GVU-Tech-Report 4_22 2002

SwingWrapper 1

SwingWrapper:

Retiling Triangle Meshes for Better Compression

Marco Attene’, Bianca Falcidieno’, Michela Spagnuolo*, Jarek RossignacT

i "
f \
L B

o s

v

Figure 1: The original model (on the left, courtesy of Cyberware) containing 134,074 triangles requires 4,100,000 bytes, when stored as a
WRL file. A dense partitioning of its surface into deformed triangles, called “triangloids” (second), was produced by SwingWrap per. The
corresponding retiled mesh (third) was generated by flattening the triangloids. Its L? distortion is about 0.007% of the bounding box
diagonal and its 13642 triangles were encoded with 3.5 bits per triangle using Edgebreaker’s connectivity compression combined with a
novel geometry predictor. The resulting total of 6042 bytes represents a 678-to-1 compression ratio. A coarser partitioning (fourth)
decomposes the original surface into 1505 triangloids. The distortion of the corresponding retiled mesh (last) is about 0.15%, and the
encoded model requires 980 bytes: A 4000-to-1 compression. Colors are associated to the EdgeBreaker’s triangle labeling.

Abstract

We focus on the lossy compression of manifold triangle meshes.
Our SwingWrapper approach partitions the surface of an original
mesh M into simply connected regions, called triangloids. From
these, we generate a new mesh M’. Each triangle of M’ is an
approximation of a triangloid of M. By construction, the
connectivity of M’ is fairly regular and can be compressed to less
than a bit per triangle using EdgeBreaker or one of the other
recently developed schemes. The locations of the vertices of M’
are compactly encoded with our new prediction technique, which
uses a single correction parameter per vertex. Differently from
typical compression algorithms, SwingWrapper attempts to reach
a user-defined output file size rather than, for example, not to
exceed a given error bound. For a variety of popular models, a rate
of 0.4 bits/triangle yields an L? distortion of about 0.01% of the
bounding box diagonal. The proposed solution may also be used to
encode crude meshes for adaptive transmission or for controlling
subdivision surfaces.

CR Categories and Subject Descriptions: 1.3.3 [Computer
Graphics]: Compression Algorithms, Computational Geometry,
Mesh Generation, Polygonal Mesh Reduction

Additional Keywords: Triangle Meshes, Geometry Compression,
Simplification, Retiling, Visualization over Networks.

* {attene, falcidieno, spagnuolo}@ima.ge.cnr.it
T jarek@cc.gatech.edu

1 INTRODUCTION

3D graphics plays an increasingly important role in applications
where 3D models are accessed through the Internet. Due to
improved design and model acquisition tools, to the wider
acceptance of this technology, and to the need for higher accuracy,
the number and complexity of these models are growing more
rapidly than phone, network, and air bandwidth. Consequently, it
is imperative to continue improving the terseness of 3D data
transmission formats and the performance and reliability of the
associated compression and decompression algorithms.

Although many representations have been proposed for 3D
models, polygon and triangle meshes are the de facto standard for
exchanging and viewing 3D models, because they are simple to
generate, store, and process, and because they are well supported
by graphics adapters, APIS and standards. Triangle meshes that
form accurate representations of 3D shapes involve large numbers
of triangles and thus require a significant amount of storage space
or transmission time. Thus it is important to compress them.

A triangle mesh may be represented by its vertex data and by its
connectivity. Vertex data comprises coordinates of the vertices
and optionally the vertex colors or normal and texture coordinate.
In its simplest form, connectivity captures the incidence relation
between the triangles of the mesh and their bounding vertices. It
may be represented by a triangle-vertex incidence table, which
associates with each triangle the references to its three bounding
vertices.

Many applications do not require that the exact original mesh
(which is often an approximation of some real object or of an ideal
curved shape) be preserved. Thus it is appropriate and often
advantageous to use lossy compression. The SwingWrapper
approach proposed here and illustrated in Figure 1 produces an

page

GVU-Tech-Report 4_22 2002

SwingWrapper 2

approximating mesh particularly well suited for compression.

Simplification and compression have been separated in the past.
Simplification was focused on reducing the triangle count while
minimizing or not exceeding some error estimate. Most
compression techniques have been lossless (except for the
quantization of the vertex coordinate). We combine them here,
proposing a particular retiling approach that reduces the triangle-
count while generating a mesh particularly suitable for
compression, because it is fairly regular (so that its connectivity
can be encoded concisely) and because the locations of its vertices
are constrained (so that they are each defined by a single
parameter) and quantized (so that the difference between their
predicted and actual location can be encoded with a few bit
integer).

2 PRIOR ART

For manifold meshes with few handles, the number of triangles is
roughly twice the number of vertices. Consequently, when
pointers or integer indices are used as vertex-references and when
floating point coordinates are used to encode vertex locations,
uncompressed connectivity data consumes twice more storage
than vertex coordinates. This prompted the invention of a number
of algorithms for the compression of the connectivity. The
connectivity of a triangle mesh that is homeomorphic to a sphere
corresponds to a planar graph. Compact encodings of such graphs
and their worst case bounds have been studied for over 40 years
[1] and remain a vibrant research topic [17][3][4][18][19][20][21].
Recent results guarantee less than 2 bits per triangle encodings for
the connectivity of such meshes [19][18]. The connectivity of
regular meshes, where most vertices have exactly six neighbors,
may often be encoded at a significantly lower cost [4][21][23]. To
benefit from these advances, we strive to produce fairly regular
retilings, however, the main benefit of the SwingWrapper
approach described in this paper lies in the way in which we
constrain vertex locations, so as to reduce their storage.

3D compression schemes developed over the last seven years have
already impacted the design of hardware graphic adapters [2], of
the MPEG-4 standard [3], and of 3D graphics software products
[4]. These schemes encode triangle meshes and thus allocate a
significant amount of storage to the precise location of vertices
and to the connectivity of the original mesh. Yet, most
applications do not require that the precise vertex positions on the
surface and the original mesh connectivity be preserved.
Techniques based on a retiling of the model promise to provide
higher compression ratios. For example, a mesh can be retiled
[33][34][35] by inserting few new vertices, distributed regularly
with a density that may be uniform or that may depend on the
local curvature. In a second step, the numerous original vertices
can be removed. In a different approach, when the approximating
surface is formulated as the result of a regular subdivision process
applied to a coarse triangle mesh [5], the cost of storing
connectivity is drastically reduced. When vertices are constrained
to lie on specific rays emanating from a coarse mesh [6], their
position may be encoded using a single coordinate. These
approaches involve the delicate process of establishing a one-to-
one mapping between the original surface and an approximating
triangle mesh.

In many situations, considerable savings may be achieved by
initially transmitting a crude approximation and by holding off the
transmission of its refinements until they become necessary, so
several methods for a progressive encoding [7][8][9][10][11] have
been developed.

3D compression has also been investigated for meshes with
properties [12][13] and it has been improved for rendering and

visualization purposes [14][15], where, when a slight loss of
information is tolerable, high frequencies can be simplified [16].

Although it may be formulated as a modification of schemes that
were designed to take advantage of the regularity of the
connectivity of the mesh [4][21], for simplicity, we chose to
implement SwingWrapper as a modification of the EdgeBreaker
compression scheme [19][23]. As several other compression
schemes [3][4][17], Edgebreaker visits the triangles in a spiraling
(depth-first) triangle-spanning-tree order and generates a string of
descriptors, one per triangle, which indicate how the mesh can be
rebuilt by attaching new triangles to previously reconstructed
ones. The popularity of Edgebreaker lies in the fact that all
descriptors are symbols from the set {C,L,E,R,S}. A particular
edge separating a previously processed triangle from one that has
not yet been processed is called the gate. (The tip of the triangle,
its left and right edges and neighboring triangles are defined with
respect to that gate.) At each step of the Edgebreaker compression
and decompression, the unprocessed triangle attached at the gate is
processed and a new gate is selected. When the tip of the new
triangle corrsponds to a vertex that has not been previously visited,
the triangle is associated with the symbol C. Otherwise, only four
cases are possible. If only the right neighbor of the new triangle
has been previously visited, the new triangle is labeled R and its
left edge becomes the gate. The symmetric situation corresponds
to the L label. When both neighbors have not yet been visited (but
the tip has), the algorithm starts a recursion with the right edge as
gate and then resumes processing with the left edge as gate. This
situation corresponds to the label S. When both neighobrs have
been visited, the triangle is marked with the label E and the
recursion returns (or the algorithm terminates). Thus the process
follows a corridor, breaking the edges that are successively
identified as gates. At each S triangle, the corridor splits into two
branches and we go right first. At each E triangle, we have reached
the end of a branch. The string of labels produced by Edgebreaker
is called the clers string. It is surprising that no other parameter is
needed to encode the full connectivity. Specifically, it is not
necessary to encode where the tip of an S triangle should be
attached, because that information can be recomputed from the
sequence of labels [19], except for pairs of S triangles that each
correspond to the formation of a handle in the mesh.

Because in a mesh with no handles half of the descriptors are Cs, a
trivial code (C=0, L=110, E=111, R=101, S=100) guarantees 2 bits
per triangle. A slightly more complex code guarantees 1.83 bits
per triangle [18]. For large meshes, entropy codes further reduce
the storage to less than a bit per triangle. Efficient methods
[23][24] have been published that interpret the clers sequence to
reconstruct the original connectivity. The Edgebreaker
compression scheme has been extended to manifold meshes with
handles and holes [19] and to triangulated boundaries of non-
manifold solids [22]. It was also optimized for meshes with nearly
regular connectivity [20]. Nevertheless, for sake of simplicity, in
this paper, we restrict our focus to manifold and orientable
closed T-meshes embedded in R®.

Vertex coordinates may be compressed through various forms of
quantization [2][3][25]. Most vertex compression approaches
exploit the coherence in vertex locations by using local or global
predictors to encode corrections instead of absolute vertex data.
Both the encoder and the decoder use the same prediction formula.
The encoder transmits the difference between the predicted and
the correct vertex data. It uses variable length codes for the
corrections. The better the prediction—the shorter the codes. The
decoder receives the correction, decodes it and adds it to the
predicted data to obtain the correct information for the next vertex.
Thus the prediction can only exploit data that has been previously
received and decoded. Most predictive schemes require only local

page

GVU-Tech-Report 4_22 2002

SwingWrapper 3

connectivity between the next vertex and its previously decoded
neighbors.

Mesh simplification algorithms are used to reduce the number of
polygons of the input model. Existing approaches are mainly
based on vertex [26], edge [7][27][28] or face [29][30]
simplification primitives; roughly speaking, at each step the
algorithm chooses an element to be simplified, depending either
on some error metrics or on characteristics such as the surface
curvature, then the selected element is eliminated and the
influenced region is re-triangulated. Most of these simplification
techniques are particular versions of vertex clustering. The
simplest and most efficient vertex clustering, [31][32] overlays a
3D grid on the model and collapses all vertices within each cell of
the grid to the single most important vertex within the cell.

Some simplification techniques provide a bound or an estimate on
the error between the simplified and the original models.
Evaluating the difference between two 3D models is complex [36]
and may be approached in different ways. For example, in [7]
energy functions have been used to measure the total squared
distance, while in [30] the distances of original vertices and the
simplified surface are used. As in [10], we use the symmetric L’
distance D = max{d(M,M’), d(M’,M)} to evaluate the distortion of
M’, where:

o 1 o /2
d(M,M)—%ld(x,M) dx%

We compute this value using the publicly available Metro Tool
[37]. All the distortions reported in this paper are expressed as a
percentage of the model’s bounding box diagonal.

3 SWING-WRAPPER

Our approach partitions the surface of an original mesh M into
simply connected regions, called triangloids, and generates a new
mesh M’ in which each triangle is an approximation of a triangloid
of M. By construction, the connectivity of M’ is fairly regular and
can be compressed to less than a bit per triangle using
EdgeBreaker or one of the other recently developed schemes. To
understand how SwingWrapper encodes the geometry (vertex
locations), we review what happens during the EdgeBreaker
decompression of a clers string. Whenever we meet a ‘C’ symbol,
we must create a new vertex, and thus need to obtain its three
coordinates. Coordinates could be transmitted as absolute values
or predicted by the decompression and adjusted by corrective-
vectors; in both cases we would need to transmit three parameters
for each vertex. The variation that we introduce below reduces the
transmission to a single parameter. It exploits the fact that in
many instances, we can slide the tip of a C triangle on the surface
M without significantly increasing the approximation error. Thus,
we force each C triangle to be isosceles with the gate as its base
and its height having a prescribed length ; /3, ; in the following
sections we describe how to compute L as a function of the desired
output file size. Given these two constraints, the position of the tip
vertex of the triangle is completely defined by the dihedral angle
between the two triangles that are incident upon the gate. The
decoder can estimate that angle to be 180 degrees or a pre-
computed value that depends on the average curvature of the
model. The decompression algorithm is notified by a single bit
whether that estimate is sufficient to satisfy a predefined error
tolerance. If not, a single number (0 in Fig. 2) is decoded and used
to adjust the dihedral angle. Furthermore, such a correction
number may be quantized and represented as a fixed length integer
of a few bits without producing significant errors.

180°+0

Figure 2: Construction of a new C triangle; prediction (left) and
correction of Q degrees (right).

Note that L, R, and S triangles may produce edges, and thus gates,
whose lengths vary, depending on the local curvature.

If L is too large for a particular shape, the procedure described
here may at some point not be able to produce a triangloid that
satisfies the desired topological constraints. We have investigated
an approach where, to cope with such failures, we temporarily
reduce the desired length L to adapt the size of the triangles to the
local geometry. We have concluded however that this adaptive
process increases the irregularity of the resulting mesh and the
transmission cost, due to the necessity of encoding which triangles
require adjustments for L and how much adjustment is needed. We
have found that for a large class of meshes, the simple process
described here can be used successfully to produce meshes, with a
quasi-uniform edge length L, that approximate the original shape
with an error/storage compromise that significantly improves over
previously reported simplification and compression techniques.

The scenario described above is the essence of the SwingWrapper
approach: Encode the connectivity using Edgebreaker and the
vertex locations using the dihedral angle scheme.

3.1 Retiling M

As we said above, we compute a retiling M’ by partitioning a
given manifold mesh M into simply connected triangular-like
regions, called triangloids. Each triangloid, corresponding to a
triangle of M’, is bounded by three piecewise linear paths on M,
and each path corresponds to an edge of M’. Note that some
triangles of M may not fall within a single triangloid. The
algorithm subdivides them into smaller triangles that do. We
describe in this section the retiling process. The initial steps are
illustrated in Figure 2. Details are provided in the following
subsections.

Let p; denote the first vertex of M’. The desired length, L, is either
provided by the user or computed in order to meet an output file
size requirement. The initial vertex p; is typically chosen
randomly, although it may also be specified by the user (Fig. 3a).

P> the second vertex of M’, is taken on the curve C where M
intersects the sphere centered in p; with radius L (Fig. 3b). For
simplicity, we consider that M is connected. Thus, if C is empty,
the desired distance L is considered too large for the model. If C
has more than one component, we consider only the portion of C
that bounds the part of M containing p;.

Now, let e be the edge connecting p;and p, and let m, be its
middle point. Let C now denote the circle centered in m, having
for radius ; /3, (the height of the equilateral triangle with edge
length L) and lying on the plane perpendicular to e. If C has only
two intersections with M, then we label them p; (Fig. 3¢) and p,
and use them as sampling points to define the vertices of the initial
two triangles. If the intersection is made of less than two points,
the sampling step L is considered too big for the model and the
process stops. If it is made of more than two points, we consider
the two which are closer to p; and p, on the surface metric, that is,
we start from a surface point between p; and p, belonging to the
intersection between the mesh and the bisecting plane of e, and we
move along the intersection in both the directions until the
euclidean distance is L.

The above operations locate three points (p;, p, and p;) on M
defining the first equilateral triangle, ¢’, of M’. We refer to e as the

GVU-Tech-Report 4_22 2002

SwingWrapper 4

base edge of #”. Now we must compute the three paths on M (Fig.
3d) that bound the corresponding triangloid 7, then we must mark
its inner elements (Fig. 3¢) so as to ensure that they are not later
associated with another triangle of M’. Tracking a path may
require the insertion of new vertices where the path crosses edges
of M. Thus edge and/or triangle splits are performed in order to
build a coherent partitioning of M. The paths are approximations
of the corresponding geodesic shortest paths (GSP). Although they
could be computed exactly as described in [40], we use a more
efficient procedure, described below, which exploits the fact that
we are only interested in paths that remain close to a straignt line.

A second equilateral triangle (Fig. 3f) has for vertices p; p, and
p4. The two paths that bound the corresponding triangloid are
computed using the same approach as above.

P,

P, P,

)
i

\

|

1

L] L] 1

1

i

[}
(d
/

Sphere-mesh
intersection /

(a) (b)

\
N

Intersecting !

circle - o P;

©] @ =

Intersecting
circle

(e) ®

Figure 3: Construction of the initial triangles of M.

=

To build each one of the other triangles of M’, we always start
with a gate edge bounded by two points, say A and B, and locate a
sample V on M. V must lie on the circle centered at the gate mid-
point, having radius ;/3/5, and lying on the bisecting plane
between A and B. The circle and M may have two or more
intersections but, as we explained above, we consider only two.
Between them, we select the one that is the furthest away from the
tip of the previously decoded triangle bounded by the gate.

If V is close enough to a previously decoded vertex that is part of
the border of the decoded triangles, we select the closest of these,
say W, and consider it to be the tip of the next triangle. If W is a
neighbor of A and B (that is, they are connected by edges of M’),
then the triangle corresponds to the EdgeBreaker label E. If it is
only a neighbor of one of them, the new triangle is either R or L,
depending whether W follows or precedes the gate (Fig. 4a).
Otherwise, we have an S triangle (Fig. 4b). Otherwise, If V is
further from W than the desired snap threshold, the new triangle
corresponds to the C label and its tip is a new vertex.

If V is inside a previously processed triangloid, we do not use any

limit and always perform a snap to the closest point, W (Fig. 4a)
on the border of the previously accounted triangloids. If we
perform the snap whenever the distance between V and W is less
than L/2, we are guaranteed that no edge in the final triangulation
is shorter than L/2 or longer than 3L/2. Since, in this context, the
concept of closeness is relative to the surface metric, we move by
adjacencies on M in a spiral-like manner, and we stop when we
reach the threshold distance in all the directions.

Figure 4: Simple (a) and Complex (b) Snaps.

3.2 Computation of the path

To compute an approximation of the geodesic path between a
point A and a point B on M, we estimate the normals at A and B.
Then we construct a plane that passes through A and B and is
parallel to the sum of their normals. Then we walk from A towards
B along the intersection of that plane with M. If we cannot reach
B, we stop and conclude that the desired edge length is too large.
If we reach B, we have a candidate path P that forms a polyline on
M whose internal vertices are all on the edges or vertices of M.
Then we attempt to shorten P by a series of local snaps. Each
snap moves a vertex V of P along an edge of M. (If V lies in the
relative interior of an edge of M, then the snap can only move it
along that edge. If V coincides with a vertex of M, then the snap
can move it along any of the edges of M that are incident upon
that vertex). At each snap, we select the move that minimizes the
length of P. Note that the move may bring the vertex to the end of
the edge or to some internal point on the edge.

If the surface is sufficiently smooth, the limit of this process
produces the exact GSP, otherwise it converges to a locally
shortest path.

3.3 Validity tests

At each step of the sampling procedure described above, we
compute and mark the corresponding triangloid by tracing the
GSP paths that bound it and by identifying and marking the
portions of M that they bound. We verify that the surface of the
triangloid is simply connected and disjoint from previously
encountered triangloids.

Although this process may fail for an excessive desired edge
length L, we have established experimentally that the uniform
strategy described here produces excellent results for a large
variety of models commonly used to report results of
simplification and compression algorithms and for a range of
values of L that gives compression/error ratios superior to
previsouly published techniques.

3.4 Encoding

The described process can be used directly to generate a clers
string representing the connectivity of the simplified triangulation
and, since we are guaranteed that ‘C’ triangles are isosceles and

page

GVU-Tech-Report 4_22 2002

SwingWrapper 5

their height is 74/3/2, we can use the dihedral angle scheme for
encoding the geometry. Thus, the compressed model is
represented by the coordinates of the first three vertices, a clers
string, and a sequence of dihedral angles. The mesh connectivity
can be reconstructed using the Wrap&Zip algorithm [23]. The
location of the first three vertices is explicit, while the others can
be computed starting from the already reconstructed mesh and the
dihedral angle information. The edge length L does not need to be
encoded because it is the distance between two of the three
original vertices.

The geometry is encoded by quantizing each dihedral angle with a
fixed number of bits.

Since angles are quantized, vertices of the approximating mesh do
not lie exactly on the original triangulation. Hence, the
quantization has two effects: (1) it increases the error estimate by
adding to it the maximum displacement that a vertex could be
subjected to during quantization and (2) it requires that the
computation of the corrective values be adjusted to take
quantization into account.

The error increase due to quantization depends on L and on the
number of bits used to store each value. It is easily computed for a
single step. For example, using 8 bits guarantees a precision of
360/256 0 1.41 degrees (corresponding to a Hausdorff distance of
L+3sin(1.41)/2).

To avoid error propagation during the decompression, the
compression algorithm computes each new vertex starting from an
approximating adjacent triangle, whose vertices do not necessarily
lie on the original mesh. Thus the compression must simulate the
work of the decompressor using only previously decoded
information. To achieve this, we integrate quantization with the
retiling process. At each step when a new vertex is introduced, a
point V on M is used for computing the paths bounding the
triangloid but a quantized version of that point is used when
computing the following triangloids of M.

3.5 Results and discussion

When each dihedral angle is quantized with 8 bits, and the first
three vertices use 32 bits per coordinate, the method described
here guarantees that the retiled mesh M’ with V' vertices, T
triangles and H handles can always be encoded with
32*3*3+8)+1.83T+2Hlog(7T) bits. For simplicity, we assume that
the number of handles, H, is negligeable with respect to V, and
thus that 7=2V.

For large meshes, entropy encoding further reduces storage,
bringing the connectivity cost down to about 17 bits and the
geometry cost to about 6) bits (or equivalently 37 bits). Thus the
total size is about 47 bits for large meshes, while it is guaranteed
not to exceed 288+5.83 T bits for meshes without handles.

We have implemented a prototype to test the described method.
The input is an original mesh M and the desired size S of the
compressed model in bits. The first step of the SwingWrapper
system is to use such a size to compute the sampling step L, by
considering the following:

e A =areaof M.
e a= Lng /4= area of an equilateral triangle with edge length L.

e T = A/a = number of equilateral triangles that are necessary to
wrap the whole M.

We make two approximations: 1) we consider that all the triangles

produced by SwingWrapper are equilateral and 2) that each

triangle is encoded with exactly 4 bits. So we want that 47 = §

and, by substitution, 164/(Lng)=S§. Inverting, we obtain:

L=4J4/(SB)

We found that the actual output size produced by our heuristics

approaches the desired one (Figs. 6, 7 and 8) within an accuracy
that is sufficient for a wide variety of Web-based applications.
When the user asks for a compression that would require a desired
edge length L that is too large for the particular mesh,
SwingWrapper reports a failure and the user must either suggest a
less aggressive compression or rely on an automated binary
search, which computes the largest L for which the mesh can be
resampled with our approach.

We have found that many of the original triangle meshes that have
been used to demonstrate simplification and compression results
in the literature may be retiled with our method down to 10 times
fewer triangles without exceeding an L? error of 0.01% of the
diagonal of the model’s bounding box. Thus, for large meshes, the
resulting compression yields an expected storage of 0.4 bits per
triangle. Of course, since we are doing remeshing, the number of
bits per triangle of the original model is just an indication of the
compression rate, that is, it relies on the assumption that the
triangle count of the original model is proportional to the
complexity of its geometry.

We chose to compare SwingWrapper with the recent PGC lossy
compressor proposed by Khodakovsky et al. [10] since, in its turn,
their coder provides better rate/distortion than CPM[38] and the
single rate TG[4] and MPEG[3] approaches with comparable
vertex quantization. We found that our method performs better at
low bitrates, while it converges to their curves for more precise
reconstructions, as shown in Fig. 5. The depicted PGC (dotted)
curves were obtained by tracking the values reported in [10] for
the corresponding models. Since in our implementation the desired
bitrate can be passed as an input parameter, we easily sampled our
(continuous) curve approximately at the same points as those
reported in [10], so that interpolation errors do not impact the
comparison.

Relative L2 error

84

bits/v
0 >
0 1 2 3 4 5 10
Relative L2 error
1
84 \
\
6 -
-
1 }
4 E k [
-
L N - -
S e------ bits/v
0 >
0 1 2 3 4 5 10

Figure 5: Rate/distortion curves for SwingWrapper
(continuous) and PGC (dotted). Relative L? errors are expressed
in units of 107,

Fig. 5 shows only two examples, but further comparisons were
made for the remaining models analyzed in [10] with analogous
results.

We tested our prototype on a Pentium-III 450 equipped with
512M of ram and running Linux and, excluding input/output

page

GVU-Tech-Report 4_22 2002

SwingWrapper 6

operations, statistics on running time reported an average of
1.2¢10™ seconds per triangle of the original mesh M (over 8000
triangles per second) for compression. For example, the model
depicted in Fig. 6 is made of 274K triangles, and its compression
takes about 30 seconds. Decompression time is comparable to the
reading of the compressed model.

€:0.004%
S: 28000 B
0:29958 B

Original

€:0.04%
S: 14000 B
0: 12206 B

€:0.41%
S: 4000 B
0:4318 B

Figure 6: The same model encoded at different rates. S is the
requested output file size, while O is the obtained one in bytes.

It is worth to say that SwingWrapper performs a smoothing
operation on the original model. The presence of sharp features
does not prevent the coder to return a valid result (Fig. 7), only, if
detailed features must be retained, it may require more storage size
for the compressed model because a shorter sampling step is
required.

€:0.032%
S:2500 B
0:2686 B

Original

Figure 7: Smoothing effect due to uniform remeshing. The
error is concentrated on the features but, being these a small
part of the surface area, the L’ distortion is not affected too
much.

Since many models have handles (through holes) and/or holes
(cut-out in the surface), we have extended SwingWrapper to
handle such cases by using the encoding scheme supported by
EdgeBreaker [19], as shown in Fig. 8. It must be considered that,
as it happens for sharp features, boundaries may be distorted more
than the other parts of the surface.

i I"_L — €.0.013%
W onioinal L S: 6000 B
L riginal | S L_ 0: 6424 B

",

Figure 8: Retiling of a solid with a through-hole (handle).
4 CONCLUSIONS

In this paper, we have presented a new method for compressing
triangle meshes with a controlled loss of information. We
exploited both simplification and compression techniques in order
to obtain a compact encoding. For this, we retile the mesh (Fig. 9)
with triangles that are either isosceles or made of previously
processed vertices. Our new prediction technique makes it
possible to encode the location of each vertex of the retiling with
an average of only 6 bits. A further innovation is the possibility to
perform the compression as a function of the desired storage size
of the final encoding.

Finally, we presented the method as an extension of the
EdgeBreaker scheme because it is simple and provides the
necessary mesh traversal order, but it could be easily combined
with other connectivity compression schemes [4][21][23].

Original Retiling

Figure 9: An example showing the regularity of the retiling.

5 ACKNOWLEDGEMENTS

This section will be completed in the final version.

6 REFERENCES

[1] W. Tutte, “A census of planar triangulations”, Canadian
Journal of Mathematics, pp.21-38, 1962.

[2] M. Deering. Geometry compression. In Computer Graphics
(SIGGRAPH '95 Proceedings), pp. 13-20, 1995.

[3] G. Taubin and J. Rossignac, "Geometric Compression
through Topological Surgery", ACM Transactions on
Graphics, 17(2), 84-115, April 1998.

page

GVU-Tech-Report

4_22 2002

SwingWrapper 7

(4]

(3]

[6]

(7]

(8]

(9]

[10]

C. Touma and C. Gotsman, “Triangle Mesh Compression”,
Proceedings Graphics Interface 98, pp. 26-34, 1998.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery
and W. Stuetzle, Multiresolution Analysis of Arbitrary
Meshes, Proc. ACM SIGGRAPH'95, pp. 173-182, Aug.
1995.

1. Guskov, K. Vidimce, W. Sweldens, P. Schroder, Normal
Meshes, Proc. SIGGRAPH, pp. 95-102, 2000.

H. Hoppe, “Progressive Meshes”, Proc. ACM Siggraph’96,
pp- 99-108, August 1996.

C.L Bajaj and V.Pascucci and G.Zhuang. “Progressive
Compression and Transmission of Arbitrary Triangular
Meshes”, IEEE Visualization '99, pp. 307-316, October
1999.

D. Cohen-Or, D. Levin and O. Remez, “Progressive
Compression of Arbitrary Triangular Meshes”. In Proc. of
Visualization 99, pp. 67-72, October 1999.

A. Khodakovsky, P. Schroeder and W. Sweldens,

“Progressive Geometry Compression”, Proc. of SIGGRAPH
2000, pp. 271-278, July 2000.

[11] P. Alliez and M. Desbrun, “Progressive Encoding for

[12]

Lossless Transmission of 3D Meshes”, Proc. of SIGGRAPH
2001, pp., August 2001.

C.L. Bajaj and V. Pascucci and G. Zhuang, “Single
Resolution Compression of Arbitrary Triangular Meshes
with Properties”, IEEE Data Compression Conference, 1999.

M. Isenburg and J. Snoeyink, “Face-Fixer: Compressing
Polygon Meshes with Properties”, Proc. of SIGGRAPH
2000, pages 263-270, July 2000.

M. Chow, “Optimized Geometry Compression for Real-time
Rendering”, In Proc. of the IEEE Visualization '97, pp. 346-
354, November 1997.

[15] M.H. Gross, L. Lippert and O.G.Staadt, “Compression

[16]

(21]

[22]

methods for Visualization”, Future Generation Computer
Systems, Vol. 15, No. 1, pp.11-19, 1999.

Z. Karni and C. Gotsman, “Spectral Coding of Mesh
Geometry”, Proc. of SIGGRAPH 2000, pp. 279-286, July
2000.

S. Gumhold and W. Strasser, “Real Time Compression of
Triangle Mesh Connectivity”, Proc. ACM SIGGRAPH, pp.
133-140, July 1998.

D. King and J. Rossignac, “Guaranteed 3.67V bit encoding
of planar triangle graphs”, 11th Canadian Conference on
Computational Geometry (CCCG'99), pp. 146-149,
Vancouver, CA, August 15-18, 1999.

J. Rossignac, "Edgebreaker: Connectivity compression for
triangle meshes", IEEE Transactions on Visualization and
Computer Graphics, 5(1), 47-61, Jan-Mar 1999.

A. Szymczak, D. King, J. Rossignac, “An Edgebreaker-
based Efficient Compression Scheme for Connectivity of
Regular Meshes”, Journal of Computational Geometry:
Theory and Applications, 2000.

P. Alliez and M. Desbrun, “Valence-Driven Connectivity
Encoding for 3D Meshes”, Proc. of Eurographics '2001.

J. Rossignac and D. Cardoze, “Matchmaker: Manifold Breps
for non-manifold r-sets”, Proceedings of the ACM

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[35]

[36]

Symposium on Solid Modeling, pp. 31-41, June 1999.

J. Rossignac and A. Szymczak, "Wrap&Zip decompression
of the connectivity of triangle meshes compressed with
Edgebreaker", Computational Geometry, Theory and
Applications, 14(1/3), 119-135, November 1999.

M. Isenburg and J. Snoeyink, “Spirale Reversi: Reverse
decoding of the Edgebreaker encoding”, Tech. Report TR-
99-08, Computer Science, UBC, 1999.

M. Garland and P. Heckbert. Simplifying Surfaces with
Color and Texture using Quadratic Error Metric.
Proceedings of IEEE Visualization, pp. 287-295, 1998.

W. Schroeder, J. Zarge and W.E. Lorensen, “Decimation of
triangle meshes”, Proc. ACM Siggraph 92, pp. 65-70, July
1992.

M. E. Algorri and F. Schmitt, “Mesh simplification”, Proc.
Eurographics 96, 15(3), pp. 78-86, 1996.

R. Ronfard and J. Rossignac, “Full range approximation of
triangulated polyhedra”, Proc. Eurographics 96, 15(3), pp.
67-76, 1996.

P. Hinker and C. Hansen, “Geometric Optimization”, IEEE
Visualization *93 Proc., pp 189-195, October, 1993.

A.D. Kalvin and R.H. Taylor, “Superfaces: Polygonal mesh
simplification with bounded error”. IEEE Computer
Graphics and Applications, 16(3), pp. 64-67,1996.

J. Rossignac and P. Borrel, “Multi-resolution 3D
approximations for rendering complex scenes”, Geometric
Modeling in Computer Graphics, Springer Verlag, Berlin,
pp. 445-465, 1993.

K-L. Low and T.S.Tan, “Model Simplification using vertex
clustering”, Proc. Symp. Interactive 3D Graphics, ACM
Press, NY, pp. 75-82, 1997.

G. Turk, “Re-tiling polygonal surfaces”, Proc. ACM
Siggraph 92, pp. 55-64, July 1992.

M. Attene, S. Biasotti and M. Spagnuolo, “Re-meshing
techniques for topological analysis”, Proc. Shape Modeling
International, pp. 142-151, 2001.

A.Lee, W.Sweldens, P.Schroder, L.Cowsar, D.Dobkin,
“MAPS: Multiresolution Adaptive Parameterization of
Surfaces”, Proc. SIGGRAPH’98, 1998.

A. Khodakovsky, P. Schroder, W. Sweldens, “Progressive
Geometry Compression”, Proc. SIGGRAPH’00, pp. 271-
278, 2000.

P. Cignoni, C. Rocchini and R. Scopigno, “Metro:
measuring error on simplified surfaces”, Proc. Eurographics
’98, vol. 17(2), pp 167-174, June 1998.

RPajarola and J.Rossignac, “Compressed Progressive
Meshes”, Tech. Rep. GIT-GVU-99-05, Georgia Institute of
Technology, 1999.

M.Botsch, LP.Kobbelt, “A Robust Procedure to Eliminate
Degenerate Faces from Triangle Meshes”, Vision Modelling
and Visualization (VMVO01), Stuttgart, Germany, November
21-23,2001.

K. Polthier, M. Schmies, “Geodesic Flow on Polyhedral
Surfaces”, Procs. of Eurographics Workshop on Scientific
Visualization, Vienna 1999.

page

