 

when comparing the dry and humid spectra, indicating that there may be a new peak 

associated with a new chemisorbed species around that region. However, the peak shift of 

that band remained the same as what was seen in the dry adsorption spectra. To further 

clarify what new peaks arose in the presence of humidity, the spectrum of adsorbed CO 2 

under dry conditions was subtracted from the spectrum of adsorbed CO2 under humid 

conditions (Figure 3.6c). Two peaks at 1611 and 1354 cm-1 were then clearly revealed in 

the 12CO2 adsorption spectrum, which shifted to 1574 and 1329 cm-1, respectively, in the 

13CO2 adsorption spectrum. These peaks at 1611 and 1354 cm-1 are respectively assigned 

to the asymmetric and symmetric stretches of the carboxylate group in ammonium 

bicarbonate.23,48,49 
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Figure 3.6. FTIR spectra for 10% 12CO2 and 13CO2 adsorption on SBA_AMBS at 30 °C 

after 65 min under (a) dry conditions, (b) humid conditions (PH2O = 21 mbar), and (c) 

residual of humid-minus-dry conditions. 

For the SBA_CHAPS material, peaks at 1535 and 1401 cm-1 shifted to 1514 and 

1393 cm-1 when comparing the dry adsorption spectrum of 12CO2 to 13CO2. These peaks 

are attributed to the asymmetric and symmetric stretching modes of the carboxylate group 

in ammonium carbamate (Figure 3.7a).35 The shoulder at 1667 cm-1 redshifted and 

combined with the peak at 1617 cm-1 to form a new peak at 1624 cm-1. The shoulder at 
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1667 cm-1 is attributed to the carbonyl stretch of carbamic acid and the peak at 1617 cm-1 

is attributed to a deformation mode of the alkylammonium cation.35 Peaks at 1468 and 

1457 cm-1 did not appear to shift, indicating that they are either associated with 

perturbations of NH or CH modes. The peak at 1357 cm-1 did not shift, indicating that it is 

attributed to a CH mode. The peak at 1298 cm-1 appeared to become more intense than the 

peak at 1317 cm-1, indicating that there was some contribution of CO2 in that region. This 

peak is attributed to a skeletal vibrational mode of carbamate.22  

In the isotopic labeling experiments for the SBA_CHAPS material, similar peak 

shifts that were found under dry conditions were also observed under humid conditions 

(Figure 3.7b). Furthermore, peaks at 1317, 1402, 1531, and 1661 cm-1 shifted to 1295, 

1393, 1491, and 1620 cm-1, respectively, indicating that carbamates and carbamic acids 

formed under humid conditions. The peak centered at 1612 cm-1 increased in intensity 

when comparing the adsorption spectra under humid and dry conditions. A peak of similar 

intensity at 1617 cm-1 was attributed to a deformation of alkylammonium cation in the dry 

12CO2 adsorption spectrum, as it did not redshift. However, under humid conditions the 

peak at 1612 cm-1 shifted to 1574 cm-1, indicating that the peak centered at 1612 cm-1 in 

the humid 12CO2 adsorption spectrum consisted of both a deformation of alkylammonium 

cation and a newly adsorbed species.  

Again, the dry CO2 adsorption spectrum was subtracted from the humid CO2 

adsorption spectrum to clarify what new species may be present under humid conditions 

(Figure 3.7c). Peaks at 1602 cm-1 and 1357 cm-1 redshifted to 1574 and 1323 cm-1 in the 

presence of 13CO2 and are associated with the vibrational modes of ammonium bicarbonate 

species.49 The SBA_CHAPS sorbent also appeared to form more carbamates and carbamic 
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acids in the presence of humidity, as the plot of the residual (humid-minus-dry spectrum) 

revealed peaks associated with such species.  

 

Figure 3.7. FTIR spectra for 10% 12CO2 and 13CO2 adsorption on SBA_CHAPS at 30 °C 

after 65 min under (a) dry conditions, (b) humid conditions (PH2O = 21 mbar), and (c) 

residual of humid-minus-dry conditions.  

The broad peak at 1640 cm-1 in the dry 12CO2 spectrum of SBA_TBAPS was revealed 

to consist of multiple vibrational modes, as two peaks at 1629 and 1578 cm -1 appeared in 

the presence of 13CO2 (Figure 3.8a). Moreover, the peak at 1629 cm-1 is in part associated 
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with a deformation of an alkylammonium cation, and the peak at 1575 cm-1 is attributed to 

the asymmetric stretch of the bicarbonate anion in the 13CO2 spectrum. The peak at 1343 

cm-1 shifted to 1324 cm-1 and is assigned to the symmetric stretching mode of the 

bicarbonate anion. As observed in the IR spectra, severely hindered amines such as 

SBA_TBAPS cannot chemisorb CO2 in the form of ammonium carbamate. Due to the 

tertiary α-carbon of SBA_TBAPS, the formation of a covalent bond between the carbon 

atom in CO2 and the amine is thermodynamically unfavorable.50–52 It is noteworthy that 

small quantities of bicarbonate formation may be possible even under dry conditions due 

to the residual amounts of water on the sorbent even after activation.23,35 The peaks at 1607 

and 1349 cm-1 in the humid CO2
 adsorption spectrum of SBA_TBAPS are also associated 

with the bicarbonate species (Figure 3.8b). Again, these peaks shifted in the presence of 

13CO2, indicating that they are associated with carbon from CO2. In both the dry and humid 

spectra, the peaks at 1497, 1461, 1406, and 1384 cm-1 did not noticeably shift in the 

presence of 13CO2 (Figure 3.8b). The peaks at 1497 and 1461 cm-1 could thus be assigned 

to the deformation modes of the alkylammonium ion or perturbations in the NH 

deformation mode.23,35 The peaks at 1406 and 1384 cm-1 are attributed to perturbations in 

CH2 or CH3 modes associated with the carbon backbone of the grafted aminosilane. There 

appeared to be a difference of relative peak intensity between 1629 cm-1 and the peak below 

1576 cm-1 when comparing the dry and humid 13CO2 adsorption spectra. In both dry and 

humid conditions, it is possible that an additional bicarbonate mode existed around 1640 

cm-1 in the presence of 12CO2 and merged with the peak associated with the ammonium 

deformation mode at 1629 cm-1 in the 13CO2 spectra. Consistent with a previous NMR 

study on supported primary and tertiary amines, it is postulated that ammonium 
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bicarbonates with varying amounts of water molecules interacting with the anion existed 

on the sorbent.53 Bicarbonate asymmetric stretching modes are known to redshift when the 

amount of water molecules surrounding the anion increases.49 The higher peak intensities 

when comparing the peak at 1576 to 1629 cm-1 in the humid 
13CO2 adsorption spectrum 

would be consistent with more water interactions with the bicarbonate anions. If two 

distinct bicarbonates species existed on SBA_TBAPS in the presence of CO2, a total of 

four asymmetric and symmetric carboxylate stretching modes would be expected—an 

asymmetric and symmetric carboxylate stretch for each chemically distinct bicarbonate 

species. The broad peak between 1360 and 1275 cm-1 for both dry and humid 12CO2 

adsorption spectra may be a combination of two symmetric carboxylate stretching modes.  
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Figure 3.8. FTIR spectra for 10% 12CO2 and 13CO2 adsorption on SBA_TBAPS at 30 °C 

after 65 min under (a) dry conditions, (b) humid conditions (PH2O = 21 mbar). 

3.3.4 NMR Spectra of Adsorbed CO2 on the Hindered Amine Sorbents under Nominally 

Dry Conditions 

Ex-situ solid state 13C NMR spectroscopy was used to confirm the existence of 

chemisorbed species after extended exposure to CO2 under dry conditions (Figure 3.9). 

The chemisorption products are assigned through their 13C isotropic chemical shifts: the 

carbamate species (at ~164 ppm) is found on SBA_CHAPS and SBA_AMBS, but 

carbamic acid (~162 ppm) was not observed on either sample. The absence of carbamic 
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acid may reflect very low signal-to-noise ratios as well as carbamic acid’s unstable nature 

in comparison to that of carbamate’s.54 No resonances associated with chemisorbed species 

were discovered on SBA_TBAPS by NMR spectroscopy; this may be due to limited 

amounts (below the detection threshold for NMR) and the possible instability of the 

bicarbonate species formed on that sorbent under nominally dry conditions. Both 13C Bloch 

decay and spin echo sequences were tested for these samples under dry conditions, in 

keeping with a recent study of CO2 exposure that detected bicarbonate unexpectedly on 

amine sorbents.53 In that study, 1H-13C CPMAS failed to detect bicarbonates because of 

motion disrupting the 1H-13C dipole-dipole interaction required for cross-polarization.53  

No bicarbonate signals were found for dry CO2 exposed samples here. 

 

Figure 3.9. 13C{1H} CPMAS of 13CO2 loaded SBA_TBAPS, SBA_CHAPS, and 

SBA_AMBS. The arrow points to the expected region where chemisorbed products 

introduced with 13C enrichment would be found. Resonances below 60 ppm are 

associated with the aminosilane pendant species (at natural abundance). 
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3.3.5 Isosteric Heats of CO2 Adsorption 

Isosteric heats of adsorption of dry CO2 were measured at 30 °C on all the sorbents 

to investigate the thermodynamics of adsorption of CO2 (Figure 3.10). It should be noted 

that the amine loadings of the functionalized sorbents studied here are above the threshold 

of ~1.2-1.4 mmol N/g needed for strong amine-CO2-amine interactions previously reported 

with the less bulky aminopropylsilane-functionalized primary amine sorbents.55 

Furthermore, in that study it was demonstrated that there was no change in heat of 

adsorption at close to zero coverage when the amine loading was at or above the threshold 

amine loading on primary amine functionalized SBA-15.  

 

Figure 3.10. Isosteric heats of CO2 adsorption under dry conditions for all sorbents at    

30 °C. 

The bare support, SBA-15, had the lowest heat of adsorption at close to zero coverage 

when compared to the functionalized sorbents with a value of 35 kJ/mol. Physisorption on 

oxide surfaces typically has low heats of adsorption of 20-40 kJ/mol.34,55 Furthermore, the 

heat of adsorption of the silica support is attributed exclusively to physisorption of CO2 on 
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surface silanols or siloxane bridges. All hindered amine sorbents studied here had lower 

initial heats of adsorption than what has been found for unhindered primary and secondary 

amine grafted sorbents at similar amine loadings (i.e., 86-92 kJ/mol).55  The low initial 

heats of adsorption measured for hindered amine sorbents indicate that they contain only 

weakly chemisorbed CO2. At high surface coverages of CO2, there was a dramatic 

reduction of the heat of adsorption indicating that physisorption became dominant. The 

adsorption isotherms displayed linearity at higher CO2 coverages, also indicating 

physisorption under such conditions (Figure B.10b, Figure B.11b, and Figure B.12b). The 

inability for available amines to strongly chemisorb CO2 in nominally dry conditions is due 

to large amounts of steric hindrance and/or poor spacing. 

The initial heats of adsorption of SBA_AMBS and SBA_CHAPS were the highest 

of all the materials studied here at 65-70 kJ/mol. As shown above via IR spectroscopy, 

these two hindered amine sorbents were found to chemisorb dry CO2 as carbamates and 

carbamic acids – the same species that form on unhindered primary and secondary amine 

sorbents.35 The formation of ammonium bicarbonates in large quantities in the presence of 

humid CO2 on SBA_AMBS and SBA_CHAPS when compared to their unhindered 

counterparts could be explained in part by the differences of thermal stability of 

carbamates/carbamic acids between hindered and unhindered amines. The introduction of 

steric hindrance on the α-carbon weakens the stability of carbamates and carbamic acids 

making bicarbonate formation more common on hindered amines when compared to 

unhindered amines.  

Of the hindered amine sorbents, SBA_TBAPS had the lowest initial heat of 

adsorption at 46 kJ/mol, indicating more weakly CO2 interactions than the other two 
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hindered amine sorbents. This value is slightly higher than the reported value for 

physisorption, indicating weakly chemisorption on SBA_TBAPS. As noted above, 

carbamates and carbamic acids are unlikely to form on SBA_TBAPS due to the severe 

steric hindrance of the t-butyl functional group.50–52 The initial heat evolved when CO2 

adsorbs onto SBA_TBAPS is consistent with bicarbonate formation, as indicated above by 

IR spectroscopy. Tertiary amine solutions, which only chemisorb CO2 as bicarbonates, are 

found to have initial heats of absorption in the range of 40-60 kJ/mol.56 Due to the 

hygroscopic nature of the sorbents, residual water that is present on the sorbent after 

activation may allow small quantities of bicarbonates to form even under nominally dry 

conditions.  

3.3.6 CO2 Desorption Kinetics  

All hindered amine sorbents appeared to readily desorb CO2 at 30 °C under He flow 

(50 mL/min) (Figure 3.11). Less than 20 percent of the integrated peak area in the 1750-

1275 cm-1 region remained after 1 h of desorption for the hindered sorbents under both dry 

and humid conditions at this temperature. In a previous in situ IR spectroscopy study, 

unhindered primary and secondary amines desorbed less chemisorbed CO2 under dry 

conditions. Furthermore, after 90 minutes of desorption under He flow (80 mL/min), 60 

percent and 30 percent of the integrated peak area in the region evaluated for chemisorbed 

CO2 remained for an unhindered primary and secondary amine, respectively.35 Consistent 

with the heat of adsorption data, the desorption kinetics imply that the chemisorbed species 

formed are weakly bound on these hindered amine sorbents, indicating that regeneration 

of these materials may be less energy intensive than their unhindered counterparts.  
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Figure 3.11. Normalized integrated FTIR peak area between 1750 and 1275 cm−1 during 

desorption of 10% CO2 under (a) dry and (b) humid conditions at 30 °C. Desorption was 

conducted with dry He in the dry run and humid He (PH2O = 21 mbar) in the humid run. 

The curves are normalized such that the start of the desorption run equals 1. 

3.3.7 Kinetics of Ammonium Bicarbonate Formation 

Severely hindered and tertiary amines in solution have slow kinetics when compared 

to moderately hindered amines. Therefore, it would be expected that the severely hindered 

SBA_TBAPS material would have slower kinetics than the other two hindered amine 

sorbents. Interestingly, all supported hindered amines appeared to have similar rates of 

bicarbonate formation under 10% CO2/He flow under humid conditions (Figure 3.12). It is 

unclear why the rates of bicarbonate formation on solid supported amines do not appear to 

change with increasing amounts of steric hindrance. The ease of intermediate species 

forming hydrogen bonds with nearby water molecules and/or differences in the adsorption 

mechanism are thought to factor into the kinetics of bicarbonate formation in solution.1,15 

However, the experiments conducted here do not give insight into these factors. Since 

SBA_TBAPS is a severely hindered amine, it should only form bicarbonates by base 

catalyzed hydrolysis. The SBA_AMBS and SBA_CHAPS sorbents, in principle, could 
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form bicarbonates by both base catalyzed hydrolysis and carbamate hydrolysis. There is 

no direct evidence of the carbamate hydrolysis mechanism for moderately hindered amine 

sorbents under the conditions employed here, as there appeared to be no reduction in 

ammonium carbamate content when comparing humid to dry runs for SBA_AMBS and 

SBA_CHAPS. 

 

Figure 3.12. Normalized peak intensity of the asymmetric stretching mode of the 

bicarbonate species (1602 cm-1 for SBA_CHAPS, 1611 cm-1 for SBA_AMBS, and 1607 

cm-1 for SBA_TBAPS) during adsorption of 10% CO2 under humid conditions (PH2O = 21 

mbar) at 30 °C. The curves are normalized such that the end of the adsorption run (65 

min) equals 1. 

3.3.8 Discussion on the Nature of the Chemisorbed Species 

All hindered amine sorbents had poor adsorption performance under nominally dry 

conditions as they all had CO2 capacities within the range of the bare silica support (Figure 

B.13b). The SBA_AMBS and SBA_CHAPS sorbents were found to have larger CO2 

capacities than SBA_TBAPS. Moreover, the chemisorbed CO2 species were identified to 
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be carbamates and carbamic acids on SBA_AMBS and SBA_CHAPS and as bicarbonates 

on SBA_TBAPS at those conditions. Very small quantities of bicarbonates, which require 

one molecule of water per CO2 to form, were discovered on SBA_TBAPS under nominally 

dry conditions due to residual water on the sorbent surface that remained after activation. 

The adsorbed CO2 species on supported hindered amines under dry conditions were 

determined to have lower initial heats of adsorption than their unhindered counterparts, 

implying formation of weakly chemisorbed species on hindered amines. Bulky α-carbon 

substituents on hindered amines weaken covalent bonds between the nitrogen in the amine 

group and the carbon in CO2. If the amine is too sterically hindered, species that require 

covalent bonding between CO2 and the amine such as carbamates and carbamic acids 

cannot form.7 The inability to form such species explains the observed low CO2 capacities 

under nominally dry conditions for SBA_TBAPS. Furthermore, the bulky t-butyl 

substituent adjacent to the nitrogen atom in SBA_TBAPS makes it unfavorable for CO2 to 

form carbamates and carbamic acids. Yoo et al. also demonstrated that supported amines 

that were in hydrophobic environments had reduced isosteric heats of CO2 adsorption and 

CO2 capacities when compared to amines that were in hydrophilic environments; this result 

implies that hydrogen bonding can increase thermal stability of chemisorbed species.34 The 

hindered amine sorbents studied here are less hydrophilic than their unhindered 

counterparts implying that after activation there will fewer water molecules around to 

hydrogen bond with CO2-derived species on hindered amine sorbents.57 

The CO2 capacity of all sorbents increased in the presence of humidity, which was 

revealed using IR spectroscopy to be due to bicarbonate formation for SBA_AMBS and 

SBA_TBAPS and a combination of carbamates, carbamic acids, and bicarbonates for 
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SBA_CHAPS. As seen in solution, ammonium bicarbonates are more common on 

supported hindered amines than on supported unhindered primary amines previously 

studied under similar conditions.7,41. In hindered amines, bicarbonates, which are predicted 

to be ionically bonded to the amines, are more common due in part to the reduction of the 

stability of species requiring covalent bonds such as carbamates and carbamic acids.1,5,6 In 

addition, the preferential formation of bicarbonates on hindered amines has also been 

thought to be due to kinetic factors.10,58 Steric hindrance on the α-carbon can block 

pathways of CO2 to get to the nitrogen atom in the amine, making it more likely for the 

nitrogen atom to be protonated by smaller water molecules instead. It has also been 

reported in solution studies that ammonium bicarbonate formation is more likely for 

amines that are stronger bases.59,60  Furthermore, the hindered amines studied here are 

expected to be stronger Brønsted bases than supported unhindered primary amines 

employed in previous studies due to electron donating methyl and methylene groups on the 

α-carbon.9,11  

Severely hindered SBA_TBAPS had the highest CO2 capacities and amine 

efficiencies followed by moderately hindered SBA_AMBS and SBA_CHAPS under 

humid conditions. The SBA_TBAPS material had larger amounts of bicarbonate formation 

leading to higher amine efficiencies than the moderately hindered amines. The amine 

efficiencies found for the hindered amine sorbents under humid conditions are within range 

of what has been reported for SBA-15 supported primary amines grafted at similar amine 

loadings and under CO2 capture conditions employed here. Furthermore, supported 

primary amines have been reported to have an amine efficiency of 0.21-0.24 CO2/N in 10% 

CO2 under both dry55 and humid61 conditions, while the amine efficiencies of the hindered 
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amines sorbents studied here under humid conditions were found to be between 0.18 and 

0.31 CO2/N. Although similar CO2 capacities are observed between hindered and 

unhindered amines, regeneration of hindered amine sorbents may be less energy intensive 

on unhindered amines due to weakly bound chemisorbed species.  

Ammonium bicarbonate formation, however, appears less favorable on solid 

supported amines than in amine solutions under the conditions employed. In aqueous 

solution, amine efficiencies for hindered amines have been reported in the range of 0.65 to 

1 CO2/N  under conditions similar to those employed here.7 Variations of bicarbonate 

formation between the different types of hindered amine sorbents as well as variations 

between the solid sorbents and solutions may be due to the reasons listed below. 

(1) In a computational study, Sumon et al. suggested that water can increase 

thermodynamic stability of ionic species formed in amine solutions through solvation 

and hydrogen bonding.62 There is less water available for hydrogen bonding on solid 

supports, possibly making it less favorable for bicarbonates to form when compared to 

aqueous amine solutions. The hindered amine sorbents vary in water content at the 

same temperature and relative humidity, as shown by the water adsorption isotherms 

(Table 3.2 and Figure B.4), with SBA_CHAPS having the least amount of water 

adsorbed. How the water molecules are arranged on the surface for each hindered 

amine sorbent may also play a factor in determining favorability of bicarbonate 

formation.58  

(2) It is assumed that there is a monolayer surface coverage of aminosilanes on the silica 

support at the amine loadings used here. However, it is also possible that some of the 
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aminosilanes have condensed with each other during the silane grafting step, resulting 

in multilayer surface coverage in some regions. Some amine sites may be less 

accessible to CO2 and H2O due to amine clustering. If multilayer surface coverage of 

aminosilanes exist in the hindered sorbents, SBA_TBAPS may have more amines 

available to interact with CO2 when compared to SBA_CHAPS and SBA_AMBS 

because of reduced mass transfer limitations associated with the lack of formation of 

the cross-linking ammonium carbamate species on SBA_TBAPS. 

3.3.9 Sorbent Degradation Experiments 

The sorbents were exposed to both an inert stream of N2 and simulated air (21% O2 

in N2) at a temperature of 135 °C for a prolonged time (24 h) to evaluate their thermal and 

oxidative stability, respectively. All hindered amine sorbents retained at least 90% of their 

original nitrogen content after oxidative and thermal treatments (Figure B.15). However, 

the SBA_CHAPS and SBA_TBAPS sorbents had significant reductions in capacity after 

exposure to accelerated oxidative conditions (Table 3.3).  

Table 3.3. CO2 adsorption capacities (mmol/g) under dry conditions before and after 

degradation. 

 

Material 

CO2 Capacity of 

Fresh Material 

CO2 Capacity 

after Oxidation 

 

CO2 Capacity 

after Thermal 

Degradation  

SBA_AMBS 0.12 0.11 0.12 

SBA_CHAPS 0.10 0.03 0.08 

SBA_TBAPS 0.05 0.02 0.04 
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Unhindered secondary amine sorbents have been previously shown to be susceptible 

to oxidative degradation.25,26 Oximes, imines, and amides have been previously reported 

as species associated with oxidative degradation on amine sorbents.25,26,63  Peaks associated 

with degradation products were identified in the IR spectra of SBA_CHAPS and 

SBA_TBAPS after oxidative and thermal treatments (Figure B.16 and Figure B.17). 

Furthermore, SBA_CHAPS and SBA_TBAPS had multiple overlapping peaks appearing 

between 1700-1500 cm-1, which could be associated with multiple degradation products 

such as imines, oximes, and amides. As expected, the primary hindered amine 

SBA_AMBS did not readily oxidize under the conditions employed here. Moreover, no 

noticeable peaks associated with degradation products were found using IR spectroscopy 

(Figure B.18). These results are consistent with a previous studies that have demonstrated 

that sorbents that consist of solely primary amines or tertiary amines are less prone to 

oxidization than ones that contain solely secondary amines.26,64,65 Bollini et al. 

demonstrated that supported primary amines are prone to degradation when spaced from a 

secondary amine by an ethyl group, implying an intramolecular degradation mechanism.26 

The initial degradation events are thought to occur via proton abstraction from the carbon 

alpha to the amine nitrogen. Because SBA_AMBS does not contain any C-H bonds on the 

α-carbon, enhanced oxidative stability is expected for hindered primary amines in 

“blended” amine systems. 

3.4 Conclusions 

The effects of humidity on CO2 adsorption on solid supported hindered amines were 

explored in this fundamental study. While the adsorption performance of the hindered 

amine sorbents in nominally dry conditions was poor, amine efficiencies and CO2 
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capacities under humid conditions were comparable to values previously reported for 

unhindered primary amine sorbents at similar amine loadings. It was found that 

SBA_TBAPS achieved the highest CO2 adsorption capacities under humid conditions 

followed by SBA_AMBS and SBA_CHAPS. It was confirmed by in situ FTIR 

spectroscopy that all hindered amine sorbents studied were prone to form bicarbonates 

under humid conditions. Furthermore, the amount of bicarbonates formed on these sorbents 

are the largest amount reported on solid supported amines to date, to the best of our 

knowledge. More bicarbonates formed on hindered amines than were observed on their 

unhindered counterparts, due in part to limited or no carbamate formation on such sites. 

Weakly chemisorbed species led to facile desorption at 30 °C for the hindered amine 

sorbents. This result implies hindered amine sorbents have potential for reduced energy 

costs for regeneration. 

The large amine efficiencies observed in hindered amine solutions were not achieved 

on the solid analogues. The lower extent of bicarbonate formation on solid supports when 

compared to solution may be a function of water loading, as in solution the amines are in 

a large excess of water when compared to their solid counterparts. A better understanding 

of how solvation and hydrogen bonding affect chemisorbed CO2 on solid supported amines 

is needed to further explain discrepancies in CO2 capacity between solid supported amines 

and amines in aqueous solution. 

Oxidative and thermal degradation of the sorbents was also studied to help evaluate 

sorbent lifetimes. All sorbents retained most of their amine content and CO2 adsorption 

capacity when exposed to high temperatures under inert He flow at long timescales. The 

SBA_AMBS sorbent retained most of its dry CO2 capacity after exposure to accelerating 
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oxidizing conditions and was the most oxidatively stable sorbent studied here. Both the 

secondary hindered amine sorbents had significant decreases in CO2 capacity after 

exposure to accelerated oxidizing conditions, and peaks associated with degradation 

products were observed using IR spectroscopy. Due to their oxidative stability, hindered 

primary amines are better candidates than hindered secondary amines for future studies on 

CO2 adsorption.  
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CHAPTER 4. STERICALLY HINDERED AMINOPOLYMERS 

FOR CO2 CAPTURE 

4.1 Background  

One type of solid supported amine that is heavily researched are 

aminopolymer/metal-oxide composites, in which the aminopolymer is physically 

incorporated into the pores of the metal-oxide support.1–7 These aminopolymer/metal-

oxide composites are attractive for practical use due to the ease of incorporating 

aminopolymers into porous solids and the large CO2 capacities associated with the large 

amine densities of the aminopolymer. A variety of aminopolymers have been studied for 

CO2 adsorption, including poly(ethylenimine) (PEI),1,2,8 poly(allylamine) (PAA),9 and 

poly(propylenimine) (PPI).4,10–12  

Out of all the polymers studied, branched poly(ethylenimine) is particularly 

attractive for practical use due to its commercial availability and good CO2 capacities and 

kinetics.8  However, PEI is prone to oxidative degradation due to the high temperatures 

used for regeneration.4,13 In addition, recent studies have suggested that the energy required 

for regenerating such sorbents are a key cost driver of the separations process.14,15 Min et 

al. demonstrated that sorbents that contain PEI functionalized with various epoxide groups 

required lower amounts of energy for regeneration than sorbents that contain 

unfunctionalized PEI, due to weak amine-CO2 species formed and the sorbents more 

hydrophobic nature.15 Another possible route to reduce energy and temperatures required 

for regeneration is to use primary amines that have a tertiary α-carbon or secondary amines 
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that have a secondary or tertiary α-carbons, otherwise known as sterically hindered 

amines.16  Hindered amines have been effective for energy efficient CO2 capture and 

desorption in aqueous solution due to their weak amine-CO2 binding and high amine 

efficiencies (up to 1 mol CO2 adsorbed/mol N)..16,17  In addition, hindered primary amines 

are expected to be oxidatively stable because there are no hydrogen atoms to abstract on 

their α-carbon.18 This is important because the initial degradation event of oxidation is 

thought to occur by hydrogen abstraction from the α-carbon.19–21  

While hindered amine solutions have been researched for the past 30 years16,17,22 and 

have been commercially employed by Mitsubishi Heavy Industries,23 studies on solid 

supported hindered amines are limited.18,24–26 In Chapter 3, it was observed that silane 

grafted sterically hindered molecular amines had similar CO2 capacities and weaker amine-

CO2 species when compared to a supported unhindered primary amine under humid 

conditions.18 However, low amine loadings were achieved in that study (1.8 mmol N/gSiO2), 

resulted in modest CO2 capacities. This study aims to synthesize an aminopolymer with 

large densities of hindered amine moieties, incorporate the polymer into mesoporous SBA-

15, and compare the CO2 adsorption performance of the resulting composite material to  

silica composites that are incorporated with unhindered aminopolymer PEI, which is the 

benchmark aminopolymer for CO2 capture.27  
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4.2 Experiments 

4.2.1 Materials  

Hydrochloric acid (36 wt%) was purchased from Alfa Aesar and 2-methylpropane-

1,2-diamine dihydrochloride was purchased from Enamine. Deuterated methanol 

(CD3OD), deuterated chloroform (CDCl3), deuterium oxide (D2O), chromium (III) 

acetylacetonate, Poly(ethylenimine) (Mw 800), Pluronic P-123, tetraethyl orthosilicate 

(TEOS, 98%), chlorosulfonic acid (99%), sodium hydroxide, potassium hydroxide, 2-

amino-2-methyl-1-propanol (AMP, 95%), and AMBERSEP 900 ion exchange resin were 

purchased from Sigma Aldrich. Methanol and diethyl ether were purchased from BDH 

chemicals. Ultra-high purity N2, ultra-high purity He, bone dry CO2, and 10% CO2/10% 

He/80% N2 were purchased from Airgas.   

4.2.2 Materials Synthesis 

  SBA-15 synthesis was based on a previous procedure.28 Pluronic P-123 (24.0 g) 

was dissolved in concentrated hydrochloric acid (120 mL) and deionized (DI) water (636 

mL) in a 2 L Erlenmeyer flask. The solution was stirred for 3 h at room temperature. 

Tetraethyl orthosilicate (46.24 g) was added dropwise to the solution, and the mixture was 

subsequently stirred for 20 h at 40 °C. Afterwards, the stir bar was removed, and the 

mixture temperature was maintained at 100 °C for 24 h. The mixture was then quenched 

and filtered with copious amounts of distilled water, and the resulting white powder was 

then dried overnight in an oven at 75 °C. Afterwards, the white powder was calcined using 

the following procedure: ramp to 200 °C at 1.2 °C min−1, hold at 200 °C for 2 h, ramp to 

550 °C at 1.2 °C min−1, hold at 550 °C for 6 h, and cool to room temperature. 
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The synthesis of poly(2,2-dimethylenimine) was based on a previous procedure.1,29–

32 First, AMP (5.64 g) was dissolved in diethyl ether (600 mL) in a 1 L round bottom flask. 

The mixture was cooled to 0 °C by an ice bath. Next, chlorosulfonic acid (5.4 mL) was 

added dropwise, and a white precipitate immediately formed. The mixture was then stirred 

for 3 h and the resultant product, 2-amino-2-methyl-1-propanol hydrogen sulfate, was 

washed with copious amounts of diethyl ether and dried overnight on a Schlenk line under 

vacuum (<20m Torr) at room temperature. The reaction was conducted twice to yield the 

required amount of 2-amino-2-methyl-1-propanol hydrogen sulfate for the next step. 1H 

NMR (400.1 MHz, D2O): δ (ppm) 1.30 (s), 3.94 (s). 13C NMR (100.6 MHz, D2O): δ (ppm) 

72.00, 53.62, 21.64.   

Next, 2-amino-2-methyl-1-propanol hydrogen sulfate (18.24 g) was dissolved with 

water (89.69 g) in a 100 mL round bottom flask. To start the reaction, 20.4 g of 50 wt% 

aqueous solution of NaOH was added to the flask and connected to a vacuum distillation 

apparatus. The mixture was stirred at room temperature for 2 h. Next, the temperature of 

the mixture was increased to 60 °C. Once this temperature was reached, vacuum was 

slowly introduced into the reaction vessel and crude 2,2-dimethylenimine was distilled as 

a clear liquid. Next, increments of 0.30 g NaOH were added and dissolved into a centrifuge 

tube containing 2,2-dimethylenimine until the solution was saturated with NaOH. Two 

layers were observed upon adding NaOH, and the top layer, consisting of 2,2 -

dimethylenimine (4.76 g, 0.81 g/mL at 25 °C), was removed by a pipette and stored in a 

freezer.  1H NMR (400.1 MHz, CDCl3): δ (ppm) 1.56 (s), 1.25 (s). 13C NMR (100.6 MHz, 

CDCl3): δ (ppm) 33.83, 31.56, 25.14.   
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In a 75 mL pressure tube, 2,2 dimethylethylenimine (2.9 mL), 2-methylpropane-1,2-

diamine dihydrochloride (0.28 g), and DI water (2.9 g) was stirred for 60 h at 70 °C. The 

mixture was brought to room temperature and was stirred with 25 mL of AMBERSEP 900 

to remove chloride ions. The mixture was then filtered with deionized water and 

subsequently purified by rotary evaporation to produce poly(2,2-dimethylenimine) 

(PDMEI), in the form of a light-yellow viscous liquid. Elemental analysis confirmed that 

no chloride ions remained.  

Polymer/silica composites were prepared by wet impregnation. First, SBA-15 was 

dried in a round bottom flask overnight on a Schlenk line at 100 °C under vacuum (<20 

mTorr). Next, 10 mL of methanol was added into the round bottom flask containing 

SBA15, and the slurry was stirred for 30 min. In a separate vial, the required amount of 

polymer was dissolved in 5 mL of methanol. The methanolic polymer solution was added 

into the round bottom flask containing the SBA-15 slurry and was stirred at room 

temperature for 4 h. Afterwards, the methanol was removed by rotary evaporation at room 

temperature, and the resulting powder was dried overnight under vacuum (<20 mTorr) at 

room temperature.  

4.2.3 Materials Characterization  

1H NMR and 13C NMR experiments to characterize 2,2-dimethylenimine and the 2-

amino-2-methyl-1-propanol hydrogen sulfate were conducted on a Bruker AVIII-400 

spectrometer operating at 400.1 MHz and 100.6 MHz respectively.  

Inverse-gated 13C NMR and Distortionless Enhancement by Polarization Transfer 

(DEPT-135) experiments were conducted on the PDMEI sample using a Bruker Avance 
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III HD 500 MHz spectrometer operating at 125.7 MHz. The inverse-gated 13C NMR 

experiment was run with 8000 scans at a recycle time of 5 times the spin lattice relaxation 

time of the slowest relaxing carbon on the aminopolymer (T1=1.2 sec). Chromium (III) 

acetylacetonate (6 mg) was added to the NMR tube consisting of poly(2,2-

dimethylenimine) (70 mg) and CD3OD (0.75mL) to assist in reducing long spin lattice 

relaxation times (T1) of the carbons on the aminopolymer for the inverse-gated 13C NMR 

experiments. A relaxation study was conducted prior to the inverse-gated 13C NMR 

experiment to find the relaxation times of all carbons on the aminopolymer. Proton NMR 

of PDMEI was conducted on a Bruker AVIII-400 spectrometer operating at 400.1 MHz 

with CD3OD as the solvent. 

Aqueous phase gel permeation chromatography (GPC) was performed using a 

Shimadzu HPLC system with a refractive index detector (RID-10A) and TSKgelG3000-

G6000-PWxl-CP, G3000-PWxl-CP, and G5000-PWxl-CP columns. The eluent phase 

consisted of 0.4 M acetic acid and 0.3 M NaNO3 and was flowed at 1 mL/min. 

Poly(ethylenimine) of known molecular weights were used as standards. Electrospray 

Ionization-Mass Spectrometry (ESI-MS) was conducted on a Waters Quattro LC system for 

PDMEI.  

Nitrogen physisorption was performed on a Micromeritics Tristar II instrument at -

196 °C. The samples were activated under vacuum at 60 °C for 12 h before the 

measurement. Resulting N2 adsorption isotherms were used to calculate surface area using 

the Brunauer-Emmett-Teller (BET) method.33 The P/Pₒ range used to calculate BET 

surface areas was 0 – 0.3. Pore volumes were determined by total amount of N2 adsorbed 
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at P/Pₒ=0.95 and pore size distributions were calculated using the NLDFT isothermal 

model with Quantachrome VersaWin software.34  

Elemental analysis (Atlantic Microlabs, Norcross, GA) was used to determine amine 

loadings of the sorbents. Total organic loadings were estimated by thermogravimetric 

analysis (TGA) using a Netzsch STA409 instrument. The samples were analyzed by 

increasing the temperature to 900 °C from room temperature at a rate of 10 °C/min under 

combined air (90 mL/min) and N2 (30 mL/min) flow. The organic loadings were estimated 

by the mass loss between 120 and 900 °C. The ratio of the amount of PEG to aminopolymer 

in the composites was estimated by the following equation.35  

 
𝑔 𝐶

𝑔 𝑁
=

𝑔 𝐶
𝑔 𝑎𝑚𝑖𝑛𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟

∗ 𝑔 𝑎𝑚𝑖𝑛𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟 +
𝑔 𝐶

𝑔 𝑃𝐸𝐺
∗ 𝑔 𝑃𝐸𝐺

𝑔 𝑁
𝑔 𝑎𝑚𝑖𝑛𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟

∗ 𝑔 𝑎𝑚𝑖𝑛𝑜𝑝𝑜𝑙𝑦𝑚𝑒𝑟
 (4.1) 

 

4.2.4 CO2 and H2O Adsorption Measurements  

Water adsorption measurements were conducted at both 30 and 40 °C on a 

Micromeritics 3Flex, which measures single-component water vapor adsorption isotherms 

using the volumetric method. Samples were activated at 60 °C for 12 h before each run. 

A TA Instruments Q500 thermogravimetric analyzer (TGA) was used to measure the 

dry CO2 uptake capacity. About 10-15 mg of sample was used for each run. Each sample 

was activated in He flow at 60 °C for 3 h. The sample was then cooled to the desired 

adsorption temperature and the gas was switched to a 10% CO2/He mixture at atmospheric 
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pressure for 2 h. The CO2 capacity was calculated based on the weight change between the 

activated sample and after exposure to 10% CO2/He for 2 h. The Q500 TGA was also used 

to estimate volatility of the samples. Each sample was ramped to the desired temperature 

(60 or 90 °C) and held at that temperature for 10 h.  

A glass fixed bed (6 mm outer diameter x 4 mm inner diameter) was used to obtain 

CO2 capacities under humid conditions. A schematic of the apparatus can be seen in 

Chapter 2.36 The outlet gas was analyzed using an Omnistar GSD 320 mass spectrometer.  

The samples were pelletized using a carver press at a pressure of 1000 psi for 30 sec.  A 

typical run used 70-100 mg of sample that was sieved to the size range of 300-500 μm. 

Before each humid CO2 adsorption run, all samples were activated under dry N2 flow (50 

mL/min) at 60 °C for 2 h and were presaturated under humid N2 flow (50 mL/min) at the 

desired adsorption temperature. Humidity was generated by flowing gases through a 

sparger containing DI H2O at a controlled temperature of 18 °C. The sample was 

considered saturated when the outlet concentration of water matched the inlet concentration 

of water.  

The CO2 adsorption experiments employed a premixed gas cylinder, which was 

composed of 10% CO2/ 10% He/ 80% N2. The He gas was used as an inert tracer to 

calculate the dead-time of the fixed bed apparatus. Adsorption runs were stopped once the 

outlet CO2 concentration reached 98% of the inlet stream CO2 concentration. Pseudo-

equilibrium CO2 capacities were calculated by evaluating the area between the He and CO2 

outlet concentrations of the breakthrough curves generated from the adsorption run. The 

flow rate of the CO2 containing gas was fixed at 20 mL/min. The accuracy of the instrument 

was verified by comparing CO2 capacities calculated between the TGA and fixed bed using 
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SBA_PEI under dry 10% CO2 flow at 30 °C, whereby it was determined that there was no 

difference in capacity. 

4.2.5 In Situ FTIR Spectroscopy  

A Thermo Nicolet iS10 with a mercury cadmium telluride (MCT) detector and a 

Harrick High Temperature Transmission Cell equipped with CaF2 windows was used for 

in situ FTIR spectroscopy studies. The samples were pressed into self-supporting wafers 

at 1000 psig for 30 s using a Carver Press and a pellet die set. Each sample was activated 

at 60 °C for 3 h under He flow and was cooled to 30 °C subsequently. The flow rate for all 

gases was held constant at 50 mL/min at atmospheric pressure.  

For dry CO2 adsorption experiments, 10% CO2/He was introduced into the cell after 

activation. The activated sample was used as the background spectrum for dry CO2 

adsorption experiments. For humid CO2 adsorption experiments, humid helium was 

introduced into the cell for 2 h after activation to presaturate the sample with water. Humid 

CO2 was then introduced into the cell, and spectra were recorded throughout this period 

using the presaturated sample as the background spectrum. To eliminate additional water 

vapor peaks for humid CO2 adsorption experiments, a background spectrum containing 

water vapor and helium was also subtracted from the results. After CO2 adsorption, dry or 

humid He was employed for desorption under dry and humid conditions, respectively. 

All CO2 adsorption spectra were collected for a duration of 65 min. Furthermore, 

spectra were collected between 0 and 5 min with 1 scan at a resolution of 4 cm-1 every 5 

sec, and spectra between 5 and 65 min were collected with 64 scans at a resolution of 4 cm-

1 every 2 min. Desorption spectra were collected with 64 scans at a resolution of 4 cm-1 
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every 2 min for 60 minutes. After each experiment, the self-supporting wafer was cut with 

a circular stamp (6.35 mm in diameter) and was weighed to determine its mass. All spectra 

were normalized by the mass of the wafer (mg). 

4.3 Results and Discussion 

4.3.1 Synthesis of PDMEI 

PDMEI was synthesized by ring opening polymerization of 2,2-dimethylenimine, 

which had a weight average molecular weight of 600 g/mol (8 repeat units) under the 

reaction conditions employed. PDMEI had a lower molecular weight and fewer repeat units 

than PEI samples typically used for CO2 adsorption (Mw~800, 23 repeat units). The PDMEI 

polymer was analyzed using electrospray ionization mass spectrometry (ESI-MS), and the 

molecular weights found suggested that the polymerization was terminated by the diamine 

capping agent added to the reaction, a hydroxyl group through solvolysis, an unopened 2,2-

dimethylenimine group, or cyclization (Figure 4.1). It was also determined by quantitative 

carbon NMR that the distribution of 1°/2°/3° amines (%) was 19/78/3 (Figure C.2 and 

Figure C.3). It should be noted that small quantities of unhindered secondary amines were 

observed (hindered 2°/unhindered 2°~92/8). 
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Figure 4.1. Reactions of 2,2-dimethylaziridine.32,37–39 

4.3.2 Thermal Stability of Materials 

A practical sorbent must be regenerable over multiple cycles. Furthermore, the 

aminopolymers must not readily volatilize at operational temperatures. The thermal 

stability of PDMEI (Mw 600) was compared to PEI (Mw 800), which exhibits good thermal 

stability.13,40 Neat aminopolymers and aminopolymer/silica composites were held at 60 and 

90 °C for 12 hours under N2 flow and thermal stability was estimated from the slope of 

mass loss between 200 and 400 min (Figure 4.2). The neat PDMEI polymer exhibited poor 

thermal stability when compared to neat PEI at 60 and 90 °C. This result may be due in 

part to the comparatively lower molecular weight of PDMEI. However, the PDMEI 

polymer/silica composites exhibited low weight loss rates comparable to PEI 

polymer/silica composites, indicating suitable stability in composite form. It should be 

noted that both composites had similar amine loadings (Table 4.1). The increased thermal 
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stability of aminopolymer/silica composites is likely due to hydrogen bonding interactions 

between the aminopolymer and the hydroxyl groups on the walls of the silica support.41 

The low mass loss observed for SBA_PDMEI suggests that temperatures of 60 and 90 °C 

can be used to regenerate low molecular weight PDMEI/silica composites.  

 

Figure 4.2. Thermogravimetric analysis of the stability of neat polymers and 

polymer/silica composites conducted at (a) 60 and (b) 90 °C. (c) Weight loss rates for 

neat polymers and polymer/silica composites. 
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Table 4.1. Physical and textural properties of aminopolymer/silica composites. 

Material 

BET 

Surface 

Area 

(m²/gSiO2) 

Pore 

Volume 

(cm³/gSiO2) 

Pore 

Volume 

Filled 

(%) 

 

Amine 

Loading 

(mmolN/gSiO2) 

Organic 

Loading 

(wt%)  

PEG/ 

Aminopolymer   

Ratio(g/g) 

SBA15 834 1.08 - -  - 

SBA_PDMEI 360 0.63 42 5.8 35 - 

SBA_PDMEI_PEG 170 0.32 70 6.1 47 0.93 

SBA_PEI 415 0.80 26 5.6 23 - 

SBA_PEI_PEG 276 0.52 60 5.1 37 0.80 

4.3.3 CO2 and H2O Adsorption of Aminopolymer/silica Composites 

The amine efficiencies (mol CO2 adsorbed/mol N) of the composite materials were 

evaluated for 10% CO2 at 30 and 40 °C under dry and humid conditions (PH2O = 21 mbar) 

(Figure 4.3a). All sorbents had similar amine loadings, and impregnation of polymers into 

the support mesopores was confirmed by reduction of pore volume (Table 4.1). All 

sorbents had an increase in amine efficiency when comparing humid to dry runs, as noted 

by the efficiency enhancement factor (humid CO2 amine efficiency/dry CO2 amine 

efficiency) (Figure 4.3b). Water can enhance the adsorption capacity by changing the 

species adsorbed from carbamates (1 CO2/2 N) to bicarbonates (1 CO2/1 N) in whole or in 

part, enhancing amine-CO2 species formation through hydrogen bonding, by increasing 

accessible amine sites by enhancing the mobility of polymer chain, and/or freeing the chain 

from interactions with the silica surface.42–44 The effect of humidity on adsorption 

performance was greatly diminished at 40 °C for all sorbents, which may be due to reduced 

amounts of water adsorbed (Figure 4.4).  
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Figure 4.3. (a) Amine efficiencies of aminopolymer/silica composites at 10% CO2 

between 30 and 60 °C. Unfilled and filled shapes represent amine efficiencies under dry 

and humid conditions (PH2O = 21 mbar) respectively. (b) Efficiency enhancement of 

aminopolymer/silica composites at 30 and 40 °C.   

As expected, SBA_PDMEI was ineffective at capturing CO2 under dry conditions 

because of the large quantities of severely hindered secondary amines (72%) found in the 

PDMEI polymer. Severely hindered secondary amines are unable to form a C-N covalent 

bond necessary to form amine-CO2 species typically formed under dry conditions, such as 

alkylammonium carbamates. However, severely hindered amines, when in the presence of 

water, should theoretically be active for CO2 capture by forming alkylammonium 

bicarbonates. While an increase in amine efficiency is observed for the SBA_PDMEI 

sample under humid conditions, the hindered aminopolymer sorbent had a lower amine 

efficiency than SBA_PEI at each condition studied here. In addition, the SBA_PDMEI 

material exhibited lower amine efficiencies than what was reported in Chapter 3 for 

sterically hindered aminosilanes (0.18-0.31 mol N/ mol CO2), which used the same 

conditions as this study.18  

One possible explanation for the poor amine efficiency exhibited by SBA_PDMEI 

when compared to SBA_PEI is that SBA_PDMEI has more mass transfer limitations; the 
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hindered polymer is expected to have poor polymer mobility due to the heavy monomer 

units of PDMEI, making it difficult for CO2 to access the amine sites of PDMEI. Also, the 

additional methyl substituents in PDMEI makes the polymer more hydrophobic than PEI, 

resulting in lower water uptakes at the conditions studied here (<0.5 mol H2O/mol N) 

(Figure 4.4). Theoretically, one mol H2O/mol N is required for ammonium bicarbonate 

formation. Thus, inefficient water uptake may be a key contributor to the low amine 

efficiencies for SBA_PDMEI.  

To improve CO2 adsorption performance, poly (ethylene glycol) (PEG, Mw=200) 

was incorporated into the aminopolymer/silica composites. CO2 uptakes on both hindered 

and unhindered polymer sorbents were enhanced with the PEG additive at the conditions 

studied. Like the enhancement effects of water, PEG can improve CO2 adsorption 

performance by increasing chain mobility and amine site accessibility.35,45 The addition of 

PEG can also make the adsorbents more hydrophilic, increasing the chances of 

bicarbonates to form on hindered aminopolymer sorbents. Also, the alcohol of the PEG 

molecule can hydrogen bond with amine-CO2 species, making it more thermodynamically 

favourable for such species to form.46,47 

The SBA_PDMEI_PEG material exhibited higher amine efficiencies and higher 

efficiency enhancements than SBA_PDMEI under dry and humid conditions. In addition, 

the SBA_PDMEI_PEG material adsorbed more than the theoretical amounts of water 

required for ammonium bicarbonate formation at 30 °C under the humid conditions studied 

here. The theoretical amine efficiency associated with ammonium bicarbonates, however, 

was not reached for the SBA_PDMEI_PEG sample. In fact, the SBA_PDMEI_PEG 

sample exhibited lower amine efficiencies than SBA_PEI and SBA_PEI_PEG composites. 
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Even though there is enough water per amine site, it is possible that some water molecules 

are not close enough to the amine site to be active for bicarbonate formation. Water is also 

theorized to enhance the formation of amine-CO2 species through hydrogen bonding 

interactions.48,49 Amine-CO2 species such as bicarbonates may form more readily in 

solution due to the large availability of water with which such species may interact. 

The PEG additive also increased the amine efficiency of the unhindered polymer 

sorbent under dry and humid conditions. Efficiency enhancements of the unhindered 

polymer sorbents were lower than what were found for their hindered counterparts, 

suggesting that there may be differences in how water improves CO2 adsorption 

performance between the two aminopolymers. Both the SBA_PEI and SBA_PEI_PEG 

samples adsorbed water near or greater than the theoretical amounts for bicarbonate 

formation at 30 °C. Previous literature suggests that bicarbonate formation on unhindered 

amines is not likely to form in large quantities under the humid conditions studied here, 

indicating that an increase in amine efficiency by water is most likely due to reduced mass 

transfer limitations.43,50  

A composite with PDMEI and PEI both incorporated into SBA-15 

(SBA_PDMEI_PEI) was also studied. The SBA_PDMEI_PEI composite was compared to 

a PDMEI/silica composite with low amine loading (SBA_PDMEI_lo) and SBA_PEI. 

Furthermore, the SBA_PDMEI_lo and SBA_PEI composites had comparable amine 

loadings (mmol N/gSiO2) to the PDMEI and PEI amine loadings respectively of the  

SBA_PDMEI_PEI composite (Table C.2). No synergistic effects for the 

SBA_PDMEI_PEI composite were observed as the sum of the amine efficiencies of the 
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SBA_PDMEI_lo and SBA_PEI were higher than what was observed for 

SBA_PDMEI_PEI at the conditions studied (Figure C.17).  

 

Figure 4.4. (a) Water uptake and (b) amine normalized water uptake of 

aminopolymer/silica composites at 30 and 40 °C and PH2O = 21 mbar. 

4.3.4 FTIR Spectra of Adsorbed CO2 on Aminopolymer/silica Composites 

In situ FTIR spectroscopy experiments were conducted to elucidate the amine-CO2 

species formed on the aminopolymer/silica composites in the presence of dry and humid 

CO2 (Figure 4.5). The region typically evaluated for chemisorbed CO2 species is between 

1800 and 1270 cm-1. Peak assignments of amine-CO2 species are listed in Figure 4.6. For 

all sorbents, the overall peak areas were larger for humid runs when compared to the dry 

runs, consistent with efficiency enhancements described in the previous section.  

The peaks in the dry CO2 adsorption spectrum of PEI containing sorbents are 

associated with carbamates and carbamic acids, as amines cannot form bicarbonates 

without the presence of water. The main difference between the dry CO2 adsorption 

spectrum of SBA_PEI and SBA_PEI_PEG is that the overall peak area is larger for the 
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SBA_PEI_PEG spectrum. This is consistent with the fact that the SBA_PEI_PEG sample 

had a higher CO2 capacity. Also consistent with the measured CO2 adsorption capacities, 

there is little change in the overall peak area when comparing humid CO2 adsorption spectra 

of SBA_PEI to that of SBA_PEI_PEG.  

The peaks associated with bicarbonate modes overlap with peaks associated with the 

alkylammonium deformation mode and the skeletal vibration of carbamate. To probe if 

bicarbonates form in the presence of humid CO2, the peaks associated with bicarbonate 

stretching vibrations (~1610 and ~1350 cm-1) must increase relative to peaks associated 

with carbamate stretching modes (1566 and 1477 cm-1) when comparing humid to dry CO2 

adsorption spectra. Peak intensities around 1610 and 1350 cm-1 did not increase relative to 

carbamate stretching mode peaks when comparing the humid and dry CO2 adsorption 

spectra of each unhindered aminopolymer sorbent, indicating that bicarbonates did not 

readily form.  

Ammonium carbamate formation was also observed in the dry CO2 adsorption 

spectrum of PDMEI containing sorbents. Since severely hindered secondary amines are 

not able to form the C-N covalent bonds necessary for carbamate formation, the primary 

and unhindered secondary amines were likely responsible for adsorbing CO2 in PDMEI 

sorbents under dry conditions.16,51 There was an increase of peak intensity at 1614 and 

1350 cm-1 relative to peaks associated with carbamate (1564 and 1397 cm-1) when 

comparing the humid and dry CO2 adsorption spectra of SBA_PDMEI, suggesting 

formation of ammonium bicarbonate on the hindered polymer sorbent under humid CO2 

flow. However, lower amounts of bicarbonates formed on SBA_PDMEI when compared 

to molecular amine analogues. In Chapter 3, which was conducted under the same 
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conditions used here, peaks associated with bicarbonates were more intense for the humid 

CO2 adsorption spectra of silica supported hindered aminosilanes.  

Consistent with CO2 adsorption capacities, the overall peak area of the CO2 

adsorption spectrum was larger for SBA_PDMEI_PEG when compared to that of 

SBA_PDMEI under both dry and humid conditions (Figure C.12). However, the 

SBA_PDMEI_PEG sorbent appeared to form larger quantities of bicarbonates than 

SBA_PDMEI in the presence of humidity, as peaks associated with bicarbonate were more 

intense when comparing the humid CO2 adsorption spectra of SBA_PDMEI_PEG and 

SBA_PDMEI. The increase in bicarbonate formation on the SBA_PDMEI_PEG sample 

may be due to its higher water content, increased polymer mobility, and additional 

interactions of the amine-CO2 species with the alcohol group of the PEG molecule. The 

results here suggest that aminopolymers with hindered amine moieties can be active for 

CO2 capture if they are designed to be in a chemical environment that is conducive for 

amine-CO2 species to readily form. 
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Figure 4.5. FTIR spectra for 10% CO2 adsorption on (a) SBA_PDMEI, (b) 

SBA_PDMEI_PEG, (c) SBA_PEI, and (d) SBA_PEI_PEG under dry and humid 

conditions (PH2O = 21 mbar) at 30 °C after 65 min of time on stream. Solid lines and 

dotted lines represent humid and dry runs respectively.  
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Figure 4.6. FTIR peaks assignments of vibrational modes of bicarbonate,36,52 

carbamate,43,53,54 alkylammonium43,55,56, and carbamic acid.53 R denotes an alkyl group or  

a hydrogen atom. 

4.3.5 CO2 Adsorption/Desorption Kinetics 

CO2 adsorption kinetics were also probed using in-situ FTIR spectroscopy by 

evaluating the integrated peak area associated with amine-CO2 species (1750-1270 cm-1) 

during adsorption runs (Figure 4.7). As expected, both humidity and the incorporation of 

the PEG additive increased the rate of CO2 adsorption for all sorbents studied. Furthermore, 

the kinetic data support the hypothesis that the increase in amine efficiency for 

aminopolymer/silica composites in the presence of water and/or PEG is in part associated 

with a reduction of mass transfer limitations.35,45 Water enhanced the CO2 adsorption 

kinetics the least on PEG containing samples. This result indicates that the PEG additive 
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may have sufficiently enhanced mobility of the aminopolymer chain, making the effects of 

water on CO2 adsorption kinetics marginal. 

The SBA_PDMEI sample under dry conditions had the slowest adsorption and 

desorption kinetics, which could be due to poor polymer mobility associated with the 

polymer’s bulky monomeric units. However, the SBA_PDMEI_PEG sorbent had a CO2 

uptake rate comparable to PEI containing sorbents, indicating that the kinetics of hindered 

polymer sorbents can have adsorption rates comparable to unhindered polymer sorbents.  

The PEG additive and water also enhance CO2 desorption rates of the 

aminopolymer/silica sorbents studied here (Figure C.13 and Figure C.14). It is also 

apparent when looking at the unnormalized desorption curves (Figure C.15), that after an 

hour of desorption there are less quantities of CO2 adsorbed on the hindered amine 

sorbents. This is the expected result, as hindered amines form weaker chemisorbed species 

than unhindered amines. 

While water enhances CO2 adsorption/desorption kinetics and amine efficiencies of 

aminopolymer/silica sorbents studied here, if too much water is present on such sorbents 

the regeneration energy required will increase, as some energy will go into heating of 

water.15 The same argument can be made for any additional organic added into the 

aminopolymer/silica composite such as PEG.35 Therefore, aminopolymer/silica 

composites that are practical CO2 sorbents will contain limited amounts of excess organic 

content, adsorb the smallest quantity of water needed to form sufficient amounts of amine-

CO2 species, and have fast polymer dynamics. 
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Figure 4.7. Normalized FTIR peak area between 1750 and 1270 cm−1 during adsorption 

of 10% CO2 under dry and humid conditions (PH2O = 21 mbar) at 30 °C. Unfilled shapes 

represent dry runs and filled shapes represent humid runs. The curves are normalized 

such that the end of the adsorption run (65 min) equals 1. 

4.4 Conclusions 

In this study, sterically hindered polymer PDMEI was synthesized, incorporated into 

the pores of mesoporous silica, and the CO2 adsorption performance of the resulting 

hindered aminopolymer/silica composites were compared to their unhindered counterparts. 

The SBA_PDMEI and SBA_PDMEI_PEG materials exhibited poor amine efficiencies 

under dry and humid conditions when compared to SBA_PEI AND SBA_PEI_PEG and 

silica supported hindered aminosilane sorbents reported Chapter 3. It is posited that the 

poor performance of the hindered aminopolymer/silica composites is due to poor polymer 

mobility and hydrophobicity. Aminopolymer/silica composites with the PEG additive 

achieved faster CO2 adsorption/desorption kinetics and higher amine efficiencies, 

indicating that the sorbents were mass transfer limited at the conditions studied. The PEG 
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additive enhanced formation of ammonium bicarbonate species on the hindered polymer 

sorbent under humid conditions due to a combination of more adsorbed water and a 

reduction of mass transfer limitations.  

The results of this study suggest the CO2 adsorption performance of an 

aminopolymer does not always translate well from its molecular amine derivative; 

furthermore, the amine type is only one factor to consider when designing aminopolymers. 

Characteristics such as polymer chain mobility and hydrophilicity must be considered 

when designing aminopolymers to be used in practical CO2 sorbents. While the sterically 

hindered polymers had low amine efficiencies at the conditions studied here, it is posited 

that polymers with sterically hindered amines moieties can be designed to be active for 

CO2 capture given that the chemical environment is favorable for amine-CO2 species to 

form.  
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CHAPTER 5. SUMMARY & FUTURE DIRECTIONS 

5.1 Summary 

 This dissertation provides direct spectroscopic evidence (NMR and FTIR) that 

ammonium bicarbonates can form on solid supported amines. Furthermore, the supported 

tertiary and sterically hindered amine materials that were studied in this dissertation formed 

ammonium bicarbonates in the presence of water and dilute concentrations of CO2. It 

should be noted that the formation of ammonium bicarbonates on these materials were 

modest when compared to their solution counterparts under the conditions employed here. 

It is posited that ammonium bicarbonates are less likely to form on solid supports than in 

solution due to smaller quantities of water found on solid supports. The results from this 

dissertation also suggest that tertiary amine-based sorbents are not likely to become 

practical CO2 sorbents under direct air capture (DAC) and flue gas conditions due to their 

low CO2 capacities.  

Upon exposure to concentrations of CO2 typically seen in flue gas (10 vol%) and 

water vapor, sterically hindered aminosilane grafted sorbents were found to have similar 

amine efficiencies (mol CO2 adsorbed/mol N) and form weakly bound amine-CO2 species 

when compared to their unhindered counterparts; furthermore, the CO2 adsorption 

performance of these materials was promising and suggested that supported sterically 

hindered amines could be used in a practical separations process. However, only modest 

CO2 capacities (CO2 adsorbed per gram sorbent) associated with low amine densities were 

achieved on sterically hindered aminosilane grafted sorbents.  
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With the hopes of achieving high CO2 capacities, an aminopolymer with large 

densities of sterically hindered amine moieties was synthesized and incorporated into the 

pores of a silica support. Unfortunately, the CO2 adsorption performance of the resulting 

sterically hindered aminopolymer/silica composites was poor when compared to 

unhindered aminopolymer/silica composites and sterically hindered aminosilane grafted 

sorbents. Furthermore, the sterically hindered aminopolymer/silica composites were 

posited to have poor CO2 adsorption performance due to (i) mass transfer limitations 

associated with poor polymer chain mobility and (ii) the hydrophobic nature of the 

composite materials. While the sterically hindered aminopolymer/silica composites studied 

here had poor amine efficiencies, it is predicted that polymers with sterically hindered 

amines moieties can be designed to be active for CO2 capture given that the chemical 

environment is favorable for amine-CO2 species to form. 

The results from these studies suggest that the CO2 adsorption performance of an 

aminopolymer does not always translate well from its molecular amine derivative and 

indicates that amine type is only one factor to consider when designing aminopolymer-

based materials for practical CO2 capture. Factors such as polymer chain mobility and 

hydrophilicity must also be taken into consideration when designing an effective CO2 

sorbent.  

5.2 Future Directions 

Potential future research directions on supported amine materials that build directly 

from this dissertation are proposed below: 
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5.2.1 Determination of the Quantity of Water Required for the Formation of Amine-CO2 

Species 

A computation-based study on the amount of water molecules required to form 

practical amounts of amine-CO2 species such as alkylammonium bicarbonates would be 

particularly useful. Water is thought to enhance the formation of amine-CO2 species 

through hydrogen bonding interactions.1–3 The findings of this dissertation infer that 

alkylammonium bicarbonates may not form readily on supported materials due the small 

quantities of water present. Furthermore, tertiary and sterically hindered amines in aqueous 

solutions have been found to reach the theoretical amine efficiency associated with 

alkylammonium bicarbonate, implying that water has a significant effect on the formation 

of such species.4 In addition, the amount of water adsorbed will also affect the regeneration 

energy required.5 Finding a theoretical minimum amount of water required for the 

formation of large quantities of ammonium bicarbonates would help researchers know if 

supported amines could form such species with quantities of adsorbed water that are 

achievable for a practical separations process.  

5.2.2 Effect of Amine-CO2 Species on Aminopolymer Chain Mobility 

Aminopolymer/metal-oxide composites are often diffusion limited.6,7 The rate of 

diffusion of CO2 is expected to change over time throughout the CO2 adsorption process 

in aminopolymer/metal-oxide composites and is expected to be the fastest when CO2 is 

first introduced to the sorbent. Over time, CO2 will react with amine sites forming 

ammonium carbamates, carbamic acids, and/or ammonium bicarbonates. The ammonium 

carbamate species requires two amines to capture one molecule of CO2 and can cross-link 
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aminopolymer chains. This crosslinking effect is theorized to decrease the diffusion rate of 

CO2.8 In addition, it is also likely that species such as ammonium bicarbonates and 

carbamic acids can make aminopolymer chains more rigid, thus increasing mass transfer 

limitations. It is unknown how each species will affect the chain mobility of 

aminopolymers. Studying how aminopolymer chain mobility is affected by the formation 

of each amine-CO2 species via neutron scattering or NMR spectroscopy could add 

fundamental insights on the mass transport of CO2 molecules on supported amine sorbents. 

5.2.3 Evaluation of Supported Piperazines for CO2 Capture 

Piperazines are commonly used in aqueous media.9,10 Piperazines are cyclic 

compounds that contain 2 amines per molecule. They are observed to have fast CO2 

adsorption kinetics in part because there are always 2 amines adjacent to each other to form 

alkylammonium carbamates in the presence of CO2.9 In addition, piperazines in solution 

are resistant to oxidative degradation at process conditions.9 Like sterically hindered 

amines, piperazines have not been studied in detail for CO2 adsorption.  
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APPENDIX A.     SUPPLEMENT TO CHAPTER 2 

A.1  Fixed Bed Setup and Discussion on Breakthrough Analysis 

 

Figure A.1. Fixed bed adsorption testing apparatus. 
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Figure A.2. Examples of breakthrough curves. C and Co refers to the outlet and inlet 

concentration of the analyte respectively. 

Figure A.2 displays examples of breakthrough curves. The breakthrough curve is a 

measure of outlet concentration of an analyte versus time on stream. Mean residence time 

of the system must be taken into account in order to produce accurate sorption capacities. 

Mean residence time (also known as dead-time) can be accounted for by collecting a 

breakthrough curve of a non-adsorbing tracer gas in an entirely separate experiment or in 

the same breakthrough run of the adsorbing species. It should be noted that the IR analyzer 

used in Chapter 2 can only measure CO2 and H2O making it impossible to measure the 

dead-time of the system using a non-adsorbing tracer gas. In this case, the dead-time can 

be estimated by collecting a breakthrough curve of the adsorbing species through a bed 

containing non-adsorbing materials such as glass wool. 



 124 

The area between the breakthrough curve associated with the dead-time of the system 

and the breakthrough curve of an adsorbing gas for a sorbent yields the quantity of gas 

adsorbed on the sorbent. Equation A.1 yields the CO2 capacity (Q, mmol/g) generated from 

a breakthrough experiment. In this equation ṅ is the molar flow rate of CO2 at the inlet of 

the fixed bed (mmol/min), tq (min) is the integrated area calculated from a breakthrough 

experiment, and W (g) is the mass of the activated sample used. Desorption capacities can 

also be calculated by integrating the area below the desorption curves. 

 
𝑄 =

𝑛̇ ∗ 𝑡𝑞

𝑊
 

(A.1) 

A.2  CO2 Breakthrough Curves and Humid CO2 Capacities over Cycles 

 

Figure A.3. 1% CO2/He breakthrough curves at 30 °C for DMAPS-SBA and 

HLDMAPS-SBA under dry and humid conditions (PH2O = 21 mbar). 
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Table A.1. Humid fixed bed cycles. CO2 uptake in mmol/g. 

 

  

 

 

 

 

A.3  In Situ FTIR Spectroscopy 

 

Figure A.4. FTIR spectra of DMAPS-SBA after humid He exposure with the activated 

sample as the background. 

 

Cycle 1 

 

Cycle 2 

 

 

Adsorption Desorption Adsorption Desorption 

DMAPS-SBA 0.11 0.04 0.11 0.04 

HLDMAPS-SBA 0.06 0.02 0.06 0.02 
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Figure A.5. FTIR spectra of HLDMAPS-SBA after humid He exposure with the activated 

sample as the background. 

 

Figure A.6. FTIR spectra of SBA-15 after humid presaturation with the activated sample 

as the background. 
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Figure A.7. FTIR spectra of DMAPS-SBA after humid CO2 exposure with the 

presaturated sample as the background from (a) 4000-1800 wavenumbers and (b) 3500-

1800 wavenumbers.  

 

Figure A.8. FTIR spectra of HLDMAPS-SBA after humid CO2 exposure with the 

presaturated sample as the background from (a) 4000-1800 wavenumbers and (b) 3500-

1800 wavenumbers. 
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Figure A.9. FTIR spectra of SBA-15 after humid CO2 exposure with the presaturated 

sample as the background.  

 

Figure A.10. FTIR spectra of DMAPS-SBA after dry CO2 exposure with the presaturated 

sample as the background from (a) 4000-1800 wavenumbers and (b) 1800-1300 

wavenumbers. 
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Figure A.11. FTIR spectra of HLDMAPS-SBA after dry CO2 exposure with the activated 

sample as the background from (a) 4000-1800 wavenumbers and (b) 1800-1300 

wavenumbers. 

 

Figure A.12. FTIR spectra of SBA-15 after dry CO2 exposure using the activated sample 

as the background.  
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APPENDIX B.     SUPPLEMENT TO CHAPTER 3   

B.1  N2 Adsorption/Desorption Isotherms and Pore Size Distributions  

 

Figure B.1. Nitrogen adsorption/desorption isotherms for bare and functionalized silica. 

Isotherms are offset by 130 cm3/g SiO2 STP. 

 

Figure B.2. Pore size distributions of (a) SBA-15, (b) SBA_AMBS, (c) SBA_TBAPS, 

and (d) SBA_CHAPS calculated from the N2 physisorption isotherms (BdB-FHH). Pore 

size distributions are offset by 0.2 cm3/g. 
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B.2  CO2 Breakthrough Curves and Capacities  

 

Figure B.3. 10% CO2/He breakthrough curves at 30 °C for the first run of each hindered 

amine sorbents under humid conditions (PH2O = 21 mbar). 

Table B.1. CO2 adsorption capacities (mmol/g) for each hindered amine sorbent at 30 °C 

under 10% CO2/He flow under dry and humid conditions (PH2O = 21 mbar). 

Run Type SBA_AMBS SBA_CHAPS SBA_TBAPS DMAPS-SBA 

dry run (TGA) 0.12 0.10 0.05 – 

dry run (fixed bed)  0.11 0.08 0.06 – 

humid run 1 (fixed bed) 0.35 0.35 0.59 0.31 

humid run 2 (fixed bed) 0.43 0.34 0.55 – 

humid run 3 (fixed bed) 0.41 0.32 0.59 – 

The CO2 adsorption capacity of the DMAPS-SBA sample from Chapter 2 was also 

re-evaluated at the conditions studied in Chapter 3 (10% CO2/He, PH2O = 21 mbar). The 
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humid CO2 capacity of DMAPS-SBA was lower than that of the hindered amine sorbents 

(Table B.1.). 

B.3  Water Adsorption Isotherms  

 

Figure B.4. Water adsorption isotherms for all sorbents. All measurements conducted at 

30 °C. 
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B.4  In Situ FTIR Spectroscopy 

 

Figure B.5. FTIR spectra for 10% 12CO2 adsorption on SBA_AMBS at 30 °C under dry 

conditions and humid conditions (PH2O = 21 mbar).  

 

Figure B.6. FTIR spectra for 10% 12CO2 adsorption on SBA_CHAPS at 30 °C under dry 

conditions and humid conditions (PH2O = 21 mbar).  
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Figure B.7. FTIR spectra for 10% 12CO2 adsorption on SBA_TBAPS at 30 °C under dry 

conditions and humid conditions (PH2O = 21 mbar). 

 

Figure B.8. FTIR spectra of the residual of humid-minus-dry conditions for 10% 12CO2 

and 13CO2 adsorption on SBA_TBAPS at 30 °C after 65 min.  
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Figure B.9. Normalized integrated FTIR peak area between 1750 and 1275 cm−1 during 

adsorption of 10 % CO2 under humid conditions (PH2O = 21 mbar) at 30 °C. The curves 

are normalized such that the end of the adsorption run (65 min) equals 1. 
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Table B.2. IR assignments of bands formed during CO2 adsorption on amine sorbents. 

Wavenumber 

(cm-1) 

Assignment Species Reference 

3200 – 3000 NHx
+ stretch ammonium ion 2 

2800 – 2400 NHx
+ combination ammonium ion 3,4 

2360 – 2349 CO asym stretch gas phase CO2 2 

1700 – 1650 CO stretch carbamic acid 5 

1700 – 1600 COO– asym stretch bicarbonate ion 6,7 

1635 – 1610 NHx
+ asym def ammonium ion 2,8,9 

1570 – 1530 COO– asym stretch carbamate ion 5,8,9 

1500 – 1470 NHx
+ sym def ammonium ion 2,8,9 

1500 – 1470 CN stretch + NH def carbamate ion/carbamic acid 5,10,11 

1440 – 1380 COO– sym stretch carbamate ion 5,8,9 

1350 – 1300 NCOO– 

skeletal vibration 

carbamate ion 4 

1340 – 1300 COO– sym stretch bicarbonate ion 6,7 
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B.5  Isosteric Heats of CO2 Adsorption and CO2 Adsorption Isotherms  

 

Figure B.10. (a) Isosteric heats of adsorption and (b) isotherms for multiple runs of 

SBA_AMBS at 30 °C. 

 

Figure B.11. (a) Isosteric heats of adsorption and (b) isotherms for multiple runs of 

SBA_CHAPS at 30 °C. 
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Figure B.12. (a) Isosteric heats of adsorption and (b) isotherms for multiple runs of 

SBA_TBAPS at 30 °C. 

 

Figure B.13. (a) Isosteric heats of adsorption and (b) isotherm of SBA-15 at 30 °C. 

B.6  Isosteric Heat of CO2 Adsorption of CHAPS_SBA Compared to Literature 

Values  

 The values of isosteric heat of adsorption of CHAPS functionalized SBA15 

reported in this study are significantly higher than previously reported isosteric heat of 

adsorption values.1 A possible difference in isosteric heat of adsorption values between the 
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two studies may be due to differences in local amine densities of the sorbents used. 

Furthermore, while the average amine densities in the two studies are similar to each other, 

the samples used in the previous study may have had less “amine clustering”, leading to 

little or no cooperative amine-CO2-amine chemisorption. In addition, a previously 

unpublished isosteric heat of adsorption run for the CHAPS material used for the previous 

study, which was thought to be an outlier and was thus discarded, is observed to match 

closely with isosteric heat of adsorption values reported here (Figure B.14). There may 

have also been variabilities in local amine densities of the CHAPS material used in each 

run in that study.  

 

Figure B.14. Comparison of the isosteric heat of adsorption of CHAPS functionalized 

SBA15 to previously reported literature values at 30 °C.1 
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B.7  Amine Content and FTIR Spectra of Sorbents after Oxidative and Thermal 

Treatment  

 

Figure B.15. Nitrogen content of amine sorbents determined from elemental analysis. 

Values are normalized to amine content of a fresh sorbent. 

 

Figure B.16. FTIR spectra of oxidatively and thermally treated SBA_CHAPS. 
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Figure B.17. FTIR spectra of oxidatively and thermally treated SBA_TBAPS.  

 

Figure B.18. FTIR spectra of oxidatively and thermally treated SBA_AMBS. 
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APPENDIX C.     SUPPLEMENT TO CHAPTER 4  

C.1  ESI-MS and NMR Spectra of PDMEI  

 

Figure C.1. ESI-MS spectrum of PDMEI. 

Table C.1. Estimated m/z at z=1 of aminopolymer species. 

Species 
Estimated m/z, where z=1 or 

[M+H]+ 

cyclized/aziridine terminated 71 + (71*monomer units) + 1 

hydroxyl terminated 89 + (71*monomer units) + 1 

diamine terminated 88 + (71*monomer units) + 1 
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Figure C.2. 13C NMR of PDMEI between 28-23 ppm. R1 denotes a secondary or tertiary 

amine and R2 denotes a primary, secondary, or tertiary amine. 

 

Figure C.3. 13C NMR of PDMEI between 23-13 ppm. All peaks observed in this region 

are associated with methyl carbons of a hindered tertiary amine. R2 denotes a primary, 

secondary, or tertiary amine. 
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Figure C.4. 13C NMR of PDMEI between 72-47 ppm. R1 denotes a secondary or tertiary 

amine and R2 denotes a primary, secondary, or tertiary amine. 

 

Figure C.5. DEPT-135 spectrum of PDMEI. CH3 peaks have positive intensity, CH2 

peaks have negative intensity, and C peaks are not observed. 
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Carbon peaks of the aminopolymer were assigned with the help of predictive NMR 

software and by a Distortionless Enhancement by Polarization Transfer (DEPT-135) 

experiment. The peak at 70 ppm found in the 13C spectrum is associated with a carbon 

adjacent to the alcohol group. When running a DEPT experiment on the aminopolymer, 

the peak at 70 ppm was absent, indicating that the carbon was not covalently bonded to a 

hydrogen atom. This result implies that the reaction mechanism of solvolysis (SN1) was 

different than that of ring opening polymerization (SN2), consistent with previous 

literature.1,2  

 

Figure C.6. Ring opening polymerization1 and solvolysis2 reaction mechanisms. 
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Figure C.7. 1H NMR of PDMEI. R1 denotes a secondary or tertiary amine and R2 denotes 

a primary, secondary, or tertiary amine. 
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C.2  N2 Adsorption/Desorption Curves and Pore Size Distributions  

 

Figure C.8. N2 adsorption/desorption curves and pore size distribution. 
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C.3  FTIR Spectra of Amine/Silica Composites after Activation 

 

Figure C.9.  FTIR spectra of activated sorbents: (a) SBA_PDMEI_PEG, (b) SBA_PDMEI, 

(c) SBA_PDMEI_lo, (d) SBA_PDMEI_PEI, (e) SBA_PEI_PEG, and (f) SBA_PEI. All 

spectra are baseline corrected and taken under He flow at 30 °C. 
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C.4  In Situ FTIR Spectroscopy of SBA_PEI, SBA_PDMEI, SBA_PDMEI_PEG, 

and SBA_PDMEI_PEG 

 

Figure C.10. FTIR spectra of 10% CO2 adsorption on (a)SBA_PEI (b) SBA_PEI_PEG 

(c) SBA_PDMEI (d) SBA_PDMEI_PEG at 30 °C under dry and humid conditions (PH2O 

= 21 mbar) after 65 min of time on stream. Dotted lines represent dry and humid runs 

respectively. 
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C.5  Water Adsorption Isotherms 

 

Figure C.11. Water adsorption isotherms for all sorbents. Measurements conducted at (a) 

30 and (b) 40 °C. 
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C.6  CO2 Adsorption Capacities and CO2 Adsorption/Desorption Curves of 

SBA_PEI, SBA_PDMEI, SBA_PDMEI_PEG, and SBA_PDMEI_PEG 

 

Figure C.12. CO2 adsorption capacities of sorbents at 10% CO2 between 30 and 60 °C. 

Unfilled and filled shapes represent amine efficiencies under dry and humid conditions 

(PH2O = 21 mbar) respectively.   
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Figure C.13. Normalized FTIR peak area between 1750 and 1270 cm−1 during desorption 

of 10% CO2 under dry and humid conditions (PH2O = 21 mbar) at 30 °C. Unfilled shapes 

represent dry runs and filled shapes represent humid runs. The curves are normalized 

such that the start of the desorption run equals 1 and the end of the run (60 min) equals 0. 

 

Figure C.14. Normalized FTIR peak area between 1750 and 1270 cm−1 during desorption 

of 10% CO2 under dry and humid conditions (PH2O = 21 mbar) at 30 °C. Unfilled shapes 

represent dry runs and filled shapes represent humid runs. The curves are normalized 

such that the start of desorption run equals 1 and end of desorption run (60 min) equals 0.  
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Figure C.15. FTIR peak area between 1750 and 1270 cm−1 during desorption of 10% CO2 

under dry and humid conditions (PH2O = 21 mbar) at 30 °C. Unfilled shapes represent dry 

runs and filled shapes represent humid runs.  

 

Figure C.16. FTIR peak area between 1750 and 1270 cm−1 during adsorption of 10% CO2 

under dry and humid conditions (PH2O = 21 mbar) at 30 °C. Unfilled shapes represent dry 

runs and filled shapes represent humid runs.  

 



 155 

C.7  Physical and Textural Properties of SBA_PDMEI_lo and SBA_PDMEI_PEI  

Table C.2. Textural and physical properties of additional aminopolymer/silica 

composites. 

Material 

BET 

Surface 

Area 

(m²/gSiO2) 

Pore 

Volume 

(cm³/gSiO2) 

Pore 

Volume 

Filled 

(%) 

 

Amine 

Loading 

(mmolN/gSiO2) 

Organic 

Loading

(wt%)  

Amine 

Loading 

Ratio  

(PEI/PDMEI)     

SBA_PEI 415 0.80 26 5.6 23 - 

SBA_PDMEI_lo 404 0.82 24 1.7 13 - 

SBA_PDMEI_PEI 346 0.63 42 7.4 32 5.6/1.8 
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C.8  CO2 and H2O Adsorption Performance of SBA_PDMEI_lo and 

SBA_PDMEI_PEI 

 

Figure C.17. (a) Amine efficiencies and (b) CO2 capacities of aminopolymer/silica 

composites at 10% CO2 between 30 and 60 °C. Unfilled and filled shapes represent 

amine efficiencies under dry and humid conditions (PH2O = 21 mbar) respectively. 

 

Figure C.18. (a) Water uptake and (b) amine normalized water uptake of 

aminopolymer/silica composites at 30 and 40 °C and PH2O = 21 mbar.  
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C.9  In Situ FTIR Spectra and CO2 Adsorption/Desorption Curves of 

SBA_PDMEI_lo and SBA_PMDEI_PEI  

 

Figure C.19. FTIR spectra of 10% CO2 adsorption on (a, b) SBA_PDMEI and (c, d) 

SBA_PDMEI_PEI under dry and humid conditions (PH2O = 21 mbar) at 30 °C after 65 

min of time on stream. Dotted lines and solid lines represent dry and humid runs 

respectively. 
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Figure C.20. Normalized FTIR peak area integrated between 1750 and 1275 cm−1 during 

(a) adsorption and (b) desorption of 10% CO2 under dry and humid conditions (PH2O = 21 

mbar) at 30 °C. Unfilled shapes represent dry runs and filled shapes represent humid 

runs. The curves are normalized such that the end of the adsorption run (65 min) equals 1 

and the desorption curves are normalized such that the start of desorption run equals 1 

and end of desorption run (60 min) equals 0. 
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C.10  CO2 Breakthrough Curves  

 

Figure C.21. 10% CO2 breakthrough curves at 30 °C for all sorbents under humid 

conditions (PH2O = 21 mbar). 

 

Figure C.22. 10% CO2 breakthrough curves at 40 °C for all sorbents under humid 

conditions (PH2O = 21 mbar). 
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